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Preface

CRYPTO 2009, the 29th Annual International Cryptology Conference, was spon-
sored by the International Association for Cryptologic Research (IACR) in coop-
eration with the IEEE Computer Society Technical Committee on Security and
Privacy and the Computer Science Department of the University of California
at Santa Barbara. The conference was held in Santa Barbara, California, during
August 16–20, 2009, and John Black served as the General Chair. The Program
Committee consisted of 29 members and two advisory members, whose names are
listed on the next page, and I had the privilege of serving as the Program Chair.

The conference received 213 submissions. The Program Committee, aided by
217 external reviewers, reviewed all these submissions and discussed them in
depth. After an intensive review period of 11 weeks, the committee accepted 40
of these submissions. Two pairs of submissions were merged, yielding a total of
38 papers in the technical program of the conference. These proceedings include
the revised versions of the 38 papers that were presented at the conference.
These revised papers were not subject to editorial review and the authors bear
full responsibility for their contents. The best-paper award was given to the
paper “Short Chosen-Prefix Collisions for MD5 and the Creation of a Rogue CA
Certificate” by Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, and de
Weger.

The conference featured two invited lectures: one by Ed Felten and the other
by Ueli Maurer. An abstract of Maurer’s talk, titled “Abstraction in Cryptog-
raphy,” is included in these proceedings. The program also included a Rump
Session, featuring short informal talks on recent results and work in progress.

I wish to thank all the authors who submitted their work to CRYPTO 2009.
We received a large number of high-quality submissions, and even though we
accepted more submissions than usual, there were still many good ones that we
just could not fit in the program (but surely they will be published elsewhere). I
am proud to be working in a field that consistently produces such strong results.

I owe a debt of gratitude to members of the Program Committee for their
outstanding work. Evaluating such a large number of submissions in the short
review period is very demanding, and the committee members contributed their
knowledge and time to ensure that all submissions were reviewed in depth. Many
thanks also to all the external reviewers who helped us with this task. I also
thank Christof Paar, Christopher Wolf, and Alexander May for their help with
organizing the PC meeting. And of course, I am thankful for the support that I
received from all the members of the Cryptography group in IBM T.J. Watson
Research Center: Rosario Gennaro, Craig Gentry, Charanjit Jutla, Jonathan
Katz, Hugo Krawczyk, Tal Rabin, and Vinod Vaikuntanathan.

June 2009 Shai Halevi
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Michael Scott
Gil Segev
Nicolas Sendrier
abhi shelat
Emily Shen
Amir Shpilka
Thomas Shrimpton
Nigel Smart
François-Xavier Standaert
Cyril Stark
Damien Stehlé
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Reconstructing RSA Private Keys
from Random Key Bits

Nadia Heninger1 and Hovav Shacham2

1 Princeton University
nadiah@cs.princeton.edu

2 University of California, San Diego
hovav@cs.ucsd.edu

Abstract. We show that an RSA private key with small public exponent
can be efficiently recovered given a 0.27 fraction of its bits at random. An
important application of this work is to the “cold boot” attacks of Hal-
derman et al. We make new observations about the structure of RSA keys
that allow our algorithm to make use of the redundant information in
the typical storage format of an RSA private key. Our algorithm itself is
elementary and does not make use of the lattice techniques used in other
RSA key reconstruction problems. We give an analysis of the running
time behavior of our algorithm that matches the threshold phenomenon
observed in our experiments.

1 Introduction

In this paper, we present a new algorithm for the problem of reconstructing RSA
private keys given a random δ-fraction of their bits. For RSA keys with small
public exponent, our algorithm reconstructs the private key with high probability
when δ ≥ 0.27. The runtime analysis of our algorithm relies on an assumption
(Conjecture 1) and is thus heuristic; but we have verified experimentally that it
succeeds with high probability.

Motivation: cold boot attacks. An important application of our algorithm is key
recovery from the randomly distributed unidirectional bit corruption observed
in the recent work of Halderman et al. [10], which demonstrated that DRAM
remanence effects make possible practical, nondestructive attacks that recover
(a degraded version of) secret keys stored in a computer’s memory. Using these
“cold boot” attacks, attackers with physical access to a machine can break pop-
ular disk encryption systems or recover an SSL server’s private key.

One consequence of the nature of the attack is that a perfect image of the
contents of memory may not be available to the attacker; instead, some bits may
have been flipped. Halderman et al. observe that, within a DRAM region, the
decay is overwhelmingly either 0→ 1 or 1→ 0. The decay direction for a region
can be determined by comparing the number of 0s and 1s. (In an uncorrupted
key we expect these to be approximately equal.) For a region of 1→ 0 decay, a
1 bit in the decayed version is known (with high probability) to correspond to a

S. Halevi (Ed.): CRYPTO 2009, LNCS 5677, pp. 1–17, 2009.
c© International Association for Cryptologic Research 2009



2 N. Heninger and H. Shacham

1 bit in the original key, whereas a 0 bit might correspond to either a 0 or 1 bit
in the original key. If a ρ fraction of bits decays and 0s and 1s were present in
equal numbers in the key then we will know, given the degraded representation,
a δ = (1− ρ)/2 fraction of key bits.

Halderman et al. further showed that it is possible to exploit redundancy in
key data to create algorithms for reconstructing DES, AES, and cipher tweak
keys from their degraded in-memory representations. In addition, they experi-
mented with reconstructing RSA keys by using the public modulus N to correct
its partly-known factors p and q. We extend this idea to take into account other
fields of an RSA private key and provide an analysis of the resulting algorithm’s
runtime behavior. Our improvement makes a significant difference in practice:
their algorithm takes several minutes to recover a 2048-bit RSA key from 12%
unidirectional corruption; ours takes under a second to recover a 2048-bit key
from as much as 46% unidirectional corruption.

Our algorithm and its performance. Our two main results in this paper are: (1)
an algorithm for reconstructing RSA private keys given a random δ-fraction of
their bits; and (2) an analysis of the algorithm’s runtime behavior for random
inputs that shows that it will succeed in expected quadratic time when δ ≥ .27.
The runtime analysis depends crucially on both a uniformly random distribution
of known bits and the assumption that the effect of a bit error during recon-
struction is propagated uniformly through subsequent bits of the key.

Our algorithm performs better than the algorithm given by Halderman et al.
because it is able to make use of five components of the RSA private key: p, q, d,
dp, and dq. We can use known bits in d, dp, and dq to make progress where bits
in p and q are not known. To relate d to the rest of the private key, we make use
of techniques due to Boneh, Durfee, and Frankel [4]; to relate dp and dq to the
rest of the private key, we make new observations about the structure of RSA
keys that may be of independent interest. This is discussed in Section 2.

If the algorithm has access to fewer components of the RSA private key, the
algorithm will still perform well given a sufficiently large fraction of the bits. For
example, it can efficiently recover a key given

δ = .27 fraction of the bits of p, q, d, dp, and dq.
δ = .42 fraction of the bits of p, q, and d.
δ = .57 fraction of the bits of p and q.

The reconstruction algorithm itself, described in Section 3, is elementary and
does not make use of the lattice basis reduction or integer programming tech-
niques that have been applied to other kinds of RSA key reconstruction prob-
lems. At each step, it branches to explore all possible keys, and prunes these
possibilities using our understanding of the structure of RSA keys and the par-
tial information we are given about key bits. We give an analysis of the al-
gorithm for random inputs in Section 4. We obtain a sharp threshold around
2− 2(4/5) ≈ 27% of known key bits. Below this threshold, the expected number
of keys examined is exponential in the number of bits of the key, and above this
threshold, the expected number of keys examined is close to linear. Note that
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this threshold applies only to our particular approach. We suspect these results
could be improved using more sophisticated methods.

Finally, we have implemented our algorithm and performed extensive experi-
ments using it. The results are described in Section 5. The algorithm’s observed
behavior matches our analytically derived bounds and validates the heuristic
assumptions made in the analysis.

Small public-exponent RSA. Our algorithm is specialized to the case where
the public exponent e is small. The small-e case is, for historical reasons, the
overwhelmingly common one in deployed RSA applications such as SSL/TLS.
For example, until recently Internet Explorer would reject TLS server certifi-
cates with an RSA public exponent longer than 32 bits [5, p. 8]. The choice
e = 65537 = 216 + 1 is especially widespread. Of the certificates observed in the
UCSD TLS Corpus [23] (which was obtained by surveying frequently-used TLS
servers), 99.5% had e = 65537, and all had e at most 32 bits.

Related work. Inspired by cold boot attacks, Akavia, Goldwasser, and Vaikun-
tanathan [1] formally introduced memory attacks, a class of side-channel attacks
in which the adversary is leaked a (shrinking) function of the secret key. One
research direction, pursued by Akavia, Goldwasser, and Vaikuntanathan and,
in followup work, Naor and Segev [18], is constructing cryptosystems provably
secure against memory attacks.1 Another research direction is to evaluate the
security of existing cryptosystems against memory attacks. Our work is along
this latter direction.

There is a great deal of work on both factoring and reconstructing RSA private
keys given a fraction of the bits.

Maurer [14] shows that integers can be factored in polynomial time given
oracle access to an ε fraction of the bits of a factor.

In a slightly stricter model, the algorithm has access to a fixed subset of con-
secutive bits of the integer factors or RSA private keys. Rivest and Shamir [21]
first solved the problem for a 2/3-fraction of the least significant bits of a fac-
tor using integer programming. This was improved to 1/2 of the least or most
significant bits of a factor using lattice-reduction techniques pioneered by Cop-
persmith [6]; we refer the reader surveys by Boneh [3] and May [16] as well as
May’s Ph. D. thesis [15] for bibliographies. More recently, Herrmann and May
extended these techniques to efficiently factor given at most log logN known
blocks of bits [12].

The problem we seek to solve can be viewed as a further relaxation of the con-
ditions on access to the key bits to a fully random subset. These lattice-reduction
techniques are not directly applicable to our problem because they rely on recov-
ering consecutive bits of the key (expressed as small integer solutions to modular
equations), whereas the missing bits we seek to find are randomly distributed

1 There has been substantial other recent work on designing cryptosystems secure in
related key-leakage models (e.g., [20,8,2]); for a survey, see Goldwasser’s invited talk
at Eurocrypt 2009 [9] and the references therein.
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throughout the degraded keys. It is possible to express our reconstruction prob-
lem as a knapsack, and there are lattice techniques for solving knapsack problems
(see, e.g., Nguyen and Stern [19]), but we have not managed to improve on our
solution by this approach.

2 RSA Private Keys

The PKCS#1 standard specifies [22, Sect. A.1.2] that an RSA private key include
at least the following information:

– the (n-bit) modulus N and public exponent e;
– the private exponent d;
– the prime factors p and q of N ;
– d modulo p− 1 and q − 1, respectively denoted dp and dq; and
– the inverse of q modulo p, denoted q−1

p .

In practice, an RSA key in exactly this format can be recovered from the RAM of
a machine running Apache with OpenSSL [10]. The first items – N and e – make
up the public key and are already known to the attacker. A näıve RSA imple-
mentation would use d to perform the private-key operation c �→ cd mod N , but
there is a more efficient approach, used by real-world implementations such as
OpenSSL, that is enabled by the remaining private-key entries. In this approach,
one computes the answer modulo p and q as (c mod p)dp and (c mod q)dq , re-
spectively; then combines these two partial answers by means of q−1

p and the
Chinese Remainder Theorem (CRT). This approach requires two exponentia-
tions but of smaller numbers, and is approximately four times as fast as the
näıve method [17, p. 613].

Observe that the information included in PKCS#1 private keys is highly re-
dundant. In fact, knowledge of any single one of p, q, d, dp, and dq is sufficient
to reveal the factorization of N .2 It is this redundancy that we will use in recon-
structing a corrupted RSA key.

We now derive relations between p, q, d, dp, and dq that will be useful in
mounting the attack. The first such relation is obvious:

N = pq . (1)

Next, since d is the inverse of e modulo ϕ(N) = (p− 1)(q − 1) = N − p− q + 1,
we have

ed ≡ 1 (mod ϕ(N))

and, modulo p− 1 and q − 1,

edp ≡ 1 (mod p− 1) and edq ≡ 1 (mod q − 1) .

2 This is obvious for p and q and well known for d (cf. [7]); dp reveals p as
gcd(aedp−1 − 1, N) with high probability for random a provided dp �= dq, and simi-
larly for dq; if dp and dq are equal to each other then they are also equal to d.
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As it happens, it is more convenient for us to write explicitly the terms hidden
in the three congruences above, obtaining

ed = k(N − p− q + 1) + 1 (2)
edp = kp(p− 1) + 1 (3)
edq = kq(q − 1) + 1 . (4)

It may appear that we have thereby introduced three new unknowns: k, kp, and
kq. But in fact for small e we can compute each of these three variables given
even a badly-degraded version of d.

Computing k. The following argument, due to Boneh, Durfee, and Frankel [4],
shows that k must be in the range 0 < k < e. We know d < ϕ(N). Assume e ≤ k;
then ed < kϕ(N) + 1, which contradicts (2). The case k = 0 is also impossible,
as can be seen by reducing (2) modulo e. This shows that we can enumerate all
possible values of k, having assumed that e is small.

For each such choice k′, define

d̃(k′) def=
⌊
k′(N + 1) + 1

e

⌋
.

As Boneh, Durfee, and Frankel observe, when k′ equals k, this gives an excellent
approximation for d:

0 ≤ d̃(k)− d ≤ k(p + q)/e < p + q .

In particular, when p and q are balanced, we have p + q < 3
√
N , which means

that d̃(k) agrees with d on their 	n/2
 − 2 most significant bits. (Our analysis
applies also in the less common case when p and q are unbalanced, but we omit
the details.) This means that small-public-exponent RSA leaks half the bits of
the private exponent in one of the candidate values d̃(1), . . . , d̃(e− 1).

The same fact allows us to go in the other direction, using information about d
to determine k, as again noted by Boneh, Durfee, and Frankel. We are given d̃,
a corrupted version of d. We enumerate d̃(1), . . . , d̃(e − 1) and check which of
these agrees, in its more significant half, with the known bits of d̃. Provided
that δn/2 � lg e, there will be just one value of k′ for which d̃(k′) matches;
that value is k. Even for 1024-bit N and 32-bit e, there is, with overwhelming
probability, enough information to compute k for any δ we consider in this paper.
This observation has two implications:

1. we learn the correct k used in (2); and
2. we correct the more significant half of the bits of d̃, by copying from d̃(k).

Computing kp and kq. Once we have determined k, we can compute kp and
kq. First, observe that by an analysis like that above, we can show that 0 <
kp, kq < e. This, of course, means that kp = (kp mod e) and kq = (kq mod e);
when we solve for kp and kq modulo e, this will reveal the actual values used in
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(3) and (4). Now, reducing equations (1)–(4) modulo e, we obtain the following
congruences:

N ≡ pq (5)
0 ≡ k(N − p− q + 1) + 1 (6)
0 ≡ kp(p− 1) + 1 (7)
0 ≡ kq(q − 1) + 1 . (8)

These are four congruences in four unknowns: p, q, kp, and kq; we solve them as
follows. From (7) and (8) we write (p−1) ≡ −1/kp and (q−1) ≡ −1/kq; we sub-
stitute these into the equation obtained from using (5) to reexpress ϕ(N) in (6):
0 ≡ k(N−p−q+1)+1 ≡ k(p−1)(q−1)+1 ≡ k(−1/kp)(−1/kq)+1 ≡ k/(kpkq)+1,
or

k + kpkq ≡ 0 . (9)

Next, we return to (6), substituting in (7), (8), and (9):

0 ≡ k(N − p− q + 1) + 1
≡ k(N − 1)− k(p− 1 + q − 1) + 1
≡ k(N − 1)− (−kpkq)(−1/kp − 1/kq) + 1
≡ k(N − 1)− (kq + kp) + 1 ;

we solve for kp by substituting kq = −k/kp, obtaining

0 ≡ k(N − 1)− (kp − k/kp) + 1 ,

or, multiplying both sides by kp and rearranging,

k2
p −
[
k(N − 1) + 1

]
kp − k ≡ 0 . (10)

This congruence is easy to solve modulo e and, in the common case where e is
prime, has two solutions, just as it would over C. One of the two solutions is the
correct value of kp; and it is easy to see, by symmetry, that the other must be
the correct value of kq. We need therefore try just two possible assignments to
kp and kq in reconstructing the RSA key. When e has m distinct prime factors,
there may be up to 2m roots [4].

Note that we also learn the values of p and q modulo e. If we then use the
procedure outlined below to decode the r least significant bits of p (up to a
list of possibilities), we will know p mod e2r; we can then factor N , provided
r + lg e > n/4, by applying Boneh, Durfee, and Frankel’s Corollary 2.2 ([4]; a
generalization of Coppersmith’s attack on RSA with known low-order bits [6,
Theorem 5] that removes the restriction that the partial knowledge of p must be
modulo a power of 2).

3 The Reconstruction Algorithm

Once we have the above relationships between key data, the remainder of the
attack consists of enumerating all possible partial keys and pruning those that
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do not satisfy these constraints. More precisely, given bits 1 through i− 1 of a
potential key, generate all combinations of values for bit i of p, q, d, dp, dq, and
keep a candidate combination if it satisfies (1), (2), (3), and (4) mod 2i.

The remainder of this section details how to generate and prune these partial
solutions.

In what follows, we assume that we know the values of kp and kq. When
equation (10) has two distinct solutions, we must run the algorithm twice, once
for each of the possible assignments to kp and kq.

Let p [i] denote the ith bit of p, where the least significant bit is bit 0, and
similarly index the bits of q, d, dp and dq. Let τ(x) denote the exponent of the
largest power of 2 that divides x.

As p and q are large primes, we know they are odd, so we can correct p [0] =
q [0] = 1. It follows that 2 | p − 1, so 21+τ(kp) | kp(p − 1). Thus, reducing (3)
modulo 21+τ(kp), we have

edp ≡ 1 (mod 21+τ(kp)) .

Since we know e, this allows us immediately to correct the 1 + τ(kp) least sig-
nificant bits of dp. Similar arguments using (4) and (2) allow us to correct the
1 + τ(kq) and 2 + τ(k) bits of dq and d, respectively.

What is more, we can easily see that, having fixed bits < i of p, a change
in p [i] affects dp not in bit i but in bit i + τ(kp); and, similarly, a change in
q [i] affects dq

[
i + τ(kq)

]
, and a change in p [i] or q [i] affects d

[
i + τ(k)

]
. When

any of k, kp, or kq is odd, this is just the trivial statement that changing bit i
of the right-hand side of an equation changes bit i of the left-hand side. Powers
of 2 in kp shift left the bit affected by p [i], and similarly for the other variables.

Having recovered the least-significant bits of each of our five variables, we now
attempt to recover the remaining bits. For each bit index i, we consider a slice
of bits:

p [i] q [i] d
[
i + τ(k)

]
dp

[
i + τ(kp)

]
dq

[
i + τ(kq)

]
.

For each possible solution up to bit slice i− 1, generate all possible solutions
up to bit slice i that agree with that solution at all but the ith position. If we
do this for all possible solutions up to bit slice i−1, we will have enumerated all
possible solutions up to bit slice i. Above, we already described how to obtain
the only possible solution up to i = 0; this is the solution we use to start the
algorithm. The factorization of N will be revealed in one or more of the possible
solutions once we have reached i = 	n/2
.3

All that remains is how to lift a possible solution (p′, q′, d′, d′p, d′q) for slice i−1
to possible solutions for slice i. Näıvely there are 25 = 32 such possibilities, but
in fact there are at most 2 and, for large enough δ, almost always fewer.

First, observe that we have four constraints on the five variables: equations
(1), (2), (3), and (4). By plugging in the values up to slice i − 1, we obtain

3 In fact, as we discussed in Section 2 above, information sufficient to factor N will be
revealed much earlier, at i = �n/4 − lg e�.
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from each of these a constraint on slice i, namely values c1, . . . , c4 such that the
following congruences hold modulo 2:

p [i] + q [i] ≡ c1 (mod 2)

d
[
i + τ(k)

]
+ p [i] + q [i] ≡ c2 (mod 2)

dp

[
i + τ(kp)

]
+ p [i] ≡ c3 (mod 2)

dq

[
i + τ(kq)

]
+ q [i] ≡ c4 (mod 2) .

(11)

For example, if N and p′q′ agree at bit i, c1 = 0; if not, c1 = 1. Four constraints
on five unknowns means that there are exactly two possible choices for bit slice i
satisfying these four constraints. (Expressions for the cis are given in (13).)

Next, it may happen that we know the correct value of one or more of the
bits in the slice, through our partial knowledge of the private key. These known
bits might agree with neither, one, or both of the possibilities derived from the
constraints above. If neither possible extension of a solution up to i − 1 agrees
with the known bits, that solution is pruned. If δ is sufficiently large, the number
of possibilities at each i will be kept small.

4 Algorithm Runtime Analysis

The main result of this section is summarized in the following informal theorem.

Theorem 1. Given the values of a δ = .27 fraction of the bits of p, q, d, d mod
p, and d mod q, the algorithm will correctly recover an n-bit RSA key in expected
O(n2) time with probability 1− 1

n2 .

The running time of the algorithm is determined by the number of partial keys
examined. To bound the total number of keys seen by the program, we will first
understand how the structure of the constraints on the RSA key data determines
the number of partial solutions generated at each step of the algorithm. Then we
will use this understanding to calculate some of the distribution of the number of
solutions generated at each step over the randomness of p and q and the missing
bits. Finally we characterize the global behavior of the program and provide a
bound on the probability that the total number of branches examined over the
entire run of the program is too large.

Lifting solutions mod 2i. The process of generating bit i of a partial solution
given bits 0 through i−1 can be seen as lifting a solution to the constraint equa-
tions mod 2i to a solution mod 2i+1. Hensel’s lemma characterizes the conditions
when this is possible.

Lemma 1 (Multivariate Hensel’s Lemma). A root r = (r1, r2, . . . , rn) of
the polynomial f(x1, x2, . . . , xn) mod πi can be lifted to a root r+b mod πi+1 if
b = (b1πi, b2π

i, . . . , bnπ
i), 0 ≤ bj ≤ π − 1 is a solution to the equation

f(r + b) = f(r) +
∑

j

bjπ
ifxj (r) ≡ 0 (mod πi+1) .

(Here, fxj is the partial derivative of f with respect to xj .)
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We can rewrite the lemma using the notation of Section 3. Write r in base
π = 2 and assume the i first bits are known. Then the lemma tells us that the
next bit of r, r[i] = (r1[i], r2[i], . . .), must satisfy

f(r)[i] +
∑

j

fxj(r)rj [i] ≡ 0 (mod 2) . (12)

In our case, the constraint polynomials generated in Section 2, equations (1)–
(4) form four simultaneous equations in five variables. Given a partial solution
(p′, q′, d′, d′p, d

′
q) up to slice i of the bits, we apply the condition in equation (12)

above to each polynomial and reduce modulo 2 to obtain the following conditions,
modulo 2, on bit i:

p [i] + q [i] ≡ (n− p′q′) [i]

d
[
i + τ(k)

]
+ p [i] + q [i] ≡

(
k(N + 1) + 1− k(p′ + q′)− ed′

) [
i + τ(k)

]
dp

[
i + τ(kp)

]
+ p [i] ≡

(
kp(p′ − 1) + 1− ed′p

) [
i + τ(kp)

]
dq

[
i + τ(kq)

]
+ q [i] ≡

(
kq(q′ − 1) + 1− ed′q

) [
i + τ(kq)

]
.

(13)

These are precisely (11).

4.1 Local Branching Behavior

Without additional knowledge of the keys, the system of equations in (13) is
underconstrained, and each partial satisfying assignment can be lifted to two
partial satisfying assignments for slice i. If bit i − 1 of a variable x is known,
the corresponding x [i− 1] is fixed to the value of this bit, and the new partial
satisfying assignments correspond to solutions of (13) with these bit values fixed.
There can be zero, one, or two new solutions at bit i generated from a single
solution at bit i− 1, depending on the known values.

Now that we have a framework for characterizing the partial solutions gener-
ated at step i from a partial solution generated at step i−1, we will assume that
a random fraction δ of the bits of the key values are known, and estimate the
expectation and variance of the number of these solutions that will be generated.

In order to understand the number of solutions to the equation, we would like
to understand the behavior of the ci when the partial solution may not be equal
to the real solution. Let Δx = x − x′, then substituting x′ = x −Δx into (13)
we see that any solution to (11) corresponds to a solution to

Δp [i] + Δq [i] ≡ (qΔp + pΔq + ΔpΔq) [i] (mod 2)

Δd
[
i + τ(k)

]
+ Δp [i] + Δq [i] ≡ (eΔd + kΔp + kΔq))

[
i + τ(k)

]
(mod 2)

Δdp

[
i + τ(kp)

]
+ Δp [i] ≡ (eΔdp − kpΔp)

[
i + τ(kp)

]
(mod 2)

Δdq

[
i + τ(kq)

]
+ Δq [i] ≡ (eΔdq − kqΔq)

[
i + τ(kq)

]
(mod 2)

and Δx [i] is restricted to 0 if bit i of x is fixed.
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Incorrect solutions generated from a correct solution. When the partial satisfying
assignment is correct, all of the Δx will be equal to 0. If all of the Δx [i] are
unconstrained or if only Δd [i + τ(k)] is set to 0, there will be two possible
solutions (of which we know one is “good” and the other is “bad”), otherwise
there will be a single good solution. Let Zg be a random variable denoting the
number of bad solutions at bit i+1 generated from a single good solution at bit
i. Since each Δx [i] is set to 0 independently with probability δ, the expected
number of bad solutions generated from a good solution is equal to

EZg = δ(1− δ)4 + (1 − δ)5 and EZ2
g = EZg .

Both these expressions are dependent only on δ.

Incorrect solutions generated from an incorrect solution. When the partial sat-
isfying assignment is incorrect, at least one of the Δx is nonzero. The expected
number of new incorrect satisfying assignments generated from an incorrect sat-
isfying assignment is dependent both on δ and on the behavior of the bj .

We conjecture the following is close to being true:

Conjecture 1. For random p and q and for Δx not all zero and satisfying

qΔp + pΔq −ΔpΔq = 0 (mod 2i)

eΔd + kΔp + kΔq = 0 (mod 2i+τ(k))

eΔdp − kpΔp = 0 (mod 2i+τ(kp))

eΔdq − kqΔq = 0 (mod 2i+τ(kq)) ,

the next bit of each congruence is 0 or 1 independently with probability near 1/2.

We tested this empirically; each value of the vector (b1, b2, b3, b4) occurs with
probability approximately 1/16. (The error is approximately 5% for δ = 0.25
and n = 1024, and approximately 2% for δ = 0.25 and n = 4096.)

Let Wb be a random variable denoting the number of bad solutions at bit i+1
generated from a single bad solution at bit i. Assuming Conjecture 1,

EWb =
(2 − δ)5

16
and EW 2

b = EWb + δ(1− δ)4 + 2(1− δ)5 .

Note that the expectation is over the randomness of p and q and the positions
of the unknown bits of the key.

When partial knowledge of some of the values (p, q, d, dp, dq) is totally un-
available, we can obtain a similar expression.

4.2 Global Branching Behavior at Each Step of the Program

Now that we have characterized the effect that the constraints have on the
branching behavior of the program, we can abstract away all details of RSA
entirely and examine the general branching process of the algorithm. We are
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able to characterize the behavior of the algorithm, and show that if the expected
number of branches from any partial solution to the program is less than one,
then the total number of branches examined at any step of the program is
expected to be constant. All of the following analysis assumes Conjecture 1.

Let Xi be a random variable denoting the number of bad assignments at step
i, and recall that Zg and Wb are random variables denoting the number of bad
solutions at bit i + 1 generated from a single good or bad solution at bit i.

Theorem 2
EXi =

EZg

1− EWb
(1− (EWb)i)

This expression can be calculated in a number of ways; we demonstrate how to
do so using generating functions in Appendix A.

When EWb < 1, we can bound EXi from above.

EXi ≤
EZg

1− EWb

In the previous section, we calculated expressions for EZg and EWb depen-
dent only on δ, thus when EWb < 1, EXi can be bounded above by a constant
dependent on δ and not on i.

We can evaluate this expression numerically using the values for the expected
number of bad solutions discovered in the last section.

In the case with four equations and five unknowns (that is, we have partial
knowledge of p, q, d, dp, and dq), EWb < 1 at δ > 2 − 2

4
5 . For δ = .2589,

EXi < 93247; for δ = .26, EXi < 95; and for δ = .27 EXi < 9.
In a similar fashion we can obtain the following complicated expression for

the variance VarXi = EX2 − (EX)2.

Theorem 3
VarXi = α1 + α2(EWb)i + α3(EWb)2i (14)

with

α1 =
EZg VarWb + (1 − EWb)VarZg

(1− (EWb)2)(1 − EWb)

α2 =
EW 2

b + EWb − 2 EWb EZg − EZg

1− EWb
+ 2
(

EZg

1− EWb

)2

α3 = −α1 − α2 .

Again evaluating numerically for five unknowns and four equations, at δ = .26
VarXi < 7937, at δ = .27 VarXi < 80, and at δ = .28 VarXi < 23.

4.3 Bounding the Total Number of Keys Examined

Now that we have some information about the distribution of the number of
partial keys examined at each step, we would like to understand the distribution
of the total number of keys examined over an entire run of the program.
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We know the expected total number of keys examined for an n-bit key is

E

[
n∑

i=0

Xi

]
≤ EZg

1− EWb
n .

We will bound how far the total sum is likely to be from this expectation. First,
we apply the following bound on the variance of a sum of random variables:

Lemma 2

Var
n∑

i=1

Xi ≤ n2 max
i

VarXi

The proof writes the variance of the sum in terms of covariance, and applies
Schwartz’s inequality and

√
ab ≤ a+b

2 .
Apply Chebyshev’s inequality to bound the likelihood that

∑
Xi is too large:

Pr(|
∑

i Xi − E
∑

i Xi| ≥ nα) ≤ 1
(nα)2

Var
∑

i Xi .

Apply the above lemma to obtain

Pr(|
∑

i Xi − E
∑

i Xi| ≥ nα) ≤ 1
α2 max

i
VarXi .

When δ = .27, setting α > 9n gives that, for an n-bit key, the algorithm will
examine more than 9n2 + 71n potential keys with probability less than 1

n2 .

4.4 Missing Key Fields

The same results apply when we have partial knowledge of fewer key fields.

– If the algorithm has partial knowledge of d, p, and q but no information on
dp and dq, we know that

EZg = δ(1− δ)2 + (1 − δ)3 EZ2
g = EZg

EWb =
(2− δ)3

4
EW 2

b = EWb + δ(1 − δ)2 + 2(1− δ)3 ,

so EWb < 1 when δ > 2− 2
3
4 ≈ .4126. Then for δ = .42 the probability that

the algorithm examines more than 22n2 + 24n keys is less than 1
n2 .

– If the algorithm has partial knowledge of p and q but no information on the
other values,

EZg = (1− δ)2 EZ2
g = EZg

EWb =
(2− δ)2

2
EW 2

b = EWb + 2(1− δ)2 .

Then EWb < 1 when δ > 2−2
1
2 ≈ .5859. When δ = .59 the probability that

the algorithm examines more than 29n2 + 29n keys is less than 1
n2 .
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5 Implementation and Performance

We have developed an implementation of our algorithm in approximately 850
lines of C++, using NTL version 5.4.2 and GMP version 4.2.2. Our tests were
run, in 64-bit mode, on an Intel Core 2 Duo processor at 2.4 GHz with 4 MB of
L2 cache and 4 GB of DDR2 SDRAM at 667 MHz on an 800 MHz bus.

We ran experiments for key sizes between 512 bits and 8192 bits, and for
δ values between 0.40 and 0.24. The public exponent is always set to 65537. In
each experiment, a key of the appropriate size is randomly censored so that ex-
actly a δ fraction of the bits of the private key components considered together
is available to be used for reconstruction. To reduce the time spent on key gen-
eration, we reused keys: We generated 100 keys for each key size. For every δ
and keysize, we ran 100 experiments with each one of the pregenerated keys, for
a total of 10,000 experimental runs. In all, we conducted over 1.1 million runs.

For each run, we recorded the length and width. The length is the total number
of keys considered in the run of the algorithm, at all bit indices; the width is the
maximum number of keys considered at any single bit index. These correspond
essentially to

∑n/2
i=1 Xi and maxi Xi, in the notation of Section 4, but can be

somewhat larger because we run the algorithm twice in parallel to account for
both possible matchings of solutions of (10) to kp and kq. To avoid thrashing,
we killed runs as soon as the width for some index i exceeded 1,000,000.

When the panic width was not exceeded, the algorithm always ran to com-
pletion and correctly recovered the factorization of the modulus.

Of the 900,000 runs of our algorithm with δ ≥ 0.27, only a single run (n =
8192, δ = 0.27) exceeded the panic width. Applying a Chebyshev bound in this
case (with EXi = 9 and VarXi = 80) suggests that a width of 1,000,000 should
happen with extremely low probability.

Even below δ = 0.27, our algorithm almost always finished within the allotted
time. Table 1 shows the number of runs (out of 10,000) in which the panic width
was exceeded for various parameter settings. Even for n = 8192 and δ = 0.24,
our algorithm recovered the factorization of the modulus in more than 97% of
all runs. And in many of the overly long runs, the number of bits recovered
before the panic width was exceeded suffices to allow recovering the rest using
the lattice methods considered in Section 2; this is true of 144 of the 274 very
long runs at n = 8192 and δ = 0.24, for example.

Table 1. Runs (out of 10,000) in which width exceeded 1,000,000

n = 512 768 1024 1536 2048 3072 4096 6144 8192

δ = 0.27 0 0 0 0 0 0 0 0 1

0.26 0 0 0 0 1 5 3 4 8

0.25 0 0 3 6 8 10 17 35 37

0.24 4 5 7 27 50 93 121 201 274
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Fig. 1. Boxplot for total number of keys examined by algorithm for n = 2048, varying δ

As expected, search runtime was essentially linear in the total number of keys
examined. For n = 1024, for example, examining a single key took approximately
5 μsec; for n = 6144, approximately 8 μsec. The setup time varied depending
on whether k was closer to 0 or to e, but never exceeded 210 msec, even for
n = 8192.

The plot in Figure 1 gives the behavior for n = 2048. For each value of δ we
show, using a boxplot, the distribution of the total number of keys examined by
runs of the algorithm – i.e., the length of the run. (In our boxplot, generated
using R’s boxplot function, the central bar corresponds to the median, the
hinges to the first and third quartiles, and the whisker extents depend on the
interquartile range.)

In the full version of this paper [11] we undertake additional analysis of the
runtime data.
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A Computing the Expectation and Variance

In this appendix, we derive expressions for the expectation and variance of the
number of incorrect keys generated at each step of the program. Let Xi be a
random variable denoting the number of bad assignments at step i. We will
calculate the expectation EXi and variance VarXi. (We know that the number
of good assignments is always equal to one.)

To calculate these values, we will use probability generating functions. For
more information on this approach, see e.g., [13, Ch. 8]. A probability generat-
ing function F (s) =

∑
Pr[X = k]sk represents the distribution of the discrete

random variable X . F (s) satisfies the following identities:

F (1) = 1 , EX = F ′(1) , and VarX = F ′′(1) + F ′(1)− F ′(1)2 .

Let Gi(s) be the probability generating function for the Xi, z(s) the proba-
bility generating function for the Zg (the number of bad assignments generated
from a correct assignment) and w(s) the probability generating function for the
Wb (the number of bad assignments generated from a bad assignment).

From Section 4, we know that

z′(1) = EZg , z′′(1) = EZ2
g − EZg ,

w′(1) = EWb , and w′′(1) = EW 2
b − EWb .

Expectation of Xi. We will calculate EXi = G′
i(1). Gi(s) satisfies the recurrence

Gi+1(s) = Gi(w(s))z(s) , (15)

that is, that the number of bad solutions at each step is equal to the number
of bad solutions lifted from bad solutions plus the number of bad solutions
produced from good solutions. (Recall that a generating function for the sum of
two independent random variables is given by the convolution of their generating
functions.) We also have that

G0(s) = 1 ,

http://www.rsa.com/rsalabs/node.asp?id=2125
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because initially there are no bad solutions. Differentiating (15) gives

G′
i(s) = (Gi−1(w(s))w′(s)z(s) + Gi−1(w(s))z′(s) . (16)

Set s = 1 and use the fact that Gi(1) = w(1) = z(1) = 1 to obtain

G′
i(1) = w′(1)G′

i−1(1) + z′(1) .

Solving the recurrence yields

G′
i(1) =

z′(1)
1− w′(1)

(1− (w′(1))i) . (17)

If w′(1) < 1, then w′(1)i tends to 0 as i increases and

EXi = G′
i(1) <

z′(1)
1− w′(1)

(18)

for all i. The expected number of bad solutions at any step of the process will
be bounded by a value dependent only on δ and not on i.

Variance of Xi. To compute the variance VarXi = G′′
i (1) + G′

i(1) − (G′
i(1))2,

we differentiate (16) again to obtain

G′′
i (s) = G′′

i−1(w(s))w′(s)w′(s)z(s) + G′
i−1(w(s))w′′(s)z(s)

+ 2G′
i−1(w(s))w′(s)z′(s) + Gi−1(w(s))z′′(s) .

(19)

Evaluating at s = 1 gives

G′′
i (1) = G′′

i−1(1)w′(1)2 + G′
i−1(1)w′′(1) + 2G′

i−1(1)w′(1)z′(1) + z′′(1) .

Substitute in (17) to get

G′′
i (1) = G′′

i−1(1)w′(1)2 +
z′(1)

1− w′(1)
(1− (w′(1))i)w′′(1)

+ 2
z′(1)

1− w′(1)
(1− (w′(1))i)w′(1)z′(1) + z′′(1) .

(20)

The general solution to this recurrence is

G′′
i (1) = c1 + c2w

′(1)i + c3w
′(1)2i (21)

with

c1 =
1

1− w′(1)2

(
z′(1)

1− w′(1)
(w′′(1) + 2w′(1)z′(1)) + z′′(1)

)
c2 = − 1

1− w′(1)
(w′′(1) + 2w′(1)z′(1))

c3 = −c1 − c2 .
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Abstract. Most of the work in the analysis of cryptographic schemes
is concentrated in abstract adversarial models that do not capture side-
channel attacks. Such attacks exploit various forms of unintended infor-
mation leakage, which is inherent to almost all physical implementations.
Inspired by recent side-channel attacks, especially the “cold boot at-
tacks”, Akavia, Goldwasser and Vaikuntanathan (TCC ’09) formalized
a realistic framework for modeling the security of encryption schemes
against a wide class of side-channel attacks in which adversarially chosen
functions of the secret key are leaked. In the setting of public-key encryp-
tion, Akavia et al. showed that Regev’s lattice-based scheme (STOC ’05)
is resilient to any leakage of L/polylog(L) bits, where L is the length of
the secret key.

In this paper we revisit the above-mentioned framework and our main
results are as follows:

– We present a generic construction of a public-key encryption scheme
that is resilient to key leakage from any universal hash proof system.
The construction does not rely on additional computational assump-
tions, and the resulting scheme is as efficient as the underlying proof
system. Existing constructions of such proof systems imply that our
construction can be based on a variety of number-theoretic assump-
tions, including the decisional Diffie-Hellman assumption (and its
progressively weaker d-Linear variants), the quadratic residuosity
assumption, and Paillier’s composite residuosity assumption.

– We construct a new hash proof system based on the decisional Diffie-
Hellman assumption (and its d-Linear variants), and show that the
resulting scheme is resilient to any leakage of L(1− o(1)) bits. In ad-
dition, we prove that the recent scheme of Boneh et al. (CRYPTO
’08), constructed to be a “circular-secure” encryption scheme, is re-
silient to any leakage of L(1−o(1)) bits. These two proposed schemes
complement each other in terms of efficiency.
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– We extend the framework of key leakage to the setting of chosen-
ciphertext attacks. On the theoretical side, we prove that the Naor-
Yung paradigm is applicable in this setting as well, and obtain as a
corollary encryption schemes that are CCA2-secure with any leakage
of L(1 − o(1)) bits. On the practical side, we prove that variants
of the Cramer-Shoup cryptosystem (along the lines of our generic
construction) are CCA1-secure with any leakage of L/4 bits, and
CCA2-secure with any leakage of L/6 bits.

1 Introduction

Proving the security of a cryptographic scheme consists of two main ingredi-
ents: (1) an adversarial model that specifies the adversarial access to the system
and the adversary’s computational capabilities, and (2) a notion of security that
specifies what it means to “break” the security of the scheme. Whereas notions
of security have significantly evolved over the years (following the seminal work
of Goldwasser and Micali [15]), the vast majority of cryptographic schemes are
analyzed in abstract adversarial models that do not capture side-channel at-
tacks. Such attacks exploit unintended leakage of information which is inherent
to almost all physical implementations. Over the years side-channel attacks ex-
posed crucial vulnerabilities of systems that are considered secure in standard
adversarial models (see, for example, [3,4,23,24]).

Countermeasures for protecting against side-channel attacks are taken on two
complementing levels: the hardware level and the software level. Preventing unin-
tended leakage on the hardware level is typically rather inefficient and expensive,
and is even impossible in some cases. It is thus highly desirable to protect, as
much as possible, against side-channel attacks on the software level by modeling
such attacks using abstract notions of computation.
Physically observable cryptography. In their pioneering work, Micali and
Reyzin [27] put forward a powerful and comprehensive framework for model-
ing security against side-channel attacks. Their framework captures any such
attack in which leakage of information occurs as a result of computation. The
framework relies on the basic assumption that computation and only computa-
tion leaks information, that is, there is no leakage of information in the absence
of computation. This assumption has led to the construction of various crypto-
graphic primitives that are robust to “computational” leakage (see, for example,
[14,16,27,30,31]).
Memory-leakage attacks. Recently, Halderman et al. [18] presented a suite
of attacks that violate the basic assumption underlying the framework of Micali
and Reyzin. Halderman et al. showed that, contrary to popular assumptions, a
computer’s memory is not erased when it loses power. They demonstrated that
ordinary DRAMs typically lose their contents gradually over a period of seconds,
and that residual data can be recovered using simple, non-destructive techniques
that require only momentary physical access to the machine. Halderman et al.
presented attacks that exploit DRAM remanence effects to recover cryptographic
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keys held in memory. Specifically, their “cold boot” attacks showed that a sig-
nificant fraction of the bits of a cryptographic key can be recovered if the key
is ever stored in memory. Halderman et al. managed to completely compromise
the security of several popular disk encryption systems (including BitLocker,
TrueCrypt, and FileVault), and to reconstruct DES, AES, and RSA keys (see
also the improved RSA key reconstruction by Heninger and Shacham [19]).

Inspired by the cold boot attacks, Akavia, Goldwasser and Vaikuntanathan
[2] formalized a general framework for modeling “memory attacks” in which
adversarially chosen functions of the secret key are leaked in an adaptive fashion,
with the only restriction that the total amount of leakage is bounded. Akavia et
al. showed that the lattice-based public-key encryption scheme of Regev [32] is
resilient to such key leakage (to an extent that depends on the amount of leakage)
by slightly strengthening the computational assumption that is required by the
original scheme.

1.1 Our Contributions

In this work we revisit the framework of key-leakage attacks introduced by
Akavia et al. in the setting of public-key encryption. We present a generic con-
struction of a public-key encryption scheme that is resilient to key leakage, and
show that the construction can be based on a variety of number-theoretic as-
sumptions (see below). Moreover, we demonstrate that our approach leads to
encryption schemes that are both resilient to significantly large amounts of leak-
age, and that are very efficient and can be used in practice (see, in particular,
the instantiation in Section 4 that is based on the decisional Diffie-Hellman as-
sumption). In addition, we extend the framework of key-leakage attacks to the
setting of chosen-ciphertext attacks. We present both a generic transformation
from chosen-plaintext security to chosen-ciphertext security in the context of
key-leakage attacks, and efficient schemes that are based on specific number-
theoretic assumptions.

In what follows we present a more elaborated exposition of our results, but
first, we briefly describe the framework of Akavia et al. and their results. Infor-
mally, an encryption scheme is resilient to key-leakage attacks if it is semanti-
cally secure even when the adversary obtains sensitive leakage information. This
is modeled by providing the adversary with access to a leakage oracle: the ad-
versary can submit any function f and receive f(sk), where sk is the secret key
(we note that the leakage functions can be chosen depending on the public key,
which is known to the adversary). The adversary can query the leakage oracle
adaptively, with only one restriction: the sum of output lengths of all the leakage
functions has to be bounded by a predetermined parameter λ (clearly, λ has to
be less than the length of the secret key)1. A formal definition is provided in
Section 3. Akavia et al. showed that Regev’s public-key encryption scheme is
resilient to any key leakage of L/polylog(L) bits, where L is the length of the

1 Akavia et al. refer to such attacks as adaptive memory attacks. They also define the
notion of non-adaptive memory attacks which we discuss later on.
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secret key (see improvements to the allowed amount of leakage in the full version
of their paper). We are now ready to state our results more clearly:

A generic construction. We present a generic construction of a public-key
encryption scheme that is resilient to key leakage from any universal hash proof
system, a very useful primitive introduced by Cramer and Shoup [7]. The con-
struction does not rely on additional computational assumptions, and the result-
ing scheme is as efficient as the underlying proof system. Existing constructions
of such proof systems [7,22,34] imply that our construction can be based on a
variety of number-theoretic assumptions, including the decisional Diffie-Hellman
(DDH) assumption and its progressively weaker d-Linear variants, the quadratic
residuosity assumption, and Paillier’s composite residuosity assumption. The
natural approach for achieving security against partial key leakage is to add re-
dundancy to the private key, so that every (short) function of it will still keep
many possibilities for the “real secret”. Hash proof systems yield a convenient
method for doing just that.

We then emphasize a specific instantiation with a simple and efficient DDH-
based hash proof system. The resulting encryption scheme is resilient to any
leakage of L(1/2− o(1)) bits, where L is the length of the secret key. Although
one can instantiate our construction with any hash proof system, we find this
specific instantiation rather elegant.

The schemes that result from our generic construction satisfy in fact a more
general notion of leakage resilience: these schemes are secure even if the leakage
functions chosen by the adversary are applied to the random bits used by the
key generation algorithm. This clearly generalizes the framework of Akavia et al.
and guarantees security even in case that intermediate values from the process
of generating the secret and public keys are leaked2. In addition, we consider
several other generalizations of the framework of Akavia et al. that are satisfied
by our schemes. These include a scenario in which the adversary obtains a noisy
version of all of the memory (as in the attack of Halderman et al. [18]), a scenario
in which partial results of the decryption process are leaked, and more.

Improved key-leakage resilience. We propose two public-key encryption
schemes that are resilient to any key leakage of L(1 − o(1)) bits, where L is
the length of the secret key. Our proposals are based on the observation that
our generic construction from hash proof systems can in fact be based on hash
proof systems with a slightly weaker universality property. When viewing hash
proof systems as key-encapsulation mechanisms, relaxing the universality prop-
erty enables us to achieve essentially the best possible ratio between the length
of the secret key and the length of the encapsulated symmetric key. This ratio

2 We note that it is not clear that Regev’s scheme is resilient to leakage of intermediate
key-related values, or at least, the proof of security of Akavia et al. does not seem to
generalize to this setting. The main reason is that their proof of security involves an
indistinguishability argument over the public key, and an adversary that has access
to the randomness of the key generation algorithm (via leakage queries) can identify
that the public key was not sampled from its specified distribution.
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translates to the relative amount of key leakage to which the encryption schemes
are resilient3.

For our first proposal we construct a new hash proof system based on the de-
cisional Diffie-Hellman assumption (and more generally, on any of the d-Linear
assumptions) that satisfies this weaker universality property. The resulting en-
cryption scheme is then obtained by instantiating our generic construction with
this hash proof system. For our second proposal, we show the recent “circular-
secure” encryption scheme of Boneh et al. [5] fits into our generic approach using
a different hash proof system (that satisfies the same weaker universality prop-
erty). We then compare our two proposals both conceptually and practically,
indicating that they complement each other in terms of efficiency.
Chosen-ciphertext security. We extend the framework of key leakage to the
setting of chosen-ciphertext security. Technically, this is a very natural extension
by providing the adversary with access to both a leakage oracle and a decryption
oracle. On the theoretical side, we show that the Naor-Yung “double encryption”
paradigm [12,29] can be used as a general transformation from chosen-plaintext
security to chosen-ciphertext security in the presence of key leakage. As an im-
mediate corollary of our above-mentioned results, we obtain a scheme that is
CCA2-secure with any leakage of L(1− o(1)) bits, where L is the length of the
secret key.

The schemes resulting from the Naor-Yung paradigm are rather inefficient due
to the usage of generic non-interactive zero-knowledge proofs. To complement
this situation, on the practical side, we prove that variants of the Cramer-Shoup
cryptosystem [8] (along the lines of our generic transformation from hash proof
systems) are CCA1-secure with any leakage of L(1/4 − o(1)) bits, and CCA2-
secure with any leakage of L(1/6 − o(1)) bits. It is left as an open problem
to construct a practical CCA-secure scheme that is resilient to any leakage of
L(1− o(1)) bits (where a possible approach is to examine recent refinements of
the Cramer-Shoup cryptosystem [1,22,25]).
“Weak” key-leakage security. Akavia et al. also considered the following
weaker notion of key leakage (which they refer to as “non-adaptive” leakage):
a leakage function f with output length λ is chosen by the adversary ahead
of time (without any knowledge of the public key), and then the adversary is
given (pk, f(sk)). That is, in a “weak” key-leakage attack the leakage function
f is chosen independently of pk. Akavia et al. proved that Regev’s encryption
scheme is resilient to any weak key leakage of L(1− o(1)) bits.

Although this notion of key leakage seems rather limited, it still captures
many realistic attacks in which the leakage does not depend on the parameters
of the encryption scheme. Specifically, this notion captures the cold boot attack
of Halderman et al. [18], in which the leakage depends only on the properties of
the hardware devices that are used for storing the secret key.

For weak key-leakage attacks we present a generic construction that trans-
forms any encryption scheme to one that is resilient to any weak leakage of
3 We do not argue that such a relaxation is in fact necessary for achieving the optimal

ratio.
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L(1 − o(1)) bits, where L is the length of the secret key. The resulting scheme
is essentially as efficient as the original one, and does not rely on additional
computational assumptions. Our approach crucially relies on the fact that the
leakage is independent of the public key. One may interpret our construction as
evidence to the deficiency of this weaker notion of key-leakage attacks.

1.2 Related Work
Extensive work has been devoted for protecting against side-channel attacks, and
for exploiting side-channels to compromise the security of cryptographic schemes.
It is far beyond the scope of this paper to present an exhaustive overview of this
ever-growing line of work. We focus here on the results that are most relevant
to our work. Already in 1985 Rivest and Shamir [33] introduced a model for
leakage attacks in the context of factoring. They considered a scenario in which
an adversary is interested in factoring an n-bit modulus N = PQ, and is allowed
to ask a certain number of arbitrary “Yes/No” questions. Rivest and Shamir
asked the following question: how many questions are needed in order to factor
N in polynomial time? Clearly, if the adversary is allowed to ask about n/2
questions, then the binary representation of P can be fully revealed. Rivest and
Shamir showed an attack that requires only n/3 questions. Specifically, in their
attack the adversary requests the top n/3 bits of P . This was later improved by
Maurer [26] who showed that εn questions are sufficient, for any constant ε > 0.

Canetti et al. [6] introduced the notion of exposure resilient cryptographic
primitives, which remain secure even if an adversary is able to learn almost all
of the secret key of the primitive. Most notably, they introduced the notion of
an exposure resilient function: a deterministic function whose output appears
random even if almost all the bits of the input are known (see also the work
of Dodis et al. [10] on adaptive security of such functions). Ishai et al. [20,21]
considered the more general problem of protecting privacy in circuits, where
the adversary can access a bounded number of wires in the circuit. Ishai et al.
proposed several techniques for dealing with this type of attacks.

Dziembowski and Pietrzak [14] and Pietrzak [31] introduced a general frame-
work for leakage-resilient cryptography, following the assumption of Micali and
Reyzin that only computation leaks information. Their main contributions are
constructions of leakage-resilient stream-ciphers. Informally, their model consid-
ers cryptographic primitives that proceed in rounds, and update their internal
state after each round. In each round, the adversary can obtain bounded leakage
information from the portions of memory that were accessed during that round.

Dodis, Tauman Kalai, and Lovett [11] studied the security of symmetric-key
encryption schemes under key leakage attacks. They considered leakage of the
form f(sk), where sk is the secret key and f is any exponentially-hard one-way
function. On one hand they do not impose any restriction on the min-entropy
of the secret key given the leakage, but on the other hand, they require that the
leakage is a function that is extremely hard to invert. Dodis et al. introduced a
new computational assumption that is a generalization of learning parity with
noise, and constructed symmetric-key encryption schemes that are resilient to
any key leakage that is exponentially hard to invert.
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In a concurrent and independent work, Tauman Kalai and Vaikuntanathan
[35] considered leakage of hard-to-invert functions in the setting of public-key
encryption. Their main result is that the circular-secure encryption scheme of
Boneh et al. [5] is resilient to key leakage not only when the secret key has
sufficient min-entropy given the leakage function (as also shown in this paper in
Section 5.2 as a specific instantiation of our generic approach), but also when
the leakage function is exponentially hard to invert. In addition, they proved
that the Naor-Yung paradigm can be used to achieve chosen-ciphertext security
in the setting of key leakage, and their construction is essentially identical to our
construction (see [28, Section 6.1]).

1.3 Paper Organization

The remainder of the paper is organized as follows. In Section 2 we present
several notions and tools that are used in our constructions. In Section 3 we
formally describe the framework of key-leakage attacks. In Section 4 we present
our generic construction from hash proof systems, and provide a simple and
efficient instantiation. In Section 5 we present our two proposals that are resilient
to any key leakage of L(1− o(1)) bits, and provide a comparison between them.
In Section 6 we present several generalizations of the framework considered in
this paper that are satisfied by our schemes. Due to space limitations we refer
the reader to [28] for our results in the setting of chosen-ciphertext security and
weak key-leakage attacks.

2 Preliminaries and Tools

In this section we present some basic notions and tools that are used in our
constructions. Specifically, we present the notions of an average-case strong ex-
tractor and hash proof systems.

2.1 Randomness Extraction

The statistical distance between two random variables X and Y over a finite
domain Ω is SD(X,Y ) = 1

2

∑
ω∈Ω |Pr [X = ω] − Pr [Y = ω] |. We say that two

variables are ε-close if their statistical distance is at most ε. The min-entropy of
a random variable X is H∞ (X) = − log(maxx Pr [X = x]).

Dodis et al. [9] formalized the notion of average min-entropy that captures
the remaining unpredictability of a random variable X conditioned on the value
of a random variable Y , formally defined as follows:

H̃∞ (X |Y ) = − log
(
Ey←Y

[
2−H∞(X|Y =y)

])
.

The average min-entropy corresponds exactly to the optimal probability of guess-
ing X , given knowledge of Y . The following bound on average min-entropy was
proved in [9]:
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Lemma 2.1 ([9]). If Y has 2r possible values and Z is any random variable,
then H̃∞ (X |(Y, Z)) ≥ H∞ (X |Z)− r.

A main tool in our constructions in this paper is a strong randomness extractor.
The following definition naturally generalizes the standard definition of a strong
extractor to the setting of average min-entropy:

Definition 2.2 ([9]). A function Ext : {0, 1}n×{0, 1}t→ {0, 1}m is an average-
case (k, ε)-strong extractor if for all pairs of random variables (X, I) such that
X ∈ {0, 1}n and H̃∞ (X |I) ≥ k it holds that

SD ((Ext(X,S), S, I), (Um, S, I)) ≤ ε ,

where S is uniform over {0, 1}t.

Dodis et al. proved that any strong extractor is in fact an average-case strong
extractor, for an appropriate setting of the parameters. As a specific example,
they proved the following generalized variant of the leftover hash lemma, stating
that any family of pairwise independent hash functions is an average-case strong
extractor:

Lemma 2.3 ([9]). Let X,Y be random variables such that X ∈ {0, 1}n and
H̃∞ (X |Y ) ≥ k. Let H be a family of pairwise independent hash functions from
{0, 1}n to {0, 1}m. Then for h← H and for any m ≤ k−2 log(1/ε), it holds that

SD ((Y, h, h(X)), (Y, h, Um)) ≤ ε.

2.2 Hash Proof Systems

We present the framework of hash proof systems, introduced by Cramer and
Shoup [7]. For simplicity we frame the description by viewing hash proof systems
as key-encapsulation mechanisms (using the notation of Kiltz et al. [22]), and
refer the reader to [7] for a more complete description.

A key-encapsulation mechanism is a public-key encryption scheme that is
used for encrypting random messages. Typically, these messages are used as en-
cryption keys for a symmetric-key encryption scheme, which in turn encrypts
the actual plaintext. In this setting, hash proof systems may be viewed as key-
encapsulation mechanisms in which ciphertexts can be generated in two modes.
Ciphertexts generated using the first mode are referred to as valid ciphertexts,
and are indeed encapsulations of symmetric keys. That is, given a public key and
a valid ciphertext, the encapsulated key is well defined, and can be decapsulated
using the secret key. In addition, the generation process of a valid ciphertext also
produces a “witness” to the fact that the ciphertext is indeed valid. Ciphertexts
generated using the second mode are referred to as invalid ciphertexts, and es-
sentially contain no information on the encapsulated key. That is, given a public
key and an invalid ciphertext, the distribution of the encapsulated key (as it
will be produced by the decryption process) is almost uniform. This is achieved
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by introducing redundancy into the secret key: each public key has many corre-
sponding secret keys. The only computational requirement is that the two modes
are computational indistinguishable: any efficient adversary that is given a pub-
lic key cannot distinguish with a noticeable advantage between valid ciphertexts
and invalid ciphertexts. We note that the secret and public keys are always gen-
erated using the same algorithm, and the indistinguishability requirement is only
over the ciphertexts.
Smooth projective hashing. Let SK, PK, and K be sets where we view
SK as the set of secret keys, PK as the set of public keys, and K as the set
of encapsulated symmetric keys. Let C and V ⊂ C be sets, where we view C
as the set of all ciphertexts, V as the set of all valid ciphertexts (i.e., those
generated appropriately with a corresponding witness). We assume that there
are efficient algorithms for sampling sk ∈ SK, C ∈ V together with a witness w,
and C ∈ C \ V .

Let Λsk : C → K be a hash function indexed with sk ∈ SK that maps
ciphertexts to symmetric keys. The hash function Λ(·) is projective if there exists
a projection μ : SK → PK such that μ(sk) ∈ PK defines the action of Λsk over
the subset V of valid ciphertexts. That is, for every valid ciphertext C ∈ V , the
value K = Λsk(C) is uniquely determined by pk = μ(sk) and C. In other words,
even though there are many different secret keys sk corresponding to the same
public key pk, the action of Λsk over the subset of valid ciphertexts in completely
determined by the public key pk. On the other hand, the action of Λsk over the
subset of invalid ciphertexts should be completely undetermined: A projective
hash function is ε-almost 1-universal if for all C ∈ C \ V ,

SD ((pk, Λsk(C)) , (pk,K)) ≤ ε (1)

where sk ∈ SK and K ∈ K are sampled uniformly at random, and pk = μ(sk).

Hash proof systems. A hash proof system HPS = (Param,Pub,Priv) consists
of three polynomial-time algorithms. The algorithm Param(1n) generates pa-
rameterized instances of the form (group,K, C,V ,SK,PK, Λ(·), μ), where group
may contain public parameters. The public evaluation algorithm Pub is used to
decapsulate valid ciphertexts C ∈ V given a “witness” w of the fact that C is
indeed valid (specifically, one can think of w as the random coins used to sample
C from the set V). The algorithm Pub receives as input a public key pk = μ(sk),
a valid ciphertext C ∈ V , and a witness w of the fact that C ∈ V , and outputs
the encapsulated key K = Λsk(C). The private evaluation algorithm Priv is used
to decapsulate valid ciphertexts without knowing a witness w, but by using the
secret key sk. That is, the algorithm Priv receives as input a secret key sk ∈ SK
and a valid ciphertext C ∈ V , and outputs the encapsulated key K = Λsk(C).
We assume that μ and Λ(·) are efficiently computable. We say that a hash proof
system is 1-universal if for all possible outcomes of Param(1n) the underlying
projective hash function is ε(n)-almost 1-universal for some negligible ε(n).

Subset membership problem. As a computational problem we require that
the subset membership problem is hard in HPS, which means that for random
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valid ciphertext C0 ∈ V and random invalid ciphertext C1 ∈ C \ V , the two
ciphertexts C0 and C1 are computationally indistinguishable. This is formally
captured by defining the advantage function AdvSM

HPS,A(n) of an adversary A as

AdvSM
HPS,A(n) =

∣∣PrC0←V [A(C,V , C0) = 1]− PrC1←C\V [A(C,V , C1) = 1]
∣∣ ,

where C and V are generated using Param(1n).

3 Defining Key-Leakage Attacks

In this section we define the notion of a key-leakage attack, as introduced as
Akavia et al. [2]. Due to space limitations we refer the reader to the longer
version of our paper [28] for the extension to chosen-ciphertext attacks, the
definition of a weak key-leakage attack, and a discussion on several other gener-
alizations of this framework: noisy leakage, leakage of intermediate values from
the key-generation process, keys that are generated using weak random sources,
and leakage of intermediate values from the decryption process.

Informally, an encryption scheme is resilient to key-leakage attacks if it is
semantically secure even when the adversary obtains sensitive leakage informa-
tion. This is modeled by providing the adversary with access to a leakage oracle:
the adversary can submit any function f and receive f(SK), where SK is the
secret key. The adversary can query the leakage oracle adaptively, with only
one restriction: the sum of output lengths of all the leakage functions has to be
bounded by a predetermined parameter λ.

More formally, for a public-key encryption scheme (G, E ,D) we denote by SKn

and PKn the sets of secret keys and public keys that are produced by G(1n). That
is, G(1n) : {0, 1}∗ → SKn × PKn for every n ∈ N. The leakage oracle, denoted
Leakage(SK), takes as input a function f : SKn → {0, 1}∗ and outputs f(SK).
We say that an oracle machineA is a λ-key-leakage adversary if the sum of output
lengths of all the functions that A submits to the leakage oracle is at most λ.

Definition 3.1 (key-leakage attacks). A public-key encryption scheme Π =
(G, E ,D) is semantically secure against λ(n)-key-leakage attacks if for any prob-
abilistic polynomial-time λ(n)-key-leakage adversary A = (A1,A2) it holds that

AdvLeakage
Π,A (n) def=

∣∣∣Pr
[
ExptLeakage

Π,A (0) = 1
]
− Pr

[
ExptLeakage

Π,A (1) = 1
]∣∣∣

is negligible in n, where ExptLeakage
Π,A (b) is defined as follows:

1. (SK,PK)← G(1n).
2. (M0,M1, state)← ALeakage(SK)

1 (PK) such that |M0| = |M1|.
3. C ← Epk(Mb).
4. b′ ← A2(C, state)
5. Output b′.
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Challenge-dependent key leakage. Note that the adversary is not allowed
to access the leakage oracle after the challenge phase. This restriction is neces-
sary: the adversary can clearly encode the decryption algorithm, the challenge
ciphertext, and the two messages M0 and M1 into a function that outputs the
bit b. It will be very interesting to find an appropriate definition that allows a
certain form of challenge-dependent leakage.

Adaptivity. As pointed out by Akavia et al. [2], Definition 3.1 is in fact equiv-
alent to a definition in which the adversary queries the leakage oracle only
once. Informally, the adversary can encode its adaptive behavior into a single
polynomial-size leakage function. It is not clear, however, that the same equiva-
lence holds when we extend the definition to consider chosen-ciphertext attacks.
Therefore, for consistency, we chose to present this adaptive definition.

4 A Generic Construction from Hash Proof Systems

In this section we present a generic construction of a public-key encryption
scheme that is resilient to key-leakage attacks. We then present an instantia-
tion of our generic construction with a simple and efficient hash proof system
based on the DDH assumption. The resulting encryption scheme is resilient to
any leakage of L(1/2 − o(1)) bits, where L is the length of the secret key. Al-
though one can instantiate our generic construction with any hash proof system,
we find this specific instantiation rather elegant.

The construction. Let HPS = (Param,Pub,Priv) be an ε1-almost 1-universal
hash proof system (see Section 2.2 for an overview of hash proof systems), where
Param(1n) generates parameterized instances of (group,K, C,V ,SK,PK, Λ(·), μ)
which are used as the public parameters of the encryption scheme. Let λ = λ(n)
be a bound on the amount of leakage, and let Ext : K × {0, 1}t → {0, 1}m
be an average-case (log |K| − λ, ε2)-strong extractor. We assume that ε1 and ε2
are negligible in the security parameter. The following describes the encryption
scheme Π = (G, E ,D):

– Key generation: Choose a random sk ∈ SK and let pk = μ(sk) ∈ PK.
Output the pair (sk, pk).

– Encryption: On input a message M ∈ {0, 1}m, choose a random C ∈ V
together with a corresponding witness w, and a random seed s ∈ {0, 1}t. Let
Ψ = Ext (Pub(pk, C,w), s) ⊕M , and output the ciphertext (C, s, Ψ).

– Decryption: On input a ciphertext (C, s, Ψ), output the message M =
Ψ ⊕ Ext (Λsk(C), s).

The correctness of the scheme follows from the property that Λsk(C) =
Pub(pk, C,w) for any C ∈ V with witness w. Thus, a decryption of an encrypted
plaintext is always the original plaintext. The security of the scheme (i.e., its
resilience to key leakage) follows from the universality of the proof system (see
Equation (1) in Section 2.2): for all C ∈ C \ V it holds that

SD ((pk, Λsk(C)) , (pk,K)) ≤ ε1 ,
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where sk ∈ SK and K ∈ K are sampled uniformly at random, and pk = μ(sk).
Therefore, even given pk and any leakage of λ bits, the distribution Λsk(C)
is ε1-close to a distribution with average min-entropy at least log |K| − λ. The
strong extractor is then applied to Λsk(C) using a fresh seed (chosen during
the challenge phase and thus independent of the leakage), and guarantees that
the plaintext is properly hidden. The following theorem establishes the security
of the scheme:

Theorem 4.1. Assuming that HPS is a 1-universal hash proof system, the en-
cryption scheme Π is semantically secure against λ(n)-key-leakage attacks for
any λ(n) ≤ log |K| − ω(logn) −m, where n is the security parameter and m is
the length of plaintexts.

Example: A DDH-based instantiation. Let G be a group of prime order q,
let λ = λ(n) be the leakage parameter, and let Ext : G × {0, 1}t → {0, 1}m be
an average-case (log q − λ, ε)-strong extractor for some negligible ε = ε(n).

– Key generation: Choose x1, x2 ∈ Zq and g1, g2 ∈ G uniformly at random.
Let h = gx1

1 gx2
2 , and output the keys

SK = (x1, x2) , PK = (g1, g2, h) .

– Encryption: On input a message M , choose r ∈ Zq and s ∈ {0, 1}t uni-
formly at random, and output the ciphertext

(gr
1, g

r
2 , s,Ext(hr, s)⊕M) .

– Decryption: On input a ciphertext (u1, u2, s, e), output e⊕ Ext(ux1
1 ux2

2 , s).

The hash proof system underlying the above encryption scheme is a well-known
DDH-based 1-universal hash proof system [7], and as an immediate consequence
we obtain the following corollary of Theorem 4.1:

Corollary 4.2. Assuming the hardness of DDH, the above encryption scheme
is semantically-secure against (L/2 − ω(logn) − m)-key-leakage attacks, where
n denotes the security parameter, L = L(n) denotes the length of the secret key
and m = m(n) denotes the length of the plaintext.

5 Improved Resilience Based on DDH and d-Linear

In this section we propose two encryption schemes that are resilient to any
key leakage of L(1 − o(1)) bits, where L is the length of the secret key. These
proposals are based on the observation that our generic construction from hash
proof systems can in fact be based on hash proof systems with a slightly weaker
1-universality property. Specifically, the 1-universality property asks that for all
C ∈ C \ V it holds that

SD ((pk, Λsk(C)) , (pk,K)) ≤ ε
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where sk ∈ SK and K ∈ K are sampled uniformly at random, and pk = μ(sk). It
is rather straightforward that our generic construction only requires this property
to hold with overwhelming probability over the choice of C ∈ C \ V .

For our first proposal we construct a new hash proof system that is based on
the d-Linear assumption (for any d ≥ 1) and satisfies this weaker 1-universality
property4. The hash proof system is a generalization of the hash proof system
underlying the simple instantiation described in Section 4. The resulting encryp-
tion scheme is then obtained by instantiating our generic construction with this
hash proof system.

Our second proposal is a recent encryption scheme of Boneh et al. [5], that is
secure under key cycles (and more generally, under encryptions of linear functions
of the secret keys). This is the first and only known encryption scheme with this
property. We refer to this scheme as the BHHO scheme, and show that it fits
into our generic approach using an appropriate hash proof system (that satisfies
the same weaker universality property). As a corollary we derive that the BHHO
scheme is resilient to any leakage of L(1− o(1)) bits5.

We then provide a comparison between these two proposed schemes, indicating
that the two schemes complement each other in terms of efficiency.

5.1 Proposal 1: A New Hash Proof System

We begin by presenting the encryption scheme, and then turn to describe the
underlying hash proof system and its properties.

Notation. Let G = (G, q, g) where G a group of order q that is generated by
g. For two vectors v = (g1, . . . , gk) ∈ Gk and u = (u1, . . . , uk) ∈ Zk

q we define
v ·uT =

∏k
i=1 g

ui

i , and note the notation naturally extends to matrix-vector and
matrix-matrix multiplications.

The encryption scheme. Let k = k(n) ≥ d+1 be any polynomial, let λ = λ(n)
be the leakage parameter, and let Ext : G

k−d×{0, 1}t→ {0, 1}m be an average-
case ((k − d) log q − λ, ε)-strong extractor for some negligible ε = ε(n).

The following encryption scheme has a secret key of size essentially k log q bits
(k group elements), and is resilient to any leakage of λ ≤ (k−d) log q−ω(logn)−
m bits, where m is the length of plaintexts. That is, the scheme is resilient to
any leakage of essentially a (1 − d/k)-fraction of the length of the secret key.

– Key generation: Choose x ∈ Zk
q and Φ ∈ Gd×k uniformly at random. Let

y = Φx ∈ Gd, and output the keys

SK = x, PK = (Φ, y) .

– Encryption: On input a message M , choose R ∈ Z
(k−d)×d
q and s ∈ {0, 1}t

uniformly at random, and output the ciphertext

(RΦ, s,Ext (Ry, s)⊕M) .

4 Recall that the DDH is the 1-Linear assumption.
5 We note that not every circular-secure scheme is also resilient to key leakage.



Public-Key Cryptosystems Resilient to Key Leakage 31

– Decryption: On input a ciphertext (Ψ, s, e) output e⊕ Ext (Ψx, s).

The following theorem establishes the security of the scheme:

Theorem 5.1. Assuming the hardness of d-Linear, for any polynomial k =
k(n) ≥ d+ 1 the above encryption scheme is semantically-secure against a ((1−
d/k)L−ω(logn)−m)-key-leakage attack, where n denotes the security parameter,
L = L(n) denotes the length of the secret key and m = m(n) denotes the length
of the plaintext.

The hash proof system. Let k = k(n) ≥ d + 1 be any polynomial, and let
Ext : Gk−d × {0, 1}t → {0, 1}m be a ((k − d) log q, ε)-strong extractor for some
negligible ε = ε(n).

We define a hash proof system HPS = (Param,Pub,Priv) as follows. The al-
gorithm Param(1n) generates instances (group,K, C,V ,SK,PK, Λ, μ), where:

– group = (G, Φ, s), where Φ ∈ G
d×k and s ∈ {0, 1}t are chosen uniformly at

random.
– C = G(k−d)×k, V =

{
RΦ : R ∈ Z

(k−d)×d
q

}
, K = {0, 1}m.

– SK = Zk
q , PK = Gd.

– For sk = x ∈ SK we define μ(sk) = Φx ∈ PK.
– For C ∈ V with witness R ∈ Z

(k−d)×d
q we define Pub(pk, C,R) = Ext(Ry, s).

– For C ∈ V we define Priv(sk, C) = Λsk(C) = Ext(Cx, s).

5.2 Proposal 2: The BHHO Scheme

We show that a simple setting of the parameters in the BHHO encryption scheme
[5] results in an encryption scheme that is resilient any key leakage of L(1−o(1))
bits, where L is the length of the secret key. Let G = (G, q, g) where G a group
of order q that is generated by g, and set � = λ + 2 log q + 2 log(1/ε) for some
negligible ε = ε(n).

– Key generation: Choose s1, . . . , s� ∈ {0, 1} and g1, . . . , g� ∈ G uniformly
at random. Let h =

∏�
i=1 g

si

i , and output the keys

SK = (s1, . . . , s�), PK = (g1, . . . , g�, h) .

– Encryption: On input a message M ∈ G, choose r ∈ Zq uniformly at
random, and output the ciphertext

(gr
1, . . . , g

r
� , h

r ·M) .

– Decryption: On input a ciphertext (u1, . . . , uk, e) output e ·
(∏�

i=1 u
si

i

)−1
.

The encryption scheme can be viewed as based on a hash proof system with the
following subset membership problem (whose hardness follows from DDH):

C = {(gr1
1 , . . . , gr�

� ) : r1, . . . , r� ∈ Zq}
V = {(gr

1, . . . , g
r
� ) : r ∈ Zq} .
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The leftover hash lemma guarantees that with overwhelming probability over
the choice of C = (u1, . . . , u�) ∈ C \ V it holds that Λsk(C) =

∏�
i=1 u

si

i is ε-close
to the uniform distribution over G, even given h =

∏�
i=1 g

si

i and any leakage of
length λ bits.

5.3 Comparison

The main difference between the two schemes proposed in this section is in their
method of extracting randomness from the secret key. In the first proposal an
invertible function is applied to the secret key (thus preserving its min-entropy),
and then a strong extractor is applied to the resulting value. In the second pro-
posal, the entropy of the secret key is extracted directly using the subset-product
hash functions. Although the second proposal uses a more direct method to ex-
tract the randomness of the secret key, it requires the subset-product functions
to operate on the individual bits of the secret key, since otherwise the subset-
product functions are not pairwise independent. In contrast, in the first proposal
the extractor operates on the secret key as group elements. This leads to signif-
icant differences in performance.

For any leakage parameter λ, the size of the secret keys in the two proposals
is essentially the same, whereas the size of the public key in the first proposal is
shorter by a factor of log q. When considering the length of the ciphertexts and
the number of exponentiations per ciphertext, the first proposal performs better
than the second proposal when roughly λ < L(1−1/ log q), where L is the length
of the secret key (note that such a λ is a considerable amount of leakage). For
example, by setting k = 2 in the first proposal one obtains the simple instan-
tiation described in Section 4 which is resilient to any leakage of L(1/2− o(1))
bits, and requires only 3 exponentiations per ciphertext. For achieving the same
resilience in the second proposal more than log q exponentiations are required.
In Table 1 we present a comparison between the efficiency of the schemes. Since
the second proposal scheme is based on DDH and encrypts group elements, we
compare it to the first proposal using d = 1 (i.e., based on DDH), and m = log q
(i.e., log q-bit plaintexts). For simplicity we assume that λ is a multiple of log q,
and note that the table presents asymptotical estimates, and not exact numbers.

Table 1. Comparison between the two proposals

Proposal 1 (Section 5.1) Proposal 2 (Section 5.2)

Secret key (bits) λ + 2 log q + 2 log(1/ε) λ + 2 log q + 2 log(1/ε)

Public key (bits) λ + 2 log q + 2 log(1/ε) log q (λ + 2 log q + 2 log(1/ε))

Ciphertext (bits) (λ+2 log q+2 log(1/ε))2

log q
log q (λ + 2 log q + 2 log(1/ε))

Exponentiations
(

λ+2 log q+2 log(1/ε)
log q

)2

λ + 2 log q + 2 log(1/ε)
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6 Generalized Forms of Key-Leakage Attacks

In this section we present several generalizations of the framework considered in
this paper that are satisfied by our schemes. Due to space limitations we describe
these generalizations very briefly and refer the reader to [28] for more details.
Noisy leakage. In the side-channel attack of Halderman et al. [18] the adversary
learns a noisy version of all of the memory. This is a more general scenario than
the scenario captured by Definition 3.1: The leakage is not of bounded length,
but it is guaranteed that the secret key is still somewhat unpredictable given
the leakage. In the information-theoretic setting, this generalization does not
necessarily strengthen the definition, since the leakage may be compressed to
essentially λ bits. However, in the computational setting (which is the setting
we consider in this work) we can conjecture that this notion is stronger.
Leakage of intermediate values from the key-generation process.
Definition 3.1 assumes that the adversary does not learn any of the interme-
diate values that occur during the generation of the secret and public keys. In
practice, however, this is not always a valid assumption. Specifically, in the at-
tack of Halderman et al. [18] the adversary learns a noisy version of all of the
memory, and it is rather likely that intermediate values from the generation of
the keys are not always completely erased. This motivates a natural generaliza-
tion that allows the adversary to learn functions of the random bits that are used
by the key generation algorithm. Encryption schemes that satisfy this notion of
security are more robust to leakage in the sense that the key generation algo-
rithm does not have to make sure that all intermediate key-related values have
been deleted. In addition, this generalization is especially important to security
under composition of cryptographic primitives. For example, the key generation
algorithm may use random bits (or pseudorandom bits) that are the output of
another primitive (say, a pseudorandom generator) which may also suffer from
unintended leakage of sensitive information.
Keys generated using weak random sources. When considering leakage of
the random bits that are used by the key generation algorithm, then from the ad-
versary’s point of view these bits are uniformly distributed subject to the leakage
information. A natural generalization is to consider cases in which the keys are
generated using a weak source of random bits. This is relevant, in particular, in
light of crucial security vulnerabilities that were recently identified in pseudoran-
dom generators that are used by many systems [13,17,36].
Leakage of intermediate values from the decryption process. An addi-
tional generalization is to consider leakage that may occur during computation,
and not only leakage from the stored key. Specifically, an invocation of the de-
cryption algorithm may produce various intermediate values, whose leakage may
compromise the security of the scheme even if the scheme is robust against
leakage from the stored key. Such a notion of security is generically guaranteed
when considering leakage of bounded length. However, it is not always guaran-
teed when the adversary obtains all of the memory in a noisy fashion.
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Consider the seemingly contrived example of a decryption algorithm that first
encodes the secret key using a good error-correcting code, and then performs the
actual decryption. In this case, an adversary that obtains a noisy variant of the
memory can clearly recover the secret key. This example, however, is not so con-
trived, since as demonstrated by Halderman et al., encryption schemes typically
compute intermediate key-related values whose representation is rather redun-
dant, and this can be used to attack the scheme. Moreover, even if the encryp-
tion scheme itself does not explicitly instructs to compute intermediate values, it
may be the case that such values are computed by a specific implementation of
the encryption scheme.
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Abstract. We study the design of cryptographic primitives resilient to key-
leakage attacks, where an attacker can repeatedly and adaptively learn informa-
tion about the secret key, subject only to the constraint that the overall amount
of such information is bounded by some parameter �. We construct a variety
of leakage-resilient public-key systems including the first known identification
schemes (ID), signature schemes and authenticated key agreement protocols
(AKA). Our main result is an efficient three-round AKA in the Random-Oracle
Model, which is resilient to key-leakage attacks that can occur prior-to and after
a protocol execution. Our AKA protocol can be used as an interactive encryp-
tion scheme with qualitatively stronger privacy guarantees than non-interactive
encryption schemes (constructed in prior and concurrent works), which are inher-
ently insecure if the adversary can perform leakage attacks after seing a
ciphertext.

Moreover, our schemes can be flexibly extended to the Bounded-Retrieval
Model, allowing us to tolerate very large absolute amount of adversarial leak-
age � (potentially many gigabytes of information), only by increasing the size of
the secret key and without any other loss of efficiency in communication or com-
putation. Concretely, given any leakage parameter �, security parameter λ, and
any desired fraction 0 < δ ≤ 1, our schemes have the following properties:

– Secret key size is �(1 + δ) + O(λ).
– Public key size is O(λ), and independent of �.
– Communication complexity is O(λ/δ), and independent of �.
– Computation reads O(λ/δ2) locations of the secret key, independent of �.

Lastly, we show that our schemes allow for repeated “invisible updates” of
the secret key, allowing us to tolerate up to � bits of leakage in between any
two updates, and an unlimited amount of leakage overall. These updates require
that the parties can securely store a short “master update key” (e.g. on a separate
secure device protected against leakage), which is only used for updates and not
during protocol execution. The updates are invisible in the sense that a party can
update its secret key at any point in time, without modifying the public key or
notifying the other users.

1 Introduction

Traditionally, cryptographic systems rely on complete privacy of cryptographic keys.
Unfortunately, this idealized assumption is often hard to satisfy in real systems. In
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many situations, the attacker might get some partial information about secret keys
through means which were not anticipated by the designer of the system and, corre-
spondingly, not taken into account when arguing its security. Such attacks, referred to
as key-leakage attacks, come in a large variety. For example, this includes side-channel
attacks [20,21,28], where an adversary observes some “physical output” of a com-
putation (radiation, power, temperature, running time etc.) in addition to the “logical
output” of the computation. Alternatively, this also includes the “cold-boot” attack of
Halderman et al. [15], where an adversary can learn (imperfect) information about
memory contents, even after a machine is powered down. Lastly, this can include var-
ious malware/virus/hacking attacks where the adversary can download arbitrary infor-
mation from an attacked computer.

Given that one cannot hope to eliminate the problem of leakage attacks altogether,
it is natural to design leakage-resilient cryptographic schemes which remain (provably)
secure, even in the face of such attacks. To do so, we must first decide on an appropriate
model of what information the adversary can learn during a leakage attack. In this work,
we assume that the attacker can repeatedly and adaptively learn arbitrary functions of
the secret key sk, as long as the total number of bits leaked during the lifetime of the
system is bounded by some parameter �. Due to its generality, this model seems to
include a very large class of attacks mentioned above, and has recently attracted a lot of
attention from the research community. In particular, this model simultaneously covers
the following two typical scenarios, which seem to be treated differently in the existing
literature.

Relative Leakage. Here, the secret key is chosen to be of some particular length s,
which depends on the security parameter, and we assume that the leakage � is bounded
by some shrinking function of s; e.g., the attacker’s leakage is less than half of the
key-size. This assumption seems to be natural for modeling attacks where, no matter
what the key-size is, the attacker gets some imperfect reading of the key. For example,
this naturally models “cold boot attacks” attacks [15] (where the attacker might get part
of the key stored in RAM) and “microwave” attacks (where the attacker manages to
extract a corrupted copy of the key from a smart-card), among others.

Bounded-Retrieval Model (BRM). Here we assume that there is an external natural
bound � on the overall amount of information the attacker can learn throughout the life-
time of the system, particularly concentrating on the setting when � can be extremely
large. For example, the attacker may be able to repeatedly perform many side-channel
attacks, each of which reveals a few bits of information about the key but, if the band-
width of such attacks is relatively small, it may be infeasible, too time consuming, or
simply not cost-affective for the adversary to learn “too much” information (say, more
than 10 megabytes) overall. Alternatively, if an attacker hacks into a remote system (or
infects it with some malware) it may again be infeasible/impractical for the attacker to
download “too much” data (say, more than 10 gigabytes). In these situations the leakage
bound � is decided by external factors and one can only resist such attacks by making
the secret key intentionally large, to dominate �. Therefore, we want to be able to set
the key size flexibly depending on the security parameter and the leakage bound �.
By itself, having large secret-keys might not be a big problem for usability, given the
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extremely cheap price of storage nowadays. Therefore, the main goal of this setting,
usually refereed to as the Bounded-Retrieval Model (BRM) [8,12], is to ensure that the
necessary inefficiency in storage is essentially the only inefficiency that the users of
the system incur. In particular, honest users should only have to read a small portion
of the secret (this is called locality), and the public keys, communication and compu-
tation should not be much larger than in conventional cryptosystems. In particular, all
efficiency parameters other than the secret-key size should only be proportional to the
security parameter, and not the leakage bound �.

To summarize, both leakage models (relative and BRM) study essentially the same
technical question. However, the BRM setting additionally demands that: users can
increase their secret key size flexibly, so as to allow for an arbitrary large leakage
bounds �, but without degrading other efficiency parameters, such as computation,
communication and locality. This is the perspective we will take in this paper, treating
both settings together, while striving to allow for the flexibility of the BRM.

NOTIONS OF SECURITY. Security with respect to key leakage attacks can be defined
for nearly all cryptographic primitives (e.g. encryption, signatures, authenticated key
agreement . . . ) However, for many of the above primitives, there are natural limitations
on the security notions that can be achieved in the presence of such attacks. For exam-
ple, encryption schemes lose all privacy if the adversary can perform leakage attacks
after seeing a ciphertext, since the leakage function can simply decrypt it and reveal
some information about plaintext. Similarly, one cannot achieve existential unforge-
ability for signature schemes if the leakage bound � is larger than the size of a single
signature (as is the case in the BRM), since the adversary can simply leak the signature
of a message of her choosing. These limitations do not seem to apply when consider-
ing interactive primitives, and therefore we choose to concentrate on authenticated key
agreement (AKA), which in turn allows for interactive encryption and authentication,
and achieves qualitatively stronger security guarantees, even in the BRM.

1.1 Our Results

Our main result is the construction of a leakage-resilient public-key authenticated key
agreement (AKA) protocol with the flexibility required by the BRM. We assume a
public-key infrastructure where users have short public-keys and flexibly sized (poten-
tially huge) secret keys. In a leakage-resilient AKA protocol, pairs of users agree on
shared session-keys which are private and authentic, even if: (a) the attacker learns at
most � bits of information about the secret keys of both users prior to the protocol exe-
cution; (b) the attacker may learn the secret keys entirely after the protocol execution.
In particular, condition (a) ensures that the adversary cannot impersonate an honest
user, even after learning � bits of leakage about that user’s secret key. Since the shared
session-keys can safely be used for encryption/authentication, a public-key AKA nat-
urally yields interactive public-key encryption and authentication schemes which are
secure under assumptions (a) and (b), and do not suffer from the inherent limitations of
their non-interactive counterparts.

ROADMAP OF AKA CONSTRUCTION. Our construction of AKA is based on sim-
pler primitives and, in particular, we also construct identification schemes (ID) and
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(non-interactive) signature schemes, which are of interest in their own right. The main
technical portion of our paper will be the construction of ID schemes secure against
leakage attacks. We then apply the Fiat-Shamir heuristic to obtain efficient leakage-
resilient signature schemes in the random oracle (RO) model. Of course, our signature
schemes cannot provide existential unforgeability, if the allowed leakage exceeds the
size of even a single signature (which is usually the case in the BRM). Interestingly, we
show how to achieve existential unforgeability under this necessary constraint, which
resolves an open problem mentioned in [1]. For the BRM setting, which is our main
point of interest, we must settle for a weaker, but still very useful security notion, that
we call entropic unforgeability. Although an attacker may be able to forge signatures
for a few messages after she performs a key-leakage attack, she should be unable to
forge the signature of a random message sampled from any distribution of high enough
min-entropy.

Finally, we use a standard construction of AKA based on Diffie-Hellman key ex-
change, in which the parties bind the protocol execution to a particular session and to
their identities using signatures. We plug our entropically secure signature scheme into
this construction to get leakage-resilient AKA. Intuitively, the usage of entropically se-
cure signature will suffice, since each party only signs messages which are partially
controlled by the other party, and happen to have entropy. We note that our construc-
tions of authenticated key agreement from entropic signatures, and our constructions of
such signatures from ID schemes, are extremely efficient and essentially preserve (1)
the long-term public/secret key size, (2) the communication complexity, (3) the locality,
and (4) the allowed leakage. Therefore, we apply most of our efforts to the construction
of optimized, leakage-resilient ID schemes.

ID SCHEME CONSTRUCTIONS. We present three ID scheme constructions, which
build on top of one another. First we notice that a generalization of the discrete-log
based Okamoto ID scheme [25] using m generators, denoted Okamotoλ

m, is secure
against leakage attacks where the allowed leakage is � ≈ (1 − 1

m )|sk|, and can be set
arbitrarily close to the size of the secret key. Our argument relies on the following three
simple properties of the scheme:

(1) Any adversarial prover that impersonates some identity must know a corresponding
secret key for the identity’s public key.

(2) For any Okamoto public key, there are (exponentially) many corresponding se-
cret keys. Moreover, the actual secret key of the scheme maintains a high level of
information-theoretic entropy, even when given: (a) the public key, (b) protocol ex-
ecutions between adversarial verifier and honest prover, and (c) � bits of secret-key
leakage.

(3) It is computationally infeasible to come up with an Okamoto public key and two
different corresponding secret keys.

By property (1), an adversarial prover that successfully mounts impersonation attacks
knows some secret key for the honest user’s public key and, by property (2), this secret
key is (information theoretically) unlikely to match the one possessed by the honest
user, even if the adversary got � bits leakage. Therefore, the adversarial prover together
with the honest user can generate two different secret keys for a single Okamoto public
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Table 1. Efficiency vs. Leakage Trafeoffs For Our ID, Sig, AKA schemes

Scheme pub. params pk sk help Comm. Loc. Leakage � (in bits)

Okamotoλ
m m 1 m 0 m + O(1) m

(1 − δ)|sk|
δ ≈ 1

m

DirProdλ
n,m,t m 1 nm n O(tm) tm

(1 − δ)|sk|
δ ≈ ( 1

m
+ O

(
λ
t

))
CompDirProdλ

n,m,t m 1 nm n m + O(1) tm
(1 − δ)|sk|

δ ≈ ( 1
m

+ O
(

λ
t

))
key, contradicting property (3) and hence proving security. We note that several other
identification schemes (e.g. an alternate construction by Okamoto [25] based on RSA,
and the Ong-Schnorr [26] scheme based on factoring) also have the three mentioned
properties and are therefore leakage-resilient as well.

While the (generalized) Okamoto scheme already provides an adequate solution
for relative leakage, it cannot achieve large absolute leakage, without a proportional
increase in communication complexity and locality. Therefore, we present two exten-
sions of the Okamoto scheme which are suitable to the BRM setting. The first ex-
tension, denoted DirProdλ

n,m,t, is based on the idea of taking a “direct-product” of
n basic Okamoto schemes, where the verifier will selects a small random subset of
t � n of these schemes, and executes the basic protocol for them in parallel. One can
think of this as a simple form of “leakage amplification”, where we amplify the amount
of allowed absolute leakage. Lastly, we improve the communication complexity of this
second scheme still further (in the Random Oracle model), by showing how to use ideas
from coding-theory and the special structure of the Okamoto scheme, to “securely com-
press” the t chosen Okamoto public keys into a single public key, and then running a
single ID protocol for this key. Therefore, and quite remarkably, our third scheme, de-
noted CompDirProdλ

n,m,t, has essentially the same communication complexity as the
basic (non-BRM) Okamoto scheme even though the allowed leakage � can be made
arbitrarily large.

OVERVIEW OF ACHIEVED PARAMETERS. We summarize the main parameters of the
three ID scheme constructions (which translate into essentially the same parameters
for the corresponding signatures and AKA protocols) in Table 1. The columns indicate
the sizes of: the public parameters shared by all users, the public key, the secret key, a
helper key (which is stored locally by each user, but does not have to be kept secret), the
communication complexity per party (or signature size), the locality, and the allowed
leakage �. For simplicity, only the leakage parameter � is measured in bits, and all other
quantities are measures in group elements. The parameters m,n, t offer flexibility to
meet the various desired settings of of absolute leakage � and relative leakage (1 − δ).
In particular:

– For the first scheme (Okamotoλ
m), the only flexibility is in the number of gen-

erators m. Essentially to allow for relative leakage (1 − δ) we can set m ≈ 1/δ
which gives us very practical schemes for reasonable settings of the relative leakage
(e.g. δ = 1

2 ). However, to allow for a large absolute leakage �, we must increase
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m still further (and proportionally with �), which increases the communication,
computation and size of public parameters to unreasonable levels.

– For the second and third scheme (DirProdλ
n,m,t,CompDirProdλ

n,m,t), we have
the additional flexibility offered by parameters n (the number of stored copies of
Okamoto key pairs) and t (the number of Okamoto keys used during a particular
protocol). We notice that, by setting m ≈ 1/δ, t ≈ O(λ/δ) we allow a relative leak-
age of (1 − δ) and still get practical schemes with small public parameters, public
key size, communication (especially in the third scheme), and locality. Moreover,
we can then flexibly accommodate any value of the absolute leakage � only by
increasing n which only affects the size of the secret key.

INVISIBLE KEY UPDATES. Lastly, we mention a simple but powerful feature of our
schemes. We introduce a method for users to periodically update their secret keys, so
that the scheme remains secure as long as the adversary learns at most � ≈ (1 − δ)|sk|
bits of key leakage in between updates, but may learn leak significantly more than the
size of the secret key overall. Our updates are invisible to the outside world, in the
sense that the public keys remain unchanged and users do not need to know when or
how often the secret keys of other users are updated in order to run an AKA protocol.
For such updates, we require the use of a “master update key” which must be stored
securely on an external storage device that is not susceptible to leakage attacks.

1.2 Related Work

WEAK SECRETS, SIDE-CHANNEL ATTACKS AND BRM. The model of key leakage
attacks, as studied in this work, is very related to the study of cryptography with weak
secrets. A weak secret is one which comes from some arbitrary distribution that has a
sufficient level of (min-)entropy, and one can think of a secret key that has been partially
compromised by leakage attacks as coming from such a distribution. Most of the prior
work concerning weak secrets is specific to the symmetric key setting and much of this
work is information-theoretic in nature. For example, the study of privacy-amplification
[3,22] shows how two users, who share a weak secret, can agree on a uniformly random
key in the presence of a passive attacker. Such information-theoretically secure schemes
can only be used once to convert a shared symmetric-key, which may have been partially
compromised by leakage attacks, into a single uniform session-key.

In the computational symmetric-key setting, users can agree on arbitrarily many
session-keys using Password Authenticated Key Agreement (PAKE) [2], where they
use their shared weak (or partially compromised) secret key as the password. However,
these solutions do not scale to the BRM, as they do not preserve low locality when
the secret is large. The Bounded-Retrieval Model (BRM), where users have a huge
secret key which is subject to large amounts of adversarial leakage, was introduced
by [8,12]. In particular, Dziembowski [12] constructed a symmetric key authenticated-
key-agreement protocol for this setting in the Random-Oracle model. This was later
extended to the standard model by [7]. We also note that non-interactive symmetric-
key encryption schemes from weakly-secret keys were constructed implicitly in [27]
(based on weak PRFs) and explicitly in [9] based on “learning parity with noise”.
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The only related prior work that considers leakage attacks in the public-key setting
is a recent work of Akavia et al. [1], which showed that Regev’s public-key encryp-
tion scheme [29] (based on lattices) is leakage-resilient. Several recent concurrent and
independent works [18,19,24] also study leakage-resilient public-key primitives. The
works of [18,24] present several new constructions of of leakage-resilient public-key
encryption schemes for this setting, based on more general (and non-lattice) assump-
tions, tolerating more leakage, achieving CCA-2 security and allowing for stronger
“auxiliary-input” attacks (described subsequently). We note that all such non-interactive
encryption schemes inherently become insecure if the adversary can perform leakage
attacks after seeing a ciphertext. Existentially unforgeable leakage-resilient signatures
were studied in the concurrent work of Katz [19], who independently discovered our
Okamotoλ

m construction (described above) of signatures in the Random Oracle model,
as well as an alternative (albeit not practically efficient) instantiation of such signatures
in the standard model. None of the prior or concurrent works in the public-key setting
extend to the Bounded Retrieval Model.

OTHER MODELS OF ADVERSARIAL KEY COMPROMISE. It is worth describing several
related models for key compromise which differ from the one used in this work. One
possibility is to restrict the type of information that the adversary can learn about the
secret key. For example, a line of work called exposure resilient cryptography [5,11]
studies a restricted class of adversarial leakage functions, where the adversary gets a
subset of the bits of the secret key. In this setting, one can secure keys against leakage
generically, by encoding them using an all-or-nothing transform (AONT). We note that
many natural side-channel attacks (e.g. learning the hamming weight of the key) and
most malware attacks are not captured by this model.

Another line of work, initiated by Micali and Reyzin [23] and studied further by
Dziembowski and Pietrzak [13,27], designs various symmetric-key primitives under
the axiom that “only computation leaks information”. In these works, each stage of
computation is assumed to leak some arbitrary shrinking function of (only) the data
it accesses, but the adversary can observe computation continuously, and can learn an
unbounded amount of such information overall. In particular, this model can protect
against an adversary that continuously perform side-channel attacks (such as DPA at-
tacks), each of which leaks some partial information (only) about the “current” com-
putation. On the other hand, the axiom that “only computation leaks information” does
not seem to apply to many other natural attacks, such as the memory/microwave attacks
or virtually all malware/virus attacks. A related model, where the adversary can learn
the values on some subset of wires during the evaluation of a circuit, was studied by
Ishai et al. [17].

Lastly, the recent works [9,18] study auxiliary input, where the adversary can learn
functions f(sk) of the secret key sk subject only to the constraint that such a function
is hard to invert. This is a strictly stronger model than the one considered in this work,
as such functions f can have output length larger than the size of the secret key and can
reveal all of the statistical entropy of the key.
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2 Preliminaries

ENTROPY AND PREDICTABILITY. We review the information-theoretic definition for
entropy, along a new generalization useful for our paper.

Definition 1. The min-entropy of a r. v. X is H∞(X) def= − log(maxx Pr[X = x]).

We can rephrase the above definition in terms of predictors A. The min-entropy of a
random variable X measures how well X can be predicted by the best predictorA, i.e.
H∞(X) = − log(maxA Pr[A() = X ]), where the max is taken over all predictors
without any requirement on efficiency. The work of [10], offered a natural generaliza-
tion of min-entropy, called the (average) conditional min-entropy of X conditioned on
Z , which can be defined as measuring the maximum predictability of X by a predictor
that is given the value Z . In this paper, we generalize the notion of conditional min-
entropy still further, to interactive predictorsA, which participate in some randomized
experiment E . We model experiments as interactions betweenA and a challenger oracle
E(·) which can be randomized, stateful and interactive. We consider the predictability
of X by an arbitrary predictorAE(·).

Definition 2. The conditional min-entropy of a random variable X , conditioned on the
experiment E is H̃∞(X | E) def= − log(maxA Pr[AE(·)() = X ]). In the special case that
E is a non-interactive experiment which simply outputs a random variable Z , we abuse
notation and write H̃∞(X | Z) to denote H̃∞(X | E).

REVIEW OF Σ-PROTOCOLS. Let R be a relation consisting of instance, witness pairs
(x,w) ∈ R and let LR = {x | ∃w, (x,w) ∈ R} be the language of R. A Σ-protocol
for R is a protocol between a PPT ITM prover P(x,w) and a PPT ITM verifier V(x),
which proceeds in three rounds with conversations (a, c, z) initiated by the prover. We
require that a Σ-protocol satisfies perfect completeness, special soundness, and Honest
Verifier Zero Knowledge. In the full version of the paper, we prove the following lemma.

Lemma 1. Let (P ,V) be an HVZK protocol for the relationR, and let (X,W ) be ran-
dom variables over R. Let E1 be an arbitrary experiment in which A is given X at the
start of the experiment, and let E2 be the same as E1, except thatA is also given oracle
access to P(X,W ) throughout the experiment. Then H̃∞(W |E2) = H̃∞(W |E1).

PRIME-ORDERED GROUPS. We use the notation G(1λ) to denote a group sampling
algorithm which, on input 1λ, outputs a tuple G = (p,G, g) where p is a prime, G
is a (description of a) group of order p, and g is a generator of G. We will rely on the
usual hardness assumptions: the discrete-logarithm (DL), computational Diffie-Hellman
assumption (CDH) and decisional Diffie-Hellman (DDH) assumptions. We will also
rely on the Gap Diffie-Hellman (GDH) assumption which state that for some groups, in
which the DDH problem can be solved efficiently (for example using a bilinear map),
the CDH problem is still hard.
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3 Leakage Oracle

We model adversarial leakage attacks on a secret key sk, by giving the adversary access
to a leakage oracle, which the adversary can (periodically) query to gain information
about sk. This oracle is defined as follows.

Definition 3. A leakage oracle Oλ,�
sk (·) is parameterized by a secret key sk, a leakage

parameter � and a security parameter λ. A query to the oracle consists of a (description
of) leakage function hi : {0, 1}∗ → {0, 1}αi. The oracle Oλ,�

sk (·) checks if the sum of
αi, over all queries received so far, exceeds the leakage parameter � and ignores the
query if this is the case. Otherwise, the oracle computes the function hi(sk) for at most
poly(λ) steps. If the computation completes, the oracle responds with the output and,
otherwise, it responds with the dummy value 1αi .

Since the cumulative output of leakage-oracle queries can be guessed with probability at
least 2−�, the oracle can decrease the entropy of sk by at most � bits in any experiment.

Lemma 2. For any random variable SK, any experiment E1, let E2 be the experiment
which is the same as E1, but also gives the predictor access to the leakage oracle
Oλ,�

SK (·). Then H̃∞(SK | E2 ) ≥ H̃∞(SK | E1)− �.

4 Identification Schemes

4.1 Definition

In an identification scheme, a prover attempts to prove its identity to a verifier. This
proof should be convincing and non-transferable. More formally, an identification
scheme consists of the four PPT algorithms (ParamGen,KeyGen,P ,V):

params← ParamGen(1λ): Outputs the public parameters of the scheme, which are
common to all users. These parameters are available as inputs to KeyGen,P ,V ,
and we omit them from the descriptions.

(pk, help, sk)← KeyGen(): Outputs the public key pk, a helper help and a secret key
sk. The value help is analyzed as a public key with respect to security (i.e. it need
not be kept secret and is given to the adversary) but is thought of as a secret key for
usability (i.e. it is not used by honest verifiers).1

P(pk, help, sk),V(pk): These are the prover and verifier ITMs respectively. The ver-
ifier V outputs a judgement from one of {Accept, Reject} at the conclusion of a
protocol execution.

We require that an ID scheme is complete, so that in an interaction {P(pk, sk) � V(pk)}
between honest prover and honest verifier, the verifier always accepts the proof. We now
formally define what it means for an ID scheme to be leakage resilient. As discussed, we
will consider two separate security notions. The first notion, called pre-impersonation

1 In some of our constructions, when sk is made intentionally huge, the size of help will become
large as well, and thus it is important that this does not detract from the usability of the scheme
by also increasing the size of the public key.
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leakage security, is modeled by the attack game IDPREλ
� (A) and only allows the adver-

sary to submit leakage queries prior to an impersonation attack, but not during one.
The second notion, called anytime leakage security, is modeled by the attack game
IDANYλ

� (A) where the adversary can perform leakage attacks adaptively at any point
in time, even during an impersonation attack. The two attack games are defined below
and only differ in the impersonation stage.

IDPREλ
� (A), IDANYλ

� (A)

1. Key Stage: Let params ← ParamGen(1λ), (pk, help, sk) ← KeyGen() and give
(params, pk, help) to A.

2. Test Stage: The adversary AOλ,�
sk

(·),P(pk,sk) gets access to the leakage oracle Oλ,�
sk (·) and

to an honest prover P(pk, sk), modeled as an oracle that runs (arbitrarily many) proofs
upon request.

3. Impersonation Stage: This stage is defined separately for the two games.
For IDPREλ

� (A): The adversary A loses access to the all oracles and runs a protocol
{A � V(pk)} with as an honest verifier.

For IDANYλ
� (A): The adversary AOλ,�

sk
(·) maintains access to the leakage oracle

Oλ,�
sk (·), but not the prover oracle P , and runs a protocol {AOλ,�

sk
(·) � V(pk)}

with an honest verifier.

The advantage of an adversaryA in the games IDPREλ
� (A), IDANYλ

� (A) is the proba-
bility that the verifier V accepts in the impersonation stage.

Definition 4. Let (KeyGen,P ,V) be an identification scheme with perfect complete-
ness, parameterized by security parameter λ. We say that the scheme is secure with
pre-impersonation leakage � if the advantage of any PPT adversary A in the attack
game IDPREλ

� (A) is negligible in λ. We say that the scheme is secure with anytime
leakage � if the above also holds for the attack game IDANYλ

� (A).

4.2 Construction 1: Generalized Okamoto Scheme

We now show that the Okamoto identification scheme from [25] is secure against
key leakage attacks. The standard Okamoto scheme is defined with respect to two
generators. Here, we describe a generalized version of the Okamoto scheme with m
generators. Since we will re-use the basic components of the scheme as building-
blocks for our more complicated schemes, we abstract away most of the computa-
tion of the scheme into the algorithms (A,Z,Ver) which are used by P ,V to run
the protocol as defined in Figure 1. To analyze the above scheme, we define the relation
R = {(pk, sk)|sk = (x1, . . . , xm), pk =

∏m
j=1 g

xj

j }. We will rely on only three prop-
erties of the relationR and the generalized Okamoto ID scheme, outlined in Lemma 3.

Lemma 3. The following three properties hold for the Okamotoλ
m ID scheme:

(1) The protocol (P ,V) is a Σ-protocol for the relationR.
(2) Denoting key pairs as random variables, we get H̃∞(SK|PK) ≥ (m− 1) log(p).
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ParamGen(1λ) : Let (p, G, g) ← G(1λ), g1, . . . , gm ←R G.
Set params = (p,G, g1, . . . , gm).

KeyGen(): Let sk = (x1, . . . , xm) ←R (Zp)m, pk =
∏m

j=1{gj}xj . Output (pk,⊥, sk).
P ,V: The machines P ,V run the following protocol:

(1) P: Computes (a, y) ← A() and sends a to V .
A() : Let y = (y1, . . . , ym) ←R (Zp)m, a =

∏m
j=1 gj

yj . Output (a, y).
(2) V: Choose c ←R Zp and send c to P .
(3) P: Compute z ← Zsk(c, y) and send z to V .

Zsk(c, y): Compute zj := yj + cxj for j = 1, . . . , m, output z := (z1, . . . , zm).

Verpk(a, c, z): Output Accept iff
∏m

j=1 g
zj

j

?= a(pk)c.

Fig. 1. The Okamotoλ
m identification scheme

(3) Under the discrete logarithm assumption, it is difficult to find a public key pk and
two different secret keys sk′ �= sk for pk. In particular, for any PPT adversary A:

Pr
[
sk′ �= sk and (pk, sk′), (pk, sk) ∈ R

∣∣∣∣ (pk, sk, sk′)← A(params)
params← ParamGen(1λ) ≤ negl(λ)

]
.

Using the properties in the above lemma, we show that the Okamoto ID scheme is
secure against key leakage attacks.

Theorem 1. Under the DL assumption, Okamotoλ
m is a secure ID-scheme for pre-

impersonation leakage of up to � = (m− 1) log(p)−λ ≥ (1− 2
m )|sk| bits. It is secure

with anytime leakage of up to �′ = 1
2� bits.

Proof Sketch. Assume that there is an adversaryA that has a non-negligible advantage
in the pre-impersonation leakage attack game IDPREλ

� (A). Then there is a reduction
which, for randomly chosen params, finds two distinct secret keys sk, sk′ for a single
public-key pk (contradicting part (3) of Lemma 3). In particular, the reduction chooses a
random (pk, sk) tuple and uses sk to simulate the leakage oracle, and the honest-prover
oracle for the attacker A during the “test stage”. Then, during the impersonation stage,
the reduction runs A twice, with two randomly chosen challenges c, c′ (using rewind-
ing). There is a non-negligible probability thatA produces two accepting conversations
(a, c, z), (a, c′, z′) with c �= c′. Using the special soundness property of the Σ-protocol,
the reduction uses these two conversation to recover a secret key sk′.

We must now analyze the probability of sk = sk′. We think of the reduction as an
experiment E0 where A gets PK and access to the oracles Oλ,�

SK (·),P(PK, SK). Let E1
be the same experiment as E0, except that the predictor does not get access to Oλ,�

SK (·),
and E2 be the same as E1 except that the predictor doesn’t get access to P(PK, SK)
either (i.e. only gets PK). Then

H̃∞(SK | E0) ≥ H̃∞(SK | E1)− �

≥ H̃∞(SK | E2)− � = H̃∞(SK | PK)− �

≥ (m− 1) log(p)− � ≥ λ
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where the first inequality follows by Lemma 2, the second one by Lemma 1, and the
last one by part (3) of Lemma 3. The probability of the reduction outputting sk′ =
sk is therefore upper bounded by 2−λ and hence, with non-negligible probability, the
reduction produces two distinct secret keys sk �= sk′.

For anytime leakage,A can make calls to the leakage oracle for �′ bits even during the
impersonation stage. Since the reduction runs the impersonation stage twice on different
challenges (by rewindingA), the reduction needs 2�′ bits of leakage. Therefore, we can
only handle �′ = 1

2� bits of anytime leakage. �

4.3 Construction 2: Adding Flexibility through Direct-Products

We now propose a construction of a leakage-resilient ID scheme with pre-impersonation
security, that is suitable for the BRM setting. In particular, it is possible to increase
the allowed leakage � arbitrarily without significantly affecting the communication and
computation complexity, or even the size of the public key and public parameters. As
we will see, some of the parameters in our construction are still sub-optimal, and we
will get further efficiency gains in Section 4.4. However, the construction we present
here is more natural and simpler to understand, and hence we present it first.

The main idea of our construction, is to run many copies of the Okamotoλ
m scheme

in parallel. In particular, the secret key will be a database sk = (sk[1], . . . , sk[n]) where
each sk[i] is a secret key for the underlying generalized Okamoto scheme, and defines
a corresponding public key pk[i]. During key generation, the prover also chooses a key
pair (verk, sigk) for a signature scheme and computes signatures σ[i] for each public
key pk[i] and sets the helper string to help = (σ[1], . . . , σ[n]) (after which point sigk
is never used again and deleted from memory). We could then define a four-round pro-
tocol, where the verifier begins by giving t random indices (r1, . . . , rt) ∈ [n]t to the
prover. Then the prover and verifier then execute t independent copies of Okamotoλ

m

(in parallel) for the public keys pk[r1], . . . , pk[rt], which the prover sends to the verifier
along with their signatures σ[ri]. Our actual construction is a three-round scheme where
the indices r1, . . . , rt are sent by the verifier with the challenge and we rely on the fact
that the first messages a of the generalized Okamoto scheme does not depend on the
public key pk.

To analyze the security of the scheme, we notice that, in a pre-impersonation at-
tack, the adversary’s queries to the leakage oracle must be independent of the indices
r1, . . . , rt. In the full version, we show that, if sk has a significant amount of entropy
at the beginning of the impersonation stage, then the random tuple (sk[r1], . . . , sk[rt])
will preserve some significant amount of this entropy as well. This analysis is based
on thinking of the tuples (sk[r1], . . . , sk[rt]) as positions in an (exponentially) long
direct-product encoding of sk. Such codes were defined and analyzed in [16], where it
is shown that they are “approximately-list decodable”. We show that this property im-
plies entropy preservation in our sense. Our security analysis then relies on the fact that,
if an adversarial prover can complete a proof on the challenge r1, . . . , rt, then it must
know the values (sk[r1], . . . , sk[rt]) in their entirety, which is unlikely by our entropy
argument.

We note that, although our discussion seems quite general, it is not clear that the
main idea of our construction (taking direct products) would imply a general a compiler
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ParamGen(1λ): Let (p,G, g) ← G(1λ), g1, . . . , gm ←R G.
Set params = (p,G, g1, . . . , gm).

KeyGen(): Choose (verk, sigk) ← SigKeyGen(1λ) and set pk = verk.
For i = 1, . . . , n set: (sk[i], pk[i]) ← Gen(), σ[i] = Signsigk(i||pk[i]).
Set sk = (sk[1], . . . , sk[n]), help = (σ[1], . . . , σ[n]).
Output (pk, sk, help).†

P ,V: The machines P ,V run the following protocol:
(1) P: For i = 1, . . . , t: choose (ai, yi) ← A(). Send (a1, . . . , at) to V .
(2) V: Choose t indices (r1, . . . , rt) ←R [n]t, and c∗ ←R Zp.

Send the challenge c = (r1, . . . , rt, c
∗) to P .

(3) P: For i = 1, . . . , t: set pki = pk[ri], σi = σ[ri], zi = Zsk[ri](c
∗, yi) and send

(pki, σi, zi) to V .
V accepts iff, for i = 1, . . . , t:
(I) The conversation (ai, c

∗, zi) is accepting for pki. That is, Verpki
(ai, c

∗, zi)
?=

Accept.
(II) The signatures σi for ri||pki verify under pk. That is SigVerpk(ri||pki, σi)

?=
Accept.

† Note that the values pk[i] can be easily computed from sk[i] and thus need not be stored
separately.

Fig. 2. The DirProdλ
n,m,t identification scheme

which converts an ID scheme with pre-impersonation leakage � into one with “ampli-
fied” pre-impersonation leakage �′ � �. Indeed, our argument is (crucially) information
theoretic in the sense that we show that a random subset of secret keys still has (infor-
mation theoretic) entropy after the adversary gets some key leakage. To translate this
into a more general argument, we would need to somehow simulate an �′ bit leakage
oracle for the entire key sk by accessing (many) �-bit leakage oracles for the individual
keys sk[i], which does not seem possible.

We present our construction, called DirProdλ
n,m,t in Figure 2. The presentation is

based on the algorithms (Gen,A,Z,Ver) where Gen is the key generation algorithm
for the underlying Okamoto scheme, and (A,Z,Ver) are the algorithms used by the
prover and verifier as defined in Figure 1.

Theorem 2. Assuming that (SigKeyGen, Sign, SigVer) is an existentially secure sig-
nature scheme under chosen message attacks, and assuming the hardness of DL, the
construction DirProdλ

n,m,t is a secure ID-scheme for pre-impersonation leakage of up

to � = (1− δ)nm log(p) = (1− δ)|sk| bits where δ = 1
m (1 + log(n)

λ + 4
n ) + 2λ

t which
approaches 1

m + O(λ/t).

4.4 Construction 3: Saving Communication Using Compressed Direct-Products

As we saw, Construction 2 gives us flexibility, in the sense that we can increase the
parameter n to allow for arbitrarily large leakage �, without (significantly) affecting
the size of the public key, the computation or the communication complexity. Unfortu-
nately, even though these factors do not depend on n, the communication of the scheme
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ParamGen(1λ): Choose (p, G, g) ← G(1λ), (g1, . . . , gm, u) ←R Gm+1.
Set params = (p,G, g1, . . . , gm, u).

KeyGen(): Choose s ←R Zp and set pk = v = us.
Choose (pk[i], sk[i]) ←R Gen() and set σ[i] = (H(i)pk[i])s for i ∈ {1, . . . , n}.†

Set sk = (sk[1], . . . , sk[n]), help = (σ[1], . . . , σ[n]). Output (pk, sk, help).
P ,V: The machines P ,V run the following protocol:

(1) P: Choose (a, y) ← A() and send a to V .
(2) V: Choose t indices (r1, . . . , rt) ←R [n]t, and (c∗, e) ←R (Zp)2.

Send the challenge c = (r1, . . . , rt, e, c
∗) to P . ‡

(3) P: Compute sk∗ = (x∗
1, . . . , x

∗
m) where

{
x∗

j =
∑t

i=1(xj [ri])ei−1
}

j∈{1,...,t}.

Set pk∗ =
∏t

i=1 pk[ri](ei−1), σ∗ =
∏t

i=1 σ[ri](ei−1), z = Zsk∗(c∗, y).
Send (pk∗, σ∗, z) to V .

V accepts iff:
(I) The conversation (a, c∗, z) is accepting for pk∗. That is, Verpk∗(a, c∗, z) = Accept.

(II) The value (u, v, (pk∗
∏t

i=1 H(ri)ei−1
), σ∗) is a DDH tuple.

† Recall that we write sk[i] = (x1[i], . . . , xm[i]) ∈ Z
m
p .

‡As stated, the challenge size is t log(n) which dominates the remaining communication.
In the Random Oracle model, we can compress the challenge to a λ bit value, which is
then expanded into the full challenge using the Random Oracle. This version matches the
parameters claimed in Table 1.

Fig. 3. The CompDirProdλ
n,m,t identification scheme

is fairly large since it uses t = O(λ) copies of the underlying Okamoto scheme. In fact,
just having the prover send t public keys pk[r1], . . . , pk[rt] to the verifier in construc-
tion 2 already takes the communication complexity to O(λ2), which may be prohibitive.
As we will see later, large communication complexity of the ID schemes will translate
into long Fiat-Shamir signatures and, therefore, large communication complexity in our
final authenticated key agreement protocols.

In this section, we show how to reduce the communication complexity of the ID
scheme significantly. As in Construction 2, the secret key sk = (sk[1], . . . , sk[n]) is a
(possibly huge) database of keys sk[i] for the underlying generalized Okamoto scheme,
and the verifier selects a random set of t indices which define a set of t secret keys
sk[r1], . . . , sk[rt] used by the protocol execution. However, instead of running parallel
versions of the Okamotoλ

m scheme for these keys individually, the prover now com-
presses them into a single secret key sk∗ and then runs a single copy of the Okamoto
scheme for the corresponding public key pk∗, which the prover sends to the verifier.
The two important properties of this compression are: (1) it must be entropy preserv-
ing, in the sense that sk∗ should be (information theoretically) unpredictable, assuming
that there is sufficient entropy spread-out over the entire database sk and (2) the public
key pk∗ for the secret key sk∗ can be computed from pk[r1], . . . , pk[rt] alone, so that
the values pk∗ do not decrease the entropy of the database sk.

Our compression function is based on the Reed-Solomon Error-Correcting Code.
In particular, the verifier chooses a random value e ∈ Zp, and the prover compresses
the t secret keys {sk[ri] = (x1[ri], . . . , xm[ri])}i∈{1,...,t} into a single key sk∗ =
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(x∗
1, . . . , x

∗
m), wherex∗

j =
∑t

i=1(xj [ri])e(i−1) is the e-th position in the Reed-Solomon
encoding of the value (xj [r1], . . . , xj [rt]). In the full version of this paper, we show that
this compression function is entropy preserving. The corresponding public key pk∗ for

sk∗ is just pk∗ =
∏t

i=1(pk[ri])(ei−1), which is easy to compute from the individual
keys pk[ri]. Thus it satisfies the two properties we required.

Of course, there is one crucial problem we have not yet addressed: how does an hon-
est verifier check that the compressed public key pk∗ given by the prover is indeed the
right one (i.e. corresponds to the correct combination of pk[r1], . . . , pk[rt] using e as
requested)? We can no longer use signatures, as in construction 2, since the number of
possibilities for pk∗ is exponential. Instead, we use a modification of the BLS signature
scheme ([4]) to compute “helper values” σ[i], which can be efficiently combined into
a short “authenticator” σ∗. The authenticator σ∗ essentially ensures that the adversary
sends the correct public key pk∗. We present our construction, in Figure 3. The pre-
sentation is based on the algorithms (Gen,A,Z,Ver) for the underlying generalized
Okamoto scheme (see Figure 1). In addition, our construction relies on a hash function
H modeled as a random oracle. The security of the scheme is formalized in Theorem 3.
The proof appears in the full version of this paper, and requires a careful analysis, com-
bining the authentication properties of the modified BLS signatures with the rewinding
strategy for the Okamoto scheme.

Theorem 3. Under the GDH assumption, the CompDirProdλ
n,m,t scheme is a secure

ID-scheme in the Random Oracle model, with pre-impersonation leakage of up to � =
(1 − δ)nm log(p) = (1 − δ)|sk| bits where δ = 1

m (1 + log(n)
λ + 10

n ) + 6λ
t which

approaches 1
m + O(λ/t).

5 Existentially and Entropically Unforgeable Signatures

We now look at leakage-resilient signatures, where the adversary can (periodically)
query a leakage oracle for up to � bits of information about the secret key. Unfortu-
nately, if � is larger than the size of a single signature, it is clear that we cannot achieve
the standard notion of existential unforgeability as the attacker can simply choose to
learn the a signature of some message m as its leakage function. Therefore, to construct
meaningful signature schemes in the BRM, we also define a new (weaker) security
notion called entropic unforgeability, where an attacker should be unable to forge mes-
sages which are chosen from some distribution of significant entropy and given to the
adversary only after the leakage attack. To further strengthen the attack game we let the
forger select this distribution. This notion is useful since, in many practical scenarios,
an attacker must be able to forge signatures for messages that are somehow beyond her
control, in order to damage the security of the system.

A signature scheme consists of four algorithms: (ParamGen,KeyGen, Sign,Verify).
To capture entropic unforgeability, we separate the attacker into two partsA=(A1,A2),
where A1 runs during the first stage of the attack, with access to a leakage oracle and
signing oracle. Once this stage is done, A1 can output an arbitrary hint for A2, who
then attempts to forge the signature of some message while having access only to the
signing oracle. The formal definition of the unforgeability attack game EUGλ

� appears
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EUGλ
�

Initialization: The challenger selects (verk, help, sigk) ← KeyGen(1λ) and gives verk to
the forger A1.

Signing & Leakage Queries: Adversary AOλ,�
sk

(·),Ssigk(·)
1 is given access to the signing ora-

cle Ssigk(·) and leakage oracle Oλ,�
sk (·) and outputs an arbitrary hint v ∈ {0, 1}∗.

Post-Leakage: Adversary ASsigk(·)
2 is given the hint v and access to (only) the signing oracle

Ssigk(·). We parse the output of A2 as a message, signature pair (m, σ).

Fig. 4. Entropic/Existential Unforgeability Attack Game

in Figure 4. We use Ssigk(·) to denote the signing oracle, which, on input m ∈ {0, 1}∗,
outputs σ = Signsigk,help(m). We define the advantage of forger A = (A1,A2) to be
the probability that Verifyverk(m, σ) = Accept and that the signing oracle was never
queried with m. For entropic security, we also require that the output message m is
chosen sufficiently randomly by A2, so that it could not have been predicted by A1.

Definition 5. For an adversary A = (A1,A2), let ViewA1 be a random variable de-
scribing the view of A1 including its random coins and signing-oracle/leakage-oracle
responses.2 Let MSGA2 be the random variable describing the message output byA2 in
EUGλ

� . We say that an adversary A = (A1,A2) is entropic if H̃∞(MSGA2 |ViewA1) ≥
λ for security parameter λ. We say that a signature scheme (KeyGen,Verify, Sign)
is existentially unforgeable with leakage � if the advantage of any PPT adversary
A = (A1,A2) in the game EUGλ

� (A) is negligible in λ. We say that the signature
scheme is entropically unforgeable with leakage � if the above only holds for entropic
adversaries.

We use the Fiat-Shamir heuristic [14] to construct entropically (resp. existentially) un-
forgeable signature schemes secure against � bits of key leakage, from ID schemes
secure against pre-impersonation (resp. anytime) leakage of � bits. Recall that, for a
three round ID scheme with flows (a, c, z), the Fiat-Shamir signature scheme defines
a signature of a message m to be (a, z) such that the conversation (a,H(a||m), z) is
accepting. Here H(·) is hash function modeled as a Random Oracle.

Theorem 4. Let ID by a public coins ID scheme consisting of three rounds of interac-
tion and let Sig be the signature scheme produced by the Fiat-Shamir heuristic applied
to ID. (1) If ID allows pre-impersonation leakage �, then Sig is entropically unforgeable
with leakage �. (2) If ID allows anytime leakage �, then Sig is existentially unforgeable
with leakage �.

CONCRETE SCHEMES: Combining this theorem with the Okamotoλ
m identification

scheme, analyzed in Theorem 1, we obtain a (I) leakage-resilient existentially unforge-
able signature scheme where � approaches up to half the size of the secret key (and
signature) and a (II) leakage-resilient entropically unforgeable signature scheme where

2 In the Random Oracle Model, this also includes responses to Random Oracle queries.
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� approaches the size of the entire secret key (and signature). For the BRM setting, we
can instead use CompDirProdλ

n,m,t, analyzed in Theorem 3, and get a (III) entropically
unforgeable signatures, where � approaches the size of the entire secret key, and can be
made arbitrarily large without negatively impacting the other parameters (and can be
much larger than the size of a signature).

6 Interactive Encryption, Authentication and AKA

Using leakage-resilient entropically unforgeable signatures, we can construct several
interactive leakage-resilient primitives including encryption, authentication and authen-
ticated key agreement. The security of these interactive primitives is preserved even if
the adversary gets up to � bits of leakage prior to the start of protocol execution, and
the key is leaked entirely after the end of protocol execution.

For example consider the following simple two-round interactive authentication pro-
tocol. The verifier sends a random challenge r to the signer, who returns the signature
σ = Signsigk,help(m||r) for a message m. If no leakage occurs between the time where
the verifier sends r and receives σ then, since r is random, entropic-unforgeability en-
sures that the adversary cannot forge the signature σ′ of m′||r for some m′ �= m.

Alternatively, consider the following simple three-round interactive encryption. The
sender sends a random challenge r to the receiver, who in turn chooses a fresh tem-
porary public/secret key pair (pk, sk) for a standard (non-leakage resilient) encryption
scheme and sends pk, σ = Signsigk,help(pk||r) to the sender. If the signature verifies,
the sender sends an encryption of the message m under pk to the receiver, who de-
crypts it with sk and deletes all temporary state (including sk) immediately afterwards.
This way, if no leakage occurs between the time that r is sent and sk is deleted, then
entropic-unforgeability ensures that sk was chosen by the honest receiver, and so pri-
vacy is preserved since the adversary can never learn anything about sk.

Defining the security of interactive encryption and authentication schemes is a te-
dious process. Therefore, in the full version of the paper, we concentrate on the single
primitive of Authenticated Key-Agreement (AKA), which allows for interactive encryp-
tion as well as authentication. We adapt the notion of SK-security with perfect forward
secrecy from Canetti and Krawczyk in [6], and update it to model key-leakage attacks.
We then analyze a simple AKA construction from [6], which essentially consists of the
Diffie-Hellman key-exchange protocol in which the parties sign the exchanged mes-
sages together with unique session information so as to bind the protocol execution to
a particular session. We show that, if we employ leakage-resilient entropically secure
signatures in this construction, then the resulting AKA is leakage-resilient as well.

7 Invisible Key Updates

Our schemes allow for efficient updates of the secret key, using an externally stored
“master update key”, so that the adversary is only limited to leaking � bits between
updates, but can get unlimited leakage overall. Since this is technically simple, we only
give a high-level description of how this is done.
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In particular, for our constructions DirProdλ
n,m,t and CompDirProdλ

n,m,t, there is
already a “master key” which is used to create a secret-key database of unbounded
size – namely, the “master signing key” for generic signatures in DirProdλ

n,m,t and

for modified BLS signatures in CompDirProdλ
n,m,t. In our original descriptions, this

master key is used once to create the secret-key database sk = (sk[1], . . . , sk[n]) and
the helper help = (help[1], . . . , help[n]), and is then deleted immediately afterwards.
However, we notice that the master key can really generate arbitrarily many secret keys
(sk[1], sk[2], . . .) and corresponding helper strings (help[1], help[2], . . .).

To perform updates, we can store this “mater update key” on a separate external
device, which is not susceptible to leakage, as a “mater update key”. To update the
secret-key database, we simply overwrite the current secret-keys and helper values with
the “next” n values so that sk := (sk[nk + 1], . . . , sk[n(k + 1)]), help = (help[nk +
1], . . . , help[n(k + 1)]) after the kth update. To run an ID scheme, the prover simply
sends the current index k to the verifier in the first flow of the protocol, and the verifier
chooses the challenge indices in the range [nk + 1, n(k + 1)]. Note that an adversarial
prover can send any index k′ of his choosing. However, if the adversary learns at most
� bits in between any two updates, then there is no index k′ for which the adversary can
successfully run an impersonation attack.

The above updates for ID schemes translate to similar updates for our signature
schemes and AKA protocols. Notice that these updates do not modify the public key,
and the user has a completely free choice of when or how often the secret key is up-
dated. However, it is important that the “master signing key” is stored securely and that
the adversary cannot get any leakage of this key.
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Abstract. We present a refined chosen-prefix collision construction for
MD5 that allowed creation of a rogue Certification Authority (CA) cer-
tificate, based on a collision with a regular end-user website certificate
provided by a commercial CA. Compared to the previous construction
from Eurocrypt 2007, this paper describes a more flexible family of dif-
ferential paths and a new variable birthdaying search space. Combined
with a time-memory trade-off, these improvements lead to just three
pairs of near-collision blocks to generate the collision, enabling construc-
tion of RSA moduli that are sufficiently short to be accepted by current
CAs. The entire construction is fast enough to allow for adequate pre-
diction of certificate serial number and validity period: it can be made to
require about 249 MD5 compression function calls. Finally, we improve
the complexity of identical-prefix collisions for MD5 to about 216 MD5
compression function calls and use it to derive a practical single-block
chosen-prefix collision construction of which an example is given.

Keywords: MD5, collision attack, certificate, PlayStation 3.

1 Introduction

At Eurocrypt 2007, it was shown how chosen-prefix collisions for MD5 can be
constructed and an undesirable consequence for any public key infrastructure
(PKI) was pointed out in the form of different certificates with the same valid
signature (cf. [13]). Actual realization of the threat in question was considered
to be hard due to a combination of difficulties, some related to the construction,
others to the way certificates are produced by CAs. Thus, some CAs kept using
MD5, either consciously based on the perception that the obstacles were too
high, or because they were unaware of lurking dangers.
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It was found, however, that for at least one commercial CA the relevant ob-
stacles could be overcome with non-negligible probability. Understandably, this
triggered new research in the earlier chosen-prefix collision construction. A couple
of non-trivial refinements removed all remaining obstacles, thereby in principle
allowing us to create real havoc.

Obviously, creating havoc was not our goal. It was our intention and prior-
ity that all relevant responsible parties would develop a thorough understand-
ing of the implications of chosen-prefix collisions for MD5. Furthermore, before
publishing the details of our results, we wanted to make sure that all parties
would have had both a strong impetus and ample time to adequately change
their procedures. Therefore, we decided to actually implement our construc-
tion and to try and exploit it in practice by attempting to create a harmless
rogue CA certificate that would be accepted by all regular web browsers: harm-
less, because they would only do so after setting their date back to August
2004, because we would keep the private key of the rogue CA in question under
tight control, and because we would not right away reveal the details of our
method. After a moderate number of attempts we succeeded to create such a
certificate.

The announcement of our successful creation of a rogue CA certificate had
the desired effect. CAs and other vendors responded swiftly and adequately.
We believe that as a result of our exercise, the bar to undermine the security
of PKI was raised, somewhat. Given that the current situation with respect to
usage of MD5 looks much better than when we made our announcement, we
feel that the details behind our method can now be revealed. We also feel that
this should indeed be done to give others the opportunity to further build on
them and to develop a better understanding of the lack of strength of currently
popular cryptographic hash functions. Fully appreciating the details presented
here requires a full understanding of the approach from [13].

We describe, roughly, what was achieved in the Eurocrypt 2007 paper [13]
and why those methods were believed to have limited impact. Given any two
chosen message prefixes P and P ′, it was shown how suffixes S and S′ can be
constructed such that the concatenations P‖S and P ′‖S′ collide under MD5. In
the X.509 certificate context, the prefixes include the Distinguished Name fields,
and the suffixes are the initial parts of the RSA moduli. A simple, previously
published method was then used to construct a further extension T such that
each of P‖S‖T and P ′‖S′‖T is a complete to-be-signed part, with two different
hard to factor RSA moduli contained in S‖T and S′‖T , respectively. Because
the two to-be-signed parts still collide under MD5, this allowed construction of
two X.509 certificates with identical MD5-based signatures but different Distin-
guished Names and different public keys. Put differently, assuming full control
over the prefix part P and RSA public key data of a legitimate user, a certificate
of that user’s data can be used to fraudulently obtain a rogue certificate for
any party identified by a prefix part P ′ selected by the attacker. Using moderate
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resources, the calculation of suffixes S, S′ and T , given any chosen prefixes P
and P ′, can be completed in a day using e.g. a quad-core PC.

One obstacle against actual abuse of this construction is apparent from the
above description. Only the signing CA has full control over the final contents of
the P -part: an attacker will have to wait and see what serial number and validity
period will be inserted. Obviously, an unpredictable P will make it impossible
to concoct the collision required for a rogue certificate. On the other hand, if
the full contents of P can reasonably be predicted one day in advance, nothing
seems to be in the way of the construction of a rogue certificate. That, however,
is not the case: the S and S′ as found during the collision construction of [13]
lead to RSA moduli that are too large. More precisely, S and S′ both typically
consist of 11 near-collision blocks (i.e., 11 · 512 bits) and require 5 additional
blocks to generate secure 8192-bit RSA moduli. On the other hand, CAs do not
necessarily accept RSA moduli of more than 2048 bits. Despite this mismatch,
there was no real incentive to reduce the lengths of the RSA moduli, because the
assumption that P could be predicted a day in advance sounded preposterous
to begin with.

The practical validity of the above assumption came as somewhat of a surprise:
practical in the sense that the prefix P cannot be predicted with 100% certainty,
but with high enough probability to make further research efforts worthwhile
to try and reduce the number of near-collision blocks to, say, 3. In principle
the latter can be achieved by throwing more resources at the construction of
the collision. It quickly turned out, as further explained below, that either the
running time or the space requirements of this approach are prohibitive. To get
the rogue certificate construction to work for an actual CA, a better approach
to chosen-prefix collisions for MD5 was imperative.

Our improved chosen-prefix collision construction for MD5 is based on two
main ingredients. In the first place, we managed to generalize the known differ-
ential path constructions (as described in [13] and extended in [12]) to an entire
family of differential paths. As a result, more bits can be eliminated per pair of
near-collision blocks, at a somewhat higher complexity of the actual construc-
tion of those blocks than before. This is described in Section 3, after notation
and MD5 have been introduced in Section 2. The reader is forewarned that
full appreciation of the improved differential paths requires familiarity with [13,
Section 5]. Secondly, we introduced a variable birthday search that permits a
flexible choice of search space between the two extremes of 96 bits (as in [13])
and 64 bits (as introduced in [12] and actually used for [14]): in this way more
time can be invested in the birthday search to achieve a lower average number of
required near-collision blocks. The details along with the more contrived param-
eter selection that this all leads to can be found in Section 4. The construction
of the rogue CA certificate is described in Section 5. Section 6 describes an
improvement creating a chosen-prefix collision using only a single near-collision
block.
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2 Preliminaries

2.1 Notation

MD5 operates on 32-bit words (v31v30 . . . v0) with vi ∈ {0, 1}, that are identified
with elements v =

∑31
i=0 vi2i of Z/232Z and referred to as 32-bit integers. In this

paper we switch freely between these representations.
Integers are denoted in hexadecimal as, for instance, 1E16 and in binary as

000111102. For 32-bit words X and Y we denote their bitwise AND, OR and
XOR as X ∧ Y , X ∨ Y and X ⊕ Y , respectively, X is the bitwise complement
of X , the i-th bit vi of X = (v31v30 . . . v0) is denoted X [i], and RL(X,n) (resp.
RR(X,n)) is the cyclic left (resp. right) rotation of X by n bit positions.

For chosen message prefixes P and P ′ we seek suffixes S and S′ such that
the messages P‖S and P ′‖S′ collide under MD5. In this paper any variable X
related to the message P‖S or its MD5 calculation, may have a corresponding
variable X ′ related to the message P ′‖S′ or its MD5 calculation. Furthermore,
δX = X ′ − X for such a ‘matched’ X ∈ Z/232

Z. For a ‘matched’ variable Z
that consist of tuples of 32-bit integers, say Z = (z1, z2, . . .), we define δZ as
(δz1, δz2, . . .).

2.2 MD5 Overview

MD5 works as follows:

1. Padding. Pad the message with: first a ‘1’-bit, next the least number of ‘0’
bits to make the length equal to 448 mod 512, and finally the bitlength of
the original unpadded message as a 64-bit little-endian integer. As a result
the total bitlength of the padded message is 512N for a positive integer N .

2. Partitioning. Partition the padded message into N consecutive 512-bit blocks
M1, M2, . . . ,MN .

3. Processing. MD5 goes through N+1 states IHVi, for 0 ≤ i ≤ N , called the in-
termediate hash values and denoted this way to achieve consistency with [13].
Each intermediate hash value IHVi consists of four 32-bit words ai, bi, ci, di.
For i = 0 these are fixed public values (a0, b0, c0, d0) = (6745230116,
EFCDAB8916, 98BADCFE16, 1032547616). For i = 1, 2, . . . , N intermediate hash
value IHVi is computed as MD5Compress(IHVi−1,Mi) using the MD5 com-
pression function described in detail below.

4. Output. The resulting hash value is the last intermediate hash value IHVN ,
expressed as the concatenation of the hexadecimal byte strings of the four
words aN , bN , cN , dN , converted back from their little-endian representation.

2.3 MD5 Compression Function

The input for the compression function MD5Compress(IHV, B) is an inter-
mediate hash value IHV = (a, b, c, d) and a 512-bit message block B. The
compression function consists of 64 steps (numbered 0 to 63), split into four
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consecutive rounds of 16 steps each. Each step t uses modular additions, a left
rotation, and a non-linear function ft. These functions involve Addition Con-
stants ACt =

⌊
232 |sin(t + 1)|

⌋
for 0 ≤ t < 64, and Rotation Constants RCt

defined as

(RCt, RCt+1, RCt+2, RCt+3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(7, 12, 17, 22) for t = 0, 4, 8, 12,
(5, 9, 14, 20) for t = 16, 20, 24, 28,
(4, 11, 16, 23) for t = 32, 36, 40, 44,
(6, 10, 15, 21) for t = 48, 52, 56, 60.

The non-linear function ft depends on the round:

ft(X,Y, Z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F (X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z) for 0 ≤ t < 16,
G(X,Y, Z) = (Z ∧X)⊕ (Z ∧ Y ) for 16 ≤ t < 32,
H(X,Y, Z) = X ⊕ Y ⊕ Z for 32 ≤ t < 48,
I(X,Y, Z) = Y ⊕ (X ∨ Z) for 48 ≤ t < 64.

The message block B is partitioned into sixteen consecutive 32-bit words m0,
m1, . . ., m15 (with little-endian byte ordering), and expanded to 64 words Wt,
for 0 ≤ t < 64, of 32 bits each:

Wt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mt for 0 ≤ t < 16,
m(1+5t) mod 16 for 16 ≤ t < 32,
m(5+3t) mod 16 for 32 ≤ t < 48,
m(7t) mod 16 for 48 ≤ t < 64.

To facilitate the analysis we follow an ‘unrolled’ description instead of a cyclic
state. For each step t the compression function algorithm maintains a work-
ing register with 4 state words Qt, Qt−1, Qt−2 and Qt−3 and calculates a new
state word Qt+1. With (Q0, Q−1, Q−2, Q−3) = (b, c, d, a), for t = 0, 1, . . . , 63 in
succession Qt+1 is calculated as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ft = ft(Qt, Qt−1, Qt−2),
Tt = Ft + Qt−3 + ACt + Wt,

Rt = RL(Tt, RCt),
Qt+1 = Qt + Rt.

After all steps are computed, the resulting state words are added to the inter-
mediate hash value and returned as output:

MD5Compress(IHV, B) = (a + Q61, b + Q64, c + Q63, d + Q62). (1)

3 A New Family of Differential Paths

The suffixes S and S′ in a chosen-prefix collision consist of three consecutive
parts: padding bitstrings, birthday bitstrings and near-collision bitstrings. The
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Table 1. Family of partial differential paths using δm11 = ±2q−10 mod 32

t δQt δFt δWt δTt δRt RCt

35 − 60 0 0 0 0 0 ·
61 0 0 ±2q−10 mod 32 ±2q−10 mod 32 ±2q 10
62 ±2q 0 0 0 0 15
63 ±2q 0 0 0 0 21
64 ±2q +

∑w′
λ=0 sλ2q+21+λ mod 32

Here w′ = min(w, 31 − q) and s0, . . . , sw′ ∈ {−1, 0, +1} for a fixed parameter w ≥ 0.
Interesting values for w are between 2 and 5.

padding bitstrings are arbitrarily chosen such that the birthday bitstrings end
on the same 512-bit block border. The birthday bitstrings result in a δIHV that
will be eliminated by a sequence of near-collision blocks which make up the near-
collision bitstrings as described in [13, Section 5.3]. Fewer near-collision blocks
are required if the family of differential paths is more effective, whereas finding
a δIHV that requires fewer near-collision blocks increases the birthday search
complexity. Thus, if both search time and number of near-collision blocks are
limited, a more effective family of differential paths is required.

In our target application, generating a rogue CA certificate, we have to deal
with two hard limits. Because the CA that is supposed to sign our (legitimate)
certificate does not accept certification requests for RSA moduli larger than
2048 bits, each of our suffixes S and S′ and their common appendage T must
fit in 2048 bits. This implies that we can use at most 3 near-collision blocks.
Furthermore, to reliably predict the serial number, the entire construction must
be performed within a few days.

Thus, as shown in Table 1, we have extended the family of differential paths
used to construct chosen-prefix collisions. The larger choice is parameterized by
the non-negative integer w: a larger value allows elimination of more differences
in δIHV per near-collision block, but increases the cost of constructing each
near-collision block by a factor of roughly 22w. The value for w in Table 1 can
be chosen freely, however due to the blow-up factor of 22w only the values 2, 3,
4, and 5 are of interest.

Compared to the earlier differential paths in [13, Table 2] and [12, Table 7-2],
the new ones vary the carry propagations in the last 3 steps and the boolean
function difference in the last step. This change affects the working state only in
difference δQ64. Each possible value δQ64 may be caused by many different carry
propagations and boolean function differences. When performing the collision
finding for an actual near-collision block using a particular differential path, we
do not consider just one such possible variation but for the last 3 steps check
only if the δQt’s are as specified.
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4 Variable Birthday Search Space, Time-Memory
Trade-Off

A birthday search on a search space V is generally performed by iterating a
properly chosen deterministic function f : V → V and by assuming that the
points of V thus visited form a ‘random walk’ [9]. After approximately

√
π|V |/2

iterations one may expect to have encountered a collision, i.e., different points
x and y such that f(x) = f(y). Because the entire trail can in practice not
be stored and to take advantage of parallelism, different pseudo-random walks
are generated, of which only the startpoints, lengths, and endpoints are kept.
The walks are generated to end on ‘distinguished points’, points with an easily
recognizable bitpattern depending on |V |, available storage and other charac-
teristics. The average length of a walk is inversely proportional to the fraction
of distinguished points in V . Because intersecting walks share their endpoints,
they can easily be detected. The collision point can then be recomputed given
the startpoints and lengths of the two colliding walks.

Let p be the probability that a birthday collision satisfies additional conditions
that cannot be captured by V or f . On average 1/p birthday collisions have to
be found at a cost of Ctr =

√
π|V |/(2p) iterations, plus recomputation of 1/p

intersecting walks at Ccoll iterations. To achieve Ccoll ≈ ε ·Ctr for any given ε ≤ 1
and optimizing for the expected walk lengths, one needs to store approximately
1/(p · ε) walks. The value for p depends in an intricate way on k (cf. below), w,
and the targeted number of near-collision blocks and is extensively tabulated in
the final version [15] of [13]. The value for ε depends on the amount of available
space to store walks. For very small ε the overall birthdaying complexity is
about Ctr.

The first chosen-prefix collision example from [13] used a 96-bit birthday
search space V with |V | = 296 to find a δIHV = (δa, δb, δc, δd) with δa = 0,
δb = δc = δd. This search can be continued until a birthday collision is found
that requires a sufficiently small number of near-collision blocks, which leads to
a trade-off between the birthday search and the number of blocks. If one would
aim for just 3 near-collision blocks, one expects 257.33 MD5 compressions for the
96-bit birthday search, which would take about 50 days on 215 PlayStation 3
game consoles.

By leaving δb free, we get an improved 64-bit search space (cf. [12], [14]).
In the resulting birthday collisions, the differences in δb compared to δc were
handled by the differential path from [12, section 7.4] which corresponds to
δQ64 = ±2q ∓ 2q+21 mod 32 in Table 1 (cf. equation 2.3(1)). This significantly
decreasing the birthday search complexity, but also increases the average number
of near-collision blocks. When aiming for 3 blocks, birthdaying requires about
255.73 MD5 compressions. But the probability that a birthday collision is useful
becomes so small that the space requirements are prohibitive: about 250.15 bytes,
i.e., more than a petabyte.

A more flexible approach is obtained by interpolating between the above 64-
bit and 96-bit birthday searches, while exploiting the family of differential paths
from Section 3. For any k ∈ {0, 1, . . . , 32}, we can do a (64 + k)-bit search
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Table 2. Birthday complexities and memory requirements for k = 0

w = 0 w = 1 w = 2 w = 3 w = 4 w = 5
r Ctr M Ctr M Ctr M Ctr M Ctr M Ctr M

14 236.68 1MB 234.01 1MB 232.96 1MB 232.84 1MB 232.83 1MB 232.83 1MB
13 237.55 1MB 234.69 1MB 233.22 1MB 232.93 1MB 232.88 1MB 232.87 1MB
12 238.55 1MB 235.59 1MB 233.71 1MB 233.16 1MB 233.02 1MB 232.98 1MB
11 239.68 2MB 236.71 1MB 234.50 1MB 233.63 1MB 233.34 1MB 233.24 1MB
10 240.97 11MB 238.06 1MB 235.60 1MB 234.42 1MB 233.91 1MB 233.71 1MB
9 242.40 79MB 239.63 2MB 237.02 1MB 235.56 1MB 234.80 1MB 234.45 1MB
8 244.02 732MB 241.43 21MB 238.76 1MB 237.09 1MB 236.05 1MB 235.51 1MB
7 245.73 8GB 243.43 323MB 240.83 9MB 239.02 1MB 237.73 1MB 236.95 1MB
6 247.92 164GB 245.69 7GB 243.22 241MB 241.40 20MB 239.89 3MB 238.85 1MB
5 249.82 3TB 247.92 164GB 245.89 10GB 244.20 938MB 242.59 102MB 241.34 18MB
4 249.33 2TB 247.42 82GB 245.81 9GB 244.55 2GB
3 248.17 231GB

similar to the one above, but with δb = δc mod 2k. Since δb does not introduce
new differences compared to δc in the lower k bits, the average number of near-
collision blocks may be reduced – in particular when taking advantage of our
new family of differential paths – while incurring a higher birthdaying cost. For
any targeted number of near-collision blocks, this leads to a trade-off between
the birthdaying cost and space requirements (unless the number of blocks is
at least 6, since then 241MB suffices for the plausible choice w = 2). Table 2
gives birthday complexities for k = 0, a range of w-values to control the number
of differences that can be eliminated per near-collision block, and number r of
near-collision blocks. The smallest amount of memory required for Ccoll to be
smaller than Ctr is denoted by M .

Having a cluster of 215 PlayStation 3 (PS3) game consoles at our disposal
obviously influenced our parameter choices. When running Linux on a PS3,
our application has access to 6 Synergistic Processing Units (SPUs), a general
purpose CPU, and about 150MB of RAM per PS3. For our birthday search, the
6× 215 SPUs are computationally equivalent to approximately 8600 regular 32-
bit cores, due to each SPU’s 4× 32-bit wide SIMD architecture. The other parts
of the chosen-prefix collision construction are not suitable for the SPUs, but
we were able to use the 215 PS3 CPUs for the construction of the actual near-
collision blocks. With these resources, the choice w = 5 still turned out to be
acceptable despite the 1000-fold increase in the cost of the actual near-collision
block construction. This is the case even for the hard cases with many differences
between IHV and IHV′: as a consequence the differential paths contain many
bitconditions which leaves little space for so-called ‘tunnels’ (cf. [6]), thereby
complicating the near-collision block construction.

For w = 5 and the targeted 3 near-collision blocks, Table 3 shows the time-
memory tradeoff when the birthday search space is varied with k. With 150MB at
our disposal per PS3, for a total of about 30GB, we decided to use k = 8 as this
optimizes the overall birthday complexity for the plausible case that the birthday
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Table 3. Birthday complexities and memory requirements for r = 3

w = 3 w = 4 w = 5
k Ctr M Ctr M Ctr M

0 248.17 231GB
2 249.10 210GB
4 250.43 330GB 249.29 68GB
6 251.33 287GB 250.54 96GB 249.69 30GB
8 251.98 177GB 250.74 32GB 249.99 11GB
10 252.43 82GB 251.24 16GB 250.44 5GB
12 252.44 22GB 251.64 7GB 250.90 3GB
14 252.76 9GB 252.01 3GB 251.38 2GB
16 253.13 4GB 252.48 2GB 251.96 675MB
18 253.59 2GB 253.02 733MB 252.61 418MB
20 253.96 673MB 253.46 340MB 253.13 215MB
22 254.43 324MB 254.01 182MB 253.73 123MB
24 254.92 160MB 254.59 102MB 254.33 71MB
26 255.52 92MB 255.25 64MB 255.04 47MB
28 256.11 52MB 255.95 42MB 255.83 36MB
30 256.74 32MB 256.68 29MB 256.61 26MB
32 257.27 17MB 257.27 17MB 257.27 17MB

search takes
√

2 times longer than expected. The overall chosen-prefix collision
construction takes on average less than a day on the cluster of PS3s. In theory we
could have used 1TB (or more) of hard drive space, in which case it would have
been optimal to use k = 0 for a birthday search of about 20 PS3 days.

5 Rogue CA Certificate Construction

In this section we present some of the details of the construction of the to-be-
signed parts of our colliding certificates, as outlined in Figure 1.

serial number

validity period

commercial CA name

domain name

2048 bit RSA public key

serial number

validity period

commercial CA name

rogue CA name

1024 bit RSA public key

legitimate website 
certificate

rogue CA certificate

chosen prefixes

collision bits

identical suffixes

v3 extensions

tumor

“CA = TRUE”

v3 extensions

“CA = FALSE”

Fig. 1. The to-be-signed parts of the colliding certificates
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The chosen prefix of the website certificate contains a subject Distinguished
Name (a domain name), as well as the first 208 bits of the RSA modulus, chosen
at random, as padding to reach proper alignment with the rogue CA certificate.
Furthermore, an educated guess has to be included for the serial number and
validity period fields that the signing CA will insert when it processes the legit-
imate website’s certification request. For the targeted commercial CA it turned
out, based on repeated observations, that the validity period can be predicted
very reliably as the period of precisely one year plus one day, starting exactly six
seconds after a certification request is submitted. Furthermore, it was found that
the targeted CA uses sequential serial numbers. Being able to predict the next
serial number, however, is not enough, because the construction of the collision
can be expected to take at least a day, implying a substantial and uncertain
increment in the serial number by the time the collision construction is finished.
The increment in serial number over a weekend, however, does not vary a lot
and Monday morning’s serial numbers can be predicted, roughly, on the Friday
afternoon before.

The chosen prefix of the rogue CA certificate contains a short rogue CA
name, a 1024-bit RSA public key, and the first part of the X.509v3 extension
fields. One of these extension fields is the ‘basic constraints’ field, containing
a bit that identifies the certificate as a CA certificate (in Figure 1 denoted by
“CA=TRUE”). The final part of the rogue chosen prefix contains an indication
that all remaining bits of this to-be-signed part should be interpreted as an
extension field of the type “Netscape Comment”, a field that is ignored by most
application software. In Figure 1 this field is denoted as ‘tumor’.

Given these two chosen prefixes, the collision bits consisting of birthday bits
and near-collision blocks are computed as described above. We describe how
those bits are interpreted on either side. The birthday bits occupy 96 bits. Im-
mediately after them there is a border between MD5 input blocks. In the website
certificate the birthday bits are part of the RSA modulus, in the rogue CA cer-
tificate they belong to the tumor.

After the birthday bits, there are 3 near-collision blocks of 512 bits each.
In the website certificate these are part of the RSA modulus, thereby fixing
208 + 96 + 3× 512 = 1840 bits of the website’s RSA modulus. In the rogue CA
certificate these 3 blocks are the second part of the tumor.

After the collision bits, another 2048−1840 = 208 bits are needed to complete
the website’s 2048-bit RSA modulus. These 208 bits have to be determined in
such a way that the complete factorization of the RSA modulus is known, in
order to be able to submit a valid certificate signing request for the website. The
RSA modulus does not have to be secure as it will not be used after obtaining
the website’s certificate. Its least significant 208 bits are determined as follows.
Let B denote the fixed 1840-bit part of the RSA modulus followed by 208 one
bits. Now select a random 224-bit integer q until B mod q is less than 2208, and
keep doing so until both q and 	B/q
 are prime. As a result n = 	B/q
q has
the desired 1840 leading bits and, for purely esthetic reasons, n’s smallest prime
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factor q is larger than the 67-digit largest factor found (so far) using the Elliptic
Curve integer factorization method.

Finally the website’s RSA public exponent is set, followed by the X.509v3
extensions of the website certificate. All bits after the collision bits in the website
certificate’s to-be-signed part are copied to the tumor in the rogue CA certificate.

A legitimate PKCS#10 Certificate Signing Request can now be submitted to
the signing CA. This CA requires proof of possession of the private key corre-
sponding to the public key inside the request. This is done by signing the request
using this private key and this is the sole reason that we needed the factoriza-
tion of the website’s RSA modulus. Upon correct submission, the signing CA
returns a website certificate. If the serial number and validity period as inserted
by the CA indeed match our guess, then the website certificate’s to-be-signed
part will collide under MD5 with the rogue CA certificate’s to-be-signed part,
and the signing CA’s MD5-based digital signature will be equally valid for the
rogue data.

Getting the right serial number at the right time requires some care. About
half an hour before the targeted submission moment, the same request is submit-
ted, and the serial number in the resulting certificate is inspected. If it is already
too high, the entire attempt has to be abandoned. Otherwise, the request is re-
peatedly submitted, with a frequency depending on the gap that may still exist
between the serial number received and the targeted one, and taking into ac-
count possible certification requests by others. In this way the serial number is
slowly nudged toward the right value at the right time.

A proof of concept rogue CA certificate constructed in this manner, where
it required some experimentation and a moderate number of attempts to get
the correct serial number and validity period, was obtained using a commer-
cial CA. Full details, including the rogue CA certificate, are available from
www.win.tue.nl/hashclash/rogue-ca/.

6 Independent Additional Improvement

We show how to construct a chosen-prefix collision for MD5 that consists of 84
birthday bits followed by one pair of near-collision blocks, for a chosen-prefix
collision-causing appendage of 84+512 = 596 bits. The construction is based on
an even richer family of differential paths that allows elimination using a single
pair of near-collision blocks of a set of δIHVs that is bounded enough so that
finding the near-collision blocks is still feasible, but large enough that such a
δIHV can be found efficiently by a birthday search. Instead of using the family
of differential paths based on δm11 = ±2i, we use the fastest known collision
attack for MD5 and vary the last few steps to find a large family of differential
paths.

We first present a new collision attack for MD5 with complexity of approx-
imately 216 MD5 compressions improving upon the 220.96 MD5 compressions
required in [20]. Our starting point is the partial differential path for MD5 given
in Table 4. It is based on message differences δm2 = 28, δm4 = δm14 = 231 and

http://www.win.tue.nl/hashclash/rogue-ca/
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Table 4. Partial differential path for fast near-collision attack

t δQt δFt δWt δTt δRt RCt

30 − 33 0 0 0 0 0 ·
34 0 0 215 215 231 16
35 231 231 231 0 0 23
36 231 0 0 0 0 4
37 231 231 231 0 0 11

38 − 46 231 231 0 0 0 ·
47 231 231 28 28 231 23
48 0 0 0 0 0 6
49 0 0 0 0 0 10
50 0 0 231 0 0 15

51 − 59 0 0 0 0 0 ·
60 0 0 231 231 −25 6
61 −25 0 215 215 225 10
62 −25 + 225 0 28 28 223 15
63 −25 + 225 + 223 25 − 223 0 25 − 223 226 − 214 21
64 −25 + 225 + 223 + 226 − 214

Partial differential path for t = 29, . . . , 63 using message differences δm2 = 28, δm4 =
δm14 = 231, δm11 = 215. The probability that it is satisfied is approximately 2−14.5.

δm11 = 215 which is very similar to those used by Wang et al. in [17] for the
first collision attack against MD5. This partial differential path can be used for
a near-collision attack with complexity of approximately 214.8 MD5 compres-
sions. This leads in the usual fashion to an identical-prefix collision attack for
MD5 that requires approximately 216 MD5 compressions, since one has to do
it twice: first to add differences to δIHV and then to eliminate them again. It
should be noted that usually bitconditions are required on the IHV and IHV′

between the two collision blocks which imply an extra factor in complexity. In
the present case, however, we can construct a large set of differential paths for
the second near-collision block that will cover all bitconditions that are likely to
occur, thereby avoiding the extra complexity.

By properly tuning the birthday search, the same partial differential path
leads to the construction of a single near-collision block chosen-prefix collision
for MD5. By varying the last steps of the differential path and by allowing the
collision finding complexity to grow by a factor of about 226, we have found
a set S of about 223.3 different δIHV = (δa, δb, δc, δd) of the form δa = −25,
δd = −25 + 225, δc = −25 mod 220 that can be eliminated. Such δIHVs can be
found using an 84-bit birthday search with step function f : {0, 1}84 → {0, 1}84
of the form

f(x) =

{
φ(MD5compress(IHV, B‖x) + δÎHV) for σ(x) = 0
φ(MD5compress(IHV′, B′‖x)) for σ(x) = 1,
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Table 5. Example single-block chosen-prefix collision

Message 1
4F64656420476F6C6472656963680A4F64656420476F6C6472656963680A4F64

656420476F6C6472656963680A4F64656420476FD8050D0019BB9318924CAA96

DCE35CB835B349E144E98C50C22CF461244A4064BF1AFAECC5820D428AD38D6B

EC89A5AD51E29063DD79B16CF67C12978647F5AF123DE3ACF844085CD025B956

Message 2
4E65616C204B6F626C69747A0A4E65616C204B6F626C69747A0A4E65616C204B

6F626C69747A0A4E65616C204B6F626C69747A0A75B80E0035F3D2C909AF1BAD

DCE35CB835B349E144E88C50C22CF461244A40E4BF1AFAECC5820D428AD38D6B

EC89A5AD51E29063DD79B16CF6FC11978647F5AF123DE3ACF84408DCD025B956

where δÎHV is of the required form, σ : x �→ {0, 1} is a balanced selector function
and φ(a, b, c, d) �→ a‖d‖(c mod 220). There are 2128−84 = 244 possible δIHVs of
this form, of which only about 223.3 are in the allowed set S. It follows that a
birthday collision has probability p = 223.3/(244 · 2) = 2−21.7 to be useful, where
the additional factor 2 stems from the fact that different prefixes are required.

A useful birthday collision can be expected after
√
π284/(2p) ≈ 253.2 MD5

compressions, requires 400MB of storage and takes about 3 days on 215 PS3s.
The expected complexity of finding the actual near-collision blocks is bounded
by about 214.8+26 = 240.8 MD5 compressions. In Table 5 two 128-byte mes-
sages are given both consisting of a 52-byte chosen prefix and a 76-byte
single-block chosen-prefix collision suffix and with colliding MD5 hash value
D320B6433D8EBC1AC65711705721C2E1.

7 Conclusion

We have shown that the length of formerly rather long chosen-prefix collisions
for MD5 can be reduced to a minimum at a still acceptable cost, and that short
enough chosen-prefix collision-causing appendages can be found fast enough to
cause trouble, if so desired.

As secure cryptographic hash function for digital signature applications, MD5
has been declared dead over and over again. The improvements in the collision
construction for MD5 presented here firmly hammer another nail into its coffin.
We have been told that simply removing all existing MD5 applications would
break too much. Nevertheless, we hope that our work has contributed to a sooner
ending of MD5’s funeral.

In Table 6 we present a historical overview of the decline in complexity of
MD5 and SHA-1 collision finding. It clearly illustrates that attacks only get
better, not worse. Not reflected in the table is the fact that already in 1993 it
was known that there was serious trouble with MD5, based on collisions in its
compression function (cf. [1], [3]). We leave any speculation about the future of
SHA-1 cryptanalysis to the knowledgeable reader.

A possible mitigation of the risk posed by chosen-prefix collisions when sign-
ing documents is to let the signer add a sufficient amount of fresh randomness at
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Table 6. Collision complexities – Historical overview

MD5 SHA-1
year identical-prefix chosen-prefix identical-prefix chosen-prefix

pre-2004 264 (trivial) 264 (trivial) 280 (trivial) 280 (trivial)
2004 240 [16], [17]
2005 237 [5] 269 [18]

263 [19]
2006 232 [6], [11] 249 [13] 280−ε [10]
2007 225 [12] 242 [12] 261 [8]
2008 221 [20]
2009 216 (this paper) 239 (this paper) 252 [7]

Complexity is given as the number of calls to the relevant compression function. The
figures are optimized for speed, i.e., for collisions using any number of near-collision
blocks. For other collision lengths the complexities may differ.

the appropriate spot in the to-be-signed data, i.e., not as a suffix but preferably
somewhere early on. For certificates the serial number, or even a somewhat vari-
able validity period, would be an appropriate spot. Although this would work, it
can be argued that such a countermeasure relies on unintentional choices of the
X.509 certificate standard. Indeed, we would be in favor of a more fundamental
way to add randomness to to-be-hashed data, such as using randomized hashing
as a mode of operation for hash functions as proposed in [4]. The collision was, at
least partially, achievable because of ‘flabby structure’ of the certificate (cf. [2]), so
that may have to be addressed as well. On the other hand, a more ‘rigid’ structure
would not be an excuse to use a poor hash function: irrespective of the elegance
or lack thereof of the certificate structure, we need a solid hash function.

As far as we know, no harm was done using our rogue CA certificate. The
positive effects we intended to achieve by its construction have been realized.
From this point of view, and because it required new cryptanalytic insights
in MD5, the project described in this paper was very gratifying. Nevertheless,
there was another, secondary aspect that is worth mentioning here. Although,
as stated earlier, creating havoc was not our goal, we must admit that some
havoc was created by our announcement. Despite our best efforts to inform the
party that was arguably most directly affected by our work (as documented on
one of the related websites), we also felt we should not reveal our identities to
avoid any attempt to file an injunction barring our announcement. Overall, this
did not stimulate a healthy exchange of information of which all parties involved
could have profited. We do not know how the present legal climate could best
be changed to address this problem, but hope that the difficulties as clearly
observed in our case help to expedite a solution.
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Meet-in-the-Middle Preimage Attacks
Against Reduced SHA-0 and SHA-1
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Abstract. Preimage resistance of several hash functions has already
been broken by the meet-in-the-middle attacks and they utilize a prop-
erty that their message schedules consist of only permutations of message
words. It is unclear whether this type of attacks is applicable to a hash
function whose message schedule does not consist of permutations of
message words. This paper proposes new attacks against reduced SHA-0
and SHA-1 hash functions by analyzing a message schedule that does not
consist of permutations but linear combinations of message words. The
newly developed cryptanalytic techniques enable the meet-in-the-middle
attack to be applied to reduced SHA-0 and SHA-1 hash functions. The
attacks find preimages of SHA-0 and SHA-1 in 2156.6 and 2159.3 compres-
sion function computations up to 52 and 48 steps, respectively, compared
to the brute-force attack, which requires 2160 compression function com-
putations. The previous best attacks find preimages up to 49 and 44
steps, respectively.

Keywords: SHA-0, SHA-1, meet-in-the-middle, one-way, preimage.

1 Introduction

After the breakthrough described in Wang’s study [14], much attention has
been paid to the security of MD4-like hash functions such as MD4 [7], MD5
[8], HAVAL [15], and SHA family [13]. First, attention was focused on colli-
sion resistance, and the more recently, attention has been focused on preimage
resistance. Preimage resistance is more important than collision resistance be-
cause the security of many applications employing hash functions are based on
preimage resistance, and breaking preimage resistance implies breaking collision
resistance of the practical hash functions1, and, therefore, we should focus more
attention on preimage resistance. Saarinen showed a preimage attack on new
FORK-256 [4] in 2007 [9], and in 2008, Leurent showed that a preimage of MD4
can be computed to the complexity of 2100.51 MD4 computations [5]. In these
attack, the meet-in-the-middle technique helps to compute the preimage. After

1 Collision resistance implies preimage resistance for hash functions with uniformly
random output. Note that collision resistance does not always imply preimage resis-
tance. Construction of such artificial hash functions is explained in [6, Note 9.20].
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this, the meet-in-the-middle attack is directly used to compute a (second) preim-
age of hash functions [1,2,10,11,12], and the meet-in-the-middle technique seems
to be a very powerful tool to compute a preimage.

SHA-1 is a widely used hash function, and its security assessment is very im-
portant. Actually, many public key encryption and signature schemes use SHA-1
as a random oracle, and the SSL/TLS protocol uses SHA-1 for many purposes.
In Crypto 2008, [3] showed the first preimage attacks against reduced SHA-0 and
SHA-1. Its authors use “reversing the inversion problem” and attacked SHA-0
and SHA-1 up to 49 and 44 steps, respectively. On the other hand, the resistance
of SHA-0 and SHA-1 against the meet-in-the-middle technique is an interesting
problem to be studied. However, the previous preimage attacks using the meet-
in-the-middle technique are only applied to hash functions whose message sched-
ule consists of permutations of the message words, while the message schedules
of SHA-0 and SHA-1 are in more complicated form, that is, linear transforma-
tion of message words. Moreover, the techniques developed in [3] seems not to
be able to be applied to the framework of the meet-in-the-middle attack.

On conducting the meet-in-the-middle attack, first we partition steps for
SHA-0 (or SHA-1) into two chunks . A chunk comprises consecutive steps of
the corresponding hash function and includes at least one neutral word , which
appears in the chunk and does not appear in the other chunk. So, steps in a chunk
can be executed using the neutral word for the chunk, and does not require the
neutral word for the other chunk. Although finding neutral words is important
in this scenario, the previous meet-in-the-middle attack only are applied to hash
functions such as MD4, which has a simple message schedule, that is, consisting
only of permutations of message words. So, a message word itself can be regarded
as a neutral word, and it is very easy to find chunks of long steps. For example,
[10] can compute a (second) preimage of HAVAL-5 up to 151 steps. To apply the
same strategy to SHA-0 or SHA-1, we face the first difficulty which is that we
cannot find any neutral words for long steps, because SHA-0 and SHA-1 adopt
the linear transformation of a message word as message schedule, and the linear
transformation spreads the effect of a message word to many steps and prevents
finding neutral words. To solve this problem, we seek chunks that the rank of
their matrix representation is not full, and we regard the kernel generators of
linear transformations of each chunk as neutral words. This seems to be a good
idea, in fact, if message words included in the kernel generators of the first and
the second chunks are different, each kernel can be computed independently,
and thus, the meet-in-the-middle attack can be performed. However, we face the
second difficulty that the kernel generators for two chunks may share the same
message word, and how to determine the value of the neutral word in each chunk
is unclear. To overcome the second problem, we convert a message schedule by
multiplying by a regular matrix, so that converting a message schedule using
a matrix results in converted kernel generators for two chunks becoming unit
vectors. That is, we can choose converted message words as neutral words, and
this enables us to apply the existing meet-in-the-middle attack to SHA-0 and
SHA-1.
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Table 1. Preimage Attacks Against SHA-0 and SHA-1

[3] Current Results
# of Complexity # of Complexity

Attack Type Steps Time Memory Steps Time Memory
SHA-0 pseudo-preimage 50 2158 225 52 2151.2 215

52 2152.2 negligible
preimage 49 2159 225 52 2156.6 215

52 2157.1 negligible
SHA-1 pseudo-preimage 45 2157 220 48 2156.7 240

48 2157.7 negligible
preimage 44 2157 220 48 2159.3 240

48 2159.8 negligible

The unit of time complexity is one compression function computation, and the unit of
memory complexity is a few times of the hash length which is 160 bits.

This paper presents a new analysis method for a linear message schedule,
which enables us to utilize the meet-in-the-middle technique to compute a preim-
age effectively. We then apply this technique to SHA-0 and SHA-1. The newly
developed analysis is a generalization of the previously reported analysis for MD5
and other hash functions [10,11,12]. The technique with the detailed analysis of
step functions can find a preimage of reduced SHA-0 and SHA-1 faster than the
brute-force attack up to 52 and 48 steps, respectively (out of 80 steps), which are
the best results so far. Table 1 summarizes the preimage attacks against SHA-0
and SHA-1. We also note the complexity of memoryless attack in Table 1.

2 Preliminaries

2.1 Specification of SHA-0 and SHA-1

This paper focuses on SHA-b (b = 0 or 1). This section shows the specifica-
tions of SHA-b used in this paper. For more details, please refer to the original
specifications [13].

SHA-b adopts the Merkle-Damg̊ard structure [6, Algorithm 9.25]. The message
string is first padded to be a 512-bit multiple, and divided into 512-bit blocks,
(M0,M1, . . . ,Mm−1) (Mi ∈ {0, 1}512). The compression function inputs a 512-
bit message string and 160-bit chaining variable. The message blocks are input
to the iterative use of compression function CF to compute hash value Hm.

H0 ← IV, Hi+1 ← CF(Hi,Mi) (i = 0, 1, . . . ,m− 1)

where IV is the constant defined in the specification.
The compression function is based on the Davies-Meyer mode [6, Algorithm

9.42]. Let ≪x denote the x-bit left rotation. First, the message block is expanded
using the message schedule algorithm.{

wj ← mj , ( 0 ≤ j < 16)
wj ← (wj−3 ⊕ wj−8 ⊕ wj−14 ⊕ wj−16)≪b, (16 ≤ j < 80) (1)
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where (m0,m1, . . . ,m15)←Mi (mj ∈ {0, 1}32). Hereafter, we call a 32-bit string
a word . Then, the step functions are applied.

p0 ← Hi, pj+1 ← Rj(pj , wj) (for j = 0, 1, . . . , 79), Hi+1 ← Hi + p80, (2)

where “+” denotes the wordwise addition. Step function Rj is defined as given
hereafter: {

aj+1 ← a≪5
j + fj(bj , cj , dj) + ej + wj + kj

bj+1 ← aj , cj+1 ← b≪30
j , dj+1 ← cj , ej+1 ← dj

where (aj , bj, cj , dj , ej) = pj , fj is a bitwise function, and kj is a constant spec-
ified by the specification.

Note that the difference between SHA-0 and SHA-1 is only the existence of
the rotation in Eq.(1).

2.2 Converting Pseudo-preimage Attack to Preimage Attack

We call (Hi,Mi) a pseudo-preimage of the compression function, where the given
Hi+1 satisfies Hi+1 = CF(Hi,Mi). Hereafter, we use the computational unit as
one computation of the compression function.

[6, Fact 9.99] gives an algorithm for converting a pseudo-preimage attack to
a preimage attack for the Merkle-Damg̊ard construction. A preimage can be
computed in 21+(x+n)/2 with one more block message, where the hash value is
n-bit long, when a pseudo-preimage can be computed in 2x.

Note that the attacks [3,5] generalize this conversion, tree and graph based
approaches. Their conversions require to fix some part of hash value and pseudo-
preimage in the pseudo-preimage attack, and to generate this combination at
very small cost. Unfortunately, our attack described later cannot satisfy this
condition. So, we cannot use tree and graph based approaches with our attacks.

2.3 Meet-in-the-Middle Attack

This section describes the basic strategy of the preimage attack using the meet-
in-the-middle attack proposed in [1].

Assume that the message length with padding is equal to one block. The hash
value is computed by H1 = CF(IV,M0). Focusing on Eq.(2) reduced to s steps,
we assume that some t, u, and v exist with the following conditions.{

wj (0 ≤ j < t) is independent of mv

wj (t ≤ j < s) is independent of mu
(3)

We can construct the following algorithm.

0. Choose mj (j ∈ {0, 1, . . . , 15}\{u, v}) arbitrary.
1. For all mu ∈ {0, 1}32, compute pt ← Rt−1(Rt−2(· · ·R0(IV, w0) · · · , wt−2),

wt−1) and store (mu, pt) in a table.
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2. For all mv ∈ {0, 1}32, compute pt ← R−1
t (R−1

t+1(· · ·R−1
s−1(ps, ws−1) · · · , wt+1),

wt), where ps ← H1 − IV and “−” denotes the wordwise subtraction. If one
of the pts has a match in the table generated in 1, M0 (= (m0,m1, . . . ,m15))
is a preimage of the hash function.

The complexity of the above algorithm is about 232, and the success probability
is about 2−160+64. Thus, to iterate the above algorithm 2160−64 times, we expect
to find a preimage with high probability. The time complexity of the attack is
2160−32 and the memory complexity is about 6× 232 words.

Hereafter, we call such mu and mv neutral words , and call consecutive steps
j ∈ [0, t) and j ∈ [t, s) chunks . In this meet-in-the-middle attack, how to find
two chunks with a neutral word is important. Section 3 describes how to find
this that satisfies Condition (3) with given wi (i = 0, 1, . . . , s− 1).

2.4 Auxiliary Techniques with the Meet-in-the-Middle Attack

This section describes the techniques proposed in [1,11] that can be used with
the algorithm described in Section 2.3. These techniques improve the complexity
and increase the number of steps that can be attacked by the attack described
in Section 2.3.

Splice-and-cut. The meet-in-the-middle attack in Section 2.3 starts to com-
pute input p0 in step 0 and output ps in step s−1. Considering the final addition
in the Davies-Meyer mode in Eq.(2), we regard that the final and the first steps
are consecutive. Thus, we can determine that the meet-in-the-middle attack
starts with any step and matches with any step. We call this technique splice-
and-cut [1]. Note that this technique will produce a pseudo-preimage, because IV
cannot be controlled by an attacker, though we can compute a preimage using
Section 2.2.

Partial-matching and partial-fixing. The step function Rj in SHA-b does
not update all words in pj . In fact, all words in pj match pj+1 except one word.
This fact enables us not to fix matching-step t in Section 2.3, and Condition (3)
changes from the chunk partition of [0, t) and [t, s) to that of [0, t) and [t+ c, s),
where c ≤ 4. This may increase the number of steps that a preimage can be
computed because we may be able to include the neutral words mu and mv in
the steps [t, t+ c). This loosens the conditions based on which the neutral words
are selected and how the chunks are selected. We call this technique partial-
matching [1].

Moreover, we can choose a larger c than that for partial-matching, by fixing
partial bits in mu and/or mv, since the partial bits in pj depending on mu or
mv (j ∈ [t, t + c)) can be computed. We call this technique partial-fixing [1]. In
the case of SHA-b, with manual attempts, c seems to be chosen up to ≈ 15. An
example of partial-matching with partial-fixing is provided in a later section.
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Hm−1 ⇒

mv↓
mu↓

mv↓
mu↓

mu↓
mu↓

mv↓
mu↓

mv↓
1st chunk ← Initial

structure→ 2nd chunk →Partial-
fixing ← 1st chunk

← d-step → ← c-step →
⇒ Hm

Fig. 1. A chunk partition with initial structure and partial-fixing technique

Initial structure. In the partial-matching or partial-fixing technique, we can
ignore several steps regarding neutral words for the matching-part in the meet-
in-the-middle attack to choose the appropriate chunks. Similarly, we can ignore
several steps for the starting-part in the meet-in-the-middle attack. A prelimi-
nary version of the technique is introduced in [2], and it can be considered as a
local collision [10] similar to existing collision attacks. Using the local collision
technique, neutral words should be chosen at the edges of the starting-part. After
computing the matching-part, we should confirm that the values of the neutral
words satisfies the condition of the local collision. This condition is satisfied with
probability 2−32, and we lose the advantage to use the meet-in-the-middle at-
tack. To solve the problem, [2] chooses additional neutral words from a chaining
variable. Anyway, the condition for the neutral words is very restrictive for the
local collision technique.

A variant of the local collision was introduced in [12] and generalized to the
initial structure [11]. As opposed to [2], [11] introduced the efficient consistency
check technique for the initial structure and it can also be used for the local
collision technique. In regard to the technique in [2], the consistency for local
collisions is satisfied randomly after matching the meet-in-the-middle attack,
while the efficient consistency check satisfies the consistency for the initial struc-
ture at the same time as the meet-in-the-middle attack by adding a word for the
table used by the meet-in-the-middle-attack.

Similar to partial-fixing, we can ignore d steps regarding neutral words for
the starting part in the meet-in-the-middle attack. How to construct an initial
structure is still somewhat ambiguous. With several manual attempts, it seems
possible to construct d-step initial structures up to ≈ 4 for the case of SHA-b.
An example of the initial structure is provided in a later section.

Summary. Considering the meet-in-the-middle attack, we can use all of the
techniques described above: splice-and-cut, partial-matching and -fixing, and
initial structure. Figure 1 shows how to partition the steps in SHA-b with these
techniques in an abstract model.

3 Analysis of Linear Message Schedule

The message schedule of SHA-b is different from that for MD4 and MD5, which
were already attacked [5,11], and is essentially linear for wj (j ≥ 16) from Eq.(1).
Similarly, HAS-160 adopts a linear message schedule, but most part of the mes-
sage schedule is only permutations of message words. In fact, only one fifth of
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wjs are essentially linear, and this linear wjs are only XOR of 4 message words.
Thus, for example, the case of w16 = m12 ⊕m13 ⊕m14 ⊕m15 is regarded such
that all of m12, m13, m14, m15 are used in this step in the attack [12]. While,
on the message schedule of SHA-b, wj (0 ≤ j < 16) is equal to mj and seems
simple, but wj (j ≥ 20) depends on almost half the number of mjs since wj

(j ≥ 16) is computed using Eq.(1). So, it seems that we can compute a preimage
up to ≈ 39 steps (= 20 + 15 + 4) faster than the brute-force attack under the
same strategy in [12], and it seems difficult to increase the number of steps that
can be attacked. This section presents a way to address this problem, that is,
the following section finds the chunks that satisfy Condition (3) and detect the
neutral words in the chunks.

3.1 Kernel and Neutral Words

This section describes how to partition steps into chunks and find neutral words
for SHA-0. For SHA-1, the same approach can be applied by considering bits
instead of words.

The expanded message, wj , is computed using Eq.(1), and its matrix repre-
sentation is given hereafter: [w0 w1 · · · w79]T = WMT , where M = [m0 m1
· · · m15] and W is represented in Figure 3. Consider that SHA-0 is reduced to s
steps and the steps are partitioned into the following two chunks.{

[w0 w1 · · · wt−1]T = W1M
T

[wt wt+1 · · · ws−1]T = W2M
T (4)

We assume that {
rankW1 < 16
rankW2 < 16 (5)

holds. So, there exists the following non-trivial kernels.{
kerW1 = 〈k(0)

1 , k
(1)
1 , . . . , k

(κ1−1)
1 〉

kerW2 = 〈k(0)
2 , k

(1)
2 , . . . , k

(κ2−1)
2 〉

, (6)

where κ1 and κ2 denote the dimension of the corresponding kernel. Let K1 =
[k(0)

1 k
(1)
1 · · · k

(κ1−1)
1 ] and K2 = [k(0)

2 k
(1)
2 · · · k

(κ2−1)
2 ]. We regard the mes-

sage words corresponding to the vectors in K1 and K2 as neutral words for the
opposite chunk. Consider the following as an example. κ1 = κ2 = 1 and{

k1 = [1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]T

k2 = [0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0]T .

Since k1 and k2 are in the kernel of W1 and W2, W1k1 = 0 and W2k2 = 0
holds. That is, m0 can be used as a neutral word for the second chunk with
m0 = m2 = m3 to see ‘1’ in k1, and m1 can be used as a neutral word for the
first chunk with m1 = m4 to see ‘1’ in k2. Similarly, we can choose neutral words
whenever the representation of the generating vectors does not share the same
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position of ‘1’s. However, the strategy does not always work in a straightforward
manner. We notice the case that the generating vectors share the ‘1’ at the
same position. In this case, we cannot independently determine the value of
neutral words for each chunk. We can solve this problem using a sophisticated
linear transformation by substituting M with M ′, where MT = RM ′T with
regular matrix R. Once we find M ′, we can easy to recover the preimage M by
multiplying the matrix R.

Let the unit vector be ei = [0 · · ·
i

1̆ · · · 0]T and j-dimensional identity
matrix be Ej . In the following, we construct regular matrix R such that{

W1Rei = 0 for i = 0, 1, . . . , κ1 − 1
W2Rei+κ1 = 0 for i = 0, 1, . . . , κ2 − 1 . (7)

If such a matrix is constructed, we have

[w0 w1 · · · ws−1]T =
[
W1

W2

]
MT =

([
W1

W2

]
R

)
(R−1MT ).

Let W ′
1 = W1R, W ′

2 = W2R, M ′T = R−1MT , and M ′ = [m′
0 m′

1 · · · m′
15], and

we have

– kerW ′
1 = 〈e0, e1, . . . , eκ1−1〉, and kerW ′

2 = 〈eκ1 , eκ1+1, . . . , eκ1+κ2−1〉.
– m′

0,m
′
1, . . . ,m

′
κ1−1 are neutral words for the second chunk, and m′

κ1
,m′

κ1+1,
. . . ,m′

κ1+κ2−1 are neutral words for the first chunk.

Thus, we can perform the meet-in-the-middle attack described in Section 2.3 by
adjusting a recovered preimage M ′ with MT ← RM ′T . The rest of this section
describes how to construct R.

Assume rank[K1 K2] = κ1 + κ2
2. We can choose κ1 + κ2 independent row

vectors in [K1 K2], and there is regular matrix T that collects these independent
row vectors and can be constructed from E16 by swapping corresponding rows,
H , at the top by swapping rows, and regular matrices B and S are defied as
follows.⎡⎢⎢⎣
H

∗

⎤⎥⎥⎦ = T [K1 K2], B =

⎡⎢⎢⎣
H−1 0

0
E16−κ1−κ2

⎤⎥⎥⎦ , S =

⎡⎢⎢⎣
BT [K1 K2] 0

E16−κ1−κ2

⎤⎥⎥⎦ .

Note that the top κ1 + κ2 rows of BT [K1 K2] is Eκ1+κ2 . Then, R = T−1B−1S

satisfies k
(i)
1 = Rei (for 0 ≤ i < κ1) and k

(i)
2 = Rei+κ1 (for 0 ≤ i < κ2). So,

Eq.(7) holds.

2 Of course, there is a chunk partition such that rank[K1 K2] < κ1 + κ2; however,
we are not so interested in this case. Actually, we do not have an experience with
rank[K1 K2] < κ1 + κ2 with long steps.
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Table 2. Number of Steps Such That rank W1, rankW2 < 16 for SHA-0

c + d 0 1–2 3 4–6 7 8–11 12–13 14–15 16–21 22 23 24–25 26–27 28
# of steps 32 33 35 37 39 42 45 47 52 54 55 57 60 61

c: number of partial-fixing step, d : number of initial structure step.

Table 3. Number of Steps Such That rank W1, rankW2 < 512 for SHA-1

c + d 0 1–2 3 4–6 7 8–11 12–13 14–15 16–21 22 23 24–25 26–27 28
# of steps 32 33 35 37 39 42 45 47 52 54 55 57 60 61

c: number of partial-fixing step, d : number of initial structure step.

3.2 Notes on Auxiliary Techniques

Both the splice-and-cut and partial-matching techniques described in Section 2.4
can be used in the same way. Note, we generate pseudo-preimages in the same
way as Section 2.4, because the splice-and-cut technique cannot specify IV.

We can apply the partial-fixing and initial structure techniques described in
Section 2.4 to SHA-b in a similar way. However, careful analysis is required, since
the message schedule of SHA-b sometimes produces XOR of several message
words in one step.

[12] applies the partial-fixing technique to HAS-160. The step function of
HAS-160 is very similar to SHA-b, so these techniques can also be applied to
SHA-b.

3.3 Application to SHA-b

Based on the discussion above, we compute how many steps to satisfy Condition
(5), with partial-matching and -fixing step c ≤ 21 and initial structure step
d ≤ 7. The results are shown in Tables 2, 3, and 4. We do not know why, but
we notice that the numbers of steps are the same when the values of c + d are
the same.

For SHA-1, rankW1, rankW2 < 512 is a very hard condition to attack SHA-1,
because we may be able to use only one neutral bit. In this case the partial-fixing
technique cannot work. So, we also compute the case that rankW1, rankW2 <
503 to have the possibility to use the partial-fixing technique. Though we loose
the upper bound of the rank to 503, the derived ranks are 480.

Consider the case for SHA-0. If the number of steps in chunks are 15, rankW1,
rankW2 < 16 always holds. To set d = 0 and c = 4, that is, we do not use initial

Table 4. Number of Steps Such That rank W1, rankW2 < 503 for SHA-1

c + d 0–1 2 3–5 6 7 8–9 10–11 12–13 14–15 16–17 18 19 20–21 22–24 25 26–27 28
# of steps 31 33 35 36 37 39 41 43 45 47 48 49 51 54 56 57 59

c: number of partial-fixing step, d : number of initial structure step.
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structure and partial-fixing, and the attack always works. Thus, we can trivially
compute a preimage of the compression function reduced to 34 (= 15 + 15 + 4)
steps in 2128. To see Table 2, we see 37 when c + d = 4. So, we can improve the
attack to 37 steps with the same complexity. Consider to adopt the partial-fixing
technique. To fix lower 16 bits in neutral words, it is easy to verify that we can
increase 3 more steps. Following Table 2 with c + d = 7, we can compute a
preimage of the compression function reduced to 39 steps in 2144.

Note that Condition (5) is the only necessary condition for a successful attack.
To construct a definite attack procedure, we need to see specific procedures for
the initial structure, and for partial-fixing, and for padding. The following section
describes this.

4 Detailed Attack Against SHA-0

This section describes detailed description of the attack against SHA-0 reduced
to 52 steps. We try to increase the number of steps that can be attacked faster
than the brute-force attack as large as possible. For smaller number of steps, see
the previous section.

4.1 Chunk Partition for 52-Step SHA-0

The transformed message schedule, WR, described in the previous section is
shown in Table 5. As shown in Table 5, the first chunk (steps 37–23, in total 15
steps) includes m′

1 but does not include m′
0, and the second chunk (steps 40–51,

Table 5. Transformed Message Schedule for 52-step SHA-0

m′
i

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
5 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
8 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

S
e
c
o
n
d

ch
u
n
k

9 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
11 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
12 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
13 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
16 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0
17 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0
18 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1
19 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0
20 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0
21 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0 1
22 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0

S
k
ip

m′
i

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
23 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 1
24 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1
25 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0
26 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0
27 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1
28 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0
29 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 0
30 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 1
31 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0
32 0 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0
33 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 1
34 0 1 1 1 0 1 1 0 0 0 1 0 0 1 0 1
35 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0
36 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1

F
irst

ch
u
n
k

37 0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 1 ↑
38 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0
39 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0

IS

40 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 ↓
41 1 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0
42 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1
43 0 0 1 0 0 1 1 1 1 0 1 1 1 0 0 1
44 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0
45 0 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0
46 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0
47 1 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1
48 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1
49 0 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1
50 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0
51 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0 1

S
e
c
o
n
d

ch
u
n
k

wi consists of XOR of m′
j whose entry in step i is 1, e.g., w10 = m′

1 ⊕ m′
10. IS, which

appears in steps 38 and 39, stands for “Initial Structure.”



80 K. Aoki and Y. Sasaki

a39 b39 c39 d39 e39

a38 b38 c38 d38 e38

<<<30

<<<5

w38 (=m0’ Const)
k38

f38

NW2nd

<<<30

<<<5
f39

a40 b40 c40 d40 e40

τ38

p38

p39

p40

k39

w39 (=m1’ Const)
NW1st

τ39

The bold and dotted lines rep-
resent data lines for which
values are changed depend-
ing on the value of the neu-
tral words for the second and
first chunks, respectively. Nar-
row lines represent data lines
that are always fixed regard-
less of the values of the neutral
words.

Fig. 2. Initial structure for 52-step SHA-0

0–8 in total 21 steps) includes m′
0 but does not include m′

1. Hence, by fixing m′
2

to m′
15, the meet-in-the-middle attack can be performed.

4.2 Initial Structure for 52-Step SHA-0

The construction of the initial structure is shown in Fig. 2. The goal of this
construction is making p40 independent of the neutral words for the first chunk
w39 (= m′

1 ⊕ Const), and making p38 independent of the neutral words for the
second chunk w38 (= m′

0 ⊕Const). This is achieved by the following procedure.

Preparation: Change the addition order in step 39, and choose an arbitrary
value for τ38 and τ39, e.g. τ38 = τ39 = 0. Moreover, fix a38, b38, c38 as
arbitrary.

Make p40 independent of w39: c40 (= a38
≪30), d40 (= b38

≪30), and e40 (=
c38) are already fixed. Compute b40 (= a39 = τ38 + w38 + k38) and a40
(= τ39 +a39

≪5 +f39(b39, c39, d39)+k39). Note that b39 = a38, c39 = b38
≪30,

and d39 = c38.
Make p38 independent of w38: Compute d38 (= τ39 − w39) and e38 (= τ38 −

f38(b38, c38, d38)− a38
≪5).

As described above, we can compute the first and second chunks independently
of the neutral words for the second and first chunks, respectively. Hence, the
meet-in-the-middle attack can be performed.

Remarks. Construction of the initial structure is dependent on the selected
chunks. Since the chunk partition is different for SHA-1, we construct the initial
structure of SHA-1 differently. See Section 5 for details.

4.3 Partial-Fixing Technique for 52-Step SHA-0

In the meet-in-the-middle attack, results of two chunks must be compared effi-
ciently. Although many steps (14 steps) between two chunks are skipped in the
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Table 6. Number of Known Bits
in Partial-Fixing Technique for 52-Step
SHA-0

(in wj) #cands
j aj bj cj dj ej m′

1 of aj

9 All All All All All 18–0
10 18–0 All All All All 18–0 1
11 18–5 18–0 All All All 18–0 21

12 18–10 18–5 16–0 All All 18–0 22

F
o
rw

a
rd

12 20–9 20–11 ? ? ? skipped
13 20–9 20–9 18–9 ? ? skipped
14 20–9 20–9 18–7 18–9 ? skipped
15 20–4 20–9 18–7 18–7 18–9 All 29

16 20–2 20–4 18–7 18–7 18–7 18–0 27

17 20–2 20–2 18–2 18–7 18–7 All 25

18 20–2 20–2 18–0 18–2 18–7 18–0 23

19 All 20–2 18–0 18–0 18–2 All 21

20 All All 18–0 18–0 18–0 18–0 1
21 All All All 18–0 18–0 All 1
22 All All All All 18–0 18–0 1
23 All All All All All

B
a
ck

w
a
rd

c
o
m

p
u
ta

tio
n

(in wj) #cands
j aj bj cj dj ej m′

0 of ej

Numbers denote the known bits of each
chaining variable. Underlined variables in
j = 12 are variables where we compare
the results of two chunks.

Table 7. Number of Known Bits
in Partial-Fixing Technique for 48-Step
SHA-1

(in wj) #cands
j aj bj cj dj ej m′

1 of aj

9 All All All All All 17–0
10 17–0 All All All All All 1
11 17–5 17–0 All All All All 21

12 17–10 17–5 15–0 All All 16–0 22

F
o
rw

a
rd

12 27–9 27–11 ? ? ? skipped
13 27–7 27–9 25–9 ? ? skipped
14 27–9 27–7 25–7 25–9 ? skipped
15 27–4 27–9 25–7 25–7 25–9 All 29

16 27–2 27–4 25–7 25–7 25–7 25–0 27

17 27–2 27–2 25–2 25–7 25–7 All 25

18 27–2 27–2 25–0 25–2 25–7 25–0 23

19 All 27–2 25–0 25–0 25–2 All 21

20 All All 25–0 25–0 25–0 25–0 1
21 All All All 25–0 25–0 All 1
22 All All All All 25–0 25–0 1
23 All All All All All

B
a
ck

w
a
rd

c
o
m

p
u
ta

tio
n

(in wj) #cands
j aj bj cj dj ej m′

0 of ej

We compare results of two chunks on a12

and b12, in total 15 bits.

employed attack as shown in Table 5, a part of the results of two chunks can
be compared by using the partial-fixing and partial-matching techniques. How
the results of two chunks are compared is explained in Table 6. Note we first
assumed that the fixed bit-positions for backward computation is represented by
lower x bits and the forward computation is represented by intermediate y bits.
Then, we identified the best x, y, and fixed positions. Consequently, we chose
x = 19 and y = 19 from the least significant bit.

We explain how the partial computation shown in Table 6 is processed.

Forward computation for a10: As a result of computing the second chunk
in forward direction m′

0, we obtain the value p9. Therefore, when we apply
partial-fixing to the forward computation, we know all bits of a9, b9, c9, d9
and e9. p10 is computed with R9(p9, w9), where w9 can be written as m′

1 ⊕
Const . Since the lower 19 bits of m′

1, which is the neutral word for the other
chunk, are fixed, the lower 19 bits of a10 can be computed uniquely.

Forward computation for a11: p11 is computed with R10(p10, w10), where
w10 can be written as m′

1 ⊕ Const . In particular, the equation for a11 is
as follows:

a11 = a10
≪5 + f10(b10, c10, d10) + e10 + w10 + k10.

Since the lower 19 bits of w10 and all bits of f10, e10, and k10 are known, the
lower 19 bits of f10 + e10 + w10 + k10 can be computed uniquely. We know
the lower 19 bits (bits 0 to 18) of a10, hence we know bits 5 to 23 of a10

≪5.
When we compute a11 = a10

≪5 + (f10 + e10 +w10 + k10), we do not know if
there is a carry from bit-position 4 to 5. Therefore, we consider both possible
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carry bits, and obtain two candidates for bits 5 to 18 of a11. Hence, for each
(a9, b9, c9, d9, e9), we obtain 21 candidates for bits 5 to 18 of a11.

Forward computation for a12: By almost the same procedure as above, we
can obtain two candidates for bits 10 to 18 a12 for each candidate of p11.
Hence, for each (a9, b9, c9, d9, e9), we obtain 22 candidates for bits 10 to 18
of a12.

Backward computation for e22: As a result of computing the first chunk in
backward direction m′

1, we obtain the value of p23. p22 is computed with
R−1

22 (p23, w22), where w22 can be written as m′
0 ⊕ Const . Since the lower 19

bits of m′
0 are fixed, the lower 19 bits of e22 can be computed uniquely.

Backward computation for e17: With similar techniques to the forward com-
putation, we can compute 23 candidates for p18 as shown in Table 6 for each
p23. We next explain how to compute p17 with R−1

17 (p18, w17), in particular,

e17 = a18 − k17 − w17 − f17(c18≫30, d18, e18)− b18
≪5,

w17 = m′
1 ⊕ Const = m′

1 ⊕m′
3 ⊕m′

9 ⊕m′
14.

In order to reduce the number of unknown carries, the number of additions
(or subtractions) should be reduced as much as possible. For this purpose, we
fix the lower 19 bits of w17 to −k17. This can be achieved by first fixing the
lower 19 bits of m′

1⊕m′
3⊕m′

9, and then compute m′
14 = m′

1⊕m′
3⊕m′

9⊕(−k17)
with respect to the lower 19 bits.

Remarks for the rest: In a similar manner, we obtain Table 6. Note, we need
to fix w16 = m′

0 ⊕ m′
1 ⊕m′

2 ⊕m′
8 ⊕ m′

13 to −k16 and w15 = m′
15 to −k15

with respect to the lower 19 bits. With adequate message space, this can
be easily achieved. Backward computation is done until p15. Steps 14-11 are
skipped in the partial-matching technique. Finally, we compare the results
from both chunks at bits 10–18 of a12 and bits 11–18 of b12, in total 17 bits.

4.4 Attack Procedure for 52-Step SHA-0

For a given hash value, Hm, the attack procedure is as follows.

1. Fix m′
i, (i �∈ {0, 1}) and the lower 19 bits of m′

0 and m′
1 to randomly chosen

values.
2. Fix chaining variables in the initial structures (steps 38-39) as described in

Section 4.2.
3. For all 13 free bits of the neutral words for the second chunk, namely the

higher 13 bits of m′
0,

(a) Compute a40 and b40 from w38 as explained in Section 4.2.

(b) Compute:

⎧⎨⎩pj+1 ← Rj(pj , wj) for j = 40, 41, . . . , 51
p0 ← Hm − p52,
pj+1 ← Rj(pj , wj) for j = 0, 1, . . . , 8

(c) Compute bits 0–18 of a10, 21 candidates for bits 5–18 of a11 and 22

candidates for bits 10–18 of a12 as explained in Section 4.3.
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(d) Make a table of (m′
0, p9, a10, a11, a12)s. Since we have 13 free bits in

neutral words, and 22 candidates of partial a12 for each choice of free
bits, we have 215 items in the table.

4. For all 13 free bits of the neutral words for the first chunk, namely the higher
13 bits of m′

1,
(a) Compute e38 and d38 as described in Section 4.2.
(b) Compute: pj ← R−1

j (pj+1, wj) for j = 37, 36, . . . , 23,
(c) Compute the lower 19 bits of e22, e21, and e20, bits 2–18 of e19, bits 7–18

of e18, e17, and e16, and bits 9–18 of e15 as explained in Section 4.3.
(d) For each item in the table, check whether or not bits 10–18 of a12, and

bits 11–18 of b12 computed from both chunks match.
(e) If a match is found, compute p10 to p13 by the corresponding message

word, and check the match of the additionally computed bits, and check
the correctness of the guess for the carry for a11 and a12 step by step.

(f) If a match is found, compute p22 to p11 by the corresponding message
word, and check whether all values from both chunks match and check
the correctness of the guess for the carry for e19 to e15.

(g) If all bits match, the pair of the corresponding message and p0 is a
pseudo-preimage.

4.5 Complexity Estimation for 52-Step SHA-0

Assume the complexity for computing 1 step is 1
52 52-step SHA-0 compression

function, and the memory access cost is negligible compared with the cost of the
computation of the step function.

– The complexity of Steps 1 and 2 are negligible.
– The complexity of Step 3a is approximately 213 · 2

52 .
– The complexity of Step 3b is approximately 213 · 21

52 (= 213 · 12
52 + 213 · 9

52 ).
– The complexity of Step 3c is approximately 213 · 7

52 (=213( 1
52+21 · 1

52+22 · 1
52 )).

– The complexity of Step 4a is approximately 213 · 2
52 .

– The complexity of Step 4b is 213 · 15
52 .

– The complexity of Step 4c is approximately 213 · 685
52 (=213( 1

52 + 1
52 + 1

52 +
21 · 1

52 + 23 · 1
52 + 25 · 1

52 + 27 · 1
52 + 29 · 1

52 )).
– The first chunk produces 222(= 213 · 29) items. Therefore, at Step 4d, 237(=

222 · 215) pairs are compared and 220 (=237 · 2−17) pairs will remain.
– At Step 4e, the complexity of computing p10 and p11 is approximately 220 · 2

52 .
Then, by comparing two additional bits of a11 (bit-positions 19 and 20) and
checking the correctness of the 1 guess for the carry for a11, the number
of remaining pairs becomes 217 (=220 · 2−3). The complexity of computing
p12 is approximately 217 · 1

52 and by comparing three additional bits of a12
(bit-positions 9, 19, and 20) and checking the correctness of the 1 guess of
carry for a12, the number of remaining pairs becomes 213 (=217 · 2−4). The
complexity of computing p13 is approximately 213 · 1

52 and by comparing
twelve additional bits of a13 (bit-positions 9-20), the number of remaining
pairs becomes 21 (=213 · 2−12).
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W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 3. SHA-0 Message Schedule in
Matrix Form

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4. Linear Transformation Used in
the Attack of Reduced SHA-0

– Complexity for Step 4f is negligible since the number of remaining pairs is
sufficiently reduced compared to the previous part. By checking the correct-
ness of the guesses of carry for e22 to e15, the number of remaining pair
becomes 2−8 (=21 ·2−9). By checking the entire p13 for matches, the number
of remaining pair becomes 2−134 (=2−8 ·2−126). Therefore, by repeating this
attack 2134 times, we can expect to find a pseudo-preimage.

The complexity for Step 3 is 213( 2
52 + 21

52 + 7
52 ) = 213 · 3052 . The complexity

for Step 4 is 213( 2
52 + 15

52 + 685
52 )+220 · 2

52 +217 · 1
52 +213 · 1

52 = 213(702
52 + 256

52 +
16
52 + 1

52 ) = 213 · 97552 . Hence, we can find a pseudo-preimage with a complexity
of 213(30

52 + 975
52 ) · 2134 = 217.20 · 2134 ≈ 2151.2. This can be converted to the

preimage attack with a complexity of 2156.6 by using the algorithm described
in Section 2.2.

In this attack, we use a memory to store 215 (m′
0, p9, a10, a11, a12)s in Step 3d.

Therefore, the memory complexity of this attack is approximately 215×9 words.
To apply the technique [6, Remark 9.93], we can convert our attack into mem-
oryless version. The converted attack requires negligible memory and finds a
pseudo-preimage in 2152.2. The attack is converted to the preimage attack by us-
ing the algorithm described in Section 2.2 with complexity of 2157.1 with 5×23.9

words of memory, which is negligible.

4.6 Padding Issue

In the attack described above, we use R in Figure 4. Focusing on the padding
part with MT = RM ′T , we should satisfy the padding rule with

m13 = m′
1 ⊕m′

13, m14 = m′
14, m15 = m′

15. (8)
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– m′
14 ← 0. When m′

14 is used in the partial-fixing technique, m′
14 is XORed

with other m′
js. So, there is room to fix m′

14. This means the number of
message strings is less than 232 bits.

– Set the least significant bit of m13 (= m′
1 ⊕m′

13) to ‘1’. Although m′
1 is a

neutral word, the partial-fixing technique fixes the least significant 20 bits.
By appropriately setting the least significant bit of m′

13, this condition is
satisfied.

– m′
15 mod 29 ← 447. This agrees with the padding rule for m13. However, we

specified m′
15 = −k15 in the attack procedure when we perform the partial-

fixing technique for step 15. To observe m′
15 + k15, the least significant three

bits are zero. Additionally, since we know 21-2 bits of a16, we can determine
the carry from the 8th bit to the 9th bit. This is the same effect as setting
m′

15 = −k15.

In conclusion, we can compute a pseudo-preimage following the padding rule at
the same complexity, 2151.2 as describe above, and we can compute a 2-block
preimage with the regular padding in 2156.6.

Note, even if the padding rule cannot be satisfied, the attack is valid as a
second-preimage attack.

5 Attack Sketch for 48-Step SHA-1

This section describes the sketch of the attack against SHA-1 reduced to 48 steps.

5.1 Chunk Partition

Let E be E32. The transformed message schedule, W ′ = WR, is shown in Table 8.
In SHA-1, the size of W ′ is 512. We searched for chunk partition of 48-step SHA-
1, and found the pattern where κ1 and κ2 in Eq.(6) are 32. When we attack
SHA-1, we use the first 64 bits of M ′ as neutral words, and fix the other 448
bits. Hence, we show only the first 64 bits of W ′.

5.2 Initial Structure and Partial-Fixing Technique

The construction of the initial structure is shown in Fig. 5. To fix the output of f2,
we use the cross absorption property presented by [11]. We manually optimized
the number of n in the initial structure shown in Fig. 5 by considering the
efficiency of the partial-fixing technique together. As a result, we select n = 24.

The partial-fixing technique for 48-step SHA-1 skips 14 steps as shown in
Table 8. How the results of two chunks are compared is explained in Table 7. In
forward computation, we fix the lower 18 bits of m′

1, and in backward compu-
tation, we fix the lower 26 bits of m′

0. Finally, bit positions 10 to 17 of a12 and
bit positions 11 to 17 of b12, in total 15 bits, are compared.
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Table 8. Transformed Message Schedule for 48-step SHA-1

Step 1st 32 cols of W ′ 2nd 32 cols of W ′
0 E ⊕ E≪2 0
1 0 E
2 E 0
3 0 E

IS

4 E≪1 0 ↓
5 0 0
6 E 0
7 E 0
8 E≪1 0
9 0 0

10 E 0
11 E 0
12 E≪1 0
13 0 0
14 0 0
15 E 0
16 E ⊕ E≪1 0
17 0 0
18 E 0

S
e
c
o
n
d

ch
u
n
k

Step 1st 32 cols of W ′ 2nd 32 cols of W ′
19 E E≫1

20 0 0
21 0 0
22 E E≫2

23 0 0
24 0 0
25 0 E≫3

26 E 0
27 0 E≫2

28 E E≫4

29 0 0
30 E 0
31 0 E≫5

32 E 0

S
k
ip

33 0 E≫2 ⊕ E≫4

34 0 E≫6

35 0 E≫2 ⊕ E≫3

36 0 0
37 0 E≫7

38 0 E≫4

39 0 E≫4 ⊕ E≫6

40 0 E≫8

41 0 E≫4

42 0 0
43 0 E≫4 ⊕ E≫9

44 0 0
45 0 E≫6 ⊕ E≫8

46 0 E≫10

F
irst

ch
u
n
k

47 0 E≫3 ⊕ E≫6 ⊕ E≫11 ↑

The second and the third columns of the table show the first and second 32 columns
of W ′. In each step, 32 rows of W ′ are related. Hence, each entry of the table denotes
corresponding 32 × 32 submatrix of W ′.

Since all ‘j’s of Ej used in this table are 32, we simply write E to denote E32.

5.3 Summary of Attack

In this attack, a4 and m′
0 are the neutral words for the second chunk where, m′

0
is the first 32 bits of M ′. Similarly, b0 and m′

1 are the neutral words for the first
chunk, where, m′

1 is the second 32 bits of M ′.
To construct the initial structure appropriately and apply the partial-fixing

technique efficiently, we need to fix a part of neutral words. In the first chunk,
we fix bit positions 26, 27, 28, 29, 30, 31, 0, and 1, in total 8 bits, of b0s. This
results in fixing the upper 8 bits of c1, which is necessary for the initial structure.
We also fix bit positions 1 to 18 of, in total 18 bits, of m′

1. This results in fixing
the lower 18 bits of w19, which is a message word used in the first step in the
partial-fixing technique in forward direction. Note, the number of unfixed bits
in neutral words for the first chunk is 38. In the second chunk, we fix the lower
26 bits of m′

0. This result in fixing the lower 24 bits of w0 (= (E⊕E≪2)×m′
0),

which is required for the initial structure, and fixing the lower 24 bits of wj

(= E), j ∈ {32, 30, 28, 26}, which is required for the partial-fixing technique.
We roughly estimate the complexity of the attack. Considering the unknown

carries in the partial-fixing, the meet-in-the-middle attack examines the match
of 287 (= 238+2 × 238+9) pairs. Unfortunately, since we can only match 47 bits,
the number of resulting pairs are 240 � 238. So, the attack requires more time
than the brute-force attack. To reduce the time complexity, we analyze the
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a3 b3 c3 d3 e3

a2 b2 c2 d2 e2

<< 30

<< 5

k2

If

a1 b1 c1 d1 e1

<< 30

<<5

k1

If

a0 b0 c0 d0 e0

<<30

<<5

k0

If w0

w1

τ0

τ1

a4 b4 c4 d4 e4

<< 30

<< 5

k3

If w3

NW
2nd

NW
1st

Fix upper 32-n bits 
to the same value

w2

Fix (upper 32-n)>>30 bits

Fix lower n bits 
to all ‘1’

E   E<<2 0

0 E

Fix lower n bits

= (                ,            )

= (                ,            )

0 E= (                ,            )

E 0= (                ,            )

Fig. 5. Initial structure for 48-step SHA-1

Note that we perform the efficient consistency check described in the initial structure
part of Section 2.4 in dashed circle in the figure.

probabilistic behavior of carry propagation in the partial-fixing. Observing Ta-
ble 7, we notice that we can estimate the existence of carry with a probability
higher than 1/2 for several additions with unknown carry. In the backward com-
putation, we can estimate the existence of carry with a probability higher than
3/4 for two cases. Thus, the meet-in-the-middle attack examines the match of
285 (= 238+2 × 238+7) pairs. Since the matching bit is 47 bits, the number of
resulting pairs are 238 ≈ 238. So, the time complexity for the dominant part is
computing the chunks, and is approximately 239 and the success probability is
approximately 2−117.7 (= 232+6+6−160× (3/4)2). To iterate the above procedure
2117.7 times, we find a pseudo-preimage with high probability, and the total time
complexity is approximately 2156.7 (= 239× 2117.7). Consider a second preimage
attack whose block is longer than 3, applying the above attack to the second
block, and using the conversion described in Section 2.2, and a preimage will be
found in 2159.3.

In this attack, we use a memory to store 240 items. Therefore, the memory
complexity is approximately 240 × 11 words.

6 Conclusion

This paper proposes a method for analyzing the linear message schedule in SHA-
0 and SHA-1 for a preimage attack using the meet-in-the-middle attack. Thanks
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to recently developed auxiliary techniques such as splice-and-cut, partial-fixing,
and initial structure, the results of the application of the proposed method can be
used to compute preimages of reduced SHA-0 and SHA-1 up to 52 and 48 steps,
respectively, faster than the brute-force attack. The results shows that the meet-
in-the-middle attack is also effective for a linear message schedule compared to
permutations of the message words. Since SHA-0 and SHA-1 have 80 steps and
the attack described herein does not reach the same number of steps, the preim-
age resistance of SHA-0 and SHA-1 is still sufficient. We should pay attention
to the progress of the techniques related to preimage resistance.
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Abstract. A bi-directional Private Authentication, or Unlinkable Secret
Handshake, allows two parties to authenticate each other as certified by
given certification authorities (i.e. affiliated with given groups), in a mu-
tually private way, in the sense that the protocol leaks no information
about either participant to a party which does not satisfy that partici-
pant’s authentication policy. In particular, the protocol hides what group
this participant belongs to, and protocol instances involving the same
participant are unlinkable. We construct the first realization of such pri-
vate authentication using O(1) exponentiations and bilinear maps, secure
under Strong Diffie-Hellman and Decisional Linear assumptions.

Our protocols rely on a novel technical tool, a family of efficient Pri-
vate Conditional Oblivious Transfer (COT) protocols, secure under DDH,
for languages defined by modular arithmetic constraints (e.g. equality, in-
equality, sums, products) on discrete-log representations of some group ele-
ments. (Recall that (w1, ..., wn) is a representation ofC in bases (g1, ..., gn)
if C = gw1

1 ...gwnn .) A COT protocol for language L allows sender S to en-
crypt message m “under” statement x so that receiver R gets m only if R
holds a witness for membership of x in L, while S learns nothing. A private
COT for L hides not only messagem but also statement x from any R that
does not know a witness for x in L.

1 Introduction

Authentication Privacy and Mutual Authentication. It seems evident
that if party A authenticates itself to some verifier then A must necessarily
reveal some information about itself in the process. At the minimum, an au-
thentication protocol seemingly needs to reveal that A is credentialed by a given
Certification Authority (CA), because the goal of (policy-based) uni-directional
authentication is to let any verifier learn whether A holds valid credentials from
a given CA. However, in the case of a mutual authentication, where A authen-
ticates itself to B as certified by a CA of B’s choice but it cares to do so only if
B is itself appropriately certified by the CA of A’s choice, we can ask whether
we can protect each party’s privacy fully, including its affiliation with particular
CA, against any entity which does not satisfy this party’s authentication policy.
In other words, we ask for a protocol which mimics the following ideal private
mutual authentication functionality, or an (unlinkable) Secret Handshake (SH):
A and B input their certificates and authentication policies, and the function-
ality returns 1 if A’s certificate matches B’s policy and B’s certificate matches
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A’s policy, and 0 otherwise. To be practical, SH scheme should match the per-
formance of a standard non-private PKI system (or a Group Signature Scheme):
The certificate of each user should be short and re-usable, the CA’s public key
should be short, authentication protocol should take O(1) rounds and public-
key operations, revocation information should be at most linear in the num-
ber of revoked players, and the scheme should support escrow, i.e. protocol
participants should be efficiently traceable by a trusted party from protocol
transcripts.

Applications of private mutual authentication range from peer-to-peer groups
to law-enforcement agencies who might be concerned with their privacy in the
sense of not wanting to publicly advertise the fact of their membership in a given
group. They might want to do this due to privacy concerns, e.g. in the case of
parties or clubs, to business concerns, e.g. a company who wants its employ-
ees or trading partners to be unrecognizable by competition, or due to security
concerns, e.g. in the case of members of some law-enforcement agency whose
safety is enhanced if their membership in the agency is not advertised. Secret
Handshakes allow members in any such group to constrain the dissemination of
the fact of their group membership only to other group members. Any group
member can still identify other members by engaging them in an authentica-
tion protocol, but using privacy escrow and revocation mechanisms a group can
revoke any member who poses a privacy risk to others.

Related Work. There exist efficient linkable Secret Handshakes which hide the
participants’ policy and source of certificates [BDS+03, CJT04, JKT07, JL08],
but they publicly reveal unique tokens assigned to each certificate, thus mak-
ing protocol instances executed by the same party linkable. SH’s can also
be thought of as a bidirectional counterpart to private uni-directional authen-
tication, i.e. identity-escrow [KP97], group signatures [CvH91], or unlinkable
credentials [CL01], but uni-directional authentication unconditionally reveals
prover’s affiliation to any verifier. An SH scheme without key escrow would
be implied by key-private broadcast encryption, whose ciphertext cannot be
linked to the broadcast encryption key. The two parties could then privately es-
tablish an authenticated key by encrypting nonces under broadcast encryption
keys associated with their CA’s. However, the ciphertexts of existing broadcast
encryption schemes, e.g. [NNL02, BGW05], can be easily linked to the revocation
lists corresponding to their encryption keys. The key-private broadcast encryp-
tion of [BBW06] has limited applicability because its ciphertext size is linear
in group size, while the key-private broadcast encryption of [JL07] is stateful,
and the corresponding SH scheme works only if group members have roughly
synchronized certificate revocation lists. (Private) attribute-based encryption
[GPSW06, BSW07] allows the sender to encrypt a nonce so that it can be de-
crypted only by a holder of a certificate for specified attributes issued by some
public key, and the ciphertext can hide this attribute from anyone who does
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not have the corresponding certificate. However, the ciphertext in these schemes
hides only the attributes and not the public key that issues the certificates.

Our Contributions. Our first contribution is the first practical private bi-
directional authentication scheme a.k.a. an (unlinkable) Secret Handshake (SH),
and the first practical private envelope scheme, a.k.a. an Anonymous Credential
scheme (AC), i.e. an envelope scheme with the privacy properties corresponding
to SH’s. Namely, the receiver can recover an encrypted message if and only if
its certificate matches sender’s authorization policy, but the protocol hides the
sender’s policy from any un-authorized receiver and it hides all information about
the receiver from the sender. All our schemes support certificate revocation and
privacy escrow, i.e. the group manager can recover otherwise hidden identity
of protocol participants from protocol transcripts. Our SH protocol has O(1)
communication rounds (3 in ROM) and requires about 40 exponentiations and
6 bilinear maps per player, with additional 2r bilinear maps if r is the size of the
revocation list, and our AC scheme has twice smaller costs because it is actually
just a one-sided version of our SH scheme.

Our technical contribution is an enabling tool of our SH and AC schemes, a
family of efficient Conditional Oblivious Transfer (COT) protocols for certain
cryptographically useful class of relations. A COT protocol for relation R is a
protocol between a sender S and a receiver R, which allows S, running on input a
statement x and a message m, to disclose m to R if and only if R holds a witness
for x in the language associated with relation R, i.e. a string w s.t. (x,w) ∈ R.
The protocol is oblivious in the sense that S does not learn anything, not even
whether there exists w which is a valid witness for sender’s statement x. We
call such COT protocol private if it also hides S’s statement x from any receiver
who does not hold a valid witness for x. COT is implied by secure two-party
computation [Yao86], but it was introduced as a primitive in [COR99], extended
to private COT in [Cre00], and later considered e.g. in [AIR01, BK04, LL07]. All
these works used slightly different terminology than ours, calling inputs x and
w just bitstrings and not statement and witness as we do, and they constructed
COT protocols at the cost of O(1) modular exponentiations for an equality
relation on bitstrings [AIR01], i.e. x = w, and at the O(k)-exponentiations cost
for monotonic Boolean formulas of size k [COR99, Cre00, AIR01, LL07, BK04].

We show practical COT protocols for relations that commonly appear in var-
ious cryptographic protocols e.g. group signatures, e-cash schemes, or thresh-
old schemes. Recall that a representation of a group element C in bases G =
(g1, ..., gm) is a vector w = (w1, ..., wm) s.t. C =

∏m
i=1(gi)

wi . We exhibit two
private COT protocols, one perfectly secure for the receiver and the other per-
fectly secure for the sender, with the computationally protected side in both
protocols secure under the DDH assumption, for any relation RREP(Φ) of the
following form: The relation RREP(Φ), for a predicate Φ on an n×m matrix w,
consists of pairs ((C,G),w) s.t. Φ(w) = 1 and the i-th row of w is a repre-
sentation of the i-th element in C in bases formed by the i-th row of G. Both
protocols we propose use a single execution of a ZKPK of values in the same
matrix w committed using the Pedersen commitment scheme [Ped91] (or its
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computationally-private but perfectly-binding modification) s.t. Φ(w) = 1. The
cost of our COT protocols is the cost of the ZKPK plus about (4 · |w|) expo-
nentiations for either party. Note that there exist ZKPK’s for various conditions
on values committed in Pedersen commitments, e.g. equality or inequality of
modular sums, products, or inverses, all using O(1) exponentiations. Our re-
sults transform any such ZKPK proof system into a private COT protocol for
the same relation, at the cost comparable to the cost of the ZKPK. Previous
COT constructions do not enable efficient COT protocols for such relations, and
since many cryptographic applications rely on efficiently provable relations on
committed values, practical COT protocols for such relations might enable new
privacy-protecting mechanisms beyond our SH and AC schemes.

Note that private COT forms an encryption counterpart to a zero-knowledge
proof of knowledge: The verifier can use a COT protocol to encrypt some message
m “under” a statement x, and the COT protocol ensures that the prover can
decrypt m only if she holds a valid witness w for x. However, private COT’s
can enable higher level that what is zero-knowledge proofs achieve: Consider a
server who wants to grant access to some resource m to a client if and only
if the client’s credential cert satisfies the sender’s authorization policy Pol, i.e.
Ver(Pol, cert) = 1. If a client proves in zero knowledge that Ver(Pol, cert) = 1,
this reveals the fact that the client holds a certificate which satisfies policy Pol
to any party who engages the client in this zero-knowledge proof as a verifier.
Moreover, the server who engages in a proof system as a verifier on its statement
Pol, even if this proof system is zero-knowledge, might also end up revealing this
statement to any party, whether or not this party holds a valid witness for this
statement. In contrast, the privacy of both parties is protected if the server
sends m to the client in a private COT protocol for relation Ver. Thus private
COT protocols for relation Ver would enable (fully) private envelopes, and a bi-
directional version of this envelope would make a private authentication scheme,
and in particular this is how our AC and SH schemes are constructed.

Organization. We start with a technical roadmap in Section 2. We set notation
in Section 3. We define private COT in Section 4. In Section 5 we construct a
private COT for relations on discrete logarithm representations with perfect se-
curity for the receiver. (For lack of space we have to omit from these proceedings
our alternative protocol with perfect security for the sender.) In Section 6 we
define SH schemes and construct such scheme on the basis of a group signature
by Boneh and Shacham [BS04] and a COT protocol like that of Section 5.

2 Technical Roadmap

We construct an unlinkable secret handshake using a group signature scheme
and a COT protocol on an appropriate relation. One possible way of doing this
could be as follows. Party A issues a group signature on a challenge message,
and B sends a nonce to A via a private COT protocol, s.t. A receives it if and
only if A’s commitment opens to a group signature which verifies under the
key specified in B’s authentication policy. Then the roles of the two parties are
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reversed: B creates and commits to its signature, and A sends its nonce to B via
the COT protocol on the same condition applied to B’s commitment and A’s
authentication policy. The first technical challenge lies in handling revocations:
It’s not clear how to check whether a signature is issued by some revoked member
when the signature is hidden behind the commitment, unless the signer (receiver
in the COT protocol) also attaches a proof that the committed signature is not
issued by anyone in the receiver’s revocation list. This seems hard because the
revocation list assumed by each party should also be hidden, or otherwise the
affiliation of that party is immediately revealed.

To avoid the problem caused with revocation we turn to the group signa-
ture (GS) scheme with verifier-local revocation (VLR) introduced by Boneh and
Shacham [BS04]. In a VLR-GS scheme the signer’s certificate consists of two
parts: The first is a random revocation token, unrelated to the group’s public
key, and the second is essentially a group manager’s signature on this revocation
token. In the VLR-GS scheme the signer first commits to its token using a com-
mitment scheme which is unlinkable without the knowledge of the committed
token, but is traceable given the token. (This latter property enables efficient
revocation.) The group signature then consists of this committed token and a
Zero-Knowledge Proof of Knowledge (ZKPK) of group manager’s signature on
this committed token, made non-interactive using the Fiat-Shamir heuristic.

We construct an unlinkable SH scheme using the same components of the
VLR-GS scheme, but replacing the above NI-ZKPK proof with a private COT
scheme for the same relation. Namely party A commits to its token, B uses the
traceability procedure to check if the committed token has not been revoked, and
if the check passes then B sends a nonce to A via a COT protocol s.t. A receives
the nonce if and only if A has a group manager’s signature on the committed
token, and then the roles are reversed. The reason this yields an efficient SH
construction when the VLR-GS scheme is instantiated with the scheme of [BS04]
is that the relation involved in the above COT protocol belongs to the class
RREP(Φ) of relations on discrete-log representations satisfying some arithmetic
constraints. In other words, the commitment to a token and the group public
key can be represented as a vector C and a matrix G of group elements, while
the decommitment and the group manager’s signature on the committed token
form a matrix of exponents w s.t. w satisfies certain set of arithmetic constraints
Φ and each row of w is a discrete-log representation of a corresponding element
in C in a vector of bases form by the same row of G.

Technically, the security argument for the above SH scheme follows easily
from the unforgeability of the group manager’s signatures if the COT protocol
guarantees extractability of a witness for the receiver’s statement from a receiver
which tells some information about the transferred message: In such case an
adversary which breaks the security of the authentication scheme immediately
implies efficient computation of a forgery of the group manager’s signature, since
the witness to the sender’s statement must be a valid signature on an unrevoked
token, and an unrevoked token is an unsigned message from adversary’s point
of view. A privacy argument for this SH scheme will be similarly aided if the
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COT protocol also guarantees extractability of a witness from a receiver which
tells any information about the sender’s statement. This is why the security and
privacy notion we give for a COT protocol in Section 4 requires extraction of
inputs from a “successful” receiver.

Finally, we sketch our COT construction for relation RREP(Φ). The receiver
cannot just run a ZKPK of w s.t. the arithmetic constraint Φ is satisfied and w
is the representation of C in bases G, where (C,G) is the statement assumed by
the receiver, because this would reveal this part of the receiver’s inputs to any
sender, and in particular it could reveal the CA who issued the receiver’s certifi-
cate. Instead, the receiver can independently commit to vector w and perform a
zero-knowledge proof of knowledge of a committed w which satisfies constraint
Φ. This protects all information about w (except that Φ(w) = 1, but this is
presumably true of any party engaging in this protocol) and it also ensures ef-
ficient extraction of some w s.t. Φ(w) = 1 from any malicious receiver. If the
receiver’s proof verifies then the sender follows an encryption-like procedure -
somewhat reminiscent of Cramer-Shoup’s projective hash [CS01] – which trans-
fers sender’s message M to the receiver but ensures that the receiver gets no
information about either the sender’s message M or its statement (C,G) unless
the committed matrix w is a representation of C in bases G. Looking ahead, in
the COT protocol of Figure 2 this additional commitment to w is denoted D,
and the encryption-like procedure outputs E, F, K̂ on inputs C,G,D and M .

3 Cryptographic Setting and Notation

Throughout the paper we assume that G is a multiplicative group of prime order
q, and that g is its generator. Our security statements in section 5 assume an
exact security version of the DDH assumption, i.e. we say that DDH is (t, ε)-hard
in group G if any t-time algorithm A has at most ε advantage in distinguish-
ing distributions {(g, ga, gb, gab)}a,b←RZq and {(g, ga, gb, gc)}a,b,c←RZq . If A is a
probabilistic algorithm then A(x; r) denotes an output of A on x and random
tape r. We use bold letters to denote vectors or matrices. We write w ∈ Sn×m

to denote a matrix w with dimensions n × m and elements in set S. We use
w[i, j] to designate an element in the i-th row and j-th column of w.

4 Definition of Private Conditional Oblivious Transfer

A COT protocol for message space M and relation R (and the language LR
implied by R as well as an implicit universe of “statement-looking” strings UR ⊇
LR) consists of two probabilistic interactive algorithms S and R, which execute
on S’s private inputs a message M in M and a bitstring x, and on R’s private
input a bitstring w. At the end of the interaction, R outputs message M if and
only if (x,w) ∈ R, and S has no output. (See Figure 1.) A COT protocol must
meet the following basic properties:
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S’s private input: R’s private input:
statement x, message M witness w

��
��

. . .S’s output: ⊥ R’s output: M if (x,w) ∈ R

Fig. 1. Functionality of a COT scheme for relation R between sender S and receiver R

Definition 1 (Completeness). A COT protocol for relation R and message
space M is complete if for any (x,w) ∈ R and any M ∈M, at the end of the
interaction between S(x,M) and R(w), R outputs M .

Definition 2 (Security). A COT protocol for relation R and message space
M is (t, ε)-secure if for any x �∈ LR, any M0,M1 ∈ M, any t-time algorithm
A, and any auxiliary information z,∣∣∣Pr[AS(x,M0)(x,M0,M1, z) = 1]− Pr[AS(x,M1)(x,M0,M1, z) = 1]

∣∣∣ ≤ ε

where the probabilities are taken over the randomness of A and S.

Definition 3 (Receiver Privacy). A COT protocol for relation R is (t, ε)-
receiver private if for any t-time algorithm A, any w0, w1, and any auxiliary
information z,∣∣∣Pr[AR(w0)(w0, w1, z) = 1]− Pr[AR(w1)(w0, w1, z) = 1]

∣∣∣ ≤ ε

where the probabilities are taken over the randomness of A and R.

However, the above security property has several limitations. First, it allows
the protocol to reveal sender’s message to any receiver if the sender’s statement
x is in the language. A more useful notion would require that the message is
revealed only to the receiver who holds a valid witness for x. This requirement
can be captured via extractability, i.e. if the receiver distinguishes the execution
of S(x,M0) and S(x,M1) then a witness w for x can be efficiently extracted
from this receiver. Moreover, a private COT protocol should protect sender’s
statement in a similar way, i.e. if the receiver distinguishes the execution of
S(x0,M) and S(x1,M) then a witness for either x0 or x1 can be extracted
from this receiver. We capture both of these properties in a notion of strong
security and sender privacy defined below. Technically, we define this notion
in terms of distinguishing between a “real” sender S(x,M) and a “simulated”
sender S(x′,M ′) which runs on any statement x′ and a random message M ′:
An adversary can distinguish between these two only if a witness for x in LR
can be extracted from this adversary. Note that this notion implies the intuitive
security and sender privacy properties discussed above. Moreover, this notion
is convenient for arguing security of applications of a private COT because it
implies that if an adversary distinguishes real and simulated protocols then the
reduction can extract a witness for the real sender’s statement.
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Definition 4 (Strong Security and Sender Privacy). A COT protocol for
relation R, statement universe U , and message space M is strongly secure and
sender private with soundness error δ if there exists an efficient extractor al-
gorithm Ext and a polynomial p(·) s.t. for any x, x′ ∈ U , any M ∈ M, any
efficient probabilistic algorithm A, any auxiliary information z (w.l.o.g. z con-
tains x, x′,M), and any randomness vector r, if

εA,z,r
�
=
∣∣∣Pr{$S}[AS(x,M)(z; r) = 1]− Pr{$S,M ′←RM}[AS(x′,M ′)(z; r) = 1]

∣∣∣ > δ

then
Pr{$Ext}

[
(x,w) ∈ R| w ← ExtA(z;r)

]
≥ p(εA,z,r − δ)

where $S and $Ext are the randomness of S and Ext respectively.
In concrete security terms, we call a COT protocol (t, text, qext, d, e)-strongly
secure and sender private with soundness error δ if the above requirement is
satisfied for any t-time adversary A, for polynomial p(ε) = dεe, and for algorithm
Ext running in time text and making at most qext calls to A.

5 Private COT Protocol for Relations on Representations

We give two constructions of a private COT protocol for any relation on so-called
representations of group elements. Our first construction relies on a witness-
indistinguishable proof of knowledge (WIPoK) for the same relation on values
committed using Pedersen commitment scheme [Ped91]. The second construction
needs a Strong WIPoK for the same relation on values committed in the follow-
ing simple perfectly binding but computationally hiding commitment scheme:
Comg,h,y(m) = (gr, yrhm). Security and sender privacy of the first COT proto-
col construction relies on the DDH assumption and the strong soundness of the
WIPoK proof system, while receiver privacy relies on witness-indistinguishability
of the WIPoK. For the second construction, security and sender privacy relies on
strong soundness of the SWIPoK, while receiver privacy relies on DDH assump-
tion and strong witness-indistinguishability of the SWIPoK. We show the first
construction below, while for lack of space we relegate our second construction
to the full version of this paper.

Let G be a multiplicative group of prime order q. A representation of group
element C ∈ G in bases (g1, ..., gn) ∈ Gn is any vector (w1, ..., wn) ∈ (Zq)n

s.t. C =
∏n
i=1(gi)

wi . Let Φ be a relation on sets of n × m elements in Zq,
i.e. Φ : (Zq)n×m → {0, 1}. Assume that Φ is satisfiable, i.e. there exists w s.t.
Φ(w) = 1. Moreover, assume that there exists an efficient procedure to find (any)
w, s.t. Φ(w) = 1.

We define a language REP(Φ) as a set of pairs (G,C),

G =

⎛⎜⎜⎝
G[1, 1], G[1, 2], . . . , G[1,m]
G[2, 1], G[2, 2], . . . , G[2,m]

. . .
G[n, 1], G[n, 2], . . . , G[n,m]

⎞⎟⎟⎠ ∈ G
n×m , C =

⎛⎜⎜⎝
C[1]
C[2]
. . .

C[n]

⎞⎟⎟⎠ ∈ G
n
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s.t. ∃ w ∈ (Zq)n×m s.t. Φ(w) = 1 and C[i] =
∏m
j=1(G[i, j])w[i,j] for all i ∈ [1..n].

RREP(Φ) is a relation corresponding to this language, i.e. set of pairs ((G,C), w)
which satisfy the above conditions, and UREP(Φ) includes all (G,C) ∈ G

n×m×G
n.

Construction of Private COT for RelationRREP(Φ). We construct a private
COT protocol for RREP(Φ) given a witness-indistinguish- able proof of knowledge
(WIPoK) for the following language:

PedREPg,h(Φ)
�
=
{

D ∈ Gn×m s.t. ∃w, r ∈ (Zq)n×m s.t. Φ(w) = 1
and ∀(i,j)∈[1..n]×[1..m] D[i, j] = gw[i,j] · hr[i,j]

}
Note that PedREP is a trivial language, i.e. every D ∈ Gn×m is in PedREP.
However, we require a (non-trivial) proof of knowledge of (w, r), given D, s.t.
(D, (w, r)) ∈ RPedREP whereRPedREP is a relation corresponding to this language,
i.e. set of pairs (D, (w, r)) which satisfy above conditions.

Practical ZKPK (and WIPoK) proofs exist for languages PedREPg,h(Φ) for
many useful constraints Φ. First, note that there exist efficient HVZKPK proof
systems with special HVZK and properties for many constraints involving val-
ues committed in Pedersen commitment, e.g. linear equations, i.e. φ(w) = 1 if
a1w[i1, j1] + a2w[i2, j2] = a3w[i3, j3] for some i1, i2, i3 ∈ [1..n] and j1, j2, j3 ∈
[1..m] and constants a1, a2, a3, or quadratic equations, i.e. w[i1, j1] = w[i2, j2] ·
w[i3, j3] (see e.g. [CM99]), a “less than” relation [Bou00], i.e. φ(w) = 1 iff
w[i1, j1] ≤ w[i2, j2], or an inequality relation, i.e. φ(w) = 1 iff w[i1, j1] �=
w[i2, j2]. Secondly, by results of[CDS94], such HVZKPK’s can be “compiled”
into an efficient HVZKPK’s for any constraint Φ formed by conjunctions and
disjunctions of such constraints. Finally, all such HVZKPK proof systems can
be compiled, with negligible overhead, into ZKPK proof systems, non-interactive
in ROM model (using Fiat-Shamir heuristic), 3-round in CRS model [Dam00],
or 5-round in the standard model [MP03].

The protocol proceeds given group G with generator g, on sender’s private
inputs an instance (G,C) ∈ Gn×m×Gn and a message M ∈ G, and on receiver’s
private input w. First the sender S sends to the receiver R a random h in G\{1}.
R aborts if h = 1. If Φ(w) �= 1, then R picks w′, s.t. Φ(w′) = 1, and sets w← w′.
Then R sends to S Pedersen commitments to all w[i, j]’s in w: picks r←R Gn×m,
creates D, s.t. D[i, j] = gw[i,j]hr[i,j], and proves using the WIPoK proof system
for PedREPg,h(Φ) that the committed values w satisfy the Φ relation, i.e. that
(D, (w, r)) ∈ RPedREP. If R passes the proof, S uses the instance (G,C) and
commitments D to encrypt M as follows: S picks random si’s in Zq for every
i ∈ [1..n] and random ti,j ’s in Zq for every (i, j) ∈ [1..n]× [1..m], and sends to R
the sets E,F of ciphertexts E[i, j] and F[i, j],

∀(i,j)∈[1..n]×[1..m] E[i, j] = (G[i, j])sigti,j and F[i, j] = hti,j

together with value K̂ =
∏n
i=1 Ki ·M , where

∀i∈[1..n] Ki = (C[i])si ·
m∏
j=1

(D[i, j])ti,j
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S’s private input: ((G,C),M) R’s private input: w

Pick h←R G \ {1} h �� Abort if h = 1
If Φ(w) �= 1

pick w′ in (Zq)n×m, s.t.
Φ(w′) = 1, and set w← w′

Pick r←R (Zq)n×m

Create D, s.t. D[i, j] = gw[i,j]hr[i,j]D��
WIPoK for

D∈PedREPg,h(Φ)��Create E, F and K̂ as follows:
∀i,j∈[1..m]×[1..n]

pick si ←R Zq, ti,j ←R Zq

E[i, j]← (G[i, j])si · gti,j
F[i, j]← hti,j

Ki ← (C[i])si · m
j=1(D[i, j])ti,j

K̂ ←M · n
i=1 Ki

(E,F,K̂) �� ∀i∈[1..n]

K′i ← m
j=1(E[i, j])w[i,j] · (F[i, j])r[i,j]

M ′ ← K̂ · n
i=1 K

′
i
−1

Fig. 2. COT Protocol for Relation RREP(Φ) (and Message Space G)

Finally R decrypts (E,F, K̂) as M ′ ← K̂ ·K ′1 · ... ·K ′n, where

∀i∈[1..n] K ′i =
m∏
j=1

(E[i, j])w[i,j] · (F[i, j])r[i,j]

Theorem 1. If DDH problem is (tddh, εddh)-hard, and the proof system in
the construction is (text, qext, d, e)-strongly-sound with soundness error δ, then
the above construction of COT protocol for RREP(Φ) is (tadv, text, qext, d′, e′, )-
strongly-secure-and-sender-private, with soundness error δ′, where tadv = tddh−
O(nm)texp, d′ = 1

2e+1 d, e′ = e+ 1, δ′ = 2δ + 4nmε, and texp is the time for one
exponentiation operation.

Proof sketch: First, by splitting lemma, if adversary A has εA advantage in
distinguishing the real game from the random game, i.e., between S(x,M) and
S(x′,M ′) for random M ′ in G, then for εA/2 portion of the h values sent by
S in the first round, A has εA/2 advantage in distinguishing the two games,
where in both games h is fixed to this chosen value. Suppose h sent by S is
from this portion. By strong soundness of the proof system, a pair (w, r) can
be extracted from A, s.t. D[i, j] = gw[i,j] · hr[i,j]. So what remains to argue
is that the extracted w is the witness for the real sender S(x,M)’s statement
x = (G,C). Note that (1) for each (i, j) pair, (F[i, j],E[i, j]) is an ElGamal
encryption of element (G[i, j])si under “key” h. Therefore by DDH assump-
tion (E,F) is indistinguishable from UGn×m×Gn×m , where UG denotes uniform
distribution over group G. Hence (E′,F′, K̂ ′) sent by S(x′,M ′) in the random
game is indistinguishable from UGn×m×Gn×m×G because M ′ is random in G;



100 S. Jarecki and X. Liu

and (2) Ki = C[i]si ·
∏m
j=1(D[i, j])ti,j computed by S((G,C),M) is indeed∏m

j=1((E[i, j])w[i,j] · (F[i, j])r[i,j]) · (C[i] · (
∏n
j=1(G[i, j])−w[i,j]))si . If w is not the

witness for (G,C), then there exists at least one i, s.t. C[i] �=
∏n
j=1(G[i, j])w[i,j].

Then because si is random in Zq, Ki is random in G and so is K̂. Hence
(E,F, K̂) sent by the real sender S((G,C),M) is also indistinguishable from
UGn×m×Gn×m×G. Therefore, the only way A can tell a difference between the
real and random games is either by breaking the DDH assumption or by feed-
ing the “correct” witness for the real sender S(x,M)’s statement and then the
extractor can extract it with large enough probability. �

The proof of the following theorem is simple, so we omit it for lack of space:

Theorem 2. If the proof system for PedREP is (t, ε)-witness-indistinguishable,
then the constructed COT protocol is (t, ε)-receiver-private.

6 Construction of Unlinkable Secret Handshake Scheme

We construct an unlinkable SH scheme from so-called “Verifier-Local Revoca-
ble” Group Signatures (VLR GS), introduced and realized under Strong Diffie-
Hellman and Decisional Linear assumptions by Boneh and Shacham [BS04].
Below we define unlinkable secret handshakes, specify the properties of a VLR-
GS scheme that are useful to us, and show a construction of an SH scheme using
such VLR-GS scheme and private COT protocol.

6.1 (Unlinkable) Secret Handshakes: Definition

An (Unlinkable) Secret Handshake Scheme (SH) is an authenticated key ex-
change protocol which operates in an environment with many groups, each man-
aged by some group manager GM, and N users P1, ..., PN , each of which can be
a member of several groups. Each GM plays a role of the Certificate Authority
for its group, issuing certificates to any user it wants to admit to its group, and
publishing revocation tokens for any user it wants to revoke from it. An SH
scheme consists of three algorithms Setup, KGen, and Trace, and an interactive
procedure Handshake, s.t.

– Setup on security parameter κ outputs parameters par (and key space K).
– KGen, executed by a group manager GM on input par, outputs a group public

key gpk and a vector of user keys usk = (usk[1],usk[2], . . . , usk[N ]) and re-
vocation tokens urt = (urt[1],urt[2], . . . ,urt[N ]). For notational simplicity
we assume that user Pi is given key usk[i] for every group it belongs to.

– Handshake is an interactive protocol between two users, where each Pi runs
on its private inputs (usk[i], gpk), and outputs a pair (k, tr) where k ∈ K
is a key material to be used for subsequent secure communication with the
protocol counterparty and tr is an escrow of that counterparty’s identity.

– Trace, on inputs (tr,urt[i]) outputs 1 if tr is linked to usk[i], 0 otherwise.
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Remark on Trace usage: Algorithm Trace has two uses: First, it can be used by
the group manager to de-escrow the identity of a player involved in any protocol
instance. Second, the intended usage of the above Handshake protocol, in which
player Pi always outputs some (k, tr) pair, is to be followed by a verification that
tr does not open to any revocation tokens included in the revocation list. If it
does, Pi throws away the created key k.

Remark on privacy of revoked users: The revocation tokens are kept secret
by the group manager, and published only to revoke a given player from a group.
Therefore all past transcripts of a given user can be linked to this user, via the
Trace algorithm, once the user is revoked. Such privacy limitation is a feature
the verifier-local revocation group signatures [BS04]. A stronger privacy model,
where past transcripts of revoked users remain private, can be supported by
group signature schemes using accumulators, e.g. [CL01, BBS04]. It is an open
question whether similar privacy can be efficiently achieved by an unlinkable
SH scheme. (The major difficulty stems from the fact that two communicating
players might assume different revocation epochs, and hence run the SH protocol
on incompatible accumulators.)

Properties of SH Scheme. An SH scheme must meet the following properties:

Completeness: For every par output by Setup and every (gpk,usk,urt) output by
KGen on par, if any two players Pi and Pj honestly execute the Handshake proto-
col with inputs (usk[i], gpk) and (usk[j], gpk) respectively, then their respective
outputs (ki, tri) and (kj , trj) satisfy ki = kj .1 (It will follow from the security
definition below that also Trace(trj ,urt[i]) = 1 and Trace(tri,urt[j]) = 1.)

Security (Traceability): Security of an SH scheme is similar to traceability in
a group signature scheme. Namely, it requires that if some player successfully
authenticates itself to some player Pi then Pi’s transcript of this protocol can
be linked to that player’s identity. Formally, security of an SH scheme is defined
via the following game between an adversary A and a challenger CHsec, on input
any par output by Setup:

– Init. The challenger CHsec, on input par and a bit b, runs KGen(par), which
defines (gpk,usk,urt), sends (gpk,urt) to A, and sets Cor← ∅.

– Queries. A can make the following queries, where each query is serviced by
the challenger sequentially, which disallows man in the middle attacks:
• Handshake(i). CHsec on this query performs the Handshake protocol on

inputs (usk[i], gpk), interacting with A.
• Corruption(i). CHsec sends usk[i] to A and adds i to Cor.

1 For notational simplicity, we present the completeness definition in the “symmetric”
setting where two players authenticate each other if they are in the same group.
However, our constructions generalize to the “asymmetric” setting, i.e. if usk[i] is
issued under gpkj and usk[j] is issued under gpki, then ki = kj .
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• Challenge(i). (Allowed only once.) CHsec acts as in the Handshake(i)
query, but denotes its outputs as (k, tr). If Trace(tr,urt[j]) = 1 for any
j ∈ Cor, the game stops. Else, CHsec assigns k0 ← k, picks k1 ←R K,
and gives kb to A.

– Guess. A outputs b′ as its guess of b.

Let pb = Pr[ACHsec(b,par)(par) = 1], where the probability goes over the random-
ness of both A and CHsec, and let Adv-Sec(A, par) = |p1 − p0|. We say that
an SH scheme is (t, qsh, N, ε)-secure on parameters par if in a universe with
N users, for any t-time adversary A making at most qsh Handshake queries,
Adv-Sec(A, par) ≤ ε.

Upgrade to Authenticated Key Agreement: If the Handshake protocol
meets the above notion then it should be straightforward to convert it to an
Authenticated Key Exchange (AKE) protocol secure against man-in-the-middle
attacks. However, since modeling of AKE protocols requires introduction of an
extended formalism, e.g. [BCK01], such compilation is out of scope of this paper.

Privacy: The privacy property covers both the anonymity property of group
signatures, i.e. that no one except the group manager can detect if two instances
of the SH protocol are executed by the same user, together with the affiliation-
hiding property of secret handshake protocols (e.g. [BDS+03, CJT04]), i.e. that
no one can detect which group a given player belongs to except of non-revoked
members of the same group. Formally, we define privacy via the following game
between an adversary A and the challenger CHpri, on input any parameters par
output by Setup:

– Init. The challenger CHpri, on input par and a bit b, runs KGen(par) for
every group G, with outputs denoted (gpkG,uskG,urtG), gives gpkG for all
groups G to A, and sets Cor← ∅ and Chosen← ∅.

– Queries. A can make the following types of queries. As in the security game,
the challenger services each query sequentially:
• Handshake(i, G). CHpri runs Handshake on (uskG[i], gpkG), interacting

with A.
• Corruption(i). If i �∈ Chosen then A gets uskG[i],urtG[i] for every G.

Let Cor← Cor ∪ {i}.
• Challenge(i0, G0, i1, G1). (Allowed only once.) Set Chosen← {i0, i1}. If

Chosen ∩ Cor �= ∅ then the game stops. Otherwise CHpri runs Handshake
on input (uskGb [ib], gpkGb), interacting with A.

– Guess. A outputs b′ as its guess of b.

Let pb = Pr[ACHpri(b,par)(par) = 1], where the probability goes over the random-
ness of both A and CHpri, and let Adv-Pri(A, par) = |p1 − p0|. We say that a
SH scheme is (t, qsh, N, ε)-private on parameters par if in a universe with N
users, for any t-time adversary A making at most qsh Handshake queries,
Adv-Sec(A, par) ≤ ε.
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6.2 Verifier-Local Revocable Group Signature (VLR-GS)

A VLR-GS scheme consists of the following algorithms: A setup procedure
SetupGS which creates public parameters par, an unforgeable certificate scheme
Πcert = (KeyGen,Certpar,Verpar), a non-interactive zero-knowledge proof for re-
lation RAUTH which we define below, and two additional procedures Compar and
TraceCompar. The functionality of the certificate scheme Πcert is that if (sk, pk)
is an output by KeyGen(par) then each run of Certpar(sk) generates a new to-
ken/secret pair (tk, scr) s.t. Verpar(pk, tk, scr) = 1. To enable an efficient VLR-GS
scheme, three conditions must be met:

I. The outputs of Com must be traceable in the sense that (1) TraceCompar(C, tk)
= TraceCompar(C, tk′) = 1 implies tk = tk′, and (2) TraceCompar (C, tk) = 1 if
and only if ∃ r s.t. C = Compar(tk; r), and that .

II. There must exist an efficient non-interactive ZKPK proof system for language

AUTH(par) =
{

(C, pk) s.t. ∃ (tk, scr, r) s.t. C = Compar(tk; r)
and Verpar(pk, tk, scr) = accept

}
III. The certificate scheme Πcert must be existentially unforgeable:

Definition 5. We say that the certificate scheme Πcert is (t, q̂, ε)-unforgeable
on parameters par if for any t-time adversary A, the probability of the following
event is at most ε: First (sk, pk) is generated by KeyGen(par), then Certpar(sk) is
executed q̂ times to generate q̂ token/secret pairs (tki, scri), and then A on input
par, pk, and {tki, scri}i=1,..,q̂, outputs (tk∗, scr∗) s.t. Verpar(pk, tk∗, scr∗) = 1 and
tk∗ �= tki for all i. The probability in this experiment runs over the randomness
of A and procedures KeyGen and Cert.

Under the above conditions a VLR-GS scheme works as follows. The group public
key is pk output by KeyGen, and each group member’s signature key is (tk, scr)
output by Certpar on the corresponding sk. A signature under group key pk
consists of C = Compar(tk) and a non-interactive ZKPK for (C, pk) ∈ AUTH(par).
Any user can be revoked by the group manager adding the token part tk in
his/her key to the CRL. A verifier then checks if TraceCompar(C, tk) = 1 for each
tk in the CRL. However, to enable our SH construction a VLR-GS scheme must
meet two more properties:

IV. Token tk in pair (tk, scr) output by Certpar(sk) must be uniformly distributed
in some set Ut defined by par and independent of key sk.

V. Values C output by Compar(tk) hide the tk value, not in the sense of semantic
security, because knowledge of tk enables linking C to tk via TraceCom, but in
the following sense:

Definition 6. We say that the algorithm Com is (t, qcom, ε)-private on param-
eters par, if for any t-time adversary A with at most qcom oracle accesses to
procedures Com(tk0) and Com(tk1), we have |p0 − p1| ≤ ε where

pb
�
= Pr[ACompar(tk0),Compar(tk1)(par, Cb) = 1 | tk0, tk1 ←R U, Cb ← Compar(tkb)]

where the probability additionally goes over the randomness of A and Com.



104 S. Jarecki and X. Liu

6.3 Construction of SH’s from VLR-GS and Private COT

Assume we have a VLR-GS scheme consisting of procedures SetupGS, KeyGen,
Cert, Ver, Com, and TraceCom which satisfy all the above requirements. Assume
also a private COT protocol for relation RAUTH(par) and message space M cor-
responding to this VLR-GS scheme. An SH scheme (Setup, KGen, Handshake,
Trace) is constructed as follows:

– Setup is the same as SetupGS, and keyspace K is the message space M.
– KGen, on input par, first computes (sk, pk) ← KeyGen(par), then computes

(tki, scri) ← Certpar(sk) for i = 1, .., N , and outputs (gpk,usk,urt) where
gpk = pk, and for all i we assign usk[i]← (tki, scri) and urt[i]← tki.

– Protocol Handshake, executed between players Pi and Pj : Player Pi runs
the protocol on inputs (uski, gpki) for some group in which Pi is a member.
Similarly Pj runs it on (uskj , gpkj) for some group in which Pj is a member.
The protocol proceeds as in Figure 3.

Pi(uski, gpki) Pj(uskj , gpkj)

Ci ← Com(uski; ri) for random ri
Ci ��

Rcot : wi = (uski, ri) Scot : xj = (Ci, gpkj), Mj ←RMCOT for
RAUTH(par)��

get M ′j from the COT protocol

Cj ← Com(uskj ; rj) for random rj
Cj��

Scot : xi = (Cj , gpki), Mi ←RM Rcot : wj = (uskj , rj)COT for
RAUTH(par) ��

get M ′i from the COT protocol

output ki = Mi ·M ′j output kj = Mj ·M ′i

Fig. 3. Handshake between Pi and Pj with inputs (uski, gpki) and (uskj , gpkj)

– Trace, on inputs tr and tk, outputs TraceCompar(tr, tk).

For lack of space we omit the proofs of the following theorems:

Theorem 3 (SH Security). For any par outputted by SetupGS, if Compar is
traceable, Πcert is (t1, q1, ε1)-unforgeable on par, and if the COT protocol for
Rauth(par) is (t2, text, qext, d, e)-strongly-secure and sender-private with soundness
error δ, and (t3, ε3)-receiver-private, then the above SH scheme is (t′, qsh, q1, ε′)-
secure, where t′ = min{t2, (t1− text)/(qext +1), t3}, ε′ = (q1 +1)(ε1/d)1/e+ δ)+
q1 · qsh · ε3.

Theorem 4 (SH Privacy). For any par outputted by Setup(κ), if the Compar

algorithm is (t1, q1, ε1)-private and is uniquely traceable, if Pcert is (t2, q2, ε2)-
unforgeable and if the COT protocol for Rauth(par) is (t3, text, qext, d, e)-strongly-
secure-and-sender-private with soundness error δ,and (t4, ε4)-receiver-private,
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then the above SH scheme is (t′, qsh, q2, ε′)-private, where t′ = min{t1, (t2 −
text)/(qext + 1), t3, t4}, ε′ = ε1 + ((q2 + 1)(ε2/d)1/e + δ) + (q2 · qsh · ε4) + ε4, and
qsh ≤ q1.

Note that the SH scheme presented above is a generic construction from appro-
priate VLR-GS components and an associated private COT protocol. For lack
of space we omit from these proceedings a description of a concrete implemen-
tation where all components are instantiated with those used in the VLR-GS
scheme of [BS04]. However, it is easy to see that relation RAUTH defined by these
components can be transformed to a special case of relation RREP(Φ) of Section
5, and therefore an efficient private COT protocol for this relation is implied by
the private COT for RREP(Φ) given in Figure 2.
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Abstract. We construct an efficient delegatable anonymous credentials
system. Users can anonymously and unlinkably obtain credentials from
any authority, delegate their credentials to other users, and prove posses-
sion of a credential L levels away from a given authority. The size of the
proof (and time to compute it) is O(Lk), where k is the security param-
eter. The only other construction of delegatable anonymous credentials
(Chase and Lysyanskaya, Crypto 2006) relies on general non-interactive
proofs for NP-complete languages of size kΩ(2L). We revise the entire
approach to constructing anonymous credentials and identify random-
izable zero-knowledge proof of knowledge systems as the key building
block. We formally define the notion of randomizable non-interactive
zero-knowledge proofs, and give the first instance of controlled reran-
domization of non-interactive zero-knowledge proofs by a third-party.
Our construction uses Groth-Sahai proofs (Eurocrypt 2008).

1 Introduction

Access control is one of the most fundamental problems in security. We fre-
quently need to answer the question: does the person requesting access to a
resource possess the required credentials? A credential typically consists of a
certification chain rooted at some authority responsible for managing access to
the resource and ending at the public key of the user in question. The user
presents the credential and demonstrates that he knows the corresponding se-
cret key. Sometimes, the trusted authority issues certificates directly to each user
(so the length of each certification chain is 1). More often, the authority dele-
gates responsibility. A system administrator allows several webmasters to use
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his server. A webmaster can create several forums, with different moderators
for each forum. Moderators approve some messages, reject others, and even give
favored users unlimited posting privileges. Imagine the burden on the system
administrator if he had to approve every single moderator and user for every
single forum.

We want cryptographic credentials to follow the same delegation model as
access control follows in the real world. The system administrator can use his
public key to sign a webmaster’s public key, creating a credential of length 1. In
general, a user with a level L credential can sign another user’s public key and
give him his credential chain, to create a level L + 1 credential.

The design of an anonymous delegatable credential scheme in which par-
ticipants can obtain, delegate, and demonstrate possession of credential chains
without revealing any additional information about themselves is a natural and
desirable goal. Our main contribution is the first efficient delegatable anonymous
credential scheme. The only known construction of delegatable anonymous cre-
dentials, due to Chase and Lysyanskaya [CL06], needs kΩ(L) space to store a
certification chain of length L (for security parameter k), and therefore could
not tolerate non-constant L. Our solution is practical : all operations on chains
of length L need Θ(kL) time and space.

Pseudonymous systems. Prior work on anonymous credentials [CL02b, BCKL08]
created systems where each user has one secret key but multiple “public keys.”
Given a secret key skA, Alice can create a new public key by choosing a random
value open and publishing a commitment pkA = Commit(skA, open). Alice could
register pkA with Oliver and pk ′

A with Olga.
Oliver can give Alice a credential by signing the statement that the value in

commitment pkA has some attribute. Alice can then show pk ′
A to Olga and prove

that Oliver signed that the value in pk ′
A had that attribute. This works because

pkA and pk ′
A are commitments to the same value skA. The chief building block

of an anonymous credential scheme is a signature scheme that lends itself to the
design of efficient protocols for (1) obtaining a signature on a committed value;
and (2) proving that a committed value has been signed.

Why delegation is a challenging problem. There is no straightforward trans-
formation of anonymous credential schemes [Cha85, Bra99, LRSW99, CL01,
BCKL08] into delegatable schemes. Suppose instead of giving Alice a direct cre-
dential, Oliver delegates his own credential to Alice. If Oliver gives Alice a sig
on Oliver’s secret key, then Alice could learn who gave Oliver his credential.
Generalizing this approach would reveal to Alice the identity of every person in
Oliver’s credential chain.

Our approach. Instead of giving Alice his signature, Oliver gives Alice a non-
interactive proof-of-knowledge of the signature. We show how Alice can (1) del-
egate the credential by extending the proof and (2) rerandomize the proof every
time she shows (or extends it) to preserve her anonymity.

Let’s say Oliver is a credential authority and Alice wants to obtain the cre-
dential directly from Oliver (so her certification chain will be of length 1). Under
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the old approach, they would run a secure two-party protocol as a result of which
Alice obtains a signature σpkO

(skA) on skA, while Oliver gets no output. Un-
der the new approach, Alice’s output is (CA, πA), where CA is a commitment
to her secret key skA, and πA is a proof of knowledge of Oliver authenticating
the contents of CA. Note that a symmetric authentication scheme is sufficient
because no one ever sees the authenticator ; all verification is done on the proof
of knowledge. The symmetric key skO is still known only to Oliver; we create a
“public” key CO that is simply a commitment to skO.

How can Alice use this credential anonymously? If the underlying proof sys-
tem is malleable in just the right way, then given (CA, πA) and the opening to
CA, Alice can compute (C ′

A, π
′
A) such that C ′

A is another commitment to her skA

that she can successfully open, while π′
A is a proof of knowledge of Oliver au-

thenticating the contents of C ′
A. Malleability is usually considered a bug rather

than a feature. However, in combination with the correct extraction properties,
we still manage to guarantee that these randomizable proofs give us a useful
building block for the construction.

How does Alice delegate her credential to Bob? Alice and Bob can run a secure
protocol as a result of which Bob obtains (CB , πB) where CB is a commitment
to Bob’s secret key skB and πB is a proof of knowledge of an authenticator
issued by the owner of C ′

A on the contents of CB . Now, essentially, the set of
values (C ′

A,CB, π′
A, πB) together indicate that the owner of C ′

A got a credential
from Oliver and delegated to the owner of CB , and so it constitutes a proof of
possession of a certification chain. Moreover, it hides the identity of the delegator
Alice! Now Bob can, in turn, use the randomization properties of the underlying
proof system to randomize this set of values so that it becomes unlinkable to his
original pseudonym CB; he can also, in turn, delegate to Carol.

Randomizable proof systems. The key to our construction is a randomizable
proof system that lets the prover (1) randomize the proof without knowing the
witness, and (2) control the outcome of the randomization process. This is a
fundamentally new notion, and one we think will be of independent interest.
We give a formal definition and show that we can instantiate it by adding a
randomization procedure to the pairing-based proof system of Groth and Sahai
[GS08]. Our use of pairings is not merely a matter of efficiency – we do not know
of any proof system based on general assumptions that can be randomized.

In fact the Groth-Sahai proofs allow us to go beyond merely randomizing
the proof to actually change the statements we are proving. What do we mean
by this? Groth-Sahai proofs make statements about the values inside commit-
ments. Let C = Commit(x, open). A prover who knows (x, open) can choose
a new value open ′ so that in the rerandomized proof, C is transformed to
C′ = Commit(x, open ′). Otherwise, the prover can choose whether to leave C
unchanged or randomize it to C′ that uses a some random open ′ unknown to
the prover. This fine level of control together with the basic randomization prop-
erty gives a very useful building block, which is crucial in our application.

There has been prior work on some related notions: Burmester et al [BDI+99]
show a third party can help randomize proofs during the execution of an
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interactive protocol to prevent subliminal channels. De Santis and Yung [DSY90]
propose the notion of meta proofs, in which anyone who holds a proof for a given
statement can generate a proof that there exists a proof for the statement. Nei-
ther of these approaches work for our scenario because we need to randomize
non-interactive proofs, and, unlike a meta-proof, the randomized proof must be
indistinguishable from the original.

Our delegatable credentials construction. We construct delegatable credentials
using randomizable proofs. By concatenating rerandomized credential chains,
we can create a credential chain of length L that takes O(L) space. Our strong
anonymity properties are an immediate consequence of rerandomization: each
showing of the credential is unlinkable and users do not learn the identities of
delegators in their own credential chain.

Our solution (1) prevents adversarial users from mixing and matching pieces
of different credential chains to create unauthorized credential chains and (2)
protects the user’s anonymity even when the adversary delegates to the user.
We solve the second problem by creating an authentication scheme (symmetric
signature scheme) that is secure even when the adversary gets a signature on
the user’s secret key.

Attributes. Our delegatable anonymous credentials system lets users add human-
readable attributes to each credential. Oliver can give Alice a level 1 credential
with attribute “webmaster of Crypto Forum”. Alice can then delegate her cre-
dential to Bob with attribute “moderator of Crypto Forum”. As a result, Bob
can log on to the server anonymously and prove that the “webmaster of Crypto
Forum” made him the “moderator of Crypto Forum”. Our construction lets
users add as many attributes as they want to each credential, allowing for the
expressibility that we see in modern (non-anonymous) access control systems.

Advanced abuse prevention mechanisms. Our construction shows how to effi-
ciently implement maximum anonymity at all levels and all roles in the dele-
gation chain—with the exception of the credential authority. Some applications
will not require this full anonymity. Indeed, a large number of abuse prevention
mechanisms for anonymous credentials (anonymity revocation [CL01], credential
revocation [CL02a], limited show [CHK+06]) aim at striking a balance between
privacy and accountability. Concerning our own scheme we make three simple ob-
servations: (i) global traceability can be achieved by providing a trusted tracing
authority with the extraction trapdoors for the common parameters of the Groth
Sahai (GS) proof system; (ii) at the last level of the delegation chain, we can
make use of all abuse prevention mechanisms known for traditional anonymous
credentials; (iii) many abuse prevention mechanisms known from the literature
can be adapted to our construction by replacing traditional sigma proofs [Dam02]
with GS proofs [GS08].

Other related work. At first glance, our delegatable credentials scenario might
resemble the HIBE or HIBS settings [GS02, BBG05], where a root delegator
can issue decryption or signing keys to recipients, who in turn can delegate sub-
keys to lower level participants. There are two key differences between such a
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HIBE/HIBS scheme and anonymous credential schemes: (1) In HIBE/HIBS two
users with the same attributes are completely interchangeable while an anony-
mous credentials system gives them distinct sets of pseudonyms and (2) anony-
mous credentials allow a user to show that he has obtained valid credentials from
two independent authorities.

In a somewhat different direction, Barak [Bar01] presented a general (inef-
ficient) construction for delegatable signatures. In that work, the goal was a
signature scheme which would allow the signer to delegate signing rights for a
restricted message space, such that signatures generated with the delegated key
are indistinguishable from the originals. In our setting, we want the opposite:
once we delegate a credential, the delegatee should be able to issue lower level
credentials to any users he chooses, however we require that credentials at dif-
ferent levels be clearly distinguishable. Finally, the definition in [Bar01] does not
consider anonymity between the delegator and the delegatee, while we do.

Our contribution and organization of the paper. We (1) define and construct a
randomizable NIZKPK (Section 2) and (2) define and construct an efficient dele-
gatable anonymous credential system (Section 3). We also create an appropriate
message authentication scheme and some other additional building blocks for
the delegatable credentials scheme. We show how these building blocks can be
instantiated under appropriate assumptions about groups with bilinear maps.

2 Randomizable NIZK Proof Systems

Let R(params , y, w) be any polynomial-time computable relation. A non-
interactive proof system for relation R allows the prover to convince a veri-
fier that for some instance y there exists a witness w such that R(params , y, w),
where params is a common (public) reference string. The prover generates a proof
π ← Prove(params , y, w), the verifier checks it via VerifyProof(params , y, π). A
trusted third party runs params ← Setup(1k) once to initialize the system.

Informally, zero-knowledge captures the notion that a verifier learns noth-
ing from the proof but the truth of the statement. Witness indistinguishability
merely guarantees that the verifier learns nothing about which witness was used
in the proof. Soundness means an adversary cannot convince an honest verifier
of a false statement. Completeness means all honest verifiers accept all correctly
computed proofs. See [GMR89, Gol00, BFM88, FLS99] for formal definitions.

We define randomizable proof systems, which have an additional algorithm
RandProof that takes as input a proof π for instance y in relation R, and produces
a new proof for the same statement y. The resulting proof must be indistinguish-
able from a new proof for y. We allow the adversary to choose the instance y,
the proof π that is used as input for RandProof, and the witness w that is used
to form a new proof of the same statement. Formally:

Definition 1. We say that Setup,Prove,VerifyProof,RandProof constitute a
randomizable proof system if the following property holds. For all ppt. (A1,A2)
there exists a negligible function ν such that:
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Pr[params ← Setup(1k); (y, w, π, state)← A1(params);
π0 ← Prove(params , y, w);π1 ← RandProof(params , y, π);
b← {0, 1}; b′← A2(state, πb) :
RL(y, w) ∧ VerifyProof(params , y, π) = 1 ∧ b = b′] ≤ 1/2 + ν(k) .

2.1 Instantiating a Randomizable Proof System

Randomization is a fundamentally new property. It is not clear how one might
randomize proofs in any of the existing NIZK proof systems [BDMP91, KP98,
FLS99] without knowing the witness. The one exception is the recent proof system
of Groth and Sahai [GS08] ( an extension of [GOS06]), which gives witness
indistinghishable (and in some cases zero-knowledge) NIPKs. We will show how
to add a randomization procedure to Groth-Sahai proofs.

Summary of Groth-Sahai proofs. Let paramsBM = (p,G1, G2, GT , e, g, h) be the
setup for pairing groups of prime order p, with pairing e : G1 ×G2 → GT , and
g, h generators of G1, G2 respectively.1

The instance consists of the coefficients of a pairing product equation:

{aq}q=1...Q ∈ G1, {bq}q=1...Q ∈ G2, t ∈ GT , and {αq,m}q=1...Q,m=1...M ,
{βq,n}q=1...Q,n=1...N ∈ Zp. The prover knows {xm}Mm=1, {yn}Nn=1 that satisfy the
pairing product equation

∏Q
q=1 e(aq

∏M
m=1 x

αq,m
m , bq

∏N
n=1 y

βq,n
n ) = t.

The prover creates perfectly binding, computationally hiding commitments
{cm}m=1...M and {dn}n=1...N for all values xm, yn in G1 and G2 respectively.
The instance is the pairing product equation (e.g. its coefficients) and the above
commitments, while the witness, known only to the prover, is the values and
openings of these commitments.

We now describe how to construct the proof. Let M1, M2, and MT be R-
modules for some ring R, and let E : M1×M2 →MT be a bilinear map. Also let
μ1, μ2, μT be efficiently computable embeddings that map elements of G1, G2, GT

into M1,M2,MT , respectively. The public parameters paramsPK contain ele-
ments u1, . . . , uI ∈ M1, v1, . . . , vJ ∈ M2 and values ηh,i,j , 1 ≤ i ≤ I, 1 ≤ j ≤ J ,
and 1 ≤ h ≤ H .

To create a Groth-Sahai commitment to x ∈ G1, choose random opening
open = (r1, . . . , rI) ← RI , and compute c = μ1(x) ·

∏I
i=1 u

ri

i . Elements y ∈ G2
are committed to in the same way using μ2 and v1, . . . , vJ ∈M2, and an opening
vector open ∈ RJ . For simplicity we assume that GSCommit(paramsPK ,m, open)
first determines whether m ∈ G1 or m ∈ G2 and then follows the appropriate
instructions.

Groth and Sahai [GS08] show how to efficiently compute proofs {πi}Ii=1,
{ψj}Jj=1 that prove that the openings of the cm and dn satisfy a pairing product
equation. The verifier computes, for all 1 ≤ q ≤ Q, ĉq ← μ1(aq) ·

∏M
m=1 c

αq,m
m

1 For simplicity, we do not consider Groth-Sahai proofs for composite order groups.
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and d̂q ← μ2(bq) ·
∏N

n=1 d
βq,n
n . Then the verifier checks that

∏Q
q=1 E(ĉq, d̂q) =

μT (t) ·
∏I

i=1 E(ui, πi) ·
∏J

j=1 E(ψj , vj).

Randomizing Groth-Sahai proofs. RandProof gets as input an instance with the
aq, bq, t, αq,m, βq,n values as well as the proof [(π1, . . . , πI , ψ1, . . . , ψJ), Π ]. Π con-
tains the internal commitments c1, . . . , cM and d1, . . . , dN .

The algorithm first chooses randomization exponents (s1,1, . . . , sM,I) and
(z1,1, . . . , zN,J) at random from Zp. It then rerandomizes the commitments cm

and dn to c′m = cm ·
∏I

i=1 u
sm,i

i and d′n = dn ·
∏J

j=1 v
zn,j

j . Then it computes

ŝq,i =
∑M

m=1 sm,i · αq,m, ẑq,j =
∑N

n=1 zn,j · βq,n, and D′
q ← μ2(bq) ·

∏N
n=1 d

′βq,n
n

and Cq ← μ1(aq) ·
∏M

m=1 c
αq,m
m . Next, the prover sets π′

i ← πi ·
∏Q

q=1(D
′
q)ŝq,i and

ψ′
j ← ψj ·

∏Q
q=1(Cq)ẑq,j . These π′

i and ψ′
j will satisfy the verification equation

for the new commitments.
Now the prover must make a certain technical step to fully randomize the proof.

Intuitively, for every set of commitments, there are many proofs (π1, . . . , πI ,
ψ1, . . . , ψJ) that can satisfy the verification equation. Given one such proof, we
can randomly choose another: The prover chooses ti,j , th ← R, and multiplies each

π′
i := π′

i ·
∏J

j=1 v
ti,j

j and each ψ′
j := ψ′

j ·
∏I

i=1 u
∑H

h=1 thηh,i,j

i

∏I
i=1 u

ti,j

i . See [GS08]
for a detailed explanation.

The algorithm outputs the new proof [(π′
1, . . . , π

′
I , ψ

′
1, . . . , ψ

′
J), Π ′] where Π ′

contains the internal commitments c′1, . . . , c
′
M and d′1, . . . , d

′
N . See full version

[BCC+08] for details. A similar approach works for composite order groups.

Composable Proofs. Groth-Sahai proofs are composable witness indistinguish-
able, and in some cases composable zero-knowledge. To simplify our definitions
and proofs, we use a similar notion for randomizability.

In a composable (under the definition of Groth and Sahai [GS08]) non-
interactive proof system there exists an algorithm SimSetup that outputs params
together with a trapdoor sim , such that params output by SimSetup is indistin-
guishable from those output by Setup. Composable witness-indistinguishability
(or zero-knowledge) requires that, under these parameters, the witness-indistin-
guishability (resp. zero-knowledge) property holds even when the adversary is
given the trapdoor sim . Groth-Sahai commitments are perfectly hiding under the
simulated parameters. (Under the honest parameters they are perfectly binding.)
In the same spirit, we say the composable randomizability property must hold
even when the distinguisher is given the trapdoor sim .

2.2 Malleable Proofs and Randomizable Commitments

For our application, randomizing proofs is not sufficient. We also need to ran-
domize (anonymize) the statement that we are proving. Consider a family of
transformations {Ys, Ps}s∈S that transform the instance and the proof respec-
tively (for us, S is the set of all possible commitment openings). We require that
∀(y, π), ∀s ∈ S, if π is a valid proof for y, then Ps(π) is a valid proof for Ys(y).
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Definition 2. We say that Setup, Prove, VerifyProof, RandProof, {Ys, Ps}s∈S,
constitute a Y -malleable randomizable proof system, if for all ppt. A there exists
a negligible ν such that:

Pr[params ← Setup(1k); (y, π, s)← A(params) :
VerifyProof(params , y, π)=1 ∧ VerifyProof(params , Ys(y), Ps(π)) = 0]=ν(k) .

If we apply RandProof to Ps(π), then the result will be indistinguishable from a
random fresh proof for Ys(y).

Groth-Sahai proofs can be used to prove that the values in a given set of
commitments form a solution to a specific set of pairing product equations; the
commitments can be part of the proof or the instance y. In our application, we
will need to anonymize not only the proof, but also the commitments in the
instance.

Suppose a prover wants to show that some Condition holds for the values
inside commitments C1, . . . , Cn. Then the instance is y = (Condition, C1, . . . ,
Cn), and the witness is w = (x1, open1, . . . , xn, openn, z), where (xi, open i) is
the opening of commitment Ci, while z is some value that has nothing to
do with the commitments. We define the relation R = {(params , y, w)|C1 =
Commit(params , x1, open1) ∧ . . . ∧ Cn = Commit(params , xn, openn) ∧ Condition
(params , x1, . . . , xn, z)}. A proof system supports randomizable commitments if
there exist efficient algorithms Y and P , such that on input (s, y, π), where s =
(open ′

1, . . . , open ′
n) and π ← Prove(params , y, w), (1) Y (s, y) outputs instance

y′ = (Condition, C′
1, . . . , C

′
n), where C′

i = Commit(params , xi, open i + open ′
i),

(2) P (s, π) outputs a proof π′ for instance y′, and (3) Y and P fulfill the mal-
leability requirements of Definition 2.

Lemma 1. The Groth-Sahai proof system is malleable with respect to the ran-
domness in the commitments. See full version [BCC+08] for details.

Remark 1. To simplify notation, RandProof will take s = (open ′
1, . . . , open

′
n)

as input, apply Ps, and then run the randomization algorithm. To leave Ci

unchanged, we set open ′
i = 0.

2.3 Partially Extractable Non-interactive Proofs of Knowledge

A NIPK system is a non-interactive proof system that is extractable. We recall
the notion of f-extractability [BCKL08], which is an extension of the original
definition of extractability [SCP00]. In an extractable proof system, there ex-
ists a ppt. extractor (PKExtractSetup,PKExtract). PKExtractSetup(1k) outputs
(td , params) where params is distributed identically to the output of Setup(1k).
For all polynomial time adversaries A, the probability that A(1k, params) out-
puts (y, π) such that VerifyProof(params , y, π) = accept and PKExtract(td , y, π)
fails to extract a witness w such that R(params , y, w) = accept is negligible
in k. We have perfect extractability if this probability is 0. f -Extractability
means that the extractor PKExtract only has to output a w′ such that ∃w :
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R(params , y, w) = accept ∧ w′ = f(params , w). If f(params , ·) is the identity
function, we get the usual notion of extractability.

Let C be an unconditionally binding commitment. By ‘x inC’ we mean ∃open :
C = Commit(params , x, open). We use NIPK notation [CS97, BCKL08], to de-
note an f -extractable NIPK for instance (C1, . . . , Cn,Condition) with witness
(x1, open1, . . . , xn, openn, z):

π ← NIPK[x1 inC1, . . . , xn inCn]{( f(params , (x1, open1, . . . , xn, openn, z) ) ) :
Condition(params , x1, . . . , xn, z)}.

The f -extractability property ensures that if VerifyProof accepts then we can ex-
tract f(params , (x1, open1, . . . , xn, openn, z)) from π, such that xi is the content
of the commitment Ci, and Condition(params , x1, . . . , xn, z) is satisfied.

In our notation, π ∈ NIPK[. . . } means that VerifyProof accepts the proof π for
instance (C1, . . . , Cn,Condition). To further abbreviate notation, we omit params
and assume that Condition is clear from the context, and so the sole inputs to
VerifyProof are (C1, . . . , Cn) and π. If the proof is zero-knowledge instead of
merely witness indistinguishable, we will write NIZKPK.

The concatenation of two proofs π and π′ is a proof π ◦ π′ that combines all
the commitments and proves the AND of the two conditions. If a proof π proves
a condition about a set of commitments C, a projection π′ = π ◦ S proves a
condition about the contents of the subset C \ S of commitments. A projected
proof π′ is obtained by removing the commitments in S from the instance and
appending them to the proof.

Groth-Sahai proofs give us NIPK of the form:

NIPKGS[
{
xm in cm

}M

m=1,
{
yn in dn

}N

n=1]{(x1, . . . , xM , y1, . . . , yN ) :
Q∏

q=1

e(aq

M∏
m=1

xαq,m
m , bq

N∏
n=1

yβq,n
n ) = t}.

3 Delegatable Anonymous Credentials

An anonymous delegatable credential system has only one type of participant:
users. Each user has a single secret key and uses it to generate different pseudo-
nyms. User A with secret key skA can be known to user O as Nym(O)

A and to
user B as Nym(B)

A . Any user O can become an originator of a credential; all he
needs to do is publish one of his pseudonyms NymO as his public key. If au-
thority O issues user A a credential for Nym(O)

A , then user A can prove to user
B that Nym(B)

A has a credential from authority O. Credentials received directly
from the authority are level 1 credentials, credentials that have been delegated
once are level 2 credentials, etc. A delegatable credential system consists of the
following algorithms:
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Setup(1k) outputs the trusted public parameters of the system, paramsDC .
Keygen(paramsDC ) creates the secret key of a party in the system.
Nymgen(paramsDC , sk). On each run, the algorithm outputs a new pseudonym

Nym with auxiliary info aux(Nym) for secret key sk .2
Issue(paramsDC ,NymO, skI ,NymI , aux (NymI), cred ,NymU , L)
↔ Obtain(paramsDC ,NymO, skU ,NymU , aux(NymU ),NymI , L) are the in-
teractive algorithms that let a user I issue a level L+1 credential to a user U .
The pseudonym NymO is the authority’s public key, skI is the issuer’s secret
key, NymI is the issuer’s pseudonym with auxiliary information aux (NymI),
cred is the issuer’s level L credential rooted at NymO, skU is the user’s
secret key, and NymU is the user’s pseudonym with auxiliary information
aux (NymU ). If L = 0 then cred = ε. The issuer gets no output, and the user
gets a credential credU .

CredProve(paramsDC ,NymO, cred , sk ,Nym, aux(Nym), L). Takes as input a
level L credential cred from authority NymO, outputs a value credproof .

CredVerify(paramsDC ,NymO, credproof ,Nym, L). Outputs accept if credproof is
a valid proof that the owner of pseudonym Nym possesses a level L credential
with root NymO and reject otherwise.

3.1 Security Definition of Delegatable Credentials

We formally define a secure delegatable credential system in the full version
[BCC+08]. Intuitively, the algorithms Setup,Keygen,Nymgen,VerifyAux, Issue,
Obtain,CredProve, and CredVerify constitute a secure anonymous delegatable cre-
dential scheme if the following properties hold:

Correctness. We say that a credential cred is a proper credential, if for all of the
user’s pseudonyms, CredProve always creates a proof that CredVerify accepts.The
delegatable credential system is correct if an honest user and an honest issuer
can run Obtain↔ Issue and the honest user gets a proper credential.

Anonymity. The adversary’s interactions with the honest parties in the real
game should be indistinguishable from some ideal game in which pseudonyms,
credentials and proofs are independent of the user’s identity and delegation chain.
The adversary should not even recognize a credential he delegated.

There must exist a simulator (SimSetup, SimProve, SimObtain, SimIssue).
SimSetup produces parameters indistinguishable from those output by Setup,
along with some simulation trapdoor sim . Under these parameters, we require
that the following properties hold when even the adversary is given sim :

– Nym is distributed independently of sk .
– No adversary can tell if it is interacting with Issue run by an honest party

with a proper credential, or with SimIssue which is not given the credential
and the issuer’s secret key, but only the name of the authority, the length of
the credential chain, and the pseudonyms of the issuer and user.

2 We do not address how to prove ownership of a pseudonym; in our constructions
this involves interactively proving knowledge of the opening of a commitment.
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– No adversary can tell if it is interacting with Obtain run by an honest party
with secret sk , or with SimObtain that is only given the authority, the length
of the credential chain, and the pseudonyms of the issuer and user.

– The simulator SimProve can output a fake credproof that cannot be distin-
guished from a real credential, even when SimProve is only told the authority,
the length of the credential chain, and the pseudonym of the user.

Remark 2. Our definition implies the more complex but weaker definition in
which the adversary only controls the public inputs to the algorithm. Our def-
inition is easier to work with as we need only consider one protocol at a time,
and only a single execution of each protocol.

Unforgeability. Each credential defines a specific delegation chain. We cannot
monitor delegation between adversarial parties. However, we require that when-
ever the delegation chain shows that an honest player delegated a level L cre-
dential to some user, that delegation actually occurred.

In this game, all of the honest parties are controlled by a single oracle that
keeps track of all honestly issued credentials. An adversary given access to this
oracle should have only negligible probability of outputting a forged credential.

Let F be an efficiently computable bijection and a one-way function. There
exists a ppt. algorithms ExtSetup and Extract with five properties:

– ExtSetup and Setup output identically distributed params .
– Under these parameters, pseudonyms are perfectly binding for sk .
– Extract always extracts the correct chain of L identities from an honestly

generated level L credproof .
– Given an adversarially generated level L credential proof credproof from

authority NymO for the pseudonym Nym, Extract will always produce ei-
ther the special symbol ⊥ or f0, . . . fL such that NymO is a pseudonym for
F−1(f0) and Nym is a pseudonym for F−1(fL).

– No adversary can output a valid credential proof from which an unauthorized
chain of identities is extracted. More formally we require that for all ppt. A
there exists a negligible ν such that:

Pr[(paramsDC , td)← ExtSetup(1k);

(credproof ,Nym,NymO, L),← AO(paramsDC ,·,·)(paramsDC , td);
(f0, . . . , fL)← Extract(paramsDC , td , credproof ,Nym,NymO, L) :
CredVerify(paramsDC ,NymO, credproof ,Nym , L) = accept ∧
(∃i such that (f0, i, fi−1, fi) �∈ ValidCredentialChains∧
fi−1 ∈ HonestUsers)] ≤ ν(k) ,

where O(paramsDC , command , input) describes all possible ways for the adver-
sary A to interact with the delegatable credentials system: A can ask the oracle
to add new honest users; the oracle generates sk ← Keygen(paramsDC ), stores
it in the list HonestUsers, and returns F (sk ) as the handle. A can ask for new
pseudonyms for existing honest users, referenced by F (sk), and he can provide a
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credential and ask an honest user to generate the corresponding proof. Finally,
he can run the Issue ↔ Obtain protocols on credentials of his choice, either be-
tween honest users, or with an adversarial issuer or obtainer. In this case, we
need to keep track of which credentials are being issued, so that we will be able
to identify a forgery. To do this, we use the Extract algorithm to extract the
chain of identities behind each credential being issued and store it on the list
ValidCredentialChains. For details, see full version [BCC+08].

Remark 3. We let the adversary track honest users’ credentials and pseudonyms
(but, of course, not their secret keys). Our definition is strictly stronger than one
that uses a general oracle that does not reveal the credentials of honest users to
the adversary. This approach results in a simpler definition and analysis.

3.2 Construction of Delegatable Credentials

We construct delegatable credentials using a randomizable NIZK proof system
with randomizable commitments (as described in Section 2) and a message au-
thentication scheme for a vector of messages m (in our basic scheme |m| =
2)in the common parameters model: AuthSetup(1k) outputs common parame-
ters paramsA, AuthKg(paramsA) outputs a secret key sk , Auth(paramsA, sk ,m)
outputs an authentication tag auth that authenticates a vector of messages m,
and VerifyAuth(paramsA, sk ,m, auth) accepts if auth is a proper authenticator
for m under key sk . (We will discuss the properties we will require from this
authentication scheme after we present our delegatable credentials construction.)

The parameters of the delegatable credentials system combine the parame-
ters paramsA from the authentication scheme and paramsPK from the compos-
able and randomizable NIZKPK system and its associated commitment scheme
Commit. We assume that all algorithms are aware of these parameters and omit
them when appropriate to simplify our notation.

Intuition behind our construction. The keyspace of the authenticator must be a
subset of the input space of the commitment scheme. Each user U has a secret key
skU ← AuthKg(paramsA), and forms his pseudonyms using Commit: NymU =
Commit(skU , openU ). U can create arbitrarily many different pseudonyms by
choosing new random values openU . A user can act as an authority (originator)
for credentials by making his pseudonym NymO publicly available.

The user’s secret credential cred is a NIZKPK of a statement about U ’s specific
secret pseudonym SU = Commit(skU , 0) (this specific pseudonym does not in
fact hide skU since it is formed as a deterministic function of skU ). To show or
delegate the credential, the user randomizes and mauls cred to obtain credproof
using the RandProof algorithm described in Section 2. The resulting credproof is
a proof about a proper pseudonym, NymU = Commit(skU , open) for a randomly
chosen open.

Suppose a user with secret key skU has a level L credential from some au-
thority O, and let (skO, sk1, . . . , skL−1, skU ) be the keys such that the owner
of sk i delegated the credential to sk i+1 (we let sk0 = skO and skL = skU ). A
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certification chain is a list of authenticators auth1, . . . , authL, such that sk i was
used to generate authenticator authi+1 on message sk i+1.

To make sure that pieces of different certification chains cannot be mixed and
matched, we add a label ri to each authenticator. The labels have to be unique for
each authority and delegation level. Let H be a collision resistant hash function
with an appropriate range. For a credential chain rooted at NymO, we set ri =
H(NymO, i). Each authi is then an output of Auth(paramsA, sk i−1, (sk i, ri)). Let
F be an efficiently computable bijection. The user U ’s level L private credential
cred is a proof of the form

NIZKPK[sk0 inNymO; skL inSU ]{(F (sk0), . . . , F (skL), auth1, . . . , authL) :
VerifyAuth(sk0, (sk1, r1), auth1) ∧ . . . ∧ VerifyAuth(skL−1, (skL, rL), authL)}

Full construction. Let PKSetup,PKProve,PKVerify, and RandProof be a random-
izable NIPK system and let AuthSetup,AuthKg,Auth,VerifyAuth be an authen-
tication scheme, and let H : {0, 1}∗ → Zp be a hash function.

Setup(1k). Use AuthSetup(1k) to generate paramsA and PKSetup(1k) to generate
paramsPK ; choose the hash function H (as explained above); and output
paramsDC = (paramsA, paramsPK , H).

Keygen(paramsDC ). Run AuthKg(paramsA) and output the secret key sk .
Nymgen(paramsDC , sk). Choose random open , compute Nym = Commit

(paramsPK ,sk , open) and output pseudonym Nym and auxiliary information
open .

CredProve(paramsDC ,NymO, cred , skU ,NymU , openU , L). If PKVerify(paramsPK ,
(NymO,Commit(skU , 0)), cred) rejects, or if NymU �= Commit(skU , openU ),
abort. Return credproof ← RandProof((NymO,NymU ), (0, openU ), cred).

CredVerify(paramsDC ,NymO, credproof ,NymU , L) runs PKVerify.
Issue(paramsDC ,NymO, skI ,NymI , openI , cred ,NymU , L)
↔ Obtain(paramsDC ,NymO, skU ,NymU , openU ,NymI , L). Abort if L = 0
and NymO �= NymI . The issuer verifies cred using CredVerify and if it does
not verify or if NymI �= Commit(skI , openI) or NymU is not a valid pseudo-
nym, the issuer aborts. Else, the issuer and the user both compute rL+1 =
H(NymO, L + 1). The issuer and the user run a two-party protocol with the
following specifications: the public input is (NymI ,NymU , rL+1); the issuer’s
private input is (skI , openI) and the user’s private input is (skU , openU ). The
output of the protocol is as follows: if (skI , openI) and (skU , openU ) do not
appropriately correspond to NymI ,NymU , the protocol aborts; otherwise, the
issuer receives no output while the user receives as output the value π com-
puted as:

π ← NIZKPK[skI inNymI ; skU in Commit(skU , 0)]{(F (skI), F (skU ), auth) :
VerifyAuth(sk I , (skU , rL+1), auth)} .

In Section 3.3 we give an efficient instantiation of such a 2PC protocol for the
specific authentication and NIZKPK schemes we use.
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If L = 0, then the user outputs credU = π. Otherwise, the issuer obtains
credproof I ← CredProve(paramsDC ,NymO, cred , skI ,NymI , openI , L) and
sends it to the user. Let SU = Commit(skU , 0). Intuitively, credproof I is a
proof that the owner of NymI has a level L credential under public key NymO,
while π is proof that the owner of NymI delegated to the owner of SU . The
user concatenates credproof I and π to obtain credproof I ◦ π. To get credU ,
U needs to project credproof I ◦ π into a proof about (NymO, SU ) instead of
NymI .

Remark 4. We can attach public attributes to each level of the credential. We
compute r� = H(skO, �, attr1, . . . , attr�), where attri is the set of attributes added
by the ith delegator in the delegation chain. When the user shows or delegates
a credential, he must display all the attributes associated with each level.

Message authentication scheme. Just like a signature scheme, an authentica-
tion scheme must be complete and unforgeable. For our application we need
to strengthen the unforgeability property in two ways. First, we require F -
Unforgeability [BCKL08], which guarantees that for some well-defined bijection
F , no adversary can output (F (m), auth) without first getting an authentica-
tor on m. (We write F (m) = F (m1, . . . ,mn) to denote (F (m1), . . . , F (mn)).)
Second we require a new property which we call certification security; the authen-
ticator is unforgeable even if the adversary learns a signature on the challenge
secret key. An authentication scheme is F -unforgeable and certification secure if
for all ppt. adversaries A there exists negligible ν such that:

Pr[paramsA ← AuthSetup(1k); sk ← AuthKg(paramsA);

(y, auth)← AOAuth(paramsA,sk ,.),OCertify(paramsA,.,(sk,.,... ))(paramsA, F (sk)) :

VerifyAuth(paramsA, sk , F
−1(y), auth) = 1 ∧ F−1(y) /∈ QAuth] ≤ ν(k) ,

where the oracle OAuth(paramsA, sk ,m) outputs Auth(paramsA, sk ,m) and
stores m on QAuth, and oracle OCertify(paramsA, sk

∗, (sk ,m2, . . . ,mn)) outputs
the signature Auth(paramsA, sk

∗, (sk ,m2, . . . ,mn)).

Theorem 1. Let AuthSetup,AuthKg,Auth,VerifyAuth be an F-unforgeable
certification-secure authentication scheme, H be a collision resistant hash func-
tion, and PKSetup,PKProve,PKVerify be a randomizable, partially extractable,
composable zero-knowledge non-interactive proof of knowledge system. Then the
above construction constitutes a secure anonymous delegatable credential scheme.
See full version [BCC+08] for proof.

We will construct our authentication scheme based the BB-CDH and BB-HSDH
assumptions (defined in Section 3.3). Groth-Sahai proofs require either the SXDH
assumption or the Decision Linear Assumption [GS08]. Our two party protocol
requires a homomorphic encryption scheme.
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3.3 Building Block Instantiations

Bilinear Maps and Assumptions. We use standard notation for groups with a
computable bilinear map e : G1 × G2 → GT . See, e.g., [BLS04, GPS06]. The
security of our scheme is based on strengthened versions of the SDH [BB04] and
CDH assumptions. BB-CDH is implied by SDH; [Boy08] describes how to extend
Generalized Diffie Hellman [BBG05] to cover these two assumptions and prove
their generic group security.

Definition 3 (BB-HSDH). Let x, c1 . . . cq ← Zp. On input g, gx, u ∈ G1,
h, hx ∈ G2 and the tuple {g1/(x+c�), c�}�=1...q, it is computationally infeasible
to output a new tuple (g1/(x+c), hc, uc).

Definition 4 (BB-CDH). Let x, y, c1 . . . cq ← Zp. On input g, gx, gy ∈ G1,
h, hx ∈ G2 and the tuple {g1/(x+c�), c�}�=1...q, it is computationally infeasible to
output gxy.

F -Unforgeable Certification Secure Message Authentication Scheme. Our au-
thentication scheme is based on the Boneh-Boyen weak signature scheme [BB04],
where Signsk (m) = g1/(sk+m). Belenkiy et al. showed that the Boneh-Boyen sig-
nature scheme is F -unforgeable for the bijection F (m) = (gm, um) (under a
very strong assumption), and that the Groth-Sahai proof system can be used to
prove knowledge of such a signature. Boneh-Boyen signatures are not certifica-
tion secure because Signsk (m) = Signm(sk). We show how to achieve certification
security; we also authenticate a vector of messages and weaken the underlying se-
curity assumption. The construction is as follows: Auth(sk ,m1||m2) chooses ran-
dom keys K∗,K1,K2 and returns (Signsk (K∗), SignK∗(K1), SignK∗(K2),
SignK1

(m1), SignK2
(m2), F (K∗), F (K1), F (K2)). At a high level, this construc-

tion eliminates any symmetries between Authsk (m) and Authm(sk). See full ver-
sion [BCC+08] for details.

Theorem 2. The message authentication scheme above is F -unforgeable and
certification secure for F (mi) = (hmi , umi) under the BB-HSDH and BB-CDH
assumptions. See full version [BCC+08] for proof. The signature scheme obtained
by setting pk = hsk may be of independent interest.

Commitment scheme. A commitment to x ∈ Zp consists of two GS commit-
ments GSCommit(hx, o1), GSCommit(ux, o2)) and a NIPKGS proof that these are
commitments to the same value x. This allows us to extract F (x) = (hx, ux).

Proof of knowledge of an authenticator. We need a NIZKPK of an authenticator
for messages m = (m1,m2), where the first value is hidden in commitment Cm1

and the second value m2 is publicly known. In our notation, this is:

NIZKPK[sk inCsk ;m1 inCm1 ]{(F (sk), F (m1), auth) :
VerifyAuth(paramsA, sk , (m1,m2), auth) = 1}.

Since Boneh-Boyen signatures are verified using pairing product equations,
we can use Groth-Sahai proofs, see full version [BCC+08] for details.
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Creating a NIZKPK of an authenticator. The issuer chooses K∗,K1,K2 and can
generate most of the proof. Then, the issuer and user need to jointly compute
a NIZKPK of a Boneh-Boyen signature on the user’s secret key. We outline the
protocol, see full version [BCC+08] for details.

Let Keygen,Enc,Dec be an additively homomorphic semantically secure en-
cryption scheme, let “⊕” denote the homomorphic operation on ciphertexts; for
e a ciphertext and r an integer, e⊗ r denotes “adding” e to itself r times. The
user with input m1, and the issuer with input K1 run the following protocol to
compute SignK1

(m1) = g1/(K1+m1):

1. The issuer generates (skhom , pkhom) ← Keygen(1k) in such a way that the
message space is of size at least 2kp2. He then computes e1 = Enc(pkhom ,K1)
and sends e1, pkhom to the user and engages with her in an interactive zero-
knowledge proof that e1 encrypts to a message in [0, p].

2. The user chooses r1 ← Zp and r2 ← {0, . . . , 2kp}, then computes e2 =
((e1 ⊕ Enc(pkhom ,m1))⊗ r1)⊕ Enc(pkhom , r2p) and sends e2 to the user.

3. The issuer and the user perform an interactive zero-knowledge proof in which
the user shows that e2 has been computed correctly using the message in
Cm1 , and that r1, r2 are in the appropriate ranges.

4. The issuer decrypts x = Dec(skhom , e2), sends the user σ∗ = g1/x.
5. The user computes σ = σ∗r1 and verifies that it is a correct weak BB signa-

ture on m1. The issuer obtains no information about m1.

Theorem 3. The above is a secure two-party computation for computing Boneh-
Boyen signatures. (See full version [BCC+08] for proof.)
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Abstract. The definition of differential privacy has recently emerged
as a leading standard of privacy guarantees for algorithms on statistical
databases. We offer several relaxations of the definition which require
privacy guarantees to hold only against efficient—i.e., computationally-
bounded—adversaries. We establish various relationships among these
notions, and in doing so, we observe their close connection with the the-
ory of pseudodense sets by Reingold et al. [1]. We extend the dense model
theorem of Reingold et al. to demonstrate equivalence between two defi-
nitions (indistinguishability- and simulatability-based) of computational
differential privacy.

Our computational analogues of differential privacy seem to allow
for more accurate constructions than the standard information-theoretic
analogues. In particular, in the context of private approximation of the
distance between two vectors, we present a differentially-private protocol
for computing the approximation, and contrast it with a substantially
more accurate protocol that is only computationally differentially private.

1 Introduction

A curator of a statistical database may promote valuable social purposes in
his operation. At the same time, non-careful procedures for managing access
to the database may expose sensitive information (in potentially subtle ways),
damaging individual contributors and putting the curator at the risk of legal
liability.

The statistics, database, and datamining communities have long understood
that there is a complicated space of possible trade-offs between usability of sta-
tistical databases and secrecy of individual records. A recent line of research in
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privacy in statistical databases is focussed on formalizing and quantifying the
notions of privacy and usability, and developing privacy-preserving analogues
for many types of queries or algorithms one may want to run on a database
(surveyed by Dwork [2]).

The cornerstone of the new approach to privacy is the definition of differen-
tial privacy, which first appeared in [3]. Intuitively, the definition captures the
risk of joining the database, where the risk is measured as the adversary’s suc-
cess in predicting whether a single record is present in the database, given the
rest of the database. The definition gives unconditional guarantees (including
privacy for (small) groups) against a powerful adversary, preserved by sequen-
tial composition, and still allows many types of statistical or machine learning
analyses, as shown in [4,5,6]. We note that the adversary’s gain in success prob-
ability typically tolerated in applications of differential privacy is not zero or
even “cryptographically” small (and cannot be so under any reasonable utility
guarantees [3]).

The standard definition of differential privacy is very strong in that it provides
privacy even against a computationally unbounded adversary. While there has
been substantial success in designing mechanisms that achieve this strong defi-
nition (e.g., [5,6,7,8]), in this paper we suggest that such information-theoretic
privacy may sometimes have a significant price (in utility or complexity). Thus
we propose several computational analogues of differential privacy, where we
only require privacy against a feasible (i.e., polynomial time) adversary.

Immediate benefits of the relaxation include combining pseudo-random gen-
erators with differentially-private mechanisms, or running such mechanisms in
a distributed manner with only computational guarantees of security. More
importantly, computational differentially-private mechanisms may exist for prob-
lems for which standard differentially-private mechanisms are impossible or un-
known. We propose the problem of constructing a two-party protocol with
two-sided guarantees of privacy for approximating the Hamming distance be-
tween two bit-vectors as a candidate for separating the power of computational
and information-theoretic definitions of privacy.

Definition of computational differential privacy. There are two natural
approaches to defining differential privacy with a computational flavor. The first
one, which may be characterized as indistinguishability-based, goes back to the
definition of differential privacy and replaces an unrestricted adversary with a
computationally-bounded one. Doing so, at least in the non-uniform case, does
not expand the class of privacy-preserving algorithms as the new definition can be
shown equivalent to the old one. If instead, we start with the weaker definition of
(ε, δ)-differential privacy [9], which allows some negligible additive distinguishing
advantage, we do obtain a new class of mechanisms that are private under the
new definition, which we call ind-cdp.

The second approach to defining computational differential privacy, which
we naturally call simulation-based or sim-cdp, builds upon the definition of
differential privacy and its properties. It asserts that the view of the adversary
can be simulated given access to a differentially-private function of the database
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(and thus the simulation is differentially private). The simulated view must be
computationally indistinguishable from the real mechanism’s transcript.

Given these two equally compelling definitional approaches it is quite natural
to consider their relative power. We show that both definitions are closed under
sequential composition and provide privacy for (small) groups of records. We
thus switch to study the relationship between these definitions. One can easily
demonstrate that sim-cdp implies ind-cdp. The converse of this statement,
however, is an intriguing question that we leave open in this work. Instead, in
the main technical contribution of this paper we establish equivalence between a
weaker (though still natural) simulation-based definition (called sim∀∃-cdp) and
ind-cdp (Section 3). We also generalize our definition to interactive mechanisms,
where we uncover one more definition, called sim

+
-cdp. A summary of our

results relating various definitions of privacy is presented in Figure 1.

ind-cdp sim∀∃-cdp sim-cdp sim
+
-cdp

Theorem 1

Theorem 3

immediate Theorem 4

Theorem 4

Fig. 1. Relations between definitions of computational differential privacy

Our approach to proving equivalence between ind-cdp and sim∀∃-cdp estab-
lishes a surprising connection between computational differential privacy and
“pseudodense sets” studied by Reingold et al. [1], who were in turn motivated
by the work of Green, Tao, and Ziegler in additive combinatorics [10,11] (closely
related notions were previously studied by [12]). In fact, ind-cdp can be stated
in terms of pseudodensity of the mechanism’s distribution over adjacent datasets,
and sim-cdp is equivalent to existence of models that are dense for all adjacent
pairs, to use the language of [1]. We extend the Dense Model Theorem of [1] to
account for the symmetry of the definitions of differential privacy.

As mentioned above, we also construct protocols achieving computational
differential privacy that seem to admit significantly better accuracy than any
information-theoretically private protocols. Our main example is a private ap-
proximation of the Hamming distance between two vectors in a two-party setting.
We propose three protocols for this problem: one protocol with information-
theoretic differential privacy guarantees and multiplicative approximation error,
and two protocols handling the semi-honest and malicious cases achieving com-
putational differential privacy (specifically sim-cdp) and with error independent
of the size of the input (it only depends on the privacy and security parameters).
Subsequent to our results, this gap in accuracy between information-theoretic
and computational differential privacy was shown to be inherent [13].

Secure vs differentially-private computations. The problem of secure
Hamming distance computation, together with closely related problems of se-
cure scalar product and secure set-intersection cardinality [14,15,16,17,18], may
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benefit from casting them in the differential privacy framework. Indeed, the
standard cryptographic guarantee of letting the parties compute the output of
a function, such as the Hamming distance between two vectors, while hiding
everything else about their inputs may be insufficient to argue security of a se-
quential composition of this protocol when one has to consider the information
leaked through the output of the function. For example, if Alice varies her input
while Bob’s vector stays constant, by observing the output of the protocol Alice
may learn individual values of Bob’s input bits. Differential privacy treatment
addresses the orthogonal question of what is computed rather than how ; in par-
ticular, it may be used to analyze effects of adaptive sequential or concurrent
composition on the adversary’s confidence in predicting any particular bit, even
in the presence of auxiliary information.

2 Definitions

We describe our definitions in this section. We start by introducing some
notation.

Mechanism f . In our definitions, we will be interested in measuring privacy
guarantees provided by randomized mechanisms, denoted f . Mechanism f op-
erates on subsets D of a (potentially infinite) universe U , which we associate
with databases, and outputs a value in the range R. The size of the input D
will be denoted by n. We say that two databases D and D′ are adjacent if their
symmetric difference contains at most one record (i.e., |DΔD′| ≤ 1)1. Further,
the maximum size of the output of f is m.

As we are dealing with computational notion, we will mostly be concerned with
efficient adversaries. Unless specified otherwise, throughout the paper, an effi-
cient adversary is modeled by a family of polynomial-sized circuits {Aκ}κ∈N, or
equivalently, a nonuniform probabilistic polynomial time (ppt) Turing machine.

Parameter κ. A “security” parameter κ controls various quantities in our def-
initions/constructions as follows. The size of the adversary will be polynomial
in κ. The mechanism is parameterized by κ, which lets us consider a family
{fκ}κ∈N, where fκ : D → Rκ. The output size m of f is required to be (at most)
polynomial in κ. We say that a function in κ is negligible if it approaches zero
faster than the reciprocal of any polynomial in κ.

We first recall the standard definition of ε-differential privacy [3]:

Definition 1 (ε-DP privacy). A randomized mechanism f : D → R provides
ε-dp if for all adjacent inputs D,D′ ∈ D (i.e., |DΔD′| ≤ 1) and all subsets
S ⊆ R

Pr[f(D) ∈ S] ≤ eε × Pr[f(D′) ∈ S],

where the probability space is f ’s coin tosses.

1 Δ denotes symmetric difference of two sets and | · | denotes the size when the
argument is a set.
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A closely related notion of (ε, δ)-differential privacy [9] has an additive parameter
that allows the probabilities to diverge when they are both relatively small:

Definition 2 ((ε, δ)-DP privacy). A randomized mechanism f : D → R pro-
vides (ε, δ)-dp if for all adjacent inputs D and D′ and all subsets S ⊆ R

Pr[f(D) ∈ S] ≤ eε × Pr[f(D′) ∈ S] + δ,

where the probability space is f ’s coin tosses.

Our first new definition, εκ-ind-cdp, is an adaptation of ε-differential-privacy
to the computational setting. This adaptation is obtained by considering a ppt

adversary A, and requiring that f “looks differentially private” to every such A.

Definition 3 (IND-CDP privacy). An ensemble {fκ}κ∈N of randomized func-
tions fκ : D → Rκ provides εκ-ind-cdp if there exists a negligible function negl(·)
such that for every nonuniform ppt tm (“distinguisher”) A, every polynomial
p(·), every sufficiently large κ ∈ N, all data sets D,D′ ∈ D of size at most p(κ)
such that |DΔD′| ≤ 1, and every advice string zκ of size at most p(κ), it holds
that

Pr [Aκ(fκ(D)) = 1] ≤ eεκ × Pr [Aκ(fκ(D′)) = 1] + negl(κ),

where we write Aκ(x) for A(1κ, zκ, x) and the probability is taken over the ran-
domness of mechanism fκ and adversary Aκ.

Notice that if the adversary A is allowed unbounded computation time, then the
definition simply says that for any fixed κ the mechanism fκ is (eκ, δκ)-dp for δκ

being negl(κ). The reason we do not consider the computational analogue of εκ-
dp (with δ = 0) is that it ends up being equivalent to information-theoretic ε-dp.
Indeed, for any singleton r ∈ Rκ, we can choose Aκ to be the indicator function
for {r}, implying that Pr[fκ(D) = r] ≤ eεκ Pr[fκ(D′) = r]. This immediately
implies εκ-dp by summing both sides over all r ∈ S for any subset S ⊂ Rκ.

Our second definition, εκ-sim-cdp, is described next. This definition inter-
prets “looks differentially private” differently from our first definition: it says
that f “looks differentially private” if there exists an ε-dp mechanism F (called
simulator) such that F (D) and f(D) are computationally indistinguishable for
every D.

Definition 4 (SIM-CDP privacy). An ensemble {fκ}κ∈N of randomized func-
tions fκ : D → Rκ provides εκ-sim-cdp if there exists an ensemble {Fκ}κ∈N

of εκ-differentially-private mechanisms Fκ : D → Rκ and a negligible function
negl(·), such that for every non-uniform ppt tm A, every polynomial p(·), every
sufficiently large κ ∈ N, every data set D ∈ D of size at most p(κ), and every
advice string zκ of size at most p(κ), it holds that,

|Pr [Aκ(fκ(D)) = 1]− Pr [Aκ(Fκ(D)) = 1]| ≤ negl(κ).

That is, fκ(D) and Fκ(D) are computationally indistinguishable.



Computational Differential Privacy 131

Note that the definition does not require F to be computable in probabilistic
polynomial time; it only has to exist, and be (information theoretically) differ-
entially private.

The definition of sim-cdp requires that there exists a simulator F that acts
in a differentially-private manner on all pairs of adjacent inputs. This suggests
a weakening of the definition, where the order of quantifiers is reversed, i.e.,
instead of requiring a global simulator that works for all pairs of databases, we
require that for any pair of adjacent databases there exists a simulator whose
distributions on these two inputs satisfy the differential privacy condition.

Definition 5 (SIM∀∃-CDP privacy). An ensemble {fκ}κ∈N of randomized
functions fκ : D → Rκ provides εκ-sim∀∃-cdp if for all polynomials p(·), all
sequences {(Dκ, D

′
κ)}κ∈N of pairs of datasets such that |Dκ| ≤ p(κ), |D′

κ| ≤ p(κ)
and |DκΔD′

κ| ≤ 1, there exist ensembles {Fκ(Dκ)}κ∈N and {Fκ(D′
κ)}κ∈N, such

that the following two conditions hold:

1. [Fκ is εκ-dp.] For all subsets S ⊂ R:

e−εκ × Pr[Fκ(D′
κ) ∈ S] ≤ Pr[Fκ(Dκ) ∈ S] ≤ eεκ × Pr[Fκ(D′

κ) ∈ S].

2. [fκ(Dκ), fκ(D′
κ) are indistinguishable from Fκ(Dκ), Fκ(D′

κ) respectively.]
For every non-uniform ppt tm A, every polynomial q(·), every sufficiently
large κ ∈ N, and every advice string zκ of size at most q(κ):

|Pr [Aκ(fκ(D)) = 1]− Pr [Aκ(Fκ(D)) = 1]| ≤ negl(κ) for D ∈ {Dκ, D
′
κ}

where we write Aκ(x) for A(1κ, zκ, x).

We may also consider an even weaker definition, where the probability
Pr[Fκ(Dκ) ∈ S] is only bounded from above by eε × Pr[Fκ(D′

κ) ∈ S] (and a
second pair of simulators exist for the ordered (D′

κ, Dκ) pair), but as we shall
see in Section 3, it turns out to be equivalent to sim∀∃-cdp.

Robustness of our definitions. Protocols satisfying our definitions retain
their privacy guarantees under sequential composition, and for all but sim∀∃-cdp

we directly prove group privacy (for records); in both cases the privacy param-
eters ε and δ deteriorate linearly with the number of compositions or records,
respectively. Due to space constraints, a detailed exposition is presented in the
full version.Informally, under the definition of group privacy the adversary has
to guess whether two or more elements are simultaneously present or absent in
the database, given the rest of the database. The definition of group privacy is
often applicable when the differentially-private mechanism is preceded by com-
putations that may amplify (up to a constant) the number of records affected
by any individual [19].

Interactive case. For simplicity, current definitions consider only non-
interactive mechanisms. An extension to the interactive case will be presented
in Section 4. As it turns out, a variation of εκ-sim-cdp, called εκ-sim

+
-cdp, can

also be defined and proven separate from εκ-sim-cdp (see Section 4).
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3 Relations Among Various Notions of CDP

In this section we establish reductions between the three definitions of com-
putational differential privacy. The first implication, namely, that sim-cdp im-
plies sim∀∃-cdp, which implies ind-cdp, is the easiest (Section 3.1). The proof
that ind-cdp implies sim∀∃-cdp (and thus that the two definitions are equiva-
lent) extends the Dense Model Theorem of [1] and is significantly more involved
(Section 3.2).

3.1 Simulatability Implies Indistinguishability

Theorem 1 (SIM-CDP ⇒ SIM∀∃-CDP ⇒ IND-CDP). If an ensemble
{fκ}κ∈N of randomized functions fκ : D → Rκ provides εκ-sim-cdp, then it also
provides εκ-sim∀∃-cdp; if it provides εκ-sim∀∃-cdp, it also provides εκ-ind-cdp.

Proof. The first implication is by construction, the second follows by a hybrid
argument. The full proof appears in the full version. %&

In the section that follows, we will prove that εκ-ind-cdp ⇒ εκ-sim∀∃-cdp

by giving an extension of the Dense Model Theorem of [1] (which may be of
independent interest).

3.2 Dense Sets and IND-CDP ⇒ SIM∀∃-CDP

First, we define or recall notions of (non-uniform) density, pseudodensity, and
indistinguishability for distributions, closely following [1].

Consider two distributions X and Y defined over R, and a collection A of
randomized predicates A : R → {0, 1}, which may be, for instance, all circuits
of size at most s(κ), where κ is the security parameter.

We say that X is eε-dense in Y if

∀x ∈ R Pr[X = x] ≤ eε · Pr[Y = x].

We define X as δ-indistinguishable from Y with respect to A if

∀A ∈ A |Pr[A(X) = 1]− Pr[A(Y ) = 1]| ≤ δ,

where here and elsewhere in this section we write A(X) for the distribution on
the range of A obtained by applying A to the variable sampled according to X
and the probability space is that of X and A’s coins.

Finally, a “combination” of the two definitions is rather naturally defined as
X being (eε, δ)-pseudodense in Y with respect to A if

∀A ∈ A Pr[A(X) = 1] ≤ eε · Pr[A(Y ) = 1] + δ.

The connections between notions of differential privacy, sim-cdp and ind-cdp

and the above definitions are immediate:
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A randomized mechanism f : D → R is εκ-dp if and only if f(D) is eεκ-dense
in f(D′) for all adjacent pairs D and D′, where the probability space of the
distributions f(D) and f(D′) over R is f ’s randomness.

An ensemble {fκ}κ∈N is εκ-ind-cdp if and only if there is a super-
polynomial function s(κ) = κω(1) such that for all sufficiently large κ, all
adjacent pairs D,D′ ∈ D of size at most s(κ), the distribution fκ(D) is
(eεκ , 1

s(κ) ))-pseudodense in fκ(D′), with respect to the set Aκ of circuits of
size at most s(κ).

Similarly, {fκ}κ∈N is εκ-sim-cdp if there exists an ensemble {Fκ}κ∈N and
a super-polynomial function s(κ) = κω(1) such that all randomized mecha-
nisms Fκ : D → Rκ are εκ-dp and for all sufficiently large κ, all D ∈ D of
size at most s(κ), distributions fκ(D) and Fκ(D) are 1

s(κ) -indistinguishable
for the set Aκ of circuits of size at most s(κ).

It is convenient to consider the two-sided notions of mutually eε-dense and
mutually (eε, δ)-pseudodense sets, where X and Y are eε-dense (resp., (eε, δ)-
pseudodense) in each other. Since the definitions of ind-cdp and sim-cdp are
symmetric in terms of the databases D and D′, all relationships between distri-
butions of f , fκ, and Fκ on D and D′ in the formulations above are, in fact,
mutual.

Reingold et al. [1] showed that pseudodensity is indeed a composition of den-
sity and indistinguishability for some classes of distinguishers. One implication
is immediate: If there are X,Y , and M over R such that M is eε-dense in Y and
X is δ-indistinguishable from M , then X is (eε, δ)-pseudodense in Y (all–with
respect to the same class A of distinguishers). The first claim of the following
theorem establishes the converse (with a caveat that indistinguishability is re-
quired to hold with respect to a class of functions of slightly higher complexity,
as is common in proofs by reduction). The second claim is new to our work, and
is the key to relating ind-cdp and sim∀∃-cdp.

Theorem 2. Let X and Y be distributions over a finite universe R such that
X is (eε, δ)-pseudodense in Y with respect to the family T (A) defined below.

Claim I. There exists a distribution M over R such that M is eε-dense in
Y and X is 4δ-indistinguishable from M with respect to the family A.

Claim II. Furthermore, if Y is eε-dense in X, then it can also be guaranteed
that Y is eε-dense in M (i.e., Y and M are mutually eε-dense).

If A is a family of predicates, we define T (A) as the collection of functions
of the following type:

b(x) =

{
1 if h1(x) + · · ·+ hk(x) > t;
0 otherwise,

where hi ∈ A∪ Ā, t ∈ N, and k = O(1/δ2 log(eε/4δ))). Ā is the set of negations
of A.
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Proof. Claim I. The proof of Claim I appears in [1], where it is stated for
the case when Y is the uniform distribution (but the proof generalizes to arbi-
trary Y ).

Claim II. Assume towards a contradiction that for any M that is mutually
eε-dense in Y there is a function AM from A that distinguishes it from X with
probability more than μ = 4δ. Note that the same automatically holds for M that
is a convex combination of distributions that are mutually eε-dense in Y , because
the set of such distributions is convex. By the min-max principle of game theory,
or equivalently, duality of linear programming, there exists a convex combination
b̄ of functions from A ∪ Ā that distinguishes any such M from X :

Pr[b̄(X) = 1] > Pr[b̄(M) = 1] + μ. (1)

The function b̄ can be viewed as a distribution over predicates in A∪ Ā.
Arrange elements x of R in the order of decreasing Pr[b̄(x) = 1]. Choose the

set S ⊂ R as the initial part of the list so that Pr[Y ∈ S] = 1/(1 + eε).2

Define YS as follows:

Pr[YS = y] = Pr[Y = y] ·
{
eε if y ∈ S;
e−ε otherwise.

It is easy to verify that YS is a distribution:∑
y∈R

Pr[YS = y] = eε
∑
y∈S

Pr[Y = y] + e−ε
∑
y/∈S

Pr[Y = s]

= eε 1
1 + eε

+ e−ε eε

1 + eε
= 1.

By construction YS and Y are eε-dense in each other, and therefore YS can
be distinguished from X by b̄ with probability at least μ (think of YS as the
“hardest” distribution for b̄ from among those that are mutually eε-dense in Y ).

We make use of the following lemma proved in [20]:

Lemma 1 ([20, Claim 2.3]). Let F : X → [0, 1] be a bounded function, let Z
and W be distributions such that E[F (Z)] ≥ E[F (W )] + μ. Then there is a real
number t ∈ [μ/2, 1] such that

Pr[F (Z) ≥ t] ≥ Pr[F (W ) ≥ t− μ/2] + μ/2.

Applying the lemma to F (x) = Pr[b̄(x) = 1], X and YS , there exists a real t so
that a deterministic function b defined as

b(x) =

⎧⎪⎨⎪⎩
1 if Pr[b̄(x) = 1] ≥ t + μ/2;
0 if Pr[b̄(x) = 1] ≤ t;
⊥ otherwise,

2 If exact equality cannot be achieved here, we take S to be the largest initial of the
list such that Pr[Y ∈ S] < 1/(1 + eε), and for the next element r of the list, define
Pr[YS = r] ∈ [Pr[Y = r]e−ε, Pr[Y = r]eε

]
in order to make YS a distribution.
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is such that Pr[b(X) = 1] > Pr[b(YS) �= 0] + μ/2. In other words, classifying
x ∈ R as “X” when b(x) = 1 and “YS” when b(x) = 0 is a good distinguisher
between X and YS (Notice that there is some slack left between b(x) = 1 and
b(x) = 0).

We claim that b(y) = 0 for all y ∈ S. Assume the opposite. By construction
of the set S, b(y) �= 0 for all y ∈ S. Since Y is eε-dense in X (this is the only
time we use this condition), for all y /∈ S it holds that Pr[YS = y] = e−ε Pr[Y =
y] ≤ e−εeε Pr[X = y], i.e., the density of X dominates the density of YS outside
S, including the set where b is zero. Therefore

Pr[b(YS) = 0] =
∑

y/∈S,b(y)=0

Pr[YS = y] ≤
∑

y/∈S,b(y)=0

Pr[X = y] = Pr[b(X) = 0],

which contradicts the fact that Pr[b(X) = 1] > Pr[b(YS) �= 0] + μ/2.
Now we know that b(y) = 0 outside S and we conclude that

Pr[b(Y ) �= 0] = Pr[b(YS) �= 0] · e−ε < (Pr[b(X) = 1]− μ/2) · e−ε.

That is,
Pr[b(X) = 1] > eε · Pr[b(Y ) �= 0] + μ/2. (2)

This would contradict the pseudodensity condition except that b is not part
of the family of functions T (A). The following lemma approximates b with a
function from T (A):

Lemma 2 ([20, Claim 2.4]). Let F : Ω → [0; 1] be a convex combination of
bounded functions from a class G, let Z1, Z2 be two distributions on Ω, and
let α, β > 0. Then there are functions f1, . . . , fk ∈ G (not necessarily distinct)
where k = O(1/α2 · log(1/β)), such that

Pr
[∣∣∣∣F (Zi)−

1
k

(f1(Zi) + · · ·+ fk(Zi))
∣∣∣∣ > α

]
≤ β for i = 1, 2.

We apply the lemma with parameters α = μ/10, β = e−εμ/10, and F = b̄, we
find an approximation to b with a function b̃ from T (A) with the property that

Pr[b̃(X) = 1] ≥ Pr[b(X) = 1]− e−εμ/10,

Pr[b̃(Y ) = 1] ≤ Pr[b(Y ) �= 0] + e−εμ/10,

Combining these with equation (2) contradicts the pseudodensity of X in Y .
Since we only consider predicates (0-1 functions), the threshold value t can be
taken as an integer. %&

Observe that if Aκ is the set of circuits of size s(κ) for some s(κ) = κω(1) and
we take δ = 1/s(κ), εκ ≤ s(κ), then T (A) consists of circuits of size at most
t(κ) = s(κ)O(1).
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By applying both claims of Theorem 2, we obtain equivalence between the
notions of ind-cdp and sim∀∃-cdp.

Theorem 3. If a family of randomized mechanisms {fκ} : D → Rκ is εκ-ind-

cdp for εκ ∈ O(log κ), it is also εκ-sim∀∃-cdp.

Proof. If {fκ} is εκ-ind-cdp, then there is a super-polynomial function s(κ) =
κω(1) such that for all sufficiently large κ, and D,D′ ∈ D of size at most s(κ)
and |DκΔD′

κ| ≤ 1 the distribution fκ(Dκ) is (eεκ , 1
s(κ) ))-pseudodense in fκ(D′),

with respect to the set Aκ of circuits of size at most s(κ). Let D,D′ be adjacent
data sets of size at most s(κ). The pairs of distributions fκ(D) and fκ(D′),
where fκ(D) is (eε, 1/t(κ))-pseudodense in fκ(D′), are in situation of Claim I
of Theorem 2. Therefore there exists a family of distributions {Fκ(D)}κ∈N such
that (a) Fκ(D) and fκ(D) are 1/t(κ)Ω(1)-indistinguishable for circuits of size
t(κ)Ω(1), and (b) Fκ(D) is eεκ-dense in fκ(D′).

Since, in turn, fκ(D′) is (eεκ , 1/t(κ))-pseudodense in fκ(D), which is indis-
tinguishable from Fκ(D), then fκ(D′) is (eεκ , 1/t(κ)Ω(1))-pseudodense in Fκ(D)
Indeed, for circuits {Aκ} of size t(κ)Ω(1), we have

Pr[Aκ(fκ(D′)) = 1] ≤ eεκ · Pr[Aκ(fκ(D)) = 1] + 1/t(κ) ≤

eεκ ·
(
Pr[Aκ(Fκ(D)) = 1] + 1/t(κ)Ω(1)

)
+ 1/t(κ)

= eεκ · Pr[Aκ(Fκ(D)) = 1] + 1/t(κ)Ω(1),

where the last part uses the conditions εκ = O(log κ) and t(κ) = κω(1).
Thus, we are in the situation of Claim II of Theorem 2 (two distributions,

which are dense and pseudodense in one another). Therefore there exists a
family of distributions {Fκ(D′)}κ∈N, such that they are mutually eεκ-dense in
{Fκ(D)}κ∈N and are 1/s(κ)-indistinguishable from {fκ(D′)}κ∈N by circuits of
size s(κ) for s(κ) =

(
t(κ)Ω(1)

)Ω(1)
= t(κ)Ω(1).

Pictorially the proof of the theorem is represented in Figure 2. %&

fκ(D)fκ(D)fκ(D)

Fκ(D)Fκ(D)

fκ(D′)fκ(D′)fκ(D′)

Fκ(D′)

Claim I−−−−−→ Claim II−−−−−→ ≈ c≈ c ≈ c

Fig. 2. Schematic proof of Theorem 3. X ��� Y means X is pseudodense in Y , X ← Y
means X is dense in Y . Claim I of Theorem 2 is applied to the pair fκ(D) and fκ(D′);
Claim II is applied to the pair Fκ(D) and fκ(D′).
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4 Privacy-Preserving Two-Party Computation

We now extend our definitions to the interactive case. We work in the general
two-party computation setting. A motivating scenario for a two-party “private”
computation involves two hospitals H1, H2 (holding patient records D1, D2) who
would like to compute some statistical function h(D1, D2). Both hospitals are
concerned about the privacy of patient records, and may not be willing or even
legally allowed to share data.

Differentially-private multi-party computation (mpc) was considered by
Beimel et al. [21], who mainly studied the efficiency trade-offs of the following
natural paradigm for differentially-private computation of a function h: design an
ε-dp mechanism ĥ that approximates h and then do secure mpc computation to
obtain ĥ(D1, D2). [21] work only in the semi-honest/honest-majority models as
it allows them to use information-theoretic mpc, which fits well with differential
privacy.

The case of two-party computation (two-pc), however, is somewhat trickier
as information-theoretically secure computation is impossible for generic func-
tionalities [22]. Hence, one must resort to the computational security which in-
terferes with the (standard) information-theoretic notion of differential privacy.

Dwork et al. [9] present a multi-party protocol run on top of a verifiable secret
sharing scheme. Depending on the availability of secret channels, the protocol
may only be secure against a computationally bounded adversary; however, no
definition of computational differential privacy is given.

4.1 Definitions

We will now present our definitions for interactive protocols defined using inter-
active functions [23]. The reason for this choice (instead of interactive Turing
machines) is that the concept of differential privacy is orthogonal to the choice
of the computational model. In addition, many useful privacy mechanisms may
not necessarily be efficiently computable (e.g., noise calibrated to smooth sen-
sitivity [24] or exponential mechanisms [7]). Of course, when considering our
computational definitions, we will require that the function corresponding to
the adversary be implementable using a non-uniform ppt interactive Turing
machine.

Notation. For ensembles {fκ}κ∈N and {gκ}κ∈N of randomized interactive func-
tions fκ, gκ respectively, {〈fκ, gκ〉}κ∈N will denote the ensemble of interactive
protocols defined by them. Further, in an execution 〈fκ, g

∗
κ〉 with inputs x ∈ D

for the honest party, we will denote the view of the adversary (defined by inter-
active function g∗κ) by VIEWκ,g∗

κ
(x).

Informally, a function ensemble {gκ}κ∈N is said to be an ensemble of effi-
ciently computable randomized interactive functions if every function gκ in the
ensemble can be computed by a (non-uniform) ppt tm (a formal definition can
be found in the full version). We now present our definitions. For an efficiently
computable randomized interactive function gκ, let [gκ] denote the binary string
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representing the interactive (non-uniform) Turing machine (equivalently, circuit)
that implements gκ.

Definition 6. An ensemble {〈fκ(·), gκ(·)〉}κ∈N of interactive protocols, ensures
for {fκ}κ∈N,

– εκ-dp, if for every ensemble {g∗κ}κ∈N of randomized interactive functions,
it holds that the ensemble {VIEWκ,g∗

κ
(x)}κ∈N provides εκ-dp with respect to

x ∈ D.
– εκ-ind-cdp, if for every ensemble {g∗κ}κ∈N of efficiently computable ran-

domized interactive functions, and all sufficiently large κ, it holds that the
ensemble {VIEWκ,g∗

κ
(x)}κ∈N provides εκ-ind-cdp (as per definition 3) with

respect to x ∈ D.
– εκ-sim-cdp, if for every ensemble {g∗κ}κ∈N of efficiently computable random-

ized interactive functions, there exists an ensemble {Fκ}κ∈N of εκ-
differentially-private mechanisms Fκ(·) such that for every x ∈ D, the
probability ensembles {VIEWκ,g∗

κ
(x)}κ∈N and {Fκ(x)}κ∈N

are computationally
indistinguishable.

All three notions are defined symmetrically for the other ensemble {gκ}κ∈N.

A protocol should be “useful” in some sense (analogous to correctness property of
standard two-pc protocols). For example, a two-pc protocol (output denoted
by ĥ(x, y) for inputs x, y) for computing the Hamming distance h(x, y) is (γ, ξ)-
additive-useful [25,21,6] if and only if Pr[|h(x)− ĥ(x)| > γ(κ)] ≤ ξ(κ). We define
and work with a somewhat more general notion, (s, ξ)-usefulness with respect
to a predicate P , which can be found in the full version. We can now define
privacy-preserving two-pc.

Definition 7 (Privacy-preserving two-party computation). An interac-
tive protocol ensemble {〈fκ(·), gκ(·)〉}κ∈N is (s, ξ) εκ-type private two-party
computation protocol for h = (hf , hg) with respect to P if for both fκ, gκ,
the ensemble ensures ε-type and provides (ξ, s)-usefulness for fκ with respect to
predicate P , where type ∈ {dp, ind-cdp, sim-cdp}.

There is rich literature considering notions of security for mpc/two-pc simul-
ation-based security [26,27], super-polynomial simulation [28,29], input indistin-
guishable computation [30], etc. Our notions of private two-pc (definition 7)
can be seen as new notions of “security” where the only concern for the parties is
the privacy of their inputs—here the notion of privacy being (computational) dif-
ferential privacy. As these notions do not demand efficient simulation (note that
even in εκ-ind-cdp, we do not require the “ideal” Fκ is efficiently computable),
they may be easier to achieve; though accuracy may now be the difficult dimen-
sion of this aspect.

We note that although our presentation is only for two-pc, an extension to
mpc is straightforward.

“Ideal/Real” Style Definition of Privacy: ε-SIM+-CDP. We now present
a new definition, εκ-sim+

-cdp, which is of particular interest in the context of
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interactive two-pc (for the non-interactive case, it reduces to εκ-sim-cdp). This
definition is inspired from the “ideal/real” paradigm style definitions used for
defining secure two-pc/mpc (see [31,32]).

Let P1, P2 be two parties, with private inputs a, b respectively, who would like
to compute a function h(a, b). What would be the “ideal” situation for the two
parties? If there were a trusted third party T available, P1, P2 could first fix a
ε-differentially-private mechanism ĥ that would be “useful” for approximating h
according to some metric, and then hand over their inputs a, b to T , who could
then compute ĥ(a, b) with uniformly chosen randomness and provide the output
to both the parties. Clearly, this informally described “ideal process” (which is
literally known as ideal world, in secure mpc literature) provides ε-dp. Thus,
if we had a secure two-pc protocol π that emulates this ideal world for all ppt

adversaries, intuitively π would “look differentially private” to these adversaries.
Moreover, since ĥ is (information-theoretically) differentially private, we can use
any π proven “secure” by simulation and privacy is intuitively maintained even
if the simulation is not efficient.

We now present the formal definition. In what follows, we assume familiarity
with “ideal/real”-paradigm. For a complete and formal description of ideal and
real experiments, we refer the reader to standard texts (e.g., [31,32]). Our def-
inition differs from the standard definition, solely in the sense that the simulator
is not necessarily efficient. Though clear from the definitions, we point out that
we are working with the static corruption model. To maintain consistency with
our notation, our definitions are described via interactive function ensembles.

Definition 8 (SIM+-CDP private two-party computation). An interactive
protocol ensemble {〈fκ(·), gκ(·)〉}κ∈N is (s, ξ) εκ-sim

+
-cdp private two-party

computation protocol for h = (hf , hg) with respect to the predicate P if there
exists an εκ-dp randomized mechanism ĥ = (ĥf , ĥg) such that

– Mechanism ĥ provides (s, ξ)-usefulness for h with respect to the predicate P .
– The protocol ensemble {〈fκ(·), gκ(·)〉}κ∈N is a secure two-party computation

protocol ensemble for the randomized functionality ĥ as per the “ideal/real”-
style definition of secure two party computation. (see full version)

Clearly, the definitions of sim-cdp and sim
+
-cdp are similar in asserting the

existence of simulators whose output is computationally indistinguishable from
the real world’s transcripts. The difference between the definitions is that in the
former the simulator is restricted to being differentially private but otherwise has
unfettered access to the input, while the latter only has access to a differentially-
private output, from which it has to reconstruct the entire view. The proofs of
the following two theorems are provided in the full version.

Theorem 4
1. SIM+-CDP ⇒ SIM-CDP If a protocol ensemble {〈fκ(·), gκ(·)〉}κ∈N satisfies

definition 8, then it also satisfies definition 7 for type=sim-cdp.
2. SIM-CDP �-SIM+-CDP] There exists a protocol ensemble {〈fκ(·), gκ(·)〉}κ∈N

and a function h(·, ·) such that the protocol ensemble {〈fκ(·), gκ(·)〉}κ∈N is a
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(0, 0)-additive-useful private two-party computation protocol for h (computing
h exactly), that provides εκ-sim-cdp but not εκ-sim

+
-cdp.

Protocols: Private two-party computation of the Hamming distance.
We now demonstrate the usefulness of our definitions by constructing a sim-
ple and efficient protocol which allows two parties to compute the Hamming
distance between their respective inputs in just two rounds. This protocol will
demonstrate the flexibility that comes with our definitions for designing “pri-
vacy” protocols. Note that our “privacy” definitions makes the problem quite
different from the work on private set intersection protocols (see, for example
[33] and the references therein).

For vectors a, b ∈ {0, 1}n = D define the Hamming distance, denoted h(a, b),
to be the number of positions in which a, b differ (equivalently, the vectors can
be associated with subsets of an n-element universe). Then using additive homo-
morphic encryption and the transformation by [25], we can construct a protocol
private two-pc for approximating h(a, b) more efficient than generic construc-
tions. Due to space constraints, this protocol πh (semi-honest and malicious
versions) along with the proof of following theorem, is presented in full version.

Theorem 5. For every 0 < ε < 1 there exists a γ ∈ O(1) and a constant
ξ (depending only on ε, γ) such that for every a, b ∈ {0, 1}n it holds that the
output ĥ of the protocol πh satisfies the following

Pr[|h∗ − ĥ| ≥ γ] ≤ ξ,

where h∗ = h(a, b) and the probability is taken over the randomness of πh. Fur-
ther, πh provides εκ-sim-cdp.

Note that no protocol which satisfies ε-dp with above accuracy guarantee on
additive error is known so far. For small multiplicative error, however, in the full
version of this paper, we present a protocol, π∗

h, which ensures ε-dp. We also
prove the following theorem there:

Theorem 6. For every 0 < ε, γ, η < 1, there exists δ ∈ Θ(1 − e−γ/2) such that
for every a, b ∈ {0, 1}n satisfying h(a, b) ∈ ω

(
1

ε2δ2 (ln(5n/η))4
)
, it holds that the

output ĥ of the protocol π∗
h satisfies the following

Pr[h∗ ≤ ĥ ≤ (1 + γ)h∗] ≥ 1− η,

where h∗ = h(a, b) and the probability is taken over the randomness of π∗
h. Fur-

ther, π∗
h provides ε-dp.

The high level idea behind π∗
h is to construct a differentially-private version

of the communication-efficient KOR algorithm based on sketches [34]. This is
done by properly sanitizing the sketches using a standard randomized response
mechanism, which has additive error Θ(

√
n). The two error sources (intrinsic to

KOR and due to randomized response) cannot vanish simultaneously, restricting
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the minimal value of h(a, b) for which π∗
h’s usefulness guarantee hold (its privacy

guarantees are always preserved).
We clarify that although differentially-private protocols compute an approx-

imation to the actual function h, they should not be confused with the funda-
mentally different line of research on “secure approximations” (introduced by
Feigenbaum et al. [35]). Due to space constraints, this discussion, along with
future research directions is deferred to the full version.
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Probabilistically Checkable Arguments
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Abstract. We give a general reduction that converts any public-coin in-
teractive proof into a one-round (two-message) argument. The reduction
relies on a method proposed by Aiello et al. [1], of using a Private-
Information-Retrieval (PIR) scheme to collapse rounds in interactive
protocols. For example, the reduction implies that for any security pa-
rameter t, the membership in any language in PSPACE can be proved
by a one-round (two-message) argument of size poly(n, t), which is sound
for malicious provers of size 2t. (Note that the honest prover in this con-
struction runs in exponential time, since she has to prove membership
in PSPACE, but we can choose t such that 2t is significantly larger than
the running time of the honest prover).

A probabilistically checkable argument (PCA) is a relaxation of the no-
tion of probabilistically checkable proof (PCP). It is defined analogously
to PCP, except that the soundness property is required to hold only com-
putationally. We consider the model where the argument is of one round
(two-message), where the verifier’s message depends only on his (private)
randomness. We show that for membership in many NP languages, there
are PCAs (with efficient honest provers) that are of size polynomial in
the size of the witness. This compares to the best PCPs that are of size
polynomial in the size of the instance (that may be significantly larger).
The number of queries to these PCAs is poly-logarithmic.

The soundness property, in all our results, relies on exponential hard-
ness assumptions for PIR schemes.

1 Introduction

In this paper, we define and study the new notion of probabilistically checkable
argument (PCA), (see Subsection 1.1). We give a general reduction that uses
a poly-logarithmic PIR scheme to convert any public-coin interactive proof into
a one-round (two-message) argument, (see Subsection 1.2). For example, the
reduction shows that membership in any language in PSPACE can be proved by
a one-round (two-message) argument of polynomial size, (see Subsection 1.3).
Similarly, we give a general reduction that converts any efficient interactive-PCP,
with certain properties, into a short PCA, (see Subsections 1.4, 1.5). Combined
with a recent efficient construction of interactive-PCPs [14], the reduction gives,
for membership in many NP languages, PCAs that are significantly shorter than
the known PCPs for these languages, (see Subsection 1.6).

S. Halevi (Ed.): CRYPTO 2009, LNCS 5677, pp. 143–159, 2009.
c© International Association for Cryptologic Research 2009
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1.1 Probabilistically Checkable Arguments

The PCP theorem states that the satisfiability of a formula Φ(z1, . . . , zk) of size
n can be proved by a proof of size poly(n) that can be verified by reading only a
constant number of its bits [5,10,3,2]. Note, however, that in many cases the size
of the witness, k, is significantly smaller than the size of the instance, n. A cen-
tral line of research in the area of PCPs is devoted to constructing short PCPs.
In particular, one could hope that the satisfiability of a formula Φ(z1, . . . , zk) of
size n could be proved by PCPs of size poly(k), rather than poly(n), (see for ex-
ample [15]). However, a very interesting recent result of Fortnow and Santhanam
shows that this is very unlikely, as it implies that NP ⊆ coNP/poly [12].

In this paper, we consider the relaxed setting of probabilistically checkable
argument (PCA). We show that for many NP languages, there are PCAs that
are of size polynomial in the size of the witness, rather than polynomial in the
size of the instance. The number of queries to these PCAs is poly-logarithmic
in n.

Roughly speaking, a PCA is a relaxation of the notion of PCP, where the
soundness property is required to hold only computationally. We consider the
model where the argument is of one round (two-message), where the verifier’s
message depends only on his (private) randomness1. Before the protocol starts,
the verifier generates two strings that we refer to below as a “secret key” and a
“public key”, and sends the public key in the first message. The prover’s message
depends on the verifier’s public key. The verifier in turn will need to use his secret
key for verification.2

More precisely, a PCA system is associated with three algorithms: a key gen-
eration algorithm G, a proof generation algorithm P , and a verification algorithm
V . It is also associated with five parameters t, p, q, c, s, where t, p, q are integers
and c, s are reals, s.t. 0 ≤ s < c ≤ 1. (Informally, t is the security parameter,
p is the size of the PCA, q is the number of queries allowed to the PCA, c is
the completeness parameter and s is the soundness parameter). We think of the
parameters t, p, q, c, s as functions of the instance size n.

Let L be an NP language, defined by L = {x : ∃w s.t. (x,w) ∈ RL}. Suppose
that Alice wishes to prove to Bob that x ∈ L. Assume that Bob applied in the
past the key generation algorithm G, and thus is associated with a pair of secret
and public keys (SK,PK) ← G(1t). Assume that Bob sent to Alice the public
key PK. We assume that both Alice and Bob know L and that they both get
as input an instance x of size n. Alice gets an additional input w (supposedly a
witness for the membership of x ∈ L). A PCA system allows Alice to generate

1 We note that one could consider several other models for PCA, such as, PCA in the
common random string model, where there is a public random string that both the
prover and the verifier can see, and the argument is composed of only one message
sent by the prover to the verifier.

2 We note that each pair of secret and public keys can only be used once. Our sound-
ness’ proof are only valid in this case. Moreover, it was noted to us by Rafael Pass
that by observing whether a verifier accepted or rejected a contrived message (sent
by the prover), the prover can gain information about the secret key of the verifier.
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a string π ← P(x,w, PK) of p bits. Bob is allowed to access at most q bits
of the string π, and based on these bits he decides whether to accept or reject
the statement x ∈ L. We require the following completeness and soundness
properties:

1. Completeness: For any x ∈ L and any witness w (given to the prover as
input) such that (x,w) ∈ RL, the verifier, associated with a pair of secret and
public keys (SK,PK) ← G(1t), accepts π ← P(x,w, PK) with probability
at least c. Namely,

Pr[Vπ(x, SK,PK) = 1] ≥ c

where the probability is over (SK,PK) ← G(1t), over π ← P(x,w, PK),
and over the randomness of V .

2. Soundness: For any x �∈ L and any cheating prover P̃ of size ≤ 2t,

Pr[V π̃(x, SK,PK) = 1] ≤ s

where π̃ = P̃(PK), and the probability is over (SK,PK)← G(1t) and over
the randomness of V .

For the formal definition of PCA, see Section 2.

1.2 From Interactive Proofs to One-Round Arguments

We propose a general method for reducing the number of rounds in any public-
coin interactive proof (that is, an interactive proof where all the bits sent by
the verifier are random, and consist of the verifier’s random coin tosses). More
specifically, our method uses a PIR scheme to convert any public-coin interac-
tive proof into a one-round (two-message) argument. The idea of using a PIR
scheme to reduce the round complexity in interactive protocols was proposed by
Aiello et al. [1], who used a PIR scheme to convert the (short) 4-message argu-
ment for NP proposed by [19,21], into a (short) 2-message protocol. Although
their 2-message protocol is very natural, attempts to prove its soundness have
failed. Moreover, Dwork et al. [9] exhibit inherent difficulties in such attempts
(for the protocol of [1] and for extensions of this protocol). Dwork et al. note
that the essence of the problem is that seemingly independant executions of PIR
schemes may have, so called, spooky interactions. We prove that our method,
which is based on the ideas of Aiello et al. [1], is sound, if the initial interactive
protocol involves only one prover, and is a proof.

A Private Information Retrieval (PIR) scheme, a concept introduced by Chor,
Goldreich, Kushilevitz, and Sudan [7] and by Kushilevitz and Ostrovsky [16]3,
allows a user to retrieve information from a database in a private manner. More
formally, the database is modeled as an N bit string x = (x1, . . . , xN ), out of

3 The original PIR scheme of [7] had information theoretic privacy but required several
copies of the database that cannot interact with each other. The first PIR scheme
with a single database (with privacy under computational assumptions) was obtained
in [16].
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which the user retrieves the i’th bit xi, without revealing any information about
the index i. A trivial PIR scheme consists of sending the entire database to the
user, thus satisfying the PIR privacy requirement in the information-theoretic
sense. A PIR scheme with communication complexity smaller than N is said to
be non-trivial. In this paper, we are interested in poly-logarithmic PIR schemes,
formally defined by Cachin et al. [6]. Roughly speaking, a poly-logarithmic PIR
scheme is a PIR scheme with poly-logarithmic communication complexity. For
the formal definition of poly-logarithmic PIR scheme, see Subsection 3.2.

Roughly speaking, we are able to prove the following result. Assume the exis-
tence of a poly-logarithmic PIR scheme (as defined in [6]). Assume that there ex-
ists a public-coin interactive proof system (P ,V) for proving membership in some
language L; with communication complexity �, completeness c, and soundness s.
Then for any security parameter t ≥ max{�, logn}, there exists a one-round
(two-message) argument system (P ′,V ′) for L, with communication complexity
poly(t), completeness c−2−t2 , and soundness s+2−t2 against malicious provers
of size ≤ 2t. The verifier V ′ runs in time poly(t, n) (assuming that V runs in
time poly(n)). The prover P ′ runs in time poly(T, t, 2λ), where T is the running
time of P , and λ is the total number of bits sent from V to P in the interactive
proof system (P ,V).

Moreover, the resulting one-round argument system (P ′,V ′) has the property
that the first message, sent by V ′, depends only on the random coin tosses of V ′

(and is independent of the instance x), and can be computed in time poly(t).
The main idea of the proof is as follows. For every round i of the protocol

(P ,V), the prover P ′ prepares a database DBi (of size at most 2λ) of the response
of P (in round i) on all the possibilities of bits sent by V (in all rounds). The
verifier V ′ retrieves the response of P from this database, using a PIR scheme.
This is done simoulataneously for all rounds of the protocol. Intuitively, the use
of a PIR scheme ensures that when the prover P ′ prepares the database DBi,
she cannot use information about the bits sent by the verifier in later rounds. As
mentioned above, Dwork et al. show that this intuition is misleading in many
cases [9]. Nevertheless, we are able to prove that our protocol is sound. Thus, in
this particular case, spooky interactions are not a problem.

Note that the running time of the honest prover P ′ is exponential in λ, where
λ is the total number of bits sent from V to P in the interactive proof system
(P ,V). This is the case because P ′ has to handle the databases DBi of size 2λ.
We are able to improve a little bit over that and to prove a similar result, where
the prover’s running time is poly(T, t, 2λ), where this time λ is the maximum
number of bits of the verifier’s messages that the prover “needs” to read in order
to compute one bit to be sent to the verifier.

For more details, see Section 4.
The problem of reducing the number of rounds in interactive protocols was

previously studied in a large number of works. The most famous heuristic for re-
ducing the number of rounds in general protocols is the Fiat-Shamir method [11].
It was shown in [4,13] that in certain cases where the original protocol is an
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argument the obtained protocol is not sound. It is still not known whether or
not the obtained protocol is sound if the original protocol is a proof.

A different approach, more related to ours, to reduce the number of rounds
in interactive proofs was previously done by Damgard, Fazio and Nicolosi [8].
Damgard, Fazio and Nicolosi used a homomorphic encryption, rather than PIR,
and their results only apply for 3 messages protocols that have the additional
property that the third message is linear in the second message. The proof of
soundness of their protocols is obtained by a similar approach to the one taken
here.

1.3 One-Round Arguments for PSPACE

The reduction from Subsection 1.2 can be used to convert any public-coin inter-
active proof into a one-round argument. In particular, it can be used for giving
one-round arguments for membership in PSPACE languages.

For any language L in PSPACE, there exists a public-coin interactive proof
system (P ,V) for proving membership in L; with communication complexity
� = poly(n), completeness 1, and exponentially small soundness [20,22]. Using
our general reduction, we can translate this interactive proof into a one-round
argument as follows: For any security parameter t ≥ max{�, n}, there exists a
one-round (two-message) argument system (P ′,V ′) for L, with communication
complexity poly(t), completeness 1 − 2−t, and soundness 2−t against malicious
provers of size ≤ 2t. The verifier V ′ runs in time poly(t). The prover P ′ runs in
time poly(t, 2�).

Note that the running time of the honest prover P ′ is exponential. This seems
necessary because the prover has to prove membership in PSPACE languages.
Note, however, that we can choose t to be significantly larger than �, say, t = �3.
In this case, the honest prover runs in time poly(2�), while the proof is sound
for malicious provers of size ≤ 2�3 .

1.4 Interactive-PCP

An interactive-PCP (say, for the membership x ∈ L) is a combination of a PCP
and a short interactive proof. Roughly speaking, an interactive-PCP is a proof
that can be verified by reading only a small number of its bits, with the help of
a short interactive proof.

More precisely, let L be an NP language, defined by L = {x : ∃w s.t. (x,w) ∈
RL}. Let p, q, l, c, s be parameters as follows: p, q, l are integers and c, s are reals,
s.t. 0 ≤ s < c ≤ 1. (Informally, p is the size of the PCP, q is the number of queries
allowed to the PCP, l is the communication complexity of the interactive proof,
c is the completeness parameter and s is the soundness parameter). We think
of the parameters p, q, l, c, s as functions of the instance size n. An interactive-
PCP with parameters (p, q, l, c, s) for membership in L is an interactive protocol
between an (efficient) prover P and an (efficient) verifier V , as follows:

We assume that both the prover and the verifier know L and get as input an
instance x of size n, and the prover gets an additional input w (supposed to be a
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witness for the membership x ∈ L). In the first round of the protocol, the prover
generates a string π of p bits. (We think of π as an encoding of the witness w).
The verifier is still not allowed to access π. The prover and the verifier then apply
an interactive protocol, where the total number of bits communicated is l. During
the protocol, the verifier is allowed to access at most q bits of the string π. After
the interaction, the verifier decides whether to accept or reject the statement
x ∈ L. We require the following completeness and soundness properties:

There exists an (efficient) verifier V such that:

1. Completeness: There exists an (efficient) prover P , such that: for every x ∈ L
and any witness w (given to the prover P as an input), if (x,w) ∈ RL then
the verifier accepts with probability at least c.

2. Soundness: For any x �∈ L and any (not necessarily efficient) prover P̃ ,
and any w (given to the prover P̃ as an input), the verifier accepts with
probability at most s.

For the formal definition of interactive-PCP, see Subsection 3.1.

1.5 From Interactive-PCP to PCA

We give a general reduction that converts any efficient interactive-PCP, with
certain properties, into a short PCA. The main idea is to use the reduction from
Subsection 1.2 to convert the interactive phase of the interactive-PCP into a
one-round argument.

Roughly speaking, we are able to prove the following result. Assume the ex-
istence of a poly-logarithmic PIR scheme (as defined in [6]). Assume that there
exists an interactive-PCP system (P ,V) with parameters p, q, �, c, s for some NP
language L, such that the interactive phase of (P ,V) is public-coin, and each bit
sent by the prover in the interactive phase depends on at most λ bits sent by
the verifier. Then, for any security parameter t ≥ max{�, logn}, there exists a
PCA system (G′,P ′,V ′) with parameters t, p′, q′, c′, s′ for the language L, where
p′ = poly(p, t), q′ = poly(q, t), c′ ≥ c − 2−t2 , and s′ ≤ s + 2−t2 . The prover P ′

runs in time poly(t, n, 2λ).
For more details, see Section 5.

1.6 Short PCAs for Satisfiability

Efficient constructions of interactive-PCPs were given in [18,14]. In particular,
in [14], the following theorem was proven.

Let Φ(z1, . . . , zk) be a Boolean circuit of size n and depth d, and assume
without loss of generality that k ≥ logn (otherwise, it is easy to check the sat-
isfiability of Φ in time poly(n)). Let s be such that, logn ≤ s ≤ poly(n). Then,
the satisfiability of Φ can be proved by an interactive-PCP with the following
parameters. Size of the PCP: p = poly(k, d). Number of queries: q = poly(s).
Communication complexity of the interactive phase: � = poly(d, s). Complete-
ness: 1. Soundness: 2−s. Moreover, the interactive phase is public-coin, and each
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message sent by the prover depends only on the preceding λ = O(log n) bits sent
by the verifier.

Using our reduction from interactive-PCP to PCA, together with the theorem
of [14], one obtains the following result. (Our reduction and the theorem of [14]
were obtained roughly at the same time. The result below follows from their
combination).

Let Φ(z1, . . . , zk) be a Boolean circuit of size n and depth d. Let t be a security
parameter, such that, logn ≤ t ≤ poly(n). Then, the satisfiability of Φ can be
proved by an efficient PCA system (i.e., PCA with an efficient prover), with
the following parameters. Size of the PCA: p = poly(k, d, t). Number of queries:
q = poly(d, t). Completeness: 1− 2−t. Soundness: 2−t.

In particular, if Φ(z1, . . . , zk) is a Boolean formula of size n, and log n ≤ t ≤
poly(n), the satisfiability of Φ can be proved by an efficient PCA system, with
the following parameters. Size of the PCA: p = poly(k, t). Number of queries:
q = poly(t). Completeness: 1− 2−t. Soundness: 2−t.

2 Definition of PCA

Let L be any NP language defined by L = {x : ∃w s.t. (x,w) ∈ RL}. Let
t, p, q, c, s be parameters that satisfy the following: The parameters t, p, q : N→ N

are integers, and the parameters c, s : N → [0, 1] are reals, such that for every
n ∈ N, 0 ≤ s(n) < c(n) ≤ 1.

Definition 1. A triplet (G,P ,V) of probabilistic Turing machines is a PCA
system for L with parameters (t, p, q, c, s), if the following holds:

– G is a probabilistic Turing machine that runs in time poly(t), and V is a
probabilistic oracle machine that runs in time poly(t, n).

– For every (x,w) ∈ RL (where |x| = n) and every (SK,PK)← G(1t(n)), the
algorithm P(x,w, PK) generates a bit string π of size at most p(n), and the
oracle machine Vπ(x, SK,PK) reads at most q(n) bits of π.

– Completeness: For every (x,w) ∈ RL (where |x| = n),

Pr[Vπ(x, SK,PK) = 1] ≥ c(n)

(where the probability is over (SK,PK)← G(1t(n)), over π ← P(x,w, PK),
and over the randomness of V).

– Soundness: For every x �∈ L (where |x| = n), and every cheating prover P̃
of size ≤ 2t(n),

Pr[V π̃(x, SK,PK) = 1] ≤ s(n)

(where π̃ = P̃(PK), and the probability is over (SK,PK) ← G(1t(n)) and
over the randomness of V).

Remark. Note that in Definition 1 we did not specify the complexity of P . We
say that a PCA system (G,P ,V) is efficient if P runs in time poly(t, n).
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3 Preliminaries

3.1 Interactive-PCP (IPCP)

Let L be any NP language defined by L = {x : ∃w s.t. (x,w) ∈ RL}. Let
p, q, �, c, s be parameters that satisfy the following: The parameters p, q, � : N→
N are integers, and the parameters c, s : N→ [0, 1] are reals, such that for every
n ∈ N, 0 ≤ s(n) < c(n) ≤ 1.

Definition 2. A pair (P ,V) of probabilistic polynomial time interactive Turing
machines is an interactive-PCP for L with parameters (p, q, �, c, s), if for every
(x,w) ∈ RL the prover P(x,w) generates a bit string π of size at most p(n)
(where n = |x|), such that the following properties are satisfied.

– Completeness: For every (x,w) ∈ RL,

Pr[(P(x,w),Vπ(x)) = 1] ≥ c(n)

(where n = |x|, and the probability is over the random coin tosses of P
and V).

– Soundness: For every x /∈ L, every (unbounded) interactive Turing machine
P̃, and every string π̃ ∈ {0, 1}∗,

Pr[(P̃(x),V π̃(x)) = 1] ≤ s(n)

(where n = |x|, and the probability is over the random coin tosses of V).
– Complexity: The communication complexity of the protocol (P(x,w),Vπ(x))

is at most �(n), and V reads at most q(n) bits of π.

3.2 Private Information Retrieval (PIR)

A PIR scheme consists of three algorithms: QPIR, DPIR and RPIR. The query
algorithm QPIR takes as input a security parameter t, the database size N , and
an index i ∈ [N ] (that the user wishes to retrieve from the database). It outputs
a query q, which should reveal no information about the index i, together with
an additional output s, which is kept secret by the user and will later assist the
user in retrieving the desired element from the database. The database algorithm
DPIR takes as input a security parameter t, the database (x1, . . . , xN ) and a
query q, and outputs an answer a. This answer enables the user to retrieve
xi, by applying the retrieval algorithm RPIR, which takes as input a security
parameter t, the database size N , an index i ∈ [N ], a corresponding pair (q, s)
obtained from the query algorithm, and the database answer a corresponding
to the query q. It outputs a value which is supposed to be the i’th value of the
database.

In this paper we are interested in poly-logarithmic PIR schemes, formally
defined by Cachin et al. [6], as follows.4

4 Definition 3 is not worded exactly as the one in [6], but was shown to be equivalent
to it in [17].



Probabilistically Checkable Arguments 151

Definition 3. Let t be the security parameter and N be the database size. Let
QPIR and DPIR be probabilistic circuits, and let RPIR be a deterministic cir-
cuit. We say that (QPIR, DPIR, RPIR) is a poly-logarithmic private information
retrieval scheme if the following conditions are satisfied:

1. (Size Restriction:) QPIR and RPIR are of size ≤ poly(t, logN), and DPIR is
of size≤ poly(t,N). The output of QPIR andDPIR is of size≤ poly(t, logN).

2. (Correctness:) ∀N , ∀t, ∀database x = (x1, . . . , xN ) ∈ {0, 1}N , and ∀i ∈ [N ],

Pr[RPIR(t,N, i, (q, s), a) = xi | (q, s)← QPIR(t,N, i), a← DPIR(t, x, q)]

≥ 1− 2−t3 .

3. (User Privacy:) ∀N , ∀t, ∀i, j ∈ [N ], and ∀adversary A of size at most 2t3 ,∣∣Pr[A(t,N, q) = 1 | (q, s)← QPIR(t,N, i)]−

Pr[A(t,N, q) = 1 | (q, s)← QPIR(t,N, j)]
∣∣ ≤ 2−t3 .

4 From Interactive Proofs to One-Round Arguments

In this section, we propose a general method for reducing the number of rounds
in any public-coin interactive proof (that is, an interactive proof where all the
bits sent by the verifier are random, and consist of the verifier’s random coin
tosses). More specifically, our method uses a PIR scheme to convert any public-
coin interactive proof into a one-round (two-message) argument.

Lemma 1. Assume the existence of a (uniform) poly-logarithmic PIR scheme
(as defined in Definition 3).5 Assume that there exists a public-coin interactive
proof system (P ,V) for proving membership in some language L, with commu-
nication complexity �, completeness c, and soundness s. Then for any security
parameter t ≥ max{�, logn}, there exists a one-round (two-message) argument
system (P ′,V ′) for L, with communication complexity �′ = poly(t, �) = poly(t),
completeness c′ ≥ c− 2−t2 , and soundness s′ ≤ s + 2−t2 against provers of size
≤ 2t. The verifier V ′ runs in time ≤ poly(t, n) (assuming that V runs in time
poly(n)). The prover P ′ runs in time ≤ poly(T, t, 2λ), where T is the running
time of P, and λ is the total number of bits sent from V to P in the interactive
proof system (P ,V).

Moreover, the resulting one-round argument system (P ′,V ′) has the property
that the first message, sent by V ′, depends only on the random coin tosses of V ′

(and is independent of the instance x),6 and can be computed in time ≤ poly(t).

5 We assume the existence of such a PIR scheme for any parameters N and t.
6 The fact that this message depends only on the random coin tosses of V ′ (and is

independent of x) will be crucial when converting an interactive-PCP system into a
PCA system in Section 5.
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Rather than proving Lemma 1 directly, we prove a stronger and more gen-
eral lemma. The more general lemma converts any interactive proof (P ,V), in
which the verifier’s messages depend only on the verifier’s random coin tosses
(and in particular, any public-coin interactive proof), into a one-round argu-
ment (P ′,V ′). Moreover, the resulting prover P ′ is more efficient than the one
in the statement of Lemma 1. More specifically, the running time of P ′ is
≤ poly(T, t, 2λ), where T, t are as in the statement of Lemma 1 (i.e., T is the run-
ning time of P , and t is the security parameter of the underlying PIR scheme),
but λ here is defined differently than in Lemma 1. Recall that in Lemma 1, λ was
the total number of bits sent by the verifier. Intuitively, here λ is the maximum
number of bits of the verifier’s messages, that the prover “needs” to read in order
to compute one bit to be sent to the verifier. Namely, if λi denotes the number
of bits of the verifier’s messages, that the prover “needs” to read in order to
compute its i’th bit (to be sent to the verifier), then λ = max{λ1, . . . , λ�}. We
formalize this via the following definition of a history-ignorant interactive proof.

Definition 4. An �-round interactive proof (P ,V) for proving membership in a
language L is said to be history-ignorant, if for every input x ∈ L, every auxiliary
input w ∈ {0, 1}∗,7 and for every i ∈ [�], the message sent by the (honest) prover
P(x,w) in the i’th round of the protocol (P(x,w),V(x)) depends only on the
message sent by V in the i’th round of the protocol (and on x,w and the random
coin tosses of P),8 and does not depend on the messages sent by V before the
i’th round.

In the generalized lemma we propose a method for converting any �-round
history-ignorant interactive proof (P ,V) (where the verifier’s messages depend
only on the verifier’s random coin tosses) into a one-round argument (P ′,V ′).
As in Lemma 1, we show that the completeness and soundness parameters re-
main almost the same, and the communication complexity increases by at most
a polynomial factor in the security parameter t. However, here the running time
of the resulting prover P ′ is ≤ poly(T, t, 2λ), where now λ is the length of the
longest message sent by V (rather than the total number of bits sent by V).
Namely, if m1, . . . ,m� are the � messages sent by V throughout the protocol
(P ,V) (where the message mi is sent by V in round i), then

λ
def= max

i∈[�]
{|mi|}.

Lemma 2. Assume the existence of a (uniform) poly-logarithmic PIR scheme
(as defined in Definition 3). Assume that there exists a history-ignorant inter-
active proof system (P ,V) for proving membership in some language L, where
the verifier’s messages depend only on the verifier’s random coin tosses (and
are independent of the interaction and the input). Let � be the communication
7 As is common, we allow the prover in the interactive proof system to use an auxiliary

input, supposedly a witness for x ∈ L.
8 We think of each round as consisting of a message sent by the verifier V followed by

a message sent by the prover P .
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complexity, c be the completeness parameter, and s be the soundness parameter
of the proof system (P ,V). Denote by λ the length of the longest message sent by
V, and assume that V uses at most O(� · λ) random bits. Then for any security
parameter t ≥ max{�, logn}, there exists a one-round (two-message) argument
system (P ′,V ′) for L, with communication complexity �′ = poly(t, �) = poly(t),
completeness c′ ≥ c− 2−t2 , and soundness s′ ≤ s + 2−t2 against provers of size
≤ 2t. The verifier V ′ runs in time ≤ poly(t, n) (assuming that V runs in time
poly(n)). The prover P ′ runs in time ≤ poly(T, t, 2λ), where T is the running
time of P.

Moreover, the resulting one-round argument system (P ′,V ′) has the property
that the first message, sent by V ′, depends only on the random coin tosses of V ′

(and is independent of the instance x). If each message sent by V can be computed
in time ≤ poly(t) then the first message sent by V ′ can also be computed in time
≤ poly(t).

Before proving Lemma 2, we show that this lemma can be used to convert
any (not necessarily history-ignorant) interactive proof (P ,V), where the ver-
ifier’s messages depend only on the verifier’s random coin tosses, into a one-
round argument (P ′,V ′), where the running time of the resulting prover P ′ is
≤ poly(T, t, 2λ), and where λ is the maximum number of bits of the verifier’s
messages that the underlying prover P “needs” to read in order to compute one
bit to be sent to the verifier. We assume for simplicity that in the protocol (P ,V),
the prover P sends in each round a single bit. This is without loss of generality
since we can always increase the number of rounds artificially.

The idea is the following:9 First convert the interactive proof (P ,V) into the
following history-ignorant interactive proof (P ′′,V ′′): The verifier V ′′ will first
prepare all the messages to be sent by V in the protocol (P ,V). Note that
this can be done in advance since according to our assumption, the verifier’s
messages depend only on the verifier’s random coin tosses (and are independent
of the interaction and the input). Then, in each round i, the verifier V ′′ will send
P ′′ all the bits that P “needs” in order to compute its i’th bit (i.e., its i’th round
message) in the protocol (P ,V). The prover P ′′ will emulate the prover P , while
reading only the message sent by V ′′ in the i’th round. This results with a history-
ignorant protocol, with the same completeness and soundness parameters, and
where the communication complexity increases by at most a polynomial factor.
The thing to notice is that in the i’th round the verifier V ′′ sends a message of
size λi (where λi is the number of bits of the verifier’s messages, that the prover
P “needs” to read in order to compute its i’th bit). What remains is to apply
Lemma 2 to the history-ignorant protocol (P ′′,V ′′) in order to obtain the desired
one-round argument (P ′,V ′).

Proof of Lemma 2. (In this version, due to space limitation, we only describe
the protocol and do not give the full proof). Fix any history-ignorant interactive
proof system (P ,V) as in the statement of the lemma, for proving membership
9 The discussion in this paragraph is only an intuition. The formal result is given by

Definition 4 and Lemma 2.
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in some language L. Denote by λ the length of the longest message sent by V
in the interactive proof (P ,V) (λ ≤ �). We assume for simplicity (and without
loss of generality) that this protocol consists of exactly � rounds, where in each
round V sends a message of size exactly λ, and P sends a single bit.

Fix any security parameter t ≥ max{�, logn}. Let

(QPIR, DPIR, RPIR)

be a poly-logarithmic PIR scheme, with respect to security parameter t and
database size N

def= 2λ. (We refer the reader to Subsection 3.2 for the definition
of a poly-logarithmic PIR scheme.) We next describe how to convert (P ,V) into
a one-round argument system (P ′,V ′) as in the statement of the lemma.

Fix any x ∈ {0, 1}∗ (supposedly x ∈ L) and any string w ∈ {0, 1}∗ given to the
prover as auxiliary input. The one-round argument (P ′(x,w),V ′(x)) proceeds as
follows:

– The verifier V ′(x) sends the first message, computed as follows:

1. Choose a random string rv ∈R {0, 1}O(�·λ), to be used when emulating
the underlying verifier V(x).

2. Compute the � messages m1, . . . ,m� ∈ {0, 1}λ sent by V(x) (with ran-
domness rv). Note that these messages can be computed in advance
since in the protocol (P ,V) all the messages sent by V depend only on
V ’s random coin tosses.

3. For each i ∈ [�], let (qi, si)← QPIR(t,N,mi).
4. Save the values (rv,m1, . . . ,m�, s1, . . . , s�, q1, . . . , q�).10

5. Send (q1, . . . , q�) to P ′.

Note that if each message of V can be computed in time ≤ poly(t) then the
message sent by V ′ can be computed in time ≤ poly(t, �) = poly(t).

– Upon receiving a message (q1, . . . , q�) from V ′, the algorithm P ′(x,w) oper-
ates as follows:

1. Choose a random string rp ∈R {0, 1}T , to be used when emulating the
underlying prover P(x,w).

2. For each i ∈ [�], compute an N -size database DBi as follows: The m ∈
{0, 1}λ entry of DBi contains the i’th bit that the prover P(x,w) (with
randomness rp) would have sent to V(x), if the i’th-round message sent
by V(x) was m.11

3. For each i ∈ [�], compute ai ← DPIR(t,DBi, qi).
4. Send the message (a1, . . . , a�) to V ′.

10 We note that the messages m1, . . . , m� do not need to be saved since they can be
recomputed from rv. We save them for simplicity.

11 We are using here the fact that the interactive proof system (P ,V) is history-
ignorant.
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– Upon receiving the message (a1, . . . , a�) from P ′, the algorithm V ′(x) oper-
ates as follows:

1. Restore the saved values (rv,m1, . . . ,m�, s1, . . . , s�, q1, . . . , q�).
2. For every i ∈ [�], compute b′i

def= RPIR(t,N,mi, (qi, si), ai).
3. Accept if and only if V(x), with (initial) randomness rv, would have ac-

cepted the messages (b′1, . . . , b
′
�).

12

5 From Interactive-PCPs to PCAs

In this section, we propose a general method for converting an interactive-PCP
system (with certain properties) into a PCA system. This method is very simi-
lar to the method of converting an interactive proof into a one-round argument
(presented in Section 4). Namely, it uses a PIR scheme to reduce the round com-
plexity of the interactive phase of the interactive-PCP system into one round (two-
messages). Then, the first message (sent by the verifier) in this one-round protocol,
is interpreted as the verifier’s public-key in the PCA system; and the second mes-
sage (sent by the prover) in the one-round protocol, together with the interactive-
PCP oracle, are interpreted as the PCA string.

Theorem 1. Assume the existence of a (uniform) poly-logarithmic PIR scheme
(as defined in Definition 3). Assume that there exists an interactive-PCP system
(P ,V) with parameters (p, q, �, c, s) for some NP language L, such that the inter-
active phase is history-ignorant,13 and each message sent by the verifier in this
phase depends only on the verifier’s random coin tosses (and is independent of
the interaction, the PCP string π, and the input x), and can be computed in time
≤ poly(�). Denote by λ the length of the longest message sent from V to P in
the interactive phase of the interactive-PCP system (P ,V). Assume that V uses
at most O(� ·λ) random bits. Then, for any security parameter t ≥ max{�, logn}
there exists a PCA system (G′,P ′,V ′) with parameters (t, p′, q′, c′, s′) for the lan-
guage L, where p′ = poly(p, t), q′ = poly(q, t), c′ ≥ c− 2−t2 , and s′ ≤ s + 2−t2 .
The prover P ′ runs in time ≤ poly(t, n, 2λ).

The proof of this theorem is very similar to the proof of Lemma 2.

Proof of Theorem 1. (In this version, due to space limitation, we only describe
the protocol and do not give the full proof). Fix an NP language L = {x :
∃w s.t. (x,w) ∈ RL}. Let (P ,V) be an interactive-PCP system for L with pa-
rameters (p, q, �, c, s), as in the statement of the theorem. Denote by λ the length
of the longest message sent by V in the interactive phase of (P ,V) (λ ≤ �). We
assume for simplicity (and without loss of generality) that the interactive phase
consists of exactly � rounds. In each round i ∈ [�], V sends a message mi of size

12 This verdict test may require V ′(x) to use additional (fresh) randomness.
13 A history-ignorant interactive phase is defined in the same way as a history-ignorant

interactive proof. See Definition 4.
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exactly λ (which depends only on the verifier’s random coin tosses), and P sends
a single bit bi. For every (x,w) ∈ RL, the prover P(x,w) generates a bit string
π of size at most p(n) (where n = |x|). We assume for simplicity (and without
loss of generality) that π is of size exactly p(n).

Fix any security parameter t ≥ max{�, logn}. Let (QPIR, DPIR, RPIR) be a
poly-logarithmic PIR scheme, with respect to security parameter t and database
size N

def= 2λ. (We refer the reader to Subsection 3.2 for the definition of a poly-
logarithmic PIR scheme.) We next describe how to convert the interactive-PCP
system (P ,V) into a PCA system (G′,P ′,V ′) as in the statement of the theorem.

– G′(1t(n)) operates as follows:

1. Choose a random string rv ∈R {0, 1}O(�·λ) (to be used when emulating
the messages sent by the underlying PCP verifier V).

2. Compute the � messages m1, . . . ,m� ∈ {0, 1}λ sent by V (with random-
ness rv) in the interactive phase of (P ,V). Note that these messages can
be computed in advance (since all the messages sent by V depend only
on V ’s randomness).

3. For each i ∈ [�], let (qi, si)← QPIR(t,N,mi).
4. Let PK = (q1, . . . , q�) and let SK = (rv,m1, . . . ,m�, s1, . . . , s�,

q1, . . . , q�).14

5. Output the pair (SK,PK).

Note that G′ runs in time ≤ poly(t), since each message sent by V can be
computed in time ≤ poly(�) ≤ poly(t).

– For every (x,w) ∈ RL (where |x| = n) and every (SK,PK)← G′(1t(n)), the
algorithm P ′(x,w, PK) operates as follows.

1. Parse PK = (q1, . . . , q�).
2. Choose a random string rp ∈R {0, 1}poly(n) (to be used when emulating

the underlying PCP prover P(x,w)).
3. Compute the oracle π, as computed by P(x,w) (with randomness rp).
4. For each i ∈ [�], compute an N -size database DBi as follows: The m ∈
{0, 1}λ entry of DBi contains the bit bi that the PCP prover P(x,w)
(with randomness rp) would have sent to V(x) in the i’th round of the
interactive phase of (P ,V), if the i’th-round message sent by V(x) was
m.15

5. For each i ∈ [�], compute ai ← DPIR(t,DBi, qi).
6. Output π′ def= (π, a1, . . . , a�)

– For every (x,w) ∈ RL (where |x| = n), every (SK,PK)← G′(1t(n)), and ev-
ery string π′ (supposedly of the form π′ = (π, a1, . . . , a�)), the oracle machine
(V ′)π′

(x, SK,PK) operates as follows:

14 We note that the messages m1, . . . , m� do not need to be part of the secret key since
they can be recomputed from rv. We save them for simplicity.

15 We are using here the fact that the interactive phase of (P ,V) is history-ignorant.
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1. Query the oracle π′ at all the coordinates i > p(n). Denote the values
obtained by the oracle by (a1, . . . , a�).

2. Parse PK=(q1, . . . , q�) and SK = (rv,m1, . . . ,m�, s1, . . . , s�, q1, . . . , q�).
3. For every i ∈ [�], compute b′i

def= RPIR(t,N,mi, (qi, si), ai).
4. Compute the q oracle queries made by V(x) (with randomness rv), as-

suming the � messages that the prover P sent V during the interactive
phase were b′1, . . . , b

′
�. Denote these q queries by i1, . . . , iq ∈ [p(n)].

5. Query the oracle at the coordinates i1, . . . , iq, and obtain q answers,
denoted by πi1 , . . . , πiq .

6. Output 1 if and only if the verifier Vπ(x) (with randomness rv) outputs 1
after receiving the messages b′1, . . . , b

′
� from the prover P and receiving

the bits πi1 , . . . , πiq from the oracle.

5.1 Corollaries

We next show how Theorem 1, together with the interactive-PCP system con-
structed in [14], yields an efficient PCA system. We use the following theorem
from [14].

Theorem 2. [14] Let Φ(z1, . . . , zk) be a (fanin 2) Boolean circuit of size n and
depth d, and assume without loss of generality that k ≥ logn.16 Let s be such
that, logn ≤ s ≤ poly(n). Then, the satisfiability of Φ can be proved by an
interactive-PCP with the following parameters. Size of the PCP: p = poly(k, d).
Number of queries: q = poly(s). Communication complexity of the interactive
phase: � = poly(d, s). Completeness: 1. Soundness: 2−s.

Moreover, the interactive phase is public-coin, the verifier uses at most O(�)
random bits, and each message sent by the prover depends only on the preceding
λ = O(log n) bits sent by the verifier.

The following is an immediate corollary of Theorem 1 and Theorem 2.

Corollary 1. Assume the existence of a (uniform) poly-logarithmic PIR scheme
(as defined in Definition 3). Let L = {x : ∃w s.t. (x,w) ∈ RL} be any NP
language, and assume that RL is given by a Boolean circuit of size poly(n) and
depth d, where n = |x| denotes the instance size. Let k = |w| denote the witness
size. Let t be a security parameter, such that, logn ≤ t ≤ poly(n). Then, the
satisfiability of Φ can be proved by an efficient PCA system (i.e., PCA with a
(honest) prover that runs in time poly(n)), with the following parameters. Size
of the PCA: p = poly(k, d, t). Number of queries: q = poly(d, t). Completeness:
1− 2−t. Soundness: 2−t.

Proof. Fix any NP language L = {x : ∃w s.t. (x,w) ∈ RL}, as above. Fix s =
t+1. Theorem 2 implies that L has an interactive-PCP system with the following
parameters: p = poly(k, d, logn), q = poly(s), � = poly(d, s), completeness 1,
and soundness 2−s.
16 Otherwise, it is easy to check the satisfiability of Φ in time poly(n).
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The fact that each message sent by the (interactive-PCP) prover depends only
on the preceding O(log n) bits sent by the verifier, implies that the interactive-
PCP system can be converted into a history-ignorant one, where the length of the
longest message sent by the verifier in the interactive phase is λ = O(log n). This
increases the communication complexity � by at most a quadratic factor, and
does not change the other parameters. The fact that the interactive phase of the
(original) interactive-PCP is public-coin, implies that in the resulting (history-
ignorant) interactive-PCP, each message sent by the verifier depends only on the
verifier’s random coin tosses, and can be computed in time ≤ poly(�).

Applying Theorem 1 (with security parameter t′ = poly(�, t)) to this
interactive-PCP system, results with a PCA system for L, with the desired
parameters, where the prover runs in time poly(n).
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Abstract. We show that only languages in BPP have public-coin, black-
box zero-knowledge protocols that are secure under an unbounded (poly-
nomial) number of parallel repetitions. This result holds both in the plain
model (without any set-up) and in the Bare Public-Key Model (where the
prover and the verifier have registered public keys). We complement this
result by showing the existence of a public-coin black-box zero-knowledge
proof that remains secure under any a-priori bounded number of con-
current executions.

1 Introduction

Zero-knowledge (ZK) interactive protocols [GMR89] are paradoxical constructs
that allow one player P (called the prover) to convince another player V (called
the verifier) of the validity of a mathematical statement x ∈ L, while provid-
ing zero additional knowledge to the verifier. Beyond being fascinating in their
own right, ZK proofs have numerous cryptographic applications and are one of
the most fundamental cryptographic building blocks. A fundamental question
regarding zero-knowledge protocols is whether their composition remains zero-
knowledge. The three most basic notions of compositions are sequential com-
position [GMR89, GO94], parallel composition [FS90, GK96b] and concurrent
composition [FS90, DNS04]. In a sequential composition, the players sequen-
tially run many instances of a zero-knowledge protocol, one after the other. In a
parallel composition, the instances instead proceed in parallel, at the same pace.
Finally, in a concurrent composition, messages from different instances of the
protocol may be arbitrarily interleaved.

While the definition of ZK is closed under sequential composition [GO94], this
no longer holds for parallel composition [GK96b] (and thus not for concurrent
composition either). However, there are zero-knowledge protocols for all of NP
that have been demonstrated to be secure under both parallel and concurrent
composition. For the case of only parallel composition, constant-round protocols
are known [Gol02, FS90, GK96a]. For the case of concurrent composition, a
series of work [RK99, KP01, PRS02] show feasibility of Õ(log n)-round protocols;
furthermore, this round-complexity is essentially optimal with respect to black-
box simulation [KPR98, Ros00, CKPR01].

Whereas the original ZK protocols of [GMR89, GMW91, Blu87] are public-
coin—i.e., the verifier’s messages are its random coin-tosses—all of the afore-
mentioned parallel or concurrent ZK protocols use private coins. Indeed, in their
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seminal paper, Goldreich and Krawczyk [GK96b] (GK from now on) showed that
only languages in BPP have constant-round public-coin (stand-alone) black-box
ZK protocols with negligible soundness error, let alone the question of paral-
lel composition. In particular, their results imply that (unless NP ⊆ BPP) the
constant-round ZK protocols of e.g., [GMW91, Blu87] with constant soundness
error cannot be black-box ZK under parallel repetition (as this would yield a
constant-round black-box ZK protocol with negligible soundness error).

A natural question is whether the constant-round restriction imposed by the
GK result is necessary. Namely,

Is there a (possibly super-constant round) public-coin black-box ZK pro-
tocol that is secure under parallel (or even concurrent) composition?

Our results. In this work, we provide a negative answer to the above ques-
tion. Namely, we show that only languages in BPP have public-coin black-box
ZK protocols that remain secure under parallel (and thus also concurrent) com-
position. Thus, whereas for private-coin protocols, a super constant number of
rounds helps in establishing concurrent composition [RK99, KP01, PRS02], we
conclude that it is not the case for public-coin protocols.

Theorem (Informal). If L has a public-coin argument that is black-box parallel
ZK, then L ∈ BPP.

In fact, our result establishes that any black-box ZK protocol that remains secure
under m parallel executions must have Ω̃(m1/2) rounds.

On the positive side we show that every language in NP has a public-coin
black-box ZK proof that remains secure under an a-priori bounded number of
concurrent (and thus parallel) executions.

Theorem (Informal). Assume the existence of one-way functions. Then for
every polynomial m, there exists an O(m3)-round public-coin black-box
m-bounded concurrent ZK proof for NP.

This complements a result of [Bar01], which constructs constant-round public-
coin bounded-concurrent ZK arguments (rather than proofs) using non-black-box
simulation.

We next turn to compositions in models with trusted set-up. Canetti, Goldre-
ich, Goldwasser and Micali [CGGM00] show that in the Bare Public-Key (BPK)
Model, where each player has a registered public-key, constant-round black-box
concurrent ZK protocols exist for all of NP (whereas in the plain model without
set-up, as mentioned above, Ω̃(logn) rounds are necessary for non-trivial lan-
guages [CKPR01]). We show that for the case of public-coin protocols, the BPK
set-up does not help with composition.

Theorem (Informal). If L has a public-coin argument in the BPK model that
is black-box parallel ZK, then L ∈ BPP.

Finally, as we will see, some of the intermediate ideas in our work are closely
related to the notion of resettable soundness [BGGL01]. Very informally, we
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establish that parallel repetition of public-coin protocols not only reduces the
soundness error [PV07, HPPW08], but also qualitatively strengthen the soun-
dness—the new protocols will be secure even under a “resetting” attack.

Techniques. To describe our technique, let us first briefly recall the GK lower
bound showing that only languages in L have O(1)-round public-coin black-box
ZK. Let (P, V ) be a black-box ZK proof of a language L. Consider a malicious
verifier V ∗ which, instead of picking its messages at random, computes them by
applying a hash function to the current transcript. GK show that any black-box
simulator S, together with V ∗ can decide L: on input x, simply run SV ∗(x)(x)
and accept if S outputs a view where V ∗ is accepting. It easily follows that if
x ∈ L, then SV ∗

(x) will output a transcript where V ∗ is accepting (as the honest
prover would convince V ∗). The crux of their proof is to show that if x /∈ L, then
SV ∗

(x) will output an accepting view only with small probability. If S was not
rewinding V ∗ this would directly follow from the soundness pf (P, V ). However S
might rewind V ∗, and might only convince V ∗ in one of its rewinding “threads”.
Nonetheless, GK manages to show that if S—using rewinding, or “resetting”—
manages to convince V ∗, then we can construct a machine T that uses S to
convince an external verifier V (without rewinding), contradicting the soundness
of (P, V ). In other words, they show that the protocol (P, V ∗) is sound under
a “resetting-attack” [CGGM00, BGGL01]. Analogously, to prove our results, we
show that if we have take a public-coin interactive proof (P, V ) and repeat it
sufficiently many times in parallel (and again letting the verifier pick its messages
by applying a hash function to the transcript), then the resulting protocol is
sound under a resetting-attack.

More details on the reduction. GK, as well as all subsequent black-box
lower bounds e.g., ([KPR98, Ros00, CKPR01, BL02, Kat08, HRS09]) rely on
the following approach for constructing the stand-alone (non-resetting) prover
T (given the “rewinding” simulator S). T incorporates S and internally emulates
the execution of S with an internally emulated verifier (which of course can be
rewound). While doing this emulation, T also appropriately picks some messages
sent by S to the internal verifier, and forwards them externally (and also forwards
back the reply received externally). The crux of the various lower bounds is how
these messages (to be forwarded externally) are chosen. The difficulty of this
task stems from the fact that, at the time of deciding whether to externally
forward a message or not, T does not yet know if the simulator will eventually
choose this message to “continue” its simulation, or treat this messages simply
as a “rewinding” (used to collect information).

For the case of constant-round protocols, GK show that a random selection
of messages to forward externally works. (If the protocol has d rounds, this
random selection is “correct” with probability 1/md, where m is the number
of queries made by the simulator to its verifier.) To handle a super constant
number of rounds, Canetti, Kilian, Petrank and Rosen [CKPR01] show that when
dealing with an adversarial verifier that can schedule messages in an arbitrary
way, there exists some particular scheduling which makes it easy to identify
appropriate messages to forward externally (as long as the number of rounds is
sub-logarthmic).
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This general approach of simply running the simulator S “straight-line” seems
hard to extend to protocols with a polynomial number of rounds; the number
of possible choices for messages to forward to the external verifier becomes too
large. To get around this problem, we use a different technique. Instead of simply
running S “straight-line”, we let T rewind S (while S itself believes it is rewinding
the verifier). This makes it possible for us to “check” whether a message is “good”
before forwarding it to the external verifier. Our strategy is twofold. First, we
only externally forward queries that have a good chance of being included in
the output view; since the protocol is public-coin, we can estimate this chance
by doing “test-runs” of S. Once we have forwarded a query, we will force S
to include it in the output view by repeatedly rewinding S. Intuitively, if the
forwarded queries are indeed “good”, then T should break the soundness of Π
after polynomially many rewinds. But what if the external verifier acts differently
from our test-runs and replies with a “bad” response to a forwarded query?
Using a probabilistic lemma due to Ran Raz [Raz98] (used to prove that parallel
repetition reduces the soundness error in two-prover games) we can show that
if we have enough parallel sessions, and the external verifier only decides the
verifier response in one session, the “goodness” of a forwarded query will not
change much.

We remark that our approach shares similarities with previous works on
the topic of soundness amplification under parallel repetitions, such as [BIN97]
[PV07] [IJK07], and especially [HPPW08]; in particular, our use of Raz’s lemma
is similar to its use in [HPPW08]. However, whereas those works show how to
transform a parallel prover with “small” success probability into a stand-alone
prover with “high” success probability, we show how to transform a rewinding
parallel prover into a (non-rewinding) stand-alone prover. This requires over-
coming several novel obstacles: most notably, we are required to deal with the
difficulty of forcing the simulator S to output a view which uses the queries
externally forwarded by T .

To extend our lower bound to the BPK model, we run into the additional
problem that the external verifier can decide whether to accept or reject based
on its secret key (which T does not know). T can thus no longer determine
whether an external verifier accepts or rejects when doing test-runs, which is
crucial for deciding which messages to forward externally. By relying on the
“trust-halving” technique from [IW97, BIN97], and its refinement in [HPPW08],
we show how T can make an “educated” guess which is sufficiently good.

Parallel-repetition and Resettable-soundness. As an independent contri-
bution, we believe that our techniques elucidates an intriguing (and useful)
connection between lower bounds for black-box ZK, and feasibility results for
soundness/hardness amplification. As mentioned, our core technical contribu-
tion shows that (appropriate) parallel-repetition of a public-coin protocol not
only reduced the soundness error [PV07, HPPW08], but also yields a protocol
that is sound even under a resetting attack [GK96b, CGGM00, BGGL01]. To
establish our ZK lowerbound, we only consider a “weak” notion of “resettable-
soundness” where the statement to be proved cannot be changed. In the full
version of the paper, we shows that if the original protocol also is a proof of
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knowledge [GMR89, FS90, BG02], then the parallelized version also satisfies the
stronger notion of resettable-soundness from [BGGL01] (where the adversary can
also change the statement during its rewindings). [BGGL01] showed a similar
type of result for O(1)-round public-coin proofs of knowledge.

Outline. We introduce some preliminaries in Sect. 2, and jump into our impos-
sibility results in Sect. 3. Next we present our public-coin bounded-concurrent
zero-knowledge protocol in Sect. 4. Details of our extension to the Bare Public
Key model and our application to resettable soundness can be found in the full
version of this paper.

2 Preliminaries

We assume familiarity with indistinguishability, interactive proofs and commit-
ments. |x| denotes the length of a (bit) string x, and [n] denotes the set {1, . . . , n}.

Let Π = 〈P, V 〉 be an interactive proof for a language L between prover P
and verifier V . We assume WLOG that Π starts with a verifier message and
ends with a prover message, and say Π has k rounds if the prover and verifier
each sends k messages alternatively. The notation 〈v1, p1, . . .〉 specifies a full
or partial transcript of Π where v denotes verifier messages and p denotes
prover messages. Π is public-coin if the verifier messages are just independent
segments of V ’s random tape.

We may repeat an interactive proof in parallel. Let Πm = 〈Pm, V m〉 be Π
repeated in m parallel sessions; that is, each prover and verifier message in
Πm is just concatenation of m copies of the corresponding message in Π . V m

completes Π in all m sessions (or abort in all sessions), and accepts if and only
if all m sessions are accepted by V .

In general, an adversarial verifier is not restricted to parallel schedules. An
m-session concurrent adversarial verifier V ∗ is a probabilistic polynomial
time machine that, on common input x and auxiliary input z, interacts with
m(|x|) independent copies of P concurrently (called sessions). There are no
restrictions on how V ∗ schedules the messages among the different sessions, and
V ∗ may choose to abort some sessions but not others. Let ViewP

V ∗(x, z) be the
random variable that denotes the view of V ∗ in an interaction with P (this
includes the random coins of V ∗ and the messages received by V ∗). Note that
for public-coin protocols, the view of V ∗ is just the transcript of the interaction.

A black-box simulator S is a probabilistic polynomial time machine that
is given black-box access to V ∗ (written as S = SV∗

). Formally, the random tape
of V ∗, denoted by r, is uniformly chosen and fixed a priori, and S is allowed to
specify a valid partial transcript τ = 〈v1, p1, . . . , pi〉 of 〈P, V ∗

r 〉, and query V ∗
r

for the next verifier message vi+1. Here, τ is valid if it is consistent with V ∗
r —

i.e., each verifier message vj in τ is what V ∗ would have responded given the
previous prover messages p1, . . . , pj−1 (and the fixed random tape r). Note that
S is allowed to “rewind” V ∗ by querying V ∗ with different partial transcripts
that shares a common prefix.

Intuitively, an interactive proof is zero-knowledge (ZK) if the view of any
(stand-alone) adversarial verifier V ∗ can be generated by a simulator. The
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protocol is concurrent ZK if the view of any concurrent adversarial verifier can
be generated as well. The formal definitions follow.

Definition 1 (Black-Box Zero-Knowledge [GMR89, GO94]). Let Π =
〈P, V 〉 be an interactive proof (or argument) for a language L. Π is black-box
zero-knowledge if there exists a black-box simulator S such that for every common
input x, auxiliary input z, random tape r, and every (stand-alone) adversary
V ∗, SV∗

r (x,z)(x) runs in time polynomial in |x|. Furthermore, the ensembles
{ViewP

V ∗
r
(x, z)}x∈L,z,r∈{0,1}∗ and {SV∗

r (x,z)(x)}x∈L,z,r∈{0,1}∗ are computationally
indistinguishable over x ∈ L.

Definition 2 (Black-Box Concurrent Zero-Knowledge [DNS04]). Let
Π = 〈P, V 〉 be an interactive proof (or argument) for a language L. Π is black-
box concurrent zero-knowledge if for all polynomials m, there exists a black-box
simulator Sm such that for every common input x, auxiliary input z, random
tape r and every m-session concurrent adversary V ∗, S

V∗
r (x,z)

m (x) runs in time
polynomial in |x|. Furthermore, the ensembles {ViewP

V ∗
r
(x, z)}x∈L,z,r∈{0,1}∗ and

{SV∗
r (x,z)

m (x)}x∈L,z,r∈{0,1}∗ are computationally indistinguishable over x ∈ L.

We also consider a bounded version of concurrent zero-knowledge where the
order of quantifiers are reversed [Bar01].

Definition 3 (Black-Box Bounded Concurrent Zero-Knowledge). Let
Π = 〈P, V 〉 be an interactive proof (or argument) for a language L and let m be
a polynomial. Π is black-box m-bounded concurrent zero-knowledge if there exists
a black-box simulator S such that for every common input x, auxiliary input z,
random tape r, and every m-session concurrent adversary V ∗, SV∗

r (x,z)(x) runs in
time polynomial in |x|. Furthermore, the ensembles {ViewP

V ∗
r
(x, z)}x∈L,z,r∈{0,1}∗

and {SV∗
r (x,z)(x)}x∈L,z,r∈{0,1}∗ are computationally indistinguishable over x ∈ L.

3 Impossibility

From now on zero-knowledge refers to black-box zero-knowledge. In this section
we show that only languages in BPP have public-coin concurrent zero-knowledge
protocols. We actually show a stronger result: Except for languages in BPP,
no public-coin protocols remains black-box zero-knowledge when repeated in
parallel. The formal theorems are stated below, where n denote the security
parameter or the input size.

Theorem 1. Suppose language L has a k = poly(n)-round public coin black-box
zero-knowledge proof Π with soundness error 1/2. If m ≥ k log2 n and Πm is
zero-knowledge, then L ∈ BPP.

Theorem 2. Suppose language L has a k = poly(n)-round public-coin black-box
zero-knowledge argument Π with soundness error 1/2. If m ≥ (k2 log k) log2 n
and Πm is zero-knowledge, then L ∈ BPP.

We remark here that our theorems also hold with respect to so-called non-
aborting verifiers that never send an invalid message.
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3.1 Common Proof Components

The proofs of Theorem 1 and 2 begin in the same high-level framework as that
of [GK96b]. Suppose a language L has a public-coin ZK protocol Π = 〈P, V 〉,
and Πm is zero-knowledge with a black-box simulator S that runs in time nd.
To show that L ∈ BPP, we construct a “random-looking” adversarial verifier,
V ∗, and consider the following decision algorithm D: D(x) runs SV∗

to generate
a view of V ∗, and accepts x if and only if V ∗ accepts given the generated view
(which in turn occurs if and only if the honest verifier V accepts in all m sessions
of the view).

V ∗ is actually a family of adversarial verifiers constructed as follows. Let H be
a family of hash functions that is random enough compared to the running time
of S; formally, H should be nd-wise independent (see [GK96b, CG89]). Let V ∗

h

be the verifier that when queried with transcript τ , responds (deterministically)
with the message h(τ). We write V ∗ to mean V ∗

h for a randomly chosen h, i.e.,
when D runs SV∗

, D first chooses h randomly from H and then run SV∗
h.

We make two easy observations about SV∗
. First, we may assume that when-

ever S queries V ∗ with a transcript or outputs a transcript τ , it first queries V ∗

with all the prefixes of τ ; this only increases the running time of S polynomially.
Second, we may assume that S never queries V ∗ with the same transcript twice
(instead S may keep a table of answers). Then the set of all responses generated
by V ∗ is identical to the uniform distribution since H is nd-independent and S
makes at most nd queries to V ∗.

We need to show that decision procedure D is both complete and sound.
Completeness states that if x ∈ L, then D should accept x with probability
at least 2/3. This easily follows: The output of SV∗

(x) is indistinguishable from
the interaction of 〈Pm, V ∗〉 since S is a zero-knowledge simulator. Furthermore,
〈Pm, V ∗〉 is identical to m-copies of 〈P, V 〉 since V ∗ produces independent, truly
random verifier messages. Finally, by the completeness property of Π , V will
accept x with probability 1 in all the copies of 〈P, V 〉.

Soundness states that if x /∈ L, then D should accept with probability at most
1/3. That is, SV∗

(x) can produce an accepting view of V ∗ with probability at
most 1/3. In a sense, this is the soundness of protocol Πm against a rewinding
prover such as S. This property is shown separately for proofs and arguments in
the next two sections.

3.2 Proof of Theorem 1: Zero-Knowledge Proofs

We show that D is sound when Π is a proof. Our approach follows that of
[GK96b] while relying on the soundness amplification theorem of [BM88].

Suppose for the sake of contradiction that for some x /∈ L, SV∗
(x) produces

an accepting view with probability more than 1/3; we will use S to lower bound
the soundness error of Πm (as an interactive proof of L). Whenever SV∗

outputs
a valid accepting view of V ∗ and a corresponding transcript τ of Πm, S would
have queried V ∗ for each of the k verifier messages in τ (recall that we assumed
this without loss of generality). A cheating prover of Πm can therefore run
SV∗

internally, guess which queries of S are used to form the accepting output
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transcript, and forward them to an outside honest verifier of Πm. Since S has
maximum running time nd, it can only query V ∗ for at most nd messages. The
probability of guessing all the right queries is then at least n−dk (one guess for
each round of Π). Note that forwarding queries to an outside honest verifier
does not lower the acceptance probability of SV∗

since V ∗ is identical to a honest
verifier (they both respond with random messages). Thus this cheating prover,
using S, can break the soundness of Πm with probability at least (1/3)n−dk =
Ω(2−dk log n).

On the other hand, recall that Π has soundness error less than 1/2. By the
soundness amplification theorem of [BM88], Πm should have soundness error at
most O(2−m). Since m ≥ k log2 n, we have O(2−m) < Ω(2−dk log n) and reach a
contradiction. %&

3.3 Proof of Theorem 2: Zero-Knowledge Arguments

We now show that D is sound even when Π is an argument. Again we argue
by contradiction, and suppose SV∗

(x) outputs an accepting view for some x /∈ L
with probably more than 1/3. We cannot repeat the proof of Theorem 1 because
parallel repetitions cannot reduce the soundness of arguments beyond being
negligibly small. Therefore we cannot use S to break the soundness of Πm.
Instead, we directly show a parallel repetition theorem for “resettable-soundness”;
that is, we relate the “resettable” soundness of 〈Pm, V ∗〉 to the soundness of Π .

Proof Outline. The rest of this section describes how to construct a cheating
prover T for Π . T runs S internally and plays the role of V ∗ when S makes a
query. To break the soundness of Π , T needs to choose one of the m sessions
and forward a complete set of S queries in that session (one for each round
of Π) to an honest outside verifier V of Π . Moreover, S must eventually use
these forwarded queries to output an accepting view. This is challenging since
S may query V ∗ multiple times for each round of Πm. While T must decide to
forward a query or not at the time of the query, S can wait until all queries are
completed before choosing which queries to form the output view. To overcome
this obstacle, a key part of our analysis relies on rewinding S (note that at the
same time, S believes that it is rewinding V ∗). Our strategy is twofold. First we
only forward queries that has some chance (preferably a good chance) of being
included in the output view; this is done by doing test-runs of S. Once we have
forwarded a query, we will force S to include it in the output view by repeatedly
rewinding S.

We can describe a transcript of S as an alternating sequence of queries from
S and responses from T , [s1, t1, s2, t2, . . . ], where each S-query is in fact a partial
transcript of Πm that ends with a prover message (awaiting a verifier response).
To avoid confusion, in our analysis τ and 〈·〉 denote views of V ∗ (which are just
transcripts of Πm), while h and [·] denote transcripts of S. Recall that S may
rewind V ∗, and thus a transcript of S may be much longer than a view of V ∗.
Since the randomness of S is fixed, the behaviour of S is entirely determined by
the T -responses in a transcript. The goal of T is then to generate a full transcript
of S so that S produces an accepting view of V ∗ and a corresponding transcript
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τ of Πm, while simultaneously having the foresight to forward (a session of) all
the S-queries pertaining to τ to the external verifier V (i.e. all S-queries that
are a prefix of τ). If so, T has broken the soundness of Π , and we call this a
successful simulation of S.

On a high level, T first fixes a random session j0 ∈ 1, . . . ,m as the forwarding
session. Then, T will incrementally fix the transcript of S while forwarding S-
queries to V in k iterations (one for each round of Π). During each iteration,
T first forwards a query to V . Then, T continues the simulation of S using V ’s
response until it finds a suitable query to forward in the next iteration. In more
details:

Step 1. In iteration i, T starts with a partial transcript hi of S that ends with
a query for the ith message of Π . T will forward session j0 of this query to
V and receive a reply vj0

i .
Step 2. Fixing the reply vj0

i , T randomly completes the partial transcript hi

up to 300k2nd times until it finds a successful completion h. If no successful
completion is found, T aborts. Otherwise, let τ be the accepting view of
V ∗ produced by S under transcript h (in particular, τ must include all the
queries that have been forwarded by T ). By assumption, S must query T for
the i+ 1st verifier message in τ . Let hi+1 be the prefix of h up to this query
(note that hi+1 is an extension of hi), and this query (considered a “good”
query for the i+1st verifier message) will be forwarded in the next iteration.

During the analysis, we first use Raz’s lemma to show that because the number
of sessions is large and j0 was chosen randomly, we may pretend vj0

i is nicely chosen
conditioned on success, just like the other sessions (chosen by T in step 2). We also
show that T rarely aborts.

Proof Details. We now introduce a series of hybrid simulators that formally
defines and analyses T ; all our hybrids will always generate truly random re-
sponses to S-queries so that S cannot distinguish the hybrids from V ∗. We will
start with a hypothetical hybrid, and gradually move towards T .

Hybrid 1. Our first hybrid T (1) serves to introduce the general idea of how T
queries S internally; T (1) does not yet forward messages to the external verifier V .

T (1) builds a full transcript of S in k + 1 iterations. In iteration i, T (1) fixes
an S-query τi for the ith message of Πm. This query should have a good chance
of being included by S in an accepting transcript of Πm, and therefore is a good
candidate to forward externally. Note that fixing an S-query amounts to fixing
the transcript of S up until the desired S-query is made.

We now describe T (1) in detail. In the very beginning, T (1) fixes a random
session j0 ∈ {1, . . . ,m}; eventually the jth

0 session will be forwarded externally.
After that, T (1) incrementally grows a transcript of S in k iterations. During the
ith iteration, T (1) receives a partial transcript of S from the previous iteration,
hi = [t1, s1, . . . , s� = τi], where τi is a S-query for the ith verifier message of Πm

(h1 = [], the empty transcript). Looking ahead, session j0 of τi will be forwarded
to the external V in later hybrids of T . As an invariant maintained by T (1),
it should be possible to extend hi into a full transcript of S where S outputs
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an accepting view of V ∗ containing the query τi. We call such a full transcript
a successful completion of hi. Each iteration can be further divided into two
steps:

Step 1. T (1) does not forward τi to the external V ; instead it simulates a re-
sponse to its liking. T (1) randomly samples a completion of hi into h con-
ditioned on success (always possible due to the invariant). Let v

(j0)
i be the

response to τi in the jth
0 session in the successful completion h; it is used

in place of a response from V . Let h̃i be a slight extension of the partial
transcript hi where the session j0 response to τi is fixed to v

(j0)
i .

Step 2. T (1) now samples a completion of h̃i into h̃ conditioned on success (note
that h from the previous step is one such completion). Under h̃, S would
output an accepting view τ of V ∗ (note that τ must extend τi). Let τi+1 be
the S query for the i + 1st verifier message in τ (note that τi+1 extends τi).
T (1) then sets hi+1 to be the prefix of h̃ up to when S makes the query τi.
Note that the invariant holds since by definition h̃ is a successful completion
of hi+1.

Note that in Step 2 of the final (kth) iteration, T (1) simply outputs h̃ as a full
transcript of S (there is no τk+1 to fix). Due to the invariant, T (1) always produce
a transcript of S where S outputs an accepting transcript τ , whose incremental
prefixes τ1, . . . , τk were forwarded by T to the external verifier.

Hybrid 2. Our second hybrid, T (2), describes a way to sample successful com-
pletions in Step 2 of each iteration (Step 1 will be replaced with the external
verifier and is left alone for now). In Step 2, T (2) randomly completes the given
partial execution (h̃i) up to 300k2nd times, until a successful completion is found.
If none of the completions are successful, T (2) aborts. Note that conditioned on
T (2) not aborting, the output distribution of T (2) is identical to T (1).

To show that T (2) aborts with small probability, suppose for now that T (2)

is allowed to sample an unbounded number of completions. Let us bound the
expected number of completions that are needed to have a successful one. In the
following analysis we distinguish between two probability spaces: PrS [·] is used
to measure probabilities over a single execution of S. On the other hand, PrT [·] is
used to measure probabilities over an execution of T (2) (with unbounded number
of completions) which includes rewinding and executing S multiple times.

Let Hi and H̃i be the set of possible partial transcripts of S that is given
to T (2) in Step 1 and Step 2 of the ith iteration, respectively. Given h ∈ Hi

(or H̃i), let PrS [h] denote the probability that a transcript of S has prefix h,
and let PrT [h] denote the probability that T (2) is given h in the ith iteration;
similarly, PrS [· | h] and PrT [· | h] are probabilities conditioned on these events
occurring. Let Ah be the event (over the S probability space) that a transcript
of S has prefix h and is a successful completion of h; as a special case, A = A∅

is just the event that S outputs an accepting transcript. Also let Ri be the
random variable (over the T (2) probability space) that denotes the number of
completions performed by T (2) in step 2 of iteration i.
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Lemma 3. ET [Ri] ≤ 3nd.

Proof. First expand ET [Ri] by conditioning on the transcript h fixed in Step 1:

ET [Ri] =
∑

h∈H̃i

PrT [h]ET [Ri | h] (1)

Recall that in Step 2, T (2) samples random completions of h until a successful
completion is found. Therefore

ET [Ri | h] =
1

PrS [Ah | h]
⇒ ET [Ri] =

∑
h∈H̃i

PrT [h]
1

PrS [Ah | h]
(2)

We now state a claim and give its proof in the full version of this paper.

Claim 4. Let h ∈ H̃i. PrT [h] PrS [A] = PrS [Ah].

Intuitively, the claim says that the probability of T (2) fixing h is proportional
to the probability of successfully completing h (PrS [A], the probability that S
produces an accepting transcript, is the normalizing factor). This can be shown
by a counting argument. By expanding the RHS of Claim 4 and rearranging
terms, we have

PrT [h] PrS [A] = PrS [Ah] = PrS [h] PrS [Ah | h]

⇒ PrT [h]
1

PrS [Ah | h]
= PrS [h]

1
PrS [A]

≤ 3 PrS [h]

since we assumed PrS [A] ≥ 1/3. Substituting this back into (2) gives

ET [Ri] ≤ 3
∑

h∈H̃i

PrS [h] (3)

finally, we may breakup the set H̃i based on the length of h which ranges from 1
to nd (where length is the number of S-queries). Since each transcript of S has
exactly one length � prefix:

ET [Ri] ≤ 3
nd∑
�=1

∑
h∈H̃i,|h|=�

PrS [h] ≤ 3
nd∑
�=1

1 = 3nd

%&

Now we can show that 300k2nd random completions are enough for T (2).

Lemma 5. T (2) aborts with probability at most 1/5.

Proof. Since ET [Ri] =
∑

h̃i
PrT [h̃i]ET [Ri | h̃i] = ET [ET [Ri | h̃i]] ≤ 3nd, the

Markov inequality states that the probability of T (2) fixing an h̃i such that
ET [Ri | h̃i] ≥ 30knd is at most 1/(10k). For each “good” h̃i where ET [Ri | h̃i] <
30knd, we apply the Markov inequality again to obtain PrT [Ri ≥ 300k2nd |
hi] ≤ 1/(10k). Using the union bound we see that in any iteration, T (2) aborts
in Step 1 with probability at most 1/(5k). A final union bound over k iterations
of Step 2 shows that T (2) aborts overall with probability at most 1/5. %&
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Hybrid 3. Our third and final hybrid T (3) = T differs from T (2) in Step 1 of
each iteration. Recall that some session j0 is chosen randomly as the forwarding
session. Instead of generating v

(j0)
i in Step 1, T (3) asks the external honest verifier

V for a verifier message. Because Π is public-coin, T (3) can continue to complete
partial transcripts of S even if session j0 is forwarded to V externally.

Given transcript hi = [t1, s1, . . . , s� = τi] in iteration i, T (3) forwards session
j0 of τi to V , and uses the response from V as v

(j0)
i in Step 2. Suppose for

now that T (3) does not abort and terminates successfully. Then S would have
generated an accepting transcript τ of Πm. Since τ1, . . . , τk are prefixes of τ ,
session j0 of τ would be an accepting transcript of Π consisting of forwarded
prover messages and responses from V . This breaks the soundness of Π .

Therefore, it remains to show that T (3) is successful with probability more
than 1/2. We will use Raz’s lemma [Raz98] in analogy with [IJK07, HPPW08]
to show that v

(j0)
i as generated by T (1) and T (2) is actually very close to the

uniformly random messages generated by the honest verifier V . First we cite
Raz’s lemma as it appears in [Hol07, Lemma 5]:

Lemma 6. Let {Uj}j∈[m] be independent random variables on U with probability
distribution PUj . Let W be an event in Um and Pr[W ] be measured according to
the joint probability distribution ΠjPUj . Then

m∑
j=1

Δ(Uj |W,Uj) ≤

√
m log

(
1

Pr[W ]

)

where Δ is the statistical distance between distributions, and Uj |W is the jth

component of an element in Um chosen based on the joint probability distribution
ΠjPUj , conditioned on W .

In other words, let {Uj}j be independent random variables, and let W be an
event over ΠjUj. If W occurs with high probability and there are many Uj ,
then on average over j, sampling Uj conditioned on W does not differ much
from simply sampling Uj. Lemma 6 allows us the bound the change in success
probability when T (3) forwards messages from a random session to V .

Lemma 7. T (3) fails with probability at most 3/10 + O(1/ logn).

Proof. We first construct a series of finer hybrids, T1, . . . , Tk+1, where Ti pro-
ceeds as T (2) until the start of iteration i (no forwarding), and continues as T (3)

afterwards (with forwarding)1. Observe that T1 = T (3) and Tk+1 = T (2).
Consider two neighboring hybrids, Ti and Ti+1, which differ only in iteration

i. Let h be the partial execution given in iteration i. For j ∈ [m], let Uj be
the random variable that denotes all the additional session j messages sent by
T to randomly complete h, i.e., {Uj}j are independent and uniformly random.
Let Wh be the event that the random messages U1, . . . , Um together produced
1 This still makes sense since Π is a public-coin protocol; the outside verifier can

directly generate a verifier response for any round of the protocol.
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a successful completion of h. By definition, the distribution of v
(j0)
i produced

by Ti+1 (i.e., T (2)) is just the first message of Uj0 |Wh. On the other hand, the
distribution of v(j0)

i produced by Ti (i.e., T (3)) is just the uniform distribution,
just like the first message of Uj .

Since Ti−1 and Ti only differ in how v
(j)
i is produced, their difference in success

probability can be bounded by the statistical difference in the distributions of
v
(j)
i . This is in turn bounded by:

∑
h∈Hi

m∑
j=1

PrT [h] Pr[j0 = j]Δ(Uj |Wh, Uj)=
∑

h∈Hi

PrT [h]

⎛⎝1
m

m∑
j=1

Δ(Uj |Wh, Uj)

⎞⎠(*)

Lemma 6 states that for any event W ,

1
m

m∑
j=1

Δ(Uj |W,Uj) ≤

√
1
m

log
(

1
Pr[W ]

)
Observe that before iteration i, Ti and Ti+1 are identical to T (2). When T (2)

does not abort, T (2) is identical to T (1). In that case, Lemma 3 along with
the Markov inequality implies that except with probability 1/(10k), T (2) fixes a
“good” h with ET [Ri | h] ≤ 30knd, so that

Pr[Wh] = PrS [Ah | h] =
1

ET [Ri | h]
≥ 1

30knd

We can now break the sum in (*) into two parts. Observe that

∑
bad h ∈ Hi

PrT [h]

⎛⎝ 1
m

m∑
j=1

Δ(Uj |Wh, Uj)

⎞⎠ ≤ ∑
bad h ∈ Hi

PrT [h] ≤ 1
10k

since statistical distances are bounded by 1, and

∑
good h ∈ Hi

PrT [h]

⎛⎝ 1
m

m∑
j=1

Δ(Uj |Wh, Uj)

⎞⎠
≤

∑
good h ∈ Hi

PrT [h]

√
1
m

log(30knd) ≤
√

1
m

log(30knd)

since
∑

h∈Hi
PrT [h] = 1. Together, they show that (*) is at most

1
10k

+

√
1
m

log (30knd) =
1

10k
+ O

(
1

k logn

)
since m ≥ (k2 log k) log2 n. Summing up over the hybrids, and recalling that T (2)

fails with probability at most 1/5 (Lemma 5), T (3) fails with probability at most

1
5

+ k

(
1

10k
+ O

(
1

k logn

))
≤ 3

10
+ O

(
1

logn

)
%&



On the Composition of Public-Coin Zero-Knowledge Protocols 173

Lemma 7 shows that T is successful with probability > 1/2, and completes the
proof of Theorem 2. %&

4 Bounded Concurrent Zero-Knowledge

In this section we give a family of public-coin proofs for NP, BoundedConcZK,
parametrized by k, assuming the existence of one-way functions. The proof with
parameter k has 2k3 + 4 rounds, and is k-bounded concurrent zero-knowledge
whenever k = ω(logn) where n is the input size.

4.1 A Bounded Concurrent Public-Coin ZK Protocol

Our construction of BoundedConcZK is similar in spirit to the concurrent
zero-knowledge protocol of [RK99]. Given a language L ∈ NP and a parameter
k, we construct a two stage public-coin proof 〈P, V 〉 as follows. In stage one,
2k3 rounds of messages are exchanged where in each round, the prover gives
a statistically binding commitment ([Nao91, HILL99]) of a random bit pi, and
the verifier responds with a random bit vi; we call pi = vi a correct guess. In
stage two, 〈P, V 〉 runs a 4-round public-coin witness indistinguishable proof of
the modified NP statement “either x ∈ L or that pi = vi for k3 + k2/2 values of
i”, where x is the problem instance. This can be done, for example, by k parallel
repetitions of the GMW 3-coloring protocol [GMW91]. The verifier accepts if
the prover is successful with the stage two proof.

Protocol BoundedConcZK

Common Input: An instance x of a language L ∈ NP and a parameter k.
Stage One: For i from 1 to 2k3:

P → V : Commit to a random bit pi.
V → P : Reply with a random bit vi.

Stage Two: Run k parallel repetitions of the GMW 3-coloring protocol for
the NP statement:(

there exists distinct i1, . . . , ik3+ 1
2 k2 s.t. pij = vij for all j

)
∨ (x ∈ L)

Fig. 1. Our public-coin black-box bounded concurrent zero-knowledge protocol

We set the round complexity of BoundedConcZK to O(k3) for the following
two reasons. First, by the Chernoff bound, we expect that no adversarial prover
can have more than k3 + O(

√
k3) correct guesses. Hence BoundedConcZK is

sound. On the other hand, a zero-knowledge simulator can repeatedly rewind
the verifier until it gets a correct guess. Intuitively (and shown formally later),
in each round of stage one, the simulator can set one extra pi = vi for some
session, in addition to “natural luck” (that gives correct guesses for half of the
sessions). Since the number of sessions is bounded by k, the simulator is able
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to have k3 + O(k3/k) = k3 + O(k2) correct guesses per session. This provides
the simulator with a trapdoor to simulate stage two of the protocol, and hence
BoundedConcZK is bounded concurrent zero-knowledge. We remark that k3

was chosen for the sake of simplicity and is not optimized. The formal proof of
completeness and soundness can be found in the full version of this paper.

4.2 Black-Box Bounded Concurrent Zero-Knowledge

We construct a black box simulator S such that given a malicious verifier, V ∗,
SV∗

generates the view of V ∗ in BoundedConcZK, provided that the number
of concurrent sessions m satisfies m ≤ k. The goal of S is to obtain as many
correct guesses as possible by rewinding V ∗. Towards that goal, S employs a
simple greedy strategy to incrementally generate a partial view of V ∗. Whenever
V ∗ sends S a first stage message vi, S checks if it had guessed correctly when
committing to pi. If so, S lengthens the partial view of V ∗ to include this correct
guess. Otherwise, S rewinds V ∗ back to the previously generated partial view.
This “incremental strategy” is somewhat reminiscent of [Lin03], but since our
protocol is public-coin, the actual analysis is quite different.

We use superscripts to distinguish messages from different sessions. To pre-
vent S from focusing too much on one particular session, we keep m counters,
c1, . . . , cm, to record how much “work” has been done in each session. In general,
S proceeds as follows to incrementally fix the output (originally the empty view
is fixed):

1. S commits to a fresh random bit for each stage one prover message.
2. For each stage two proof, S aborts if in this session, pi = vi for less than

k3 + k2/2 values of i. Otherwise, S uses this as a witness to complete the
stage two proof.

3. If S receives a message vj
i (from session j) and cj < 2k2, it checks if the

commitment to pj
i is part of the fixed output. If yes, then nothing can be

done, so S simply continues. Otherwise, S checks if pj
i = vj

i . If yes, S takes
the opportunity to fix the execution up to message vj

i as part of the output
and increments cj ; in this case we say vj

i is rigged. If pj
i �= vj

i , then S rewinds
V ∗ to start a fresh continuation from the currently fixed output.

4. If S has performed k− 1 rewinds without rigging a message, and on the kth

try again receives vj
i �= pj

i where pj
i is not fixed and cj < 2k2, S simply gives

up and pretend to rig vj
i anyway (albeit incorrectly). That is, S fixes the

output up to message vj
i and increments cj .

Claim 8. S is a k-bounded black-box zero-knowledge simulator when k ∈ ω(logn).

Proof (sketch). We give a proof sketch here, and defer the full proof to the full
version of this paper. Suppose for now that all pi and vi are independent and
uniformly random (intuitively because the prover commitments are computa-
tionally hiding). We claim that except with negligible probability, S will have
k3 + k2/2 correct guesses per session. If so, S can complete the stage two proofs
(using the witness indistinguishable property) and generate the view of V ∗.
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To show our claim, observe that whenever a message is rigged, at most one
commitment from each session is fixed to be part of the output, because before
a second commitment appears in the same session, S would have tried to rig
the first commitment first (unless this session already has 2k2 messages rigged).
Since S rigs at most 2k2 messages from each session, and there are 2k3 messages
and at most k sessions, every session will actually have 2k2 messages rigged.

Since all pi and vi are independent, a rigged message is always a correct guess
except with probability 2−k. Since there are m(k3+2k2) ≤ 2k4 messages in total,
the union bound says that except with 2k42−k probability, all rigged messages
are correct guesses. Next, for the 2k3−2k2 messages that are not rigged, we apply
the Chernoff bound to see that except with probability e−k/4, we should have at
least (k3 − k2) − k2/2 correct guesses. Thus except with negligible probability,
we have a total of k3 + k2/2 correct guesses as desired. %&
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On the Amortized Complexity of
Zero-Knowledge Protocols

Ronald Cramer� and Ivan Damg̊ard��
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Abstract. We propose a general technique that allows improving the
complexity of zero-knowledge protocols for a large class of problems
where previously the best known solution was a simple cut-and-choose
style protocol, i.e., where the size of a proof for problem instance x and
error probability 2−n was O(|x|n) bits. By using our technique to prove n
instances simultaneously, we can bring down the proof size per instance
to O(|x|+n) bits for the same error probability while using no computa-
tional assumptions. Examples where our technique applies include proofs
for quadratic residuosity, proofs of subgroup membership and knowledge
of discrete logarithms in groups of unknown order, and proofs of plaintext
knowledge for various types of homomorphic encryptions schemes. The
generality of our method stems from a somewhat surprising application
of black-box secret sharing schemes.

1 Introduction

In a zero-knowledge protocol, a prover tries to convince a skeptical verifier that
a certain statement is true. Except with a small error probability, the verifier
should be convinced if and only the statement is indeed true, but should learn
nothing beyond the validity of the assertion. The statement can take the form of
claiming that the input string x is in a given language L (interactive proofs) or
claiming that the prover knows a “witness” w such that (x,w) is in some given
relation R (interactive proofs of knowledge).

Zero-knowledge was introduced in [10], and has been the subject of intense re-
search ever since. Zero-knowlegde protocols are interesting as theoretical objects
in their own right, but are also very useful as building blocks in larger protocols.

The efficiency of zero-knowledge proofs have been studied in many works, and
in some cases, extremely efficient zero-knowledge proofs have been found. For
NP complete problems such as Boolean circuit satisfiability Ishai et al. [12] show
protocols where the proof size (communcation complexity) is O(|x| + poly(k))
where k is a security parameter and |x| is the size of the input x. In prime order
groups, Schnorr’s protocol[13] proves knowledge of a discrete logarithm using a
(honest verifier) zero-knowledge proof of size O(|x|+ n) for an error probability
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of 2−n. In a practical application, one must expect to have to communicate x to
make the claim in the first place, so this is essentially optimal1.

However, for several interesting problems, such methods for improved zero-
knowledge protocols do not work. This includes, for instance, the very first
problem for which a zero-knowledge protocol was suggested, namely quadratic
residuosity, where one proves on input x,N that x is a square modulo N (and
that the prover knows a square root). The well-known classical protocol for this
has error probability 1/2, and one must repeat it n times for an error probability
of 2−n so that the proof will be of size O(|x|n). No more efficient solution with
unconditional soundness and zero-knowledge was previously known.

The state of affairs is similar for the discrete log problem in groups of unknown
order. Say we are given g, h ∈ Z∗

N for an RSA modulus N , and the prover claims
that h is in the group generated by g, and that he knows the discrete logarithm
of h base g. The best solution we know for this has error probability 1/2, and
again we must repeat the entire protocol to reduce the error. Schnorr’s protocol
cannot be used here since its proof of soundness requires that the group order is
known, and finding the order of Z∗

N is equivalent to factoring N . Even if we were
happy with only a proof of membership in the group generated by g, the error
probability for known solutions would be 1 divided by the smallest prime factor
in the total group order, which is 1/2 for the case of Z∗

N . It should be noted
that Fujisaki and Okamoto[8] have shown how to get around these difficulties,
but only if we are guaranteed to be working in a subgroup of Z∗

N with only large
prime factors in the order, and then only under the strong RSA assumption.

Other examples of a similar nature come from various proposals for homo-
morphic encryption where one uses subgroups of Z∗

N , often with small prime
factors in their order, to make the decryption algorithm efficient[11,6]. In many
applications, one needs a zero-knowledge proof that one knows the plaintext for
a given ciphertext, and we then have all the same problems as described above.

In this paper, we show a general method that applies to all the problems men-
tioned above, and allows us to reduce the proof size in the amortized sense: we
can give a proof for n instances of the problem simultaneously such that the com-
munication complexity per instance proved is O(|x| + n) for an error probabil-
ity of 2−n, thus we are as efficient as the best known unconditional protocols for
any problem. The technique uses no computational assumptions. In all cases, the
computational complexity is also reduced compared to naive repetition of the ba-
sic protocol. Here, the most favorable case is discrete log where computation is
reduced by a factor n, for quadratic residuosity we gain a factor logn.

We emphasize that for the case of proofs for quadratic residues, what we
achieve is different from what can be done using Fiat-Shamir type protocols [9],
although they may seem superficially similar to ours: the Fiat-Shamir protocol
is also efficient, it takes n quadratic residues as input and has an error proba-
bility of 2−n. The difference lies in the type of witness that the prover proves
knowledge of. For Fiat-Shamir, the prover only has to know a product of some

1 Although the proof itself could in principle be even smaller if the associated NP-
witness is smaller than x.
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of the square roots of the input numbers. In fact, the prover could know nothing
about the first input number and still survive with probability 1/2. In contrast,
our protocol guarantees that the prover knows all the square roots. It should
also be noted that the construction of zero-knowledge protocols from multiparty
computation in [12] can be adapted to give a protocol for quadratic residuosity
with complexity similar to ours. This requires a computational assumption so
that, unlike our work, either zero-knowledge or soundness will only be compu-
tational. For the other problems we handle in this work, the construction from
[12] either leads to larger complexity than ours, or does not not seem to apply
at all.

We give an abstract framework characterizing the type of problem that our
method applies to, and derive all the examples above as special cases. Basically,
we need a function with certain homomorphic properties on some Abelian groups
and a ring A that acts on the groups in a sufficiently nice way. The generality
of our method comes from a somewhat surprising application of a new result we
show for Black-Box Secret-Sharing. This result allows us to use the integers Z
as the ring A, and since any Abelian group is a Z-module, we immediately get
a general result.

Applications of our result include multiparty computation based on homo-
morphic encryption, where players would supply inputs by sending them in en-
crypted form. To make the overall protocol secure, players must prove that they
know the inputs they supply, and our method can be used to give such proofs
efficiently for a large number of ciphertexts. Note that some computations, such
as certain auctions, do in fact require players to submit large amounts of data as
input. Another application involves proofs of negative statements such as proving
that a number x is not a square modulo N . The classical protocol for this from
[10] uses the proof for quadratic residuosity as a subroutine and has complexity
O(|x|n2). Our method reduces this to O(|x|n) without making any computa-
tional assumptions. The same idea can used to prove for some homomorphic
encryption schemes that a ciphertext contains a non-zero plaintext. Note that
these application are for a single instance proof and so are not of an amortized
nature.

Finally, we note that our construction generally leads to protocols that are
only honest-verifier zero-knowledge(HVZK), as is the case for Schnorr’s protocol.
But in this paper we are generally happy with this property since first, it is of-
ten sufficient when using a protocol as a building block in a larger construction,
and second there are several general techniques that can build zero-knowledge
protocols from HVZK ones without significant loss of efficiency. While these
techniques typically require a complexity assumption, we believe that the tech-
nique by Cramer, Damg̊ard and MacKenzie [2] may lead to a solution with no
assumptions, this will be the subject of an upcoming paper.

2 The Basic Idea

The first zero-knowledge proof ever presented was the well known protocol to
prove quadratic residuosity. We show here a variant related to Goldwasser-Micali
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probabilistic cryptosystem, which we will use as a running example in the follow-
ing. In this cryptosystem, the public key is an RSA modulus N , and we assume
for simplicity that it is chosen such that −1 is not a square modulo N . To
encrypt a bit w with randomness s, we compute EN (w, s) = (−1)ws2 mod N .
The encryption function is homomorphic, that is, it has two properties: first
EN (w, s)EN (w′, s′) mod N = EN (w ⊕ w′, ss′ mod N), and moreover, we can
multiply a known plaintext b “into a ciphertext”, i.e., we have EN (w, s)b =
EN (wb, sb).

Now consider a scenario where the common input to prover P and verifier V
is a pair of numbers N and ciphertext x. Now P claims to know a bit w and
s ∈ Z∗

N such that x = EN (w, s). The protocol goes as follows:

1. P chooses r ∈ {0, 1}, u ∈ Z∗
N at random and sends a = EN (r, u) to V .

2. V chooses a bit b at random and sends it to P .
3. P sends z = r ⊕ bw, v = usb mod N to V , who accepts if and only if

En(z, v) = axb mod N , and u, v are in Z∗
N .

It is well known that this protocol is perfect zero-knowledge and has error
probability 1/2. The reader can easily verify that completeness, soundness and
zero-knowledge of the protocol can be based only on the above homomorphic
properties of EN . While error probability of 1/2 is not sufficient in practice, re-
peating the protocol n times reduces the error probability to 2−n. However, the
size of the entire proof will be roughly n times the size of the problem instance.

In this paper we will be concerned with doing it more efficiently if we are to
give a proof for n instances of a problem simultaneously. So say we are given a
vector x = (x1, ..., xn) of ciphertexts. If we expand the encryption function in a
natural way to vectors by applying it to every entry, we can say that the prover’s
claim now is that he knows vectors w, s such that EN (w, s) = x.

Now, the key idea is to consider w, not just as a bit string, but as an element
in the extension field GF (2n). Since addition in GF (2n) is coordinate-wise xor,
the (expanded) encryption function is still homomorphic. We have

EN (w, s)EN (w′, s′) = EN (w + w′, ss′),

where w+w′ is addition in GF (2n) and s′s is multiplication in the direct product
(Z∗

N )n. We are also able to multiply an element e ∈ GF (2n) “into a ciphertext”.
We can do this by noticing that if we consider GF (2n) as a vector space over
GF (2), multiplication by e is a linear mapping. Taking E to be the matrix of
this mapping, multiplying E on an n-bit vector implements multiplication by e.
Using this, we can define xe ∈ (Z∗

N )n, where x ∈ (Z∗
N)n, namely the i’th entry

in xe is

(xe)i =
n∏

j=1

x
E(i,j)
j mod N,

where E(i, j) is interpreted as a 0/1 integer. The reader can easily verify that
this gives us:

EN (w, s)e = EN (ew, se).
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The upshot of this is that since EN satisfies the same homomorphic properties
as before, when seen as a function for encrypting elements in GF (2n), we can do
a proof of knowledge for plaintexts in GF (2n) by mimicking the protocol above:

1. P chooses r ∈ {0, 1}n,u ∈ (Z∗
N )n at random and sends a = EN (r,u) to V .

2. V chooses e ∈ GF (2n) at random and sends it to P .
3. P sends z = r+ew,v = uwe to V , who accepts if and only if En(z,v) = axe,

and all entries in u,v are in Z∗
N .

Note that V now chooses between 2n challenges. In fact one can show that if the
prover could answer correctly two different challenges e, e′, then from the answers
we could efficiently compute valid w, s. The key reason why this is possible is
that e − e′ is invertible because GF (2n) is a field (a detailed proof follows as a
special case of the general framework we present below).

Hence this protocol has error probability 2−n. Note, however, that we only
send a constant number of “compound” ciphertexts to do the protocol. Hence,
compared to iterating the basic protocol n times for all n instances which would
be the naive solution, we have saved a factor n in the size of the proof.

3 A Framework

In this section we show that the idea we just outlined is not tied to encryption
functions over finite fields. All we really need is a function with certain homo-
morphic properties on Abelian groups, and a ring that acts in “nice” way on the
involved groups. To help understand the framework, we use as running example
the protocol from the previous section, and show how it is a special case.

3.1 Set-Up and Assumptions

Consider a function f : R×S → X , where R,S,X are finite Abelian groups. To
make the framework fit with the example instantiations to follow, we will write
R additively and S,X multiplicatively.

In what follows, we will always assume that we can sample efficiently from
all groups that occur, and compute the group operation and inverses efficiently.
We also assume that elements can be communicated in some representation such
that membership in the relevant group can be checked efficiently. We assume f
is “almost” homomorphic, namely it satisfies the following:

f(r, s) · f(r′, s′) = f(r + r, ss′δ(r, r′)) and f(0, s)−1 = f(0, s−1) (1)

for all r, r′ ∈ R, s, s′ ∈ S and where δ(r, r′) ∈ S can be efficiently computed from
r, r′.

To connect the framework to the previous example, one may think of R =
Z2, S = X = Z∗

N and f(r, s) = (−1)rs2 mod N , where N is such that −1 is a
non-square modulo N . Here, of course, we would have δ(r, r′) = 1.

We now assume a commutative ring A with 1 such that R is an A- module
(this will be the case if A = Z, for instance). We assume that A acts on elements
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in X , i.e., given a ∈ A, x ∈ X one can efficiently compute a new element xa ∈ X .
In the running example, we will set A = GF (2), so an element a ∈ A is 0 or
1. We then think of these as the integers 0 or 1, in which case xa ∈ Z∗

N is well
defined.

We assume that the action of A on X respects the structure of A,X to some
extent, more precisely, we assume for all x, y ∈ X, a, b ∈ A that

xaya = (xy)a, x0 = 1, x1 = x, 1a = 1 (2)

To complete this picture, we also need an assumption on expressions of form
xaxb, (xa)b:

xaxb = xa+bf(0, Δ), (xa)b = xabf(0, Γ ) (3)

for all x ∈ X, a, b ∈ A, and where Δ,Γ can be efficiently computed from x, a, b.
For our running example, (2) is trivially satisfied. For (3), one has to remember

that the addition in the exponent is in GF (2) and so is actually an xor. Therefore,
the first conditions is satisfied if we set Δ = x when a = b = 1 and Δ = 1
otherwise. The second condition is satisfied by setting Γ = 1 always.

We also make an assumption on the way a ∈ A acts on elements in Im(f) ⊂ X :

f(r, s)a = f(a · r, a(s)) (4)

for all a ∈ A, r ∈ R, s ∈ S. We make no specific assumptions on a(s) ∈ S, other
than it can be computed efficiently from a, s. In our example, (4) is satisfied if
we just set a(s) = sa mod N where, as above, we think of a as an integer in the
natural way.

In the following, we will consider the direct products An, Rn, Sn, Xn for a
natural number n. Our final assumption is that there exist a special subset
Ωn ⊂ An and an efficiently computable mapping ω which for every e ∈ Ωn we
outputs a matrix ω(e) with m rows and n columns and entries in A, where m is
some function of n and furthermore for every pair e, e′ ∈ Ωn where e �= e′, the
matrix ω(e)−ω(e′) is invertible, i.e., there exists an n by m matrix N such that
N(ω(e)− ω(e′)) = In. Values e ∈ Ωn will be used a challenges in our protocols
to follow, and since the error probability will be 1/|Ωn|, we will be looking for
constructions that give us a large Ωn, preferably of size exponentially large in
n. In the following, we will usually use E as shorthand for ω(e).

Definition 1. If f,A and ω satisfy all of the above conditions, we say that f is
ZK-friendly with respect to A and ω.

In our example, we can set Ωn to be all of An = GF (2)n and m = n. Then for
e ∈ Ωn, we let E = ω(e) be the matrix that implements multiplication by e in
the field GF (2n), as in the previous section.
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3.2 Notation

We will use r, s to denote column vectors of elements in R, respectively S, and
f(r, s) to denote the result of applying f to each coordinate.

r =

⎛⎜⎜⎝
r1
r2
· · ·
rn

⎞⎟⎟⎠ s =

⎛⎜⎜⎝
s1
s2
· · ·
sn

⎞⎟⎟⎠ f(r, s) =

⎛⎜⎜⎝
f(r1, s1)
f(r2, s2)
· · ·

f(rn, sn)

⎞⎟⎟⎠
Let x be a vector of elements in X , and M is a matrix with entries in A and m
rows and n columns. Then we define:

xM =

⎛⎜⎜⎜⎝
∏n

i=1 x
M [1,i]
i∏n

i=1 x
M [2,i]
i

· · ·∏n
i=1 x

M [m,i]
i

⎞⎟⎟⎟⎠ M(s) =

⎛⎜⎜⎝
∏n

i=1 M [1, i](si)∏n
i=1 M [2, i](si)
· · ·∏n

i=1 M [m, i](si)

⎞⎟⎟⎠
It is straightforward to verify that our assumptions on the action of A on X

imply that

xBxC = xB+Cf(0n,Δ), (xM )N = xNMf(0n,Γ),

f(r, s)f(r′, s′) = f(r + r′, ss′δ(r, r′)), f(r, s)M = f(Mr,M(r, s))

for matrices B,C,M,N , where vectors Γ,Δ,M(r, s) can be efficiently computed
from the inputs to the operations, and where the function δ : Rn ×Rn → Sn is
derived from the original δ in the natural way. Note that 0n denotes the column
vector with n zero-entries.

To compute what M(r, s) should be, one starts from the fact that (f(r, s)M )j

=
∏n

i=1 f(r, s)M [j,i]
i and then use (1) and (2). If f is not 1-1, it may be possible

to get different values for M(r, s) depending on the order in which we compute
the product. But this is not a problem, in the following we only ned that we can
compute some element in M(r, s) ∈ Sn that makes f(r, s)M = f(Mr,M(r, s))
be true.

3.3 Some Σ-Protocols

In this section, we assume throughout that we are given a function f that is
ZK-friendly w.r.t. some A,ω, and then show that we can build a number of
zero-knowledge protocols, more specifically they will be so-called Σ-protocols. A
Σ-protocol for a relation R = {(x,w)} is a 3-move protocol for prover P and
verifier V . x is the common input and P gets w as private input. Conversations
in the protocol have form (a, e, z) where e is a random challenge sent by V . The
standard properties of a Σ-protocol is that it is perfectly complete, honest verifier
zero-knowledge and sound in the particular sense that from x and conversations
(a, e, z), (a, e′, z′) where e �= e′, one can efficiently compute w such that (x,w) ∈
R. This implies that the protocol is a proof of knowledge for R according to the
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standard definition, with knowledge error 1 divided by the number of possible
challenges.

The homomorphic property of f described above already implies that there is a
Σ-protocol with error probability 1/2 for the relation R = {(x, (w, s))| f(w, s) =
x}. Namely P sends a = f(r, u) for random r, u, and V asks P to send a preimage
of either a or xa. This will called Protocol 0 in the following.

We now give a Σ-protocol for a set of n instances, where the public input is
x ∈ Xn, and the prover demonstrates knowledge of w, s such that f(w, s) = x.
In other words, a Σ-protocol for the relation Rf = {(x, (w, s))| f(w, s) = x}
The protocol works as follows:

Protocol 1

1. P chooses vectors r,u of length m at random and sends a = f(r,u) to V .
2. V selects a random element e ∈ Ωn and sends it to P .
3. P sends z = Ew + r and v = E(w, s) · u · δ(Ew, r) to V .
4. V accepts if and only if f(z,v) = xE · a.

In this protocol, as well as in all the following, the verifier should also check
that every communicated group element is in the group it should be in. For
the example from the introduction, this translates to checking that numbers
communicated are relatively prime to the modulus N .

Lemma 1. Protocol 1 is a Σ-protocol for Rf , with error probability 1/|Ωn|. The
protocol is also an interactive proof that each entry in x is in Im(f).

Proof. Completeness is trivial by the homomorphic property of f . For special
soundness, we can assume that we have conversations

(a, e, z,v), (a, e′, z′,v′), such that f(z,v) = xE · a, f(z′,v′) = xE′
· a

and we must compute a valid witness for x. Dividing one equation by the other
and using our assumptions a few times, we can conclude that

f(z− z′,v · v′−1) = xE−E′ · f(0n,Δ)

for some Δ we can compute efficiently. Setting A = E−E′ and moving f(0n,Δ)
to the other side, we see that we can efficiently compute c,d and invertible A
such that

f(c,d) = xA

We then apply the inverse N on both sides, and get

f(N · c, N(c,d)) = (xA)N = x · f(0n,Γ)

for an easily computable vector Γ. Moving f(0n,Γ) to the other side, we can
easily write x as f(r, s) for known r, s, and so we have the required witness.
Since we always obtain something in the preimage of x under f , soundness as a
proof of membership follows as well.
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Finally, we have to provide an honest verifier simulator. For this, we simply
choose e, z,v uniformly in their respective domains and let a = f(x,v) · (xE)−1.
This clearly simulates the real conversations perfectly, since z,v are indeed uni-
form in real conversations, and a is fixed when given z,v.

An straightforward specialization of Protocol 1 can be used to show that
x = f(0n, s):

Protocol 1.5

1. P chooses vector u of length m at random and sends a = f(0n,u) to V .
2. V selects a random element e ∈ Ωn and sends it to P .
3. P sends v = E(0n, s) · u · δ(0n, 0n) to V .
4. V accepts if and only if f(0n,v) = xE · a.

Lemma 2. Protocol 1.5 is a Σ-protocol for the relation {(x, s)| f(0n, s) = x}.

One immediate generalization of Protocol 1 assumes we have two functions f, g
that both satisfy our assumptions for the same A,R, S. We can then build a Σ-
protocol for the relation Rf,g = {(x,x′, (w, s, s′))| f(w, s) = x, g(w, s′) = x′},
i.e., the demand is that the same w appears in both preimages. The protocol
works as follows:

Protocol 2

1. Start two instances of Protocol 1, using as input x respectively x′. The prover
sends a,a′, computed using the same value of r in both instances.

2. The verifier sends one challenge e that the prover uses in both instances to
compute the answer.

3. The prover sends z,v, z′,v′, and the verifier accepts if and only if z = z′ and
f(z,v) = xE · a, g(z′,v′) = x′E · a′.

By following through the proof for Protocol 1, one trivially obtains

Lemma 3. Protocol 2 is a Σ-protocol for Rf,g, with error probability 1/|Ωn|.
The protocol is also an interactive proof that each entry in x is in Im(f) and
each entry in x′ is in Im(g).

Protocols assuming R is a ring. We now show that our framework can also
be used to show multiplicative relations among preimages under f . To do this, we
need to assume that the (additive) group R is actually a ring, and furthermore
that we can define an action of R on X and S such that (2), (3), and (4) are
satisfied also if we choose a, b ∈ R.

This allows us to define for x ∈ Im(f) a function

fx(r, s) := xr · f(0, s)

One sees that fx is almost a homomorphism in the same sense as f , our assump-
tions immediately imply that we have fx(r, s)fx(r′, s′) = fx(r + r′, ss′δx(r, r′)),
for some δx(r, r′) that is easy to compute from x, r, r′.



186 R. Cramer and I. Damg̊ard

Now, suppose we have given x, y, z ∈ X where a prover knows a, b, c, sa, sb, sc

such that x = f(a, sa), y = f(b, sb), z = f(c, sc) and where furthermore c = ab.
Following several previous works, we can express the relation a bit differently so
that it becomes something we can prove using essentially just the protocol we
have already.

Notice that if we set s′ = sc · b(sa)−1 · δ(ab, 0)−1, then we have

f(c, sc) = f(ab, sc) = fx(b, s′)

We now consider n instances of such a case, but for a single x and we want a
Σ-protocol for the relation Rmult, defined as:

{((x,y, z), (a,b, c, sa, sb, sc))| x = f(a, sa),y = f(b, sb), z = f(c, sc), a ·b = c}
Then the protocol and lemma below follow immediately:

Protocol 3

1. Run Protocol 0 iterated log |Ωn| times on input x (we can afford to do this
on a single input, as it will have the same complexity as the next step).

2. Exploiting the fact that ab = c, the prover computes s′ as above such that
z = fx(b, s′).

3. Do protocol 2 on input y, z using f, fx as the functions f, g.

Lemma 4. Protocol 3 is a Σ-protocol for Rmult.

As a final example, we show that the framework can be used to show a more
negative kind of statement. We need to assume that r is uniquely determined
from f(r, s), and second that R is a field. Then we can build an interactive proof
system for the language L = {x| x = f(r, s), r �= 0}.
Protocol 4

1. V chooses n-vectors r ∈ Rn, s ∈ Sn at random, and computes g = fx(r, s).
He sends the g to P .

2. V uses Protocol 1 to show that he knows r, s such that g = fx(r, s).
3. If P accepts the proof in the previous step, he computes r and sends it to

V , who accepts if and only if P sent the correct r

Note that P can do the computation i step 3: since if x = f(w, s) for w �= 0, we
have gi = xrif(0, si) = f(wri, ui) for some ui. By assumption wri is determined
from f(wri, ui) and P can divide out w to get ri. In generalP may need large
computing power to find wri, but in some cases P can have a trapdoor allowing
him do to do it efficiently.

On the other hand if w = 0, then g contains no information on r. Neither
does the proof given by V , since it is honest verifier zero-knowledge and hence
witness indistinguishable. Therefore, the prover can do no better than a random
guess, so the error probability is |R|−n. Finally, the protocol is easily seen to be
zero-knowledge by a standard argument: the simulator uses rewinding of V to
extract r and can then send exactly what the prover would have sent. If |R| is a
small constant such as 2, then Protocol 4 gives a way to improve the complexity
over the naive solution where V in step 2 uses Protocol 0 to prove he knows r:
we only need to send O(n) group elements, rather than n2.
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3.4 Using Black-Box Secret-Sharing in the Framework

Suppose we are given any function f satisfying (1). Note that if we choose
A = Z, most of the conditions conditions are automatically satisfied, because
any Abelian group is a Z-module. In more concrete terms, it always makes sense
to multiply a group element by an integer if the group is written additively
(or raise it to an integral power if it is written multiplicatively). In fact, one
can easily verify that (2), (3) and (4) are always true if we set A = Z, so the
only missing condition is the existence of the special subset Ωn in Zn and the
mapping ω.

A construction of such a set follows from the black-box secret-sharing scheme
we introduce in the full version of this paper [1]. The construction itself, however,
is easy to understand without this background: recall that Ωn must be a subset
of An = Zn. We choose Ωn to be the set of vectors with entries that are 0 or 1,
thus Ωn has size 2n. We then need to build, from e ∈ Ωn, a matrix ω(e) with
n columns and m rows, where we choose m = 2n− 1, and where e �= e′ implies
that ω(e)− ω(e′) is invertible. We do this as follows: thinking of e as a column
vector, the j’th column of ω(e) starts with j − 1 zeros, followed by e, followed
by n− j zeros.

It is straightforward to show that for any two different e, e′, indeed ω(e)−ω(e′)
has an inverse N such that N(ω(e) − ω(e′)) is the identity matrix. One just
observes that the matrix ω(e)−ω(e′) must always be upper triangular with only
1’s or −1’s on the diagonal. Therefore we have:

Theorem 1. Any f satisfying (1) is ZK-friendly with respect to Z and ω con-
structed as above. In particular, the Σ-protocols 1, 1.5, 2, 3 and 4 will have error
probability 2−n and communication complexity linear in n.

To understand where this construction comes from and why it is connected to
secret sharing, it is instructive to have a look at the classical protocol for discrete
logarithms, where the prover knows w such that h = gw in some finite group.
The prover sends a = gr, the verifier chooses challenge e = 0 or 1, and the
prover returns z = r + ew mod t where t is the order of g. The verifier checks
that gz = a · he.

One can interpret this protocol as being based on a very simple 2 out of
2 secret sharing scheme, where the secret is w, r is the randomness used for
the sharing, and the shares are r and r + w. In this language, the protocol is
that the prover commits to the randomness for the secret sharing by sending
a = gr, and must then reveal the share of the verifiers choice. The verifier’s
check ensures that the correct share is indeed revealed. On one hand, since 2
shares are enough to reconstruct, we can extract the secret from any prover who
can answer 2 different challenges. On the other hand, since one share reveals no
information on the secret, we can simulate the protocol without knowing the
secret.

If the group order t is public and is a prime, we can instead use the obvious
linear 2 out of t secret sharing scheme where there are t shares and the e’th share
is r + ew mod t. If we again build a protocol by asking the prover to commit to



188 R. Cramer and I. Damg̊ard

the randomness by sending gr and then reveal the share of the verifier’s choice,
we get exactly Schnorr’s protocol. From this point of view, the efficiency of this
protocol can be explained from the fact that it is based on a 2 out of t secret
sharing scheme for a very large t.

Our protocols from the previous section can be interpreted in a similar way,
and we if combine this with the idea of using A = Z, we can rephrase our goal
as follows: our protocols work with secrets that are vectors of elements in some
Abelian group. What we want is to construct a 2 out of T secret sharing scheme
(where T can hopefully be chosen very large) which works by acting on the secret
vector by integer matrices, and where shares are vectors that are hopefully not
much longer than the secret vector. Moreover the scheme should work for any
Abelian group. What we are asking for is in fact a novel black-box secret sharing
scheme, a concept which is explained in the full version of this paper, where we
also develop the secret-sharing scheme that underlies the above theorem.

4 Examples

4.1 Quadratic Residuosity

Let N be a composite number, and let y be a non-square mod N . Then we can
set R = GF (2), S = X = Z∗

N , f(r, s) = yrs2 mod N,A = GF (2).
Now, we can let vectors in An = GF (2)n correspond in the standard way to

elements in the extension field GF (2n). Multiplication by an element e ∈ GF (2n)
is a linear mapping, so we set m = n and let E be the matrix of this mapping.
Finally we can set Ωn to be all of GF (2)n since any non-zero element in GF (2n)
is invertible. It is straightforward to check that this satisfies all our assumptions
in the framework. Protocol 1 above now becomes a proof that the prover knows
how to decrypt n ciphertexts in the Goldwasser-Micali cryptosystem.

The computational cost of the protocols are clearly dominated by the cost of
computing the action of E on the vector x. Doing this is equivalent to computing
n products of various subsets of n given elements in Z∗

n. Using a straightforward
variant of the so called 4 Russians algorithm, this can be done using O(n2/ logn)
multiplications modulo N . We therefore have:

Corollary 1. Protocol 1 instantiated for the quadratic residuosity case is a proof
that the prover knows how to decrypt n ciphertexts in the Goldwasser-Micali cryp-
tosystem. It has communication complexity 2n elements in Z∗

N plus 2n bits, error
probability 2−n, and the computational complexity is O(n2/ logn) multiplications
modulo N .

Note that if we wanted to obtain the same error probability using simple repeti-
tion of the standard cut-and-choose protocol, the cost for all n instances would
be 2n2 group elements plus 2n bits and the computational cost O(n2) multipli-
cations modulo N . Protocol 1.5 instantiated for this case is easily seen to be a
proof that n input numbers are all squares modulo N . It may seem that to use
this protocol we need that a non-square y is given, to define the function f , but
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this is not the case, since we only need to evaluate f on inputs where the first
component is 0, and we always have f(0, s) = s2 mod N no matter which y we
would use.

Protocol 4 instantiated for this case is a proof that a given number is a non-
square modulo N and this improves the complexity of the classical protocol for
this problem from [10] by a factor of n. Again, one can verify that we do not
need a non-square y given a priori.

Finally, Protocol 3 in this case becomes a protocol proving that encrypted
bit a and encrypted bitstrings b, c satisfy a ∧ b = c, where a ∧ b is the string
obtained by taking the and of a and each bit in b.

4.2 Discrete Log in a Group of Unknown Order

Let N be an arbitrary natural number and g ∈ Z∗
N . Then we will set R = Z, S

to be the trivial group with one element, and X = Z∗
N . We then let f(r, 1) =

gr mod N . We also set A = Z. This does not quite satisfy our framework, since
R is not finite, but we will fix this shortly.

The construction behind Theorem 1 implies that we can satisfy the conditions
in our framework by construct the set Ωn as the subset of Zn consisting of binary
strings.

In this case, protocol 1 has to be tweaked slightly: instead of choosing r
uniformly in Rn, which does not make sense when R is infinite, we choose the
entries as uniform logn + 2k-bit numbers. This choice ensures both that f(r)
will be statistically close to uniform in Im(f)m, and that the entries in z will be
statistically close to uniform logn + 2k-bit numbers. This follows from the fact
that the entries in E ·w will be at most logn + k-bit numbers.

The protocol now becomes an interactive proof that the input numbers x1, .., xn

are all in the group generated by g, and it is a proof that the prover knows the dis-
crete logarithms. The protocol will be honest verifier statistical zero-knowledge.

Corollary 2. Protocol 1 instantiated for the discrete log in Zn case is an in-
teractive proof that the input numbers x1, .., xn are all in the group generated
by g, and it is a proof that the prover knows the discrete logarithms. Let k be
the bit length of N . Then the communication complexity is O(kn) bits, the error
probability 2−n, and the computational complexity is O(nk + n2) multiplications
modulo N .

If we wanted to obtain error probability 2−n using simple repetition of the stan-
dard cut-and-choose protocol, the cost for n instances would be communication
O(n2k) bits and also O(n2k) multiplications modulo N . So we see that if we
choose, e.g., n = k, our solution saves a factor k in both the communication and
computational complexity.

4.3 Homomorphic Encryption

We already mentioned earlier how our technique can be used for the Goldwasser-
Micali probabilistic public-key scheme. This generalizes in a very natural way to
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encryptions schemes based on higher degree residuosity, say degree q for q a prime
larger than 2, provided q divides φ(N). The plaintext-space for the encryption
would be R = Zq and one would then define the encryption of plaintext r as
f(r, s) = yrsq mod N where y is not a q-power modulo N . The basic Protocol 0
with A = Zq and Ωn = Zn

q gives a proof of knowlegde of the plaintext for a given
ciphertext with error probability 1/q. Using Protocol 1, this can be amplified to
a proof for n plaintexts with error probability q−n, at cost n times the cost of
Protocol 0.

In [11], a different type of encryption function is proposed, also based on a
composite modulus N and two elements g, h ∈ Z∗

N . The encryption function is
f(m, s) = gmhs mod N . Here m is the message chosen in ZM for a public M
and s is chosen at random in some interval [0..T ]. We do not need to go into the
details of the scheme and its security here, it is enough to say that the order of
h has to be secret and one needs to assume for security that a random element
in the group generated by h cannot be efficiently distinguished from a random
element in Z∗

N .
Standard methods for proving in zero-knowledge that you know m, s for a

given ciphertext have error probability 1/2, namely one does the obvious Σ-
protocol with a binary challenge. One cannot do better using Schnorr-like tech-
niques because one would need to know the order of h to do the knowledge
extraction required for soundness. However, the scheme fits in our framework,
by setting R = ZM , S = Z, X = Z∗

N and A = Z. Now, using Theorem 1, Proto-
col 1 shows that we can prove knowledge of n plaintexts with error probability
2−n at cost about 2n times the standard protocol for a single instance.

Finally, we note that if g has order M , R can act on S and X as required
for Protocols 3 and 4. Protocol 3 can be used to show multiplicative relations
among plaintexts, and in case the plaintext space is a field (i.e., if M is a prime).
Protocol 4 can be used to show that a ciphertext contains a non-zero plaintext.
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Abstract. We suggest practical sub-linear size zero-knowledge arguments for
statements involving linear algebra. Given commitments to matrices over a finite
field, we give a sub-linear size zero-knowledge argument that one committed ma-
trix is the product of two other committed matrices. We also offer a sub-linear size
zero-knowledge argument for a committed matrix being equal to the Hadamard
product of two other committed matrices. Armed with these tools we can give
many other sub-linear size zero-knowledge arguments, for instance for a com-
mitted matrix being upper or lower triangular, a committed matrix being the in-
verse of another committed matrix, or a committed matrix being a permutation of
another committed matrix.

A special case of what can be proved using our techniques is the satisfiability
of an arithmetic circuit with N gates. Our arithmetic circuit zero-knowledge argu-
ment has a communication complexity of O(

√
N) group elements. We give both

a constant round variant and an O(log N) round variant of our zero-knowledge
argument; the latter has a computation complexity of O(N/ log N) exponentia-
tions for the prover and O(N) multiplications for the verifier making it efficient
for the prover and very efficient for the verifier. In the case of a binary circuit
consisting of NAND-gates we give a zero-knowledge argument of circuit satisfi-
ability with a communication complexity of O(

√
N) group elements and a com-

putation complexity of O(N) multiplications for both the prover and the verifier.

Keywords: Sub-linear size zero-knowledge arguments, public-coin special
honest verifier zero-knowledge, Pedersen commitments, linear algebra, circuit
satisfiability.

1 Introduction

It has long been known [Kil92] that zero-knowledge arguments (with computa-
tional soundness) can have very low communication. However, known examples of
communication-efficient zero-knowledge arguments tend to get their efficiency at the
cost of increased computational complexity. Obtaining zero-knowledge arguments that
are efficient with respect to both communication and computation is considered one
of the important challenges in theoretical computer science [Joh00]. We address this
challenge by constructing zero-knowledge arguments for statements related to linear
algebra over finite fields that have sub-linear communication and at the same time also
have low computational complexity.

� Part of this research was done while visiting IPAM, UCLA.

S. Halevi (Ed.): CRYPTO 2009, LNCS 5677, pp. 192–208, 2009.
c© International Association for Cryptologic Research 2009
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1.1 Our Contribution

We consider row vectors of elements from a finite field Zp, where p is a large prime.
Using a generalization of the Pedersen commitment we can commit to a vector of n
elements from Zp. Each commitment consists of a single group element. A set of n
commitments, can be considered a commitment to the n rows of an n× n matrix. This
paper is about zero-knowledge arguments for a set of committed vectors and matrices
satisfying a set of linear algebra relations, for instance that a committed matrix is the
product of two other committed matrices. We give zero-knowledge arguments with a
communication complexity of O(n) elements, i.e., the square-root of the size of the
matrices. In addition, the arguments are computationally efficient for both the prover
and the verifier. The verifier is a public-coin verifier and does not need to take much
action until the end of the argument, where the small size of the arguments makes it
possible to verify the correctness using only little computation.

Our sub-linear size zero-knowledge arguments work for a wide range of linear al-
gebra relations. We can commit to single field elements, vectors of field elements and
square matrices of field elements. Our results also hold for non-square matrices, how-
ever, for simplicity we focus just on square matrices here. Given commitments to field
elements, vectors and matrices we can prove relations such as a committed field element
being the dot product of two committed vectors, a committed matrix being the product
of two other committed matrices, or a committed vector being the Hadamard product
(the entry-wise product) of two other vectors. Being able to prove such linear algebra
relations makes it possible to address many other statements frequently arising in linear
algebra. We can for instance prove that committed matrices are upper or lower trian-
gular, have a particular trace, compute the sums of the rows or columns or prove that
a committed matrix is the inverse of another committed matrix. We can also permute
the entries of a matrix using either a public or a hidden permutation. Using the linear
algebra relations, we also get sub-linear size zero-knowledge arguments for the satis-
fiability of arithmetic circuits and for the satisfiability of binary circuits demonstrating
the generality of our results.

1.2 Related Work

Recent work on zero-knowledge proofs [IKOS07] give us proofs with a communi-
cation complexity that grows linearly in the size of the statement to be proven and
[IKOS07, KR08, GKR08] also give us proofs with size that depend quasi-linearly
on the witness-length. If we consider arguments, the communication complexity can
be even lower and Kilian [Kil92] gave a zero-knowledge argument for circuit satis-
fiability with polylogarithmic communication. His argument goes through the PCP-
theorem [AS98, ALM+98, Din07] and uses a collision-free hash-function to build a
hash-tree that includes the entire PCP though. Even with the best PCP constructions
known to date [BSGH+05] Kilian’s argument has high computational complexity for
practical parameters. In contrast, our goal is to get short zero-knowledge arguments that
are simple and efficient enough for both prover and verifier to be used in practice.

Groth and Ishai [GI08] gave a zero-knowledge argument for correctness of a shuf-
fle [Cha81] of N ElGamal ciphertexts. We rely on techniques developed by Groth and
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Ishai and as described below also develop several new techniques. For comparison,
we believe it would be possible to modify their argument into an argument for circuit
satisfiability with a sub-linear communication of O(N2/3) group elements, but the cor-
responding computational complexity for the prover would be a super-linear number of
exponentiations.

1.3 Our Techniques

The generality of our results relies on using randomization and batch-verification tech-
niques to reduce linear algebra relations to equations of the form

z =
m∑

i=1

xi ∗ yi,

where xi,yi are committed vectors in Zn
p , z is a committed field element, and ∗ :

Zn
p ×Zn

p → Zp is a bilinear map. Besides greatly simplifying the task, the bilinear map
also helps reduce computation because it maps pairs of n-element vectors into single
field elements giving the prover less to commit to.

Groth and Ishai [GI08] gave a sub-linear size public-coin zero-knowledge argument
for the correctness of a shuffle of N ElGamal ciphertexts, with a communication com-
plexity of O(N2/3) group elements. We use similar techniques but by making more
careful use of the public-coin challenges, we can reduce the communication complex-
ity for our zero-knowledge arguments to O(

√
N) elements. The difference from Groth

and Ishai’s work is that they choose a set of challenges at random, whereas we let the
prover process the verifier’s challenges to get a more structured set of challenges. This
processing consists of taking a challenge e ∈ Zp from the verifier and using it to gen-
erate a set of challenges (1, e, e2, . . .), which is a row of a Vandermonde matrix. In
the zero-knowledge argument, we then arrange the challenges from the Vandermonde
vector in such a way that it leads to many terms cancelling out with each other.

Groth and Ishai’s shuffle argument suffered from an increase in the prover’s compu-
tation complexity in comparison with shuffle arguments that do not have sub-linear size.
The same effects apply to some extent to our zero-knowledge arguments when using a
constant number of rounds, however, by allowing a logarithmic number of rounds we
can eliminate the computational overhead. This is of interest in scenarios where round
complexity matters less than computation, for instance in cases where the Fiat-Shamir
heuristic is used to make the zero-knowledge argument non-interactive by letting the
prover use a cryptographic hash-function to compute the verifier’s challenges.

2 Preliminaries

Given two functions f, g : N → [0, 1] we write f(κ) ≈ g(κ) when |f(κ) − g(κ)| =
O(κ−c) for every constant c. We say that f is negligible when f(κ) ≈ 0 and that it is
overwhelming when f(κ) ≈ 1.

We write y = A(x; r) when the algorithm A, on input x and randomness r, outputs
y. We write y ← A(x) for the process of picking randomness r at random and setting
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y = A(x; r). We also write y ← S for sampling y uniformly at random from the set
S. We write (e1, . . . , em) ← Vanm(Zp) when we pick e ← Zp and define e1, . . . , em

by ei = ei−1 mod p, corresponding to (e1, . . . , em) being a row of a Vandermonde
matrix.

2.1 Zero-Knowledge Arguments of Knowledge

We are interested in zero-knowledge arguments of knowledge for statements involving
linear algebra. We define an argument of knowledge as an argument that has witness-
extended emulation, which means we can emulate the entire zero-knowledge argument
and at the same time extract a witness. For simplicity, we focus on special honest verifier
zero-knowledge (SHVZK) arguments in the common reference string model. There is
no loss of generality here: by using a coin-flipping protocol the SHVZK arguments can
be converted into arguments with full zero-knowledge against a cheating verifier and
the cost of this conversion is insignificant [Gro04]. Moreover, the common reference
string may be a random string and may even be chosen by the verifier. We refer to the
full paper for further discussion and formal definitions.

2.2 Homomorphic Commitments

The central tool in our SHVZK arguments is a homomorphic commitment to n elements
in Zp, where p is a κ-bit prime. Any homomorphic commitment scheme can be used,
but for simplicity and for the sake of making a concrete efficiency analysis, we will
in this paper use a generalization of Pedersen commitments [Ped91]. This commitment
scheme is length-reducing; a commitment is a single group element no matter how large
n is. The length-reduction is crucial, by working on short commitments instead of long
vectors we get SHVZK arguments with sub-linear communication complexity.

The generalized Pedersen commitment scheme works as follows. The key generation
algorithm K generates a commitment key ck = (G, g1, . . . , gn, h), where g1, . . . , gn, h
are randomly chosen generators of a group G of prime order p with |p| = κ. The
message space is Zn

p , the randomizer space is Zp and the commitment space is G. We
require that G is a group where it is easy to determine membership and compute the
binary operations and assume parties check that commitments are valid, by checking
c ∈ G.1

To commit to a vector (x1, . . . , xn) ∈ Zn
p we pick randomness r← Zp and compute

the commitment c = hr
∏n

i=1 g
xi

i . As a matter of notation we will write comck(x; r)
when committing to a vector x ∈ Zn

p using randomness r. In some cases we will
commit to less than n elements; this can be accomplished quite easily by setting the
remaining messages to 0. When committing to a single element x ∈ Zp using random-
ness r, we write comck(x; r). The generalized Pedersen commitment is perfectly hiding

1 If the commitments belong to a group Z
∗
q batch verification techniques can be used to lower the

cost of checking group membership of many commitments. See also [Gro03] for a variant of
the Pedersen commitment scheme over Z

∗
q that makes it possible to almost eliminate the cost

of verifying validity. If G is an elliptic curve of order p, then the validity check just consists of
checking that c is a point on the curve, which is inexpensive.
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since no matter what the messages are, the commitment is uniformly distributed in G.
The commitment is computationally binding under the discrete logarithm assumption;
we will skip the simple proof.

The common reference string in our SHVZK arguments will be a commitment key
ck. We remark that for typical choices of the group G, the commitment key can be
easily sampled from a common random string and it is easy to verify that ck is a valid
commitment key. It may even be chosen by the verifier, provided the prover and verifier
use a p for which it is possible to generate groups where the discrete logarithm problem
is hard.

The generalized Pedersen commitment is homomorphic. For all x,x′ ∈ Zn
p and

r, r′ ∈ Zp we have

comck(x; r) · comck(x′; r′) = comck(x + x′; r + r′).

KNOWLEDGE OF CONTENT OF COMMITMENTS. There are standard techniques for
proving knowledge of the opening of many commitments, see the full paper. This can be
done in 3 rounds and costs little in terms of communication and computation. Therefore,
we will for simplicity and without loss of generality often assume without explicitly
stating it that the prover knows the openings of the commitments that she sends to the
verifier.

2.3 Multi-exponentiation Techniques

Multi-exponentiation techniques allow computing products of the form
∏n

i=1 g
xi

i faster
than computing n single exponentiations. Multi-exponentiations appear frequently in
the paper, for instance when computing the generalized Pedersen commitment de-
scribed earlier. Pippenger [Pip80] developed a general theory of multi-exponentiations;
we recommend Lim’s presentation [Lim00] of concrete multi-exponentiation tech-
niques with a complexity of less than 2nκ/ logn multiplications in G, when n is large.

3 Equations with Matrices and Vectors

We wish to commit to matrices and vectors of elements from Zp and make SHVZK
arguments for them satisfying equations commonly arising in linear algebra. We first
consider the following 6 types of equations over committed matrices Xi, Yi, Z ∈
Matn×n(Zp), committed row vectors xi,yi, z ∈ Zn

p and committed elements z ∈ Zp,
with public ai ∈ Zp.

z� =
m∑

i=1

aiXiy
�
i Z =

∑m
i=1 aiXiYi Z =

m∑
i=1

aiXi ◦ Yi

z =
m∑

i=1

aixiy
�
i z =

∑m
i=1 aixiYi z =

m∑
i=1

aixi ◦ yi,
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where ◦ is the Hadamard product (entry-wise product). In this section, we will show
how to reduce a set of such equations to a couple of equations of the form

z =
m∑

i=1

xi ∗ yi,

where ∗ : Zn
p × Zn

p → Zp is a bilinear map. One bilinear map we will use is the
standard dot product of vectors x ∗ y = xy�. Another bilinear map we will use is
given by x ∗ y = x(y ◦ t)�, where t ∈ Zn

p is a public vector chosen by the verifier.
The first step in the reduction is very simple. Since we have committed to row vec-

tors, the three types of equations in the top involving matrices Xi are actually just sets
of n equations of the types below. We can therefore focus on the three types of equations
on the bottom.

3.1 Reducing Many Equations of the Form z =
∑m

i=1 aixiy
�
i to a Single

Equation

Randomization can be used to reduce Q equations of the form zq =
∑mq

i=1 aqixqiy
�
qi to

one single equation of the form z =
∑m

i=1 ziy
�
i , where m =

∑Q
q=1 mq . The verifier

selects (r1, . . . , rQ) ← VanQ(Zp) (observe this only requires the verifier to transmit
one field element) and require the prover to demonstrate

Q∑
q=1

rqzq =
Q∑

q=1

mq∑
i=1

(rqaqixqi)y�
qi.

This is a comparison of two degree Q − 1 polynomials in the challenge consisting
of a field element. By the Schwartz-Zippel lemma, there is probability at most Q−1

p

for the test to pass unless indeed all the equations hold. Setting z =
∑Q

q=1 rqzq and
x′

qi = rqaqixqi, whose commitments can easily be computed using the homomorphic
property of the commitment scheme, we get the following equation of the desired form

z =
Q∑

q=1

mq∑
i=1

x′
qiy

�
qi.

3.2 Reducing z =
∑m

i=1 aixiYi to the Form z =
∑m

i=1 aixiy
�
i

We will now give a 3-move reduction of z =
∑m

i=1 aixiYi to the form z =∑m
i=1 aixiy

�
i . The verifier picks t← Vann(Zp) and asks the prover to demonstrate

zt� = (
m∑

i=1

aixiYi)t� =
m∑

i=1

aixi(Yit
�).

By the Schwartz-Zippel lemma, there is at most probability n−1
p of this test passing un-

less indeed the values satisfy the equation. The problem is that the verifier does not have
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a straightforward way to compute commitments to Yit
� since we have commitments to

the rows of the matrices, but here the verifier is asking for a linear combination of the
columns. Choosing t and sending it to the prover is therefore only the first round of the
reduction; there will be two more rounds.

For each matrix Yi the prover creates a new commitment to yi = tY �
i and sends it

to the verifier. The equation can now be reduced to the form

zt� −
m∑

i=1

aixiy
�
i = 0,

which is of the desired form. In the process we have for each matrix Yi introduced an
additional equation yi = tY �

i that we need to prove too. We pick s ← Vann(Zp) and
ask the prover to demonstrate

yis
� = (sYi)t�.

This is the key idea in this reduction, sYi is a combination of row vectors from Yi and
thus easily computable. Using the homomorphic properties of the commitment scheme
both the prover and the verifier can compute a commitment to sYi.

We remark that since the last step in this reduction simply consists of the veri-
fier picking a challenge s, we can run the last round in parallel with the reduction in
Section 3.1, so our reduction only costs 2 additional rounds. Further, we note that for
all Yi in all equations, we can use the same s and t. In the randomization step in the
reduction in Section 3.1 we can use the homomorphic properties of the commitment
scheme to combine all the vectors that we combine with respectively s and t. The main
cost of the reduction is therefore the computation of the yi’s and the sYi’s and the
commitments to yi, the rest has modest cost.

3.3 Reducing Equations with Hadamard Products to a Single Equation with a
Bilinear Map

We will now reduce a set of Q Hadamard equations of the form

zq =
mq∑
i=1

aqixqi ◦ yqi

to a single equation. The verifier picks (r1, . . . , rQ) ← VanQ(Zp) and requires the
prover to give an argument for

Q∑
q=1

rqzq =
Q∑

q=1

mq∑
i=1

(rqaqixqi) ◦ yqi.

Setting x′
qi = rqaqixqi and z′ =

∑Q
q=1 rqzq, whose commitments can be computed

using the homomorphic properties, this gives us the equation z′ =
∑Q

q=1
∑mq

i=1 x′
qi ◦

yqi.
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Consider now a Hadamard equation of the form z =
∑m

i=1 xi ◦yi. We can simplify
this equation by picking t← Vanm(Zp) and requiring the prover to show

zt� = (
m∑

i=1

xi ◦ yi)t� =
m∑

i=1

xi(yi ◦ t)�.

Defining the bilinear map

∗ : Z
n
p × Z

n
p → Zp (x,y) �→ x(y ◦ t)�,

we have reduced the equation to

0 =
m∑

i=1

xi ∗ yi − z ∗ 1.

4 SHVZK Arguments for a Vector Product Equation

We saw in the previous section that equations involving matrices and vectors could be
efficiently reduced to an equation of the form

z =
m∑

i=1

xi ∗ yi,

where ∗ is one of the two bilinear maps x ∗ y = xy� or x ∗ y = x(y ◦ t)�. In
this section we will give a SHVZK argument of knowledge of openings z ∈ Zp and
x1,y1, . . . , . . . ,xm,ym ∈ Zn

p satisfying such an equation.

4.1 The Minimal Case

We first give a well-known argument for the minimal case m = 1. We have three
commitments a, b, c to x,y ∈ Zn

p and z ∈ Zp respectively and the prover wants to
convince the verifier that z = xy�. The prover’s private input in the argument consists
of the openings (x, r), (y, s) and (z, t) of a, b and c respectively.

P→ V: Pick dx,dy ← Zn
p , dz ← Zp and randomizers rd, sd, t1, t0 ← Zp.

Send to the verifier the commitments

ad = comck(dx; rd) bd = comck(dy; sd)
c1 = comck(xd�

y + dxy�; t1) c0 = comck(dxd�
y ; t0).

P← V: Send challenge e← Zp to the prover.
P→ V: Send to the verifier the following answer

fx = ex+dx fy = ey+dy rx = er+rd sy = es+sd tz = e2t+et1+t0.

V: Accept the argument if

aead = comck(fx; rx) ∧ bebd = comck(fy; sy) ∧ ce2
ce
1c0 = comck(fxf�

y ; tz).

Theorem 1. The protocol above is a 3-move public-coin argument of knowledge of
committed values x,y, z so z = x ∗y. The argument has perfect completeness, perfect
SHVZK and witness-extended emulation.

We refer to the full paper for a proof.
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4.2 Constant-Round Reduction to the Minimal Case

Next, we give a SHVZK argument that uses a 2-round communication-efficient
reduction to the minimal case m = 1.

Common input: Commitment key ck and a statement consisting of commitments
a1, b1, . . . , am, bm, c.

Prover’s input: Openings of commitments x1, r1,y1, s1, . . . ,xm, rm,ym, sm, z, t so
z =

∑m
i=1 xi ∗ yi.

Argument:
P→ V: Prover picks randomizers t� ← Zp for 0 ≤ � ≤ 2m− 1, setting tm−1 = t

though.
Prover computes c0, . . . , c2m−2 as

c� = comck

⎛⎝ ∑
i,j : �=m+i−j−1

xi ∗ yj ; t�

⎞⎠ .

Observe, by construction cm−1 = c.
Prover sends c0, . . . , c2m−2 to verifier.

P← V: Verifier sends prover random challenge e← Zp.
P↔ V: Define

a′ =
m∏

i=1

aei−1

i b′ =
m∏

j=1

bem−j

j c′ =
2m−2∏
�=0

ce�

� .

Prover computes openings

x′ =
m∑

i=1

ei−1xi r′ =
m∑

i=1

ei−1ri y′ =
m∑

j=1

em−jyj s′ =
m∑

j=1

em−jsj

and

z′ =
2m−2∑
�=0

e�
∑

i,j : �=m+i−j−1

xi ∗ yj t′ =
2m−2∑
�=0

e�t�.

Prover and verifier run the minimal case SHVZK argument from Section 4.1

on a′, b′, c′.

Theorem 2. The argument above is a public-coin argument for knowledge of openings
so z =

∑m
i=1 xi ∗ yi. The argument has perfect completeness, perfect SHVZK and

computational witness-extended emulation.

We refer to the full paper for a proof. Below, we will sketch the main ideas in the
construction and why it works.
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The important part in the reduction to the minimal case is to use the verifier’s chal-
lenge in a way such that the prover only needs to send 2m − 2 commitments to the
verifier. We do this by computing a′, b′ as multi-exponentiations of a1, b1, . . . , am, bm

with exponents that are carefully chosen powers of the challenge e. The product of the
openings of a′ and b′ is

(
m∑

i=1

ei−1xi

)
∗

⎛⎝ m∑
j=1

em−jyj

⎞⎠ =
2m−2∑
�=0

e�

⎛⎝ ∑
i,j : �=m+i−j−1

xi ∗ yj

⎞⎠ .

This is the key observation to show that the argument is perfectly complete.
The part corresponding to � = m − 1 gives us exactly the sum we are after, but

we have some extra coefficients of the polynomial corresponding to � �= m − 1. To
cancel them out, the prover makes 2m − 2 commitments to these values before see-
ing the challenge e. Suppose we know openings of all the commitments let us argue
that there is negligible probability of correctly answering the challenge e unless indeed
z =

∑m
i=1 xi ∗ yi. Since all commitments are chosen by the prover before seeing the

challenge e, by the binding property of the commitment scheme this shows

2m−2∑
�=0

e�

⎛⎝ ∑
�=m+i−j−1

xi ∗ yj

⎞⎠ =
2m−2∑
�=0

e�z�,

for random e where z = zm−1 since c = cm−1. But if z �=
∑m

i=1 xi ∗ yi the Schwartz-
Zippel lemma tells us this can happen with probability at most 2m−2

p .

EFFICIENCY. The prover sends 2m − 2 commitments to the verifier. Computing the
commitments requires the prover to make 2m− 2 double-exponentiations and naı̈vely
m2 bilinear map evaluations to compute the entries to the commitments. Naı̈vely this
requires m2n multiplications, but using more advanced techniques such as organizing
the vectors in m × n matrices and using Strassen’s matrix multiplication algorithm to
compute XY � to get the m2 dot products the cost can be further reduced. However, it
is not known how to bring the cost down to O(mn) multiplications.

4.3 Trading Computation for Interaction

Let us again look at the equation

z =
m∑

i=1

xi ∗ yi.

When m is large, the computational overhead of doing the multiplications in the
SHVZK argument in the previous section may be prohibitive. In this section, we will
trade computational complexity for round complexity by giving a 2 logm-round reduc-
tion to the minimal case that only requires 4mn multiplications for the prover.
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To illustrate the source of the gain, look at the matrix containing the m2 products
xi ∗ yj . An example of an 8× 8 matrix is given below.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 ∗ y1 x1 ∗ y2

x2 ∗ y1 x2 ∗ y2

x1 ∗ y3 x1 ∗ y4
x2 ∗ y3 x2 ∗ y4

x3 ∗ y1 x3 ∗ y2
x4 ∗ y1 x4 ∗ y2

x3 ∗ y3 x3 ∗ y4

x4 ∗ y3 x4 ∗ y4

x1 ∗ y5 x1 ∗ y6
x2 ∗ y5 x2 ∗ y6

x1 ∗ y7 x1 ∗ y8
x2 ∗ y7 x2 ∗ y8

x3 ∗ y5 x3 ∗ y6
x4 ∗ y5 x4 ∗ y6

x3 ∗ y7 x3 ∗ y8
x4 ∗ y7 x4 ∗ y8

x5 ∗ y1 x5 ∗ y2
x6 ∗ y1 x6 ∗ y2

x5 ∗ y3 x5 ∗ y4
x6 ∗ y3 x6 ∗ y4

x7 ∗ y1 x7 ∗ y2
x8 ∗ y1 x8 ∗ y2

x7 ∗ y3 x7 ∗ y4
x8 ∗ y3 x8 ∗ y4

x5 ∗ y5 x5 ∗ y6

x6 ∗ y5 x6 ∗ y6

x5 ∗ y7 x5 ∗ y8
x6 ∗ y7 x6 ∗ y8

x7 ∗ y5 x7 ∗ y6
x8 ∗ y5 x8 ∗ y6

x7 ∗ y7 x7 ∗ y8

x8 ∗ y7 x8 ∗ y8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We want to argue knowledge of c being a commitment to the trace of the matrix. In the
SHVZK argument we gave in the previous section, all the 2m− 1 lines that are parallel
with the diagonal correspond to entries that have the same degree in the polynomial in
e. For instance the sum of the diagonal entries is the coefficient of em−1 whereas the
sum of the entries with i − j = 1 is the coefficient of em. In the SHVZK argument
in the previous section, we computed all these m2 products. Since they each cost n
multiplications to compute, we end up using m2n multiplications. Even with the best
known advanced matrix-multiplication techniques the cost is still significantly higher
than ω(mn) multiplications. As an example, in the 8 × 8 matrix above we end up
computing 64 vector products. We are only interested in the 8 entries along the diagonal,
so the remaining computation is just waste that we need to discard in the argument. We
will devise a method that allows us to compute larger sub-matrices at once, instead of
taking each individual entry at a time. Looking again at the example, if we can discard
2 × 2 matrices and 4 × 4 matrices, we only need to discard 14 sub-matrices instead of
the 56 entries we need to discard in the reduction in the previous section.

Below, we give a SHVZK argument that reduces the statement to the minimal case
m = 1 through logm recursive calls to itself. For simplicity we assume that m = 2μ.
We can do this without loss of generality, because we can always fill up with dummy
elements consisting of zero-vectors and trivial commitments, which do not carry any
computational overhead.

The idea in the recursive call is to handle the 2 × 2 matrices along the diagonal at
once. We already have a commitment c to the sum of the diagonal entries. In addition,
the prover sends commitments cl, cu to the verifier, containing respectively the sum of
the lower-left corners of the sub-matrices and the sum of the upper-right corners of the
sub-matrices along the diagonal.

The verifier responds with a random challenge e← Zp. The prover now reduces her
set of vectors to half, by computing

x′
i = x2i−1 + ex2i y′

i = ey2i−1 + y2i.

The homomorphic properties of the commitments enables the verifier to compute com-
mitments to these vectors as a′i = a2i−1a

e
2i and b′i = be

2i−1b2i. We also compute

c′ = ce2

l cecu, which is a commitment to the sum of the diagonal entries in the new
matrix obtained from the vectors x′

1,y
′
1, . . . ,x

′
m/2,y

′
m/2.
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The prover and the verifier now engage in a SHVZK argument with these new com-
mitments and vectors for c′ containing the sum of the diagonal elements of the matrix.
The implication is that for random e we have

m/2∑
i=1

(x2i−1 + ex2i) ∗ (ey2i−1 + y2i) = e2zl + ez + zu,

where zl and zu are the contents of cl and cu. By the Schwartz-Zippel lemma this
implies with overwhelming probability z =

∑m/2
i=1 (x2i−1 ∗ y2i−1 + x2i ∗ y2i), which

is what we wanted to prove.

Common input: Commitment key ck and commitments a1, b1, . . . , am, bm, c, with
m = 2μ.

Prover’s input: Openings of commitments x1, r1,y1, s1, . . . ,xm, rm,ym, sm, z, t so
z =

∑m
i=1 xi ∗ yi.

Argument:
If m = 1: Run the SHVZK argument from Section 4.1 with common input

ck, a1, b1, c and prover input x1, r1,y1, s1, z, t to show z = x1 ∗ y1.
Else if m > 1: Define m′ = m/2 and do

P→ V: Prover picks tl, tu ← Zp and sends to verifier

cl = comck(
m′∑
i=1

x2i∗y2i−1; tl) and cu = comck(
m′∑
i=1

x2i−1∗y2i; tu).

P← V: Verifier picks random challenge e← Zp and sends it to prover.
P↔ V: Recursively run argument with common input ck, a′1, b′1, . . . , a′m′ , b′m′ , c′

given by

a′i = a2i−1a
e
2i b′i = be

2i−1b2i c′ = ce2

l cecu.

The prover’s private input is x′
1, r

′
1,y

′
1, s

′
1, . . . ,x

′
m′ , rm′ ,y′

m′ , sm′ , z′, t′ with

x′
i = x2i−1+ex2i r′i = r2i−1+er2i y′

i = ey2i−1+y2i s′i = es2i−1+s2i

z′ = e2
m′∑
i=1

x2i ∗ y2i−1 + ez +
m′∑
i=1

x2i−1 ∗ y2i t′ = e2tl + et + tu.

Theorem 3. The argument above is a public-coin argument for knowledge of openings
so z =

∑m
i=1 xi ∗ yi. The argument has perfect completeness, perfect SHVZK and

computational witness-extended emulation.

The proof can be found in the full paper.

EFFICIENCY. Each recursive call to the SHVZK argument with m > 1 makes the prover
send 2 commitments to the verifier. The main computational cost for the prover is the
computation of m = 2m′ new vectors costing around mn multiplications and m bi-
linear map evaluations costing around n multiplications each. Summing up over logm
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recursive calls, we get a total communication of 2 logm commitments from the prover
to the verifier and a computational cost for the prover of 4mn multiplications in Zp.
The verifier can wait until the proof is over to compute anything; this permits the veri-
fier to use multi-exponentiation techniques for computing the commitments a, b, c that
are used in the final call to the minimal case SHVZK argument where m = 1. As a
consequence, the verifier uses the equivalnt of 4mκ/ logm multiplications.

5 Zero-Knowledge Arguments for Linear Algebra Equations

We now have several tools to deal with committed matrices and vectors. We can add
matrices and vectors using the homomorphic properties of the commitment scheme and
we have SHVZK arguments for equations involving multiplications of matrices and
vectors and Hadamard products of matrices and vectors. We will sketch how to use
these tools to get sub-linear zero-knowledge arguments for equations often arising in
linear algebra.

INVERSE. To prove committed matrices satisfy Y = X−1 or equivalently XY = I ,
we let the verifier pick s ← Vann(Zp) and the prover give a SHVZK argument for
(sX)Y = s.

TRANSPOSE. To prove that a committed matrices satisfy Y = X�, we let the verifier
pick s, t← Vann(Zp) and the prover give a SHVZK argument for (sX)t� = (tY )s�.

EIGENVALUES AND EIGENVECTORS. To show that we have a commitment to an eigen-
value λ and an eigenvector y� of X , we first commit to z = λy. There are standard
SHVZK arguments for z = λy, so the prover can show the committed z is correct.
Now the verifier picks s ← Vann(Zp) and we also give a SHVZK argument for
sz� = (sX)y�.

SUMS OF ROWS AND COLUMNS. Computing the sum of all row vectors or all col-
umn vectors of a matrix corresponds to computing X1� and 1X respectively, where
1 = (1, . . . , 1). The sum of all entries in a matrix can be computed as 1A1�.
With our techniques we get efficient SHVZK arguments for the correctness of these
computations.

HADAMARD PRODUCTS OF ROWS AND COLUMNS. Let us give a SHVZK argument
for a committed vector z containing the Hadamard product of all the rows x1, . . . ,xn

of committed matrix. The prover commits to vectors yi = x1 ◦ · · · ◦xi, using y1 = x1
and yn = z. By demonstrating for 1 ≤ i < n that yi+1 = yi ◦ xi+1 we convince the
verifier that z is the Hadamard product of the row vectors in X . We remark that it is easy
to get a SHVZK argument for z =

∏n
i=1 zi, where z = (z1, . . . , zn), so we can extend

our SHVZK argument to prove z is the product of all entries in the matrix. In case we
want to show z� is the Hadamard product of all the columns, we can commit to X�,
using the SHVZK for transposition to prove correctness, and show z is the Hadamard
product of all the rows.

TRIANGULARITY. The Hadamard product enables us to prove that a subset of the en-
tries in a committed matrix X consists of all zeroes. Let S be the matrix that has 1 in all
entries belong to the subset and has 0 in all other entries. We give a SHVZK argument
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for S ◦X = 0. This SHVZK argument can for instance be used to demonstrate that a
committed matrix is lower triangular, upper triangular or diagonal.

TRACE. To show committed values satisfying z = trace(X) we give a SHVZK argu-
ment for z =

∑n
i=1 six

�
i , where si is the ith row vector of I .

ABSOLUTE VALUE OF DETERMINANT. We can commit to an LUP factorization of
a matrix X . Proving lower and upper triangularity we already know how to do. It is
also easy to prove that we have a committed permutation matrix P , for instance by
showing that the matrix is a hidden permutation of I (see Section 5) and that 1P = 1
and P1� = 1�. Since we can single out the diagonal elements of L and U we can
compute the determinants of these matrices. We know that P has determinant−1 or 1.
We therefore get the determinant up to the sign. We leave it as an open problem to give a
sub-linear zero-knowledge argument for the permutation matrix P having determinant
−1 or +1.

KNOWN PERMUTATION OF A MATRIX. Consider a publicly known permutation π
over Zn × Zn and two committed matrices Y = π(X), meaning for all pairs (i, j)
we have yij = xπ(ij). To give a SHVZK argument for this, the verifier first picks
R← Vann2(Zp) and we ask the prover to show

n∑
i=1

n∑
j=1

rijxij =
n∑

i=1

n∑
j=1

rπ(ij)yij ,

which by the Schwartz-Zippel fails with probability n2−1
p unless indeed Y = π(X).

Define S = π(R) and call the row vectors of the matrices respectively ri, si,xi,yi.
The statement above is equivalent to

n∑
i=1

rix
�
i =

n∑
i=1

siy
�
i ,

for which we already know how to give a SHVZK argument.

HIDDEN PERMUTATION OF A MATRIX. To show that there is a secret permutation π
so Y = π(X), we use the fact that polynomials are identical under permutation of the
roots; an idea that stems from Neff [Nef01]. The verifier picks r ← Zp at random and
we let R be the matrix that has r in all entries. We then use the SHVZK argument from
Section 5 to show that the product of the entries in X − R equals the product of the
entries in Y −R. In other words, we show for a random r that

n∏
i=1

n∏
j=1

(xij − r) =
n∏

i=1

n∏
j=1

(yij − r),

which by the Schwartz-Zippel lemma demonstrates that the two polynomials are iden-
tical and thus there exists a permutation π so xij = yπ(ij).

This type of SHVZK argument is useful in the context of shuffling [Cha81] and
one of the main contributions of Groth and Ishai [GI08] was to show how to give an
argument with sub-linear communication. Their SHVZK argument had a communi-
cation complexity that could be brought down to Θ(n4/3) group elements at the cost
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of a super-linear computation complexity of Θ(n8/3) exponentiations.2 In compari-
son, our SHVZK argument has a communication complexity of Θ(n) field elements
and even for the constant round protocol we get a much better computation com-
plexity of n3 multiplications. Using a logarithmic number of rounds, we can bring
that down to 2n2κ/ logn multiplications, beating even the best non-sublinear shuffle
argument [Gro03].

6 Circuit Satisfiability

Let us consider an arithmetic circuit built from N addition and multiplication gates over
a field Zp. We want to give a SHVZK argument for the existence of input values to the
circuit that makes it evaluate to 1. All gates have two input wires and one output, some
of which may be known constants. By introducing dummy gates we can without loss
of generality assume 3N = n2 and that the number of multiplication gates M and the
number of addition gates A are multiples of n.

1. We number the addition gates 1 through A and the multiplication gates A + 1
through A + M . We arrange the inputs and outputs such that the first two rows
contain input values to the first n addition gates and the third row contains the
corresponding output values, then follows another two rows of input gates and one
row of output gates, etc. Arranging the circuit in this way, the first 3A rows are
used for addition gates, while the last 3M rows are used for multiplication gates.
The prover commits to all these values.

2. For the addition gates, we create the commitment to row 3i as the product of the
commitments to row 3i−2 and 3i−1. By the homomorphic properties of the com-
mitment scheme, this shows that the addition gates are satisfied by the committed
wires.

3. For the multiplication gates we can use the SHVZK argument for Hadamard prod-
ucts, to show that the commitment to row 3i is the Hadamard product of the com-
mitments to rows 3i− 2 and 3i− 1. This shows that all the multiplication gates are
satisfied by the committed values.

4. Some of the values in the matrix may be publicly known constants. By introducing
dummy gates and organizing the matrix such that constants appear in the same row,
we can without loss of generality assume that we have entire rows that have publicly
known constants. We can make these commitments with trivial randomness so the
verifier easily can check that the right constants appear in the right places.

5. Finally, we need to demonstrate that all wires appearing many places in the ma-
trix have the same value assigned to them. The output wire of one gate, might for
instance appear elsewhere in matrix as an input wire of another gate; we need to
give a SHVZK argument for them having the same value. Let us first look at just
one wire that appears many places, say coordinates (i1, j1), (i2, j2), . . . , (im, jm).
We can create a directed Hamiltonian cycle on this set of indices. Let now π be a
permutation that contains directed Hamiltonian cycles for all wires in the circuit.

2 The computational complexity of Groth and Ishai’s shuffle argument can be reduced at the cost
of increasing communication.
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We use our SHVZK argument for known permutations to show that X = π(X).
This proves that the committed values are consistent, giving the same value to the
same wire everywhere in the matrix.

6.1 Binary Circuits

We have given a SHVZK argument for arithmetic circuit satisfiability, demonstrating
the generality of our techniques. The argument consists of committing to a matrix and
using some of the SHVZK arguments we have developed in the paper, so it inherits the
low communication complexity from the previous sections. The computational com-
plexity of the arithmetic circuit is dominated by the commitment to the wires, costing
the prover O(Nκ/ logN) multiplications.

If we look instead at a binary circuit, where the wires can be 0 or 1, we can reduce the
computational complexity. Committing to a binary matrix requires only O(N/ logN)
multiplications of group elements. Giving a satisfiability argument for a binary circuit
requires demonstrating that we have committed to binary values only. This can be done
quite easily by demonstrating the committed matrix satisfies X = X ◦X .

7 Efficiency

In the following table, we give efficiency estimates for SHVZK arguments we have con-
sidered in the paper. We use the parameters κ, κ′ and n to represent respectively the size
of a field element, the size of a group element and the number of elements in a vector.
We assume n is large, since this is where efficient zero-knowledge arguments are most
needed and ignore small terms. We measure communication in bits and computation in
multiplications in Zp. We let ρ, ε be the costs of respectively a multiplication in G and
an addition in Zp measured in multiplications in Zp.

SHVZK argument Rounds Communication Prover computation Verifier computation
z = x ∗ y 3 2nκ 4n κρ

log n 2n κρ
log n

z =
∑m

i=1 xi ∗ yi 5 2nκ + 2mκ′ m2n + 4m κρ
log m + 4n κρ

log n 8m κρ
log m + 2n κρ

log n

z =
∑m

i=1 xi ∗ yi 2 log m + 3 2nκ 4mn + 4n κρ
log n 4m κρ

log m + 2n κρ
log n

Inverse Y = X−1 4 2nκ n2 + 4n κρ
log n 4n κρ

log n

Transpose Y = X� 6 2nκ 2n2 + 4nκρ/ log n 6n κρ
log n

Eigenv. λy� = Xy� 5 5nκ n2 + 12n κρ
log n 6n κρ

log n

Triangularity 6 2nκ + 2nκ′ n3ε + 4n2 + 8n κρ
log n 10n κρ

log n

Triangularity 2 log m + 4 2nκ 6n2 + 4n κρ
log n 6n κρ

log n

Trace(X) 5 2nκ + 2nκ′ n3ε + 2n2 + 8n κρ
log n 10n κρ

log n

Trace(X) 2 log n + 3 2nκ 4n2 + 4n κρ
log n 6n κρ

log n

Hadamard of rows 7 2nκ + 2nκ′ n3 + 2n2 κρ
log n 10n κρ

log n

Hadamard of rows 2 log n + 5 2nκ 2n2 κρ
log n 6n κρ

log n

Known Y = π(X) 6 2nκ + 4nκ′ 4n3 + 12n κρ
log n 3n2 + 14n κρ

log n

Known Y = π(X) 2 log n + 4 2nκ 9n2 + 4n κρ
log n 3n2 + 6n κρ

log n

Hidden Y = π(X) 8 2nκ + 2nκ′ n3 + 2n2 κρ
log n 10n κρ

log n

Hidden Y = π(X) 2 log n + 6 2nκ 2n2 κρ
log n 6n κρ

log n

Arithmetic circuit 7 O(
√

N(κ + κ′)) O(N3/2 + N κρ
log N ) O(N +

√
N κρ

log N )
Arithmetic circuit log N + 5 O(

√
Nκ) O(N κρ

log N ) O(N +
√

N κρ
log N )

Binary circuit 7 O(
√

N(κ + κ′)) O(N3/2ε + N +
√

N κρ
log N ) O(N +

√
N κρ

log N )
Binary circuit log N + 5 O(

√
Nκ) O(N) O(N +

√
N κρ

log N )
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Abstract. This paper develops several new techniques of cryptanalyz-
ing MACs based on block ciphers, and is divided into two parts.

The first part presents new distinguishers of the MAC construction
Alred and its specific instance Alpha-MAC based on AES. For the
Alred construction, we first describe a general distinguishing attack
which leads to a forgery attack directly with the complexity of the
birthday attack. A 2-round collision differential path of Alpha-MAC
is adopted to construct a new distinguisher with about 265.5 chosen mes-
sages and 265.5 queries. One of the most important results is to use this
new distinguisher to recover the internal state, which is an equivalent sub-
key of Alpha-MAC. Moreover, our distinguisher on Alred construction
can be applied to the MACs based on CBC and CFB encryption modes.

The second part describes the first impossible differential attack on
MACs-Pelican, MT-MAC-AES and PC-MAC-AES. Using the birthday
attack, enough message pairs that produce the inner near-collision with
some specific differences are detected, then the impossible differential at-
tack on 4-round AES to the above mentioned MACs is performed. For
Pelican, our attack recovers its internal state, which is an equivalent
subkey. For MT-MAC-AES, the attack turns out to be a subkey recovery
attack directly. The complexity of the two attacks is 285.5 chosen mes-
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Part I Distinguishing and Forgery Attacks on Alred and
Its AES-Based Instance Alpha-MAC1

1 Introduction to Part I

Message Authentication Code (MAC) is a fixed length information used to en-
sure data integrity and authenticity, and is widely used in network and security
protocols, such as IPsec, SNMP, and SSL/TLS. A MAC algorithm takes a se-
cret key and a message of arbitrary length as input, and outputs a short digest.
MAC algorithms have been constructed using various approaches, for example,
CBC-MAC [11], OMAC [12], TMAC [14], HMAC/NMAC [2], etc.

The MAC construction Alred was introduced by Daemen and Rijmen [8].
Alred is an iterative MAC construction using reduced block ciphers as iter-
ation functions. The secret key, which is used as the key of the block cipher,
is applied in the initialization and the finalization, respectively. The internal
state is updated by consecutive injections of message blocks. Alpha-MAC is
an efficient instance of Alred based on AES [7]. Since AES has been widely
used in practice, Alpha-MAC can be easily implemented. For the performance,
Alpha-MAC is 2.5 times faster than the popular CBC-MAC with AES.

It was proved that the Alred construction is as strong as the underlying block
cipher with respect to key recovery attacks and any forgery attacks not involving
inner collisions [8]. Moreover, for Alpha-MAC, any colliding messages of the
same size have to be at least 5 blocks long. Recently, Huang et al. exploited the
algebraic properties of the AES, constructed internal collisions, and found second
preimages for Alpha-MAC, under the assumption that a key or an internal
state is known [10]. Biryukov et al. proposed a side-channel collision attack on
Alpha-MAC which recovered its internal state, and mounted a selective forgery
attack [5].

The main contribution of this part is to present novel distinguishing attacks
on the Alred construction and Alpha-MAC, which lead to forgery attacks
directly. More importantly, the distinguishing attack on Alpha-MAC can be
applied to recover the internal state, and results in a second preimage attack.

There are two kinds of distinguishing attacks on MACs. Preneel and van
Oorschot introduced a general distinguishing attack to identify iterated MACs
from a random function [17]. Using the birthday paradox, the adversary can
detect the internal collision by appending the same one-block message. Another
kind of attacks was suggested by Kim et al., which distinguishes the crypto-
graphic primitive embedded in a MAC construction from a random function [13].
Recently, new techniques to identify the underlying hash functions of MACs were
proposed [19,20]. For example, distinguishing attacks on HMAC/NMAC-MD5
and MD5-MAC were proposed in [20]. The inner near-collisions are used in the
distinguisher which reveals more information than inner collisions. In the same
work, they were able to recover partial subkey of the MD5-MAC as well.

1 By Zheng Yuan, Keting Jia, Wei Wang, and Xiaoyun Wang. See [21] for more details.
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Inspired by Wang et al.’s work [19,20], we propose a new idea to detect the
inner near-collision with some specific differences, which can be used to iden-
tify the cryptographic primitives embedded in MACs. Build upon this idea, two
distinguishing attacks on Alred construction and Alpha-MAC are presented
in this part. We first describe a distinguishing attack on the Alred construc-
tion. This attack is based on the birthday attack [22] which asserts that there
exists a collision differential path with some specific differences. This is an inner
near-collision which can be recognized with probability 1 by appending another
message pair with the same difference. Next, we present a new distinguisher for
Alpha-MAC based on a 2-round collision differential path. By combining with
the specific differences in the 2-round collision differential path, we then explore
a series of tricks to recover the internal state, which is an equivalent subkey.
With the recovered subkey, we can obtain the second preimage of Alpha-MAC
for any given message M and its MAC value. The complexity of all the attacks
of Alpha-MAC is 265.5 MAC queries and 265.5 chosen messages with a success
rate of 0.63. Moreover, the distinguishing attack on the Alred construction can
be applied to the MACs based on CBC and CFB encryption modes.

2 Backgrounds and Notations

In this section, we define some notations, and give brief descriptions of the Alred

construction and Alpha-MAC.

2.1 Notations

xi : the i-th message word
yi : the state after the i-th iteration
C : the output of MAC algorithm
ΔA : the XOR difference of A and A′

n : the length of the state
lw : the length of the message word
lm : the length of the MAC output

M‖N : the concatenation of M and N
|x| : the length of a bit string x
'x( : the smallest integer not less than x
10j : the (j + 1)-bit sequence (1 00 · · · 0︸ ︷︷ ︸

j

)

2.2 Alred Construction

The MAC construction Alred [8] is based on a reduced block cipher. The length
of the secret key equals to that of the underlying block cipher, and the message
length is a multiple of lw bits.

Given a message M = (x1, x2, . . . , xt), the Alred construction is as follows.

1. Apply the full block cipher to the state of all-zero block, i. e., y0 = EncK(0).
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2. Perform the following iteration function f for each message word: (a) Injec-
tion Layout : Map the bits of the message word to an injection input that has
the same dimensions as a sequence of r-round subkeys of the block cipher.
(b) Apply a sequence of r-round block cipher function to the state, and re-
place the round subkeys with the injection input, i. e., yi = f(yi−1, xi), for
i = 1, 2, . . . , t.

3. Apply the full block cipher to the state yt, and truncate the first lm bits of
the state as the output. The final output C = Trunc(EncK(yt)).

2.3 Alpha-MAC Algorithm

Alpha-MAC [8] is a specific instance of the Alred construction with 1-round
AES as its iteration function, where lw = 32. Similar to AES, the Alpha-MAC
supports key length of 128, 192 or 256 bits.

The message padding method is to append a single bit ‘1’ followed by the
minimum bits of ‘0’ such that the length of the result is a multiple of 32. For
AES-128, the Injection Layout places the 4 bytes of each message word xi =
(xi,0, xi,1, xi,2, xi,3) into a 4× 4 array with the form:⎛⎜⎜⎝

xi,0 0 xi,1 0
0 0 0 0

xi,2 0 xi,3 0
0 0 0 0

⎞⎟⎟⎠ ,

which acts as the corresponding 128-bit round subkey. The Alpha-MAC round
function consists of the four basic transformations of AES in sequence: Ad-
dRoundKey (AK), SubBytes (SB), ShiftRows (SR), and MixColumns (MC) [7].

2.4 Related Works

Our work is related to two types of attacks in the literature. They are the
general distinguishing-R attack on all iterated MACs proposed by Preneel and
van Oorschot [17], and the distinguishing-H attack on HMAC/NMAC-MD5 and
MD5-MAC introduced by Wang et al. [20].

Preneel et al. proposed a general forgery attack on iterated MACs by the
birthday paradox, which is applicable to all iterated MACs, such as CBC-MAC.
Their technique detects all the colliding pairs among 2(n+1)/2 known text-MAC
pairs by the birthday paradox, where n is the bit length of the chaining variable.
For each searched collision, i. e., MAC(K,M) = MAC(K,M ′), a one-block
message N is appended to identify whether it is an internal collision by com-
paring MAC(K,M ||N) and MAC(K,M ′||N). If an internal collision is found,
then a forgery is created since the MACs of M‖N ′ and M ′‖N ′ are the same.
However, this method cannot be used to distinguish the cryptographic primitives
embedded in the MAC.

Wang et al. introduced another interesting idea which can distinguish HMAC/
NMAC-MD5 without the related-key setting. They also implemented a partial
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key recovery attack on MD5-MAC. The main strategy of the distinguishing at-
tack is as follows: The adversary first collects enough two-block message pairs
(M‖N,M ′‖N) to guarantee the appearance of an expected internal near-collision
in the first iteration, then detects such a near-collision by changing the second
block with enough messages N ′. Once the expected inner near-collision is identi-
fied, the MAC is known to be based on MD5. The core of the attack is to detect
an inner near-collision instead of a collision.

3 Distinguishing and Forgery Attacks on MAC
Construction Alred

This section presents distinguishing and forgery attacks on Alred construction.
Enlightened by the idea of Wang et al., we can detect a proper output difference
as an inner near-collision by the birthday paradox. When the MAC construction
is Alred rather than a random function, this kind of inner near-collision can be
detected with probability 1 by substituting the last different message pair with
another message pair having the same difference. Based on this detected inner
near-collision, a forgery attack can be constructed immediately.

3.1 Distinguishing Attack on Alred Construction

The iteration part of Alred construction is based on the r-round block cipher,
where the r-round subkeys are substituted by the injection input. The core of
our distinguisher is to detect Δyj−1, which is the output difference of (j − 1)-
th iteration. According to the operation between the injection input and the
state involved in the iteration function f , the message word difference Δxj may
extinguish Δyj−1, and lead to a collision at the final output. The form of the
difference depends on the operation between the injection input and the state;
e. g., for Alred based on IDEA or RC6, the operation is modular addition,
while for some others, it is XOR. Without loss of generality, we neglect Injection
Layout map, and only consider the round number r = 1 and the XOR operation
between the message word and the state.

As shown in Fig. 1, there is an inner near-collision after round (j − 1). When
Δxj = Δyj−1, there will be an internal collision xj ⊕ yj−1 = x′

j ⊕ y′j−1, which
can be propagated to the output. If the construction is Alred, we replace the
(xj , x

′
j) with a different (xj , x′

j), where Δxj = Δxj , the collision still occurs.
According to this property, the distinguisher is constructed as follows:

1. Randomly choose a structure T = {M i|M i = (xi
1, x

i
2, . . . , x

i
t)} composed of

2(n+1)/2 different messages, and query their corresponding MAC values Ci.
2. By the birthday paradox, search a collision Ca = Cb, the corresponding

messages are Ma and M b.
3. Counting backwards, suppose that (xa

j , x
b
j) is the first unmatched pairs of

words in (Ma,M b), i. e., xa
j �= xb

j , Ma = (xa
1 , . . . , x

a
j , xj+1, . . . , xt), and

M b = (xb
1, . . . , x

b
j , , xj+1, . . . , xt). Replace (xa

j , x
b
j) with another (xa

j , x
b
j),
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Fig. 1. The Distinguisher with XOR Operation

where xa
j ⊕ xb

j = xa
j ⊕ xb

j . Query the MACs with (Ma,M b), where Ma =

(xa
1 , . . . , x

a
j−1, x

a
j ) and M b = (xb

1, . . . , x
b
j−1, x

b
j).

– If Ca = Cb, we conclude that the MAC is Alred construction.
– Otherwise, it is a random function.

Note that t should be large enough to guarantee the existence of an inner near-
collision at round (j − 1), where t ≥ 6.

This attack requires about 2(n+1)/2 chosen messages, and works with proba-
bility 0.63 by the birthday paradox.

Remark 1. For MACs based on the block ciphers with r ≥ 2, such as CBC-MAC,
OMAC, TMAC, etc., the iteration function is Hi = f(Hi−1, xi) = EK(Hi−1 ⊕
xi). Therefore, with a little modification, the above attack is applied to these
situations. Besides, our method also works for the MACs based on CFB mode,
i.e., Hi = f(Hi−1, xi) = EK(Hi−1)⊕ xi.

3.2 Forgery Attack on Alred Construction

Once the inner near-collision is identified, we can replace message words by
another pair with the same difference to achieve a new collision pair. Hence, the
forgery attack is easily realized with the same complexity and success rate as
the distinguishing attack. To be more specific, let (Ma,M b) be the colliding pair
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detected in the above distinguishing attack. We query the MAC oracle with M̃a,
where M̃a = (xa

1 , . . . , x
a
j−1, x̃

a
j , s), and s is an arbitrary message string. We can

get a MAC forgery of the message M̃ b = (xb
1, . . . , x

b
j−1, x̃

a
j ⊕Δxj , s).

4 Recovering the Equivalent Subkey of Alpha-MAC

It is remarked that the above distinguisher can be utilized to distinguish the
Alpha-MAC from a random function. However, we introduce a new distin-
guisher in this section, where the expected collision implies an inner near-collision
with some specific differences. With this distinguisher, we can recover an internal
state, which is an equivalent subkey, i. e., the state y0 (See Fig. 1).

4.1 Some Important Properties of Alpha-MAC

This section introduces a 2-round collision differential path of Alpha-MAC, and
summarizes some useful facts based on it. The 2-round differential path will be
used to recover the internal state in Section 4.3.

For i = 1, . . . , t, denote⎛⎜⎜⎝
yi−1,0 yi−1,1 yi−1,2 yi−1,3
yi−1,4 yi−1,5 yi−1,6 yi−1,7
yi−1,8 yi−1,9 yi−1,10 yi−1,11
yi−1,12 yi−1,13 yi−1,14 yi−1,15

⎞⎟⎟⎠⊕
⎛⎜⎜⎝

xi,0 0 xi,1 0
0 0 0 0

xi,2 0 xi,3 0
0 0 0 0

⎞⎟⎟⎠ SB−−→

⎛⎜⎜⎝
zi,0 zi,1 zi,2 zi,3
zi,4 zi,5 zi,6 zi,7
zi,8 zi,9 zi,10 zi,11
zi,12 zi,13 zi,14 zi,15

⎞⎟⎟⎠ ,

where yi−1 is the output of round (i−1), and (xi,0, 0, xi,1, 0, 0, 0, 0, 0, xi,2, 0, xi,3, 0,
0, 0, 0, 0) is the injection input to round i which acts as the round subkeys. As-
sume that M=(x1, x2, . . . , xt−1, xt) and M ′ =(x′

1, x
′
2, . . ., x

′
t−1, x

′
t) follow the

2-round collision differential path as depicted in Fig. 2.
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Fig. 2. 2-Round Collision Differential Path
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From the differential path, we can see that there is only one nonzero byte in
Δyt−1, which equals to Δxt,0. Because MC is a linear transformation, and SR
has no impact on the value of difference, we can compute the output differences
of four S-boxes in the (t− 1)-th round from Δxt,0:

(Δzt−1,0, Δzt−1,5, Δzt−1,10, Δzt−1,15)T = MC−1(Δxt,0, 0, 0, 0)T . (1)

Since the branch number of MC transformation in AES is 5 [7], there are four
nonzero bytes in Δzt−1, they satisfy the difference structure in Fig. 2. Given the
2-round collision differential path in Fig. 2, we have the following facts:

Fact 1. Given two messages M=(x1, x2, . . . , xt−1, xt) and M ′ = (x′
1, x

′
2, . . . ,

x′
t−1, x

′
t) that follow the 2-round collision differential path, where Δxt=(Δxt,0, 0,

0, 0), and Δxt−1=(Δxt−1,0, 0, 0, Δxt−1,3), there exists an Algorithm A1 to find
another different message pair M =(x1, x2, . . ., xt−1, xt) and M ′ =(x′

1, x
′
2, . . .,

x′
t−1, x

′
t) satisfying the 2-round collision differential path. Here (xt−1, x′

t−1) is
obtained by only replacing (xt−1,0, x

′
t−1,0) with different (xt−1,0, x′

t−1,0). The
complexity of the algorithm is about 29 queries and 29 chosen messages.

Proof. Since only (xt−1,0, x
′
t−1,0) changes, all bytes in Δzt−1 remain the same

except Δzt−1,0, where Δzt−1,0 = S(yt−2,0 ⊕ xt−1,0) ⊕ S(y′t−2,0 ⊕ x′
t−1,0). Thus,

M and M ′ collide if and only if S(yt−2,0⊕xt−1,0)⊕S(y′t−2,0⊕x′
t−1,0) = Δzt−1,0.

From the distribution table of the S-box in AES, we observe that, there are 27

pairs corresponding to each output difference on average. Hence, each randomly
chosen pair (xt−1,0, x

′
t−1,0) leads to the expected output difference Δzt−1,0 with

probability 27/215 = 2−8. So Algorithm A1 needs about 28 chosen message pairs
(M,M ′) and 29 corresponding MACs to find the message pair (M,M ′) which
follows the 2-round collision differential path. %&
Fact 1 will be used in the new distinguishing attack to identify the Alpha-MAC
from a random function. And the following Fact can recover two bytes of the
unknown internal state yt−2 corresponding to the nonzero bytes of Δxt−1.

Fact 2. Given two messages M=(x1, x2, . . . , xt−1, xt) and M ′ = (x′
1, x

′
2, . . . ,

x′
t−1, x

′
t) that follow the 2-round collision differential path, where Δxt=(Δxt,0, 0,

0, 0), and Δxt−1=(Δxt−1,0, 0, 0, Δxt−1,3), there exists an Algorithm A2 to re-
cover (yt−2,0, y

′
t−2,0) with about 216 XOR operations and 29 chosen messages.

Proof. Algorithm A2 is described as follows.

1. Call Algorithm A1 to find another message pair M =(x1, x2, . . . , xt−1, xt)
and M ′ =(x′

1, x
′
2, . . . , x′

t−1, x
′
t) which produce a 2-round collision differential

path in Fig. 3. Here (xt−1, x′
t−1) are only different at byte position 0 from

(xt−1, x
′
t−1).

2. Compute zt−1,0 from Eq. (1), guess all 216 possibilities of (yt−2,0, y
′
t−2,0),

and check if the following two equations hold.

S(yt−2,0 ⊕ xt−1,0)⊕ S(y′t−2,0 ⊕ x′
t−1,0) = Δzt−1,0, (2)

S(yt−2,0 ⊕ xt−1,0)⊕ S(y′t−2,0 ⊕ x′
t−1,0) = Δzt−1,0. (3)
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3. If there is only one solution (yt−2,0, y
′
t−2,0) satisfying Eq. (2) and (3) among

216 guesses, outputs (yt−2,0, y
′
t−2,0).

Otherwise, repeat steps 1 and 2 until only one solution is left.

It is obvious that, the time complexity of Algorithm A2 is about 216 XOR
operations and 29 chosen messages. %&

Fact 3. Given two messages M=(x1, x2, . . . , xt−1, xt) and M ′ = (x′
1, x

′
2, . . . ,

x′
t−1, x

′
t) that follow the 2-round collision differential path, where Δxt=(Δxt,0, 0,

0, 0), and Δxt−1=(Δxt−1,0, 0, 0, Δxt−1,3), there exists an Algorithm A3 to re-
cover (yt−2,10, y

′
t−2,10) with about 216 XOR operations and 29 queries.

Proof. The proof of Fact 3 is similar to that of Fact 2. We only need to replace
(xt−1,10, x

′
t−1,10) by different (xt−1,10, x′

t−1,10). %&

4.2 Distinguishing Attack on Alpha-MAC

Similar to the distinguisher for Alred construction, the new distinguisher on
Alpha-MAC is based on the identification of an inner near-collision Δyt−1 as
shown in Fig. 2. By the birthday paradox, such an inner near-collision exists,
and can be detected by the new distinguisher. From Algorithms A2 and A3, we
can recover two bytes of the internal state yt−2. Moreover, we explore a series of
tricks to recover more bytes of the internal state yt−3, and further recover y0. It
is noted that y0 = EncK(0) equals to a subkey used in the secret prefix method.

It is claimed that an extinguishing differential in Alpha-MAC spans at least
5 message words, and given the state value yi−1, the map from the sequence of
four message words (xi, xi+1, xi+2, xi+3) to the state value before the (i + 4)-
th iteration is a bijection [8]. Hence, we choose a structure composed of 264.5

messages with t-word length, where t is required to be bigger than or equal to 6
in order to guarantee the map from (x1, . . . , xt−1) to yt−1 is a random function,
and to ensure the existence of an inner near-collision. It is recommended to
choose t = 9.

Given a fixed word difference (η, 0, 0, 0), construct two structures as follows:

T1 = {Ma = (xa
1 , x

a
2 , . . . , x

a
t−1, xt)},

T2 = {M b = (xb
1, x

b
2, . . . , x

b
t−1, xt ⊕ (η, 0, 0, 0))},

where the message words (xa
i , x

b
i) (i = 1, 2, . . . , t − 2), (xa

t−1,0, x
a
t−1,3) of xa

t−1,
and (xb

t−1,0, x
b
t−1,3) of xb

t−1 are randomly chosen, and other bytes of (xa
t−1, x

b
t−1)

are fixed, i. e., we choose Δxt−1 and Δxt as shown in Fig. 2. The distinguisher
works in the following manner:

1. Query the MAC with all the 265.5 messages in structure T1 and T2, and
obtain the corresponding MACs.

2. Search for (Ma,M b) such that Ca = Cb by the birthday attack, where
Ma ∈ T1, M b ∈ T2. Randomly choose another different pair (Ma,M b),
where Ma = (xa

1 , . . . , x
a
t−1, x

a
t ), M b = (xb

1, . . . , x
b
t−1, x

b
t), Δxt = Δxt. Query
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the MAC with the new message pair (Ma,M b). If (Ma,M b) is a collision,
we conclude that the MAC is Alred-MAC, and go to step 3. Otherwise, the
MAC is a random function.

3. Randomly choose 28 different (xa
t−1,0, x

b
t−1,0) to replace (xa

t−1,0, x
b
t−1,0). Query

the MACs of the new messages. Check whether there is at least one collision
among them. If a collision appears, the Alred construction is claimed as
the Alpha-MAC. Otherwise, it is other Alred MAC instance.

Complexity Evaluation. Step 1 takes 265.5 MAC queries. There are only 2
queries and 265.5 table look-ups with 265.5 entries in step 2, and 28 MAC queries
in step 3. Thus, the total complexity is dominated by step 1, which is about 265.5

MAC queries and 265.5 chosen messages.

Success Rate. A collision between the two structures occurs with probability
0.63 from the birthday paradox, which is also the success rate of our attack.

4.3 Internal State Recovery of Alpha-MAC

In this section, we recover the internal state y0 combining the new distinguisher
discussed above with some new tricks. Once the Alred construction is identified
as the Alpha-MAC, we obtain a message pair (Ma,M b), which follows the 2-
round collision differential path (See Fig. 2).

Denote Ma = (xa
1 , x

a
2 , . . . , x

a
t−1, x

a
t ) and M b = (xb

1, x
b
2, . . . , x

b
t−1, x

b
t). The pro-

cess of the internal state recovery attack is depicted in Fig. 3, where ‘∗’ denotes
the difference that can be computed, ‘?’ stands for the unknown difference, and
‘0’ means zero difference. The details of the recovery attack are as follows:

1. Recovering (ya
t−2,0, y

b
t−2,0, y

a
t−2,10, y

b
t−2,10).

By Algorithms A2 and A3, the corresponding bytes (ya
t−2,0, y

b
t−2,0, y

a
t−2,10,

yb
t−2,10) can be recovered directly.

Next, let us explore more techniques to recover more bytes of the internal
states yt−2 and yt−3.

Δyt−3 =

⎛⎜⎜⎝
∗ ? ∗ ?
? ∗ ? ∗
∗ ? ∗ ?
? ∗ ? ∗

⎞⎟⎟⎠
AK−1 SB−1←−−−−−−−−− Δzt−2 =

⎛⎜⎜⎝
∗ ? ∗ ?
? ∗ ? ∗
∗ ? ∗ ?
? ∗ ? ∗

⎞⎟⎟⎠ SR−1 MC−1←−−−−−−−−− Δyt−2 =

⎛⎜⎜⎝
∗ 0 0 0
0 ? 0 0
0 0 ∗ 0
0 0 0 ?

⎞⎟⎟⎠
AK−1 SB−1←−−−−−−−−− Δzt−1 =

⎛⎜⎜⎝
∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

⎞⎟⎟⎠ SR−1 MC−1←−−−−−−−−− Δyt−1 =

⎛⎜⎜⎝
Δxt,0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
Fig. 3. Recovering the Internal State
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2. Recovering (ya
t−3,0, y

b
t−3,0, y

a
t−3,2, y

b
t−3,2, y

a
t−3,8, y

b
t−3,8, y

a
t−3,10, y

b
t−3,10).

Applying MC−1 and SR−1 to the state yt−2, we obtain the values (Δzt−2,0,
Δzt−2,5, Δzt−2,10, Δzt−2,15, Δzt−2,2, Δzt−2,7, Δzt−2,8, Δzt−2,13) from the fol-
lowing two equations:

(Δzt−2,0, Δzt−2,5, Δzt−2,10, Δzt−2,15)T = MC−1(Δyt−2,0, 0, 0, 0)T , (4)
(Δzt−2,2, Δzt−2,7, Δzt−2,8, Δzt−2,13)T = MC−1(0, 0, Δyt−2,10, 0)T . (5)

(a) Recovering (ya
t−3,0, y

b
t−3,0).

i. Look up the differential distribution table of AES S-box, and obtain
about 28 possible values (yt−3,0, y

′
t−3,0) satisfying

S(yt−3,0 ⊕ xa
t−2,0)⊕ S(y′t−3,0 ⊕ xb

t−2,0) = Δzt−2,0, (6)

The correct (ya
t−3,0, y

b
t−3,0) must be among the 28 possible

(yt−3,0, y
′
t−3,0).

ii. Detect the correct (ya
t−3,0, y

b
t−3,0) from the following fact.

Fact 4. For each possible (yt−3,0, y
′
t−3,0), set xt−2=(xt−2,0, x

a
t−2,1, x

a
t−2,2,

xa
t−2,3) and x′

t−2 = (x′
t−2,0, x

b
t−2,1, x

b
t−2,2, x

b
t−2,3), where

xt−2,0 = xb
t−2,0 ⊕ yt−3,0 ⊕ y′t−3,0,

x′
t−2,0 = xa

t−2,0 ⊕ yt−3,0 ⊕ y′t−3,0.

Suppose Δxt−1 = xt−1 ⊕ x′
t−1 and Δxt−1 = xa

t−1 ⊕ xb
t−1.

Select 28 different word pairs (xt−1, x′
t−1) such that

Δxt−1,0 �= Δxt−1,0 and Δxt−1,i = Δxt−1,i (i = 1, 2, 3).

Query the MAC with 28 message pairs (M,M ′), where

M={xa
1 , . . . , x

a
t−3, xt−2, xt−1, x

a
t } and M ′={xb

1, . . . , x
b
t−3, x

′
t−2, x

′
t−1, x

b
t}.

– If one collision is found among 28 message pairs (M,M ′), the correct
(ya

t−3,0, y
b
t−3,0) = (yt−3,0, y

′
t−3,0).

– Otherwise, the (yt−3,0, y
′
t−3,0) is not correct.

Proof. If (yt−3,0, y
′
t−3,0) = (ya

t−3,0, y
b
t−3,0), the two inputs to S-boxes are

xt−2,0 ⊕ ya
t−3,0 = xb

t−2,0 ⊕ ya
t−3,0 ⊕ yb

t−3,0 ⊕ ya
t−3,0 = xb

t−2,0 ⊕ yb
t−3,0,

x′
t−2,0 ⊕ yb

t−3,0 = xa
t−2,0 ⊕ ya

t−3,0 ⊕ yb
t−3,0 ⊕ yb

t−3,0 = xa
t−2,0 ⊕ ya

t−3,0,

respectively, and the corresponding outputs are

S(xt−2,0 ⊕ yt−3,0) = zt−2,0 = zb
t−2,0, S(x′

t−2,0 ⊕ y′t−3,0) = z′t−2,0 = za
t−2,0,

i. e., Δzt−2,0 = Δzt−2,0, which implies that Δzt−2 = Δzt−2.
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It is noted that, the byte zt−2,0 only affects four bytes (yt−2,0, yt−2,4,
yt−2,8, yt−2,12), which means that the 2nd to 4th columns of Δyt−1 are
the same as Δyt−1. Therefore, yt = y′t if and only if

S(yt−2,0 ⊕ xt−1,0)⊕ S(y′t−2,0 ⊕ x′
t−1,0) = Δzt−1,0. (7)

There exists one collision among 28 different pair (M,M ′) on average.
If (yt−3,0, y

′
t−3,0) �= (ya

t−3,0, y
b
t−3,0), the two inputs to the S-box are

xt−2,0 ⊕ ya
t−3,0 = xb

t−2,0 ⊕ yt−3,0 ⊕ y′t−3,0 ⊕ ya
t−3,0,

x′
t−2,0 ⊕ yb

t−3,0 = xa
t−2,0 ⊕ yt−3,0 ⊕ y′t−3,0 ⊕ yb

t−3,0.

The equation Δzt−2,0 = Δzt−2,0 holds with probability 2−8.
Thus, to guarantee a collision occur, it is required that (i) Δyt−2,4 = 0,

Δyt−2,8 = 0 and Δyt−2,12 = 0 when Δzt−2 �= Δzt−2, or (ii) Eq. (6) holds
when Δzt−2 = Δzt−2. Among 28 different message pairs (M,M ′), there
is a collision with probability 2−24×28 = 2−16 for the first case, and the
probability is at most 2−8 for the second. %&

(b) In a similar manner, the values (ya
t−3,2, y

b
t−3,2), (ya

t−3,8, y
b
t−3,8) and

(ya
t−3,10, y

b
t−3,10) can be each filtered by 28 message pairs.

3. Recovering (ya
t−3,5, y

b
t−3,5, y

a
t−3,7, y

b
t−3,7, y

a
t−3,13, y

b
t−3,13, y

a
t−3,15, y

b
t−3,15).

Compute the correct (ya
t−3,5, y

a
t−3,15, y

b
t−3,5, y

a
t−3,15) by

Δzt−2,5 = S(ya
t−3,5) ⊕ S(yb

t−3,5),

Δzt−2,15 = S(ya
t−3,15) ⊕ S(yb

t−3,15),

ya
t−2,0 = 3S(ya

t−3,0 ⊕ xa
t−2,0) ⊕ 2S(ya

t−3,5) ⊕ S(ya
t−3,10 ⊕ xa

t−2,3) ⊕ S(ya
t−3,15),

yb
t−2,0 = 3S(yb

t−3,0 ⊕ xb
t−2,0) ⊕ 2S(yb

t−3,5) ⊕ S(yb
t−3,10 ⊕ xb

t−2,3) ⊕ S(yb
t−3,15).

Similarly, obtain the correct (ya
t−3,7, y

a
t−3,13, y

b
t−3,7, y

a
t−3,13) from

Δzt−2,7 = S(ya
t−3,7) ⊕ S(yb

t−3,7),

Δzt−2,13 = S(ya
t−3,13) ⊕ S(yb

t−3,13),

ya
t−2,10 = S(ya

t−3,2 ⊕ xa
t−2,1) ⊕ S(ya

t−3,7) ⊕ 3S(ya
t−3,8 ⊕ xa

t−2,2) ⊕ 2S(ya
t−3,13),

yb
t−2,10 = S(yb

t−3,2 ⊕ xb
t−2,1) ⊕ S(yb

t−3,7) ⊕ 3S(yb
t−3,8 ⊕ xb

t−2,2) ⊕ 2S(yb
t−3,13).

4. Recovering the internal state y0.
Guess all the 264 possibilities of the rest 8 bytes of ya

t−3. Take (xa
t−3, . . . , x

a
1)

as the decryption subkey, and obtain 264 y0. For each y0, compute the cor-
responding yb

t−3 with (xb
1, . . . , x

b
t−3) to filter out the wrong guesses.

If there are more than one y0 left, using the distinguisher to get another
colliding pair, and repeat the whole recovery attack until there is only one
value left. Two colliding pairs are enough to sieve the right y0.

Until now, the recovery attack on the internal state y0 is completed.
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Complexity Evaluation. The complexity of this attack is dominated by the
distinguishing attack and the final exhaustive search, which is about 265.5 queries
and 265.5 chosen messages.
Second Preimages for Alpha-MAC. Once the internal state y0 is recovered,
the second preimages can be found by Huang et al.’s attack [10], and a selective
forgery attack can be performed as in [5].

5 Conclusion

In this part, the distinguishing and forgery attacks on the Alred construction
and its specific instance Alpha-MAC are presented. The complexity of the at-
tacks is dominated by the birthday attack, far less than the exhaustive search.
Our contribution is to detect inner near-collisions with specific differences rather
than collisions, from which more information can be obtained. Especially for Al-

pha-MAC, combining with the distinguishing attack, we explore a series of tricks
to recover the internal state, which equals to an equivalent subkey. This leads
to the second preimage attack on Alpha-MAC. It is remarked that the distin-
guishing and forgery attacks on Alred construction are also applicable to the
MACs based on CBC and CFB encryption modes.

Part II Impossible Differential Cryptanalysis of Pelican,
MT-MAC-AES and PC-MAC-AES2

6 Introduction to Part II

Besides the MACs introduced in Part I, there are several others based on reduced
block ciphers, such as Pelican [9], MT-MAC-AES and PC-MAC-AES [15], and
all of them take the 4-round AES 3 as the iteration function.

Pelican is an optimized version of Alpha-MAC, which was proposed by
Daemen and Rijmen. It generates the MAC value in a CBC-like manner. The
side-channel collision attack on Alpha-MAC works for Pelican, too [5]. Mine-
matsu and Tsunoo also proposed two provably secure MAC constructions, MT-
MAC and PC-MAC, which make use of the provably secure almost universal
hash functions (AU2). The MT-MAC uses differentially uniform permutations
such as 4-round AES with independent keys in a Wegman-Carter binary tree.
However, it is not memory efficient. A modified version PC-MAC, which is based
on a CBC-like AU2 hash PCH (Periodic CBC Hash), was suggested.

Inspired by recent MAC cryptanalysis techniques of Wang et al. [19,20] and
the methods introduced in Part I [21], we observe that the impossible differential
attack can be extended to MACs provided that enough inner near-collisions with
specific differences are detected.
2 By Wei Wang, Xiaoyun Wang, and Guangwu Xu. See [18] for the full version.
3 The MT-MAC-AES and PC-MAC-AES take the simplified 4-round AES described

in Section 7.2.
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Impossible differential attack [3] is one of the widely used cryptanalytic tech-
niques on block ciphers. It is a sieving attack which focuses on a differential
path with probability 0. If a pair of messages is encrypted or decrypted to an
impossible difference under some trial key, one can filter out this trial key from
the key space. Thus, the correct key is found by eliminating all the wrong keys
which lead to a contradiction. For MAC algorithms, the secret key is usually
replaced by the internal state. It seems that, the impossible differential attack is
hard to work with MAC algorithms, due to the fact that the internal state values
as well as their differences, are concealed by the final full encryption or complex
keyed iterations. However, the recent techniques based on the birthday attack
overcome this obstacle. One can recognize the inner near-collisions with some
specific differences, hence the impossible differential attack can be performed
with the detected inner near-collisions.

Taking 4-round AES as a building block, we are able to recover its secret state
utilizing a 3-round impossible differential characteristic. For Pelican, the secret
subkey is replaced by the internal state, thus we can recover its internal state
with 285.5 chosen messages and 285.5 queries. This attack can be further extended
to a subkey recovery attack on MT-MAC-AES with the same complexities. For
PC-MAC-AES, we recover its two secret keys separately once the internal state
is sieved, with 285.5 chosen messages and 2128 queries. We emphasis that our
results do not contradict to any security proof associated with the designs. Due
to space limitations, we only present attacks on Pelican and PC-MAC-AES,
while the attack on MT-MAC-AES appears in [18].

7 Backgrounds

Beside the notations defined in Part I, we will use the following notations in this
part: let zI

i denote the input of the i-th AES round, while zB
i , zR

i , zM
i and zO

i

denote the intermediate values after the application of SB, SR, MC and AK of
the i-th AES round, respectively. zi is exhibited as a 4×4 two dimensional array
of bytes indexed as:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Next, we give brief descriptions of Pelican and PC-MAC-AES.

7.1 Pelican Algorithm

Pelican is a specific instance of Alred construction taking 4-round AES as a
building block [9]. It supports 128-bit block and 128/160/192/224/256-bit key.
Pelican takes a message of arbitrary length as input, and outputs a MAC value
with length up to 128-bit.
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To construct the MAC, let us pad a message M of any length to a multiple
of 128-bit by appending a single bit ‘1’ followed by the minimum bits of ‘0’, and
split the padded message into 128-bit words (x1, x2, . . . , xb). The Pelican MAC
function works as follows:

1. Initialization: Fill the 128-bit state with zeros, and encrypt the zero state
with AES encryption, i. e., y0 = EK(0), where E is the AES, and K is the
secret key.

2. Chaining: XOR the first message word x1 to the state, i. e., y1 = y0 ⊕ x1.
For each message word xi (i = 2, . . . , b), perform an iteration operation:
yi = f(yi−1)⊕ xi, where f consists of 4-round AES with the round subkeys
set to 0.

3. Finalization: Apply the full AES to the state, and take the first lm bits of
the state as the MAC value of M . The final output C is C = Trunc(EK(ym)).

7.2 PC-MAC-AES

PC-MAC is a provably secure MAC construction proposed in [15]. It is composed
of an n-bit block cipher EK , and an n-bit auxiliary keyed permutation GU . Two
secret keys are required, one for the block cipher and the other for making the
block cipher tweakable.

For i = 1, 2, . . . , s, let Fi be an n-bit random function. Suppose x = (x1, x2, . . . ,
xs+1), we first define the chaining function:

Ch[F1, . . . , Fs](x) = xs+1 ⊕ Fs(xs ⊕ Fs−1(· · ·F2(x2 ⊕ F1(x1)) · · · )),

which is used iteratively when the input is longer than (s+1) blocks, and termi-
nates as soon as the last input block is XORed. The PCH is defined as follows:

Definition 1 (Periodic CBC Hash (PCH) [15]).
Let EK be an n-bit block cipher. For d ≥ 0, let G = (G1, . . . , Gd) be the sequence
of keyed auxiliary permutation, where for Gi (i = 1, . . . , d), the subkey involved
in G is Ui. We assume that (KXOR

1 , . . . ,KXOR
d−1 ) are (d-1) n-bit subkeys. The

Periodic CBC Hash is defined as:

PCHd[EK , G] = Ch[EK , G1, G
⊕KXOR

1
2 , . . . , G

⊕KXOR
d−1

d ].

Here, G
⊕KXOR

i−1
i (α) = Gi(α⊕KXOR

i−1 ) (i = 2, . . . , d), where α is an n-bit variable.
PCHd[EK , G] terminates as soon as the last input block is XORed.

The next is the description of the PC-MACd[EK |GU ] construction.

– Preprocessing:
• Compute U = (U1, . . . , Ud), which is the first dl bits of EK(0 ⊕ L), . . . ,
EK(â⊕ L). Here, K,L are the secret keys, and â = 'dl/n(.
• Compute KXOR

j−â+1 = EK(j ⊕ L), for j = â, . . . , â + d− 2.
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– MAC Computation: For a message M with arbitrary length,

C =
{
EK(PCHd[EK , G](M)⊕ L · u) if |M | mod n = 0,
EK(PCHd[EK , G](M‖10t)⊕ L · u2) if |M | mod n = n− t− 1,

where u is an element of GF (2n) that is not 0 or 1, and L · u is the multi-
plication of L and u on GF (2n).

The authors of [15] recommended to implement block cipher EK with the AES-
128, and the permutation GU with the simplified 4-round AES, where the trans-
formations of each round perform in the order of AK, SB, SR and MC, and the
addition of the first round key and the last diffusion layer are omitted. We call
this AES-based instance PC-MAC-AES.

8 Main Idea of the Impossible Differential Cryptanalysis

Similar to the cryptanalysis of block ciphers, to implement an impossible differ-
ential attack on MACs, we need to find an impossible differential path first. Then
collect many structures of chosen messages, query MACs with them, and sieve
the message pairs with the required intermediate differences. For each sieved
pair, discard the wrong subkeys (or internal states) which cause the partial en-
cryption and decryption to match the impossible differential path. Finally, after
enough pairs are analyzed, only the correct subkey (or internal state) is left.

8.1 Three-Round Impossible Differential Property of AES

For AES, several 4-round impossible differential paths have been found in litera-
ture, e. g. [1,4,16]. However, we note that, among the MAC algorithms presented
in the previous section, the 4-round AES is taken as a building block. Thus, we
focus on the reduced AES and only need a 3-round impossible differential path.

The 3-round impossible differential path is stated as follows.

Property 1 (Impossible Differential Path of 3-round AES). For 3-round AES,
given an input pair (zI

2 , z
I′
2 ) whose components equal in all except six bytes in-

dexed by (0, 1, 5, 8, 12, 13) (or (0, 1, 4, 5, 9, 12), (0, 4, 5, 8, 9, 13), (1, 4, 8, 9, 12, 13)),
the difference of the output pair (zO

4 , zO′
4 ) can not have exactly one nonzero byte.

The correctness of Property 1 can be easily proved, and Fig. 4 illustrates the
impossible differential path for the case of (0, 1, 5, 8, 12, 13).

8.2 Message Pairs Collection Phase

In the cryptanalysis of block ciphers, we can collect the message pairs available
to the impossible differential attack directly according to the output differences
and chosen message differences. While for MACs mentioned above, we have to
explore new techniques to collect such message pairs since the 4-round AES is
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SB AKSR

MCSRSB AK−1 −1 −1 −1

MC

MCSRSB AK−1 −1 −1 −1

nonzero byte

Contradiction

ΔzI
2 ΔzO

2

Fig. 4. 3-Round Impossible Differential Path of AES

used as a chaining or auxiliary permutation function, whose output is concealed
by the final full AES encryption, as well as the output difference.

To get over this obstacle, we take advantage of the idea described in [19,20,21].
First, randomly choose two structures of messages, with the message differences
of some specific forms. One example is that there is only one nonzero byte in
the difference of the last word. The concrete structures are constructed based on
the concrete MAC constructions. Second, utilize the birthday attack to search
collisions between the two structures. Finally, once enough message collisions
are collected, we can sieved the correct subkeys in the similar manner as the
impossible differential cryptanalysis of block ciphers. The details of collecting
collision pairs will be given in the next section.

9 Impossible Differential Cryptanalysis of Pelican and
PC-MAC-AES

In this section, we present the impossible differential attacks based on the 3-
round impossible differential path proposed in Section 8.

9.1 Internal State Recovery of Pelican

This subsection describes the internal state recovery attack on Pelican with
one additional round at the beginning of the 3-round impossible differential
path. The recovery of the internal state results in the derivation of an equivalent
subkey, i. e., the state y0 = EK(0). We depict the Pelican algorithm with two
message words in Fig. 5 for simplicity.

We first consider the situation that there is no truncation at the final output,
i. e., lm = 128. From Fig. 5, we can see that a collision at C indicates a collision
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rounds
4 AES AESy0

x1 x2

Cy2y1

Fig. 5. Pelican (b = 2)

at y2 since the final AES encryption is a permutation. Because

y2 = AES4r(y1)⊕ x2,

where AES4r stands for the 4-round AES, the inner collision at y2 happens if
and only if

AES4r(y1)⊕ x2 = AES4r(y′1)⊕ x′
2,

which yields the output difference of 4-round AES

AES4r(y1)⊕AES4r(y′1) = x2 ⊕ x′
2. (8)

If there is truncation at the final output, i. e., lm < 128, then we need to
distinguish the collision caused by inner collision, which means to detect the
message pairs leading to y2 = y′2. Suppose (x1‖x2, x

′
1‖x′

2) is a collision. Query
the MAC with (x1‖x′

2, x
′
1‖x2). If they still collide, we conclude that the pair

(x1‖x2, x
′
1‖x′

2) satisfies y2 = y′2, i. e., Eq. (8).
It is clear that, once an inner collision is detected, we can deduce the informa-

tion of the output difference of the inner 4-round AES from Δx2, and apply the
impossible differential cryptanalysis. Therefore, it is essential to collect enough
message pairs which cause inner collisions at y2.

Message Pairs Collection Phase
We sieve the message pairs resulting in the inner collisions as follows.

1. Construct two structures, each has 264 two-word messages. Randomly choose
(x1,2, . . . , x1,14), which are the bytes of the first word x1 indexed by (2, 3, 4, 7,
8, 9, 13, 14), and set the corresponding bytes of x′

1 with the same values;
randomly choose two 128-bit message words x2 and x′

2, with only one nonzero
byte in Δx2 = x2 ⊕ x′

2. The two structures are

S1 = {(x1, x2)|(x1,0, x1,1, x1,5, x1,6, x1,10, x1,11, x1,12, x1,15) ∈ {0, 1}64},
S2 = {(x′

1, x
′
2)|(x′

1,0, x
′
1,1, x

′
1,5, x

′
1,6, x

′
1,10, x

′
1,11, x

′
1,12, x

′
1,15) ∈ {0, 1}64}.

It is noted that the difference Δx1 is zero at bytes indexed by (2, 3, 4, 7, 8, 9, 13,
14), where Δx1 = x1 ⊕ x′

1.
2. Query MAC on the two structures, and search collisions between the

corresponding MAC values of the two structures by the birthday attack.
– If there is no truncation at the final output, the corresponding colliding

message pairs cause inner collisions at y2.
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– Else, for all collected colliding pairs (x1‖x2, x
′
1‖x′

2), query the MAC on
(x1‖x′

2, x
′
1‖x2). If still collide, (x1‖x2, x

′
1‖x′

2) must be an inner collision.

Since there are 264 elements in each structure, and the internal state is 128-bit,
one inner collision is expected to be found with probability 2−1. Repeat the mes-
sage pairs collection phase by choosing different (x1,2, x1,3, x1,4, x1,7, x1,8, x1,9,
x1,13, x1,14), one inner collision pair is expected to be obtained. This means
that, we can get one useful pair with about 2× 2 × 264 = 266 chosen messages.
To obtain 2a colliding pairs, 2a × 266 = 2a+66 chosen messages are required.
Thus, the time complexity is 2a+66 queries.

For each collected pair, there is only one nonzero byte in ΔzO
4 since there

is only one nonzero byte in Δx2, where zO
4 = AES4r(y1). The input to the 4-

round AES, y1, equals to x1 ⊕ y0, and the round subkeys are set to zero, so y0
can be regarded as the subkey XORed before the first round, and is recovered
in a similar manner as the impossible differential cryptanalysis of AES.

Internal State Recovery Phase
We can recover 8 bytes of y0 at position (0, 1, 5, 6, 10, 11, 12, 15) by exhaustive
search directly (See Fig. 6).

MCSRSB 1st round

4th round

3−round impossible differential property

(y1, y
′
1)

ΔzI
1 ΔzB

1 ΔzR
1 ΔzM

1

Fig. 6. Internal State Recovery of Pelican

1. Initialize a list L to store the 264 possible values (y0,0, y0,1, y0,5, y0,6, y0,10,
y0,11, y0,12, y0,15).

2. For each of the 2a valid pairs, perform partial encryption with each element
in L, and obtain the first two columns of zM

1 and zM′
1 , respectively. From

the fact that Δx1 is zero at bytes (2, 3, 4, 7, 8, 9, 13, 14), we can deduce that
the last two columns of ΔzM

1 are zero. Thus, if ΔzM
1 is in the form of ΔzI

2
as described in Property 1, the corresponding 8 bytes of y0 must be wrong,
because of Property 1. We delete it from the list L.

After all pairs are processed, we expect that there is only one element in
the list L, which is the correct one.

For random (y0,0, y0,1, y0,5, y0,6, y0,10, y0,11, y0,12, y0,15), the probability that ΔzM
1

has the impossible form is 4 ·2−16 = 2−14, since for the two zero bytes in the first



228 Z. Yuan et al.

two columns, there are 4 possible positions. Therefore, for each collected pair, we
can filter out 264 · 2−14 = 250 wrong (y0,0, y0,1, y0,5, y0,6, y0,10, y0,11, y0,12, y0,15),
and one wrong value remains in list L with probability 1− 250

264 . After analyzing
all 2a pairs, the expected number of wrong elements left in L should satisfy

264 · (1− 250

264 )2
a

< 1.

This relation holds if we take a = 219.5.
In this manner, we can recover 8 bytes of the internal state y0, and the other

8 bytes can be recovered in a similar way.

Complexity Estimation. For the message pairs collection phase, the data
complexity is 2a+66 = 285.5 chosen messages, and the time complexity is 285.5

queries. For the internal state recovery phase, the time complexity is at most
219.5 · 264 = 283.5 one-round encryptions since there are 219.5 collected pairs.
Therefore, the total complexity is dominated by the message pairs collection
phase, which is about 285.5 queries and 285.5 messages.

Selective Forgery Attack. Once the attacker obtains the value of the internal
state y0, he has full control of the internal state, and can create arbitrary colliding
messages by calculating a proper 128-bit injection at the end.

9.2 Key Recovery Attack on PC-MAC-AES

The situation becomes a little different when it comes to PC-MAC-AES, where
the simplified 4-round AES is applied after the second block, and there are two
secret keys (K,L) involved in the MAC computation. We can use the divide-
and-conquer technique to recover the two secret keys. The PC-MAC-AES with
three message words is illustrated in Fig. 7.

AES
rounds
4 AES AESK

x2 x3

C

L · ux1

y1

Fig. 7. PC-MAC-AES with Three Message Words

We proceed the key recovery attack according to the following procedure.

1. Construct two structures by prepending a fixed x1 to each message of struc-
tures S1 and S2 given in Section 9.1. Randomly choose x1, set the bytes at
(2, 3, 4, 7, 8, 9, 13, 14) of x2 and x′

2 to the same values, and choose two 128-bit
message blocks x3 and x′

3 with only one nonzero byte in Δx3. The following
are the two structures, each has 264 elements:

S′
1 = {(x1, x2, x3) | (x2,0, x2,1, x2,5, x2,6, x2,10, x2,11, x2,12, x2,15) ∈ {0, 1}64 },

S′
2 = {(x1, x

′
2, x

′
3) | (x′

2,0, x
′
2,1, x

′
2,5, x

′
2,6, x

′
2,10, x

′
2,11, x

′
2,12, x

′
2,15) ∈ {0, 1}64 }.
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2. Recover the value y1 using the internal state recovery attack presented in
Section 9.1. It is noted that, x1 is unchanged when we choose different struc-
tures to collect enough colliding pairs.

3. Since y1 = EK(x1), K is recovered by exhaustive search directly.
4. When K is recovered, exhaustively search 2128 possibilities of L, and only

the correct one is suggested by the MAC value C.

Complexity Estimation. The data complexity is the same as the internal state
recovery attack on Pelican, which is about 285.5 chosen messages, and the time
complexity is dominated by the exhaustive search of the secret key, which is
about 2128 queries, much lower than the 2256 security bound.

We note that even two keys are involved in PC-MAC-AES, the security of the
algorithm does not get enhanced.

10 Conclusion

In this part, we adopt the techniques of detecting the inner near-collisions with
some specific differences [19,20,21] to implement impossible differential crypt-
analysis on Pelican, MT-MAC-AES and PC-MAC-AES, and all of them take
the 4-round AES as the iteration function. Based on a 3-round impossible dif-
ferential path of AES, we can recover the internal state of Pelican, which is an
equivalent subkey, and the recovery leads to a selective forgery attack. The data
complexity is 285.5 chosen messages, and the time complexity is 285.5 queries.
This attack is applicable to MT-MAC-AES and PC-MAC-AES directly. For
MT-MAC-AES, it turns to be a subkey recovery attack with the same complex-
ity. For PC-MAC-AES, we can deduce the two secret keys separately with 2128

queries and 285.5 chosen messages. Our attacks have a complexity greater than
the birthday paradox, so they are not covered by the designers proofs.

Acknowledgments. We would like to thank the anonymous reviewers for their
helpful comments on the two parts.
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University of Luxembourg
{alex.biryukov,dmitry.khovratovich,ivica.nikolic@uni.lu}

Abstract. In this paper we construct a chosen-key distinguisher and a
related-key attack on the full 256-bit key AES. We define a notion of
differential q-multicollision and show that for AES-256 q-multicollisions
can be constructed in time q · 267 and with negligible memory, while
we prove that the same task for an ideal cipher of the same block size
would require at least O(q · 2 q−1

q+1 128) time. Using similar approach and
with the same complexity we can also construct q-pseudo collisions for
AES-256 in Davies-Meyer mode, a scheme which is provably secure in
the ideal-cipher model. We have also computed partial q-multicollisions
in time q · 237 on a PC to verify our results. These results show that
AES-256 can not model an ideal cipher in theoretical constructions. Fi-
nally we extend our results to find the first publicly known attack on the
full 14-round AES-256: a related-key distinguisher which works for one
out of every 235 keys with 2120 data and time complexity and negligible
memory. This distinguisher is translated into a key-recovery attack with
total complexity of 2131 time and 265 memory.

Keywords: AES, related-key attack, chosen key distinguisher, Davies-
Meyer, ideal cipher.

1 Introduction

The Advanced Encryption Standard (AES) is a block cipher which was chosen
by NIST from a set of 15 candidate designs in a thorough evaluation process
that lasted from September 1997 till October 2000. On November 26, 2001 Rijn-
dael [5], a 128-bit block, 128/192/256-bit key block cipher has become a standard
as U.S. FIPS 197 [12]. In June 2003 the US government has approved the use
of 128, 192, 256 bit key AES for SECRET and 192, 256-bit key AES for TOP
SECRET information [13]. In the last ten years AES has been subject to very
intensive cryptanalytic effort, with best currently known attacks breaking 7, 10,
10 rounds for respective keysizes (128, 192, 256), with very high complexities.

In this paper we show for the first time in the open literature distinguishers
and related-key attacks on the full 14-round 256-bit key AES. Research presented
in this paper follows the logic described in Fig. 1. First we identified slow diffusion
and other differential weaknesses in the key schedule of AES-256 which match
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Fig. 1. Outline of the research presented in this paper

nicely with the differential properties of the round function. This allows us to
construct local collisions for AES, i.e. two round difference propagation patterns
which result in low weight difference in the subkeys and zero difference in the
128-bit block. We concatenate four such local collisions together and add another
6-round trail on top in order to cover full 14 rounds of AES-256. The trail1 has 41
active S-boxes (36 in the block and 5 in the key schedule), so we apply a special
tool, a triangulation algorithm (designed for the purpose of finding collisions in
hash functions), in order to find keys and plaintexts that conform to the trail.

From this point we go in two directions. First we show that for AES-256 one
can construct a chosen-key distinguisher based on the new notion of a differen-
tial q-multicollision in time q · 267 and with negligible memory. We prove that
the same task for an ideal cipher of the same block size would require at least
q · 2

q−1
q+1 128 time for q ≤ 57 and at least q · 2

q−2
q+2 128 for q > 57. I.e. for q > 3

the differential multicollision for AES-256 can be constructed significantly faster
than for an ideal cipher. Previously a known-key distinguisher for seven rounds
of AES with 256 texts was found in [11]. To verify our results we found partial
q-multicolisions in several hours on a PC using the publicly available implemen-
tation of AES-256.

As a direct application of this differential q-multicollision distinguisher we
show that AES-256 when used in the Davies-Meyer mode allows to construct q
pseudo-collisions with fixed differences ΔIV , ΔM in the IV and the message with
complexity q · 267. Again, such a result would require at least q · 2

q−2
q+2 128 time for

the ideal cipher in the Davies-Meyer mode. Results of this type try to enchance
our definitions of block cipher security and to fill the gap between theoretical
models like random oracle and ideal cipher and the real world of ciphers which
have fixed description and are efficiently computable [2,4]. However a proper
security definition which would capture the intuition behind chosen/known key
attacks is still an open problem.

1 We use colors in the diagrams of the trails, so please refer also to the tables in the
appendix if you print this paper on a black and white printer.
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Table 1. Best attacks on AES-256

Attack # rounds # keys Data Time Memory Source

Known-key integral 7 1 256 256 256 [11]

Partial sums 9 256 285 2226 232 [6]

Related-key rectangle 10 64 2114 2173 ? [1,10]

q-multicollisions 14 2q 2q q · 267 - Sec. 2

Partial q-multicollisions 14 2q 2q q · 237 - Sec. 2.3

Related-key distinguisher 14 235 2119 ∗ 2119 ∗ - Sec. 4.1

Related-key key recovery 14 235 296 ∗ 296 ∗ 265 Sec. 4.2

∗ — for each key.

The second direction that we studied was application of the trails that we
have found to more standard attacks on a block cipher, for example related-key
attacks. In particular we show that by changing the top two rounds of the trail
that we used previously one obtains a differential trail with only 24 active S-
boxes (19 in the round function and 5 in the key schedule). From this trail we
can construct a differential distinguisher for AES-256 which works for one key
out of 235 and has complexity 2120 data and time, and negligible memory. This
distinguisher can be used to mount a key-recovery attack on AES-256 with total
complexity of 235+96 = 2131 time and 265 memory. We summarize our findings
in Table 1.

This paper is organized as follows: in Section 2 we prove a lower bound on
the complexity of finding differential q-multicollisions in the case of an ideal
cipher and construct a distinguisher for the full AES-256. In Section 3 we show
an application of these results to finding pseudo-collisions for the Davies-Meyer
hashing mode instantiated with AES-256. In Section 4 we show a related-key
attack on the full AES-256. In Section 5 we discuss new design criteria for block
cipher key schedule as a consequence of our attack. Section 6 concludes the
paper. In Appendix A we provide technical details about our differential trails.

Discussion. It is clear that the open key (chosen or known) security model
is new and is still lacking a proper security definition. However we think that
if one can support an open-key attack with a proof of security against such
attack for the ideal cipher, this gives additional confidence that such property
(in our case “differential multicollisions”) should not be present in a good cipher.
There are many constructions provably secure [3,7] in the ideal cipher model.
This model assumes that both the key and the plaintext are accessible to the
attacker. If a block cipher (e.g., AES) exhibits a property that should not appear
in the ideal cipher then instantiation of a provably secure construction with this
cipher could undesirably weaken the construction. Our Davies-Meyer example
is exactly to show that a construction provably secure in the ICM can break
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down if instantiated with AES-256 (such a hash function was never proposed for
another reason — 128-bit state is too short for a modern hash). The fact that
this property does not automatically carry on to Davies-Meyer instantiated with
all the other block-ciphers (hopefully), shows a non-trivial weakness of AES-256.

2 Multicollision Distinguisher

In this section we provide a chosen-key distinguisher for AES-256 which has
practical complexity.

Definition 1. A set of two differences and q pairs

{ΔK , ΔP ; (P1,K1), (P2,K2), . . . , (Pq ,Kq))}

is called a differential q-multicollision for a cipher EK(·) if

EK1(P1)⊕ EK1⊕ΔK (P1 ⊕ΔP ) = EK2(P2)⊕ EK2⊕ΔK (P2 ⊕ΔP ) =
= · · · = EKq(Pq)⊕ EKq⊕ΔK (Pq ⊕ΔP ). (1)

A differential q-multicollision can be also viewed as a set of q right pairs with
respect to the related-key differential, where the key is not fixed.

We compare the task of constructing a differential q-multicollision for an ideal
cipher with that for AES-256. This task for an ideal cipher, i.e. a set of 2k

randomly chosen permutations, would require treating it as a black-box and
making only encryption/decryption queries. We expect that for a good cipher
with no (yet discovered) structural flaws, the task of constructing a differential
q-multicollision would have the same complexity as for an ideal cipher.

Let us compute this complexity measured in the number of queries. Since
the cipher is ideal, an adversary is only given an access to the encryption and
decryption oracles, both having two inputs (a key and a plaintext/ciphertext)
and one output. This is the same model of an adversary as in [2,3, p. 329].

In the beginning no triplet 〈plaintext, key, ciphertext〉 is defined. Then, for
each query of the adversary “EK(P ) = ?” the encryption oracle takes a random
value C from a possible range (where EK(·) is yet undefined) and thus defines
EK(P ) = C. Also E−1

K (C) becomes defined. The same rule holds for a decryption
query.

Lemma 1. To construct a differential q-multicollision for an ideal cipher with
an n-bit block an adversary needs at least O(q · 2

q−2
q+2 n) queries on the average.

Proof. See Sec. 2.1.

Remark 1. For small q, when the lower bound does not exceed 2n−1, a better
estimate is obtained (see the proof of the lemma). In our case, for n = 128, an
adversary needs at least q · 2

q−1
q+1 128 queries if q ≤ 57.
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Surprisingly, differential multicollisions for AES-256 can be constructed substan-
tially faster. Furthermore, we can set ΔP = 0 in a multicollision, so a stronger
statement holds.

Theorem 1. A differential q-multicollision with ΔP = 0 for AES-256 can be
found with time complexity q · 267.

Proof. See Sec. 2.2.

Thus for q > 3 a differential q-multicollision for AES-256 can be constructed
significantly faster than for an ideal cipher.2 Therefore, AES-256 can not model
an ideal cipher.

2.1 Proof of Lemma 1

Proof. Let A be an adversary attacking the cipher, and assume that A asks its
oracles a total of L queries, where L < 2n−1. Assume that a multicollision of the
form (1) is found. Let us compute the probability of this event. First, we rewrite
(1) as U1 = U2 = · · · = Uq. With each term Uj = EKj (Pj)⊕EKj⊕ΔK (Pj ⊕ΔP )
we associate an integer tj such that tj-th oracle query determines the value of
Uj , i.e., computes the last (chronologically) element of the sum. Without loss of
generality, assume that t1 < t2 < · · · < tq. Finally, define t′1 as the index of the
query that determines the first element of the sum U1.

U1︷ ︸︸ ︷
EK1(P1)︸ ︷︷ ︸

queried at t′1

⊕EK1⊕ΔK (P1 ⊕ΔP )︸ ︷︷ ︸
queried at t1

=

U2︷ ︸︸ ︷
EK2(P2)︸ ︷︷ ︸

queried before t2

⊕EK2⊕ΔK (P2 ⊕ΔP )︸ ︷︷ ︸
queried at t2

=

= · · · =
Uq︷ ︸︸ ︷

EKq(Pq)︸ ︷︷ ︸
queried before tq

⊕EKq⊕ΔK (Pq ⊕ΔP )︸ ︷︷ ︸
queried at tq

. (2)

Now compute for every (t′1, t1, t2, t3, . . . , tq) the probability that this set defines
a differential q-multicollision. Before submitting ti-th query, i > 1, the following
equation holds:

U1 = U2 = · · · = Ui−1,

where terms of U1, U2, . . . , Ui−1 are completely determined by a tuple (t′1, t1,
t2, t3, . . ., ti−1). Indeed, from t′1 and t1 we define K1, ΔK , P1, ΔP ; from tj we
define Kj and Pj .

Just before the moment ti only one term of Ui is computed — w.l.o.g. let it
be EKi(Pi). Thus the equality Ui−1 = Ui should hold, i.e.

Ui−1 = EKi(Pi)⊕ EKi⊕ΔK (Pi ⊕ΔP )︸ ︷︷ ︸
queried at ti

2 Moreover, even for q = 3 we are not aware of any algorithm faster than 22n/3.
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By our definition, ti is the first moment when EKi⊕ΔK (Pi ⊕ ΔP ) is queried.
Then either the decryption or the encryption oracle is called. In the first case
the decryption oracle is called with a ciphertext C and a key K, which for some
i should be equal to Ki⊕ΔK . By the definition of ti, the value C is chosen from
the set where EKi⊕ΔK (·) is undefined. To become a part of a multicollision,
there should exist Pi such that C = EKi(Pi) ⊕ Ui−1. On the other hand, after
the decryption oracle is called, the following equation should hold:

E−1
Ki⊕ΔK

(C) = Pi ⊕ΔP . (3)

Since L < 2n−1, not more than 2n−1 texts were encrypted or decrypted with the
key Ki ⊕ΔK . So the probability that (3) holds does not exceed 1/2n−1.

In the second case, let the encryption oracle be queried with a plaintext P
and a key K, which for some i should be equal to Ki ⊕ΔK . For an answer C, a
similar equation should hold:

C = Ui−1 ⊕ EKi(Pi). (4)

The same probability argument holds for this equation. Therefore, for every
i ≥ 2 we get a multiplier 21−n to the probability that a tuple (t′1, t1, t2, t3, . . . , tq)
defines a differential q-multicollision. There are

(
L

q+1

)
such tuples, each defining

a differential q-multicollision with probability at max 2(q−1)(1−n). We get the
following equation for the number of queries required to get a q-multicollision
with probability 1/2: (

L

q + 1

)
≥ 2(q−1)(n−1)−1. (5)

Let us simplify the left part:(
L

q + 1

)
=

L!
(L− q − 1)!(q + 1)!

=
L(L− 1) · · · (L− q)

(q + 1)!
≤

≤ Lq+1

(q + 1)!
≤ Lq+1

(q+1)q+1

eq+1

=
(

eL

q + 1

)q+1

. (6)

Substitute the result to (5):(
eL

q + 1

)q+1

≥ 2(q−1)(n−1)−1 ⇒ L ≥ q + 1
e

2
q−1
q+1 (n−1)−1 = O(q · 2

q−1
q+1 n). (7)

This is the bound for the number of queries needed to construct a multicollision
with probability 1/2. By Markov’s inequality, the average number of queries
exceeds this bound divided by two, so the right part of (7) is still a correct lower
bound.

Now consider the case when L ≥ 2n−1. Let K be the set of keys such that
there were more than 2n−1 encryption or decryption queries on each of these
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keys. Define l = |K|. If l > q − 2 then L exceeds q · 2n−2, which implies the
statement of the lemma. If l ≤ q − 2 then there are at least q − l sums Ui in (2)
that do not involve keys from K. So if a q-multicollision has been found, then a
(q− l)-multicollision has too been found such that it does not involve keys from
K. Then all the arguments on the probability of this event can be carried out
from the first part of the proof.

Therefore, we gets the following inequality on L:

L ≥ q − l + 1
e

2
q−l−1
q−l+1 (n−1)−1 + l · 2n−1.

For l < q/2 we get the following:

L ≥ q

2e
2

q−2
q+2 (n−1)−1 = O(q · 2

q−2
q+2 n). (8)

For l ≥ q/2 we get
L ≥ q · 2n−2 = O(q · 2n). (9)

Equations (7), (8), and (9) complete the proof. %&

Remark 2. The function FΔK ,ΔP (K,P ) = EK(P ) ⊕ EK⊕ΔK (P ⊕ΔP ) is a xor
of two permutations. Patarin in [14] has shown that the xor of two random
permutations can not be distinguished from a pseudo-random function with less
than 2n queries. In [15] it was proven that q-multicollision search for a random
function requires at least (q!)

1
q 2

q−1
q n effort. In our case we can not use this result

since it assumes that ΔK and ΔP are fixed in advance while we allow an attacker
to choose them during the attack.

2.2 Proof of Theorem 1

Here we construct a differential q-multicollision (1) with ΔP = 0 in q · 267 time.
This is done in 5 steps:

1. Build a differential trail, which is efficient for the multicollision search.
2. Derive ΔK from the trail.
3. Choose the active S-boxes, whose inputs will be fixed in the triangulation

algorithm. Denote this set by S.
4. Run the triangulation algorithm and derive a set of free variables.
5. Produce q pairs (P,K) for (1) as follows:

(a) Assign inputs to S-boxes from S with admissible values.
(b) Assign free variables randomly.
(c) Produce (P,K).
(d) Check if (P,K) and (P,K ⊕ΔK) fit (1).

We expect that most of our readers are familiar with the description of AES and
thus point out only main features of AES-256 that are crucial for our proof.
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Differential Trail

Notations. Differential trail (also called differential characteristic) is a sequence
of differences in all the internal states of the cipher and all the subkeys. If we
distinguish only between zero and non-zero (byte) differences, we call such a trail
a trail with truncated differences.

We denote the subkey of round i by Ki, i.e. the first (whitening) subkey is
K0, the subkey of round 1 is K1, etc., the last subkey is K14. The difference in
Ki is denoted by ΔKi. Bytes of a subkey are denoted by K l

i,j , where i stands
for the row index, and j stands for the column index in the standard matrix
representation of AES. Bytes of the plaintext are denoted by Pi,j , and bytes
of the internal state after the SubBytes transformation in round r are denoted
by Ar

i,j . Let also Br
i,j denote a byte in position (i, j) after the r-th application

of MixColumns.

Features of AES-256. AES-256 has 14 rounds and a 256-bit key, which is two
times larger than the internal state. Thus the key schedule consists of only 7
rounds. One key schedule round consists of the following transformations:

Ki,0 ← S(Ki+1,7)⊕Ki,0 ⊕ Cr, 0 ≤ i ≤ 3;
Ki,j ← Ki,j−1 ⊕Ki,j , 0 ≤ i ≤ 3, 1 ≤ j ≤ 3;
Ki,4 ← S(Ki,3)⊕Ki,4, 0 ≤ i ≤ 3;
Ki,j ← Ki,j−1 ⊕Ki,j , 0 ≤ i ≤ 3, 5 ≤ j ≤ 7,

(10)

where S() stands for S-box, and Cr — for the round-dependant constant.
Therefore, every round has 8 S-boxes.

SubBytes

ShiftRows
MixColumns

Key schedule round

Key schedule round

Fig. 2. A local collision

Weakness in the key schedule. Two fea-
tures of the key schedule help us to build
a good differential trail. First, the key
schedule has a slow diffusion in backward
direction. It means that a difference in a
single byte K0,0 will propagate to only
two bytes, K0,0 and K0,1, if we apply
the inversion of the key schedule round.
The next inverted round will affect only
one more byte, etc. Thus we can build a
trail with a low-weight difference in key
schedule if we start with a low-weight dif-
ference in the last round and then step
backwards.

The second feature is unique to AES-
256 due to its “key size”/“state size” ra-
tio, Nk/Nb = 2. We can inject “good”
values with the first part of the key and
then cancel them, after they pass the round, with the second part of the key. We
call this a local collision (Fig. 2).
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Constructing a trail. Step by step, we construct a differential trail from the last
rounds to the first ones. The trail is described in details in Appendix A, both in
a truncated form and with the actual differences given. The trail has 41 active
S-boxes, and 5 of them are in the key schedule.

Search for a solution. After the trail has been defined, we produce a pair (P,K)
which with pair (P,K + ΔK) fits the trail and thus is a part of a differential
multicollision (1) since all such pairs have the same difference in the ciphertext.
Now note that the trail explicitly states all the non-zero input δI and output δO

differences of the S-boxes. According to the S-box properties, there are at most
4 solutions of the equation S(x⊕ δI) ⊕ S(x) = δO. This set of solutions we call
admissible inputs. Therefore, (P,K) and (P,K + ΔK) fit the trail if and only
if in the execution EK(P ) all active S-boxes get admissible inputs. In the next
paragraphs we explain how to construct such executions efficiently.

Triangulation Algorithm

Search for free variables. The triangulation algorithm was proposed in [9] as
a tool for solving systems of non-linear equations, which appear in differential
attacks. Given the constraints on the internal variables, the algorithm outputs a
special set of variables, called free variables. These free variables can be assigned
randomly; and this assignment together with pre-fixed variables completely and
efficiently determines the whole execution. The fewer variables are fixed the
better the algorithm works.

Our goal is to efficiently produce the cipher executions in which active S-boxes
get admissible values. However, the algorithm can not process all the active S-
boxes of our trail since they are positioned too far from one another.

We found that we can fix inputs to 30 out of 41 S-boxes: all the active S-
boxes in the internal states of rounds 1–4 and all the 5 active S-boxes in the key
scheduling. The triangulation algorithm outputs 18 free variables, out of these 11
are in the key and provide freedom in the choice of the key for the distinguisher.
These free variables are listed below.

Key Internal state
K1

2,0, K
1
3,0, K

1
3,1, K

2
0,1, K

3
0,1 A2

0,1, B
2
1,1, B

2
1,2

K3
2,0, K

3
3,0, K

3
2,1, K

4
0,1, K

5
0,1, K

5
3,3 B2

2,3, B
2
3,3, A

3
1,1, A

3
1,2

Constructing a pair. Having assigned 18 free variables randomly and 30 S-box
inputs with an admissible value, we substitute these values to the equations,
which have been ordered by the triangulation algorithm. One by one, all the
variables are determined and thus a pair (P,K) is defined. It fits the trail if and
only if the 11 S-boxes not covered by the triangulation algorithm get admissible
values as inputs. For the S-box in round 6 only 2 values are admissible so the
probability is 2−7 while for the other 10 S-boxes 4 values are admissible. This
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results in the overall probability 2−(7+10·6) = 2−67. Thus out of 267 pairs one fits
the trail on average. We wrote a program and checked that the distribution of
the pairs is random enough so the probability estimates are likely to be correct.
We also checked experimentally that bottom 7 rounds of AES produce expected
difference after 230 pairs on the average, exactly as predicted by the trail.

The complexity of the attack. Recall the scheme of the attack, which was given in
the beginning of the proof. The first four steps are precomputations and actually
have negligible cost. The triangulation algorithm works less than a second. The
last step requires only to substitute the values into the equations one by one,
which is computationally equivalent to a single encryption. Thus to get a right
pair we need about 267 operations each equivalent to one encryption. The attack
needs negligible memory and is fully parallelizable.

2.3 Practical Distinguisher

The definition of differential q-multicollision can be further relaxed if we allow
arbitrary difference at some byte positions of ΔP , ΔK or ΔC . Although an at-
tacker gets more freedom, finding such a construction for an ideal cipher becomes
easier as well. To get a lower bound, only a slight modification of Lemma 1 is
required.

For the 13 rounds of AES-256 the complexity of finding this type of differen-
tial 5-multicollision, with fixed difference in 14 bytes of the plaintext and fixed
ciphertext difference can be lower bounded by 2

4·112
6 = 274.6 computations. For

the full AES-256 a differential 10-multicollision with half of the plaintext differ-
ence fixed, and the fixed ciphertext difference the lower bound is 2

9·64
11 = 252.3

computations. Note that these lower bounds are far from being tight. In practice
we expect an efforts of 2112 and 264 for finding each extra collision for 13 and 14
rounds of AES-256 respectively, since the differences are structured and fixed.

At the same time we can do it much faster, in just q · 237 in both cases, which
allowed us to compute these distinguishers in several hours on a PC. The actual
values will be given in the extended version of this paper. The core of a practical
distinguisher is a multicollision trail (Figure 5), where the behavior of S-boxes
in the first two rounds is not restricted. Computing from the middle, we get
14 bytes with fixed difference before the second round, and 8 bytes with fixed
difference before the first round. The triangulation algorithm covers all but six
active S-boxes in rounds 3–14 so that we find a (partial) q-multicollision with
complexity q · 237.

3 Pseudo-collisions for AES-Based Hashing

The Davies-Meyer mode of blockcipher-based hashing has been proven collision-
resistant if instantiated by an ideal cipher [3]. In this section we show a similar
proof in the ideal-cipher model for the q pseudo-collision resistance, when dif-
ferences in the IV and the message (ΔI , ΔM ) are fixed. We then show that it
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is relatively easy to find q pseudo-collisions for AES-256 in the Davies-Meyer
mode. We also point out that we construct one-block pseudo-collisions and thus
the technique of Joux [8] does not apply here.

Our goal is for fixed differences ΔI , ΔM to find many pseudo-collisions for the
HE(I,M) def= EM (I) ⊕ I which is the Davies-Meyer compression function with
AES-256 as the underlying cipher. Here I is the 128-bit IV, and M is a 256-bit
message block. A pseudo-collision satisfies the following equality:

HE(I,M) = HE(I ⊕ΔI ,M ⊕ΔM )

Let us rewrite it:

EM (I)⊕ I = EM⊕ΔM (I ⊕ΔI)⊕ I ⊕ΔI ⇔
⇔ EM (I)⊕ EM⊕ΔM (I ⊕ΔI) = ΔI . (11)

While finding many pseudo-collisions with different ΔI , ΔM can be done using
the birthday paradox, the same task for fixed ΔI , ΔM is hard. This problem can
be expressed as finding a solution of

EM1(P1)⊕ EM1⊕ΔM (P1 ⊕ΔI) = EM2(P2)⊕ EM2⊕ΔM (P2 ⊕ΔI) = · · · =
= EMq (Pq)⊕ EMq⊕ΔM (Pq ⊕ΔI) = ΔI , (12)

which is harder than finding a differential q-multicollision for EK(·), because the
ciphertext difference is unrestricted in (1). Therefore, Lemma 1 gives us a lower
bound on the complexity of this attack.

Corollary 1. To construct q pseudo-collisions (12) with fixed ΔI , ΔM for an
ideal cipher with an n-bit block an adversary needs at least O(q · 2

q−2
q+2 n) queries

on average.

Theorem 2. For AES-256 in the Davies-Meyer mode q pseudo-collisions (12)
can be found in time q · 267.

Proof. Pseudo-collision attack on the Davies-Meyer mode requires the difference
in the plaintext P to be equal to the difference in the ciphertext C. The Davies-
Meyer feed-forward would then cancel this difference. Our differential trail needs
only to be slightly modified for this purpose. The first round of the new trail is
shown in Fig. 3 (the actual values are given in Appendix A); the other rounds
are the same.

The resulting trail has 41 active S-boxes. The triangulation algorithm cov-
ers the same active S-boxes as in the proof of Theorem 1 and outputs 18 free
variables. The complexity is thus the same.

Corollary 2. AES-256 can not be used to instantiate the Davies-Meyer hashing
mode.

We expect that similar results can be shown for the other blockcipher-based
constructions which are provably secure in the ideal-cipher model [3].
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SubBytes

ShiftRows
MixColumns

Fig. 3. The first round of the differential trail for the attack on AES-256 in the Davies-
Meyer mode

4 Related-Key Attack on AES-256

In this section we demonstrate two results: a related-key distinguisher and a
key-recovery attack based on this distinguisher for the full AES-256.

4.1 Distinguisher

The first two rounds of the multicollision trail can easily be modified to build
a related-key distinguisher with relatively few active S-boxes — see Appendix
A for the details of the trail. The resulting trail has 19 active S-boxes in the
internal states. The difference propagates through 14 S-boxes with probability
2−6·14, and through the remaining five with prob. 2−7·5. Therefore, we get a
distinguisher with probability 2−(14·6+5·7) = 2−119. However, the trail has five
additional active S-boxes (each with probability 2−7) in the key schedule. As a
result, the distinguisher works for 1 out of 235 related-key pairs on the average.

4.2 Key Recovery

There are several ways how our trail can be used for the full 256-bit key recovery.
Here we present one possibility. Steps of the attack are illustrated in Fig. 4 and
are described below.

First step. We change the trail (see Fig. 4 or Appendix) to get more active
S-boxes in the first two rounds which allows us to recover the key bytes at the
entrance to these S-boxes. A new trail has eight active S-boxes in the first round
in a “checkerboard pattern” and two in the second round. Our goal is to find
ten key bytes K0

0,0, K
0
0,2, K

0
1,1, K

0
1,3, K

0
2,0, K

0
2,2, K

0
3,1, K

0
3,3, K

1
0,0, K

1
0,2 so we

execute the following procedure for each of the 235 related-key pairs:

1. Repeat 231 times:
(a) Compose two structures of 264 plaintexts as specified below.
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(b) Encrypt the 1st structure with K and the 2nd with K ⊕ΔK .
(c) Sort the ciphertexts and check for a pair with the difference ΔC .
(d) Save a good pair if it is found.

2. For each candidate pair derive 216 variants for the ten key bytes (see details
below).

3. Pick the key candidate with the maximal number of votes.

The overall complexity of this procedure is 231+65 = 296 data and time, and 264

memory, and it finds 80 bits of the key.
Each structure has all the possible values in bytes {Pi,j , (i + j) mod 2 = 0}

(these bytes line up in columns 0 and 2 after the ShiftRows of the 1st round). The
other bytes are random constants with the constraint that the two structures are
related by ΔP as in the distinguisher. For a fixed key, each structure contains
264 pairs with the proper differences after the S-boxes of the 2nd round (yellow
differences in two bytes). The remaining active S-boxes in rounds 3–14 require
probability 2−93 for the trail to be fulfilled. Each structure produces a right pair
of ciphertexts with probability 264−93 = 2−29. Thus 231 structures produce on
average 4 right pairs and 231+128−128 = 231 wrong pairs.

Due to the uniform differential properties of AES S-boxes each active S-box for
which we know input and output differences would suggest to us two candidates
for the key byte of this S-box. For a candidate pair we guess two byte differences3

at B1
0,0 and B1

0,2. We know the difference in the remaining three bytes of each
column, since they should cancel out with the differences coming from the key.
Thus we can undo the MixColumns for each column which allows us to know
the output differences of eight S-boxes of the 1st round. We know the input
differences for these S-boxes from the plaintext. In addition the two guessed
difference bytes serve as inputs to the two active S-boxes of the 2nd round.
The output differences for these S-boxes are known from the trail. Thus we
have 10 S-boxes for which we know input and output differences which gives us
210 · 8 · 8 = 216 possibilities for 80-bits of the key per candidate pair. The 231

wrong pairs would suggest 216 · 231 = 247 random keys, while the four good ones
would all vote for the correct 80-bit key and some random keys. No wrong key
guesses survive this step and we get 80 key bits as a result.

Second step. We proceed with changing top rounds of the trail to derive other
key bytes. We remove the 2−6 condition on the input to the active S-box (0,0) of
the 3rd round. Then we get five active S-boxes in the second round and 16 active
S-boxes in the first round. We prepare 290 pairs with the ciphertext difference
as in the trail and decrypt them. We will try to detect pairs (290−87 = 8 on the
average) that pass the conditions in rounds 3–14. We partially encrypt all the
resulting plaintext pairs using the known 80-bits and check whether the columns
ΔB1

∗,0 and ΔB1
∗,2 follow the trail. This is a 48-bit filter on the pairs and thus

we are left with 242 candidate pairs. Then we guess the differences in bytes B1
1,1

and B1
3,3 (eight possibilities due to impossible input/output constraints in five

3 For each byte difference there are only 8 possibilities that would not contradict with
the five known differences in the 1st and 2nd rounds.
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SubBytes
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I II with TA

— fixed variables
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4

5

6

7

Determine 141 bits

SubBytes

ShiftRows

MixColumns

2−87

SubBytes

Determine 64 bits

II

A1

B1

A2

B2

Fig. 4. Key recovery steps

corresponding S-boxes of the 1st and 2nd rounds), and undo the MixColumns.4.
As a result, we have 242+6 = 248 key candidates from all pairs counting on a
64+16 = 80 bit key (64 from K0 and 16 from bytes K1

1,1,K
1
3,3). No wrong key

guesses survive this step. We find the remaining 12 bytes of K1 by exhaustive
search in 296 steps. The total complexity of the attack is thus dominated by the
296+35 = 2131 complexity of the first step.

Second step with TA. If we want to avoid the chosen-ciphertext framework,
there is a way to combine the knowledge of 80 key bits on top and 35 key bits
in the middle with a bit higher complexity. The problem is that the fixed bits
are positioned far from one another (3 key schedule rounds apart), so it seems
hard to make an efficient exhaustive search on the remaining part of the key.

We solve this problem by running the triangulation algorithm on the key
schedule only, where 15 bytes are marked as fixed. The algorithm outputs 17
bytes in different subkeys as free variables. Then we assign these variables ran-
domly, choose admissible values for the remaining ones, and thus define the key
guess. There are 217·8+5 = 2141 possible assignments, which would determine the
complexity of the key recovery.

5 New Design Criteria for Block Ciphers

Our results imply new design criteria for the key schedules of the block ciphers.
First of all, local collisions should be prevented. Although it is usually easy to
4 We use the knowledge of the key byte K1

0,0 to find the differences in the green
diagonal at the 2nd round.
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arrange a local collision in one round, there should be no good patterns for several
rounds. A slow diffusion in the AES-256 key schedule helped us to concatenate
many local collisions into a differential trail for the whole cipher. This should
not be possible in a good cipher.

The key schedule should be also desynchronized with respect to the internal
state. The active injection bytes in our AES trails are always located in the first
row, which is not rotated. Therefore, the differences to be cancelled in a local
collision should be located in the same column, or exactly 4 columns to the right
in the subkey. This shift is preserved by the key schedule round, which should
be certainly avoided.

Slow diffusion in the key schedule makes it also vulnerable to the triangulation
algorithm or similar tools. Our preliminary analysis shows that the triangulation
algorithm can cover up to two times the number of rounds needed for the full
diffusion. If the key schedule in AES was ideal, we would be able to solve systems
of equations on at most three-four rounds, while now we can attack five.

Finally, if one considers known or chosen key attacks as a threat he needs
to add two extra full diffusions on top of the number of rounds secure against
standard statistical attacks.

6 Conclusions

In this paper we show a chosen key distinguisher for the 256-bit key AES with
almost practical complexity of q · 267 queries and negligible memory. It was
verified by computing partial q multicollisions in time q · 237 which takes several
hours on a PC. We also show the first related-key attack on the full AES-256
with 296 data and time complexity and 265 memory which works for 1 out of
every 235 keys on average.
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A Details on Trails

The actual differences. The actual difference values should satisfy conditions
imposed by the S-box properties, the presence of MC-columns in the subkeys,
etc. We also require that differences in rounds 5 and 7–13 propagate through
S-boxes with maximal probability — 2−6. We programmed the search for the
actual values and validated that those conditions do not lead to contradictions.
The search has a negligible cost. We thus have defined the differences ΔK (de-
termined by subkeys K0 and K1) and ΔC (determined by the subkey K14). In
the following subsections we list the actual differences in the trails.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf
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Davies-Meyer trail (the first two rounds)

i Plaintext Subkey Ciphertext

0

01 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

0f 0e 0f 0e
07 07 07 07
07 07 07 07
09 09 09 09

01 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

i After SB After MC Subkey i After SB After MC Subkey

1

30 0f 44 b0
7c b5 93 08
78 d6 c2 57
e7 c3 29 03

65 00 2b 00
1f 2c 1f 00
1f 00 e2 00
21 00 21 33

37 00 37 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

2

1b 00 07 00
00 12 00 00
00 00 1a 00
00 00 00 16

0c 00 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

0f 01 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

Related-key distinguisher (the first two rounds)

i Plaintext Subkey Ciphertext

0

0e 0e 0e 0e
07 07 07 07
07 07 07 07
09 09 09 09

0f 0e 0f 0e
07 07 07 07
07 07 07 07
09 09 09 09

01 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

i After SB After MC Subkey i After SB After MC Subkey

1

1f 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 00 3e 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

37 00 37 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

2

07 00 07 00
00 00 00 00
00 00 00 00
00 00 00 00

0e 00 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

0f 01 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

Note on the colors. Differential trails are given in our figures in a truncated
form, we marked distinct difference values with different colors. The reader does
not need to care about the actual values in order to understand how the trail is
constructed. However all the trail differences are provided in the tables of this
Appendix.

The white cell stands for zero difference in a byte, the non-white cells stand
for the non-zero differences. The same colors mean the same values except for
the green, which denotes arbitrary differences. The exact relation between the
colors and the values can be derived from the list of the actual differences. Grey
and blue columns stand for MC-columns. In a spoiled MC-column one byte is
marked with another color.
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Differential trail for finding multicollisions:

Table 2. Multicollision trail

i Plaintext Subkey Ciphertext

0

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

0f 0e 0f 0e
07 07 07 07
07 07 07 07
09 09 09 09

01 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

i After SB After MC Subkey i After SB After MC Subkey

1

30 5c e1 b0
7c b5 ed 72
a6 d6 c2 16
82 eb 29 03

65 00 02 00
1f 25 1f 00
1f 00 e2 00
21 00 21 33

37 00 37 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

2

1b 00 07 00
00 12 00 00
00 00 1a 00
00 00 00 16

0c 00 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

0f 01 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

3

1f 1f 00 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 3e 00 00
1f 1f 00 00
1f 1f 00 00
21 21 00 00

37 37 00 00
1f 1f 00 00
1f 1f 00 00
21 21 00 00

4

07 07 00 00
00 00 00 00
00 00 00 00
00 00 00 00

0e 0e 00 00
07 07 00 00
07 07 00 00
09 09 00 00

0f 0e 00 00
07 07 00 00
07 07 00 00
09 09 00 00

5

1f 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 00 00 00
1f 00 00 00
1f 00 00 00
21 00 00 00

37 00 00 00
1f 00 00 00
1f 00 00 00
21 00 00 00

6

07 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

0e 00 00 00
07 00 00 00
07 00 00 00
09 00 00 00

0f 01 01 01
07 00 00 00
07 00 00 00
09 00 00 00

7

1f 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

3e 3e 3e 3e
1f 1f 1f 1f
1f 1f 1f 1f
21 21 21 21

3e 3e 3e 3e
1f 1f 1f 1f
1f 1f 1f 1f
21 21 21 21

8

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

01 00 01 00
00 00 00 00
00 00 00 00
00 00 00 00

9

1f 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 00 3e 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

3e 00 3e 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

10

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

01 01 00 00
00 00 00 00
00 00 00 00
00 00 00 00

11

1f 1f 00 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 3e 00 00
1f 1f 00 00
1f 1f 00 00
21 21 00 00

3e 3e 00 00
1f 1f 00 00
1f 1f 00 00
21 21 00 00

12

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

01 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

13

1f 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 00 00 00
1f 00 00 00
1f 00 00 00
21 00 00 00

3e 00 00 00
1f 00 00 00
1f 00 00 00
21 00 00 00

14

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

01 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00
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Fig. 5. Multicollision trail. The actual values are given in Table 2.
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Abstract. We present several attacks on the block cipher C2, which is
used for encrypting DVD Audio discs and Secure Digital cards. C2 has
a 56 bit key and a secret 8 to 8 bit S-box. We show that if the attacker
is allowed to choose the key, the S-box can be recovered in 224 C2 en-
cryptions. Attacking the 56 bit key for a known S-box can be done in
complexity 248. Finally, a C2 implementation with a 8 to 8 bit secret
S-box (equivalent to 2048 secret bits) and a 56 bit secret key can be
attacked in 253.5 C2 encryptions on average.

Keywords: block cipher, S-box recovery, key recovery, boomerang
attack, C2, Cryptomeria.

1 Introduction

C2 is the short name for Cryptomeria, a proprietary block cipher defined and
licensed by the 4C Entity (a consortium consisting of IBM, Intel, Matsushita and
Toshiba) [3]. According to Wikipedia, “It (...) was designed for the CPRM/CPPM
Digital Rights Management scheme which is used by DRM-restricted Secure Dig-
ital cards and DVD-Audio discs.” [4]. 4C Entity has published a specification of
C2 in [2].

C2 is a 10-round Feistel cipher with 64-bit blocks and a 56-bit key. The S-box
is secret and available under license from the 4C Entity. Therefore, one might
consider the S-box as part of the secret key.

A CPRM compliant device is given a set of secret device keys when manufac-
tured. These keys are used to decrypt certain data of the media to be protected,
in order to derive the media keys which have been used in the encryption of the
main media data. The device keys can be revoked.

The specification of the system gives rise to several attack scenarios for C2.

1. The 56-bit key can be chosen by the attacker, who will attempt to determine
the values in the secret S-box.

2. The S-box is known to the attacker, who will attempt to determine the value
of a secret 56-bit key.

3. The 56-bit key and the S-box are unknown to the attacker, who will attempt
to determine the values of both.

� The author is supported by a grant from the Danish Research Council for Technology
and Production Sciences grant number 274-07-0246.

S. Halevi (Ed.): CRYPTO 2009, LNCS 5677, pp. 250–266, 2009.
c© International Association for Cryptologic Research 2009
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In this paper we attack C2 in all three scenarios. The first attack requires 224

chosen plaintext queries with negligible amount of other computations in the
on-line phase. The complexity of the second attack is around 248 of adaptive
chosen ciphertext queries and a similar amount of computations. The third at-
tack requires 253.5 adaptive chosen ciphertext queries.

The first attack depends on the details of the key schedule. We show that by
carefully selecting the value of the 56-bit key, we can ensure that only a limited
number of three S-box entries are used in the first seven rounds of encryption
of a chosen plaintext. By a trail-and-error approach these three entries can be
determined. Subsequently other entries of the S-box can be determined in a
similar approach. The attack has been successfully implemented and recovers
the whole (secret) S-box in less than 30 seconds on a standard PC.

The second and third attacks make use of so-called boomerangs [12]. A study
of the differential properties for C2 shows that there exist differential character-
istics with good probabilities for up to 5 rounds of the total 10 rounds. These
characteristics can be extended to more rounds but with a dramatic decrease in
probability. It turns out that the differential characteristics can also be specified
for 5 rounds the decryption operation of C2 with similar good probabilities. The
average probability of the best such 5-round differential characteristics is 2−11.
The differential characteristics can be used to construct a boomerang, which has
an average probability of 2−44. One remarkable feature of this boomerang (and
others) is that it exists regardless of what S-box is used.

We successfully generated plaintext pairs following the boomerang for vari-
ous keys to verify the heuristic running times and to demonstrate the practical
relevance of our attack.

It should be noted that, even though it has a better overall complexity, the sec-
ond attack might still be slower in practice than a simple brute force attack which
can of course be nicely distributed. Actually such a brute force attack on C2 has
been carried out [1] (unsuccessfully as the S-box guess turned out to be wrong).

For the third attack scenario, brute force is clearly not an option, as not only
the key but the entire S-box would have to be guessed, all together 2104 bits (or
1740 if we assume S-box is a permutation).

The only cryptanalytical result on C2 we are aware of is the S-box recovery
attack (scenario 1) on 8 rounds of the cipher by Weinmann [13].

The rest of this paper is organized as follows. We start with a brief description
of the cipher in Section 2. We present S-box recovery attack in Section 3. Then
we discuss finding differential characteristics in Section 4. We present a key
recovery attack for a known S-box in Section 5 followed by a key and S-box
recovery attack in Section 6. Finally, we close with some conclusions.

2 Description of C2

In this section we fix our notation and present a description of the cipher.

2.1 Notation

Throughout the paper we will use the following notation.
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– Li, Ri – left and right word after i = 1, 2, . . . , 10-th round of encryption
(L0, R0 is the plaintext)

– rotlm(b, n) – cyclic rotation of m bit sequence b by n positions left
– Xi,j – j-th bit of word Xi

– Xi,p..q – sequence of consecutive bits Xi,p, Xi,p+1, . . . , Xi,q, e.g. Xi,0..7 is the
least significant byte of Xi.

– X⊕Y , X �Y – respectively, bitwise XOR, addition modulo 232 of words X
and Y ,

2.2 The Block Cipher C2

C2 [2] is a block cipher with 64-bit blocks and 56-bit keys. It consists of 10
Feistel rounds, each one using a 32-bit round key rki. The round function can
be described as

Li+1 = Ri

X = (Ri � rki)⊕ 0x2765ca00

Zi,0..7 = S[Xi,0..7]
Zi,8..15 = Xi,8..15 ⊕ rotl8(Zi,0..7, 1)
Zi,16..23 = Xi,16..23 ⊕ rotl8(Zi,0..7, 5)
Zi,24..31 = Xi,24..31 ⊕ rotl8(Zi,0..7, 2)

Ri+1 = Li � (Zi ⊕ rotl32(Zi, 9)⊕ rotl32(Zi, 22)) , i = 0, . . . , 9

and is illustrated in Fig. 1. We denote by Ψ the GF (2)-linear function that maps
bits of Yi to the bits of Ui, this part is framed in the dotted box in the figure
and the explicit equations are given in Section A.1 in the Appendix.

Note that the original reference code [2] describes it slightly differently using
three byte constants, but we present here a simpler, equivalent form using only
one constant C = 0x2765ca00.

The key schedule produces 10 round keys rk0, . . . , rk9 out of 56-bit master
key K in the following way.

K ′
i = rotl56(K, 17 · i) ,

rki = K ′
i,0..31 � (S[K ′

i,32..39 ⊕ i]� 4), i = 0, . . . , 9 .

The exact numbers of bits of the master key used in each round are also given
in Table 2 in the Appendix for reference.

Both the round transformation and the key scheduling use an 8-bit secret
S-box S. An example S-box provided by 4C for the purpose of validating the
implementations is available online [5].

3 Recovering Secret S-box with Chosen Key Attack

Our attack to recover the S-box when we are allowed to choose a encryption key
is based on the observation that some keys generate only very few different inputs
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Fig. 1. Equivalent description of the round transformation of C2
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Fig. 2. One step of the key scheduling algorithm generates 32-bit round key rki

to the secret S-box in the key scheduling. It is easy to verify using a computer
search that the smallest number of inputs generated in the key scheduling is
three. An example of such a master key is

0x40, 0x84, 0x88, 0x40, 0x02, 0x80, 0x09

and the inputs generate to the S-box in rounds 1 to 10 are the following

0x88, 0x4, 0x27, 0x27, 0x4, 0x4, 0x27, 0x27, 0x88, 0x88

For the attack we first fix the above key and guess the possible outputs of the
S-box for the inputs 0x04, 0x27 and 0x88. For each possible guess we generate
one plaintext that, under the assumption that our guess is correct, does not trig-
ger any additional entries in the secret S-box for 7 rounds. For such a plaintext,
again under the assumption that our guess is correct, we know the output of the
encryption process after 7 rounds, i.e. (L7, R7). As explained below, generating
a plaintext for one fixed key guess requires approximately 219.25 C2-encryptions
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and as there are 224 possible values for the three entries in the secret S-box the
complexity for this step is approximately 243.25 C2-encryptions. However, this
computation is independent of the actual S-box being attacked and therefore
has to be done only once and is trivially parallelizable. We computed a table
containing one plaintext for each guess. The actual running time was 96 hours
and the size of the table is less than 400 MByte. The details are in Section 3.1.

When attacking an actual device or implementation using a secret S-box we
proceed as follows. We encrypt each plaintext in the table –corresponding to
one possible guess of the three S-box entries– using the device and observe the
ciphertext. If our guess is correct we know the output after round 7. As explained
in Section 3.2 it is possible to check if the observed ciphertext fits to our guess
of the 7th round output. This test will never fail for the right guess and has
a (heuristic) probability of accepting a wrong guess with a probability of 2−29.
Thus, on average, only the right guess will survive. Using the outlined approach
we can recover three S-box entries with 224 encryptions using the actual device
and marginal overhead for the test.

After the first three entries have been recovered we continue in a very similar
way. First, it is now easy to recover (up to) three additional entries corresponding
to the inputs triggered in the last three rounds without querying the device. For
all other entries we now generate plaintexts that do not trigger any unknown
inputs in the first six rounds. Using the three round test explained in Section
3.2 on any possible output of the S-box in round 7 we can recover the output of
the S-box in the 7th round and later recover the output of the S-box in the last
three rounds again. Assuming that the inputs to the S-box in rounds 7, 8, 9 and
10 behave randomly an estimate for the complexity (in terms of C2 encryptions)
of successfully recovering the whole S-box is derived from the well known coupon
collector’s problem [8, Section II.7] and given by

C
(256 ·H256)

4
≈ 219.4,

where Hn is the nth harmonic number and C is the complexity to generate a
plaintext that fit for 6 rounds. As explained in Section 3.1, C can be upper
bounded by

C ≤
(

256
6

)2

.

However, it turns out that those inputs do not behave purely random and ex-
perimentally we measured a slightly higher complexity of 220.2 as an average of
10000 tries (100 tests for 100 randomly generated S-boxes). Summarizing, when
we are allowed to choose an encryption key, the S-box can be recovered with less
than 224 queries to the device on average. Of course, the actual running time
highly depends on the encryption speed of the device, but for an implementation
on a standard PC the whole S-box can be recovered in less than 30 seconds.
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3.1 Generating Plaintexts That Fit for Seven Rounds

We next describe a procedure to generate a plaintext such that for known (or
guessed) round keys and a set of known (or guessed) input/output pairs S the
inputs to the Sbox in the first seven rounds are within this set S. First note
that a naive method would be to randomly generate plaintexts and verify if the
plaintext fulfills the conditions in all seven rounds. Under the assumption that
those inputs behave randomly, the effort to generate such a plaintext is (256

|S| )
7.

For the first part of the attack, where |S| = 3, this is approximately 244.9. As we
have to generate not only one, but 224 such plaintext the complexity of this naive
approach is too high. However, it is easy to generate plaintexts that fulfil the
conditions for four out of the seven rounds by construction. Then, again assuming
things behave randomly, the effort is reduced to (256

|S| )
3 which for |S| = 3 and 224

plaintexts to be generated gives an overall complexity of approximately 243.25.
Note that in the following the names of variables refers to Figure 1. To get the

inputs in round 2 up to round 5 correct we first choose those inputs, i.e. we fix
X1,0..7, X2,0..7, X3,0..7 and X4,0..7 to arbitrary inputs in the set S. Furthermore
we choose X2,8..31 and X3,8..31 randomly. With this we can compute

R1,0..7 = (X1,0..7 ⊕ C0..7)− rk1,0..7 (mod 28)
R2,0..7 = (X2,0..7 ⊕ C0..7)− rk2,0..7 (mod 28)
R3,0..7 = (X3,0..7 ⊕ C0..7)− rk3,0..7 (mod 28)
R4,0..7 = (X4,0..7 ⊕ C0..7)− rk4,0..7 (mod 28).

Next, observe that for any 8 bit vector x it holds that

F (X ⊕ (x << 23))0..7 = F (X)0..7 ⊕ x

where F denotes the function mapping Xi to Ui. In particular we can choose
bytes x and y such that

F (X2 ⊕ (x << 23))0..7 −R3,0..7 = R1,0..7 (mod 28)

and
F (X3 ⊕ (y << 23))0..7 + R2,0..7 = R4,0..7 (mod 28).

Thus, if we choose

L′
3 = (X2 ⊕ (x << 23)⊕ C)− rk2

and
R′

3 = (X3 ⊕ (y << 23)⊕ C)− rk3

and decrypt this for three rounds to get a plaintext (L′
0, R

′
0) we ensured that for

this plaintext from the second until the fifth round all inputs to the Sbox are
as previously fixed – and thus in the set S. We experimentally verified that the
complexity of generating plaintext that also fit in the first, sixth and seventh
round for |S| = 3 is approximately (256

3 )3 ≈ 219.25 as predicted by the heuris-
tic. The overall running time to generate all 224 plaintexts for each guess was
distributed to 100 CPUs and took less than one hour.
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3.2 A Three Round Test

To make sure we guessed the S-box entries right we need to check if the output
of the 7th round based on the guess and the ciphertext match, i.e. encrypting
(L7, R7) with three rounds gives us the right ciphertext (L10, R10). This test
would be trivial if we knew the S-box. However, we still can do it efficiently and
with very good probability even without knowing the S-box.

Since we know the values of R7 and R10, we can compute U8 = R10 − R7
and going backwards through the F-function, we can determine Y8. Since we
do not know the S-box, we know only 24 msb bits of X8. We have guessed the
round key rk8 and this means only if we knew whether a carry in the modular
addition occurred or not, we would know 24 msb bits of R8 and L9. Now, using
this knowledge and the values of L7 and L10 we can determine 24 msb bits of
U7 = R8−L7 and U9 = L10−L9. Again, we do not know the carry bit so we have
to test two possibilities for each of the words, either assuming a carry occurred
or not. Provided that the carries are as predicted, we know exactly 24 msb bits
of U7 and U9. Let us focus on the 7th round first. To test whether the input
and the ciphertext match, we want to compare the values of U7 obtained by the
above procedure with U ′

7 = Ψ(Y7), where Ψ is a GF (2)-linear map (marked with
dotted box in Fig. 1). We cannot compare U7 with U ′

7 directly because we do
not know bits U7,0..7 and the unknown output of the S-box masks bits of U ′

7.
However, we can compare linear combinations of bits of U7 and Ψ(Y7) that do
not depend on any of the unknown bits U7,0..7 and Y7,0..7. There are 16 linear
equations ξj(U7) = ξj(Ψ(Y7)) involving bits of U7 and Y7 that do not use any
unknown bits. If the pair (L7, R7), (L10, R10) matches and we guessed all the
carries correctly, all these equations will be satisfied. For an unrelated pair of
inputs and outputs, this happens with probability 2−16. The same happens for
the test in round 10. We combine those two tests with a simple guessing of all
the carries we need to know to obtain our testing procedure. For each of the
two possible values of the carry in round 9, we test independently two possible
carries in round 7 and round 10. If for any combination of these all the 32 pairs
of check equations agree, we conclude the pair matches. Otherwise, we reject
the pair.

This procedure always accepts right pairs (L7, R7), (L10, R10) as they will al-
ways produce a match in one of the tested carry combinations. To accept a wrong
pair which is not coming from the encryption, all the 32 pairs of check equations
would need to agree for one of the 23 combinations of carries. This happens with
probability 2−29 if values are uniformly distributed. We experimentally verified
that the probability is indeed around 2−29. This is sufficient for us since we need
to test only 224 possibilities.

4 Search for S-box Independent Characteristics

The only components of C2 that are not linear over GF(2) are the S-box and
the two modular additions. As the S-box is secret and therefore its differential
behavior is unknown, we focus on characteristics not involving the S-box. Note
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that if the input to the round function has zero difference in the least significant
byte Ri,0..7, this zero difference cannot be destroyed by carries in the modular
key addition. Thus, we can search for characteristics independent of the S-box
by focusing on characteristics with Ri,0..7 ⊕R′

i,0..7 = 0.
To search for these characteristics we consider a linear model of the round

function, that is, we replace the modular addition by XORs and assume that
the S-box is the identity (or any linear mapping as the characteristic will be
independent of this choice anyway). This linear model of the round function

( Li, Ri ) = ( Ri−1, Li−1 ⊕ F (Ri−1,Ki) )

can be written as (Li, Ri) = (Li−1, Ri−1) ·M where M is a 64× 64 matrix over
GF (2). Furthermore, the condition that the input difference to the S-box, i.e.,
the least significant byte of the output difference, shall be zero can be described
as ((L,R)M)Q = 0 where Q corresponds to the projection on the least significant
8 bits. Thus, for the linearized version of the cipher, the problem of finding a
characteristic which has a zero input differences to the S-box is reduced to the
problem of calculating the kernel of the linear mapping x→ x ·M ·Q. The kernel
of the matrix K = [Q|M · Q| · · · |M i · Q] contains all differences which have a
zero input difference to the S-box over i+1 rounds. This kernel is non trivial for
i ≤ 8 implying that for version of C2 where the modular additions are replaced
by XORs a characteristic over 9 rounds with probability 1 exists independently
of the S-box.

As modular additions are not linear over GF (2) we need to estimate the prob-
ability that the modular addition behaves like an XOR. Here we are interested
in the two following cases.

1. The probability that the key addition behaves like an XOR

Pr[(C � K)⊕ ((C ⊕ α) � K) = α]

where C and K are random bit strings and α is the known difference.
2. The probability that the addition of the left half and the output of function

F behaves like an XOR

Pr[(L � F )⊕ ((L⊕ α) � (F ⊕ β)) = α⊕ β]

where L and F random bit strings and α and β fixed known differences.

These probabilities have been studied for example in [10] where it was shown
that

Pr[(C � K)⊕ ((C ⊕ α) � K) = α] = 2−(hw(α)−msb(α))

and

Pr[(L � F )⊕ ((L⊕ α) � (F ⊕ β)) = α⊕ β] = 2−(hw(α∨β)−msb(α∨β))

where hw(α) denotes the Hamming weight of α and msb(α) the most signifi-
cant bit.
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Since the probability of an XOR-characteristic depends mainly on the Ham-
ming weight of all the intermediate input differences, we searched for character-
istics minimizing it. This problem is equivalent to searching for low weight code
words in the linear code generated by the matrix B · [I|M | · · · |M i] where B is
the basis matrix of the kernel of K. Such an approach has been used before for
finding differential characteristics in dedicated hash functions, cf. [11].

The best five round characteristic we found is

Δ = (00020800 80200100)x→ (80200100 00020800)x

which does not require non-zero differences to the S-box in any round, and
it has Hamming weight 15 over all intermediate input differences. Using the
above formulas from [10] one gets a probability of 2−12 for independent round
inputs and keys. Experimentally, the probability for randomly chosen master
keys and S-boxes was even better, namely approximately 2−11.17, which is due
to a differential effect which takes place inside the 5-round characteristic.

The differential characteristic can be specified also for the last five rounds of
C2 and the average probability was estimated to be similar to the one for the
first five rounds.

5 Key Recovery Attack for a Known S-box

The five round characteristics described in Section 4 can be used to mount a
boomerang attack on the whole cipher [12,9,6]. A boomerang attack is chosen
plaintext and chosen ciphertext attack that involves four encryptions. We exper-
imentally estimated (by testing 1000 random keys and multiplying probabilities
of passing the first five and the last five rounds) that boomerangs exist with
an average probability of 2−44.5. We observed that for all such boomerangs the
pairs of texts followed the characteristic in the first round every time, but not
always in later rounds. The reason one can obtain a boomerang anyway is the
differential effect which is utilized also in the so-called rectangles [6]. We further
observed a large variability in the probabilities over the keys and some keys were
found for which the probability of the boomerang is as high as 2−32 but also
there are keys for which no boomerangs were found. We present some of actual
boomerangs we found in Table 1.

The possibility of finding boomerangs enables us to test if the differences
in the first round propagate according to the characteristics. If not, we do not
expect to get any boomerangs. We will use this observation to recover many
bits of the first round key by a careful analysis of the carries appearing in the
addition R0�rk0. This method resembles the approach used by Contini and Yin
to partially recover HMAC keys using a pseudo-collision differential for MD5 [7].

5.1 Recovering Bits of the First Round Key

Here we are going to describe how to recover up to 22 bits of the first round key
by applying the boomerang attack outlined above.
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Table 1. Examples of boomerang plaintext pairs for different keys and S-boxes

S-box used key (hex) plaintext
AES 00 00 00 00 00 00 00 5707aec0 48a9c942

00 30 20 08 00 20 28 0f42cd03 b7b5f077

’c’ ’r’ ’y’ ’p’ ’t’ ’0’ ’9’ b4b32db5 589913dc

C2 facsimile [5] 00 00 00 00 00 00 00 3af32bac 960693e1

ee 9b 7f 2b 7c 26 cd 69676fdc 339879d4

’c’ ’r’ ’y’ ’p’ ’t’ ’0’ ’9’ d6b44956 36771c9d

Given a plaintext pair (L0, R1) and (L0 ⊕ α,R0 ⊕ β) from a boomerang, we
know (with overwhelming probability) the difference after the first round and
also know that the difference of the right halves after the modular key addition
is still β. Therefore the first round key has to fulfill the equation

(R0 � rk0)⊕ ((R0 ⊕ β) � rk0) = β. (1)

We denote the vector of carry bits of the modular addition of R0 and rk0 by
c(R0, rk0), i.e.

R0 � rk0 = R0 ⊕ rk0 ⊕ c(R0, rk0)

where then

c−1 = 0 and ci = R0,irk0,i ⊕ ci−1R0,i ⊕ ci−1rk0,i.

Using this, (1) can be rewritten as

R0 ⊕ rk0 ⊕ c(R0, rk0)⊕R0 ⊕ β ⊕ rk0 ⊕ c(R0 ⊕ β, rk0) = β

which is equivalent to

c(R0, rk0) = c(R0 ⊕ β, rk0) (2)

and furthermore implies
βi rk0,i = βi ci−1.

Thus, whenever βi = 1 the previous carry bit –which potentially depends on all
previous key bits – equals the key bit. On the downside, Equation 2 implies that
we cannot extract any key bits beyond the most significant non-zero bit of β.
Using the 5 round characteristic from Section 4 we can therefore at most recover
22 bits of the first round key using (2).

In the following we describe how bits of the round key can be found one at
a time. Instead of using randomly chosen plaintexts (L0, R0) we start by fixing
the 8 least significant bits of R0 to zero. This ensures that c7 = 0. Equation (2)
implies that boomerangs with this additional constraint exist iff rk0,8 = 0.

Thus, if after sufficiently many tries, we do not find any boomerang, we can
conclude that rk0,8 = 1. Let us estimate the probability of making a mistake
there and wrongly assuming that rk0,8 = 1 while in reality it holds that rk0,8 = 0.
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If 2−b is the probability of a boomerang and we make our decision after t2b tries,
then the error probability can be approximated by

(1 − 2−b)t2b

=
(
(1− 2−b)2

b
)t

≈
(

1
e

)t

.

After recovering rk0,8 we modify our choice of plaintexts adaptively depending
on the recovered bit rk0,8.

First, consider the case rk0,8 = 0. Here we generate plaintext pairs where the
least significant 8 bits of R0 equal 01000000. In this case c7 = 0 if and only if
rk0,7 = 0 or, equivalently, boomerangs exist only when rk0,7 = 0. Thus, after
sufficiently many tries, we can with a good probability recover rk0,7.

Next, consider the case where rk0,8 = 1. Here we again fix the least significant
8 bits of R0 to 01000000 and again c7 = 0 if and only if rk0,7 = 0. However, in
this case boomerangs exist only when rk0,7 = 1.

This procedure can now be applied recursively to finally recover all the key
bits rk0,0...7. After those bits have been successfully recovered a very similar
argument allows to recover the key bits rk0,21...8.

Assuming the average complexity for finding the boomerang is 244, the over-
all complexity of this procedure to recover B bits for a random key can be
estimated to

B ·
(
t244 + 244

2

)
(3)

and the error probability is approximately

1−
(

1−
(

1
e

)t
)B

. (4)

If we want to recover 8 bits with a success probability of more than 0.5 we
have to choose t = 2.48 and the effort will be 247.8. The remaining 48 bits of the
master key can then be recovered with a brute force search.

If we want to recover all 22 bits with a success probability of more than 0.99
we have to choose t = 7.7 and the effort will be 250.59.

Note that for a given key it is unclear at first what the probability for the
boomerang actually is. However, there are several ways to deal with this prob-
lem. On possibility is to first get an estimate of the probability by running the
boomerang search for randomly selected plaintexts. Another possibility is to
double the time until we decide on a key bit when no boomerang has been found
step by step until the right key has been found.

6 Key and S-box Recovery with Chosen Ciphertext
Attack

The attack recovering the key and the S-box is again based on the boomerang
attack outlined above. As explained in Section 5.1 we can recover the least
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significant 22 bits of the first round key with an average complexity of 250.59 and
an error probability less then 0.01. But turning the boomerang upside down, we
can similarly recover 22 bits of the last round key with the same complexity.
As explained in Section 6.1 it is possible to recover the remaining bits of these
round keys and one entry of the secret S-box with an average complexity of
252. Thus with an effort of approximately 253 we can recover the first and the
last round key. This knowledge allows us to recover the second round key (see
Section 6.2) with an average effort of 245.32. The first two and the last round key
together determine the entire master key uniquely (cf. Table 2 in the appendix).
We are now in the position where we can recover additional entries of the secret
S-box with an effort of 244 by again applying the approach of Section 6.2. After
recovering four more entries (with an effort of 244+2) of the S-box corresponding
to what is triggered in the key scheduling in rounds 3, 4, 5 and 6 we can use an
attack very similar to the attack described in Section 3 to recover the remaining
entries of the S-box. Namely, we guess the remaining three S-box entries triggered
in the key scheduling in rounds 7, 8 and 9. For each possible guess we generate
a plaintext that does not trigger any unknown (or un-guessed) S-box entries
in the first seven rounds. As we know or guessed 10 entries already the effort
of generating such a plaintext is (256/10)3 ≈ 214. We encrypt each of those
plaintexts and use the check of Section 3.2 to verify our guess. This way we
will recover all 10 S-box entries used in the key scheduling and afterwards the
remaining entries are recovered just as in Section 3 with a complexity less than
220. The complexity of recovering the S-box is therefore 224+14 = 238 and the
overall complexity of the attack is

2 · 250.59 + 2 · 252 + 245.3 + 244+2 + 238 + 220 ≈ 253.5

on average.

6.1 Recovering Remaining Unknown Round Key Bits

Once we know bits rk0,0..21 of the first round key we can recover the remaining
most significant bits of the round key and the output of the S-box using the
carry behaviour of the left addition L0 � U0.

If we have a boomerang plaintext, we know that the following equation is true

(L0 � U0)⊕ [(L0 ⊕ α) � (U0 ⊕ Ψ(β))] = 0x80000000 ,

where α = 0x00020800, Ψ is a linear function mapping bits of Y0 to U0 and we
have Ψ(β) = 0x80020800. Since the difference in the most significant bit always
propagates linearly as it does not induce any carries, we can focus on a simplified
version of the above equation

(L0 � U0)⊕ [(L0 ⊕ α) � (U0 ⊕ α)] = 0 .

Using the same method as in Section 5.1 we get

c(L0, U0) = c(L0 ⊕ α,U0 ⊕ α)

and it simplifies to the condition
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αi(L0,i ⊕ U0,i ⊕ 1) = 0 . (5)

Since α has bits 11 and 17 set, (5) allows us to determine bits U0,11, U0,17 by
trying to find boomerang plaintexts for all of the four possible combinations of
L0,11, L0,17 in parallel. One of the choices will yield a boomerang and it contains
the right combination of values of L0,11, L0,17 that determine the values of bits
of U0.

We have U0,11 = Y0,0 ⊕ Y0,11 ⊕ Y0,21 and we can compute the values of
Y0,11, Y0,21 because we know R0 and the round key bits rk0,0..21. Thus, we learn
one bit of the output of the S-box (Y0,0). Furthermore, we get another equation
U0,17 = Y0,1⊕Y0,4⊕Y0,7⊕Y0,8⊕Y0,17⊕Y0,27. The complete system of equations
describing bits of U0 can be found in Section A.1 of the appendix.

The same principle can be used to recover more bits. In order to do this, we
need differences to appear at other bit positions in the addition L0 �U0. We can
achieve this by inducing carry chains in the first addition R0 � rk0 by appropri-
ately setting some bits of the plaintext so that the difference β = 0x80200100
will trigger more bit flips in R0 � rk0. More precisely, we find plaintexts R0
such that

(R0 � rk0)⊕ [(R0 ⊕ β) � rk0] = β ⊕ γ .

for some carry-induced difference γ. Remember that Ψ mapping Y0 to U0 is linear
and so this induces an extra difference Ψ(γ), so U0 ⊕ U ′

0 = Ψ(β)⊕ Ψ(γ).
Later, we try to compensate for this extra difference in U0 by the additional

difference Ψ(γ) in L0. This situation can be described as

(L0 � U0)⊕ [(L0 ⊕ α⊕ Ψ(γ)) � (U0 ⊕ Ψ(β) ⊕ Ψ(γ))] = 0x80000000

If this equation holds (and we know this when we find a boomerang) we have
the following conditions

(αi ⊕ Ψi(γ))(L0,i ⊕ U0,i ⊕ 1) = 0

which allow us to determine bits of U0 at positions i where αi ⊕ Ψi(γ) = 1.
Because of the effect of Ψ , each bit in γ usually requires 3 additional com-

pensating bits of the difference in L0 and this means we need to search for 8
boomerangs in parallel to determine the right values of L0. After we find one,
we obtain three more equations as explained before.

The complexity of this procedure depends on the configuration of carry chains
we are able to induce and this depends on the round key. Assuming we can
extend the difference in β = 0x80200100 at position 8 to chains at positions
8-9, 8-10, 8-11, 8-12, 8-13, 8-14, 8-15 (so γ is 00000200, 00000600, 00000c00,
etc.) we get enough equations to uniquely determine the unknown bits of Y0.
We need to test 23 combinations of values of bits in L0 and the total complexity
is 23 · 23 · 244 = 252 where 244 is the cost of finding the boomerang plaintext.
For other configurations of secret key bits we may not be able to extend γ by
one bit at a time and we will need to test more bits in L0 each time. In that
situation we usually need to test less cases though because we learn more bits



Cryptanalysis of C2 263

of U0 at the same time. The exact increase in complexity very much depends on
a particular case.

Note that we can always perform a search for the 13 missing bits by randomly
choosing plaintext pairs (L1, R1) and (L′

1, R
′
1) with a difference corresponding

to the second round difference of our 5 round characteristic, decrypting them
using all possible guesses for the missing 13 bits and searching (in parallel) a
boomerang for all 213 pairs. This upper bounds the complexity of recovering the
remaining bits in the first round by 213 · 244 = 257.

A possible speed-up is to use both ends of the boomerang – if we find a
boomerang plaintext we have actually two plaintexts that follow the character-
istics in the first round of encryption. This can reduce the necessary number of
boomerangs we need to find to completely recover the round key and the output
of the S-box.

6.2 Attacking the Second Round

Knowing the entire first round key and one entry of the secret S-box we can
(provided we fix R0,0..7 = L1,0..7 to keep the input to the S-box the same)
start the boomerang in the second round. For this we choose pairs (L1, R1)
and (L′

1, R
′
1) with the input difference of the best five round characteristic and

compute backwards the corresponding values for (L0, R0) and (L′
0, R

′
0). For the

lower part of the boomerang we can now use our 5 round characteristic truncated
to the first 4 rounds. This shortened boomerang will give pairs (L′′

0 , R
′′
0 ) and

(L′′′
0 , R′′′

0 ) with an average probability of 2−(2·11+2·8) = 2−38. We cannot directly
compare the corresponding pairs (L′′

1 , R
′′
1 ) and (L′′′

1 , R′′′
1 ) as with high probability

we do not know the S-box entry to decrypt in the first round. However, we can
still check that the right half difference R′′

0 ⊕R′′′
0 is β = 0x80200100 as desired.

Furthermore, by exhaustively trying all possible output values for the S-box for
pairs with the correct right half difference, we get an additional 32− 8 bit check
for the left half difference. Thus, with high probability we detect correctly pairs
following the boomerang characteristic.

Now, repeating the procedures outlined in Section 5.1 and 6.1 we first recover
the 22 least significant bits of the second round key (rk1,0..21) and afterwards
the remaining 7 bits of the round key (rk1,22..29) as well as one additional entry
of the S-box. Note that the bits rk1,29..31 are known from the last round key.
The complexity of this is now

22 ·
(

7.7 · 238 + 238

2

)
≈ 244.58

for the first step and 2323238 = 244 for the second step.
Using this shortened boomerang described in the last section, we can moreover

recover arbitrary S-box entries by fixing R1,0..7 appropriately. The complexity
for this is again 244 on average.
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7 Conclusions

We have shown three kinds of attacks on the block cipher C2.
When we are allowed to set the encryption key once and then encrypt plain-

texts chosen by us, we can recover the secret S-box with only 224 queries to the
device and a reasonable precomputation phase that we have already done. The
attack implemented on a PC recovers the whole S-box in less than 30 sec. Due to
a low query complexity, we believe that this attack could be applied in practice
to recover S-box from an actual device.

When the S-box is known, we present a boomerang attack that recovers the
key with complexity equivalent to 248 C2 encryptions and works for all possible
S-boxes.

For the most difficult case, when both the key and the S-box are unknown
and we are faced with an equivalent of at least 1740-bit long key, we present an
attack that recovers both of them with complexity of around 253.5 queries to the
encryption device.

Furthermore, we show that the main strength of the cipher lies in the modular
additions rather than the S-box. With modular additions replaced by XORs, one
can find 9 round differentials with probability 1 and boomerangs for all 10 rounds
with probability 1, both regardless of the S-box is used.

All our attacks do not assume anything about the S-box, not even its bi-
jectiveness. Moreover, the first attack does not depend the choice of the linear
mixing map Ψ used in the round function.

It is surprising that the addition of the secret S-box does not substantially
improve the overall security of the design. It shows that to achieve the desired
effect, the algorithm using a secret S-box must be designed very carefully. Prob-
ably a better option would be to use a longer secret key instead.

References

1. Distributed C2 brute force attack : Status page,
http://www.marumo.ne.jp/c2/bf/status.html (accessed on 12/02/2009)

2. C2 Block Cipher Specification, Revision 1.0 (2003),
http://www.4Centity.com, used to be available online from 4C Entity,
http://edipermadi.files.wordpress.com/2008/08/cryptomeria-c2-spec.pdf

3. 4C Entity. Wikipedia article, http://en.wikipedia.org/wiki/4C_Entity (ac-
cessed on 11/02/2009)

4. Cryptomeria cipher. Wikipedia article,
http://en.wikipedia.org/wiki/Cryptomeria_cipher (accessed on 11/02/2009)

5. 4C Entity. C2 facsimile s-box,
http://www.4centity.com/docs/C2_Facsimile_S-Box.txt

6. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the ser-
pent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357.
Springer, Heidelberg (2001)

7. Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

http://www.marumo.ne.jp/c2/bf/status.html
http://www.4Centity.com
http://edipermadi.files.wordpress.com/2008/08/cryptomeria-c2-spec.pdf
http://en.wikipedia.org/wiki/4C_Entity
http://en.wikipedia.org/wiki/Cryptomeria_cipher
http://www.4centity.com/docs/C2_Facsimile_S-Box.txt


Cryptanalysis of C2 265

8. Feller, W.: An introduction to probability theory and its applications, 3rd edn.,
vol. I. Wiley, Chichester (1968)

9. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp.
75–93. Springer, Heidelberg (2001)

10. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of
addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer,
Heidelberg (2002)

11. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of step-reduced
SHA-256. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 126–143.
Springer, Heidelberg (2006)

12. Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

13. Weinmann, R.-P.: Algebraic S-Box recovery: the case of Cryptomeria. Presenta-
tion at Echternach Seminar on Symmetric Cryptography, Echternach, Luxembourg
(11/01/2008),
http://wiki.uni.lu/esc/docs/rpw_friday_algebraic_sbox_recovery.pdf

A Appendix

A.1 Equations Describing Ψ : Y → U

u0 = y0 + y1 + y2 + y10 + y23 u16 = y0 + y3 + y7 + y16 + y26

u1 = y1 + y2 + y6 + y11 + y24 u17 = y1 + y4 + y7 + y8 + y17 + y27

u2 = y2 + y3 + y7 + y12 + y25 u18 = y0 + y2 + y5 + y9 + y18 + y28

u3 = y0 + y3 + y4 + y13 + y26 u19 = y1 + y3 + y6 + y10 + y19 + y29

u4 = y1 + y4 + y5 + y14 + y27 u20 = y2 + y4 + y7 + y11 + y20 + y30

u5 = y2 + y5 + y6 + y15 + y28 u21 = y0 + y3 + y5 + y12 + y21 + y31

u6 = y6 + y16 + y29 u22 = y0 + y1 + y4 + y13 + y22

u7 = y7 + y17 + y30 u23 = y1 + y2 + y5 + y14 + y23

u8 = y7 + y8 + y18 + y31 u24 = y2 + y15 + y24

u9 = y6 + y9 + y19 u25 = y7 + y16 + y25

u10 = y7 + y10 + y20 u26 = y0 + y17 + y26

u11 = y0 + y11 + y21 u27 = y1 + y18 + y27

u12 = y1 + y12 + y22 u28 = y2 + y19 + y28

u13 = y2 + y13 + y23 u29 = y3 + y20 + y29

u14 = y6 + y14 + y24 u30 = y0 + y4 + y7 + y8 + y21 + y30

u15 = y7 + y15 + y25 u31 = y0 + y1 + y5 + y9 + y22 + y31

http://wiki.uni.lu/esc/docs/rpw_friday_algebraic_sbox_recovery.pdf
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A.2 Masterkey Bits vs. Round Keys

Table 2. A list of master key bits used to generate the round keys in rounds 1 up to 10

round master key bits used for the addition bits input to the S-box
1 {0, . . . , 31} 32 33 34 35 36 37 38 39
2 {39, . . . , 55} ∪ {0, . . . , 14} 15 16 17 18 19 20 21 22
3 {22, . . . , 53} 54 55 0 1 2 3 4 5
4 {5, . . . , 36} 37 38 39 40 41 42 43 44
5 {44, . . . , 55} ∪ {0, . . . , 19} 20 21 22 23 24 25 26 27
6 {27, . . . , 55} ∪ {0, 1, 2} 3 4 5 6 7 8 9 10
7 {10, . . . , 41} 42 43 44 45 46 47 48 49
8 {49, . . . , 55} ∪ {0, . . . , 24} 25 26 27 28 29 30 31 32
9 {32, . . . , 55} ∪ {0, . . . , 7} 8 9 10 11 12 13 14 15
10 {15, . . . , 46} 47 48 49 50 51 52 53 54
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Abstract. We design an efficient mode of operation on block ciphers,
SS-NMAC. Our mode has the following properties, when instantiated
with a block cipher f to yield a variable-length, keyed hash function H :
(1) MAC Preservation. H is a secure message authentication code

(MAC) with birthday security, as long as f is unpredictable.
(2) PRF Preservation. H is a secure pseudorandom function (PRF)

with birthday security, as long as f is pseudorandom.
(3) Security against Side-Channels. As long as the block cipher f

does not leak side-channel information about its internals to the
attacker, properties (1) and (2) hold even if the remaining imple-
mentation of H is completely leaky. In particular, if the attacker
can learn the transcript of all block cipher calls and other auxiliary
information needed to implement our mode of operation.

Our mode is the first to satisfy the MAC preservation property (1)
with birthday security, solving the main open problem of Dodis et al. [7]
from Eurocrypt 2008. Combined with the PRF preservation (2), our
mode provides a hedge against the case when the block cipher f is more
secure as a MAC than as a PRF: if it is false, as we hope, we get a secure
variable-length PRF; however, even if true, we still “salvage” a secure
MAC, which might be enough for a given application.

We also remark that no prior mode of operation offered birthday se-
curity against side channel attacks, even if the block cipher was assumed
pseudorandom.

Although very efficient, our mode is three times slower than many of
the prior modes, such as CBC, which do not enjoy properties (1) and
(3). Thus, our work motivates further research to understand the gap
between unpredictability and pseudorandomness of the existing block
ciphers, such as AES.

1 Introduction

Most primitives in symmetric-key cryptography are built from block ciphers,
such as AES. Typically, one models the block cipher as a fixed-input-length (FIL)
pseudorandom permutation (PRP), and then builds a more complex variable-
input-length (VIL) primitive under this assumption. For many such VIL primi-
tives, like pseudorandom functions (PRFs), this strong assumption on the block
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cipher is justifiable. One exception here is the design of message authentication
codes (MACs): since the resulting primitive only needs to be unpredictable, it
would be highly desirable to only assume that the block cipher is unpredictable
as well, as opposed to pseudorandom. Indeed, it seems that assuming the block
cipher is unpredictable is a much weaker assumption than assuming full pseu-
dorandomness: to break the latter, all one needs to do is to predict one bit of
“random-looking” information about the block cipher with probability just a
little over 1/2, while the former requires one to fully compute the value of the
block cipher on a new point with non-trivial probability. Thus, it is natural to
ask the following central question of this work:

Question 1. Can one build an efficient variable-input-length MAC from a block
cipher which is modeled as an unpredictable permutation (UP) on n-bits?

We will argue that no existing constructions are really satisfactory for achiev-
ing this natural goal. In order to discuss this precisely, we briefly recall some
key quantities which determine the security of a construction. In this paper we
consider only two types of adversaries: distinguishers, whose goal is to distin-
guish a function from an ideal primitive (as for PRFs and PRPs) and forgers,
whose goal is to predict the value of the function on an un-queried message
(as for MACs and UPs). As there often exist constant-query attacks using very
long messages, the most important measure of an adversary’s efficiency is the
total length of messages that it queries. This upper bounds, among others, the
number of queries made by the adversary. For functions that are built from a
smaller primitive (such as, in all the cases we consider, a permutation), a more
convenient efficiency measure is the number of queries one must make to the
smaller primitive in order to evaluate the adversary’s queries. In this section we
let q stand for the latter number, as opposed to the number of queries actually
made by the adversary to its oracle.

Let C be a function built from a block cipher f . The security1 ε = ε(q) of
C is the maximum advantage of an adversary for which the number of calls to
f necessary to compute the adversary’s queries to C does not exceed q. Thus,
lower ε implies better security. We write εmac and εprf to distinguish the security
C as MAC and PRF, respectively. Likewise the block cipher has a security εup
and εprp as a UP and as PRP, respectively.2 The rate of a VIL-function C is
the number of times the block cipher has to be called on each input block, so it
measures the efficiency of C. We can now rephrase our goal as follows. Given a
block cipher f with UP security εup, construct a VIL-MAC C such that:

(a) C has small constant rate;
(b) the security εmac of C is as small as possible as a function of εup.

A good way to quantify the “goodness” of εmac is to assess the maximum q for
which the achieved bound is meaningful, assuming that the block cipher has ideal
1 Other parameters, such as the running time allowed to the adversary, may be relevant

for the security, but these are not important here.
2 In fact εup = εmac for a block cipher, since these refer to the same notion, but we

write εup to emphasize the difference with C.
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security εup ∼ 1/2n as an unpredictable permutation. For example, if εmac =
O(εup · q2), then the bound is meaningful for q up to ∼ 2n/2, which matches the
classical birthday bound typically achieved when one models the block cipher as
a PRP. As argued by Preneel and van Oorschot [15], a simple extension attack
shows that the birthday security is the best security one may hope to achieve
by natural “iterative” constructions. On a positive, several elegant (iterative)
constructions matching this bound are known, when modeling the block cipher
as a PRP. On a negative, no existing constructions, iterative or otherwise, come
even close to the birthday security when assuming UPs as opposed to PRPs.
Thus, our “golden standard” to answer Question 1 will be to solve.

Question 2. Build an (iterative) VIL-MAC from UPs, having constant efficiency
rate and (nearly) birthday security.

Jumping ahead, this will be our main result, therefore resolving the main open
question of Dodis et al. [7] from Eurocrypt 2008. But first, let us survey what
is known, to better understand the difficulties we will have to face, and also
motivate our approach.

1.1 Inapplicability of Existing Solutions

There is a huge number of proposals for building a VIL-MAC out of a block
cipher. Unfortunately, it turns out that most of them are insecure when instan-
tiated with unpredictable block ciphers, — often despite having simple proofs of
security when one models the block cipher as a PRP, — and the few that are se-
cure, achieve extremely poor rate and/or security. In the full version [9], we give
a detailed listing of many “failed” approaches to build an efficient VIL-MAC
from an unpredictable block cipher. Here, we will only give a brief summary,
concentrating on the approaches most relevant to our eventual solution.

In brief, the existing approaches in question include the following: (1) generic
route from unpredictability to pseudorandomness [10, 13]; (2) CBC-MAC [4,
14]; (3) HMAC/NMAC [6, 3]; (4) various ad-hoc methods (e.g., iterating the
truncated version of the block cipher); (5) hash-then-MAC using (almost) uni-
versal hashing [5, 3]; (6) hash-then-MAC using collision-resistant hashing; (7)
Feistel Network [11,8]; and (8) the current best method called “enhanced CBC”
mode [7]. Of these, approaches (2), (3), (4) and (5) are completely insecure when
instantiated with generic UPs (as opposed to PRPs!). This is simple to see for
(3), (4) and (5), and was shown by An and Bellare [2] for the CBC-MAC (ap-
proach (2)). The generic approach (1) is secure, but very inefficient, which is not
surprising.

Approach (6), using a collision-resistant hash function (CRHF) H to hash
the VIL message before applying a FIL-MAC, also works in principle, but is
not satisfactory. In theory, the assumption that CRHFs exist is much stronger
than the existence of UPs (or even PRPs); for example, there is a black-box
separation [18] between these assumptions. Even in practice, where many hash
functions are built from block ciphers, the resulting hash functions appear to
require a larger security parameter than the “stand-alone” block ciphers they



270 Y. Dodis and J. Steinberger

are built from. For example, while the industry standard AES has input length
128, no existing hash function with 128-bit output is considered secure (e.g.,
MD5 and related functions are broken [19]); in fact, NIST does not recommend
using any hash function with output size below 256, including 160-bit SHA-1.

Weak Collision-Resistance. Thus, we would like to base security of the
“hash-then-mac” approach on weaker hash functions than CRHFs. As was demon-
strated by [6], the precisely correct notion for this task is that of Weak Collision
Resistance (WCR). Such hash functions H are keyed, and their key is part of
the secret key for the resulting VIL-MAC. In terms of security, it should be
infeasible for the attacker to come up with distinct inputs x and y such that
H(x) = H(y), even when given oracle access to H . An and Bellare [2] then
showed that WCR hash functions have similar properties to CRHFs: in par-
ticular, the (strengthened) Merkle-Damgard transform gives a VIL-WCR hash
function from a FIL-WCR hash function, which can then be used in “hash-then-
mac” approach. Moreover, both security reductions are tight for our purposes.

Thus, to efficiently answer Question 1, it is sufficient to build a fixed-input-
length sufficiently compressing (say, two-to-one) WCR hash family. Indeed, this
is the route of all existing solutions (e.g., approaches (7) and (8)), as well as our
solution. However, to also answer Question 2 would additionally require a WCR
hash with birthday security, which was not known prior to this work.

Building WCR from UP. This question appears to be non-trivial. In par-
ticular, only two secure solutions were known prior to this work (approaches
(7) and (8) above). First, Dodis and Puniya [8] showed how to construct a
two-to-one FIL-WCR from ω(log κ) independent UPs, where κ is the security
parameter. The construction applied ω(log κ) rounds of the Feistel Network
π(x‖y) = (y‖f(y)⊕x) to the 2n-bit input, each with a different UP f , and then
truncated the last output in half. Moreover, they showed that O(log κ) rounds are
generally insufficient for this task (extending the three-round counter-example
of [2], and in sharp contrast to the setting of PRPs, where three rounds are
already enough [11]). This means that the resulting super-constant rate ω(log κ)
of this particular construction cannot be improved, making it somewhat inef-
ficient for practice. More significantly, the security of this construction proven
by [8] was only O(εup · q6), meaning that it can only be secure for at most 2n/6

messages, which is unacceptable for n = 128.
The best current WCR construction from UPs comes from the work of Dodis

et al. [7], who made the surprisingly simple observation that the function h(x‖y) =
f1(x) ⊕ f2(y) is a two-to-one, rate-2 WCR hash function, assuming f1 and f2
are two independent UPs. This immediately gives a rate-2 VIL-MAC from UPs,
which is very efficient, and is the first (and only) constant-rate solution to Ques-
tion 1 known prior to this work. Unfortunately, the security of this WCR function
(and the resulting VIL-MAC) is O(εup · q4). Moreover, it is easy to see that this
bound is actually tight. Thus, the construction can only be secure for at most
2n/4 messages, again making it fall short of our goal of obtaining security up to
2n/2. In fact, this question of achieving “birthday security” 2n/2 (which is our
Question 2) was the main open question posed in [7].
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1.2 Our Results

In this work we resolve this question in the affirmative. Concretely, we construct
a VIL-MAC, called SS-NMAC, from four independent UPs f1, . . . , f4, which
achieves rate 3 and security εmac ≈ O(εupq

2 log2(q)), meaning it can be secure
for almost 2n/2 messages. This is the first constant-rate MAC with birthday
security built from an unpredictable block cipher. The construction of SS-NMAC
is depicted in Figure 2, where the message is x = x1 . . .x�.

Our construction uses the WCR approach mentioned earlier: namely, it uses
the (strengthened) Merkle-Damgard iteration of the 2n-bit to n-bit compres-
sion function F (x‖y) = f1(x) ⊕ f3(f1(x) ⊕ f2(y)), which is shown in Figure 1.
This function was originally suggested by Shrimpton and Stam [17], who argued
that F is collision-resistant with birthday security, assuming that f1, f2, f3 are
public random functions (i.e., random oracles). In contrast, our main technical
result (Theorem 1) shows that this function is (weakly) collision-resistant (with
birthday security), even if f1, f2, f3 are only (keyed) unpredictable functions.

We note that since any FIL-MAC is FIL-WCR (Lemma 4.4 [2]) it would suffice
to prove the Shrimpton-Stam compression function is a good MAC in order to
show it is WCR. However, as explained in the full version [9], the Shrimpton-
Stam compression function is not a good enough MAC for our purposes, showing
the necessity of directly proving WCR security.

Comparison with [17]. On a technical level, both results appear similar. In
both cases, assuming the adversary A has oracle access to f1, f2, f3, one has
to argue that A has low chance of finding a collision to F . However, the key
difference is that the fi’s are assumed truly random in [17], whereas we can
only assume unpredictable fi’s. In particular, while [17] could directly bound
the probability of A finding the collision in F using an information-theoretic
argument, we have to build an efficient reduction from the presumed collision-
finding attacker A to a UP-forger B forging one of the MACs. It is well known
that such information-theoretic arguments often do not have direct analogs in
the computational setting. To illustrate this more concretely, let us only discuss
the most interesting such difficulty we had to resolve.

The key argument of [17] was a technical calculation, using factorials, binomi-
als and various probability manipulations, that A is unlikely to find an “n-way
multi-collision” in the auxiliary function h(x‖y) = f1(x) ⊕ f2(y), when f1 and
f2 are truly random functions. To adapt this (critical) part of the argument to
our computational setting, we would have to take an efficient attacker A′ ca-
pable of finding such a multi-collision in h with probability ε, and turn it into
a forger B′ for either f1 or f2, succeeding with probability Ω(ε/q2). As far as
we could see, the probability calculations in [17] give no guidance of how to do
such a reduction. And, indeed, finding such a reduction required a completely
new approach, relating to a natural “balls-and-bins” game that we analyzed (see
Lemma 1), and resulting in a very non-obvious construction of B. We discuss
this construction in detail in Section 4.2, only mentioning that it gave us a bet-
ter understanding of the security of the Shrimpton-Stam compression function,
and even implicitly improved the probability calculations of [17] for the special
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case of truly random functions (corresponding to ε = 2−n in our reduction). In
particular, for the case of random functions we get a convenient closed form of
O(q2 log2(q)/2n) for the collision resistance of the Shrimpton-Stam compression
function, where, as per our convention for this section, q is the total number of
block cipher queries allowed (cf. Theorem 1).

Strong PRF preservation. We also notice that our new mode has the fol-
lowing desirable multi-property preservation guarantee advocated by [7]: if the
block cipher is unpredictable, we get a MAC with message security roughly 2n/2,
while if it happens to be pseudorandom, we get a PRF with message security
roughly 2n/2. In other words, we expect and hope that practical block ciphers
(such as AES) are in fact PRPs with good security. If our hope is correct, we
would get a full-fledged pseudorandom function with good security; however,
even if the block cipher turns out to be a much better MAC than it is a pseu-
dorandom function, we still get a MAC with excellent security, which could be
reassuring for many applications. Details are sketched in Section 5.

More interestingly, even in the setting of PRPs, our SS-NMAC construction
yields a more “leakage-resilient” VIL-PRF H than the prior constructions. In
particular, in Section 6 we show that the resulting PRF is secure even in the
so called oracle cipher model, first considered by Dodis et al. [8]. Recall, in
the standard model for PRFs, the attacker only learns the output H(x) of the
PRF on input x, but does not learn any of the intermediate values, such as
the inputs/outputs to the block cipher or any of the chaining variables. Indeed,
this secrecy of the intermediate values is completely essential to the security of
most standard constructions, such as CBC-MAC or the standard Luby-Rackoff
transformation [11]. In other words, these constructions are actually broken in
the oracle cipher model, irrespective of the strength of the block cipher used (e.g.,
even with AES). In contrast, our SS-NMAC construction is a secure VIL-PRF
— with (essentially) the same birthday security — even when the attacker learns
all the intermediate values needed to obtain H(x), except for what is done inside
the actual block-cipher computations. More precisely, even if the attacker learns
all the computation history of our SS-NMAC construction on a bunch of points
(not including the internals of the block ciphers), the value of the function at any
set of non-queried points looks random to the attacker. Thus, as long as the block
cipher is implemented in a “leakage-resilient” way, the remaining implementation
of SS-NMAC can be completely insecure with respect to side-channel attacks!
We believe that the security in the oracle model is quite important, since we
envision secure hardware-based implementation of block-ciphers, later composed
with much less secure software-based solutions, to yield various more advanced
VIL primitives. We also remark that none of the two previous PRF constructions
in the oracle cipher model [8,7] achieved anything close to birthday security.

Summary. To summarize, in addition to yielding a more secure VIL-MAC than
prior constructions in the case when εup � εprp, our construction gives a more
“leakage-resilient” (and equally secure!) VIL-PRF even when assuming εprp is
nearly as good as εup. Moreover, we only pay a small constant factor price in
efficiency for these (significant) security enhancements. In Section 7, we briefly
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discuss whether this slowdown is justifiable in practice, which ultimately calls
for more research to understand the gap between unpredictability and pseudo-
randomness of the existing block ciphers, such as AES.

2 Security Definitions

We briefly recall the standard security notions for MACs and PRFs. In each
case we are interested in resistance to chosen message attacks. For a MAC, an
adversary succeeds if it can forge the MAC on an un-queried value. For a PRF,
the adversary succeeds if it can distinguish the PRF from a truly random oracle.
To measure an adversary’s efficiency we count not only the number of oracle
queries made but also the time and the total length of queried messages (as
the oracles accept variable length inputs). In this section we use the variable q̃
to denote the number of queries made by the adversary to its oracle in order
to emphasize the distinction from the variable q used in Section 1, which was
defined as the (distinct) number of block cipher calls necessary to evaluate those
queries (the adversary does not have direct access to the block cipher). In later
sections we maintain the spirit of this convention, using q̃ for queries made to
VIL-functions and q for queries made to FIL-functions (usually block ciphers).

A function family is a map f : {0, 1}κ×Dom(f)→ {0, 1}n where Dom(f) ⊆
{0, 1}∗. The strings in {0, 1}κ are the keys of f and we write fk(x) for f(k, x)
for k ∈ {0, 1}κ and x ∈ Dom(f). The function fk is called a member of f .

For MACs we consider the following game, where A is an adversary with
oracle access to fk:

Game Forge(A, f):
k ← {0, 1}κ; (x, y)← Afk

If x ∈ Dom(f), fk(x) = y and x was not a query of A then A
wins, otherwise A looses.

Following An and Bellare [2] we define the insecurity of f as a MAC to be

InSecmac
f (t, q̃, μ) := max

A
Pr[A wins Forge(A, f)]

where the maximum is taken over all adversaries A making at most q̃ queries
whose total combined length is at most μ bits and of “running time” at most t.
The “running time” is defined to be the total running time of the experiment,
including the time necessary to compute the answers to A’s queries. (The advan-
tage of this definition is that a simulator running A and computing the answer
to A’s queries from scratch has essentially the same running time t.)

For PRF security the game is modified by either giving A access to a random
fk or to a random oracle g : Dom(f)→ {0, 1}n with probability 1

2 and A wins if it
correctly identifies whether its oracle is fk or g. Call this game ‘Identifies(A, f)’.
Then

InSecprf
f (t, q̃, μ) := max

A
Pr[A wins Identifies(A, f)]− 1

2
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where again the maximum is taken over all adversaries A making at most q̃
queries of total length μ and of running time t, with the same convention con-
cerning running time.

The proof finally uses the notion of “weak collision resistance” (WCR), which
measures the collision resistance of a function only available as an oracle to the
adversary. In the weak collision resistance game for the function family f , A is
given oracle access to a random fk and wins if it succeeds in querying fk on two
distinct points x, y such that fk(x) = fk(y). Then InSecwcr

f (t, q̃, μ) is defined
similarly with respect to this game as InSecmac

f (t, q̃, μ) is defined with respect
to the game Forge(A, f).

3 The SS-NMAC Construction

The basic SS-NMAC scheme is shown in Figure 2. The scheme uses the Merkle-
Damgard iteration of the 2n-bit to n-bit compression function of Shrimpton and
Stam [17] shown in Figure 1. We start by describing this compression function.

The Shrimpton-Stam compression function. The Shrimpton-Stam com-
pression function is a 2n-bit to n-bit compression function that uses calls to three
different n-bit to n-bit primitives f1, f2, f3. We write the compression function
as F [f1, f2, f3] to emphasize its dependence on f1, f2, f3. It is defined by

F [f1, f2, f3](x‖y) = f1(x) ⊕ f3(f1(x)⊕ f2(y))

for any pair of n-bit strings x, y.
Shrimpton and Stam [17] proved that F [f1, f2, f3] has optimal (i.e. birthday)

collision resistance if f1, f2, f3 are random functions. They also conjectured that
the construction remains collision resistant if fi(x) is replaced with πi(x) ⊕ x
where π1, π2, π3 are random permutations, which would enable the construction
to be implemented with fixed key block ciphers. This conjecture was verified by
Rogaway and Steinberger [16].

For our purposes, the key property of F [f1, f2, f3] is that an adversary with
oracle access to the fi’s can only learn F [f1, f2, f3](x‖y) on roughly as many
inputs x‖y as it makes queries. This should be contrasted for example to the
compression function h[f1](x‖y) = f1(x ⊕ y) of the CBC MAC or the “xor

f2y

f1x

f3 F (x, y)

Fig. 1. The Shrimpton-Stam compression function. All wires carry n-bit values.
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Fig. 2. The SS-NMAC mode of operation

compression function” g[f1, f2](x‖y) = f1(x) ⊕ f2(y) of the enciphered CBC
construction of Dodis, Pietrzak and Puniya [7], where f1, f2 are again n-bit to
n-bit functions. An adversary querying h[f1] can learn to evaluate h[f1] on 2n

inputs x‖y in a single query; an adversary querying g[f1, f2] can learn to evaluate
g[f1, f2] on q2 inputs x‖y in q queries. Another compression function that could
be used equally well in place of F [f1, f2, f3] is the LP231 compression function
of Rogaway and Steinberger [16], which also uses three calls to n-bit to n-bit
primitives. However we use F [f1, f2, f3] because it is simpler and sufficient for
our purposes.

Iteration and Padding. First we define PadAp(x) to be x10k〈�〉 where k
is the least integer such that x10k has length a multiple of n, where � is the
number of n-bit blocks in x10k, and where 〈�〉 is � written as an n-bit binary
integer (messages with maximum length 2n are sufficient for most applications).
Appending 〈�〉 amounts to using Merkle-Damgard strengthening, which we do
in order to keep our space of messages suffix-free. Any other suffix-free encoding
of messages would do as well.

To iterate F [f1, f2, f3] we define the “SS-cascade” G[f1, f2, f3] of an n�-bit
string x = x1‖· · · ‖x� where each xi is an n-bit string by G[f1, f2, f3](x) = y�

where y0 = 0n and yk = F [f1, f2, f3](xk‖yk−1) for 1 ≤ k ≤ �. Finally, given an
additional n-bit to n-bit function f4 we define the SS-NMAC H [f1, f2, f3, f4] by

H [f1, f2, f3, f4](x) = f4(G[f1, f2, f3](x)).

for all x ∈ Dom(H) := {PadAp(y) : y ∈ {0, 1}∗}. See Figure 2, where x =
x1‖· · · ‖x�‖〈�〉. Note that to query H [f1, f2, f3, f4] on its domain an adversary
must pad the input itself before giving it to the oracle. Thus queries must be
at least n bits long and the number of queries made by an adversary is up-
per bounded by μ/n where μ is the total length of messages queried by the
adversary.

For the remainder of the paper we let f : {0, 1}κ × {0, 1}n → {0, 1}n be an
arbitrary, fixed function family. We consider H as a function family of signature
{0, 1}4κ × Dom(H) → {0, 1}n, where Hk1k2k3k4(x) := H [fk1 , fk2 , fk3 , fk4 ](x).
Likewise we consider F as a function family of signature {0, 1}3κ × {0, 1}2n →
{0, 1}n defined by Fk1k2k3(x‖y) = F [fk1 , fk2 , fk3 ](x‖y).
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4 Security of SS-NMAC as a MAC

4.1 Overview

In this section we outline the proof that SS-NMAC is a secure MAC when
f1, . . . , f4 are secure MACs. The proof shows that H is a secure MAC family if
f is a secure MAC family. In fact,

InSecmac
H (t, q̃, μ) ≤

(
1 + 30q2 log2(q)

)
· InSecmac

f (t + O(q2n), q, qn) (1)

where q = μ/n (q̃ is inconsequent, though one automatically has q̃ ≤ q). The
O(q2n) difference in running time is due to the overhead of a simulator.

Like Dodis, Pietrzak and Puniya [7], our security proof follows the approach
developed by An and Bellare [2], who reduce the VIL-MAC security to FIL-WCR
security. In order to summarize their method in a convenient way we refer to the
members of a function family as being MAC-secure or WCR-secure (see section
2 for the definition of WCR security) though security is really a property of the
function family. An and Bellare reduce the MAC security of a VIL function to
the WCR security of a FIL function in two steps:

Step 1: The composition of a secure FIL-MAC fk and a secure WCR func-
tion Gk′ is a secure VIL-MAC fk(Gk′ (·)) (Lemma 4.2 [2]). Applying this to the
case where fk = fk4 and Gk′ = G[fk1 , fk2 , fk3 ] it therefore suffices to show that
G[fk1 , fk2 , fk3 ] is WCR-secure if f is a secure MAC family in order to show that
H [fk1 , fk2 , fk3 , fk4 ] = fk4(G[fk1 , fk2 , fk3 ]) is a secure MAC family.

Step 2: On a suffix-free domain of inputs the Merkle-Damgard iteration of a
FIL-WCR compression function gives a VIL-WCR function (Lemma 4.3 [2]).
Thus, by step 1, it suffices to show that the Shrimpton-Stam compression func-
tion F [fk1 , fk2 , fk3 ] is FIL-WCR when f is a secure MAC family.

Steps 1 and 2 give a qualitative description of An and Bellare’s approach. Quan-
titatively, their Lemmas 4.2 and 4.3 imply that

InSecmac
H (t, q̃, μ) ≤ InSecmac

f (t, q, qn) + InSecwcr
F (t, q, 2qn) (2)

where q = μ/n. Since InSecmac
f (t, q, qn) ≤ InSecmac

f (t+ O(q2n), q, qn) it there-
fore suffices to prove

InSecwcr
F (t, q, 2qn) ≤ 30q2 log2(q) · InSecmac

f (t + O(q2n), q, qn) (3)

in order to prove (1). Inequality (3) is really the paper’s main result, and we
state it as a theorem:

Theorem 1. Let f : {0, 1}κ×{0, 1}n→ {0, 1}n and let F : {0, 1}3κ×{0, 1}2n →
{0, 1}n given by Fk1k2k3(x‖y) = F [fk1 , fk2 , fk3 ](x‖y) = fk1(x) ⊕ fk3(fk1(x) ⊕
fk2(y)). Then

InSecwcr
F (t, q, 2qn) ≤ 30q2 log2(q) · InSecmac

f (t + O(q2n), q, qn).
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The full proof of Theorem 1 is proven in the full version [9], but we give an
outline in the next section.

Together with Lemmas 4.2 and 4.3 of [2], Theorem 1 implies inequality (3),
which we restate as our theorem characterizing the MAC security of SS-NMAC:

Theorem 2. Let f : {0, 1}κ×{0, 1}n→ {0, 1}n and let H : {0, 1}4κ×Dom(H)→
{0, 1}n be the SS-NMAC function family. Then, letting q = μ/n,

InSecmac
H (t, q̃, μ) ≤

(
1 + 30q2 log2(q)

)
· InSecmac

f (t + O(q2n), q, qn).

4.2 Proof Outline

In this section we give a proof of Theorem 1 under several simplifying assump-
tions, which make our presentation considerably easier, while maintaining the
key ideas of the full proof. Recall, we need to upper bound the WCR-insecurity
of the Shrimpton-Stam compression function F in terms of the MAC-insecurity
of f . Equivalently, we must lower bound the MAC-insecurity of f in terms of the
WCR-insecurity of F . To do the latter, we show how an ε-collision-finding ad-
versary A for F can be turned into a δ-MAC-forging adversary B for f , where B
uses the same number of queries but has chance of success δ = Ω(ε/q2 log2(q)).

First, instead of giving A oracle access to F [f1, f2, f3], we directly give it oracle
access to f1, f2, f3, with q queries allowed to each fi. Clearly, such an adversary
can simulate q queries to F , so we only made A more powerful. (Note, this
strengthened attacker will be useful when we extend our argument to the “oracle
cipher” model in Section 6.) Let us generally denote the inputs to f1, f2, f3 by
x, y, z, respectively, and also denote by x1 . . .xq, y1 . . . yq and z1 . . . zq the ordered
inputs to f1, f2, f3 supplied by A. As expected, the forger B will simulate this
adversary A when trying to forge one of the fi’s, by using its own oracle to
simulate the corresponding fi, and simulating the other fj ’s by picking their
secret keys by itself and answering honestly.

Simplifying Assumptions. Before proceeding further, we state our simplifying
assumptions on the behavior of A, which will make our construction of B much
simpler, while retaining the key ingredients of the general case.

– (No Collision in fi’s) For any distinct inputs xr and xs that A supplied
to f1, f1(xr) �= f1(xs). Similar conditions also hold for f2 and f3.

– (Query Order) All the calls to f1 and f2 are made by A before any call to
f3 is made.

Let us briefly comment on these assumptions. The first assumption regarding the
collisions in the fi’s is very minor, and is done for convenience only. Indeed, in
the actual applications, the fi’s are permutations, so the assumption is trivially
true. And even if the fi’s are arbitrary length-preserving MACs, the failure to
satisfy our assumption with probability Ω(ε) trivially leads to a simple attacker
B, forging the corresponding fi with probability Ω(ε/q2), by simply guessing the
indices r, s ∈ {1 . . . q} of the colliding queries. So the only “real” assumption we
make is the Query Order Assumption. This assumption is provably impossible
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for the “initial” attacker who has oracle access to F [f1, f2, f3], as opposed to
f1, f2, f3 (since f3 will be called on the first call there), and is even more
unreasonable for the generalized attacker that can query the fi’s in any order it
wants. However the assumption is used in a rather weak way in the proof sketch,
as we will see, so that eliminating it only requires additional casework, and no
significant new ideas.

Notation and Terminology. A ball is a pair (x, y) where x, y ∈ {0, 1}n. A
bin is a value z ∈ {0, 1}n. It is instructive to associate balls (x, y) with the inputs
to F , and the bins z with the inputs to f3. After A makes q queries x1 . . .xq to
f1 and y1 . . . yq to f2, we get Q = q2 potential balls (xr , ys) “thrown” by A. In
particular, we will say that such (xr , ys) is placed into the bin z = f1(xr)⊕f2(ys),
and let Bin(z) = {(xr, ys) : f1(xr) ⊕ f2(ys) = z} denote the set of balls placed
into bin z. Notice, each query xr to f1 allows the attacker to simultaneously place
j ≤ q balls (xr , y1), . . . , (xr , yj), where j is the number of queries to f2 made so
far. However, under our No Collision assumption of f2, all these j balls go to
distinct bins f1(xr) ⊕ f2(ys), where 1 ≤ s ≤ j. Similar discussion holds for the
calls to f2. Also, under our Query Order Assumption, the attacker A places
all Q balls into the appropriate bins in the first stage, before making any of its
queries z1 . . . zq to f3 in the second stage. And after each such query zt to f3, A
learns the value of F (x‖y) = f1(x) ⊕ f3(zt) precisely for all (x, y) ∈ Bin(zt).

Back to Reduction. By our assumption, A will find a collision (x, y) �=
(x′, y′) to F with probability ε. Without loss of generality, we assume that A
makes the queries necessary to verify this collision. Thus, x, x′ ∈ {x1, . . . , xq},
y, y′ ∈ {y1, . . . , yq}, and z, z′ ∈ {z1, . . . , zq}, where z = f1(x) ⊕ f2(y) and z′ =
f1(x′) ⊕ f2(y′). Notice, under our No Collision assumption on f1 and f2, we
claim that z �= z′. Otherwise, f3(z) = f3(z′) and f1(x) ⊕ f3(z) = F (x‖y) =
F (x′‖y′) = f1(x′)⊕f3(z′) imply that f1(x) = f1(x′), meaning that x = x′. Then
f2(y) = f1(x)⊕z = f1(x′)⊕z′ = f2(y′), so y = y′, meaning that (x, y) = (x′, y′).
Hence, the “colliding” bins z and z′ queried by A must be distinct.

We now define a key parameter which will determine the behavior of our
forger B: the maximum bin size m = maxz |Bin(z)| after the calls to f1 and
f2 (the “filling” stage). We consider two complementary cases: (1) A finds a
collision and m ≤ log(q), meaning that every bin z contains at most log(q) balls
after the calls to f1 and f2 are finished; and (2) m > log(q), meaning that A
managed to produce more than log(q) pairs (xr , ys) resulting in the same value
z = f1(xr)⊕ f2(ys).

(Interestingly, this parameter m corresponds to the largest “multi-collision”
generated by A in the “filling” stage. As argued by Shrimpton and Stam [17] for
the case of truly random functions fi and q ≈ 2n/2, the value m must be smaller
than n1+o(1) ≈ log q with high probability, more or less corresponding to saying
that the attacker A must almost always be in case (1).)

By assumption that A succeeds to find a collision with probability ≥ ε, at
least one of these complementary cases happens with probability ≥ ε/2.
Case (1): A finds a collision and m ≤ log(q). This is the “easy” case. Intuitively,
by querying at most q bins z in the second stage, A learned the value of F in
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at most qm ≤ q log(q) points (x, y). As we will see, it will allow B to guess
the colliding points (x, y), (x′, y′) with probability 1/(q log(q))2, and then forge
the value f3(z′) = f3(z) ⊕ f1(x) ⊕ f1(x′). More formally, B starts by choosing
two random indices j < i between 1 and q. Let zi, zj be the i-th and j-th
queries made to f3. When the query f3(zi) is made, B chooses random elements
(xi, yi) ∈ Bin(zi) and (xj , yj) ∈ Bin(zj) (assuming these sets are nonempty,
otherwise B gives up), and predicts that f3(zi) = f1(xi)⊕f1(xj)⊕f3(zj). Notice,
this corresponds to guessing that F (xi, yi) = F (xj , yj), which implies that A is
about to find a collision. This strategy cannot be successful unless A finds a
collision (which we are assuming happens in this case), and unless the colliding
bins zi and zj are distinct, which we also argued earlier as following from our No
Collision assumption. But when A does find a collision, B’s chance of guessing
the indices i, j correctly is 1/

(
q
2

)
≥ 1/q2. Moreover if maxz |Bin(z)| ≤ log(q),

B’s chance of guessing the right elements (xi, yi) and (xj , yj) in Bin(zi) and
Bin(zj) is at least 1/ log(q) each. Thus B’s chance of success with this strategy
is at least 1/q2 log2(q) when maxz |Bin(z)| ≤ log(q) and A finds a collision.

Case (2): A produces m > log(q). This is the “hard” case, where our balls-
and-bins terminology comes in handy. Intuitively, if A throws q2 balls with a
guarantee that some bin will contain a lot of balls at the end, B should have a
non-trivial chance (analyzed below) to guess the bin z corresponding to some
ball (x, y) before this ball is thrown. To effect such a guess, when A “throws” the
ball (x, y) by querying, say, f1(x) after previously querying f2(y), B can predict
that f1(x) = z ⊕ f2(y), or conversely with f1 and f2 reversed if A queries f2(y)
after querying f1(x). In other words, predicting the output of f1 or f2 on a value
queried by A is equivalent to predicting the bin where a particular ball (x, y) will
land at the point when the latest of the two queries f1(x), f2(y) is made. Thus,
we may view B’s task as consisting of observing a set of Q = q2 balls being
placed by groups in 2n bins, and interrupting the game at some point to predict
the bin where a particular ball that is about to be placed. We model this by a
“balls-and-bins” game played by A and B, where A is incrementally throwing
Q balls into bins, trying to fill some bin with more than log(q) balls, and yet
without having B be able to guess the position of a ball before it is placed. Based
on our discussion, the precise “rules” of this game are as follows:

Balls-and-Bins Game:

– The game proceeds in 2q rounds, after which A is required to throw exactly
Q = q2 balls.

– Before each round, A announces to B at most q balls b1, . . . , bt that it will be
throwing into (necessarily) distinct bins in this round. [Intuitively, a round
corresponds to a query to f1(xr) (or f2(ys)), and the balls are the corre-
sponding values (xr, yj) (or (xi, ys)) for prior xi’s or yj ’s.]

– In turn, B can secretly “pass” or make a “guess” (�, z) that the ball b� will
be thrown into bin z (where 1 ≤ � ≤ t). [Intuitively, a successful guess will
allow B to forge either f1 or f2, as outlined earlier.]
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– A announces to B the bins where b1 . . . bt are thrown. [Intuitively, B learns
the value of f1 or f2 at the queried point, allowing it to learn the bin iden-
tities.]

– If B made a guess during this round, B wins the game if the guess is correct,
and loses otherwise. If B did not make a guess, proceed to the next round.

– B must make a guess at some round, while A must fill at least one bin with
more than (log q) balls.

Lemma 1. Irrespective of A’s strategy, there exists an efficient strategy for B
to win the above game with probability at least 1/4q2 whenever some bin contains
more than log(q) balls at the end of the game.

Proof. B’s strategy is relatively simple:
1. Choose a random index i between 1 and q2, and a second random integer k

between 1 and log(q).
2. Pass in all the rounds before the i-th overall ball is about to be thrown.
3. When the i-th ball is about to be thrown, make a secret guess that this ball

will be thrown in a random bin z chosen among those bins already containing
at least k balls prior to this round (or guess any bin if no such bin exists).

We argue that with this strategy, B’s chance of success is at least 1/4q2, provided
that some bin contains more than log(q) balls by the end of the game. Let cj be
the total number of balls that are thrown into bins that already have at least j
balls in them right before the round when this ball is thrown. Thus c0 = q2 and
clog(q) ≥ 1 by assumption that a “heavy” bin exists at the end of the game. Also
note that cj is an upper bound for the number of bins that have j + 1 balls in
them at the end of the game, since for a bin to receive j + 1 balls, some ball has
to be thrown into it when the bin already has j balls.

For a fixed value of k, B’s chance of correctly guessing the bin is at least
ck

q2 · 1
ck−1

= 1
q2 · ck

ck−1
. This is because B has chance at least ck

q2 of choosing a
ball thrown into a bin with at least k balls, and then has at least chance 1

ck−1
of

choosing the bin correctly, given that there are at most ck−1 bins with k balls
in them even at the end of the game, let alone in some intermediate round.
Summing over the different values of k (which each have chance 1/ log(q) of
being selected), we thus see that B’s chance of success is

log(q)∑
k=1

1
log(q)

· 1
q2 ·

ck

ck−1
=

1
q2 ArithmeticMean

(
c1
c0
, . . . ,

clog(q)

clog(q)−1

)
≥ 1

q2 GeometricMean

(
c1
c0
, . . . ,

clog(q)

clog(q)−1

)
=

1
q2

(
clog(q)

c0

) 1
log(q)

≥ 1
q2

(
1
q2

) 1
log(q)

=
1

4q2

as claimed, where we used c0 = q2 and clog(q) ≥ 1. �



Message Authentication Codes from Unpredictable Block Ciphers 281

The above lemma immediately gives us a forger B for Case (2), which suc-
ceeds to forge either f1 or f2 with probability at least 1/4q2 > 1/(q log(q))2

for that case. As B chooses randomly which strategy to use and one of the two
cases must occur with probability at least ε/2, B’s chance of success is at least
ε
2 min(1/(q log(q))2, 1/4q2) = ε/2(q log(q))2, completing the WCR proof under
our two simplifying assumptions.

General Case. Note that our (main) Query Order Assumption (namely
that queries to f3 come before queries to f1 and f2) is only used rather weakly,
in the sense that A could make its queries in any order as long as the query which
completes the collision is a query to f3. Thus removing this assumption amounts
to handling two extra cases, in which collisions are completed with queries to f1
or f2 instead of f3. It turns out these cases can be handled fairly similarly to
the f3 case. The details are deferred to the full version [9].

5 Security of SS-NMAC as a PRF

In this section we show that SS-NMAC is a secure PRF if f is a secure PRF.
We will prove a stronger property in Section 6; here we give a proof reducing to
the security of encrypted CBC-MAC, which gives a weaker result but a better
security bound. The precise statement is the following theorem.
Theorem 3. Let f : {0, 1}κ × {0, 1}n → {0, 1}n and let H be the SS-NMAC
function family. Then, letting q = μ/n and ε = InSecprf

f (t, q, qn), we have

InSecprf
H (t, q̃, μ) ≤ 5q2/2n + 4ε.

Proof. Let H∗ be the SS-NMAC construction where f1, f2, f3, f4 are random
functions. Then obviously InSecprf

H (t, q̃, μ) ≤ InSecprf
H∗(t, q̃, μ)+ 4ε, so it suffices

to show that InSecprf
H∗(t, q̃, μ) ≤ 5q2/2n where q = μ/n.

We show that InSecprf
H∗(t, q̃, μ) ≤ 5q2/2n by reducing to the security of the

“original” encrypted CBC-MAC, which is defined using a function family f of
n-bit to n-bit functions by

C[f1, f2](x1‖. . . ‖xm) = f2(. . . f1(f1(x1)⊕ x2) . . . )

Let C∗ be the instance of C where f1, f2 are random functions (namely, f is the
set of all functions {0, 1}n → {0, 1}n). It is known that InSecprf

C∗(t, q̃, μ) ≤ q2/2n

where still q = μ/n [14]. The security proof in [14] is also easily seen to apply to
the case of a three-keyed, “alternating” encrypted CBC-MAC defined by

CA[f2, f3, f4](x1‖. . . ‖xm) = f4(. . . f2(f3(f2(x1)⊕ x2)⊕ x3) . . . )

in which encryptions by f2 and f3 alternate. Thus InSecprf
C∗

A
(t, q̃, μ) ≤ q2/2n

where C∗
A is the random function implementation of CA.

Note that CA becomes H if each block of input is repeated once and encrypted
with a call to f1. Thus a distinguisher D for H∗ can be used to obtain a distin-
guisher D′ for C∗

A: sample a key k1 to simulate the function fk1 , then simulate
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a query x1‖· · · ‖xm of D to the oracle H∗ by passing fk1(x1)‖fk1(x1)‖fk1(x2)
‖fk1(x2) · · · fk1(xm)‖fk1(xm) to the oracle for C∗

A.
If the oracle is a true instance of C∗

A the answers returned to D look exactly
as the answers of an oracle to H∗, so D’s chance of distinguishing correctly is
unaffected in that case. If on the other hand the oracle is a random function
the answers returned to D are independent random values except when the
same input is queried twice to the random oracle, which can happen because of
collisions in fk1 . The chance of a collision in fk1 when q = μ/n blocks of message
are queried and fk1 is a random function is at most q2/2n, however, so D and
D′’s distinguishing advantages differ by at most q2/2n. Thus, since D′ uses twice
the message length, we get the desired

InSecprf
H∗(t, q̃, μ) ≤ InSecprf

C∗
A
(t, q̃, 2μ) + q2/2n ≤ 5q2/2n. �

6 Enhanced PRF Security in the Oracle Cipher Model

In this section, we introduce (following [8]) a strictly stronger PRF security
notion for block-cipher-based PRFs in the so called oracle cipher model, and show
that SS-NMAC has (nearly) birthday “oracle cipher security” when instantiated
with a secure PRP.

Let H be a function using a fixed-key block cipher f (or a small set of dif-
ferent fixed key block ciphers). Essentially, the oracle cipher model is designed
to allow the adversary to view computation transcripts of H , but not includ-
ing the internals of the block cipher calls. For example, one can imagine that
the adversary witnesses a trusted party’s computation of H on various inputs,
where the trusted party out-sources the block cipher calls to a smart-card, so
that the secret keys remain hidden from the adversary. We argue that H is a
good random function if, subsequent to viewing a number of such computations,
the adversary is unable to distinguish H (queried on new values) from a truly
random function.

Let Mf be an oracle Turing machine implementing H . Before the game starts
random keys are chosen for the block ciphers, a random function h with same
domain and range as H is sampled, and a coin flipped to determine whether
the adversary will be in the “real world” or “random world”. We allow the
adversary two types of queries: “transcript” queries and “oracle” queries. When
the adversary A makes a transcript query the transcript of the computation
Mf(x) is returned to A. When the adversary makes a oracle query (oracle queries
must be distinct from transcript queries), the adversary either gets Hf (x) or h(x)
depending on whether it is in the real world or the random world. The adversary
wins if it can distinguish the two worlds.

We call the advantage of an adversary at winning this game the oracle ci-
pher PRF security of H , denoted εoprf . Clearly εoprf ≥ εprf for the same num-
ber of queries and the same computational resources, since the adversary is
free to play the oracle cipher game without making any transcript queries. Let
InSecoprf

H (t, q̃, μ) be the maximum εoprf over all adversaries running in time at
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most t, making at most q queries of total (padded) length at most μ, where
the running time includes the time necessary to run H and Mf . (Obviously,
InSecoprf

H (t, q̃, μ) implicitly depends on the choice of M .) We have the following
theorem showing that the oracle cipher security of SS-NMAC is nearly equivalent
to its standard PRF security.

Theorem 4. Let f : {0, 1}κ × {0, 1}n → {0, 1}n, let H : {0, 1}4κ ×Dom(H)→
{0, 1}n be the SS-NMAC function family, and let Mf1,f2,f3,f4 be the natural
oracle Turing implementation of SS-NMAC , which makes 3�+ 1 oracle calls to
compute H(x) on a padded input of � blocks. Then with respect to this oracle
Turing machine, and letting q = μ/n and ε = InSecprf

f (t, q, qn), we have

InSecoprf
H (t, q̃, μ) ≤ 30q2 log2(q)/2n + 4ε.

Proof. Let H∗ be the instantiation of H with a truly random function family
instead of with f . We clearly have InSecoprf

H (t, q̃, μ) ≤ InSecoprf
H∗ + 4ε, so it

suffices to show InSecoprf
H∗ ≤ 30q2 log2(q)/2n.

We now modify the game like so: for each type of query (transcript and oracle),
the adversary is allowed to view the transcript of the computation of H∗(x) up
to the application of f4. Then for a transcript query the actual application of f4
is shown as part of the transcript to the adversary, whereas for an oracle query
the value of the oracle query is simply appended to the transcript (which will be
the value of f4 in the real world, or else simply the value of the random function
h). Note the adversary knows in either case which type of query it is witnessing,
but cannot independently verify f4 for oracle queries unless it happens to make
another query later (either transcript or oracle) which results in the same input
to f4. In fact, if the adversary never makes two queries at least one of which is
an oracle query that result in the same input to f4, the two worlds look exactly
alike (because f4 is uniformly random) and the adversary has zero advantage.

Thus the adversary’s advantage is upper bounded by its probability of finding
a collision at the input to f4 with free oracle access to f1, f2, f3, which is in turn
upper bounded by the collision resistance of the Shrimpton-Stam compression
function when instantiated with random functions. Thus Theorem 1 applied with
MAC insecurity 1/2n gives InSecoprf

H∗ (t, q̃, μ) ≤ 30q2 log2(q)/2n, as desired. �

7 Unpredictability vs. Pseudorandomness

Given that our solution is three times slower than CBC-MAC, it is interesting
to see if existing block ciphers, such as AES, are indeed more unpredictable than
pseudorandom. Notice, even if our n-bit block cipher is completely ideal, it has
security εprf ∼ q2/2n+1 as a one-block PRF, and a much better security εmac ∼
1/(2n−q) as a one-block MAC, where q is the number of input queries issued by
the attacker. Also, in theory is is trivial to construct artificial block ciphers which
are much more unpredictable than pseudorandom. Unfortunately, existing block
ciphers are neither ideal nor artificial. For such “real” block ciphers, to the best
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of our knowledge, this gap between unpredictability and pseudorandomness has
not been researched extensively. In part, this might be due to the cryptanalytic
“culture” to call the attack truly “successful” if it actually recovers the secret
key, which, obviously, will not demonstrate the gap we are seeking here.

We give a (rather weak) example to demonstrate this point. It is well known in
complexity theory [20] that no pseudorandom generator with κ-bit key can have
security more than 2−κ/2 (against non-uniform attackers), even against linear
tests.3 This means that no non-trivial PRF with a κ-bit key can have security
εprf ≤ 2−κ/2, even for q = O(1) (e.g., AES cannot be more than 2−64 secure,
even for q = 2!). In contrast, no such limitation is known for unpredictability,
even for exponentially high number of queries q (e.g., for all we know, AES
might be almost 2−128 secure, even for q = 230 or higher). However, the above
theoretical “separation” is not considered a “real attack”, since the best known
way to translate this specific 2−κ/2 distinguishing attack to the key recovery
attack takes time Ω(2κ), which is trivial.

We hope that our work will motivate further research to understand the gap
between unpredictability and pseudorandomness of existing block ciphers, such
as AES. In particular, to answer the question if existing modes, such as CBC-
MAC or HMAC, should be replaced by slower, but more “resilient” modes, such
as SS-NMAC.
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Abstract. We analyze the security of the Thorp shuffle, or, equivalently,
a maximally unbalanced Feistel network. Roughly said, the Thorp shuffle
on N cards mixes any N1−1/r of them in O(r lg N) steps. Correspond-
ingly, making O(r) passes of maximally unbalanced Feistel over an n-bit
string ensures CCA-security to 2n(1−1/r) queries. Our results, which em-
ploy Markov-chain techniques, enable the construction of a practical and
provably-secure blockcipher-based scheme for deterministically encipher-
ing credit card numbers and the like using a conventional blockcipher.

1 Introduction

Small-space encryption. Suppose you want to encrypt a 9-decimal-digit
plaintext, say a U.S. social-security number, into a ciphertext that is again a
9-decimal-digit number. A shared key K is used to control the encryption. Syn-
tactically, you seek a cipher E: K × M → M where M = {0, 1, . . . , N−1},
N = 109, and EK = E(K, ·) is a permutation for each key K ∈ K. You aim to
construct your scheme from a well-known primitive, say AES, and to prove your
scheme is as secure as the primitive from which you start.

The problem is harder than it sounds. You can’t just encode each plaintext
M ∈ M as a 128-bit string and then apply AES, say, as that will return a
128-bit string and projecting back onto M will destroy permutivity. Standard
blockcipher modes of operation are of no use, and constructions like balanced
Feistel [17,31] or Benes [1,30] have security that falls off by, at best, the square
root of the size of the domain, N . Here N is so small that such a result may
provide no practically-useful guarantee.

The above small-space encryption problem was first investigated by Black
and Rogaway [6], but those authors could find no practical and provably-secure
solution for N -values where q >

√
N queries are feasible but having an encryp-

tion take N computational steps is not—values like 220 ≤ N ≤ 250. This paper
provides a solution for these troublesome domains.

Thorp shuffle. Our approach is based on the Thorp shuffle [40], which works
like this. Suppose you want to shuffle N cards, where N is even. Cut the deck
into two equal piles. Drop the bottom card from either the left or right pile
according to the outcome of a fair coin flip, and then drop the card from the
bottom of the other pile. Continue in this way, flipping N/2 independent coins

S. Halevi (Ed.): CRYPTO 2009, LNCS 5677, pp. 286–302, 2009.
c© International Association for Cryptologic Research 2009
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Fig. 1. Two views of the Thorp shuffle (one round). Left : each card is paired
with the one N/2 positions away. For cards at positions x and x+N/2, a random bit c
(not shown) determines if the cards get mapped to 2x and 2x + 1 or to 2x + 1 and 2x.
Right : each card is regarded as an n-bit string X (assume N = 2n). Now card b ‖ x
gets sent to x ‖ b⊕FK(x) for a uniform (and round-dependent) random function FK .

and using each to decide if you drop cards left-then-right or right-then-left. This
is one round of the shuffle; repeat for as many rounds as you like. Expressed a
bit more algebraically, for each round r = 1, 2, . . . , R the cards at positions x
and x + N/2, where x ∈ {0, . . . , N/2 − 1}, are moved either to positions 2x
and 2x+ 1 or else to positions 2x+1 and 2x, which ones being determined by a
uniform coin flip c ∈ {0, 1}. See the left-hand side of Fig. 1. Let Th[N,R] denote
the Thorp shuffle with message spaceM = {0, . . . , N − 1} and R rounds.

The potential utility of the Thorp shuffle to cryptography and complexity
theory was first noticed by Naor some 20 years ago [27, p. 62], [34, p. 17]. He
observed that the Thorp shuffle is oblivious in the following sense: one can trace
the route of any given card in the deck without attending to the remaining
cards in the deck. If the Thorp shuffle mixes cards quickly enough, this property
would make it suitable for small-space encryption. Namely, the random bit c
used for cards x and x + N/2 at round r could be determined by applying
a pseudorandom function F , keyed by some underlying key K, to x and r.
Conceptually, the string K compactly names all of the (N/2) · R random bits
that would be needed to shuffle the entire deck. But because the Thorp shuffle
is oblivious, only R of these bits, so that many PRF calls, would be needed to
encipher a message x.

Feistel connection. There are a variety of alternative views of what goes on
in the Thorp shuffle. The one most resonant to cryptographers is this. Suppose
that N = 2n is a power of two. In this case the Thorp shuffle coincides with a
maximally unbalanced Feistel network. In an unbalanced Feistel network [18,36],
the left and right portions in the n-bit string that is acted on may have different
lengths. Throughout this paper, “maximally unbalanced Feistel” means that the
round function takes in n − 1 bits and outputs a single bit, a “source-heavy”
scheme. See the right-hand side of Fig. 1. A moment’s reflection will make clear
that, if the round function FK provides uniform random bits, independently
selected for each round, then unbalanced Feistel is the Thorp shuffle.
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As it takes n rounds of maximally unbalanced Feistel until each bit gets its
turn in being replaced, we term n rounds of maximally unbalanced Feistel (or
'lgN( rounds of Thorp) a pass. One might hope that the Thorp shuffle mixes
the deck well after a small number of passes.

Our results. Assume N = 2n is a power of two, r ≥ 1, and let E = Th[N,R] be
the Thorp shuffle with R = 2rn rounds (that is, 2r passes). We will show that an
adversary mounting a nonadaptive chosen-plaintext attack and making q queries
will have advantage that is at most (q/(r + 1)) · (4nq/N)r at distinguishing E
from a random permutation on n bits. We prove this bound by regarding the
Thorp shuffle of a designated q out of N cards as a Markov chain and applying a
coupling argument. To the best of our knowledge, this is the first time that cou-
pling has been used to prove security for a symmetric cryptographic primitive.
Using a result of Maurer, Pietrzak, and Renner [21], we can infer that 4r passes
are enough so that a q-query adversary making an adaptive chosen-ciphertext
attack will have advantage at most (2q/(r + 1)) · (4nq/N)r at distinguishing E
from a random permutation and its inverse. Put in asymptotic terms, one can
construct an n-bit permutation that is CCA-secure to 2n(1−1/r) queries by mak-
ing 4r passes of a maximally unbalanced Feistel (its round function being a uni-
formly random function from n−1 bits to 1 bit). This far exceeds what balanced
Feistel can achieve, providing a demonstrable separation between the security of
balanced and unbalanced Feistel. Finally, we consider a weaker notion of secu-
rity than customary—withstanding a (nonadaptive) designated-point attack. For
achieving this, just two passes of unbalanced Feistel are already enough.

In applying the results above to solve the small-space encryption problem
using a blockcipher like AES, the number of rounds R becomes the number
of blockcipher calls. We describe a trick to reduce this by a factor of five (for
a 128-bit blockcipher). We sketch other such “engineering” improvements, like
making the constructed cipher tweakable [16], and we tabulate the number of
blockcipher calls needed for various provable-security guarantees.

Further related work. Morris proved that the mixing time for the Thorp
shuffle—roughly, the number of steps until all q = N cards are ordered nearly
uniformly—is polylogarithmic: it is O(lg44 N) [25]. This was subsequently im-
proved to O(lg19 N) [22] and then to O(lg4 N) [23].

Naor and Reingold analyzed unbalanced Feistel constructions, showing, in
particular, that one pass over a maximally unbalanced Feistel network that op-
erates on n bits remains secure to nearly 2n/2 queries.

For balanced Feistel, the classical analysis by Luby and Rackoff [17] shows that
three rounds provide CPA-security (four rounds for CCA-security) to nearly 2n/4

queries. This was improvedby Maurer and Pietrzak [20], who showed that r rounds
of balanced Feistel could withstand about 2n/2−1/r queries (in the CCA setting).
Patarin [31,29] went on to show that a constant number of rounds (six for CCA-
security) was already enough to withstand about 2n/2 queries. He suggested that
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enough rounds of maximally unbalanced Feistel ought to achieve security for up
to 2n(1−ε) queries [29, p. 527], a conjecture that our work now proves.

Granboulan and Pornin [12] describe a method to perfectly realize a ran-
dom permutation using a clever shuffling procedure due to Czumaj, Kanarek,
Kuty�lowski, and Loryś [8]. The shuffle requires one to repeatedly sample in a
hypergeometric distribution using parameters that are large and vary during
the shuffle. In an implementation, Granboulan and Pornin employ an arbitrary-
precision floating-point package to help achieve the needed sampling. In the end,
about 109 machine cycles are used to encipher on a space of N < 232 points.
While improvements may come [41], the method is currently impractical.

Kaplan, Naor, and Reingold describe a method to reduce the number of bits
needed to specify a permutation that will appear uniform against some number q
of queries [14]. They do this by derandomizing a construction such as the Thorp
shuffle. They discuss this case, invoking the result of Morris [25].

H̊astad analyzes the mixing time of the following square lattice shuffle: given
an m×m array, uniformly permute the entries in each row, and then uniformly
permute the entries in each column [13]. He shows that a constant number of such
passes are enough to mix well. The shuffle is oblivious, and a recursive realization
of it would give rise to another solution to the small-space encryption problem.

The problem of enciphering on a small or unusual-size domain can be regarded
as a special case of format-preserving encryption, a goal informally described by
Brightwell and Smith [7], named by Spies [38], and recently formalized by Bellare
and Ristenpart [5] and by Rogaway [33].

In a recent proposal to NIST, Spies [37] describes a blockcipher mode of
operation, FFSEM, to encipher on an arbitrary intermediate-size domain M =
{0, 1, . . . , N−1}. The mechanism combines the use of a balanced Feistel network
and the folklore cycle-walking approach.1

The problem with balanced Feistel. It seems likely that, for any even n,
enough rounds of balanced Feistel using a pseudorandom round function yield a
computationally-secure small-domain encryption scheme, even up to q = 2n−2
queries (recall that a Feistel-determined permutation is always even [28, Th 6.1]).
No remotely practical attack is known [28], and the construction is of course
quite old. But proofs of security for ciphers made from pseudorandom functions
invariably work by proving information-theoretic security and then passing to the
complexity-theoretic setting. Since balanced Feistel is information-theoretically
insecure beyond 2n/2 queries, such an approach is inherently doomed. More
precisely, if the adversary may ask q = 2θ+n/2 queries for some θ ≥ 0, then,
to have any chance of information-theoretic security, one will need a number of
rounds that is at least r = 2θ+1. A simple analysis giving this bound is in the
full version of this paper.

1 Cycle-walking works like this. To construct a cipher EK that enciphers on M =
{0, 1, . . . , N − 1} using a cipher E′

K that works on M′ = {0, 1, . . . , N ′ − 1}, where
N ′ ≥ N , iterate E′

K(X) until the first point is found that lies in M. Return this.
The method is efficient if E′ is and N ′ is not too much larger than N .
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2 Preliminaries

Ciphers. By a cipher we mean a map E: K ×M → M where K and M are
finite nonempty sets (the key space and the domain) and EK(·) = E(K, ·) is
a permutation on M for every K ∈ K. Let A be an adversary, meaning an
algorithm with access to an oracle. For the game used to define E’s indistin-
guishability from a random permutation, the oracle will depend on a permuta-
tion f : M→M. It will respond to a query (enc, x) with f(x) and it will respond
to a query (dec, y) with f−1(y). Queries outside of {enc, dec} ×M are ignored.
Define Advcca

E (A) = P (K $←K : A±EK ⇒ 1) − P (π $← Perm(M) : A±π ⇒ 1)
where A±f denotes A interacting with the f -dependent oracle just described
and Af ⇒ 1 is the event that it outputs a 1.

We say that adversaryA is nonadaptive if its queries are the same on each and
every run. It carries out a chosen-plaintext attack if each query is an encryption
query, and a chosen-ciphertext attack if queries may be either encryption or
decryption queries. Let Advncpa

E (q) = maxA Advcca
E (A) where the maximum

is taken over all nonadaptive adversaries that ask at most q encryption queries
and no decryption queries. By the standard averaging argument, the notion
is unchanged if nonadaptive adversaries are assumed to be deterministic: they
statically choose their queries x1, . . . , xq. Let Advcca

E (q) = maxA Advcca
E (A)

where the maximum is taken over all adversaries that ask at most q queries.

Markov chains. The next section assumes some familiarity with Markov chains
and how to show rapid mixing for them using coupling arguments. See any text
on the subject, such as Levin, Peres, and Wilmer [15], for some background on
this topic.

Let Ω be a finite nonempty set and let μ, ν be probability distributions on Ω.
A coupling of μ and ν is a pair of random variables (X,Y ), defined on the same
probability space, such that the marginal distributions of X and Y are μ and ν,
respectively. Let

‖μ− ν‖ = max
S⊂Ω

μ(S)− ν(S) = min
X∼μ, Y ∼ν

P(X �= Y ) (1)

be the total variation distance between μ and ν, where Z ∼ τ means that Z
has distribution τ . The minimum in the right-hand side of (1) is taken over all
couplings (X,Y ) of μ and ν. We shall call a coupling that achieves the minimum
an optimal coupling of μ and ν.

3 Variational Distance of the Projected Thorp Shuffle

Fix N = 2n. Let {Tht : t ≥ 0} be the Markov chain representing the Thorp
shuffle with N cards. More formally, let C be a set of cardinality N , whose
elements we call cards. For concreteness, C = {0, 1}n. The state space of {Tht}
is the set of bijections from C to {0, 1}n. For a card z ∈ C, we interpret Tht(z)
as the position of card z at time t.

Let A be a deterministic adversary that makes exactly q queries. Our proof is
based on an analysis of the mixing rate of the Thorp shuffle. However, since A
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makes only q ≤ N queries, we need only bound the rate at which some q-element
subset of the cards mixes. So let z1, . . . , zq be distinct cards in C, and let Xt be the
vector of positions of cards z1, . . . , zq at time t. For j in {1, . . . , q} we write Xt(j)
for the position of card zj at time t, and define Xt(1, . . . , j) = (Xt(1), . . . , Xt(j)).

We shall call Xt the projected Thorp shuffle. Note that since the Thorp shuffle
is a random walk on a group (see, e.g., [35]), it has uniform stationary distribu-
tion. Hence the stationary distribution of Xt, which we denote by π, is uniform
over the set of distinct q-tuples of elements from {0, 1}n. Equivalently, π is the
distribution of q samples without replacement from {0, 1}n. Let τt denote the
distribution of Xt.

Theorem 1 (Rapid mixing). Let N = 2n and q ∈ {1, . . . , N}, {Xt : t ≥ 0}
the corresponding projected Thorp shuffle, π its stationary distribution, and τt

the distribution of Xt. Then, for any r ≥ 1,

‖τr(2n−1) − π‖ ≤ q

r + 1

(
4nq
N

)r

.

Proof. For a distribution ν on distinct q-tuples of Ω, define

ν(u1, . . . , uj) = P (Z1 = u1, . . . , Zj = uj)
ν(uj | u1, . . . , uj−1) = P (Zj = uj | Z1 = u1, . . . , Zj−1 = uj−1 )

where (Z1, . . . , Zq) ∼ ν. For example, τt(u1, . . . , uj) is the probability that, in
the Thorp shuffle, cards z1, . . . , zj land in positions u1, . . . , uj at time t, while
τt(uj | u1, . . . , uj−1) is the probability that at time t card zj is in position uj

given that cards z1, . . . , zj−1 are in positions u1, . . . , uj−1. On the other hand,
π(uj | u1, . . .uj−1) is the probability that, in a uniform random ordering, card zj

is in position uj given that cards z1, . . . , zj−1 land in positions u1, . . . , uj−1.
Each of the conditional distributions τt( · | u1, . . . , uj−1) converges to uniform

as t → ∞. When all of these distributions are “close” to uniform, then τt will
be close to π. In fact, we only need the conditional distributions to be close “on
average,” as is formalized in the following lemma, which is proved in Appendix A.

Lemma 2. Fix a finite nonempty set Ω and let μ and ν be probability distribu-
tions supported on q-tuples of elements of Ω, and suppose that (Z1, . . . , Zq) ∼ μ.
Then

‖μ− ν‖ ≤
q−1∑
l=0

E
(
‖μ( · | Z1, . . . , Zl)− ν( · | Z1, . . . , Zl)‖

)
. (2)

Note that in the above lemma, since Z1, . . . , Zq are random variables (whose
joint distribution is governed by μ), so is ‖μ( · | Z1, . . . , Zl)− ν( · | Z1, . . . , Zl)‖
for every l ≤ q; each summand in the right-hand side of (2) is the expectation
of one of these random variables.

Coupling arguments. Later in the proof, we will be using a coupling argument
to bound E

(
‖μ( · | Y1, . . . , Yl) − ν( · | Y1, . . . , Yl)‖

)
. Typically, such arguments
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are used in the following way. There is a Markov chain with transition matrix P
and stationary distribution π, started from state x. One wants to estimate the
total variation distance ‖P t(x, ·) − π‖ between the distribution of the chain at
time t and the stationary distribution. To do so, one constructs a pair process
{(Xt, Yt) : t ≥ 0}, the coupling, that satisfies the following conditions:

1. Individually, {Xt} and {Yt} are Markov chains with transition matrix P .
2. For every t ≥ 0, if Xt = Yt then Xt+1 = Yt+1.
3. We have X0 = x and Y0 ∼ π.

The random variable T = min{t : Xt = Yt} is called the coupling time. Note
that condition (3) implies that Yt ∼ π for all t ≥ 0. Hence equation (1) implies

‖P t(x, · )− π‖ ≤ P (Xt �= Yt)
= P (T > t) .

The idea is to define the coupling in such a way that T is unlikely to be large.

Defining the coupling. Let τt be the distribution of Xt. We wish to use
coupling to bound the expected distance between τt( · | Xt(1), . . . , Xt(l)) and the
uniform distribution on {0, 1}n \ {Xt(1), . . . , Xt(l)}, for each l ∈ {1, . . . , q − 1}.

Our approach will be as follows. For each value of l we will construct a process
{Ut} on the same probability space as {Xt}, to get a coupling {(Xt, Ut) : t ≥ 0}.
The process {Ut} will satisfy the following conditions.

• The positions of the first l cards in Ut always agree with Xt.
• For every t, the distribution of the position of card zl+1 at time t, given the

positions of cards z1, . . . , zl, is uniform.

We begin with a key definition. Say that two cards are adjacent at time t if their
positions (viewed as elements of {0, 1}n) are the same except for the first bit (or,
viewed as elements of {0, . . . , N − 1}, they differ by N/2).

Let Xt be the projected Thorp shuffle. It will be convenient to use a rule for
generating the evolution of Xt that uses q fair coins, c1, . . . , cq, each of which is
flipped at each step. Formally, each cj is a sequence {cj

t : t ≥ 0} of Bernoulli(1/2)
random variables, where we interpret cj

t as the outcome of coin cj at time t. We
assume that all of the cj

t are independent.
Note that for a given step, it is enough to describe, for each pair zi, zj of

adjacent cards, i < j, how the position of zi is updated (since this dictates how
the position of zj must be updated). We shall use the following update rule:

Update rule. For each pair of cards zi, zj with i < j that are adjacent
at time t, we determine the position of zi at time t+ 1 using coin ci and
coin flip ci

t as follows:
1. the first (leftmost) bit of the position of zi is set to ci

t, and then
2. the position of zi undergoes a cyclic left bit shift.
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Thus if ci is at position x at time t then at time t+1 it will be at position 2(x mod
N/2)+ ci

t, or, in string-oriented notation, at position x[2..N ] ‖ ci
t. We claim that

if t ≥ n− 1 then for any pair of cards zi and zj we have

P (zi and zj are adjacent at time t) ≤ 21−n . (3)

To verify this claim, note that (by reordering if necessary) we may assume that
i = 1, j = 2, and the evolution of Xt is governed by the update rule described
above. Let E be the event that z1 and z2 are adjacent at time t. In order for E to
happen, at each step during times t−1, . . . , t−n+1, when their bits are changed
(in step 1 of the update rule), the same change must occur for both z1 and z2.
Thus E = A∩B, where A is the event that z1 and z2 were not adjacent at any of
the times t−1, . . . , t−n+1, and B is the event that coins ci and cj had the same
outcomes at times t − 1, . . . , t − n + 1. It follows that P (E) ≤ P (B) = 21−n,
and the claim is verified.

We are now ready to describe {Ut : t ≥ 0}. The starting state U0 is constructed
as follows.

1. We set U0(1, . . . , l) = X0(1, . . . , l). That is, cards z1, . . . , zl have the same
initial positions in U0 as X0.

2. The distribution of U0(l + 1) is uniform over {0, 1}n \ {U0(1), . . . , U0(l)}.

(We may assume without loss of generality that the probability space on which
{Xt : t ≥ 0} is defined is rich enough to allow us to construct such a U0.) Note
that the final condition implies that for every time t the conditional distribution
of Ut(l) given Ut(1, . . . , l) is uniform over {0, 1}n \ {Ut(1), . . . , Ut(l)}.

We now describe the rule for generating (Xt+1, Ut+1) from (Xt, Ut). Note that
the rule for generating {Xt : t ≥ 0} using coins c1, . . . , cq leads to a natural way
to generate the evolution of {(Xt, Ut) : t ≥ 0}. Namely, we use the same coins
c1, . . . , cq to update both Xt and Ut in each step. Since the positions of cards
z1, . . . , zl initially agree in both X0 and U0, and we are using the same coin flips
c1t , . . . , c

l
t to update them each step, the positions of these cards remain matched

for all times t. Furthermore, note that if at any point the position of card zl+1
becomes matched, then it remains matched from then on. Recall that τt is the
distribution of Xt, and let Z1, . . . , Zl be the positions of cards z1, . . . , zl at time t.
(Note that these positions are the same in both Xt and Ut.) By (1), we have

‖τt( · | Z1, . . . , Zl)− π( · | Z1, . . . , Zl)‖ ≤ P (Xt(l + 1) �= Ut(l + 1) | Z1, . . . , Zl )
= P (T > t | Z1, . . . , Zl) ,

where T = min{t : Xt(l + 1) = Ut(l + 1)} is the coupling time. Taking expecta-
tions gives

E
(
‖τt( · | Z1, . . . , Zl)− π( · | Z1, . . . , Zl‖

)
≤ P (T > t) . (4)

We claim that
P (T > 2n− 1) ≤ p , (5)
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where p = nl22−n. Let A be the event that at some time in {n−1, n, . . . , 2n−2}
card zl+1 is adjacent to some card of smaller index in the Y or Z process.
Unless A occurs, coupling occurs by time 2n − 1. Summing equation (3) over
2 processes, n timesteps, and l smaller indices verifies the claim by showing that

P (A) ≤ 2nl · 21−n = p . (6)

Note that equation (5) holds regardless of the initial state (X0, U0), and that the
process {(Xt, Ut) : t ≥ 0} is itself a Markov chain. Now imagine that we have a
sequence of trials where in each trial we run the coupling for an additional 2n−1
steps. The probability that card zl+1 remains unmatched after the first trial is at
most p. Furthermore, by the memoryless property of Markov chains, given that
card zl+1 remained unmatched after the first r − 1 trials, the conditional prob-
ability that it remains unmatched after the r-th trial is again at most p. Hence,
by induction, P (card zl+1 remains unmatched after r trials) ≤ pr = (nl22−n)r,
that is,

P (T > r(2n− 1)) ≤ (nl22−n)r . (7)

Summing over l ∈ {0, . . . , q − 1} and using Lemma 2 gives

‖τr(2n−1) − π‖ ≤
q−1∑
l=0

(nl22−n)r ≤
∫ q

0
(n22−n)rxr dx

≤ qr+1

r + 1
· nr22r−nr =

q

r + 1

(
4nq
N

)r

. %&

4 Pseudorandomness of the Thorp Shuffle

CPA-security. The total variation distance is identical to the advantage with
respect to a (deterministic) nonadaptive chosen-plaintext attack. So, reformu-
lating Theorem 1 in cryptographic terms, what we have shown is the following.

Theorem 3 (nCPA-security, concrete). Let N = 2n and 1 ≤ q ≤ N . Then,
for any r ≥ 1,

Advncpa
Th[N,r(2n−1)](q) ≤

q

r + 1

(
4nq
N

)r

.

Time reversal. Let Th−1[N,R] = (Th[N,R])−1 denote the time-reverse Thorp
shuffle on N cards with R rounds: in round r ∈ {1, . . . , R} it sends cards 2x and
2x + 1, where 0 ≤ x < N/2, either to x and x + N/2, or to x + N/2 and x,
depending on a random bit c(x, r). For N a power of two the forward and
reverse Thorp shuffle are “isomorphic” Markov chains in the sense that there is
a relabeling of states from Th[N,R] to Th−1[N,R] that preserves the transition
rule. As a consequence, the bound of Theorem 1 applies to the reverse Thorp
shuffle as well, giving us the following.

Corollary 4 (nCPA-security, reverse Thorp). Let N = 2n and 1 ≤ q ≤ N .
Then, for any r ≥ 1, Advncpa

Th−1[N,r(2n−1)](q) ≤ (q/(r + 1)) · (4nq/N)r.
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nCPA
n = 30

CCA
n = 30

nCPA
n = 40

CCA
n = 40

Fig. 2. Proven security of the Thorp shuffle. The x-axis gives the log (base 2)
of the number of queries. The y-axis gives an upper bound on an adversary’s nCPA
advantage by Theorem 3 (top) or its CCA advantage by Theorem 5 (bottom). The
curves are for N = 230 points (left) or N = 240 points (right). The curves, from left to
right, are for 4, 8, 16, 32, and 64 passes.

CCA-security. A lovely result of Maurer, Pietrzak, and Renner [21] allows us
to easily extend Theorem 3 to a larger class of adversaries, namely, we can trade
our nCPA-adversaries for CCA ones. The cost of doing so will be a doubling in
the number of rounds, as well as in the advantage bound.

Theorem 5 (CCA-security, concrete). Let N = 2n and 1 ≤ q ≤ N . Then,
for any r ≥ 1,

Advcca
Th[N,r(4n−2)](q) ≤

2q
r + 1

(
4nq
N

)r

.

Proof. We use the second half of Corollary 5 from Maurer et al. [21]. In their
notation, we have that F = Th[N,R/2], which is stateless, G = Th−1[N,R/2],
which also stateless, and thus Δq(〈F  G−1〉, 〈P〉) = Advcca

Th[N,R](q) is bounded
above by ΔNA

q (F,P)+ΔNA
q (G,P) = Advncpa

Th[N,R/2](q)+Advncpa
Th−1[N,R/2](q). Note

that nonadaptive adversaries in [21] may be probabilistic, but that the best deter-
ministic adversary must do at least as well. Applying Theorem 3 and Corollary 4
to bound the last two summands yields the result. %&

Graphical illustration. The bounds of Theorems 3 and 5 are illustrated in
Fig. 4. For example, for 16 passes and N = 240 points (third curve on the bottom
right), an adversary must ask at least 226.2 queries to have CCA advantage 0.5.
For comparison, when applied to a maximally unbalanced Feistel network, the
earlier analysis of Naor and Reingold [27, Th 6.2] would have topped out—with
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DPA
n = 30

DPA
n = 40

Fig. 3. Proven security of the Thorp shuffle, continued. The x-axis gives the log
(base 2) of the number of queries. The y-axis gives an upper bound on an adversary’s
DPA advantage by Theorem 8, both for N = 230 points (left) and N = 240 points
(right). The curves, from left to right, are for two passes and then four.

one pass—at 216.8 queries. Had we enciphered strings using a balanced Feistel
network instead, then the result of Maurer and Pietrzak [20, Th 1], would give
a family of curves (depending, like ours, on how many rounds were performed)
that would top out by 218.5 queries. Patarin’s result for six-round Feistel [31]
would apparently be similar, but the concrete security is not explicitly given in
that work, and the quantitative bounds are difficult to infer.

Asymptotic interpretation. For an asymptotic interpretation of Theorem 3,
fix r > 0 and suppose that q = N1−1/r and where, as before, N = 2n. Then

Advncpa
Th[N,2rn](q) ≤

q

r + 1

(
4nq
N

)r

=
4rnr

r + 1
· 1
N1/r

.

In other words, we have upper-bounded the advantage by an expression of the
form (a logb N)/N1/r for r-dependent constants a and b. Since this goes to 0 as
n→∞, we conclude the following.

Corollary 6 (nCPA-security, asymptotic). Let r ≥ 1 be an integer. Then

lim
n→∞Advncpa

Th[2n,2rn]

(
2n(1−1/r)

)
= 0 .

In English, a maximally-unbalanced Feistel network on n bits employing 2r
passes maintains security to nearly 2n queries: specifically, to 2n(1−1/r) queries for
large enough n. Said differently, you can achieve security up to N1−ε nonadaptive
queries, for any ε > 0, provided you make at least 2 · '1/ε( passes. This is far
better than what a balanced Feistel network can achieve. The asymptotic version
of Theorem 5 is similar.

Corollary 7 (CCA-security, asymptotic). Let r ≥ 1 be an integer. Then

lim
n→∞Advcca

Th[2n,4rn]

(
2n(1−1/r)

)
= 0 .

Designated-point security. The PRP notion of security formalizes an ad-
versary’s inability to detect non-uniform behavior when it sees a population of
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plaintext/ciphertext pairs. Many security notions instead demand that the ad-
versary figure something out about a designated point that it selects: the custom-
ary formulations for find-then-guess security, semantic security, unforgeability,
and non-malleability are all this way. Weakening the security notion along these
lines facilitates a stronger bound for the Thorp shuffle.

Let E: K × M → M be a cipher and let A be an adversary. We mea-
sure the effectiveness of A in carrying out a designated-point attack on E by
Advdpa

E (A) = P
(
AG ⇒ 1

)
−P

(
AH ⇒ 1

)
where oracles G and H behave like

this. Both begin by choosing K
$←K and then answering queries (enc, x) by

EK(x). Oracle G answers the same way for a query (test, x), but H answers
such a query by a uniformly chosen value that has not yet been returned to A.
No other types of queries are allowed. The adversary may ask a single test
query, its last: once a test query is asked, any subsequent query returns ⊥. Let
Advdpa

E (q) = maxA Advdpa
E (A) where the maximum is taken over all determin-

istic nonadaptive adversaries that ask exactly q enc queries. The DPA notion is
similar to, but weaker than, the IUP notion investigated by Desai and Miner [9].

Theorem 8 (Designated-point security). Let N = 2n and 1 ≤ q ≤ N .
Then, for any r ≥ 1,

Advdpa
Th[N,r(2n−1)](q) ≤

(
4nq
N

)r

.

The proof follows immediately from equations (4) and (7). The bounds are il-
lustrated in Fig. 3. An asymptotic counterpart for the result is as follows.

Corollary 9 (Designated-point security, asymptotic). For any ε > 0 we
have that limn→∞ Advdpa

Th[2n,2n]

(
2n(1−ε)

)
= 0.

More general message spaces. We emphasize that our results on the Thorp
shuffle have assumed that the size of the message is a power of two. By using the
cycle-walking construction [6], this suffices to encipher messages on any message
space {0, . . . , N − 1}. But the cost of applying this domain transformation can
be nearly as bad as an expected doubling in the encryption and decryption time.
It would be more desirable for the results to directly apply to Thorp-enciphering
for any even N . We expect the full version of this paper to report on such results.

5 Efficiently Realizing the Thorp Shuffle

In this section we sketch a practical realization of Thorp-shuffle encryption.
We assume a pseudorandom function f : K × Σ∗ → {0, 1}128. In the analysis,
ρ = f(K, ·) is regarded as a uniform random function. The translation to the
complexity-theoretic setting is standard, the PRF’s key K naming a particular ρ.
A natural instantiation of f would be the CBC MAC of AES (after a prefix-free
encoding of the input [32]). Typically, only one AES call would be needed per
PRF invocation.
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p = n = 20 n = 30 n = 40
#passes #AES dpa ncpa cca #AES dpa ncpa cca #AES dpa ncpa cca

2 8 12.7 6.9 — 12 22.1 11.6 — 16 31.7 16.4 —
4 16 13.2 9.4 6.4 24 22.6 15.7 11.2 32 32.2 22.1 15.9
8 32 13.4 11.3 9.1 48 22.8 18.8 15.3 64 32.4 26.5 21.7
16 64 13.6 12.4 11.1 96 23.0 20.8 18.6 128 32.6 29.3 26.3
32 128 13.6 13.4 13.0 192 23.1 22.5 20.0 256 32.6 31.8 30.9
64 256 13.6 13.4 13.0 384 23.1 22.6 21.9 512 32.6 31.8 30.9

Fig. 4. Security and its cost. The columns indicate the domain size N = 2n, the
number of passes p, the number of AES calls per encryption (with 5x-speedup), and val-
ues lg q such that our bound on Advxxx

Th[2n,np](q) is about 0.5, for xxx ∈ {dpa, ncpa, cca}.

Update rule. Our realization of Th[N,R] will effectively use a different update
rule than that of Section 3: to each x, x+N/2 ∈ {0, . . . , N−1} and each round r
we associate a coin flip c(x, r) that is used to map the card occupying position x
in round r to position 2x+ c(x, r) if x < N/2 and to 2x−N + 1− c if x ≥ N/2.
When N is a power of two and c(x, r) = ρ(x mod N/2, r), this corresponds to
an unbalanced Feistel network.

Five rounds at once. We now describe a technique that lets one compute
several rounds of the Thorp shuffle with a single call to the underlying PRF.
With a PRF outputting 128 bits, one call will let us do five rounds of enciphering
or deciphering instead of just one. We call this the 5x trick. With it, one needs
'R/5( PRF calls to realize Th[N,R]. See Fig. 4 for a representation of how many
AES calls would be needed to make various numbers of passes over domains of
various sizes, and our proven security bounds in each case.

To explain the idea behind the 5x trick, assume for now that we are enci-
phering N = 2n points for some n ≥ 5. We will use the following notation. If
X ∈ {0, 1}� and i, j ∈ {0, . . . , � − 1}, we write X [i] for its i-th bit, where the
leftmost bit of X is X [0]. The substring consisting of the i-th through j-th bit
of X is written X [i..j]. It is empty if i > j. If v1, . . . , vk are bitstrings or integers,
〈v1, . . . , vk〉 is the tuple (v1, . . . , vk) encoded as a bitstring in some fixed way.

Denote the ciphertext of X ∈ {0, 1}n after i rounds of Thorp-enciphering by
Xi, with X0 = X . Instead of evaluating ρ at 〈Xi[1 ..n−1], i〉 and using only one
of the resulting 128 bits as c(Xi[1 ..n−1], i), we will instead extract a sufficient
number of bits to determine all coin flips c(U, r) that may be needed in the same
group of five consecutive rounds. Realizing this idea is slightly tricky because
it is essential that each coin c(U, r) taken from ρ’s output be well-defined no
matter how this value may arise, and, at the same time, that it be independent
from c(V, s) unless (U, r) = (V, s).

Our strategy is illustrated by Fig. 5. We group the round into runs of five
which we call phases, beginning with the first. (The last group of five may be
shorter.) We exploit the fact that, for j ∈ {0, 1, 2, 3, 4}, the strings X5i and X5i+j
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Fig. 5. The 5x trick. The lines show successive n-bit strings Xj as we encipher
(going down) or decipher (going up) using Th[2n, R]. For any A ∈ {0, 1}n−5 and round
j divisible by 5, a single call computes the coins associated to all (n − 1)-bit strings
� � � � A for round j, � � � A � for round j +1, � � A � � for round j +2, � A � � � for
round j+3, and A � � � � for round j+4, where each � may be 0 or 1.

have at least an (n−5)-bit substring A in common. We evaluate ρ only on 〈A, i〉,
obtaining 128 random bits. The coin flip c(Xt[1..n−1], t) used to encrypt Xt in
round t = 5i + j is then picked out of these 128 bits using 〈B, j〉 where B is
the concatenation of bits 1 .. (4−j) and (n−j+4) .. (n−1) of the string X5i+j .
The independence requirement is satisfied since the tuple (A,B, i, j) uniquely
determines (X5i+j [1 ..n−1], 5i+ j).

The real complexity comes when N is not a power of 2. Carefully generalizing
the idea just sketched by replacing string operations with modulo arithmetic
gives rise to the same 5x speedup for Thorp-enciphering any number of points N
provided that N is a multiple of 32. We specify this case in Fig. 6. The cycle-
walking trick (see footnote 1 on p. 289) can then be used to extend the domain
to arbitrary N while never enciphering on a domain that exceeds the size of the
original one by more than 31 points. The 5x trick uses 5 · 24 = 80 of the 128 bits
output by the PRF. It generalizes to yield a k-fold speedup if the PRF outputs
at least k · 2k−1 bits, though this necessitates rounding N to the next multiple
of 2k. We omit a proof of the following.

Theorem 10. Suppose 32 | N and R ≥ 1. If ρ : Σ∗ → {0, 1}128 is a uniform
random function then the permutation Encρ defined in Fig. 6 realizes Th[N,R].
Also, Decρ is its inverse. Furthermore, computing Encρ(x) or Decρ(x) requires ρ
to be evaluated on at most 'R/5( points.

Tweaking. A practical realization for small-space encryption should be tweak-
able, a notion formalized by Liskov, Rivest, and Wagner [16]. The syntax of the
cipher is extended to take an additional argument, the tweak, and each tweak
effectively names a random independent cipher. The algorithm of Fig. 6 is easily
modified to accommodate a tweak by adding it to the tuple Y in line 37. As a
simple example, an application might need to encipher the upper five digits of
a U.S. social security number using a tweak that is the lower four digits.

Variable input length. In Fig. 6, we included the domain size N within
the scope of ρ’s input (lines 37–38). This makes the scheme secure in the sense
of a variable-input-length (VIL) cipher. The property allows to, for example,
encipher under a common key database fields that have different domain sizes.
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10 algorithm Encρ(x)
11 for r ← 0 to R − 1 do
12 c ← F r

ρ (x mod N/2)
13 if x < N/2 then x ← 2x + c
14 else x ← 2(x mod N/2) + 1 − c
15 return x

20 algorithm Decρ(y)
21 for r ← R − 1 downto 0 do
22 c ← F r

ρ (y div 2)
23 if c = y mod 2 then y ← y div 2
24 else y ← y div 2 + N/2
25 return x

30 algorithm F r
ρ (x)

31 i ← r div 5
32 j ← r mod 5
33 a ← (xdiv 2j) mod N/32
34 hi ← (xdiv 2j) div N/32
35 lo ← x mod 2j

36 b ← hi · 2j + lo
37 Y ← 〈N, i, a〉
38 table ← ρ(Y )
39 k ← 16j + b
40 c ← table [k]
41 return c

Fig. 6. Realization of Th[N, R] that incorporates the 5x trick. We assume that 32 | N
and ρ : {0, 1}∗ → {0, 1}128. Line 38 need only be evaluated once every five rounds.
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A Lemma about Total Variation Distance

The following Lemma was used in the proof of Theorem 1. It is essentially
Lemma 12 in [24]. We reproduce it here for the convenience of the reader.

Lemma 2. Fix a finite set Ω and let μ and ν be probability distributions sup-
ported on q-tuples of elements of Ω, and suppose that (Z1, . . . , Zq) ∼ μ. Then

‖μ− ν‖ ≤
q−1∑
l=0

E
(
‖μ( · | Z1, . . . , Zl)− ν( · | Z1, . . . , Zl)‖

)
. (8)

Proof. For probability distributions μ̂ and ν̂, the total variation distance is

‖μ̂− ν̂‖ = min
W1∼μ̂, W2∼ν̂

P(W1 �= W2) . (9)

Thus for every l and z1, . . . , zl, we can construct W1 ∼ μ( · | z1, . . . , zl) and
W2 ∼ ν( · | z1, . . . , zl) such that

P(W1 �= W2) = ‖μ( · |z1, . . . , zl)− ν( · | z1, . . . , zl)‖ .

We couple Z ∼ μ with Y ∼ ν as follows. Choose (X1, Z1) according to the
optimal coupling (i.e., a coupling that achieves the minimum in the RHS of (9)),
and subsequently for all l with 1 ≤ l ≤ q−1, if (Z1, . . . , Zl) = (X1, . . . , Xl), then
choose (Zl+1, Xl+1) according to the optimal coupling of μ( · | Z1, . . . , Zl) and
ν( · | Z1, . . . , Zl); else couple (Xl+1, Zl+1) in an arbitrary way. Note that

P(Z �= Y ) =
q−1∑
l=0

P
(
(Z1, . . . , Zl) = (Y1, . . . , Yl), Zl+1 �= Yl+1

)
. (10)

But on the event that (Z1, . . . , Zl) = (Y1, . . . , Yl), the pair (Zl+1, Yl+1) is chosen
according to the optimal coupling of μ( · | Z1, . . . , Zl) and ν( · | Z1, . . . , Zl), so
the RHS of (10) is at most

∑q−1
l=0 E

(
‖μ( · | Z1, . . . , Zl)− ν( · | Z1, . . . , Zl)‖

)
. %&

http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
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Abstract. We describe a new explicit function that given an elliptic
curve E defined over Fpn , maps elements of Fpn into E in deterministic
polynomial time and in a constant number of operations over Fpn . The
function requires to compute a cube root. As an application we show
how to hash deterministically into an elliptic curve.

1 Introduction

Some elliptic curve cryptosystems require to hash into an elliptic curve, for
instance the Boneh-Franklin identity based encryption scheme [1]. In this scheme,
a particular supersingular elliptic curve is used, for which there exists a one-to-
one mapping f from the base field Fp to the curve. This enables to hash using
f(h(m)) where h is a classical hash function.

Password-based authentication protocols give another context where hashing
into an elliptic curve is sometimes required. For instance, the SPEKE (Simple
Password Exponential Key Exchange) [7] and the PAK (Password Authenticated
Key exchange) [4] protocols both require a hash algorithm to map the password
into a point of the curve. However for ordinary curves the classical approach is
inherently probabilistic; this implies that the number of operations required to
hash the password may depend on the password itself. As shown in [3] this can
lead to a timing attack. Therefore, it would be useful to be able to hash into a
curve in a constant number of operations.

The first algorithm mapping Fpn into an elliptic curve in deterministic poly-
nomial time was published by Shallue and Woestijne in ANTS 2006 [10]. The
algorithm is based on Skalba’s equality [13] and uses a modification of the
Tonelli-Shanks algorithm for computing square roots; the algorithm runs in time
O(log4 q) for any field size q = pn, and in time O(log3 q) when q = 3 mod 4.

In this paper, we describe another algorithm that given any elliptic curve E
defined over Fpn , maps elements of Fpn into E in deterministic polynomial time,
when pn = 2 mod 3. The new algorithm is based on a rational, explicit function
from Fpn to E, which can be implemented in O(log3 q) time and a constant
number of operations over Fpn . Our technique is based on computing a cube
root and is simpler than the Shallue and Woestijne algorithm.

As an application we show how to hash deterministically and efficiently into
an elliptic curve. We provide two different constructions. Our first construction is

S. Halevi (Ed.): CRYPTO 2009, LNCS 5677, pp. 303–316, 2009.
c© International Association for Cryptologic Research 2009
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one-way when the underlying hash function is one-way. The second construction
additionally achieves collision resistance when the underlying hash function is
collision resistant.

1.1 Related Works

We give a brief description of existing techniques to hash into elliptic curves. An
elliptic curve over a field Fpn where p > 3 is defined by a Weierstrass equation:

Y 2 = X3 + aX + b (1)

where a and b are elements of Fpn . Throughout this paper, we note Ea,b the
curve associated to these parameters. It is well known that the set of points
forms a group; we denote by Ea,b(Fpn) this group and by N its order. We also
note q = pn: in particular Fq is the field of pn elements.

‘Try-and-Increment’ Method. The algorithm is described in [2] and works
as follows:
Input: u an integer.
Output: Q, a point of Ea,b(Fq).
1. For i = 0 to k − 1

(a) Set x = u + i
(b) If x3 + ax + b is a quadratic residue in Fq, then return Q = (x, (x3 +

ax + b)1/2)
2. end For
3. Return ⊥

Heuristically, the algorithm fails to return a point for a fraction 2−k of the
inputs, where k is a security parameter. One drawback of the algorithm is that
the number of operations is not constant. Indeed the number of steps of the
algorithm depends on the input u: approximately half of the u are encoded
within 1 step, one fourth within 2 steps, etc. In practice, if the input u has to
remain secret, this can lead to a timing attack.

A simple countermeasure consists in outputting the point Q only after the
end of the For loop so that the number of steps remains constant. However even
with this countermeasure, the running time is not necessarily constant. Namely,
if the Legendre symbol is used to determine whether x3 + ax + b is a quadratic
residue, such operation takes O(log2 q) time using quadratic reciprocity laws but
in general the number of operations is not constant and depends on the input u.
Alternatively, one can compute the Legendre symbol using an exponentiation:(

z
q

)
= z(q−1)/2.

Then the numbers of operations is constant but the running time for computing
the Legendre symbol is now O(log3 q).
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To summarize, if we do not use any countermeasure then the average running
time is O(log3 q) due to the square root computation which takes O(log3 q) when
q = 3 mod 4. If we use a constant number of steps k with k = O(log q), while
computing the Legendre symbol efficiently, the running time is still k·O(log2 q)+
O(log3 q) = O(log3 q); however one might still be vulnerable to a timing attack.
Finally, if we want to have a constant number of operations, one can use the
exponentiation method to compute the Legendre symbol; however the running
time becomes k · O(log3 q) + O(log3 q) = O(log4 q). In this paper, we describe
an algorithm with running time O(log3 q) and constant number of operations1.

The ‘Twisted’ Curves. Another technique consists in using a curve and its
twist as suggested in [5]. Given a curve defined by equation (1), one can define
the twisted curve of equation

cY 2 = X3 + aX + b

where c is a quadratic non-residue in Fq. Then any x ∈ Fq is either the abscissa
of a point of the original curve or its twist.

One drawback is that a modification of the cryptosystem is required to hide to
the adversary which curve is used. In other words, this hashing technique cannot
be used as a black box. Another drawback is that it doubles the computation
time because the same computations must be performed separately on both
curves.

Supersingular Curves. A curve Ea,b is called supersingular when N = q + 1.
When q �= 1 mod 3, the map x �→ x3 is a bijection, therefore the curves of
equations

Y 2 = X3 + b

are supersingular. One can then define the encoding

f : u �→ ((u2 − b)1/3, u) (2)

and then the hash function

H : m �→ ((h(m)2 − b)1/3, h(m))

where h is a classical hash function.
However, the discrete logarithm on these curves is much easier than for or-

dinary curves. Indeed, such curves have an efficient computable pairing which
enables to map the discrete logarithm problem onto a finite field; this is the MOV
attack [8]. Therefore in order to avoid this attack, much larger parameters must
be used. When no pairing operation is required, it is therefore more efficient to
use ordinary curves.
1 In principle, it should be possible to implement the ‘try-and-increment’ method in

constant time and complexity O(log3 q). For this, one should monitor the running
time and eventually use dummy operations. However this could be cumbersome to
implement in practice.
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The Shallue-Woestijne Algorithm. In ANTS 2006, Andrew Shallue and
Christian van de Woestijne have proposed a new algorithm, that generates el-
liptic curve points in deterministic polynomial time [10].

Let f(x) = x3 + ax+ b. The algorithm is based on the Skalba’s equality [13]:
there exists four maps X1(t), X2(t), X3(t), X4(t) such that

f(X1(t)) · f(X2(t)) · f(X3(t)) = X4(t)2.

Then in a finite field, for a fixed parameter t, at least one of the f(Xi(t)) must
be a quadratic residue, which implies that this Xi(t) is an abscissa of a point of
the elliptic curve y2 = f(x).

The computation of X1(t), X2(t), X3(t), X4(t) and the choice amongst the
Xi(t) require to compute square roots in Fq. Computing square roots in Fq can
be done in probabilistic polynomial time using the Tonelli-Shanks algorithm.
Thanks to the Skalba equality, the authors of [10] show how to do it determinis-
tically using a modification of the Tonelli-Shanks algorithm, in time O(log4 q).
We note that for q = 3 mod 4, computing a square root is simply an exponen-
tiation, which takes O(log3 q). Therefore the Shallue-Woestijne algorithm runs
in time O(log4 q) for any field size q = pn, and in time O(log3 q) when q = 3
mod 4.

Using H(m) = h(m).G. We note that for most protocols, it is not possible
to hash using H(m) = h(m).G where h(m) ∈ Z and G is a generator of the
group of points of the elliptic curves. Namely in this case, the discrete logarithm
of H(m) with respect to G is known, which makes most protocols insecure. For
example, it is easy to see that for Boneh-Franklin identity encryption scheme, the
attacker can then decrypt any ciphertext. This remains true if we use H(m) =
h1(m).G1 + h2(m).G2 or any such linear combination; in this case, the attacker
can compute one Boneh-Franklin private key from a set of other private keys by
solving a linear system.

2 An Explicit Encoding from Fq to E(Fq)

We consider the curve Ea,b : Y 2 = X3 + aX + b over the field Fpn where p > 3
and pn = 2 mod 3. In these finite fields, the function

x �→ x3

is a bijection with inverse function

x �→ x1/3 = x(2pn−1)/3.

This enables to create a simple parametrization of a subset of the elliptic-curve
Ea,b(Fpn). To our knowledge, this parametrization is new. Let

fa,b : Fpn �→ Ea,b

u �→ (x, y)
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where

x =
(
v2 − b− u6

27

)1/3

+
u2

3
y = ux + v

where

v =
3a− u4

6u
.

For u = 0, we fix fa,b(0) = O, the neutral element of the elliptic curve.

Lemma 1. Let Fpn be a field where pn = 2 mod 3 and p > 3. For any u ∈ Fpn ,
fa,b(u) is a point of Ea,b(Fpn) : Y 2 = X3 + aX + b.

Proof. For u �= 0, let (x, y) = fa,b(u). From the definition of x:(
x− u2

3

)3

= v2 − b − u6

27
.

This expands into:

x3 − u2x2 +
u4

3
x + b− v2 = 0.

Since u4/3 = a− 2uv, this can be rewritten into

x3 − u2x2 + (a− 2uv)x + b− v2 = 0

which leads to

x3 + ax + b = u2x2 + 2uvx + v2 = (ux + v)2

and finally x3 + ax + b = y2. %&

We present a similar result in characteristic 2 in appendix A.

Remark 1. We note that if x �→ x3 is not a bijection, but (v2 − b − u6/27) is a
cube in Fq, we can still use the formulas to compute (x, y) ∈ Ea,b.

3 Properties of Our New Encoding fa,b

Lemma 2. The function fa,b can be implemented in deterministic polynomial
time, with O(log3 q) running time and a constant number of operations over Fq.

Proof. When q = 2 mod 3, computing x �→ x1/3 is an exponentiation with
exponent (2q−1)/3. This can be implemented in a constant number of operations
over Fq. We also need to compute v = (3a− u4)/6u, which requires to compute
1/u = uq−2, which can also be done in a constant number of operations over Fq.
The total running time is then O(log3 q). %&
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In the following, we show how to compute f−1
a,b (P ) given a point P . This will be

used to show the one-wayness and collision resistance properties of the resulting
hash function (see Section 4).

Lemma 3. Let P = (x, y) be a point on the curve Ea,b. The solutions us of
fa,b(us) = P are the solutions of the polynomial equation:

u4 − 6u2x + 6uy − 3a = 0. (3)

Proof. The proof is very similar to the proof of Lemma 1. We write v = 3a−u4

6u .
We show that the two systems are equivalent:{

y2 = x3 + ax + b
u4 − 6u2x + 6uy − 3a = 0 ⇔

{(
x− u2

3

)3
= v2 − b− u6

27

y = ux + v

From the definition of fa,b, this proves the result of the Lemma.
We have:{

y2 = x3 + ax + b
u4 − 6u2x + 6uy − 3a = 0 ⇔

{
y2 = x3 + ax + b

y = ux + v

⇔
{
u2x2 + 2uvx + v2 = x3 + ax + b

y = ux + v
⇔
{
x3 − u2x2 + (a− 2uv)x + b− v2 = 0

y = ux + v

⇔
{
x3 − u2x2 + u4

3 x + b− v2 = 0
y = ux + v

⇔
{(

x− u2

3

)3
= v2 − b− u6

27

y = ux + v

%&

Lemma 4. f−1
a,b (P ) is computable in polynomial time and

∣∣∣f−1
a,b (P )

∣∣∣ ≤ 4, for all
P ∈ Ea,b,

Proof. Lemma 3 ensures that to compute f−1
a,b , it is sufficient to solve a degree

4 equation over Fq. Solving polynomial equations of degree d over a finite field
can be solved in O(d2 log3 q) binary operations using the Berlekamp algorithm
[12]. For this reason, f−1

a,b is computable in polynomial time. Furthermore, since
the pre-images are solution of a degree 4 equation over Fq, there are at most 4

solutions for any point P , which implies that
∣∣∣f−1

a,b (P )
∣∣∣ ≤ 4. %&

From
∣∣∣f−1

a,b (P )
∣∣∣ ≤ 4 we obtain that our function fa,b generates at least a constant

fraction of the elliptic-curve points:

Corollary 1. Let Ea,b be a curve over Fq, where q = pn with p > 3 and pn = 2
mod 3. We have

q

4
≤ |Im(fa,b)| ≤ q

The bounds for |Im(fa,b)| are not tight. We make the following conjecture:
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Conjecture 1. There exists a constant λ such that for any q, a, b∣∣∣∣|Im(fa,b)| −
5
8
|Ea,b(Fq)|

∣∣∣∣ ≤ λ
√
q

In the following, we motivate our conjecture. From lemma 3, the size of Im(fa,b)
depends on the existence of a solution of the equation u4− 6u2x+ 6uy− 3a = 0
for a given point (x, y) of Ea,b(Fq). A degree 4 polynomial has no root if and only
if it is irreducible or if it is the product of two degree 2 irreducible polynomials.
Over any finite field Fq with large q, it is known that random polynomials of
degree d are irreducible with asymptotic probability 1/d as q goes to infinity
[9]. For this reason, there exist approximately q2/2 irreducible degree 2 monic

polynomials. Hence, there exist
(
q2/2

2

)
≈ q4/8 products of two irreducible

degree 2 polynomials. This implies that there exist approximately q4/4+ q4/8 =
3q4/8 degree 4 monic polynomials with no root in Fq. For this reason, we can
estimate that a fraction 5/8 of random monic degree 4 polynomials have roots.
As a consequence the size of Im(fa,b) should be approximately 5/8 of the size of
Ea,b. Our conjecture is made by analogy of the Hasse bound.

Theorem 1 (Hasse Bound). ||Ea,b(Fq)| − q − 1| ≤ 2
√
q

We have tested our conjecture for all curves Ea,b over base field Fp such that
p = 2 mod 3 with p < 10000. For all these curves, we have computed the
number of points of the curve and we also have computed the number of points
in Im(fa,b). After this computation, we found a lower bound for λ as 2.3114.

From this conjecture, we have the following corollary, which gives a determin-
istic, surjective function onto Ea,b(Fq).

Corollary 2. If Conjecture 1 is true with λ ≤ 3, if q = 2 mod 3 and q > 1080,
then:

F : (Fq)
2 �→ Ea,b(Fq)

(u1, u2) �→ fa,b(u1) + fa,b(u2)

is a surjective map.

Proof. To prove that F is surjective, we use the drawer principle. Given a point
P ∈ Ea,b(Fq), the set S1 = {P − fa,b(u)}u∈Fq

is made of at least 5q/8 −
3
√
q + 1 + 2

√
q points. The set S2 = {fa,b(u)}u∈Fq

is also made of the same
number of points. This implies that the set S1 ∩ S2 is not empty if |S1|+ |S2| >
|Ea,b(Fq)|. This is always true when

2
(

5q
8
− 3
√
q + 1 + 2

√
q

)
> q + 1 + 2

√
q

which leads to q > 1080. %&
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Finally, we note that computing discrete logarithms of fa,b(u) is hard if com-
puting discrete logarithms in Ea,b(Fq) is hard. This is because the function fa,b

is efficiently invertible and
∣∣∣f−1

a,b (P )
∣∣∣ ≤ 4 for any P . Let G be a generator of

Ea,b(Fq). If we are given as input a random point P , with probability at least
1/4 we have that P ∈ Im(fa,b), so we can compute u ∈ Fq such that P = fa,b(u).
Then if an algorithm can compute x such that fa,b(u) = x.G, this gives x such
that P = x.G. This shows that if an algorithm can compute the discrete log-
arithm of fa,b(u), then such algorithm can be used to compute the discrete
logarithm in Ea,b(Fq). The same argument applies to any encoding function f
which is polynomially invertible on its outputs and with a polynomially bounded
pre-image size. The argument can be easily extended to show that for any gen-
erator base (G1, ..., Gn), computing x1, . . . , xn such that fa,b(x) =

∑
i xi.Gi is

hard if computing discrete logarithms in Ea,b(Fq) is hard.

4 How to Hash onto Elliptic Curves

Given a function f into an elliptic curve E, we describe two constructions of
hash functions into E. We define L as the maximal size of f−1(P ) where P is
any point on E:

L = max
P∈E

(
∣∣f−1(P )

∣∣)
For our encoding function fa,b, we have L ≤ 4 (see lemma 4). We note that if
we work in a subgroup of E of order n with cofactor r, we can use the encoding
function f ′

a,b = r.fa,b. If r is relatively prime to n, then we must have L ≤ 4r.
Our first construction is as follows: given a hash function h : {0, 1}∗ �→ Fq, we

define
H(m) = f(h(m))

as a hash function into the curve Ea,b(Fq). In the following, we show that H is
one-way if h is one way.

4.1 One-Wayness

Definition 1. A hash function is (t, ε)-one-way, if any algorithm running in
time t, when given a random y ∈ Im(h) as input, outputs m such that h(m) = y
with probability at most ε. A hash function is one-way if ε is negligible for any
polynomial t in the security parameter.

Lemma 5. If h is a (t, ε)-one-way hash function then H is (t′, ε′)-one-way
where ε′ = L2ε, where L = maxP∈E(

∣∣f−1(P )
∣∣). Therefore, if L is polynomial in

the security parameter and h is one-way, then H is one-way.

The proof is done in the full version of this paper [6].



How to Hash into Elliptic Curves 311

4.2 Collision Resistance

Definition 2. A family H of hash functions is (t, ε)-collision-resistant, if any
algorithm running in time t, when given a random h ∈ H, outputs (m,m′) such
that h(m) = h(m′) with probability at most ε.

Our first construction is easily extended to hash function families: given a family
H of hash functions, we define for each h ∈ H the function H = f ◦ h. We then
study whether the family of hash functions formed by the H is collision resistant.

A collision to one H occurs if and only if:

1. there exists m and m′ such that h(m) = h(m′); this is a collision for h,
2. or f(u) = f(u′) for u = h(m), u′ = h(m′) and u �= u′; this is a collision for

f .

In the following, we argue that we cannot prove the collision resistance of H
based on the collision resistance of h only. Namely, we note that given a hash
function h, it is easy to construct an elliptic curve with collisions on H = fa,b◦h.
Indeed, given (m,m′), let u = h(m) and u′ = h(m′). From this couple (u, u′),
we compute the degree 4 polynomial:

(X − u)(X − u′)(X2 + (u + u′)X − w) (4)

where w is a randomly chosen element in Fq. This polynomial is equal to:

X4 − 6xX2 + 6yX − 3a

where

x = −uu′ + w − (u + u′)2

6
, y =

(u + u′)(uu′ − w)
6

, a = −uu′w
3

.

Let b = y2 − x3 − ax. Hence (x, y) is a point on the elliptic curve Ea,b by
definition of b. For this reason, a preimage of (x, y) through fa,b is a solution of
the equation:

X4 − 6xX2 + 6yX − 3a = 0 (5)

which is exactly the polynomial (4) by definition of x, y and a. For this reason,
u and u′ are solutions of the equations (4) and are preimages of (x, y). Hence
(m,m′) is a collision for H = fa,b ◦ h.

However, if Ea,b is defined independently from h, it seems difficult to find
(m,m′) such that fa,b(y) = fa,b(y′) where y = h(m) and y′ = h(m′). In this
case, H should be collision resistant. We cannot prove that H is collision resistant
based only on the collision resistance of h, and we clearly need some additional
properties on h. In the next section, we provide a different construction for which
collision resistance can be proved based only on the collision resistance of h.
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4.3 Making f Collision Free

In this section, we show how to construct a family G of functions derived from
an encoding function f , which is collision free except with negligible probability.
Then given a hash function h and given g ∈ G, H ′(m) = g(h(m)) will be collision
resistant assuming that h is collision resistant.

Definition 3. A family G of functions is ε-collision-free if the probability that
g ∈ G has a collision is at most ε.

In other words, a collision-free family of functions is a family in which most
functions are injective. To construct such collision free family, we use the notion
of family of pair-wise independent functions.

Definition 4 (Pair-wise Independence). A family V of functions v : R �→ S
is ε-pair-wise independent if given any couple (r1, r2) ∈ R2 with r1 �= r2 and any
couple (s1, s2) ∈ S2:

Pr
v∈V

[v(r1) = s1 ∧ v(r2) = s2] ≤ ε.

The following theorem shows that the family G = {f ◦ v}v∈V is collision free.
The proof is in the full version of the paper [6].

Theorem 2. Let f : S �→ T be a function such that
∣∣f−1(t)

∣∣ ≤ L for all t ∈ T .
Let V be a family of ε-pair-wise independent functions from R to S. Then the
family G = (f ◦ v)v∈V is ε′-collision-free where

ε′ = |R|2 · |S| · L · ε.

Therefore, our second construction is as follows. Given a security parameter k
and an integer q = pn with q ≥ 2k, we consider the following family of functions:

(vc,d)c,d∈Fq
: {0, 1}k �→ Fq

x �→ c · x + d

where x is seen as an element in Fq. It is easy to see that this family is 1/q2-
pair-wise independent.

Given an elliptic curve E, we combine the encoding function f with the func-
tions in the vc,d family to get a collision-free family G:

G = (f ◦ vc,d)c,d∈Fq
: {0, 1}k �→ E(Fq)

x �→ f(c · x + d)

Finally, given a family H of collision-resistant functions h : {0, 1}∗ �→ {0, 1}k,
we construct the following family of hash functions into the curve E:

HE = (f ◦ vc,d ◦ h) c, d ∈ Fq

h ∈ H
: {0, 1}∗ �→ E(Fq)

m �→ f(c · h(m) + d)
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Theorem 3. If H is a (t, ε)-collision resistant family of hash functions, then
HE is a (t′, ε′)-collision resistant family of hash functions where

ε′ = ε + L
22k

q
.

The proof is in the full version of the paper [6].
Note that if we take q of size 5k/2 bits, we obtain ε′ ≤ ε+ 2−k/2. Therefore if

we have a family H of k-bit ε-collision resistant hash functions where ε = 2−k/2,
we obtain the same security level for HE , namely ε′ = 2−k/2+1.

In practice, given a curve E defined modulo a prime p, we randomly select
c, d ∈ Fp and a function h ∈ H; this defines a hash function:

HE : {0, 1}∗ �→ E(Fp)
m �→ f(c · h(m) + d)

Finally, we have that HE is a one way hash function when c �= 0:

Lemma 6. If h is a (t, ε)-one-way hash function, then for any c, d with c �= 0,
HE = f ◦ vc,d ◦ h is a (t′, ε′)-one way hash function ,with ε′ = L2 · ε.
The proof is in the full version of the paper [6].

We note that this second construction requires a much larger q than the
previous construction. For example, for a 160-bit hash function h, the first con-
struction requires a 160-bit integer q, whereas our second construction requires
q to be of size 5 · 160/2 = 400 bits.

5 Practical Implementations

In this section we compare the running time needed by various encodings into
elliptic-curves. We first consider our function fa,b with Euclide’s algorithm to
implement the inversion in Fp; we also consider fa,b (v2) with an exponentiation
instead in order to have a constant number of operations over Fp.

We have also implemented the various ‘try-and-increment’ algorithms: the
classic algorithm, the algorithm with a constant number of steps but with fast
Legendre symbol (v2) and the algorithm with a constant number of operations
using an exponentiation for the Legendre symbol (v3). We have also implemented
the encoding defined by equation (2) for a supersingular elliptic-curve; in this
case we have used a finite field ensuring the same security level as for ordinary
elliptic curves.

The implementation has been done on 10 different 160-bit primes, randomly
chosen such that p = 2 mod 3 and p = 3 mod 4. For every prime, 10 different
couples of parameters (a, b) have been randomly chosen. And on these 10 differ-
ent curves, we runned every algorithm 1000 times on random inputs. We used a
512-bit prime for the supersingular curves case.

We obtain that when a constant running time is required, our method per-
forms much better than the ‘try-and-increment’ algorithm and the algorithm
for supersingular curves. It also performs slightly better even when a constant
running time is not required.
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Table 1. Average Time of each Algorithms using the Number Theory Library (NTL)
[11] and running on a laptop using the Intel R©CoreTM2 Duo T7100 chip at a frequency
of 1, 80 Ghz

Algorithm Constant Running Time Running Time
fa,b No 0.22 ms
Try and Increment No 0.24 ms
Try and Increment v2 No 1.86 ms
fa,b v2 Yes 0.40 ms
Try and Increment v3 Yes 16.10 ms
Supersingular Curves Yes 3.67 ms

6 Conclusion

We have provided a new algorithm that encodes an integer into an elliptic curve
point in a constant number of field operations. This encoding exists for any
curve under the condition that the map x �→ x3 is a bijection on the base
field. This encoding is efficiently computable with the same complexity as one
exponentiation and one inversion on the base field.

From our encoding, we have defined two constructions, which enable to hash
into an elliptic curve. The first construction is provably one-way and the second is
provably one-way and collision resistant in the standard model. Our algorithm
can be used for password based authentication protocol over elliptic curves.
Indeed, it enables to efficiently encode passwords or PIN-codes into points of
the curve in a constant number of field operations.

We also note that our encoding enables to compute points of elliptic curves
over RSA rings without knowing the factorization of N = pq. Consider the
following problem: given N = pq where p and q are prime integers and a, b in
ZN , find (x, y) such that y2 = x3 + ax+ b mod N . Previously, factoring N was
required to compute such (x, y). Our function fa,b proves that a cube root oracle
is actually sufficient.

Acknowledgments. I wish to thank Jean-Sébastien Coron for the time he
spent to help me write this paper. I also thank Julien Bringer, Hervé Chabanne,
Bruno Kindarji and the anonymous referees for their helpful comments.
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A An Explicit Encoding from F2n to E(F2n)

The equations which define elliptic curves in characteristic 2 are somehow dif-
ferent from the Weierstrass equation:

Y 2 + XY = X3 + aX2 + b

where a and b are elements of F2n . For an odd n, the map x �→ x3 is a bijection.
Let

fa,b : F2n �→ (F2n)2

u �→ (x, ux + v2)

where

v = a + u + u2

x = (v4 + v3 + b)1/3 + v.

http://eprint.iacr.org/2009/226
http://www.shoup.net/ntl/
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Lemma 7. Let F2n be a field with n odd. For any u ∈ F2n , fa,b(u) is a point of
Ea,b : Y 2 + XY = X3 + aX2 + b.

Proof. Given a parameter u, let (x, y) be fa,b(u). We have the following equations
for x, u and v:

0 = (x + v)3 + b + v3 + v4

= x3 + vx2 + v2x + b + v4.

Since v = a + u + u2, this can be rewritten into:

x3 + ax2 + b = ux2 + u2x2 + v2x + v4

= (ux + v2)((u + 1)x + v2) = y(x + y)

Hence, (x, y) = fa,b(u) is a point of Ea,b. %&

A.1 Cardinality of Im(fa,b) in Characteristic 2

As in the case of the characteristic p, it is possible to bound the |Im(fa,b)|.

Theorem 4. 2n−2 < |Im(fa,b)| ≤ 2n

Proof. The inequality |Im(fa,b)| ≤ 2n is the consequence that fa,b is a function.
The other side of the inequality 2n−2 < |Im(fa,b)| can be explained thanks to

the equation y = ux+a2+u2+u4. As for the characteristic p, the second equation
of the Lemma 7 is enough to inverse fa,b. This equation can be rewritten as

0 = y + a + ux + u2 + u4

Given a point (x, y), if u is a solution of this equation then fa,b(u) = (x, y). Since
the equation is of degree 4, there are at most 4 different u for each point image
of fa,b. For this reason, there are at least 2n/4 = 2n−2 points in Im(fa,b). %&
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Abstract. This paper sets new software speed records for high-security
Diffie-Hellman computations, specifically 251-bit elliptic-curve variable-
base-point scalar multiplication. In one second of computation on a $200
Core 2 Quad Q6600 CPU, this paper’s software performs 30000 251-bit
scalar multiplications on the binary Edwards curve d(x + x2 + y + y2) =
(x + x2)(y + y2) over the field F2[t]/(t251 + t7 + t4 + t2 + 1) where
d = t57 + t54 + t44 + 1. The paper’s field-arithmetic techniques can be
applied in much more generality but have a particularly efficient inter-
action with the completeness of addition formulas for binary Edwards
curves.

Keywords: Scalar multiplication, Diffie–Hellman, batch throughput,
vectorization, Karatsuba, Toom, elliptic curves, binary Edwards curves,
differential addition, complete addition formulas.

1 Introduction

Which curves should one choose for elliptic-curve cryptography?
The first and most fundamental choice is between curves defined over binary

(i.e., characteristic-2) finite fields and curves defined over non-binary fields. For
example:

• NIST’s standard K-283 curve is the subfield curve y2 + xy = x3 + 1 over
the field F2[t]/(t283 + t12 + t7 + t5 + 1). NIST’s standard B-283 curve is a
particular non-subfield curve over the same binary field.
• NIST’s standard P-256 curve is a particular curve over the prime field

Z/(2256 − 2224 + 2192 + 296 − 1).

Multiplication in the polynomial ring F2[t] is, at first glance, just like multipli-
cation in Z but skips all the carries. Furthermore, squaring in F2[t] is simply a
relabeling of exponents. One might therefore guess that curves over binary fields
are considerably faster than curves over large-characteristic fields.
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document: 2009.06.03. This work was supported by the National Science Foundation
under grant ITR–0716498.
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However, the software speed records for elliptic-curve cryptography are—and
for many years have been—held by large-characteristic fields. The fastest Diffie–
Hellman speeds (i.e., speeds for variable-base-point scalar multiplication n, P �→
nP ) reported in ECRYPT’s publicly verifiable benchmarks [15] on a single core
of an Intel Core 2 Quad Q6600 (6fb, utrecht) are

• 321012 cycles for field size (2127 − 1)2 (using software from Galbraith, Lin,
and Scott, combining Edwards curves with the idea of [33]),
• 386739 cycles for field size 2255−19 (using software from Gaudry and Thomé

announced in [35]), and
• 855036 cycles for field size 2251 (also using software from [35]).

Similar comments apply to older processors: for example, Fong, Hankerson,
López, and Menezes in [30, Table 6] report 1720000 cycles on a Pentium III
for field size 2233, while [12] reports 832457 cycles on a Pentium III for field
size 2255 − 19. Subfield curves provide some speedups in the binary case—for
example, Hankerson et al. in [38, Table 7] report 1740000 cycles on a Pentium II
for field size 2283, and Hankerson, Karabina, and Menezes in [39, Table 5] report
758000 cycles on a Xeon 5460 (similar to a Core 2 Quad) for field size 2254—but
binary fields seem to have no hope of catching up to large-characteristic fields.

Why are large-characteristic fields so much faster than binary fields? The
conventional explanation is that today’s popular CPUs include fast “integer-
multiplication” (and “floating-point multiplication”) instructions that multiply
medium-size elements of Z, but do not include instructions to multiply medium-
size elements of F2[t]. Of course, one can multiply in F2[t] by combining simpler
CPU instructions, but the multiplication instructions for Z are much faster,
outweighing any possible advantages of characteristic 2. This effect has been
intensified by the transition from 32-bit processors to 64-bit processors: 64-bit
multipliers are even more powerful than 32-bit multipliers.

Why have CPU designers decided to include a circuit for multiplication in
Z and not a smaller, faster circuit for multiplication in F2[t]? The conventional
explanation is as follows. Most of the computer users who care about CPU speed
are measuring performance of weather simulation, movie decompression, video
games, etc. These applications rely heavily on multiplication in Z, rewarding
CPUs that include integer multipliers, floating-point multipliers, etc. The same
applications make very little use of multiplication in F2[t].

New speed records. This paper introduces new software named BBE251 for
scalar multiplication on a high-security binary elliptic curve, specifically the
binary Edwards curve d(x + x2 + y + y2) = (x + x2)(y + y2) over k, where
k = F2251 = F2[t]/(t251 + t7 + t4 + t2 + 1) and d = t57 + t54 + t44 + 1 ∈ k. This
curve has group order 4 · prime and twist order 2 · prime, and it satisfies all the
usual elliptic-curve security criteria; see Section 3.

BBE251 is so fast that it sets new speed records not just for binary elliptic
curves, but for all elliptic curves. For example, a benchmark of a batch of 1024
independent scalar multiplications took 321866514 cycles on a single core of
a Core 2 Quad Q6600 (6fb)—a cost of just 314323 Core 2 cycles per scalar
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multiplication, improving upon all previous results. The Sage computer-algebra
system [63] was used to check a random sampling of outputs.

Readers and potential users are cautioned that BBE251 does not compute one
scalar multiplication in 314323 cycles. The software is given a batch of curve
points P1, P2, P3, . . . and an equal-length batch of integers n1, n2, n3, . . .; it pro-
duces a batch of multiples n1P1, n2P2, n3P3, . . .. The speed of BBE251 does not
rely on any relationships between the inputs; in fact, for fixed-size batches, the
software takes constant time, independent of the inputs. BBE251 nevertheless pro-
vides speed benefits from handling (n1, P1) together with (n2, P2) and (n3, P3)
and so on. BBE251 is faster than the software in [35] for the same field size once
the batch size is above 50; for large batches it is more than twice as fast.

Real-world servers bottlenecked by typical elliptic-curve computations can
gain speed by collecting the computations into batches, switching to the curve
introduced in this paper, and switching to the software introduced in this paper.
The batching increases latency by several milliseconds, but in most applications
this is not a problem, whereas raw throughput is often critical. BBE251 completes
1048576 scalar multiplications in just 35 seconds using all four cores of a single
2.4GHz Core 2 Quad Q6600 CPU; interference among the cores is negligible.
This is not the fastest single-chip scalar-multiplication measurement ever re-
ported in the literature—Güneysu and Paar in [36] reported “more than 37000
point multiplications per second”—but a closer look shows that [36] achieved
37000 224-bit scalar multiplications per second on a $1000 Xilinx Virtex-4 SX55
containing hundreds of multipliers, while this paper achieves 30000 251-bit scalar
multiplications per second on a $200 Core 2 Quad Q6600.

BBE251 provides several benefits beyond speed. It avoids all data-dependent
array indices, all data-dependent branches, etc., and is therefore immune to
cache-timing attacks, branch-prediction attacks, etc.; the same security feature
was already present in state-of-the-art software for large-characteristic elliptic
curves (see, e.g., [12]) but is hard to find for binary curves. BBE251 has been
posted (http://binary.cr.yp.to) to allow public verification of its accuracy
and speed, and has been placed into the public domain to maximize reusability.

How these speeds were achieved: low level. Schoolbook multiplication
of two 251-bit polynomials in F2[t] takes 125501 bit operations: specifically,
2512 = 63001 bit multiplications (ANDs) and 2502 = 62500 bit additions
(XORs). BBE251 instead uses several layers of Karatsuba and Toom recursions,
including some new refinements, reducing the number of bit operations to 33096,
approximately 3.79× smaller than 125501. See Section 2 for details.

The conventional wisdom is that bit-operation counts are a poor predictor of
software performance, for two critical reasons:

• CPUs handle multiple bits at once. For example, a 32-bit xor is a single
instruction, just as fast as a 16-bit xor or an 8-bit xor. It therefore makes
no sense to split a 32× 32-bit problem into three 16× 16-bit problems or to
split a 16× 16-bit problem into three 8× 8-bit problems.

http://binary.cr.yp.to
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• F2[t]-multiplication software is bottlenecked by the cost of shifting bits
within words, not by the cost of performing arithmetic on bits. For example,
extracting two 4-bit pieces from an 8-bit input is not free; it costs two or
three instructions, depending on the CPU.

It is widely appreciated that fast multiplication techniques save time in soft-
ware for sufficiently large inputs, but the speedups are generally believed to be
rather small at cryptographic sizes—certainly not a 3.79× speedup for 251-bit
multiplication. Hankerson, Hernandez, and Menezes in [38, Section 3] say that
Karatsuba is “competitive” for 233 bits and for 283 bits but does not actually
save time. Bailey and Paar in [10] say that fast polynomial multiplication “yields
a 10% speedup in the overall scalar multiplication time” for a particular curve.
Brent, Gaudry, Thomé, and Zimmermann in [22] report speedups from several
layers of Karatsuba and Toom recursions, but only beyond cryptographic sizes.

In BBE251, a 16-bit xor is faster than a 32-bit xor, because two 16-bit inputs
are packed into the same space as a 32-bit input and handled in parallel. Shift
costs are trivially eliminated by the standard technique of “bitslicing”: w sep-
arate b-bit inputs i0 = (i0,0, i0,1, . . . , i0,b−1), i1 = (i1,0, i1,1, . . . , i1,b−1), . . . are
batched, transposed into b separate w-bit vectors (i0,0, i1,0, . . .), (i0,1, i1,1, . . .),
. . . , (i0,b−1, i1,b−1, . . .), and then handled without shifts until the end of the
computation. These vectors do not fit simultaneously into CPU registers, but
BBE251 arranges operations so that most loads and stores are overlapped with
computation.

Bitslicing has been used in cryptography before. Two record-setting exam-
ples are Biham’s implementation [18] of DES, a standard hardware-friendly bit-
oriented cipher that had previously been viewed as very slow in software, and the
Matsui–Nakajima implementation [50] of AES, taking just 9.2 cycles per byte
on a Core 2. Aoki, Hoshino, and Kobayashi in [9] pointed out that bitsliced field
arithmetic saves time for binary elliptic curves—but they were still unable to
compete with non-binary elliptic curves. The Pentium III speeds reported in [9,
Table 3] for a subfield curve over a field of size 2163 are not as fast as the Pentium
II speeds reported the same year by Aoki et al. in [8, Table 4] for a curve over a
larger non-binary field. The fast multiplication circuits built into current CPUs
perform a huge number of bit operations per cycle and are generally perceived
as indispensable tools for fast public-key cryptography; it is surprising that bit-
sliced field arithmetic can set new Diffie–Hellman speed records, outperforming
the multiplication circuits.

How these speeds were achieved: high level. There is a limitation to the
power of bitslicing, at least in the pure form used in this paper: bitslicing requires
all computations to be expressed as straight-line sequences of bit operations.
Straight-line computations do not contain data-dependent branches (e.g., “if
P = Q then . . . ”) or data-dependent array indices (e.g., “load x[i], where i is
the next bit of the scalar”). Computations that include data-dependent array
indices can be simulated by straight-line computations that perform arithmetic
on all array elements, and computations that include data-dependent branches
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can be simulated in an analogous way (recall that the “program counter” is just
another array index), but these simulations are slow.

Fortunately, a recent line of research has shown how to carry out some elliptic-
curve computations without data-dependent array indices, without data-
dependent branches, and without serious loss of speed. These techniques have
been advertised as efficiently protecting against various types of software side-
channel attacks, such as cache-timing attacks, but the same techniques are also
useful for efficient bitslicing. Specifically:

• Single-scalar multiplication, odd characteristic: [12, Theorem 2.1] says that
the differential-addition formulas from [52] compute X0(nP ) from X0(P ) on
any Montgomery curve having a unique 2-torsion point. Here X0(P ) means
x if P = (x, y) and 0 if P = ∞. See [13, Section 5] for discussion of more
general Montgomery curves.
• Arbitrary group operations, odd characteristic: [14, Theorem 3.3] says that

various addition formulas are complete—i.e., have no exceptional cases—for
any Edwards curve x2 +y2 = 1+dx2y2 having non-square d. Complete addi-
tion formulas allow complete single-scalar multiplication, complete double-
scalar multiplication, etc.
• Arbitrary group operations, characteristic 2: [16, Theorem 4.1] says that

various addition formulas in [16] are complete for any binary Edwards curve
d1(x + y) + d2(x2 + y2) = (x + x2)(y + y2) having d2 of trace 1.

The complete differential-addition formulas in [16, Section 7] are reviewed in
Section 3 of this paper and are used in BBE251. Other approaches, such as mixing
bitsliced computation with non-bitsliced computation, do not appear to provide
noticeable benefits for the speed of elliptic-curve scalar multiplication and are
not discussed in this paper.

The unexpected speed of bitsliced binary-field multiplication can be viewed as
motivation to consider bitslicing for a wide variety of higher-level cryptographic
computations and for many other problems. This paper’s results on binary-
elliptic-curve scalar multiplication are one step along this path. The reader is
cautioned, however, that bitslicing will provide smaller benefits for computations
that rely more heavily on random access to memory.

What about PCLMULQDQ? Some CPU designers have begun to realize the po-
tential importance of F2[t] for cryptographic applications. Intel announced in
April 2008 that its processors will eventually include a “carry-less multiplica-
tion” instruction named PCLMULQDQ. Intel’s white paper [40] says that “carry-
less multiplication”—i.e., multiplication in F2[t]—is particularly important for
GCM, a standard for secret-key authenticated encryption relying heavily on
multiplications in the binary field F2128 ; and that “accelerating carry-less multi-
plication can significantly contribute to achieving high speed secure computing
and communication.” Gueron and Kounavis estimate in [37] that scalar mul-
tiplication on the NIST B-233 elliptic curve would take 220000 cycles using a
9-cycle instruction for “carry-less multiplication,” or 70000 cycles using a 3-cycle
instruction for “carry-less multiplication.” NIST B-233 has a somewhat lower
security level than the 251-bit curve used in this paper.
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Intel also announced in April 2008 that its processors will, starting in 2010,
include 256-bit vector instructions. The initial instruction set will not include
many integer instructions but will include 256-bit logical operations such as
VXORPS ymm and VANDPS ymm; see [41].

It is clear that PCLMULQDQ-based software will easily outperform most soft-
ware for binary-elliptic-curve computations. However, it is not at all clear that
PCLMULQDQ will outperform a 256-bit-vector implementation of the techniques
introduced in this paper. It is not even clear that PCLMULQDQ will outperform
the specific BBE251 software described in this paper!

In any case, one can reasonably speculate that continued improvements in
binary-elliptic-curve performance will encourage cryptographic users to shift to
binary elliptic curves, increasing the importance of techniques to accelerate com-
putations on those curves. Presumably Z-biased CPUs will continue being sold
for years and will continue being used for years after that; the techniques in this
paper will clearly remain important for Z-biased CPUs whether or not they are
helpful for PCLMULQDQ CPUs.

2 Polynomial Multiplication

This section explains how to multiply 251-bit polynomials using 33096 bit opera-
tions. More generally, this section presents small explicit upper bounds on M(n),
the minimum number of bit operations needed to multiply an n-bit polynomial
f0 + f1t+ · · ·+ fn−1t

n−1 by another n-bit polynomial g0 + g1t+ · · ·+ gn−1t
n−1.

Inputs and outputs are represented in the standard form: f0 + f1t + · · · +
fn−1t

n−1 is represented as an n-bit string (f0, f1, . . . , fn−1); g0 + g1t + · · · +
gn−1t

n−1 is represented as an n-bit string (g0, g1, . . . , gn−1); and the output h0+
h1t+ · · ·+ h2n−2t

2n−2 is represented as a (2n− 1)-bit string (h0, h1, . . . , h2n−2).

Comparison to previous work. The definition of polynomial multiplication
immediately implies that M(n) ≤ Θ(n2). Karatsuba showed in [45] that M(n) ≤
Θ(nlg 3). Toom showed in [64] that M(n) ≤ n1+o(1), and more precisely M(n) ≤
n2Θ(

√
lg n). Schönhage showed in [61] that M(n) ≤ Θ(n lg n lg lg n), by adapting

an integer-multiplication method by Schönhage and Strassen in [62]. No better
asymptotic bounds are known; Fürer in [32] introduced an asymptotically faster
multiplication method for integers, but it is not clear whether the method can
be adapted to binary polynomials.

Of course, bounds involving Θ, O, etc. are not explicit. To draw conclusions
about M(251), or any other specific M(n), one needs to carefully re-analyze the
algorithms used to prove asymptotic bounds. To draw useful conclusions one
often needs to rethink the algorithm design, looking for constant-factor (and
sub-constant-factor) improvements that are not visible in the asymptotics.

Explicit upper bounds do appear in the literature on hardware multipliers.
The bound M(n) ≤ 2n2 − 2n+ 1 is easy to find in hardware textbooks. Several
cryptographic-hardware papers (see below) have presented explicit upper bounds
on M(n) obtained with Karatsuba’s method, have pointed out that these upper
bounds are considerably below 2n2−2n+1 for cryptographically useful sizes of n,
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and have concluded that hardware multipliers should use Karatsuba’s method.
XOR and AND do not have identical hardware costs, but analyses weighted by
the actual costs come to similar conclusions.

The explicit upper bounds on M(n) obtained in this section are better than
anything that can be found in the hardware literature. Here are several examples
of the improved bounds:
• M(128) ≤ 11486. For comparison, Peter and Langendörfer in [57, Table

3] report 14287 bit operations (12100 XORs and 2187 ANDs) for “classic
Karatsuba multiplication,” 32513 bit operations for schoolbook multiplica-
tion, and 13146 bit operations for an “improved iterative Karatsuba.”
• M(163) ≤ 16923. For comparison, Chang, Kim, Park, and Lim in [24] report

21791 bit operations for a “non-redundant Karatsuba-Ofman algorithm.”
• M(193) ≤ 21865. For comparison, Rodŕıguez-Henŕıquez and Koç in [59,

Section 4.1] report 29725 bit operations (20524 XORs and 9201 ANDs).
• M(194) ≤ 21906. For comparison, von zur Gathen and Shokrollahi in [67,

Section 3] report 26575 bit operations.
• M(n) ≤ (103/18)nlg 3 − 7n + 3/2 for n ∈ {2, 4, 8, 16, . . .}; this bound is

not tight. For comparison, Fan, Sun, Gu, and Lam in [29, Table II] report
6.5nlg 3− 6n+0.5 bit operations (5.5nlg 3− 6n+0.5 XORs and nlg 3 ANDs).
Note that 103/18 = 5.722 . . . < 6.5.
• M(512) ≤ 98018. For comparison, Rodriguez-Henŕıquez and Koç in [59,

Table 1] report 116191 bit operations (81199 XORs and 34992 ANDs).

As these examples illustrate, switching from this paper’s multiplication methods
back to the multiplication methods in the hardware literature often increases
the number of bit operations by more than 20%. On the other hand, one should
not exaggerate the importance of multiplication refinements as a component of
this paper’s new speed records for binary-elliptic-curve cryptography. Bitsliced
binary-Edwards-curve arithmetic, as described in Section 3 of this paper, would
still have set new speed records even if this section’s multiplication methods had
been replaced by the methods in [67].

Schoolbook recursion. One can multiply f0 + f1t + · · ·+ fnt
n by g0 + g1t +

· · ·+ gnt
n as follows:

• Recursively multiply f0 + f1t+ · · ·+ fn−1t
n−1 by g0 + g1t+ · · ·+ gn−1t

n−1.
• Compute (fng0 + f0gn)tn + (fng1 + f1gn)tn+1 + · · · + fngnt

2n. This takes
2n + 1 bit multiplications and n bit additions.
• Add. This takes n − 1 bit additions for the coefficients of tn, . . . , t2n−2; the

other coefficients do not overlap.

Consequently M(n+1) ≤M(n)+4n. This “schoolbook recursion” bound implies
the “schoolbook multiplication” bound M(n) ≤ 2n2 − 2n + 1, but schoolbook
recursion is—in combination with other recursions—useful for much larger n’s
than schoolbook multiplication.

Three-way recursion. The well-known Karatsuba identity

(F0 + F1t
n)(G0 + G1t

n)

= F0G0 + tn((F0 + F1)(G0 + G1)− F0G0 − F1G1) + t2nF1G1
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shows how to multiply 2n-bit polynomials F0 + F1t
n, G0 + G1t

n using three
multiplications of n-bit polynomials and a small amount of overhead. What
actually appeared as “Theorem 2 (Karatsuba)” in the original Karatsuba–Ofman
paper [45] was an integer analogue of the squaring case of the equivalent identity

(F0 + F1t
n)(G0 + G1t

n)

= (1− tn)F0G0 + tn(F0 + F1)(G0 + G1) + (t2n − tn)F1G1.

Either identity easily leads to the bound M(2n) ≤ 3M(n)+8n−4 appearing in,
e.g., [67, Section 2]. The 8n− 4 arises as a sum of three components: 2n for the
additions in F0 + F1 and G0 + G1, another 4n− 2 to subtract F0G0 and F1G1
from (F0 + F1)(G0 + G1), and another 2n − 2 to handle the overlaps between
F0G0, tn · · · , and t2nF1G1.

Much less well known is that the constant 8 here can be improved to 7:
specifically, M(2n) ≤ 3M(n) + 7n − 3. What follows is one way to understand
the improvement.

A generic quadratic polynomial H = H0 + H1x + H2x
2 can be reconstructed

from H(0) = H0, H(1) = H0 + H1 + H2, and H(∞) = H2 by the projective
Lagrange interpolation formula H = (1 − x)H(0) + xH(1) + x(x − 1)H(∞).
Factoring out 1− x produces the slightly simpler formula

H = (1 − x)(H(0)− xH(∞)) + xH(1).

In particular, if H is the product of two generic linear polynomials F = F0 +F1x
and G = G0 + G1x, then H(0) = F (0)G(0) = F0G0, H(1) = F (1)G(1) =
(F0+F1)(G0+G1), and H(∞) = F (∞)G(∞) = F1G1, so (F0+F1x)(G0+G1x) =
(1− x)(F0G0 − xF1G1) + x(F0 + F1)(G0 +G1). Substitute x = tn to obtain the
refined Karatsuba identity

(F0 + F1t
n)(G0 + G1t

n) = (1 − tn)(F0G0 − tnF1G1) + tn(F0 + F1)(G0 + G1).

For comparison, rewriting the projective Lagrange interpolation formula as H =
H(0) + x(H(1) − H(0) − H(∞)) + x2H(∞) leads to the original Karatsuba
identity.

Say F0, G0 are n-bit polynomials in F2[t] and F1, G1 are k-bit polynomials in
F2[t]. Here is a cost analysis of the refined Karatsuba identity as a method of
computing the product of F0 + F1t

n and G0 + G1t
n:

• Cost M(n): Multiply F0 by G0.
• Cost M(k): Multiply F1 by G1.
• Cost k, assuming k ≤ n: Add F0 to F1.
• Cost k: Add G0 to G1.
• Cost M(n): Multiply F0 + F1 by G0 + G1.
• Cost n− 1, assuming k ≥ n/2: Subtract tnF1G1 from F0G0.
• Cost 2k − 1: Subtract tn(F0G0 − tnF1G1) from F0G0 − tnF1G1.
• Cost 2n− 1: Add tn(F0 + F1)(G0 + G1).
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Consequently M(n + k) ≤ 2M(n) + M(k) + 4k + 3n− 3 if n/2 ≤ k ≤ n.
Notice that this computation does not follow the traditional structure of first

computing the coefficients H0, H1, H2 and then computing H(tn) = H0+H1t
n+

H2t
2n. In particular, the middle coefficient H1 = (F0 + F1)(G0 + G1)− F0G0 −

F1G1 is not an intermediate result in this computation.
I posted the M(2n) ≤ 3M(n) + 7n − 3 bound (and the resulting M(n) ≤

(103/18)nlg 3 − 7n + 3/2 bound for n ∈ {2, 4, 8, . . .}) in [11, page 7] in 2000,
but I am formally announcing the idea here for the first time. The simplified-
Lagrange-interpolation explanation has not appeared anywhere, even informally,
and is reused below for improvements in five-way recursion.

Five-way recursion. A generic quartic polynomial H = H0 + H1x + H2x
2 +

H3x
3 + H4x

4 over F2 can be reconstructed from the values H(0), H(1), H(t),
H(t + 1), H(∞) by the projective Lagrange interpolation formula

H = H(0)
(x + 1)(x + t)(x + t + 1)

t(t + 1)
+ H(1)

x(x + t)(x + t + 1)
(1 + t)t

+ H(t)
x(x + 1)(x + t + 1)

t(t + 1)
+ H(t + 1)

x(x + 1)(x + t)
(t + 1)t

+ H(∞)x(x + 1)(x + t)(x + t + 1).

Easy manual simplification produces the (perhaps not optimal) formula

H = U + H(∞)(x4 + x) +
(U + V + H(∞)(t4 + t))(x2 + x)

t2 + t

where U = H(0)+(H(0)+H(1))x and V = H(t)+(H(t)+H(t+1))(x+t). This
formula, in turn, leads to the following new algorithm to compute the product
of F0 + F1t

n + F2t
2n and G0 + G1t

n + G2t
2n, where F0, F1, G0, G1 are n-bit

polynomials and F2, G2 are k-bit polynomials:

• Cost M(n): Compute H(0) = F0G0.
• Cost M(k): Compute H(∞) = F2G2.
• Cost n + k, assuming k ≤ n: Compute F0 + F1 + F2.
• Cost n + k: Compute G0 + G1 + G2.
• Cost M(n): Compute H(1) = (F0 + F1 + F2)(G0 + G1 + G2).
• Cost n− 1, or k if k ≤ n− 1: Compute F1t + F2t

2.
• Cost n− 1, or k if k ≤ n− 1: Compute G1t + G2t

2.
• Cost n− 1: Compute F0 + (F1t + F2t

2).
• Cost n− 1: Compute G0 + (G1t + G2t

2).
• Cost M(n + 2), or M(n + 1) if k ≤ n − 1: Compute H(t), the product of
F0 + (F1t + F2t

2) and G0 + (G1t + G2t
2).

• Cost n− 1: Compute (F0 + F1 + F2) + (F1t + F2t
2).

• Cost n− 1: Compute (G0 + G1 + G2) + (G1t + G2t
2).

• Cost M(n+ 2), or M(n+ 1) if k ≤ n− 1: Compute H(t+ 1), the product of
(F0 + F1 + F2) + (F1t + F2t

2) and (G0 + G1 + G2) + (G1t + G2t
2).
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• Cost 2n + 1: Compute H(t) + H(t + 1). The coefficients of t2n+2 and t2n+1

in H(t + 1) are the same as the coefficients of t2n+2 and t2n+1 in H(t), so
this sum has degree at most 2n. (For the same reason, some work could have
been saved in the computation of H(t + 1).)
• Cost 3n + 4, or 3n + 2 if k ≤ n − 1: Compute V = H(t) + (H(t) + H(t +

1))(tn + t). Note that deg V ≤ 3n.
• Cost 3n−2: Compute U = H(0)+(H(0)+H(1))tn. Note that degU ≤ 3n−2.
• Cost 4k + 3n − 3, assuming n ≥ 2: Compute W = U + V + H(∞)(t4 + t).

Note that degW ≤ 3n.
• Cost 3n− 2: Compute W/(t2 + t). This division is exact: W/(t2 + t) ∈ F2[t].

(For the same reason, some work could have been skipped in the computation
of W .)
• Cost 5n + 2k − 4: Compute H(∞)(t4n + tn) + (W/(t2 + t))(t2n + tn) + U .

Consequently M(3n) ≤ 3M(n)+2M(n+2)+35n−12 if n ≥ 2, and M(2n+k) ≤
2M(n) + M(k) + 2M(n + 1) + 25n + 10k − 12 if 1 ≤ k ≤ n− 1.

The previous state of the art, building on ideas by Zimmermann and Quercia,
Weimerskirch and Paar [68], and Montgomery [53], was an algorithm by Bodrato
in [19] to compute H0, H1, H2, H3, H4 given H(0), H(1), H(t), H(t + 1), H(∞)
using 9 additions, one multiplication by t3 +1, one division by t, one division by
t+1, and one division by t2+t. The total overhead was about 38n operations: 10n
to compute F (0), F (1), F (t), F (t+1), F (∞) and G(0), G(1), G(t), G(t+1), G(∞);
24n for Bodrato’s computation of H0, H1, H2, H3, H4; and 4n to reconstruct H
from H0, H1, H2, H3, H4. The separate coefficients H0, H1, H2, H3, H4 turn out
to be a distraction, as in the Karatsuba case; this section does better by con-
structing H directly, exploiting the polynomial structure visible in the projective
Lagrange interpolation formula.

Two-level seven-way recursion. Consider the problem of multiplying two
degree-3 polynomials. Apply the refined Karatsuba identity three times, factor
out 1− x, and substitute x = tn, to obtain the identity

(F0 + F1t
n + F2t

2n + F3t
3n)(G0 + G1t

n + G2t
2n + G3t

3n)

= (1− t2n)((1− tn)(F0G0 − tnF1G1 − t2nF2G2 + t3nF3G3)

+ tn(F0 + F1)(G0 + G1)− t3n(F2 + F3)(G2 + G3))

+ t2n(F0 + F2 + (F1 + F3)tn)(G0 + G2 + (G1 + G3)tn).

Cost evaluation for polynomials with 3n + k coefficients, assuming k ≥ n/2:

• Cost M(n): Multiply F0 by G0.
• Cost M(n): Multiply F1 by G1.
• Cost M(n): Multiply F2 by G2.
• Cost M(k): Multiply F3 by G3.
• Cost 3n− 3: Compute U = F0G0 − tnF1G1 − t2nF2G2 + t3nF3G3.
• Cost 2n + 2k − 1: Compute (1− tn)U .
• Cost 2n + M(n): Multiply F0 + F1 by G0 + G1.
• Cost 2k + M(n): Multiply F2 + F3 by G2 + G3.
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• Cost 4n − 2: Compute V = (1 − tn)U + tn(F0 + F1)(G0 + G1) − t3n(F2 +
F3)(G2 + G3).
• Cost 2n+2k+M(2n): Multiply F0+F2+(F1+F3)tn by G0+G2+(G1+G3)tn.
• Cost 6n + 2k − 2: Compute (1 − t2n)V + t2n(F0 + F2 + (F1 + F3)tn)(G0 +
G2 + (G1 + G3)tn).

Hence M(3n+ k) ≤M(2n) + 5M(n)+M(k) + 19n+ 8k− 8 if n/2 ≤ k ≤ n. For
example, M(4n) ≤M(2n) + 6M(n) + 27n− 8. This is n− 1 smaller than what
would have been obtained by straightforwardly applying the refined Karatsuba
identity without factoring out 1− x.

Optimization. One can build a table of upper bounds on M(1), . . . ,M(n) by
recursively building a table of upper bounds on M(1), . . . ,M(n − 1) and then
mechanically checking what the inequalities in this section say about M(n). This
computation reaches M(251) in negligible time. One can slightly improve many
of the upper bounds by mechanically removing redundant computations (such
as the equal top coefficients of H(t) and H(t + 1) in five-way recursion) from
straight-line multiplication code.

My web page http://binary.cr.yp.to/m.html presents a table of upper
bounds on M(1), . . . ,M(1000) obtained in this way. Each upper bound is ac-
companied by straight-line multiplication code that has been computer-verified
to multiply correctly and to use exactly the specified number of bit operations.

Often an input to one multiplication is reused in a subsequent multiplication;
for example, w1 in Section 3 participates in many multiplications. One can save
time by caching evaluations of that input, such as F0 + F1 above. To properly
optimize this reuse one should define, e.g., M2(n) as the cost of multiplying
a single n-bit input by two n-bit inputs (serially), and then optimize M2(n)
analogously to M(n).

The reader is cautioned that there are many more multiplication methods in
the literature: for example, more Toom variants, FFTs, etc. Analyzing, refining,
and combining these methods would improve the bounds on M(n) for many
integers n, perhaps including n = 251. Most of the relevant methods are surveyed
in [22] but have not yet been optimized for bit operations.

3 Elliptic-Curve Scalar Multiplication

This section reviews binary Edwards curves; discusses this paper’s selection of
a particular binary Edwards curve; and analyzes the speed of computation of
scalar multiples on that curve.

Review of binary Edwards curves. A binary Edwards curve over a binary
finite field k is a curve of the form d1(x + y) + d2(x2 + y2) = (x + x2)(y + y2)
where d1 ∈ k−{0} and d2 ∈ k−

{
d2
1 + d1

}
. This curve shape was introduced by

Bernstein, Lange, and Rezaeian Farashahi in [16] as a characteristic-2 analogue
to the curve shape introduced by Edwards in [28].

A binary Edwards curve is complete if d2 has trace 1, i.e., if d2 cannot be
written as c2 + c for any c ∈ k. The paper [16] proves that every ordinary elliptic

http://binary.cr.yp.to/m.html
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curve over k is birationally equivalent over k to a complete binary Edwards curve
if #k ≥ 8, and that various addition formulas on the complete binary Edwards
curve have no exceptional cases.

The case d1 = d2 allows various speedups presented in [16]. For example,
it allows differential addition and doubling—a single step in a “Montgomery
ladder”—using four squarings in k, two multiplications by d1, and five more
multiplications in k. The general case would need four squarings in k, four mul-
tiplications by parameters, and six more multiplications in k.

The selected curve. Define k = F2251 = F2[t]/(t251 + t7 + t4 + t2 + 1). Define
d ∈ k as t57 + t54 + t44 + 1; note that d has trace 1. Define E as the binary
Edwards curve d(x + x2 + y + y2) = (x + x2)(y + y2).

This curve is birationally equivalent to the Weierstrass curve v2 + uv = u3 +
(d2 + d)u2 + d8 by (x, y) �→ (u, v) = (d3(x+ y)/(xy+ d(x+ y)), d3(x/(xy+ d(x+
y)) + d + 1)). See [16, Section 2].

The main task considered here is scalar multiplication n, P �→ nP in the group
E(k) =

{
(x, y) ∈ k2 : d(x + x2 + y + y2) = (x + x2)(y + y2)

}
, with neutral ele-

ment (0, 0). Note that this group does not have any points at infinity. See [16]
for further discussion of the group law.

Security issues in curve selection. This curve satisfies all of the standard
criteria for high-security curves:

• The curve has near-prime order. Specifically, the curve has order 4p1 where
p1 is the prime 2249 + 17672450755679567125975931502191870417.
• The twist of the curve has near-prime order, specifically order 2p2 where p2

is the prime 2250 − 35344901511359134251951863004383740833.
• The primes are large enough for high security: generic discrete-logarithm

algorithms use approximately 2124 group operations on average.
• Avoiding subfields: The j-invariant 1/d8 generates the field k.
• Avoiding small discriminants: (2251 +1−4p1)2−2253 is divisible by the large

prime ((2251 + 1− 4p1)2 − 2253)/(−83531196553759) exactly once.
• Avoiding pairing attacks: The multiplicative order of 2251 modulo p1 is not

small: in fact, it is (p1 − 1)/2. The multiplicative order of 2251 modulo p2 is
not small: in fact, it is (p2 − 1)/2.
• Avoiding the GHS attack: The extension degree 251 is a prime, so the only

nontrivial subfield of k is F2. GHS genera over F2 cannot be small: in fact,
they are at least 249, since the multiplicative order of 2 modulo 251 is 50.
See [51].

The curve used in this paper was found by a search through various possibil-
ities for d. Most choices of d fail the near-prime-order requirement, and most
of the remaining choices of d fail the near-prime-twist-order requirement, but
there are still many suitable possibilities. An easy computation with the Magma
computer-algebra system [20] located a few suitable trinomials, many suitable
quadrinomials, etc. The first trinomial found was t141 + t28 + 1, the first quadri-
nomial found was t57 + t54 + t44 +1 (although (t222 +1)(t21 +1) is an interesting
alternative), and the first pentanomial found was t23 + t16 + t15 + t + 1.
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Some standards omit, or weaken, some of the criteria listed above, for several
reasons:

• Some of the criteria do not have known benefits. For example, subfield curves
produce only a small loss of security, which can be corrected by a small
increase in field size. The small-discriminant criterion is even more difficult
to defend; there is no known attack that exploits small discriminants, and
there are reasons to guess that randomly chosen large-discriminant curves
are more dangerous than small-discriminant curves. See [47, Sections 11.1–
11.3].
• Sometimes the criteria have disadvantages. For example, some criteria have

to be weakened by anyone who wants to allow curves with special algebraic
structures, such as “pairing-friendly curves,” “Koblitz curves,” “Gallant–
Lambert–Vanstone curves,” and the new “Galbraith–Lin–Scott curves.” See,
e.g., [34], [33], and [39].
• One of the criteria, twist security, has protocol-level benefits that were not

visible in the traditional study of the elliptic-curve discrete-logarithm prob-
lem. Twist security has, as a result, often been neglected even in situations
where it has no disadvantages. For further discussion of twist security see
[44, Section 4], [21, Section 4], [25, Section 4.1], [12, Section 3], and [31,
Section 5].

This paper’s selection of a curve meeting all the security criteria should not be
interpreted as criticism of curves that meet fewer security criteria. One should
expect some of those curves, when combined with the techniques in this paper,
to achieve even better speeds than the speeds reported in this paper.

Speed issues in curve selection. Even within the restricted pool of curves
meeting all of the security criteria discussed above, there are still considerable
variations in speed. Standard practice is to focus on the highest-speed curves.

In particular, the fastest elliptic-curve-scalar-multiplication methods involve
many multiplications by curve coefficients; it is standard practice to choose these
coefficients to be “small.” The exact definition of “small” varies but is aimed at
speeding up multiplications by these coefficients. For example:

• Weierstrass curves: IEEE Standard P1363 chooses curves y2 = x3 − 3x + b
to “provide the fastest arithmetic on elliptic curves”; see [2, Section A.9].
Chudnovsky and Chudnovsky had pointed out in [26] that choosing a small
coefficient a in y2 = x3 + ax + b saves time in elliptic-curve scalar multipli-
cation, and that the particular choice a = −3 saves even more time. NIST’s
standard curves were chosen by the recipe specified in IEEE Standard P1363;
see [1, Appendix 6, Section 1.4].
• Montgomery curves: The curve “Curve25519” specified in [12] is the curve

y2 = x3 + 486662x2 + x modulo 2255 − 19. Montgomery had pointed out in
[52] that his fast differential-addition formulas for y2 = x3 + ax2 + x involve
multiplications by (a + 2)/4 and benefit from (a + 2)/4 being small.

• Binary Edwards curves: [16] makes the analogous suggestion to choose a
small parameter d for the curve d(x + x2 + y + y2) = (x + x2)(y + y2).
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This paper chooses d = t57 + t54 + t44 +1, combining a small degree with a small
number of terms. Multiplication of a 251-bit polynomial by the quadrinomial
t57 + t54 + t44 + 1 in F2[t] uses only 3 · 251 − 57 = 696 bit operations, and
reduction of the 308-bit product modulo t251 + t7 + t4 + t2 + 1 uses only 200 bit
operations (slightly better than the obvious bound 4 · 57 = 228 since t4, t2, 1 are
evenly spaced), for a total of just 896 bit operations to multiply by d.

Differential addition and doubling on binary Edwards curves. The fol-
lowing formulas are the “affine d1 = d2” and “mixed d1 = d2” formulas from
[16, Section 7], repeated here to keep this paper self-contained.

For each point P = (x, y) ∈ E(k) define w(P ) = x + y. Then w(2P ) =
1 + d/(d + w(P )2 + w(P )4), and more generally w(Q + P ) + w(Q − P ) = 1 +
d/(d+w(P )w(Q)(1 +w(P ))(1 +w(Q))). The denominators here are never zero.

The following formulas use four squarings, two multiplications by d, and five
more multiplications to compute w(2P ), w(Q + P ) as fractions W4/Z4,W5/Z5,
given w(P ), w(Q) as fractions W2/Z2,W3/Z3 and given w(Q−P ) as an element
w1 ∈ k:

C = W2 · (Z2 + W2); W4 = C2; Z4 = d(Z2
2 )2 + W4;

V = C ·W3 · (Z3 + W3); Z5 = V + d(Z2 · Z3)2; W5 = V + Z5 · w1.

This operation is called mixed differential addition and doubling.

Conditional swaps. This paper uses a scalar-multiplication strategy intro-
duced by Montgomery in [52, Section 10.3.1], often called the “Montgomery lad-
der.” The most important step is conditionally swapped mixed differential
addition and doubling. This means computation of w(2P ), w(Q+P ) as frac-
tions W4/Z4,W5/Z5 if β = 0, and computation of w(P +Q), w(2Q) as fractions
W4/Z4,W5/Z5 if β = 1. The inputs are w(P ), w(Q) as fractions W2/Z2,W3/Z3
as above; w(Q−P ) as an element w1 ∈ k as above; and an extra bit β ∈ {0, 1}.

The standard way to handle β = 1 is to first swap W2/Z2,W3/Z3, then proceed
with the original computation, and finally swap W4/Z4,W5/Z5. The first swap
exactly reverses the roles of P and Q, since w(P −Q) = w(Q− P ); the original
computation therefore produces w(2Q), w(P + Q); and the final swap produces
w(P + Q), w(2Q) as desired.

The standard way to swap W2 and W3 conditionally on β without branching is
to replace (W2,W3) by (W2 +β(W3−W2),W3−β(W3−W2)). Similar comments
apply to (Z2, Z3), (W4,W5), and (Z4, Z5).

Scalar multiplication. The last step in scalar multiplication computes w(nP ),
w(nP + P ) as fractions, starting from w(	n/2
P ), w(	n/2
P + P ) as fractions
and w(P ) as an element of k. This is an example of conditionally swapped mixed
differential addition and doubling, where β is the bottom bit of n.

The previous step produces w(	n/2
P ), w(	n/2
P + P ) as fractions starting
from w(	n/4
P ), w(	n/4
P +P ) as fractions and w(P ) as an element of k. This
is the same computation, except that n is replaced by 	n/2
; i.e., β is the second
bit of n. The conditional swap at the end of this step is followed immediately
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by, and can be profitably merged with, the conditional swap at the beginning of
the next step.

Similar comments apply to earlier steps. If the target scalar n is known to
be between 0 and 2b − 1 then one can use a sequence of b steps. The first step
produces w(

⌊
n/2b−1

⌋
P ), w(

⌊
n/2b−1

⌋
P +P ) from w(

⌊
n/2b

⌋
P ), w(

⌊
n/2b

⌋
P +P );

i.e., from 0, w(P ).
To summarize: Given w(P ) ∈ k and a b-bit scalar n, this scalar-multiplication

method uses b conditionally swapped mixed differential additions and doublings
to produce (W,Z) such that W/Z = w(nP ). The 2b conditional swaps can be
merged into just b + 1 conditional swaps.

Postprocessing. One can divide W by Z, obtaining w(nP ) ∈ k, by computing
WZ2251−2 with (e.g.) 250 squarings and 11 more multiplications. The multiplica-
tions produce Z3, Z7, Z26−1, Z212−1, Z224−1, Z225−1, Z250−1, Z2100−1, Z2125−1,
Z2250−1, and WZ2251−2.

A small extra computation shown in [16, Section 7], using the x and y coordi-
nates of P separately, would produce the x and y coordinates of nP separately;
but the w coordinate is adequate for elliptic-curve Diffie–Hellman. One can also
check directly that w corresponds to a curve point by checking that d/(w +w2)
has trace 0 and that w+w2 times the half-trace of d/(w+w2) has trace 0. These
computations are much faster than scalar multiplication and are not discussed
further in this paper.

Instead of inverting Z at the end of the computation one can use affine coor-
dinates, eliminating some multiplications at the cost of an inversion in each step.
Inversions are well known to benefit from batching, thanks to “Montgomery’s
trick” from [52, page 260]. However, each inversion still costs slightly more than
3 multiplications, wiping out most if not all of the gain. Montgomery in [52,
page 261] compared batched affine coordinates to projective coordinates in the
non-binary case and reported negligible performance differences. One should not
expect affine coordinates to provide large savings in the binary case.

Performance: bit operations. A 251-bit single-scalar multiplication as de-
scribed here involves 44679665 bit operations; this number has been computer-
verified. The main cost is 43011084 bit operations for 1266 field multiplications
(1255 in the main loop and 11 in the final division). Each multiplication uses
33974 bit operations: 33096 bit operations for 251-bit multiplication in F2[t], and
878 bit operations to reduce the 501-bit product modulo t251 + t7 + t4 + t2 + 1.
The other costs are as follows:

• 397518 bit operations for 1254 squarings (1004 in the main loop and 250 in
the final division), each using 317 bit operations;
• 449792 bit operations for 502 multiplications by d, each using 896 bit oper-

ations;
• 315005 bit operations for 1255 additions, each using 251 bit operations; and
• 506266 bit operations for 1004 conditional swaps, which at the cost of 250

bit operations are merged into 504 conditional swaps, each costing 1004 bit
operations.
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In some protocols the 251-bit scalar is always a multiple of 4, allowing slight
speedups. In other protocols a 249-bit scalar is adequate, allowing slight further
speedups.

Performance: cycles. The BBE251 software reads a batch of scalars n1, . . . , n128
and a batch of curve points P1, . . . , P128 and computes a batch of multiples
n1P1, . . . , n128P128. Each scalar is represented as a 32-byte string in little-endian
form. Each curve point is represented as a field element w as described in the
previous section; w is, in turn, represented as a 32-byte string.

One might think that writing fast software for this computation on a Core 2
CPU is a simple matter of generating code for the bit operations described in this
paper, replacing XORs and ANDs with a C compiler’s intrinsic _mm_xor_si128
and _mm_and_si128 operations on 128-bit vectors. A single core of the CPU can
carry out three of the corresponding PXOR and PAND instructions per cycle, so
44 million bit operations should be completed in about 15 million cycles—under
120000 cycles per input. Transposing the n’s and P ’s into bitsliced form, and
transposing the results out of bitsliced form, takes negligible time.

There is, however, a critical bottleneck in any straightforward implementation:
namely, load throughput. In one cycle the CPU can carry out three operations on
six vectors in registers ; but loading those six vectors from memory into registers
costs six cycles—the Core 2 performs only one load in each cycle. The results of
the three operations are ready to be used for further operations in the next cycle,
so one can imagine loading (e.g.) 56 input vectors for a 28-bit multiplication,
carrying out all 956 bit operations for the multiplication, and then storing the
final outputs; but the Core 2 has only 16 128-bit vector registers.

Recursive multiplication methods such as Karatsuba’s method might seem
to be ideal for reducing loads and stores, since they split larger multiplication
problems into smaller multiplication problems that fit into registers. However,
the first step in decomposing a 2n-bit multiplication into n-bit multiplications is
to add 2n vectors to another 2n vectors—and the 2n/3 cycles for these additions
are swamped by 4n cycles for loads. Similar comments apply to the recombina-
tion of (2n− 1)-bit products into a (4n− 1)-bit product.

Further contributing to the memory pressure is the fact that the Core 2’s
vector instructions are two-operand instructions such as “replace a with a+ b,”
not three-operand instructions such as “replace c with a+ b.” Copying a to c, in
situations where a and b need to be reused, takes away one of the three XOR/AND
slots available in a cycle. Copying a to c via memory uses an extra load.

BBE251 takes several measures to reduce the number of loads and stores. Most
importantly, it merges decompositions and recombinations across multiple layers
of recursion, reusing sums while they are still in registers. As a simple example,
adding (a0, . . . , a2n−1) to (a2n, . . . , a4n−1) takes 4n loads and 2n additions; sub-
sequently adding (a0, . . . , an−1) to (an, . . . , a2n−1), adding (a2n, . . . , a3n−1) to
(a3n, . . . , a4n−1), and adding (a0+a2n, . . . , an−1+a3n−1) to (an+a3n, . . . , a2n−1+
a4n−1) would take 6n loads and 3n additions; but performing all of these oper-
ations together reduces the 10n loads to 4n loads and 2n copies.
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The current version of BBE251 merges most operations across two levels of
recursion, and takes fewer than 44 million cycles, although still many more than
the target of 15 million. It is not yet clear how close the correlations are between
optimized bit-operation counts and optimized cycle counts, but it is clear that
schoolbook multiplication could not have been competitive with BBE251. Larger-
scale load/store elimination is underway and can be expected to further improve
BBE251’s performance.
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30. Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion and point halving
revisited. IEEE Transactions on Computers 53, 1047–1059 (2004), http://www.

cacr.math.uwaterloo.ca/techreports/2003/tech_reports2003.html, ISSN
0018–9340, Citations in this document: §1
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32. Fürer, M.: Faster integer multiplication. In: [42], pp. 57–66 (2007), http://www.

cse.psu.edu/~furer/, Citations in this document: §2
33. Galbraith, S., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-

tography on a large class of curves. In: [43], pp. 518–535 (2009), http://eprint.
iacr.org/2008/194, Citations in this document: §1, §3

34. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: [46], pp. 190–200 (2001), MR 2003h:14043,
Citations in this document: §3

http://bodrato.it/papers/#WAIFI2007
http://bodrato.it/papers/#WAIFI2007
http://sky.fit.qut.edu.au/~boydc/papers/
http://sky.fit.qut.edu.au/~boydc/papers/
http://wwwmaths.anu.edu.au/~brent/pub/pub232.html
http://wwwmaths.anu.edu.au/~brent/pub/pub232.html
http://www.loria.fr/~gaudry/papers.en.html
http://www.loria.fr/~gaudry/papers.en.html
http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html
http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html
http://eprint.iacr.org/2007/393
http://www.cacr.math.uwaterloo.ca/techreports/2003/tech_reports2003.html
http://www.cacr.math.uwaterloo.ca/techreports/2003/tech_reports2003.html
http://www.di.ens.fr/~fouque/index-pub.html
http://www.di.ens.fr/~fouque/index-pub.html
http://www.cse.psu.edu/~furer/
http://www.cse.psu.edu/~furer/
http://eprint.iacr.org/2008/194
http://eprint.iacr.org/2008/194


Batch Binary Edwards 335
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Abstract. In the Hidden Number Problem (HNP), the goal is to find a
hidden number s, when given p, g and access to an oracle that on query
a returns the k most significant bits of s · ga mod p.

We present an algorithm solving HNP, when given an advice depend-
ing only on p and g; the running time and advice length are polynomial in
log p. This algorithm improves over prior HNP algorithms in achieving:
(1) optimal number of bits k ≥ 1 (compared with k ≥ Ω(log log p)); (2)
robustness to random noise; and (3) handling a wide family of predicates
on top of the most significant bit.

As a central tool we present an algorithm that, given oracle access to
a function f over ZN , outputs all the significant Fourier coefficients of
f (i.e., those occupying, say, at least 1% of the energy). This algorithm
improves over prior works in being:

– Local. Its running time is polynomial in log N and L1(f̂) (for L1(f̂)
the sum of f ’s Fourier coefficients, in absolute value).

– Universal. For any N, t, the same oracle queries are asked for all
functions f over ZN s.t. L1(f̂) ≤ t.

– Robust. The algorithm succeeds with high probability even if the
oracle to f is corrupted by random noise.

1 Introduction

The Hidden Number Problem (HNP) was introduced by Boneh and Venkatesan
[4] in the context of proving bit security for the Diffie-Hellman function. In HNP,
for p a prime, and g a generator of Z∗

p, the goal is to find a hidden number s ∈ Z∗
p,

when given p, g and oracle access to the function

Pp,s,k(a)
def
= MSBp,k(s · ga mod p)

mapping each a ∈ 1, . . . , p to the k most significant bits in the binary represen-
tation of s · ga mod p.

Boneh-Venkatesan [4] gave an algorithm solving HNP for any k ≥
√

log p +
log log p in running time polynomial in log p (aka, efficient). Subsequently, Boneh-
Venkatesan [5] gave an efficient algorithm solving HNP for k ≥ Ω(log log p) pro-
vided the algorithm is given a short advice depending only on p and g (and not
on s). Extensions to the case g is not a generator are given in [8,14,15].
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1.1 New Result: Solving HNP with One Bit Oracle and Advice

We present an efficient algorithm solving HNP for any k ≥ 1, provided the
algorithm is given a short advice depending only on p and g (and not on s).

Furthermore, our algorithm handles:

– Random noise. With high probability, our algorithm finds s even if the oracle
answers are flipped independently at random with sufficiently small proba-
bility ε > 0. (Success probability is taken over the noise.)

– Concentrated predicates. Our algorithm finds s even when oracle access is to
the function

Pp,s(a)
def
= Pp(s · ga mod p)

where P = {Pp} is any family of “concentrated” predicates. We say that P
is concentrated if

∃c, δ s.t. ∀Pp ∈ P , L1(P̂p) ≤ (log p)c and maj(Pp) ≤ 1− δ

for L1(P̂p)
def
=
∑

α

∣∣∣P̂p(α)
∣∣∣ the sum of Fourier coefficients, and maj(Pp)

def
=

maxb=0,1 Pra∈Zp [Pp(a) = b] the frequency of the most common value.

Noise is tolerated up to ε = c′τ(P) for any c′ < 1 and for any τ(P) a lower bound
on the maximum squared magnitude of the (non-trivial) Fourier coefficients of
predicates Pp ∈ P . In particular, for P the most significant bit, ε = O(1).1

As a corollary of our algorithm for HNP, we obtain bit security results for
Diffie-Hellman related functions.

Our result improves on prior HNP algorithms (and the corresponding bit
security results) in achieving:

1. Optimal number of bits k ≥ 1 (rather than k ≥ Ω(log log p));
2. Robustness to ε-random noise for substantial ε (e.g., ε is O(1) rather than

O(1/ log p) for P =MSBk the k most significant bits); and
3. Handling the wide family of concentrated predicates (rather than only
MSBk).

1.2 New Tool: Universally Finding Significant Fourier Coefficients

As a central tool we present an algorithm that finds the significant Fourier
coefficients of a complex valued functions f over Zp, when given oracle access to
f (aka, SFT algorithm).

Indexing Fourier coefficients by elements α in Zp, we say that α is τ-significant
if its Fourier coefficient occupies at least τ -fraction of the energy∣∣∣f̂(α)

∣∣∣2 ≥ τ
∑

β∈Zp

∣∣∣f̂(β)
∣∣∣2 .

1 For P the k ≥ Ω(log log p) most significant bits, prior works [5] tolerate adversarial
noise corrupting up to ε = O(1/ log p) fraction of the oracle values.
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Our SFT algorithm, given p, τ , t, and oracle access to a function f over Zp

s.t. L1(f̂) ≤ t, outputs all the τ -significant Fourier coefficients of f . Our SFT
algorithm is:

– Local. Its running time is polynomial in log p, 1/τ and t.
– Universal. For any p, τ and t, the same oracle queries are asked for all

functions f over Zp s.t. L1(f̂) ≤ t.
– Robust. With high probability, the algorithm succeeds even if the oracle to f

is corrupted by random noise (probability is taken over the noise). Tolerated
noise parameters are up to ε = cτ for any constant c < 1.

This improves over prior works in giving: (i) The first universal algorithm
handling all functions f over Zp (complexity scales with L1(f̂)). (ii) The first
analysis proving robustness to noise in the context of universal SFT algorithms.
We remark that these improvements are of independent interest in the context
of sparse Fourier approximation, compressed sensing and sketching (cf. [3]).

Comparison to other SFT algorithms. For functions over the boolean hyper-cube
Zn

2 , Kushilevitz-Mansour (KM) gave a local universal SFT algorithm almost two
decades ago [12]. Our algorithm matches the KM benchmark for the case of
functions over Zp for any positive integer p.

For functions over Zp, prior SFT algorithms [6,2,7] are not universal. In con-
current works [10,11] gave a universal SFT algorithm for a restricted class of
functions over Zp: compressible or Fourier sparse functions.2

Noise is out of scope in the analysis of the universal algorithms [12,10,11].
These SFT algorithms [12,6,2,7,10,11] are insufficient for our result solving

HNP. Both universality as well as handling functions that are neither compress-
ible nor Fourier sparse are crucial for our algorithm solving HNP. Robustness to
noise leads to robustness when solving HNP.

1.3 Techniques Overview

In HNP the goal is to find a hidden number s when given p, g and oracle access
to a function Pp,s. We reduce the HNP problem to the problem of the finding
significant Fourier coefficients of a function fs defined by

fs(y)
def
= Pp,s(DLp,g(y))

for DLp,g(y), the discrete log of y, i.e., the a ∈ Zp−1 s.t. y = ga mod p. We then
find the significant Fourier coefficients of fs using our universal SFT algorithm.

Universality is crucial. Finding the Fourier coefficients of fs requires access
to fs. To read the values fs(y) on entries y it suffices to query Pp,s on the
discrete-logs DLp,g(y). With universal algorithms, access to all entries y read

2 For g a function over Zp and c, c′ > 0 absolute constants (indep. of p), g is compress-
ible if for all i, the i-th largest Fourier coefficient of g has magnitude at most O(1/ci);
and g is Fourier sparse if it has at most (log p)c′ non-zero Fourier coefficients.
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by the algorithm can be granted using an advice depending only on p. This is
because universal algorithms read a fixed set of entries y for all the considered
functions over Zp; implying that the discrete-logs DLp,g(y) for all read entries
y can be provided via an advice depending only on p. In contrast, with non-
universal algorithms, providing access to fs is intractable (assuming computing
discrete logs is intractable).

Achieving universality. We say that a set of queries S ⊆ Zp is good if we can
find the significant Fourier coefficients of all considered function over Zp when
reading only entries in S. We present a combinatorial condition on sets S, and
prove that any set S satisfying this condition is good. Furthermore, we show
that sets S satisfying the condition exists, and can be efficiently construction
by a randomized algorithm. We remark that explicit constructions of such good
sets are given in subsequent works [3].

The combinatorial condition is that S = ∪log p
�=0 (A − B�) for A a small biased

set and B�’s that are “small biased on [0..2�]”; where we say that B has small
bias on I if Fourier coefficients of (the characteristic function of) B approximate
the Fourier coefficients of (the characteristic function) of I.

We prove that such sets S are good in two parts. First, for functions with
bounded L1(f̂), we prove S is good using Fourier analysis. Second, for noise
corrupted functions f ′ = f + η, we prove S is good by showing the algorithm
behaves similarly on the noisy and non-noisy functions. The latter is needed, as
the Fourier approach fails for noisy f ′ due to their typically huge L1(f̂ ′) ≈ √p.

Comparison to prior works. Prior algorithms solving HNP follow a lattice based
approach dating back to [4], in which HNP is reduced to the problem of finding
closest lattice vectors (CVP), and the latter is solved using LLL algorithm [13].
In comparison, we take a Fourier approach inspired by [2].

We compare the set of queries used in the different SFT algorithms.
In the universal SFT algorithm for functions over the boolean hypercube Zn

2
[12], the set of queries is constructed using small biased sets in Z

n
2 , and the proof

is Fourier analysis based.
In the (non-universal) SFT algorithms for functions over Zp [6,2,7], the set

of queries must be freshly chosen for each given input function f . Their anal-
ysis proves success with high probability over the sampled set of queries using
deviation from expectation bounds.

In the universal SFT algorithm for (restricted class of) functions over Zp

[10,11], the set of queries is constructed using “K-majority k-strongly selective
sets”.

1.4 Paper Organization

The rest of this paper is organized as follows. In section 2 we summarize pre-
liminary terminology, notations and facts. In section 3 we present our algorithm
solving HNP with advice. In section 4 we present our universal SFT algorithm.
In section 5 we discuss bit security implications.
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2 Preliminaries

In this section we summarize preliminary terminology, notations and facts.
Let N, Z, R and C denote the natural, integer, real and complex numbers

respectively. Let P denote the set of all primes. Let ZN and Z∗
N denote the

additive and the multiplicative groups of integers modulo N . We identify the
elements of ZN with integers in 0, . . . , N−1, and denote abs(α) = min {α,N − α}
for all α ∈ ZN . Let Br

def
= {z ∈ C | |z| ≤ r} denote the complex ball of radius r.

2.1 Fourier Transform

We give definitions and properties for normed spaces and Fourier transform.

Inner product, norms, convolution. The inner product of complex val-
ued functions f, g over a domain G is 〈f, g〉 def

= 1
|G|
∑

x∈G f(x)g(x). Denote

the normalized �2 norm of f by ‖f‖2
def
=
√
〈f, f〉, its �∞ norm by ‖f‖∞

def
=

max { |f(x)| |x ∈ G}, and its un-normalized L1-norm by L1(f)
def
=
∑

x∈G |f(x)|.
The convolution of f and g is the function f ∗ g:G→ C defined by f ∗ g(x)

def
=

1
|G|
∑

y∈G f(y)g(x− y).

Characters and Fourier transform. The characters of ZN are the functions
χα: ZN → C, α ∈ ZN , defined by χα(x)

def
= e2πiαx/N . The Fourier transform

of a complex valued function f over ZN is the function f̂ : ZN → C defined
by f̂(α)

def
= 〈f, χα〉. For any α ∈ ZN and τ ∈ [0, 1], we say that α is a τ-

significant Fourier coefficient iff
∣∣∣f̂(α)

∣∣∣2 ≥ τ‖f‖22. Denote by Heavyτ (f) the set
of all τ -significant Fourier coefficients of f .

A few useful properties of the Fourier transform follow.

Proposition 1. For any f, g: ZN → C,

1. Parseval Identity: 1
N

∑
x∈ZN

|f(x)|2 =
∑

α

∣∣∣f̂(α)
∣∣∣2.

2. Convolution Theorem: (̂f ∗ g)(α) = f̂(α) · ĝ(α).
3. Phase Shift: For any α0 ∈ ZN , if g = f ·χ−α0 , then ĝ(α) = f̂(α−α0) (where

subtraction is modulo N).
4. Scaling: For any s ∈ Z∗

N , if g(x) = f(sx) ∀x, then ĝ(α) = f̂(α · s−1) ∀α
(where multiplication and inverse are modulo N).

Proof. Proof is standard, see [16]. %&

Proposition 2. Let St(α)
def
= 1

t

∑t−1
y=0 χα(y) for some t ∈ [0..N − 1]. Then:
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1. |St(α)|2 = 1
t2

1−cos( 2π
N αt)

1−cos( 2π
N α)

2. Pass Band: ∀α ∈ ZN and γ ∈ [0, 1], if abs(α) ≤ γN
2t , then |St(α)|2 > 1− 5

6γ
2

3. Fast decreasing: ∀α ∈ ZN , |St(α)|2 < 2
3

(
N/t

abs(α)

)2

4. Fourier bounded: ∀α ∈ ZN , |St(α)|2 ≤ 1

Proof. Recall that χα(x) = ωαx for ω = ei 2π
N a primitive root of unity of or-

der N . By the formula for geometric sum St(α) = 1
t

ω−αt−1
ω−α−1 . Assigning wβ =

cos(2πβ/N)+i sin(2πβ/N) for β = αt in the numerator and β = α in the denom-
inator and using standard trigonometric identities, we conclude that |St(α)|2 =
1
t2

1−cos( 2π
N αt)

1−cos( 2π
N α) . The upper and lower bounds on St are obtained using the Taylor

approximation for the cosine function: 1 − θ2

2! ≤ cos(θ) ≤ 1 − θ2

2! + θ4

4! . Details
appear in [2,1]. %&

2.2 Chernoff/Hoeffding Tail Inequality

The Chernoff/Hoeffding bound on the deviation from expectation of sums of
independent random variables follows.

Proposition 3 (Chernoff/Hoeffding Bound [9]). Let X1, . . . , Xt be inde-
pendent random variables of expectations μ1, . . . , μy and bounded values |Xi| ≤
M . Then, ∀η > 0, Pr[

∣∣∣ 1t ∑t
i=1 Xi − 1

t

∑t
i=1 μi

∣∣∣ ≥ η] ≤ 2 · exp
(
− 2tη2

M2

)
.

2.3 Noise Models

We say that η is an ε-random noise if its values η(a), a ∈ Zp, are chosen in-
dependently at random from distributions of expected absolute values at most
E[|η(a)|] ≤ ε.

We focus on additive noise η corrupting functions f to a function f ′ = f + η.
Without loss of generality, f and η accept values in the balls B1, B2 respectively.

3 Solving Hidden Number Problem with Advice

In this section we present our algorithm solving with advice HNPP,ε.
Fix a family of functions P =

{
Pp: Z∗

p → B1
}

p∈P
and a noise parameter ε.

Definition 1 (Hidden Number Problem). In the (extended) Hidden Num-
ber Problem HNPP,ε the goal is to find a hidden number s ∈ Z∗

p, when given a
prime p, a generator g of Z∗

p, and oracle access to the function

P ′
p,s(a)

def
= Pp(s · ga mod p) + η(a)

for η an ε-random noise.
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Let �, q, t be functions over P. We say that an algorithm (�, q, t)-solves HNPP,ε

if there is an advice Advp,g depending only on p, g of length |Advp,g| ≤ �(p),
such that the following holds. Given p, g, Advp,g, and oracle access to P ′

p,s, the
algorithm outputs s with probability at least q(p); and its running time is at
most t(p). We say that the algorithms solves with advice HNPP,ε if 1/q(p), �(p)
and t(p) are polynomial in log p.

3.1 Solving with Advice HNPP,ε: Concentrated P
We present an efficient algorithm solving with advice HNPP,ε for concentrated
P . We remark that concentration defined here differ than concentration in [2].

Let M , τ and α be functions mapping indices p ∈ P into non-negative reals
M(p), τ(p) and a non-zero element α(p) ∈ Zp.

Definition 2 (Concentration). P is (M, τ, α)-concentrated if for all Pp ∈ P,

L1(P̂p) ≤M(p) and
∣∣∣P̂p(α(p))

∣∣∣2 ≥ τ(p).

P is concentrated if ∃c > 0 s.t. ∀p ∈ P, M(p) and 1/τ(p) are at most (log p)c.

Let τ(P) denote a lower bound on the maximum weight
∣∣∣P̂p(α)

∣∣∣2 of non-trivial
Fourier coefficients α �= 0, for all Pp ∈ P .

Theorem 1 (HNPP,ε). For any concentrated P and ε ≤ c · τ(P) for c < 1,
there exists an algorithm that solves with advice HNPP,ε.

Proof. Let m, τ, α be s.t. P is (M, τ, α)-concentrated. We present an algorithm
that (�, q, t)-solves HNPP,ε for q(p) ≥ Ω(τ(p)) and for �(p), t(p) polynomial in
log p, M(p) and 1/τ(p). The advice we use is:

Advp,g
def
= {(x,DLp,g(x))}x∈S

for S ⊆ Zp a set of good queries for our universal SFT algorithm on input
parameters p, τ(p) and M(p) (cf. Definition 4). The function fs = fp,g,s over Zp

is defined by

fs(x)
def
= P ′

p,s(DLp,g(x))

for all x ∈ Z∗
p and fs(0) = 0. Note that we can access fs(x) for all x ∈ S by

querying P ′
p,s on a = DLp,g(x) provided in the advice. Our algorithm for HNPP,ε

follows.

Algorithm 1 Solving HNPP,ε.

1. Run the SFT Algorithm 2 on input p,τ(p),M(p), and oracle
access to the restriction of fs to S; denote its output by L.

2. Output ((α(p))−1 · β)−1 for a uniformly random β ∈ L.
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We show that Algorithm 1 outputs the hidden number s with probability

q(p) ≥ Ω(τ(p)). Fix p and denote α = α(p), τ = τ(p). Recall that
∣∣∣P̂p(α)

∣∣∣2 ≥ τ

(since P is (M, τ, α)-concentrated), and that P̂p,s(β) = P̂p(βs−1) ∀β (by Propo-
sition 1 Item 4 and the definition of Pp,s(x) = Pp(s · x)). Therefore, the αs−1-
Fourier coefficient of Pp,s is τ -significant, i.e.,∣∣∣P̂p,s(α · s−1)

∣∣∣2 ≥ τ.

Thus L , αs−1 with probability at least 1− 1/pΩ(1) (by Theorem 4). Implying
that

β = αs−1

with probability at least (1− 1/pΩ(1))/ |L| ≥ Ω(τ) (since β is a random element
in L, and employing the bound |L| ≤ O(1/τ) from Theorem 4). When β = αs−1,
the output is

(α−1β)−1 = (α−1(αs−1))−1 = s.

We conclude that the output is s with probability q(p) ≥ Ω(τ).
Finally, the advice length �(p) and the running time t(p) are dominated by the

query complexity and running time of the SFT Algorithm which is polynomial
in log p, 1/τ(p) and M(p) (cf. Theorem 4). %&

Remark 1. Tighter bounds on the success probability q(p) are possible at times.
E.g., for the most significant bits P =MSBk for any k ≥ 1, q(p) ≥ 1/2.

3.2 Solving with Advice HNPP,ε: Segment Predicates P
We solve with advice HNPP,ε for segment predicates P .

Let P =
{
Pp: Z∗

p → {±1}
}

p∈P
. Let σ, a be functions mapping primes p to

positive integers σ(p) and to elements a(p) ∈ Z
∗
p. Denote by σ(P) an upper

bound on σ(p) for all p.

Definition 3 (Segment Predicates [2]). P is a (σ, a)-segment predicate if
∀p, ∃P ′

p: Z
∗
p → {±1} s.t.

– Pp(x) = P ′
p(x · a(p)) for all x, and

– P ′
p(x + 1) �= P ′

p(x) for at most σ(p) x’s in Zp.

P is a segment predicate if ∃c > 0 s.t. σ(p) < (log p)c for all p.

We say that P is far from constant if ∃δ > 0 s.t. ∀p, maj(Pp) ≤ 1− δ for maj(Pp)
the frequency of Pp’s most common value.

Theorem 2. Let P be a far from constant segment predicate and ε ≤ c/σ(P)
for c < 1. Then there exists an algorithm that solves with advice HNPP,ε.
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Proof. By Lemma 1, if P is a segment predicate, then P is concentrated; and
furthermore, τ(P) ≥ 1/σ(P). By Theorem 1 this implies that there exists an
algorithm that solves with advice HNPP,ε. %&

Lemma 1. If P is a (σ, a)-segment predicate, then P is (M, τ, α)-concentrated
for M(p) = O(σ(p) ln p), τ(p) = Ω(1/σ(p)), and α(p) = a(p).

Proof. For each Pp ∈ P , extend Pp to a function over Zp by setting Pp(0) =
Pp(1). Fix p and drop its indices.

Consider first the case a(p) = 1. To show that L1(P̂ ) ≤M(p) and P̂ (1) ≥ τ(p),
we first show that P̂ (α) =

∑σ+1
j=1 (�j/p)S�j (α) for all α ∈ Zp. A segment predicate

with a = 1 defines a partition of Zp into σ + 1 segments Ij , so that P is a
constant bj ∈ {±1} on each segment Ij . Thus, we can express P as a sum,
P =

∑σ+1
j=1 Pj , of functions Pj : Zp → {−1, 0, 1} such that Pj(x) is the constant

P (x) for x ∈ Ij and 0 otherwise. By the linearity of the Fourier transform, for all
α ∈ Zp, P̂ (α) =

∑σ+1
j=1 P̂j(α). By definition of the Fourier transform, P̂j(α) =

1
p

∑
x∈Ij

bjχα(x). Thus for cj the starting point of Ij and �j = |Ij | its length,∣∣∣P̂j(α)
∣∣∣ = |χα(cj)|

∣∣∣ 1p ∑�j

x=0 χα(x)
∣∣∣ = (�j/p)S�j(α) for S�j (α) = 1

�j

∑�j−1
x=0 χα(x)

as defined in Proposition 2. We conclude that
∣∣∣P̂ (α)

∣∣∣ =∑σ+1
j=1 (�j/p)S�j(α).

We show that L1(P̂ ) ≤ O(σ ln p). By Proposition 2,
∣∣S�j (α)

∣∣ ≤ O
(

p/�j

abs(α)

)
for all �j , implying that

∣∣∣P̂ (α)
∣∣∣ ≤∑σ+1

j=1 O
(

(�j/p)(p/�j)
abs(α)

)
= O (σ/abs(α)) . Thus,

L1(P̂ ) =
∑

α

∣∣∣P̂ (α)
∣∣∣ ≤ O

(
σ ·
∑

α
1

abs(α)

)
= O(σ ln p).

We show that
∣∣∣P̂ (1)

∣∣∣ ≥ Ω(1/σ). Let �j∗ be the length of the second longest
segment in I1, . . . , Iσ+1. Clearly �j∗ ≤ p/2. Moreover, �j∗ ≥ Ω(p/σ) because for
far from constant P , the longest segment is of length at most (1− c)p for c > 0,
implying that the second longest is of length at least the average length cp/σ

over the remaining σ segments. By Proposition 2, |S�(1)|2 ≥ Ω(1) for all � ≤ p/2.

Thus,
∣∣∣P̂j∗(α)

∣∣∣2 ≥ (�j∗/p) ·Ω(1) = Ω(1/σ). We conclude that for α(p) = 1 there

is a function τ(p) ≥ Ω(1/σ(p)) such that
∣∣∣P̂ (α(p))

∣∣∣2 ≥ τ(p) for all p ∈ P.
Consider next the case of a(p) �= 1. By definition of segment predicates, there

exists P ′ s.t. P (x) = P ′(xa) for all x ∈ Z∗
p. Extend P ′ to Zp. By Proposition 1,

for all α ∈ Zp P̂ (α) = P̂ ′(α · a−1). Implying that L1(P̂ ) = L1(P̂ ′) ≤ O(σ ln p)
(because

{
αa−1

}
α∈Zp

= Zp for any a co-prime to p), and P̂ (a) = P̂ ′(a · a−1) =

P̂ ′(1) ≥ Ω(1/σ).
We conclude that any family P of (σ, a)-segment predicates is (M, τ, α)-

concentrated for M(p) ≤ O(σ(p) ln p), τ(p) ≥ Ω(1/σ(p)) and α(p) = a(p). %&

3.3 Solving with Advice HNPP,ε: The Single Most Significant Bit

We solve with advice HNPP,ε for P =MSB the single most significant bit.
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Let MSB =
{
MSBp: Z∗

p → {±1}
}

p∈P
the family of predicates giving the

single most significant bit MSBp(x) of x (in a ±1 binary representation).

Theorem 3. For any ε = O(1) sufficiently small, there exists an algorithm that
solves with advice HNPMSB,ε.

Proof. For the most significant bit MSBp, MSBp(x + 1) �= MSBp(x) only for
one x ∈ Z∗

p. Namely,MSB is a family of (σ, a)-segment predicates with σ(p) = 1,
a(p) = 1 for all p. By Theorem 2, this implies that for any ε = O(1) sufficiently
small, there exists an algorithm that solves with advice HNPP,ε. %&

4 Universally Finding Significant Fourier Coefficients

In this section we present our universal SFT algorithm.
In the following We present the combinatorial condition on good queries sets

S; show such sets exists; and prove that our SFT algorithm succeeds even when
given oracle access only to the restriction of the input function f to the entries
in S.

We define good queries. Recall that A ⊆ ZN is γ-biased if |Ex∈A[χ(x)]| < γ for
all non-trivial characters χ of ZN . For B, I ⊆ ZN , we say that B is (γ, I)-biased
if |Ex∈B[χ(x)] − Ex∈I [χ(x)]| ≤ γ for all characters χ is ZN . Denote by A − B
the set of differences {a− b}a∈A,b∈B.

Definition 4 (Good Queries). Let S = {SN,τ,t}N,τ,t be a family of sets
SN,τ,t ⊆ ZN . We say that S is good if for all N , τ , t and for γ = O(τ/(t2 logN))
sufficiently small, SN,τ,t =

⋃�(log N)�
�=1 (A−B�) s.t.

– A is γ-biased in ZN , of size |A| = Θ( 1
γ2 logN).

– ∀�, B� is (γ, [0..2�])-biased in ZN , of size polynomial in logN and 1/γ,

We remark that the meaning of “sufficiently small γ” depends on the considered
noise parameter ε, specifically, on the ratio ε : τ . To simplify parameters, we fix
this ratio to be, say, ε < 0.9τ .

We show that good queries S exist. Moreover, there is a randomized algorithm
that constructs good sets SN,τ,t with high probability.

Proposition 4 (Good Queries Exist). There is a randomized algorithm that
given N, τ and t, outputs S = SN,τ,t such that S is good with probability at least
1− 1/NΩ(1); and its running time is O(|S|).

Proof. The algorithm outputs S = ∪�(log N)�
�=1 (A−B�) for independent uniformly

random sets A ⊆ ZN and B� ⊆ [0..2�], of sizes |A| = O( 1
γ2 logN) and |B�| =

O( 1
γ2 · logN · log logN), � = 1, . . . , 	(logN)
.
Using Chernoff and Union bounds it is straightforward to show that S is good

with probability at least 1− 1/NΩ(1); details omitted. %&
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We show that our SFT algorithm succeeds when given oracle access to the re-
striction of the input function f (or its corruption by noise f ′ = f + η) to good

queries S = SN,τ,t. Denote this restriction by f ′
|S

def
= {(x, f ′(x))}x∈S .

Let S = {SN,τ,t} be any family of good queries. For any integer N > 0, reals
τ, t > 0, a function f : ZN → B1 s.t. L1(f̂) ≤ t, and an ε-random noise η for
ε < 0.9τ the following holds.

Theorem 4 (SFT). Our SFT algorithm, when given N , τ , t and f ′
|SN,τ,t

for
f ′ = f + η, outputs a list L ⊇ Heavyτ (f) of size |L| ≤ O(1/τ), with probability
at least 1− 1/NΩ(1); and its running time is polynomial in logN , 1/τ and t.

The probability is taken over the random noise η. In particular, when there is
no noise, the success probability is 1.

Remark 2. Our SFT algorithm also handles: (i) Small amount of adversarial
noise, that is, noise corrupting ε-fraction of the values of f|SN,τ,t

for sufficiently
small ε = O(τ/ logN). (ii) Input functions f accepting arbitrary complex values
(and their corruption by noise f ′).

To prove Theorem 4, we first present the details of our SFT algorithm
(Sect. 4.1), and then present its analysis (Sect. 4.2).

4.1 The SFT Algorithm

We give the details of our SFT algorithm. At a high level, the SFT algorithm is
a binary search algorithm that repeatedly:

1. Partitions the set of potentially significant Fourier coefficients into two
halves.

2. Tests each half to decide if it (potentially) contains a significant Fourier
coefficient. This is done by estimating whether the sum of squared Fourier
coefficients in each half exceeds the significance threshold τ .

3. Continues recursively on any half found to (potentially) contain signifi-
cant Fourier coefficients.

At each step of this search, the set of potentially significant Fourier coef-
ficients is maintained as a collection J of intervals: At the first step of the
search, all Fourier coefficients are potentially significant, so J contains the sin-
gle interval J = [1..N ]. At each following search step, every interval J ∈ J
is partitioned into two sub-intervals J1 and J2 containing the lower and upper
halves of J respectively, and the set J is updated to hold only the sub-intervals
that pass the test, i.e., those that (potentially) contain a significant Fourier co-
efficient. After logN steps this search terminates with a collection J of length
one intervals revealing the frequencies of the significant Fourier coefficients. For
all frequencies α of the significant Fourier coefficients, we then compute as an
O(τ)-approximation for f̂(α) the value valα = 1

|A|
∑

x∈A−y f(x)χα(x) for some

arbitrary y ∈ ∪�(log N)�
�=1 B�.
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The heart of the algorithm is the test deciding which intervals potentially
contain a significant Fourier coefficient (aka, distinguishing procedure). The dis-
tinguishing procedure we present, given an interval J , answers YES if its Fourier

weight weight(J) =
∑

α∈J

∣∣∣f̂(α)
∣∣∣2 exceed the significance threshold τ , and an-

swers NO if the Fourier weight of a slightly larger interval J ′ ⊇ J is less than
τ/2. This is achieved by estimating the �2 norm (i.e., sum of squared Fourier
coefficients) of a filtered version of the input function f , when using a filter h
that passes Fourier coefficients in J and decays fast outside of J .

The filters h that we use for depth � of the search are the (normalized) periodic
square function of support size 2� or Fourier domain translations of this function:

h�,c(y)
def
=

⎧⎨⎩
N
2� · χ−c(y) y ∈ [0..2�]

0 otherwise
(1)

The filter h = h�,c passes all frequencies that lie within the length N/2� interval
J centered around c, and decays fast outside of J . The filtered version of f is
f ∗ h, and we estimate its �2 norm ‖f ∗ h‖22 by the estimator:

est�,c(f)
def
=

1
|A|
∑
x∈A

⎛⎝ 1
|B�|

∑
y∈B�

χ−c(y)f(x− y)

⎞⎠2

(2)

for A,B1, . . . , B� ⊆ ZN as specified in the definition of good queries 4.
A pseudo-code of the algorithm follows. We denote intervals by the pair {a, b}

of their endpoints. To simplify notations, we assume: (a′ + b′)/2 is an integer
(otherwise, appropriate flooring/ceiling is taken); ‖f‖2 = 1 (otherwise we nor-
malize f it by dividing each read value by an energy estimator 1

|A|
∑

x∈A f(x)2);
0 ∈
⋃

� B� (otherwise we change variable in
∑

x∈A χα(x)f(x) to z = x− y for a
random y ∈

⋃
� B�).

Algorithm 2 SFT.
Input: N ∈ N, τ ∈ (0, 1], {(x, y, f(x− y))}x∈A,y∈B�

∀� = 1, . . . , 	(logN)


1. Initialize: J ← {{0, N}}
2. While ∃{a, b} ∈ J s.t. b− a > 0 do:

(a) Delete {a, b} from J
(b) For each pair {a′, b′} in Low=

{
a, a+b

2

}
, High=

{
a+b
2 + 1, b

}
do:

i. Compute est�,c ← 1
|A|
∑

x∈A

(
1

|B�|
∑

y∈B�
χ−c(y)f(x− y)

)2
for �=

log(N/(b′ − a′)), c = 	((a′ + b′)/2)

ii. If est�,c ≥ τ/2, insert {a′, b′} to J

3. Sieving: For each {α, α} ∈ J ,
(a) Compute val(α)←

∣∣∣ 1
|A|
∑

x∈A χα(x)f(x)
∣∣∣2

(b) If val(α) < τ/2, delete {α, α} from J
4. Output L = {α | {α, α} ∈ J }
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4.2 Proof of Theorem 4

In this section we bring the proof of Theorem 4.

Proof of Theorem 4. Let h�,c and est�,c(f) be as defined in (1)-(2). Fix a suffi-
ciently small absolute constant c > 0. Consider condition (*) on f ′ = f + η:

(∗)
∣∣est�,c(f ′)− ‖f ∗ h�,c‖22

∣∣ < cτ for all � = 1, . . . , 	(logN)
, c ∈ ZN

By Lemma 2, when (*) holds, the SFT algorithm outputs L ⊇ Heavyτ (f) in
running time polynomial in logN , 1/τ and t. By Lemma 3, when S is a good,
(*) holds with probability at least 1− 1/NΩ(1) over the noise η. Thus, the SFT
algorithm outputs L ⊇ Heavyτ (f) in time polynomial in logN , 1/τ and t.

Proving |L| ≤ O(1/τ) is similar. Consider condition (∗′) saying that ∀α ∈ ZN ,∣∣∣ 1
|A|
∑

x∈A f ′(x)χα(x)− f̂(α)
∣∣∣ < cτ . We show that first, if (*’) holds, then the

sieving step leaves in J only {α, α} s.t.
∣∣∣f̂(α)

∣∣∣2 ≥ Ω(τ); implying |L| ≤ O(1/τ)
by Parseval Identity. Second, when S is good, (*’) holds with high probability
over the noise η. We conclude that |L| ≤ O(1/τ) with high probability over the
noise η. Details omitted from this extended abstract. %&
We show that the SFT algorithm succeed on functions f ′ satisfying (*).

Lemma 2. Let f ′ = f + η and all other parameters be as in Theorem 4. If
conditions (*) holds for f ′, then the SFT algorithm returns a list L ⊇ Heavyτ (f)
in running time polynomial in logN , 1/τ and t.

Proof. Denote J = [a′, b′], � = log(N/(b′ − a′)) and c = (a′ + b′)/2.

Correctness. Consider a significant Fourier coefficient α ∈ ZN . To show that
α ∈ L, it suffices to show that est�,c(f ′) > τ/2 whenever J , α. The latter is true
because when J contains a τ -significant Fourier coefficient, then by Proposition

21 Item (1), ‖f ∗ h�,c‖22 ≥ Ω(
∑

α∈J

∣∣∣f̂(α)
∣∣∣2) ≥ Ω(τ), which by (*) implies that

est�,c(f ′) ≥ Ω(τ) ≥ τ/2 (the latter holds by setting appropriate constants).

Efficiency. Fix �, to bound the running time it suffices to show that
“est�,c(f ′) ≥ τ/2” does not happen for too many disjoint intervals J of length
N/2�. If est�,c(f ′) ≥ τ/2, then by condition (*), ‖h�,c ∗ f‖22 ≥ Ω(τ). By Claim 21
Item 2, the latter implies that for a slightly larger interval J ′ ⊇ J , |J ′| / |J | ≤
O(1/γ), its Fourier weight (that is, sum of squared Fourier coefficients with fre-
quencies in J ′) is greater than Ω(τ). This implies that est�,c cannot be greater
than τ/2 too often, because there are at most O(1/τ) disjoint intervals whose

Fourier weight exceeds Ω(τ) (by Parseval Identity), and thus at most O( 1
τ ·
|J′|
|J| )

(possibly, overlapping) intervals J ′ whose Fourier weight exceeds Ω(τ). %&
Claim 21. For integers �, c > 0 and real γ > 0, let J�,c =

{
α | abs(α− c) ≤ N

2�

}
an interval, and J ′

�,c,γ =
{
α | abs(α − c) ≤

√
2
3γ ·

N
2�

}
its extension. Then: (1)

‖h�,c ∗ f‖22 ≥ 1
6

∑
α∈J�,c

∣∣∣f̂(α)
∣∣∣2, and (2) ‖h�,c ∗ f‖22 ≤

∑
α∈J′

�,c,γ

∣∣∣f̂(α)
∣∣∣2 + γ.
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Proof. Denote h = h�,c. By Parseval Identity and the convolution theorem,

‖h ∗ f‖22 =
∑

α

∣∣∣ĥ(α)
∣∣∣2 ∣∣∣f̂(α)

∣∣∣2. By definition of h, ĥ(α) = S2�(α− c) for St(α) =
1
t

∑t−1
y=0 χα(y) as defined in Proposition 2. The proof follows from the properties

guaranteed in Proposition 2; details omitted from this extended abstract. %&

We show that when using a good set of queries S condition (*) holds (with high
probability over the random noise η).

Lemma 3. Let f ′ = f + η and all other parameters be as in Theorem 4. Con-
dition (*) holds for f ′ with probability at least 1− 1/NΩ(1) over the noise η.

Proof. Let S =
⋃log N

�=1 (A − B�) for S = SN,t,τ from the good queries S of
Theorem 4. Recall that A is a γ-biased set and the B�’s are (γ, [0..2�])-biased.

Fix � ∈ [	(logN)
] and c ∈ ZN . Denote B = B�, h = h�,c. Observe that∣∣est�,c(f ′)− ‖h ∗ f‖22
∣∣ ≤ (i) + (ii) + (iii) for:

– (i) :=
∣∣est�,c(f)− ‖h ∗ f‖22

∣∣
– (ii) :=

∣∣∣2 1
|A|
∑

x∈A

(
1
|B|
∑

y∈B χ−c(y)f(x− y)
)(

1
|B|
∑

y∈B χ−c(y)η(x− y)
)∣∣∣

– (iii) := |est�,c(η)|

We bound each of these terms. By Claim 22, (i) ≤ O(γL1(f̂)2 logN). By
Claims 23-24, with probability at least 1 − 3 exp (−Ω(|A| τ2)), (ii) + (iii) ≤
(2 + O(γL1(f̂)2 logN))(2ε2 + ε + O(τ)). Thus, for γ = O(τ/(t2 logN)) and
ε = O(τ), with probability at least 1− 3 exp (−Ω(|A| τ2)),∣∣est�,c(f ′)− ‖h ∗ f‖22

∣∣ ≤ O(τ) for all f s.t. L1(f̂) ≤ t.

By union bound, this holds for all � = 1, . . . , 	(logN)
 with probability at least
1−3 exp (−Ω(|A| τ2)) logN = 1−1/NΩ(1) since |A| ≥ Ω((lnN)/τ2) by definition
of good sets. %&

Claim 22. (i) ≤ O(γL1(f̂)2 logN).

Proof. Denote I = [0..2�]. Define gx(y) = χ−c(y)f(x− y) for y ∈ I and gx(y) = 0
otherwise. Then by the definition of est�,c(f) and ‖h ∗ f‖22,

(i) =

∣∣∣∣∣ E
x∈A

(
E

y∈B
gx(y)

)2

− E
x∈ZN

(
E

y∈I
gx(y)

)2
∣∣∣∣∣ ≤ (i′) + (ii′) for:

– (i′) :=
∣∣∣Ex∈A (Ey∈B gx(y))2 − Ex∈A (Ey∈I gx(y))2

∣∣∣
– (ii′) :=

∣∣∣Ex∈A (Ey∈I gx(y))2 − Ex∈ZN (Ey∈I gx(y))2
∣∣∣

We show below that (i′) ≤ γ ·L1(f̂)2 ·O(logN) and (ii′) ≤ γ ·L1(f̂)2. Combining
these bounds we get that (i) ≤ O(γL1(f̂)2 logN).
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Bounding term (i’). We first get rid of the expectation over x ∈ A by up-
per bounding it with its value on a maximizing x0 ∈ A. We then switch to
the Fourier representation of gx0 and rely on B being (γ, I)-biased to bound the
difference between the expectations over y ∈ B and y ∈ I. Finally, we bound the
emerging quantity L1(ĝx0) (using Proposition 2 and algebraic manipulations).
Details omitted from this extended abstract.

Bounding term (ii’). We first observe that the inner expectations are over the
same range I and variable. That is, (ii′) = |Ex∈A ḡ(x)− Ex∈ZN ḡ(x)| for ḡ(x) =
(Ey∈I gx(y))2. We then switch to the Fourier representation of ḡ and rely on A
being γ-biased to bound the difference between the expectations over x ∈ A and
x ∈ ZN .

(ii′) ≤
∑

α∈ZN

∣∣̂̄g(α)
∣∣ ∣∣∣∣ E

x∈A
χα(x) − E

x∈ZN

χα(x)
∣∣∣∣ ≤ γL1(̂̄g)

Finally we bound the emerging quantity L1(̂̄g). Observe that ḡ = (h ∗ f)2 (since
h ∗ f = Ey∈ZN

N
|I|χ−c(y)f(x− y) = Ey∈I χ−c(y)f(x− y)). Therefore, L1(̂̄g) ≤

L1(ĥ ∗ f)2 where we use the fact that for any function s, L1(ŝ2) ≤ L1(ŝ)2.
Observe further that L1(ĥ ∗ f)2 ≤ L1(f̂)2 because

∣∣∣ĥ ∗ f(α)
∣∣∣ = ∣∣∣ĥ(α)

∣∣∣ · ∣∣∣f̂(α)
∣∣∣ ≤∣∣∣f̂(α)

∣∣∣, where the last inequality follows since
∣∣∣ĥ(α)

∣∣∣ ≤ 1 for all α. Combining

the above bounds we conclude that (ii′) ≤ γL1(f̂)2. %&

Claim 23. (ii) ≤ (1 + O(γL1(f̂)2 logN))(2ε2 + ε + O(τ)) with probability at
least 1− exp (−Ω(|A| τ2)).

Proof. By Cauchy-Schwartz inequality, (ii)2 ≤ 4 · (a) · (b) for

– (a) := 1
|A|
∑

x∈A

(
1

|B�|
∑

y∈B�
χ−c(y)f(x− y)

)2

– (b) := 1
|A|
∑

x∈A

(
1

|B�|
∑

y∈B�
χ−cη(x− y)

)2
.

To bound (b), observe that (b) = est�,c(η) ≤ (iii). Therefore, by Claim 24,
(b) ≤ 2ε2 + ε + O(τ) with probability at least 1− 2 exp(−Ω(|A| τ2)).

To bound (a), observe that (a) = est�,c(f), implying by Claim 22 that∣∣(a)− ‖h ∗ f‖22∣∣ ≤ O(γL1(f̂)2 logN). Next observe that ‖h ∗ f‖22 ≤ 1 (since

‖h ∗ f‖22 =
∑

α

∣∣∣ĥ(α)f̂ (α)
∣∣∣2 where

∣∣∣ĥ(α)
∣∣∣ , ∣∣∣f̂(α)

∣∣∣ ≤ 1 for all α).3 We conclude

therefore that |(a)| ≤ 1 + O(γL1(f̂)2 logN).

3 Here,
∣∣∣f̂(α)

∣∣∣ ≤ 1 because f accepts values in B1. The bound holds also for unbounded

f , provided f is normalized to have
∑

α

∣∣∣f̂(α)
∣∣∣2 ≤ 1.
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Combining both bounds we conclude that with probability at least
1− exp (−Ω(|A| τ2)), (ii) ≤ (1 + O(γL1(f̂)2 logN))(2ε2 + ε + O(τ)). %&

Claim 24. (iii) ≤ 2ε2 +ε+O(τ) with probability at least 1−2 exp(−Ω(|A| τ2)).

Proof. To bound (iii) = |est�,c(η)| we rely on the randomness of
η. By definition of est�,c(η) and the triangle inequality, |est�,c(η)| ≤
1
|A|
∑

x∈A

(
1

|B|
∑

y∈B |η(x− y)|
)2

. Opening the parenthesis, |est�,c(η)| ≤ (a)+(b)
for:

– (a) := 1
|A|
∑

x∈A
1

|B|2
∑

y1 �=y2∈B |η(x − y1)| |η(x− y2)|
– (b) := 1

|A|
∑

x∈A
1

|B|2
∑

y∈B |η(x− y)|2

Expressions (a) and (b) are averages over the indep. random variables: vx,y1,y2 =
|η(x− y1)| |η(x− y2)|· |B|

|B|−1 and vx,y = |η(x − y)|2 · 1
|B| respectively (the factors

involving |B| are for proper normalization). We use Chernoff/Hoeffding bound
to upper bound expressions (a) and (b) separately, and then apply union bound
to upper bound their sum. Details omitted from this extended abstract. %&

5 Bit Security Implications

We obtain bit security results as a corollary of our algorithm solving HNPP,ε.
We set some terminology. Let G = {gp} be a family of generators gp of Z

∗
p.

Let F = {fp} be a family of functions fp outputting secrets s when given public
data PDp,g,s depending on the modulus p, a generator g and the secret s. Think
of F as the underlying hard to compute function. Let P = {Pp} be a family of
predicates over Z∗

p. Denote by MB a “magic box” that, given p, g and PDp,g,s,

outputs MB(p, g, PDp,g,s)
def
= Pp(s). We say that:

– P is as hard as F if there is an algorithm A that, given PDp,gp,s, oracle
access to MB, and an advice depending only on p and gp, outputs the secret
s with probability at least 1/poly(logp), while the running time and advice
length are polynomial in log p.

– F is G-accessible if there is an access algorithm that, given public data PDp,g,s

for a secret s, and an element a ∈ Zp−1, outputs public data PDp,g,s·ga for
the secret s · ga mod p.

Theorem 5. For any G-accessible F and concentrated P, P is as hard as F .

Proof. Fix p and denote g = gp. Let Advp,g be an advice depending only on p

and g as used in Theorem 1 for solving HNPP,ε in Algorithm 1. Let Pp,s(a)
def
=

Pp(s · ga). Observe that given PDp,g,s and oracle access to MB we can simulate
oracle access to Pp,s: For each query a, we compute PDp,g,s·ga using the access
algorithm of F , and output val = MB(p, PDp,g,s·ga). By definition of MB,
val = Pp(s · ga).
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The algorithm A runs Algorithm 1 while simulating oracle access to Pp,s. By
Theorem 1, the output is s with probability at least 1/poly(logp). We conclude
that P is as hard as F . %&

Let OK and EL′ denote the underlying hard families of functions in the Okamoto
conference key sharing scheme and in the (modified) ElGamal public key en-
cryption scheme as defined in [5]. The analysis of [5] shows that OK (EL′) is
G-accessible. We conclude therefore that for any concentrated predicate P , P is
as hard as computing OK (EL′). In particular, this holds for P = MSB1.
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Abstract. Computational indistinguishability amplification is the prob-
lem of strengthening cryptographic primitives whose security is defined
by bounding the distinguishing advantage of an efficient distinguisher.
Examples include pseudorandom generators (PRGs), pseudorandom
functions (PRFs), and pseudorandom permutations (PRPs).

The literature on computational indistinguishability amplification
consists only of few isolated results. Yao’s XOR-lemma implies, by a
hybrid argument, that no efficient distinguisher has advantage better
than (roughly) n2m−1δm in distinguishing the XOR of m independent
n-bit PRG outputs S1, . . . , Sm from uniform randomness if no efficient
distinguisher has advantage more than δ in distinguishing Si from a uni-
form n-bit string. The factor 2m−1 allows for security amplification only
if δ < 1

2
: For the case of PRFs, a random-offset XOR-construction of

Myers was the first result to achieve strong security amplification, i.e.,
also for 1

2
≤ δ < 1.

This paper proposes a systematic treatment of computational indis-
tinguishability amplification. We generalize and improve the above prod-
uct theorem for the XOR of PRGs along five axes. First, we prove the
tight information-theoretic bound 2m−1δm (without factor n) also for the
computational setting. Second, we prove results for interactive systems
(e.g. PRFs or PRPs). Third, we consider the general class of neutral-
izing combination constructions, not just XOR. As an application, this
yields the first indistinguishability amplification results for the cascade
of PRPs (i.e., block ciphers) converting a weak PRP into an arbitrarily
strong PRP, both for single-sided and two-sided queries. Fourth, strong
security amplification is achieved for a subclass of neutralizing construc-
tions which includes as a special case the construction of Myers. As an
application we obtain highly practical optimal security amplification for
block ciphers, simply by adding random offsets at the input and out-
put of the cascade. Fifth, we show strong security amplification also for
weakened assumptions like security against random-input (as opposed to
chosen-input) attacks.

A key technique is a generalization of Yao’s XOR-lemma to (interac-
tive) systems which is of independent interest.
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1 Introduction

1.1 Security Amplification

The security of all computationally secure cryptographic systems, even of those
called “provably secure” in the literature, relies on unproven assumptions about
the underlying cryptographic primitives. Typical assumptions are that a cer-
tain construction is a one-way function (OWF), a collision-resistant hash func-
tion, a pseudorandom generator (PRG), a pseudorandom function (PRF), a
pseudorandom permutation (PRP), etc. To weaken these assumptions is both a
fundamental challenge in the theory of cryptography and a major goal for the
cautious and prudent design of practical cryptographic systems. Many reduc-
tions of strong primitives to weak primitives are known. For example, one of the
outstanding results is the construction of a PRG from any OWF [13]. However,
this reduction, like many other reductions, is highly inefficient and, while of high
theoretical value, not of practical relevance.

A specific way to weaken an assumption is to require only that the security
property is mildly true. For instance, a δ-OWF can be efficiently inverted with
probability at most δ (rather than a negligible quantity for a regular OWF).
Similarly, for a δ-PRG no efficient distinguisher has an advantage more than δ
in distinguishing its output from a uniform random string. The corresponding
definitions of a δ-PRF, a δ-PRP, etc., are straight-forward. Such a weakened
assumption is more likely to be true. For example, it is more conservative to
only assume that AES is a 0.99-PRP rather than a fully secure PRP.

The natural question is whether several weak primitives can be efficiently
combined to obtain a stronger version of the primitive, ideally one with the full-
fledged security property.1 This is called security amplification, in some cases
hardness amplification. The classical result on security amplification due to
Yao [35] is that the parallel composition of m δ-OWFs results in a (δm + ν)-
OWF, where ν is some negligible quantity and for any δ < 1, δm can be made
negligible for large enough m. Security amplifications of a wide range of crypto-
graphic primitives has subsequently been considered, including for example regu-
lar OWFs and OWPs [9,11], two-party protocols [1,29,30,34,12], key-agreement
and public-key encryption [7,15,16], collision-resistant hash functions [4], and
watermarking schemes [17].2

The term indistinguishability amplification refers to security amplification
when the relevant security quantity is the distinguishing advantage for the best
distinguisher from a certain class of distinguishers, typically the class of efficient
distinguishers.

1 Typically one considers several independent instantiations of the same weak primi-
tive, but most results actually hold for several different instantiations.

2 So-called combiners [14] are another method for relaxing security assumptions: They
guarantee that a construction involving several instantiations of a primitive is (fully)
secure if at least one (or several, but not all) of them are (fully) secure. However,
they do not amplify security of the underlying primitives.
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1.2 The XOR-Lemma and Amplification for PRGs

Before we discuss the XOR-lemma, let us compare the prediction advantage and
the distinguishing advantage of a biased bit, in an information-theoretic setting,
i.e., allowing arbitrary computing power. A bit with bias ε takes on the two values
with probabilities 1

2 − ε and 1
2 + ε. When such a bit must be guessed, one would

choose the more likely value and be correct with probability 1
2 + ε. To calibrate

the guessing advantage, between 0 (when ε = 0) and 1 (when the bit is fixed,
i.e., ε = 1

2 ), one defines the advantage to be 2ε. In contrast, the distinguishing
advantage is defined as ε (with no factor 2) since it is naturally defined for general
random variables (not only bits) as the distance of the probability distribution
from the uniform one.

As an example, consider two independent bits with biases ε1 and ε2. It is
easy to see that the bias of the XOR is 2ε1ε2. For instance, the XOR of a 0.1-
biased bit (40/60) and a 0.2-biased bit (30/70) is a 0.04-biased bit (46/54),
where 0.04 = 2 · 0.01 · 0.02. More generally, the bias of the XOR of m bits is
2m−1 times the product of the biases. For the XOR of m bit-strings S1, . . . , Sm

of length n, where Si has distance δi from a uniform n-bit string, the distance
from uniform of the XOR of the strings, S1 ⊕ S2 ⊕ · · · ⊕ Sm, is bounded by
2m−1∏m

i=1 δi. This bound is tight, as for example the case n = 1 discussed
above illustrates.

Let us now move to the computational setting, i.e., to Yao’s XOR-lemma
[35,10], which is much more involved and is another seminal security amplifi-
cation result. One typically considers a predicate B(x) of the input of a OWF
f which is hard to guess when given the output f(x), for uniformly chosen x.
But the setting of the XOR-lemma is more general. It states3 that if for bits
B1, . . . , Bm the advantage in guessing Bi given some correlated information Xi

is at most αi for any algorithm with complexity t′, then no algorithm with
complexity t has advantage more than

∏m
i=1 αi + γ in guessing their XOR-sum,

i.e., B1 ⊕ · · · ⊕ Bm, given X1, . . . , Xm, where γ can be made arbitrarily small,
at the cost of making t smaller with respect to t′.4 In terms of distinguish-
ing advantages δi, the bound is 2m−1∏m

i=1 δi + γ (for the reasons described
above).

Moreover, a standard hybrid argument, to use the unpredictability of bits to
prove the indistinguishability of bit-strings, implies an indistinguishability ampli-
fication result for PRGs. Consider m independent PRG outputs, S1, . . . , Sm, each
an n-bit string. If no distinguisher with complexity t′ has advantage more than δi

in distinguishing Si from a uniform random n-bit string, then no distinguisher
with complexity (roughly) t has advantage more than n(2m−1∏m

i=1 δi + γ) in

3 In fact, one needs a “tight” version of the XOR-lemma for this statement to hold,
such as the one by Levin [20,10], or one obtained from a tight hard-core lemma (e.g.
[15]) via the techniques of [18].

4 As usual in complexity-theoretic hardness amplification, we experience an unavoid-
able [31] trade-off between the choice of γ (the tightness of the bound) and the
complexity of the reduction.
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distinguishing S1⊕S2⊕· · ·⊕Sm from a uniform random n-bit string.5 The factor
n comes from the hybrid argument over the individual bits of the bit-string.

As explained, the factor 2m−1 is unavoidable, since it holds even in the
information-theoretic setting. Unfortunately, it means that an amplification can
be achieved only if the component constructions are better than 1

2 -secure, i.e.,
if δi <

1
2 .

1.3 Natural Questions and Previous Results

The above discussion suggests a number of natural questions. (1) Can the factor
n in the bound for the XOR of PRGs be eliminated, to obtain a tight bound,
namely the equivalent of the information-theoretic counterpart? (2) Can the
result be extended to the XOR of PRFs, i.e., primitives for which the security is
defined by an interactive game, not by the (static) indistinguishability of random
variables? (3) If the answer is “yes”, can such a result be extended to other
constructions, most importantly the cascade of PRPs? (4) Can the factor 2m−1

be eliminated so that security amplification from arbitrarily weak components
can be achieved? We will answer all these questions positively.

In the information-theoretic setting, questions 2 and 3 were answered by Mau-
rer, Pietrzak, and Renner [24], whose abstract approach we follow, and the spe-
cial case of permutations had previously been solved by Vaudenay [32,33]. In
contrast, there are only a few isolated results on computational indistinguisha-
bility amplification, which we now discuss. Myers [27] was the first to consider
security amplification for PRFs. Interestingly, he did not solve question 2 above,
which remained open, but he actually solved part of question 4. More precisely,
he showed for the XOR of PRFs, with the modification that for each PRF a
random (secret) offset is XORed to the input, that the stronger bound (without
the factor 2m−1) can be achieved. However, his treatment is specific for his con-
struction and does not extend to other settings like the cascade of PRPs. Dodis
et al. [6] addressed question 2 and gave a positive answer using techniques
originating from the setting of hardness amplification of weakly verifiable puz-
zles [3,19]. However, their focus is on general interactive cryptographic prim-
itives, including for example message authentication codes (MACs), and the
resulting bound for the case of PRFs depends on the number of queries the
distinguisher is allowed to ask and is not optimal.

Little is known about the cascade of weak PRPs, which is perhaps the case of
highest practical interest as it addresses security amplification for block ciphers.6

5 It is not clear to us whether this fact has been published, or is unpublished but
well-known folklore, or not so well-known (see also [6] for a similar statement about
security amplification for the XOR of PRGs).

6 Cascades of block ciphers were considered by Even and Goldreich [8] and Maurer
and Massey [23], but those results only prove that the cascade is as secure as the
strongest component (with no amplification), i.e., that the cascade is a combiner for
encryption. Bellare and Rogaway [2] showed a certain security amplification (of a
different type) for cascade encryption in the ideal cipher model, which is a purely
information-theoretic consideration.
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Luby and Rackoff [21] proved an amplification result for the cascade of two weak
PRPs. This result was extended by Myers [26] to the cascade of a small number
of PRPs, but he notes that this result falls short of constructing a (regular) PRP
from a weak PRP and states this as an open problem, which we solve.

1.4 Contributions of This Paper

In our attempt at solving the different open questions explained above, we take
a very general approach, not targeted at specific constructions. The goal is to
develop a deeper and more general understanding and to prove results of a
generality that can be useful for other applications.

A first result is a generalization of the XOR-lemma to interactive systems.
If a system (as opposed to a random variable for the standard XOR-lemma)
of a general type depends on a bit, and no efficient algorithm with access to
the system can predict the bit better than with a certain advantage, then the
advantage in predicting the XOR of several such bits is bounded by the product
of the individual advantages, even if the predictor has complete and arbitrary
independent access to all the involved systems.

The XOR of strings or (of the output) of systems, as well as the cascade of
systems implementing permutations, are both special cases of a more general
concept which was called neutralizing construction in [24]. Intuitively, a con-
struction involving several component systems is neutralizing if it is equivalent
to an ideal system whenever one component is ideal. For example, the XOR of
several PRFs is equivalent to a truly random function if (any) one of the PRFs
is replaced by a truly random function.

We prove two tight general product theorems. The first theorem relies on the
XOR-lemma and shows that for all neutralizing constructions the distinguishing
advantage of the combined system is 2m−1 times the product of the individual
advantages, which is optimal. The second theorem gets rid of the factor 2m−1 by
considering a special class of randomized neutralizing constructions. The appli-
cations mentioned in the abstract and the previous sections follow directly from
these general theorems.7 In particular, one application is a highly practical con-
struction for optimal security amplification for block ciphers, simply by adding
random offsets at the input and output of the cascade.

1.5 Notational Preliminaries

Throughout this paper, we use calligraphic letters X ,Y, . . . to denote sets, upper-
case letters X,Y, . . . to denote random variables, and lower-case letters x, y, . . .
denote the values they take. Moreover, P[A] denotes the probability of an event
A, while we use the shorthand PX(x) := P[X = x], and denote by PX the
probability distribution of X and by E[X ] its expected value.

7 For each application of the second theorem, one also needs an information-theoretic
indistinguishability proof based on the conditional equivalence of two systems, con-
ditioned on an event that must be proved to be unlikely to occur.
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We consider interactive randomized stateful algorithms in some a-priori fixed
(but otherwise unspecified) RAM model of computation. In particular, such
an algorithm keeps a state (consisting say of the memory space it uses), and
answers each query depending on the input of this query, some coin flips, the
current state (which is possibly updated), and (possibly) one or more queries
to an underlying system. It is also convenient to denote by A[σ] the algorithm
obtained by setting the state of A to σ (provided σ is a compatible state),
and then behaving according to A’s description. Additionally, we say that the
algorithm A has time complexity tA (where tA is a function N × N → N) if the
sum of the length of the description of A and the total number of steps of A is
at most tA(q, s) for all sequences of q queries, all compatible initial states with
size s, and all compatible interactions with an underlying system. We use the
shorthand tA(q) := tA(q, 0).

This paper adopts a concrete approach, i.e. we do not use asymptotics and
statements are inherently non-uniform. Still, all results can be extended to the
uniform setting by using standard techniques. We comment on the necessary
changes in the full version of this paper.

2 Discrete Systems and Constructions

Discrete Systems, Constructions, and Distinguishers. This paper deals
with the general notion of a (single-interface) discrete system F taking inputs
X1, X2, . . . and returning outputs Y1, Y2, . . ., where the i-th output Yi depends
(probabilistically) on the first i inputs X i = [X1, . . . , Xi] as well as on all pre-
vious i− 1 outputs Y i−1 = [Y1, . . . , Yi−1]. (If all inputs and outputs are in sets
X and Y, respectively, we call F an (X ,Y)-system.) Its input-output behavior
is minimally described (see e.g. [22]) by the (infinite) sequence of conditional
probability distributions pF

Yi|XiY i−1 (for all i ≥ 1). In general, we use the name
“system” (as well as F) interchangeably to denote both the input-output behav-
ior determined by conditional probability distributions and an actual discrete
system realizing this behavior. It thus makes sense to say that two systems F,G
are equivalent (denoted F ≡ G) if they have the same input-output behavior.
A random variable X is the simplest type of system, which answers each query
with the same value X .

With C(·) we denote a construction invoking one or more underlying com-
patible subsystems, whereas C(F), C(F,G), etc denote the systems obtained
when C is instantiated with F (and G). The shorthand C(F, ·) indicates the
construction that behaves as C(F,G) given access to the subsystem G. (All
notations extend naturally to constructions with more than two subsystems.)
A distinguisher D is a system interacting with another system F giving inputs
X1, X2, . . . and obtaining outputs Y1, Y2, . . ., outputting a decision bit after a
certain number q of queries depending on the transcript (Xq, Y q): In particular,
we denote as P[D(F) = 1] the probability that it outputs 1.

We say that an interactive algorithm A implements a system F or a construc-
tion C(·) if it has the same input-output behavior as F and C(·), respectively.
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In particular, we use A (rather than F) whenever we want to stress that we use
the particular implementation A of F.

Distinguishing Advantages. The distinguishing advantage of a distinguisher
D in distinguishing two systems F and G is the quantity

ΔD(F,G) := |P[D(F) = 1]− P[D(G) = 1]| .

We denote as Δt(F,G), Δq(F,G), and Δt,q(F,G) the best distinguishing ad-
vantages ΔD(F,G) taken over all distinguishers with time complexity at most t,
issuing at most q queries, or both, respectively.

System Composition. Given m systems F1, . . . ,Fm, we use the shorthand
F1‖ . . . ‖Fm to denote their parallel composition, i.e., the system allowing par-
allel concurrent interaction with the (independent) m systems.8 Moreover, for
(X ,Y)-systems F and G, and a random bit B (with distribution PB), the system
〈F,G〉B acts as F if B = 0, and as G otherwise. Additionally, for any quasi-
group operation9 " on Y the (X ,Y)-system F "G on input x invokes both F,G
with input x, obtaining y, y′, and returns y " y′.10 Also, for an (X ,Y)-system P
and a (Y,Z)-system Q we denote with P � Q the cascade of P and Q, i.e., the
system which on input x first invokes P on this input, and the resulting output
is fed into Q to obtain the final output.

Stateless Systems. We say that a system F is stateless if there exists a
conditional probability distribution pF

Y |X such that pF
Yi|XiY i−1(yi, x

i, yi−1) =
pF

Y |X(yi, xi) for all yi, x
i = [x1, . . . , xi], and yi−1 = [y1, . . . , yi−1]. Moreover, the

system F is convex-combination stateless (cc-stateless, for short) if there exists a
random variable S and a construction F(·) (we abuse notation by recycling the
letter F) such that F(S) ≡ F, and F(s) is stateless for all values s taken by S.
Depending on the context, S may be e.g. a seed, a key, or an internal function
table. A non-trivial example of a cc-stateless system is a randomized encryption
scheme, which takes a secret key and encrypts each message with independent
randomness. Note that 〈F,G〉B is cc-stateless if both F,G are cc-stateless.

Random Functions. A random function F : X → Y is an (X ,Y)-system which
answers consistently, i.e. Xi = Xj implies Yi = Yj . It is called a random permu-
tation if additionally Yi = Yj implies Xi = Xj. A cc-stateless random function
F : X → Y is in particular such that F ≡ F(S) where F(·) is deterministic and
F(s) is a function X → Y for all s. (This is sometimes called a keyed function
family, but we also consider the case where s is huge and is hence not a key.)
Special cases are a uniform random function (URF) R : X → Y and a uniform

8 The systems do not interact with each other, and each query to the parallel compo-
sition is addressed to one of the systems.

9 That is, given a, c ∈ Y (or b, c ∈ Y) there exists a unique b (a) such that a�b = c. An
example is bit-wise XOR ⊕ for Y = {0, 1}n, but any group operation is a quasi-group
operation as well.

10 We denote as F1 � · · · � Fm the system (· · · ((F1 � F2) � F3) · · · ) � Fm.
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random permutation (URP) P : X → X that realize a uniformly chosen func-
tion X → Y and permutation X → X , respectively. We denote as F(s, x) the
evaluation of F with key s and input x.

Informally, in an asymptotic setting, it is convenient to say that an efficient
F(·) is a δ-pseudorandom function (PRF) if Δt,q(F(S),R) ≤ δ+negl for a (short)
key S, a URF R, all polynomial t and q, and some negligible11 function negl.
Analogously, if an efficient Q(·) implements a permutation for all keys, it is called
a δ-pseudorandom permutation (PRP) if Δt,q(Q(S),P) ≤ δ + negl for a URP P
and for all polynomial t and q.

The inverse Q−1 of a cc-stateless random permutation Q is well-defined, and
〈Q〉 is the system accepting forward queries (x,+) (answered by Q(s, x) on key
s) and backward queries (y,−) (answered as Q−1(s, y)). In particular 〈Q〉� 〈Q′〉
stands for the system 〈Q�Q′〉. An efficient Q(·) is called a δ-two-sided PRP12 if
Δt,q(〈Q(S)〉, 〈P〉) ≤ ε+ negl for all polynomial q and t. (Of course, one assumes
that backward queries can be computed efficiently given s.)

Neutralizing Constructions. A construction C(·) is neutralizing [24] for
systems F1, . . . ,Fm and ideal systems I1, . . . , Im, if for Si ∈ {Fi, Ii} (i =
1, . . . ,m) we have C(S1, . . . ,Sm) ≡ C(I1, . . . , Im) whenever there exists some i
with Si = Ii.13

Every quasi-group operation " on a set Y induces a construction C(·) such
that C(F,G) := F"G which is neutralizing for random functions F,G : X → Y
and ideal systems I,J being independent URFs. In particular, I"J is also a URF.
As a special case, this result holds for random variables X,Y over Y, the ideal
systems being uniform random elements of Y. Moreover, the cascade operator �
induces a construction C′(·) with C′(Q1,Q2) := Q1 � Q2 which is neutralizing
for any two cc-stateless random permutations Q1,Q2 : X → X (in fact Q1 can
possibly be stateful) with ideal systems I,J both URPs X → X . In particular,
I � J is also a URP. If Q1 is cc-stateless, then the same result holds even in the
two-sided case for 〈Q1〉 and 〈Q2〉 (with ideal system 〈P〉 for a URP P). Both
constructions extend naturally to an arbitrary number of subsystems.

3 A General Product Theorem for Neutralizing
Constructions

This section presents a very general product theorem showing computational
indistinguishability for every neutralizing construction. This result relies on a

11 Recall that a function ν : N → R≥0 is negligible if it vanishes faster than the inverse
of any polynomial.

12 In the literature the name strong PRP is commonly used, but this term is slightly
confusing in the context of this paper.

13 Neutralizing constructions capture the notion of a combiner [14] for computational
indistinguishability properties: Whenever at least one system Si is computationally
indistinguishable from Ii, then C(S1, . . . ,Sm) is computationally indistinguishable
from C(I1, . . . , Im).
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generalization of Yao’s XOR-Lemma to discrete interactive systems, which is
presented first, and is of independent interest.

3.1 The Generalized XOR-Lemma

System-Bit Pairs. A system-bit pair is a system of the form (F, B), where
B ∈ {0, 1} is a bit value, which is (generally) correlated with the system F.
This can formally be described by the distribution PB of B and the two systems
F0 and F1 conditioned on the value taken by B, i.e. (F, B) = (〈F0,F1〉B, B).
A possible system-bit pair is a URF R : {0, 1}m → {0, 1} and the parity of
its function table. The following quantity characterizes the performance of an
adversary14 A in guessing the bit B when given access to F only.

Definition 1. The guessing advantage of an adversary A in guessing B for
a system-bit pair (F, B) is the quantity ΓA(F, B) := 2 · P[A(F) = B] − 1.
Additionally, we denote as Γt,q(F, B) the maximal guessing advantage ΓA(F, B)
taken over all q-query adversaries A with complexity at most t.

Note that ΓA(F, B) ∈ [−1, 1], where 1 means that A is able to perfectly predict
B by interacting with F, while −1 means that A is never correct.15 The following
connection between the guessing and the distinguishing advantages is well known
(cf. e.g. [24]).

Lemma 1. For all F, G, and D, we have ΔD(F,G) =
∣∣ΓD(〈F,G〉B , B)

∣∣ for a
uniform bit B ∈ {0, 1}.

The XOR-Lemma. Given m system-bit pairs (G1, B1), . . . , (Gm, Bm), we are
interested in the advantage Γt,q1,...,qm(G1‖ · · · ‖Gm, B1⊕· · ·⊕Bm) of guessing the
bit B1⊕· · ·⊕Bm given parallel access to the systems G1, . . . ,Gm, where at most
qi queries to each system Gi are allowed. That is, we consider the most general
attack where the adversary can query each subsystem Gi individually at most
qi times, adaptively depending on the answers of queries to other subsystems.
We show that the advantage is upper bounded by the product of the individual
advantages Γt′,q′(Gi, Bi) for i = 1, . . . ,m (for appropriate t′, q′), with an extra
additive term γ > 0 which can be made arbitrarily small (but influences the
efficiency of the reduction). The result holds provided that all but one of the
system-bit pairs are cc-stateless. (Note that the fact that (Gi, Bi) is cc-stateless
implies that Gi is cc-stateless, but the converse is not always true.) Our result
generalizes the original XOR-lemma by Yao [35,10], which considered the special
case of system-bit pairs (Xi, Bi), where Xi is a random variable.

We stress that our result only requires the ability to efficiently implement the
cc-stateless system-bit pairs (Gi, Bi) = (Gi(S), Bi(S)). This may be possible,
for instance by using a stateful algorithm, even if G(·) and B(·) themselves are
14 We stress that distinguishers and adversaries are objects of the same type. The

name adversary is used to stress the fact that we are not exclusively considering a
distinguishing scenario.

15 In particular, flipping the output bit of such a A yields one which is always correct.
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not efficiently computable: In fact, S may even be exponentially large. As an
example, the aforementioned system-bit pair (R, B), where R : {0, 1}n → {0, 1}
is a URF, and B is the parity of its function table, is clearly cc-stateless, and can
efficiently be implemented by first sampling a random B, and then answering
queries to R with independent random bits, with the exception of the last one,
which is answered so that the parity equals B.

In the following, we define the quantity ϕ := 2
(

24m
γ

)2
·ln
(

7m
γ

)
for understood

m and γ. Also, tGi and sGi are the time and space16 complexities of some
implementation Gi of the system Gi, whereas t(Gi,Bi) is the time-complexity of
an implementation of the pair (Gi, Bi). (Note that an efficient implementation
of the latter implies one for the former, but we allow for this distinction.) For all
i, we denote li := sGi(qi · ϕ) and l<i :=

∑i−1
j=1 lj (for understood q1, . . . , qm−1).

Theorem 1 (XOR-Lemma). Let (G1, B1), . . . , (Gm−1, Bm−1) be cc-stateless
system-bit pairs, and let (Gm, Bm) be an arbitrary system-bit pair. For all t,
q1, . . . , qm, γ > 0,

Γt,q1,...,qm(G1‖ . . . ‖Gm, B1 ⊕ · · · ⊕Bm) ≤
m∏

i=1

Γt′i,q
′
i
(Gi, Bi) + γ,

where t′i := l<i + ϕ ·
[
t +O

(∑i−1
j=1 tGj (qj , lj) +

∑m
j=i+1 t(Gj,Bj)(qj)

)]
and q′i :=

ϕ · qi for i = 1, . . . ,m − 1, whereas tm := l<m + t + O
(∑m−1

j=1 tGj (qj , lj)
)

and
q′m := qm.

The asymmetry of our proof technique allows (Gm, Bm) to be fully stateful.17

Furthermore, both t′m and q′m are much smaller then the corresponding terms t′i
and q′i for i = 1, . . . ,m− 1. The following paragraph provides a proof sketch for
the case m = 2. The full proof is deferred to the full version of this paper.

Proof Idea for m = 2. The proof follows similar lines as Levin’s proof of the
XOR-lemma [20,10], but with some major differences due to the peculiarities
of reactive systems. For simplicity, we let (F, B) = (G1, B1) and (G, C) =
(G2, B2). Let A be an adversary with ΓA(F‖G, B ⊕ C) > δ · ε + γ. We show
that either there exists an adversary A′ such that ΓA′

(F, B) > δ or there exists
an adversary A′′ such that ΓA′′

(G, C) > ε, contradicting the assumed hardness
of (F, B) and/or (G, C). The time complexities of A′ and A′′ are strictly related
to the one of A. Recall that the pair (F, B) = (F(S), B(S)) is cc-stateless, and
for all values s taken by the random variable S we define

α1(s) := ΓA(F(s)‖G, 1⊕ C) and α(s) := ΓA(F(s)‖G, B(s) ⊕ C).
16 i.e. the maximal size of the state after the given number of queries.
17 An orthogonal generalization of the XOR-lemma for stateful interactive systems

was proposed by Halevi and Rabin [12]. However, it relies on sequential (rather than
parallel) access to the systems G1, . . . ,Gm, which is not sufficient for the applications
of this paper.
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By definition, E[α(S)] > δ · ε + γ. Moreover α(s) = α1(s) if B(s) = 1, and
α(s) = −α1(s) otherwise. This implies that α1(S) has good correlation with
B(S), as an adversary A′ outputting 1 with probability 1

2 + α1(s)
2 (when given

access to F(s)) has advantage at least δ · ε + γ. If |α1(s)| = |α(s)| ≤ ε holds for
all s, then the advantage can be amplified to be larger than δ by outputting 1
with probability 1

2 + α1(s)
2ε . Of course, A′ does not know α1(s), but a statistical

estimate can be obtained by repeated interaction with F(s), as it is stateless:
The term γ compensates the possible estimation error.

Note that the existence of a single value s with the property that |α1(s)| > ε
implies that there exists a bit b such that the adversary A′′ := A(F(s)‖·) ⊕ b
has advantage larger than ε in guessing C from G, i.e., A′′ is the adversary that
simulates the execution of A with the parallel composition of F(s) and the given
system G, and outputs A’s output XORed with b. But such adversary A′′ is not
necessarily efficient, because an efficient implementation of F(s) may not exist.
To overcome this issue, we show that for the above adversary A′ to succeed, it
is sufficient that the probability over the choice of S that |α1(S)| > ε + γ/4 is
smaller than γ/4. Furthermore, if this probability is at least γ/4, a probabilistic
argument yields a (sufficiently) small state σ for the (efficient) implementation
F of F and a (fixed) bit b such that the efficient adversary A′′ := A(F [σ]‖·)⊕ b
achieves advantage at least ε.

3.2 A Product Theorem from the XOR-Lemma

Throughout this section, let C(·) be a neutralizing construction for systems
F1, . . . ,Fm, I1, . . . , Im (of which all but Fm and Im have to be cc-stateless).
We provide a very general product theorem upper bounding the distinguishing
advantage Δt,q(C(F1, . . . ,Fm),C(I1, . . . , Im)) in terms of the individual advan-
tages Δt′i,q

′
i
(Fi, Ii) (for some related t′i, q

′
i). The theorem is a computational

version of the information-theoretic product theorem from [24]: In particular,
we inherit the same bounds, with an unavoidable additive term.

The theorem relies on the canonical implementation 〈Fi, Ii〉Bi of 〈Fi, Ii〉Bi

which chooses a random bit Bi ∈ {0, 1} and answers each query using the imple-
mentations Fi and Ii (with respective complexities tFi and tIi) of Fi or of Ii, re-
spectively, depending on the value of Bi. (Bi is in particular part of the state.) It
can be implemented with complexity t〈Fi,Bi〉Bi

(q, s) = max{tFi(q, s), tIi (q, s)}+
O(1). This also yields an implementation of (〈Fi, Ii〉Bi , Bi) with the same com-
plexity (by additionally outputting the bit Bi). Finally, we let li and l<i as above
be defined with respect to 〈Fi, Ii〉Bi , and let tC be the time complexity of an
efficient implementation of C(·).

Theorem 2 (Product Theorem). Let C(·) be as above, and let q > 0 be such
that C(·) makes qi queries to its i-th subsystem when invoked q times. Then, for
all t, γ > 0, if Δt′i,q

′
i
(Fi, Ii) ≤ 1

2 for all i = 1, . . . ,m− 1,

Δt,q(C(F1, . . . ,Fm),C(I1, . . . , Im)) ≤ 2m−1 ·
m∏

i=1

Δt′i,q
′
i
(Fi, Ii) + 2γ,
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where t′i := l<i+ϕ·
[
t+tC(q)+O

(∑i−1
j=1 t〈Fj ,Ij〉Bj

(qj , lj)+
∑m

j=i+1 t〈Fj ,Ij〉Bj
(qj)
)]

and q′i := ϕ · qi for all i = 1, . . . ,m − 1, whereas t′m := l<m + t + tC(q) +
O
(∑m−1

j=1 t〈Fj ,Ij〉Bj
(qj , lj)

)
and q′m := qm.

Proof Sketch. We present a proof sketch of the above theorem for the case
m = 2. For simplicity, let F1 = F, F2 = G, I1 = I, and I2 = J. The core of
the proof is a generic argument (i.e. it holds for all distinguishers, regardless of
their computing power) reducing the task of upper bounding the distinguishing
advantage for a neutralizing construction to the setting of the XOR-lemma.18 It
is easy to verify that (also cf. [24])

ΔD(C(F,G),C(I,J)) = 2 ·ΔD(〈C(F,G),C(I,J)〉B ,C(I,J))

=
∣∣ΓD(〈〈C(F,G),C(I,J)〉B ,C(I,J)〉B′ , B′)

∣∣ ,
where B and B′ are independent uniformly distributed random bits. Note that
conditioned on B′ = 0, the system 〈〈C(F,G),C(I,J)〉B ,C(I,J)〉B′ behaves as
C(F,G) with probability 1

2 , and as C(I,J) otherwise. On the other hand, con-
ditioned on B′ = 1 it always behaves as C(I,J). In particular, this implies that
(for independent uniform random bits B1, B2)(
〈〈C(F,G),C(I,J)〉B ,C(I,J)〉B′ , B′) ≡ (C(〈F, I〉B1 , 〈G,J〉B2), B1 ⊕B2

)
,

because of the neutralizing property. We thus obtain

ΓD(〈〈C(F,G),C(I,J)〉B ,C(I,J)〉B′ , B′) = ΓD(C(〈F, I〉B1 , 〈G,J〉B2 ), B1 ⊕B2)

and we conclude the proof by “absorbing” the computation of C(·) into D,
clearly without modifying the advantage. Using the XOR-lemma (Theorem 1)
for m = 2 we obtain

Δt,q(C(F,G),C(I,J)) ≤ 2 · Γt+tC(q),q1,q2(〈F, I〉B1 , 〈G,J〉B2 , B1 ⊕B2)
≤ 2 · Γt′1,q′

1
(〈F, I〉B1 , B1) · Γt′2,q′

2
(〈G,J〉B2 , B2) + 2γ.

for appropriate t′1, q
′
1 and t′2, q

′
2. Extending the proof to arbitrary neutralizing

constructions for m > 2 requires some extra care. The details can be found in
the full version of this paper.

3.3 Applications of Theorem 2

Sums of PRFs. Let F1, . . . ,Fm : X → Y be cc-stateless random functions (in
fact, Fm can possibly be stateful), and let " be a quasi-group operation on Y.
The operator " is neutralizing, as discussed in Section 2, for F1, . . . ,Fm and ideal
systems I1 = · · · = Im = R, where R : X → Y is a URF. In order to simplify
the time complexity statements, we assume that there exist efficient algorithms
18 A similar argument was implicitly used in the information-theoretic product theorem

of [24].
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implementing Fi(·) such that Fi(s, x) is computed in time tFi given s and x (this
holds in the interesting case where we apply the result to PRFs) and elements of
Y can be encoded using � ≈ log |Y| bits. Note that the canonical implementation
of R keeps a linearly-growing state of size s = O(q · �) after q queries, and
answers each query in time O(log(s)). Therefore, with t〈Fi,R〉Bi

(q, s) = O(q ·
max{tFi , log(s + q�)}) and l<i = O((i − 1)ϕq�), we apply Theorem 2 to obtain
the following result (we tacitly assume that all advantages are bounded by 1

2 ):

Corollary 1. For all t, q, γ > 0,

Δt,q(F1 " · · · " Fm,R) ≤ 2m−1 ·
m∏

i=1

Δt′i,q
′
i
(Fi,R) + 2γ.

A version of this result with weaker bounds was shown by Dodis et al. [6] for
" = ⊕. (Their bounds depend in particular on the number of queries.) We remark
that the analogous result for PRGs follows as a special case, since a PRG can
be seen as a one-input PRF.

In the asymptotic setting, if F(·) is a δ-PRF (for some δ < 1
2 ), it follows that

F(S1)" · · ·"F(Sm), for independent keys S1, . . . , Sm, is a 2m−1 ·δm-PRF: For t, q
polynomial (in n), we have Δt,q(F(S1)"· · ·"F(Sm),R) ≤ 2m−1·δm+negl+1/p(n)
for all polynomials p, as both t′i and q′i are polynomial as well.

Cascade of PRPs. Let P : {0, 1}n → {0, 1}n be a URP and let Q1, . . . ,Qm :
{0, 1}n → {0, 1}n be cc-stateless random permutations. Recall that the � op-
erator is neutralizing for Q1, . . . ,Qm (all with ideal system P), as well as for
〈Q1〉, . . . , 〈Qm〉 (all with ideal system 〈P〉). As above, we assume that both
Qi(s, x) and Q−1

i (s, y) are computable in time tQi . Furthermore, simulating
the URP P (as well as the two-sided URP 〈P〉) requires the same complexity
as implementing a URF. Therefore, with t〈Qi,P 〉Bi

(q, s) = t〈〈Qi〉,〈P 〉〉Bi
(q, s) =

O(q · max{tQi , log(s + qn)}) and l<i = O((i − 1)ϕqn), Theorem 2 yields the
following corollary:

Corollary 2. For all t, q, γ > 0,

Δt,q(Q1 � · · ·� Qm,P) ≤ 2m−1 ·
m∏

i=1

Δt′i,q
′
i
(Qi,P) + 2γ,

and

Δt,q(〈Q1〉� · · ·� 〈Qm〉, 〈P〉) ≤ 2m−1 ·
m∏

i=1

Δt′i,q
′
i
(〈Qi〉, 〈P〉) + 2γ.

We remark that this is the first result considering two-sided PRPs, and even in
the one-sided setting only the case m = 2 was considered by Luby and Rack-
off [21], and subsequently extended to m = O(log n) by Myers [26].

Furthermore, we note that Q1 is allowed to be stateful in the one-sided case,
as Theorem 2 allows one system to be stateful: In fact, � is not necessarily
neutralizing whenever at least two permutations are stateful.
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4 A Strong Product Theorem for Randomized
Neutralizing Constructions

4.1 A Product Theorem from Self-independence

Since Theorem 2 holds for arbitrary neutralizing constructions, one cannot avoid
the factor 2m−1 in the bound. This section shows that a subclass of neutralizing
constructions satisfying a simple information-theoretic property yield a strong
product theorem, i.e., the obtained upper bound is roughly the product of the
individual advantages.

Self-Independence. The notion of self-independence of an ideal system I
under a construction C(·) captures the fact that a computationally unbounded
distinguisher cannot tell apart the scenario where the same instance of I is
accessed through independent instances of C(·) from the setting where each
instance of C(·) accesses an independent instance of I.

Definition 2. The system I is η-self-independent under C(·) for a function η :
N× N→ R≥0, if for all q, λ > 0, the best (information-theoretic) distinguishing
advantage when allowing q queries to each subsystem satisfies

Δq,...,q(C1(I)‖ . . . ‖Cλ(I),C1(I1)‖ . . . ‖Cλ(Iλ)) ≤ η(q, λ),

where C1(·), . . . ,Cλ(·) and I1, . . . , Iλ are independent copies of C(·) and I, re-
spectively.

As an example, consider the construction C(·) which generates a (secret) random
n-bit offset Z, and given access to a random function F : {0, 1}n → {0, 1}n, C(F)
returns F(x⊕Z) upon each query x. It is not hard to show, e.g. using the tools
from [22], that a URF R : {0, 1}n → {0, 1}n is η-self-independent under C(·)
for η(q, λ) ≤ q2λ2

2 · 2−n, i.e., the probability that for some distinct i �= j the
instances Ci(·) and Cj(·) invoke R with the same input.

Restricted Attacks on Cryptographic Functions. Indistinguishability-
based security definitions can also be weakened by restricting the distinguisher’s
access to the given system. For instance, the standard PRF notion considering
an (adaptive) chosen-input attack can be weakened to non-adaptive chosen-input
attacks or even (known) random-input attacks. (Keyed functions which are secure
under the latter notion are usually called weak PRFs [28] in the literature.19)
This is conveniently modeled by letting the distinguisher access either of E(F)
and E(G), where the construction E(·) enforces a particular type of access, and
F and G are the systems to be distinguished. For a chosen-input attack, E would
just give full access to the underlying system (i.e. E(·) is the identity), and the
following are two additional examples:

19 The name is slightly misleading within the context of this paper, as it can been
used [27] to describe an ε-PRF for a non-negligible ε < 1.
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– Random-input attacks against an (X ,Y)-system are modeled by K(·) that,
upon each invocation (with some dummy input), generates a fresh uniformly-
chosen element r ∈ X , makes a query with input r to the given subsystem,
obtaining y ∈ Y, and returns (r, y).

– For a quasi-group operation ∗ on X (usually ⊕), a random-offset attack is
modeled by a construction Z(·) which initially generates a random offset
Z ∈ X , and upon each invocation with input x ∈ X , makes a query to the
given subsystem with input x"Z, and outputs the returned value y. (To our
knowledge, this notion was not previously considered in the literature.)

A feature of the product theorem of this section is that it is easily applicable
also to the restricted-access case.

The Product Theorem. In the following, let C(·) be a neutralizing construc-
tion for systems F1, . . . ,Fm and ideal system I1, . . . , Im, all of which (with the
possible exception of Fm and Im) are cc-stateless. Furthermore, we assume that
Fi(·) is efficiently implementable for all i = 1, . . . ,m− 1,20 and the correspond-
ing (short) random variable Si is drawn from the set Si. Also, we let E(·) be
construction restricting access to Fi and Ii. Finally, for i = 1, . . . ,m, and for
s1 ∈ S1, . . . , si−1 ∈ Si−1 we define

C(i)
s1,...,si−1

(·) := C(F1(s1), . . . ,Fi−1(si−1), · ,Fi+1, . . . ,Fm)

and consider the following two properties:

(i) For all i = 1, . . . ,m − 1 (the property is not necessary for i = m) and all
s1 ∈ S1, . . . , si−1 ∈ Si−1, the ideal system Ii is η-self-independent under
the construction C(i)

s1,...,si−1(·) for some small function η.
(ii) For all i = 1, . . . ,m and s1 ∈ S1, . . . , si−1 ∈ Si−1, there exists a con-

struction T(i)
s1,...,si−1(·) with the property that for independent instances

T1(·), . . . ,Tλ(·) and C1(·), . . . ,Cλ(·) of T(i)
s1,...,si−1(·) and C(i)

s1,...,si−1(·), re-
spectively, and all compatible systems S,

T1(E(S))‖ · · · ‖Tλ(E(S)) ≡ C1(S)‖ · · · ‖Cλ(S).

We define tTi as the maximal complexity (taken over all s1, . . . , si−1) for
implementing the construction T(i)

s1,...,si−1(·).

In the following, we define λ :=
(

4m
γ

)2
· ln
(

4m
γ

)
, for understood m and γ.

Theorem 3 (Strong Product Theorem). Let q > 0 and C(·) be as above
satisfying conditions (i) and (ii), and assume that upon q queries, C(·) makes at
most qi queries to the i-th subsystem. Then, for all t, γ > 0,

20 While the same techniques as in the proof of Theorem 1 could be used to address
general cc-stateless systems where F(·) is not necessarily efficient, this will not be
necessary for our applications.
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Δt,q(C(F1, . . . ,Fm),C(I1, . . . , Im)) ≤
m∏

i=1

Δt′i,q
′
i
(E(Fi),E(Ii))+

m−1∑
i=1

η(qi, λ)+γ,

where t′i := λ · (t +O(tTi(qi))) and q′i := λ · qi for all i = 1, . . . ,m − 1, whereas
t′m := t +O(tTm(q)) and q′m := qm.

The proof of Theorem 3 is deferred to the full version of this paper. It abstracts
and generalizes the proof technique used by Myers [27] (which was in turn based
on Levin’s proof of the XOR-lemma [20,10]).

4.2 Applications of the Strong Product Theorem

We present a number of new results which follow as simple applications of Theo-
rem 3. Let Q1, . . . ,Qm : {0, 1}n → {0, 1}n be cc-stateless random permutations,
and let F1, . . . ,Fm : {0, 1}n → {0, 1}� be cc-stateless random functions. Fur-
thermore, let P : {0, 1}n → {0, 1}n and R : {0, 1}n → {0, 1}� be a URF and
URP, respectively. Assume that Qi(s, x) (and Q−1

i (s, y)) and Fi(s, x) can be
computed in time tQi and tFi , respectively, for all s, x, and y.

Randomized Cascade of PRPs. The perhaps most surprising application is a
strong product theorem for (two-sided) PRPs. We modify the (two-sided) cascade
〈Q1〉� · · ·�〈Qm〉 by choosing two independent random offsets that are added to
the inputs and the outputs, i.e., we consider 〈⊕Z1〉� 〈Q1〉� · · ·� 〈Qm〉� 〈⊕Z2〉
for two independent uniform n-bit strings Z1, Z2, where for some z ∈ {0, 1}n the
system 〈⊕z〉 is the bi-directional mapping which answers a forward query (x,+)
with x⊕ z and a backward query (y,−) with y⊕ z. The computational overhead
is minimal compared to the regular cascade, and requires only additional storage
for two n-bit strings (which are to be seen as part of the secret key).

Clearly the neutralizing property of the original cascade is preserved. Further-
more, using techniques from [22], we show in the full version that the construction
satisfies condition (i) above with η(q, λ) ≤ q2λ22−n. Therefore, Theorem 3 (with
E(·) being the identity) yields the following result.

Corollary 3. For all t, q, γ > 0, and independent uniform n-bit strings Z1, Z2,

Δt,q(〈⊕Z1〉�〈Q1〉� · · ·�〈Qm〉�〈⊕Z2〉, 〈P〉) ≤
m∏

i=1

Δt′i,q
′
i
(〈Qi〉, 〈P〉)+ mq2λ2

2n +γ,

where t′i := λ ·
(
t + O(q ·

∑
j �=i tQj )

)
and q′i := λ · q for all i = 1, . . . ,m − 1,

whereas t′m := t +O(q ·
∑m−1

j=1 tQj ) and q′m := q.

The result can be used to obtain a δm-two-sided PRP from any δ-two-sided
PRP. (Note that the η-dependent term is negligible for polynomial t, q and any
γ which is the inverse of a polynomial.) It can be shown that the second random
offset Z2 is superfluous in the one-sided case.
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Sum of Random-Input PRFs. The construction K(F1 ⊕ · · · ⊕ Fm) (i.e. the
XOR of the functions accessed in a random-input attack) is clearly neutraliz-
ing (the ideal system being K(R)). In the full version, we show that it also
satisfies condition (i) with η(q, λ) ≤ q2λ2

2 · 2−n. Moreover, for all i and keys
s1 ∈ S1, . . . , si−1 ∈ Si−1, the appropriate construction T(i)

s1,...,si−1(·) generates
random keys Si+1, . . . , Sm and whenever invoked, it issues a query to K(S),
obtaining (r, y), and outputs the pair

(
r,

i−1⊕
j=1

Fi(si, r)⊕ y ⊕
m⊕

j=i+1

Fj(Sj , r)
)
.

It is easy to see that these constructions satisfy property (ii), since K(·) evaluates
the given function at a fresh random input upon each invocation. Theorem 3
yields the following result.

Corollary 4. For all t, q, γ > 0,

Δt,q(K(F1 ⊕ · · · ⊕ Fm),K(R)) ≤
m∏

i=1

Δt′i,q
′
i
(K(Fi),K(R)) + (m−1)q2λ2

2n+1 + γ,

where t′i := λ
(
t+O(q ·

∑
j �=i tFj )

)
and q′i := λ ·q for all i = 1, . . . ,m−1, whereas

t′m := t +O(q ·
∑m−1

j=1 tFj ) and q′m := q.

The result holds for any other quasi-group operation. It is remarkable that
XOR satisfies much stronger indistinguishability amplification properties un-
der random-input attacks than under chosen-input attacks. This is particularly
interesting, as a wide number of applications, such as secure symmetric message
encryption, can efficiently be based on this weaker PRF notion (cf. [5,25]).

Randomized XOR of PRFs. The first product theorem for PRFs, due to
Myers [27], considered the neutralizing composition Z1(F1)⊕ · · · ⊕Zm(Fm) for
independent instances of Z(·). This result is directly implied by Theorem 3,
which in fact also implies the same result for the construction Z(F1⊕ · · · ⊕Fm)
using the same offset for all invocations: As we show in the full version, both
compositions satisfy property (i) with η(q, λ) ≤ q2λ2

2 2−n.
However, a major advantage of Myers’ original construction (which was

unobserved so far) is that independent instances of the construction can be
simulated even when only given access to Z(S) (with S ∈ {Fi,R}). The corre-
sponding construction T(i)

s1,...,si−1(·) chooses independent instances Fi+1, . . . ,Fm,
Z1(·), . . . ,Zi−1(·),Zi+1(·), . . . ,Zm(·), and a random n-bit string Z, and on input
x queries x⊕ Z to Z(S), obtaining y ∈ {0, 1}�, and outputs

y ⊕
i−1⊕
j=1

Zj(Fj(sj))(x) ⊕
m⊕

j=i+1

Zj(Fj)(x),

where Zj(Fj)(x) is the result of invoking the system Zj(Fj) on input x.
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Once again, condition (ii) is easily verified by the fact that access through Z(·)
can be re-randomized by simply adding a fresh random offset to all inputs. Thus,
Theorem 3 yields the following strengthened version of the main result of [27].

Corollary 5. For all t, q, γ > 0, and for independent instancesZ1(·), . . . ,Zm(·) of
Z(·),

Δt,q(Z1(F1)⊕ · · · ⊕ Zm(Fm),R) ≤
m∏

i=1

Δt′i,q
′
i
(Z(Fi),Z(R)) + (m−1)q2λ2

2n+1 + γ,

where t′i := λ
(
t+O(q ·

∑
j �=i tFj )

)
and q′i := λ ·q for all i = 1, . . . ,m−1), whereas

t′m := t +O(q ·
∑m−1

j=1 tFj ) and q′m := q.

The best advantage under Z(·) can be significantly smaller than under direct
access: Consider e.g. a good PRF with the additional property of outputting the
zero string when evaluated at some fixed known input, regardless of the key.
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Abstract. We prove that every key exchange protocol in the random
oracle model in which the honest users make at most n queries to the
oracle can be broken by an adversary making O(n2) queries to the oracle.
This improves on the previous Ω̃(n6) query attack given by Impagliazzo
and Rudich (STOC ’89), and answers an open question posed by them.
Our bound is optimal up to a constant factor since Merkle (CACM ’78)
gave a key exchange protocol that can easily be implemented in this
model with n queries and cannot be broken by an adversary making
o(n2) queries.

1 Introduction

In the 1970’s Diffie, Hellman, and Merkle began to challenge the accepted wis-
dom that two parties cannot communicate confidentially over an open channel
without first exchanging a secret key using some secure means. The first such
protocol (at least in the open scientific community) was designed by Merkle in
1974 (although only published in 1978 [1]). Merkle’s protocol allows two parties
Alice and Bob to agree on a random number k that will not be known to an
eavesdropping adversary Eve. It is described in Fig. 1.

One problem with Merkle’s protocol is that its security was only analyzed in
the random oracle model which does not necessarily capture security when in-
stantiated with a cryptographic one-way or hash function [4]. Recently, Biham,
Goren and Ishai [3] took a step towards resolving this issue by providing a se-
curity analysis for Merkle’s protocol under the concrete complexity assumption
of existence of exponentially hard one-way functions. In particular, they proved
that assuming there exist a one-way function that cannot be inverted with prob-
ability more than 2−αn by adversaries running in time 2αn for α ≥ 1/2 − δ,
there is a key exchange protocol in which Alice and Bob run in time n but any
adversary whose running time is at most n2−10δ has o(1) chance of finding the
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Merkle’s Key Exchange Protocol

Let n be the security parameter. All parties have access to oracle to a function
H : {0, 1}� → {0, 1}� chosen at random, where � � log n. The protocol operates as
follows:

1. Alice chooses 10n random numbers x1, . . . , x10n in [n2] and sends a1, . . . , a10n

to Bob where ai = H(xi) (embed [n2] in {0, 1}� in some canonical way).
2. Bob chooses 10n random numbers y1, . . . , y10n in [n2] and sends b1, . . . , b10n to

Alice where bj = H(xj).
3. With at least 0.9 probability, there will be at least one “collision” between

Alice’s and Bob’s messages: a pair i, j such that ai = bj . Alice and Bob choose
the lexicographically first such pair, and Alice sets sA = xi as her secret, and
Bob sets sB = yj as his secret. If no collision occurred they will not choose any
secret. Note that assuming 2� � n4, H will be one to one on [n2] with very
high probability and hence H(xi) = H(yj) implies xi = yj .

To analyze the protocol one shows that the collision is distributed uniformly in [n2]
and deduces that an adversary Eve that makes o(n2) queries to the oracle will find
the secret with o(1) probability.

Fig. 1. Merkle’s key exchange protocol [1]1

secret. But the most serious issue with Merkle’s protocol is that it only pro-
vides a quadratic gap between the running time of the honest parties and the
adversary. Fortunately, not too long after Merkle’s work, Diffie and Hellman [5]
and later Rivest, Shamir, and Adleman [6] gave constructions for key exchange
protocols that are conjectured to have super-polynomial (even subexponential)
security. But because these and later protocols are based on certain algebraic
computational problems, and so could perhaps be vulnerable to unforseen at-
tacks using this algebraic structure, it remained an important question to show
whether there exist key exchange protocols with superpolynomial security that
use only a random oracle.2 The seminal paper of Impagliazzo and Rudich [8]
answered this question negatively by showing that every key exchange protocol
using n queries in the random oracle model can be broken by an adversary asking

1 Merkle described his protocol using “puzzles” that can be implemented via some
ideal cryptographic primitive; we describe the protocol in the case that the puzzles
are implemented by a random oracle. We remark that in Merkle’s original protocol
Bob will try different random queries y1, y2, . . . without sending them to Alice until
he finds yj such that f(yj) ∈ {a1, . . . , a10n} and send j — the index of the “puzzle”
aj — to Alice. The Protocol of Fig. 1 is a symmetric version of Merkle’s protocol,
and is similar to the protocol of [2] in the bounded storage model; see also discussion
in [3].

2 This is not to be confused with some more recent works such as [7], that combine the
random oracle model with assumptions on the intractability of other problems such
as factoring or the RSA problem to obtain more efficient cryptographic constructions.
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O(n6 logn) queries.3 Since a random oracle is in particular a one-way function
(with high probability), this implied that there is no construction of a key ex-
change protocol based on a one-way function with a proof of super-polynomial
security that is of the standard black-box type (i.e., a proof that transforms
an adversary breaking the protocol into an inversion algorithm for the one-way
function that only uses the adversary and the function as black boxes). Indeed,
that was the motivation behind their result.

Question and Motivation. Impagliazzo and Rudich [8, Sect. 8] mention as an
open question (which they attribute to Merkle) to find out whether their attack
can be improved to O(n2) queries (hence showing the optimality of Merkle’s pro-
tocol in the random oracle model) or there exist key exchange protocols in the
random oracle model with ω(n2) security. Beyond just being a natural question,
it also has some practical and theoretical motivations. The practical motivation
is that protocols with sufficiently large polynomial gap could be secure enough
in practice — e.g., a key exchange protocol taking 109 operations to run and
(109)6 = 1054 operations to break could be good enough for many applications.4

In fact, as was argued by [3], as technology improves and honest users can af-
ford to run more operations, such polynomial gaps only become more useful.
Thus if known algebraic key exchange protocols were broken, one might look to
polynomial-security protocol such as Merkle’s for an alternative. Another moti-
vation is theoretical— Merkle’s protocol has very limited interaction (consisting
of one round in which both parties simultaneously broadcast a message) and in
particular it implies a public key encryption scheme. It is natural to ask whether
more interaction can help achieve some polynomial advantage over this simple
protocol. A third, less direct motivation comes from quantum computing. In one
scenario in which some algebraic key exchange protocols will be broken— the
construction of practical quantum computers— Merkle’s protocol will also fail
to offer non-trivial security due to Grover’s search algorithm [9]. Our results
below suggest (though do not prove) that Merkle’s protocol may be optimal in
this setting also, and so there may not exist a fully classical key-exchange proto-
col based on a one-way function with a black-box proof of super-linear security
for quantum adversaries. We note that using quantum communication there is
an information theoretically secure key-exchange protocol [10], and moreover,
very recently Brassard and Salvail [11] (independently observed by [3]) gave a
quantum version of Merkle’s protocol, showing that if Alice and Bob can use
quantum computation (but classical communication), to obtain a key-exchange

3 More accurately, [8] gave an O(m6 log m)-query attack where m is the maximum
of the number of queries n and the number of communication rounds, though we
believe their analysis could be improved to an O(n6 log n)-query attack. For the sake
of simplicity, when discussing [8]’s results we will assume that m = n, though for
our result we do not need this assumption.

4 Of course, these numbers are just an example and in practical applications the
constant terms will make an important difference. We note though that the above
constants are not ruled out by [8]’s attack, but are ruled out by our attack (taking
number of operations to mean the number of calls to the oracle).
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protocol with super-linear (i.e., n3/2) security in the random oracle model against
quantum adversaries.

Our Result. In this work we answer the above question of [8], by showing that
every protocol in the random oracle model where Alice and Bob make n oracle
queries can be broken with high probability by an adversary making O(n2)
queries. That is, we prove the following:

Theorem 1. Let Π be a two-party protocol in the random oracle model such
that when executing Π the two parties Alice and Bob make at most n queries
each, and their outputs are identical with probability at least ρ. Then for every
0 < δ < 1, there is an adversary Eve making (16n

δ )2 queries to the oracle whose
output agrees with Bob’s output with probability at least ρ− δ.

To the best of our knowledge, no better bound than the Õ(n6)-query attack of [8]
was previously known even in the case where one does not assume the one-way
function is a random oracle (hence making the task of proving a negative result
easier). We note that similarly to previous black-box separation results, our
adversary can be implemented efficiently in a relativized world where P = NP.

Correction of Error: A previous version of this manuscript [12] posted on the
Arxiv claimed a different proof of the same result. However, we have found a
bug in that proof— see the full version of this paper for more details. In fact
the current proof is quite different from the one claimed in [12]. In [12] we also
claimed an extension of Theorem 1 to the case of protocols with an oracle to a
random permutation (i.e., a random one-to-one function R from {0, 1}∗ to {0, 1}∗
such that |R(x)| = |x| for every x ∈ {0, 1}∗). We do not know of an extension of
the current proof to this model, beyond the observation of [8] that any m-query
attack in the random oracle model translates into an O(m2)-query attack in the
random permutation model. Hence our results imply an O(n4)-query attack in
the latter model, improving on the previous Õ(n12) attack of [8].

We also note that shortly after we posted the manuscript [12], Sotakova [13]
posted an independently obtained weaker result, showing that protocols with
only one round of interaction (each party sends one message) and non-adaptive
queries can achieve at most O(n2) security. In contrast, as in the work of [8], in
this paper we allow protocols where the parties’ choice of queries is adaptive and
they can use an arbitrary polynomial number of interaction rounds.5 The one-
round case seems to be simpler, and in particular the bug found in our previous
proof does not apply to that case.

2 Our Techniques

The main technical challenge in proving such a result is the issue of dependence
between the executions of the two parties Alice and Bob in a key exchange
5 In fact, because we count only the number of oracle queries made by the honest

parties, we can even allow a super-polynomial number of rounds.



378 B. Barak and M. Mahmoody-Ghidary

protocol. The presence of the random oracle allows Alice and Bob to correlate
their executions even without communicating (which is indeed the reason that
Merkle’s protocol achieves non-trivial security). Dealing with such correlations is
the cause of the technical complexity in both our work and the previous work of
Impagliazzo and Rudich [8]. We handle this issue in a different way than [8]. On
a very vague high level our approach can be viewed as using more information
about the structure of these correlations than [8] did. This allows us to analyze a
more efficient attacking algorithm, that is more frugal with the number of queries
it uses than the attacker of [8]. Below we provide a more detailed (though still
high level) exposition of our technique and its relation to [8]’s technique.

2.1 Comparison with [8]

We now review [8]’s attack and outline of analysis, and particularly the subtle
issue of dependence between Alice and Bob that arises in both their work and
ours. The main novelty of our work is the way we deal with this issue, which is
different from the approach of [8]. We believe that this review of [8]’s analysis
and the way it compares to ours can serve as a useful introduction to our actual
proof. However, no result of this section is used in the later sections, and so the
reader should feel free at any time to skip ahead to Sect. 3 and 4 that contain
our actual attack and its analysis.

Consider a protocol that consists of n rounds of interaction, where each party
makes exactly one oracle query before sending its message. [8] called protocols
of this type “normal-form protocols” and gave an Õ(n3) attack against them
(their final result was obtained by transforming every protocol into a normal-
form protocol with a quadratic loss of efficiency). Even though without loss
of generality the attacker Eve of a key exchange protocol can defer all of her
computation till after the interaction between Alice and Bob is finished, it is
conceptually simpler in both [8]’s case and ours to think of the attacker Eve as
running concurrently with Alice and Bob. In particular, the attacker Eve of [8]
performed the following operations after each round i of the protocol:

– If the round i is one in which Bob sent a message, then at this point Eve
samples 1000n logn random executions of Bob from the distribution D of
Bob’s executions that are consistent with the information that Eve has at
that moment (communication transcript and previous oracle answers). That
is, Eve samples a uniformly random tape for Bob and uniformly random
query answers subject to being consistent with Eve’s information. After each
time that she samples an execution, Eve asks the oracle all the queries asked
during this execution and records the answers. (Generally, the true answers
will not be the same answers as the one Eve guessed when sampling the
execution.)

– Similarly, if the round i is one in which Alice sent a message then Eve samples
1000n logn executions of Alice and makes the corresponding queries.
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Overall Eve will sample Õ(n2) executions making a total of Õ(n3) queries. It’s
not hard to see that as long as Eve learns all of the intersection queries (queries
asked by both Alice and Bob during the execution) then she can recover the
shared secret with high probability. Thus the bulk of [8]’s analysis was devoted
to showing the following statement, denoted below by (*): With probability at
least 0.9 Eve never fails, where we say that Eve fails at round i if the query made
in this round by, say, Alice was asked previously by Bob but not by Eve.

2.2 The Issue of Independence

At first look, it may seem that one could easily prove (*). Indeed, (*) will follow
by showing that at any round i, the probability that Eve fails in round i for
the first time is at most 1/(10n). Now all the communication between Alice
and Bob is observed by Eve, and if no failure has yet happened then Eve has
also observed all the intersection queries so far. Because the answers for non-
intersection queries are completely random and independent from one another it
seems that Alice has no more information about Bob than Eve does, and hence
if the probability that Alice’s query q was asked before by Bob is more than
1/(10n) then this query q has probability at least 1/(10n) to appear in each one of
Eve’s sampled executions of Bob. Since Eve makes 1000n logn such samples, the
probability that Eve misses q would be bounded by (1− 1

10n )1000n log n � 1/(10n).
When trying to make this intuition into a proof, the assumption that Eve

has as much information about Bob as Alice does translates to the following
statement: conditioned on Eve’s information, the distributions of Alice’s view
and Bob’s view are independent from one another.6 Indeed, if this statement was
true then the above paragraph could be easily translated into a proof that [8]’s
attacker is successful, and it wouldn’t have been hard to optimize this attacker
to achieve O(n2) queries. Alas, this statement is false. Intuitively the reason is
the following: even the fact that Eve has not missed any intersection queries is
some non-trivial information that Alice and Bob share and creates dependence
between them.7

Impagliazzo and Rudich [8] dealt with this issue by a “charging argument”
(see also Remark 2 below), where they showed that such dependence can be
charged in a certain way to one of the executions sampled by Eve, in a way
that at most n samples can be charged at each round (and the rest of Eve’s

6 Readers familiar with the setting of communication complexity may note that this
is analogous to the well known fact that conditioning on any transcript of a 2-
party communication protocol results in a product distribution (i.e., combinatorial
rectangle) over the inputs. However, things are different in the presence of a random
oracle.

7 As a simple example for such dependence consider a protocol where in the first round
Alice chooses x to be either the string 0n or 1n at random, queries the oracle H at x
and sends y = H(x) to Bob. Bob then makes the query 1n and gets y′ = H(1n). Now
even if Alice chose x = 0n and hence Alice and Bob have no intersection queries,
Bob can find out the value of x just by observing that y′ = y. Still, an attacker must
ask a non-intersection query such as 1n to know if x = 0n or x = 1n.
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samples are distributed correctly as if the independence assumption was true).
This argument inherently required sampling at least n executions (each of n
queries) per round, hence resulting in an Ω(n3) attack.

2.3 Our Approach

We now describe our approach and how it differs from the previous proof of [8].
The discussion below is somewhat high level and vague, and glosses over some
important details. Again, the reader is welcome to skip ahead at any time to
Sect. 3 that contains the full description of our attack, and does not depend on
this section in any way.

Our attacking algorithm follows the same general outline, but has two impor-
tant differences from the attacker of [8]:

1. One quantitative difference is that while our attacker Eve also computes a
distribution D of possible executions of Alice and Bob conditioned on her
knowledge, she does not sample from D full executions and then ask the
arising queries. Rather, she computes whether there is any heavy query—
a string q ∈ {0, 1}∗ that has probability more than, say, 1/(100n) of being
queried in D— and makes only such heavy queries.

Intuitively, since Alice and Bob make at most 2n queries, the total ex-
pected number of heavy queries (and hence the query complexity of Eve) is
bounded by O(n2). The actual analysis is more involved since the distribu-
tion D keeps changing as Eve learns more information through the messages
she observes and query answers she receives. We omit the details in this
high-level overview.

2. The qualitative difference between the two attackers is that we do not con-
sider the same distribution D that was considered by [8]. Their attacker to
some extent “pretended” that the conditional distributions of Alice and Bob
are independent from one another. In contrast, we define our distributionD to
be the real distribution of Alice and Bob, where there could be dependencies
between them. Thus to sample from our distributionD one would need to sam-
ple a pair of executions of Alice and Bob (random tapes and oracle answers)
that are jointly consistent with one another and Eve’s current knowledge. An-
other (less important) point is that the distribution D computed by Eve at
each point in time will be conditioned not only on Eve’s knowledge so far, but
also on the event that she has not failed until this point.

The main challenge in the analysis is to prove that the attack is successful,
that is that the statement (*) above holds, and in particular that the probability
of failure at each round (or more generally, at each query of Alice or Bob) is
bounded by, say, 1/(10n). Once again, things would have been easy if we knew
that the distribution D of the possible executions of Alice and Bob conditioned
on Eve’s knowledge (and not having failed so far) is a product distribution, and
hence Alice has no more information on Bob than Eve has. While this is not
generally true, we show that in our attack this distribution is close to being a
product distribution, in a precise sense we define below.
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At any point in the execution, fix Eve’s current information about the system
and define a bipartite graph G whose left-side vertices correspond to possible
executions of Alice that are consistent with Eve’s information and right-side ver-
tices correspond to possible executions of Bob consistent with Eve’s information.
We put an edge between two executions A and B if they are consistent with one
another and moreover if they do not represent an execution in which Eve failed
prior to this point (i.e., there is no intersection query that is asked in both ex-
ecutions A and B but not by Eve). The distribution D that our attacker Eve
considers can be thought of as choosing a random edge in the graph G. (Note
that the graph G and the distribution D change at each point that Eve learns
some new information about the system.) If G was the complete bipartite clique
then D would be a product distribution. What we show is that G is dense in the
sense that each vertex is connected to most of the vertices on the other side. We
show that this implies that Alice’s probability of hitting a query that Bob asked
before is at most twice the probability that Eve does so if she chooses the most
likely query based on her knowledge.

The bound on the degree is obtained by showing that G can be represented
as a disjointness graph, where each vertex u is associated with a set S(u) (from
an arbitrarily large universe) and there is an edge between a left-side vertex u
and a right-side vertex v if and only if S(u) ∩ S(v) = ∅.8 The definition of the
graph G implies that |S(u)| ≤ n for all vertices u. The definition of our attacking
algorithm implies that the distribution obtained by picking a random edge {u, v}
and outputting S(u) ∪ S(v) is light, in the sense that there is no element q in
the universe that has probability more than 1/(10n) of being contained in a set
chosen from this distribution. We show that these properties together imply that
each vertex is connected to most of the vertices on the other side, and so G is
close to being a complete bipartite graph.

Remark 2 (Comparison with [8]). One can also phrase the analysis of [8] in
terms of a similar bipartite graph. Their argument involved fixing, say, Alice’s
execution which corresponds to fixing a left-side vertex u. As we noted above,
if the degree of u is high (e.g., u is connected to most of the right side) then
independence approximately holds and hence the probability that [8]’s attacker
fails at this point is less than 1/(10n). The crucial component of [8]’s analysis was
their observation that if the degree of u is low, then by taking a random vertex
v on the right side and making all queries in the corresponding execution to v,
one is likely to make progress in the sense that we learn a new query made in
the execution corresponding to u. Now there are at most n new queries to learn,
and hence if we sample much more than n queries then in most of them we’re
in the high degree case. This potential/charging argument inherently requires
sampling all queries of the execution, rather than only the heavy ones, hence
incurring a cost of at least n2 queries per round or n3 queries total.

8 The set S(u) will correspond to the queries that are made in the execution corre-
sponding to u but not made by Eve.
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3 Our Attacker

We consider a key exchange protocol Π in which Alice and Bob first toss coins
rA and rB and then run Π using access to a random oracle H that is a random
function from {0, 1}� to {0, 1}� for some � ∈ N. We assume that the protocol
proceeds in some finite number of rounds, and no party asks the same query
twice. In round k, if k is odd then Alice makes some number of queries and
sends a message to Bob (and then Eve asks some oracle queries), and if k is even
then Bob makes some queries and sends a message to Alice (and then Eve asks
some oracle queries). At the end of the protocol Alice obtains an output string
sA and Bob obtains an output string sB. We assume that there is some constant
ρ > 0 such that Pr[sA = sB] ≥ ρ, where the probability is over the coin tosses of
Alice and Bob and the randomness of the oracle. We will establish Theorem 1
by proving that an attacker can make O(n2) queries to learn sB with probability
arbitrarily close to ρ.

In this section we describe an attacking algorithm that allows Eve to find a set
of size O(n2) that contains all the queries asked by Alice and Bob in the random
oracle model. This attack is analyzed in Sect. 4 to show that it is successful in
finding all intersection queries and is efficient (i.e., will not ask more than O(n2)
many queries). As was shown by Impagliazzo and Rudich, it not hard to use this
set to obtain the actual secret.

3.1 Attacking Algorithm

We start by showing that an attacker can find all the intersection queries (those
asked by both Alice and Bob) with high probability. It turns out that this is the
main step in showing that an attacker can find the secret with high probability.

Theorem 3. Let Π be a key exchange protocol in the random oracle model in
which Alice and Bob ask at most n oracle queries each. Then for every 0 < δ < 1
there is an adversary Eve who has access to the messages sent between Alice and
Bob and asks at most (13n

δ )2 number of queries such that Eve’s queries contain
all the intersection queries of Alice and Bob with probability at least 1− δ.

Letting ε = δ/13, our attack can be described in one sentence as follows:

As long as there exists a string q such that conditioned on Eve’s current knowl-
edge and assuming that no intersection query was missed so far, the probability
that q was asked in the past (by either Alice or Bob) is at least ε/n, Eve makes
the query q to the oracle.

To describe the attack more formally, we need to introduce some notation.
We fix n to be the number of oracle queries asked by Alice and Bob and assume
without loss of generality that all the queries are of length � = �(n) for some
� ∈ N. We will make the simplifying assumption that the protocol is in normal
form— that is, at every round of the protocol Alice or Bob make exactly one
query to the oracle (and hence there are 2n rounds). Later in Section 5 we will
show how our analysis extends to protocols that are not of this form. Below and



Merkle Puzzles Are Optimal 383

throughout the paper, we often identify a distribution D with a random variable
distributed according to D.

Executions and the Distribution EXEC. A (full) execution of Alice, Bob, and Eve
can be described by a tuple (rA, rB , H) where rA denotes Alice’s random tape,
rB denotes Bob’s random tape, and H is the random oracle (note that Eve is
deterministic). We denote by EXEC the distribution over (full) executions that
is obtained by running the algorithms for Alice, Bob and Eve with uniformly
chosen random tapes and a random oracle. A partial execution is an execution
truncated at a certain point in time (that is, the transcripts contain only the
oracle answers for queries that are asked up to that point). For any partial
execution we denote by M the sequence of messages sent between Alice and Bob
till that moment, and denote by I the set of oracle query/answer pairs known
to Eve. We define Alice’s view in the execution to be the tuple A = (rA, HA,M)
where rA are Alice’s coins and HA is the concatenation of oracle answers to
Alice’s queries. Similarly Bob’s view is the tuple B = (rB , HB,M). Below we
will only consider Alice’s and Bob’s view conditioned on a fixed value of M and
hence we drop M from these tuples and let A = (rA, HA) and B = (rB , HB).

The Distribution EXEC(M, I). For M = [m1, . . . ,mi] a sequence of i messages,
and I a set of query/answer pairs, we denote by EXEC(M, I) the distribution
over the views (A,B) of Alice and Bob in partial executions up to the point in the
system in which the ith message is sent (by Alice or Bob), where the transcript
of messages equals M and the set of query/answer pairs that Eve learns equals
I. For every (M, I) that have nonzero probability to occur in the protocol, the
distribution EXEC(M, I) can be sampled by first sampling (rA, rB, H) at random
conditioned on being consistent with (M, I) and then deriving from this tuple
Alice’s and Bob’s views: A = (rA, HA) and B = (rB , HB).9

The Event Good(M, I) and the Distribution GEXEC(M, I). The event Good(M, I)
is defined as the event over EXEC(M, I) that all the intersection queries asked
by Alice and Bob during the partial execution are in I. More formally let Q(A)
(resp. Q(B)) be the set of queries asked by Alice (resp. Bob) which are specified
by Alice’s view A (resp. Bob’s view B). Therefore Good(M, I) is the same as
Q(A) ∩ Q(B) ⊂ Q(I) where Q(I) is the set of queries of I (note that I is a
set of query/answser pairs). We define the distribution GEXEC(M, I) to be the
distribution EXEC(M, I) conditioned on Good(M, I).

Eve’s Algorithm. The attacker Eve’s algorithm is specified as follows. It is pa-
rameterized by some constant 0 < ε < 1/10. At any point in the execution, if
9 Note that we can verify that the pair (M, I) has nonzero probability to occur in the

protocol by simulating Eve’s algorithm on the transcript M , checking that whenever
Eve makes a query, this query is in I , in which case we feed Eve with the corre-
sponding answer (and verifying at the end that there are no “extra” queries in I not
asked by Eve). However in our attack the pair (M, I) will always be generated by
running the actual protocol and so we won’t need to run such checks.
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M is the sequence of messages Eve observed so far and I is the query/answer
pairs she learned so far, Eve computes for every q ∈ {0, 1}� the probability pq

that q appears as a query in a random execution in GEXEC(M, I). If pq > ε/n
then Eve asks q from the oracle and adds q and its answer to I. (If there is more
than one such q then Eve asks the lexicographically first one.) Eve continues in
this way until there is no additional query she can ask, at which point she waits
until she gets new information (i.e., observes a new message sent between Alice
and Bob).

Note that Eve’s algorithm above may ask much more than n2 queries. How-
ever, we will show that the probability that Eve asks more than n2/ε2 queries
is bounded by O(ε), and hence we can stop Eve after asking this many queries
without changing significantly her success probability.

4 Analysis of Attack: Proof of Theorem 3

We now go over the proof of Theorem 3. For i ∈ [2n], define the event Faili to
be the event that the query made at the ith round is an intersection query but
is not contained in the set I of query/answer pairs known by Eve, and moreover
that this is the first query satisfying this condition. Let the event Fail =

∨
i Faili

be the event that at some point an intersection query is missed by Eve, and let
the event Long be that Eve makes more than n2/ε2 queries. By setting ε = δ/13
and stopping Eve after n2/ε2 queries, Theorem 3 immediately follows from the
following two lemmas:

Lemma 4 (Attack is successful). For every i, PrEXEC[Faili] ≤ 3ε
2n . Therefore

by the union bound, Pr[Fail] ≤ 3ε.

Lemma 5 (Attack is efficient). PrEXEC[Long] ≤ 10ε.

4.1 Success of Attack: Proof of Lemma 4

Lemma 4 follows from the following stronger result which is the main technical
lemma of our paper:

Lemma 6. Let i be even and let B = (rB , HB) be some fixing of Bob’s view in
an execution up to the ith message sent by him, and let M, I be some fixing of the
messages exchanged and query/answer pairs learned by Eve in this execution such
that PrEXEC(M,I)[Good(M, I) | B] > 0. Then it holds that PrGEXEC(M,I)[Faili |
B] ≤ 3ε

2n . That is, the probability that Faili happens is at most 3ε
2n conditioning

on Eve’s information equalling (M, I), Bob’s view of the execution equalling B
and Good(M, I).

Proof (of Lemma 4 from Lemma 6.). Lemma 6 implies that in particular for ev-
ery even i, PrEXEC[Faili | Goodi] ≤ 3ε

2n , where Goodi denotes the event Good(M, I)
where M, I are Eve’s information just before the ith round. But since Faili is the
event that Eve fails at round i for the first time, Faili implies Goodi and hence
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PrEXEC[Faili] ≤ PrEXEC[Faili | Goodi], establishing the statement of Lemma 4
for every even i. By symmetry, the analog of Lemma 6 for odd i also holds with
the roles of Alice and Bob reversed, completing the proof for all i.

Proof of Lemma 6

Product Characterization. Lemma 6 would be easy if the distribution
GEXEC(M, I) would have been a product distribution, with the views of Al-
ice and Bob independent from one another. Roughly speaking this is because in
this case Bob has no more information than Eve on the queries Alice made in the
past, and hence also from Bob’s point of view, no query is more probable than
ε/n to have been asked by Alice. Unfortunately this is not the case. However,
we can show that the distribution GEXEC(M, I) is equal to the distribution ob-
tained by taking some product distribution A × B and conditioning it on the
event Good(M, I). 10

Lemma 7 (Product characterization). For every M, I denoting Eve’s infor-
mation up to just before the ith query, if PrEXEC(M,I)[Good(M, I)] > 0 there exist
a distribution A (resp. B) over Alice’s (resp. Bob’s) view up to that point such
that the distribution GEXEC(M, I) is the same as the product distribution (A×B)
conditioned on the event Good(M, I): GEXEC(M, I) = (A× B) | Good(M, I).

Proof. We will show that for every pair of Alice/Bob views (A,B) in the proba-
bility space EXEC(M, I) that satisfy the event Good(M, I), PrGEXEC(M,I)[(A,B)]
= c(M, I)αAαB where αA depends only on A, αB depends only on B and c(M, I)
depends only on M, I. This means that if we let A be the distribution such that
PrA[A] is proportional to αA, and B be the distribution such that PrB[B] is
proportional to αB, then GEXEC(M, I) is proportional (and hence equal to) the
distribution A× B | Good(M, I).

Because (A,B) ∈ SUPP(GEXEC(M, I)), if (A,B) happens, it makes the event
Good(M, I) hold, and so we have

Pr
EXEC(M,I)

[(A,B)] = Pr
EXEC(M,I)

[(A,B) ∧ Good(M, I)]

= Pr
EXEC(M,I)

[Good(M, I)] Pr
GEXEC(M,I)

[(A,B)] .

On the other hand, by definition we have PrEXEC(M,I)[(A,B)] =
PrEXEC [(A,B,M,I)]

PrEXEC [(M,I)] , therefore it holds that PrGEXEC(M,I)[(A,B)] =
PrEXEC [(A,B,M,I)]

PrEXEC [(M,I)] PrEXEC(M,I)[Good(M,I)] . The denominator of the righthand
side is only dependent on M and I. The numerator is equal to
2−|rA|2−|rB|2−�|Q(A)∪Q(B)∪Q(I)|. The reason is that the necessary and suf-
ficient condition that (A = (rA, HA), B = (rB , HB),M, I) happens is that
when we choose an execution (r′A, r

′
B , H ′) then r′A = rA, r′B = rB and

H is consistent on the queries in Q(A) ∪ Q(B) ∪ Q(I) with the answers

10 A similar observation was made by [8], see Lemma 6.5 there.
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specified in HA, HB, I. Note that this will ensure that Alice and Bob
will indeed produce the transcript M . Let αA = 2−|rA|2−�|Q(A)\Q(I)| and
βB = 2−|rB|2−�|Q(B)\Q(I)|. Since (Q(A) \ Q(I)) ∩ (Q(B) \ Q(I)) = ∅, the
numerator is equal to 2−|rA|2−|rB|2−�|Q(A)∪Q(B)∪Q(I)| = αAβB2−�|Q(I)|. Thus
indeed PrGEXEC(M,I)[(A,B)] = c(M, I)αAβB where c(M, I) only depends on
(M, I).

Graph Characterization. This product characterization implies that we can think
of GEXEC as a distribution over random edges of some bipartite graph G. Using
some insights on the way this graph is defined, and the definition of our attacking
algorithm, we will show that every vertex in G is connected to most of the vertices
on the other side. We then show that this implies that Bob’s chance of asking a
query outside of I that was asked before by Alice is bounded by O(ε/n).

More precisely, fixing M, I that contain Eve’s view up to just before the ith

round, define a bipartite graph G = (VL, VR, E) as follows. Every node u ∈ VL

will have a corresponding view Au of Alice that is in the support of the distri-
bution A obtained from Lemma 7; we let the number of nodes corresponding
to a view A be proportional to PrA[A], meaning that A corresponds to the uni-
form distribution over the left-side vertices VL. Similarly, every node v ∈ VR

will have a corresponding view of Bob Bv such that B corresponds to the uni-
form distribution over VR. We define Qu = Q(Au) \Q(I) for u ∈ VL to be the
set of queries outside of I that were asked by Alice in the view Au, and define
Qv = Q(Bu) \ Q(I) similarly. We put an edge in the graph between u and v
(denoted by u ∼ v) if and only if Qu ∩Qv = ∅. Lemma 7 implies that the distri-
bution GEXEC(M, I) is equal to the distribution obtained by letting (u, v) be a
random edge of the graph G and choosing (Au, Bv).

It turns out that this graph is dense (i.e., every vertex is connected to almost
all other vertices in the other side). The proof has two steps. The first one is to
show that such graphs are “highly connected” in the sense that removing any
vertex v and its neighbors from the graph, remains a small fraction of the edges
in the graph. The reason is that otherwise, there is a member of Qv which is
heavy and Eve should have asked that query. The second step is to show that this
notion of connectivity would imply that the graph dense (whenever the graph is
bipartite). More formally, we prove the following lemma:

Lemma 8. Let G = (VL, VR, E) be the graph above. Then for every u ∈ VL,
d(u) ≥ |VR|(1− 2ε) and for every v ∈ VR, d(v) ≥ |VL|(1− 2ε) where d(w) is the
degree of the vertex w.

Proof. We first show that for every w ∈ VL,
∑

v∈VR,w �∼v d(v) ≤ ε|E|. The reason
is that the probability of vertex v being chosen when we choose a random edge
is d(v)

|E| and if
∑

v∈VR,w �∼v
d(v)
|E| > ε, it means that Pr(u,v)∈RE [Qw ∩ Qv �= ∅] ≥ ε.

Hence because |Qw| ≤ n, by the pigeonhole principle there exists q ∈ Qw such
that Pr(u,v)∈RE [q ∈ Qv] ≥ ε/n. But this is a contradiction, because then q should
be in I by the definition of the attack and hence cannot be in Qw. The same
argument shows that for every w ∈ VR,

∑
u∈VL,u�∼w d(u) ≤ ε|E|. Thus for every
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vertex w ∈ VL ∪ VR, |E �∼(w)| ≤ ε|E| where E �∼(w) denotes the set of edges that
are not adjacent to any neighbor of w (i.e., E �∼(w) = {(u, v) ∈ E | u �∼ w ∧w �∼
v}). Now the following claim proves the lemma.

Claim. Let G = (VL, VR, E) be a nonempty bipartite graph such that for every
vertex w, |E �∼(w)| ≤ ε|E| for ε ≤ 1/2, then for all u ∈ VL, d(u) ≥ |VR|(1 − 2ε)
and for every v ∈ VR, d(v) ≥ |VL|(1− 2ε).

Proof. Let dL = min{d(u) | u ∈ VL} and dR = min{d(v) | v ∈ VR}. By
switching the left and right sides if necessary, we may assume without loss of
generality that (*): dL

|VR| ≤
dR

|VL| . Thus it suffices to prove that 1 − 2ε ≤ dL

|VR| .
Suppose 1−2ε > dL

|VR| , and let u ∈ VL be the vertex that d(u) = dL < (1−2ε)|VR|.
Because for all v ∈ VR we have d(v) ≤ |VL|, thus using (*) we see that |E∼(u)| ≤
dL|VL| ≤ dR|VR| where E∼(u) = E\E �∼(u). On the other hand since we assumed
that d(u) < (1−2ε)|VR|, there are more than 2ε|VR|dR edges in E �∼(u), meaning
that |E∼(u)| < |E �∼(u)|/(2ε). But this implies

|E �∼(u)| ≤ ε|E| = ε
(
|E �∼(u)|+ |E∼(u)|

)
< ε|E �∼(u)|+ |E �∼(u)|/2 ,

which is a contradiction for ε < 1/2 because the graph G is nonempty.

Proof of Lemma 6 from Lemmas 7 and 8. Let B,M, I be as in Lemma 6 and q
be Bob’s query which is fixed now. By Lemma 7, the distribution GEXEC(M, I)
conditioned on getting B as Bob’s view is the same as (A × B) conditioned on
Good(M, I)∧ (B = B). By the definition of the bipartite graph G = (VL, VR, E)
it is the same as choosing a random edge (u, v) ∈R E conditioned on Bv = B and
choosing (Au, Bv). We prove Lemma 6 even conditioned on fixing v such that
Bv = B. Now the distribution on Alice’s view is the same as choosing u ∈R N(v)
to be a random neighbor of v and choosing Au. Let S = {u ∈ VL | q ∈ Au}.
Then it holds that

Pr
u∈RN(v)

[q ∈ Au] ≤ |S|
d(v)

≤ |S|
(1− 2ε)|VL|

≤ |S||VR|
(1− 2ε)|E| ≤

∑
u∈S d(u)

(1− 2ε)2|E| ≤
ε

(1− 2ε)2n
<

3ε
2n

.

The second and fourth inequalities are because of Lemma 8. The third one is
because |E| ≤ |VL||VR|. The fifth one is because of the definition of the attack
which asks ε/n heavy queries, and the sixth one is because ε = δ/13 < 1/13. %&

4.2 Efficiency of Attack: Proof of Lemma 5

The proof of attack’s efficiency (i.e. Lemma 5) crucially uses the fact that the
attack is successful, and uses the following lemma from [8].

Lemma 9 (Lemma 6.4 of [8]). Let Z1, . . . , Zi, . . . be any sequence of random
variables determined by a finite underlying random variable X, let F be any event
for random variable X, and let 0 ≤ p ≤ 1. Let Bj be the event that PrX [F (X) |
Z1, . . . , Zj ] ≥ p, and let B =

∨
j Bj. Then it holds that PrX [F [X ] | B] ≥ p.
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We say that a member of the probability space X ∈ EXEC is in the event Badj ,
if at the moment that Eve is go to ask her jth query from the oracle, we have
PrEXEC(M,I)[¬Good(M, I)] > 1/2, where (M, I) are the sequence of messages and
Eve’s set of query/answer pairs at that moment. Let Bad =

∨
j Badj . We define

the probability space EXEC(Bad) to be the same as EXEC with the difference
that Eve stops asking more queries whenever Badj happens for some j.

The proof of efficiency consists of the following two steps.

Step 1. We first use the success property of the attack (i.e., PrEXEC[Fail] ≤
3ε/n) to show that PrEXEC[Bad] ≤ 6ε (Lemma 10 below) which also means that
PrEXEC(Bad)[Bad] = PrEXEC[Bad] ≤ 6ε. Note that ¬Good(M, I) implies that Faili
has already happened for some i, and so ¬Good(M, I) implies Fail.

Step 2. We then show that in EXEC(Bad) on average Eve will not ask more
than N = 4n2

ε number of queries (see Lemma 11 below). Since Long is the
event that Eve asks more than n2

ε2 = N
4ε queries, by Markov inequality we have

PrEXEC(Bad)[Long] ≤ 4ε, and therefore we will have

Pr
EXEC

[Long] ≤ Pr
EXEC

[Long ∨ Bad] = Pr
EXEC(Bad)

[Long ∨ Bad]

≤ Pr
EXEC(Bad)

[Long] + Pr
EXEC(Bad)

[Bad] ≤ 10ε .

Now we prove the needed lemmas.

Lemma 10. PrEXEC[Bad] ≤ 6ε.

Proof. We use Lemma 9 as follows. Let the underlying random variable be X =
EXEC, and the event F = Fail. Let the random variable Zj be the information
that Eve learns about X after asking her (j− 1)th query, before she asks her jth

query. Namely (Z1, . . . , Zj) is equal to (M, I) of the moment she wants to ask her
jth query. Let p = 1/2, which means Bj is the event that Pr[Fail | Z1, . . . , Zj] ≥
1/2. Lemma 9 implies that Pr[Fail | B] ≥ 1/2.

Note that ¬Good(M, I) at any moment implies that Fail has already happened,
so Badj implies Bj and therefore Bad implies B. Now if PrEXEC[Bad] ≥ 6ε, we
would have Pr[Fail] ≥ Pr[B ∧ Fail] = Pr[B] Pr[Fail | B] ≥ Pr[Bad](1

2 ) ≥ 3ε which
contradicts Lemma 4.

Lemma 11. Let γ = ε
2n , and X = EXEC(Bad). If I denotes the set of query/

answer pairs that Eve learns by the end of protocol in X, then EX [|I|]
≤ 2n

γ = 4n2

ε .

Proof. For a fixed query q ∈ {0, 1}�, let Eq (resp. Fq) be the event (over X) that
Eve (resp. Alice or Bob) asks q. By linearity of expectation we have E[|I|] =∑

q Pr[Eq] and
∑

q Pr[Fq] ≤ 2n. We claim that Pr[Eq]γ ≤ Pr[Fq] which would
imply the lemma E[|I|] =

∑
q Pr[Eq] ≤ 1

γ

∑
q Pr[Fq] ≤ 2n

γ .
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To prove Pr[Eq]γ ≤ Pr[Fq], we use Lemma 9 as follows. The underlying ran-
dom variable X = EXEC(Bad) (as here), the event F = Fq, and the random
variable Zj is as defined in the proof of Lemma 10. Let p = γ which means Bj

is the event that Pr[Fq | Z1, . . . , Zj ] ≥ γ. Lemma 9 implies that Pr[Fq | B] ≥ γ.
Note that if Eve asks q from the oracle when she knows (M, I) = Z1, . . . , Zj

about X , q has at least ε/n probability to be asked by Alice or Bob conditioned
on Good(M, I). But Pr[Good(M, I)] ≥ 1/2 holds in X whenever Eve wants to
ask a query, and it means that q is asked by Alice or Bob with probability
at least ε

2n = γ before. In other words when Eve asks q it holds that Pr[Fq |
Z1, . . . , Zj ] ≥ γ which means that the event Eq implies B.

Therefore it holds that Pr[Fq] ≥ Pr[Fq ∧B] = Pr[B] Pr[Fq | B] ≥ Pr[Eq]γ.

5 Completing the Proof

To complete the proof, we need to (a) show how to handle protocols that are
not necessarily in normal form and (b) show how Eve can recover the secret
once she knows the intersection queries. Task (b) was already achieved by [8,
Theorem 6.2] (although it can be shown that our attack does not need to ask any
more queries to find the secret). [8] also showed how one can achieve task (a)
using a general “compiler” that transforms general protocols to normal form.
However that transformation has a quadratic blowup in efficiency that we can-
not afford. We now sketch how our attack can be extended to handle general
protocols without incurring this cost. (See the full version for the remaining
details.)

In order to get an attack of the same (13n
δ )2 complexity finding all the inter-

section queries of Alice and Bob for general form of protocols we do the following.

Attack for Seminormal Protocol. We first extend the result with the same com-
plexity of (13n

δ )2 queries for the attack to the “seminormal” protocols by a bit
more careful analysis of the same attack given above. A seminormal protocol is
a protocol in which Alice and Bob can ask either zero or one query in each of
their rounds. Again Alice and Bob ask at most n queries each, but the number
of rounds can be arbitrary larger than n.

Roughly speaking, the reason that the same attack as above works for semi-
normal protocols is that although there are Ω(n2) number of rounds in the new
seminormal protocol, we only need to bound the probability that Eve misses an
intersection query for the first time whenever Alice or Bob does ask a query in
their turn (and there are only 2n such queries). Assuming that it is Bob’s turn,
if we fix the query he asks we can still bound the probability that the query is
the first missing intersection query using Lemma 6. That is because in Lemma
6 the statement holds even conditioned on Bob’s computation (and his query in
particular) being fixed.

Compiling into Seminormal Form. Any protocol can be simply changed into a
seminormal protocol without increasing n or loosing the security. To see why,
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suppose it is Bob’s turn and he is going to ask k ≤ n queries from the oracle
before sending a message to Alice. Alice and Bob can blow this single round into
2n− 1 number of rounds in which Alice does nothing other than sending ⊥ to
Bob and it lets Bob to ask his queries in different rounds. He sends the actual
message in the last round among the 2n − 1 new rounds. The total number of
rounds will be O(n2), but the number of queries that Alice and Bob together
ask will still remain 2n as before.

Acknowledgements. We thank Russell Impagliazzo for useful discussions, and
also for his warning that attempting to prove an O(n2) bound for this problem
leads naturally to conjecturing (and even conjecturing that you proved) inter-
mediate results that are simply not true. He was much more prescient than we
realized at the time.
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verifying the position of a device. Despite much work in this area, we
show that in the Vanilla (or standard) model, the above task (i.e., of
secure positioning) is impossible to achieve. In light of the above impos-
sibility result, we then turn to the Bounded Storage Model and formalize
and construct information theoretically secure protocols for two funda-
mental tasks:

– Secure Positioning; and
– Position Based Key Exchange.

We then show that these tasks are in fact universal in this setting – we
show how we can use them to realize Secure Multi-Party Computation.
Our main contribution in this paper is threefold: to place the problem
of secure positioning on a sound theoretical footing; to prove a strong
impossibility result that simultaneously shows the insecurity of previ-
ous attempts at the problem; and to present positive results by showing
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1 Introduction

1.1 Motivation

In cryptography, typically a party will possess a set of credentials determining:
its identity, what tasks it can do, which protocols it can participate in and so on.
These set of credentials will typically correspond to the party having some of the
following attributes: some secret information (e.g., a secret key), authenticated
information (e.g., a digitally signed certificate from a trusted entity), biometric
feature and so on. In this paper, we ask the following question: can the geograph-
ical position of a party be one of the credentials? The geographical position of a
party is valuable in a number of natural settings. We give a few examples:

– Position based Secret Communication. Consider communication be-
tween different military establishments. For example, the Pentagon in Wash-
ington D.C. might want to send a message (having some classified information)
such that it can only be read by an individual present at the US military base
in South Korea. In a traditional solution, the South Korean military base will
have a secret key to decrypt the message. However, the enemy might try to
break into the military base computers to capture this key. It would be desir-
able to add an additional layer of security that would guarantee that anyone
reading the message is physically present at the South Korean base.

– Position based Authentication/Signatures. In the above example, sup-
pose the South Korean military base wants to send some information to the
Pentagon. It would be desirable for the Pentagon to have a guarantee that the
message was indeed sent from the geographical position of the military base.

Indeed, the above list is not exhaustive. One could think about position based
access control (where access to a resource needs to be restricted to certain lo-
cations, e.g., a printer or fax machine is accessible only to people inside some
set of offices) and pizza delivery (where the pizza company first wants to verify
that the person placing the order is indeed located at the delivery address he
specified). To perform such “position specific” tasks, we introduce the notion of
position based cryptography.

The first natural question that arises is: “Can you convince others about where
you are?”. More precisely, we have a prover who claims be at a geographical
position P . There is a set of remote verifiers (or in other words, a positioning
infrastructure) who wish to make sure that the prover is indeed at position P
as claimed (for example, by executing a protocol with that prover). We call the
above problem as “Secure Positioning”. The question of secure positioning is a
fundamental one and deals with designing a system which enables a prover to
communicate back and forth with a group of verifiers to give them an interactive
proof of its geographic position.

The problem of secure positioning is well studied in the security commu-
nity (see e.g., [3,5,6,20,21]). The de-facto method to perform secure positioning is
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based on the time of response technique where the messages travel with the
speed of radio waves which is equal to the speed of light (this is similar in
nature to how the commercial GPS systems work, see section 1.3). At a high
level, the verifiers will send messages to the device and will measure the time
taken to receive a response. Although there have been several proposed protocols
for secure positioning, all of them are completely insecure under the so called
“collusion attack”. That is, if a set of (possibly cloned) provers collude together
and work in a controlled manner during the protocol execution, the provers
will be able to convince the verifiers that the verifiers are talking to a prover
at position P (even though none of the adversarial provers may be at P ). We
in fact show that, unfortunately, such an attack is unavoidable. That is, it is
impossible to have secure protocols for positioning in this Vanilla model (even
if one is willing to make computational assumptions). Hence, we cannot hope to
realize most of the meaningful position based tasks.

In light of the above drawbacks, in this paper we explore the intriguing pos-
sibility if secure positioning protocols exist which can resist collusion attacks.
In search of an answer to this question, we turn to the bounded storage model
(BSM), introduced by Maurer [18]. Quite surprisingly, this model turns out to
be a right model for proving the security of position-based cryptographic tasks.
We first construct a protocol for information theoretic secure positioning in this
model. To our knowledge, this is the first protocol which is secure even against
collusion attacks. Although secure positioning is an important step, the full
power of position based cryptography can only be realized if we achieve key
exchange with the device at a particular geographic position. Hence we intro-
duce position based key exchange and present two protocols to achieve it in the
BSM. Our first protocol achieves security against a computationally bounded
adversary (in the BSM). In this protocol, we achieve key exchange between the
verifiers and any device at position P that is enclosed within the tetrahedron
formed between 4 verifiers in 3-dimensional space. Our second protocol achieves
information theoretic key exchange between the verifiers and devices at positions
P that lie in a specific geometric region (characterized by a condition that P
must satisfy) within the tetrahedron.

Note that we are interested only in verifying the position claim of devices
that are within the tetrahedron enclosed between the 4 verifiers. This is not a
limitation, since apriori, we are restricting, by geographical bounds, the locations
where an honest device can be located (such as inside a room, to get access to
a printer or a hard drive). If a device makes a position claim that lies outside
of this region, we reject the claim without any verification. We stress, however,
that we do not make any assumption about the positions of adversaries in the
system. In particular, this freedom for the adversarial devices guarantees that
no set of adversaries (some of whom may even be outside of the tetrahedron)
can falsely prove that any one of them is at position P inside the tetrahedron as
long as none of them are at position P .
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1.2 The Two Models Considered

The Vanilla Model. We now informally describe the Vanilla model. We have a
device (also referred to as the prover) who is located at a position P (where
P is a point in a d-dimensional Euclidean space). There exists a set of verifiers
{V1, V2, ........., Vm} at different points in the d-dimensional space, such that P
lies inside the tetrahedron enclosed by the verifiers. The verifiers are allowed
to execute a protocol with the prover to achieve some task. More precisely,
a verifier can send messages to the prover at different points in time (with a
speed up to the speed of radio waves) and also record the messages which are
received from it (along with the time when they are received). The verifiers
have a secret channel among themselves using which they can coordinate their
actions by communicating before, during or after protocol execution. There could
be multiple adversaries with possibly cloned devices who share a covert channel
and collude together. This setting is referred to as the Vanilla model.

The Bounded Storage Model. The bounded storage model (BSM) was in-
troduced by Maurer in [18] and has been the subject of much work
[18,4,1,9,17,22,19,13,10]. Very roughly, this model assumes that there is a bound
on the amount of information that parties (including an adversary) can store. It
assumes the existence of random strings, having high min-entropy, available to
the parties at the beginning of the protocol. An adversary is allowed to retrieve
and store an arbitrary function of this random string, as long as the length of
the output of the function is not longer than the adversary’s storage bound. We
assume that parties can broadcast random strings having high min-entropy, but
cannot store these strings. A closely related model to the BSM is the bounded
retrieval model (BRM), introduced and studied in various related contexts by
Di Crescenzo et al [8] and Dziembowski [11,12]. This model assumes that parties
can store information having high min entropy, but an adversary can only re-
trieve part of it. Recently, Dziembowski and Pietrzak [14] introduced intrusion
resilient secret sharing where shares of a secret (stored on different machines)
are made artificially large so that it is hard for an adversary to retrieve a share
completely, even if it breaks into the storage machine. We note that in the cur-
rent work, we use the work of [14] on Intrusion Resilient Secret Sharing schemes
as a starting point. We build and extend these techniques by combining them
with geometric arguments to prove the security of our protocol.

In the context of position based cryptography, by bounded storage model, we
mean the Vanilla model setting where the verifiers can broadcast information
having high entropy (or control a randomness source which can) such that the
adversaries can only retrieve and store, say, a constant fraction of this informa-
tion as it passes by at high speed. The assumption that the adversaries cannot
retrieve (and store) all the information that goes by seems plausible in our set-
ting since the information travels at a very high speed (particularly when, e.g.,
the verifiers have several sources broadcasting information at different frequen-
cies). The reason we call our model bounded storage (as opposed to bounded
retrieval) is that we do not assume that verifiers (and the honest prover) can
fully store the broadcasted information themselves.
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1.3 Related Work

Secure Positioning. We remark that the problem of position-based cryptography
as such has not been studied before. However, secure positioning is a well-studied
problem in the field of wireless security. There have been several proposed pro-
tocols ([2,20,23,3,6,21,24]). All these protocols are susceptible to the collusion
attack outlined earlier. One can get around this problem of multiple cloned
adversaries by assuming a setup phase where the verifiers give an unclonable
tamper-proof hardware [16,15](having some secret information) to all possible
future provers. However in the current work, we focus on the setting where the
only credential needed by a prover is its geographical position.

In [5], a model is considered, that makes the assumption that there can exist
verifiers that are covert or hidden to provers and adversaries. Based on this, they
provide solutions to secure positioning. The protocols in [5] are also susceptible to
multiple colluding adversaries, although the attack required is more subtle than
in other cases. We describe this attack, as well as give a detailed description
of related work on secure positioning and the BSM in the full version of this
paper [7].

Global Positioning System. The problem addressed by the global positioning
system (GPS) is complementary to the one considered in our work. In GPS,
there is device trying to determine its own geographic position with the aid of
various satellites (in a non-adversarial setting). The GPS satellites continually
broadcast information in a synchronized manner with the speed of light. The time
taken by the information broadcast by various satellites to reach a GPS receiver
enables the receiver to compute its position using triangulation techniques.

1.4 Our Contributions

In this paper, we give the following results towards developing a theory of
position based cryptography:

– We begin with a lower bound for the Vanilla model in Section 3. We show that
there does not exist a protocol in the Vanilla model using which a group of
verifiers can securely verify the location claim of a prover. The impossibility
is obtained via an explicit attack which does not depend on the computa-
tional power of the parties. To begin with, the lower bound holds if all the
parties (i.e., the verifiers, the honest prover and the adversaries) are given un-
bounded computational power. Further, it holds even if the verifiers are given
unbounded computational power but the adversaries (and thus obviously the
honest prover) are restricted to being probabilistic polynomial time (PPT)
machines (i.e., one may make cryptographic hardness assumptions). Finally,
the protocols in [5] additionally assume the existence of hidden and mobile
base stations and present protocols for secure positioning. In the full version of
this paper [7], we describe explicit attacks breaking the security of these pro-
tocols in common settings (where a prover learns the response of the success
or failure of the protocol). With the impossibility of this most fundamental
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task, we cannot hope to perform most other meaningful position based tasks
(including position based key exchange) in the Vanilla model.

– Given the above severe lower bound, the task of now choosing a model in which
protocols for secure positioning exist becomes a tricky one. One of the main
technical contributions of this paper is to connect the bounded storage model
to position based cryptography. Remarkably, bringing these seemingly unre-
lated ideas together enables us to achieve meaningful and elegant protocols
and proofs of security for position based cryptography.

– In the BSM, we give a protocol for secure positioning (in Section 5) which is
provably secure against any number of (possibly computationally unbounded)
adversaries colluding together, as long as the total amount of information
they can retrieve and store is bounded. To our knowledge, this is the first
protocol for positioning which does not fail against collusion attacks. We also
describe, in Section 6, how our protocol for secure positioning can be compiled
with any unauthenticated computationally secure key exchange protocol (like
Diffie-Hellman) to achieve computationally secure position based key exchange
in the BSM. That is, only a prover who is at a designated position P will
receive the key to be shared (even under the presence of any number of PPT
adversaries with bounded storage).

– We then present a protocol (in Section 7) that does information theoretically
secure key exchange between the verifiers and a device at P . The construction
of such a protocol turns out to be surprisingly intricate. While our secure posi-
tioning (and computationally secure position based key exchange) can handle
claims of all positions P that lie within the tetrahedron formed between 4 ver-
ifiers in 3-dimensional space, our information theoretic key exchange protocol
can handle positions P that lie in a specific region (which we characterize,
using a geometric argument, by a condition that P must satisfy) within the
tetrahedron. In the full version, we show (for a few example cases) that this
region is a large fraction of the enclosed tetrahedron and also provide some
figures containing what this region looks like (for various placements of the
4 verifiers). In order to show the security of our protocol, we need to prove
delicate timing arguments (based on geometric properties) as well as prove
that the protocol of [14] is secure even in the case when multiple parallel ad-
versaries can gain access to the machines and may collude after they have
finished accessing the machines.

– Using the above two fundamental protocols as building blocks, we demon-
strate that the protocols for more complex tasks can be readily constructed.
We consider the problem of establishing a secure channel between two devices
(such that each device has a guarantee on the geographic position of the de-
vice at the other end). After establishing pairwise secure channels, a group of
devices can perform “position based” multi-party computation, where asso-
ciated with each input, there is a guarantee about the position of the device
giving that input. We also discuss the setup of a position based public key
infrastructure, where a certificate provides a guarantee about the position (as
opposed to the identity) of the owner of the public key in question (We discuss
these applications in further detail in the full version.). We remark that the
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above is obviously not intended to be an exhaustive list of applications and
one can construct protocols for several other tasks.

Our results do not require any pre-sharing of data (cryptographic keys and so
on) between the prover and the verifiers. The only required credential of a prover
is its real geographic position. We present the high level ideas of the model and
constructions and defer the full formal proofs to the full version [7].

Open Problem: Other Models for Position Based Cryptography. By turning to
the bounded storage model, we are able to provide the first provably secure
constructions of cryptographic tasks that use position as an identity. Given our
strong impossibility results in the Vanilla model, an important open question is:
do there exist other natural models that allow us to obtain positive results of
similar nature?

2 The Model

In this section, we briefly discuss our model. More details can be found in the
full version. There are three types of parties in our model: Prover, Verifier and
Adversary. We treat time and space as “continuous” (rather than discrete). We
assume that messages travel at a speed equal to that of radio waves (which is
the same as the speed of light). In the beginning, each party (prover, verifiers
and adversaries) is given as input, party’s own position (as a point in the d-
dimensional space), the position of all verifiers and the security parameter κ.
The verifiers and the adversaries are given the claimed position of the prover.

The parties can send out the following two types of messages : (a) Broadcast
messages: A broadcast message originating at a position P travels in concentric
hyperspheres centered at P in all directions, (b) Directional messages: A direc-
tional message, instead of traveling in all directions, travels only in a specific
direction specified by a sector. Such messages can be sent using directional an-
tennas. Additionally, verifiers have a private channel among themselves which
allows them to talk to each other secretly. Adversaries also have a private (and
covert) channel among themselves which allows them to talk to each other se-
cretly such that no verifier suspects any adversarial activity. More details about
these messages (along with formal definitions of secure positioning and key ex-
change) can be found in the full version.

The above is our so called Vanilla Model where we prove the impossibility of
realizing the most basic position based task (i.e., secure positioning). We assume
that parties can send directional messages in the Vanilla model in order to prove
a strong lower bound. As noted earlier, all our positive results are in the BSM.
Our bounded storage model is the same as the Vanilla model except for the
following changes:

– Verifiers “possess” a reverse block entropy source (defined formally in the full
version) capable of generating strings with high min-entropy, say (δ + β)n,
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where n is the length of the string (and 0 < δ + β < 1; it is also called min-
entropy rate). By possessing a reverse block entropy source, we mean that
either the verifier itself is capable of generating such a stream of high min-
entropy, or it has a randomness source (located at the same point in space as
itself) which generates and broadcasts such a stream. We do not assume that
the verifiers can retrieve and store the broadcasted stream of data themselves.
Generating a lot of entropy is easy; one can think of an “explosion” which
generates a lot of noise that can be measured but not stored.

– There exists a bound βn on the total amount of information the adversaries
can store as the information passes at a high speed. The storage bound βn
could be any constant fraction of the min-entropy (δ+β)n. The honest parties
(including the verifiers) are required to have a storage capacity of only O(κ ·
log(n)).

– Verifiers and provers cannot send directional messages. We however do not
restrict the adversary from sending directional messages.

– Let X be a string having large min-entropy as before. The sender (which is
a verifier) generates X and sends it out. Any receiver gets to retrieve and
store f(X) (for any arbitrary f) in a way such that the total amount of
information which it has retrieved does not exceed the storage bounds. In case
a party receives multiple strings simultaneously, it can retrieve information
from these strings, in any order, any number of times (i.e., we do not restrict
the adversaries to retrieve information from a string only once) as long as the
total memory bound is not violated on the amount retrieved.

Observe that the last step above also enforces that any information about a
string X (having large min-entropy) that is sent from one adversary to the other
is also bounded (since an adversary gets to retrieve and resend only f(X)). This
rules out simple “reflection attacks” to create a huge storage (where a pair of
adversaries close to each other just keep reflecting the string X to each other
hence essentially storing X thus violating the bounded storage assumption).

Relaxing Assumptions. For clarity of exposition during our positive results, we
make the assumption that the devices can read bits from the stream and perform
computations instantaneously. We refer the reader to the full version for details
on how to remove this assumption.

3 Lower Bound on Secure Positioning in the Vanilla
Model

We now show a lower bound for the Vanilla model. We show that there does not
exist a protocol in the Vanilla model using which a group of verifiers can securely
verify the location claim of a prover. The impossibility is obtained via an explicit
attack which does not depend on the computational power of the parties. To
begin with, the lower bound holds if all the parties (i.e., the verifiers, the honest
prover and the adversaries) are given unbounded computational power. Further,
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it holds even if the verifiers are given unbounded computational power but the
adversaries (and thus obviously the honest party) are restricted to being PPT
machines (i.e., one may make cryptographic hardness assumptions). Finally, we
present a few extensions of our lower bound in the full version.

Theorem 1. There does not exist a protocol to achieve secure positioning in the
Vanilla model.

Proof. Let there be n verifiers {V1, V2, ......, Vn} that take part in a protocol to
verify that a prover is at a position P . We show that for any protocol, there
exists a set of l adversaries (l to be defined later) who can interact with the
verifiers in such a manner that it is impossible to distinguish if the verifiers are
interacting with an adversary or the actual prover.

Consider the hypersphere of radius r around position P such that the distance
between Vi and P for all i be strictly greater than r. In other words, we require
that r is such that no verifier is present within the hypersphere of radius r
centered at position P . For all i, let the straight line joining Vi and P intersect
the hypersphere at position Ii. Let there exist l ≤ n such intersection points. We
note that l could be less than n because, two (or more) verifiers Vi, Vj , i �= j may
be such that P, Vi and Vj lie on the same straight line in d-dimensional space.
We place adversaries A1, A2, ....., Al at points I1, I2, ....., Il. The verifiers may run
an interactive protocol with the prover in order to verify that the prover is at
position P . We show that these l adversaries together can simulate the execution
of the protocol in such a way that the verifiers cannot distinguish between an
execution in which they are interacting with the prover at P and an execution
in which they are interacting with these set of adversaries.

Any verification protocol is a series of messages (along with corresponding
times), each being from one of the n verifiers to the prover or vice-versa. The
verifiers can then verify the position of the prover by analyzing the message
they sent and the response they got (along with corresponding times). We give
a strategy for every Am such that the adversaries together can prove that they
are at position P .

Let the time taken for any message to travel between Vi and P be Ti. Note
that the distance between Am, for all m, and P is fixed (equal to r). Hence, let
the time taken for a message to travel between Am (for all m) and P be α. Let
the set of verifiers that lie on the same straight line that connects Am and P be
Vm. Let the distance between two adversaries Am and Am′ be dist(m,m′) (note
that dist(m,m) = 0).

Now during the protocol execution, every Am does the following. Am only
listens to messages sent by all Vi ∈ Vm and ignores messages sent by other
verifiers. Am is at a location such that all the messages sent by Vi (s.t., Vi ∈
Vm) to the point P would be received by it (irrespective of whether Vi sends
a broadcast message or a directional message). Lets say that a message M is
received from a verifier Vi. For every adversary Am′ (including itself, i.e., 1 ≤
m′ ≤ l), Am internally delays M by the duration of time delay(m,m′) = 2α −
dist(m,m′), and then sends it to Am′ over the covert channel. Hence, every single
adversary (including Am itself) would receive the message at time 2α (over the
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covert channel) after the time when Am receives it from Vi (over the broadcast
or directional channel).

For every adversary Am, now assume that the protocol requires the honest
prover to send a reply message, at time t, in directions such that verifiers in
set Vm would receive it (note that since all of them are in a straight line in the
same direction of point P , either all of them would receive it or none would).
In that case, Am computes the response message using its view over the covert
channel so far and sends it at time t + α using a directional message (such that
only verifiers in Vm receive it). However, Am does not send any messages to Vi

for Vi �∈ Vm (if the verifiers in other sets are required to receive this message as
well, they will be “taken care of” by other adversaries near them).

The following simple argument shows that every adversary Am runs exactly
a copy of the execution of the prover, only at a time α later. Once this is shown,
since it takes time Ti for a prover to send a response to Vi when Vi ∈ Vm, and
it takes Am only time Ti − α, the exact same response will reach Vi at exactly
the same instance of time (irrespective of whether it originated at P or at the
location of Am).

We show that the following two statements are true. delay(m,m′) is a non-
negative value for all m,m′ and every message which reaches the prover at P will
reach all the adversaries after exactly time α. This will prove that all adversaries
run exactly the same copy of the prover, but at a later instance of time.

The first statement follows trivially from triangle inequality. For the second
statement, assume that verifier Vi sends a message to the prover at time t. Let
m be such that Vi ∈ Vm and t′ be the time taken for a message to travel between
Vi and Am. The honest prover clearly receives the message at time t+t′+α. The
adversary Am receives the message at time t + t′ and hence all the adversaries
receive it at time t + t′ + 2α over the covert channel.

This proves that all adversaries run exactly the same copy of the prover, but
at an instance α later. Hence, any execution of a protocol run between the n
verifiers and the prover can be simulated by l adversaries running the protocol
with the n verifiers. �

We remark here that the above impossibility result holds even in a stronger
model where there is a fixed bound on the number of adversaries, as long as
this bound can depend on the number of verifiers in the system (but not on
the secure positioning protocol itself). This motivates our search for alternative
models, where we do not restrict the number of adversaries and still achieve
positive results.

4 Preliminaries

Vadhan [22], introduced BSM pseudorandom generators (PRG). Informally, for
string X sampled from a distribution having high min-entropy and for a uni-
formly random seed K, the distribution of the output of the BSM PRG (denoted
by PRG(X,K)), is statistically close to the uniform distribution of appropriate
length even when given K and A(X) where A is any arbitrary function with
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bounded output length. We introduce a relaxation of BSM PRGs, which we
call BSM entropy generators (EG). The difference between a BSM EG and a
BSM PRG is that the output distribution of a BSM EG is only guaranteed to
have high min-entropy, and not necessarily be close to the uniform distribution.
We refer the reader to the full version for formal details about the definitions,
constructions and instantiations.

5 Secure Positioning in the Bounded Storage Model

In this section, we propose protocols for secure positioning in the BSM. We shall
build upon the primitives described in Section 4. To make the intuition clear,
we first give a secure positioning protocol for 1-dimension.

5.1 Secure Positioning in 1-Dimension

For 1-dimension, we employ two verifiers, denoted by V1 and V2 (which send
messages with the speed of radio waves). We assume that the position P being
claimed by the prover is located between V1 and V2. Our protocol is secure against
an arbitrary number of adversaries colluding together to prove a position P , as
long as the total information that these adversaries can store during the protocol
is bounded. We let βn denote the aforementioned storage bound. Verifier V1 is
assumed to possess a random source X1, X2, · · · which is a reverse block entropy
source of minimum entropy rate δ + β, where Xi ∈ {0, 1}n.

We shall use a (ε, ψ)-secure BSM entropy generator EG: {0, 1}n × {0, 1}� →
{0, 1}m as discussed in the previous section. We choose the input size � such that
ε+2−ψ is negligible in the security parameter κ. An example of a fast BSM EG,
which is just a random sampler requiring no computations at all, is presented in
the full verison.

Before the protocol starts, the verifier V1 selects a key K
R← {0, 1}� and sends

it to verifier V2 over the private channel (using a private multicast message). Let
t and t′ be the time taken for radio waves to reach P from V1 and V2 respectively.
Verifier V1 sends out X from the reverse block entropy source such that X has
min-entropy (δ + β)n. At the same time, V1 computes EG(X,K) and stores it
on its output tape. Let T be the time at which X reaches P . Verifier V2 sends
the key K out at a time such that it meets X at time T at the position P .
More precisely, X and K are sent at times (T − t) and (T − t′) by V1 and V2
respectively.

At time T , the prover claiming to be at position P evaluates y = EG(X,K)
and sends it back to the verifier V1. Verifier V1 verifies that the string y is received
at time (T + t) and that it equals EG(X,K). If these verifications succeed, the
position claim of the prover is accepted and it is assumed to be indeed at position
P . Otherwise, the position claim is rejected.

The protocol clearly satisfies the completeness property since an honest prover
at position P will have both X and K available at time T and hence it can
compute y (by asking the hypothetical ITM Penv to compute the function
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EG(.,K).) and report it back to V1 by time (T + t). We discuss the security
below:

Theorem 2. The 1-dimension secure positioning protocol is secure against an
arbitrary number of adversaries colluding together, with the total adversary in-
formation storage bounded by βn.

Proof. Suppose there exists an adversarial strategy with which a set of adver-
saries, none of which is at position P , are able to report back the correct y to
the verifier V1 at time (T + t) with a non-negligible probability in the security
parameter. We show that the above contradicts the properties of the EG.

We consider the state of the system at time T . X and K are at position P . Let
there be g adversaries between V1 and P and the information they have retrieved
about X be S1, S2, ..., Sg respectively. Let S denote the combined information
S1∪S2∪...∪Sg. Clearly since K has not yet crossed P , S is an arbitrary function
of X alone. Further, |S| ≤ βn since βn is the total storage bound. Now we have
the following:

Lemma 1. The string y to be sent to the verifier Vi at time (t + T ), can be
an arbitrary function of S and K alone. More formally, given an adversarial
strategy to compute y in our setting, there exists a simulator that outputs y only
given S and K (and not the stream X).

The above lemma holds because (a) S is the only information stored by the
adversaries between V1 and P , (b) there is no adversary at P , and, (c) any
information about X between P and V2 at time T cannot reach V1 by time
(t + T ).

Hence we have y = A(S,K), where A(., .) is any arbitrary adversarial algo-
rithm. However, given S and K, using properties of the BSM EG, the probability
of an adversary correctly guessing y is upper bounded by ε + 2−ψ. But ε + 2−ψ

is negligible in the security parameter by our choice of �. Thus we have reached
a contradiction. �

5.2 Secure Positioning in 3-Dimensions

We generalize the above protocol to obtain a protocol for secure positioning in 3-
dimensional space. βn is the total adversary information storage bound. We use
4 verifiers denoted by V1, · · · , V4 possessing reverse block sources of minimum
entropy (δ+β)n that output strings Xi. Position P being claimed by the prover
is enclosed in the tetrahedron defined by these 4 verifiers. ti is the time taken
for radio waves to reach the point P from verifier Vi. PRG:{0, 1}n×{0, 1}m →
{0, 1}m is an ε-secure BSM pseudorandom generator. We choose the parameters
such that ε+2−m is negligible in the security parameter. In order for the verifiers
to themselves compute the response expected from the prover, we first assume
that verifiers can store the Xi values. We later show how this assumption can
be removed. The protocol is illustrated in Figure 1. For more details, refer the
full version.
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V1

V2

V4

V3

P

K1

X1

X3

X2

•K 1 drawn uniformly at random
from {0,1}m.

•V 1, V2, V3, V4 broadcast K1, X1, X2,
X3 such that they “meet”at P.

•At time T, device at P computes 
Ki+1 = PRG(Xi,Ki) for 1≤ i ≤ 3 and
broadcasts K4 to all Vi.

•At time T+t i, Vi verifies if the
response obtained is K4.

•If all verifiers accept, then position
accepted.

Fig. 1. Secure positioning protocol in 3-Dimensions

The completeness follows from the fact that verifiers can compute K4 from the
stored Xi values and the prover can also compute K4 since all the information
required is present jointly at P at time T . The security of this protocol is proven
using techniques from the proof of security of the protocol for 3-dimensional
position based key exchange that is discussed in Section 7 (note that position
based key exchange implies a protocol for secure positioning).

We now describe, how to remove the assumption that verifiers can store strings
drawn from their respective reverse block entropy sources. Note that the problem
we face when verifiers cannot store the large strings is that verifiers have no way
of verifying the response of the prover. This is because, when for example, V3
broadcasts string X2, it does not know the key K2 used to compute K3 from
X2. We get around this problem as follows. The verifiers pre-determine the keys
K1,K2,K3,K4 that are to be used at every iteration of the application of the
PRG. Now, the expected response of the prover, K4 is known before protocol
execution to all verifiers. The protocol is as follows:

1. V1, V2, V3 and V4 pick keys K1,K2,K3,K4
R← {0, 1}m and broadcast them

over their private channel.
2. V1 broadcasts key K1 at time T − t1. V2 broadcasts X1 at time T − t2

and simultaneously also broadcasts K ′
2 = PRG(X1,K1)⊕K2. Similarly, V3

broadcasts (X2,K
′
3 = PRG(X2,K2)⊕K3) at time T − t3 and V4 broadcasts

(X3,K
′
4 = PRG(X3,K3)⊕K4) at time T − t4.

3. At time T , the prover at position P computes messages Ki+1 =
PRG(Xi,Ki)⊕K ′

i+1 for 1 ≤ i ≤ 3. The prover returns K4 to all verifiers.
4. All verifiers check that the string K4 is received at time (T + ti) and that it

equals the K4 that they pre-picked. If these verifications succeed, the position
claim of the prover is accepted and it is assumed to be indeed at position P .
Otherwise, the position claim is rejected.
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The completeness of this protocol is as follows. Note that since the verifiers
picked K4 before the execution of the protocol, they can verify the response of
a prover without storing any of the large random strings. To informally argue
security of the protocol, note that in this protocol, instead of using the output of
the PRG as an input key in the next round, one treats the output as one secret
share of the key to be used. The other share of this key is broadcast in the clear.
Now, if one of the shares of an additive secret sharing scheme is random, then
the secret is hidden. Hence, by the security of the protocol in which verifiers
could store the large random strings, it follows that this protocol is also secure.

6 Computational Position Based Key Exchange

Informally, position based key exchange should have the property that if there is
a prover at the claimed position P , then at the end of the protocol, the verifiers
should share a uniform key K with it while for a group of colluding adversaries
(none of whom is at P ) K should look indistinguishable from a key drawn uni-
formly at random. This also implies that in the absence of a prover at position P ,
such a group of adversaries should be unable to execute the key exchange proto-
col on their own to obtain a shared key with the verifiers. In the full version [7],
we show how to compile any 1-round information theoretically secure positioning
protocol SP in our bounded storage model along with any unauthenticated key-
exchange protocol KE to obtain an authenticated computational position based
key exchange protocol CKE in the BSM.

7 Information Theoretic Position Based Key-Exchange

In this section, we present an information theoretic protocol to achieve position
based key exchange. The overview of our protocol can be found in Figure 2. We
start with some intuition behind our protocol and the techniques required to
prove its security. Let us first consider the case of one dimension. We extend
the protocol for secure positioning in one dimension presented earlier for the
case of key exchange as follows. Instead of only one verifier V2 sending a “large”
string (drawn from a reverse block entropy source), both the verifiers send one
large string each. More precisely, the verifier V1 sends a key K1 and a large
string X2 while the verifier V2 sends a large string X1 such that all of them meet
at the claimed position P at the same instance of time T . The computation
of the final key K3 is done by the prover as follows: set K2 = PRG(X1,K1),
K3 = PRG(X2,K2).

To see the intuition behind why this protocol is a secure one dimensional
information theoretic position based key exchange, let us consider the state of the
system at time T . Adversaries between V1 and P (say, adversaries of type I) have
stored (K1, A(X2,K1)) while adversaries between P and V2 (say, adversaries of
type II) have stored A(X1). After time T , the adversaries of type I can compute
K2 thus transitioning their state to (K2, A(X2,K1)) while adversaries of type
II can only transition their state to A(X1),K1, A(X2,K1). Thus it seems that
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V1

V2

V4

V3

P

(X4,K1)

(X1,X5)

X3

X2

•Verifiers make sure that position P
satisfies the condition in Lemma 5.

•K 1 drawn uniformly at random from
{0,1}m.

•V 1, V2, V3, V4 broadcast (X4,K1),  
(X1,X5), X2, X3 such that they “meet”
at P.

•At time T, device at P computes 
Ki+1 = PRG(Xi,Ki) for 1≤ i ≤ 5 and
obtains key K6 as the secret key.

Fig. 2. Position based key exchange in 3-Dimensions

to both these types of adversaries together, the final key K3 remains uniform.
Indeed it turns out that this intuition is sound and the above is a secure one
dimensional information theoretic position based key exchange protocol.

For three dimensions, we have the prover to be inside the tetrahedron defined
by the four verifiers. Now, one can similarly try to extend the three-dimensional
information theoretic secure positioning protocol presented earlier to achieve
three-dimensional information theoretic position based key exchange. Simply
add a fourth long string X4 to be sent by V1 in the natural way. However, it turns
out that the above idea is not sufficient because of the fact that there might be
adversaries (far) outside this tetrahedron trying to compute the key exchanged
between the verifiers and an honest prover. In the case of secure positioning, such
adversaries would be too late in sending their response to the verifiers (there is
no honest prover to aid these adversaries). However, the key exchange scenario
requires that once the verifiers and the honest prover get a shared key after
running the protocol, this key should be uniform to the adversaries even at a
much later point in time.

In contrast to what the intuition might suggest, the first problem we face
is that there are certain regions in the tetrahedron defined by the verifiers such
that if the claimed position P lies within one of these regions, there exists points,
other than the point P , in the three dimensional space (but outside the tetrahe-
dron) where the messages broadcast by the four verifiers all meet simultaneously.
Thus, if there is an adversary located at such a point, it can compute the final
key shared between the verifiers and the honest prover simply by following the
algorithm of the honest prover. To overcome this problem, we characterize such
regions of the tetrahedron (we further show that the remaining region is a still
a large fraction of the tetrahedron) and exclude them from the area from which
position claims are accepted (refer the full version for the Lemma characterizing
such regions and for further details). That is, given an area from which position
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claims need to be accepted, our lemma depicts the acceptable positioning of the
verifiers so that they can verify the position claims from that area.

The second main problem that arises is that even if the messages broadcast
by the verifiers do not all meet at a single point (other than P ), there of course
could be multiple colluding adversaries which utilize different information avail-
able at multiple different points at different time instances to try to compute the
final key. Indeed, it can be shown that there is in fact an explicit attack on the
protocol discussed earlier (that is, the protocol resulting from a natural extension
of our three-dimensional secure positioning protocol where the verifiers broad-
cast four long strings) which allows multiple colluding adversaries to completely
recover the key exchanged between the verifiers and an honest prover. To solve
the above problem, we introduce a fifth long string in a similar way as before.
Introducing this fifth long string allows us to construct a geometric argument,
along with a reduction argument relying on techniques from [14], that multiple
colluding adversaries do not have sufficient information, and our security proofs
go through. Our final protocol is given in Figure 2. Our security proofs are a
careful combination of the following two components:

– A geometric argument which rules out a “nice” way for adversaries to recover
the final key exchanged. In other words, very roughly, there does not exist a
strategy for multiple colluding adversaries to perform the operation Ki+1 =
PRGi(Xi,Ki) in sequence for each i ∈ [5] to recover the final key K6.

– A reduction argument relying on the techniques from [14] to prove the final
security of our protocol. In more detail, given the above geometric argument,
if there exists an adversarial strategy that can distinguish the final key K6
from uniform in our protocol, then we can construct an adversarial strategy
to contradict the security guarantees of an intrusion resilient secret sharing
scheme (as defined and constructed in [14]).

All details of our protocol and the security proofs are given in the full version [7]
of this paper. The completeness of the above protocol described relies on the
assumption that the verifiers can store the long strings they generated to be
able to compute the final key K6 themselves. In the full version, we show that,
as with the case of secure positioning, this assumption can be relaxed by using
the same secret sharing technique introduced in Section 5.

Acknowledgments. We thank Yevgeniy Dodis for interesting discussions.
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Abstract. We consider two-party quantum protocols starting with a
transmission of some random BB84 qubits followed by classical messages.
We show a general “compiler” improving the security of such protocols:
if the original protocol is secure against an “almost honest” adversary,
then the compiled protocol is secure against an arbitrary computation-
ally bounded (quantum) adversary. The compilation preserves the num-
ber of qubits sent and the number of rounds up to a constant factor. The
compiler also preserves security in the bounded-quantum-storage model
(BQSM), so if the original protocol was BQSM-secure, the compiled pro-
tocol can only be broken by an adversary who has large quantum memory
and large computing power. This is in contrast to known BQSM-secure
protocols, where security breaks down completely if the adversary has
larger quantum memory than expected. We show how our technique can
be applied to quantum identification and oblivious transfer protocols.

1 Introduction

We consider two-party quantum protocols for mutually distrusting players Al-
ice and Bob. Such protocols typically start by Alice sending n random BB84
qubits to Bob who is supposed to measure them. Then some classical exchange
of messages follows. Several protocols following this pattern have been proposed,
implementing Oblivious Transfer (OT), Commitment, and Password-Based Iden-
tification [1,4,7,8].
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In more details, the first step of the protocol consists of Alice choosing random
binary strings x = x1, ..., xn and θ = θ1, ..., θn. She then prepares n particles
where xi is encoded in the state of the i’th particle using basis θi. Bob chooses a
basis string θ̂ = θ̂1, .., θ̂n and measures the i’th particle in basis θ̂i. If Bob plays
honestly, he learns xi whenever θ̂i = θi and else gets a random independent
result.

Protocols of the form we consider here are typically unconditionally secure
against cheating by Alice, but can (in their basic form) be broken easily by Bob,
if he does not measure the qubits immediately. This is because the protocol
typically asks Alice to reveal θ at a later stage, and Bob can then measure the
qubits with θ̂ = θ and learn more information than he was supposed to.

In this paper, we show a general “compiler” that can be used to improve se-
curity against such an attack. We assume that the original protocol implements
some two-party functionality F with statistical security against Bob if he is be-
nign, meaning that he treats the qubits “almost honestly”, a notion we make
more precise below. Then we show that the compiled protocol also implements
F , but now with security against any computationally bounded (quantum) Bob
(note that we cannot in general obtain unconditional security against both Alice
and Bob, not even using quantum communication [13]). The compiled proto-
col preserves unconditional security against Alice and has the same number of
transmitted qubits and rounds as the original one up to a constant factor.

By benign behavior of Bob, we mean that after having received the qubits,
two conditions are satisfied: First, Bob’s quantum storage is essentially of size
zero (note that it would be exactly zero if he had measured the qubits). Second,
there exists a basis string θ̂ such that the uncertainty about x is essentially as it
would be if Bob had really measured in bases θ̂, namely 1 bit for every position
where θ̂ differs from θ.

Thus, with our compiler, one can build a protocol for any two-party function-
ality by designing a protocol that only has to be secure if Bob is benign. We
note that proofs for known protocols typically go through under this assumption.
For instance, our compiler can easily be applied to the quantum identification
protocols of [7] and the OT protocol of [1].

The compiler is based on a computational assumption; namely we assume the
existence of a classical commitment scheme with some special properties, similar
to the commitment schemes used in [5] but with an additional extraction prop-
erty, secure against a quantum adversary. A good candidate is the cryptosystem
of Regev [16]. For efficiency, we use a common reference string which allows us
to use Regev’s scheme in a simple way and, since it is relatively efficient, we get
a protocol that is potentially practical. It is possible to generate the reference
string from scratch, but this requires a more complicated non-constant round
protocol [9].

The reader may ask whether it is really interesting to improve the security of
quantum protocols for classical tasks such as identification or OT using a com-
putational assumption. Perhaps it would be a more practical approach to use the
same assumption to build classical protocols for the same tasks, secure against



410 I. Damg̊ard et al.

quantum attacks? To answer this, it is important to point out that our compiler
also preserves security in the bounded-quantum-storage model (BQSM) [6], and
this feature allows us to get security properties that classical protocols cannot
achieve. In the BQSM, one assumes that Bob can only keep in his quantum
memory a limited number of qubits received from Alice. With current state of
the art, it is much easier to transmit and measure qubits than it is to store
them for a non-negligible time, suggesting that the BQSM and the subsequently
proposed noisy-quantum-storage model [20] are reasonable. On the other hand,
if the assumption fails and the adversary can perfectly store all qubits sent, the
known protocols can be easily broken. In contrast, by applying our compiler, one
obtains new protocols where the adversary must have large quantum storage and
large computing power to break the protocol.1

The basic technique we use to construct the compiler was already suggested
in connection with the first quantum OT protocol from [1]: we try to force Bob
to measure by asking him to commit (using a classical scheme) to all his basis
choices and measurement results, and open some of them later. While classical
intuition suggests that the commitments should force Bob to measure (almost)
all the qubits, it has proved very tricky to show that the approach really works
against a quantum adversary. In fact, it was previously very unclear what exactly
the commit-and-open approach forces Bob to do. Although some partial results
for OT have been shown [21,2], the original OT protocol from [1] has never been
proved secure for a concrete unconditionally hiding commitment scheme – which
is needed to maintain unconditional security against Alice. In this paper, we
develop new quantum information-theoretic tools (that may be of independent
interest) to characterize what commit-and-open achieves in general, namely it
forces Bob to be benign. This property allows us to apply the compiler to any
two-party functionality and in particular to show that the OT from [1] is indeed
secure when using an appropriate commitment scheme.

2 Preliminaries

We assume the reader to be familiar with the basic notation and concepts of
quantum information processing [14]. In this paper, the computational or + -
basis is defined by the pair {|0〉, |1〉} (also written as {|0〉+, |1〉+}). The pair
{|0〉×, |1〉×} denotes the diagonal or ×-basis, where |0〉× = (|0〉+ |1〉)/

√
2 and

|1〉× = (|0〉 − |1〉)/
√

2. We write |x〉θ = |x1〉θ1
⊗· · ·⊗ |xn〉θn

for the n-qubit state
where string x = (x1, . . . , xn) ∈ {0, 1}n is encoded in bases θ = (θ1, . . . , θn) ∈
{+,×}n. For S ⊆ {1, . . . , n} of size s, we denote by S̄ : = {1, . . . , n}\S the
complement of S and define x|S ∈ {0, 1}s and θ|S ∈ {+,×}s to be the restrictions
(xi)i∈S and (θi)i∈S , respectively. For two strings x, y ∈ {0, 1}n, we define the
Hamming distance between x and y as dH(x, y) := |{i : xi �= yi}|.
1 For the case of identification[7], the compiled protocol is not only secure against

adversaries trying to impersonate Alice or Bob, but can also be made secure against
man-in-the-middle attacks, where again the adversary must have large quantum
storage and large computing power to break the protocol.
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We use upper case letters for the random variables in the proofs that describe
the respective values in the protocol. Given a bipartite quantum state ρXE , we
say that X is classical if ρXE is of the form ρXE =

∑
x∈X PX(x)|x〉〈x| ⊗ ρx

E for
a probability distribution PX over a finite set X , i.e. the state of the quantum
register E depends on the classical random variable X in the sense that E is in
state ρx

E exactly if X = x. This naturally extends to states with two or more
classical registers.

For a state ρXE as above, X is independent of register E if ρXE = ρX ⊗ ρE ,
where ρX =

∑
x PX(x)|x〉〈x| and ρE =

∑
x PX(x)ρx

E . We also need to express
that a random variable X is independent of a quantum state E when given a
random variable Y . Independence means that when given Y , the state E gives
no additional information on X . Formally, adopting the notion introduced in [7],
we require that ρXY E equals ρX↔Y ↔E , where the latter is defined as

ρX↔Y ↔E :=
∑
x,y

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρy
E ,

where ρy
E :=

∑
x PX|Y (x|y)ρx,y

E . In other words, ρXY E = ρX↔Y ↔E precisely if
ρx,y

E = ρy
E for all x and y.

Full (conditional) independence is often too strong a requirement, and it usu-
ally suffices to be “close” to such a situation. Closeness of two states ρ and σ is
measured in terms of their trace distance δ(ρ, σ) = 1

2 tr(|ρ − σ|), where for any
operator A, |A| is defined as |A| :=

√
AA†.

A quantum algorithm consists of a family {Cn}n∈N of quantum circuits and
is said to run in polynomial time, if the number of gates of Cn is polynomial in
n. Two families of quantum states {ρn}n∈N and {σn}n∈N are called quantum-
computationally indistinguishable, denoted ρ

q≈ σ, if any polynomial-time quan-
tum algorithm has negligible advantage (in n) of distinguishing ρn from σn.
Analogously, we call them statistically indistinguishable, ρ

s≈ σ, if their trace
distance δ(ρn, σn) is negligible in n.

Definition 2.1 (Min-Entropy). The min-entropy of a random variable X
with probability distribution PX is defined as H∞(X) := − log

(
maxx PX(x)

)
.

Definition 2.2 (Max-Entropy). The max-entropy of a density matrix ρ is
defined as H0(ρ) := log

(
rank(ρ)

)
.

We will make use of the following properties of a pure state that can be written as
a “small superposition” of basis vectors; the proof is given in the full version [3].

Lemma 2.3. Let |ϕAE〉 ∈ HA ⊗ HE be of the form |ϕAE〉 =
∑

i∈J αi|i〉|ϕi
E〉,

where {|i〉}i∈I is a basis of HA and J ⊆ I. Then, the following holds.

1. Let ρ̃AE =
∑

i∈J |αi|2|i〉〈i| ⊗ |ϕi
E〉〈ϕi

E |, and let W and W̃ be the outcome of
measuring A of |ϕAE〉 respectively of ρ̃AE in some basis {|w〉}w∈W . Then,

H∞(W ) ≥ H∞(W̃ )− log |J | .
2. The reduced density matrix ρE = trA(|ϕAE〉〈ϕAE |) has max-entropy

H0(ρE) ≤ log |J | .
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3 Definition of Security

In order to define security of our two-party protocols, we follow the framework
put forward by Fehr and Schaffner in [10]. We are interested in quantum protocols
that implement classical functionalities such as oblivious transfer. Such primi-
tives are often used as building blocks in more complicated classical (multi-party)
protocols which implement advanced tasks. Therefore, it is natural to restrict
our focus on quantum protocols that run in a classical environment and have
classical in- and outputs. A two-party quantum protocol Π = (Am,Bm) consists
of an infinite family of interactive quantum circuits for players Alice and Bob
indexed by the security parameter m (in our case, m will also be the number
of qubits transmitted). To ease notation, we often leave the dependence on m
implicit. A classical non-reactive two-party ideal functionality F is given by a
conditional probability distribution PF(U,V )|UV , inducing a pair of random vari-
ables (X,Y ) = F(U, V ) for every joint distribution of U and V . The definition
of correctness of a protocol is straightforward.

Definition 3.1 (Correctness). A protocol Π = (A,B) correctly implements
an ideal classical functionality F , if for every distribution of the input values U
and V , the resulting common output satisfies

(U, V, (X,Y ))
s≈ (U, V,F(U, V )) .

Let us denote by outF
Â,B̂

the joint output2 of the “ideal-life” protocol, where Alice
and Bob forward their inputs to F and output whatever they obtain from F .
And we write outF

Â,B̂′ for the joint output of the execution of this protocol with

a dishonest Bob with strategy B̂′ (and similarly for a dishonest Alice). Note
that Bob’s possibilities in the ideal world are very limited: he can produce some
classical input V for F from his input quantum state V ′, and then he can prepare
and output a quantum state Y ′ which might depend on F ’s classical reply Y .

3.1 Information-Theoretic Security

We define information-theoretic security using the real/ideal-world paradigm,
which requires that by attacking a protocol in the real world the dishonest party
cannot achieve (significantly) more than when attacking the corresponding func-
tionality in the ideal world. To be consistent with the framework used in [10],
we restrict the joint input state, consisting of a classical input to the honest
party and a possibly quantum input to the dishonest party, to a special form: in
case of a dishonest Bob (and correspondingly for a dishonest Alice), we require
that Bob’s input consists of a classical part Z and a quantum part V ′, such
that the joint state ρUZV ′ satisfies ρUZV ′ = ρU↔Z↔V ′ , i.e., that V ′ is correlated
with Alice’s input only via the classical Z. We call a joint input state of that
form (respectively of the form ρU ′ZV = ρU ′↔Z↔V in case of dishonest Alice) a
2 We use a slightly different notation here than in [10]. Our notation outF

Â,B̂
does not

mention the name of the input registers and corresponds to (FÂ,B̂)ρUV in [10].
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legitimate input state. As shown in [10], this restriction on the input state leads
to a meaningful security definition with a composition theorem that guarantees
sequential composition within classical outer protocols. Furthermore, the results
of Section 4 also hold when quantifying over all (possibly non-legitimate) joint
input states.

Definition 3.2 (Unconditional security against dishonest Alice). A pro-
tocol Π = (A,B) implements an ideal classical functionality F unconditionally
securely against dishonest Alice, if for any real-world adversary A′ there exists
an ideal-world adversary Â′ such that for any legitimate input state, it holds that
the outputs in the real and ideal world are statistically indistinguishable, i.e.

outΠA′,B
s≈ outF

Â′,B̂ .

Definition 3.3 (Unconditional security against dishonest Bob). A pro-
tocol Π = (A,B) implements an ideal classical functionality F unconditionally
securely against dishonest Bob, if for any real-world adversary B′ there exists an
ideal-world adversary B̂′ such that for any legitimate input state, it holds that
the outputs in the real and ideal world are statistically indistinguishable, i.e.

outΠA,B′
s≈ outF

Â,B̂′ .

It has been shown in Theorem 5.1 in [10] that protocols fulfilling the above
definitions compose sequentially as follows. For a classical real-life protocol Σ
which makes at most k oracle calls to functionalities F1, . . . ,Fk, it is guaranteed
that whatever output Σ produces, the output produced when the oracle calls
are replaced by ε-secure protocols is at distance at most O(kε).

3.2 Computational Security in the CRS Model

One can define security against a computationally bounded dishonest Bob anal-
ogously to information-theoretic security with the two differences that the input
given to the parties has to be sampled by an efficient quantum algorithm and
that the output states should be computationally indistinguishable.

In the common-reference-string (CRS) model, all participants in the real-life
protocol ΠA,B have access to a classical public string ω which is chosen before
any interaction starts according to a distribution only depending on the security
parameter. On the other hand, the participants in the “ideal-life” protocol FÂ,B̂
interacting only with the ideal functionality do not make use of the string ω.
Hence, an ideal-world adversary B̂′, that operates by simulating the real world
to the adversary B′, is free to choose ω in any way he wishes.

In order to define computational security against a dishonest Bob in the CRS
model, we consider a polynomial-size quantum circuit, called input sampler,
which takes as input the security parameter m and the CRS ω (chosen accord-
ing to its distribution) and produces the input state ρUZV ′ ; U is Alice’s classical
input to the protocol, and Z and V ′ denote the respective classical and quan-
tum information given to dishonest Bob. We call the input sampler legitimate if
ρUZV ′ = ρU↔Z↔V ′ .
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In the following and throughout the article, we let Bpoly be the family of all
polynomial-time quantum strategies for dishonest Bob B′.

Definition 3.4 (Computational security against dishonest Bob). A pro-
tocol Π = (A,B) implements an ideal classical functionality F computationally
securely against dishonest Bob, if for any real-world adversary B′ ∈ Bpoly who
has access to the common reference string ω, there exists an ideal-world adver-
sary B̂′ ∈ Bpoly not using ω such that for any efficient legitimate input sampler,
it holds that the outputs in the real and ideal world are q-indistinguishable, i.e.

outΠA,B′
q≈ outF

Â,B̂′ .

In the full version [3], we show that also the computational security definition,
as given here, allows for (sequential) composition of quantum protocols into
classical outer protocols.

4 Improving the Security via Commit-and-Open

4.1 Security Against Benign Bob

In this paper, we consider quantum two-party protocols that follow a particular
but very typical construction design. These protocols consist of two phases, called
preparation and post-processing phase, and are as specified in Figure 1. We call
a protocol that follows this construction design a BB84-type protocol.

Protocol Π

Preparation: A chooses x ∈R {0, 1}n and θ ∈R {+,×}n and sends |x〉θ to B, and
B chooses θ̂ ∈R {+,×}n and obtains x̂ ∈ {0, 1}n by measuring |x〉θ in basis θ̂.

Post-processing: Arbitrary classical communication and local computations.

Fig. 1. Generic BB84-type quantum protocol Π

The following definition captures information-theoretic security against a
somewhat mildly dishonest Bob who we call a benign (dishonest) Bob. Such
a dishonest Bob is benign in that, in the preparation phase, he does not deviate
too much from what he is supposed to do; in the post-processing phase though,
he may be arbitrarily dishonest.

To make this description formal, we fix an arbitrary choice of θ and an arbi-
trary value for the classical information, z, which B′ may obtain as a result of
the preparation phase (i.e. z = (θ̂, x̂) in case B′ is actually honest). Let X denote
the random variable describing the bit-string x, where we understand the distri-
bution PX of X to be conditioned on the fixed values of θ and z. Furthermore,
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let ρE be the state of B′’s quantum register E after the preparation phase. Note
that, still with fixed θ and z, ρE is of the form ρE =

∑
x PX(x)ρx

E , where ρx
E

is the state of B′’s quantum register in case X takes on the value x. In general,
the ρx

E ’s may be mixed, but we can think of them as being reduced pure states:
ρx

E = trR(|ψx
ER〉〈ψx

ER|) for a suitable register R and pure states |ψx
ER〉; we then

call the state ρER =
∑

x PX(x)|ψx
ER〉〈ψx

ER| a pointwise purification (with respect
to X) of ρE .

Obviously, in case B′ is honest, Xi is fully random whenever θi �= θ̂i, so that
H∞
(
X |I

∣∣X |Ī = x|Ī
)

= dH

(
θ|I , θ̂|I

)
for every I ⊆ {1, . . . , n} and every x|I ,

and B′ does not store any non-trivial quantum state so that R is “empty” and
H0(ρER) = H0(ρE) = 0. A benign Bob B′ is now specified to behave close-
to-honestly in the preparation phase: he produces an auxiliary output θ̂ after
the preparation phase, and given this output, we are in a certain sense close to
the ideal situation where Bob really measured in basis θ̂ as far as the values of
H∞
(
X |I

∣∣X |Ī = x|Ī
)

and H0(ρER) are concerned.3 We now make this precise:

Definition 4.1 (Unconditional security against benign Bob). A BB84-
type quantum protocol Π securely implements F against a β-benign Bob for
some parameter β ≥ 0, if it securely implements F according to Definition 3.3,
with the following two modifications:

1. The quantification is over all B′ with the following property: after the prepara-
tion phase B′ either aborts, or else produces an auxiliary output θ̂ ∈ {+,×}n.
Moreover, the joint state of A,B′ (after θ̂ has been output) is statistically in-
distinguishable from a state for which it holds that for any fixed values of θ,
θ̂ and z, for any subset I ⊆ {1, . . . , n}, and for any x|Ī

H∞
(
X |I

∣∣X |Ī = x|Ī
)
≥ dH

(
θ|I , θ̂|I

)
− βn and H0

(
ρER

)
≤ βn (1)

where ρER is the pointwise purification of ρE with respect to X.
2. B̂′’s running-time is polynomial in the running-time of B′.

4.2 From Benign to Computational Security

We show a generic compiler which transforms any BB84-type protocol into a new
quantum protocol for the same task. The compiler achieves that if the original
protocol is unconditionally secure against dishonest Alice and unconditionally
secure against benign Bob, then the compiled protocol is still unconditionally
secure against dishonest Alice and it is computationally secure against arbitrary
dishonest Bob.

The idea behind the construction of the compiler is to incorporate a commit-
ment scheme and force Bob to behave benignly by means of a commit-and-open

3 The reason why we consider the pointwise purification of ρE is to prevent Bob from
artificially blowing up H0(ρER) by locally generating a large mixture or storing an
unrelated mixed input state.
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procedure. Figure 2 shows the compilation of an arbitrary BB84-type proto-
col Π . The quantum communication is increased from n to m = n/(1 − α)
qubits, where 0 < α < 1 is some additional parameter that can be arbitrarily
chosen. The compiled protocol also requires 3 more rounds of interaction.

Protocol Cα(Π)

Preparation: A chooses x ∈R {0, 1}m and θ ∈R {+,×}m and sends |x〉θ to B.
Then, B chooses θ̂ ∈R {+,×}m and obtains x̂ ∈ {0, 1}m by measuring |x〉θ in
basis θ̂.

Verification: 1. B commits to θ̂ and x̂ position-wise: ci : = Commit
(
(θ̂i, x̂i), ri

)
with randomness ri for i = 1, . . . , m. He sends the commitments to A.

2. A sends a random test subset T ⊂ {1, . . . , m} of size αm. B opens ci for
all i ∈ T , and A checks that the openings were correct and that xi = x̂i

whenever θi = θ̂i. If all tests are passed, A accepts, otherwise, she rejects
and aborts.

3. The tested positions are discarded by both parties: A and B restrict x and
θ, respectively θ̂ and x̂, to i ∈ T̄ .

Post-processing: As in Π (with x, θ, x̂ and θ̂ restricted to the positions i ∈ T̄ ).

Fig. 2. Compiled protocol Cα(Π)

We need to specify what kind of commitment scheme to use. In order to pre-
serve unconditional security against dishonest Alice, the commitment scheme
needs to be unconditionally hiding, and so can at best be computationally bind-
ing. However, for a plain computationally binding commitment scheme, we do
not know how to reduce the computational security of Cα(Π) against dishonest
Bob to the computational binding property of the commitment scheme.4 There-
fore, we use a commitment scheme with additional properties: we require a keyed
commitment scheme Commitpk, where the corresponding public key pk is gener-
ated by one of two possible key-generation algorithms: GH or GB. For a key pkH
generated by GH, the commitment scheme CommitpkH is unconditionally hiding,
whereas the other generator, GB, actually produces a key pair (pkB, sk), so that
the secret key sk allows to efficiently extract m from CommitpkB(m, r), and as
such CommitpkB is unconditionally binding. Furthermore, we require pkH and pkB
to be computationally indistinguishable, even against quantum attacks. We call
such a commitment scheme a dual-mode commitment scheme.5 As a candidate
for implementing such a system, we propose the public-key encryption scheme of
Regev [16], which is based on a worst-case lattice assumption and is not known

4 Classically, this would be done by a rewinding argument, but this fails to work for
a quantum Bob.

5 The notions of dual-mode cryptosystems and of meaningful/meaningless encryptions,
as introduced in [15] and [12], are similar in spirit but differ slightly technically.
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to be breakable even by (efficient) quantum algorithms. Regev does not explic-
itly state that the scheme has the property we need, but this is implicit in his
proof that the underlying computational assumption implies semantic security.
For simplicity and efficiency, we consider the common-reference-string model,
and we assume the key pkB for the commitment scheme, generated according
to GB, to be contained in the CRS. We sketch in Section 6 how to avoid the
CRS model, at the cost of a non constant-round construction where the parties
generate the CRS jointly by means of a coin-tossing protocol (see [9] for details).

We sometimes write Cα
pkH(Π) for the compiled protocol Cα(Π) to stress that

a key pkH produced by GH is used for the dual-mode commitment scheme, and
we write Cα

pkB(Π) when a key pkB produced by GB is used instead.

Theorem 4.2. Let Π be a BB84-type protocol, unconditionally secure against
dishonest Alice and against β-benign Bob for some constant β > 0. Consider the
compiled protocol Cα(Π) for an arbitrary α > 0, where the commitment scheme
is instantiated by a dual-mode commitment scheme as described above. Then,
Cα(Π) is unconditionally secure against dishonest Alice and computationally se-
cure against dishonest Bob in the CRS model.

We now prove this theorem, which assumes noise-free quantum communication;
we explain in Section 4.4 how to generalize it for a noisy quantum channel.
Correctness and unconditional security against dishonest Alice are obvious; the
latter is due to the unconditional hiding property of the commitment scheme. As
for computational security against dishonest Bob, according to Definition 3.4, we
need to prove that for every real-world adversary B′ ∈ Bpoly attacking Cα(Π),
there exists a suitable ideal-world adversary B̂′ ∈ Bpoly attacking F such that

out
Cα(Π)
A,B′

q
≈ outF

Â,B̂′ .

First, note that by the computational indistinguishability of pkH and pkB,

out
Cα(Π)
A,B′ = out

Cα
pkH(Π)

A,B′
q
≈ out

Cα
pkB(Π)

A,B′ . (2)

Then, we construct an adversary B′◦ ∈ Bpoly who attacks the unconditional
security against benign Bob of protocol Π , and which satisfies

out
Cα
pkB(Π)

A,B′ = outΠA◦,B′◦
, (3)

where A◦ honestly executes Π . We define B′
◦ in the following way. Consider

the execution of Cα(Π) between A and B′. We split A into two players A◦ and
Ã, where we think of Ã as being placed in between A◦ and B′, see Figure 3.
A◦ plays honest Alice’s part of Π while Ã acts as follows: It receives n qubits
from A◦, produces αn/(1 − α) random BB84 qubits of its own and interleaves
them randomly with those received and sends the resulting m = n/(1 − α)
qubits to B′. It then does the verification step of Cα(Π) with B′, asking to have
commitments corresponding to its own qubits opened. If this results in accept,
it lets A◦ finish the protocol with B′. Note that the pair (A◦, Ã) does exactly the
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same as A; however, we can also move the actions of Ã to Bob’s side, and define
B′
◦ as follows. B′

◦ samples (pkB, sk) according to GB and executes Π with A by
locally running Ã and B′, using pkB as CRS. If Ã accepts the verification then
B′
◦ outputs θ̂ ∈ {0, 1}n (as required from a benign Bob), obtained by decrypting

the unopened commitments with the help of sk; else, B′
◦ aborts at this point. It

is now clear that Equation (3) holds: exactly the same computation takes place
in both “experiments”, the only difference being that they are executed partly
by different entities. The last step is to show that

outΠA◦,B′◦

s≈ outF
Â,B̂′ , (4)

for some B̂′. It is clear that the theorem follows from (2) - (4) together.

A◦ Ã B′
Π

Cα(Π)

A

B′
◦

Fig. 3. Constructing an attacker B′
◦ against Π from an attacker B′ against Cα(Π)

Now (4) actually claims that Â, B̂′ successfully simulate A◦ and B′◦ executing
Π , and this claim follows by assumption of benign security of Π if we show that
B′◦ is β-benign according to Definition 4.1 for any β > 0. We show this in the
following subsection, i.e., the joint state of A◦,B′

◦ after the preparation phase is
statistically indistinguishable from a state ρIdeal which satisfies the bounds (1)
from Definition 4.1.

4.3 Completing the Proof: Bounding Entropy and Memory Size

First recall that A◦ executing Π with B′
◦ can equivalently be thought of as A

executing Cα
pkB(Π) with B′. Furthermore, a joint state of A,B′ is clearly also a

joint state of A◦,B′
◦.

To show the existence of ρIdeal as promised above, it therefore suffices to
show such a state for A,B′. In other words, we need to show that the execution
of Cα

pkB(Π) with honest Alice A and arbitrarily dishonest Bob B′ will, after verifi-
cation, be close to a state where (1) holds. To show this closeness, we consider an
equivalent EPR-pair version, where Alice creates m EPR pairs (|00〉+ |11〉)/

√
2,

sends one qubit in each pair to Bob and keeps the others in register A. Alice mea-
sures her qubits only when needed: she measures the qubits within T in Step 2
of the verification phase, and the remaining qubits at the end of the verification
phase. With respect to the information Alice and Bob obtain, this EPR version
is identical to the original protocol Cα

pkB(Π): the only difference is the point in
time when Alice obtains certain information. Furthermore, we can also do the
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following modification without affecting (1). Instead of measuring her qubits in
T in her basis θ|T , she measures them in Bob’s basis θ̂|T ; however, she still ver-
ifies only whether xi = x̂i for those i ∈ T with θi = θ̂i. Because the positions
i ∈ T with θi �= θ̂i are not used in the protocol at all, this change has no effect.
As the commitment scheme is unconditionally binding if key pkB is used, Bob’s
basis θ̂ is well defined by his commitments (although hard to compute), even if
Bob is dishonest. The resulting scheme is given in Figure 4.

Protocol EPR-Cα
pkB(Π)

Preparation: A prepares m EPR pairs and sends the second qubit in each pair
to Bob while keeping the others in register A = A1 · · ·Am. B chooses θ̂ ∈R

{+,×}m and obtains x̂ ∈ {0, 1}m by measuring the received qubits in basis θ̂.
Verification: 1. B commits to θ̂ and x̂ position-wise: ci : = Commit

(
(θ̂i, x̂i), ri

)
with randomness ri for i = 1, . . . , m. He sends the commitments to A.

2. A sends a random test subset T ⊂ {1, . . . , m} of size αm. B opens ci for
all i ∈ T . A chooses θ ∈R {+,×}m, measures registers Ai with i ∈ T in
basis θ̂i to obtain xi, and she checks that the openings were correct and
that xi = x̂i whenever θi = θ̂i for i ∈ T . If all tests are passed, A accepts,
otherwise, she rejects and aborts the protocol.

3. A measures the remaining registers in basis θ|T̄ to obtain x|T̄ . The tested
positions are discarded by both parties: A and B restrict x and θ, respec-
tively θ̂ and x̂, to the positions i ∈ T̄ .

Post-processing: As in Π (with x, θ, x̂ and θ̂ restricted to the positions i ∈ T̄ ).

Fig. 4. EPR version of Cα
pkB(Π)

We consider an execution of the scheme from Figure 4 with an honest Alice A
and a dishonest Bob B′, and we fix θ̂ and x̂, determined by Bob’s commitments.
Let |ϕAE〉 ∈ HA ⊗ HE be the state of the joint system right before Step 2
of the verification phase. Since in the end, we are anyway interested in the
pointwise purification of Bob’s state, we may indeed assume this state to be
pure; if it is not, then we purify it and carry the purifying register R along with
E. Clearly, if B′ had honestly done his measurements then |ϕAE〉 = |x̂〉θ̂ ⊗ |ϕE〉
for some |ϕE〉 ∈ HE . In this case, the quantum memory E would be empty:
H0(|ϕE〉〈ϕE |) = 0. Moreover, X , obtained by measuring A|T̄ in basis θ|T̄ , would
contain dH(θ|T̄ , θ̂|T̄ ) random bits. We show that the verification phase enforces
these properties, at least approximately in the sense of (1), for an arbitrary
dishonest Bob B′.

In the following, rH(·, ·) denotes the relative Hamming distance between two
strings, i.e., the Hamming distance divided by their length. Recall that T ⊂
{1, . . . ,m} is random subject to |T | = αm. Furthermore, for a fixed θ̂ but a
randomly chosen θ, the subset T ′ = {i ∈ T : θi = θ̂i} is a random subset
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(of arbitrary size) of T . Let the random variable Test describe the choice of
test = (T, T ′) as specified above, and consider the state

ρTestAE = ρTest ⊗ |ϕAE〉〈ϕAE | =
∑
test

PTest(test)|test〉〈test| ⊗ |ϕAE〉〈ϕAE |

consisting of the classical Test and the quantum state |ϕAE〉.

Lemma 4.3. For any ε > 0, x̂ ∈ {0, 1}m and θ̂ ∈ {+,×}m, the state ρTestAE is
negligibly close (in m) to a state

ρ̃TestAE =
∑
test

PTest(test)|test〉〈test| ⊗
∣∣ϕ̃test

AE

〉〈
ϕ̃test

AE

∣∣
where for any test = (T, T ′):∣∣ϕ̃test

AE

〉
=
∑

x∈Btest

αtest
x |x〉θ̂|ψ

x
E〉

for Btest = {x ∈ {0, 1}m | rH(x|T̄ , x̂|T̄ ) ≤ rH(x|T ′ , x̂|T ′) + ε} and arbitrary coef-
ficients αtest

x ∈ C.

In other words, we are close to a situation where for any choice of T and T ′

and for any outcome x|T when measuring A|T in basis θ̂|T , the relative error
rH(x|T ′ , x̂|T ′) gives an upper bound (which holds with probability 1) on the
relative error rH(x|T̄ , x̂|T̄ ) one would obtain by measuring the remaining sub-
systems Ai with i ∈ T̄ in basis θ̂i.

Proof. For any test we let |ϕ̃test
AE〉 be the renormalized projection of |ϕAE〉 into

the subspace span{|x〉θ̂ |x ∈ Btest} ⊗ HE and let |ϕ̃test⊥
AE 〉 be the renormal-

ized projection of |ϕAE〉 into the orthogonal complement, such that |ϕAE〉 =
εtest|ϕ̃test

AE〉 + ε⊥test|ϕ̃test⊥
AE 〉 with εtest = 〈ϕ̃test

AE |ϕAE〉 and ε⊥test = 〈ϕ̃test⊥
AE |ϕAE〉. By

construction, |ϕ̃test
AE〉 is of the form required in the statement of the lemma. A

basic property of the trace norm of pure states gives

δ
(
|ϕAE〉〈ϕAE |,

∣∣ϕ̃test
AE

〉〈
ϕ̃test

AE

∣∣) =
√

1− |
〈
ϕ̃test

AE

∣∣ϕAE

〉
|2 = |ε⊥test| .

This last term corresponds to the square root of the probability, when given
test, to observe a string x �∈ Btest when measuring subsystem A of |ϕAE〉 in
basis θ̂. Furthermore, using elementary properties of the trace norm and Jensen’s
inequality gives

δ
(
ρTestAE , ρ̃TestAE

)2 =
(∑

test

PTest(test) δ
(
|ϕAE〉〈ϕAE |,

∣∣ϕ̃test
AE

〉〈
ϕ̃test

AE

∣∣))2

=
(∑

test

PTest(test) |ε⊥test|
)2

≤
∑
test

PTest(test) |ε⊥test|2 ,
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where the last term is the probability to observe a string x �∈ Btest when choosing
test according to PTest and measuring subsystem A of |ϕAE〉 in basis θ̂. This
situation, though, is a classical sampling problem, for which it is well known
that for any measurement outcome x, the probability (over the choice of test)
that x �∈ Btest is negligible in m (see e.g. [11]). %&

In combination with Lemma 2.3 on “small superpositions of product states”, and
writing h for the binary entropy function h(μ) = −

(
μ log(μ)+(1−μ) log(1−μ)

)
as well as using that

∣∣{y ∈ {0, 1}n | dH(y, ŷ) ≤ μn}
∣∣ ≤ 2h(μ)n for any ŷ ∈ {0, 1}n

and 0 ≤ μ ≤ 1
2 , we can conclude the following (the proof is given in [3]).

Corollary 4.4. Let ρ̃TestAE be of the form as in Lemma 4.3 (for given ε, x̂

and θ̂). For any fixed test = (T, T ′) and for any fixed x|T ∈ {0, 1}αm with
err := rH(x|T ′ , x̂|T ′) ≤ 1

2 , let |ψAE〉 be the state to which |ϕ̃test
AE〉 collapses when

for every i ∈ T subsystem Ai is measured in basis θ̂i and xi is observed, where we
understand A in |ψAE〉 to be restricted to the registers Ai with i ∈ T̄ . Finally, let
σE = trA(|ψAE〉〈ψAE |) and let the random variable X describe the outcome when
measuring the remaining n = (1−α)m subsystems of A in basis θ|T̄ ∈ {+,×}n.
Then, for any subset I ⊆ {1, . . . , n} and any x|I ,6

H∞
(
X |I

∣∣X |Ī = x|Ī
)
≥ dH

(
θ|I , θ̂|I

)
−h(err+ε)n and H0

(
σE

)
≤ h(err+ε)n .

Thus, the number of errors between the measured x|T ′ and the given x̂|T ′ gives
us a bound on the min-entropy of the outcome when measuring the remaining
subsystems of A, and on the max-entropy of the state of subsystem E.

The claim to be shown now follows by combining Lemma 4.3 and Corollary 4.4.
Indeed, the ideal state ρIdeal we promised is produced by putting A and B′ in the
state ρ̃TestAE defined in Lemma 4.3, and running Steps 2 and 3 of the verification
phase. This state is negligibly close to the real state since by Lemma 4.3 we were
negligibly close to the real state before these operations. Corollary 4.4 guarantees
that (1) is satisfied.

4.4 In the Presence of Noise

In the description of the compiler Cα and in its analysis, we assumed the quan-
tum communication to be noise-free. Indeed, if the quantum communication is
noisy honest Alice is likely to reject an execution with honest Bob. It is straight-
forward to generalize the result to noisy quantum communication: In Step 2 in
the verification phase of Cα(Π), Alice rejects and aborts if the relative number
of errors between xi and x̂i for i ∈ T with θi = θ̂i exceeds the error probability
φ induced by the noise in the quantum communication by some small ε′ > 0.
By Hoeffding’s inequality [11], this guarantees that honest Alice does not reject
honest Bob except with exponentially small probability. Furthermore, proving
the security of this “noise-resistant” compiler goes along the exact same lines

6 Below, θ|I (and similarly θ̂|I) should be understood as first restricting the m-bit
vector θ to T̄ , and then restricting the resulting n-bit vector θ|T̄ to I : θ|I := (θ|T̄ )|I .
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as for the original compiler. The only difference is that when applying Corol-
lary 4.4, the parameter err has to be chosen as err = φ + ε′, so that (1) holds
for β = h(err + ε) = h(φ + ε′ + ε) and thus the claim of Theorem 4.2 hold for
any β > h(φ) (by choosing ε, ε′ > 0 small enough). This allows us to generalize
the results from the Section 5 to the setting of noisy quantum communication.

4.5 Bounded-Quantum-Storage Security

In this section we show that our compiler preserves security in the bounded-
quantum-storage model (BQSM). In this model, one of the players (Bob in our
case) is assumed be able to store only a limited number of qubits beyond a certain
point in the protocol. BQSM-secure OT and identification protocols are known
[4,7], but they can be efficiently broken if the memory bound does not hold.
Therefore, by the theorem below, applying the compiler produces protocols with
better security, namely the adversary needs large quantum storage and large
computing power to succeed.

Consider a BB84-type protocol Π , and for a constant 0 < γ < 1, let Bγ
bqsm(Π)

be the set of dishonest players B′ that store only γn qubits after a certain point
in Π , where n is the number of qubits sent initially. Protocol Π is said to be
unconditionally secure against γ-BQSM Bob, if it satisfies Definition 3.3 with
the restriction that the quantification is over all dishonest B′ ∈ Bγ

bqsm(Π).

Theorem 4.5. If Π is unconditionally secure against γ-BQSM Bob, then
Cα(Π) (for an 0 < α < 1) is unconditionally secure against γ(1−α)-BQSM Bob.

Proof. Exactly as in the proof of Theorem 4.2, given dishonest Bob B′ attacking
Cα(Π), we construct dishonest Bob B′◦ attacking the original protocol Π . The
only difference here is that we let B′

◦ generate the CRS “correctly” as pkH sam-
pled according to GH. It follows by construction of B′

◦ that out
Cα(Π)
A,B′ = outΠA◦,B′◦

.

Also, it follows by construction of B′
◦ that if B′ ∈ B

γ(1−α)
bqsm (Cα(Π)) then B′

◦ ∈
Bγ

bqsm(Π), since B′◦ requires the same amount of quantum storage as B′ but
communicates an α-fraction fewer qubits. It thus follows that there exists B̂′

such that outΠA◦,B′◦

s≈ outF
Â,B̂′ . This proves the claim. %&

5 Applications

5.1 Oblivious Transfer

We discuss a protocol that securely implements one-out-of-two oblivious transfer
of strings of length � (i.e. 1-2 OT�). In 1-2 OT�, the sender A sends two l-bit
strings s0 and s1 to the receiver B. B can choose which string to receive (sk)
but does not learn anything about the other one (s1−k). On the other hand, A
does not learn B’s choice bit k. The protocol is almost identical to the 1-2 OT1

introduced in [1], but uses hash functions instead of parity values to mask the
inputs s0 and s1. The resulting scheme, called 1-2 QOT�, is presented in Figure 5,
where F denotes a suitable family of universal hash functions with range {0, 1}�
(as specified in [4]). We assume that � = 	λn
 for some constant λ > 0.
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Protocol 1-2 QOT� :

Preparation: A chooses x ∈R {0, 1}n and θ ∈R {+,×}n and sends |x〉θ to B, and
B chooses θ̂ ∈R {0, 1}n and obtains x̂ ∈ {0, 1}n by measuring |x〉θ in basis θ̂.

Post-processing: 1. A sends θ to B.
2. B partitions all positions 1 ≤ i ≤ n in two subsets according to his choice

bit k ∈ {0, 1}: the “good” subset Ik := {i : θi = θ̂i} and the “bad” subset
I1−k := {i : θi = θ̂i}. B sends (I0, I1) to A.

3. A sends descriptions of f0, f1 ∈R F together with m0 := s0 ⊕ f0(x|I0) and
m1 := s1 ⊕ f1(x|I1).

4. B computes sk = mk ⊕ fk(x̂|Ik ).

Fig. 5. Protocol for String OT

Theorem 5.1. Protocol 1-2 QOT� is unconditionally secure against β-benign Bob
for any β < 1

8 −
λ
2 .

The proof and precise definition of OT security is given in [3]. By combining
Theorem 5.1 with Theorem 4.2, and the results of [4] (realizing that the same
analysis also applies to 1-2 QOT�) with Theorem 4.5, we obtain the following
hybrid-security result.

Corollary 5.2. Let 0 < α < 1 and λ < 1
8 . Then protocol Cα(1-2 QOT�) is

computationally secure against dishonest Bob and unconditionally secure against
γ(1−α)-BQSM Bob with γ < 1

4 − 2λ.

5.2 Password-Based Identification

We want to apply our compiler to the quantum password-based identification
scheme from [7]. Such an identification scheme allows a user A to identify herself
to server B by means of a common (possibly non-uniform and low-entropy)
password w ∈ W , such that dishonest A′ cannot delude honest server B with
probability better then trying to guess the password, and dishonest B′ learns no
information on A’s password beyond trying to guessing it and learn whether the
guess is correct or not.

In [7], using quantum-information-theoretic security definitions, the proposed
identification scheme was proven to be unconditionally secure against arbitrary
dishonest Alice and against quantum-memory-bounded dishonest Bob. In [10] it
was then shown that these security definitions imply simulation-based security
as considered here, with respect to the functionality FID given in Figure 6.7

7 Actually, the definition and proof from [7] guarantees security only for a slightly
weaker functionality, which gives some unfair advantage to dishonest A′ in case she
guesses the password correctly; however, as discussed in [10], the protocol from [7]
does implement functionality FID.
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Functionality FID: Upon receiving wA, wB ∈ W from user Alice and from server
Bob, respectively, FID outputs the bit y := (wA

?= wB) to Bob. In case Alice is
dishonest, she may choose wA =⊥ (where ⊥ ∈ W). For any choice of wA the bit
y is also output to dishonest Alice.

Fig. 6. The Ideal Password-Based Identification Functionality

We cannot directly apply our compiler to the identification scheme as given
in [7], since it is not a BB84-type protocol. The protocol does start with a
preparation phase in which Alice sends BB84 qubits to Bob, but Bob does not
measure them in a random basis but in a basis determined by his password
wB ∈ W ; specifically, Bob uses as basis the encoding c(wB) of wB with respect
to a code c : W → {+,×}n with “large” minimal distance. However, it is easy
to transform the original protocol from [7] into a BB84-type protocol without
affecting security: We simply let Bob apply a random shift κ to the code, which
Bob only announces to Alice in the post-processing phase, and then Alice and
Bob complete the protocol with the shifted code. The resulting protocol QID is
described in Figure 7, where F and G are suitable families of (strongly) universal
hash functions (we refer to [7] for the exact specifications). It is not hard to see
that this modification does not affect security as proven in [7] (and [10]).

Protocol QID :

Preparation: A chooses x ∈R {0, 1}n and θ ∈R {+,×}n and sends |x〉θ to B, and
B chooses θ̂ ∈R {0, 1}n and obtains x̂ ∈ {0, 1}n by measuring |x〉θ in basis θ̂.

Post-processing: 1. B computes a string κ ∈ {+,×}n such that θ̂ = c(w)⊕κ (we
think of + as 0 and × as 1 so that ⊕ makes sense). He sends κ to A and
we define c′(w) := c(w) ⊕ κ.

2. A sends θ and f ∈R F to B. Both compute Iw := {i : θi = c′(w)i}.
3. B sends g ∈R G.
4. A sends z := f(x|Iw ) ⊕ g(w) to B.
5. B accepts if and only if z = f(x̂|Iw ) ⊕ g(w).

Fig. 7. Protocol for Secure Password-Based Identification

Theorem 5.3. If the code c : W → {+,×}n can correct at least δn errors in
polynomial-time for a constant δ, then protocol QID is unconditionally secure
against β-benign Bob for any β < δ

4 .

Proof. For any given benign Bob B′, we construct B̂′ as follows. B̂′ runs locally
a copy of B′ and simulates Alice’s actions by running A faithfully except for the
following modifications. After the preparation phase, B̂′ gets θ̂ and κ from B′ and
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attempts to decode θ̂⊕ κ. If this succeeds, it computes w′ such that c(w′) is the
decoded codeword. Otherwise an arbitrary w′ is chosen. Then, B̂′ submits w′ as
Bob’s input wB to FID and receives output y ∈ {0, 1}. If y = 1 then B̂′ faithfully
completes A’s simulation using w′ as w; else, B̂′ completes the simulation by
using a random z′ instead of z. In the end, B̂′ outputs whatever B′ outputs.

We need to show that the state output by B̂′ (respectively B′) above is sta-
tistically close to the state output by B′ when executing QID with real A. Note
that if w′ = wA, then the simulation of A is perfect and thus the two states
are equal. If w′ �= wA then the simulation is not perfect: the real A would use
z = f(x|IwA

)⊕g(wA) instead of random z′. It thus suffices to argue that f(x|Iw )
is statistically close to random and independent of the view of B′ for any fixed
w �= w′. Note that this is also what had to be proven in [7], but under a different
assumption, namely that B′ has bounded quantum memory, rather than that he
is benign; nevertheless, we can recycle part of the proof.

Recall from the definition of a benign Bob that the common state after the
preparation phase is statistically close to a state for which it is guaranteed that
H∞(X |I) ≥ dH(θ|I , θ̂|I)−βn for any I ⊆ {1, . . . , n}, and H0(ρER) ≤ βn. By the
closeness of these two states, switching from the real state to the “ideal” state
(which satisfies these bounds) has only a negligible effect on the state output by
B̂′; thus, we may assume these bounds to hold.

Now, if decoding of θ̂ ⊕ κ succeeded, it is at Hamming distance at most δn
from c(w′). Since the distance from here to the (distinct) codeword c(w) is greater
than 2δn, we see that θ̂ ⊕ κ is at least δn away from c(w). The same is true if
decoding failed, since then θ̂⊕κ is at least δn away from any codeword. It follows
that c′(w) = c(w) ⊕ κ has Hamming distance at least δn from θ̂. Furthermore,
for arbitrary ε > 0 and except with negligible probability, the Hamming distance
between θ|Iw = c′(w)|Iw and θ̂|Iw is at least essentially (δ/2 − ε)n. Therefore,
we can conclude that H∞(X |Iw ) ≥ (δ/2 − ε − β)n and H0(ρER) ≤ βn. But
now, if such bounds hold such that H∞(X |Iw )−H0(ρER) is positive and linear
in n, which is the case here by the choice of parameters, then we can step into
the proof from [7] and conclude by privacy amplification [17] that z is close to
random and independent of E. This finishes the proof. %&

By combining Theorem 5.3 with Theorem 4.2, and the results of [7] with Theo-
rem 4.5, we obtain the following hybrid-security result.

Corollary 5.4. Let 0 < α < 1 and |W| ≤ 2νn. If the code c : W → {+,×}n
can correct δn errors for a constant δ > 0 in polynomial-time, then protocol
Cα(QID) is computationally secure against dishonest Bob and unconditionally
secure against γ(1−α)-BQSM Bob with γ < δ

2 − ν.

Families of codes as required in these results, correcting a constant fraction of
errors efficiently and with constant information rate are indeed known, see [18].

In the full version [3], we discuss how to obtain hybrid security against man-
in-the-middle attacks by means of incorporating the techniques used in [7] to
obtain security in the BQSM against such attacks.
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6 Doing without a Common Reference String

We can get rid of the CRS assumption by instead generating a reference string
from scratch using a coin-flip protocol. In [9], such a coin-flip protocol is de-
scribed and proved secure against quantum adversaries using Watrous’ quantum
rewinding method [19]. Note that for our compiler, we want the CRS to be an
unconditionally hiding public key, and when using Regev’s cryptosystem, a uni-
formly random string (as output by the coin-flip) does indeed determine such a
key, except with negligible probability.
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Abstract. In 1999, Coron, Naccache and Stern discovered an existential
signature forgery for two popular rsa signature standards, iso/iec 9796-
1 and 2. Following this attack iso/iec 9796-1 was withdrawn. iso/iec

9796-2 was amended by increasing the message digest to at least 160
bits. Attacking this amended version required at least 261 operations.

In this paper, we exhibit algorithmic refinements allowing to attack
the amended (currently valid) version of iso/iec 9796-2 for all modulus
sizes. A practical forgery was computed in only two days using 19 servers
on the Amazon ec2 grid for a total cost of � us$800. The forgery was
implemented for e = 2 but attacking odd exponents will not take longer.
The forgery was computed for the rsa-2048 challenge modulus, whose
factorization is still unknown.

The new attack blends several theoretical tools. These do not change
the asymptotic complexity of Coron et al.’s technique but significantly
accelerate it for parameter values previously considered beyond reach.

While less efficient (us$45,000), the acceleration also extends to emv

signatures. emv is an iso/iec 9796-2-compliant format with extra redun-
dancy. Luckily, this attack does not threaten any of the 730 million emv

payment cards in circulation for operational reasons.
Costs are per modulus: after a first forgery for a given modulus, ob-

taining more forgeries is virtually immediate.

Keywords: digital signatures, forgery, rsa, public-key cryptanalysis,
iso/iec 9796-2, emv.

1 Introduction

rsa [34] is certainly the most popular public-key cryptosystem. A chosen-cipher-
text attack against rsa textbook encryption was described by Desmedt and

S. Halevi (Ed.): CRYPTO 2009, LNCS 5677, pp. 428–444, 2009.
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Odlyzko in [17]. In rsa textbook encryption, a message m is simply
encrypted as:

c = me mod N

where N is the rsa modulus and e is the public exponent.
As noted in [31], Desmedt and Odlyzko’s attack also applies to rsa signatures:

σ = μ(m)d mod N

where μ(m) is an encoding function and d the private exponent. Desmedt and
Odlyzko’s attack only applies if the encoding function μ(m) produces integers
much smaller than N . In which case, one obtains an existential forgery under a
chosen-message attack. In this attack the opponent can ask for signatures of any
messages of his choosing before computing, by his own means, the signature of a
(possibly meaningless) message which was never signed by the legitimate owner
of d.

As of today, two encoding function species co-exist:

1. Ad-hoc encodings are “handcrafted” to thwart certain classes of attacks.
While still in use, ad-hoc encodings are currently being phased-out. pkcs#1
v1.5 [26], iso/iec 9796-1 [22] and iso/iec 9796-2 [23,24] are typical ad-hoc
encoding examples.

2. Provably secure encodings are designed to make cryptanalysis equivalent to
inverting rsa (possibly under additional assumptions such as the Random
Oracle Model [2]). oaep [3] (for encryption) and pss [4] (for signature) are
typical provably secure encoding examples.

For ad-hoc encodings, there is no guarantee that forging signatures is as hard as
inverting rsa. And as a matter of fact, many such encodings were found to be
weaker than the rsa problem. We refer the reader to [8,11,10,25,15,20] for a few
characteristic examples. It is thus a practitioner’s rule of thumb to use provably
secure encodings whenever possible. Nonetheless, ad-hoc encodings continue to
populate hundreds of millions of commercial products (e.g. emv cards) for a
variety of practical reasons. A periodic re-evaluation of such encodings is hence
necessary.

iso/iec 9796-2 is a specific μ-function standardized by iso [23]. In [16], Coron,
Naccache and Stern discovered an attack against iso/iec 9796-2. Their attack
is an adaptation of Desmedt and Odlyzko’s cryptanalysis which could not be
applied directly since in iso/iec 9796-2, the encoding μ(m) is almost as large
as N . iso/iec 9796-2 can be used with hash-functions of diverse digest-sizes
kh. Coron et al. estimated that attacking kh = 128 and kh = 160 will require
(respectively) 254 and 261 operations. After Coron et al.’s publication iso/iec

9796-2 was amended and the current official requirement (see [24]) is kh ≥ 160.
It was shown in [13] that iso/iec 9796-2 can be proven secure (in the random
oracle model) for e = 2 and if the digest size kh is a least 2/3 the size of the
modulus.

In this paper, we describe an improved attack against the currently valid
(amended) version of iso/iec 9796-2, that is for kh = 160. The new attack
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applies to emv signatures as well. emv is an iso/iec 9796-2-compliant format
with extra redundancy. The attack is a Coron et al. forgery with new refinements:
better message choice, Bernstein’s smoothness detection algorithm (instead of
trial division), large prime variant and optimized exhaustive search.

Using these refinements, a forgery for iso/iec 9796-2 was computed in only
two days, using a few dozens of servers on the Amazon ec2 grid, for a total cost
of us$800. The forgery was implemented for e = 2 but attacking odd exponents
will not take longer. We estimate that under similar conditions an emv signa-
ture forgery would cost us$45,000. Note that all costs are per modulus. After
computing a first forgery for a given N , additional forgeries come at a negligible
cost.

2 The iso/iec 9796-2 Standard

iso/iec 9796-2 is an encoding standard allowing partial or total message recovery
[23,24]. Here we consider only partial message recovery. As we have already
mentioned, iso/iec 9796-2 can be used with hash-functions hash(m) of diverse
digest-sizes kh. For the sake of simplicity we assume that kh, the size of m and
the size of N (denoted k) are all multiples of 8; this is also the case in the emv

specifications.
The iso/iec 9796-2 encoding function is:

μ(m) = 6A16‖m[1]‖hash(m)‖BC16

where the message m = m[1]‖m[2] is split in two: m[1] consists of the k−kh−16
leftmost bits of m and m[2] represents all the remaining bits of m. The size of
μ(m) is therefore always k − 1 bits.

The original version of the standard recommended 128 ≤ kh ≤ 160 for partial
message recovery (see [23], §5, note 4). The new version of iso/iec 9796-2 [24]
requires kh ≥ 160. The emv specifications also use kh = 160.

3 Desmedt-Odlyzko’s Attack

In Desmedt and Odlyzko’s attack [31] (existential forgery under a chosen-message
attack), the forger asks for the signature of messages of his choice before comput-
ing, by his own means, the signature of a (possibly meaningless) message that
was never signed by the legitimate owner of d. In the case of Rabin-Williams
signatures (see the full version of the paper [12]), it may even happen that the
attacker factors N ; i.e. a total break.

The attack only applies if μ(m) is much smaller than N and works as follows:

1. Select a bound B and let P = {p1, . . . , p�} be the list of all primes smaller
than B.

2. Find at least �+ 1 messages mi such that each μ(mi) is a product of primes
in P.
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3. Express one μ(mj) as a multiplicative combination of the other μ(mi), by
solving a linear system given by the exponent vectors of the μ(mi) with
respect to the primes in P.

4. Ask for the signatures of the mi for i �= j and forge the signature of mj .

In the following we assume that e is prime; this includes e = 2. We let τ be the
number of messages mi obtained at step 2. We say that an integer is B-smooth
if all its prime factors are smaller than B. The integers μ(mi) obtained at step
2 are therefore B-smooth and we can write for all messages mi, 1 ≤ i ≤ τ :

μ(mi) =
�∏

j=1

p
vi,j

j (1)

To each μ(mi) we associate the �-dimensional vector of the exponents modulo e:

V i = (vi,1 mod e, . . . , vi,� mod e)

Since e is prime, the set of all �-dimensional vectors modulo e forms a linear
space of dimension �. Therefore, if τ ≥ � + 1, one can express one vector, say
V τ , as a linear combination of the others modulo e, using Gaussian elimination,
which gives for all 1 ≤ j ≤ � :

V τ = Γ · e +
τ−1∑
i=1

βiV i

for some Γ = (γ1, . . . , γ�) ∈ Z�. That is,

vτ,j = γj · e +
τ−1∑
i=1

βi · vi,j

Then using (1), one obtains :

μ(mτ ) =
�∏

j=1

p
vτ,j

j =
�∏

j=1

p
γj ·e+

τ−1∑
i=1

βi·vi,j

j =

⎛⎝ �∏
j=1

p
γj

j

⎞⎠e

·
�∏

j=1

τ−1∏
i=1

p
vi,j ·βi

j

μ(mτ ) =

⎛⎝ �∏
j=1

p
γj

j

⎞⎠e

·
τ−1∏
i=1

⎛⎝ �∏
j=1

p
vi,j

j

⎞⎠βi

=

⎛⎝ �∏
j=1

p
γj

j

⎞⎠e

·
τ−1∏
i=1

μ(mi)βi

That is:

μ(mτ ) = δe ·
τ−1∏
i=1

μ(mi)βi , where we denote: δ =
�∏

j=1

p
γj

j (2)
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Therefore, we see that μ(mτ ) can be written as a multiplicative combination of
the other μ(mi). For rsa signatures, the attacker will ask for the signatures of
m1, . . . ,mτ−1 and forge the signature of mτ using the relation:

στ = μ(mτ )d = δ ·
τ−1∏
i=1

(
μ(mi)d

)βi = δ ·
τ−1∏
i=1

σβi

i mod N

In the full version of the paper [12] we describe the corresponding forgery for
Rabin-Williams signatures, where, in some cases, the attacker may even factor N .

The attack’s complexity depends on � and on the probability that the integers
μ(mi) are B-smooth. The reader is referred to the full version of the paper [12]
for a complexity analysis (see also [14]). In practice, the attack is feasible only
if the μ(mi) are relatively small (e.g. less than 200 bits).

4 Coron-Naccache-Stern’s Attack

In iso/iec 9796-2, the encoding function’s output μ(m) is as long as N . This
thwarts Desmedt and Odlyzko’s attack. Coron-Naccache-Stern’s workaround [16]
consisted in generating messages mi such that a linear combination ti of μ(mi)
and N is much smaller than N . Then, the attack can be applied to the integers
ti instead of μ(mi).

More precisely, Coron et al. observed that it is sufficient to find a constant a
and messages mi such that:

ti = a · μ(mi) mod N

is small, instead of requiring that μ(mi) is small. Namely, the factor a can be
easily dealt with by regarding a−1 mod N as an “additional factor” in μ(mi);
to that end we only need to add one more column in the matrix considered in
Section 3. In their attack Coron et al. used a = 28.

Obtaining a small a·μ(m) mod N is done in [16] as follows. From the definition
of iso/iec 9796-2:

μ(m) = 6A16 ‖ m[1] ‖ hash(m) ‖ BC16
= 6A16 · 2k−8 + m[1] · 2kh+8 + hash(m) · 28 + BC16

Euclidean division by N provides b and 0 ≤ r < N < 2k such that:

(6A16 + 1) · 2k = b ·N + r

Denoting N ′ = b ·N one can write:

N ′ = 6A16 · 2k + (2k − r)
= 6A16 ‖ N ′[1]‖N ′[0]

where N ′ is k + 7 bits long and N ′[1] is k − kh − 16 bits long.
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Consider the linear combination:

t = b ·N − a ·μ(m)
= N ′ − 28 ·μ(m)

By setting m[1] = N ′[1] we get:

t = 6A16 ‖ N ′[1] ‖ N ′[0]
− 6A16 ‖ m[1] ‖ hash(m)‖BC0016

= ���6A16 ‖���N ′[1] ‖ N ′[0]
−���6A16 ‖���N ′[1] ‖ hash(m)‖BC0016

= N ′[0]− (hash(m)‖BC0016) < 2kh+16

For kh = 160, the integer t is therefore at most 176-bits long.
The forger can thus modify m[2] (and therefore hash(m)), until he gets a

set of messages whose t-values are B-smooth and express one such μ(mτ ) as a
multiplicative combination of the others. As per the analysis in [16], attacking the
instances kh = 128 and kh = 160 requires (respectively) 254 and 261 operations.

5 The New Attack’s Building-Blocks

We improve the above complexities by using four new ideas: we accelerate
Desmedt-Odlyzko’s process using Bernstein’s smoothness detection algorithm
[6], instead of trial division; we also use the large prime variant [1]; moreover,
we modify Coron et al.’s attack by selecting better messages and by optimizing
exhaustive search to equilibrate complexities. In this section we present these
new building-blocks.

5.1 Bernstein’s Smoothness Detection Algorithm

Bernstein [6] describes the following algorithm for finding smooth integers.

Algorithm: Given prime numbers p1, . . . , p� in increasing order and positive
integers t1, . . . , tn, output the p�-smooth part of each tk:

1. Compute z ← p1 × · · · × p� using a product tree.
2. Compute z1 ← z mod t1, . . . , zn ← z mod tn using a remainder tree.
3. For each k ∈ {1, . . . , n}: Compute yk ← (zk)2

e

mod tk by repeated squaring,
where e is the smallest non-negative integer such that 22e ≥ tk.

4. For each k ∈ {1, . . . , n}: output gcd(tk, yk).

We refer the reader to [5] for a description of the product and remainder trees.

Theorem 1 (Bernstein). The algorithm computes the p�-smooth part of each
integer tk, in O(b log2 b log log b) time, where b is the number of input bits.
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In other words, given a list of nt integers ti < 2a and the list of the first � primes,
the algorithm will detect the B-smooth ti’s, where B = p�, in complexity:

O(b · log2 b · log log b)

where b = nt · a + � · log2 � is the total number of input bits.
When nt is very large, it becomes more efficient to run the algorithm k times,

on batches of n′
t = nt/k integers. We explain in the full version of the paper [12]

how to select the optimal n′
t, and derive the corresponding running time.

Bernstein recommends a number of speed-up ideas of which we used a few.
In our experiments we used the scaled remainder tree [7], which replaces most
division steps in the remainder tree by multiplications. This algorithm is fastest
when fft multiplications are done modulo numbers of the form 2α− 1: we used
this Mersenne fft multiplication as well, as implemented in Gaudry, Kruppa
and Zimmermann’s gmp patch [19]. Other optimizations included computing
the product z only once, and treating the prime 2 separately.

Bernstein’s algorithm was actually the main source of the attack’s improve-
ment. It proved - 1000 faster than the trial division used in [16].

5.2 The Large Prime Variant

An integer is semi-smooth with respect to y and z if its greatest prime factor
is ≤ y and all other factors are ≤ z. Bach and Peralta [1] define the function
σ(u, v), which plays for semi-smoothness the role played by Dickman’s ρ function
for smoothness (see the full version of the paper [12]): σ(u, v) is the asymptotic
probability that an integer n is semi-smooth with respect to n1/v and n1/u.

After an integer ti has had all its factors smaller than B stripped-off, if the
remaining factor ω is lesser than B2 then ω must be prime. This is very easy to
detect using Bernstein’s algorithm. As Bernstein computes the B-smooth part
zi of each ti, it only remains to check whether ti/zi is small enough. In most
cases it isn’t even necessary to perform the actual division since comparing the
sizes of ti and zi suffices to rule out most non-semi-smooth numbers.

Hence, one can use a second bound B2 such that B < B2 < B2 and keep the
ti’s whose remaining factor ω is ≤ B2, hoping to find a second ti with the same
remaining factor ω to divide ω out. We refer the reader to the full version of the
paper [12] for a detailed analysis of the large prime variant in our context.

5.3 Constructing Smaller a · μ(m) − b · N Candidates

In this paragraph we show how to construct smaller ti = a ·μ(mi)− b ·N values
for iso/iec 9796-2. Smaller ti-values increase smoothness probability and hence
accelerate the forgery process.

We write:

μ(x, h) = 6A16 · 2k−8 + x · 2kh+8 + h · 28 + BC16

where x = m[1] and h = hash(m), with 0 < x < 2k−kh−16.
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We first determine a, b > 0 such that the following two conditions hold:

0 < b ·N − a · μ(0, 0) < a · 2k−8 (3)
b ·N − a · μ(0, 0) = 0 mod 28 (4)

and a is of minimal size. Then by Euclidean division we compute x and r such
that:

b ·N − a · μ(0, 0) = (a · 2kh+8) · x + r

where 0 ≤ r < a · 2kh+8 and using (3) we have 0 ≤ x < 2k−kh−16 as required.
This gives:

b ·N − a · μ(x, 0) = b ·N − a · μ(0, 0)− a · x · 2kh+8 = r

Moreover as per (4) we must have r = 0 mod 28; denoting r′ = r/28 we obtain:

b ·N − a · μ(x, h) = r − a · h · 28 = 28 · (r′ − a · h)

where 0 ≤ r′ < a · 2kh . We then look for smooth values of r′ − a · h, whose size
is at most kh plus the size of a.

If a and b are both 8-bit integers, this gives 16 bits of freedom to satisfy
both conditions (3) and (4); heuristically each of the two conditions is satisfied
with probability - 2−8; therefore, we can expect to find such an {a, b} pair. For
example, for the rsa-2048 challenge, we found {a, b} to be {625, 332}; therefore,
for rsa-2048 and kh = 160, the integer to be smooth is 170-bits long (instead
of 176-bits in Coron et al.’s original attack). This decreases further the attack’s
complexity.

6 Attacking iso/iec 9796-2

We combined all the building-blocks listed in the previous section to compute
an actual forgery for iso/iec 9796-2, with the rsa-2048 challenge modulus. The
implementation replaced Coron et al.’s trial division by Bernstein’s algorithm,
replaced Coron et al.’s a · μ(m) − b ·N values by the shorter ti’s introduced in
paragraph 5.3 and took advantage of the large prime variant. Additional speed-
up was obtained by exhaustive searching for particular digest values. Code was
written in C++ and run on 19 Linux-based machines on the Amazon ec2 grid.
The final linear algebra step was performed on a single pc.

6.1 The Amazon Grid

Amazon.com Inc. offers virtualized computer instances for rent on a pay by the
hour basis, which we found convenient to run our computations. Various models
are available, of which the best-suited for cpu-intensive tasks, as we write these
lines, features 8 Intel Xeon 64-bit cores clocked at 2.4ghz supporting the Core2
instruction set and offering 7gb ram and 1.5tb disk space. Renting such a
capacity costs us$0.80 per hour (plus tax). One can run up to 20 such instances
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in parallel, and possibly more subject to approval by Amazon (20 were enough
for our purpose so we didn’t apply for more).

When an instance on the grid is launched, it starts up from a disk image
containing a customizable unix operating system. In the experiment, we ran a
first instance using the basic Fedora installation provided by default, installed
necessary tools and libraries, compiled our own programs and made a disk image
containing our code, to launch subsequent instances with. When an instance
terminates, its disk space is freed, making it necessary to save results to some
permanent storage means. We simply rsync’ed results to a machine of ours.
Note that Amazon also charges for network bandwidth but data transmission
costs were negligible in our case.

All in all, we used about 1,100 instance running hours (including setup and
tweaks) during a little more than two days. While we found the service to be
rather reliable, one instance failed halfway through the computation, and its
intermediate results were lost.

6.2 The Experiment: Outline, Details and Results

The attack can be broken down into the following elementary steps, which we
shall review in turn:

1. Determining the constants a, b, x, μ(x, 0) for the rsa-2048 challenge modulus
N .

2. Computing the product of the first � primes, for a suitable choice of �.
3. Computing the integers ti = bN − aμ(mi), and hence the sha-1 digests, for

sufficiently many messages mi.
4. Finding the smooth and semi-smooth integers amongst the ti’s.
5. Factoring the smooth integers, as well as the colliding pairs of semi-smooth

integers, obtaining the sparse, singular matrix of exponents, with � rows and
more than � columns.

6. Reducing this matrix modulo e = 2, with possible changes in the first row
(corresponding to the prime 2) depending on the Jacobi symbols (2|ti) and
(2|a).

7. Finding nontrivial vectors in the kernel of this reduced matrix and inferring
a forgery.

Steps 2–4 were executed on the Amazon ec2 grid, whereas all other steps were
run on one offline pc. Steps 3–4, and to a much lesser extent step 7, were the
only steps that claimed a significant amount of cpu time.

Determining the constants. The attack’s complexity doesn’t depend on the
choice of N . Since N has to be congruent to 5 mod 8 for Rabin-Williams signa-
tures, we used the rsa-2048 challenge. The resulting constants were computed
in sage [35]. We found the smallest {a, b} pair to be {625, 332}, and the μ(x, 0)
value given in the full version of the paper [12]. The integers ti = bN − aμ(x, hi)
are thus at most 170-bits long.
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Product of the first primes. The optimal choice of � for 170 bits is about
221. Since the Amazon instances are memory-constrained (less than 1gb of ram

per core), we preferred to use � = 220. This choice had the additional advantage
of making the final linear algebra step faster, which is convenient since this step
was run on a single off-line pc. Computing the product of primes itself was done
once and for all in a matter of seconds using mpir.

Hashing. Since the attack’s smoothness detection part works on batches of
ti’s (in our cases, we chose batches of 219 integers), we had to compute digests
of messages mi in batches as well. The messages themselves are 2048-bit long,
i.e. as long as N , and comply with the structure indicated in the full version of
the paper [12]: a constant 246-byte prefix followed by a 10-byte seed. The first
two bytes identify a family of messages examined on a single core of one Amazon
instance, and the remaining eight bytes are explored by increments of 1 starting
from 0.

Messages were hashed using Openssl’s sha-1 implementation. For each mes-
sage, we only need to compute one sha-1 block, since the first three 64-byte
blocks are fixed. This computation is relatively fast compared to Bernstein’s al-
gorithm, so we have a bit of leeway for exhaustive search. We can compute a
large number of digests, keeping the ones likely to give rise to a smooth ti. We
did this by selecting digests for which the resulting ti would have many zeroes
as leading and trailing bits.

More precisely, we looked for a particular bit pattern at the beginning and
at the end of each digest hi, such that finding n matching bits results in n
null bits at the beginning and at the end of ti. The probability of finding n
matching bits when we add the number of matches at the beginning and at the
end is (1+n/2) ·2−n, so we expect to compute 2n/(1+n/2) digests per selected
message. We found n = 8 to be optimal: on average, we need circa 50 digests to
find a match, and the resulting ti is at most 170−8 = 162 bit long (once powers
of 2 are factored out).

Note that faster (e.g. hardware-enhanced) ways to obtain digests can signifi-
cantly reduce the attack’s complexity (cf. the full version of the paper [12]). We
considered for example an fpga-based solution called copacobana [32], which
could in principle perform a larger amount of exhaustive search, and accelerate
the attack dramatically. It turned out that our attack was fast enough, hence
pursuing the hardware-assisted search idea further proved unnecessary, but a
practical attack on emv (cf. section 8) could certainly benefit from hardware
acceleration.

Finding smooth and semi-smooth integers. Once a batch of 219 appro-
priate ti’s is generated, we factor out powers of 2, and feed the resulting odd
numbers into our C++ implementation of Bernstein’s algorithm. This implemen-
tation uses the mpir multi-precision arithmetic library [21], which we chose over
vanilla gmp because of a number of speed improvements, including
J.W. Martin’s patch for the Core2 architecture. We further applied Gaudry,
Kruppa and Zimmermann’s fft patch, mainly for their implementation of
Mersenne fft multiplication, which is useful in the scaled remainder tree [7].
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We looked for B-smooth as well as for (B,B2)-semi-smooth ti’s, where B =
16,290,047 is the 220-th prime, and B2 = 227. Each batch took - 40 seconds to
generate and to process, and consumed about 500mb of memory. We ran 8 such
processes in parallel on each instance to take advantage of the 8 cores, and 19
instances simultaneously.

The entire experiment can be summarized as follows:

16,230,259,553,940
digest computations

↓
339,686,719,488 ti’s in

647,901 batches of 219 each
↙ ↘

684,365 366,302 collisions between
smooth ti’s 2,786,327 semi-smooth ti’s

↘ ↙
1,050,667-column matrix

↓
algebra on 839,908 columns
having > 1 nonzero entry

↓
124 kernel vectors

↓
forgery involving 432,903 signatures

Finding the 1,050,667 columns (slightly in excess of the � = 220 = 1,048,576
required) took a little over 2 days.

Factoring and finding collisions. The output of the previous stage is a large
set of text files containing the smooth and semi-smooth ti’s together with the
corresponding message numbers. Turning this data into a matrix suitable for
the linear algebra stage mostly involved text manipulation in Perl to convert it
to commands that could be piped into pari/gp [33]. The resulting 1,048,576×
1,050,667 matrix had 14,215,602 non-zero entries (13.5 per column on average,
or 10−5 sparsity; the columns derived from the large prime variant tend to have
twice as many non-zero entries, of course).

Linear algebra. We found non-zero kernel elements of the final sparse matrix
over GF(2) using Coppersmith’s block Wiedemann algorithm [9] implemented in
wlss2 [27,30], with parameters m = n = 4 and κ = 2. The whole computation
took 16 hours on one 2.7ghz personal computer, with the first (and longest) part
of the computation using 2 cores, and the final part using 4 cores.

The program discovered 124 kernel vectors with Hamming weights ranging
from 337,458 to 339,641. Since columns obtained from pairs of semi-smooth
numbers account for two signatures each, the number of signature queries re-
quired to produce the 124 corresponding forgeries is slightly larger, and ranges
between 432,903 and 435,859.



Practical Cryptanalysis of iso/iec 9796-2 and emv Signatures 439

Being written with the quadratic sieve in mind, the block Wiedemann algo-
rithm in wlss2 works over GF(2). There exist, however, other implementations
for different finite fields.

Evidencing forgery. An interesting question is that of exhibiting a compact
evidence of forgery. In the full version of the paper [12] we exhibit statistical
evidence that a multiplicative relation between iso/iec 9796-2 signatures, (i.e.
a forgery) was indeed constructed.

Fewer signature queries. In the full version of the paper [12] we address the
question of reducing the number of signature queries in the attack.

7 Cost Estimates

The experiment described in the previous section can be used as a benchmark to
estimate the attack’s cost as a function of the size of the ti’s, denoted a; this will
be useful for analyzing the security of the emv specifications, where a is bigger
(204 bits instead of 170 bits).

Table 1. Bernstein+Large prime variant. Estimated parameter trade-offs, running
times and costs, for various ti sizes.

a = log2 ti log2 � Estimated TotalTime log2 τ ec2 cost (us$)
64 11 15 seconds 20 negligible
128 19 4 days 33 10

160 21 6 months 38 470

170 22 1.8 years 40 1,620

176 23 3.8 years 41 3,300

204 25 95 years 45 84,000

232 27 19 centuries 49 1,700,000

256 30 320 centuries 52 20,000,000

Results are summarized in Table 1. We assume that the ti’s are uniformly
distributed a-bit integers and express costs as a function of a. Cost figures do
not include the linear algebra step whose computational requirements are very
low compared to the smoothness detection step. Another difference with our
experiment is that here we do not assume any exhaustive search on the ti’s; this
is why the cost estimate for a = 170 in Table 1 is about the double of the cost
of our experimental iso/iec 9796-2 forgery.

Running times are given for a single 2.4ghz pc. Costs correspond to the
Amazon ec2 grid, as in the previous section. Estimates show that the attack is
feasible up to - 200 bits, but becomes infeasible for larger values of a. We also
estimate log2 τ , where τ is the number of messages in the forgery.
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8 Application to emv Signatures

emv is a collection of industry specifications for the inter-operation of payment
cards, pos terminals and atms. The emv specifications [18] rely on
iso/iec 9796-2 signatures to certify public-keys and to authenticate data. For
instance, when an Issuer provides application data to a Card, this data must be
signed using the Issuer’s private key Si. The corresponding public-key Pi must
be signed by a Certification Authority (ca) whose public-key is denoted Pca.
The signature algorithm is rsa with e = 3 or e = 216 + 1. The bit length of all
moduli is always a multiple of 8.

emv uses special message formats; 7 different formats are used, depending
on the message type. We first describe one of these formats: the Static Data
Authentication, Issuer Public-key Data (sda-ipkd), and adapt our attack to it.
We then consider the other six formats.

8.1 emv Static Data Authentication, Issuer Public-key Data
(sda-ipkd)

We refer the reader to §5.1, Table 2, page 41 in emv [18]. sda-ipkd is used by
the ca to sign the issuer’s public-key Pi. The message to be signed is as follows:

m = 0216‖X‖Y ‖Ni‖0316

where X represents 6 bytes that can be controlled by the adversary and Y
represents 7 bytes that cannot be controlled. Ni is the Issuer’s modulus to be
certified. More precisely, X = id‖date where id is the issuer identifier (4 bytes)
and date is the Certificate Expiration Date (2 bytes); we assume that both can
be controlled by the adversary. Y = csn‖C where csn is the 3-bytes Certificate
Serial Number assigned by the ca and C is a constant. Finally, the modulus to
be certified Ni can also be controlled by the adversary.

With iso/iec 9796-2 encoding, this gives:

μ(m) = 6A0216‖X‖Y ‖Ni,1‖hash(m)‖BC16

where Ni = Ni,1‖Ni,2 and the size of Ni,1 is k − kh − 128 bits. k denotes the
modulus size and kh = 160 as in iso/iec 9796-2.

8.2 Attacking sda-ipkd

To attack sda-ipkd write:

μ(X,Ni,1, h) = 6A0216 · 2k1 + X · 2k2 + Y · 2k3 + Ni,1 · 2k4 + h

where Y is constant and h = hash(m)‖BC16. We have:⎧⎪⎪⎨⎪⎪⎩
k1 = k − 16
k2 = k1 − 48 = k − 64
k3 = k2 − 56 = k − 120
k4 = kh + 8 = 168
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Generate a random ka-bit integer a, where 36 ≤ ka ≤ 72, and consider the
equation:

b ·N − a · μ(X, 0, 0) = b ·N − a ·X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3)

If we can find integers X and b such that 0 ≤ X < 248 and:

0 ≤ b ·N − a · μ(X, 0, 0) < a · 2k3 (5)

then as previously we can compute Ni,1 by Euclidean division:

b ·N − a · μ(X, 0, 0) = (a · 2k4) ·Ni,1 + r (6)

where 0 ≤ Ni,1 < 2k3−k4 as required, and the resulting b · N − a · μ(X,Ni,1, h)
value will be small for all values of h.

In the above we assumed Y to be a constant. Actually the first 3 bytes of Y
encode the csn assigned by the ca, and may be different for each new certificate
(see the full version of the paper [12]). However if the attacker can predict the
csn, then he can compute a different a for every Y and adapt the attack by
factoring a into a product of small primes.

Finding small X and b so as to minimize the value of

|b ·N − a ·X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3)|

is a Closest Vector Problem (cvp) in a bi-dimensional lattice; a problem that
can be easily solved using the lll algorithm [28]. We first determine heuristically
the minimal size that can be expected; we describe the lll attack in the full
version of the paper [12].

Since a ·6A0216 ·2k1 is an (k+ka)-bit integer, with X - 248 and b - 2ka , odds
are heuristically reasonable to find X and b such that:

0 ≤ b ·N − a · μ(X, 0, 0) < 2(k+ka)−48−ka = 2k−48 - a · 2k−48−ka = a · 2k3+72−ka

which is (72− ka)-bit too long compared to condition (5). Therefore, by exhaus-
tive search we will need to examine roughly 272−ka different integers a to find
a pair (b,X) that satisfies (5); since a is ka-bits long, this can be done only if
72 − ka ≤ ka, which gives ka ≥ 36. For ka = 36 we have to exhaust the 236

possible values of a.
Once this is done we obtain from (6):

t = b ·N − a · μ(X,Ni,1, h) = r − a · h

with 0 ≤ r < a · 2k4 . This implies that the final size of t values is 168 + ka bits.
For ka = 36 this gives 204 bits (instead of 170 bits for plain iso/iec 9796-2).
The attack’s complexity will hence be higher than for plain iso/iec 9796-2.

In the full version of the paper [12] we exhibit concrete (a, b,X) values for
ka = 52 and for the rsa-2048 challenge; this required - 223 trials (109 minutes
on a single pc). We estimate that for ka = 36 this computation will take roughly
13 years on a single pc, or equivalently us$11,000 using the ec2 grid.
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Table 1 shows that attacking 204-bit ti’s would cost - us$84,000. As for the
iso/iec 9796-2 attack, we can decrease this cost by first doing exhaustive search
on the bits of hash(m) to obtain a smaller t-value. We found that with 8 bits
of exhaustive search cost drops to - us$45,000 (without the matrix step, but in
our attack algebra takes a relatively small amount of time).

8.3 Summary

In the full version of the paper [12] we provide an analysis of the other formats
in the emv specifications, with corresponding attacks when such attacks exist.
We summarize results in Table 2 where an X represents a string that can be
controlled by the adversary, while Y cannot be controlled. The size of the final
t-value to be smooth is given in bits. Note that cost estimates are cheaper than
Table 1 because we first perform exhaustive search on 8 bits of hash(m) =
sha-1(m); however here we do take into account the cost of computing these
sha-1(m) values.

Table 2. Various emv message formats. X denotes a data field controllable by the
adversary. Y is not controllable. Data sizes for X, Y and t are expressed in bits.

emv mode Format |X| |Y | |t| ec2 cost (us$)
sda-ipkd 0216‖X‖Y ‖Ni‖0316 48 56 204 45,000

sda-sad Y - k − 176 - -

odda-ipkd 0216‖X‖Y ‖Ni‖0316 48 56 204 45,000

odda-icc-pkd 0416‖X‖Y ‖Nicc‖0316‖data 96 56 204 45,000

odda-dad1 Y - k − 176 - -

odda-dad2 Y - k − 176 - -

icc-pin 0416‖X‖Y ‖Nicc‖0316 96 56 204 45,000

Table 2 shows that only four of the emv formats can be attacked, with the
same complexity as the sda-ipkd format. The other formats seem out of reach
because the non-controllable part Y is too large.

Note that these attacks do not threaten any of the 730 million emv payment
cards in use worldwide for operational reasons: the Issuer and the ca will never
accept to sign the chosen messages necessary for conducting the attack.

9 Conclusion

This paper exhibited a practically exploitable flaw in the currently valid iso/iec

9796-2 standard and a conceptual flaw in emv signatures. The authors recom-
mend the definite withdrawal of the ad-hoc encoding mode in iso/iec 9796-2
and its replacement by a provably secure encoding function such as pss.
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Abstract. RSA-FDH and many other schemes secure in the Random-
Oracle Model (ROM) require a hash function with output size larger than
standard sizes. We show that the random-oracle instantiations proposed
in the literature for such cases are weaker than a random oracle, including
the proposals by Bellare and Rogaway from 1993 and 1996, and the ones
implicit in IEEE P1363 and PKCS standards: for instance, we obtain
a 267 preimage attack on BR93 for 1024-bit digests. Next, we study
the security impact of hash function defects for ROM signatures. As an
extreme case, we note that any hash collision would suffice to disclose the
master key in the ID-based cryptosystem by Boneh et al. from FOCS ’07,
and the secret key in the Rabin-Williams signature for which Bernstein
proved tight security at EUROCRYPT ’08. Interestingly, for both of
these schemes, a slight modification can prevent these attacks, while
preserving the ROM security result. We give evidence that in the case of
RSA and Rabin/Rabin-Williams, an appropriate PSS padding is more
robust than all other paddings known.

1 Introduction

The Random-Oracle Model (ROM), in which hash functions are viewed as ran-
dom oracles, goes back to at least Fiat and Shamir [17]. Popularized by Bellare
and Rogaway [1], it has been the subject of much debate. On the one hand, it is
widespread in research papers and standards, because ROM schemes are usually
more efficient, their security proofs can be based on well-studied assumptions,
and can sometimes be tight. In fact, many standardized public-key schemes are,
at best, only proven secure in the ROM, e.g. RSA-OAEP [2] and RSA-PSS [3].

On the other hand, the ROM is not an assumption (on the hash function):
there is no random-oracle definition which a public function can hope to sat-
isfy. A security proof in the standard model (SM) precisely gives assumptions
which are sufficient to ensure security properties. By contrast, a ROM security
proof only shows that an attack which does not break the proof assumptions
must exploit a property not satisfied by the random-oracle simulation of the
security proof. This allowed Canetti et al. [10] to build signature and encryption
schemes which are secure in the ROM, but insecure for any (efficient) implemen-
tation of the random oracle, because such implementations can be simulated
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by a Universal Turing machine, and therefore be distinguished [33] from a ran-
dom oracle. However, the constructions [4, 10, 20, 33] showing the limitations
of the ROM are arguably “unnatural” and significantly differ from real-world
constructions. Still, one should be careful with idealized security models: like
all Merkle-Damg̊ard/Davies-Meyer hash functions, MD5 was provably collision-
resistant [7, 50] (up to the birthday bound) in the ideal cipher model (with
respect to the block cipher underlying the compression function); yet, comput-
ing MD5 collisions only costs a few seconds now [43].

This stresses the importance of studying the actual security of schemes proven
in the ROM. Unfortunately, very few ROM schemes have also been proven secure
in the SM [8, 42]; and for several cases, there is evidence that a security proof in
the SM is unlikely [15, 28, 34, 39]. Recent breakthroughs in the cryptanalysis of
hash functions [45, 47, 48] have shown that standard hash functions like MD5
or SHA-1 are far from behaving like random oracles. However, the impact on
the public-key world has been limited so far, with the exception of [45], which
constructs two colliding X.509 certificates for different identities and public keys,
and has recently been extended in [43] to construct a rogue CA certificate.

But to study the actual security, one needs to know how the random oracle will
be instantiated in practice, should the scheme ever be used. Often, the random-
oracle output size matches that of standard hash functions (like 160 bits for
SHA-1) or the upcoming SHA-3. In this case, standard hash functions are most
likely to be used, despite well-known properties of MD-iterated hash functions
(such as the derivation of h(m1||m2) from h(m1) and m2) which make them eas-
ily differentiable from random oracles. But RSA-FDH [3] and many other ROM
schemes (such as [6, 9, 12, 13, 19, 24, 27]) actually require a “non-standard”
hash function. First, the output may not be a uniformally distributed bitstring:
it could be residue classes, or elliptic curve points, etc., fortunately it is known
how to deal with such situations given an instantiation with arbitrary output
{0, 1}n. But if the output bit-length is larger than standard sizes (e.g. RSA-FDH
which needs at least 1024 bits), it is unclear how the oracle will be instantiated.
To the best of our knowledge, the only proposals of random-oracle instantiations
supporting arbitrary outbit bit-length are the following: two historical instan-
tiations proposed by Bellare and Rogaway in their seminal papers [1] (on the
ROM) and [3] (on FDH and PSS), recent constructions by Coron et al. in the full
version of [14], and the instantiations implicit in PKCS#1 v2.1 [41] and IEEE
P1363 [23] standards. It seems that none of these instantiations have been ana-
lyzed in the literature, except [14] in the indifferentiability framework of Maurer
et al. [33].

This also raises the question of the impact of potential defects in random-
oracle instantiations. When an article provides a ROM security proof, it usually
does not say how to instantiate the random oracle, neither what might happen
if the hash function does not behave like a random oracle. Assume that Alice
implements a scheme ROM-secure under a well-known computational assump-
tion. Several years later, the assumption still stands, but Alice learns that her
random-oracle implementation is not as perfect as she thought: Should Alice
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worry? Are the risks confined to chosen-message existential forgery and cipher-
text distinguishability? If Alice had the choice between two (equally efficient)
schemes secure in the ROM under the same assumption, maybe Alice would
rather choose the least risky one, in terms of robustness to hash function de-
fects: the scheme with less stringent security requirements on the hash function,
and the least affected if ever the requirements are not satisfied.

Our Results. We analyze the main proposals [1, 3, 23, 41] of random-oracle
instantiations supporting arbitrary output bit-length. While none of these pro-
posals made it clear what was exactly the expected security guarantee, one
might argue that an instantiation with output bit-length n should offer 2n/2

resistance to collisions, and 2n resistance to preimages, as required for SHA-3.
We show that the proposals fall short of those bounds: for instance, for 1024-bit
digests, we give a 267 preimage attack on BR93 [1] and a 2106 collision attack on
BR96 [3]. We note that the instantiations implicit in PKCS [41] and IEEE [23]
standards are not collision-resistant: independently of the output size, collisions
follow directly from SHA-1 collisions, which cost only 261 [26, 47]. And we show
that when applied to the compression functions of MD5 or SHA-1, the theoret-
ical constructions of Coron et al. [14] are no more collision-resistant than MD5
or SHA-1 themselves. This highlights the difficulty of instantiating/simulating a
random oracle, and motivates the study of the impact of hash defects on schemes
secure in the ROM.

As a second contribution, we show that, while the ROM is useful to detect
structural flaws, it can hide very different security requirements on the hash
function, and very different damages in case of hash defects, independently of
the computational assumption and the tightness of the security reduction. We
illustrate this phenomenon with a well-known class of ROM schemes: padding-
based signatures from trapdoor one-way functions, such as RSA, Rabin, Rabin-
Williams and ESIGN. While it is often believed that a hash collision may at
worst give rise to an existential forgery, we show that for several secure signa-
tures proposed in the literature [3, 6, 9, 19, 24], collisions or slight hash function
defects can have much more dramatic consequences, namely key-recovery at-
tacks. However, this does not contradict the ROM security proofs, and does not
mean that such signatures cannot be secure with a proper hash function. Our
most interesting examples are related to Rabin and Rabin-Williams signatures,
but the issues are not restricted to factoring-based schemes: in the full version,
we show similar problems for a recent lattice-based signature scheme [19]. For
instance, we remark that any hash collision discloses the master key in the ID-
based cryptosystem of Boneh et al. [9], and the secret key in the Rabin-Williams
signature scheme for which Bernstein [6] recently proved tight security, which
was not mentioned in either [6, 9]. Interestingly, we show that a slight modifica-
tion of the signing process can prevent our collision-based key-recovery attacks,
while preserving the ROM security result. We give evidence that in the case of
RSA and Rabin/Rabin-Williams, an appropriate PSS padding (with large salt)
is more robust than all other paddings known, especially deterministic ones and
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randomized paddings with small randomness, including Katz-Wang [27] which
achieve tightness.

To put things into perspective, consider the Rabin-Williams signature in-
cluded in the IEEE P1363 standard [23]: it can be optionally deterministic or
randomized, but the deterministic version has no tight reduction. Since tight-
ness was a key factor in standardizing RSA-PSS over RSA-FDH, one might
be tempted to replace this deterministic Rabin-Williams by its “tight” variant
analyzed by Bernstein [6], but doing so would have led to a chosen-message
key-recovery attack from any SHA-1 collision because such collisions provide
collisions on the RO-instantiation of the P1363 standard. Alternatively, there
would have also been a chosen-message key-recovery attack if IEEE P1363 had
simply used the BR93 RO-instantiation [1], due to the preimage attack.

Some of the problems we discuss are related to the issue of how to derandom-
ize a signature scheme. As a side-remark, we show that the derandomization
technique proposed by Granboulan [22] to fix ESIGN during the NESSIE Euro-
pean project is not completely sound: when applied to ESIGN or DSA, it may
leak the secret key. Finally, while this paper focuses on the ROM, we believe
that in general, not just in the ROM, it is also interesting to identify necessary
(possibly minimal) assumptions for security, and to assess the security impact
when assumptions do not hold. This is useful when comparing cryptographic
schemes, and can complement provable security results.

Road map. We assume the reader is familiar with hash functions, the ROM [1]
and provable security for signatures [21]. In Sect. 2, we recall and analyze
random-oracle instantiations for large output size. Next, we study the impli-
cations of hash function defects for ROM signatures based on a trapdoor one-
way function and a padding: we recall such schemes in Sect. 3. In Sect. 4, we
study the robustness of derandomized Rabin/Rabin-Williams signatures, which
are used in [6] and the ID-based cryptosystem of [9]. In Sect. 5, we compare the
robustness of RSA and Rabin/Rabin-Williams.

2 Random-Oracle Instantiations for Large Output

In this section, we describe and analyze random-oracle instantiations supporting
arbitrary output bit-length that have been proposed in the literature, namely [1,
3, 14] and the instantiations implicit in the PKCS#1 v2.1 [41] and IEEE
P1363 [23] standards. For completeness, we also briefly discuss collision-resistant
hash functions such as [11, 32]. While some of the instantiations make use of
MD5, that alone is insufficient to discard them. Indeed, though the collision-
resistance of MD5 is seriously broken [29, 48], many usages of MD5 are not
threatened yet: for instance, there is still no practical attack on HMAC-MD5.

2.1 The 1993 Instantiation by Bellare and Rogaway

Description. In their seminal paper on the ROM [1], Bellare and Rogaway gave
guidelines to instantiate a random oracle (see [1, Sect. 6]), but the only explicit
construction is the following one, which we call BR93:
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– Let h4 : {0, 1}512 → {0, 1}128 be the first compression function of MD5, that
is the compression function evaluated with the initial IV of MD5.

– Let h′ : {0, 1}256 → {0, 1}64 defined by h′(x) being the first 64 bits of
h4((xx) ⊕ C), for a randomly chosen 512-bit constant C. The function h′

defines a pseudo-random number generator h′′(x) : {0, 1}192 → {0, 1}∗ by
counter as follows1: h′′(x) = h′(x〈0〉)||h′(x〈1〉)||h′(x〈2〉) . . . where 〈i〉 is the
encoding of i into 64 bits.

– Finally, the BR93 instantiation of the random oracle is the truncation (pre-
fix) of h(x) : {0, 1}∗ → {0, 1}∗ defined as follows. First, one applies a padding
to x by adding a bit 1 and enough bits 0 to obtain a bitstring x′ whose bit-
length is a multiple of 128. Then, if we divide x′ into 128-bit blocks as
x′ = x′

0 . . .x′
n−1, then h(x) = h′′(x′

0〈0〉)⊕ h′′(x′
1〈1〉)⊕ · · ·⊕h′′(x′

n−1〈n− 1〉),
that is, h(x) is the XOR of the n streams produced by each of the x′

i.
Weaknesses. We claim that BR93 is much weaker than a random oracle with
respect to collision and preimage resistance, independently of the choice of the
underlying compression function (MD5 here): the main idea is to adapt Wagner’s
generalized birthday algorithm [46]. Concretely, we give:
– a collision attack on (k + 2)r bits with complexity 2k · r2r using messages of

2k blocks. For instance, a collision attack on 1024 bits with messages of 230

blocks costs 230 ·32 ·232 = 267 elementary operations. If we limit the message
size to 214 blocks, the complexity is 214 · 64 · 264 = 284. The complexity does
not depend on the size of the underlying compression function.

– a preimage attack on (k+1)r bits with complexity of 2k ·r2r using messages
of 2k blocks. For instance, a preimage attack on 1024 bits with messages of
231 blocks costs 231 · 32 · 232 = 268 elementary operations.

Generalized birthday. Recall Wagner’s generalized birthday algorithm [46].
The basic operation is the general join  #j: L  #j L′ consists of all elements of
L× L′ such that their j least significant bits match:

L  #j L′ =
{
l ⊕ l′ : (l, l′) ∈ L× L′

∣∣∣ (l ⊕ l′)[0..j−1] = 0j
}

.

Assume that we are given several lists L0, L1, ..., each of size 2r. Our goal is
to find l0 ∈ L0, l1 ∈ L1, ... such that

⊕
li = 0. The idea is to join the lists using

a binary tree. We build the first level with L01 = L0  #r L1, L23 = L2  #r L3,
and so on. By the birthday paradox, these new lists should still contain about 2r

elements. On the next level, we build L0123 = L01  #2r L23. Since the elements
of L01 and L23 already agree on their r lower bits, we are only doing a birthday
paradox on the bits r to 2r, so we still expect to find 2r elements. If we start
with 2k lists, on the last level we end up with one list of 2r elements which all
begin with kr zeros. In this list, we expect to find two elements that agree on 2r
extra bits, so that we have a collision on (k + 2)r bits.
Collisions. We now use Wagner’s algorithm to find collisions on BR93. For each
message block x′

i, we will consider 2r possible values, and build a list Li with the

1 The paper [1] actually says 224 instead of 192 for the input size of h′, but that would
be incompatible with the definition of h′ as 224 + 64 = 288 > 256.
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resulting h′′(x′
i〈i〉). Then we can use Wagner’s attack on these lists. A collision

attack on (k + 2)r bits will have a complexity of 2k · r2r using messages of 2k

blocks. For instance, a collision attack on 1024 bits with messages of 230 blocks
costs 230 · 32 · 232 = 267 elementary operations. If we limit the message size to
214 blocks, the complexity is 214 · 64 · 264 = 284. Note that this complexity does
not depend on the size of the underlying hash function.
Preimages. We can also use Wagner’s algorithm to find preimages on BR93.
If we want a preimage of H , we first replace L0 by L0 ⊕ H . On the last level
of the tree, we will still have one list of 2r elements which all begins with kr
zeros, but instead of looking for a collision on 2r extra bits, we look for an
element with r extra zeroes. This element corresponds to a message x such that
H ⊕ h(x) = H ⊕ h′′(x′

0〈0〉)⊕ h′′(x′
1〈1〉)⊕ ...h′′(x′

2k−1〈2k − 1〉) =(k+1)r 0, i.e. the
(k + 1)r first bits of h(x) agree with H . A preimage attack on (k + 1)r bits will
have a complexity of 2k · r2r using messages of 2k blocks. A preimage attack
on 1024 bits with messages of 231 blocks costs 231 · 32 · 232 = 268 elementary
operations.

2.2 The 1996 Instantiation by Bellare and Rogaway

Description. In their paper [3] on PSS, Bellare and Rogaway proposed another
instantiation [3, App. A], which we call BR96: let H = MD5 or SHA-1, and
define hBR96(x) as the appropriate truncation (prefix) of:

H(const〈0〉x)||H(const〈1〉x)||H(const〈2〉x)|| . . .

where the constant const should be unique to h. If another instantiation is
needed, one should change const. BR96 is very close to a previous construc-
tion described in the OAEP paper [2] where H above is replaced by the 80-bit
truncation of SHA-1, but that construction was not explicitly recommended to
instantiate a random oracle, though it was used as a building block in an imple-
mentation of RSA-OAEP.
Weaknesses. We note that since H is a MD function, hBR96 can be viewed
as the concatenation of MD functions, where each Hi : x �→ H(const〈i〉x) is a
distinct iterative hash function, which implies:
– hBR96 can be distinguished from a random oracle. More precisely, BR96

suffers from the same extension problems as any MD function: if the output
size of hBR96 is an exact multiple of that of H , and if m1 has appropriate
size, then hBR96(m1||m2) can be computed from hBR96(m1) and m2.

– hBR96 is weaker than a random oracle with respect to collision and preim-
age resistance, independently of the choice of the underlying hash function
(except its output size), thanks to Joux’s multicollision technique [25].

Recall that Joux [25] showed that the concatenation of two or more MD-iterated
hash functions has roughly the same security as a single hash function. More
precisely, if one concatenates k iterated hash functions with an internal size of n
bits each, [25] finds a collision in the concatenation for a workload of nk−1×2n/2,
and preimages for an imprecise workload of poly(nk)2n.
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A closer analysis of the collision attack shows that the cost nk−1 × 2n/2 can
actually be reduced to [(n/2)k−1 + (n/2)k−2 + · · · + 1] × 2n/2 ≤ (n/2)k−1 ×
(n/2)/(n/2−1)×2n/2 ≈ (n/2)k−1×2n/2. And there seems to be a more efficient
preimage attack by generalizing the basic preimage attack against two hash
functions as follows. First, build a 2nk−1/2k−2

-multicollision on the first hash
function F1, and look for an extra block that maps this multicollision to the
target value of F1. Then build a multicollision in F2 using the messages of the
first multicollision: each collision in F2 requires a set of 2n/2 messages, which
will be built from n/2 colliding pairs in F1. Thus we should get a 2nk−2

/2k−3-
multicollision in F1. We will also use the last n colliding pairs for a preimage
search on F1. This gives us a 2nk−2

/2k−3-multicollision in F1||F2 which is also
a preimage. We apply the technique iteratively to build a 2n-multicollision for
F1||F2||...Fk−1 which is also a preimage. If we compute Fk on the set of 2n

colliding messages, we expect to find one preimage against the full concatenation.
The most expensive steps of this attack are the preimage search, because the
collision finding steps all have complexity O(nk × 2n/2). The preimage step on
Fi requires to compute Fi on 2n messages, which are made of n block pairs
of length ni−2/2i−2 and one block of length ni−2/2i− 3. If we do an amortized
analysis, each computation requires to hash 2 blocks from message pairs, and the
final block, which gives a cost of ni−2/2i−4 × 2n. The cost of the full preimage
search is roughly equivalent to the cost of the last preimage search, which is
nk−2/2k−4 × 2n.

We now apply this to BR96. For instance, if H is MD5, we can find collisions in
1024 bits of the output with a workload of essentially 647 · 264 = 2106, where the
colliding messages will be of length 647 = 242 blocks; and we can find preimages
of 1024 bits of the output with a workload of 1286/24 · 2128 = 2166. These
complexities are clearly impractical and do not threaten [3], but they are much
lower than the theoretical security of a 1024-bit random oracle.

For the same reason, BR96 is also malleable. For instance, we can create pairs
of messages x0, x1 such that H(const〈i〉x0) = H(const〈i〉x1) for all i’s except
the last one. We will build a multicollision set of 2n/4 such messages, and we
expect to find one quadruplet such that H(x0) ⊕H(x1) ⊕H(x2) ⊕H(x3) = 0.
In the full version, we show how this kind of malleability can be exploited to
attack GPV [19].

As another example, consider the previous instantiation of BR96 for 1024-bit
digests, using MD5. We can find two near-collisions where the most significant
384 bits are equal, with of a workload of essentially 642 · 264 = 276. Such near-
collisions give existential forgeries for the historical version [37] of ESIGN.

2.3 Recent Instantiations by Coron et al. (CDMP)

Description. Coron et al. [14] (CDMP) proposed several variations of Merkle-
Damg̊ard to build a random oracle from an (ideal) compression function or an
(ideal) block-cipher using the Davies-Meyer mode. They proposed four variants
of MD for input domain extensions (namely, Prefix-Free Encoding, Dropping



452 G. Leurent and P.Q. Nguyen

Some Output Bits, Using NMAC, and Using HMAC ) and one scheme (only
in the full version of [14]) for output domain extension. The output extension
scheme is similar to BR96, but the counter is included after the message (which
is reminiscent of the MGF1 pseudo-random number generator used in several
standards [23, 41]):

hCDMP (x) = H(x〈0〉)||H(x〈1〉)||H(x〈2〉)|| . . .

where H is one of the four input extension schemes. This choice is due to effi-
ciency considerations, but we will see that it has a strong security impact. The
main advantage of [14] is its security proof: all the constructions are proved in-
differentiable from a random oracle (in the sense of Maurer et al. [33]), if the
underlying compression function is a random oracle, or if it uses the Davies-
Meyer mode with an ideal block cipher. However, no recommendation is given
in [14] for the choice of the underlying compression function (or the underlying
block cipher for Davies-Meyer). So strictly speaking, unlike [1, 3], there was no
fully concrete proposal of a random-oracle instantiation: still, one may want to
apply the constructions to usual compression functions.
Weaknesses. One should be careful not to overestimate the significance of indif-
ferentiability security proofs: in practice, there is no ideal compression function.
It was shown by [5] that none of the CDMP constructions necessarily preserve
collision-resistance: they give (theoretical) examples of collision-resistant com-
pression functions for which the resulting hash function is not collision-resistant.

While [14] was presented as a fix to the MD construction, we show that if one
applies these fixes to MD5 or SHA-1, one can still find collisions in the new hash
function (independently of the chosen output length) with the same cost as the
original MD5 or SHA-1. This means that [14] does not address collision attacks
on MD5 and SHA-1. To see this, we first show that the four input extensions
are not collision resistant if applied to the compression functions of MD5 or
SHA-1. This is trivial for Dropping Some Output Bits, Using NMAC, and Using
HMAC, because these constructions are nested: an inner collision becomes an
outer collision. So the only potentially tricky case is Prefix-Free Encoding, for
which [14] proposed only two instantiations:
– prepend the message size as the first block. It turns out that MD5/SHA-1

collision attacks [47, 48] can be extended to this case, because the number
of blocks of colliding messages produced is equal and already known in ad-
vance, and it is well-known that existing MD5/SHA-1 collision attacks can
be extended to any given IV.

– use the first bit of each message block as a flag to distinguish the last mes-
sage block. Since the number of blocks in MD5/SHA-1 colliding messages is
very small, and the first bit of each block is random looking, we can simply
produce random collisions until one has the required form.

Now, because of the iterated structure of the four input extensions, these col-
lisions give rise to collisions in the output extension hCDMP . More generally,
while hCDMP is indifferentiable from a random oracle if H is also indifferen-
tiable, any collision in H becomes a collision in hCDMP if H has an iterative
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structure like MD or the four input extensions: namely, H(x0) = H(x1) implies
H(x0〈i〉) = H(x1〈i〉) and therefore hCDMP (x0) = hCDMP (x1).

Hence, we have shown that if the CDMP constructions are applied to the
compression functions of MD5 or SHA-1 for an arbitrary output size, the cost
of producing collisions remains essentially the same as for MD5 or SHA-1 [26].
Of course, one could try to use different compression functions, but no concrete
recommendation is given in [14].

2.4 Instantiations in PKCS and IEEE Standards

Description. No cryptographic standard currently specifies a random-oracle
instantiation for arbitrary size. However, several instantiations are implicit in
PKCS #1 v2.1 [41] and IEEE P1363 [23], because RSA-OAEP [2] and RSA-
PSS [3] are standardized:
– RSA-OAEP requires two random oracles G and H with small input size (less

than the RSA modulus), which are both instantiated in PKCS by the MGF1
pseudo-random number generator [41]. Recall that MGF1 is simply a hash
function in counter mode like hCDMP , except that the counter is over four
bytes: MGF1(x) = h(x〈0〉)||h(x〈1〉)||h(x〈2〉)|| . . . , where h is either SHA-1
or a SHA-2.

– RSA-PSS also requires two random oracles G and H , but while G still has
small input size, H has a small output size but possibly large inputs. In
PKCS, H is instantiated by SHA-1 or SHA-2, and G is instantiated by
MGF1.

Thus, none of the oracles required by RSA-OAEP and RSA-PSS have both
a large input and output as would be required by RSA-FDH. Still, MGF1 is a
potential random-oracle instantiation, because it supports arbitrarily large input
and output.

There is another implicit instantiation in IEEE P1363 [23]. Indeed, it includes
a Rabin-Williams signature using a variant of the PSS encoding [3] (as described
in [24]) called EMSA-PSS in [41] and EMSA4 in [23]: the main difference between
EMSA-PSS and PSS [3] (described in Sect. 3.2) is that the message is first hashed
before going through the PSS encoding. But it is specified in [23] that the salt can
optionally be set to zero, in which case “the signature scheme is deterministic,
similar to Full-Domain Hashing”. Thus, one can view EMSA-PSS with zero salt
as an instantiation of a FDH: since the padding constants are zero, this amounts
to essentially hash the message twice in a row, then apply MGF1; concatenate
the output and the input of MGF1, and append the “BC” byte.
Weaknesses. The case of MGF1 has already been analyzed with the CDMP
case in the previous subsection: using SHA-1 or any MD-iterated hash function,
the cost of producing collisions in MGF1 remains as low as for the underly-
ing hash function. And EMSA-PSS with zero salt is clearly no more collision-
resistant than the underlying hash function. Note also that the “BC” byte makes
it differentiable from a random oracle. Hence, independently of the output size
chosen, finding collisions on the PKCS/IEEE instantiations costs as low as for
the underlying hash function MD5 or SHA-1.
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2.5 Provably Collision-Resistant Hash Functions

To conclude this section, we briefly discuss the case of hash functions which
are provably collision-resistant under appropriate computational assumptions.
Though not designed nor recommended to instantiate random oracles, they
might be potential candidates since they usually support large output size. But
it is folklore that none should be viewed nor used as a random oracle, because
they have special properties which are not satisfied by a random oracle, typically
malleability. Consider for instance two recent collision-resistant hash functions:
– VSH [11], which is collision-resistant provided that a certain problem related

to factorization is hard. The output set is Z
×
N , where N is hard to factor.

– SWIFFT [32], which is (asymptotically) collision-resistant and one-way, pro-
vided that certain lattice approximation problems are hard. The smallest
output size is 528 bits, but larger sizes are possible.

These functions are malleable in the following sense. In [32], it is noted that for
any two inputs x1 and x2 such that x1 + x2 is a valid input, SWIFFT(x1) +
SWIFFT(x2) = SWIFFT(x1 + x2). By definition of VSH [11], it is easy to
generate M0 �= M1 such that 4VSH(M0) ≡ VSH(M1) (mod N) where N is the
public modulus. More generally, for any product s > 1 of very small distinct
primes (chosen among the primes used by the VSH compression function), it is
easy to generate M0 �= M1 such that s2VSH(M0) ≡ VSH(M1) (mod N).

We will see that such malleability relationships can be exploited to attack cer-
tain signature schemes. The malleability of SWIFFT can be exploited to attack
the GPV signature [19] (see the full version), and the malleability of VSH can be
exploited to attack Rabin and Rabin-Williams signatures. But we stress that nei-
ther VSH or SWIFFT were recommended to be used with these signatures.

3 Padding-Based Signatures in the Random-Oracle
Model

We study the impact of hash function defects for the class of ROM-secure sig-
natures obtained by combining a trapdoor one-way function/permutation and
a padding. More precisely, we consider secure versions of RSA, Rabin, Rabin-
Williams and ESIGN with appropriate paddings: FDH [1], PSS [3], PFDH [12]
and KW [27]. This section briefly recalls these components.

3.1 Signatures from Trapdoor One-Way Functions

Let σ denote the raw signature algorithm which, given as input a message m ∈
M outputs a signature σ(m) ∈ S: the algorithm can be either deterministic
or probabilistic. We consider signatures based on a trapdoor one-way function
f : S →M:
– If f is 1-to-1, we obtain a deterministic scheme with σ(m) = f−1(m).
– If f is many-to-1, we obtain a probabilistic scheme with σ(m) selected uni-

formly at random in the set f−(m) of preimages: we require that the trapdoor
enables such preimage sampling.
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Verification checks that a given signature s belongs to S and that f(s) = m.
RSA. Let (N, e, d) be the usual RSA keys where the exponent d is secret. We
haveM = S = ZN , and take the RSA trapdoor permutation f(x) = xe defined
overM, whose inverse is f−1(x) = xd.
Rabin [40]. Let N = pq be a usual RSA modulus. Then we take the squaring
function f(x) = x2, which is a 4-to-1 mapping from S = Z

×
N to the subgroupM

of quadratic residues mod N . Inverting f is equivalent to factoring N .
Rabin-Williams [49]. This is a variation of Rabin signatures based on tweaks,
using a modulus N = pq such that p ≡ 3 (mod 8) and q ≡ 7 (mod 8). This has
two notable features: one can take M = ZN (rather than having to deal with
quadratic residues), and one can obtain mappings ontoM which are either 4-to-
1 or 1-to-1, and whose inversion is equivalent to factoring. For any m ∈M, there
are exactly four triplets (e, f, s) ∈ S = {−1, 1} × {1, 2} × {0, . . . , N − 1} such
that m ≡ efs2, and these so-called tweaked square roots can all be efficiently
computed using p and q. Furthermore, the principal tweaked square root is the
only square root such that e is 1 if m is a square modulo q, otherwise -1; f is 1
if em is a square modulo p, otherwise 2; and s is a square modulo N = pq. We
thus obtain two trapdoor one-way functions, depending on the choice of S:
– By taking the 4-to-1 mapping, we obtain the probabilistic signature scheme

PRW.
– By taking the 1-to-1 mapping where S is confined to principal tweaked square

roots, we obtain the deterministic signature scheme DRW. Ignoring technical
details, this is essentially the Rabin-Williams used in IEEE P1363 [23].

ESIGN [36, 37]. We only give an informal description. ESIGN uses an RSA
modulus of the form N = p2q such that p, q have bit-length k, and N has bit-
length 3k. There is a small public exponent e ≥ 8 not necessarily coprime with
φ(N). The one-way function is the truncation of the RSA permutation f(x) = xe

to its k most significant bits. This is a many-to-one mapping from S = ZN to
M = {0, . . . , 	N/22k
}, whose inversion problem is called AER [36].

3.2 Paddings

A padding Π specifies how to sign arbitrary messages m ∈ {0, 1}∗: it may be
deterministic or randomized. Then the signature is σ(Π(m)), with additional
data in the case of PFDH. With the exception of PSS, all the following paddings
use a full-domain hash h from {0, 1}∗ toM.
FDH [1]. This deterministic padding is simply Π(m) = h(m).
PFDH [12]. One selects a salt r ←R {0, 1}k, and let Π(m) = h(m||r) where h
is a random oracle from {0, 1}∗ to M. The signature must include the salt r.
KW [27]. If m has never been signed, select a one-bit salt r ←R {0, 1}, and let
Π(m) = h(r||m).
PSS [3]. Assume to simplify that M = {0, 1}k where k ≥ k0 + k1 for some
integers k0 and k1. Two random oracles h : {0, 1}∗ → {0, 1}k1 and g : {0, 1}k1 →
{0, 1}k−k1 are used. We let g1 be the function which on input w ∈ {0, 1}k1 returns
the first k0 bits of g(w), and let g2 be the function which on input w ∈ {0, 1}k1
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returns the remaining k − k0 − k1 bits of g(w). For any message m ∈ {0, 1}∗,
one selects r ∈R {0, 1}k0 and let w = h(m‖r) and r∗ = g1(w) ⊕ r. Finally,
Π(m) = w‖r∗‖g2(w).
Standards. The PKCS [41] and IEEE P1363 [23] standards actually implement
a slightly different version of PSS, called EMSA-PSS [24]: the main difference
is that the message is first hashed before going through the PSS encoding. As
mentioned earlier in Sect. 2.4, Rabin-Williams in IEEE P1363 is implemented
as essentially DRW-PSS, but the salt can optionally be zero, in which case it
becomes DRW-FDH with a specific RO-instantiation.

3.3 Derandomization

Several schemes [6, 9, 27] crucially require to derandomize the signature or the
padding:

– The main scheme analyzed by Bernstein [6] is derandomized PRW-FDH with
the requirement that if ever the same message is submitted twice, the same
signature should be output.

– The ID-based cryptosystem of Boneh et al. [9] uses derandomized Rabin-
FDH for mapping identities to secret keys.

– To implement RSA-KW, Katz and Wang [27] suggested to select the one-bit
salt deterministically from a secret key and the message.

We will see that how the derandomization is performed has a big impact on
the security. Bernstein [6] did not specify how this derandomization should be
performed: he only mentioned that if ever the same message is submitted twice,
the same signature should be output, otherwise an attacker would be able to
compute two random tweaked square roots of the same element (by signing
twice the same message), which discloses the secret key. But Katz and Wang
discussed [27, Sect. 4.1] that issue in the context of RSA signatures, and proposed
the following methods:

– KW1: select the nonce as r = h′(K||m), where h′ is an independent random
oracle, K is an additional secret key and m is the message.

– KW2: select r = h′(K||h(m)) with the same notations as KW1.
– KW3: select r = FK(m) where F is a PRF and K is an additional secret key.

This is the method used in the ID-based cryptosystem [9], which is shown
to preserve the ROM security proof.

In order to derandomize ESIGN to fix its security proof (see [38, 44]), Granboulan
[22] earlier proposed a slightly different method: select r = φ(h(m)||K||c), where
φ is a one-way function with uniformly distributed output, K is an additional
secret key, and c is an optional counter. The counter is necessary in ESIGN,
because the signature process may actually fail for certain nonces. This deran-
domization technique was later adopted with a specific choice of φ in the revised
submission [18] of ESIGN to the NESSIE European project.
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3.4 Security Results

It is well-known that for any trapdoor permutation f , the signatures FDH,
PFDH and PSS are all provably secure in the ROM under the hardness of
inverting the permutation, but the security proof is loose [1, 16]. In the par-
ticular case of RSA, all these security proofs can be improved, by exploiting
the multiplicativity of RSA: RSA-FDH remains loose [1, 3, 12], but RSA-PFDH
and RSA-PSS have a tight reduction provided that the salt is sufficiently large
(see [12, 16]). Surprisingly, RSA-KW also has a tight reduction [27]. These secu-
rity results also apply to DRW (under the factoring assumption), because DRW
uses a 1-to-1 mapping which is homomorphic (see [24]).

The picture is a bit different with Rabin and PRW, since they use 4-to-1
mappings, but squaring is homomorphic. The derandomized versions of Rabin-
FDH and PRW-FDH have a tight reduction (see [9] for Rabin-FDH and [6] for
PRW-FDH). Rabin-PSS has a tight reduction (see [3]). For a complete picture
of the ROM security of all Rabin-Williams variants, see [6].

ESIGN-FDH [36] and ESIGN-PSS [30] both have a loose security proof under
the AER assumption, but the proof of ESIGN-FDH requires a more restricted
security model than usual (see [38, 44]). There is no tightness because the one-
way function is not multiplicative.

4 Robustness of Derandomized Signatures

We now study the robustness of derandomized signatures described in Sect. 3,
for the derandomization methods proposed in [9, 22, 27], which we described in
Sect. 3.3. This derandomization is crucial for the tightness of certain security
proofs. We focus on derandomized Rabin-FDH and PRW-FDH.

4.1 Soundness

First of all, one should make sure that the derandomization technique does not
affect the security proof of the randomized scheme. For KW3, this was proved
in [9, App. B] using of course the PRF assumption. And a similar argument can
be proved for KW1 and KW2, but both require another random oracle, which
is debatable if the goal is to understand what are the minimal assumptions.

For the fourth randomization method however, Granboulan [22] only gave an
informal argument. In fact, we note that his method is not completely sound.
More precisely, if the informal argument was correct, it would also apply to
the choice r = φ(m||K||c). Now, assume that we take for φ an MD-iterated
function for which it is easy to find collisions, but still, the function is one-
way with uniformly distributed output: one potential example is SHA-1. Then
an adversary could create a collision (m,m′) where m and m′ have the same
length, which would imply that φ(m||K||c) = φ(m′||K||c) for all K and c. This
means that by querying the signature of m and m′, the adversary would obtain
two pairs message-signature which both used the same nonce r: in the case of
ESIGN, this discloses the secret factorization of the modulus, and in the case
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of DSA, this clearly discloses the secret key. This means that [22] did not give
the right assumption: instead of a one-way function with uniform output, one
should consider a PRF such as in KW3.

4.2 Robustness to Collisions

We now look at the security if the full-domain hash h has defects, namely col-
lisions. We show that any hash collision suffices to disclose the master key in
the ID-based cryptosystem of Boneh et al. [9], and the secret key in the Rabin-
Williams signature scheme for which Bernstein proved tight security [6], because
of the way derandomization is performed. But we also show that these attacks
can be prevented by slightly modifying the derandomization.

The idea is, of course, to obtain two random preimages of a known ele-
ment m ∈ M. Doing so for the trapdoor one-way function f of Rabin and
PRW discloses the secret factorization of the modulus with probability 1/2. Let
h : {0, 1}∗ → M be the random-oracle instantiation, to be paired with de-
randomized versions of Rabin or PRW. We have the following chosen-message
key-recovery attack:

– Assume that the attacker is able to generate a collision (M0,M1) on h. Then
H(M0) = H(M1) with M0 �= M1.

– The attacker queries the signing oracle on M0 and M1, and obtains the
signature s0 and s1.

– Depending on how the derandomization is performed, we claim that s0 and
s1 will be two random preimages of the same element h(M0) = h(M1) ∈ ZN ,
in which case it is easy to obtain the factorization of N with probability 1/2.
This is true in either of the following cases:
• If one follows the informal method of Bernstein [6]: since M0 and M1

are different, the signer is not required to output the same preimage, so
each preimage will be chosen at random.
• If one follows KW1 [27], because h(M0) = h(M1) is independent from
h′(K‖M0) = h′(K‖M1) where K denotes the secret key and h′ is another
random oracle.
• If one follows KW3 [27] as in the ID-based cryptosystem [9], because
h(M0) = h(M1) is independent from FK(M0) = FK(M1).

But if one follows KW2 [27], the same preimage will be output, and the attack
will fail. An alternative method to prevent the attack is to use the following
variant of KW3: r = FK(h(m)) so that collisions on h gives collisions on r.
For both variants, the previous key-recovery attacks no longer work, but that
does not mean that the schemes are immune to collisions: any hash collision
gives rise to an existential forgery. The interest of KW2 and the KW3 variant
is that they both decrease (but not remove) the security impact of collisions.

Independently of the random-oracle instantiation and the choice of the deran-
domization, these weaknesses also appear if one considers fault attacks. Indeed,
a similar attack works if the adversary is able to submit twice the same message,
and perturbate the calculation of the nonce, using fault attacks.



How Risky Is the Random-Oracle Model? 459

By contrast, the deterministic version DRW-FDH (and the one implemented
in IEEE P1363 [23]) is immune to such attacks. It might help to see a concrete
example. Assume that we plug the compression function of MD5 into the CDMP
random-oracle construction [14] (see Sect. 2.4), and that we use this instantia-
tion as a full-domain hash for DRW-FDH and derandomized PRW-FDH. Then,
because of the indifferentiability framework [33], both signature schemes become
provably secure under the factoring assumption, in the ideal cipher model (with
respect to the MD5 block cipher) or in the random oracle model (with respect
to the MD5 compression function). But in practice, there is an instant chosen-
message key-recovery attack on the PRW scheme, which fails on the DRW one.

4.3 Robustness to Malleability

The previous key-recovery attack can be adapted to malleability variants of col-
lisions on the hash function. To simplify, consider first the case of derandomized
PRW-FDH: a similar attack works for derandomized Rabin-FDH. Assume that
the attacker is able to generate a pair (M0,M1) of distinct messages such that:

4h(M0) ≡ h(M1) (mod N). (1)

From Sect. 2, we know that this is easy if ever h is VSH [11] using the same
modulus N , even though it might be hard to find collisions on VSH, but we stress
that it was never suggested to use VSH for Rabin/Rabin-Williams that way: we
give this example to show that solving (1) is not necessarily harder than finding
collisions. Solving (1) is also possible (with more effort) if h is BR93 [1]: select any
M0 then apply the preimage attack to find M1 satisfying (1). Again, the attacker
queries the signing oracle on M0 and M1, which gives rise to tweaked square roots
(ei, fi, si) ∈ {−1, 1} × {1, 2} × {0, . . . , N − 1} of h(Mi). Note though that there
is a one-to-one correspondance between the four tweaked square roots of h(M0)
and the four tweaked square roots of h(M1), thanks to (1). More precisely, if
(e, f, s) is a tweaked square root of h(M0), then (e, f, 2s mod N) is a tweaked
square root of h(M1). This implies that (e0, f0, 2s0 mod N) and (e1, f1, s1) are
two “independent” random tweaked square roots of h(M1), which means that
one can factor N with probability 1/2.

Obviously, this attack is independent of the way derandomization is per-
formed, and can be adapted to other malleability properties. For instance, simi-
lar attacks apply if one is able to find a pair (M0,M1) of distinct messages such
that h(M0) ≡ −h(M1) (modN), or k2h(M0) ≡ h(M1) (modN) for some known
k ∈ Z

×
N .

Furthermore, as opposed to collision attacks, the previous attack can be
adapted to DRW-FDH. Starting again from (1), let (ei, fi, si) ∈ {−1, 1} ×
{1, 2} × {0, . . . , N − 1} be the principal tweaked square root of h(Mi). Be-
cause 4 is a square mod p and q, (1) implies that e0 = e1 and f0 = f1. Since
(e0, f0, 2s0 mod N) is a tweaked square root of h(M1), we have 4s2

0 ≡ s2
1(modN),

and therefore s1 × (2s0)−1 mod N is a square root of 1 mod N . But it must be
a non-trivial square root because it has different Legendre symbols mod p and
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q: indeed, both s0 and s1 are squares mod N , while
(

2
p

)
= 1 and

(
2
q

)
= −1.

Hence, this discloses the factorization of N . This attack can be generalized if
congruence (1) is replaced by k2h(M0) ≡ h(M1) (modN) for any known k ∈ Z

×
N

such that
(

k
p

)
�=
(

k
q

)
, which is slightly more restrictive than the PRW case.

There are similar attacks for the Rabin case.

4.4 Robustness to Preimages

The previous attacks also show that both derandomized PRW-FDH and DRW-
FDH become strongly insecure if the full-domain hash function h is not one-
way, like BR93 [1]. Alternatively, one can simply select (e, f, s) ∈ {−1, 1} ×
{1, 2} × {0, . . . , N − 1} uniformly at random, and compute m = efs2 (mod N).
By inverting h, one obtains a message M such that m = h(M). Finally, by
signing the message M with either DRW-FDH or derandomized PRW-FDH,
one will obtain another tweaked square root of m (principal or not), which will
disclose the factorization of N with probability at least 1/2 because (e, f, s) is a
random tweaked square root. A similar attack works for the Rabin case.

5 Compared Robustness of Signatures

5.1 RSA Signatures

The PKCS#1 v2.1 standard [41] uses RSA-PSS since Sept. 1999 (or more pre-
cisely, the variant RSA-EMSA-PSS [24] of RSA-PSS), and it has been reported
that one of the main reasons why RSA-PSS was selected over RSA-FDH was the
tightness of the security proof. If tightness was the main factor, one might now
be tempted to select RSA-KW over RSA-PSS, because the salt in RSA-KW
is reduced to one bit (which can be deterministically derived from the secret
key and the message). However, by comparing the robustness of RSA signatures
with respect to potential defects in the random-oracle instantiation, a different
picture emerges.
Robustness to collisions. Because RSA-FDH and RSA-EMSA-PSS are hash-
and-sign schemes, they do not tolerate collisions: any collision obviously leads to
a chosen-message existential forgery. Similarly, any collision leads to a chosen-
message existential forgery on RSA-KW, with probability 1/2 because of the
one-bit salt. One may think that the probabilistic schemes RSA-PFDH and RSA-
PSS are more robust. In this direction, Numayama et al. [35] showed that RSA-
PFDH tolerates collisions in a weakened ROM, but their model does not take
into account MD-iterated hash functions. We observe that if h is a MD-iterated
hash function, then any collision in h with the same number of blocks gives rise
to a chosen-message existential forgery on RSA-PFDH and RSA-PSS. This is
because RSA-PFDH and RSA-PSS both use h(m||r). And if h(m1) = h(m2)
where m1 and m2 have the same number of blocks, then h(m1||r) = h(m2||r)
for any r. This implies that for both RSA-PFDH and RSA-PSS, any signature
of m1 is also valid for m2. It can be noted that if RSA-PFDH and RSA-PSS had
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used h(r||m) instead of h(m||r), then the ROM security proofs would remain
valid, but the previous attack would fail.
Robustness to preimages. It is easy to prove that if the full-domain hash is
not one-way, then there are chosen-message universal forgery attacks on RSA-
FDH, RSA-PFDH and RSA-KW. On the other hand, preimages in h do not
seem to provide stronger attacks than chosen-message existential forgeries on
RSA-PSS.
Conclusion. While RSA-KW has a much better security reduction than RSA-
FDH, there are essentially the same attacks on both RSA-KW and RSA-FDH as
soon as there are defects in the full-domain hash. On the other hand, RSA-PSS
with a large salt seems more robust than all other paddings, especially if one
uses h(r||m) instead of h(m||r). This differs from the conclusion of [31], where
it was argued that RSA-FDH was the best method known to sign with RSA.

5.2 Rabin and Rabin-Williams

Based on Sect. 4, the advantages of Rabin over Rabin-Williams are unclear from a
security point of view. There are two benefits with Rabin-Williams: one can select
M = ZN , and one can use a 1-to-1 mapping instead of a 4-to-1 mapping. This
1-to-1 mapping avoids collision attacks or the fault attacks on derandomization:
This suggests that DRW is preferable to both PRW and Rabin. And for the same
reason as for RSA, a PSS padding with large salt seems more robust than all
other paddings. Furthermore, when using Rabin or PRW, the size of the salt is
extremely important to avoid key-recovery replay attacks. By submitting many
times the same message, an adversary would obtain two random preimages of
the same element, hence the factorization. We illustrate this phenomenon in the
full version, with a converse to the security proof of [3].
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didactic suitability.
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many contexts, the highest achievable level of abstraction, once identi-
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to prove many important results.

In the spirit of algebraic abstraction, we advocate the definition and
use of higher levels of abstraction in cryptography, with the goal of iden-
tifying the highest possible level at which a definition or theorem should
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can computational and information-theoretic models be unified? And, of
course: Can the abstract viewpoint lead to new concepts and results that
are perhaps otherwise missed?
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Abstract. This work deals with “MPC-friendly” linear secret sharing
schemes (LSSS), a mathematical primitive upon which secure multi-party
computation (MPC) can be based and which was introduced by Cramer,
Damgaard and Maurer (EUROCRYPT 2000). Chen and Cramer pro-
posed a special class of such schemes that is constructed from algebraic
geometry and that enables efficient secure multi-party computation over
fixed finite fields (CRYPTO 2006). We extend this in four ways. First,
we propose an abstract coding-theoretic framework in which this class of
schemes and its (asymptotic) properties can be cast and analyzed. Sec-
ond, we show that for every finite field Fq, there exists an infinite family
of LSSS over Fq that is asymptotically good in the following sense: the
schemes are “ideal,” i.e., each share consists of a single Fq-element, and
the schemes have t-strong multiplication on n players, where the corrup-
tion tolerance 3t

n−1
tends to a constant ν(q) with 0 < ν(q) < 1 when n

tends to infinity. Moreover, when |Fq| tends to infinity, ν(q) tends to 1,
which is optimal. This leads to explicit lower bounds on τ̂(q), our measure
of asymptotic optimal corruption tolerance. We achieve this by combining
the results of Chen and Cramer with a dedicated field-descent method.
In particular, in the F2-case there exists a family of binary t-strongly
multiplicative ideal LSSS with 3t

n−1
≈ 2.86% when n tends to infinity, a

one-bit secret and just a one-bit share for every player. Previously, such
results were shown for Fq with q ≥ 49 a square. Third, we present an
infinite family of ideal schemes with t-strong multiplication that does
not rely on algebraic geometry and that works over every finite field Fq.
Its corruption tolerance vanishes, yet still 3t

n−1
= Ω(1/(log log n) log n).

Fourth and finally, we give an improved non-asymptotic upper bound on
corruption tolerance.
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1 Introduction

This work deals with “MPC-friendly” linear secret sharing schemes (LSSS), an
abstract mathematical primitive upon which secure multi-party computation
(MPC) can be based and which was introduced by Cramer, Damgaard and
Maurer [13]. Chen and Cramer [8] proposed a special class of such schemes that
is constructed from algebraic geometry and that enables efficient secure multi-
party computation over fixed finite fields. For every finite field Fq where q is
a square with q ≥ 49, they presented an infinite family of LSSS over Fq that
is asymptotically good in the following sense. First, the schemes are “ideal”:
each share consists of a single Fq-element. Second, the schemes have t-strong
multiplication [8, 9, 12, 13] on n players, where the corruption tolerance 3t

n−1
tends by a constant ν(q) with 0 < ν(q) < 1 when n tends to infinity. Moreover,
when |Fq| tends to infinity, ν(q) tends to 1, which is optimal (since it is well-
known that 3t + 1 ≤ n always). In short, strong multiplication is a property
that enables to “perfectly securely” verify multiplicative relations among secret-
shared values, with error probability equal to zero. This is a crucial subroutine
at the heart of MPC. Please refer to [13] for the details.

These schemes of [8] enjoy algebraic properties similar to those of Shamir’s
scheme (linearity, (strong)-multiplication), and MPC protocols in the strongest
information-theoretic model [2, 3] (i.e., perfect security against a computation-
ally unbounded threshold adversary that corrupts some fraction of the players)
are quite similar (see [8, 13]). The significance of these schemes, however, derives
from the fact that the number of players is not bounded by the size of the finite
field as is the case for Shamir’s scheme [26]. In fact, in these schemes the num-
ber of players is unbounded even if the finite field is fixed. In the corresponding
MPC-protocols, the total number of field elements communicated will typically
be the same, with the notable difference, however, that the field elements are now
taken in a field of constant rather than linearly increasing size. This makes sense,
for instance, if the function that is securely computed is defined over a small,
constant size field, say F2. The price to be paid is only a constant fractional de-
crease compared to the corruption tolerance of (non-asymptotic) Shamir-based
MPC-protocols, in which up to 1/3 of the players may be corrupted. The con-
struction of these “MPC-friendly” schemes from [8] is based on the existence of
families of algebraic curves of finite fields with a good ratio between the num-
ber of rational points and their genus and the use of their algebraic function
fields. See [6, 8, 13] for a full discussion. Chen, Cramer, Goldwasser, de Haan
and Vaikuntanatan [7] have shown similar results for schemes with multiplica-
tion rather than strong multiplication by a construction from arbitrary classical
codes rather than algebraic geometric ones.

The results from [7, 8] have found remarkable applications in the breakthrough
work of Ishai, Kushilevitz, Ostrovsky and Sahai [20] on two-party zero-knowledge
for circuit-satisfiability with low communication, in that of Ishai, Prabhakaran
and Sahai [19] on oblivious transfer, as well as in the work of Damgaard, Nielsen
and Wichs [14] on isolated zero-knowledge. In all these cases this helped im-
proving the communication efficiency. It is important to note that all these
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applications use secret sharing and MPC as abstract primitives, where play-
ers are not actual, real-world players but are part of virtual processes. Moreover,
the number of these virtual players is typically large in order to make certain
error-probabilities small enough or in order to approximate a certain asymptoti-
cal advantage. This has amplified the relevance of secure computation and secret
sharing even further, and in particular it adds further relevance to asymptotical
study of these primitives.

In this paper we extend these results in four ways. First, we propose an ab-
stract coding-theoretic framework in which this class of schemes and its (asymp-
totic) properties can be cast and analyzed. Concretely, we introduce a special
class of codes C†(Fq) and a measure t̂(C) on a code C ∈ C†(Fq), the corruption
tolerance of C, so that when C is viewed to represent an “ideal” LSSS, t̂(C)
measures the maximum t for which it has t-strong multiplication. We also define
the asymptotic optimal corruption tolerance τ̂ (q) of such a class over Fq, the
main parameter for our asymptotic analysis.

Second, we show that for every finite field Fq, there exists an infinite family
of LSSS over Fq that is asymptotically good in the following sense: the schemes
are “ideal,” i.e., each share consists of a single Fq-element, and the schemes have
t-strong multiplication on n players, where the corruption tolerance 3t

n−1 tends to
a constant ν(q) with 0 < ν(q) < 1 when n tends to infinity. Moreover, when |Fq|
tends to infinity, ν(q) tends to 1, which is optimal. This leads to explicit lower
bounds on τ̂ (q). Our method combines the algebraic geometric schemes of Chen
and Cramer with our dedicated but elementary field-descent method based on
“multiplication-friendly functions,” which maps C ∈ C†(Fqm) to C′ ∈ C†(Fq) in
such a way that corruption tolerance does not degrade too much. In particular,
in the F2-case there exists a family of binary t-strongly multiplicative ideal LSSS
with 3t

n−1 ≈ 2.86% when n tends to infinity, a one-bit secret and just a one-bit
share for every player. Previously, such results were only shown to hold over Fq

with q ≥ 49 a square.
Third, we present an infinite family of ideal schemes with t-strong multiplica-

tion that does not rely on algebraic geometry and that works over every finite
field Fq. Its corruption tolerance vanishes, yet still 3t

n−1 = Ω(1/(log log n) logn).
Fourth and finally, we give an improved non-asymptotic upper bound on cor-
ruption tolerance.

The outline of this paper is as follows. After the preliminaries in Section 2, we
revisit in Section 3 the results in [7] about the construction of LSSS from linear
codes, where we focus mainly on privacy and reconstruction. In some cases we
define new notions and prove stronger results needed in the sequel. In Section 4
we define C†(Fq), t̂(C) and τ̂(q), and prove some properties. In Section 5 we show
that for every finite fields Fq, the asymptotic optimal corruption tolerance can
be bounded away from zero, i.e., τ̂ (q) > 0 for all finite field Fq, and we give ex-
plicit lower bounds. In Section 6 we state the consequences for LSSS with strong
multiplication explicitly and in Section 7 we present the elementary example with
(“not-so-fast”) vanishing asymptotic corruption tolerance. In Section 8, we give
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our non-asymptotic upper bound on corruption tolerance. In Section 9 we con-
clude by stating some open problems.

Finally, we note that, in upcoming work [5], we further improve our asymptotic
lower bounds on optimal corruption tolerance using more advanced methods
from algebraic geometry, especially for small values of q.

2 Preliminaries

2.1 Basic Coding Theory

We review some notions from basic coding theory (see e.g. [22] or [17]) that
are relevant to this work and we also introduce some conventions specific to this
paper. Let n be a non-negative integer and let k be an integer with 0 ≤ k ≤ n+1.
An [n + 1, k]q-code C over the finite field Fq is a k-dimensional subspace C of
the n + 1-dimensional Fq-vector space Fn+1

q . The length n + 1 of such a code C
is denoted �(C). We define n(C) = �(C) − 1. If c ∈ C, (c0, c1, . . . , cn) ∈ Fn+1

q

denotes its coordinate vector. In particular, we use the set I(C) = {0, 1, . . . , n}
to index the coordinates, unless otherwise stated. A linear code over Fq is an
[n + 1, k]q-code for some k, n. If B ⊂ I(C) is a non-empty set and if x =
(x0, x1, . . . , xn) ∈ Fn+1

q , xB denotes the vector (xi)i∈B ∈ F
|B|
q , i.e., the vector

obtained by restricting x to those coordinates i with i ∈ B. The support supp(x)
of x ∈ Fn+1

q is the set of indices i ∈ I(C) with xi �= 0. An element c ∈ C is
minimal if there is no c′ ∈ C \ {0} with supp(c′) a proper subset of supp(c).

A generator matrix G for an [n+1, k]-code C is a matrix with entries in Fq and
that has k columns and n+1 rows such that the columns of G jointly constitute
an Fq-basis of C. The Hamming-weight wH(x) of x = (x0, x1, . . . , xn) ∈ Fn+1

q

is the number of indices with xi �= 0. Let d be a positive integer with 0 ≤ d ≤
n + 1. An [n + 1, k, d]q-code C is an [n + 1, k]q-code whose minimum distance
dmin(C) in the Hamming-metric is at least d.1 If C is an [n + 1, k]q-code, then
dmin(C) ≤ (n + 1)− k + 1 = n− k + 2 by the Singleton-bound.

The dual C⊥ of C is the “orthogonal complement” of C in Fn+1
q according

to the standard scalar product 〈x,y〉 = x0y0 + x1y1 + · · · + xnyn, where x =
(x0, x1, . . . , xn) ∈ Fn+1

q and y = (y0, y1, . . . , yn) ∈ Fn+1
q . Thus, C⊥ consists of

all c∗ ∈ Fn+1
q such that 〈c, c∗〉 = 0 for all c ∈ C. If C is an [n+ 1, k]q-code, then

C⊥ is an [n + 1, n + 1− k]q-code. Note that dmin(C) + dmin(C⊥) ≤ n + 3.

2.2 Secret Sharing

In this section we give precise definitions of (linear) secret sharing (with strong
multiplication). A secret sharing scheme (SSS) Σ = (S0, S1, . . . , Sn) is a vector
of n + 1 random variables, where n is a positive integer and where the random
variables are all defined on the same finite probability distribution. It is required

1 The minimum distance of the [n + 1, 0]q-code C = {0} is, by definition, equal to
n + 1.
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that H(S0|S1 . . .Sn) = 0 and that H(S0) > 0. Here H(·) denotes the Shannon-
entropy function and H(·|·) denotes conditional entropy. A value taken by S0 is
a “secret”, and a value taken by Si, is a “share” or “the i-th share”, i = 1 . . .n.
Write P = P(Σ) = {1, . . . , n} and n(Σ) = n. An element i ∈ P may sometimes
be called “player.” If A ⊂ P is non-empty, SA denotes the vector of random
variables (Si)i∈A. Note that this bare definition only says that there is some
non-constant “secret” that is uniquely determined by the n shares.

The adversary structure A(Σ) consists of the empty set as well as any non-
empty sets A ⊂ P such that H(S0|SA) = H(S0) (“no information about the se-
cret”). The access structure Γ (Σ) consists of all B ⊂ P such that H(S0|SB) = 0
(“full information about the secret”). By definition, P ∈ Γ (Σ). From a ba-
sic information theoretic inequality, H(S0) ≥ H(S0|SB) for all non-empty sets
B ⊂ P . Therefore, Γ (Σ)∩A(Σ) = ∅. Let t, r be positive integers. We say that Σ
achieves t-privacy if A(Σ) includes all sets A ⊂ P with |A| = t and we say that
Σ achieves r-reconstruction if Γ (Σ) includes all sets B ⊂ P with |B| = r. Fur-
thermore, r(Σ) denotes the minimum integer r for which Σ has r-reconstruction
and t(Σ) is the largest integer t such that A(Σ) includes all sets A ⊂ P with
|A| = t. A threshold SSS is one that achieves t-privacy and t + 1-reconstruction
for some positive integer t. An (n, t + 1, t)-threshold SSS is one that achieves
t-privacy and t + 1-reconstruction for some integer t, with n being the number
of players.

An SSS is perfect if Γ (Σ) ∪A(Σ) = 2P . An element i ∈ P is “not a dummy”
if there exists a set B ∈ Γ (Σ) with i ∈ B that is minimal with respect to the
partial ordering Γ (Σ) defined by the inclusion-relation. In a perfect SSS it holds
that H(Si) ≥ H(S0) for each i ∈ P which is not a dummy (“length of a share
is at least length of the secret”). A perfect SSS is ideal if for each such i ∈ P
equality holds. If Γ (Σ) does not contain any dummies, it is called connected.

A linear secret sharing scheme (LSSS) is a tuple Σ = (Fq, n, e,v0, V1, . . . , Vn)
where Fq is a finite field, e, n are positive integers, v0 ∈ Fe

q \ {0}, and V1, . . . , Vn

are subspaces of the Fq-vector space Fe
q such that v0 ∈

∑
i∈P Vi, the subspace

of Fe
q spanned by the Vi’s. An LSSS is an SSS in the sense of the definition

above if the following conventions are made. Write di for the Fq-dimension of Vi,
i = 1 . . .n. First, for each Vi an Fq-basis Bi = {bi1, . . . ,bidi} is fixed. Second,
the random variables S0, S1, . . . , Sn are defined as follows. The secret s ∈ Fq

is chosen uniformly at random (thereby defining S0) and φ ∈ HomFq(Fe
q,Fq),

the Fq-linear map from Fe
q to Fq, is chosen uniformly random conditioned on

φ(v0) = s. If di > 0, the i-th share is (φ(bi1), . . . , φ(bidi)) ∈ Fdi
q , thereby defining

Si, i = 1 . . .n. For a non-empty set A ⊂ P , we define VA =
∑

i∈A Vi and we
call its Fq-dimension dA. It can be shown that a non-empty set B ⊂ P satisfies
B ∈ Γ (Σ) if and only if v0 ∈ VB . Equivalently, it can be shown A ∈ A(Σ) if and
only if there exists φ ∈ HomFq(F

e
q,Fq) such that φ(v0) = 1 and φ vanishes on

VA, i.e., φ(v) = 0 for all v ∈ VA. In particular, this means that LSSS are perfect.
We define dimΣ =

∑n
i=1 di, the dimension of the LSSS. Shamir’s scheme is a

threshold LSSS.
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Given an LSSS Σ we define the dual access structure to Γ (Σ) as Γ (Σ)∗ =
{A ⊂ P , s.t. P \ A /∈ Γ (Σ)}. For every LSSS Σ over Fq there exists an LSSS
Σ∗ over Fq such that dimΣ = dimΣ∗ and Γ (Σ∗) = Γ (Σ)∗ (see [13, 21]). Note
that r(Σ∗) = n− t(Σ), t(Σ∗) = n− r(Σ).

Let v = (v1, . . . , ve) ∈ Fe
q and w = (w1, . . . , we) ∈ Fe

q. Then v ⊗ w = (v1 ·
w, . . . , ve · w) ∈ Fe2

q denotes the Kronecker-product (or tensor-product) of v
and w. For x = (x1, . . . , xn) ∈ Fn

q ,y = (y1, . . . , yn) ∈ Fn
q , their Schur-product

x ∗ y ∈ Fn
q is defined as (x1y1, . . . , xnyn).

If V and W are subspaces of the Fq-vector space Fe
q, then V ⊗W denotes

the subspace of the Fq-vector space Fe2

q generated by the elements v ⊗w with
v ∈ V and w ∈ W . If A ⊂ {1, . . . , n} is non-empty, V̂A denotes

∑
i∈A Vi ⊗ Vi,

the subspace of the Fq-vector space F
e2

q spanned by the subspaces Vi⊗Vi. Σ has
t-strong multiplication ([8, 12, 13]) if the following holds: 0 ≤ t ≤ n, Σ achieves
t-privacy, v0⊗v0 ∈ V̂P , and for each set B ⊂ P with |B| = n− t, v0⊗v0 ∈ V̂B .
Σ has multiplication if it achieves t-privacy for some t ≥ 1 and if v0 ⊗ v0 ∈ V̂P .

2.3 Algebraic Function Fields and Codes

In this paper we make at some point use of some basic as well as some more
advanced results for algebraic function fields. We use the terminology of [27].
For a quick introduction to some of the notions that are needed (function fields,
poles, zeroes, divisors, degrees, etc.), please refer to [8]. Let Fq be a finite field.
When we say that F is an algebraic function field over Fq we mean that F is an
algebraic function field over Fq in one variable and that Fq is the full constant
field of F. Pq(F) denotes the set of places of degree 1 and g(F) denotes the genus
of F. If G is a divisor on F, then deg(G) denotes its degree and L(G) ⊂ F denotes
the Riemann-Roch space of functions f ∈ F such that div(f) +G is an effective
divisor or f = 0. This is an Fq-vector space.

By the Riemann-Roch Theorem, dimFqL(G) = deg(G)+1−g(F)+dimFqL(W−
G), where deg(G) denotes the degree of the divisor G and where W is any
canonical divisor. This implies Riemann’s Theorem that dimFqL(G) = deg(G)+
1 − g(F) if deg(G) > 2g(F) − 2. Suppose Pq(F) ≥ n + 1 for some positive
integer n. Let P0, P1, . . . , Pn be distinct elements of Pq(F) and define the divisor
D = P0+P1+. . .+Pn. Suppose G is a divisor on F such that deg(G) > 2·g(F)−2
and such that the supp(G), the support of G is disjoint of that of D. Then
the [n + 1, k, d]q-code C(G,D) (algebraic-geometric Goppa-code or AG-code) is
defined [16] as C(G,D) = {(f(P0), f(P1), . . . , f(Pn)) | f ∈ L(G)}. By Riemann’s
Theorem, k = deg(G)+1−g(F), since for any divisor G′ it holds that L(G′) = {0}
if deg(G′) < 0, it follows that d ≥ n+ 1− deg(G). The distance of its dual code
can be estimated using the Residue Theorem.

Define Nq(g) as the maximum of |Pq(F)| where F ranges over all the function
fields whose full field of constants is Fq and whose genus is g. The Drinfeld-
Vladuts upper bound (see e.g. [27] or [29]) states that for all finite fields Fq,
Ihara’s constant A(q) ≡ lim supg→∞

Nq(g)
g(F) , satisfies A(q) ≤ √q − 1. Note that

the Hasse-Weil bound (see e.g. [27]) states that ||Pq(F)| − (q + 1)| ≤ 2 · g(F)
√
q.
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3 Connecting Secret Sharing and Codes

We describe one connection between secret sharing and codes that is particularly
relevant to this work. Let C be a linear code over Fq with n(C) ≥ 1. Let i ∈ I(C).
Under further conditions on C to be formulated precisely later on, consider
the following perfect secret sharing scheme, denoted Σ(C, i), on the player set
P = I(C) \ {i}. Let s ∈ Fq be the secret, and choose c = (c0, c1, . . . , cn) ∈ C
uniformly at random such that ci = s. For all j ∈ I(C) \ {i} the share for the
j-th player is cj . In [7] this approach to secret sharing [23, 24] is exploited to
achieve LSSS with multiplication (no strong multiplication), t-privacy and r-
reconstruction and with very good asymptotic properties over fixed finite fields.
While in [7] privacy and reconstruction parameters of these LSSS are bounded
exclusively in terms of the minimum distance of the codes involved, in the present
paper we need a more accurate understanding of these parameters. This is what
we will develop first.

Definition 1. Let n be an integer with n ≥ 1 and let Fq be a finite field. For a
non-empty set B ⊂ {0, 1, . . . , n}, the Fq-linear projection map πB is defined as
πq,n+1

B : Fn+1
q −→ F

|B|
q , (x0, x1, . . . , xn) �→ (xi)i∈B . When q and n are clear from

the context, we write πB instead. Also, if B = {i} for some index i, we write πi

instead of π{i}.

Lemma 1. Let C be a linear code over Fq with n(C) ≥ 1. Let i ∈ I(C) and let
B ⊂ I(C)\{i} be a non-empty set. Then there exists a function ρB,i : πB(C) −→
Fq such that ρB,i(πB(c)) = πi(c) for all c ∈ C if and only if πB(c) �= 0 for all
c ∈ C with πi(c) �= 0. If such function ρB,i exists, it is an Fq-linear map.

Proof. In the forward direction, suppose ρB,i exists. Then it is an Fq-linear
map, since ρB,i(λc+μc′) = λ ·ρB,i(c)+μ ·ρB,i(c′) for all λ, μ ∈ Fq, c, c′ ∈ C, by
linearity of C. Suppose there is c ∈ C with πi(c) �= 0 and πB(c) = 0. Then, by
Fq-linearity of the map, ρB,i(πB(c)) = ρB,i(0) = 0 �= πi(c), a contradiction. In
the other direction, suppose ρB,i does not exist. Then there exist c, c′ ∈ C such
that πi(c) �= πi(c′) yet πB(c) = πB(c′). Then πi(c− c′) �= 0 and πB(c− c′) = 0
by linearity of C. 1
Note that by linearity of C, the lemma above also holds when πi(c) �= 0 is
replaced by πi(c) = 1.

Definition 2. Notation being as in Lemma 1, we say that (i, B) is a
reconstruction-pair if ρB,i exists.

Corollary 1. Let C be a linear code over Fq with n(C) ≥ 1 and let i ∈ I(C).
Let ui ∈ F

n(C)+1
q denote the i-th unit vector, i.e., (ui)j = 1 if i = j and (ui)j = 0

if i �= j. Then:

– (i, I(C) \ {i}) is a reconstruction-pair if and only if ui �∈ C.
– πi(C) �= {0} if and only if ui �∈ C⊥.
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– For all j ∈ I(C), (j, I(C) \ {j}) is a reconstruction-pair and πj(C) �= {0} if
and only if dmin(C) > 1 and dmin(C⊥) > 1.

Definition 3. Let C be a code over Fq with n(C) ≥ 1. Let i ∈ I(C) and suppose
ui �∈ C. If ui ∈ C⊥, then define ri(C) = 0. Else, define ri(C) as the smallest
positive integer ρi such that for all B ⊂ I(C) \ {i} with |B| = ρi it holds that
(i, B) is a reconstruction-pair.

Note that by Corollary 1, the value ri(C) is well-defined, and satisfies 0 ≤
ri(C) ≤ n(C).

Definition 4. Let C be a code over Fq with n(C) ≥ 1. Let i ∈ I(C) and suppose
ui �∈ C⊥. Define ti(C) as the largest positive integer τi such that for each set
A ⊂ I(C) \ {i} with |A| = τi it holds that (i, A) is not a reconstruction-pair.
Equivalently, this is satisfied if and only if there exists c ∈ C with πi(c) = 1 and
πA(c) = 0. If no such integer exists, ti(C) = 0 by definition.

Note that by Corollary 1, the value ti(C) is well-defined, and satisfies 0 ≤ ti(C) <
n(C).

Lemma 2. Let C be a linear code over Fq such that {0} � C,C⊥ � F
n(C)+1
q .

Then dmin(C⊥) = m + 1, where m is the largest positive integer such that for
all non-empty sets B ⊂ {0, 1, . . . , n} with |B| = m, it holds that πB(C) = F

|B|
q .

Proof. The conditions imply that n(C) ≥ 1. Write d⊥ = dmin(C⊥). For a
non-empty set B ⊂ I(C), write WB = πB(C) ⊂ F

|B|
q . Clearly, WB �= F

|B|
q if

and only if W⊥
B �= {0}. This latter condition equivalent to the existence of some

c∗ ∈ C⊥ \ {0} with supp(c∗) ⊂ B, for which we have that wH(c∗) ≤ |B|. Thus,
for all B ⊂ I(C) with |B| ≤ d⊥−1, it must hold that WB = F

n+1
q . On the other

hand, since C⊥ �= {0}, an element c∗ ∈ C⊥ \ {0} can be selected with minimal
weight d⊥. Define B = supp(c∗). Then |B| = d⊥, and by the characterization
above, WB �= Fn+1

q . 1

Lemma 3. Let C be a code over Fq with n(C) ≥ 1 and let i ∈ I(C). Then:

1. If ui �∈ C, then ri(C) ≤ n(C)− dmin(C) + 2.
2. If dmin(C) > 1, then maxj∈I(C) rj(C) = n(C)− dmin(C) + 2.
3. If ui �∈ C⊥, then dmin(C⊥)− 2 ≤ ti(C).
4. If dmin(C⊥) > 1 then dmin(C⊥)− 2 = mini∈I(C) ti(C).

Proof. As to Claim 1,if dmin(C) ≤ 2, there is nothing to prove. Else, if we
“prune” the code C at dmin(C) − 2 coordinates (not including i), then we get
a code C′ with dmin(C′) > 1. The claim now follows from Corollary 1. As to
Claim 2, dmin(C) > 1, then ri is well-defined for all i ∈ I(C). Select an element
c in C of minimal weight dmin(C). Take any i ∈ supp(c) and define B = I(C) \
supp(c). Clearly |B| = n(C) − dmin(C) + 1 and (i, B) is not a reconstruction-
pair because πi(c) �= 0 and πB(c) = 0. Therefore ri(C) ≥ n(C) − dmin(C) + 2,
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which was what remained to be proved. As to Claim 3, this follows directly from
Lemma 2. As to Claim 4, if dmin(C⊥) > 1, then ti is well-defined for all i ∈ I(C).
So if B ⊂ I(C) is any set with |B| = 1 + mini∈I(C) ti(C), then for each j ∈ B
there exists c ∈ C such that πj(c) = 1 and πB′(c) = 0, where B′ = B\{j}. Thus,
πB(C) = F

|B|
q , and by Lemma 2, |B| = 1 + mini∈I(C) ti(C) ≤ dmin(C⊥) − 1.

Hence, dmin(C⊥)−2 ≥ mini∈I(C) ti(C), which was what remained to be proved.
1

Definition 5. Let C be a linear code over Fq with n(C) ≥ 1. We define I(C)
as the set consisting of all indices i ∈ I(C) such that ui �∈ C and ui �∈ C⊥.
C(Fq) is the collection of all linear codes C over Fq such that I(C) �= ∅.

Note that I(C) �= ∅ implies n(C) ≥ 1 and that I(C) = I(C) if and only if
dmin(C) > 1 and dmin(C⊥) > 1. For completeness we state the following
straightforward characterization of C(Fq). If C is a linear code over Fq with
n(C) ≥ 1 and if I(C) = ∅, then it holds for all i ∈ I(C) that the i-th coordinate
of elements of C is always equal to zero or that the i-th unit vector ui ∈ C.
After permutating indices, if necessary, the set C is then equal to a Cartesian
product Fq × · · · × Fq ×{0}× · · · × {0}. On the other hand, if C decomposes as
above, then clearly I(C) = ∅.

Theorem 1. Let C ∈ C(Fq) and let i ∈ I(C). Suppose c ∈ C is chosen uni-
formly at random. Then the following holds.

1. πi(C) ∈ Fq has the uniform distribution.
2. (“r-reconstruction”) If B ⊂ I(C) \ {i} with |B| ≥ ri(C), then πB(c) deter-

mines πi(c) uniquely with probability 1. Thus,Σ(C, i) has ri(C)-reconstruction.
3. If dmin(C) > t + 1 for some positive integer t, then Σ(C, i) has (n − t)-

reconstruction.
4. (“t-privacy”) Suppose ti(C) ≥ 1. If A ⊂ I(C) \ {i} is non-empty and |A| ≤

ti(C), then πi(c) has the uniform distribution on Fq and πA(c) is distributed
independently from πi(c). Thus, Σ(C, i) has ti(C)-privacy.

5. If dmin(C⊥) > t+ 1 for some positive integer t, then Σ(C, i) has t-privacy.
6. Suppose dmin(C⊥) > 1. The largest positive integer m such that for all A ⊂
I(C) with |A| = m it holds that πA(c) ∈ F

|A|
q has the uniform distribution,

satisfies m = dmin(C⊥)− 1.

Proof. As to Claim 1, i ∈ I(C) implies in particular that for each x ∈ Fq

there exists c ∈ C such that πi(c) = x. Moreover, their number is equal to the
cardinality of the kernel of the map πi. Hence this number does not depend
on x and the claim follows. Claim 2 follows from the definition of ri(C). As to
Claim 3, this follows from Lemma 3 plus pruning. As to Claim 4, if |A| ≤ ti(C),
then there exists c′′ ∈ C with πi(c′′) = 1 and πA(c′′) = 0. This implies that for
each (x,y) with x ∈ Fq and y ∈ πB(C), there exists c′′ ∈ C with πi(c′′) = x
and πA(c′′) = y. More precisely, their number is equal to the cardinality of the
kernel of the map πA∪{i}, and the claim follows. As to Claim 5, this follows from
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Lemma 3. As to Claim 6, by Lemma 2 it holds that for each y ∈ F
|A|
q , there

exists c ∈ C with πA(c) = y. Their number is equal to the cardinality of the
kernel of the map πA, and, as maximality also follows from Lemma 2, the claim
follows. 1

Remark 1. Let C ∈ C(Fq) and let i ∈ I(C). Then Σ(C, i) can be viewed as an
LSSS.

Proof. Assume for simplicity in notation that i = 0. Choose a generator matrix
G for the code C, i.e., a matrix with k columns and n + 1 rows such that the
columns jointly constitute an Fq- basis of C. Write v0 for the top row, write
vi for the i-th row below, and write Vi for the Fq-vector space spanned by it,
which is one-dimensional as vi �= 0 (i = 1 . . .n). Since dmin(C) > 1, it follows
by Lemma 1 that there exists a vector x = (x0, x1, . . . , xn)T ∈ Fn+1

q such that
GT x = 0 and x0 = 1, where GT denotes the transpose of G. Thus, v0 is in the
Fq-linear span of the vi, i = 1, . . . , n. The parameter e from the LSSS definition
is equal to k, the dimension of C. Thus, (Fq, n, e,v0, V1, . . . , Vn) thus defined is
an LSSS by definition. The secret sharing scheme it generates (see Section 2) is
identical to choosing b ∈ Fn+1

q at random and setting (s0, s1, . . . , sn)T = Gb.
Since G is a generator matrix of C, this secret sharing scheme is identical to
Σ(C, i). 1

4 Strongly Multiplicative LSSS from Codes

In this section we define a special class of codes that imply strongly multiplicative
LSSS.

Definition 6. For x = (x1, . . . , xn) ∈ Fn
q ,y = (y1, . . . , yn) ∈ Fn

q , their Schur-
product x ∗ y ∈ Fn

q is defined as (x1y1, . . . , xnyn). Let C be a linear code over
Fq. The linear code Ĉ over Fq is the linear code Fq < {x ∗ y}x,y∈C >, i.e., the
Fq-linear span of the vectors of the form x ∗ y with x,y ∈ C.

Lemma 4. Let C be a linear code over Fq with n(C) ≥ 1 and let i ∈ I(C). Then:
1) n(Ĉ) = n(C). 2) ui �∈ Ĉ implies ui �∈ C. 3) ui �∈ C⊥ if and only if ui �∈ (Ĉ)⊥.
4) I(Ĉ) ⊂ I(C). 5) 1 ≤ dmin(Ĉ) ≤ dmin(C).

Generally, ui �∈ C does not necessarily imply ui �∈ Ĉ.

Definition 7. C†(Fq) denotes the set of all Fq-linear codes C with I(Ĉ) �= ∅.

Note that C†(Fq) �= ∅ for all finite fields Fq.

Definition 8. For C ∈ C†(Fq), t̂(C) = maxi∈I(Ĉ) min{ti(C), n(Ĉ) − ri(Ĉ)}.
The LSSS Σ(C) is by definition Σ(C, i) where i is the smallest index where this
maximum is attained. Write is for this index.
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Note that ri(Ĉ) is well-defined in the definition of t̂(C) since Ĉ ∈ C(Fq) and
i ∈ I(Ĉ).

Generally, C ∈ C(Fq) does not even need to imply C ∈ C†(Fq). In fact, only
for special classes of codes one seems to be able to bound t̂(C) non-trivially,
sometimes in combination with this Corollary to Theorem 1.

Corollary 2. Let C ∈ C†(Fq). Suppose that dmin(C⊥) > t+1 and dmin(Ĉ) >
t + 1 for some integer t ≥ 1. Then t̂(C) ≥ t.

Lemma 5. Let e be a positive integer. Then:

– 〈v ⊗w,a ⊗ b〉 = 〈v,a〉 · 〈w,b〉, for all v,w, a,b ∈ Fe
q.

– Let x,y ∈ Fe2

q . Then x = y if and only if 〈x,a ⊗ b〉 = 〈y, a ⊗ b〉 for all
a,b ∈ Fe

q.

Proof. The definitions of tensor product and scalar product imply the first
claim. The second follows by combination of the bilinearity of the scalar product
and the facts that the Fq-linear span of the vectors a⊗b with a,b ∈ F

e
q is equal

to Fe2

q and that the scalar-product with a given vector is always zero if and only
if that vector equals the zero-vector. 1

Theorem 2. Let C ∈ C†(Fq). Suppose t̂(C) ≥ 1 and let t be an integer with
1 ≤ t ≤ t̂(C). Then: t ≤ 1

3 · (n(C) − 1), Σ(C) has (n(C) − 2t)-reconstruction,
and Σ(C) has t-strong multiplication.

Proof. We first argue t-strong multiplication. Assume w.l.o.g. that is = 0
(Definition 8). By Theorem 1, Σ(C) satisfies t-privacy. Write n = n(Ĉ) (= n(C)).
Since t̂(C) ≥ 1, r0(Ĉ) < n. Now choose a generator matrix G for C. Write v0 for
its top row, write vi for the i-th row below and write Vi for the one-dimensional
space Vi spanned by it, i = 1 . . .n. Let B ⊂ {1, . . . , n} be a nonempty set.
First, note that there exists a vector λ ∈ Fn

q such that
∑

i∈B πi(λ)(vi ⊗ vi) =
v0 ⊗ v0 if and only if 〈

∑
i∈B πi(λ)(vi ⊗ vi),b ⊗ b′〉 = 〈v0 ⊗ v0,b ⊗ b′〉 for all

b,b′ ∈ Fe
q. Indeed, the forward direction follows by rewriting and the reverse

direction follows from Lemma 5 (2nd item). By re-writing and by using Lemma 5
(1st item), this is equivalent to

∑
i∈B πi(λ)〈vi,b〉〈vi,b′〉 = 〈v0,b〉〈v0,b′〉 for all

b,b′ ∈ Fe
q. This may be rewritten as 〈(Gb) ∗ (Gb′),y〉 = 0 for all b,b′ ∈ Fe

q,
where π0(y) = −1, πi(y) = πi(λ) if i ∈ B, and πi(y) = 0 for all other indices.
Equivalently,

∑
i∈B λiπi(c)πi(c′) = π0(c)π0(c′) for all c, c′ ∈ C, since G is a

generator matrix of C. By definition of t, there exists, for each choice of B with
|B| = n−t, a vector λ ∈ Fn

q such that the latter condition is satisfied for the set B.
We conclude that t-strong multiplication holds, as desired. As to the remaining
claims, let B ⊂ {1, . . . , n} be such that |B| = n− 2t. Write A = {1, . . . , n} \ B.
Choose a disjoint partition A0 ∪ A1 = A with |A0| = |A1| = t. By Lemma 2
there exists c′ ∈ C such that π0(c′) = 1 and πA0(c′) = 0. Let c ∈ C be arbitrary
and consider the vector c ∗ c′ ∈ Ĉ. Note that this vector has coordinates equal
to zero at those indices i with i ∈ A0. Since Ĉ has (n − t)-reconstruction,
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there exists a vector x ∈ Fn
q such that it has coordinates equal to zero at those

indices i with i ∈ A1 and π0(c ∗ c′) =
∑n

i=1 πi(x)πi(c ∗ c′). It now follows
that π0(c) =

∑
i∈B(πi(x) · πi(c′))πi(c), for all c ∈ C. Thus, there is (n − 2t)-

reconstruction. Since there is also t-privacy, it follows that t ≤ 1
3 (n(C) − 1).

Finally, the remark about fulfilment of the conditions follows from Theorem 1.
1

We introduce the notion of asymptotic optimal corruption tolerance for the class
of codes C†(Fq).

Definition 9. Let Fq be a finite field. For C ∈ C†(Fq), we define τ̂ (C) =
3·t̂(C)

n(C)−1 . We call value τ̂ (C) the corruption tolerance of the code C.

Note that 0 ≤ τ̂ (C) ≤ 1 always, where the upper bound follows from Theorem 2.
Let t, n be positive integers with 3t < n and let Fq be a finite field with q > n. If
C is a polynomial evaluation code (“Reed-Solomon code”) over Fq of length n+1,
defined from evaluation of the polynomials of degree at most t, then τ̂ (C) = 1,
and, of course, Σ(C) is Shamir’s (n, t + 1, t)-threshold LSSS.

Definition 10. (Asymptotic optimal corruption tolerance). Let Fq be a finite
field. Then we define τ̂ (q) = lim supC∈C†(Fq) τ̂ (C).

Note that τ̂ (C) = 1 implies that Σ(C) is an (n, t+1, t)-threshold LSSS over Fq,
with n = 3t + 1. For fixed q there are only finitely many C ∈ C†(Fq) such that
τ̂ (C) = 1 (the proof for this statement is easily extracted from [8]; in fact, in
Section 8 we prove a stronger statement). Since for each length there are only a
finite number of codes of that length when Fq is constant, this means that for
each ε > 0 there exists an infinite family of codes C ∈ C†(Fq) with �(C) tending
to infinity and |τ̂(q) − τ̂(C)| < ε.

5 Bounding τ̂ (q) Away from Zero for Arbitrary Fq

The main result of this section is the fact that τ̂ (q) > 0 for every finite field Fq.
First, we need to restate and reprove part of the results (Theorems 3 and 6) of [8]
on algebraic geometric strongly multiplicative secret sharing in the technical
framework of the present paper. Throughout this section Fq denotes the finite
field with q elements.

Theorem 3. (Chen and Cramer [8]) Let F be an algebraic function field over
Fq. Suppose |Pq(F)| > 4(g(F) + 1). Let t, n be any integers such that 1 ≤ t < n,
|Pq(F)| ≥ n+ 1, and 3t < n− 4 · g(F). Then there exists a code C ∈ C†(Fq) such
that �(C) = n+ 1 and t̂(C) ≥ t. In particular, Σ(C) has t-strong multiplication.

Proof. By the condition on |Pq(F)|, there exist integers t, n satisfying the con-
straints from the theorem. Now fix such t, n. By Corollary 2, it is sufficient
to show the existence of C ∈ C†(Fq) with �(C) = n + 1, dmin(C⊥) > t + 1
and dmin(Ĉ) > t + 1. Write g = g(F). Let P0, P1, . . . , Pn ∈ Pq(F) be distinct
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places of degree 1, and define the divisor D =
∑n

i=0 Pi. Choose a divisor G with
supp(G) ∩ supp(D) �= ∅ and deg(G) = 2g + t. This is possible by the Weak
Approximation Theorem (see e.g. [27]). Alternatively, in case |Pq(F)| > n + 1,
select a place Q ∈ Pq(F) \ {P0, P1, . . . , Pn} and define G = (2g + t) · Q. In any
case, it holds that dimFq(L(G)) = g + t + 1. Next, define C as the evaluation
code C(D;G). Arbitrarily choose i ∈ {0, 1, . . .n}, A ⊂ {0, 1, . . .n} \ {i} with
|A| = t. Since 2g − 2 < deg(G − Pi −

∑
j∈A Pj) < deg(G −

∑
j∈A Pj), it holds

that dimFq(L(G− Pi −
∑

j∈A Pj)) < dimFq(L(G−
∑

j∈A Pj)). Hence, there ex-
ists f ∈ L(G) such that f(Pi) = 1 and f(Pj) = 0 for all j ∈ A. In particular,
for C as well as for Ĉ it holds that the i-th coordinate is not always zero. Sec-
ond, since f · g ∈ L(2G) if f, g ∈ L(G), it follows that Ĉ ⊂ C(D; 2G). From
deg(2G) = 4g+2t and 4g < n−3t, it follows that dmin(Ĉ) ≥ n+1−deg(2G) =
n+ 1− (4g+ 2t) > t+ 1. In particular, it follows that ui �∈ Ĉ. We conclude that
C ∈ C†(Fq) and I(C) = I(C), and using Theorem 1, that t ≤ min0≤j≤n tj(C) =
dmin(C⊥) − 2. Hence dmin(C⊥) > t + 1. By Corollary 2, t̂(C) ≥ t. The claim
about t-strong multiplicativity of Σ(C) follows from Theorem 2. 1
It follows from this theorem that τ̂ (q) > 0 if A(q) > 4, where A(q) is Ihara’s
constant (see Section 2). Recall that the Drinfeld-Vladuts bounds states that
A(q) ≤ √q − 1. For our purposes, however, we need a lower bound. Ihara [18]
has shown that if q is a square, then A(q) ≥ √q−1, so that the Drinfeld-Vladuts
bound is sharp. Later, Garcia and Stichtenoth [15] showed this result by more
explicit methods (see also [1] for recent results over cubic fields).

Theorem 4. (Ihara [18], Garcia and Stichtenoth [15]) Let Fq be a finite field
and let q be a square. Then A(q) =

√
q−1. More precisely, there exists an infinite

family of algebraic function fields (in one variable) {F(m)}m≥1 over Fq such that
for all m ≥ 1, Fq is the full constant field of F(m), |Pq(F(m))| ≥ (q −√q)√qm−1

and g(F(m)) ≤ √qm.

Theorem 5. (Serre [25]) There exists a positive constant c∗ ∈ R such that for
all finite fields Fq we have A(q) ≥ c∗ · log q.

Combining Theorems 3, 4 and 5, we can bound τ̂ (q) away from zero if either q is
a square or q is extremely large2. Also, we see that τ̂(q) tends to 1 if |Fq| tends
to infinity.

Theorem 6. (Chen and Cramer [8])

– τ̂ (q) ≥ 1 − 4
A(q) if Fq is a finite field with A(q) > 4. In particular, A(q) > 4

if q is large enough, more precisely, if q > 2
4
c . Here, c ∈ R is any positive

constant so that Theorem 5 holds with c∗ = c3.
– τ̂ (q) ≥ 1− 4√

q−1 for all finite fields Fq such that q ≥ 49 and q is a square.

2 The results in [8] only considered the case q ≥ 49 with q a square. But the com-
bination of Theorem 3 with Theorem 5 is straightforward, so we attribute that in
essence to [8].

3 Currently, c∗ ≥ 1
91

is the best known approximation, see [29].
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– lim|Fq|→∞ τ̂ (q) = 1, where Fq ranges over all finite fields.

Thus, it remains to bound τ̂(q) away from zero in the cases where q is small
(2 ≤ q < 49) or q > 49 is not a square and q is at most moderately large. We
resolve this by means of a dedicated field-descent that allows us to lower bound
τ̂ (q) as a function of τ̂(qm). At its heart it uses the following notion.

Definition 11. A multiplication-friendly embedding of the extension field Fqm

over Fq is a triple (r, σ, ψ) where r is a positive integer and where σ : Fqm → Fr
q

and ψ : Fr
q → Fqm are Fq-linear maps such that xy = ψ(σ(x) ∗ σ(y)) for all x, y

in Fqm . The integer r is called the expansion.

Note that σ is an injective Fq-linear map between Fq-vectorspaces: σ(x) = σ(y)
implies x = x ·1 = ψ(σ(x)∗σ(1)) = ψ(σ(y)∗σ(1)) = y ·1 = y. Note that this no-
tion has been studied in the context of asymptotic arithmetic complexity (see [4]
and [28]). We can now state and prove our field-descent theorem. Elementary
constructions of multiplication-friendly embeddings are given afterwards.

Theorem 7. Let t, r be integers with t, r ≥ 1. Suppose C ∈ C†(Fqm) with t̂(C) ≥
t and suppose there exists a multiplication-friendly embedding of Fqm over Fq

with expansion r. Then there exists C1 ∈ C†(Fq) such that n(C1) = r · n(C) and
t̂(C1) ≥ t.

Proof. Write n = n(C). W.l.o.g., is = 0 (Definition 8), i.e., t̂(C) is attained
for i = 0. In particular, 0 ∈ I(Ĉ). Let πB denote the projection π

(qm,n+1)
B and

let π′
B denote the projection π

(q,rn+1)
B (Definition 1). For an index-set I(), I∗()

denotes I() \ {0}. Consider the set G = C ∩ (Fq

⊕
(Fqm)n), i.e., all c ∈ C

with π0(c) ∈ Fq. Note that G �= ∅, G is not an Fqm-linear code, but G is an Fq-
linear subspace of the Fqm-linear code C. Let (r, σ, ψ) be a multiplication-friendly
embedding of Fqm over Fq. Define the Fq-linear map χ : Fq

⊕
(Fqm)n → (Fq)1+rn

by (c0, c1, . . . , cn) �→ (c0, σ(c1), . . . , σ(cn)). Now define the Fq-linear code C1 as
C1 = χ(G) ⊂ Frn+1

q . We first show C1 ∈ C†(Fq). Write u0 = (1, 0, . . . , 0) ∈ Fn+1
q

and u′
0 = (1, 0, . . . , 0) ∈ Frn+1

q . Since 0 ∈ I(Ĉ), u0 �∈ C⊥ by Lemma 4, or
equivalently, there is c ∈ G with π0(c) = 1. Since π′

0(χ(c)) = 1, u′
0 �∈ (C1)⊥,

and by Lemma 4, u′
0 �∈ (Ĉ1)⊥. Note that if

∑
k σ(x(k)) ∗ σ(y(k)) = 0 ∈ Fr

q for
some x(k)’s and y(k)’s in Fqm , then

∑
k x

(k) · y(k) =
∑

k ψ(σ(x(k)) ∗ σ(y(k))) =
ψ(
∑

k σ(x(k)) ∗ σ(y(k))) = ψ(0) = 0 ∈ Fqm . Using this, it is verified easily
that u′

0 ∈ Ĉ1 would imply u0 ∈ Ĉ, a contradiction. In conclusion, 0 ∈ I(Ĉ1)
and hence, I(Ĉ1) �= ∅. We now show t̂(C1) ≥ t. If we call each j ∈ I∗(C) a
“parent” index, then, using the definition of χ, each of those Fqm-parent indexes
can be said to have r Fq-sibling indexes. If A ⊂ I∗(C1) is a non-empty set,
then β(A) ⊂ I∗(C) denotes the set of parent indexes of these siblings. Note
that |β(A)| ≤ |A|. Finally, α(A) ⊂ I∗(C1) denotes the set of all siblings of the
elements in β(A). Note that A ⊂ α(A). Now let A ⊆ I∗(C1) with |A| = t. Since
|β(A)| ≤ t ≤ t0(C), there exists c ∈ G such that π0(c) = 1 and πβ(A)(c) = 0.
Since π′

0(χ(c)) = 1, π′
α(A)(χ(c)) = 0, and A ⊂ α(A), it follows that t0(C1) ≥ t.
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It remains to prove that r0(Ĉ1) ≤ rn − t. Let A1 ⊂ I∗(Ĉ1) with |A1| = t be
an arbitrary set. Since A1 ⊂ α(A1), it will be sufficient to show that (0, B1) is
a reconstruction-pair for Ĉ1, where B1 = I∗(Ĉ1) \ α(A1). Write B = I∗(Ĉ) \
β(A1). Note that |B| ≥ n − t. Since r0(Ĉ) ≤ n − t, there exists an Fqm -linear
reconstruction function ρB,0 for Ĉ. We extend the definition of the map ψ as
follows: if x = (x0,x1, . . . ,xn) ∈ F1+rn

q , where x0 ∈ Fq and x1, . . . ,xn ∈ Fr
q, then

ψ(x) = (x0, ψ(x1), . . . , ψ(xn)) ∈ F
n+1
qm . Observe that this map is also Fq-linear

and that ψ(χ(c) ∗ χ(c′)) = c ∗ c′ for all c, c′ ∈ G. Moreover if π′
B1

(x) = π′
B1

(y),
then observe that πB(ψ(x)) = πB(ψ(y)). For arbitrary c, c′ ∈ G, ρB,0 ◦ πB(c ∗
c′) = π0(c ∗ c′) = c0c

′
0 ∈ Fq. Hence, ρB,0 ◦ πB ◦ ψ(χ(c) ∗ χ(c′)) = c0c

′
0. We

conclude by this composition and observation above that there exists an Fq-
linear map ρ′B1,0 such that ρ′B1,0 ◦ π′

B1,0(χ(c) ∗ χ(c′)) = c0c
′
0 for all c, c′ ∈ G.

Therefore, since all elements of Ĉ1 are of the form
∑

i λi · (χ(ci) ∗ χ(c′i)) with
λi ∈ Fq and ci, c′i ∈ G, and since ρ′B1,0 ◦ π′

B1,0 is an Fq-linear map, it holds that
r0(Ĉ1) ≤ rn− t as claimed. 1
We now present some elementary constructions of multiplication-friendly
embeddings.

Theorem 8. Let m ≥ 2 be an integer with q ≥ 2m − 2, then there exists a
multiplication-friendly embedding of Fqm over Fq with expansion 2m− 1.

Proof. Let α ∈ Fqm such that 1, α, . . . , αm−1 is a basis of Fqm as an Fq-
vector space. Consider the Fq-vector space Fq[X ]<m of polynomials in Fq[X ]
with degree at most m − 1. There is an isomorphism of Fq-vector spaces φ :
Fq[X ]<m → Fqm given by f(X) �→ f(α). Now take 2m − 2 distinct elements
in Fq, β1, β2, . . . , β2m−2, and define the map ξ : Fq[X ]<m → (Fq)2m−1 given by
f(X) �→ (f(β1), . . . , f(β2m−2), μ(f)) where μ(f) denotes the coefficient am−1
of Xm−1 in f(X). Define σ = ξ ◦ φ−1. For all x, y ∈ Fqm , we then have
that σ(x) = (f(β1), . . . , f(β2m−2), μ(f)) and σ(y) = (g(β1), . . . , g(β2m−2), μ(g))
where f(X),g(X) ∈ Fq[X ] are the unique polynomials of degree at most m− 1
with f(α) = x, g(α) = y. We have σ(x)∗σ(y) = (fg(β1), . . . , fg(β2m−2), μ(fg)).
Since f(X) · g(X) ∈ Fq[X ] is of degree at most 2m − 2, evaluations in 2m − 2
points of Fq determine it up to to multiplicative factor (from Fq). This factor is
clearly uniquely determined when, in addition, μ(fg) is taken into account. It
follows that xy = fg(α) is determined uniquely by σ(x) ∗ σ(y), i.e. there exists
a function ψ such that xy = ψ(σ(x) ∗ σ(y)) for all x, y ∈ Fqm . It is not difficult
to see that ψ is Fq-linear. 1
A construction without any constraint on q and m is presented next. The ex-
pansion in this case is quadratic in the degree of the extension. However, for
quadratic extensions it is exactly the same as above.

Theorem 9. There exists a multiplication-friendly embedding of Fqm over Fq

with expansion
(
m+1

2

)
.

Proof. Let α ∈ Fqm such that 1, α, . . . , αm−1 is a basis of Fqm as an Fq-vector
space. Consider the map σ : Fqm → (Fq)r given by x �→ (x0, . . . , xm−1, x0 +
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x1, . . . , x0+xm−1, . . . , xm−2+xm−1), where x =
∑m−1

i=0 xiα
i. Given two elements

x, y ∈ Fqm , the coordinates of σ(x) ∗ σ(y) precisely exhaust all possible expres-
sions xiyi, as well as all possible expressions xiyi + xjyj + xiyj + xjyi for i �= j.
Hence, for each pair of indexes (i, j) with i �= j, there exists an Fq-linear map φi,j

such that φi,j(σ(x) ∗σ(y)) = xiyj + xjyi. Since xy =
∑2m−2

k=0 (
∑

i+j=k xiyj)αk =∑m−1
i=0 xiyiα

2i +
∑2m−2

k=0 (
∑

i+j=k,i<j xiyj + xjyi)αk, it follows that there exists
an Fq-linear map ψ such that xy = ψ(σ(x) ∗ σ(y)). 1

Corollary 3. Let Fq be a finite field. There exists a multiplication-friendly
embedding of Fq2 over Fq with expansion equal to 3. Moreover, there exists a
multiplication-friendly embedding of F64 over F4 with expansion equal to 5.

Proof. In the case of quadratic extensions, both multiplication-friendly embed-
dings give the result. For the second case, we apply Theorem 8. 1
We are now ready to bound τ̂ (q) away from zero for all finite fields Fq.

Definition 12. We define ν(q) as follows: ν(2) = 1/35 ≈ 2.86%; ν(3) =
1/18 ≈ 5.56%; ν(4) = 3/35 ≈ 8.57%; ν(5) = 5/54 ≈ 9.26%; for q square,
q ≥ 49, ν(q) = 1− 4√

q−1 ; for the remaining values of q, ν(q) = 1
3 (1− 4

q−1 ).

Theorem 10. Let Fq be a finite field. Then τ̂ (q) ≥ ν(q).

Proof. If q ≥ 49 and q is a square, then τ̂(q) ≥ (1 − 4√
q−1 ) by Theorem 6.

Using a degree 2 descent from the combination of Theorem 7 and Corollary 3,
this immediately yields τ̂ (q) ≥ 1

3 ·(1−
4

q−1 ) if 7 ≤ q < 49, or if q > 49 and q is not
a square. For q = 4, F64 is a degree 3 extension of F4. Combining Theorem 7,
instantiated with the multiplication-friendly mapping from F64 to (F4)5 from
Corollary 3, with the fact that τ̂(64) ≥ 3

7 , it follows that τ̂ (4) ≥ 1
5 ·

3
7 = 3

35 . For
q = 2, 3, 5 a further degree 2 descent in combination with the results above leads
to τ̂ (2) ≥ 1

3 ·
3
35 = 1

35 , τ̂ (3) ≥ 1
3 ·

1
6 = 1

18 , and τ̂ (5) ≥ 1
3 ·

5
17 = 5

54 . 1

We note that it is possible to further improve these lower bounds especially for
small values of q using more advanced techniques from algebraic geometry, as
we show in upcoming work [5].

6 Consequences for LSSS with Strong Multiplication

We now state the consequences for LSSS with strong multiplication explicitly.

Definition 13. Let Σ = (S0, S1, . . . , Sn) be an SSS. The (average) information
rate λ(Σ) is defined as λ(Σ) =

∑n
i=1 H(Si)
n·H(S0)

. F = {Σn}n∈N is a family of secret
sharing schemes if N ⊂ N is an infinite set and for all n ∈ N , Σn is a secret
sharing scheme with |P(Σn)| = n. The (average) information rate λ(F) of the
family F is the function λF : N −→ R≥0 with n �→ λ(Σn).
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Definition 14. F = {Σn}n∈N is a family of ideal LSSS (over Fq) with strong
multiplication if the following properties hold. F is a family of secret sharing
schemes such that for all n ∈ N , Σn = (Fq, n, e

(n),v(n)
0 , V

(n)
1 , . . . , V

(n)
n ) is an

LSSS. Moreover, for each n ∈ N , Σn is “ideal”, i.e., dimV
(n)
i = 1 for i =

1, . . .n,. Finally, for all n ∈ N , Σn has tn-strong multiplication, where tn is the
maximum integer with that property. The corruption tolerance t̂F of F is defined
as the function t̂F : N → R≥0 with n �→ 3tn

n−1 . Such a family is asymptotically
good if lim supn∈N t̂F (n) > 0, and asymptotically bad otherwise.

Combining Theorem 10 with Theorem 2, there are the following consequences
for strongly multiplicative LSSS.

Theorem 11. Let Fq be an arbitrary finite field. There exists an asymptotically
good family F = {Σn}n∈N of ideal LSSS over Fq with strong multiplication such
that limn→∞ t̂F (n) = ν(q).

Note that over F2, for example, t is at least a 1/105-fraction of n, i.e. 0.95% of
the players. Also note that by making q large enough, ν(q) gets arbitrarily close
to 1 and, hence, t gets arbitrarily close to 1

3n.

7 Asymptotically Bad Yet Elementary Schemes

We have shown that a combination of strong methods from algebraic geometry
with a dedicated field-descent method leads to asymptotically good schemes
over any finite field. We now show an elementary construction that also works
over any finite field Fq. However, it is asymptotically bad. Yet it gives t-strong
multiplication for t = Ω(n/((log logn) logn)). A combination of results from [7]
with replication gives an elementary family with t = Ω(

√
n), which is much

worse. Our construction here consists of applying a combination of Theorems 7
and 9 to Shamir’s LSSS over a tower of extension fields of the base field Fq,
where the degree of the extension tends to infinity. For every m > 0, define
rm = (qm)�q

m/2�. Consider the [n+1, t]rm-Reed-Solomon code Cm with n+1 =
rm and t = 	 13 (rm − 2)
, i.e. Σ(Cm) is a Shamir’s LSSS over Frm with rm − 1
players and t-strong multiplication. Now apply the construction in Theorem 7
to the codes Cm, using the multiplication-friendly embedding from Theorem 8,
and we descend from LSSS over Frm to LSSS over Fqm . Using Theorem 9, we
descent again from LSSS over Fqm to LSSS over Fq. Note that the final number
of players is now (rm − 1)(2	qm/2
 − 1)

(
m+1

2

)
.

Theorem 12. Let Fq be an arbitrary finite field. The above (elementary) con-
struction yields a family F = {Σn}n∈N of ideal LSSS over Fq with t(n)-strong
multiplication, where t(n) = Ω(n/((log log n) logn).

Proof. Write nm = (rm − 1)(2	qm/2
 − 1)
(
m+1

2

)
. The code C̃m constructed

as above gives an LSSS Σnm for nm players and tnm-strong multiplication for
tnm = 	 13 (rm − 2)
. On the other hand, it is easy to see that m = O(log log nm)
and m · qm = O(log nm). The desired result follows. 1
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8 Upper Bounds on Optimal Corruption Tolerance

So far we have presented asymptotic lower bounds on optimal corruption toler-
ance. We now turn to (non-asymptotic) upper bounds on corruption tolerance
of a code. Using arguments given in [8], it follows easily that τ̂ (C) < 1 for all
C ∈ C†(Fq) with �(C) large enough as a function of q (note that τ̂(C) = 1 is
achievable if n ≤ q). In Theorem 15 below we improve this bound. The improve-
ment is based on a combination of Theorem 2 with Theorem 13, a more general
result for LSSS we prove below. Namely, we lower bound the information rate
as a function of the threshold gap. Here, the threshold-gap of an SSS is defined
as the difference between its reconstruction- and privacy-thresholds. A further
implication is that in all interesting cases, the threshold gap necessarily grows at
least as Ω(log n), where n is the number of players, in any family of LSSS over
Fq with positive information rate. Let Σ = (Fq, n, e,v0, V1, . . . , Vn) be an LSSS
over Fq.

Theorem 13. Set g(Σ) = r(Σ)− t(Σ), the threshold gap of Σ. If t(Σ) ≥ 1 and
r(Σ) < n, then dimΣ ≥ n

ḡ(Σ) · logq(
n+ḡ(Σ)+2

2ḡ(Σ) ).

This generalizes a result from [11] where a lower bound in the dimension of
any threshold LSSS over F2 is proven. In our result, the threshold gap can be
greater than 1 (and q is arbitrary). The proof of Theorem 13 will rely in part on
Theorem 14 and Corollary 4 below.

Theorem 14. Let G be a non-empty collection of subsets of P(Σ) such that
G ⊂ A(Σ) and, for any A,B ∈ G with A �= B, A∪B ∈ Γ (Σ). Then,

∑
A∈G dA ≥

|G| · logq(|G|), where dA is the dimension of VA for all A ∈ G.

Proof. Our proof uses a lower bound technique from Karchmer and Wigder-
son [21] (and our claim is essentially a slight generalization of their result).
Define H1 = {φ ∈ Hom(Fe

q,Fq) : φ(v0) = 1}. For all non-empty A ⊂ P , define
H1,A = H1∩V ⊥

A . Note that, by the characterization from Section 2.2, A ∈ Γ (Σ)
if and only if H1,A = ∅. By linear algebra, |H1| = qe−1 and |H1,A| = qe−dA−1

if A /∈ Γ (Σ). Moreover, if A,B ∈ G, then A ∪ B ∈ Γ (Σ). Hence, H1,A∪B =
H1,A ∩ H1,B = ∅. Therefore, |

⋃
A∈G H1,A| =

∑
A∈G |H1,A| So qe−1 = |H1| ≥

|
⋃

A∈G H1,A| =
∑

A∈G |H1,A| =
∑

A∈G qe−dA−1. This gives
∑

A∈G q−dA ≤ 1. By
the log-sum inequality,4

∑
A∈G dA ≥ |G| · logq(

|G|∑
A∈G q−dA

) ≥ |G| · logq(|G|). 1

Definition 15. G = {A1, . . . , Am} is a greedy partition of P(Σ) if m is a
positive integer, A1, . . . , Am ⊂ A(Σ),

⋃m
i=1 Ai = P(Σ), Ai∩Aj = ∅ (1 ≤ i < j ≤

m), and, for k = 1, . . . ,m, Ak is maximal in A(Σ) subject to Ak ⊂ P \
⋃k−1

j=1 Aj

(A0 = ∅).
4 The log-sum inequality asserts that for non-negative real numbers a1, . . . , ar and

b1, . . . , br

∑r
i=1 ai logq(

ai
bi

) ≥ (
∑r

i=1 ai) logq

∑r
i=1 ai∑
r
i=1 bi

.
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Note that if A,B ∈ G, then A ∪ B ∈ Γ (Σ). If t(Σ) ≥ 1, there exists a greedy
partition by induction. Moreover, the size m of a greedy partition can be bounded
in terms of r(Σ), since any set in the partition has at most r(Σ)− 1 elements.

Corollary 4. Suppose t(Σ) ≥ 1 and let G be a greedy partition of P(Σ). Then
dimΣ ≥ |G| · logq |G|. In particular, dimΣ ≥ ' n

r(Σ)−1( · logq(' n
r(Σ)−1().

Proof (of Theorem 13). We use a dualization technique from [11]. Set r = r(Σ),
t = t(Σ) and g = g(Σ). Note that if Σ∗ is an LSSS over Fq whose access
structure is the dual of Σ’s, then g(Σ∗) = g(Σ). Sort the players 1, . . . , n so
that di ≤ dj if i ≤ j. Let Σ1 be the LSSS restricted to the first r + 1 players
(this is possible since r < n). Clearly t(Σ1) ≥ t(Σ) and r(Σ1) ≤ r(Σ), so
g(Σ1) ≤ g(Σ). There exists an LSSS Σ∗

1 over Fq and defined over the first r + 1
players such that dimΣ1 = dimΣ∗

1 and Γ (Σ∗
1) is the dual access structure to

Γ (Σ1) (see the remark in Section 2.2). Note that t(Σ∗
1) ≥ 1 and that r(Σ∗

1 ) =
r+1− t(Σ1) ≤ r+1− t = g+1. By Corollary 4, dimΣ1 = dimΣ∗

1 ≥ ' r+1
r(Σ∗

1 )−1( ·
logq(' r+1

r(Σ∗
1 )−1() ≥ '

r+1
ḡ ( · logq(' r+1

ḡ (). Because of the sorting of the players,
dimΣ ≥ n

r+1 · dimΣ1 ≥ 'n
ḡ ( · logq(' r+1

ḡ (). Finally, let Σ∗ now be an LSSS over
Fq such that dimΣ = dimΣ∗ and Γ (Σ∗) is the dual access structure to Γ (Σ)
(note that t(Σ∗) ≥ 1 since r < n and r(Σ∗) < n since t ≥ 1). Applying the
bound we have just derived, we get dimΣ∗ ≥ ' n

ḡ(Σ∗)( · logq('
r(Σ∗)+1

ḡ(Σ∗) (). But
ḡ(Σ∗) = ḡ and r(Σ∗) = n − t, so dimΣ = dimΣ∗ ≥ 'n

ḡ ( · logq('n−t+1
ḡ (). It is

easy to see then that dimΣ ≥ n
ḡ logq(

n+ḡ+2
2ḡ ). 1

Corollary 5. Let F = {Σn}n∈N be a family of LSSS over Fq. If the growth
rate of the threshold gap is smaller than logarithmic in the number of players, i.e.,
lim supn∈N

ḡ(Σn)
logq n = 0, then the information rate satisfies lim supn∈N λF (n) = 0.

Theorem 15. Let C ∈ C†(Fq). We have t̂(C) ≤ 1
3 · (n(C)− 1

2 · logq(n(C) + 2))

and therefore τ̂ (C) ≤ 1− logq(n(C)+2)−2
2n(C)−2 .

Proof. Assume wlog that t̂(C) is attained for i = 0 (i.e., is = 0, see Definition 8)
and write t = t̂(C). Then t0(C) ≥ t and r0(C) ≤ n(C) − 2t, by Theorem 2.
Now set ḡ = ḡ(Σ(C)) and n = n(C). So, on the one hand, t̂(C) ≤ 1

3 (n − ḡ).
On the other hand, Σ(C) is an “ideal” LSSS. Theorem 13 then implies n ≥
n
ḡ logq(

n+ḡ+2
2ḡ ). Thus, ḡ ≥ logq(

n+2
2ḡ ) ≥ logq(n+2)−logq(2ḡ). Then ḡ+logq(2ḡ) ≥

logq(n + 2), and since ḡ ≥ logq(2ḡ) for any ḡ ≥ 1, ḡ ≥ 1
2 logq(n + 2). Combining

these facts, the result follows. 1
Note that this non-asymptotic upper bound on corruption tolerance does not
imply τ̂(q) < 1.

9 Open Problems

First, our main Theorem 10 implies that the asymptotic optimal corruption
tolerance τ̂ (q) satisfies τ̂ (q) > 0 for all finite fields Fq. The proof of that theorem
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makes crucial use of strong results from algebraic geometry (namely, good towers
of algebraic function fields). Is that essential? Though it is not unlikely that
“strong algebraic geometry” is inherent to strong lower bounds on τ̂ (q), is there
perhaps a more elementary proof just that τ̂(q) > 0? Second, it seems likely
that the bound from Theorem 15 can be sharpened considerably. Third, it is
interesting to improve our lower bounds for τ̂ (q). We have already noted that in
forthcoming work we do so for small values of q, using more advanced methods
from algebraic geometry.
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Abstract. The round complexity of interactive protocols is one of their
most important complexity measures. In this work we prove that existing
lower bounds for the round complexity of VSS can be circumvented by
introducing a negligible probability of error in the reconstruction phase.
Previous results show matching lower and upper bounds of three rounds
for VSS, with n = 3t + 1, where the reconstruction of the secrets al-
ways succeeds, i.e. with probability 1. In contrast we show that with a
negligible probability of error in the reconstruction phase:

1. There exists an efficient 2-round VSS protocol for n = 3t + 1. If
we assume that the adversary is non-rushing then we can achieve a
1-round reconstruction phase.

2. There exists an efficient 1-round VSS for t = 1 and n > 3.
3. We prove that our results are optimal both in resilience and number

of sharing rounds by showing:
(a) There does not exist a 2-round WSS1 (and hence VSS) for n ≤

3t.
(b) There does not exist a 1-round VSS protocol for t ≥ 2 and n ≥ 4.

1 Introduction

Verifiable Secret Sharing (VSS) [3] is a fundamental building block for many
distributed cryptographic tasks. VSS is a two phase protocol (Sharing and Re-
construction) carried out among n parties in the presence of an adversary who
can corrupt up to t parties. Informally, the goal of the VSS protocol is to share
a secret, s, among the n parties during the sharing phase in a way that would
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later allow for a unique reconstruction of this secret in the reconstruction phase,
while preserving the secrecy of s until the reconstruction phase.

Due to the central importance of VSS in the context of many cryptographic
protocols such as multiparty computation, Byzantine agreement, etc, the prob-
lem has drawn much attention over the years (e.g. [1,2,4,5,6,7,8,12,18]) and many
aspects of the problem have been studied. Round complexity is one of the most
important complexity measures of interactive protocols. The study of the round
complexity of VSS in the information theoretic security setting, i.e. under the
assumption of a computationally unbounded adversary, was initiated by Gen-
naro et al. [11]. Their investigation was conducted under the assumption that
the protocols are error-free. They refer to the round complexity of VSS as the
number of rounds in the sharing phase and prove that a 3-round error-free VSS
is possible only if n ≥ 3t+1, and match it with an inefficient upper bound. Fitzi
et al. [10] show an optimal efficient 3-round VSS protocol in this setting. The
protocol of Fitzi et al. used the broadcast channel in more than one round of the
sharing phase and Katz et al. [14] showed how to achieve the same result while
using a single round of broadcast. The lower bound from [11] (and the matching
upper bounds) consider error-free VSS, where the VSS properties are satisfied
without any probability of error.

In this work we investigate the question of whether the lower bounds for the
round complexity of VSS can be overcome by introducing a negligible probability
of error.

Our Results: We prove that existing lower bounds for the round complexity of
VSS can be circumvented by introducing a negligible probability of error in the
reconstruction phase. Specifically, we show that:

1. There exists an efficient 2-round VSS protocol for n = 3t + 1. This proto-
col has a 2-round reconstruction phase. If we assume that the adversary is
non-rushing then we can achieve a 1-round reconstruction phase. A rushing
adversary can wait to hear the incoming messages in a given round prior to
sending out its own messages.

This matches the sharing phase round complexity of the best known pro-
tocols in the computational setting [9,16] with no set-up assumptions (but
note that these protocols use a one round reconstruction phase).

2. There exists an efficient 1-round VSS for t = 1 and n ≥ 4.
3. We prove that our results are optimal both in resilience and number of

sharing rounds by proving:
(a) There does not exist a 2-round WSS (and hence VSS) for n ≤ 3t.
(b) There is no 1-round VSS protocol for t ≥ 2 and n ≥ 42.

Our protocols also achieve the design optimization of Katz et al. [14] and use a
single round of broadcast in the sharing phase and no broadcasts at all in the
reconstruction phase.

To achieve our goal of constructing a VSS protocol, we follow the structure
of [17,18], where we first design a Weak Secret Sharing (WSS) protocol and
2 We note that there exists a 1-round WSS protocol with n > 3t (see Appendix A).
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then use it as a building block for VSS. Informally WSS is a primitive which
satisfies the same properties as VSS except for the commitment property. VSS
has a strong commitment, which requires that at the end of the sharing, there is a
fixed value s∗ and that the honest parties output this value in the reconstruction
phase. In contrast, WSS has a weaker commitment property which requires that
at the end of the reconstruction phase, the honest parties output s∗ or NULL.
The novelty of our protocol is in the specific design of the WSS component and
the way we use it to build the round optimal VSS.

On the Definition of Round Complexity of VSS: As we have stated ear-
lier, the common definition for the round complexity of VSS is the number of
rounds in the sharing phase. This is a natural definition for the perfect (i.e.,
zero error) setting, as the reconstruction can always be done in one round (by
having all parties reveal their complete view generated at the end of sharing
phase). However, in our protocols we have a reconstruction phase that cannot
be collapsed into a single round. This indicates that a different definition for the
round complexity of VSS may be needed, which is the total number of rounds in
the sharing plus the number of rounds in the reconstruction. Both the previous
VSS results [10,11,14] and our result exhibit a VSS with a total of four rounds3.
This introduces the question of what is the lower bound on the total number of
rounds for VSS.

2 Preliminaries

We follow the network model of [11,18]. Specifically, we consider a setting with
n parties P = {P1, P2, . . . , Pn} that are pairwise connected by a private and
authenticated channel. We further assume that all parties have access to a com-
mon broadcast channel and there exists a malicious, computationally unbounded
adversary At, that can corrupt up to t parties, out of n parties. The adversary
controls and coordinates the actions of the corrupted/faulty parties. We further
allow the adversary to be rushing, i.e. in every round of communication it can
wait to hear the messages of the honest parties before sending his own messages.
For simplicity we describe our protocols for a static adversary, who corrupts all
the parties at the beginning of the protocol. However, our results also hold for
a stronger adaptive adversary. Given a security parameter k, we assume that
the protocols operate with values from a finite field F = GF (q), where q = 2k.
Thus, each element of F can be represented by k bits. Moreover, without loss
of generality, we assume that n = poly(k). The error probability of our proto-
cols will be 2−Ω(k). We say that our protocols are efficient if the communication
and computation of the parties are polynomial in the security parameter k. All
the protocols presented in this paper perform computation and communication

3 As the total number of rounds in both protocols is the same, the question of which
protocol to use depends on the application. For applications where there is a need
of more efficiency during the sharing, i.e. fewer number of rounds, the two round
sharing protocol should be used.
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which are poly(k). We assume the system to be synchronous. Therefore the pro-
tocols operate in a sequence of rounds, where in each round, a party performs
some local computation, sends new messages to the other parties through the
private channels and broadcasts some information over the broadcast channel,
then it receives the messages that were sent by the other parties in this round
on the private and broadcast channels.

2.1 Verifiable Secret Sharing (VSS)

We now present the definition of VSS [3]. In a VSS protocol there is a distin-
guished party D ∈ P , that holds an input s ∈ F referred to as the secret. The
protocol consists of two phases, a sharing phase and a reconstruction phase. We
call an n party protocol with adversary At an (n, t)-VSS protocol if it satisfies
the following conditions for dealer D holding secret s :

Secrecy. If D is honest then the adversary’s view during the sharing phase re-
veals no information on s.4 More formally, the adversary’s view is identically
distributed for all different values of s.

Correctness. If D is honest then the honest parties output s at the end of the
reconstruction phase.

Strong Commitment. If D is corrupted, then at the end of the sharing phase
there is a value s∗ ∈ F∪{NULL}, such that at the end of the reconstruction
phase all honest parties output s∗.

Note: This definition is equivalent to saying that s∗ ∈ F, by fixing a default
value in F, which may be output in case the reconstruction ends with a NULL.
However, we prefer this presentation of the definition as to distinguish it from a
stronger definition of VSS [13,11]. The stronger definition also requires that at
the end of the sharing there is a commitment to an actual value in F, i.e. the
dealer cannot commit to NULL, and furthermore that all parties hold a share of
this actual value. Thus, using the above definition points to the fact that NULL
is a possible value, instead of setting it to a default value in F.

Protocols that do not satisfy the stronger VSS definition are not suitable for
use in multiparty computations. The protocols in this paper satisfy the standard
VSS definition, which leave the open question of whether a 2-round VSS protocol
can be designed that satisfies the stronger definition. However, when examining
the round complexity of VSS as a stand alone application, the above definition
is sufficient and was used in [11] (with the variation s∗ ∈ F) to prove the lower
bounds.
VSS in External Dealer Model: In the external dealer model, the system
is assumed to consist of a dealer and n parties. The dealer is considered as an
external party. Moreover, the adversary At is allowed to corrupt D and up to t
additional parties. We stress that all the protocols and lower bounds presented
in this paper will work for this model as well.
4 If D is corrupted, then s will be known to the adversary. In such a case, the secrecy

property does not apply.
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2.2 Weak Secret Sharing (WSS)

In order to construct our VSS protocol we use another form of secret sharing
called Weak Secret Sharing (WSS) [17,18]. The setting is the same as for the VSS
and the definition satisfies the Secrecy and Correctness properties. However, we
relax the Commitment property as follows:

Weak Commitment. If D is faulty then at the end of the sharing phase there
is a value s∗ ∈ F∪{NULL} such that at the end of the reconstruction phase,
each honest party will output either s∗ or NULL.

Notice that it is not required that all honest parties output the same value,
i.e. some may output s∗ and some may output NULL. The above definition is
standard and follows many of the existing definitions [14,17,18].

2.3 Statistical VSS and Statistical WSS

We say that a VSS (WSS) protocol is a (1−ε) statsitical VSS (WSS) if it achieves
correctness and strong (weak) commitment with probability 1−ε, where given a
security parameter k we have that ε = 2−Ω(k). Note that we assume secrecy to
be perfect5.

3 Statistical-WSS, 2-Round Sharing, n = 3t + 1

In this section we present our 2-round share, 2-round reconstruct statistical-WSS
protocol with n = 3t+1. The protocol appears in Figure 1. For ease of exposition,
we describe our protocol using multiple rounds of broadcast. We follow this with
a brief description on how to modity the protocol to a variation that uses a single
round of broadcast.

Note: Following the notation of [11], whenever we say that dealer is disqualified
during the sharing phase of WSS/VSS, we mean to say that all honest parties
accept the sharing of NULL (or a default value from F) as the dealer’s secret.

Before we turn to our proofs we draw the readers attention to the following
interesting points that enable us to achieve the final result. The bi-variate poly-
nomial F (x, y) (defined by D) has a tweak, the x variable is of degree nk + 1,
which results in the polynomials fi(x) being of degree nk + 1 (where as this
degree is typically t in other protocols). We further create a situation where
these polynomials never need to be reconstructed and thus the parties need not
hold large number of points on the polynomials to interpolate them. These two
properties put together, enable us to give each party many evaluation points
and values on these polynomials and to further allow them to expose a portion
of them without exposing the underlying polynomial. In addition, we adapt an
interesting technique from Tompa and Woll [20] and use secret evaluation points.

5 We conjecture that the lower bounds in this paper hold also for the case when the
secrecy is statistical.
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Protocol WSS

Sharing Phase

Local Computations: D does the following:
1. Picks a random bivariate polynomial F (x, y) over F of degree t in the

variable y and degree nk + 1 in the variable x, such that F (0, 0) = s.
2. Defines fi(x) = F (x, i) for 1 ≤ i ≤ n.
3. Picks random polynomials ri(x) over F, deg(ri(x)) = nk+1 for 1 ≤ i ≤ n.
4. nk random, non-zero, distinct elements from F, denoted by

αi,1, αi,2, . . . , αi,k for 1 ≤ i ≤ n.
Round 1: D sends to party Pi:

– The polynomials fi(x), ri(x). Let fi(0) be Pi’s share of D’s secret s.
– The random evaluation points αi,� for 1 ≤ � ≤ k.
– aj,i,� = fj(αi,�) and bj,i,� = rj(αi,�) for 1 ≤ � ≤ k, 1 ≤ j ≤ n.

Round 2: Party Pi broadcasts the following:
– A random non-zero value ci and polynomial gi(x) = fi(x) +

ciri(x), deg(gi(x)) = nk + 1.a

– For a random subset of indices �1, ..., � k
2
, the evaluation points

αi,�1 , ..., αi,� k
2

and aj,i,�1 , ..., aj,i,� k
2

and bj,i,�1 , ..., bj,i,� k
2

for 1 ≤ j ≤ n.

Local Computation: For all parties:
1. Party Pi is accepted by party Pj if ai,j,� + cibi,j,� = gi(αj,�) for all � in the

set of indices broadcasted by Pj in Round 2.
2. Initiate the set SH = ∅. Place Pi in SH if it is accepted by at least 2t + 1

parties.
3. If |SH| ≤ 2t disqualify dealer D. Note that SH computed by all honest

parties are identical.

Reconstruction Phase, 2-rounds:

Round 1: Each Pi in SH broadcasts fi(x), deg(fi(x)) = nk + 1.
Round 2: Each Pj ∈ P broadcasts all the evaluation points αj,� which were not

broadcasted in the sharing phase and ai,j,� corresponding to those indices, for
i = 1, . . . , n.

Local Computation: For all parties:

1. Party Pi ∈ SH is re-accepted by Pj ∈ P if for one of the newly revealed points
it holds that ai,j,� = fi(αj,�).

2. Initiate the set REC = ∅. Place Pi in REC if it is re-accepted by at least
t + 1 parties. If the shares of the parties in REC interpolate to a t degree
polynomial g(y) then output s = g(0). Otherwise output NULL.

a When ever we say that a party broadcasts a polynomial of a certain degree we
assume that if this is not done then the party is disqualified.

Fig. 1. (2-Round Share, 2-Round Reconstruct) Statistical-WSS, n = 3t + 1
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The fact that we can expose points on the high degree polynomials and that
the evaluation points are secret, facilitates the cut-and-choose proof, carried out
by the parties in Round 2. It should be noted that if we allow rushing, then
a cheating prover may try to foil the cut-and-choose proof during the sharing
phase. However, surprisingly we show that this proof is sufficient for our needs
and that we can deal with such faulty parties in the reconstruction phase.

Lemma 1. Protocol WSS satisfies the (1−ε)-correctness property.

Proof: It is easy to see that if D is honest, then every honest party Pi is
present in SH as well as in REC. Given that all honest parties are present in
SH the dealer will not be disqualified during the sharing phase. In order to show
that the correct secret is reconstructed, we prove that if a faulty Pi broadcast
a polynomial f̄i(x) �= fi(x), then with high probability Pi will not be added to
REC. In order for a faulty Pi to be included in REC, it needs to be re-accepted
by t + 1 parties and thus by at least one honest party. The polynomial f̄i(x)
can agree with fi(x) in at most nk + 1 evaluation points. Without knowing the
secret evaluation points of an honest party, say Pj , the probability that Pi will
be re-accepted by Pj is at most nk

|F| . Thus, the probability that any faulty party

is in REC is (nk)(2t+1)(t)
|F| ≈ 2−Ω(k). Hence with very high probability, the parties

will reconstruct s = f(0), which is D’s secret. %&
Note that in the previous proof we did not claim, and in fact cannot claim, that
there are no faulty parties in SH . As we allow the adversary to be rushing, it can
cause faulty parties, i.e. parties that have broadcasted inconsistent polynomials
(during the second round of the sharing phase), to be included in this set. This
is done by waiting to hear the evaluation points of the honest parties (in the
second round of the sharing phase). However, this does not affect the result of
the reconstruction because the parties in SH broadcast their polynomials in the
first round while the secret evaluation points of the parties are revealed only in
the second round of the reconstruction.

Lemma 2. Protocol WSS satisfies the (1−ε)-weak commitment property.

Proof: To prove this lemma we need to show that in case that a faulty D was
not disqualified, i.e. |SH | ≥ 2t + 1, then with high probability, all the honest
parties Pi that are in SH are also present in REC. If we prove this then the
lemma follows immediately; we set D’s committed secrets s∗ to be the constant
term of the polynomial, which is defined by the interpolation of the shares of the
honest parties in SH (note that s∗ may be NULL). As we require that shares
of all the parties in REC define a polynomial of degree t, then either the value
s∗ or NULL will be reconstructed.

In order for an honest Pi to be in SH and not in REC it must be the case that
at least 2t+ 1 parties should have accepted Pi in the sharing phase but at most
t of them re-accepted it in the reconstruction phase. This means that there is at
least one honest Pj who accepted Pi but did not re-accept it. This implies that
the data (evaluation points and values) that Pj exposed in the sharing phase
satisfies the polynomial gi(x) that Pi broadcasted during the sharing phase, but
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on the other hand, out of the remaining evaluation points that are used by Pj in
the reconstruction phase, none satisfy the polynomial fi(x) produced by Pi. That
is, for the selected k

2 indices �1, ..., � k
2
, it holds that ai,j,� + cibi,j,� = gi(αj,�) for

all � in the set of indices {�1, ..., � k
2
} and fi(αj,�) �= ai,j,� for all � in the remaining

set of indices. Notice that Pi chooses ci independently of the values given by D.
Also, Pj chooses the k

2 indices randomly out of k indices. So the probability that
the above event happens is 1

( k
k/2)
≈ 2−Ω(k), which is negligible. This shows that

with high probability all honest parties from SH will be included in REC, thus
proving our lemma. %&

Lemma 3. Protocol WSS satisfies perfect secrecy.

Proof: The secrecy has to be argued when D is honest. For simplicity, assume
that first t parties are corrupted. So in Round 1 of the Sharing Phase, the ad-
versary will know the polynomials f1(x), . . . , ft(x), r1(x), . . . , rt(x) and kt points
on fi(x) and ri(x) for t + 1 ≤ i ≤ n. In Round 2 of the Sharing Phase, the
adversary learns k

2 (2t+1) additional points on fi(x) and ri(x) for t+1 ≤ i ≤ n.
So in total the adversary will know kt+ k

2 (2t+1) points on each of fi(x) and ri(x)
for t+1 ≤ i ≤ n which is less than the degree of the polynomials (nk+1). Thus,
the constant term of the polynomials fi(x) for t + 1 ≤ i ≤ n are information
theoretically secure in the Sharing Phase, which further implies information
theoretic security for s. %&

Theorem 1. There exists an efficient 2-round share, 2-round reconstruct (3t+
1, t) statistical-WSS protocol.

Proof: Protocol WSS presented here achieves 1−ε-correctness, 1−ε-weak com-
mitment and perfect secrecy. This follows from Lemma 1, 2 and 3. %&
Important Note: There is another interesting way to interpret the compu-
tation done in the Protocol WSS. We may view this as D sharing a t degree
polynomial g(y) using protocol WSS. For this, D selects the bivariate polyno-
mial F (x, y) as in protocol WSS, such that F (0, y) = g(y). The polynomial g(y)
is the polynomial that D used to share the secret g(0) = F (0, 0) = s. The poly-
nomial g(y) is not random but only preserves the secrecy of the constant term.
Yet, this distribution of polynomials is sufficient to provide the secrecy require-
ments needed by our protocols.

Statistical WSS with One Round of Reconstruction: It is interesting to
note that if we restrict the adversary to a non-rushing adversary then the two
rounds of the reconstruction phase can be collapsed into a single round. The two
rounds are needed in order to force the adversary to commit to the polynomials
fi(x) of the faulty parties prior to seeing the evaluation points, as this knowl-
edge can enable the adversary to publish a polynomial that is re-accepted by the
honest parties, which would violate the correctness of the protocol. However, if
the adversary is non-rushing then this property is achieved via the synchronicity
of the step. We state this in the following theorem:
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Theorem 2. If the adversary is non-rushing then there exists an efficient 2-
round share 1-round reconstruct (3t + 1, t) statistical-WSS protocol.

Statistical WSS with One Round of Broadcast: We now show how the
protocol in Fig. 1 can be modified, so that it uses only one round of broad-
cast. Specifically, we modify the Reconstruction Phase, so that it requires no
broadcast.

Reconstruction Phase, 2-rounds

Round 1: Each Pi in SH privately sends fi(x), deg(fi(x)) = nk + 1 to every
other party.

Round 2: Each Pj ∈ P privately sends all the evaluation points αj,� which
were not broadcasted in the sharing phase and ai,j,� for those indices, to all
other parties.

Local Computation: For all parties it is the same as in the Protocol WSS.

This modified version of WSS preserves the (1−ε)-correctness and perfect secrecy
properties. It will also satisfy (1−ε)-weak commitment, but without agreement.
That is, some honest party(ies) may output the committed secret s∗ while some
other may output NULL.

4 Statistical-VSS, 2-Round Sharing, n = 3t + 1
We now design a 2-round share, 2-round reconstruct (3t + 1, t) statistical-VSS
protocol. We follow the general idea of [1,11,10,14] of sharing the secret s with a
symmetric bivariate polynomial F (x, y) where each party Pi gets the univariate
polynomial fi(y) = F (i, y) and his share is fi(0). The next step is for every pair
of parties to verify that they have received the correct values from the dealer.
However, as we have only one more round available we cannot depend on D to
resolve conflicts in a third round. Thus, instead of doing the verification point
wise we carry out the verification on polynomials. More specifically, party Pi

initiates an execution of the WSS protoocol in the first round, to share a random
polynomial gi(y). In the second round, Pi broadcasts the masked polynomial
hi(y) = fi(y) + gi(y), while every other party broadcasts the corresponding
point on hi(y). In fact, this verification can be viewed as an extension of the
round reducing technique of pad sharing for a single value given in [11], to the
sharing of polynomial, which is used as a pad for the verification of a polynomial.
The VSS protocol appears in Figure 2.

Lemma 4. Protocol VSS satisfies (1−ε)-correctness property.

Proof: A simple examination of the Protocol VSS and the properties of Protocol
WSS reveal that all honest parties will be in VSS-SH and thus an honest D is
not disqualified during the sharing phase. To prove this lemma we need to show
that when D is honest, then very with high probability, for all faulty parties Pj in
VSS-SH the following holds: if at the end of WSSPj , the fixed (weak committed)
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Protocol VSS

Sharing Phase

Round 1:
– D selects a random symmetric bivariate polynomial F (x, y) over F of de-

gree t in each variable such that F (0, 0) = s and sends the polynomial
fi(y) = F (i, y) to Pi.

– Party Pi initiates Round 1 of the WSS protocol to share a random t degree
polynomial gi(y). Denote this execution by WSSPi .

Round 2:
– Party Pi broadcasts the polynomial hi(y) = fi(y) + gi(y), deg(hi(y)) = t,

and values aji = fi(j) + gj(i) = fj(i) + gj(i), for 1 ≤ j ≤ n.
– Execute Round 2 of the sharing phase of each WSSPi . Let SHi denote the

set SH from this execution.
Local Computation: For all parties

1. Party Pi is accepted by party Pj if hi(j) = aij .
2. Let Accepti denote the set of parties that accepted Pi.
3. Create the set VSS-SH. Place Pi in VSS-SH if |Accepti| ≥ 2t + 1.
4. Remove Pi from VSS-SH if |VSS-SH∩Accepti∩SHi| ≤ 2t. Repeat, until

no more parties can be removed.
5. If |VSS-SH| ≤ 2t then disqualify D.

Reconstruction Phase, 2-rounds:

For all Pi in VSS-SH, execute the 2-round reconstruction phase of WSSPi . If
the output of the execution is not NULL then let gi(y) be the output from this
execution.

Local Computation (for each party)

1. Initialize REC = VSS-SH.
2. Remove Pi from REC if the output of WSSPi is NULL.
3. For each Pi ∈ REC, define its share as fi(0) = hi(0) − gi(0).
4. If the shares of the parties in REC define a unique polynomial f(x) of degree

t then output f(0), otherwise output NULL.

Fig. 2. (2-Round Share, 2-Round Reconstruct) Statistical VSS, n = 3t + 1

value is not NULL and the shared polynomial is gj(y), then hj(y)−gj(y) is in fact
polynomial fj(y), received by Pj from D. If we prove this, then the lemma follows
immediately because, a faulty Pj in VSS-SH whose reconstruction of WSSPj fails
is removed from REC. Furthermore, with high probability, a sufficient number
of shares belonging to the parties in REC will be reconstructed successfully (due
to the properties of WSS) and thus the correct secret of D will be reconstructed.

What this implies is that we cannot guarantee that all parties in VSS-SH
are honest. But we can ensure that if they eventually remain in REC then they
have shared the proper values. And this is sufficient to guarantee the correctness
of the protocol. We now proceed to prove this claim.
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Since Pj is present in VSS-SH, we know that |Acceptj ∩ SHj | ≥ 2t+ 1. This
means that there are t+ 1 honest parties in this set. By the properties of WSS,
this set of honest parties define the polynomial gj(y) which Pj is committed
to, at the end of the sharing phase of WSSPj . We now examine the polynomial
hj(y)− gj(y) and show that it is equal to fj(y). The set of (t+1) honest parties
in (Acceptj ∩ SHj) verified that the sum of the share fi(j) = fj(i) (which
they received from D) and gj(i) (which they received from Pj), in fact lie on
the polynomial hj(y). Moreover, the set of t + 1 shares, corresponding to these
honest parties define the polynomial fj(y). Thus, hj(y)− gj(y) = fj(y). %&

Lemma 5. Protocol VSS satisfies (1−ε)-strong commitment property.

Proof: If D is corrupted and does not get disqualified during the sharing phase,
then VSS-SH is fixed at the end of sharing phase. Since VSS-SH ≥ 2t + 1, it
contains a set H of honest parties of size at least t+1. If fj(y)’s corresponding to
the parties H define a unique symmetric bivariate polynomial F ∗(x, y) of degree
t in x and y, then D’s committed secret is s∗ = F ∗(0, 0). Otherwise, s∗ = NULL.
We show that in the reconstruction phase s∗. will be reconstructed.

It is easy to see that due to the WSS reconstruction properties, with high
probability, all the honest parties in H ⊆ VSS-SH will also be present in REC.
We now divide our proof into two cases: (a) s∗ �= NULL: the proof for this case
follows from the proof of Lemma 4 as this case is indistinguishable from the
case when D is honest. (b) s∗ = NULL: As H ⊆ REC, during Step 4 of the
reconstruction phase all parties will output NULL which is equal to s∗. %&

Lemma 6. Protocol VSS satisfies perfect secrecy.

Proof: This proof is similar to the entropy based argument, used to prove the
secrecy of 3 round perfect VSS protocol of [10]. %&

Theorem 3. There exists an efficient 2-round share, 2-round reconstruct (3t+
1, t) statistical-VSS protocol.

As the reconstruction phase of the VSS protocol is simply the reconstruction
phase of the WSS, we claim here as well, that the reconstruction phase can be
collapsed into one round against a non-rushing adversary.

Theorem 4. If the adversary is non-rushing then there exists an efficient 2-
round share 1-round reconstruct (3t + 1, t) statistical-VSS protocol.

We stress that in Protocol VSS, D can commit NULL at the end of the sharing
phase. This makes Protocol VSS unsuitable for Multiparty Computation. It is
an interesting problem to see whether there exists an efficient 2-round share,
(3t+ 1, t) statistical VSS protocol, which satisfies the stronger definition of VSS
[13,11], given in Section 2. In fact, if such a sharing exists then it would also
imply that there is a one round reconstruction, as error correction can be used
to interpolate the secret.

Statistical VSS with One Round of Broadcast: We now explain how Pro-
tocol VSS can be modified, so that the broadcast channel is used in only one
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round throughout the protocol, namely in the second round of the sharing phase.
The reconstruction phase of the VSS protocol is simply the reconstruction phase
of the WSS protocol. Moreover, in the previous section, we have seen how Pro-
tocol WSS can be modified, so as to have only one round of broadcast. Thus, if
we can argue that the modified WSS is sufficient for the reconstruction of VSS,
then we have a VSS protocol that does not use broadcast in the reconstruction
phase. Examining the proof of the VSS protocol, we see that it is not mandatory
that the set of shares, which the honest parties use in reconstruction is identical,
but rather that it has a large enough intersection. As the shares of the honest
parties provide this guarantee, it is irrelevant which shares of the faulty parties
are included in the computation. Thus, by using the modified statistical WSS,
we get a statistical VSS, with only one round of broadcast.

5 Lower Bounds

5.1 Lower Bound for 2-Round Statistical-VSS, n ≤ 3t

We now prove the optimality of our 2-round share (3t + 1, t) statistical VSS
protocol, with respect to the resiliency.

Theorem 5. There is no 2-round share (n, t)-statistical-VSS protocol with n ≤
3t, irrespective of the number of rounds in the reconstruction phase.

In fact we prove the following stronger result from which the above theorem
follows immediately.

Theorem 6. There is no 2-round share (n, t)-statistical-WSS protocol with n ≤
3t, irrespective of the number of rounds in the reconstruction phase.

To prove the above theorem, we use standard player partitioning arguments and
prove the following:

Lemma 7. There is no 2-round share (3, 1)-statistical-WSS protocol, irrespec-
tive of the number of rounds in the reconstruction phase.

Before proceeding to prove the above lemma, we recall the following result:

Lemma 8 ([11]). Let ψ be any r-round protocol, where r ≥ 2. Then there exists
an r-round protocol ψ̄ with the same number of parties and same properties (as
ψ), such that all messages in rounds 2, . . . , r of ψ̄ are broadcast messages.

We now prove Lemma 7 by contradiction. Let Π be a 2-round share (3, 1) sta-
tistical WSS protocol, having r ≥ 1 rounds in the reconstruction phase. Let
the three parties in Π be P1, P2 and P3, where P1 is the dealer (D). We prove
the lemma by constructing a sequence of executions of Π which allows to show
that Π violates the (1−ε)-weak commitment property. From Lemma 8, we can
assume that in protocol Π , the private communication is done only in the first
round, while in the remaining rounds, parties use only broadcast. The broadcasts
done by P2 and P3 during first round of sharing phase will be independent of
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the messages received from D and hence can be ignored. Similarly, due to the
secrecy property, the broadcast done by D during first round of sharing will be
independent of the secret and can be ignored. Moreover, during first round of
sharing phase, the private communication done between P2, P3 will be indepen-
dent of the secret. Also the private communication from P2 to P1 and from P3
to P1 will be independent of the secret.

We first consider the following two executions of Π , where D is honest:

1. In execution Es, D shares the secret s. In the first round of the sharing phase,
D defines the shares s1, s2, s3 and sends them to P1, P2 and P3 respectively.
In the second round of sharing, the parties broadcast B1, B2 and B3 re-
spectively. During the reconstruction phase, the parties broadcast messages
C1,1, C2,1 and C3,1 respectively in the first round. For i = 2, . . . , r, in round
i of the reconstruction phase, the parties broadcast the messages C1,i, C2,i

and C3,i respectively. As D is honest, due to correctness property of Π , the
honest parties need to output s at the end of the reconstruction phase.

2. In execution Es∗ , D shares the secret s∗ and defines the shares s̄1, s2 and
s̄3 respectively and gives them to P1, P2 and P3 respectively. Note that due
to the secrecy property of Π , such a sharing always exists. Given different
randomness, we can have the broadcast messages in round two of the shar-
ing phase be identical to B1, B2 and B3 respectively.6 The broadcasts in
the reconstruction phase are as follows: note that P2’s view is identical to
its view in Es up to this step and thus the first round messages of P2 in
the reconstruction phase are the same as in Es (i.e., C2,1). The broadcast
messages in the first round of reconstruction are C̄1,1, C2,1 and C̄3,1 respec-
tively. For i = 2, . . . , r, in round i of the reconstruction phase, the parties
broadcast the messages C̄1,i, C̄2,i and C̄3,i respectively. As D is honest, due
to correctness property of Π , the honest parties need to output s∗ at the
end of the reconstruction phase.

Next we consider another execution of Π , namely E∗
s .

3. In E∗
s , D is honest and P3 is faulty. Here D’s communication during the

first round of sharing is the same as in Es and the second round broadcast
messages of the sharing phase are same as in Es. However, during the re-
construction phase, P3 gets corrupted. In the first round of reconstruction,
P3 broadcasts the message C̄3,1 (as if he is in execution Es∗), while P1 and
P2 broadcasts C1,1 and C2,1 respectively, as in Es. For i = 2, . . . , r, in round
i of the reconstruction phase, the parties broadcast the messages C′

1,i, C
′
2,i

and C′
3,i respectively. As D is honest, due to correctness property of Π , the

honest parties need to output s at the end of the reconstruction phase.

Finally, we consider another execution E of Π , where D (= P1) is corrupted.

6 If this is not so, then it implies that B1, B2 and B3 could be generated only for the
shares s1, s2 and s3 and a specific randomness, which violates the secrecy condition
of protocol Π .
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4. In E, during first round of the sharing phase, D gives to parties P2 and P3
the shares s2 and s̄3 respectively. Due to different randomness, the broad-
cast messages in the second round of the sharing phase are B1, B2 and B3
respectively. During the reconstruction phase, in the first round, P2 broad-
casts C2,1 as its view at this point is identical to that in the execution Es,
and P3 broadcasts C̄3,1 as its view is identical to the one in Es∗ . Now P1 can
behave in one of the two ways:
4.1 P1 behaves as if he is in the reconstruction phase of execution Es∗ and

broadcasts C̄1,i in ith round of the reconstruction phase for i = 1, . . . , r.
Thus the view of P2 and P3 at the end of the first round of reconstruction
is identical to the view in Es∗ . Hence, for i = 2, . . . , r, P2’s and P3’s
broadcasts in the ith round of the reconstruction will be the same as in
Es∗ . Thus at the end of the reconstruction phase, the view of P2 and P3
will be same as in Es∗ and thus they will reconstruct s∗.

4.2 P1 behaves as if he is in the reconstruction phase of execution E∗
s and

broadcasts C1,1 during first round of the reconstruction phase and C′
1,i

during ith round of reconstruction phase for i = 2, . . . , r. Now the views
of P2 and P3 will be the same as in E∗

s at the end of the first round
of reconstruction. Using the same arguments as in 4.1 we have that the
subsequent rounds of the reconstruction phase will also be the same as
in E∗

s , and thus at the end of the reconstruction phase, the parties will
output s.

Thus we have shown that a corrupted D can always force during the reconstruc-
tion phase the output of the protocol to be one of two secrets, thus violating the
weak commitment property. From the above proof, we conclude that there does
not exist a 2-round share (3t, t) statistical WSS and hence such a statistical VSS
protocol, with any number of rounds in the reconstruction phase. %&

5.2 Lower Bound for 1-Round Statistical-VSS

We now derive a non-trivial lower bound on the fault tolerance of any 1-round
share statistical VSS (with any number of rounds in reconstruction).

Theorem 7. 1-round share statistical-VSS is possible iff ((t = 1) and (n ≥ 4)),
irrespective of the number of rounds in reconstruction.

Proof: The impossibility of 1-round share (3, 1) statistical VSS with any num-
ber of rounds in reconstruction, follows from Theorem 5. Now we show that for
t ≥ 2 there does not exist any 1-round share (n, t) statistical VSS protocol with
n ≥ 4, irrespective of the number of rounds in the reconstruction phase. We
prove the above the statement assuming t = 2.

To prove the above claim, we use a hybrid argument. More specifically, we
assume that Π is a 1-round share (n, 2) statistical VSS with n ≥ 4, with any
number of rounds in the reconstruction phase. Without loss of generality, let the
n parties in Π be denoted by P1, . . . , Pn with D being any of these n parties,
other than P1. Before proceeding further, we make the following claim:
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Claim. In any execution of Π , the messages broadcast by D and other parties
during sharing phase will be independent of the secret. Moreover, private com-
munication between any two honest parties (excluding the ones done from D
to the parties) during the sharing phase, will be independent of the messages
received from D during the sharing phase.

Proof: From the secrecy property of Π , any message broadcasted by D dur-
ing the sharing phase should be independent of the secret. Also, since Π has
only one round in the sharing phase, the messages exchanged between any two
honest parties (excluding the ones given by D to the parties) and the messages
broadcasted by the parties during the sharing phase, will be independent of the
messages that the parties have received from D during the sharing phase. �

Based on the above claim, we can simply ignore the broadcast done by D and
the parties during the sharing phase. We can also ignore all private communica-
tion between any two parties (excluding the ones done from D to the parties)
during the sharing phase and concentrate only on the messages which are pri-
vately communicated by D to the the parties. Thus, without loss of generality,
any execution of protocol Π will have the following form:

(Sharing Phase): D, on having a secret Sec, generates messages Msg1, . . . ,Msgn

and privately communicates Msgi to party Pi. Since Π is a 1-round share
VSS, the sharing phase will take only one round.

(Reconstruction Phase): This may take several rounds. At the end of the re-
construction phase, each party outputs some secret.

Now consider an execution of Π , where an honest D, on input secret s, generates
(α1, . . . , αn) during sharing phase and privately communicates αi to Pi. Now
from the correctness property of Π , this distribution of messages should output
s at the end of the reconstruction phase. We now prove the following claim:

Claim. Any execution of Π , where D (honest or corrupted) generates and dis-
tributes α1, . . . , αn−1, βn (for any βn) during the sharing phase, should output
the secret s at the end of the reconstruction phase.

Proof: If βn = αn, then the claim is true. Let βn �= αn, we prove the claim by
contradiction. More specifically, let the distribution of messages α1, . . . , αn−1, βn

outputs secret s′ �= s during the reconstruction phase. Now consider another
execution of Π , where D is corrupted and distributes α1, . . . , αn during the
sharing phase. During the reconstruction phase, the adversary corrupts Pn and
asks him to behave as if Pn has received either αn or βn. Accordingly, either s
or s′ will be reconstructed at the end of the reconstruction phase. This violates
the commitment property of Π , which is a contradiction. Hence distribution of
the messages α1, α2, . . . , αn−1, βn (for any βn) during the sharing phase, should
output the secret s at the end of the reconstruction phase. �

Now using similar arguments as in the above claim, we can prove the following
lemma:
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Lemma 9. Any execution of Π, where D (honest or corrupted) generates and
distributes α1, β2, . . . , βn (for any β2, . . . , βn) during the sharing phase, should
output the secret s at the end of the reconstruction phase.

Finally the above lemma clearly shows a violation of the secrecy property of Π
because it states that any execution, where D gives message α1 to P1 will always
output the secret s at the end of the reconstruction phase. So if D is honest and
adversary passively corrupts P1 in such an execution, he will come to know that
the shared secret is s, which is a violation of the secrecy property. Theorem 7
now follows from the above discussion. �

Note that the above proof does not hold for WSS due to the fact that WSS
requires only weak commitment, this prevents the argument that all sequences
of messages sent to the parties need to be reconstructed to the same secret. In
fact we can design a 1-round share, 2-round reconstruct (3t + 1, t) statistical
WSS protocol (see Appendix A.)

We provide without proof a Statistical VSS, 1-Round Sharing for n = 4, t = 1.
Proofs are provided in the full version [15].

Sharing Phase
D selects: A random polynomial f(x) over F of degree 1, such that f(0) = s.
For i, 2 ≤ i ≤ 4 the dealer chooses and sends to Pi the following:

1. A random polynomial fi(x) over F, deg(fi) = 1 and fi(0) = f(i).
2. Random non-zero element from F, denoted by αi.
3. vji = fj(αi) for 2 ≤ j ≤ 4.

Reconstruction Phase, 2-rounds: D(P1) is not allowed to participate

Round 1: Each Pi broadcasts f ′
i(x), for 2 ≤ i ≤ 4.

Round 2: For 2 ≤ i ≤ 4, Pi broadcasts the evaluation point α′
i and the values

v′ji, for 2 ≤ j ≤ 4.
Local Computation (by each party except P1):

1. party Pi ∈ P \ {P1} is confirmed if there exists a Pj ∈ P \ {P1, Pi} for which
f ′

i(α
′
j) = v′ij .

2. If the f ′
i(0)s corresponding to the set of confirmed parties define a polynomial

f(x) of degree one then output f(0) otherwise output NULL.

Open Problems

This paper leaves an interesting open problem: What is the lower bound on the
total number of rounds in VSS, i.e. sharing plus reconstruction? This problem is
also closely connected to the question of whether we can design a 2-round sta-
tistical VSS protocol which satisfies the strong VSS definition. Such a protocol
would immediately result in a total of 3-round VSS protocol.

Acknowledgments. We would like to thank the anonymous refrees of CRYPTO
2009 for several helpful suggestions.
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2008, Part II. LNCS, vol. 5126, pp. 499–510. Springer, Heidelberg (2008)

15. Patra, A., Choudhary, A., Rabin, T., Pandu Rangan, C.: The Round Complexity
of Verifiable Secret Sharing Revisited. Cryptology ePrint 2008/172

16. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

17. Rabin, T.: Robust Sharing of Secrets When the Dealer is Honest or Cheating. J.
ACM 41(6), 1089–1109 (1994)

18. Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority. In: STOC, pp. 73–85 (1989)

19. Shamir, A.: How to Share a Secret. Comm. of the ACM 22(11), 612–613 (1979)
20. Tompa, M., Woll, H.: How to Share a Secret with Cheaters. In: Odlyzko, A.M.

(ed.) CRYPTO 1986. LNCS, vol. 263, pp. 261–265. Springer, Heidelberg (1986)

http://www.wisdom.weizman.ac.il/~oded/pp.html


504 A. Patra et al.

A 1-Round Statistical WSS

For (partial) completeness we present the 1-Round Statistical WSS for n = 3t+1.
Proofs appear in the full version [15].

Sharing Phase

Local computations: D picks:
1. a random polynomial G(x) over F of degree t, such that G(0) = s.
2. n random polynomials g1(x), g2(x), . . . , gn(x) over F, each of degree t,

such that for 1 ≤ i ≤ n, gi(0) = G(i).
3. n random non-zero distinct elements from F, denoted by α1, α2, . . . , αn.

D’s communication: D sends to party Pi:
– the polynomial gi(x),
– the random value αi and the n tuple [v1i v2i . . . vni] where for 1 ≤ j ≤ n,

vji = gj(αi).

Reconstruction Phase, 2-rounds

Round 1: Each Pi ∈ P broadcasts the polynomial g′i(x).
Round 2: Each Pi ∈ P broadcasts the value α′

i and the n tuple [v′1i v
′
2i . . . v′ni].

1. Party Pi accepts party Pj if v′ji = g′j(α
′
i).

2. Party Pi is called affirmed if it is accepted by at least 2t+ 1 parties (possibly
including itself) where as Pi is called semi-affirmed if it is accepted by at least
t + 1 and by at most 2t parties (possibly including itself).

Local Computation: (For all parties)

1. If the number of affirmed parties is less than 2t+ 1 or the number of semi-
affirmed parties is more than zero, then output NULL.

2. Else let CORE be the set of all affirmed parties. Consider g′i(0)’s of all
the parties in CORE and check whether they interpolate a unique t degree
polynomial, say G′(x). If yes, then output s′ = G′(0), Else output NULL.



Somewhat Non-committing Encryption and
Efficient Adaptively Secure Oblivious Transfer�

Juan A. Garay1, Daniel Wichs2, and Hong-Sheng Zhou3,



1 AT&T Labs – Research
garay@research.att.com

2 New York University
wichs@cs.nyu.edu

3 University of Connecticut
hszhou@cse.uconn.edu

Abstract. Designing efficient cryptographic protocols tolerating adap-
tive adversaries, who are able to corrupt parties on the fly as the compu-
tation proceeds, has been an elusive task. In this paper we make progress
in this area. First, we introduce a new notion called semi-adaptive secu-
rity which is slightly stronger than static security but significantly weaker
than fully adaptive security. The main difference between adaptive and
semi-adaptive security is that semi-adaptive security allows for the case
where one party starts out corrupted and the other party becomes cor-
rupted later on, but not the case where both parties start out honest
and become corrupted later on. As such, semi-adaptive security is much
easier to achieve than fully adaptive security. We then give a simple,
generic protocol compiler which transforms any semi-adaptively secure
protocol into a fully adaptively secure one. The compilation effectively
decomposes the problem of adaptive security into two (simpler) problems
which can be tackled separately: the problem of semi-adaptive security
and the problem of realizing a weaker variant of secure channels.

We solve the latter problem by means of a new primitive that we call
somewhat non-committing encryption resulting in significant efficiency
improvements over the standard method for realizing secure channels
using (fully) non-committing encryption. Somewhat non-committing en-
cryption has two parameters: an equivocality parameter � (measuring
the number of ways that a ciphertext can be “opened”) and the mes-
sage sizes k. Our implementation is very efficient for small values �, even
when k is large. This translates into a very efficient compilation of semi-
adaptively secure protocols for tasks with small input/output domains
(such as bit-OT) into fully adaptively secure protocols.

Indeed, we showcase our methodology by applying it to the recent
Oblivious Transfer protocol by Peikert et al. [Crypto 2008], which is only
secure against static corruptions, to obtain the first efficient, adaptively
secure and composable OT protocol. In particular, to transfer an n-
bit message, we use a constant number of rounds and O(n) public key
operations.
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1 Introduction

When defining the security of cryptographic protocols, we generally strive to
capture as wide a variety of adversarial attacks as possible. The most popu-
lar method of doing so is the simulation paradigm [17] where the security of
a real-world protocol is compared to that of an ideal-world (perfectly secure)
implementation of the same task. Within the simulation paradigm there are
several flavors. Firstly, basic simulation only guarantees security for single copy
of a protocol executing in isolation. The Universal Composability (UC) frame-
work [3,4] extends the simulation paradigm and defines security for protocols
executed in arbitrary environments, where executions may be concurrent and
even maliciously interleaved. Secondly, we generally distinguish between static
and adaptive security. Static security protects against an adversary who con-
trols some fixed set of corrupted parties throughout the computation. Adaptive
security, on the other hand, defends against an adversary who can corrupt par-
ties adaptively at any point during the course of the protocol execution For
adaptive security, we also make a distinction between the erasure model, where
honest parties are trusted to securely erase data as mandated by the protocol,
and the non-erasure model, where no such assumptions are made. Traditionally,
the design of protocols in the non-erasure model is viewed as significantly more
difficult. For example, and in contrast to the erasure model, we do not have gen-
eral constant-round protocols for many tasks, and even many simple tasks (e.g.,
encryption) seem to be less efficient in rounds and computation. Nevertheless,
although solutions in the erasure model may in some scenarios be acceptable,
it is both of fundamental interest and practical value to achieve the stronger
security notion whenever possible; this is the subject of this work.

The seminal result of [8] shows that it is theoretically possible to design an
adaptively secure and universally composable protocol for a large class of nat-
ural tasks, assuming the presence of some trusted setup such as a randomly
selected common reference string (CRS). Unfortunately, the final protocol of [8]
should be viewed as a purely theoretical construction, ad its reliance on expen-
sive Cook-Levin reductions precludes a practical implementation. Alternative
efficient approaches to two-party and multi-party computation received a lot of
attention in the recent works of [13,16,20,21,22,24,25]. However, all of these re-
sults sacrifice some aspect of security to get efficiency – e.g., they only provide
(stand-alone or UC) static security, or UC adaptive security but only for honest
majority, or UC adaptive security in the erasure model, etc. The recent work
of [20] can provide UC adaptive security for all (well-formed) tasks in constant
rounds assuming the adversary corrupts all but one of the participants, but only
given an efficient adaptively secure Oblivious Transfer (OT) protocol. However,
as we will discuss, no such protocols were known. Lastly, we mention the work of
[5], which gives a generic compiler from static to adaptive security using secure
channels. Unfortunately, this compiler does not provide full adaptive security
(does not allow for post-execution corruptions) and, as was noted in [24], cru-
cially relies on rewinding and hence cannot be used in the UC framework.
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Indeed, thus far no efficient protocols for general multi-party computation,
or even for many specific two-party function evaluation tasks, achieve adaptive
security. This is not surprising given the difficulty of realizing adaptive secu-
rity for even the most fundamental task in cryptography: secure communication.
As was observed in [6], standard security notions for encryption do not suffice.
Adaptively secure communication schemes, also called non-committing encryp-
tion schemes, were introduced and constructed in [6] and studied further in [1,11],
but these protocols are fairly complicated and inefficient for large messages.

It turns out that many useful two-party tasks (e.g., Oblivious Transfer, OR,
XOR, AND, Millionaires’ problem, etc.) are strictly harder to achieve than secure
communication, the reason being that these tasks allow two honest parties to
communicate by using the corresponding ideal functionality. For example, using
OT, an honest sender can transfer a message to a receiver by setting it as both of
his input values. Therefore, an adaptively secure OT protocol for the transfer of k
bit messages can be used as a non-committing encryption of a k bit message and
so all of the difficulty and inefficiency of non-committing encryption must also
appear in protocols for tasks such as OT. Further, unlike secure communication,
many tasks also require security against the active and malicious behavior of
the participants. This might lead us to believe that the two difficulties will be
compounded making efficient adaptively secure implementations of such tasks
infeasible or too complicated to contemplate.

Taking Oblivious Transfer as an example, this indeed seems to be the case. The
recent work of [26], proves a (black-box) separation between enhanced trapdoor
permutations (which allow for static OT) and adaptively secure OT, showing that
the latter is indeed “more complex” in a theoretical sense. This complexity is re-
flected in practice as well. We are aware of only two examples (albeit inefficient)
of adaptively secure OT protocols, from [2] and [8]. Both of these works first con-
struct an OT protocol for the honest-but-curious setting and then compile it into
a fully secure protocol using generic and inefficient zero knowledge proofs. In both
constructions, the underlying honest-but-curious OT protocols rely on ideas from
non-committing encryption1 and hence inherit its complexity. Since the full con-
structions require us to run zero knowledge proofs on top of the complex under-
lying honest-but-curious protocol, there is little hope of making them efficient by
only using proofs for simple relations. This is in contrast to static security (and
adaptive security in the erasure model) for which we have recently seen efficient
constructions of OT protocols. For example, [14,16,21] construct OT protocols by
only using simple and efficient zero-knowledgeproofs. Interestingly, Ishai et al. [19]
give the first OT protocol constructions against malicious corruptions without us-
ing zero knowledge proofs; this result was later strengthened in [18]. Two very re-
cent and efficient concrete protocols not using zero-knowledge proofs are given in
[23,28]. The protocol of [28] is particularly exciting since it is a UC-secure proto-
col in the CRS model which runs in two rounds and uses a constant number of

1 The protocol of [2] implicitly uses the plug-and-play approach from [1], while the pro-
tocol of [8] uses non-committing encryption in a generic way.
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public key operations. Achieving adaptive security based on these protocols has,
however, remained as an open problem.

Our contributions. In this work we construct the first efficient (constant round,
O(n) public-key operations for the transfer of an n-bit message) adaptively se-
cure Oblivious Transfer protocol in the non-erasure model. Along the way we
develop several techniques of independent interest which are applicable to adap-
tive security in general.

First, we introduce a new notion called semi-adaptive security which is slightly
stronger than static security but significantly weaker than fully adaptive secu-
rity. At a high level, semi-adaptive security allows for the case where one party
starts out corrupted and the other party becomes corrupted later on, but not
the case where both parties start out honest and become corrupted later on. In
particular, a semi-adaptively secure protocol for a task like OT, does not yield a
non-committing encryption scheme and hence does not (necessarily) inherit its
difficulty. We then give a generic compiler which transforms any semi-adaptively
secure protocol into a (fully) adaptively secure protocol. The compiler is fairly
simple: we take the original protocol and execute it over a secure communication
channel (i.e., all communication from one party to another is sent over a secure
channel). The compilation effectively decomposes the problem of adaptive secu-
rity into two (simpler) problems which can be tackled separately: the problem
of semi-adaptive security and the problem of realizing secure channels.

Unfortunately, we saw that the construction of secure-channels is a difficult
problem and existing solutions are not very efficient. Also, as we already men-
tioned, we cannot completely bypass this problem since adaptive security for
many tasks implies secure channels. However, for the sake of efficiency, we would
like to limit the use of secure channels (and hence the use of non-committing en-
cryption) to a minimum. For example, we know that an OT protocol for one-bit
messages implies a non-committing encryption of a one-bit message. However,
to get adaptive security for a bit-OT protocol, our compiler, as described above,
would use non-committing encryption to encrypt the entire protocol transcript,
and hence much more than one bit!

We fix this discrepancy by introducing a new notion called somewhat non-
committing encryption. Somewhat non-committing encryption has two parame-
ters: the equivocality � (measuring just how non-committing the scheme is) and
the message size k. We first observe that somewhat non-committing encryption
is efficient for small values of the equivocality parameter �, even when k is large
(i.e., when we encrypt long messages). Secondly, we observe that our compiler
can use somewhat non-committing encryption where the equivocality � is pro-
portional to the size of the input and output domains of the functionality. As
a result, we obtain a very efficient compiler transforming any semi-adaptively
secure protocol for a task with small input/output domains (such as bit-OT)
into a fully adaptively secure protocol. We also show that this methodology can,
in special cases, be applied to tasks with larger domain sizes such as string-OT
with long strings.
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We apply our methodology to the OT protocol of Peikert et al. [28], result-
ing in the first efficient and adaptively secure OT protocols. Peikert et al. ac-
tually present a general framework for constructing static OT, and instantiate
this framework using the Quadratic Residuocity (QR), Decisional Diffie-Hellman
(DDH), and Lattice-based assumptions. In this work, we concentrate on the QR
and DDH based schemes. We show that relatively small modifications suffice to
make these schemes semi-adaptively secure. We then employ our compiler, using
somewhat non-committing encryption, to convert them into (fully) adaptively
UC-secure OT protocols. As we mentioned previously, the work of [20] shows
how to efficiently realize all (well-formed) m-party functionalities with adaptive
security assuming up to m−1 corruptions, given and adaptively secure OT pro-
tocol. Therefore, by plugging in our OT protocol construction, we get improved
efficiency in generically compiled protocols for all tasks as above.

Concurrent and independent work. Following the line of work of [19,18],
the recent result by Choi et al. [9] gives a generic black-box compiler from
semi-honest adaptively secure OT to fully malicious adaptively secure OT, us-
ing cut-and-choose techniques. Although the end result of our work is the same
(adaptively secure OT), the two works take very different approaches which com-
plement each other well: the compiler of [9] transforms semi-honest + adaptive
security into malicious + adaptive security in the special case of OT, while our
compiler is a general transformation from malicious + semi-adaptive security to
malicious + adaptive security. The two starting notions of security (semi-honest
+ adaptive vs. malicious + semi-adaptive) are incomparable and thus both com-
pilers are useful in different scenarios. In particular, our compiler can be used
in conjunction with the OT protocol of [28] and results in an extremely efficient
adaptively secure OT protocol using a constant number of rounds and O(n)
public-key operations to transfer an n-bit string.2 In contrast, the compiler of
[9] shows how to base adaptively secure OT on a simulatable cryptosystem in
a black-box way, but at the expense of running Ω(λ2) copies of the underlying
semi-honest OT protocol, where λ is the security parameter, and thus requiring
Ω(λ2n) operations for n-bit OT. Therefore our OT protocol can be significantly
more efficient.

Due to space limitations, proofs, together with background material, full de-
scription of our enhanced version of the QR dual-mode cryptosystem, efficiency
considerations, and our DDH version of adaptively secure bit- and string-OT,
can be found in the full version of the paper [15].

2 Somewhat Non-committing Encryption

2.1 Adaptive Security in Two-Party Protocols

What are some of the challenges in achieving adaptive security for a two-party
protocol? Let’s assume that a protocol π between two parties P0, P1 realizes a

2 Technically, if one thinks of n as a function of λ, we require O(max(λ, n)) operations.
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task F with respect to static adversaries. That means that there is a static simu-
lator which can simulate the three basic cases: both parties are honest through-
out the protocol, exactly one party is corrupted throughout the protocol or both
parties are corrupted throughout the protocol. To handle adaptive adversaries,
we require two more capabilities from our simulator: the ability to simulate a
first corruption (i.e., the case that both parties start out honest and then one of
them becomes corrupted) and simulating the second corruption (i.e., one party
is already corrupted and the other party becomes corrupted as well).

Simulating the first corruption is often the harder of the two cases. The simu-
lator must produce the internal state for the corrupted party in a manner that is
consistent with the protocol transcript so far and with the actual inputs of that
party (of which the simulator had no prior knowledge). Moreover, the simulator
needs to have all the necessary trapdoors to continue the simulation while only
one party is corrupted. Achieving both of these requirements at once is highly
non-trivial and this is one of the reasons why efficient protocols for adaptively
secure two-party computation have remained elusive.

Interestingly, simulating the first corruption becomes much easier if the proto-
col π employs secure channels for all communication between parties. At a high
level, the simulator does not have to do any work while both parties are honest,
since the real-world adversary does not see any relevant information during this
time! When the first party becomes corrupted, we can just run a static simulation
for the scenario in which this party was corrupted from the beginning but acting
honestly and using its input. Then, we can “lie” and pretend that this communi-
cation (generated ex post facto) actually took place over the secure channel when
both parties were honest. The lying is performed by setting the internal state of
the corrupted party accordingly. Since our lie corresponds to the simulation of a
statically corrupted party (which happens to act honestly), all of the trapdoors
are in place to handle future mischievous behavior by that (freshly corrupted)
party. The only problem left is in handling the second corruption – but this is
significantly easier! To formalize this, we will define a notion of semi-adaptive se-
curity where the simulator needs to be able to simulate static corruptions as well
as the case where one party starts out corrupted and the other party becomes
corrupted later on (but not the case where both parties start out honest and may
become corrupted later). The formal notion (with some additional restrictions
imposed on the simulator) appears in Section 2.4.

Informally, we have argued that if two-party protocol is semi-adaptively
secure, then the protocol is also fully adaptively secure if all communication
between the parties is sent over an idealized secure channel. Unfortunately,
idealized secure channels are hard to achieve physically and implementing such
channels cryptographically in the real world requires the inefficient use of non-
committing encryption [6] to encrypt the entire protocol transcript. Luckily, it
turns out that we often do not need to employ fully non-committing encryption
to make the above transformation hold. Indeed, we define a weaker primitive
called somewhat non-committing encryption and show that this primitive can
be implemented with significantly greater efficiency than (fully) non-committing
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encryption, and that it is often good enough to transform a semi-adaptively
secure protocol into a fully adaptively secure protocol when the sizes of the
input/output domains are small.

2.2 Defining Somewhat Non-committing Encryption

First recall the notion of non-committing encryption from [6], which is a pro-
tocol used to realize secure channels in the presence of an adaptive adversary.
In particular, this means that a simulator can produce “fake” ciphertexts and
later explain them as encryptions of any possible given message. Several non-
committing encryption schemes have appeared in literature [6,1,11], but the
main disadvantage of such schemes is the computational cost. All of the schemes
are interactive (which was shown to be necessary in [27]) and the most efficient
schemes require Ω(1) public-key operations per bit of plaintext.

We notice that it is often unnecessary to require that the simulator can explain
a ciphertext as the encryption of any later-specified plaintext. Instead, we define
a new primitive, which we call somewhat non-committing encryption, where the
simulator is given a set of � messages during the generation of the fake ciphertext
and must later be able to plausibly explain the ciphertext as the encryption of
any one of those � messages. In a sense, we distinguish between two parameters:
the plaintext size (in bits) k and the equivocality � (the number of messages
that the simulator can plausibly explain). For fully non-committing encryption,
the equivocality and the message size are related by � = 2k. Somewhat non-
committing encryption, on the other hand, is useful in accommodating the case
where the equivocality � is very small, but the message size k is large.

Functionality FN
SC

The ideal functionality FN
SC interacts with an initiator I and a receiver R. It consists

of a channel-setup phase, after which the two parties can send arbitrarily many mes-
sages from one to another. The functionality is parameterized by a non-information
oracle N .

Channel setup: Upon receiving (ChSetup, sid , I) from party I , initialize the ma-
chine N and record the tuple (sid ,N ). Pass the message (ChSetup, I) to R. In
addition, pass this message to N and forward its output to the adversary S .

Message transfer: Upon receiving (Send, sid , P, m) from party P where P ∈
{I, R}, find a tuple (sid ,N ) and, if none exists, ignore the message. Other-
wise, send the message (Send, sid , P, m) to the other party P = {I, R} − {P}.
In addition, invoke N with (Send, sid , P, m) and forward its output to S .

Corruption: Upon receiving a message (Corrupt, sid , P ) from the adversary, send
(Corrupt, sid , P ) to N and forward its output to S . After the first corruption,
stop the execution of N and give S complete control over the functionality (i.e.,
S learns all inputs and can specify any outputs).

Fig. 1. The parameterized secure-channel ideal functionality, FN
SC
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It is challenging to define an ideal-functionality for somewhat non-committing
encryption, since the ideal world captures a notion of security which is too
strong. Here, we take the approach of [7] where ideal-world functionalities are
weakened by the inclusion of a non-information oracle which is a PPT TM
that captures the information leaked to the adversary in the ideal world. The
ideal functionality for secure channels, given in Figure 1, is parameterized using
a non-information oracle N which gets the values of the exchanged messages
m and outputs some side information to the adversary S. The security of the
secure channel functionality FN

SC depends on the security properties required
for the machine N and thus we can capture several meaningful notions. Let us
first start with the most secure option which captures (fully) non-committing
encryption.

Definition 1. Let N full be the oracle, which, on input (Send, sid , P,m), pro-
duces the output (Send, sid , P, |m|) and, on any inputs corresponding to the
ChSetup, Corrupt commands, produces no output. We call the functionality
FN full

SC , or just FSC for brevity, a (fully) non-committing secure channel. A real-
world protocol which realizes FSC is called a non-committing encryption scheme
(NCE).

Above, the oracle N never reveals anything about messages m exchanged by
two honest parties, even if (both of the) parties later get corrupted. Hence the
functionality is fully non-committing. To define somewhat non-committing en-
cryption we first give the following definitions of non-information oracles.

Definition 2. A machine R is called a message-ignoring oracle if, on any input
(Send, sid , P,m), it ignores the value m and processes only the input (Send, sid , P,
|m|). A machine M called a message-processing oracle if it has no such restric-
tions. We call a pair of machines (M,R) well-matched if no PPT distinguisher
D (with oracle access to either M or R) can distinguish the message-processing
oracle M from the message-ignoring oracle R.

We are now ready to define the non-information oracle used by a somewhat
non-committing secure channel ideal functionality.

Definition 3. Let (M,R) be a well-matched pair which consists of a message-
processing and a message-ignoring oracle respectively. Let N � be a (stateful)
oracle with the following structure.

Upon initialization, N � chooses a uniformly random index i
$← {1, . . . , �}.

In addition it initializes a tuple of � independent TMs: 〈N1, . . . ,N�〉 where
Ni = M and, for j �= i, the machines Nj are independent copies of the
message-ignoring oracle R.
Whenever N � receives inputs of the form (ChSetup, sid , P ) or (Send, sid , P,m),
it passes the input to each machine Ni receiving an output yi. It then outputs
the vector (y1, . . . , y�).
Upon receiving an input (Corrupt, sid , P ), the oracle reveals the internal
state of the message-processing oracle Ni only.
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For any such oracle N �, we call the functionality FN �

SC an �-equivocal non-
committing secure channel. For brevity, we will also use the notation F�

SC to
denote FN �

SC for some such oracle N �. Lastly, a real world protocol which realizes
F�

SC is called an �-equivocal non-committing encryption scheme (�-NCE).

As before, no information about messages m is revealed during the “send” stage.
However, the internal state of the message-processing oracleNi, which is revealed
upon corruption, might be “committing.” Nevertheless, a simulator can simulate
the communication between two honest parties over a secure channel, as modeled
by F�

SC, in a way that allows him to later explain this communication as any
one of � possibilities. In particular, the simulator creates � message-processing
oracles and, for every Send command, the simulator chooses � distinct mes-
sages m1, . . . ,m� that he passes to the oracles M1, . . . ,M� respectively. Since
message-processing and message-ignoring oracles are indistinguishable, this looks
indistinguishable from the side information produced by F�

SC. Later, when a cor-
ruption occurs, the simulator can convincingly explain the entire transcript of
communication to any one of the � possible options, by providing the internal
state of the appropriate message-processing oracleMi.

2.3 The �-NCE Scheme Construction

The construction of �-NCE is based on a simulatable public-key system [11],
wherein it is possible to generate public keys obliviously, without knowing the
corresponding secret key, and to explain an honestly (non-obliviously) gener-
ated public key as one which was obliviously generated. In a similar way, there
should be a method for obliviously generating ciphertexts (without knowing
any plaintext) and to explain honestly generated (non-oblivious) ciphertexts as
obliviously generated ones. Refer to the full version for review of the syntax and
security properties of such a scheme. Our �-NCE protocol construction, shown in
Figure 2, uses a fully non-committing secure channel, but only to send a very
short message during the setup phase. In addition, it uses a simulatable public-
key system and a symmetric key encryption scheme where ciphertexts are indis-
tinguishable from uniformly random values (the latter can be constructed from
any one way function). For very long communications and small �, our �-NCE
scheme is significantly more efficient than (full) NCE.

Theorem 1. The protocol in Figure 2 is an �-NCE scheme. Specifically, it UC-
realizes functionality F�

SC in the presence of an active and adaptive adversary.

The main efficiency consideration is the use of fully non-committing encryption
of the index i (which is small). We show in the full version that our scheme
uses a total of expected O(log �) public-key operations, expected O(�λ) com-
munication and expected constant rounds of interaction for the channel setup
phase, where λ is the security parameter. Alternatively, if one would like to set
up n = Ω(λ) channels in parallel, this can be done in strict O(n log �) public-key
operations, strictO(n�λ) communication and strict constant number of rounds of
interaction. After channel-setup, encryption is non-interactive and requires only
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Let (KG, Enc, Dec) be a simulatable public-key system and K̃G, Ẽnc be the cor-
responding oblivious key generator and oblivious ciphertext generator algorithms.
Further, let (KGsym, Encsym, Decsym) be a symmetric-key encryption scheme in which
ciphertexts are indistinguishable from uniformly random values of the same length.

Channel Setup. An initiator I sets up a channel with a receiver R as follows:
1. The initiator I sends a random index i ∈ {1, . . . , �} to R over a fully non-

committing secure channel.

2. The initiator I generates � public keys. For j ∈ {1, . . . , �} \ {i}, the keys
pkj ← K̃G() are sampled obliviously, while (pki, ski) ← KG() is sampled
correctly. The keys pk1, . . . , pk� are sent to R while I stores ski.

3. The receiver R chooses a random key K ← KGsym and computes Ci =
Encpki(K) correctly. In addition, R samples Cj ← Ẽncpkj () obliviously for
j ∈ {1, . . . , �} \ {i} and sends the ciphertexts C1, . . . , C� to I .

4. The initiator I decrypts the key K ← Decski(Ci). Both parties store (K, i).

Encryption. An initiator I encrypts a message m to a receiver R as follows:
1. The initiator I computes Ei ← Encsym

K (m) and chooses Ej for j ∈ {1, . . . , �} \
{i} as uniformly random and independent values of length |Ei|. The tuple
(E1, . . . , E�) is sent to R.

2. The receiver R ignores all values other than Ei. It computes m ← Decsym
K (Ei).

Fig. 2. The �-NCE protocol

symmetric-key operations. However, the encryption of a k bit message requires
O(�k) bits of communication.

2.4 The Adaptive Security Protocol Compiler for Two-Party SFE

As an application of �-NCE, we now give a general theorem showing that a
protocol with semi-adaptive security can be compiled into a protocol with (full)
adaptive security when all of the communication is encrypted using �-NCE for
some appropriate �. However, we must first give a formal definition of semi-
adaptive security.

Definition 4. An adversarial strategy is second-corruption adaptive if either at
least one of the parties is corrupted prior to protocol execution or no party is
ever corrupted. In the former case, the other party can be adaptively corrupted
at any point during or after protocol execution.

Intuitively, we would like to say that a protocol is semi-adaptively secure if it
is secure with respect to second-corruption adaptive strategies. Unfortunately,
there are two subtleties that we must consider. Firstly, we know that most tasks
cannot be realized in the Universal Composability framework without the use of
trusted setup. However, the use of trusted setup complicates our transformation.
The point of using (somewhat) non-committing encryption is that the simulator
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can lie about anything that occurs while both parties are honest. However, we
often rely on trusted setup in which some information is given to the adversary
even when both parties are honest. For example, the usual modeling of a com-
mon reference string specifies that this string is made public and given to the
adversary even when none of the participants in the protocol are corrupted. In
this case the simulator is committed to such setup even if the parties communi-
cate over secure channels. Therefore we require that, when trusted setup is used,
the semi-adaptive simulator simulates this setup independently of which party
is corrupted. We call this property setup-adaptive simulation.

The second subtlety comes from the following type of problem. As we outlined
in our informal discussion, we wish to run the semi-adaptive simulator once the
first party gets corrupted and then “lie” that the simulated conversation took
place over the secure channel. However, when the first party gets corrupted after
the protocol execution, then the ideal functionality has already computed the
outputs using the honest inputs and will therefore not accept anymore inputs
from the semi-adaptive simulator. Recall that we run the semi-adaptive simulator
with respect to an adversary A which follows the protocol execution using the
corrupted party’s honest input x. If the semi-adaptive simulator extracts the
same input x as the one used by A, then we also know the corresponding output
and can give it to the semi-adaptive simulator on behalf of the ideal functionality.
Therefore it is crucial that the semi-adaptive simulator can only submit the
actual input x. We call this property input-preserving. Putting Definition 4 and
the above notions together, we are finally ready to define semi-adaptive security.

Definition 5. We say that a protocol π semi-adaptively realizes the ideal func-
tionality F if there exists a setup-adaptive and input-preserving PPT simulator S
such that, for any PPT adversary A and environment Z which follow a second-
corruption adaptive adversarial strategy, we have REALπ,A,Z

c≈ IDEALF ,S,Z .

Lastly, we define the notion of a well-structured protocol. Since even non-
committing encryption commits the simulator to the lengths of the exchanged
messages, the number of such messages, and the identities of the sender and
receiver of each message, we require that this information is fixed and always
the same any given execution of a protocol. Almost all known constructed pro-
tocols for cryptographic tasks are well-structured and any protocol can be easily
converted into a well-structured protocol.

First we look at the simple compiler using idealized secure channels.

Theorem 2. Let Ff
SFE be the two-party ideal functionality which computes some

function f as defined in Figure 3. Assume that a well-structured two-party pro-
tocol π for Ff

SFE is semi-adaptively secure. Let π′ be the protocol in which the
parties run π but only communicate with each other using non-committing secure
channels as modeled by FSC. Then π′ is (fully) adaptively secure.

As we already mentioned, this compiler is usually not very efficient because of
its excessive use of secure channels and hence NCE. Recall that secure channels
are employed so that, when both parties are honest, the adversary does not see
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Functionality Ff
SFE

The functionality Ff
SFE interacts with an initiator I and a responder R.

Input: Upon receiving the input value (InputI , sid , xI) from the initiator I , record
the value 〈I, xI〉 and send the message (InputI , sid) to the adversary S . Ig-
nore future (InputI , . . .) inputs. Similarly, upon receiving the input value
(InputR, sid , xR) from the responser R, record the value 〈R,xR〉 and send the
message (InputR, sid) to the adversary S . Ignore future (InputR, . . .) inputs.

Output: Upon receiving the message (OutputI , sid) from the adversary S , if either
〈I, xI〉 or 〈R,xR〉 is not recorded, ignore the message. Else if 〈yI , yR〉 is not
recorded, then compute (yI , yR) ← f(xI , xR) and record 〈yI , yR〉; send the
output value (OutputI , sid , yI) to I . Ignore future (OutputI , . . .) messages from
the adversary. Similarly, upon receipt of (OutputR, sid) from the adversary, send
the output value (OutputR, sid , yR) to R. Ignore future (OutputR, . . .) messages
from the adversary.

Fig. 3. Two-party secure evaluation functionality for f : XI × XR → YI × YR

any useful information and so this case is easy to simulate. Then, when the
first party gets corrupted, our simulator simply makes up the transcript of the
communication that should have taken place ex post facto. This transcript is
generated based on which party got corrupted, what its inputs were and what
its outputs were. However, we notice that for many simple protocols there are
not too many choices for this information. The simulator must simply be able
to credibly lie that the communication which took place over the secure channel
corresponds to any one of these possible choices. Using this intuition, we show
that a more efficient compiler using �-NCE (for some small �) suffices.

Theorem 3. Let Ff
SFE be the two-party ideal functionality computing some func-

tion f : XI×XR → YI×YR, as defined in Figure 3. Assume that a well-structured
two-party protocol π for Ff

SFE is semi-adaptively secure. Let π′ be the protocol in
which the parties run π but only communicate with each other using �-equivocal
secure channels as modeled by F�

SC where � = |XI ||YI | + |XR||YR|. Then π′ is
(fully) adaptively secure.

3 Efficient and Adaptively Secure Oblivious Transfer

We now apply our compiler of Theorem 3 to the concrete problem of bit- and
string-OT, resulting in the first efficient protocols for this task. Refer to [4,15]
for the specification of an ideal functionality for OT.

3.1 The PVW Oblivious Transfer Protocol

In [28], Peikert et al. construct an efficient OT protocol in the CRS model with
UC security against a malicious but static adversary. They do so by introducing a
new primitive called a dual-mode cryptosystem, which almost immediately yields
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an OT protocol in the CRS model, and give constructions of this primitive under
the DDH, QR and lattice hardness assumptions. We first present a brief review
of dual-mode encryption as in [28], and then will define a modified version of
this primitive which will allow us to get adaptive security.

A dual-mode cryptosystem is initialized with system parameters which are gen-
eratedby a trusted third party.For any choice of system parameters, the cryptosys-
tem has two types of public/private key pairs: left key pairs and right key pairs.
The key-generation algorithm can sample either type of key pair and the user spec-
ifies which type is desired. Similarly, the encryption algorithm can generate a left
encryption or a right encryption of a message. When the key pair type matches the
encryption type (i.e. a left encryption of a message under a left public key) then
the decryption algorithm (which uses the matching secret key) correctly recovers
the message.

As shown in [28], a dual-mode cryptosystem can be used to get an OT proto-
col, as follows. The receiver chooses to generate a left or right key depending on
his input bit σ, and the sender uses left-encryption (b = 0) for the left message
x0 and right-encryption for the right message. The receiver then uses the secret
key to correctly decrypt the chosen message.

Security against malicious (static) adversaries in the UC model relies on the
two different modes for generating the system parameters: messy mode and de-
cryption mode. In messy mode, the system parameters are generated together
with a messy trapdoor. Using this trapdoor, any public key (even one which is
maliciously generated) can be easily labeled a left key or a right key. Moreover,
in messy mode, when the encryption type does not match the key type (e.g.,
a left encryption using a right public key) then the ciphertext is statistically
independent of the message. Messy mode is useful to guarantee security against
a corrupt receiver: the messy trapdoor makes it easy to extract the receiver bit
and to create a fake ciphertext for the message which should not be transferred.
On the other hand, in decryption mode, the system parameters are generated
together with a decryption trapdoor which can be used to decrypt both left and
right ciphertexts. Moreover, in decryption mode, left public keys are statistically
indistinguishable from right public keys. Decryption mode is useful to guarantee
security against a corrupt sender: the decryption trapdoor is used to create a
public key which completely hides the receiver’s selection bit, and to compute
a decryption trapdoor and extracting both of the sender’s messages. In each
mode, the security of one party (i.e., the sender in messy mode, and the re-
ceiver in decryption mode) is guaranteed information theoretically. To achieve
security for both parties simultaneously all that is needed is one simple compu-
tational requirement: the system parameters generated in messy mode need to
be computationally indistinguishable from those generated in decryption mode.

3.2 Semi-adaptively Secure OT

In order to make the PVW OT protocol adaptively secure using our methodology,
we need to make it semi-adaptively secure (Section 2.4). We do so by a series of
simple transformations.
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First, we observe that in the PVW protocol, the simulator must choose the
CRS crsot based on which party is corrupt – i.e. the CRS should be in messy
mode to handle a corrupt receiver or in decryption mode to handle a corrupt
sender. This is a problem for us since the definition of semi-adaptive security
requires that the simulator be setup-adaptive which means that it must simulate
the CRS independently of any information on which parties are corrupted. We
solve this issue by using a coin-tossing protocol to choose the CRS of the PVW
OT protocol. Of course, coin-tossing requires the use of a UC secure commitment
scheme which also needs its own CRS (crscom)! However, if we use an (efficient)
adaptively secure commitment scheme (e.g., [12,10]) then the simulator’s choice
of crscom can be independent of which party is corrupted. Unfortunately, this
approach only works if the CRS for the OT protocol comes from a uniform
distribution (over some group) and this also is not the case in all instantiations of
the PVW protocol. However, we observe that the CRS of the OT protocol (crsot)
can be divided into two parts crsot = (crssys, crstmp), where a system CRS crssys
can be independent of which party is corrupted (i.e., can be the same for both
messy and decryption modes) but may not be uniform, while crstmp determines
the mode and thus needs to depend on which party is corrupted, but this part
is required to be uniform. Therefore we can use an ideal CRS functionality to
choose the setup for our protocol which consists of (crscom, crssys) and then run
a coin-flipping protocol to choose the uniform crstmp.

Secondly, we must now consider the cases where one party is corrupted from
the beginning, but the second party becomes corrupted adaptively during the
protocol execution. Let us first consider the case where the sender starts out
corrupted. In this case, to handle the corrupt sender, the simulator needs to
simulate the execution in decryption mode. Moreover, to extract the sender’s
value, the simulator uses the decryption trapdoor to create a dual public key (on
behalf of the receiver) which comes with both a left and a right secret key. Later,
if the receiver becomes corrupted, the simulator needs to explain the randomness
used by the receiver during key generation to create such a public key. Luckily,
current dual-mode schemes already make this possible and we just update the
definition with a property called encryption key duality to capture this.

Now, consider the case where the receiver is corrupted at the beginning but
the sender might also become corrupted later on. In this case the simulator
simulates the execution in messy mode. In particular, the simulator uses the
messy trapdoor to identify the receiver key type (right or left) and thus extracts
the receiver bit. Then the simulator learns the appropriate sender message for
that bit and (honestly) produces the ciphertext for that message. In addition,
the simulator must produce a “fake” ciphertext for the other message. Since, in
messy mode, this other ciphertext is statistically independent of the message,
it is easy to do so. However, if the sender gets corrupted later, the simulator
must explain the fake ciphertext as an encryption of some particular message.
To capture this ability, we require the existence of internal state reconstruction
algorithm which can explain the fake ciphertext as an encryption of any message.
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Again, we notice that the QR instantiation of the PVW scheme already satisfies
this new notion as well.

We now specify our enhanced version of dual-mode encryption in more detail.
Here we just describe the added features with respect to [28]; refer to [15] for
the full description.

Enhanced Dual-Mode Encryption. A dual-mode cryptosystem for message
space {0, 1}n is defined by the following polynomial-time algorithms:

(crs , τ)← PG(1λ, μ). The parameter generation algorithm PG is a random-
ized algorithm which takes security parameter λ and mode μ ∈ {mes, dec}
as input, and outputs (crs , τ), where crs is a common reference string and
τ is the corresponding trapdoor information. Note that PG includes two
stages, PGsys and PGtmp, i.e., compute (G, crssys, τsys) ← PGsys(1λ) and
(crs tmp, τtmp)← PGtmp(μ,G, crssys, τsys) where G is a group with operator
“+”, and set crs ← (crssys, crstmp) and τ ← (τsys, τtmp). Also note that the
system CRS is independent of mode μ.
(pk , sk) ← KG(crs , σ); (c, ζ) ← Enc(crs , pk, b,m); m ← Dec(crs , pk , sk , c);
and ρ← MessyId(crs , τ, pk ) as in [28].
(c, ω) ← FakeEnc(crs , τ, pk , ρ). The fake encryption algorithm FakeEnc is a
randomized algorithm. For the messy branch ρ, the ciphertext c is faked by
using the trapdoor τ , and some internal information ω is saved for recon-
structing the random coins used for encryption.
ζ ← Recons(crs , τ, pk , ρ, c, ω,m). The internal state reconstruction algo-
rithm Recons is a deterministic algorithm. When the plaintext m is supplied
for the faked ciphertext c in messy branch ρ, the algorithm recovers the used
random coins ζ based on previously generated internal information ω.
(pk , sk0, sk1)← DualKG(crs , τ). The dual key generation algorithm DualKG
is a randomized algorithm, which based on the trapdoor τ , outputs an en-
cryption key pk , and two decryption keys sk0, sk1 corresponding to key type
0 and 1, respectively.

Definition 6 (Enhanced Dual-Mode Encryption). An enhanced dual-mode
cryptosystem is a tuple of algorithms as described above satisfying the following
properties:

Completeness as in [28].
Enhanced mode indistinguishability: The CRSes generated by PG in
messy mode and in decryption mode are indistinguishable in the sense that
(i) the both system CRSes are identically distributed, and (ii) the two tem-
poral CRSes are computationally indistinguishable from random elements in
group G.
Messy branch identification and ciphertext equivocation: For
every (crs , τ) ← PG(1λ,mes) and every pk , MessyId(crs , τ, pk) outputs a
branch value ρ such that for every m ∈ {0, 1}n, Enc(crs , pk , ρ, ·) is
simulatable.
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Encryption key duality: For every (crs , τ) ← PG(1λ, dec), there exists
(pk , sk0, sk1) ← DualKG(crs , τ) such that for every σ ∈ {0, 1}, (pk , skσ) is
statistically indistinguishable from the honestly generated key pair.

Construction. Based on the above transformations, a generic construction for
a semi-adaptively secure OT protocol is given in Figure 4. It consists of two
phases, the coin tossing phase and the transferring phase (which is separated by
a dot line in the figure). The CRS consists of two pieces: the first piece is a system
CRS denoted as crssys, while the second piece is for an adaptively secure UC
commitment protocol which will be used for constructing a coin tossing protocol.
The UC commitment includes two stages, the commit (to a randomly selected
value r by the receiver) and the open stages, which could be interactive, and is
used to compute a temporal CRS crstmp. crstmp together with the system CRS
crssys are used as the CRS for the transferring phase and we denote it as crsot.
With crsot in hand, we “plug in” the PVW protocol, but based on the enhanced
dual-mode cryptosystem to achieve message transferring.

Theorem 4. Given an adaptively UC-secure commitment scheme and an
enhanced dual-mode cryptosystem as in Definition 6, the protocol in Figure 4
semi-adaptively realizes FOT in the FCRS-hybrid model.
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Fig. 4. Generic semi-adaptively secure OT protocol
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By “plugging in” efficient instantiations of the two building blocks above, we
obtain efficient concrete protocols for semi-adaptively secure OT. For exam-
ple, good candidates for adaptively secure UC commitments can be found in
[10,12], while a QR-based dual-mode encryption scheme is presented in [28]; in
the full version we show that this scheme also satisfies Definition 6. As men-
tioned in Section 1, a semi-adaptively secure OT protocol can also be based
on the DDH assumption. In this case, however, in order to make ciphertext
equivocation possible, we also need an efficient Σ-protocol for the equality of
discrete logs.

3.3 Efficient and Adaptively Secure OT

We now apply our compiler from Section 2.4 to the protocol in Figure 4, to im-
mediately obtain efficient adaptively secure OT protocols in the UC framework.

Corollary 5. Assume that the DDH, QR, and DCR assumptions hold. Then
there exists an adaptively secure protocol that UC-realizes the bit-OT function-
ality FOT in the FCRS-hybrid world, running in (expected) constant number of
rounds and using (expected) constant number of public-key operations.

Justification for the assumptions is as follows: efficient adaptive UC commit-
ments can be realized in the CRS model under the DCR assumption [12], non-
committing and somewhat non-committing encryption can be constructed under
DDH ([11] and Section 2, respectively), while enhanced dual-model encryption
exists under the QR assumption ([28] and Section 3.2).

In the full version we also show how to instantiate our framework using the
DDH version of the PVW protocol, resulting in an efficient bit-OT protocol
with similar parameters to the one above based on DCR. Further, we also show
how to use the DDH version of PVW to also efficiently implement string-OT.
This involves the semi-adaptively secure realization of an enhanced, receiver-
committed version of bit-OT, where the receiver is also committed to his bit
under an equivocal commitment scheme (e.g., a Pedersen commitment), as well
as a generalization of our compiler; lastly, we use several copies of the enhanced
bit-OT functionality to construct string-OT for long strings. (See [15] for details.)
This strategy yields the following theorem.

Theorem 6. Assume that the DDH and DCR assumptions hold. Then there
exists an adaptively secure protocol that UC-realizes the string-OT functional-
ity FOT in the FCRS-hybrid world, and can transfer an n-bit string in (strict)
constant number of rounds and using (strict) O(n) public-key operations.
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Abstract. Collusion-free protocols prevent subliminal communication
(i.e., covert channels) between parties running the protocol. In the stan-
dard communication model, if one-way functions exist, then protocols
satisfying any reasonable degree of privacy cannot be collusion-free. To
circumvent this impossibility, Alwen, shelat and Visconti (CRYPTO 2008)
recently suggested the mediated model where all communication passes
through a mediator. The goal is to design protocols where collusion-
freeness is guaranteed as long as the mediator is honest, while standard
security guarantees hold if the mediator is dishonest. In this model, they
gave constructions of collusion-free protocols for commitments and zero-
knowledge proofs in the two-party setting.

We strengthen the definition of Alwen et al., and resolve the main
open questions in this area by showing a collusion-free protocol (in the
mediated model) for computing any multi-party functionality.

1 Introduction

It is well known that two or more parties running some protocol can poten-
tially embed “disallowed” communication in the protocol messages themselves;
i.e., the parties can use the messages of the protocol as a covert channel to
communicate in a subliminal (a.k.a., steganographic) fashion. As introduced by
Lepinski, Micali, and shelat, a collusion-free protocol [13] rules out such covert
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communication. Unfortunately, in the standard communication model, if one
way functions exist, then it is impossible for any protocol whose messages have
any entropy to be collusion-free [9]. This seems to rule out collusion-free proto-
cols in the standard communication model that realize any “interesting” level of
privacy [13].

Although there has been some work addressing the issue of subliminal channels
in certain limited contexts (mainly signature schemes [3,4,7,17,19]), the prob-
lem has, until recently, been largely ignored by the cryptographic community.
Presumably this is because protocol designers generally assume a “worst-case”
adversarial model, where if two parties are dishonest then they are assumed to
be coordinating their actions and communicating out of band anyway. Recent
attention focused on applying cryptographic protocols in game-theoretic set-
tings [10,11,13] (see also [12]), however, has re-invigorated interest in designing
collusion-free protocols. Preventing subliminal communication is also important
in other settings. For example, in a large-scale, distributed system where parties
are chosen randomly (from a large pool of players) to run some protocol, the set
of parties running a given instance of the protocol may not have had any chance
to coordinate their actions in advance, and may have no way to communicate out
of band; in this case, the protocol itself introduces a new vulnerability if it can be
used as a means for players to initiate collusion, or to transfer information. The
problem of subliminal communication is not just of theoretical interest: efforts
to collude using covert channels have been observed in high-profile spectrum
auctions [6].

One approach for constructing collusion-free protocols is to rely on the notion
of verifiable determinism as introduced by Lepinski et al. [12,13]. Roughly speak-
ing, verifiable determinism ensures that at every point in the protocol there is
only a single “valid” message that a player can send; if that player sends any-
thing else, all other parties detect this and raise an alarm. This suffices to prevent
covert communication. Unfortunately, all existing constructions of verifiably de-
terministic protocols for general secure computation [10,11,13] rely on strong
physical assumptions such as secure envelopes and ballot boxes.

A completely different approach to the problem was recently suggested by
Alwen, shelat and Visconti [1]. They proposed a model in which each party is
able to communicate only with a mediator. (I.e., the communication network is
a star graph with the mediator at the center.) Rather than remove randomness
from protocol messages, as when using verifiable determinism, this approach has
the mediator add randomness to (i.e., re-randomize) the messages of the protocol
in order to eliminate any subliminal communication. This, of course, assumes the
mediator is honest; when the mediator is dishonest then corrupted parties can
communicate freely using the mediator as a channel. In this case, the protocol
is required to satisfy standard security guarantees.

The mediated model can be realized in many real settings. As an example,
recently in Israel the Maccabi Health Fund (a large HMO) ran an auction with
several insurance companies as bidders. In this auction, the bidders came to
the offices of the HMO and were seated in separate rooms, with no way to
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communicate with the outside world (participants were searched for cellphones
and other wireless devices). The auction proceeded in stages with an auctioneer
going from room to room, informing the participants about the results of the
previous round and taking their next bid. It would have been possible in this case
to replace the auctioneer with a server mediating the communication between
all parties.

1.1 Our Contributions

In addition to introducing a definition of collusion-freeness in the mediated
model, Alwen et al. also gave the first constructions of collusion-free protocols
in this setting. They showed protocols for commitment and zero-knowledge in
the two-party case, but left open the questions of general secure computation as
well as dealing with more than two parties. In this paper we solve these open
questions, and show the first multi-party protocol for collusion-free computation
of arbitrary functionalities in the mediated model. Feasibility is not trivial in
this setting, in part because we aim to satisfy a stronger definition of security
than that put forth by Alwen et al.; see below. (We view this strengthened defi-
nition as an additional contribution of our work.) Finally, we prove composition
theorems in the mediated setting that may be useful in future work.

The paragraphs that follow briefly describe the most important differences
between our definition and that of Alwen et al. [1]; formal definitions are in
Section 2. The next few paragraphs provide a high-level overview of our protocol
that emphasizes the technical difficulties that arise.

Aborts as a subliminal channel. The definition in [1] allows parties to com-
municate some (bounded) number of bits by aborting the protocol; specifically,
in an r-round protocol each party can communicate roughly log r bits to all other
parties. Alwen et al. conjecture that this is unavoidable. We show that this con-
jecture is false. In our definition we allow only a single bit to be communicated,
where this bit indicates whether some party aborted at some point in the pro-
tocol but does not reveal which parties aborted or in which rounds these aborts
occurred. Achieving this stronger notion introduces many of the complications
in designing our protocol.

Set-up assumptions. Alwen et al. assume no shared state between the parties,
and this allows the mediator to potentially “fork” the parties (in the sense of [2])
into disjoint subsets running independent computations. To prevent this, Alwen
et al. assume that even a dishonest mediator behaves honestly during a “set-up”
phase. (See further discussion in Section 2.)

In addition to this model, we also analyze a model where there is assumed to
be a trusted public-key infrastructure (PKI) such that all parties running the
protocol know each others’ public keys. These two set-up assumptions are in-
comparable: the first makes assumptions regarding the behavior of the mediator
but can achieve a stronger notion of collusion-freeness; the second may be more
realistic but requires the involvement of an external trusted party to set up the
public key infrastracture.
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1.2 Overview of Our Protocol

The discussion here omits certain details and is meant only to illustrate the
high-level structure of the protocol. A formal description of the protocol is given
in Section 3.

Let P1, . . . , Pn be a set of n parties, each communicating with a mediator
Pn+1, who wish to compute some (randomized) functionality F . Let π be a
protocol that securely computes F in the standard communication model with
broadcast. (In fact, we assume without loss of generality that all messages in π
are sent over the broadcast channel.) We compile π to obtain a collusion-free
protocol Π in the following way. For each message msg sent by some party Pi

in protocol π do:

1. Pi and the mediator run a protocol for secure two-party computation of a
functionality Fπ

compute that outputs to the mediator the next message msg
that Pi would send in the underlying execution of π. (A secure computation
is needed since Pi will not actually know any of the messages sent by other
parties in previous rounds of π; see step 2.)

If the mediator does not obtain a valid msg (i.e., if Pi aborts or provides
incorrect input to Fπ

compute), then the mediator sets msg to some default
value. (This step is essential if we wish to prevent parties from using aborts
as a covert channel.)

2. The mediator sends independent commitments of msg to each of the other
parties.

At the end of the protocol, the mediator runs a secure two-party computation
with each party Pi that allows Pi to learn their output, as specified by protocol π.

It is not too difficult to argue that the above protocol is collusion-free when the
mediator is honest. Intuitively, this is because each party sees only independent
commitments to messages rather than the messages themselves. However, the
following issues arise due to the need to preserve security when the mediator is
dishonest:
Authentication. The mediator should be prevented from modifying the mes-
sages of honest parties. To achieve this, we change Fπ

compute to output (msg, σ),
where σ is a valid signature1 by Pi on msg, and require the mediator to send com-
mitments on both these values to the other parties. Furthermore, Fπ

compute will
ensure that all previous commitments contain appropriately signed messages.
Preventing subliminal channels based on aborts. Signing each message
(as just described) prevents a dishonest mediator from modifying honest parties’
messages, but introduces a potential problem with collusion-freeness when the
mediator is honest: if a party aborts, the mediator has no way of generating a
(commitment to a) default message with an appropriate signature. We fix this
by allowing the mediator in this case to commit to a “dummy message” with
1 As discussed earlier, we consider two different set-up assumptions: public keys can

be established either during a preamble phase, or via an external PKI. See further
discussion in the following section.
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no signature; we also change Fπ
compute so that if it detects a dummy message the

mediator receives no output. The effect is that parties cannot detect whether
anyone has aborted until the end of the protocol, and never learn which (or how
many) parties aborted nor the round(s) in which an abort occurred.
Ensuring “broadcast”. Protocol π is secure under the assumption that par-
ties communicate over a broadcast channel. In our compiled protocol, where all
communication is routed through the mediator, we need a way to ensure that
a dishonest mediator sends (different commitments to) the same message to all
parties. We implement this “mediator broadcast” by, roughly speaking, having
the mediator (1) collect signatures from all parties on the committed messages;
(2) send independent commitments on these signatures to all parties; and then
(3) prove to each party independently that all parties have signed a commit-
ment to the same underlying message. As above, in case of an abort we allow
the mediator to send a “dummy commitment” to the parties.
Handling concurrency. When the mediator is honest, the protocols computing
Fπ

compute, as well as the sub-protocols used to implement mediator broadcast, are
run sequentially. But when the mediator is dishonest, it may run concurrent
executions with the honest parties. We thus need all the two-party protocols
being run to be secure under (bounded) concurrent self composition.

2 Definitions

Standard cryptographic primitives. Let C be a perfectly binding commit-
ment scheme, where C(m; r) denotes a commitment to m using random coins r.
The decommitment of com = C(m; r) is dec = (m, r). We assume the length of
all commitments is a fixed function of the message length.

Let (Gen, Sign, Vrfy) be a signature scheme that is existentially unforgeable
under adaptive chosen-message attacks. Range(Gen) denotes the set of outputs
of Gen, and we assume (without loss of generality) that one can efficiently decide
whether a given (sk, pk) lies in Range(Gen). We assume the length of all valid
signatures is some known, fixed function of the message length.
Security in the mediated model – preliminaries. We use the real/ideal
paradigm for defining security, but our real and ideal worlds differ from the usual
ones and collusion-freeness requires a new definition. Our real world is essentially
standard except that all communication is between parties P1, . . . , Pn and the
mediator Pn+1. We define two different ideal worlds depending on whether the
mediator is honest (and collusion-freeness is the goal) or dishonest (in which case
we default to the standard notion of security). In each ideal world we consider two
possible set-up assumptions; see below. Collusion-freeness is defined by requiring
the existence of independent simulators, one for each malicious party, such that
their joint output in the ideal world is indistinguishable from the joint output
of the malicious parties in the real world.

Let F = (f1, . . . , fn+1) denote the functionality the parties wish to compute,
where each fi maps n + 1 inputs to a single output. (We allow the mediator
to provide input and receive output, something not done in [1].) We implicitly
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assume that any protocol under discussion for computing F is correct : i.e., if
parties P1, . . . , Pn+1 have inputs x1, . . . , xn+1 and run the protocol honestly,
then each Pi receives output fi(x1, . . . , xn+1), distributed appropriately in case
F is randomized.
Set-up assumptions. Alwen et al. [1] observe that if no setup is assumed,
then—because all parties communicate only with the mediator—a dishonest
mediator can “fork” the parties into disjoint groups, each running a separate
computation (much as in [2]). To prevent this, parties must be able to “authen-
ticate” to each other. (It is as an interesting open question to assume no setup
and treat “forking” attacks directly, but this is not the focus of our work.)

Here, we study two set-up assumptions under which such authentication can
be implemented. The first, termed trusted-PKI, assumes a PKI in the usual sense,
with each party knowing the public keys of all the other parties running the
protocol. We stress that we do not assume honestly generated keys, or require
parties to prove knowledge of their keys; all we require is consistency.

While this approach is appealing, it loses something in the “spirit” of collusion-
freeness since parties are now potentially able to follow strategies based on each
others’ identities. Nevertheless, we believe the trusted-PKI model is meaningful
in the context of collusion-freeness. For one, public keys can be generated be-
fore inputs are given to the parties (and before the function being computed
is agreed upon!), and so the use of any subliminal communication will be lim-
ited. Furthermore, parties who are not aware of each other before execution of
the protocol will necessarily generate their public keys independently, whereas
parties who are aware of each other before executing the protocol cannot be
prevented anyway from communicating arbitrary information in advance.

We also consider the mediated-PKI model that provides stronger guarantees of
collusion-freeness under a different assumption. Specifically, here we follow Alwen
et al. [1] and assume that even a dishonest mediator follows the protocol during
a “preamble” phase where a “pseudo-PKI” is established. Instead of viewing this
as an assumption, one can also interpret this as a claim that if the mediator
acts in a particular way then certain guarantees hold.

2.1 Execution in the Real World (with an Honest Mediator)

We first consider the real world (i.e., the mediated model) in which an (n + 1)-
party protocol Π is executed. Channels are available only between the mediator
Pn+1 and Pi (for all i). For simplicity the channels to/from Pn+1 are assumed
to be private and authenticated.

In this section we assume the mediator is honest; we consider the case of a
dishonest mediator in Section 2.4. Let I ⊆ [n] denote the set of corrupt parties2

and denote by H = [n] \ I the set of uncorrupted parties (not including the
mediator). A real world execution begins with a “PKI establishment” stage for
which we define two variants:
2 In contrast to the usual case, here a meaningful definition is obtained even when
I = [n].
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– trusted-PKI: For i ∈ H, party Pi honestly generates a signature key pair
(pki, ski). Each corrupted party Pi may generate an arbitrary public key
pki. Once all keys have been generated, each Pi is given the vector KeyVeci :=
(pk1, . . . , pkn) of public keys, and the mediator is given KeyVeci

n+1 := KeyVeci

for all i ∈ [n]. (The notation is chosen to be consistent with the mediated-PKI
setting below.) We say that KeyVeci matches KeyVeci

n+1 if they are equal.
– mediated-PKI: For i ∈ H, party Pi honestly generates a signature key pair

(pki, ski). Each corrupted party Pi may generate an arbitrary public key pki.
All parties send pki to the mediator. (If a party fails to send anything, the
mediator uses a default public key.) The mediator chooses independent coins
{rj

i }i,j∈[n], computes cj
i = C(pki; r

j
i ), and sends KeyVeci := (ci

1, . . . , c
i
n) to

party Pi. The mediator keeps the vectors of decommitments KeyVeci
n+1 :=

((pk1, r
i
1), . . . , (pkn, ri

n)). We say that KeyVeci matches KeyVeci
n+1 if for all

j ∈ [n] the jth component of KeyVeci
n+1 is a valid decommitment to the jth

component of KeyVeci.

The remainder of the real-world execution is identical in both settings.

Input determination and protocol execution: Each party Pi (for i ∈ [n +
1]) is given input xi. Party Pi is also given auxiliary input auxi (which honest
players ignore) as well as independent random coins ri. The parties then run
the protocol, with honest parties (including the mediator) acting as directed
by Π , and corrupted parties behaving arbitrarily.

Result of the experiment: At the conclusion of the protocol, let outi, for
i ∈ I, denote the entire view of the corrupted party Pi, and let outi, for
i ∈ H ∪ {n + 1}, denote the final output of Pi (as dictated by Π). Given a
set of adversarial strategies AI = {Ai}i∈I , define

real
mediated
Π,AI(aux)(1

k, x) def= (out1, . . . ,outn+1)

to be the random variable consisting of the stated outputs following an ex-
ecution of Π where the parties are given inputs x = {x1, . . . , xn+1} and
auxiliary inputs aux = {aux1, . . . , auxn+1}.

2.2 Execution in the Ideal World (with an Honest Mediator)

We continue to assume the mediator is honest. In this ideal world, all parties
communicate only with a trusted party computing F . In particular, corrupted
parties are unable to communicate with each other and therefore cannot commu-
nicate information about their inputs or coordinate their actions (beyond what
they have agreed upon in advance). Let I ⊆ [n] be the set of corrupted parties,
and let H = [n] \ I be the set of honest parties (other than the mediator) as
before.

As in the previous section, we distinguish between two settings in the ideal
world. The trusted-PKI setting includes a “PKI establishment” step where a PKI
is established exactly as in the real world: for i ∈ H, party Pi honestly generates
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signature keys (pki, ski). A corrupted Pi outputs any public key pki of its choice.
For i ∈ [n] party Pi is then given the vector KeyVeci := (pk1, . . . , pkn) of public
keys. The mediated-PKI setting has no PKI establishment step.

The remainder of the ideal-world execution is identical in both settings.

Input determination: Each party Pi (for i ∈ [n + 1]) is given their input xi

and auxiliary input auxi (which an honest player ignores).
An honest party sets x′

i = xi and sends x′
i to F . A corrupted Pi may send

any x′
i of its choice. Unless otherwise specified, if any x′

i =⊥ then all parties
get output ⊥ from F . Otherwise, F hands fi(x′

1, . . . , x
′
n+1) to party Pi, for

i ∈ [n + 1].
Note that a malicious party who “aborts” by sending ⊥ to F communi-

cates (at most) one additional bit to all other parties beyond what is directly
implied by F . Furthermore, this decision to abort must be made indepen-
dently of the output of F on the given inputs.

Result of the experiment: At the conclusion of the protocol, let outi, for i ∈
I, denote an arbitrary value output by Pi, and let outi, for i ∈ H∪{n+1},
denote the value given to Pi by F . Given a set of adversarial strategies
SI = {Si}i∈I , define

ideal
cf
F ,SI(aux)(1

k, x) def= (out1, . . . ,outn+1)

to be the random variable consisting of the stated outputs following an ideal-
world execution where the parties are given inputs x and auxiliary inputs
aux as specified.

2.3 Collusion-Freeness

Having defined the ideal and real models, we can now define collusion-freeness.
If we followed the standard definitional paradigm, we would require that for all
I and any set of efficient real-world strategies AI = {Ai}i∈I , there should exist
a set of efficient ideal-world strategies SI = {Si}i∈I such that the corresponding
real- and ideal-world outcomes are computationally indistinguishable. A defi-
ciency of this approach is that it allows each Si to depend on I as well as all
the Aj (i.e., even for j �= i), and thus this approach does not adequately model
collusion-freeness. Since we want each Si to depend only onAi, we instead require
the existence of a set of efficient transformations {Simi}i∈[n] such that setting
Si = Simi(1k,Ai) for i ∈ I makes the real and ideal worlds indistinguishable.

Definition 1. Let F be a functionality, and Π an (n + 1)-party protocol com-
puting F in the mediated model. Π is a collusion-free protocol computing F if
there is a set {Simi}i∈[n] of efficiently-computable transformations such that, for
all I ⊆ [n] and any ppt strategies {Ai}i∈I , setting Si = Simi(1k,Ai) for i ∈ I
implies that the following two distributions are computationally indistinguishable:{

ideal
cf
F ,SI(aux)(1

k, x)
}

x,aux∈({0,1}∗)n+1, k∈N{
real

mediated
Π,AI(aux)(1

k, x)
}

x,aux∈({0,1}∗)n+1, k∈N
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2.4 Security (with a Dishonest Mediator)

The definition in the case of a dishonest mediator is essentially the standard
one for secure multi-party computation, with the exception being that honest
parties cannot communicate directly in the real world. (We also incorporate a
PKI establishment phase as in the prior sections.) Further details are given in
the full version. A protocol satisfying both Definition 1 and the definition for
the case of a dishonest mediator will be called a collusion-free protocol securely
computing F .

3 Collusion-Free Multiparty Computation in the
Mediated Model

We construct a collusion-free protocol Π for secure computation of an arbitrary
(poly-time) functionality F = (f1, . . . , fn+1). We first introduce the components
of our protocol, and describe the protocol in full detail in Section 3.4. High-level
intuition for the protocol was given in Section 1.2.

3.1 Building Blocks

Our protocol uses some cryptographic primitives and tools which we review here.
Two-party functionalities. We use ideal functionalities to model various
sub-protocols used in Π . Standard functionalities we use are the commitment
functionality Fcom, the coin-tossing functionality Fct, the zero-knowledge func-
tionality Fzk, and the signature functionality FSign:

1. Fcom is defined by Fcom((m, r), λ) = (⊥, C(m; r)), where λ denotes the
empty string.

2. The coin-tossing functionality is defined by Fct(1�, λ) = ((r, s), C(r; s)),
where |r| = � and both r and s are uniformly distributed.

3. Let R be an NP-relation. Functionality Fzk for the relation R is defined by

Fzk((x, w), x′) =
{

(⊥, R(x, w)) if x = x′

(⊥, 0) otherwise

4. The signature functionality is defined as:

FSign((sk, pk, m), (pk′, m′)) =

⎧⎨⎩ (⊥, Signsk(m)) if (pk, m) = (pk′, m′) and
(sk, pk) ∈ Range(Gen)

(⊥,⊥) otherwise

A protocol π securely computing F (in the standard sense): Let π be
an (n+1)-party protocol that securely computes F in the usual sense [8], in the
standard communication model where all parties have access to a public (but
authenticated) broadcast channel. Precisely, π is secure-with-designated-abort
for any number t ≤ n+1 of corrupted parties, where the mediator Pn+1 is desig-
nated as the party who can prematurely abort the protocol. Roughly speaking,
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this means that the protocol guarantees privacy and correctness regardless of
how many parties are corrupted, and guarantees output delivery and complete
fairness as long as the mediator is not corrupted. For technical reasons, we also
assume that π is proved secure using a black-box simulator.
By using standard techniques, we may assume without loss of generality that:

• All messages in π have the same, fixed length. In any given round only a single
party broadcasts, and the identity of the party who broadcasts depends on
the current round number only.
• Say π has r rounds. Then Pn+1 learns its output in round r − 1; party Pn+1

broadcasts in round r; and every other party learns its output in round r.

Dummy commitments: As described in Section 1.2, everything the mediator
sends to the parties will be “wrapped” inside a commitment. When all parties
behave honestly, these will all be commitments to legitimate messages of pro-
tocol π along with a digital signature. If some party Pi aborts (or otherwise
deviates from the protocol), however, an honest mediator will not be able to
generate a valid commitment of this sort (in particular, the mediator will be
unable to forge an appropriate signature). Nevertheless, we do not want some
other party to learn that Pi aborted the protocol Π . We achieve this by allowing
the mediator to send special “dummy commitments” to a distinguished value
dummy. (I.e., a dummy commitment takes the form C(dummy; r).) For the sake
of concreteness, dummy can be taken to be a string of 0s of the appropriate
length if we require that all legitimate messages be prefixed by a ‘1’.

3.2 Oblivious Computation of π

The general structure of protocol Π , as described in Section 1.2, has the mediator
send to each Pj commitments to all the protocol messages of π. Thus, Pj cannot
compute its π-messages directly (since it cannot directly observe the π-messages
of other parties), but must instead compute these messages by executing a two-
party protocol with the mediator. Specifically, we define a functionality Fπ

compute

that computes the next π-message of Pj along with a signature of Pj on that
message, and a functionality Fπ

output that enables Pj to obtain its π-output. (The
actual functionalities we require are more complex because we must also check
for incorrect behavior on the part of the mediator.) These are defined formally
in Figures 1 and 2. Observe that only the mediator Pn+1 receives output from
Fπ

compute, and only Pj receives output from Fπ
output.

3.3 Mediator Broadcast

Protocol π assumes that all parties communicate over a broadcast channel. When
the mediator is corrupt, we therefore must ensure that the mediator sends (com-
mitments to) the same message to all honest parties. Note that checking for signa-
tures on protocol messages, as done by Fπ

compute and Fπ
output, only ensures that this

holds for the messages of honest parties; it does not prevent a dishonest mediator
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Functionality Fπ
compute

Functionality Fπ
compute runs with two parties Pj and Pn+1 and works as follows:

– Pj inputs a pair of commitments cominput and comrand; a vector of commitments
C ; vector KeyVec; and a round number rid. In addition, Pj sends two strings
decinput and decrand, and its signing key skj .

– Pn+1 inputs a pair of commitments cominput
j and comrand

j ; a vector of commit-
ments Cj ; vector KeyVec′; and a round number rid′. In addition, Pn+1 sends
a vector decj .

– Upon receiving the above, Fπ
compute does:

1. If KeyVec does not match KeyVec′ then send ⊥ to Pn+1 and halt. Otherwise
extract the parties’ public keys (pk1, . . . , pkn) from KeyVec′.

2. If (cominput, comrand, C , rid) �= (cominput
j , comrand

j , Cj , rid
′) or if (skj , pkj) �∈

Range(Gen), then send ⊥ to Pn+1 and halt.
3. If decinput is not a valid decommitment to cominput

j , or decrand is not a valid
decommitment to comrand

j , or decj does not contain valid decommitments
to all the commitments in Cj , then send ⊥ to Pn+1 and halt.

4. Let (msg1, σ1), . . . , (msg�, σ�) be the committed values in Cj . If any of
these are dummy values, send ⊥ to Pn+1 and halt. For 1 ≤ i ≤ 	, let 	i

denote the index of the party who is supposed to broadcast in round i of π.
If there exists an i such that (1) 	i �= n+1 and (2) Vrfypk�i

((msgi, 0i), σi) �=
1, then send ⊥ to Pn+1 and halt.

5. Let xj and rj be the committed values in cominput
j and comrand

j respectively.
Compute the next message msg that party Pj would send in protocol π
when running with input xj , random tape rj , and after receiving messages
msg1, . . . , msg�. In addition, compute σ = Signskj

(msg, rid). Send (msg, σ)
to Pn+1 and halt.

Fig. 1. The functionality computing the next message of π

from sending different messages on behalf of corrupted parties (who may collude
with the mediator and sign multiple messages).

We achieve the above using what we call “mediator broadcast.” The mediator
Pn+1 begins holding a message m, and at the end of the protocol each Pi obtains
an (independent) commitment comi to a message mi. The desired functionality
is, informally, as follows: If all parties are honest, then mi = m for all Pi. If Pn+1
is honest, then there is an m′ ∈ {m, dummy} such that mi = m′ for all honest
parties Pi. If Pn+1 is dishonest, then there is an m′ such that mi ∈ {m′, dummy}
for all honest parties Pi. This is a weak form of broadcast, but suffices for our
application.

In Figure 3, we formally define a functionality F sid
bcast, parameterized by a

session id sid, implementing the above. (An honest mediator chooses r1, . . . , rn

uniformly at random, and sets H = [n]; an honest Pi sends bi = 1.) We stress
that the functionality always outputs a commitment for each party, even if some
(dishonest) party aborts. Our protocol Πsid

bcast realizing F sid
bcast proceeds, roughly

speaking in the following three stages:
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Functionality Fπ
output

Functionality Fπ
output runs with two parties Pj and Pn+1 and works as follows:

– Pj inputs a pair of commitments cominput and comrand, vector KeyVec, and a
vector of r commitments C . In addition, Pj sends two strings decinput and
decrand.

– Pn+1 inputs a pair of commitments cominput
j and comrand

j , vector KeyVec′, and
a vector of r commitments Cj . In addition, Pn+1 sends a vector decj .

– Upon receiving the above, Fπ
output does:

1. If KeyVec does not match KeyVec′ then send ⊥ to Pj and halt. Otherwise
extract the parties’ public keys (pk1, . . . , pkn) from KeyVec′.

2. If (cominput, comrand, C) �= (cominput
j , comrand

j , Cj), then send ⊥ to Pj and
halt.

3. If decinput (resp., decrand) is not a valid decommitment to cominput
j (resp.,

comrand
j ), or decj does not contain valid decommitments to all the com-

mitments in Cj , then send ⊥ to Pj and halt.
4. Let (msg1, σ1), . . . , (msgr, σr) be the committed values in Cj . If any of

these are dummy values, send ⊥ to Pj and halt. For 1 ≤ i ≤ r, let 	i denote
the index of the party who is supposed to broadcast in round i of π. If there
exists an i such that (1) 	i �= n + 1 and (2) Vrfypk�i

((msgi, 0i), σi) �= 1,
then send ⊥ to Pj and halt.

5. Let xj and rj be the committed values in cominput
j and comrand

j . Com-
pute the value outj that party Pj would output in protocol π when run-
ning with input xj , random tape rj , and after receiving the messages
msg1, . . . , msgr. Send outj to Pj and halt.

Fig. 2. The functionality computing the output of π

F sid
bcast

Functionality F sid
bcast runs with P1, . . . , Pn, Pn+1 as follows:

• For j ∈ [n], each Pj inputs a bit bj and KeyVecj .
• Pn+1 inputs a message m, {KeyVecj

n+1}j∈[n], random coins r1, . . . , rn, and a set
H ⊆ [n].

• For all i ∈ [n], if KeyVeci and KeyVeci
n+1 do not match then set H := H \ {i}.

• Let b =
V

i bi.
• If b = 1, then:

• For i ∈ H send comi = C(m; ri) to Pi.
• For i ∈ [n] \ H, send comi = C(dummy; ri) to Pi.
If b = 0, then for i ∈ [n] send comi = C(dummy; ri) to Pi. In either case, send
b to Pn+1.

Fig. 3. Mediator broadcast
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1. Pn+1 sends comi = C(m; ri) to each party Pi.
2. Pi generates a signature σi on (comi, sid), and sends σi to Pn+1.
3. If any Pi fails to send a valid signature, then Pn+1 sends (independent)

dummy commitments to all parties. Otherwise, Pn+1 sends an independent
commitment to (com1, σ1, . . . , comn, σn) to all parties. In either case, Pn+1
then proves to each party in zero knowledge that the commitments it sent
takes one of these forms.

The actual protocol Πsid
bcast is slightly more complex. Furthermore, for technical

reasons we do not use commitments, signatures, or zero-knowledge proofs di-
rectly but instead work in the (Fcom, FSign, Fzk)-hybrid model. The complete
protocol and a proof of security are given in the full version of the paper.

3.4 A Protocol Π for Collusion-Free Secure Computation

We now describe a collusion-free protocol Π that securely computes F in the
(Fcom, Fct, Fπ

compute, Fπ
output, F sid

bcast)-hybrid model. When these functionalities are
realized using protocols designed for the mediated model, we obtain a protocol
for the real mediated model.

Our protocol consists of three stages. In the first stage, the parties commit to
their inputs and random coins for a protocol π that securely computes F (in the
standard sense). In the second stage, the parties simulate π, round-by-round, as
follows. If it is Pj ’s turn to broadcast (for j ∈ [n]), then Pj runs Fπ

compute with
the mediator; thus, the mediator obtains the next π-message msg along with
a signature of Pj on this message (and the current round number). If it is the
mediator’s turn to broadcast, the mediator simply computes the next π-message
msg on its own, and then runs “mediator broadcast” using msg. As long as
everyone behaves honestly, each party thus learns commitments to all messages
of the protocol. In the third stage, the mediator runs Fπ

output with each Pj to
enable Pj to learn its output. We now describe the protocol formally.

The protocol begins with each party Pi (i ∈ [n]) holding a vector KeyVeci,
and with the mediator holding {KeyVeci

n+1}i∈[n]. Party Pi also holds input xi

and, if i ∈ [n], its own secret key ski.

Stage 1 – input commitment and coin tossing:
1. Each Pj executes Fcom with Pn+1, where Pj chooses random sj and provides

input decinput
j = (xj , sj) to Fcom. Let cominput

j be the commitment received
by Pn+1 from Fcom.

2. Each Pj executes Fct with Pn+1, where the input length � is the number of
coins needed to run π. We denote by decrand

j = (rj , s
′
j) the output of Pj and

by comrand
j the output of Pn+1.

Stage 2 – round-by-round emulation of π: The mediator Pn+1 initializes
abort = false. Then, for i = 1 to r − 1, the parties run the following:

1. (Pn+1 learns the round-i message of π.)
Case 1: Party Pj , for 1 ≤ j ≤ n, is supposed to broadcast in the ith round
of π.
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– Let Cj = (comj
1, . . . , comj

i−1) be the commitments that Pj output in the
previous i− 1 rounds.

– Pj and Pn+1 run an instance of Fπ
compute. Here, Pj sends Fπ

compute its
commitments cominput

j and comrand
j , the vector of commitments Cj , vector

KeyVecj , the round identifier rid = 0i, the decommitments decinput
j and

decrand
j , and its signing key skj .

Pn+1 sends Fπ
compute the commitments cominput

j , comrand
j , and (comj

1,
. . . , comj

i−1); vector KeyVecj
n+1; the round identifier rid = 0i; and the

decommitments (decj
1, . . . , decj

i−1).
– If Fπ

compute returns ⊥ to Pn+1, then Pn+1 sets abort = true and mi =
dummy. Otherwise, if Fπ

compute returns (msgi, σi) to Pn+1, then Pn+1 sets
mi = (msgi, σi).

Case 2: Pn+1 is supposed to broadcast in the ith round of π:

– If abort = true then Pn+1 sets mi = dummy. If abort = false then Pn+1
locally computes the message msgi as instructed by π (this is possible
since Pn+1 sees all π-messages “in the clear”), and sets mi = msgi.

2. (Pn+1 “broadcasts” the round-i message of π.) Let sid = 1i. Pn+1
chooses random r1, . . . , rn and runs F sid

bcast with the other parties, where
Pn+1 provides input (mi, r1, . . . , rn,H = [n], {KeyVeci

n+1}i∈[n]) and every
other party Pj provides input 1 and KeyVecj .

Each party Pj defines comj
i to be the commitment that it received from

F sid
bcast. Note that Pn+1, given its output from F sid

bcast, can compute the com-
mitments {comj

i}j∈[n], and knows the corresponding decommitments.

Stage 3 – output determination: (Note that this emulates the rth and final
round of π.)

1. If abort = true then Pn+1 sets msgr = dummy and sets outn+1 =⊥. If
abort = false then Pn+1 computes its π-output outn+1 and final mes-
sage msgr locally (it can do this since Pn+1 sees all π-messages “in the
clear”). In either case, the mediator then sets sid = 1r, chooses random
r1, . . . , rn, and runs F sid

bcast with all the other parties, where Pn+1 provides
input (msgr, r1, . . . , rn,H = [n], {KeyVeci

n+1}i∈[n]) and every other party Pi

provides input 1 and KeyVeci. The mediator outputs outn+1.
Each party Pj defines comj

r to be the commitment that it received from
F sid

bcast. Note that Pn+1 can compute the commitment, and knows the corre-
sponding decommitment.

2. The mediator Pn+1 runs Fπ
output with each Pj , where Pj provides input

cominput
j , comrand

j , KeyVecj , (comj
1, . . . , comj

r), decinput
j , and decrand

j , and Pn+1

sends cominput
j , comrand

j , KeyVecj
n+1 the commitments (comj

1, . . . , comj
r), and

the decommitments (decj
1, . . . , decj

i−1).
Each party Pj outputs the value it receives from Fπ

output in this step.



538 J. Alwen et al.

4 Proof of Security

All the results stated here apply to protocols run in either the trusted-PKI or
mediated-PKI settings.

We first prove that Π is a collusion-free protocol that securely computes F in
the (Fcom, Fct, F sid

bcast, Fπ
compute, Fπ

output)-hybrid model. A proof of the following
appears in the full version of the paper.

Theorem 1. Let π be a protocol that securely computes F (as required in
Section 3.1); let C be a perfectly binding commitment scheme; and let
(Gen, Sign, Vrfy) be a secure signature scheme. Then protocol Π from the pre-
vious section is a collusion-free protocol for securely computing F in the (Fcom,
Fct, F sid

bcast, Fπ
compute, Fπ

output)-hybrid model.

We now show that when the ideal-world functionalities are instantiated using
protocols satisfying appropriate definitions of security, we obtain a collusion-free
protocol that securely computes F in the real mediated model. We obtain this
as a corollary of the following composition theorems.

Theorem 2. Let Π be a collusion-free protocol computing F in the G-hybrid
model, where Π contains polynomially many sequential calls to G, and let ρ
be a collusion-free protocol computing G. Then the composed protocol Πρ is a
collusion-free protocol computing F in the real mediated model.

A proof of Theorem 2 follows along the lines of [5] and is given in the full version
of the paper.

Theorem 3. Let G be a two-party functionality, and let Π be a multi-party
protocol that securely computes F in the G-hybrid model for concurrent self com-
position. Assume further that Π only makes calls to G (i.e., there are no other
messages in Π), and that Pn+1 plays the role of the second party in all calls
to G. Let m denote the overall number of calls to G in Π.

If ρ is a two-party protocol that securely computes G under m-bounded con-
current self-composition, then the composed protocol Πρ securely computes F in
the real mediated model.

Note that even if Π instructs the parties to make sequential calls to G, Theorem 3
requires ρ to be secure under (bounded) concurrent self-composition since a
dishonest mediator may run concurrent executions with different honest parties.
Theorem 3 follows immediately from the definition of m-bounded concurrent self
composition; a proof is given in the full version of the paper.

We can now prove our main result:

Corollary 1. Let F be a polynomial-time, multi-party functionality. Then as-
suming the existence of enhanced trapdoor permutations, there exists a collusion-
free protocol for securely computing F in the real mediated model, in either the
trusted-PKI or mediated-PKI settings.
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Proof. Let Πcf denote the protocol of Section 3.4, where:

– C is a perfectly binding commitment scheme and (Gen, Sign, Vrfy) is a secure
signature scheme;

– π securely computes F (in the standard communication model) as specified
in Section 3.1;

– Fcom, Fct, Fπ
compute, and Fπ

output are instantiated by a single protocol3 ρ that
is secure under m-bounded concurrent self-composition [14,16] (m will be
specified in the proof below);

– F sid
bcast is instantiated using protocol Πsid

bcast (given in the full version of the
paper) where Fcom,FSign, and Fzk are realized by the same protocol ρ as
above.

Note that Πcf is defined in the real mediated model, and all the components
above can be constructed under the assumption that enhanced trapdoor per-
mutations exist. We now prove that Πcf is a collusion-free protocol securely
computing F .

In the case of an honest mediator, this follows directly from Theorems 1 and 2
using the fact that the “mediator broadcast” protocol of Section 3.3 is collusion-
free and the observation that any two-party protocol secure in the standard
sense is trivially collusion-free. (If ρ is secure under m-bounded concurrent self-
composition, it is also secure in the stand-alone sense.)

In the case of a dishonest mediator, the proof is slightly more involved since
the hybrid-world protocol Π , as specified, does not fulfill the requirements of
Theorem 3 (because Πsid

bcast is not a two-party protocol). Nevertheless, observe
that Πsid

bcast consists only of calls to the two-party functionalities Fcom, FSign,
and Fzk. Thus, if we define Π ′ to be the same as protocol Π but using Πsid

bcast

instead of F sid
bcast, it follows that Π ′ does fulfill the requirements of Theorem 3.

Observing that this changes the output distribution by at most a negligible
amount (by security of Πsid

bcast), we have that Π ′ securely computes F in the
(Fcom,Fct,FSign,Fzk,Fπ

compute,Fπ
output)-hybrid model. Using an appropriate pro-

tocol ρ as required by Theorem 3, where m is the total number of ideal calls in
Π ′, we conclude that Πcf = Π ′ρ securely computes F in the mediated model.
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Abstract. We consider enhancing with privacy concerns a large class of auc-
tions, which include sealed-bid single-item auctions but also general multi-item
multi-winner auctions, our assumption being that bidders primarily care about
monetary payoff and secondarily worry about exposing information about their
type to other players and learning information about other players’ types, that
is, bidders are greedy then paranoid. To treat privacy explicitly within the game
theoretic context, we put forward a novel hybrid utility model that considers both
monetary and privacy components in players’ payoffs.

We show how to use rational cryptography to approximately implement any
given ex interim individually strictly rational equilibrium of such an auction with-
out a trusted mediator through a cryptographic protocol that uses only point-to-
point authenticated channels between the players. By “ex interim individually
strictly rational” we mean that, given its type and before making its move, each
player has a strictly positive expected utility. By “approximately implement” we
mean that, under cryptographic assumptions, running the protocol is a compu-
tational Nash equilibrium with a payoff profile negligibly close to the original
equilibrium.

1 Introduction

1.1 The Problem: Realizing Privacy-Enhanced Auctions

Consider the following scenario: A seller S wants to sell some items to a subset of
n bidders P1, P2, . . . , Pn using a sealed bid auction, e.g., a first-price or a second-
price (Vickrey) auction if there is just one item. To optimize their expected payoff in
these settings, the bidders Pi are to submit their true valuation of the items (e.g., in a
Vickrey auction) or more generally a function of their true valuation (e.g., the Bayesian
equilibrium strategy in a first-price auction) as their bid. However, in the scenario we
suggest, matters are complicated by the following issues: First, bidders are not happy
revealing any information related to their true valuation to the seller. Second, bidders
would also be unhappy if other buyers gain information about their valuation. On the
other hand, they would appreciate learning something about the valuations of the other
players if they get the chance.

Some of these concerns can be handled by assuming the availability of a trusted me-
diator M . Such a trusted party can collect the bids, determine the winners, and ensure
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that the seller and the winners get in touch with one another. Ideal mediation does not
solve all problems though, as the outcome potentially depends on the type of all par-
ties. Hence a player which is paranoid enough about leaking information about its type
might abstain from reporting the true valuation simply for privacy reasons. In this paper
we first investigate when we can expect to find mechanisms which the parties would be
willing to participate in if executed by an ideal mediator M . We then investigate how to
realize such a mechanism in a world without an ideal mediator. The first problem forces
us to assume that the parties are more interested in winning the good than worried about
privacy. To solve the second problem we propose to replace M by a secure multiparty
computation (MPC), as follows:

1. The seller commits in advance to sell the items to the bidders that can present a
document digitally signed by all bidders, stating that Pi is the buyer of some given
items. The document should also specify at which price Pi is to get each item.

2. The bidders perform a secure multiparty computation that simulates the mediator
of the mediated auction and produces a set of such signed documents, i.e., one
document per each winner associating the winner to the correct item-value pairs.

Indeed, previous papers concerned with secure cryptographic implementations of auc-
tions have suggested schemes along these lines, e.g., [21, 18]. Also, at least in one
instance such a scheme (for a double auction) has been implemented in practice [2].

There are issues that make this not quite solve our problem. As an example, the
introduced privacy concerns of the bidders dictate the use of joint computations that
eventually produce non-symmetric outputs for the bidders, where only the winners see
their own contracts; then, nothing enforces the winners to send the contracts and com-
plete the transaction with S. This, e.g., destroys the standard equilibrium analysis of a
Vickrey auction which crucially depends on the winner being forced to buy, to make
it costly to bid higher than ones valuation. This suggests using a first-price auction in-
stead, but even then it is not obvious that rational parties with privacy concerns will
carry out the protocol outlined above.

In general, we wish to extend classical equilibrium analysis of auctions of game the-
ory to cryptographic auction protocols and make an argument that a rational party has
no incentive to deviate from following the protocol as specified. A concrete problem
is protocol participation. In realizations of games with non-symmetric final payoffs
(like auctions), an agent has no incentive to continue and complete the protocol as
soon as he realizes that he cannot be a winner. In contrast, the traditional analysis of
multiparty computation assumes that at least some parties are “honest” and will carry
out all steps of the protocol, no matter what (Bradford et al. [3] study the problem of
protocol-completion incentives that exist in an auction when participants realize that
they cannot win the auction, but in a model where privacy is not captured in players’
rationality). Many works on rational cryptography have analyzed secret sharing and
multiparty computation as a game [12, 11, 9, 1, 7, 16, 20] but, aiming at simultane-
ous information exchange and modeling rationality through pure information loss/gain,
these works cannot precisely model auctions with non-symmetric outcomes/payoffs and
a setting where utilities are a mix of monetary utilities and privacy concerns.

Matters are complicated by the fact that even the mediated auction does leak some
information (e.g, the mere fact that a bidder did not win gives him information about
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the winning bid(s)). Hence, it is intuitively clear that if the privacy has high weight,
existing equilibria in the classical case are disturbed (e.g., truth telling is no longer
even a Nash equilibrium for Vickrey auctions), and for a high enough emphasis on
privacy, not taking part in the auction (say, by submitting the bid 0, independently of
the valuation) becomes a strictly dominant strategy. Whatever analysis one obtains will
have to be consistent with this fact.

Perhaps the biggest challenge, finally, is to design a protocol as the above in a way
that can be realized using today’s Internet computing and communication machinery.
While there are results that allow removing mediators in very general classes of games
[10, 13, 14], these works use communication channels such as simultaneous broadcast
(like most works on rational cryptography) or physical envelopes that are quite restric-
tive or even unobtainable when considering a practical Internet-based implementation.

1.2 Outline of Our Contribution

In this paper, we suggest a rational cryptographic protocol for replacing a trusted me-
diator in a large class of auctions. The protocol uses only point-to-point authenticated
channels between the buyers, and can therefore be implemented on the Internet.

We propose a protocol where the seller does not participate. If we allowed the seller
to be an active entity in the protocol execution some steps of the protocol could be
significantly simplified, but a solution without seller participation has the potential to
allow for more applications. As an example, a resource-limited device outsourcing com-
putations might prefer the potential companies to execute the auction determining the
winning company-price pair and just have them inform it of the outcome. As described
above, the outcome of the protocol is determined by the winners getting contracts dig-
itally signed by all other participants. How such a digitally signed contract is enforced
is not our concern here. We simply assume that such bit strings have monetary value.

Besides such monetary concerns, we have to assign utilities to players so that the
privacy concerns outlined in the previous subsection are adequately modeled. Because
of the monetary value of the signed document, we deviate from previous works on
secure auction implementation where privacy was treated at a second-phase technical
level outside of the scope of game and parties’ strategies, but also from previous works
in rational cryptography where utilities were solely concerned with gain or exposure
of information. Instead, we propose a hybrid utility model where agents are interested
in both monetary gain from participating in the auction as well as in maintaining the
privacy of their type (e.g., valuation). Their actual utility is a linear combination of a
monetary utility and an information utility. For the information utility, rather than pos-
tulating one particular utility measure, we allow players to have any privacy concerns,
under a few technical restrictions, like not positively valuing loss of information. We
note that a different hybrid utility model is studied by Halpern and Pass [8].

We consider a general class of auctions in the standard Bayesian setup of auction
theory and without privacy concerns. We formally define the corresponding mediated
game with privacy concerns, as modeled using our hybrid utilities. In general, as we
indicated in an intuitive way in the previous subsection, if high weight is put on the
information part of the hybrid utilities, then the equilibria of the privacy-aware game
may be very different from the equilibria of the original game. However, for many
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interesting cases of auctions, for instance in a variant of the first-price auction with
discrete valuations and bids, we observe that when the weight put on the information
concern is “smaller” than the weight on the monetary concern, then the original auction
mechanism (with a small twist) is an equilibrium of the mediated game.

To study auctions with privacy concerns for the Internet, where the seller does not
participate, we introduce mediation with reject, a slightly relaxed mediated setting
where the winners are given the choice to reject their contracts. This captures the fol-
lowing issue: at some specific point in the computation, the winners (and only those)
will locally compute their contracts (similar to the revelation point of [12]); nothing
prevents them from not sending the contract to the seller. As we will see, the reject
option can drastically affect the equilibria.

Our main result is the following. We can relate a given equilibrium (suggested behav-
ior) π of the mediated game to a corresponding suggested behavior π′ of our unmediated
cryptographic protocol so that π′ has the same payoff profile as π, up to a negligible
amount, and for computationally bounded agents following the protocol π′ is an ε-Nash
equilibrium where ε is negligible. Here, “negligible” is defined relative to the strength
of the cryptography used. The assumption we need is the following: The equilibrium π
should have an ex interim expected monetary utility for all players which is large com-
pared to the players’ privacy concerns. That is, after a player learns his type, but before
he makes his move, his expected conditional monetary utility is large compared to how
concerned he is about privacy—parties are “greedy-then-paranoid”.

As an example, our protocol enables a variant of the first-price auction and the corre-
sponding Bayesian bidding equilibrium to be conducted by computationally bounded,
rational but not necessarily honest buyers over the Internet in a realistic way, without a
trusted mediator and without participation of the seller. In this regard, our results can
be viewed as a more realistic step towards privacy-aware extensions of computational
and distributed mechanism design (e.g., Ch. 14 of [19]).

We remark that while Kol and Naor [11] identify ε-Nash equilibrium as a minimum
rationality requirement for rational cryptography, a body of works [9, 1, 7, 16, 11, 12,
17], suggest using stronger solution concepts, most notably iterated admissibility, and
equilibria that are not susceptible to backward inductions [11]. However, at the time of
writing, there is no clear consensus about which equilibrium refinement is the “right
one” for rational cryptography. This is especially true for the computational setting
where one must refine computational Nash (i.e., ε-Nash) equilibrium rather than Nash
equilibrium: while there is a significant body of game theoretic literature about refining
exact Nash equilibrium that one can draw upon, there is little or no help from the game
theory community about refining approximate Nash equilibrium.1 We note that Kol and
Naor [12] strongly argue that iterated admissibility is not an appropriate concept to
use. We want to add the following observation. Computational Nash equilibrium is a
solution concept for games played by software, not conscious agents. Thus, when we
ponder whether a given equilibrium is sufficiently stable or whether deviations will be
made, it seems that we should focus on whether the software will be modified before

1 There is a good reason for this: many or most standard equilibrium refinements are defined
or motivated by players caring about infinitely small differences in payoff. This is inconsistent
with the philosophy of ε-Nash in a fundamental way.
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it is executed, e.g., at the moment when a player learns his type (i.e., ex interim) rather
than whether deviations will take place during play at particular information sets. In
other words, we propose the following thesis: Meaningful refinements of computational
Nash equilibrium should be definable in the normal form of the game, rather than the
extensive form. We note that the concerns about susceptibility to backward induction
raised by Kol and Naor are in fact not consistent with the conjunction of this thesis and
the basic assumption underlying ε-Nash: That players do not care pursuing advantages
that are negligible. We expect much interesting work in the future about how to refine
computational Nash appropriately, but in the meantime we take the standpoint that even
ε-Nash is a meaningful property as a minimal requirement for stability, and in some
cases, such as ours, it is not trivial to achieve even this.

Sketch of the protocol. The idea behind our protocol is intuitive and quite simple.
Given individual signing keys and corresponding (publicly known) verification keys
for some signature scheme, and also their private bids, the agents engage a randomized
joint computation during which the winners obtain digital contracts signed by all agents.
Conceptually, the protocol is divided in a fixed (and large) number E of stages, called
epochs. Sequentially during each epoch e, each agent Pi receives a value Ve,i and thus
has the opportunity to obtain a contract. The contracts are released to the winners during
one, randomly chosen epoch e0 ∈ [E] (with probability 2−e in epoch e = 1, . . . , E−1),
whereas all other received values (by non-winners Pi in epoch e0, or by any agent
at all other epochs) are set to a special nil value ⊥. This randomized functionality is
implemented by first using secure multiparty computation, at the end of which each
agent Pk obtains an additive share of each value Ve,i (or ⊥ if agents provide invalid
inputs). From this point on, the E epochs of the protocol are realized sequentially, by
simply asking in a round-robin fashion each agent to send its share of Ve,i to Pi, and
repeat for all i = 1, . . . , n. Agent Pi is asked to refuse to send his shares in subsequent
reconstructions, as soon as he experiences denial to reconstruct his own value Ve,i.

To see why several epochs are needed, consider a solution where the contracts are al-
ways handed out in epoch e0 = 1. If P1 does not get a contract in round 1, it knows that
some other Pi is the winner, hence Pi will receive a contract in round i. This contract
might contain information on P1’s type, which means that P1 might have incentive to
make the protocol abort, by not sending its share. We deal with this using the, by now,
standard trick of not having a known epoch in which the outcomes are revealed, to
ensure that with positive probability any agent deviating at epoch e < E destroys his
winning possibility in a later epoch. This does not hold in epoch E, but e0 = E occurs
only with negligible probability, so the protocol is an ε-Nash for a negligible ε.

When there are several winners, the above protocol does not work: A winner Pi

already having received his contract could have incentive to make the protocol abort
before the other winners received their contracts, as these contracts could contain in-
formation related to Pi’s type. To solve this issue we let the winners learn all the infor-
mation in their contracts in epoch e0, but in an unsigned form. Then in epoch e0 + 1
we let them learn their signed contracts. Now, when Pi gets his contract, it is too late
to prevent the other winners from learning the information in their contracts, and the
contracts themselves contain no new information. Depriving other winners of their con-
tracts would only change their monetary utility, and we do not model envy.
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Inspired by early work on rational cryptography (e.g., [9, 1, 7, 16]) this epoch-
based protocol design has been recently used along with sequential revealing of secrets
to achieve complete fairness in joint computations and information exchanging (e.g.,
[6, 12]). The non-symmetric outcomes in auction games and the use of only point-to-
point communication create a different setting where our protocol operates in. But what
further distinguishes our work is how fairness is reached between the many “greedy-
then-paranoid” winners: the decoupling of the revelation of their winning state from the
(subsequent) release of their winning award in combination with bidders rationality can
guarantee protocol termination.

Paper structure. In Section 2 we provide a brief description of the classical auctions
model in the (pure) mediated setting. In Section 3 we introduce a definitional framework
for protocol games. In Section 4 we present the mediated setting with reject and discuss
the existence in this model of privacy-enhanced Nash equilibria for first-price auctions.
In Section 5 we present our protocol for realizing auctions over the Internet. In Section 6
we introduce privacy-enhanced Nash realization, our core proof technique for designing
and proving privacy-enhanced Nash equilibria in a modular manner.

2 Classical Auctions

First, we recap the classical (i.e., privacy-oblivious) model of a sealed-bid auction as a
Bayesian game with incomplete information. Such a game is played by parties (bidders)
P1, P2, . . . , Pn competing for one or more items to be sold. The game starts with each
bidder Pi receiving a private type ti ∈ Ti where Ti is the type space of the bidder. The
vector t = (t1, t2, . . . , tn) is drawn at random from a commonly known distribution on
T = T1 × T2 . . . × Tn. This distribution is known as the common prior and will also
be denoted by T . Based on his type, bidder Pi strategically chooses and submits a bid
bi. That is, a strategy of party Pi is given by a map Bi mapping types to bids. Based on
the bids b = (b1, b2, . . . , bn) and possibly a random source, an allocation mechanism
Mec now allocates the items to bidders and for each item computes a price. We write
(o1, . . . , on) = Mec(b), where oi is the outcome for Pi—i.e., oi specifies which items
Pi won and at which prices. The monetary utility of a winner Pj is rj = g(t, o) for
some function g, while the payoff of a non-winner Pi is ri = 0. As an example, in a
single-item auction tj could be the valuation of the item, oj could specify the winning
price p and rj could be tj − p (this is the case for a risk neutral agent Pj as he gets the
item at price p and values it tj). For the case of the Vickrey auction, the winner Pj is
the bidder with the highest bid, while the corresponding winning price p is the highest
bid if the bid of the winner is removed. A Bayes-Nash (or simply Nash for brevity)
equilibrium for the auction is a (possibly randomized) bidding strategy maximizing the
expected payoff of each bidder, if other bidders follow their prescribed strategy.

3 Protocol Games

To enhance the classical auction with privacy concerns, we have to explicitly model
privacy as part of the utility function and consider appropriate notions of equilibria. For
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this we in turn have to explicitly model the communication of the protocol, and the
information collected by a party during the protocol execution.

3.1 Communication and Protocol Execution

We start with a formal communication and protocol execution model. It is convenient to
use a unified model, which allows to capture both the mediated setting and the Internet-
like setting using the same formalism, which we will call a communication device. To be
able to use cryptography, we also want to model the fact that parties are computationally
bounded to get the desired definitions; this we do by simply restricting the strategy space
to poly-time strategies. The model we present in this section is not specific to auctions.

Communication devices. A protocol is of the form π = (π1, . . . , πn), where πi is a
program describing the strategy of party Pi. These programs communicate in rounds
using a communication device C. In each round, C takes an input mi ∈ {0, 1}d from
each πi and outputs a value oi ∈ {0, 1}d to each πi. I.e., in each round, C is a function
({0, 1}d)n → ({0, 1}d)n, (m1, . . . , mn) 	→ (o1, . . . , on). Which function is computed
might depend on the inputs and outputs of previous rounds and the randomness of C.

Parties and strategies. We let the strategy πi for each party Pi be an interactive circuit
for R rounds. The circuit consists of 1+R circuits π

(0)
i , π

(1)
i , . . . , π

(R)
i . The circuit π

(0)
i

takes a + b bits as input and outputs a + b bits, where a, b are integers specified by the
circuit. In each round πi takes as input a state s ∈ {0, 1}a, and a message m ∈ {0, 1}b
(from the communication device C). The output of the circuit is parsed as an updated
state s′ ∈ {0, 1}a and a message m′ ∈ {0, 1}b (for device C). Initially, the state consists
of a uniformly random bits and the message is Pi’s type. In subsequent rounds, s is the
updated state s′ from the previous round and m is the value sent by C for that round.

Because we consider protocols using cryptography, we do not consider a single cir-
cuit πi. Rather πi specifies a family of circuits, namely a circuit πi(κ) for each value
κ of the security parameter.2 Each πi(κ) is allowed to have different state and mes-
sage lengths a(κ), b(κ). Similarly we let C specify a communication device C(κ) for
each κ ∈ N. Also, for technical reasons we adopt a non-uniform model, where the se-
quence of strategies πi(1), πi(2), . . . need not have a uniform description.3 For a func-
tion τ : N→ N we use Πτ to denote the strategy space consisting of all circuit families
πi where for all κ the size of πi(κ) is at most τ(κ). A strategy space Πτ is always
defined in context of some communication device C which for each κ expects (and pro-
duces) messages of some fixed size d(κ) ∈ N. We require that Πτ only contains circuit
families where b(κ) = d(κ) for all κ.

2 The value of κ determines the key lengths of the underlying cryptographic primitives.
3 Insisting on πi having a uniform description might make it impossible to analyze the games

for different values of κ independently, or would at least require an explicit argument that this
can be done: Changing the strategies πi(κ) for some values of the security parameter κ might
necessitate a change for other values to ensure that the sequence π1(1), π1(2), . . . still has a
uniform description. The utility of changing strategy for one specific game (i.e., for a fixed κ)
might therefore not be possible to define without considering the utility of changing strategy
at other security levels, which seems unintuitive and might unnecessarily complicate analysis.
Adopting a non-uniform model deals with such concerns in a straight-forward manner.
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Executions. Let C be some communication device, let π = (π1, . . . , πn) be a pro-
tocol, where πi ∈ Πτ , and let T be a distribution on types. An execution pro-
ceeds as in Fig. 1. We call o = (o1, . . . , on) = (o(R)

1 , . . . , o
(R)
n ) the outcome of the

protocol. I.e., the outcome is the last round of outputs from C. We call the output
wi = (s(R+1)

i , m
(R+1)
i ) of the last circuit π

(R)
i of strategy πi the local output of party

Pi, and call w = (w1, . . . , wn) the local outputs. We use (t, o, w) ← (π, C)(T ) to
denote the distribution of (t, o, w) on a random execution, i.e., for uniformly random
initial states ρ, random t← T and uniform randomness of C.

1. Sample (t1, . . . , tn) ← T and uniformly random ρi ∈ {0, 1}a for i = 1, . . . , n.
2. For i = 1, . . . , n, run π

(0)
i on (ρi, ti) to produce (s(1)

i , m
(1)
i ). Then for each round

r = 1, 2, . . . , R: First run C on (m(r)
1 , . . . , m

(r)
n ) to produce (o(r)

1 , . . . , o
(r)
n ), and then,

for i = 1, . . . , n, run π
(r)
i on (s(r)

i , o
(r)
i ) to produce (s(r+1)

i , m
(r+1)
i ).

Fig. 1. An execution

Utilities. The utility of Pi is a real valued function ui. We assume that ui is a function
of the types, the outcomes and the local outputs. We use u to denote (u1, . . . , un). We
use ui(T, π, C) to denote the expected utility of Pi, i.e., the expected value of ui(t, o, w)
for a random execution (t, o, w)← (π, C)(T ).

3.2 The Mediator and the Internet as Communication Devices

For analyzing protocols for Internet-like networks we need a communication device
Cint modeling communication on the Internet. Ideally we want Cint to closely reflect
how messages are delivered on the Internet. Since our results are very robust with re-
spect to the exact specification of Cint we will, however, use a rather idealized device.

A communication device Cintgen,Out parametrized by gen and Out works as follows:

set up PKI: In round 1, sample a key pair (pki, ski) ← gen(1κ) for each Pi and output
((pk1, . . . , pkn), skj) to Pj for j = 1, . . . , n.

protocol execution: In rounds r = 2, . . . , R−1, the input from each party Pi is parsed as a
message mi ∈ {0, 1}k for some fixed k. The output to Pr mod n is (m1, . . . , mn). The
output to all other parties is silence.

define outcome: In round r = R, compute (o1, . . . , on) = Out(msg), where msg are all
messages sent in the previous rounds, and output the outcome oi to Pi.

Fig. 2. An Internet-Like Device Cintgen,Out

We assume that the device can deliver secure messages directly between each pair
of parties. This can be achieved using standard Internet technology, e.g., by establish-
ing SSL connections between each pair of parties. Using such a model we avoid the
introduction of unnecessary complications, like the exact structure of the network used
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to carry the messages. On the other hand, we do not want the simplification of Cint to
make the model unrealistic. One issue which we explicitly do not want Cint to allow
is simultaneous message exchange. We do this by saying that on Cint, in each round
one predefined party receives messages from all other parties. Finally we assume the
existence of a public-key infrastructure PKI. We model this in a simplistic manner by
letting the device distribute the keys. In the last round the device will define an outcome,
by the last set of messages output to the parties. We assume that this is a function Out
of all the messages sent in previous rounds. Details are given in Fig. 2.

The communication device CmedMec for standard mediation is CrejMec in Fig. 3 on
page 552, but without allow reject. The recommend strategy πmedj for each Pj is to
input bj ← Bj(tj) and to locally output wj = (tj , oj).

3.3 Information and Monetary Utilities

Information utilities. We now turn our attention to the valuation of the information
collected and leaked during the protocol execution. For this we use the local outputs.

We let the local output wi capture the type information collected by Pi. I.e., if Pi

wants to take some type information with it from the execution, it outputs it as part
of wi. We assume that Pi valuates the type information collected using an information
utility qi(t, w). Note that qi can measure information collected by Pi as well as by other
parties: maybe qi(t, w) = 1 if wi = t1 but qi(t, w) = −1 if w1 = ti, where i �= 1.

We allow qi to express arbitrary privacy concerns, except for two restrictions: To en-
sure that qi is consistent with the view of knowledge from cryptography, where knowl-
edge is the information which can be computed in poly-time, we require that qi is
poly-time computable. We also need that qi does not positively valuate loss of infor-
mation. Let (w1, . . . , wn) be any distribution and let (w′

1, . . . , w
′
n) be the distribution

where w′
i = f(wi) for a poly-time function f and w′

−i = w−i. Then we require that
qi(t, (w′

1, . . . , w
′
n)) ≤ qi(t, (w1, . . . , wn)) + ε, where ε is negligible. In words: losing

information about wi (we think of f(wi) as throwing away information about wi), and
all other things being equal, cannot be valuated as significantly positive by Pi. We call
qi admissible if it has these two properties. Below we assume that all qi are admissible.

Our protocols will work only for privacy concerns which are sufficiently small
compared to the expected utility of playing the game. So it is convenient to have a
measure of the privacy concerns: For an information utility qi(t, w) we call ‖qi‖ =
maxt,w qi(t, w)−mint,w qi(t, w) the weight of the information utility or privacy weight.

We will not be concerned about how the utility qi measures privacy concerns, as
we are going to develop protocols that are ε-Nash for all admissible measures q =
(q1, . . . , qn) with sufficiently small weight compared to the expected monetary utility.

Monetary utilities. Complementing the information utility we have the notion of a
monetary utility, which is just a utility function ri(t, o) that depends only on the types
and the outcomes. For generality we allow ri to change with κ. We do, however, assume
that the absolute value of ri is bounded by a polynomial in κ. The intuitive reason for
this assumption is that we need to use cryptography, which withstands only poly-time
attacks. In concrete terms, if you use a protocol where it would cost $1000000 to buy
enough computing power to break the cryptography, do not use it to play a game where
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anyone can win $1000001. Bounding the monetary utility by a polynomial can be seen
as an extremely crude way to deal with the price of computation in the utility function.

We design mechanisms which work only if the expected monetary utility of the par-
ties is large compared to how they valuate information. We define a measure of this. For
any ti occurring with non-negligible probability as component i in (t1, . . . , tn) ← T ,
let (t, o, w)← (π, C)(T )ti denote the conditional distribution of (t, o, w)← (π, C)(T )
given that the i’th component of t is ti, and let Ii denote the expected value of ui(t, o, w)
for (t, o, w) ← (π, C)(T )ti . We call Ii the ex interim expected utility of Pi for ti, i.e.
its expected utility after seeing type ti. For a given security level κ we let γ(κ) be the
minimum over all parties Pi and all ti of the ex interim expected utility of Pi given ti.
We call γ : N→ R the ex interim rationality of (T, π, C).

3.4 Privacy-Enhanced Nash Equilibrium

When we design a mechanism, we can control the monetary utility ri(t, o, w) =
ri(t, o). In principle parties can have arbitrary utilities ui(t, o, w), even if running a
protocol with the purpose of implementing some mechanism. However, we only con-
sider settings where the part of the utility which cannot be explained as monetary utility
from the designed mechanisms can be explained by an admissible measure of privacy.
I.e., we assume that qi(t, o, w) = ui(t, o, w) − ri(t, o) is an admissible measure of
privacy, s.t. qi(t, o, w) = qi(t, w). Hence ui(t, o, w) = ri(t, o) + qi(t, w).

For the later schemes involving cryptography, we follow Kol and Naor [11] who
argued that ε-Nash equilibrium for negligible ε is the appropriate minimum rationality
requirement for “information games”.

Definition 1. For a single protocol π (i.e., for fixed κ), a strategy space Πτ , a distribu-
tion T on types, and ε ∈ R, ε > 0, we call π an ε-Nash equilibrium (for T, Πτ , C) if it
holds for all parties Pi and all π∗

i ∈ Πτ that ui(T, (π∗
i , π−i), C)−ui(T, π, C) ≤ ε. For

a protocol π (specified for all κ), strategy space Πτ , a distribution T on types, we call
π a computational Nash equilibrium (for T, Πτ , C) if for all polynomials τ there exists
a negligible ε such that π(κ) is an ε(κ)-Nash equilibrium (for T, Πτ(κ), C) for all κ.

Our notion of computational Nash is technically slightly different from the original
notion introduced by Dodis et al. [4], in that we use a non-uniform model, as motivated
before. The notion is, however, similar enough that we feel that we can soundly reuse
the terminology of a computational Nash equilibrium.

As already mentioned, implementations of monetary mechanisms can only be ex-
pected to work if the weight of the privacy concerns is relatively small. We thus capture
the size of the information utility in the definition of privacy-enhanced Nash equilibria.

Definition 2. Fix a monetary utility r and a privacy weight α. We call a protocol a
privacy-enhanced Nash equilibrium (for r and α) if it is a computational Nash equilib-
rium for u = r + q for all admissible privacy measures q with ‖q‖ � maxi ‖qi‖ ≤ α.

In words, a privacy-enhanced Nash equilibrium has the property that no matter how the
parties valuate information (as long as it has weight at most α), there is no deviation
which will allow any party to learn more valuable information, unless such a deviation
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would have it lose an equivalent amount of monetary utility. This implies that there is no
way a party Pj can efficiently extract knowledge from its view of the protocol extra to
that of its local output wj . If there was, it could do so and output this extra knowledge,
which would make some qi prefer this. Therefore the recommended local outputs of a
privacy-enhanced mechanism precisely specify what information each party can collect;
not as an explicit requirement, but because we use computational Nash equilibrium as
solution concept.

We extend the previously defined notions to cover also collusions of size t. In Defi-
nition 1 we consider C ⊂ {1, . . . , n} with |C| ≤ t and we consider deviations π∗

C con-
sisting of π∗

i for i ∈ C. We call π t-resilient if ui(T, (π∗
C , π−C), C)− ui(T, π, C) ≤ ε

for all i ∈ C. I.e., for all collusions of size t and all possible deviations, not even a sin-
gle party in the collusion gets extra utility. This directly defines the notions of t-resilient
computational Nash equilibrium and t-resilient privacy-enhanced Nash equilibrium.

As a concrete example of a privacy-enhanced Nash equilibrium for an auction mech-
anism with standard mediation, we consider a single-item sealed-bid first-price auction
with three bidders and independent private valuations, each distributed uniformly in
{1, 3}. The bidding space is the natural numbers, including 0. A general theory of equi-
libria of first-price auctions with integral valuations and bids is the topic of a recent
paper by Escamocher et al. [5]. For the special case at hand, it is straightforward to
check that the symmetric profile π = (B1, B2, B3), with B1 = B2 = B3, B1(1) = 0
and B1(3) = 1, is a Nash equilibrium of the classical (privacy-oblivious) auction. The
ex interim expected payoff of a bidder with valuation 1 is 1/12 and the ex interim ex-
pected payoff of a bidder with valuation 3 is 7/6; since payoffs are strictly bigger than
0, it is easy to check that for any privacy measure with sufficiently small weight, the
equilibrium persists.

4 Mediation with Reject and Predictable Mechanisms

In what follows we consider a very general class of allocation mechanisms, but with
some non-trivial restrictions. A first restriction we need is that if (o1, . . . , on) =
Mec(b), then the utility of Pi is 0 if oi = sorry, this outcome indicating that Pi

got to buy no items. Instead, we call a party Pi with oi �= sorry a winner. Our only
use of sorry is to define mediation with reject below.

Towards designing a protocol that implements an auction on an Internet-like network
without the participation of the seller and that is a privacy-enhanced Nash equilibrium,
we first study privacy-enhanced Nash equilibria for a highly idealized setting that better
fits the real-world setting. The idealized setting that we consider is called mediation
with reject: here, the parties are allowed to reject the outcome of the auction and receive
monetary utility 0 instead of the contract. Details are given in Fig. 3 on the next page.

It is easy to check that the standard truth telling equilibrium of a second-price auction
is in general not a privacy-enhanced Nash equilibrium in the setting of mediation with
reject: The fact that the winner is not forced to make the transaction makes bidding in-
finity (or the highest possible bid) a dominant strategy. For non-trivial privacy concerns,
this dominant strategy is also a strictly better response than truth telling to a strategy
profile where the other bidders bid truthfully. Thus, mediation with reject is a setting
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Parameterized by a number of rounds R, the communication device CrejMec works as follows:

compute result: In round 1, take input bi from each Pi, let b = (b1, . . . , bn), sample
(o1, . . . , on) ← Mec(b), where oi = sorry iff Pi is a winner.

allow reject: For i = 1, . . . , n: Output oi to Pi. If Pi with oi = sorry does not input
accept before round R, set oi ← sorry.

define outcome: In the last round r = R, output the current value of oi to each Pi.
side-channel: In rounds r = 2, . . . , R − 1, allow point-to-point communication as in Cint.

The recommend strategy πrej
j for each Pj is to input bj ← Bj(tj) and accept and locally

output wj = (tj , oj).

Fig. 3. The Mediated Setting with Reject (πrej
B , CrejMec) for mechanism (B1, . . . , Bn, Mec)

where we observe a separation between first-price and second-price auctions with re-
spect to the existence of reasonable privacy-enhanced Nash equilibria, fully justifying
the importance of this abstraction.

It will, however, follow from our main result that a large class of privacy-enhanced
Nash equilibria for the standard mediated setting are also privacy-enhanced Nash equi-
libria in the mediated setting with reject. We need a definition to phrase this result.

Definition 3. A mechanism is called predictable if for each Pi, each type ti for Pi and
each bid bi for Pi the expected monetary utility of Pi, given that Pi bids bi and gets
oi �= sorry, depends only on ti and bi. Furthermore, this number mi(ti, bi) can be
computed from ti and bi in poly-time.

Clearly a Vickrey auction is not predictable, as the expected utility depends on the
second largest bid, but a first-price auction is predictable: given that a party wins, its
utility only depends on its own type and bid.

We can show that if Mec is predictable and γ ≥ 2α (where α is the weight of the
information utility and γ is the ex interim rationality) and πmedMec is a privacy-enhanced
Nash equilibrium for (T, u, CmedMec), then πrejMec is a privacy-enhanced Nash equilibrium
for (T, u, CrejMec). This shows that one can construct interesting equilibria for a mediated
setting with reject. The intuition why “predictable equilibria” do not have a problem
with reject, follows from the proof sketch we give in Section 5.

Privacy-enhanced Nash equilibria for first-price auctions with standard mediation
exist for certain settings of the parameters, as exemplified in Section 3, and these are
predictable. We therefore have interesting Nash mechanisms for the mediated setting
with reject. Other examples of mechanisms for which one can design mechanisms for
the setting with reject include auctions where a number � of uniform items are sold to
bidders with unit demand, selling to the highest � bidders at their bidding price—such
an auction is predictable.

5 Rational Auctions for Internet-Like Networks

We now present our Internet-based and privacy-enhanced Nash-equilibrium protocol
for realizing auctions.
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Assigning value to signed contracts. We want an unmediated protocol for the device
Cumed = Cintgen,Out for gen and Out described below. For this to be meaningful we
need to make explicit how the Internet protocol allocates monetary utility. This is a
fundamentally problematic issue as we are, after all, considering a pure communication
protocol which anyone can set up and run without money being exchanged. As indicated
in the introduction, we assign monetary value to a document if it is a possible winners’
outcome for Mec and is signed by all parties.

Taking uniform items, unit-demand, first-prices auctions as an example, we can make
the assumption that the seller is willing to sell to the first � parties presenting a document
including the party’s name and a price (over the reservation price), if it is signed by all
parties. This immediately assigns monetary value to commonly signed contracts. One
could also use society to enforce signed contracts (cf. [15]).

In more detail, we assume that the key pair generated by gen for each party Pi con-
sists of a verification key vki for an existentially unforgeable digital signature scheme
and the signing key ski. We call σi a contract on (i, oi) if σi = (σ1, . . . , σn) and each
σj is a valid signature of (i, oi) under vkj . We use Contract((i, oi), sk) to denote the
computing of such σi. We define (o1, . . . , on) = Out(msg) by letting oi = Oi if Pi

at some point sent a valid contract on (i, Oi) to itself. We let oj = sorry for all
other parties. For a specific mechanism, we need a way to resolve what happens if a
party inputs several, different signed contracts or the parties input signed contracts not
consistent with an outcome of Mec. All we need for our proof to go through is that
the defined outcome only depends on the contents (i, oi) of the signed contracts and the
global order in which the device received them, like for the uniform items, unit-demand,
first-prices auction above.

Mediation via a secure protocol. We show how to implement a privacy-enhanced
Nash πrejMec in the Internet setting described in the above section. The idea is to compute
the outcomes (o1, . . . , on) = Mec(b) as in the mediated setting with reject, using a
secure MPC protocol, but then release the signed outcomes in a particular manner. The
release phase will consist of E so-called epochs indexed e = 1, . . . , E, each consisting
of n tries indexed i = 1, . . . , n. We index a try i within an epoch e by (e, i). In try
(e, i) party Pi is given a value Vi,e, if the other parties allow it. The recommended
strategy is to allow all deliveries, but as soon as a party has been denied a delivery, it
will deny all parties their deliveries in all following tries. There is a special epoch e0 ∈
{1, . . . , E−1}. The epoch e0 is chosen using a probabilistic function e0 ← Epoch(E),
where e0 ∈ {1, . . . , E − 1} and Pr[e0 = e] = 2−e for e = 1, . . . , E − 2. If Pi is not
a winner, then Ve,i = sorry for all epochs e. If Pi is a winner, then Ve,i = sorry
for e �∈ {e0, e0 + 1}, and Ve0,i = oi and Ve0+1,i = Contract((i, oi), sk). When Pi

receives Contract((i, oi), sk), it sends it to the seller (formally it sends it to itself and
the device defines Pi to be a winner, by letting oi be Pi’s final output).

We use some notation for the Ve,i values: For any ((o1, σ1), . . . , (on, σn)) and
epoch e0 ∈ {1, . . . , E − 1} we define V = (V1,1, . . . , V1,n, V2,1, . . . , VE,n) =
Values(((o1, σ1), . . . , (on, σn)), eo, E), where for all Pi, Ve0,i = oi, Ve0+1,i = σi

and Ve,i = sorry for e �∈ {e0, e0 + 1}.
We use a secure MPC to compute sharings of the values Ve,i. Given inputs

(b1, . . . , bn), the protocol securely samples V = (V1,1, . . . , V1,n, V2,1, . . . , VE,n) and
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generates sharings (S1,1, . . . , SE,n) ← Sharings(V ), where Se,i = (S(1)
e,i , . . . , S

(n)
e,i )

is an n-out-of-n sharing of Ve,i, where the shares are authenticated such that Pi can

validate their correctness. Then the protocol gives all S
(j)
e,i to Pj . The MPC protocol is

chosen to tolerate the active corruption of up to t = n − 1 parties. With this threshold
termination cannot be guaranteed. The protocol should, however, guarantee that all par-
ties Pj which received an output yj �= ⊥, where ⊥ is some designated error symbol,
received a correct output. Furthermore, the protocol should guarantee that yj �= ⊥ for
all parties if all parties followed the protocol. After the secure MPC protocol termi-
nates, the parties reconstruct the sharings. The details of the complete protocol πumedMec
are given in Fig. 4.

The unmediated protocol for communication device Cumed. The recommend strategy πumed
j

for Pj is as follows:

1. Receive (pk, skj) from the communication device.
2. In the rounds with point-to-point communication, run the code of Pj in a secure MPC

for the following probabilistic function f :
– Each Pi inputs some bi and some (pk′, sk′

i), and receives output yi, computed as:
• If all Pi input the same pk′, and sk′

i is a signature key for pk′
i, then sample

(o1, . . . , on) ← Mec(b) and e0 ← Epoch(E). If oi = sorry, then let
σi = Contract((i, oi), sk′). If oi = sorry, then let σi = sorry. Let
V = (V1,1, . . . , VE,n) ← Values(((o1, σ1), . . . , (on, σn)), e0, E), sample
(S1,1, . . . , SE,n) ← Sharings(V ), and let yi = (S(i)

1,1, . . . , S
(i)
E,n).

• Otherwise, let all yi = ⊥.
Use inputs bj ← Bj(tj) and (pk′, sk′

j) = (pk, skj) to the MPC.
3. Afterward, initialize a variable dj ∈ {allegiance, defection}, where dj =

defection iff the secure MPC protocol outputs yj = ⊥. If dj = defection,
then parse yj as shares (S(j)

1,1, . . . , S
(j)
E,n).

4. Use En rounds of point-to-point communication to sequentially run E epochs, each
consisting of tries i = 1, . . . , n. In epoch e, try i send sj = S

(j)
e,i to Pi if dj =

allegiance and send sj = ⊥ to Pi otherwise. In epoch e, try j, let (s1, . . . , sn)
be the shares just sent by P1, . . . , Pn. If any share is invalid, then let Ve,j = ⊥ and
dj = defection. Otherwise, let Ve,j be the value reconstructed from (s1, . . . , sn). If
Ve,j is a valid contract, then input it to Cumed.

5. If in some round Ve,j = oj was reconstructed, then give the local output wj = (tj , oj).
Otherwise, give the local output wj = (tj , sorry).

Fig. 4. The Unmediated Protocol πumed
Mec

Theorem 1. Let Mec be any predictable mechanism. Assume that (πmedMec, CmedMec) is a
privacy-enhanced Nash equilibrium, let γ be the ex interim rationality and let α be the
weight of the information utility. If γ ≥ 2α, then (πumedMec , Cumed) is a privacy-enhanced
Nash equilibrium with a utility profile negligibly close to that of (πmedMec, CmedMec).

Proof. (Sketch.) We want to argue that no Pi has an incentive to deviate. We look
at two cases: Case I is the situation where Pi saw a reconstructed value of the form
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Ve,i �= sorry. Case II is the situation where a party Pi only saw reconstructed values
of the form Ve,i = sorry.

We first argue that a party Pi in Case I has no incentive to deviate. We look at two
sub-cases. First, assume that Pi received Ve,i = Contract((i, oi), sk). Then it can no
longer gain monetary utility: it has its contract and cannot receive another one, ex-
cept by breaking the signature scheme (infeasible by assumption). It cannot gain in-
formation utility either, as all information has already been handed out: When Pi has
received Ve,i = Contract((i, oi), sk) the game is already in epoch e0 + 1, and all win-
ners Pj received oj in epoch e0 and Contract((j, oj), sk) leaks no information on the
types extra to oj .4 Second, assume that Pi received Ve,i = oi but did not yet receive
Contract((i, oi), sk). If Pi sends an incorrect share to any Pj , then Pj will punish
back and Pi will not receive Contract((i, oi), sk). It can essentially be argued that for
any deviation there is a better deviation which never inputs a bid which will lead to a
monetary utility less than γ/2 if the bid wins.5 So, we can assume that the loss of the
contract gives a loss of γ/2 ≥ α in monetary utility. Aborting the protocol might gain
information utility by withholding some (j, oj), but at most utility α. So by sending an
incorrect share, Pi gains utility at most α− γ/2 ≤ 0.

We then look at a party Pi in case II and, say, in epoch e, try j. Let S be the event
that all values reconstructed by Pi until now were sorry, R the event that all values
oj with oj �= sorry have been reconstructed at the corresponding winners Pj , W the
event that Pi is a winner, s = Pr[S], and w = Pr[W ].

We consider a party Pi which only saw sorry, which means that in the view of
Pi, it is a winner with probability Pr[W |S] = Pr[W ∧ S]/s, and in the view of Pi

the probability that all oj with oj �= sorry have not been reconstructed is Pr[R̄|S] =
Pr[R̄ ∧ S]/s. If Pi makes the protocol abort and Pi is a winner he loses γ′ in utility,
where γ′ is the expected utility of Pi given that he is a winner. If Pi makes the protocol
abort and R̄, then he withholds the information oj from at least one winner Pj and
therefore gains up to α in privacy utility—if R, then no information is withheld and
no privacy utility is gained. Therefore the maximal gain in utility is upper bounded by
−(Pr[W ∧ S]/s)γ′ + (Pr[R̄ ∧ S]/s)α. To show that this is non-positive it is sufficient
to show that Pr[R̄∧S]α−Pr[W ∧S]γ′ ≤ 0. We have that Pr[W ∧S] = Pr[W ∧(e0 >
e ∨ (e = e0 ∧ i > j))] ≥ Pr[W ∧ e0 > e] = w2−e and Pr[R̄ ∧ S] ≤ Pr[R̄] ≤
Pr[e0 ≥ e] = 2−e+1. Since γ′ is the expected monetary utility when Pi is a winner, it
follows that γ = wγ′ + (1 − w)0 and γ′ = γ/w. So, Pr[R̄ ∧ S]α − Pr[W ∧ S]γ′ ≤
2−e+1α− (w2−e)γ/w = 2−e(2α− γ) ≤ 0, as γ ≥ 2α.

6 Nash Implementation and Hybrid Proofs

The full proof of Theorem 1 is extensive, as handling the use of cryptography posses
some challenges when fleshing out the above proof sketch. We do, however, have space
to describe the general proof strategy.

4 For this argument to work it is essential that all oi are handled out before the contracts σi: if
Pi received σi before a winner Pj with j > i received the information oj , Pi could find utility
in aborting the protocol, thus withholding the information oj from Pj .

5 The full argument is slightly different: The argument uses the predictability to avoid playing
such bad bids, replacing them by the recommended bid—which gains utility.
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The idea is to start with an idealized version of the protocol, for a device much like
the mediated setting with reject, and then introduce more and more of the details and
cryptographic tools, and for each step prove that the new protocol is equivalent to the
previous one. The value of such an approach when using cryptographic primitives is
testified by the widespread use of hybrid proofs in the cryptographic literature.

We introduce a notion of Nash realization which allows to structure such proofs.
Consider an idealized communication device Cide (as e.g. CrejMec) and a recommended
protocol πide for Cide, as well as a closer to real-life communication device Cimp (like
Cumed) and a protocol πimp for Cimp. We call (Cimp, πimp) a realization of (Cide, πide)
if the parties do not have more incentives to deviate when they interact in (Cimp, πimp)
than when they interact in (Cide, πide).

Definition 4. Fix a distribution T on types and a monetary utility r = (r1, . . . , rn).
Let (Cimp, πimp) and (Cide, πide) be two settings. We say that (Cimp, πimp) is a t-
resilient privacy-enhanced Nash realization of (Cide, πide) if for all u = r + q, where
q = (q1, . . . , qn) are admissible measures of privacy with weight at most α, there exists
a negligible ε such that:

No less utility: For all Pl, ul(T, πimp, Cimp) ≥ ul(T, πide, Cide)− ε.

No more incentive to deviate: For all C ⊂ {1, . . . , n}, |C| ≤ t, all strategies πimpC

∗

for Cimp, there exists a strategy πideC
∗

for Cide so that ul(T, (πideC
∗
, πide−C ), Cide) ≥

ul(T, (πimpC

∗
, πimp−C ), Cimp)− ε for all l ∈ C.

Theorem 2. For fixed T and r, it holds for all settings (C, π), (D, γ) and (E , δ) that:

Preservation: If (C, π) is a t-resilient privacy-enhanced Nash realization of (D, γ)
and γ is a t-resilient privacy-enhanced Nash equilibrium for D, then π is a t-resilient
privacy-enhanced Nash equilibrium for C with a utility profile negligibly close to that
of (C, γ), i.e., |ul(T, π, C)− ul(T, γ,D)| is negligible for all Pl and for all considered
u = r + q.

Transitivity: If (C, π) and (D, γ) are t-resilient privacy-enhanced Nash realizations
of (D, γ) and (E , δ) respectively, then (C, π) is a t-resilient privacy-enhanced Nash
realization of (E , δ).

Though this theorem is fairly easy to verify, we find the notion of Nash realization an
interesting conceptual contribution, as it allows to structure hybrid proofs in a game
theoretic setting. The notion can also be used for other purposes. We can, e.g., show
that our protocol in Fig. 4 is an (n − 1)-resilient privacy-enhanced Nash realization of
an information theoretic secure version of the protocol, where the Ve,i values are com-
puted by the device and leaked in the same epoch/try structure as in Fig. 4, depending
on whether or not parties input send or hold in each try. Here the notion is used to an-
alyze a property we could not have seen by only looking at equilibria in the unmediated
protocol: The result shows that our use of cryptography does not give any further incen-
tives for deviations, to any size of collusion, over what is present in this highly idealized
setting, which gives an extra reassurance that the cryptography was used soundly.
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We complete the proof by showing that the information theoretic idealization is a
privacy-enhanced Nash equilibrium. By preservation this result carries over to the un-
mediated setting. In fact, designing any t-resistant privacy-enhanced Nash equilibrium
for the information theoretic setting would directly give one for the Internet too.
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Abstract. The problem of carrying out cryptographic computations
when the participating parties are rational in a game-theoretic sense
has recently gained much attention. One problem that has been studied
considerably is that of rational secret sharing. In this setting, the aim is
to construct a mechanism (protocol) so that parties behaving rationally
have incentive to cooperate and provide their shares in the reconstruc-
tion phase, even if each party prefers to be the only one to learn the
secret.

Although this question was only recently asked by Halpern and Teague
(STOC 2004), a number of works with beautiful ideas have been pre-
sented to solve this problem. However, they all have the property that
the protocols constructed need to know the actual utility values of the
parties (or at least a bound on them). This assumption is very prob-
lematic because the utilities of parties are not public knowledge. We ask
whether this dependence on the actual utility values is really necessary
and prove that in the basic setting, rational secret sharing cannot be
achieved without it. On the positive side, we show that by somewhat
relaxing the standard assumptions on the utility functions, it is possi-
ble to achieve utility independence. In addition to the above, observe
that the known protocols for rational secret sharing that do not assume
simultaneous channels all suffer from the problem that one of the par-
ties can cause the others to output an incorrect value. (This problem
arises when a party gains higher utility by having another output an
incorrect value than by learning the secret itself; we argue that such a
scenario is not at all unlikely.) We show that this problem is inherent
in the non-simultaneous channels model, unless the actual values of the
parties’ utilities from this attack is known, in which case it is possible to
prevent this from happening.

1 Introduction

Recently, there has been much interest in the intersection between cryptography
and game theory [6,5,10,3,1,9,10]. One specific question that has gained much
attention is that of rational secret sharing. The basic problem that arises when
considering secret sharing (or to be more exact, protocols for the reconstruction
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phase) is that the parties actually have no incentive to reveal their share. Specif-
ically, assume that t parties get together to reconstruct a secret that was shared
using a t-out-of-n secret sharing scheme. The way that this reconstruction takes
place is simply for each party to broadcast its share to all others. However, if one
party does not broadcast its share, it can still reconstruct the secret (because it
received the t− 1 shares of all other parties and so has t shares overall), but the
others cannot (because they only have t−1 shares). Thus, under the assumption
that parties prefer to be the only one to learn the secret, the rational behavior
in the above naive reconstruction procedure is for every party to remain quiet
and not broadcast its share [6]. The aim of rational secret sharing is therefore
to construct a mechanism so that it is in the interest of rational parties to co-
operate, with the result being that all parties learn the reconstructed secret.
The fact that the parties are rational essentially means that they each have a
utility function assigning a value to every possible outcome of the protocol (this
value represents the gain that the party achieves if the given outcome occurs).
Furthermore, the parties’ aim is to maximize their utility. We remark that a
mechanism is considered successful if it achieves a Nash equilibrium (or one of
its variants) for the strategy which instructs all parties to cooperate. Loosely
speaking, this means that if any one of the parties deviates from the prescribed
strategy (while others follow it), then it will not obtain a higher utility (and
may even lose). Thus, it is in the interest of all parties to follow the prescribed
strategy and cooperate.

In order to construct a mechanism with the above properties, certain natural
assumptions are made regarding the utilities of the parties. In particular, it
is assumed that a party always prefers to learn the secret than to not learn
it (this is essential to assume, or else there is no reason for a party to ever
participate in the reconstruction). Furthermore, it is assumed that parties prefer
to learn the secret, and have some or all of the other parties not learn it (when
knowledge is power, this makes a lot of sense). Although the above assumptions
are very reasonable, a concern with all of the known protocols is that they don’t
just assume that this “learning preference” holds. Rather, they assume that the
actual utility values of the parties (or at least bounds on them) are known to
all, and the mechanism itself depends on these values. The problem with this
assumption is that in reality the utility of a party may not even be known to
itself, let alone to others. Furthermore, even if a party knows its own utility, it
is unclear how others can learn this value (it would not necessarily be rational
for a party to be honest about its utility; rather, it may gain something by
providing incorrect information about its utility function). This problem stands
at the center of this work, and we ask the following fundamental question:

Is it possible to construct a single reconstruction mechanism for rational
secret sharing that achieves a Nash equilibrium for all possible values
of utility functions that fulfill the aforementioned assumptions regarding
learning preference?

In addition to the above, we observe that some of the known protocols suffer
from a correctness issue. Specifically, most of the positive results on this topic
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assumed that the parties have access to a simultaneous channel (meaning that
all parties can simultaneously send messages meaning that no party can see
what the others broadcast before sending its own). Since simultaneous channels
are problematic to implement in practice, a recent breakthrough was made that
achieved rational secret sharing in non-simultaneous channels [10]. However, the
protocol of [10] (and a follow-up protocol by [7]) has the problem that one of
the parties can cause the others to output an incorrect value, at the expense of
not learning the secret itself. Thus, the assumption made by [10] is that since
a party always prefers to learn the secret, it will never follow such a strategy.
However, we do not believe that this assumption is always reasonable. Rather,
there are certainly scenarios where a party can gain more by having another
learn incorrect information than by learning the information itself (for example,
consider the case where the use of incorrect information can result in a loss of
reputation, to the potential gain of others). In any case, it would certainly be
preferable to not have to assume this. Noting that this problem of correctness
does not arise in any of the protocols using simultaneous channels, we ask:

Is it possible to construct a reconstruction mechanism for rational secret
sharing that uses non-simultaneous channels and achieves Nash equilib-
rium even if a party’s utility when another party outputs an incorrect
value is higher than its utility when it learns the secret? Furthermore,
is it possible to achieve this without assuming knowledge of the actual
utility value?

Our results. We focus mainly on 2-out-of-2 secret sharing. Let U+
i denote the

utility of party Pi when it learns the secret and the other party does not. Fur-
thermore, let Uf

i denote the utility of party Pi when the other party outputs
an incorrect (false) value, even if Pi itself did not learn the output. We call a
mechanism U+-independent if it achieves Nash equilibrium for all possible (poly-
nomial) values of (U+

1 , U+
2 ) that fulfill the aforementioned learning-preference

assumptions (i.e., that a party prefers to learn than not learn, and prefers to be
the only one to learn). We define Uf -independence similarly. We stress that when
a mechanism is U+ or Uf -independent, it may still know the values of the other
utilities (i.e., the utility when all parties learn the secret or when none learn it).
We begin by proving an interesting connection between U+-independence and
complete fairness, and between Uf -independence and correctness (where fair-
ness and correctness here are in the presence of malicious adversarial behavior
that may not be rational and is aimed only to break the protocol). In Section 3,
we prove the following informally stated theorem:

Theorem 1. Any two-party mechanism that achieves U+-independence guar-
antees complete fairness in the presence of malicious adversarial behavior. Fur-
thermore, any two-party mechanism that achieves Uf -independence guarantees
correctness in the presence of malicious adversarial behavior.

Intuitively, Theorem 1 holds because if a mechanism is U+-independent, then
it must be in a party’s interest to cooperate even if its U+ utility is very high.
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However, if a party’s U+ utility is high enough – but still polynomial – then it
can be shown that its best strategy is to just try and break fairness (because
then it gains U+). Since, it should not be able to succeed in doing this, it
follows that a malicious adversary also can only break fairness with negligible
probability. The connection between Uf independence and correctness is proven
in a similar way. It is possible to use Theorem 1 in order to prove that there do not
exist two-party reconstruction mechanisms for rational secret sharing that are
independent of U+, by showing how to toss a fair coin given any such mechanism.
(Intuitively, given such a mechanism, we construct a protocol where in the first
stage multiparty computation is used to generate shares of an unbiased coin, and
then the mechanism is used to fairly reveal the coin.) Using the impossibility
result of Cleve [2] for coin tossing, we then conclude that such a mechanism
does not exist. However, we stress that unbiased coin tossing is only impossible
in the non-simultaneous channels model, and thus this would only prove the
impossibility of obtaining U+-independence in this model, and leaves open the
possibility that there do exist U+-independent mechanisms in the simultaneous
channels model.

We therefore provide a direct proof, ruling out the possibility of obtaining
U+-independence even when given a simultaneous channel. That is, we prove
the following:

Theorem 2. There does not exist a two-party reconstruction mechanism for
rational secret sharing that is independent of U+ in either the simultaneous or
non-simultaneous channels model.

In order to prove this, we actually present a lower bound on the number of
rounds needed for achieving fair reconstruction and show that this number is
dependent on the actual utility functions of the parties (or, to be more exact,
a bound on them). Thus, no mechanism can be independent of the utilities
because this implies that its number of rounds is also independent. Our lower
bound is proven in the simultaneous-channels model and therefore also holds for
non-simultaneous channels.

Having established that U+-independence is impossible to achieve, we ask
whether the other utility values must also be known. For example, we know
that Uf -independence is possible in the simultaneous-channels model, because
all of the known protocols for the simultaneous-channels model (cf. [5,10]) are
Uf -independent. This leaves open the question regarding Uf -independence with
non-simultaneous channels. We prove that:

Theorem 3. There does not exist a two-party reconstruction mechanism for
rational secret sharing that is Uf -independent in the non-simultaneous channels
model.

The proof of this theorem uses Theorem 1 that states that a Uf -independent
mechanism guarantees correctness. We then prove that in the non-simultaneous
channels model, it is not possible to construct a correct reconstruction
mechanism.
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Positive results. In Section 5, we present two positive results as follows:

1. We present a two-party reconstruction mechanism for rational secret sharing
that works in the non-simultaneous model. This mechanism uses the actual
values of Uf ; given the impossibility result of Theorem 3, this is inherent.

2. We present a multiparty reconstruction mechanism that uses simultaneous
channels and is independent of all utility values, under a relaxation of the
learning-preference assumptions. Namely, we assume that a party prefers to
be the only one to learn the secret but once one other party has learned the
secret it makes no difference if all learn it. In fact, it suffices to assume that
even though each party prefers that as few other parties as possible learn
the secret, the utility if all but 1 or all but 2 parties learn is the same (i.e.,
it makes no difference if all parties learn the secret or if almost all parties
learn the secret).

The above results show that (a) correctness need not be forfeited in the model
with non-simultaneous channels, and (b) utility independence is possible to
achieve in some settings, depending on the assumptions on the utility functions.

Related work. The question of rational secret sharing was first introduced
by [6]. They showed that there does not exist a mechanism with a constant
number of rounds, with a Nash Equilibrium that survives iterated deletions of
weakly dominated strategies. Moreover, they presented a protocol for n ≥ 3
(that is U+-dependent) in the simultaneous model. More protocols, dealing with
other settings, were presented for the simultaneous model in [5,1,9,10], and for
the non-simultaneous model in [10,7]. The basic question that we ask regarding
utility independence was proposed in [6]. The first partial answer to this question
was given by [1] who showed that utility independence is possible for t-out-of-n
secret sharing as long as t < n/3. This question was also considered by [14] who
gave a partial answer in their model. Among other things, we have shown that
it is not possible for the important case of 2-out-of-2 secret sharing. The works
of [13,11] can be used to obtain fair secret sharing, but assume stronger physical
assumptions than a simultaneous channel. Other works have also considered a
mix of rational, honest and malicious parties [16,14,1].

2 Definitions and Preliminaries

We denote by S an efficiently samplable distribution for choosing the secret to
be shared, by share the secret sharing scheme and by (Γ, σ) the reconstruction
mechanism. Definitions of secret sharing and Nash equilibria can be found in the
full version.

Outcome and utilities. The outcome of an execution of a game Γ with some
strategy profile σ is denoted o and consists of the output of all of the parties.
In the case of 2-out-of-2 secret sharing, each party may learn or may not learn
the secret, and there are therefore exactly four possible outcomes. (This ignores
the issue of correctness which we introduce in this paper and discuss below.)
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Each party’s utility is a function of these outcomes, and there are therefore also
four possible utility values for each party. The notations for the four possible
outcomes, and the associated utility for each party, are described in Table 1.

Table 1. Outcome and Utility

P1 receives s P2 receives s Outcome notation P1’s Utility P2’s Utility

NO NO onone U−
1 U−

2

NO YES o+
2 U−−

1 U+
2

YES NO o+
1 U+

1 U−−
2

YES YES oboth U1 U2

In this paper, we consider the possibility that parties may output incorrect
values and introduce a utility Uf for this event (informally, a party gains Uf

i if it
succeeds in having the other party output a false/incorrect value). This results
in nine possible outcomes of the game (each party may learn the correct value,
not learn, or output an incorrect value). For simplicity we will consider only the
outcome where one party does not learn the secret while the other outputs an
incorrect (or false) value. We denote this event by ofalse

−i , where P−i is the party
who outputs the incorrect value. (We explicitly consider this event because this
is the one that occurs naturally. Needless to say, when analyzing mechanisms all
possibilities need to be taken into account.)

Assumptions on the utility functions. We assume that the utility functions
of all parties are polynomial in the security parameter. Formally, a party’s utility
function ui is a function of the outcome and the security parameter k. We there-
fore write Ui(1k) = ui(1k, oboth), U+

i (1k) = ui(1k, o+
i ), U−

i (1k) = ui(1k, onone),
U−−

i (1k) = ui(1k, o+
−i), and Uf

i (1k) = ui(1k, ofalse
−i ). As is now standard [6,5,10],

we assume that each party always prefers to learn the secret than to not learn
it, and that each party most prefers to be the sole party to learn the secret. We
add an additional assumption being that a party prefers to have the other party
output an incorrect value than not, when in both cases the first party does not
learn anyway. We do not make any assumption on Uf

i beyond this. (In [10] they
implicitly assume that Uf

i < Ui for all parties.) For lack of a better name, we
call utility functions that fulfill these assumptions “natural”. Formally:

Definition 4. Let U = {(U+
i , Ui, U

−
i , U−−

i , Uf
i )i∈{1,2}} be a set of utility func-

tions for the parties. We say that U is natural if for every i ∈ {1, 2} and for every
k ∈ N it holds that U+

i (k) ≥ Ui(k) ≥ U−
i (k) ≥ U−−

i (k) ≥ 0 and Uf
i (k) ≥ U−

i (k).

We remark that in all previous works, it was formally assumed that U−
i (k) =

U−−
i (k), even though none of the protocols utilized this fact. We have not defined

it in this way because we find it unsatisfactory to assume that once a party has
not learned, it makes no difference to its utility if others did or did not learn.
On the contrary, it can be a lot worse if a party does not learn while others do
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learn and so protocols should take this into account. We note that all previous
protocols can be modified to work with the value U−−

i . We also note that our
lower bounds hold even if U−

i = U−−
i , and so we do not assume anything about

the value U−−
i .

Fair secret sharing. A number of different notions have been used regarding
the desired equilibrium for rational secret sharing. Our impossibility results refer
to the weakest of these assumptions, which is ε-Nash equilibrium for a negligible
function ε(·) [10,8]. However, we also require that the number of rounds be
polynomial (this is needed for our lower bounds, but we argue that this does not
significantly weaken our results because a mechanism with a super-polynomial
of rounds is not computationally feasible to run). The natural way to model this
is as a computational Nash equilibrium [3,8] (although our results hold even if
local computation by each party is unbounded). We define computationally fair
reconstruction mechanisms in this light:

Definition 5. Let U be a set of natural utility functions for P1 and P2 (as in
Definition 4). We say that a mechanism (Γ, σ) is a fair reconstruction mechanism
for U if σ is a computational Nash Equilibrium and if the probability that the
result is not oboth when both parties follow σ is negligible.

3 Utility-Independent Mechanisms and Properties

3.1 Definitions

We now formalize the notion of utility independence. Loosely speaking, a mecha-
nism is independent of a given utility function if it achieves its desired properties
for any value of that utility for all parties.

Definition 6. Let Û ∈ {U+, U, U−, U−−, Uf} be a utility type and let U ′ =
{U+

i , Ui, U
−
i , U−−

i , Uf
i }ni=1 \ {Ûi}ni=1 be a set of polynomial utility functions (ex-

cluding all the Ûi values). We say that the mechanism (Γ, σ) is a Û -independent
fair reconstruction mechanism if for all polynomial utility functions {Ûi}ni=1 for
which U = U ′ ∪ {Ûi}ni=1 is natural, it holds that (Γ, σ) is a fair reconstruction
mechanism for U .

Note that our definition of utility independence includes the assumption that U
is natural. In our results, we focus on U+ and Uf independence.

Fairness and correctness. In this section, we show that U+ and Uf indepen-
dence implies the properties of complete fairness and correctness in the presence
of adversarial behavior.1 We stress that we define these notions in an adversarial
1 We consider the two-party case only because we only deal with the case of no coali-

tions in this paper, and in the case of no coalitions we have an honest majority
and so fairness and correctness (in the presence of a malicious adversary) can be
achieved. This case is therefore not interesting.
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context and not in a game theoretic one. That is, we say that a protocol or mech-
anism is completely fair/correct if it maintains this property when one of the
parties follows a worst-case strategy (meaning that it has no aim to gain utility
and its aim is simply to break this property of the protocol). We remark that
we will move freely between protocols in a cryptographic setting with an adver-
sary A and mechanisms involving rational adversaries playing a game in order
to achieve utility. This is due to the fact that a mechanism trivially defines a
protocol and vice versa. We now proceed to define complete fairness and correct-
ness. We present the definitions in a “protocol context”; their translation to the
game-theoretic context is discussed below. Intuitively, a two-party reconstruc-
tion protocol is completely fair if whenever one party learns the secret the other
party is also guaranteed to learn the secret, except with negligible probability.
Likewise, a reconstruction protocol is correct if the honest party is guaranteed
to either output the correct value (i.e., the secret that was shared) or a special
abort symbol ⊥. Although it is difficult to formalize these notions for general
secure computation without resorting to a full ideal model/real model definition
(since the output depends on the actual inputs used by the possibly malicious
parties), in the case of secret sharing it is much simpler because the output of the
protocol is well defined. In particular, the output can only be the shared secret s
or an abort symbol ⊥. We assume that any reconstruction protocol is non-trivial
meaning that if both parties are honest, then they both learn the secret except
with negligible probability.

We first introduce some notation. Let realπ,A,i(share(S)) denote the out-
come o of an execution of the reconstruction protocol π, with the parties P1
and P2, an adversary A controlling party Pi (i ∈ {1, 2}), and a share s that
was chosen by S and shared as in share; recall that an outcome is simply
the concatenation of the outputs of all participating parties (since A controls
Pi, we consider only the output of A and the honest party). Next, denote by
outputX(realπ,A,i(share(S)) the output of party X (where X may be A or
the honest party P−i). Recall that the security parameter is denoted k.

Definition 7. Let share be a share generation algorithm for a 2-out-of-2 secret
sharing scheme, and let π be the reconstruction protocol for the scheme.

1. We say that π is completely fair if for every probabilistic polynomial-time
adversary A that controls the party Pi there exists a negligible function μ(·)
such that Pr[outputA(realπ,A,i(share(S))) = S]

≤ Pr[outputP−i(realπ,A,i(share(S))) = S] + μ(k).

2. We say that π is correct if for every probabilistic polynomial-time adversary
A that controls the party Pi there exists a negligible function μ(·) such that

Pr[outputP−i(realπ,A,i(share(S))) /∈ {S,⊥}] ≤ μ(k).

An equivalent formulation of the above for mechanisms is obtained by re-
quiring that the result of an execution where one party follows the prescribed
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strategy and the other may follow any arbitrary alternative strategy is fair (or
correct). For example, correctness of a mechanism (Γ, σ) can be formalized by
saying that for every arbitrary strategy σ′

i followed by party Pi (i ∈ {1, 2}) there
exists a negligible function μ such that:

Pr[outputP−i(realΓ,Pi(σ′
i),P−i(σ−i)(share(S))) �∈ {⊥,S}] ≤ μ(k).

(Observe that correctness is guaranteed only when party P−i follows the pre-
scribed strategy σ−i.)

3.2 U+-Independence vs Fairness and Uf -Independence vs
Correctness

We now prove that the existence of a U+-independent reconstruction mechanism
implies the existence of a completely fair reconstruction protocol. Intuitively this
holds because if complete fairness is not achieved, then there exists an adversary
who can participate in the protocol induced from the mechanism and with non-
negligible probability can learn the secret while the honest party does not. Given
such an adversary, we can set the utility U+ of one of the parties to be high
enough so that its expected gain by following the adversarial strategy is high
enough. Our proof holds for both simultaneous and non-simultaneous channels.

Proposition 8. If there exists a U+-independent fair reconstruction mechanism
for a 2-out-of-2 secret sharing scheme (as in Definition 6), then there exists a
completely fair reconstruction protocol (as in Definition 7) for the scheme.

Proof: Let (Γ, σ) be a U+-independent fair reconstruction mechanism and let
U ′ be a set of utilities specifying {U, U−, U−−, Uf} for both parties. Denote by
π the protocol derived from (Γ, σ) as described above. Assume by contradiction
that π is not a completely fair reconstruction protocol. This implies that there
exists a probabilistic polynomial-time adversary A that controls some party Pi

(i ∈ {1, 2}) and a polynomial p(·) such that for infinitely many k’s:

Pr [outputA (realπ,A,i (share (S))) = S]

> Pr
[
outputP−i (realπ,A,i (share (S))) = S

]
+

1
p(k)

Let σA be the corresponding behavioral strategy of the adversary A in the game
Γ . Note that the outcome of the game when party Pi plays according to σA,
while the other party plays according to the prescribed strategy σ, is o+

i with
probability 1/p(k).

We now define the utility function U+
i for party Pi by U+

i ≥ p(k) ·(Ui+1). We
show that for infinitely many k’s, Pi’s utility is greater if it follows σA than if it
follows σi, which is a contradiction to the assumption that σ is a (computational)
Nash equilibrium. Let O denote the set of all possible outcomes, and recall that
ui(o) is the utility of Pi upon outcome o. We have that for infinitely many k’s:

ui

(
σA

i , σ−i

)
=
∑
o∈O

Pr[o | (σA
i , σ−i)] · ui(o)
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≥ Pr
[
o+

i | (σA
i , σ−i)

]
· U+

i

≥ 1
p(k)

· (p(k) · (Ui + 1)) = Ui + 1.

In contrast, ui (σi, σ−i) = Ui. Thus, there exists a non negligible function ε′

(even if Ui is negligible), such that:

ui

(
σA

i , σ−i

)
≥ ui (σi, σ−i) + ε′(k)

in contradiction to the assumption that σ is a computational Nash equilibrium
for Γ . We therefore conclude that the protocol π induced from (Γ, σ) is com-
pletely fair, as in Definition 7.

Uf -independence implies correctness. The following is proved analogously
to Proposition 8:

Proposition 9. If a fair reconstruction mechanism for a 2-out-of-2 secret shar-
ing scheme is Uf -independent (as in Definition 6), then it achieve correctness
(as in Definition 7).

4 Negative Results

4.1 Impossibility for U+-Independence

As we have mentioned, Proposition 8 can be used to prove the impossibility of ob-
taining U+-independent fair reconstruction mechanisms in the non-simultaneous
channels model. This is because any such mechanism can be used to toss a fair
coin, in contradiction to [2]. (Specifically, secure computation can be used to
generate shares of a random bit, which are then reconstructed using the mech-
anism. By Proposition 8, this mechanism guarantees complete fairness in the
presence of malicious behavior and so neither party can bias the outcome.) Such
a proof leaves open the possibility of obtaining U+-independence in the simul-
taneous channels model. In this section we therefore prove a lower bound on the
number of rounds that are needed in any fair reconstruction mechanism, even in
the simultaneous model. As we will see, the number of rounds depends on the
U+ utilities of the parties; U+-independence is therefore not achievable.

We prove our lower bound by considering a specific attack (or, an alterna-
tive strategy) that can be carried out on every mechanism. The attack that we
consider is a premature abort. When a party aborts prematurely, it does not
broadcast its message in the round that it quits, while the other party does.
Therefore, intuitively, it may gain more information about the secret than the
other party. The mechanism must therefore guarantee that the amount of infor-
mation gained in any single round is small enough so that carrying out such an
attack is not profitable and will yield a lower utility. We quantify this amount
of information and define an “aborting threshold” for each party as follows:

β1 =
U1 − U−−

1

U+
1 − U−−

1
and β2 =

U2 − U−−
2

U+
2 − U−−

2
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We now prove that the number of rounds in any fair reconstruction mechanism
depends on {β1, β2} and so depends on the actual utilities.

Theorem 10. Let (Γ, σ) be a fair reconstruction mechanism, let RΓ
(σ1,σ2) be a

random variable denoting the number of rounds in Γ when both parties play
according to σ = (σ1, σ2), and let β ≤ min {β1, β2} be as above. Then:

E[RΓ
(σ1,σ2)] >

1
8
√

β

Proof Sketch: We start with some notation. Denote by ai the output of party
P1 when P2 quits at round i before sending its message (that is, at round i only
P1 broadcast its message); likewise bi denotes the output of P2 when P1 quits
at round i. Note that when P1 quits at round i (before sending its message) and
P2 does not quit in that round, party P1 receives an additional message and
therefore may gain additional knowledge about the secret. In such a case, P1
outputs ai+1, while P2 outputs bi. In the following claim, we bound the amount
of additional knowledge that a party can gain in such a situation:

Claim 11. Let U be a set of natural utility functions for P1 and P2 (as in
Definition 4), and let the mechanism (Γ, σ) be a fair reconstruction mechanism
for U (as in Definition 5). For every round i ≥ 0, the following must hold:

Pr [ai+1 = s] ≤ Pr [bi = s] + 2β1 and Pr [bi+1 = s] ≤ Pr [ai = s] + 2β2

Proof Sketch: Assume by contradiction that the above does not hold. Without
loss of generality, assume that there exists an i such that

Pr [ai+1 = s] > Pr [bi = s] + 2β1.

In the proof, we consider an alternative strategy σi
1 for P1 which is identical to

the prescribed strategy σ1 except that it instructs the party P1 to quit before
broadcasting the message in round i. Assuming that the other party (P2) does
broadcast its share in that round, and that the execution reaches round i, we have
that P1 outputs ai+1 while P2 outputs bi. Using the contradicting assumption,
it follows that:

Pr [ai+1 = s ∧ bi �= s] ≥ Pr [ai+1 = s]− Pr [bi = s] > 2β1.

That is, with probability at least 2β1 the outcome is o+
1 , and therefore P1 gains

U+
1 while P2 gains only U−−

2 . Thus, the expected utility of P1 is at least

2β1 ·U+
1 +(1−2β1) ·U−−

1 = 2β1(U+
1 −U−−

1 )+U−−
1 = 2U1−2U−−

1 +U−−
1 > U1

where the last equality is by the assumption that Ui is non-negligibly greater
than U− and U−−

i (note that if Ui ≈ U− then Pi has no reason to play at
all). Thus, the strategy σi

1 of stopping in round i is a better strategy for P1, in
contradiction to the assumption that σ = (σ1, σ2) is a Nash equilibrium.
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We stress that some important details are omitted from this proof sketch. For
example, it does not take into account the probability that round i is actually
reached in the execution or the possibility of negligible failure; see the full version
for details.

We use the above claim to prove our lower bound. Now, consider the case that the
secret is a uniformly distributed k-bit string. In such a case, the probability that
any party outputs the correct secret before receiving any message is negligible
(i.e., Pr[a0 = s] = Pr[b0 = s] = μ(k) for some negligible function μ). By simple
induction, we have that for every i:

Pr [ai = s] ≤ 2iβ + μ(k) and Pr [bi = s] ≤ 2iβ + μ(k)

and so
2r(k)∑
i=1

Pr [ai = s] ≤
2r(k)∑
i=1

2iβ + μ(k) ≈ 4β · r2(k)

where r(k) denotes the expected number of rounds; i.e., E[RΓ
(σ1,σ2)] = r(k). By

Markov, Pr
[
RΓ

(σ1,σ2) ≥ 2r(k)
]
≤ 1

2 and so Pr
[
RΓ

(σ1,σ2) < 2r(k)
]

> 1
2 . Now, if

RΓ
(σ1,σ2) < 2r(k) then for some i ∈ {1, . . . , 2r(k)} it holds that ai = s (because

at the end, both parties must output s). Thus,

2r(k)∑
i=1

Pr[ai = s] >
1
2
.

We conclude that
1
2

<

2r(k)∑
i=1

Pr [ai = s] ≤ 4βr2(k)

implying that r(k) > 1√
8β

. (Note that the theorem bounds r(k) > 1
8
√

β
and not

what we have shown here. This is due to additional factors that we have omitted
from this sketch; see the full version for details.)

Using Theorem 10 we conclude that there do not exist U+-independent fair
reconstruction mechanisms with an expected number of rounds that is polyno-
mial, even in the simultaneous model. In order to see this, we show that for all
fixed polynomials Ui, U

−
i , U−−

i and r(k), there exists a polynomial U+
i such that

r(k) < 1
8
√

β
. Specifically, take U+

i ≥ 64r2(k) ·
(
Ui − U−−

i

)
+ U−−

i . This suffices
because in such a case

βi =
Ui − U−−

i

U+
i − U−−

i

≤ Ui − U−−
i

64r2(k) ·
(
Ui − U−−

i

)
+ U−−

i − U−−
i

=
1

64r2(k)

and thus r(k) ≤ 1
8
√

βi
in contradiction.
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4.2 Impossibility for Uf -Independence (Non-simultaneous)

In Section 3 we showed that any mechanism that is Uf -independent achieves
correctness. In the simultaneous channels model, Uf -independence – and cor-
rectness – has been achieved by previous protocols [5,9]. However, as we have
mentioned, the known protocols for the model with non-simultaneous channels
do not guarantee correctness. In particular, if Uf

i > Ui for some party Pi then
the strategy profiles σ of [10,7] are not computational Nash equilibriums. In this
section we prove that this is inherent to the non-simultaneous model. That is,
there does not exist a fair reconstruction mechanism that is Uf -independent in
the non-simultaneous model.

The Kol-Naor mechanism [10] and correctness. Before proceeding with
our proof, we describe the mechanism of Kol and Naor for non-simultaneous
channels and show why it does not achieve correctness. This example illustrates
the problem of achieving Uf -independence and is thus very instructive. The Kol-
Naor mechanism assumes that the utility functions U fulfill the assumptions in
Definition 4. Furthermore, the mechanism itself is constructed given the actual
values of the utility functions (i.e., it is utility dependent). The general idea of
their protocol is that the shares assigned to the party are actually lists of possible
secrets. One party receives a list of size � (this party is called “the short party”),
and the other party receives a list of size � + d (this party is called “the long
party”). The short list is a strict prefix of the other. The lengths � and d are
chosen according to a geometric distribution with parameter β, where β depends
on the utility functions of the parties. The real secret is located at position �+1
in the long list, while all the other elements in the lists are fake; the (� + 1)th
round is called the definitive round because in this round the secret is learned. In
addition to the lists described above, the dealer selects an independent random
permutation for every round; this permutation determines the order in which the
parties send their list elements in the round. The party that sends its message
first in the definitive round is given the long list, and the other party is given
the short list. In addition, the parties receive the permutations for the rounds
appearing in their respective lists (i.e., the short party receives the permutation
only for the first � rounds). We stress that neither party knows if it the short or
long party. In any given round, we call the party who sends its element first the
“first party” and we call the other the “second party”.

In order to reconstruct the secret, the parties proceed round by round; in the
ith round each party sends its ith list element in the order determined by the
permutation. At iteration �+ 1 (the “definitive iteration”), the long party is the
first to broadcast its share (that is, it is the “first party”). However, the short
party’s list is finished and thus it has no element to send. It therefore remains
silent in this round. The first round in which only one party sends a list element
is the definitive round, and so the secret sent in this round is taken to be the real
secret. Intuitively, fairness is achieved because the owner of the long list does not
know the length of the short list, and in particular does not know which round is
the definitive round. It therefore does not know which of the elements in its list
is the real secret and so has to send its share every round. See [10] for details.
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As pointed out in [10, Note 6.2], if one of the parties aborts prematurely (i.e.,
remains silent in round i for some i < �) then the other party will output an
incorrect value (with high probability the element si of the ith round will not
equal the secret). It is important to note that the aborting party knows that
si is not the real secret because its list is not yet finished. Furthermore, it can
even have some influence over the incorrect value output by the first party (this
is because it can choose at which point to stop and thus it can choose which of
the values in the prefix of the list is output by the first party). The protocol is
therefore clearly not correct. We remark that the same problem also exists for
the protocol of [7]. As we have mentioned, [10] assume that rational parties will
not behave in this way because they always prefer to learn the secret than to
not learn it (observe that if a party aborts prematurely then it will not learn the
real secret). That is, they assume that Uf

i < Ui. We show that this assumption
is essential as long as Uf -independence is desired.

The impossibility result. Our proof of impossibility assumes that for all i,
U+

i is strictly greater than Ui by a non-negligible amount; this is called strict
competitiveness; see [10]. We are now ready to formally state the theorem.

Theorem 12. There do not exist Uf -independent fair reconstruction mecha-
nisms for strictly competitive utility functions in the non-simultaneous model.

By Proposition 9, Uf -independence implies correctness. We therefore prove that
in the non-simultaneous model there does not exist a fair reconstruction mech-
anism that is correct, as defined in Definition 7.

Intuition: We begin by describing 2 strategies σstop
1 and σstop

2 . The strategy
σstop

1 for party P1 is the strategy that follows the prescribed σ in all the rounds
with the following difference. In every round, P1 checks what its output would
be if P2 quits at that round. In the first round for which the output is not ⊥, the
strategy σstop

1 instructs P1 to quit at that round. σstop
2 is defined analogously.

Since we assume correctness, the probability that one of the parties will output
a value which is not s or ⊥ when the other prematurely aborts is negligible.
Thus, when playing σstop both of the parties will output the correct s in the
round that they quit. Next, we prove that when both parties follow σstop, with
high probability one of them learns the secret while the other does not. We
conclude by showing that the prescribed strategy σ is not a computational Nash
equilibrium by showing that one of the σstop strategies has a better expected
utility than σ. That is, we show that either u2(σ1, σ

stop
2 ) > u2(σ1, σ2) + ε′ or

u1(σ
stop
1 , σ2) > u1(σ1, σ2) + ε′, for some non-negligible function ε′. The proof of

this appears in the full version.

5 Positive Results

5.1 Uf -Dependent Reconstruction in the Non-simultaneous Model

In this section, we address the basic question of whether or not it is possible to
construct a fair and correct reconstruction mechanism using non-simultaneous
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channels even if Uf
i ≥ Ui. We answer this in the positive by constructing a

mechanism that works as long as it knows the value of Uf
i for each party Pi (in

the same way that the mechanism knows the values of U+
i , Ui, U−

i and U−−
i ).

The idea behind the mechanism. We will consider the two party case only,
but the idea works for the multiparty case as well. We assume familiarity with
the protocol of Kol and Naor [10]; see the beginning of Section 4.2 for a short
description of the protocol and why it does not guarantee correctness. This will
be used below. Looking closely at the strategy for breaking correctness in the
Kol-Naor mechanism, it arises because the first party to send its list element in
an iteration has no way of verifying if the current round is the definitive round
or not. This is necessary because if the long party could check if the current
round is the definitive one before sending its element, it could learn the secret
without the other party learning it. Despite this, our key observation is that it
is not necessary that all of the fake iterations be the same, as in the Kol-Naor
mechanism. Rather, we introduce additional rounds with the property that the
second party in each such round knows that the round is fake while the first party
does not. Now, if a first party prematurely aborts on such a round, then it will
gain only U−, and not Uf (because the second party knows that the first party
has cheated and just aborts outputting ⊥). By adding enough of these additional
rounds, we have that the probability that a party successfully achieves Uf is low
enough so that a higher expected utility is obtained by playing σ and obtaining
U . See the full version for a detailed description and proof.

5.2 Full Independence for n ≥ 3 with Relaxed Assumptions

In this section we show that utility dependence is not always essential. In par-
ticular, we show that for a certain reasonable relaxation of the utility functions,
it is possible to construct a utility independent fair reconstruction mechanism
for the case of t-out-of-n secret sharing, where n ≥ 3. We do not claim that our
assumptions always hold or should be used; rather our aim here is to show that
utility independence can sometimes be achieved.

The “standard” assumptions [6,10] typically used for the utility functions are
that a party always prefers to learn than not. Furthermore, assuming that a
party learns, the fewer others that learn the better. We relax these assumptions,
and assume that each party prefers to learn the secret alone, but once one of the
other parties learns the secret it doesn’t matter how many other parties learn
it (thus U+

i denotes the utility when it alone learns, and Ui denotes the utility
that it learns along with any positive number of other parties).

In addition to the above, we assume that the utility functions are polynomial
in the security parameter, and that there is a non negligible difference between
them. That is, there exists a polynomial p(·), such that for infinitely many k’s
it holds that: Ui ≥ U−

i + 1
p(k) . (Our impossibility result for U+-independence

when n = 2 holds for such utility functions.) This is a natural extension of the
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strict differences between the utility functions, as defined in [10], when they are
modeled as functions of the security parameter. (We remark that U+

i may equal
Ui; we only need a non-negligible difference between Ui and U−

i .) Note that
when the above does not hold, it means that Pi’s utility when not learning is
essentially the same as when learning. Thus, Pi may as well not participate at all
and this case is not interesting. Our protocol assumes simultaneous channels in
order to achieve Uf -independence. As we showed in Theorem 12, it is impossible
to achieve Uf independence with non-simultaneous channels.2

The protocol idea. The idea behind our protocol is to enable one of the parties
to learn the secret even when the others do not. Now, once this party has learned
the secret, it is not possible for any other party to obtain U+. Thus, the other
parties can either continue with the execution of the protocol and obtain U , or
they can quit and obtain only U− (which is strictly less than U by the assumption
that Ui ≥ U−

i + 1
p(k) ). The main question is how to construct a protocol so

that one of the parties can learn the secret, but only after there are t∗ ≥ t
parties participating in the reconstruction phase, but then enable the residual
t− 1 parties to reconstruct the secret without the cooperation of the party who
already learned the secret.

We achieve this in the following way. Let s be the secret to be shared; for
simplicity assume that s ∈ {0, 1}k (where k is the security parameter). The
dealer chooses a random r ∈R {0, 1}k and generates shares of r and s with
threshold t and shares of r⊕ s with threshold t− 1 (overall three sets of shares).
The dealer then sends each party its shares. Before proceeding we note that no
set of t−1 parties can reconstruct the secret s, because even though a set of this
size can learn r ⊕ s, without knowing r this is of no help. In addition, ignoring
issues of rationality and utility, it is possible for every set of t parties to obtain
s by just reconstructing the shares of s, or by reconstructing r and r⊕ s (where
the latter requires only t− 1 to participate).

We now informally describe our reconstruction protocol. In the first phase of
the protocol t∗ ≥ t parties reconstruct r by simply sending their shares to all
others. In the second phase, the t∗ parties reconstruct s by sending their shares
one at a time consecutively (here it is crucial that a simultaneous channel not
be used and so we use the simultaneous channel as a non-simultaneous one, by
having every party wait until it receives all previous messages before sending
its own). Note that at the end of the second phase, the last t∗ − t + 1 parties
can reconstruct the secret alone, and thus, they may not send their shares. If
any of the parties does not send their share in the first phase, or if any of the
first t− 1 parties does not send their share in the second phase, then all parties
abort and output ⊥. At the end of this phase, unless all have aborted, there
remain t− 1 parties who have not learned the secret. These parties continue to
the third phase. The crucial observation is that none of these parties can obtain
2 A version of our protocol for the non-simultaneous model can be constructed using

the techniques of [10] and our protocol in Section 5.1. However, note that the protocol
for the non-simultaneous model needs to know the values of Uf

i , Ui and U−−
i , and

therefore the result is only U+-independent.
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U+ since there are already t∗ − t + 1 ≥ 1 parties who have learned the secret s.
We utilize this fact to use any one of the known rational reconstruction protocols
while setting β = 1

2 (where β is a parameter that usually depends on the utility
values, like our β in the lower bound); observe that we fix β irrespective of
the actual utility values. This works because at this point, once one party has
learned the secret, the maximum possible utility the parties can obtain is U . In
particular, even if only one party of the remaining t−1 parties learns the secret,
its utility is still U because one party already knows the secret. Now, the known
rational secret sharing protocols with β = 1

2 all have the property that if the
parties follow σ then they will obtain U (with probability 1). However, if they
do not, then with probability 1 − β they will obtain U−. Thus, the expected
utility by not following σ is 1

2 ·U− + 1
2 ·U < U , and so the parties follow σ and

all learn the secret.

Remark. Our construction can be extended to deal with the case that parties
do prefer that as few as possible other parties learn, but do not care whether
t − 2 or t − 1 parties learn (i.e., it does not make any difference if all learn, or
all but one learn). This is a much milder relaxation on the utility functions; see
the full version for details.
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Abstract. We prove the equivalence, up to a small polynomial approxi-
mation factor

√
n/ log n, of the lattice problems uSVP (unique Shortest

Vector Problem), BDD (Bounded Distance Decoding) and GapSVP (the
decision version of the Shortest Vector Problem). This resolves a long-
standing open problem about the relationship between uSVP and the
more standard GapSVP, as well the BDD problem commonly used in
coding theory. The main cryptographic application of our work is the
proof that the Ajtai-Dwork ([2]) and the Regev ([33]) cryptosystems,
which were previously only known to be based on the hardness of uSVP,
can be equivalently based on the hardness of worst-case GapSVPO(n2.5)

and GapSVPO(n2), respectively. Also, in the case of uSVP and BDD,
our connection is very tight, establishing the equivalence (within a small
constant approximation factor) between the two most central problems
used in lattice based public key cryptography and coding theory.

1 Introduction

Lattice based cryptography is among the most compelling alternatives to tradi-
tional methods based on number theory. Ajtai’s ground-breaking discovery that
lattice problems exhibit a worst-case to average-case connection [1] immediately
yielded one-way functions and collision resistant hash functions based on the
worst-case hardness of several lattice approximation problems, and prompted
researchers to investigate the construction of more complex cryptographic prim-
itives (most notably public key encryption) based on lattices. The first cryp-
tosystem that was based on the worst-case hardness of lattice problems was
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the Ajtai-Dwork cryptosystem [2]. The security of this system was based on
the worst-case hardness of the approximate “unique” Shortest Vector Problem
uSVPO(n8) (in uSVPγ , we are asked to find the shortest vector in a lattice in
which the shortest vector is guaranteed to be at least γ times smaller than the
next shortest non-parallel lattice vector). This was followed by an improvement
to their cryptosystem [11], and the currently best version of it is based on the
hardness of uSVPO(n2). In a later work, Regev built a different cryptosystem
based on worst-case uSVPO(n1.5) [33]. But while other cryptographic primitives
could be built on the hardness of the more general, and better understood from
a complexity-theoretic point of view, shortest vector problem on general lattices
(in its decision variant, GapSVP), cryptosystems seemed to require the hardness
of the potentially easier uSVP lattices. So it was a major open problem as to
whether lattice-based cryptosystems could be based on the hardness of problems
on general lattices, and GapSVP in particular. What made the problem even
more interesting was that simpler cryptographic primitives from “minicrypt”1

such as one-way functions [1], collision-resistant hash functions [1,10,29] identi-
fication schemes [18,25,30] and signature schemes [8,26] could be based on the
worst-case hardness of GapSVP.

A breakthrough in the design of lattice-based cryptosystems, in the sense of
deviating from uSVP, came when Regev built a cryptosystem which was ac-
tually based on GapSVP (as well as some other standard lattice problems),
but the assumption was that approximating GapSVP was hard even by quan-
tum algorithms [35]. Another breakthrough came just recently, when Peikert
finally constructed a cryptosystem that is based on the hardness of GapSVP

under classical reductions [32]. Of course, a different way of obtaining cryptosys-
tems with security based on GapSVP would be to establish a relation between
GapSVP and uSVP, and this is precisely what we do in this paper.

On the practical front, about at the same time as Ajtai’s discovery [1], two
cryptosystems were proposed (GGH [12] and NTRU [15]), which, while lacking
a security proof from worst-case lattice assumptions, are intuitively very appeal-
ing. These cryptosystems rest on the conjectured average-case hardness of the
bounded distance decoding problem (BDD), which can be considered a special
version of the closest vector problem, very much like uSVP is a special version
of the shortest vector problem. Additionally, Regev’s cryptosystem [35] whose
security is based on the worst-case hardness of quantum GapSVP is equiva-
lently based on an average-case version of classical BDD (used in [35] under
the name “Learning with Errors” problem.) So, the average-case BDD problem
seems quite a natural problem to consider in the setting of lattice based public
key encryption.

Our contribution. In this paper, we prove the equivalence, up to a factor of√
n/ logn, of the GapSVP, BDD, and uSVP problems. In particular, we prove

1 Minicrypt [16] consists of all cryptographic primitives that can be derived from one-
way functions, or more generally, exist relative to a random oracle. Collision resistant
hash functions are not known to be reducible to one-way functions, but still exist
relative to a random oracle, so they can be included in minicrypt.
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Cryptosystem GapSVP Approximation Factor Message Expansion

Ajtai-Dwork [2] Õ(n2.5) O(n2)
Regev [33] Õ(n2) O(n)
Peikert [32] Õ(n2) O(log n)

Fig. 1. Cryptosystems based on worst-case GapSVPγ . The results in bold-face are
consequences of the current work.

that for any γ ≥ 1, there is a reduction from BDD1/2γ to uSVPγ , and for
any polynomially-bounded γ, there is a reduction from uSVPγ to BDD1/γ . (We
remark that the BDDα problem is easier for smaller values of the factor α, while
uSVPγ is easier for larger values of γ. For a formal definition of the problems,
see the next section.) So, the problems uSVPγ and BDD1/γ are essentially
equivalent under polynomial time reduction that preserve the approximation
factor up to a small constant γ/γ′ ≤ 2. We also show reductions from uSVPγ to
GapSVPγ , and from GapSVPγ to BDD 1

γ

√
n/ log n

(for any γ > 2
√

n/ log n).

So, in summary, all three problems uSVPγ , BDD1/γ and GapSVPγ are
equivalent up to polynomial approximation factors, and all currently known lat-
tice based public key cryptosystems with classical worst-case security guarantees
[2,32,33] are qualitatively equivalent. In particular, our results imply that the
Ajtai-Dwork [2] and the Regev [33] cryptosystems are based on the hardness
of GapSVPÕ(n2.5) and GapSVPÕ(n2) respectively. And since Peikert’s recent
cryptosystem [32] is also based on the hardness of the GapSVPÕ(n2), the only
major quantitative difference between the three cryptosystems is that Peikert’s
has a smaller message expansion factor (see Figure 1 and also [32] for more
details).

When it comes to the practical GGH [12] and NTRU [15] cryptosystems,
we cannot formally draw any implications from our findings, because ours are
worst-case to worst-case reductions, and the GGH and NTRU cryptosystems
lack security proofs from worst-case problems. Still, our results show that the
(average-case) BDD lattice problems underlying GGH and NTRU, and those
used in more theoretical constructions, have much more in common than previ-
ously thought.

In addition to cryptographic applications, the uSVP problem also found ap-
plicability in areas of learning theory and quantum computation. Klivans and
Sherstov showed that a polynomial-time algorithm PAC-learning the intersec-
tion of nε half-spaces implies a polynomial-time algorithm for solving uSVP

[20]. Regev showed that a solution to the dihedral coset problem would imply
a quantum algorithm for uSVP [34]. Our work implies that the two problems
above are based on the more well-studied GapSVP problem. This seems espe-
cially important for Regev’s result since there was very little prior evidence that
uSVP was hard for quantum computers.
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1.1 Previous Work

There has been a lot of work in establishing relationships between various lattice
problems. In fact, while our central cryptographic result (that the Ajtai-Dwork
and the Regev cryptosystems are based on the hardness of GapSVP) is new,
the components that comprise it are very much based on prior work.

Proving the reduction from GapSVP to uSVP can be broken down into two
separate reductions. In section 4, we give a reduction from BDD to uSVP and
in section 7 we give a reduction from GapSVP to BDD. The BDD to uSVP

reduction uses an idea that dates back to at least the classic result of Lagarias
and Olyzsko [22] where random low-density subset sum instances are converted
to lattices with a unique shortest vector. This same idea has subsequently been
used in various guises in reductions [6,17] as well as in heuristic attacks on
cryptographic primitives [31].

The reduction from GapSVP to BDD is already implicit in the recent work
of Peikert [32]. And in fact, almost the same idea was already used in the work
of Goldreich and Goldwasser [9] where it was proved that GapSVP (and other
lattice problems) are in the complexity class coAM. In that work, an all-powerful
prover was able to convince a polynomially-bounded verifier that the length of
the shortest vector of the lattice is large. The GapSVP to BDD reduction is
obtained by realizing that the all-powerful prover in the coAM protocol can
simply be substituted with a BDD oracle.

The other two reductions presented in our work are also related to some
previous works. The reduction from uSVP to BDD in section 5 uses some ideas
from the SVP to CVP reduction of Goldreich, et al. [13]. The reduction from
uSVP to GapSVP is based on Regev’s reduction from the decision to the search
version of uSVP [33], but our proof is somewhat simpler and tighter.

1.2 Discussion and Open Problems

As mentioned earlier, one of the separations between the lattice-based “minicrypt”
primitives and lattice-based public key cryptosystems was that the former could
be based on the hardness of classical GapSVP, whereas the latter could not. But
our work, as well as the recent work of Peikert [32], shows that there are cryp-
tosystems based on the worst-case hardness of the shortest vector problem in its
decision version. Nevertheless, there still seems to be a difference in the types
of problems that “minicrypt” primitives can be based on and the hardness as-
sumptions needed for public-key cryptosystems. The aforementioned “minicrypt”
primitives [1,8,10,18,25,26,29,30] can all be based on a standard lattice search
problem SIVP, in addition to GapSVP. We remark that, up to a polynomial
loss in the approximation factor, GapSVP,uSVP and BDD can be reduced to
SIVP.2 Moreover the “quantum step” of [35] gives a quantum reduction from
SIVPO(nγ) to BDD1/γ . So, under quantum reductions, all lattice problemsuSVP,

2 This can be done in a variety of ways. For example, one can first reduce GapSVPnγ

to GapSIVPγ using transference theorems, and then use a trivial reduction from
GapSIVPγ to SIVPγ .
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BDD, GapSVP, SIVP are qualitatively equivalent, up to polynomial approxima-
tion factors. However, there is no known classic polynomial time reduction from
SIVP to any of uSVP,BDD,GapSVP (except in trivial cases). We also remark
that the two most famous lattice problems, SVP and CVP, are equivalent un-
der polynomial time reduction up to polynomial approximation factors [17], and
there is an approximation preserving reduction from SIVP to CVP [27]. However,
there is no known reduction in the opposite direction, fromSVP orCVP to SIVP.
So once again, this raises the question of whether lattice-based public key cryp-
tosystems require qualitatively stronger assumptions than simpler cryptographic
primitives (e.g., quantum hardness of SIVP, rather than just classic hardness),
and whether cryptography in general can be based on the worst-case hardness of
SVP or CVP in their search version.

It is interesting to point out that even though the cryptosystems described in
[2,32,33] are all based on the hardness of GapSVP, the construction of Peikert’s
cryptosystem is quite different from the other two. The Regev and Ajtai-Dwork
cryptosystems were based directly on the uSVP problem, while Peikert’s cryp-
tosystem is actually quite similar to the other Regev cryptosystem [35] whose
hardness is based on BDD. At this point, cryptosystems based on BDD are
more efficient since their message expansion factor is smaller (see Figure 1), but
perhaps the connection between GapSVP,BDD, and uSVP demonstrated in
this work can be somehow exploited in order to combine the two seemingly dis-
tinct techniques for cryptosystem construction and build one that is even more
efficient and still based on the hardness of GapSVP.

Another outstanding question on the complexity of lattice problems is whether
the search and length estimation/decision versions of the shortest vector problem
are computationally equivalent. A search to decision reduction for the approxi-
mate SVP would immediately imply the equivalence (up to polynomial factors)
of all lattice problems uSVP, BDD, GapSVP, SVP, CVP, SIVP considered
in cryptography.

There are also many questions about the relationship between lattice prob-
lems that are raised directly from our work. One such problem is whether the
reductions in sections 5 and 6 can be extended to approximation factors that
are not restricted to being polynomial. Another problem is to figure out whether
the small gap that we have in the connection between BDD and uSVP can be
closed. At this point, we have the reduction uSVPγ ≤ BDD1/γ ≤ uSVPγ/2,
which is loose by a factor of 2. We believe that there are three (mutually exclu-
sive) possibilities for possible improvements of this result. It might be possible
to show that:

1. uSVPγ/2 ≤ BDD1/γ or
2. BDD1/γ ≤ uSVPγ or
3. uSVPγ ≤ BDD

√
2/γ ≤ uSVPγ

This open problem also has an intriguing connection with the computational
complexity of uSVPγ . Unlike SVPγ , which is known to be NP-hard for any
constant γ, uSVPγ is only NP-hard for γ = 1 + 2−nc

for some constant c [21].
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So proving the NP-hardness of uSVPγ for larger factors is a very interesting
open problem. One possibility for doing so would be to prove item (2) above.
Combining this with the result of [24] that states that BDDγ is NP-hard for
γ > 1/

√
2, we would obtain that uSVPγ is NP-hard for γ =

√
2.

The possibility of somehow using the reduction from GapSVP to uSVP in
order to prove NP-hardness of uSVP is also intriguing. At this point, the reduc-
tion requires the γ in GapSVPγ to be at least

√
n/ log n, and the GapSVPγ

problem is not NP-hard for such parameters unless the polynomial-time hier-
archy collapses. While there seem to be some technical roadblocks for reducing
this requirement, it is not entirely clear that this should not be possible.

1.3 Organization of the Paper

Those readers interested mainly in the reduction from GapSVP to uSVP (which
implies that the security of the Ajtai-Dwork and Regev cryptosystems is based
on worst-case GapSVP) can simply read sections 4 and 7 for the proofs of
BDD ≤ uSVP and GapSVP ≤ BDD respectively. Section 4 uses a result
from section 3 in order to strengthen the reduction a bit, but this can be safely
skipped.

In order to establish the equality of the three problems, we also need to prove
that uSVP ≤ BDD and uSVP ≤ GapSVP. This is done in sections 5 and 6
respectively.

2 Preliminaries

An n-dimensional lattice is a discrete additive subgroup of R
n. A set of linearly

independent vectors that generates a lattice is called a basis, and we will denote
it as an n ×m matrix B whose m columns bi are the generating vectors. The
lattice generated by the basis B will be written as L(B). The span of a basis
B, denoted Span(B), is the collection of all points By where y ∈ Rm. The
fundamental parallelepiped of an n×m basis B, written as P(B), is defined as
the collection of all points that can be written as By where y ∈ [0, 1)m. Every
point s ∈ Rn has a unique associated point t inside P(B) such that s = t in
the quotient group Span(B)/L(B). This point is denoted t = s mod B and can
be computed from s in polynomial time. For any point t, in Rn and any lattice
L(B), the distance of t to the lattice is written as dist(t,L(B)).

For any point t ∈ R
n and r ∈ R, let B(t, r) denote a ball of radius r centered

at t. The shortest vector of a lattice L(B) is the non-zero vector in L(B) with the
smallest �2 norm. The length of the shortest vector, referred to as the minimum
distance, of L(B) is denoted by λ1(L(B)) (or λ1(B) for short). The notion of
minimum distance can be generalized to define the ith successive minimum λi(B)
as the smallest radius r such that B(0, r) contains i linearly independent lattice
points. The determinant of a lattice L(B) is defined as

√
det(BT B). When B is

a full-rank lattice, the previous definition becomes just |det(B)|. Lattices L(B)
and L(D) are called dual if L(D) = {y : ∀v ∈ L(B), y · v ∈ Z}. If L(B) and
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L(D) are duals, then det(L(B)) = det(L(D))−1. Minkowski’s theorem states
that for any n-dimensional lattice L(B), λ1(L(B)) ≤

√
n · det(L(B))1/n. For

additional information about lattices, please refer to [28].

2.1 GapSVP

Possibly the most well-known lattice problem is the Shortest Vector Problem
(SVP). It comes in both decisional and search versions, but in this paper we are
only interested in the decision version. (The decision version of the problem is
sometimes referred to as the Minimum Distance Problem). The approximation
version of decisional SVP can be defined as a “gap” problem GapSVPγ . In the
GapSVPγ problem, we are given a basis B and a real number d, and are required
to return YES if λ1(L(B)) ≤ d, and return NO if λ1(L(B)) > γd. If λ1(L(B))
falls between d and γd, we can return anything. The GapSVPγ problem is NP-
hard for any constant γ [19,14]. The fastest algorithm for solving GapSVPγ for
1 ≤ γ ≤ poly(n) takes time 2O(n) [3]. Using the LLL algorithm [23], it is possible
to find a vector that has length at most 2n/2λ1(B) in polynomial time.

2.2 uSVP and BDD

We now give precise definitions for the other two lattice problems that are central
to this work. We urge the reader to notice that while the minimum distance
problem described in the previous section is a decision problem, the ones in this
section are search problems.

Definition 1 (γ-unique Shortest Vector (uSVPγ)). Given a lattice B such
that λ2(B) > γλ1(B), find a nonzero vector v ∈ L(B) of length λ1(B).

Definition 2 (α-Bounded Distance Decoding (BDDα)). Given a lattice
basis B and a vector t such that dist(t,B) < αλ1(B), find the lattice vector
v ∈ L(B) closest to t.

The uSVPγ problem is known to be NP-hard when γ = 1 + 2−nc

for some
constant c [21], and it’s an outstanding open problem whether NP-hardness can
be proved for larger γ. There has been some evidence to suggest that uSVP is
easier than the search version of SVP [7], and that approximating the length of
the shortest vector in lattices with a unique shortest vector may be easier than
GapSVP in general lattices [5].

The BDDα problem has been shown to be NP-hard for α > 1/
√

2 [24] and
it is an open problem whether it’s hard for smaller α. We would just like to
draw the reader’s attention to the fact that the BDDα problem becomes harder
as α becomes larger, while the uSVPγ problem becomes easier as γ increases.
Sometimes uSVPγ and BDDα are defined in a more relaxed way, as follows:

Definition 3 (uSVP
′
γ). Given a lattice B such that λ2(B) > γλ1(B), find a

nonzero vector v ∈ L(B) of length ‖v‖ ≤ γλ1(B).
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Definition 4 (BDD
′
α). Given a lattice basis B and a vector t such that dist(t,B)

< αλ1(B), find a lattice vector v ∈ L(B) such that ‖v− t‖ < αλ1(B).

However, these relaxed variants are not any easier to solve than uSVPγ and
BDDα as defined in this paper.

Lemma 1. For any γ ≥ 1, the problems uSVPγ and uSVP
′
γ are equivalent

under polynomial time reductions.

Proof. Clearly, uSVP
′
γ reduces to uSVPγ because any solution to uSVPγ in-

stance B is also a relaxed solution to B as a uSVP
′
γ instance. In the other

direction, let B be a uSVPγ instance. Using a uSVP
′
γ oracle we can find a

nonzero lattice vector v ∈ L(B) of length ‖v‖ ≤ γλ1(B). Using the uSVP re-
striction γλ1 < λ2, we get that the shortest nonzero vector in L(B) must be of
the form cv (for c ∈ R), and can be easily found solving a 1-dimensional SVP

instance L(B) ∩ vR. ��

The equivalence between BDDα and BDD
′
α is a bit trickier.

Lemma 2. For any α ≥ 1, the problems BDDα and BDD
′
α are equivalent

under polynomial time reductions.

Proof. As in the previous theorem, the reduction from BDD
′
α to BDDα is trivial.

Reducing BDDα to BDD
′
α is also trivial when α ≤ 1/2, because there is at most

one lattice point within distance λ1(B)/2 from any target. When α > 1/2 the
reduction is not as trivial because the BDD

′
α oracle may return one of several

lattice points, at distance from the target ranging from dist(t,L(B)) to αλ1(B).
This technical problem can be easily solved as follows. Let (B, t) be a BDDα

instance, and assume without loss of generality that B and t have integer entries.
Consider the BDD

′
α instance (B′, t′) where

B′ =
[

B 0
0T d/α

]
t′ =

[
t
0

]
for some d > 0. Notice that we still have dist(t′,L(B′)) = dist(t,L(B)). In fact,
the extra coordinate and basis vector in B′ have the only effect of reducing the
length of the shortest vector in the lattice to λ1(B′) = min(λ1(B), d/α). Let
μ = dist(t,L(B)). Then using lattice reduction algorithms (see Lemma 3) we
can efficiently compute a lattice point v at distance d0 = ‖v−t‖ ∈ [μ, 2nμ] from
t. If d0 = μ, then we have found the closest lattice point. So, assume d0 > μ.
Notice that when d = d0, the instance (B′, t′) satisfies

αλ(B′) = min{d, αλ(B)} > μ.

So, on input (B′, t′), the BDD
′
α oracle returns a lattice point B′z′ such that

‖B′z′ − t′‖ < αλ(B′) ≤ d. On the other hand, if d = d0/2n, then for any lattice
point B′z′, we have ‖B′z′ − t′‖ ≥ μ ≥ d. Using binary search, we can find a d1
such that the BDD

′
α oracle returns a lattice vector B′z′ such that ‖B′z′−t′‖ < d
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when d = d1
√

1 + 1/d2
0, but not when d = d1. Without loss of generality, we can

assume z′ = [zT , 0] and ‖B′z′ − t′‖ = ‖Bz− t‖.
We claim that d1 ≤ μ, and therefore, since ‖Bz− t‖2 and μ2 are integers,

‖B′z′ − t′‖2 = ‖Bz− t‖ ≤ �d2
1(1 + d−2

0 )� ≤ �μ2 + (μ/d0)2� = μ2.

So, Bz is the lattice vector closest to t.
In order to prove the claim, assume for contradiction that d1 > μ. Then,

when d = d1, αλ(B′) = min(d1, αλ(B)) > μ. So, the BDD
′
α promise is satisfied,

and on input (B′, t′), the BDD
′
α oracle returns a lattice point B′z′ such that

‖B′z′ − t′‖ < αλ(B′) ≤ d1. This is a contradiction because we had assumed the
oracle returned a lattice point such that ‖B′z′ − t′‖ ≥ d1. ��

2.3 Useful Lemmas

The first lemma, due to Babai [4], states that for any point in space, we can
approximate the lattice point closest to it within a factor of 2n.

Lemma 3. There exists a polynomial-time algorithm that, given t ∈ Rn and a
latticeL(B), outputs a lattice vector v ∈ L(B) such that ‖v−t‖ ∈ [dist(t,L(B)),≤
2ndist(t,L(B))].

The second lemma, due to Goldreich and Goldwasser [9], states that two spheres
of large radii whose centers are relatively close to each other will have a relatively
large (non-negligible) intersection.

Lemma 4. Let x be a vector in Rn such that ‖x‖ ≤ d. If s is a point chosen
uniformly at random from B(0, d

√
n/ logn), then with probability δ > 1/nc for

some constant c, ‖s− x‖ ≤ d
√

n/ logn.

3 BDD Self-reduction

In this section, we will show that there is a polynomial-time Cook reduction from
solving BDDα to the slightly easier problem BDDα(1−1/n)c for any constant c.
This reduction will be used to eliminate losses of small factors in our reductions
that involve BDD.

Lemma 5. For any α ≥ 1, there is a polynomial-time Cook reduction from
BDD

′
α to BDD

′
α
√

1−1/2n
.

Proof. Let (B, t) be an instance of BDD
′
α, and y be a vector in L(B) such that

‖t − y‖ < αλ1(B). We do not know the actual distance D = ‖t − y‖, but we
can guess an approximation d such that

D

2 +
√

2
≤ d ≤ D

2−
√

2
(1)
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in polynomially many tries (this follows from Lemma 3 since we can approximate
D to within a factor of 2n). Consider the set

S =
{
t− jd√

n
ui : i ∈ {1, . . . , n}, j ∈ {−1, 1}

}
where ui is a vector with a 1 in the ith position, and 0’s everywhere else. We will
show that this set contains a vector t′ such that ‖t′ − y‖ ≤ ‖t− y‖

√
1− 1/2n,

which would imply that (B, t′) is an instance of BDD
′
α
√

1−1/2n
. And therefore

solving polynomially many (we need to find a d in the correct range as well as
try all 2n possibilities in the set S) instances of BDD

′
α
√

1−1/2n
would result in

a solution to BDD
′
α.

Without loss of generality we can assume that y = 0. Then ‖t‖2 =
∑

i t2i =
D2, and there must exist an i such that |ti| ≥ D√

n
. Then for a j ∈ {−1, 1} that

has the same sign as ti, the vector t′ = t− jd√
n
ui is in S and

‖t′‖2 = ‖(t1, . . . , ti−1, ti −
jd√
n

, ti+1, . . . , tn)‖2

= D2 − 2|ti|d√
n

+
d2

n
≤ D2 − 2dD

n
+

d2

n
≤ D2

(
1− 1

2n

)
where the last inequality follows from (1). ��

Notice that the above lemma cannot be combined with itself to obtain a re-
duction from BDD

′
α to BDD

′
β for an arbitrarily small β. This is because if

β = α
(√

1− 1/2n
)c

, we would need to solve poly(n)c instances of BDD
′
β in

order to solve one instance of BDD
′
α. This is doable in polynomial time only if

c is a constant, which leads to the following corollary:

Corollary 1. For any α ≥ 1 and any constant c, there is a polynomial-time
Cook reduction from BDD

′
α to BDD

′
α(1−1/n)c .

Combining the above corollary with Lemma 2, we obtain:

Corollary 2. For any α ≥ 1 and any constant c, there is a polynomial-time
Cook reduction from BDDα to BDDα(1−1/n)c .

4 Reducing BDD to uSVP

In this section we present the reduction from from the BDD problem to uSVP.
Given an instance (B, t) of BDD, we construct a uSVP instance as in (2), where
μ is the approximate distance from t to L(B) (we do not know this distance, but
can guess a good-enough approximation). The idea is that if (B, t) is an instance
of BDD1/(2γ) for γ ≥ 1, then the lattice L(B′) has a γ-unique shortest vector
and this vector is formed by using the last column of B′ exactly once. Therefore
finding this shortest vector allows us to find the closest vector in L(B) to t.



On Bounded Distance Decoding, Unique Shortest Vectors 587

Theorem 1. For any γ ≥ 1, there is a polynomial time Cook-reduction from
BDD1/(2γ) to uSVPγ .

Proof. Let (B, t) be an instance of BDD1/(2γ) and let μ = dist(t,L(B)) <
λ1(B)/(2γ). Let v be a vector in L(B) such that ‖t − v‖ = μ. The goal of the
reduction is to use a uSVPγ oracle to find v. For simplicity, we will assume that
μ is known (we will explain how to deal with this issue at the end of the proof),
and define the matrix

B′ =
[

B t
0T μ

]
(2)

We will show that the lattice L(B′) contains a γ-unique shortest vector v′ =
[(v − t)T ,−μ]T , and therefore finding such a vector will recover the vector v,
which is the solution to the BDD instance. The length of v′ is

√
μ2 + μ2 =

√
2μ

and so we need to show that all other vectors in L(B′) that are not multiples of
v′ have length at least λ1(B)/

√
2 >
√

2γμ.
Assume for the sake of contradiction that w′ is a vector in L(B′) of length

less than λ1(B)/
√

2 that is not a multiple of v′. We can rewrite the vector
w′ = [(w − βt)T ,−βμ]T where β ≥ 0 and w ∈ L(B), and so

λ1(B)√
2

> ‖w′‖ =
√
‖w− βt‖2 + (βμ)2,

which implies that βμ < λ1(B)/
√

2 and

‖w− βt‖ <

√
λ1(B)2

2
− (βμ)2.

Now consider the vector w − βv ∈ L(B). Since we assumed that w′ was not
a multiple of v′, the vector w − βv is a non-zero lattice vector. To get the
contradiction, we will show that the length of this vector is strictly less than
λ1(B). Using the triangular inequality, we rewrite

‖w−βv‖ = ‖w−βt−β(v−t)‖ ≤ ‖w−βt‖+β‖v−t‖ <

√
λ1(B)2

2
− (βμ)2+βμ.

The last term of the above inequality is maximized when β = λ1(B)/(2μ), and
therefore for all β,

‖w− βv‖ <

√
λ1(B)2

2
− (βμ)2 + βμ ≤ λ1(B),

which gives us the contradiction.
We now discuss the issue of guessing the μ such that μ = dist(t,L(B)).

While we cannot guess such a μ exactly, we can, in polynomial time, guess a
μ such that (1 − 1/n)dist(t,L(B)) ≤ μ ≤ (1 + 1/n)dist(t,L(B)). We can do
this because we can find a d such that dist(t,L(B)) ≤ d ≤ 2ndist(t,L(B))
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(Lemma 3), and so trying all the possible values of μ in the polynomial-sized set
{d(1 + 1/n)i : 0 ≤ i ≤ log1+1/n 2n} at least one “good” μ. We can then redo
the above proof by appropriately modifying some terms by factors of 1− 1/n or
1 + 1/n in order to satisfy the inequalities that appear. The end result will be
that we will have a reduction not from BDD1/(2γ), but from the slightly easier
BDD(1−1/n)c/(2γ) problem for some small constant c. But we can then apply
Corollary 2 to obtain the claimed reduction from BDD1/(2γ) to uSVPγ . ��

5 Reducing uSVP to BDD

Theorem 2. For any polynomially bounded γ(n) = nO(1), there is a polynomial
time Cook-reduction from uSVPγ to BDD1/γ .

Proof. Let B be a uSVPγ instance, i.e., an n-dimensional lattice such that
λ2(B) > γλ1(B), and let p be the smallest prime bigger than γ(n). (Since γ(n)
is polynomially bounded, such a prime can be easily found using trial division.)
We want to find the shortest nonzero vector in L(B). We proceed similarly to
the reduction from SVP to CVP of Goldreich, Micciancio, Safra and Seifert.
(The GMSS reduction corresponds to the special case when p = 2.) For any
i = 1, . . . , n, we consider the lattice

B(i) = [b1, . . . ,bi−1, pbi,bi+1, . . . ,bn]

and invoke the BDD oracle on input (B(i), j · bi) for j = 1, . . . , p − 1. Assume
without loss of generality that the oracle always returns a lattice vector. (If
the input instance violates the BDD promise, the oracle may simply return 0.)
Let vi,j ∈ L(B(i)) ⊂ L(B) the lattice vector returned by the oracle on input
(B(i), j · bi), and let

wi,j = vi,j − j · bi.

Notice that all vectors wi,j belong to the lattice L(B) because vi,j ∈ L(B) and
bi ∈ L(B). The reduction outputs the smallest nonzero vector among the wi,j .

In order to prove the reduction correct, we need to show that at least one
of the wi,j has length λ1(B), so that the reduction outputs a shortest nonzero
vector in L(B). Let u = Bx be the shortest nonzero vector in L(B). Clearly,
there must exists an i ∈ {1, . . . , n} such that p does not divide xi, because
otherwise u/p = B(x/p) ∈ L(B) is an even shorter nonzero lattice vector. Fix
this i, and let j = (−xi mod p) ∈ {1, . . . , p− 1}. We claim that (B(i), j · bi) is a
valid BDD1/γ instance and dist(B(i), j ·bi) = λ1(B). It will follow that on input
(B(i), j · bi), the BDD oracle returns the lattice vector vi,j ∈ L(B(i)) closest to
j · bi, and

‖wi,j‖ = ‖vi,j − jbi‖ = dist(B(i), jbi) = λ1(B).

First, notice that jbi is within distance ‖u‖ = λ1(B) from L(B(i)) because

u =
n∑

k=1

bkxk =
∑
k �=i

bkxk + bi(xi + j)− jbi
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and (xi + j) is a multiple of p. Moreover, jbi /∈ L(B(i)) because any vec-
tor in L(B(i)) − jbi uses bi a nonzero (modulo p) number of times. There-
fore, dist(jbi,L(B(i))) = λ1(B). We also need to show that (B(i), jbi) is a
valid BDD1/γ instance, i.e., dist(B(i), jbi) < (1/γ)λ1(B(i)), or, equivalently,
λ1(B(i)) > γλ1(B). To this end, consider any nonzero vector y = B(i)z. If y is
linearly independent from u, then we immediately get ‖y‖ ≥ λ2(B) > γλ1(B).
So, assume y = cu for some c ∈ Z\{0}. Using the definition of B(i) and the equal-
ity B(i)z = cBx, we get pzi = cxi (and zk = cxk for all k �= i). Since p does not
divide xi (by our choice of i), p must divide c, and ‖y‖ = c‖u‖ ≥ p‖u‖ > γλ1(B).

��

6 Reducing uSVP to GapSVP

Theorem 3. For any polynomially bounded γ, given an oracle for GapSVPγ,
we can solve uSVPγ . Moreover, all calls to the GapSVPγ oracle are of the form
(B, d) where λ2(B) > γd.

Proof. Let B = [b1, . . . ,bk] be the basis of a lattice satisfying λ2(B) > γλ1(B),
and let u be the (unique) shortest vector in L(B). Without loss of generality
we assume B is an integer lattice. We show how to use the GapSVPγ oracle
to obtain a lower rank sublattice of L(B′) that still contains the lattice vector
u of length λ = λ1(B). The shortest vector in L(B) can then be found by
iteratively applying this procedure, until the rank of the lattice is reduced to 1,
and B′ = [±u].

In fact it is enough to show how to find any full-rank proper sublattice L(B′) ⊂
L(B) still containing u. If we repeat this t > n(n + log2 n) times, the result will
be a sublattice S such that det(S) ≥ 2t det(B), because each time we select
a sublattice the value of the determinant at least doubles. The dual D of this
sublattice will have determinant det(D) ≤ 1/(2t det(B)), and using the LLL
algorithm we can find a dual vector v ∈ L(D) of length

‖v‖ ≤ 2n√n det(D)1/n ≤
√

n2n

2t/n det(B)1/n
.

By Minkowski’s bound we have ‖u‖ ≤
√

n det(B)1/n and therefore by the
Cauchy-Schwarz inequality,

|〈u,v〉| ≤ ‖v‖ · ‖u‖ ≤ n2n−t/n < 1.

But 〈u,v〉 is an integer because u ∈ L(S) and v ∈ L(D) and the lattices L(S)
and L(D) are dual. So, it must be 〈u,v〉 = 0, i.e., u is orthogonal to v. Taking
the sublattice of S orthogonal to v gives a lower rank sublattice L(B′) ⊂ L(B)
still containing u.

So, all we need to do is to show that the GapSVP oracle can be used to
find a proper sublattice L(B′) ⊂ L(B) that still contains u. Let p be a prime
bigger than γ and consider the sublattices B0 = [pb1,b2, . . . ,bk] and Bc =
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[b1 + cb2, pb2,b3, . . . ,bk] for c = 1, . . . , p. We claim that there exists a c such
that u ∈ L(Bc). Moreover, for any c, if u /∈ L(Bc), then

λ1(Bc) ≥ min(λ2(B), pλ1(B)) > γλ.

In other words, the instances (Bc, λ), will always fulfill the promise that either
λ1(Bc) ≤ λ or λ1(Bc) > γλ. So, if we could invoke the GapSVPγ oracle on
inputs (Bc, λ) for c = 0, . . . , p, then the oracle would output YES for at least
some c, and for any such c we would have L(Bc) ≤ λ. However, we cannot make
these oracle calls because the value λ is not known, and also because λ might
be an irrational number. Both problems can be easily solved by performing
a binary search as follows. Compute an approximation d to λ using a lattice
approximation algorithm. Say, λ ≤ d < 2nλ. If we invoke the oracle on inputs
(Bc, d), then the oracle will output YES for at least some c ∈ {0, . . . , p}. On
the other hand, if we invoke the oracle in inputs (B, d/2n), then the oracle will
output NO for all c because d/2n < λ ≤ λ1(Bc). Using binary search we can
find a d′ < d′′ in [d/2n, d) such that

– on input (Bc, d
′) the oracle outputs NO for all c,

– on input (Bc, d
′′) the oracle outputs YES for some c,

– d′′ − d′ < 1/(2γ2d).

Notice that the number of iterations performed by the binary search procedure
is at most log2(2nd) + log2(2γ2d) ≤ n + 1 + 2 log2(γd) which is polynomial in
the input size. From the condition d′′ − d′ < 1/(2γ2d), we get that the interval
[(γd′)2, (γd′′)2] contains at most one integer because

(γd′′)2 − (γd′)2 = γ2(d′′ − d′)(d′′ + d′) < 1.

Similarly, (d′′)2 − (d′)2 < 1 and [(d′)2, (d′′)2] also contains at most one integer.
We know that d′ < λ because the oracle outputs NO on all queries (Bc, d

′). Since
B is an integer lattice, λ2 is an integer. If [(d′)2, (d′′)2] contains no integer value,
then it must be λ > d′′, and for all oracle calls (Bc, d

′′) that were answered with
YES, it must be λ1(Bc) ≤ λ. On the other hand, if [(d′)2, (d′′)2] contains an
integer k, it may or may not be the case that λ =

√
k. There are two cases:

– If (γ2k, (γd′′)2] contains no integer, then for every c, either λ1(Bc) ≤ d′′ or
λ1(Bc) > γd′′. So, we can proceed as before, and select any c for which the
oracle output YES on input (Bc, d

′′).
– If there is an integer k′ ∈ (γ2k, (γd′′)2], then we select any value d0 ∈

[
√

k,
√

k′/γ), and call the oracle again on input (Bc, d0). The oracle will
output YES on at least one of these calls, and the corresponding lattice is
guaranteed to satisfy λ1(Bc) ≤ λ.

We will now prove the claim that there exists a c ∈ {0, . . . , p} such that
u ∈ L(Bc). Let u = Bx for some integer vector x = (x1, x2, . . . , xk)T . If p | x1,
then clearly u is a vector in L(B0). If p � x1, then we will show that u ∈ L(Bc)
for c = x2x

−1
1 (mod p). Consider the vector x′ = (x1, (x2 − cx1)/p, x3, . . . , xn).

Notice that Bcx′ = Bx and by our choice of c, x has all integer coordinates
since x2 − cx1 ≡ 0(mod p). Therefore u is also a vector in L(Bc). ��
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7 Reducing GapSVP to BDD

In this section we give a reduction from GapSVP to BDD. When combined with
the BDD to uSVP reduction from section 4, we obtain the GapSVP to uSVP

reduction which proves that the Ajtai-Dwork [2] and the Regev [33] cryptosys-
tems are based on the hardness of the approximate minimum distance problem.
As mentioned earlier, the GapSVP to BDD reduction is already implicit in the
recent work of Peikert [32]. We repeat it here for completeness and also because
in Peikert’s work, this reduction is entangled with some extra technicalities that
pertain to his main result.

Theorem 4. For any γ > 2
√

n/ logn there is a polynomial time Cook-reduction
from GapSVPγ to BDD 1

γ

√
n/ log n

.

Proof. Let (B, d) be an instance of GapSVPγ . We need to output YES if
λ1(B) ≤ d and NO if λ1(B) > γd. In all other instances, any answer will suffice.

We repeat the following procedure poly(n) times. Generate a uniformly ran-
dom point s in B(0, d

√
n/ logn), and let t = s mod B. Feed the instance (B, t)

to the BDD 1
γ

√
n/ log n

oracle and receive the answer v. If we ever have the case

that v �= t − s, we output YES. On the other hand, if all poly(n) calls to the
oracle result in v’s such that v = t− s, we output NO.

We will now prove that the reduction is correct. Suppose that (B, d) is a NO
instance of GapSVPγ . Then

dist(t,L(B)) = dist(s,L(B)) ≤ d
√

n/ logn <
λ1(B)

γ

√
n/ logn,

and so (B, t) is a valid instance of BDD 1
γ

√
n/ log n

. Furthermore, since γ >

2
√

n/ log n, the distance of t from the lattice is less than λ1(B)/2, and so there
is only one possible lattice vector within distance λ1(B)

γ

√
n/ logn of t. And since

the lattice vector v = t− s is at a distance ‖s‖ ≤ d
√

n/ logn < λ1(B)
γ

√
n/ logn

away from t, it must be the vector that the BDD oracle returns. So, the reduction
certainly outputs NO.

Now suppose that that (B, d) is a YES instance of GapSVPγ , which means
that λ1(B) ≤ d. Let x be a lattice point whose length is λ1(B). In order for the
BDD oracle to successfully fool us into replying NO, he needs to output v = t−s
in every round of the protocol. Notice that this is equivalent to the oracle knowing
s. But every time we pick an s and reveal t = s mod B to the oracle, by Lemma
4, there is some 1/poly(n) probability δ that ‖s − x‖ ≤ d

√
n/ log n. And in

this case, given t, the oracle cannot know with probability greater than 1/2
whether we randomly generated s or s−x (since both s mod B and s−x mod B
equal to t). Therefore for a δ fraction of the t’s that we give him, the oracle
cannot guess the exact s with probability greater than 1/2. And so guessing
the s in all poly(n) = n/δ rounds has negligible success probability. Therefore
with probability exponentially close to 1, some v will not equal t − s and our
algorithm will reply YES. ��
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8 Reductions for Other �p Norms

Throughout this work, we have only dealt with the �2 norm, and we now briefly
discuss how our reductions translate to arbitrary �p norms. The reduction from
uSVP to BDD and uSVP to GapSVP in sections 5 and 6 don’t rely on any
specific properties of the �2 norm and so the reductions go through for other
norms with only very slight modifications. In the reduction from BDD to uSVP

in section 4, we repeatedly used the definition of the �2 norm, and so the re-
ductions do not go straight through. Nevertheless, a simple modification of the
proof which involves appropriately changing the equalities and inequalities to
correspond with the definitions of the �p norm of interest, results in a reduction
from BDD1/(2γ) to uSVPγ just as for the �2 norm.

The only reduction that becomes weaker for �p norms where p �= 2 is the
reduction from GapSVP to BDD in section 7. The

√
n/ logn factor loss in

the reduction for the �2 norm is directly tied to the fact that spheres that are
a distance of d apart must have radii of at least d

√
n/ logn in order for their

intersecting volume to be a non-negligible fraction of their total volume (Lemma
4). On the other hand, in �p norms for p �= 2, the radii of the spheres have to
be larger for their intersection to be non-negligible. It’s not hard to see that for
the �1 and �∞ norms, the radii need to be at least dn/ log n, and it is shown
in [9] that this suffices for all other �p norms as well (although it is not a tight
bound when 1 < p <∞). So essentially using an analogue of Lemma 4 for other
�p norms, we can obtain a reduction from GapSVPγ to BDD 1

γ n/logn for any
γ > 2n/ logn.
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1 Introduction

The problem of “learning a linear function with errors” (LWE) has found many
interesting cryptographic and complexity-theoretic applications in the last few
years (see [32,36,46,37,45,25], to name a few). Informally, the LWE problem,
for a dimension n and modulus q, is to recover a secret vector s ∈ Zn

q given
arbitrarily many “noisy random inner products” (ai, bi ≈ 〈ai, s〉) ∈ Zn

q × Zq,
where the ai ∈ Zn

q are uniform and independent. The “learning parity with
noise” problem (LPN) is the special case where q = 2. These problems have been
studied extensively in several works, and their known best algorithms require
2O(n log q/ log n) time and space [11].

Much evidence suggests that no efficient algorithm can solve LWE/LPN with
better than negligible probability, even using quantum computation. In partic-
ular, the LPN problem can be formulated as the famous problem of decoding
a random binary linear code, and therefore a successful attack would imply a
major breakthrough in coding theory. The LPN problem also occupies a central
position in learning theory: an efficient algorithm for it could be used to learn
several important concept classes, including 2-DNF formulas, juntas, and any
function with a sparse Fourier spectrum [21].

For the case of the LWE, hardness is supported by a remarkable connection
to worst-case lattice problems. Regev [46] showed that solving LWE (for cer-
tain Gaussian-like error distributions) is as hard as quantumly solving some
apparently intractable lattice problems, such as the approximate shortest vec-
tor problem GapSVP. Recently, Peikert [43] also gave a classical reduction from
GapSVP (and variants) to LWE.

The LWE/LPN problems provide an interesting combination of two useful
properties: efficiency, i.e., instances of the problem can be generated by “cheap”
operations such as (modular) addition and multiplication (or even simple bit op-
erations in the case of LPN), and simple algebraic structure, i.e., the noisy inner
products are computed by an “almost linear” function. Indeed, previous works
relied on these properties to obtain cryptography with low complexity [32,4,35,6],
and to derive desirable cryptographic features such as random self-reducibility
(with respect to the choice of a) and pseudorandomness [10]. Interestingly, other
problems that provide the latter feature, such as those from number theory,
typically require relatively expensive computational operations such as expo-
nentiation over large groups.

1.1 Our Results

In this paper, we further exploit the properties of LWE/LPN to obtain new
cryptographic constructions that are both efficient and enjoy desirable security
properties.

Circular-secure encryption schemes. One of our main applications is the
construction of efficient encryption schemes (in both the symmetric- and public-
key settings) that achieve security against certain key-dependent message (KDM)
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attacks [9]; that is, they remain secure even when the adversary is allowed to
obtain encryptions of messages that depend on the secret keys themselves, via
any affine function of the adversary’s choice. Moreover, our schemes are “circular
secure” [15], that is, they remain secure even in the presence of key “cycles”
or even “cliques,” where any user’s secret key may be encrypted under any
user’s public key. Such usage arises in key-management systems, in anonymous
credential systems [15], and in the context of “axiomatic security” [1] (See [13]
for a detailed discussion).

In the last few years, the notions of KDM and circular security have been
studied extensively [29,8,14,7,31,28]. Without resorting to the use of random
oracles, constructing a circular-secure encryption scheme (either in the private-
key or public-key setting) was a long-standing open problem. This question was
recently resolved by Boneh et al. [13], who constructed such a public-key encryp-
tion scheme based on the DDH assumption. Their construction relies on a clever
use of the homomorphic properties of the DDH problem. However, exploiting
these properties incurs a large overhead in both computation and communica-
tion. In contrast, our approach yields very natural encryption schemes that have
significant efficiency advantages over the prior scheme of [13].

The contrast is clearest when we compare the current “cost” of achieving
security for key-dependent messages against the cost of achieving ordinary se-
mantic security, for a given computational intractability assumption. Comparing
the scheme of [13] to other semantically secure encryption schemes based on the
DDH problem, the cost is dramatic: While standard encryption schemes like
ElGamal can encrypt their key, which is about k = log |G| bits (where G is the
underlying group of the DDH problem), using a single exponentiation and one
group element of overhead in the ciphertext, the scheme given in [13] requires
about k exponentiations and group elements of ciphertext overheard per bit of
the secret key. Encrypting key-independent messages is about k times more effi-
cient, but it still incurs a factor k loss over standard ElGamal. In contrast, our
constructions are essentially as efficient as prior semantically secure schemes
based on essentially the same hardness assumptions.

Specifically, our public-key schemes are variants of Regev’s LWE-based scheme
and the more-efficient amortized version of Peikert, Vaikuntanathan, and Wa-
ters [44], with several non-trivial modifications to facilitate the proof of security
for key-dependent messages. The most efficient version takes only Õ(n) amor-
tized time per message symbol for both encryption and decryption, and the
ciphertext is only a constant factor larger than the plaintext.

Our symmetric-key cryptosystem is based on the LPN problem. Its cipher-
texts are only a constant factor larger than the plaintexts, and both encryption
and decryption can be performed by Boolean circuits of quasi-linear size (in
the message length), which is almost optimal even for standard CPA-security.
The scheme is a close variant of the LPN-based encryption scheme of Gilbert
et al. [26], which was proved secure only in the standard sense (i.e., without
key-dependent messages), and did not achieve quasi-linear time efficiency. The
scheme was discovered independently by the first author and by Dodis et al. [19],
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who proved security in the presence of key-leakage under a stronger version of
the LPN assumption. We stress that key-leakage security is incomparable to the
notions studied here.

Fast Pseudorandom Objects

Pseudorandom generator. Based on the hardness of LPN, we construct a pseudo-
random generator (PRG) that doubles its input length and can be
computed by a Boolean circuit of size Õ(n) (i.e., quasilinear size). This is consid-
erably faster than previous constructions of linear-stretch PRGs (e.g., [18,17,24]),
which suffer from polynomial overhead. (Similar limitations also hold for previ-
ous coding-based constructions [10,22].) To the best of our knowledge, the only
exception is the construction of [5] which is computable by linear-size (NC0)
circuits. This construction is based on a plausible, yet non-standard, assumption
of Alekhnovich [3]. Roughly speaking, that assumption says that a noisy ran-
dom codeword of a code with sparse generating matrix is pseudorandom. This
assumption is relatively new and, while seemingly reasonable, it has not been
widely studied yet. Moreover, unlike our LPN-based assumption, Alekhnovich’s
assumption posits pseudorandomness rather than just one-wayness, which is in
general a stronger notion.

Application. Typical cryptographic functions introduce a multiplicative compu-
tational overhead that grows with the desired level of security. Recently, Ishai et
al. [34] showed that many cryptographic tasks can be implemented while incur-
ring only a constant computational overhead compared to insecure implemen-
tations of the same tasks.1 These results were based on the PRG construction
of [5], and hence on non-standard intractability assumptions.

By plugging our PRG into the reductions of [34], we get implementations with
polylogarithmic overhead for several primitives such as commitment schemes,
symmetric encryption schemes, and public-key encryption schemes (under the
assumption that the latter exist). This provides an interesting alternative to
the original suggestion of [34], as it relies on a standard assumption and still
gives a considerable improvement over typical (non-IKOS) schemes.2 We view
this result as an important support for the possibility of cryptography with low
overhead.

Randomized weak pseudorandom function. We also obtain a simple construction
of randomized weak pseudorandom function family (RWPRFs). This primitive
1 We make the usual security requirement that the advantage of any polynomial-time

attacker must be negligible in the input length.
2 A trivial construction of primitives with polylogarithmic security can be achieved

by starting from an exponentially strong primitive (e.g., PRG) and applying it sepa-
rately on input blocks of polylogarithmic size. This construction results in primitives
with weak (quasi-polynomial) security. In contrast, our construction starts from a
weaker assumption (in particular, it does not require exponential hardness) and it
results in a primitive whose security is essentially the same as the security of the
assumption (up to standard polynomial loss).
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relaxes the standard notion of pseudorandom function family [27] in two ways: it
provides security only when the function is evaluated on randomly chosen points,
and it uses secret internal randomness. To make this notion nontrivial we require
an efficient “equality-tester” that verifies whether different invocations of the
PRF (with independent internal randomness) correspond to the same preimage.
While this primitive is considerably weaker than PRFs, we argue that in some
scenarios RWPRFs can be used instead of standard PRFs. Moreover, the use of
internal randomness provably admits more efficient constructions.3

Our construction has several interesting syntactic properties: it is injective
and symmetric (one can replace the roles of the argument and the key without
violating security). Moreover, we describe a simple constant-round protocol for
obliviously evaluating the function. Such a protocol allows two parties, one hold-
ing a point x and another holding a key k, to evaluate the function fk(x) without
learning each other’s inputs. Pseudorandom functions that allow oblivious eval-
uation (OPRFs) were recently shown to be a useful cryptographic tool [23,30].
An oblivious RWPRF can replace an OPRF in some settings (despite its weaker
cryptographic properties), and hence our construction provides an alternative to
the relatively small number of existing schemes (see [23] and references within).

Practical efficiency vs. asymptotic efficiency. In this paper, we treat effi-
ciency in asymptotic terms. Still, we believe that some of our results may turn
to be useful in practice as well. Indeed, our LPN-based constructions mainly
rely on addition and multiplication of large binary matrices. These operations
can be performed very fast in practice [12,2] even if one does not employ the
asymptotically-fast algorithms used in our analysis (e.g., for matrix multiplica-
tion), which might not be applicable in practice. In particular, as in the case
of the HB protocol [32,35], our schemes (or variants of them) might turn to be
useful for hardware implementation by computationally-weak devices. We leave
this direction for future study.

1.2 Techniques

Our LWE-based public key construction involves a few techniques that may be
of independent interest and application.

In the LWE-based cryptosystems of [46,44], the secret key is a vector s ∈ Zn
q

chosen uniformly at random, while the message space is Zp for some p� q. An
important idea in the work of Boneh et al. [13] is the ability to generate, given
only a public key, a ciphertext that decrypts to a message related to s. Because
decryption in the LWE-based schemes of [46,44] is essentially a linear operation,
it is easy to generate ciphertexts that are somehow related to s. However, because

3 For example, it can be shown that PRFs cannot be computed by constant-depth
circuits with unbounded fan-in AND and XOR gates [38]. In contrast, our construc-
tion can be computed by such circuits of depth 2. Moreover, one can show that,
under plausible assumptions, RWPRFs can be constructed even in weaker classes
such as NC0.
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the entries of s are taken modulo q � p, it is unclear how to “fit” the entries
into the message space.

We address this issue by instead drawing the entries of the secret key s from
the very same (Gaussian) error distribution as in the underlying LWE problem.
For a sufficiently “narrow” error distribution, each entry of s can take on at
most p different values (with overwhelming probability), allowing the entire en-
try to fit unambiguously into the message space. Moreover, this change does not
affect the hardness of the LWE problem: we show a simple, tight reduction from
the standard LWE problem to the variant just described. Abstractly, the reduc-
tion may be viewed as putting the LWE distribution into Hermite normal form
(HNF); interestingly, the HNF was also used by Micciancio [39] and Micciancio
and Regev [41] as a way to improve the efficiency of lattice-based cryptosystems.

The second important technique relates to the faithful simulation of key-
dependent messages. We modify the encryption algorithms of [46,44] to ensure
that ciphertexts themselves have a “nice” distribution that supports the desired
homomorphisms. Essentially, our encryption algorithms apply Regev’s worst-
case to average-case reduction (from lattices to LWE) to the (already random)
public key itself; we also generalize Regev’s analysis to deal with the amortized
system of [44]. In addition, to support the homomorphisms we need to rely on
LWE with a prime power modulus q = pe, where p is the size of the message
space. Fortunately, a hybrid-argument extension of the usual pseudorandomness
proof [10,46] for LWE also works for prime power moduli, as long as the error
distribution is sufficiently “narrow.”

A final interesting technique concerns a more general attack involving key cy-
cles/cliques, where every user’s secret key may be encrypted under every user’s
public key. Simulating such a scenario seems to require knowing a relation be-
tween every pair of (unknown and independent) secret keys. Conveniently, the
above-described transformation for LWE (allowing the secret s to be drawn from
the error distribution) can also be used to produce many independent keys, and
happens to produce the desired linear relations among them as a side effect!

2 Preliminaries

For a probability distribution X over a domain D, let Xn denote its n-fold
product distribution over Dn. The uniform distribution over a finite domain
D is denoted U(D). We write Un to denote the special case of the uniform
distribution over {0, 1}n and (by abuse of notation) the uniform distribution
over Zn

2 . Let Berε denote the Bernoulli distribution over {0, 1} that is 1 with
probability ε and 0 with probability 1− ε.

We write negl(n) to denote an arbitrary negligible function, i.e., one that
vanishes faster than the inverse of any polynomial. We say that that a probability
is overwhelming if it 1− negl(n).

The statistical distance between two distributions X and Y over a count-
able domain D (or two random variables having those distributions) is defined
as Δ(A, B) = maxA⊆D |fX(A) − fY (A)|. We write X ≡ Y if the two random
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variable are identically distributed. We say that two ensembles {Xn} and {Yn}
of distributions indexed by n are statistically indistinguishable if Δ(Xn, Yn) =
negl(n). The ensembles are computationally indistinguishable if for every proba-
bilistic polynomial-time adversaryA, the distinguishing advantage |Pr[A(Xn) =
1]− Pr[A(Yn) = 1]| = negl(n). A distribution ensemble {Xn}n∈N is pseudoran-
dom if Xn is computationally indistinguishable from U(Dn) where Dn is the
domain of Xn (which is usually clear from the context).

2.1 Noisy Learning Problems

We recall the learning with error (LWE), due to Regev [46], for which learning
parity with noise (LPN) is a special case.

For positive integers n and q ≥ 2, a vector s ∈ Zn
q , and a probability dis-

tribution χ on Zq, define As,χ to be the distribution over Z
n
q × Zq obtained

by choosing a vector a ∈ Zn
q uniformly at random, an error term x ← χ, and

outputting (a, 〈a, s〉+ x).

Definition 1. For an integer function q = q(n) and an error distribution χ
over Zq, the learning with errors problem LWEq,χ in n dimensions is defined as
follows: given access to an oracle that produces independent samples from As,χ

for some arbitrary s ∈ Zn
q , output s with noticeable probability, e.g., 1/2, over

all the randomness of the oracle and the algorithm.
The learning parity with noise problem LPNε is the special case of LWEq,χ for

q = 2 and χ = Berε.

We say that LWEq,χ is hard (or intractable) for a class of adversaries (by default,
probabilistic poly(n)-time algorithms) if there does not exist an algorithm in the
class that can solve it for infinitely many n.

Note that LWE as defined above is a “worst-case” style of problem in that
the value of s ∈ Zn

q is arbitrary, not random as is typical in cryptography. This
is not too important of a distinction, because LWE is amenable to randomized
self-reduction and amplification techniques [10,46]. In particular, here we give
a reduction from the form of the problem in Definition 1 to an average-case
decision problem, for prime power moduli and “narrow enough” error distribu-
tions. In other words, under the hypotheses of the lemma, the LWE distribution
is pseudorandom if the search problem is hard.

Lemma 1. Let q = pe be a prime power with p = poly(n), and let χ be a
distribution over Zq that produces an element in {− p−1

2 , . . . , p−1
2 } ⊂ Zq with

overwhelming probability. There is a probabilistic polynomial-time reduction from
solving LWEq,χ to distinguishing (with non-negligible advantage) between As,χ for
uniformly random s ∈ Zn

q and the uniform distribution U = U(Zn
q × Zq).

Proof (sketch). The proof is a simple extension of prior ones for prime moduli
(see, e.g., [46, Lemma 4.2]), therefore we sketch only the new elements. The idea
is to use a distinguisher to recover the least significant digit (in base p) of each
entry of s, after which the error distribution can be made narrow enough to solve
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for all the remaining digits of s via rounding and linear algebra. Due to space
limitations, the entire proof is deferred to the full version.

For i = 0, . . . , e, define the hybrid distribution Ai
s,χ that is obtained by draw-

ing a sample (a, b) from As,χ and outputting (a, b + pi · r) ∈ Zn
q × Zq for a

uniformly random r ∈ Zq (freshly chosen for each sample). By a hybrid argu-
ment and standard amplification techniques, we can use an algorithm D that
distinguishes between As,χ and U to solve for s′ = s mod p. Having done so, we
can then transform As,χ into Ap·t,χ, where p · t = s − s′ ∈ Zn

q . A sample from
the latter distribution is of the form (a, b = p · 〈a, t〉 + x) for x ← χ; because
x ∈ {− p−1

2 , . . . , p−1
2 } with overwhelming probability, we may round b to the

nearest multiple of p and learn the value of 〈a, t〉 mod p exactly. With enough
samples of this form, we may then solve for t by linear algebra.

We are interested in error distributions χ over Zq that are derived from Gaus-
sians. For any r > 0, define the one-dimensional Gaussian probability distri-
bution by its density function Dr(x) = exp(−π(x/r)2)/r. For α > 0, define
Ψ̄α to be the distribution on Zq obtained by drawing y ← Dα and outputting
�q · y� mod q. Regev [46] demonstrated strong evidence for the hardness of the
LWE problem with such a Gaussian error distribution, by giving a quantum
reduction from approximating well-studied lattice problems to within Õ(n/α)
factors in the worst case to solving LWEq,Ψ̄α

, when (say) α · q ≥ n. Recently,
Peikert [43] also gave a related classical reduction for similar parameters.

For our public-key encryption algorithms, we also need the discrete Gaussian
distribution DZm,r over the integer lattice Zm, which assigns probability propor-
tional to

∏
i∈[m] Dr(xi) to each x ∈ Zm. It is possible to sample efficiently from

DZm,r for any r > 0 [25].

2.2 Key-Dependent Message Security

We now define key-dependent message security for encryption, following the pre-
sentation of Boneh et al. [13], which generalizes the definition of Black et al. [9].
In this definition, an adversary plays a game with a challenger that answers en-
cryption queries for functions of the users’ secret keys. The adversary is restricted
to queries for functions from a certain family, which we will denote F ⊂ {f | f :
K� →M}, where K andM are the keyspace and message space of the encryption
scheme. Strictly speaking, F is a family of sets of functions parameterized by the
security parameter n and the number of users �.

Let us fix a public-key encryption scheme, and let A be an adversary. We
will write Enc(pk, m) to denote encrypting message m under public key pk. The
game proceeds as follows:

1. The challenger chooses a bit b ← {0, 1}. It also chooses (pk1, sk1), . . . ,
(pk�, sk�) by running the scheme’s key generation algorithm � times. It gives
pk1, . . . , pk� to the adversary.

2. A makes encryption queries of the form (i, f), where 1 ≤ i ≤ � and f ∈ F .
To process a query, if b = 0, the challenger computes m ← f(sk1, . . . , sk�)
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and c← Enc(pki, m). If b = 1 it instead sets c← Enc(pki, 0|m|). It returns c
to A.

3. A attempts to guess b and outputs b̂ ∈ {0, 1}.

The scheme is KDM-CPA secure with respect to F if for every efficient adver-
sary A, the probability of guessing b is at most 1

2 + negl(n) for some negligible
function negl(·).

We can define KDM-CPA security for symmetric key encryption similarly: in
phase one, the challenger generates secret keys and gives the adversary nothing,
and in phase two it uses the secret keys to encrypt (and as input to f). Ev-
erything else is exactly the same. Finally, the definition of CCA-KDM security
is similar except that the adversary has also an oracle access to the decryption
function Dec(k, ·) (but cannot query this oracle on any output given to him by
the encryption oracle).

If all constant functions (that is, functions fm such that fm(k1, . . . , k�) = m
for some m ∈ M) are contained in F , then security with respect to F implies
standard CPA security. If the projection functions (fj such that fj(k1, . . . , k�) =
kj for some j) are contained in F , then security with respect to F implies (and
is actually stronger than) circular security.

3 Public-Key Encryption

In this section we design a public-key cryptosystem based on the LWEq,χ prob-
lem, where as usual, the error distribution χ is the discretized Gaussian Ψ̄α for
parameter α = α(n) ∈ (0, 1), and the modulus q is chosen to satisfy various
constraints.

3.1 A Generic Transformation

We start with a useful transformation that reduces the LWE problem to one in
which the secret itself is chosen from the error distribution χ, essentially putting
the LWE distribution into “Hermite normal form.”

Lemma 2. Let q = pe be a prime power. There is a deterministic polynomial-
time transformation T that, for arbitrary s ∈ Zn

q and error distribution χ, maps
As,χ to Ax̄,χ where x̄← χn, and maps U(Zn

q ×Zq) to itself. The transformation
also produces an invertible square matrix Ā ∈ Zn×n

q and b̄ ∈ Zn
q that, when

mapping As,χ to Ax̄,χ, satisfy x̄ = −ĀT s + b̄.

Proof. The transformation T is given access to some distribution D over Zn
q ×Zq

(where D may be either As,χ or U = U(Zn
q × Zq)), and proceeds in two stages.

In the first stage, T performs some initial processing to obtain Ā, b̄. It does
this by drawing several pairs (a, b) from D, and keeping certain of them until it
has accumulated a set of n pairs {(āi, b̄i)} that will make up Ā, b̄ in the natural
way. With each new sample (a, b), T checks whether a is linearly independent
modulo q of all those āi that have been kept so far; if so, (a, b) is kept, otherwise
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it is discarded. Note that the probability of keeping a particular sample is at
least ϕ(q)/q ≥ 1/2 (where ϕ denotes the Euler totient function), so with high
probability, T accumulates the required n samples after drawing O(n2) samples
from D. Now by construction, Ā is invertible modulo q. Also observe that each
sample is kept or discarded based only on its a component, so when D = As,χ,
we have b̄ = ĀT s + x̄ where x̄ is drawn from χn.

The second stage actually transforms (fresh) samples from D into samples
from a possibly different distribution. Given a draw (a, b) ∈ Zn

q × Zq from D, T
outputs (a′, b′) ∈ Zn

q × Zq, where

a′ = −Ā−1a and b′ = b + 〈a′, b̄〉.

Observe that because Ā is invertible modulo q and a ∈ Z
n
q is uniform, a′ ∈ Z

n
q

is uniform as well. We now consider the two cases for D. If D = U , then (a′, b′)
is also distributed according to U , because b ∈ Zq is uniform and independent
of a. If D = As,χ, then b = 〈a, s〉+ x for some x← χ, so we have

b′ = 〈a, s〉+ x− 〈Ā−1a, ĀT s〉+ 〈a′, x̄〉 = 〈a′, x̄〉+ x.

Therefore, (a′, b′) is distributed according to Ax̄,χ, as desired.

3.2 The Cryptosystem

We now define a KDM-secure cryptosystem based on the LWE problem. For
technical reasons, our construction uses a prime power modulus q = p2 of a
certain size, with messages taken over Zp. (Other choices of q = pe are possible,
but q = p2 seems to correspond to the mildest underlying assumption.) Note
that any element v ∈ Zq may be written as v = (v1, v0) ∈ Zp × Zp, where v1
and v0 are the most and least significant digits in the base-p representation of
v, respectively, with the digits chosen from the set of residues {− p−1

2 , . . . , p−1
2 }.

Recall that by Lemma 1, the LWE distribution As,χ (for uniform s ∈ Zn
q ) is

pseudorandom if the search problem LWEq,χ is hard, and if the error distribution
χ is concentrated on {0}×Zp (which will be the case in our system, by design).

For simplicity, we start with a scheme that encrypts a single element of Zp at
a time, later extending it to an amortized version in Section 3.4. Our scheme is
very similar to Regev’s cryptosystem [46], with two main differences. First, the
entries of the secret key s ∈ Z

n
q are chosen from the (narrow) error distribution

χ (rather than uniformly), so that they may be represented unambiguously as
elements of the message space Zp (see Lemma 3); this is secure due to Lemma 2.
Second, we modify the encryption algorithm so that it induces a ‘nice’ distri-
bution over ciphertexts (see Lemma 4). Specifically, the encryption algorithm
chooses a random vector r ∈ Zm from a discrete Gaussian distribution (rather
than from {0, 1}m), and adds a small extra term e to ‘smooth out’ the ciphertext
distribution. These steps may be seen as applying Regev’s main worst-case to
average-case reduction [46] to the (already random) public key.
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Construction 1. The construction is parametrized by q = p2 for some prime
p, and an error parameter α; we instantiate these parameters below. Let χ = Ψ̄α,
the discretized Gaussian over Zq.

– Key generation: The secret key is s← χn. The public key is (A,b) ∈ Zn×m
q ×

Zm
q , which is made up of m ≥ 2(n +1) lg q draws (ai, bi) from As,χ. That is,

b = AT s + x for independent A← Zn×m
q and x← χm.

– Encryption: Before specifying the encryption algorithm, we define a dis-
tribution EA,b over Zn

q × Zq, which has parameters r = ω(
√

log m) and
r′ = r ·

√
m · (α + 1

2q ). The distribution is obtained by choosing r ← DZm,r

and e← Ψ̄r′ and outputting

(Ar, 〈r,b〉+ e) ∈ Z
n
q × Zq.

To encrypt a message z ∈ Zp given the public key (A,b), draw a sample
(u, v) from EA,b and output the ciphertext (u, c = v + z · p) ∈ Zn

q × Zq.
– Decryption: To decrypt a ciphertext (u, c) given the secret key s, output the

z ∈ Zp such that z · p is closest to c− 〈u, s〉 modulo q.

The main constraints on the parameters are given by the correctness requirement
(α cannot be too large) and the hardness requirement (α should be large enough
to invoke the worst-case lattice connections of [46,43]). These constraints are
satisfied if the following inequalities hold true:

n

q
=

n

p2 ≤ α ≤ 1
p ·
√

m · ω(log n)
(1)

By routine calculations, it is possible to satisfy the above inequalities for m =
O(n log n), p = Õ(

√
mn), and α = 1/Õ(m ·

√
n). This yields an underlying

worst-case approximation factor of Õ(n/α) = Õ(n2.5) for lattice problems such
as GapSVP.

Theorem 2. For parameters satisfying Equation (1), the above cryptosystem is
KDM-secure with respect to the set of affine functions over Zp, assuming that
LWEq,χ is hard.

3.3 Proof of Security

Overview. The proof of Theorem 2 has the following structure. First we show
completeness, including correct decryption of key-dependent messages. Next we
prove KDM security in two main steps.

The first step is to show that the view of the adversary in the real attack
game may be generated faithfully, up to negligible statistical distance, via an
alternate game: starting from the distribution As,χ (for uniformly random s ∈
Zn

q ), the game invokes the transformation from Lemma 2 several times to produce
independent distributions As1,χ, As2,χ, . . . for each user (where each si ← χn),
and generates the users’ public keys from these distributions in the natural way.
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The transformation additionally outputs an invertible linear relation modulo q
(hence modulo p as well) between each si and s, thus linking every pair si, sj in a
known way. The game answers the adversary’s (key-dependent) message queries
using these relations and the linear homomorphisms of the cryptosystem; this is
where we use the fact that the system has a ‘nice’ ciphertext distribution. The
crucial property of this game is that, aside from oracle access to As,χ, the game
works without needing to know any of the secret vectors s, s1, s2, . . ..

The second (and final) step is to consider a game that proceeds in exactly
the same way as above, except that the original distribution As,χ is replaced by
the uniform distribution U(Zn

q × Zq). Because the game uses only oracle access
to its given distribution, the two games are computationally indistinguishable
under the assumption that LWEq,χ is hard (and by Lemma 1). Moreover, all
the public keys in this game are uniform and independent, which implies that
all the simulated ciphertexts are as well (up to negligible statistical distance). It
follows that the adversary has negligible advantage in this game, and the scheme
is KDM-secure.

Abstract Properties. Here we state a few technical facts about the cryp-
tosystem. The proof of security relies only on these abstract properties, which
can be shown via routine application of Gaussians over lattices from prior works
(e.g., [40,46,25]). Due to space limitations, we defer the proofs to the full version.

The first fact is that the entries of the secret key may be represented un-
ambiguously in the message space Zp. For convenience in dealing with key-
dependent messages, from now on we view the secret key s as an element of
Zn

p ⊂ Zn
q .

Lemma 3. An s ← χ is of the form s = (0, s0) ∈ Zp × Zp with overwhelming
probability.

Proof. This follows directly from the upper bound on α from Equation (1) and
the exponential tail bound on the Gaussian distribution.

The following lemmas characterize the ciphertext distribution, which is needed
for showing correctness, and (more importantly) for producing proper key-
dependent ciphertexts using the scheme’s homomorphisms.

Lemma 4. With overwhelming probability over the choice of the public key
(A,b) for secret key s, the distribution EA,b is within negligible statistical dis-
tance of As,Ψ̄β

for some β ≤
√

2r′.

Lemma 5. Let t ∈ Zn
p and y ∈ Zp be arbitrary. With overwhelming probability

over the choice of the public key (A,b) for arbitrary secret key s ∈ Zn
p , the

following holds: for (u, v)← EA,b, the distribution of

(u− t · p, v + w · p) ∈ Z
n
q × Zq

is within negligible statistical distance of a (properly generated) encryption of the
message 〈t, s〉+ w ∈ Zp.
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Finally, the next lemma is used for showing statistical security in the final
hybrid game.

Lemma 6. With overwhelming probability over the choice of a ‘malformed’ pub-
lic key (A,b) from the uniform distribution U(Zn×m

q ×Z
m
q ), the distribution EA,b

is within negligible statistical distance of the uniform distribution U(Zn
q × Zq).

Proof Details

Correctness. By Lemma 4, the noise in the c component of a ciphertext is
distributed according to Ψ̄β for some

β ≤
√

2r′ ≤ 4α
√

m · ω(
√

log n) ≤ 1
p · ω(

√
log n)

,

by Equation (1). By the exponential tail inequality for Gaussians and the defi-
nition of Ψ̄β , the noise term does not exceed q/2p = p/2, except with negligible
probability. We remark that the scheme can be made correct with probability 1
by modifying the key generation and encryption schemes to reject and re-sample
values of x, r, e that are ‘too long;’ however, this comes at the cost of an extra
Õ(
√

n) factor in the noise parameter α and the underlying approximation factor
for lattice problems.

The first hybrid game. We now describe an alternate game that faithfully simu-
lates the true KDM attack game, up to negligible statistical distance. The game
starts with access to the distribution As,χ for uniformly random s ∈ Zn

q . For each
user i, it applies the transformation described in Lemma 2 (using fresh draws
from As,χ) to produce the distribution Asi,χ, where si is distributed according to
χn. As a side-effect, the transformation also outputs invertible square matrices
Āi ∈ Z

n×n
q and vectors b̄i ∈ Z

n
q such that for all i,

s = Ā−T
i (b̄i − si) mod q.

Note that by setting the right-hand sides equal for any i, j and reducing modulo
p, we have

Ā−T
i (si − b̄i) = Ā−T

j (sj − b̄j) mod p ⇐⇒ si = ĀT
i,j · sj + b̄i,j mod p, (2)

where Āi,j = Ā−1
j Āi and b̄i,j = b̄i−ĀT

i,j · b̄j. The game then generates a public
key (Ai,bi) for each user i in the usual way by drawing m samples from Asi,χ.

We now describe how the game answers (key-dependent) message queries.
Suppose the adversary requests an encryption, under the jth user’s public key
(Aj ,bj), of the function ft,w(si) = 〈t, si〉 + w ∈ Zp (for some t ∈ Zn

p , w ∈ Zp)
applied to the ith user’s secret key si. Observe that

ft,w(si) = 〈t, si〉+ w = (Āi,j · t︸ ︷︷ ︸
t′∈Zn

p

)T · si + 〈t, b̄i,j〉+ w︸ ︷︷ ︸
w′∈Zp

.
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The game therefore draws a sample (u, v)← EAj ,bj and outputs

(u− t′ · p, v + w′ · p) ∈ Z
n
q × Zq.

This completes the description of the game.
By the above description and Lemmas 2 and 5, the following claim is apparent.

Claim. The views of the adversary in the real attack game and in the hybrid
game are within negligible statistical distance.

The final hybrid game. The last hybrid game proceeds exactly as the one above,
except that the initial distribution As,χ is replaced with U(Zn

q × Zq). Note that
the game above only treats As,χ as an oracle (it never uses s directly), so As,χ

may be replaced in this way.
Now by Lemma 2, all the public keys (Ai,bi) generated by the game are uni-

form and independent. Moreover, by Lemma 6, all the (key-dependent) message
queries are answered by ciphertexts that are uniform and independent of the
message. The next claim follows, and the proof of Theorem 2 is complete.

Claim. Assuming that LWEq,χ is hard, the two hybrid games are computationally
indistinguishable. Moreover, the adversary’s advantage in the final hybrid game
is negligible.

3.4 Amortized Extension

The system described in Section 3.2 encrypts only a single element z ∈ Zp per
syndrome u ∈ Z

n
q , so the ciphertext is a factor at least n larger than the message,

and the encryption algorithm performs at least n · m operations per message
element. Peikert, Vaikuntanathan, and Waters [44] proposed a significantly more
efficient amortized version of the cryptosystem, which can encrypt � = O(n)
symbols using only about twice the time and space as the basic scheme. We can
show that a variant of that system is also KDM-secure.

Construction 3. Just as in Construction 1, the scheme is parametrized by q =
p2 and α ∈ (0, 1).

– Key generation: The secret key is S ← χn×�. The public key is (A,B) ∈
Zn×m

q × Zm×�
q for m ≥ 2(n + �) lg q, where B = ATS + X for independent

A← Zn×m
q and X← χm×�.

– Encryption: first define the distribution EA,B over Zn
q × Z�

q, obtained as
follows: choose r ← DZm,r where r = ω(

√
log m), choose e ← Ψ̄ �

r′ where
r′ = r ·

√
� ·m · (α + 1

2q ), and output (u,v) = (Ar,BT r + e). Note that
the parameter r′ is a

√
� factor larger than in Construction 1. To encrypt a

message z ∈ Z�
p, draw (u,v)← EA,B and output (u, c = v + z · p).

– Decryption: output the z ∈ Z�
p such that z · p is closest to c−ST u modulo q.
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The proof of security extends to this construction in a straightforward way,
with the exception of Lemma 4, which characterizes the ciphertext distribution
and allows the simulator to answer key-dependent message queries faithfully.
By generalizing the techniques from [46, Corollary 3.10] to higher dimensions,
we can prove the following fact about EA,B, which suffices for proving KDM
security.

Lemma 7. With overwhelming probability over the choice of the public key
(A,B) for secret key S, the distribution EA,B is within negligible statistical dis-
tance of (u,ST u+v), where u ∈ Zn

q is uniform and v ∈ Z�
q is drawn from some

distribution that depends only on B (and not on u).

Proof (Proof sketch). We need to show that the distribution of XT r + e ∈ Z�
q

conditioned on Ar = u is essentially the same for every fixed u. We can show
that the distribution is a (discretized) non-spherical Gaussian whose covariance
matrix depends only on r′ and the positive semidefinite Gram matrix XTX. The
proof relies on the fact that a (continuous) Gaussian can be decomposed into
the sum of two Gaussians whose covariance matrices sum to that of the original,
and also uses the partial ordering of positive semidefinite matrices to establish
a sufficient lower bound for r′ (this is where the extra

√
� term arises).

4 Linear-Stretch PRG in Quasi-Linear Time

4.1 Overview

Our starting point is a simple pseudorandom generator which was originally
suggested in [10]. Let G(A, s, r) = (A,As + e(r)), where A ∈ Z

m×n
2 , s ∈ Zn

2
and e(·) is a noise sampling procedure that uses a random input r to sample a
random error vector from Bermε . It was shown in [10] that, assuming the hardness
of LPNε, the output distribution of G is pseudorandom. (See also [10,22,46,36,6]).
In order to get expansion the noise-sampling algorithm should use a seed r of
length shorter than m. Indeed, the noise vector can be sampled by using a seed
r whose length is roughly H2(ε) ·m, where H2 is the binary entropy function.
This gives an additive expansion of m(1−H2(ε))−n which is positive when the
rate n/m is smaller than 1−H2(ε).

The resulting PRG is quite efficient as it mainly uses bit-operations rather
than costly arithmetic operations over large fields. However, it still does not
bring us to our goal (quasilinear time PRG). The main problem is that the
matrix-vector product requires Ω(mn) operations, and so the time complexity
of the generator is (at least) proportional to the product of the output length m
and the security parameter n.

To solve this problem, we exploit the fact that the matrix A is public and
hence can be reused with many different information words s1, . . . , s�. Hence,
the modified generator will compute the product of an m × n matrix A with
an n× � matrix S, and will add a noisy bit to each of the entries of the matrix
AS. By choosing � carefully, we can use algorithms for fast rectangular matrix
multiplication to speed up the computation.
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We should also show how to sample the noise vector in quasilinear time without
using too many random bits. At first glance, this seems to be hard, and indeed,
we are not aware of any such sampling procedure4. However, we can bypass this
problem by using a fast sampling procedure suggested in [5]. This procedure
Sam samples an m-length noise vector e by using more than m random bits. To
compensate this loss Sam also outputs a “leftover” vector – a vector v which
is almost-random even when e is given. This allows us to concatenate v to the
output of the PRG.

4.2 The Construction

The following lemma shows that for a random matrix A, the mapping (s, e) 	→
As + e is pseudorandom even when it is applied to polynomially-many random
strings s1, . . . , s�. The proof combines the ideas of [10] with a standard hybrid
argument and is therefore omitted from this version.

Lemma 8. Let 0 < ε < 1
2 be a noise parameter and let m(n), �(n) be arbitrary

polynomials. If LPNε is hard, then the distribution (A,A·S+E) is pseudorandom,
where A← Um(n)×n, S← Un×�(n), and E← Berm(n)×�(n)

ε .

The following fact is based on [16].

Fact 4. For every r ≤ 0.172 the product of a matrix in Z
m×mr

2 and a matrix in
Z

mr×m
2 can be computed by a circuit of size Õ(m2).

We will use a sampling procedure due to [5].

Lemma 9 (implicit in [5]). There exist positive integers k > 1 and c > 2k,
and a sampling algorithm Sam that uses (k + k/c)N random bits and outputs
a pair of strings (e, v) whose joint distribution is 2−Ω(N) statistically-close to
(BerN2−k , Ukn). Moreover, Sam can be implemented in NC0 and therefore by a
circuit family of size O(N).

We can now present our construction.

Construction 5. Let N = n12. Let k, c and Sam : {0, 1}(k+k/c)N → {0, 1}N ×
{0, 1}kN be the constants and sampling algorithm promised by Lemma 9. Let e(r)
and v(r) denote the first and second entries of Sam(r). Define the function

G(A,S, r) def= (A,A · S + e(r), v(r))

where, A ∈ Z
n6×n
2 , S ∈ Z

n×n6

2 , r ∈ {0, 1}(k+k/c)N , e(r) is parsed as a matrix in
Z

n6×n6

2 , and matrix addition is computed entry-wise.

Theorem 6. Assuming that LPN2−k is hard, the function G defined in Con-
struction 5 is a PRG with linear-stretch that can be computed by a circuit family
of size quasilinear in the output length.
4 For example, the time complexity of the noise-sampling procedure of [22] is quadratic

in the length of the error vector (for a constant error rate).
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Proof. It can be easily verified that G takes less than (k + 0.6)N input bits and
outputs more than (k+1)N bits, and therefore, the stretch is linear in the input
length. Pseudorandomness follows by Lemmas 9 and 8 as the tuple (A,A · S +
e(r), v(r)) is statistically-indistinguishable from the tuple (A,A ·S+e(r), Ukn7 ),
which, in turn, is computationally-indistinguishable from Un4.5+n7+kn7 . Finally,
by Fact 4, Lemma 9, and since entry-wise addition of two matrices is computable
by linear-size circuits, the generator G can be computed by a circuit-family of
size Õ(N). ��

5 Weak Randomized PRF

An efficiently computable randomized function family F : {0, 1}n×{0, 1}m(n) →
{0, 1}s(n) is called a randomized weak pseudorandom function (RWPRF) if it
satisfies the following:

– (weak pseudorandomness) For every polynomial p(·) the sequence(
A1, FS(A1), . . . , Ap(n), FS(Ap(n))

)
is pseudorandom,

where S ← Un and (A1, . . . , Ap(n)) ← (Um)p(n) and fresh internal random-
ness is used in each evaluation of FS .

– (verifiability) There exists an efficient equality-tester algorithm V such that

Pr[V (Y1, Y2) = equal] > 1− negl(n)
Pr[V (Y1, Y

′
2) = not-equal] > 1− negl(n),

where S ← Un, A ← Um, A′ ← Um, Y1 ← FS(A), Y2 ← FS(A), and Y ′
2 ←

FS(A′).

The PRG construction from the previous section, suggests a simple implemen-
tation of RWPRF. We let S ∈ Z

n×�(n)
2 be the secret key of the function family,

and let A ∈ Z
m(n)×n
2 be the argument on which the function is being evaluated.

The randomized function is defined as fS(A) = AS+E where E ∈ Berm(n)×�(n)
ε

is a secret error vector which is randomly chosen in each invocation. By Lemma 8,
the resulting function family is pseudorandom when it is evaluated on randomly
chosen inputs A1, . . . ,Aq. Also, given y = fS(A) and y = fS(B), one can easily
check, with overwhelming probability, whether A and B are equal, even without
knowing the key S.

Note that now we have no limitation on the amount of randomness used to
generate the error matrix E. Hence, we can rely on the hardness of, say LPN1/4,
and generate the error matrix E by taking the entry-wise product of 2 random
matrices. The resulting function is quite efficient, and can be computed by a
depth two Boolean circuit of size O(n�m), or, by a circuit of size Õ(m�) for
a proper choice of the parameters. (The first option uses the trivial circuit for
matrix multiplication, and the latter relies on Fact 4.)

When �(n) = m(n) the function is symmetric, that is, one can replace the role
of the argument and the key without violating the pseudorandomness property.
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We also note that when �(n) is sufficiently large (e.g., �(n) > n/(1 − H2(ε))),
then, except with negligible probability, S forms an error correcting code whose
distance is larger than ε. In this case, the function fS is injective and the equality-
tester works well with respect to every input (as long as the collection-key and
the internal randomness are random). By symmetry this is also true when the ar-
gument A is viewed as the key of the function. Hence, a random pair (A, fS(A))
forms a commitment to the collection key S, which might be useful in some
contexts.

Oblivious evaluation protocol. In an oblivious evaluation protocol for a collection
of functions fS, one party (Alice) holds a key S and another party (Bob) holds
a point A. At the end of the protocol, Bob learns the value fS(A), while Alice
learns nothing. One can also consider the symmetric variant of the problem in
which Alice learns fS(A) and Bob learns nothing. In our setting, we also assume
that the party who does not get the output selects the internal randomness of
the function. That is, we consider the task of securely computing the following
functionalities g((S,E),A)) = (λ,AS + E) and h(S, (A,E)) = (AS + E, λ)
where λ denotes the empty string. We give an efficient and secure protocol for
evaluating both g and h Our protocol employs one-out-of-two oblivious transfer
(OT) [20] for strings of length m. Such a protocol allows a receiver to receive
one of two m-bit strings held by the sender in an oblivious way, that is, without
revealing which string is selected.

Lemma 10. There exists a constant-round protocol for securely evaluating f
which uses circuits of size O(m�n) with �n oracle gates to oblivious transfer
which supports strings of length m.

Proof. The protocol is similar to the protocol suggested in [23] for obliviously
evaluating the Naor-Reingold PRF [42].

We begin with the version in which Alice receives the value of fS(A). Let S
be Alice’s input and A,E be Bob’s input. For each i ∈ [�] invoke in-parallel the
following sub-protocol where s (resp. e) is the i-th column of S (resp. E):

– Bob chooses a random matrix R← Z
m(n)×n
2 .

– For each j ∈ [n] Alice and Bob call the string-OT oracle with Alice as the
receiver and Bob as sender in the following way. Alice’s input is sj, the j-th
bit of s, and Bob’s input is the pair (Rj ,Rj +Aj), where Rj and Aj are the
j-th columns of R and A. In addition, Bob sends the sum t = e +

∑
j Rj .

– Alice sums up (over Z
m(n)
2 ) the n + 1 vectors she received and outputs the

result which is equal to
∑

sj=1 Aj + e.

It is not hard to see that the protocol securely evaluates the functionality h.
Indeed, the view of Alice which consists of the values learned by the OT and the
vector t can be easily sampled given fS(A;E). A protocol in which Bob receives
the output can be derived by slightly changing the previous protocol. Details
omitted. ��



Fast Cryptographic Primitives and Circular-Secure Encryption 613

Comparison to the OPRF of [23]. Let us briefly compare the efficiency of our
scheme to the standard instantiation of OPRF [23] which is based on the Naor-
Reingold function [42]. Our scheme uses large number of OT calls – if we set �
to be 1, which does not affect the security of the construction, this number is
linear in the security parameter n. In contrast, the FIPR scheme uses only O(m)
calls where m is the length of the input. On the other hand, the additional over-
head of FIPR is m modular multiplications and a single exponentiation, where
our protocol performs only m vector additions (O(mn) bit-wise XORs). This
tradeoff is interesting as, by using the batch-OT protocol of [33], OT operations
cost almost as little as symmetric operations. Furthermore, by using standard
techniques one can compute all the OT operations in a preprocessing stage. In
such case, it seems that the current scheme has the potential to obtain better
performance, at least in some usage scenarios. (This possibility deserves further
study.)

Application. Oblivious evaluation of pseudorandom function was recently used
by Hazay and Lindell [30] to obtain an efficient two-party protocol for secure set-
intersection (an explicit version for the semi-honest model appears in [23]). Our
construction can be used in their protocol whenever the inputs of the parties are
randomly distributed. This restriction is natural in some scenarios (e.g., when
the inputs are names of entities or keys that were randomly selected by some
authority) and can be always obtained at the expense of using a random oracle.
We also note that RWPRF can be used to derive an identification scheme: we let
parties share a key for the RWPRF and verify the identity of a party by querying
the value of the function on a random point. When this protocol is instantiated
with our function we get the well known HB protocol [32]. (This view is implicit
in [36].)

6 Fast Circular-Secure Symmetric Encryption

6.1 The Construction

We now construct a symmetric encryption scheme. Our construction can be
viewed as using the previous weak, randomized PRF in an analogous way to
the standard construction of symmetric encryption from PRF, except that to
deal with the error introduced by the PRF randomization we need to make the
message redundant. This is done by employing an additional efficiently decodable
error correcting code. As mentioned before, a similar construction was suggested
in [26].

Let � = �(n) be a message-length parameter which is set to be an arbitrary
polynomial in the security parameter n. (Shorter messages are padded with
zeroes.) Let ε = 2−k and 0 < δ < 1 be constants. We will use a family of
good binary linear codes with information words of length �(n) and block length
m = m(n), that has an efficient decoding algorithm D that can correct up to
(ε + δ) ·m errors. We let G = G� be the m× � binary generator matrix of this
family and we assume that it can be efficiently constructed (given 1n).
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Construction 7. Let N = N(n) be an arbitrary polynomial (which controls
the tradeoff between the key-length and the time complexity of the scheme). The
private key of the scheme is a matrix S which is chosen uniformly at random
from Z

n×N
2 .

– Encryption: To encrypt a message M ∈ Z
�×N
2 , choose a random A← Z

m×n
2

and a random noise matrix E← Berm×N
ε . Output the ciphertext

(A,A · S + E + G ·M).

– Decryption: Given a ciphertext (A,Z) apply the decoding algorithm D to
each of the columns of the matrix Z−AS and output the result.

Observe that the decryption algorithm errs only when there exists a column
in E whose Hamming weight is larger than (ε+ δ)m, which, by Chernoff Bound,
happens with negligible probability.

Quasilinear-time implementation. To get a quasilinear time implementation (for
sufficiently long messages), we instantiate the above scheme with the error-
correcting codes of Spielman [47, Thm. 19] which maps � bits to m = Θ(�)
bits with constant relative-distance and with the property that the encoding
can be computed via a circuit of size O(�) and the decoding can be decoded by
a circuit of size O(� log �). Hence, the complexity of encryption (and decryption)
is dominated by the complexity of the product A ·S. (The error matrix E can be
generated in linear time by taking the entry-wise product of k random matrices
R(1), . . . ,R(k) ← Z

m×N
2 .) To compute this product in quasilinear time we set

N = n6 and assume that m = Ω(n6), i.e., assume that the message length N · �
is at least Ω(n12). In this case, by Fact 4, the encryption and decryption can be
computed by a circuit of size Õ(N�).

Useful properties. The scheme enjoys several useful “homomorphic properties”
which follow from its linear structure. In particular, given an encryption (A,Y)
of an unknown message M under an unknown key S, one can transform it to an
encryption (A′,Y′) of M+M′ under the key S+S′, for any given M′,S′. This is
done by letting A′ = A and Y′ = Y +AS′ +GM′. Furthermore, if the message
M is the all zeroes string, then it is possible to convert the ciphertext (A,Y) to be
an encryption (A′,Y′) of the key S itself or, more generally, to be an encryption
of T ·S for an arbitrary linear transformation T ∈ Z

�×n
2 . This is done by letting

Y′ = Y and A′ = A + G · T. Indeed, in this case Y′ = A′S + E + G(TS).
By choosing T to be the

(
In

0�−n×n

)
, we can get an encryption of the key itself

(padded with zeroes). We summarize these properties in the following lemma.

Lemma 11. There exist efficiently computable transformations f, g, h such that
for every unknown S ∈ Z

n×N
2 and M ∈ Z

�×N
2 and known S′ ∈ Z

n×N
2 ,M′ ∈

Z
�×N
2 and T ∈ Z

�×n
2 : f(M′, EncS(M)) ≡ EncS(M + M′), g(S′, EncS(M)) ≡

EncS+S′(M), and h(T, EncS(0�×N)) ≡ EncS(TS), where EncK(A) denotes a
random encryption of the message A under the key K.
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6.2 KDM Security

From now on, we fix the parameters N(·), �(·), m(·) and ε of our scheme. We
consider the class of affine transformations that map the i-th column of the key S
to the i-th column of the message M. Let t = t(n) be some arbitrary polynomial
and let N = N(n) and � = �(n). For a matrix T ∈ Z

�×n
2 , a matrix B ∈ Z

�×N
2

and an integer i ∈ [t] we define the function fT,B,i which maps a tuple of t keys
(S1, . . . ,St) ∈ (Zn×N

2 )t to a message M ∈ Z
�×N
2 by letting M = T · Si + B.

We let F�,N,t = {fT,B,i|T ∈ Z
�×n
2 ,B ∈ Z

�×N
2 , i ∈ [t]}. We will prove KDM-CPA-

security with respect to the class F�,N,t. Formally,

Theorem 8. Suppose that the LPNε is hard. Then Construction 7 is CPA-KDM
secure with respect to F�,N,t for every polynomial t(·).

The proof uses the properties described in Lemma 11 in a straightforward way.
A similar proof outline is used in [13].

Proof (Sketch). CPA security follows easily from Lemma 8. To prove KDM
security, we show how to transform an adversary that wins the KDM game (with
respect to F�,N,t) into an adversary that wins the standard CPA-game. Let S
be the key of the scheme that was chosen by the challenger in the CPA game.
The idea is to choose t random offsets S′

i ← Un×N and emulate the KDM game
where the i-th key is Si = S′

i +S. Now, by using the properties of Lemma 11, we
can transform a ciphertext EncS(0�×N) into a ciphertext EncSj (T · Si + B) for
any given i, j,T and B. Hence, we can perfectly emulate answers to the queries
asked by the KDM adversary. ��

As shown in [8], we can use the standard encrypt-then-MAC transformation to
upgrade the security to KDM-CCA security (with respect to F�,N,t). In [34], it
is shown that the existence of a linear-time computable MAC scheme follows
from the existence of any one-way function. Hence, the intractability of LPNε

allows us to construct a KDM-CCA-secure symmetric cryptosystem in which
encryption and decryption are performed in quasilinear time, and the length of
the ciphertext is linear in the message length.
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Abstract. We present a new methodology for proving security of en-
cryption systems using what we call Dual System Encryption. Our tech-
niques result in fully secure Identity-Based Encryption (IBE) and
Hierarchical Identity-Based Encryption (HIBE) systems under the simple
and established decisional Bilinear Diffie-Hellman and decisional Linear
assumptions. Our IBE system has ciphertexts, private keys, and pub-
lic parameters each consisting of a constant number of group elements.
These results are the first HIBE system and the first IBE system with
short parameters under simple assumptions.

In a Dual System Encryption system both ciphertexts and private keys
can take on one of two indistinguishable forms. A private key or cipher-
text will be normal if they are generated respectively from the system’s
key generation or encryption algorithm. These keys and ciphertexts will
behave as one expects in an IBE system. In addition, we define semi-
functional keys and ciphertexts. A semi-functional private key will be
able to decrypt all normally generated ciphertexts; however, decryption
will fail if one attempts to decrypt a semi-functional ciphertext with a
semi-functional private key. Analogously, semi-functional ciphertexts will
be decryptable only by normal private keys.

Dual System Encryption opens up a new way to prove security of IBE
and related encryption systems. We define a sequence of games where
we change first the challenge ciphertext and then the private keys one
by one to be semi-functional. We finally end up in a game where the
challenge ciphertext and all private keys are semi-functional at which
point proving security is straightforward.

1 Introduction

The concept of Identity-Based Encryption (IBE) was first proposed by Shamir in
1984. In an IBE system a user can encrypt to another party simply by knowing
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their identity as well as a set of global parameters — eliminating the need to
distribute a separate public key for each user in the system.

Although the concept received much interest, it wasn’t until several years
later that Boneh and Franklin [5] introduced the first Identity-Based Encryption
scheme using groups with efficiently computable bilinear maps. The original
Boneh and Franklin result used the random oracle heuristic to prove security
under the Bilinear Diffie-Hellman assumption and a significant open question
was whether the random oracle model could be removed.

Following the breakthrough result of Boneh and Franklin, there has been
significant progress in realizing IBE in the standard model. First, Canetti, Halevi,
and Katz [11] proved security without the random oracle heuristic, but under
a weaker “Selective-ID” model where the attacker must declare the identity I∗
that he will attack before even seeing the system’s public parameters. Boneh
and Boyen [2] then provided an efficient selectively secure scheme. Subsequently,
Boneh and Boyen [3] and Waters [26] gave fully secure solutions in the standard
model. The Waters scheme provided an efficient and provably fully secure system
in the standard model under the decisional Bilinear Diffie-Hellman assumption;
however, one drawback was that the public parameters consisted of O(λ) group
elements for security parameter λ.

Partitioning Reductions. One very important common thread in all of the above
systems is that they use what we call a partitioning strategy to prove security. In
these systems, one proves security to an underlying complexity assumption by
creating a reduction algorithm B that partitions the identity space into two parts
— 1) identities for which it can create private keys; and 2) identities that it can
use in the challenge ciphertext phase. This partitioning is embedded either in the
public parameters at setup time in the standard model systems [11, 2, 3, 26] or
programed into the random oracle [5]. In the selective model, systems the identity
space can be “tightly” partitioned so that all the keys except I∗ fall into the
key creating partition, while reductions in fully secure systems will partition the
space according to the number of private key queries q(λ) that an attacker makes
and the reduction “hopes” that the queries and challenge ciphertext identity fall
favorably in the partition.

While the partitioning techniques have proved useful, they have two funda-
mental limitations. First, the most efficient fully secure and standard model IBE
system due to Waters has large public parameters that might be impractical for
some applications. The second and more compelling concern is that partitioning
techniques appear to be inadequate for proving security of encryption systems
that offer more functionality such as Hierarchical IBE [20, 18] and Attribute-
Based Encryption [22] even if we apply the random oracle model. For instance,
all known Hierarchical Identity-Based Encryption (HIBE) systems (in this vein)
have an exponential degradation of security with the depth, n, of the hierarchy
— rendering the security reductions meaningless for large n. The fundamental
problem is that more advanced systems such as HIBE have more structure on
the identity space that make (any known) partitioning strategies unusable. For
example, in an HIBE system a partitioning reduction algorithm is constrained
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such that if it can create a private key for a particular identity vector then it
must be able to for all of its descendants.

Moving beyond the partitioning paradigm. To overcome these obstacles, Gen-
try [15] proposed an IBE system with short public parameters that has a secu-
rity reduction which moves beyond the partitioning paradigm. In his reduction
the simulator is able to create a key for all identities and also use any identity
as the challenge identity I∗. At first glance, there is an apparent paradox in this
strategy since it seems that the reduction algorithm could simply answer the
challenge ciphertext itself by creating a private key for I∗. To deal with this ob-
stacle, Gentry’s reduction algorithm can only generate one private key for each
identity. For an attacker that makes at most q queries, the algorithm embeds
a degree q polynomial F (·) and can create a private key with a tag component
F (I) for identity I. The challenge ciphertext for I∗ is structured such that it de-
crypts to the challenge message for the single key for I∗ that the reduction could
generate even though the message might be information theoretically hidden to
an attacker with no knowledge of F (I∗).

Although the Gentry IBE achieved security in the standard model, it did so
at the cost of using a significantly more complicated assumption called the deci-
sional q-ABHDE assumption. In this assumption a generator g raised to several
powers of an exponent a are given out (e.g., g, ga, ga2

, . . . , gaq

). In addition to the
added complexity, the actual assumption used in the proof is dependent on the
number of private key queries the adversary makes. This seems to be inherently
tied to the need to embed the degree q polynomial f into a constant number
group elements.

Interestingly, Gentry and Halevi [16] recently showed how to extend these
concepts to get a fully secure HIBE system, although this system actually used
an even more involved assumption. In addition, the “jump” from Gentry’s IBE
to the HIBE system added a significant amount of complexity to the system and
proof of security.

Our Contribution. We present a new methodology for proving security of en-
cryption systems using what we call Dual System Encryption. Our techniques
result in fully secure IBE and HIBE systems under the simple and established
decisional Bilinear Diffie-Hellman and decisional Linear assumptions. Our IBE
system has ciphertexts, private keys, and public parameters each consisting of a
constant number of group elements. Our results give the first HIBE system and
the first IBE system with short parameters under simple assumptions.

Our conceptual approach departs significantly from both the partitioning
paradigm and Gentry’s approach. In a Dual System Encryption system, both
ciphertexts and private keys can take on one of two indistinguishable forms.
A private key or ciphertext will be normal if they are generated respectively
from the system’s key generation or encryption algorithm. These keys and ci-
phertexts will behave as one expects in an IBE system. In addition, we define
semi-functional keys and ciphertexts. A semi-functional private key will be able
to decrypt all normally generated ciphertexts; however, decryption will fail if one
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attempts to decrypt a semi-functional ciphertext with a semi-functional private
key. Analogously, semi-functional ciphertexts will be decryptable only by normal
private keys.

Dual System Encryption opens up a new way to prove security of IBE and
related encryption systems. Intuitively, to prove security we define a sequence of
games arguing that an attacker cannot distinguish one game from the next. The
first game will be the real security game in which the challenge ciphertext and
all private keys are distributed normally. Next, we switch our normal challenge
ciphertext with a semi- functional one. We argue that no adversary can detect
this (under our complexity assumption) since all private keys given can decrypt
the challenge ciphertext regardless of whether it is normal or semi-functional. In
the next series of games, we change the private keys one game at a time from
normal to semi-functional, again arguing indistinguishability. In both the above
proof arguments, our reduction algorithm B will be able to provide private keys
for any identity and use any identity as a challenge identity — eliminating the
need to worry about an abort condition. Finally, we end up in a game where
the challenge ciphertext and all private keys are semi-functional. At this point
proving security is straightforward since the reduction algorithm does not need to
present any normal keys to the attacker and all semi-functional keys are useless
for decrypting a semi-functional ciphertext.

The reader may have noticed one issue in our indistinguishability argument
over private keys. If the reduction algorithm B wants to know whether a secret
key SKI for I was semi-functional, couldn’t it simply create a semi-functional
ciphertext for I and test this itself (without using the attacker)? To deal with this
issue our reduction algorithm embeds a degree one polynomial F (I) = A · I +B
(over Zp). In each hybrid game the attacker can only create a semi-functional
ciphertext for ciphertext identity Ic with a “tag” value of tagc = F (Ic) and
can only create a private key of unknown type for identity Ik with tag value of
tagk = F (Ik). Our system use the “two equation revocation” technique of Sahai
and Waters [23] to enforce that the decryption algorithm will only work if the
key tag and ciphertext tag are not equal. If the reduction algorithm attempted
to test the key in question, decryption would fail unconditionally; and thus
independently of whether it was a semi-functional key.1.

In reflection, one reason our dual system achieves security from a simple as-
sumption is that by changing the keys in small hybrid steps one by one we only
need to worry about the relationship between the challenge ciphertext and one
private key at a time. Our function F only needs to be able to embed a degree
one polynomial; in contrast the Gentry reduction “takes on” all private keys at
the same time and needs a complex assumption to embed a degree q polynomial.

HIBE and Other Encryption Systems. Building on our IBE system, we also
provide a fully secure HIBE system. One remarkable feature is that the added
complexity of the solution is rather small. Furthermore, our system combines

1 Our core system has a negligible correctness error; however, we outline how to build
a perfectly correct system in Section 4.
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the structure of the Boneh-Boyen [2] selective-ID HIBE. This hints that we can
leverage our methodology to adapt ideas from other selectively secure encryption
systems (or those with complex assumptions) into fully secure ones under simple
assumptions and also that prior selectively secure systems may have “lead us
down the right path”.

We believe that our Dual System methodology in the future will become a
catalyst for proving adaptive security under simple assumptions for several other
encryption systems including: Anonymous IBE and searchable encryption [4, 1,
10, 9, 24], Broadcast Encryption [14, 7], and Attribute-Based Encryption [22].
To add credence to this belief we give an adaptively secure broadcast system in
the full version of our paper. Our broadcast system has ciphertext overhead of
a constant number of group elements and is the first such system with a proof
under a simple assumption.

Other Related Work. We note that there are remarkable IBE systems of Cocks [13]
and Boneh, Gentry, and Hamburg [6] based on the quadratic residuosity assump-
tion and Gentry, Peikert, and Vaikuntanathan [17] based on lattice assumptions.
These systems are all proven secure under the random oracle heuristic.

Katz and Wang [21] gave an IBE system with a tight security reduction in the
random oracle model using a two-key approach. One might view this as falling
outside the partition approach, although their techniques do not appear to give
a path to full security for HIBE and related problems.

2 Background

We present a few facts related to groups with efficiently computable bilin-
ear maps and then define the decisional Billinear-Diffie-Hellman and decisional
Linear Assumptions. For space considerations, the definitions of security for
Identity-Based Encryption and Hierarchical Identity-Based Encryption are in-
cluded in our full version.

2.1 Bilinear Maps

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be a
generator of G and e be a bilinear map, e : G × G → GT . The bilinear map e
has the following properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1.

We say that G is a bilinear group if the group operation in G and the bilinear
map e : G ×G→ GT are both efficiently computable. Notice that the map e is
symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).
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2.2 Decisional Bilinear Diffie-Hellman Assumption

We define the decisional Bilinear Diffie-Hellman problem as follows. Choose a
group G of prime order p, where the size of p is a function of the security param-
eters. Next, choose a random generator g and random exponents c1, c2, c3 ∈ Zp.
If an adversary is given

y = g, gc1, gc2 , gc3 ,

it must remain hard to distinguish e(g, g)c1c2c3 ∈ GT from a random element
in GT .

An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving decisional
BDH problem in G if∣∣∣∣Pr

[
B
(
y, T = e(g, g)c1c2c3

)
= 0
]
− Pr

[
B
(
y, T = R

)
= 0
] ∣∣∣∣ ≥ ε .

Definition 1. We say that the decisional BDH assumption holds if no polytime
algorithm has a non-negligible advantage in solving the decisional BDH problem.

2.3 Decisional Linear Assumption

We define the decisional Linear problem as follows. Choose a group G of prime
order p, where the size of p is a function of the security paramters. Next, choose
random generators g, f, ν and random exponents c1, c2 ∈ Zp. If an adversary is
given

y = g, f, ν, gc1, f c2,

it must remain hard to distinguish νc1+c2 ∈ G from a random element in G.
An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving decisional

Linear problem in G if∣∣∣∣Pr
[
B
(
y, T = νc1+c2

)
= 0
]
− Pr

[
B
(
y, T = R

)
= 0
] ∣∣∣∣ ≥ ε .

Definition 2. We say that the decisional Linear assumption holds if no poly-
time algorithm has a non-negligible advantage in solving the decisional Linear
problem.

3 Identity-Based Encryption

We now present our core Identity-Based Encryption construction along with
our proof of its security under the the decisional Linear and decisional BDH
assumptions.

We first give the four algorithms of our IBE system. Next, we describe two
additional algorithms for the creation of semi-functional ciphertexts and private
keys respectively. The purpose of these algorithms is to define the structure of
semi-functional ciphertexts and keys for our proof of security. We emphasize that
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these algorithms are not used in the actual system; indeed it is crucial for our
security argument that no attacker could create ciphertexts or keys of this form.

Finally, we give the proof of our system against an attacker that makes at
most q private key queries2. We organize our proof as a sequence of games. In the
sequence, we will gradually change the actual security game; first by introducing
a semi-functional challenge ciphertext and then introduce semi-functional private
keys one by one. We show that under the decisional Linear Assumption no
adversary can distinguish between each successive game. Finally, we end up in a
game where the challenge ciphertext and the all the private keys given out are
semi-functional. At this point we can prove security under decisional-BDH.

3.1 Construction

Setup(λ). The authority first chooses a group G of prime order p. Next, it chooses
generators g, v, v1, v2, w, u, h ∈ G and exponents a1, a2, b, α ∈ Zp. Let τ1 =
vva1

1 , τ2 = vva2
2 . It publishes the public parameters PK as the group description

G along with:

gb, ga1 , ga2 , gb·a1 , gb·a2 , τ1, τ2, τ
b
1 , τb

2 , w, u, h, e(g, g)α·a1·b.

The master secret key MSK consists of g, gα, gα·a1, v, v1, v2 as well as the pub-
lic parameters. The identity space for the described scheme will be Zp, although
we note in practice one can apply a collision resistant function to identities of
arbitrary lengths.

Encrypt(PK, I, M). The encryption algorithm chooses random s1, s2, t, and
tagc ∈ Zp. Let s = s1 + s2. It then blinds M ∈ GT as C0 = M · (e(g, g)αa1·b)s2

and creates:

C1 = (gb)s1+s2 , C2 = (gb·a1)s1 , C3 = (ga1)s1 , C4 = (gb·a2)s2 , C5 = (ga2)s2 ,

C6 = τs1
1 τs2

2 , C7 = (τb
1 )s1(τb

2 )s2w−t, E1 = (uIwtagch)t, E2 = gt.

The ciphertext is CT = C0, . . . , C7, E1, E2, tagc.

KeyGen(MSK, I). The authority chooses random r1, r2, z1, z2, tagk ∈ Zp. Let
r = r1 + r2.

Then it creates:

D1 = gα·a1vr. D2 = g−αvr
1g

z1 . D3 = (gb)−z1 . D4 = vr
2g

z2 , D5 = (gb)−z2

D6 = gr2·b, D7 = gr1 , K = (uIwtagkh)r1 .

The secret key is SK = D1, . . . , D7, K, tagk.

2 The maximum number of queries an attacker makes is, of course, a polynomial
function q(·) of the security parameter; however, for notational simplicity we simply
will speak of it making q private key queries.
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Decrypt(CT, KI). The decryption algorithm will be able to decrypt a ciphertext
encrypted for I with private key SKI if the ciphertext tagc is not equal to the
private key tagk. Since both tags are chosen randomly, decryption will succeed
with all but a negligible 1/p probability.

We break the decryption algorithm into a set of calculations. First, it com-
putes:

A1 = e(C1, D1) · e(C2, D2) · e(C3, D3) · e(C4, D4) · e(C5, D5)
= e(g, g)α·a1·b·s2 · e(v, g)b(s1+s2)re(v1, g)a1bs1re(v2, g)a2bs2r.

Recall that r = r1 + r2. Next, it computes

A2 = e(C6, D6) · e(C7, D7)
= e(v, g)b(s1+s2)re(v1, g)a1bs1re(v2, g)a2bs2r · e(g, w)−r1t.

Taking, A3 = A1/A2 = e(g, g)α·a1·b·s2 ·e(g, w)r1·t leaves us with one more can-
cellation to get the message blinding factor. If tagc �= tagk then the decryption
algorithm can compute

A4 =
(
e(E1, D7)/e(E2, K)

)1/(tagc−tagk) = e(g, w)r1·t.

Finally, we can recover the message by computing

C0/(A3/A4) = M.

Altogether, decryption requires nine applications of the pairing algorithm.

3.2 Semi-Functional Algorithms

We now describe the semi-functional ciphertext and key generation algorithms.
We will define them as algorithms that are executed with knowledge of the
secret exponents; however, in a real system they will not be used. Their main
purpose is to define the structures that will be used in our proof. We define both
semi-functional ciphertexts and keys in terms of a transformation on a normal
ciphertext or key.

Semi-Functional Ciphertexts. The algorithm first runs the encryption algorithm
to generate a normal ciphertext CT for identity I and message M with C′

1, . . . , C
′
7

,E′
1, E

′
2. Then it chooses a random x ∈ Zp. It sets C1 = C′

1, C2 = C′
2, C3 =

C′
3, E1 = E′

1,E2 = E′
2, leaving these elements and the tagc unchanged. It then

sets

C4 = C′
4 · gba2x, C5 = C′

5 · ga2x, C6 = C′
6 · va2x

2 , C7 = C′
7 · va2bx

2 .

The semi-functional ciphertext is C1, . . . , C7, E1, E2, tagc.
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Semi-Functional Secret Keys. The algorithm first runs the encryption algorithm
to generate a normal private key SKI for identity I with D′

1, . . . , D
′
7, K. Then

it chooses a random γ ∈ Zp. It sets D3 = D′
3, D5 = D′

5, D6 = D′
6, D7 = D′

7, K =
K ′, leaving these elements and the tagk unchanged. It then sets

D1 = D′
1g

−a1a2γ , D2 = D′
2 · ga2γ , D4 = D′

4 · ga1γ

The semi-functional secret key is SK = D1, . . . , D7, K, tagk

Intuition. We make a few remarks about the nature of the semi-functional keys
and the structure of the system. First, we note that if one attempted to decrypt a
semi-functional ciphertext with a normal key, then the decryption would succeed.
This follows from the fact that

e(gba2x, D4)e(ga2x, D5)/
(
e(va2x

2 , D6)e(va2bx
2 , D7)

)
= 1

when D4, D5, D6, D7 come from a normally generated ciphertext. One can view
this as the extra “random” space occupied by the semi-functional part of the
ciphertext as being orthogonal to the space defined by a normal key. For similar
reasons, the semi-functional components of a private key will not impede de-
cryption when applied on a normal ciphertext. However, when a semi-functional
key is used to decrypt a semi-functional ciphertext decryption will fail (or end
up giving a random message) because an extra e(g, g)−a1a2xγb will be multiplied
by the intended message.

We note that in order to generate semi-functional ciphertexts and private keys
(according to the defined procedures) one respectively needs va2b

2 and ga1a2 —
neither of which is available from the public parameters.

3.3 Proof of Security

We organize our proof as a sequence of games. The first game defined will be
the real identity-based encryption game and the last one will be one in which
the adversary has no advantage unconditionally. We will show that each game
is indistinguishable from the next (under a complexity assumption). As stated
before, the crux of our strategy is to move to a security game where both the
challenge ciphertext and private keys are semi-functional. At this point any keys
the challenger gives out are not useful in decrypting the ciphertext. We first
define the games as:

GameReal: The actual IBE security game defined in our full version.
Gamei: The real security game with the following two exceptions: 1) The chal-

lenge ciphertext will be a semi-functional ciphertext on the challenge identity
I∗. 2) The first i private key queries will return semi-functional private keys.
The rest of the keys will be normal.
For an adversary that makes at most q queries we will be interested in
Game0, . . . ,Gameq. We note that in Game0 the challenge ciphertext is
semi-functional, but all keys are normal and in Gameq all private keys are
semi-functional.
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GameFinal: The real security game with the following exceptions: 1) The chal-
lenge ciphertext is a semi-functional encryption on a random group element
of GT . 2) All of the private key queries result in semi-functional keys.

We now prove a set of Lemmas that argue about the distinguishablity of these
games. For each proof we need to build a reduction simulator that both answers
private key queries and creates a challenge ciphertext. We let GameReal AdvA
denote an algorithm A’s advantage in the real game.

Lemma 1. Suppose that there exists an algorithm A where GameReal AdvA −
Game0 AdvA = ε. Then we can build an algorithm B that has advantage ε in
the decision Linear game.

Proof. Our algorithm B begins by taking in an instance (G, g, f, ν, gc1, f c2, T ) of
the decision Linear problem. We now describe how it executes the Setup, Key
Phase, and Challenge phases of the IBE game with A.

Setup. The algorithm chooses random exponents b, α, yv, yv1 , yv2 ∈ Zp and ran-
dom group elements u, w, h ∈ G. It then sets g = g, ga1 = f, ga2 = ν; intuitively
a1, a2 are the exponents that the reduction cannot know itself.

Finally, it sets the variables as:

gb, gb·a1 = f b gb·a2 = νb, v = gyv , v1 = gyv1 , v2 = gyv2 .

Using this it can calculate τ1, τ2, τ
b
1 , τb

2 and e(g, g)αa1b = e(g, f)α·b in order to
publish the public parameters PK. We also note that using α it can compute
the master secret key for itself.

Key Generation Phases 1,2. Since B has the actual master secret key MSK it
simply runs the key generation to generate the keys in both phases. Note that
the MSK it has only allows for the creation of normal keys.

Challenge ciphertext. B receives two messages M0, M1 and challenge identity I∗.
It then flips a coin β. We describe the creation of the challenge ciphertext in two
steps. First, it creates a normal ciphertext using the real algorithm by calling
Encrypt(PK, I∗, Mβ), which outputs a ciphertext CT = C′

0, . . . , C
′
7, E

′
1, E

′
2, tagc.

Let s′1, s
′
2, t

′ be the random exponents used in creating the ciphertext.
Then we modify components of our ciphertext as follows. It sets

C0 = C′
0 ·
(
e(gc1, f) · e(g, f c2)

)b·α
, C1 = C′

1 · (gc1)b, C2 = C′
2 · (f c2)−b,

C3 = C′
3 · (f c2), C4 = C′

4 · (T )b, C5 = C′
5 · T,

C6 = C′
6 · (gc1)yv · (f c2)−yv1 · T yv2 , C7 = C′

7 ·
(
(gc1)yv · (f c2)−yv1 · T yv2

)b
,

E1 = E′
1, E2 = E′

2.

The returned ciphertext is CT = C0, . . . , C7, E1, E2, tagc.
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If T is a tuple, then this assignment implicitly sets s1 = −c2 + s′1, s2 =
s′2 + c1 + c2, and s = s1 + s2 = c1 + s′1 + s′2. If T = νc1+c2 it will have the same
distribution as a standard ciphertext; otherwise, it will be distributed identically
to a semi-functional ciphertext. B receives a bit β′ and outputs 0 iff β = β′.

Lemma 2. Suppose that there exists an algorithm A that makes at most q
queries and Gamek−1 AdvA −Gamek AdvA = ε for some k where 1 ≤ k ≤ q.
Then we can build an algorithm B that has advantage ε in the decision Linear
game.

Proof. Our algorithm B begins by taking in an instance (G, g, f, ν, gc1, f c2, T ) of
the decision Linear problem. We now describe how it executes the Setup, Key
Phase, and Challenge phases of the IBE game with A.

Setup. Algorithm B first chooses random exponents α, a1, a2, yv1 , yv2 , yw, yu, yh.
It then defines

g = g, gb = f, gb·a1 = fa1 , gb·a2 = fa2 , v = ν−a1·a2 ,

v1 = νa2 · gyv1 , v2 = νa1 · gyv2 , e(g, g)α·a1b = e(f, g)α·a1 .

Now it can create

τ1 =vva1
1 =gyv1a1 τ2 =vva2

1 =gyv2a2 τb
1 = vva1

1 = fyv1a1 τb
2 = vva2

1 = fyv2a2 .

Finally, B chooses random A, B ∈ Zp. It then sets

w = fgyw , u = f−Agyu , h = f−Bgyh .

This will define all the public parameters of the system. Note that by virtue of
knowing α, the algorithm B will know the regular master secret key.

We highlight the importance of the function F (I) = A · I + B. One important
feature is that for tagc = F (I)wehave (uIwtagch) = f tagc−A·I−BgI·yu+yh+tagc·yw

= gI·yu+yh+tagc·yw . In this case B will know the discrete log base g of the function.
We also note that A, B are initially information theoretically hidden from the ad-
versary. Since it is a pairwise independent function, if the adversary is given F (I)
for some identity, the, all values in Zp are equally likely for F (I ′) for some I �= I ′.

Key Gen Phases 1,2. We break the Key Generation into three cases. Key Gen-
eration is done the same regardless of whether we are in phase 1 or 2.

Consider the i-th query made by A.

Case 1: i > k
When i is greater than k our algorithm B will generate a normal key for the
requested identity I. Since it has the master secret key MSK it can run that
algorithm.
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Case 2: i < k
When i is less than k our algorithm B will generate a semi-functional key for
the requested identity I. It first creates a normal key using MSK. Then it makes
it semi-functional using the procedure from above in Subsection 3.2. It can run
this procedure since it knows ga1a2 .

Case 3: i = k
The algorithm first runs the key generation algorithm to generate a normal
private key SKI for identity I with D′

1, . . . , D
′
7, K using tagk

∗ = F (I). Let
r′1, r

′
2, z

′
1, z

′
2 be the random exponents used.

It then sets

D1 =D′
1 ·T−a1·a2 , D2 =D′

2 ·T a2(gc1)yv1 , D3 =D′
3 ·(f c2)yv1 , D4 =D′

4 ·T a1(gc1)yv2 ,

D5 = D′
5 ·(f c2)yv2 , D6 = D′

6 ·f c2 , D7 = D′
7 ·(gc1), K = K ′ ·(gc1)I·yu+yh+tagk·yw .

The semi-functional secret key is SK = D1, . . . , D7, K, tagk. We emphasize
that the fact that tagk = F (I) allowed us to created the component K. In
addition, we note that we implicitly set z1 = z′1 − yv1c2 and z2 = z′2 − yv2c2 in
order to be able to create D2 and D4.

If T is a Linear tuple of the form T = νc1+c2 , then the k-th query results in
a normal key under randomness r1 = r′1 + c1 and r2 = r′2 + c2. Otherwise, if T
is a random group element, then we can write T = νc1+c2gγ for random γ ∈ Zp.
This forms a semi-functional key where γ is the added randomness to make it
semi-functional.

Challenge Ciphertext. Algorithm B is given a challenge identity I∗ and messages
M0, M1. Then it flips a coin β.

In this phase B needs to be able to generate a semi-functional challenge ci-
phertext. One problem is that B does not have the group element vb

2 so it cannot
directly create such a ciphertext. However, in the case where tagc

∗ = F (I∗) it
will have a different method of doing so.
B first runs the normal encryption algorithm to generate a normal ciphertext

CT for identity I∗ and message M∗; during this run it uses tagc
∗ = F (I∗).

It then gets a standard ciphertext C′
1, . . . , C

′
7, E

′
1, E

′
2 under random exponents

s′1, s′2, t′.
To make it semi-functional it chooses a random x ∈ Zp. It first sets C1 =

C′
1, C2 = C′

2, C3 = C′
3 leaving these elements and the tagc

∗ unchanged. It then
sets

C4 =C′
4·fa2·x, C5 =C′

5·ga2·x, C6 = C′
6·va2x

2 , C7 = C′
7·fyv2 ·x·a2ν−a1·x·yw·a2 ,

E1 = E′
1 · (νI·yu+yh+tagc·yw)a1a2x E2 = E′

2 · νa1a2·x.

The semi-functional ciphertext is C1, . . . , C7, E1, E2, tagc.
Intuitively, the algorithm implicitly sets gt = gt′ + νa1a2x. This allows for the

cancellation of the term va1a2bx
2 by w−t in constructing C7. Normally, this would
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be problematic for the generation of E1; however since tagc
∗ = F (I∗) B is able

to create this term.
If T is a tuple, then we are in Gamek−1, otherwise we are in Gamek. We

highlight that the adversary cannot detect any special relationship between tagc
∗

and tagk
∗ since F (I) = A · I + B is a pairwise independent function and A, B

are hidden from its view.
B receives a bit β′ and outputs 0 if β = β′.

Lemma 3. Suppose that there exists an algorithm A that makes at most q
queries and Gameq AdvA − GameFinal AdvA = ε. Then we can build an al-
gorithm B that has advantage ε in the decision BDH game.

Proof. We give the proof of security in the full version of our paper.

Theorem 1. If the decisional Linear and decisional BDH assumptions hold then
no poly-time algorithm can break our IBE system.

Proof. Any attacker’s advantage in GameFinal AdvA in the final game must be
0 since it completely hides the bit β. By the sequence of games we established
and Lemmas 1,2,3 an attacker’s advantage in the real game GameReal AdvA
must be negligibly close to 0.

4 Discussion

In this section we discuss a few potential future variations and implications of
our IBE system.

Achieving Perfect Correctness. Although having a negligible correctness error
seems acceptable in practice, we would like to point out that we can close this
gap by simply giving any user two private keys for an identity I each time they
make a key request. The authority will simply run the original key generation
algorithm twice with the restriction that the two key tags, tagkA, tagkB are not
equal. When attempting to decrypt a ciphertext at least one of the keys will
work. The proof of security will work over each key piece — that is, each key
request in the modified system will generate two distinct key requests (for the
same identity) in the proof. We could also use a complementary two ciphertext
approach and one private key approach.

Another potential solution is to run an efficient selectively secure IBE scheme
[2] “in parallel”. When a user encrypts a message M to I with tagc in our original
system, he will also encrypt M to the “identity” tagc in the second selective
system. A user with a key with tagk will get a private key for “identity” tagk

in the second system. On decryption with 1 − 1/p probability the decryption
algorithm will use the first ciphertext. However, if the tags align it can use the
second ciphertext.
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Signature Scheme. Naor3 observed that any (fully secure) IBE system gives rise
to a signature scheme secure under the same assumptions. The signature system
from our IBE scheme has the favorable properties that the public parameters
and signatures are a constant number of group elements, it is provable in the
standard model, and it is stateless. While some previous signature schemes de-
rived from IBE systems (e.g. BLS [8] or Waters [26] signatures) depended on
the computational variants of the assumptions, our proof technique seems to
require the decisional Linear Assumption. One interesting approach would be
to see if one could create shorter signatures than those generated in the generic
conversion by using the IBE systems private keys.

Chosen Ciphertext Security. We note that using the transformation of Canetti,
Halevi, and Katz [12] we can achieve chosen ciphertext security from the HIBE
scheme of Section 5.

Security under the XDH Assumption. One factor in the size and complexity
of our IBE system is that it relies upon the Decisional Linear Assumption to
hide the form of both keys and ciphertexts. One potential alternative is to use
asymmetric bilinear groups, where we have e : G1×G2 → GT . Using these group
we might assume DDH is hard both within G1 and within G2; this has also been
called the XDH assumption. Using this assumption we might hope to shave off
three group elements from both ciphertexts and private keys.

Alternative to Incompleteness. An critical part to arguing security is that an
attacker could not distinguish normal keys from semi-functional ones. Our ap-
proach was to use a hybrid argument where for the key in question its tagk =
F (I). If the simulator attempted to create the key in question for I∗ and test it
on the challenge ciphertext this would not work since tagk = tagc. Intuitively, the
simulator could not test whether the key was semi-functional since decryption
would fail regardless of whether the key was semi-functional or not. One might
consider taking the opposite approach where decryption would always succeed
if tagc = tagk even if both the key and ciphertext are semi-functional. We note
this approach would also require a slightly different proof strategy for proving
Lemma 3.

5 Hierarchical Identity-Based Encryption

In this section we present our Hierarchical Identity-Based Encryption system.
Our construction will build on top of our IBE scheme of Section 3. The reader
will notice that the added complexity of moving from our IBE to HIBE system
is remarkably simple. The same core concepts of our construction and proof
methodology apply. One might view the HIBE system as “combining” the struc-
ture of the Boneh-Boyen [2] HIBE system with our techniques to get full security.

3 The observation was documented by Boneh and Franklin [5].



Dual System Encryption 633

One challenging aspect in the proof of security is that a private key of depth
d will have associated tags: tagk1, . . . , tagkd. If we run our delegation algorithm
to create a new key of depth d+1, the new key will inherit the previous key’s tag
values and there is no method for “re-randomizing” them. Most prior security
definitions of HIBE [20, 18] define a game where all keys come from an authority
and don’t model any distinctions on how a key was created (i.e. trace paths of
delegation). The prior definitions are only valid if keys from the delegation algo-
rithm are distributed identically to a fresh call to the key generation algorithm 4;
however, due to the “tag lineage” described this is clearly not the case. To argue
security we use a “complete” model of HIBE security introduced by Shi and
Waters [25] that we define in our full version. Due to space considerations our
proof of security is also in the full version.

5.1 Construction

In our system we will consider a hierarchical identity as an identity vector I =
I1 : · · · : Id for some depth d, where d ≤ n for some maximum depth n. We
assume that the identities are encoded such that for two identities I, I ′ if Ii = I ′i
then Ij = I ′j for all j ≤ i. We can enforce this by encoding all previous levels. For
example, an identity of level one “com” and level two “yahoo” can be encoded
as “com”:“com.yahoo”, where ‘.’ is a special symbol. In practice, one will use a
collision resistant hash function to hash identities of arbitrary length to Zp.

Setup(λ, n). The setup algorithm takes as input a security parameter and the
maximum depth n. The authority first chooses a group G of prime order p. Next,
it chooses generators g, v, v1, v2, w, u1, . . . , un, h1, . . . , hn ∈ G and exponents
a1, a2, b, α ∈ Zp. Let τ1 = vva1

1 , τ2 = vva2
2 . It publishes the public parameters

PK as the group description G along with:

gb, ga1 , ga2 , gb·a1 , gb·a2 , τ1, τ2, τ
b
1 , τb

2 , v, v1, v2, w, u1, . . . , un,

h1, . . . , hn, e(g, g)α·a1·b.

The master secret key MSK consists of g, gα, gα·a1 as well as the public pa-
rameters. The identity space for the described scheme will be Zp.

Encrypt(PK, I = I1 : · · · : Id, M). The encryption algorithm will encrypt
to an identity vector of depth d ≤ n. It chooses random s1, s2, t ∈ Zp and
tagc1, . . . , tagcd ∈ Zp. Let s = s1 + s2. It then blinds M ∈ GT as C0 =
M · (e(g, g)αa1·b)s2 and creates:

C1 = (gb)s1+s2 , C2 = (gb·a1)s1 , C3 = (ga1)s1 , C4 = (gb·a2)s2 , C5 = (ga2)s2 ,

C6 = τs1
1 τs2

2 , C7 = (τb
1 )s1(τb

2 )s2w−t,

E1 = (uI1
1 wtagc1h1)t, . . . , Ed = (uId

d wtagcdhd)t, Ẽ = gt.

The ciphertext is CT = C0, . . . , C7, E1, , . . . , Ed, Ẽ, tagc1, . . . , tagkd.
4 This is actually the case for most prior systems, so the proofs of security do hold up.
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KeyGen(MSK, I = I1 : · · · : Id). The authority chooses random μ1, . . . , μd

, r2,z1,z2, tagk1, . . . , tagkd ∈ Zp. First let r1 =
∑

1≤i≤d μi and then let r = r1+r2.
Then it creates:

D1 =gα·a1vr, D2 =g−αvr
1g

z1 , D3 = (gb)−z1 , D4 = vr
2g

z2 , D5 = (gb)−z2 ,

D6 = gr2·b, D7 = gr1 ,

(K1,1 =(uI1
1 wtagk1h1)μ1 , K1,2 =gμ1 .), . . . , (Kd,1 = (uId

d wtagkdhd)μd , Kd,2 = gμd)

The secret key is SK=D1, . . . , D7, (K1,1, K1,2), . . . , (Kd,1, Kd,2)tagk1, . . . , tagkd.

Delegate(PK, SKI=I1:···:Id
, Id+1). The algorithm will take a secret key SK =

D′
1, . . . , D

′
7 , (K ′

1,1, K
′
1,2) , . . . , (K ′

d,1, K
′
d,2), tagk1, . . . , tagkd for I and extend it

to depth d + 1 by creating a key for I : Id+1.
The algorithm will “re-randomize” the existing key in the process of appending

on a new key component; however, the existing tagk values will remain. It chooses
random μ1, . . . , μd+1, r2, z1, z2,tagkd+1 ∈ Zp. First let r1 =

∑
1≤i≤d+1 μi and

then let r = r1 + r2. Then it creates:

D1 = D′
1 · vr, D2 = D′

2 · vr
1g

z1 , D3 = D′
3 · (gb)−z1 , D4 = D′

4 · vr
2g

z2 ,

D5 = D′
5 · (gb)−z2 , D6 = D′

6 · gr2·b, D7 = D′
7 · gr1 ,

K1,1 = K ′
1,1 · (uI1

1 wtagk1h1)μ1 , . . . , Kd,1 = K ′
d,1 · (uId

d wtagkdhd)μd ,

Kd+1,1 = (uId+1
d+1 wtagkd+1hd+1)μd+1 ,

K1,2 = K ′
1,2 · gμ1 , . . . , Kd,2 = K ′

d,2 · gμd , Kd+1,2 = gμd+1 .

The secret key is SK = D1, . . . , D7,(K1,1, K1,2),. . .,(Kd+1,1, Kd+1,2),tagk1, . . .
,tagkd+1.

Decrypt(CT, KI). The decryption algorithm will be able to decrypt a ciphertext
encrypted for I ′ of depth d′ with private key SKI of depth d if 1) ∀i ≤ d : I ′

i = Ii

for all i ≤ d and 2) ∀i ≤ d : tagci �= tagki. We break the decryption algorithm
into a set of calculations: First, it computes:

A1 = e(C1, D1) · e(C2, D2) · e(C3, D3) · e(C4, D4) · e(C5, D5)

A2 = e(C6, D6) · e(C7, D7) A3 = A1/A2 = e(g, g)α·a1·b·s2 · e(g, w)r1·t.

If ∀i ≤ d we have tagci �= tagki then the decryption algorithm can compute

A4 =
(
e(E1, K1,2)/e(Ẽ, K1,1)

)1/(tagc1−tagk1) · · ·(
e(Ed, Kd,2)/e(Ẽ, Kd,1)

)1/(tagcd−tagkd) = e(g, w)t
∑

1≤d μi .

Finally, we can recover the message by computing C0/(A3/A4) = M .



Dual System Encryption 635

References

[1] Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consis-
tency properties, relation to anonymous ibe, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

[2] Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

[3] Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

[4] Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

[5] Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer,
Heidelberg (2001)

[6] Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: FOCS, pp. 647–657 (2007)

[7] Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

[8] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pair-
ing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532.
Springer, Heidelberg (2001)

[9] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

[10] Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (with-
out random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
290–307. Springer, Heidelberg (2006)

[11] Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

[12] Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

[13] Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
IMA Int. Conf., pp. 360–363 (2001)

[14] Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

[15] Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

[16] Gentry, C., Halevi, S.: Hierarchical identity based encryption with polynomially
many levels. In: TCC (2009)

[17] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)



636 B. Waters

[18] Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

[19] Gentry, C., Waters, B.: Adaptive security in broadcast encryption sys- tems. In:
Eurocrypt (2009)

[20] Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer,
Heidelberg (2002)

[21] Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: ACM Conference on Computer and Communications Security,
pp. 155–164 (2003)

[22] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

[23] Sahai, A., Waters, B.: Revocation systems with very small private keys. Cryptol-
ogy ePrint Archive, Report 2008/309 (2008)

[24] Shi, E., Bethencourt, J., Chan, H.T.-H., Song, D.X., Perrig, A.: Multi-dimensional
range query over encrypted data. In: IEEE Symposium on Security and Privacy,
pp. 350–364 (2007)

[25] Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
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The Group of Signed Quadratic Residues and
Applications

Dennis Hofheinz� and Eike Kiltz��

Abstract. We consider the cryptographic group of Signed Quadratic
Residues. This group is particularly useful for cryptography since it is
a “gap-group,” in which the computational problem (i.e., computing
square roots) is as hard as factoring, while the corresponding decisional
problem (i.e., recognizing signed quadratic residues) is easy. We are able
to show that under the factoring assumption, the Strong Diffie-Hellman
assumption over the signed quadratic residues holds. That is, in this
group the Diffie-Hellman problem is hard, even in the presence of a De-
cisional Diffie-Hellman oracle.

We demonstrate the usefulness of our results by applying them to the
Hybrid ElGamal encryption scheme (aka Diffie-Hellman integrated en-
cryption scheme — DHIES). Concretely, we consider the security of the
scheme when instantiated over the group of signed quadratic residues.
It is known that, in the random oracle model, the scheme is chosen-
ciphertext (CCA) secure under the Strong Diffie-Hellman assumption
and hence, by our results, under the standard factoring assumption. We
show that furthermore, in the standard model, Hybrid ElGamal is CCA
secure under the higher residuosity assumption, given that the used hash
function is four-wise independent. The latter result is obtained using the
recent “randomness extraction framework” for hash proof systems.

Keywords: Public-key encryption, chosen-ciphertext security, Hybrid
ElGamal/DHIES.

1 Introduction

1.1 Quadratic Residues

The group of quadratic residues QRN over a Blum integer N = PQ (where
P ≡ Q ≡ 3 mod 4) has proven to be a useful group for cryptographic purposes.
For example, Rabin [30] proved that computing square roots in this group is
equivalent to factoring the modulus N . The latter is believed to be hard in
general (“factoring assumption”). Rabin’s fundamental observation is the basis
for a number of cryptographic protocols that are provably secure under the
factoring assumption (e.g., the encryption and signature schemes [30,5,21]).

The quadratic residues have yet another useful property. Namely, given a
uniformly random element modulo N (with Jacobi symbol 1), it is believed to
be hard to decide whether the element is a square or not. This is the quadratic
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residuosity assumption, a stronger assumption than the factoring assumption.
On the bright side, there are again numerous cryptographic protocols whose
security relies on the quadratic residuosity assumption (e.g., [18,11]).

However, the quadratic residuosity assumption also has a dark side. Namely,
whenever an active adversary may choose group elements as protocol inputs
(such as ciphertexts submitted for decryption), the receiving (honest) party may
not be able to distinguish quadratic residues from quadratic non-residues. In par-
ticular, the adversary may learn some secret information by observing the proto-
col’s different behaviour on quadratic residues and non-residues. Concretely, this
problem naturally occurs when trying to reduce the chosen-ciphertext security
(CCA security) of an encryption scheme (defined over the quadratic residues)
to the factoring assumption. Specifically, during such a reduction, a decryption
oracle has to be implemented without the knowledge of the factorization of N .
Hence, the decryption oracle cannot distinguish quadratic residues from non-
residues. This allows an adversary that uses the decryption oracle to submit,
say, both C ∈ Z∗

N and −C ∈ Z∗
N (one of which is not a square) for decryption.

This makes implementing a decryption oracle harder, in particular since the the
submitted non-squares could be related to the challenge ciphertext.

Another intractability problem commonly used in cryptography is the Diffie-
Hellman (DH) problem [13]. Given a generator g of a cyclic group G and X =
gx, Y = gy, the DH key is defined as DHg(X, Y ) = gxy. The (Computational) DH
problem is to compute DHg(X, Y ) from g, X, Y . For passive (chosen-plaintext)
adversaries the security of the DH key exchange protocol [13] and the ElGamal
encryption scheme [15] is equivalent to the DH problem. Over the group of
quadratic residues (i.e., if G = QRN ), Shmuely [32] and McCurley [27] proved
that the DH problem is at least as hard as factoring N .

The Strong Diffie-Hellman (SDH) problem [1] is to compute DHg(X, Y ) from
g, X, Y while having access to a (Decisional) DH oracle that returns 1 on in-
put (Ŷ , Ẑ) if DHg(X, Ŷ ) = Ẑ and (Ŷ , Ẑ) ∈ G × G (and 0 otherwise). Inter-
estingly, for active (chosen-ciphertext) adversaries, the security of the (hashed)
Diffie-Hellman key exchange protocol [13] and the Hybrid ElGamal encryption
scheme [15] is equivalent to the SDH problem [9] in the random oracle model [3].
However, the result of Shmuely does not extend to prove that the SDH problem
is at least as hard as factoring, since to simulate the DH oracle, one must be
able to determine membership in the quadratic residues.

1.2 Signed Quadratic Residues

We propose to use a cryptographic group we call the Signed Quadratic Residues
(QR

+
N ). This group has been suggested already by Fischlin and Schnorr in [16,

Section 6] (in the different context of hard-core bits for generalized Rabin func-
tions), but has not been investigated any further. This group is useful for cryptog-
raphy since membership in QR

+
N can be publicly (and efficiently) verified while it

inherits some nice intractability properties of the quadratic residues. For exam-
ple, computing square roots in QR

+
N is also equivalent to factoring the modulus



The Group of Signed Quadratic Residues and Applications 639

N . We therefore have a “gap group” [29], in which the computational problem
(i.e., computing a square root) is as hard as factoring, whereas the corresponding
decisional problem (i.e., deciding if an element is a signed square) is easy. We
can apply this observation to the Diffie-Hellman assumption. Namely, we extend
Shmuely’s result to show that in the group of signed quadratic residues, the
Strong Diffie-Hellman problem is implied by the factoring assumption.

Concretely, the signed quadratic residues, QR
+
N , are defined as the group

QR
+
N := {|x| : x ∈ QRN}, where |x| is the absolute value when representing

elements of ZN as the set {−(N − 1)/2, . . . , (N − 1)/2}. We have that (QR
+
N , ◦)

is a cyclic group, where the group operation is given by a ◦ b := |a · b mod N |.
As already noted in [16], membership in QR

+
N can be efficiently verified since

QR
+
N = J

+
N , where JN is the group of elements with Jacobi symbol 1 and J

+
N :=

{|x| : x ∈ JN} = JN/±1.

1.3 Hybrid ElGamal over the Signed Quadratic Residues

The Hybrid ElGamal encryption scheme combines the original ElGamal encryp-
tion scheme with a hash function for key derivation and a symmetric cipher.
As “Diffie-Hellman integrated encryption scheme” (DHIES) [1] it is contained
in several standards bodies for public-key encryption, e.g., in IEEE P1363a,
SECG, and ISO 18033-2. We consider the security of Hybrid ElGamal when
implemented over the group of signed quadratic residues.

CCA security in the random oracle model under the factoring as-

sumption. It is well known [1,12] that Hybrid ElGamal is CCA secure in the
random oracle model under the SDH assumption. Recall that we show that the
SDH assumption in the group of signed quadratic residues is implied by the
factoring assumption. Hence, as an immediate application of our results, we ob-
tain that Hybrid ElGamal over the signed quadratic residues is CCA secure in
the random oracle model under the factoring assumption. (We emphasize that
while the security proofs for Hybrid ElGamal from [1,12] are formulated for
prime-order subgroups of Z∗

p, they do not use knowledge about the order of the
platform group, and hold literally in the group of signed quadratic residues.)

CCA security in the standard model under the higher residuosity

assumption. Using completely different techniques, we show the Hybrid ElGa-
mal over the signed quadratic residues is CCA secure in the standard model
under the higher residuosity assumption [19].1 This result is obtained by apply-
ing the recent “randomness extraction framework” by [22] to a specific “high-
entropic” hash proof system whose subset membership problem is hard assuming
the higher residuosity assumption. We stress that this is the first security result
for Hybrid ElGamal in the standard model from a non-interactive computational
assumption.

1 The higher residuosity assumption states that it is hard to distinguish random el-
ements of QRN from random elements of GS , where GS is a subgroup of QRN of
unknown (large) order S.
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1.4 Other Applications

Security of Diffie-Hellman key exchange. Similar to the Hybrid El-
Gamal scheme, the (hashed) Diffie-Hellman key exchange protocol [13] can be
proven secure against active attacks in the random oracle model under the SDH
assumption ([9, Theorem 5]). As with Hybrid ElGamal, the security proof does
not use knowledge about the order of the platform group, and hence holds liter-
ally over the signed quadratic residues. In particular, we can employ our result
about the SDH assumption in the group of signed quadratic residues. We get
that the (hashed) Diffie-Hellman key exchange protocol is secure against ac-
tive attacks in the random oracle model under the factoring assumption, when
implemented over the signed quadratic residues.

Simplifying security proofs. As hinted above, encryption schemes that are
already formulated over the quadratic residues have to take into account that
the set of quadratic residues is not (or, rather, not known to be) efficiently
recognizable. In particular, e.g., ciphertexts submitted for decryption may be
non-squares. The usual way to deal with this problem is to first square the group
elements supplied to decryption, and to “make up for this additional squaring” in
the subsequent processing. Additionally, these works already propose to restrict
the set of allowed ciphertexts to signed quadratic residues (e.g., to prevent an
adversary to submit both C and −C for decryption). Hence, the group of signed
quadratic residues is implicitly used, but only to “transport” quadratic residues.
Our proposal here is to work in the group of signed quadratic residues altogether,
whenever a reduction to the factoring assumption is desired. Because the group of
signed quadratic residues is efficiently recognizable, this avoids the extra squaring
step and the connected complications. In particular, we can simplify both scheme
and security proof of the CCA-secure encryption scheme from [21]. This results
in a slight efficiency gain, since we save a few modular squarings. We stress that
these modifications do not affect the actual reduction to factoring.2

1.5 Related Work

To the best of our knowledge, the group of signed quadratic residues appears
first in [16] in the context of hard-core bits for generalized Rabin functions. Fur-
thermore, as explained above, it has been used implicitly in several encryption
schemes to “transport” quadratic residues, e.g., in [26,8,21]. The security of Hy-
brid ElGamal has been investigated in [12,25] in the random oracle model, and
in [1] in the standard model. In particular, the latter work derives CCA security
results for Hybrid ElGamal under the (interactive) “oracle Diffie-Hellman” as-
sumption. The (non-interactive) computational assumption that we employ to
show CCA security of Hybrid ElGamal has been suggested and used in [17,6],

2 It is easy to see that squaring is a one-way permutation (as hard to invert as factoring
N) also in the signed quadratic residues. Furthermore, the least significant bit of the
squaring function (over the signed quadratic residues) is hard-core, see [16] who
consider the “absolute Rabin function Ea

N .”
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also with the goal to construct hash proof systems for the use in encryption
schemes. However, the encryption schemes from [17,6] are less efficient than
Hybrid ElGamal due to the fact that they do not use randomness extraction
techniques, but instead build on the Cramer-Shoup, resp. Kurosawa-Desmedt
paradigms [11,23]. The paper [9] has a similar overall goal as ours. They propose
the “Twin Diffie-Hellman” (2DH) assumption and show that the (interactive)
Strong 2DH assumption is implied by the standard DH assumption. However, to
be able to use this new assumption to prove security of the schemes of interest
(among others also the Hybrid ElGamal and the Diffie-Hellman key-exchange
protocol) they have to modify the schemes. Our results directly yield a security
proof for the above schemes when instantiated in the specific group of signed
quadratic residues.

2 Preliminaries

2.1 Notation

If k ∈ N then 1k denotes the string of k ones. If r ≥ 1 is a rational number then
[r] = {1, . . . , #r�}. If S is a set then s ←R S denotes the operation of picking
an element s of S uniformly at random. We write A(x, y, . . .) to indicate that
A is an algorithm with inputs x, y, . . . and by z ←R A(x, y, . . .) we denote the
operation of running A with inputs (x, y, . . .) and letting z be the output. We
write lg x for logarithms over the reals with base 2. The min-entropy of a random
variable X is defined as H∞(X) = − lg(maxx∈X Pr[X = x]). If X is an element
of a cyclic group G = 〈g〉, we write dloggX for the smallest non-negative integer
x with X = gx.

2.2 Public-Key Encryption

A public key encryption scheme PKE = (Kg, Enc, Dec) with message spaceM(k)
consists of three polynomial time algorithms (PTAs), of which the first two, Kg
and Enc, are probabilistic and the last one, Dec, is deterministic. Public/secret
keys for security parameter k ∈ N are generated using (pk , sk) ←R Kg(1k).
Given such a key pair, a message m ∈ M(k) is encrypted by C ←R Enc(pk , m);
a ciphertext is decrypted by m←R Dec(sk,C ), where possibly Dec outputs ⊥ to
denote an invalid ciphertext. For consistency, we require that for all k ∈ N, all
messages m ∈ M(k), it must hold that Pr[Dec(sk , Enc(pk , m)) = m] = 1 where
the probability is taken over the above randomized algorithms and (pk , sk)←R

Kg(1k).
The security we require for PKE is IND-CCA security [31,14]. We define the

advantage of an adversary A = (A1,A2) as

Advcca
PKE,A(k) def=

∣∣∣∣∣∣∣∣Pr

⎡⎢⎢⎣b̂ = b :

(pk , sk)←R Kg(1k)
(m0, m1,St)←R ADec(sk ,·)

1 (pk )
b←R {0, 1} ; C ∗ ←R Enc(pk , mb)
b′ ←R ADec(sk ,·)

2 (C ∗,St)

⎤⎥⎥⎦− 1
2

∣∣∣∣∣∣∣∣ .
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The adversary A2 is restricted not to query Dec(sk , ·) with C ∗. PKE scheme
PKE is said to be indistinguishable against chosen-ciphertext attacks (IND-CCA
secure in short) if the advantage function Advcca

PKE,A(k) is a negligible function in
k for all efficient A.

2.3 Symmetric Encryption

A symmetric encryption scheme SE = (E, D) is specified by its encryption algo-
rithm E (encrypting m ∈M(k) with keys S ∈ KSE(k)) and decryption algorithm
D (returning m ∈ M(k) or ⊥). Here we restrict ourselves to deterministic algo-
rithms E and D.

The most common notion of security for symmetric encryption is that of
(one-time) ciphertext indistinguishability (IND-OT), which requires that all ef-
ficient adversaries fail to distinguish between the encryptions of two messages
of their choice. Another common security requirement is ciphertext authenticity.
(One-time) ciphertext integrity (INT-OT) requires that no efficient adversary
can produce a new valid ciphertext under some key when given one encryption
of a message of his choice under the same key. A symmetric encryption scheme
which satisfies both requirements simultaneously is called secure in the sense of
authenticated encryption (AE-OT secure). Symmetric ciphers secure in the sense
of AE-OT can be constructed (following the encrypt-then-mac approach [2,12])
from a IND-OT secure symmetric encryption scheme and a MAC. Note that
AE-OT security is a stronger notion than one-time chosen-ciphertext security
(IND-OTCCA) [2,12]. Formal definitions and constructions appear in, e.g., [20].

2.4 Hash Functions

Let H be a family of hash functions H : X → Y . With |H| we denote the number
of functions in this family and when sampling from H we assume a uniform
distribution. Let k > 1 be an integer, the hash-family H is k-wise independent
if for any sequence of distinct elements x1, . . . , xk ∈ X the random variables
H(x1), . . . , H(xk), where H←R H, are independent and uniformly random.

3 The Group of Signed Quadratic Residues

3.1 Quadratic Residues

An n-bit integer N = PQ is called an RSA modulus if P and Q are two distinct
n/2-bit odd primes. In what follows, we will assume that N is a Blum integer,
i.e., an RSA modulus N = PQ such that P and Q are both congruent 3 modulo
4. The group Z∗

N consists of all elements of ZN that have an inverse modulo N .
Z
∗
N has order φ(N) = (P −1)(Q−1), where φ(N) is Euler’s totient function. By

JN we denote the subgroup of all elements from Z∗
N with Jacobi symbol 1. JN

has index 2 in Z∗
N and has order (P − 1)(Q− 1)/2. Since N is Blum, −1 ∈ JN .

By QRN we denote the group of quadratic residues modulo N . Note that QRN

is a subgroup of JN with index 2 and has order (P − 1)(Q − 1)/4. We remark
that recognizing elements in QRN is generally believed to be a hard problem
(the quadratic residuosity problem).
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3.2 Signed Quadratic Residues

Let N be an integer. For x ∈ ZN we define |x| as the absolute value of x, where
x is represented as a signed integer in the set {−(N − 1)/2, . . . , (N − 1)/2}. For
a sub-group G of Z∗

N we define the “signed group”, G+, as the group

G
+ := {|x| : x ∈ G}

with the following group operation. Namely, for g, h ∈ G+ and an integer x we
define

g ◦ h :=|g · h mod N |, gx := g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸
x times

= |gx mod N | . (1)

More complicated expressions in the exponents are computed modulo the group
order, e.g., g1/2 = g2−1 mod ord(G+). Note that taking the absolute value is a
surjective homomorphism from G to G+ with trivial kernel if −1 �∈ G, and with
kernel {−1, 1} if −1 ∈ G.

Let N be a Blum integer such that −1 �∈ QRN . We will mainly be interested
in QR

+
N , which we call signed quadratic residues (modulo N). QR

+
N is a subgroup

of Z∗
N/±1, with absolute values as a convenient computational representation.

The following basic facts have already been noted in [16].

Lemma 1. Let N be a Blum integer. Then:
1. (QR

+
N , ◦) is a group of order φ(N)/4.

2. QR
+
N = J

+
N . In particular, QR

+
N is efficiently recognizable (given only N).

3. If QRN is cyclic, so is QR
+
N .

Proof. First, note that | · | : (ZN , ·) → (Z+
N , ◦) is a group homomorphism so

(QR
+
N , ◦) is a group. Since −1 �∈ QRN , the map QRN → QR

+
N has kernel {1},

and so ord(QR
+
N ) = ord(QRN ) = φ(N)/4. On the other hand, the map JN → J

+
N

has kernel {±1}, and so ord(J+
N ) = ord(JN)/2 = φ(N)/4. Since QRN ⊆ JN , we

have QR
+
N ⊆ J

+
N , so ord(QR

+
N ) = ord(J+

N ) implies QR
+
N = J

+
N . Elements in QR

+
N

can be efficiently recognized since QR
+
N = J

+
N = JN ∩ [(N − 1)/2]. If QRN is

cyclic, a generator g of QRN is mapped to a generator |g| of QR
+
N , so QR

+
N is a

cyclic group.

3.3 Factoring Assumption

RSA Instance Generator. Let 0 ≤ δ < 1/2 be a constant and n(k) be a
function. Let RSAgen be an algorithm that generates elements (N, P, Q), such
that N = PQ is an n-bit Blum integer and all prime factors of φ(N)/4 are
pairwise distinct and at least δn bit integers.3

3 The “only large prime-factors” requirement is needed to ensure that the square of a
random element in Z

∗
N is a generator of QRN with high probability 1 −O(2−δn(k)).

The requirement that all prime factors are distinct ensures that JN is cyclic.



644 D. Hofheinz and E. Kiltz

Factoring assumption. The factoring assumption is that computing P, Q
from N (generated by RSAgen) is hard. We write

Advfac
A,RSAgen(k) := Pr[{P, Q} ←R A(N) : (N, P, Q)←R RSAgen(1k)].

The factoring assumption for RSAgen holds if Advfac
A,RSAgen(k) is negligible for all

efficient A.

3.4 Strong Diffie-Hellman Assumption

Let G be a finite cyclic group whose order is not necessarily known. The Diffie-
Hellman (DH) problem in G is to compute DHg(X, Y ) := g(dloggX)(dloggY ) from
(G, g, X, Y ) for a uniform generator g and uniform X, Y ∈ G. The strong Diffie-
Hellman problem [1] is the same as the DH problem, but now the adversary has
access to a Decision Diffie-Hellman oracle for fixed g and X , which is defined
as DDHg,X(Ŷ , Ẑ) = 1 if Ŷ dloggX = Ẑ (and DDHg,X(Ŷ , Ẑ) = 0 else), where
(Ŷ , Ẑ) ∈ G× G. We do not define DDHg,X in inputs (Ŷ , Ẑ) �∈ G × G, since we
assume that G is efficiently recognizable. For our purposes, we will consider the
group (QR

+
N , ◦), i.e., the group of signed quadratic residues.

To an adversary A and RSAgen we associate

Advsdh
A,RSAgen(k) := Pr

⎡⎢⎢⎣Z = DHg(X, Y ) :

(N, P, Q, S)←R RSAgen(1k) ;
unif. choose g with 〈g〉 = QR

+
N ;

X, Y ←R QR
+
N ;

Z ←R ADDHg,X (·,·)(N, g, X, Y )

⎤⎥⎥⎦ .

The Strong DH assumption holds relative to RSAgen if Advsdh
A,RSAgen(k) is negli-

gible for all efficient A.

Theorem 2. If the factoring assumption holds then the strong DH assumption
holds relative to RSAgen. In particular, for every strong DH adversary A, there
exists a factoring adversary B (with roughly the same complexity as A) such that

Advsdh
A,RSAgen(k) ≤ Advfac

B,RSAgen(k) + O(2−δn(k)). (2)

Proof. We construct B from a given A. Concretely, B receives a challenge N =
PQ, chooses uniformly u ←R (Z∗

N )+ \ QR
+
N and sets h := u2. Note that by

definition of N , we have 〈h〉 = QR
+
N except with probability O(2−δn(k)). Then

B chooses a, b ∈ [N/4] and sets

g := h2 X := h ◦ ga Y := h ◦ gb.

This implicitly defines

dloggX = a + 1/2 mod ord(QR
+
N ), and dloggY = b + 1/2 mod ord(QR

+
N ),

where the discrete logarithms are of course considered in (QR
+
N , ◦). Again, by

definition of N , the statistical distance between these (g, X, Y ) and the input of
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A in the strong DH experiment is bounded by O(2−δn(k)). So B runs A on input
(g, X, Y ), and answers A’s oracle queries (Ŷ , Ẑ) as follows. First, we may assume
that Ŷ , Ẑ ∈ QR

+
N since (by Lemma 1) QR

+
N = J

+
N is efficiently recognizable.

Next, since N is a Blum integer, the group order ord(QR
+
N ) = (P − 1)(Q− 1)/4

is odd, and hence

Ŷ
dloggX = Ẑ ⇐⇒ Ŷ

2dloggX = Ẑ2 ⇐⇒ Ŷ 2a+1 = Ẑ2.

Thus, B can implement the strong DH oracle by checking whether Ŷ 2a+1 ?= Ẑ2.
Consequently, with probability Advsdh

A,RSAgen(k) − O(2−δn(k)), A will finally
output

Z = g
(dloggX)(dloggY ) = g(a+1/2)(b+1/2) = h2ab+a+b+1/2 ∈ QR

+
N ,

from which B can extract v := h1/2 ∈ QR
+
N (using its knowledge about a and

b). Since u �∈ QR
+
N and v ∈ QR

+
N are two non-trivially different square roots of

h, B can factor N by computing gcd(u− v, N).

4 Hybrid ElGamal over the Signed Quadratic Residues

We recall the Hybrid ElGamal (aka DHIES) scheme from [1,12]. There the
scheme is described in a more general form over arbitrary cyclic groups. Here we
restrict ourselves to the special case of QR

+
N , for the following choice of N :

RSA Instance Generator. Let 0 ≤ δ ≤ 1/4 be a constant and n(k) be a
function. Let RSAgen′ = RSAgen′δ,n(k) be an algorithm that generates elements
(N, P, Q, S), such that

– N = PQ is an n-bit Blum integer such that the prime factors of φ(N)/4 are
pairwise distinct and at least δn-bit integers;

– S > 1 is a divisor of φ(N)/4 with 1 < gcd(S, (P − 1)/2) < (P − 1)/2 and
1 < gcd(S, (Q− 1)/2) < (Q− 1)/2 (so S splits up into large prime factors of
both (P −1)/2 and (Q−1)/2, but such that neither (P −1)/2 nor (Q−1)/2
divides S).

Note that by construction, gcd(S, φ(N)/(4S)) = 1. We stress that we need this
choice of N only for the security proof of Hybrid ElGamal in the standard
model. The security proof in the random oracle model (based on the hardness
of factoring N) works with RSA instances as generated by RSAgen′ or RSAgen.

4.1 The Encryption Scheme

Let SE = (E, D) be a symmetric cipher with key-space {0, 1}�(k), letH = (Hk)k∈N

be a family of hash functions with H : {0, 1}2n(k) → {0, 1}�(k) for each H ∈ Hk.
Define the following encryption scheme DHIES = (Kg, Enc, Dec):
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Key generation. Kg(1k) chooses uniformly at random
• an RSA modulus N = PQ generated with RSAgen′(1k),
• a generator g of QR

+
N ,

• an exponent x ∈ [N/4],
• a hash function H ∈ Hk.

Kg then sets X = gx ∈ QR
+
N and outputs a public key pk

and a secret key sk , where

pk = (N, g, X, H) sk = (N, x, H).

Encryption. Enc(pk , m) chooses uniformly y ∈ [N/4], sets

Y = gy K = H(Y, Xy) ψ = EK(m)

and outputs the ciphertext (Y, ψ) ∈ QR
+
N × {0, 1}∗.

Decryption. Dec(sk , (Y, ψ)) verifies that Y ∈ QR
+
N and rejects if not.

Then, Dec computes K = H(Y, Y x) and outputs DK(ψ).
Note that we present the DHIES scheme in a slightly generalized form for general
symmetric ciphers SE, whereas in [1], SE consisted of a particular “encrypt-then-
mac”-based cipher (which is AE-OT and therefore also IND-OTCCA secure).

4.2 Security

We now state our claims about the security of DHIES. We will prove that the
same scheme DHIES is secure in the standard and in the random oracle model,
under different assumptions.

Theorem 3. Assume the factoring assumption holds for RSAgen′n(k),δ, H is
modeled as a random oracle, and SE is IND-OTCCA secure. Then DHIES is
IND-CCA secure.

[12, Theorem 9] show that the IND-CCA security of hashed ElGamal (viewed
as a key encapsulation mechanism) in the random oracle model is implied by
the strong DH assumption. In Theorem 9 (Appendix A) we formally show that
their result does not use a specific group structure and can also be applied to
our case. Putting Theorem 2 and Theorem 9 together yields Theorem 3. The
following theorem will be proved in Section 5.

Theorem 4. Assume the Higher Residuosity assumption (to be introduced in
Section 5) holds relative to RSAgen′δ,n(k), H is a family of 4-wise independent
hash functions, and SE is AE-OT secure with �-bit keys. If δn(k) ≥ 4�, then
DHIES is IND-CCA secure.

5 A Security Proof in the Standard Model

5.1 The Computational Hardness Assumption

To prove the security of DHIES in the standard model, we will make use of the
following hardness assumption.
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Let (N, P, Q, S) be generated by RSAgen′. We write GS for the unique sub-
group of order S of Z∗

N . The higher residuosity (HR) assumption states that
distinguishing a random element from GS from a random element from QRN

is computationally infeasible. More formally, to an adversary and RSAgen′ we
associate

Advhr
A,RSAgen′(k) := |Pr[1←R A(N, g, c)]− Pr[1←R A(N, g, c̃)]| ,

where (N, P, Q, S) ←R RSAgen′(1k), g, c ←R GS and c̃ ←R QRN . The HR
assumption for RSAgen′ holds if Advhr

A,RSAgen′(k) is negligible for all efficient A.
Note that the HR assumption implicitly depends on the choice of n(k) and δ. For
concreteness, for k = 80 bits security one may choose n(k) = 1024 and δ = 1/8.
Then N can be sampled as N = PQ for P = 2PSPT +1 and Q = 2QSQT +1 for
primes PS , PT , QS, QT , with PS , QT ≈ 2δn, such that for S = PSQS , the order
of GS is about 2256.

In the literature several related assumptions can be found. Closest to our as-
sumption are the ones in [19,24,17,6] which are as our HR assumption but with
a different distribution of N and/or using the groups JN , Z∗

N instead of QRN .
Other similar assumptions were proposed in [18,10,24,4,28]. In all these assump-
tions the adversary is given (N, S) where S | φ(N)/4, and has to distinguish a
“random element” from one of the form xS mod N .

5.2 A Variant of DHIES

To prove Theorem 4, we will consider a slightly different scheme, DHIES′ =
(Kg′, Enc, Dec). It is defined as DHIES, with the only difference that in Kg′, the
element g from key generation is a uniform element from G

+
S (instead of an

uniform element from QR
+
N ). The following lemma is immediate.

Lemma 5. Under the HR assumption, DHIES is IND-CCA if and only if DHIES′

is IND-CCA. In particular, for every adversary A there exists an adversary B with

|Advcca
DHIES,A(k)− Advcca

DHIES′,A(k)| ≤ Advhr
RSAgen′,B(k).

Lemma 6. Under the conditions from Theorem 4, DHIES′ is IND-CCA secure.

A combination of the above two lemmas yields Theorem 4. The rest of this
section is devoted to the proof of Lemma 6.

5.3 Hash Proof Systems

We recall the notion of hash proof systems introduced by Cramer and Shoup [11].

Smooth Projective Hashing. Let C,K be sets and V ⊂ C a language. In
the context of public-key encryption (and viewing a hash proof system as a key-
encapsulation mechanism (KEM) [12] with “special algebraic properties”) one
may think of C as the set of all ciphertexts, V ⊂ C as the set of all valid (con-
sistent) ciphertexts, and K as the set of all symmetric keys. Let Λsk : C → K
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be a hash function indexed with sk ∈ SK, where SK is a set. A hash func-
tion Λsk is projective if there exists a projection μ : SK → PK such that
μ(sk) ∈ PK defines the action of Λsk over the subset V . That is, for every
C ∈ V , the value K = Λsk (C) is uniquely determined by μ(sk) and C. In
contrast, nothing is guaranteed for C ∈ C \ V , and it may not be possible
to compute Λsk (C) from μ(sk) and C. Following [22] we make the following
two definitions about projective hash functions. The projective hash function
is κ-entropic if for all C ∈ C \ V , H∞(Λsk (C) | pk) ≥ κ where in the above
pk = μ(sk ) for sk ←R SK. We furthermore define the collision probability as
δ = maxC,C∗∈C\V,C �=C∗(Prsk [ Λsk (C) = Λsk (C∗) ]).

Hash Proof System. A hash proof system HPS = (Par, Pub, Priv) consists
of three algorithms. The randomized algorithm Par(1k) generates parametrized
instances of par = (group,K, C,V ,PK,SK, Λ(·) : C → K, μ : SK → PK), where
group may contain some additional structural parameters. The deterministic
public evaluation algorithm Pub inputs the projection key pk = μ(sk), C ∈ V and
a witness r of the fact that C ∈ V and returns K = Λsk (C). The deterministic
private evaluation algorithm Priv inputs sk ∈ SK and returns Λsk (C), without
knowing a witness. We further assume that μ is efficiently computable and that
there are efficient algorithms given for sampling sk ∈ SK, sampling C ∈ V
uniformly (or negligibly close to) together with a witness r, sampling C ∈ C
uniformly (given sk), and for checking membership in C. Following [23] we also
require that the subset membership problem can be efficiently solved with a
master trapdoor.

Subset Membership Problem. As computational problem we require that
the subset membership problem is hard in HPS. That is, for random C0 ∈ V and
random C1 ∈ C \ V the two elements C0 and C1 are computationally indistin-
guishable. This is captured by defining the advantage function Advsm

HPS,A(k) of
an adversary A as

Advsm
HPS,A(k) def=

∣∣Pr [ 1←R A(C,V , C1) ]− Pr [ 1←R A(C,V , C0) ]
∣∣

where C is taken from the output of Par(1k), C1 ←R C and C0 ←R C \ V .

5.4 IND-CCA Secure Encryption via Randomness Extraction

We recall the randomness extraction framework [22] that (building on [23,11])
transforms any κ-entropic HPS with hard subset membership problem into a
IND-CCA secure encryption scheme.

Let HPS = (Par, Pub, Priv) be a hash proof system, let H be a family of
hash functions with H : K → {0, 1}�(k) and let SE = (E, D) be an AE-OT secure
symmetric encryption scheme with key-spaceKSE = {0, 1}�(k). We build a public-
key encryption scheme PKEHPS = (Kg, Enc, Dec) as follows.

Key generation. Kg(1k) picks par ←R Par(1k), sk ←R SK and defines pk =
μ(sk) ∈ PK. Next, it picks a random hash function H←R H.
The public-key is (par , H, pk), the secret-key is (par , H, sk).
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Encryption. Enc(pk , m) picks C ←R V together with its witness r that
C ∈ V . Session key K = H(Λsk (C)) ∈ {0, 1}� is computed
as K ← H(Pub(pk , C, r)). The symmetric ciphertext is ψ ←
EK(m). The ciphertext is (C , ψ).

Decryption. Dec(sk ,C ) first checks if C ∈ C and rejects if not. Oth-
erwise, it reconstructs the session key K = H(Λsk (C)) as
K ← H(Priv(sk , C)) and returns {m,⊥} ← DK(ψ).

Theorem 7. [22] Assume HPS is κ(k)-entropic with hard subset membership
problem and negligible collision probability, H is a family of 4-wise independent
hash functions with H : K → {0, 1}�(k), and SE is AE-OT secure. If κ(k) ≥
2(�(k) + k) then PKEHPS is secure in the sense of IND-CCA.

5.5 A Hash Proof System for DHIES′

We now give a hash proof system HPS that yields the encryption scheme DHIES′

via the transformation given in the last subsection. Define group = (N, g), where
(N, P, Q, S) ←R RSAgen′(1k) and g is a uniform generator of G

+
S . Recall that

N is of bit-length n(k) and S is of bit-length δn(k). Define C = QR
+
N and

V = G
+
S = {gr : r ∈ ZS}. A value r ∈ Z is a witness of C ∈ V . Note

that it is possible to sample an almost uniform element from V together with
a witness by first picking r ∈ Z[N/4] and defining C = gr ∈ G

+
S . Furthermore,

membership in C can be efficiently checked by Lemma 1. Define SK = [N/4],
PK = G

+
S , and K = QR

+
N ×QR

+
N (which we interpret as a subset of {0, 1}2n(k)).

For sk = x ∈ [N/4], define μ(sk) = X = gx ∈ G
+
S . This defines the output of

Par(1k). For C ∈ C define
Λsk (C) := (C, Cx) .

This defines Priv(sk , C). Given pk = μ(sk), C ∈ V and a witness r ∈ Z such that
C = gr, public evaluation Pub(pk , C, r) computes K = Λsk (C) as

K = (gr, Xr) .

The trapdoor ω is the order of the group GS. This completes the description of
HPS. Note that PKEHPS is exactly DHIES′. Therefore the proof Lemma 6 follows
by combining Theorem 7 with the following.

Lemma 8. Under the HR assumption, the subset membership problem is hard
in HPS. Furthermore, HPS is δn(k)-entropic with collision probability δ = 0.

Proof. The subset membership problem is hard in HPS by definition of the HR
assumption. The collision probability δ is zero since Λsk (C) = (C, Cx) contains
the element C. To show that HPS is δn(k)-entropic we consider an element
C ∈ C \ V = QR

+
N \ G

+
S . We can decompose QR

+
N as an internal direct product

QR
+
N = G

+
T ×G

+
S , where G

+
T is a cyclic group of order T = (P − 1)(Q− 1)/(4S)

with gcd(T, S) = 1. Since T has only prime factors greater than 2δn(k), and C �∈
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G
+
S , we have gcd(ord(C), T ) ≥ 2δn(k). Then, given N , g, pk = μ(sk) = X = gx,

and any C ∈ C \ V ,

H∞((C, Cx) | N, g, pk , C) = H∞(Cx | N, g, gx, C)

= H∞(x mod ord(C) | x mod S, S, T )

≥ H∞(x mod gcd(ord(C), T ) | x mod S, S, T )

gcd(S,T )=1
= H∞(x mod gcd(ord(C), T ) | T ) ≥ δn(k) .

This completes the proof.

5.6 Extensions

If one only requires a scheme that is IND-CCA secure in the standard model from
the HR assumption, the one can turn encryption in DHIES′ slightly more efficient
by choosing y ←R [2δn(k)+k] (instead of y ←R [N/4]). Furthermore, it is possible
to prove the DHIES instantiated with RSAgen (instead of RSAgen′) IND-CCA
secure under the φ-Hiding assumption [7] which essentially says that the two
distributions (N, g) and (N ′, g′) are computationally indistinguishable, where
(N, P, Q)←R RSAgen, g ←R QR

+
N and (N ′, P ′, Q′, S′)←R RSAgen′, g′ ←R G

+
S′ .
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A A Security Proof in the Random Oracle Model

Theorem 9. ([12,1]) If the strong DH assumption holds relative to RSAgen′, and
if SE is an IND-CCA secure symmetric cipher, then DHIES is IND-IND-OTCCA
secure in the random oracle model. In particular, for every adversary A on DHIES,
there exist adversaries B, resp. B′ on the strong DH assumption, resp. the IND-
IND-OTCCA security of SE, such that B and B′ have roughly the same complexity
as A, and

Advcca
A,DHIES(k) ≤ Advsdh

B,RSAgen′(k) + Advcca
B′,SE(k) + O(2−δn(k)).

The adaptations to [12, Theorem 9] are merely syntactic, and below we provide a
short proof sketch. Putting Theorem 2 and Theorem 9 together yields Theorem 3.

Proof (Theorem 9). (Sketch.) We proceed in games.

Game 0. Let Game 0 be the original IND-CCA experiment with scheme DHIES
and adversaryA. Here and in the following games, pi denotes the probability
that the experiment outputs 1, i.e., that b = b̂, in Game i. By definition,

Advcca
A,PKE = |p0 − 1/2|. (3)

Game 1. In Game 1, we modify the encryption of the challenge ciphertext
(Y ∗, ψ∗). Namely, now the symmetric ciphertext ψ∗ is generated with an in-
dependent, uniform symmetric key K ′ as ψ∗ := EK′(mb). Decryption queries
of the form (Y ∗, ψ) (for arbitrary ψ �= ψ∗) are treated as if Y ∗ decrypted
to key K ′ (and not key K∗ = H(Y ∗, Z∗) for Z∗ = Y ∗x). Let F denote the
event that A queries the random oracle H with (Y ∗, Z∗). (F is defined in
both Game 0 and Game 1.) Note that the views of A are identical in Game 0
and Game 1 unless F occurs. Hence,

|p1 − p0| ≤ Pr[F ]. (4)
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Now we can build an adversary B on the strong DH assumption with

Pr[F ] ≤ Advsdh
B,RSAgen′(k) + O(2−δn(k)). (5)

Concretely, BDDHg,X (·,·)(N, g, X, Y ∗) simulates Game 1 with public key pk :=
(N, g, X, H), and challenge ciphertext (Y ∗, ψ∗) := (Y, EK′(mb)). Adversary
A’s decryption queries (Ŷ , ψ̂) are answered as follows (note that B does not
know the secret key x = dloggX , and hence cannot decrypt directly). If A
has already made an H-query H(Ŷ , Ẑ) for which DDHg,X(Ŷ , Ẑ) = 1, then
Ẑ = Ŷ x, so the key K̂ := H(Ŷ , Ẑ) can be used to decrypt ψ̂. If on the other
hand A made no such query, the hash value H(Ŷ , Ẑ) for the “right” Ẑ = Ŷ x

has not yet been defined, and a symmetric key K̂ can be freely invented (and
then be used to decrypt ψ̂). Note that in the latter case, care must be taken
that once A makes an H-query H(Ŷ , Ẑ) with DDHg,X(Ŷ , Ẑ) = 1 later on,
then the right value K̂ is returned.

If at any point, event F occurs, then A has submitted an H-query (Y, Z)
for Z = Y x and effectively solved B’s own DH challenge. This can be noticed
by B (with the help of oracle DDHg,X(·, ·)), and B can return Z. (5) follows.
(A subtlety not yet mentioned is that X and Y ∗ are slightly differently
distributed — but statistically close — in the strong DH experiment and in
Game 0. This explains for the O(2−δn(k)) term in (5).)

Game 2. We now change the symmetric part ψ∗ of the challenge ciphertext
into ψ∗ := EK′(R) for a uniform bit-string R of length |m0| = |m1|. Note
that from Game 1 on, the symmetric key K ′ used to produce ψ∗ is chosen
independently. Furthermore, K ′ is only needed to perform decryptions of
ciphertexts ψ �= ψ∗ as required for ciphertexts (Y ∗, ψ). Hence, we have

|p2 − p1| ≤ Advcca
B′,SE(k) (6)

for a suitable IND-CCA adversary B′ on SE.
On the other hand, p2 = 1/2 since A’s view in Game 2 is independent

of b.

Putting (3,4,5,6) together yields the statement of Theorem 9.
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Abstract. We present the first signature scheme which is “short”, state-
less and secure under the RSA assumption in the standard model. Prior
short, standard model signatures in the RSA setting required either a
strong complexity assumption such as Strong RSA or (recently) that the
signer maintain state. A signature in our scheme is comprised of one ele-
ment in Z

∗
N and one integer. The public key is also short, requiring only

the modulus N , one element of Z
∗
N , one integer and one PRF seed.

To design our signature, we employ the known generic construction of
fully-secure signatures from weakly-secure signatures and a chameleon
hash. We then introduce a new proof technique for reasoning about
weakly-secure signatures. This technique enables the simulator to pre-
dict a prefix of the message on which the adversary will forge and to
use knowledge of this prefix to embed the challenge. This technique has
wider applications beyond RSA.

We use it to provide an entirely new analysis of the security of the
Waters signatures: the only short, stateless signatures known to be se-
cure under the Computational Diffie-Hellman assumption in the standard
model.

1 Introduction

Signature schemes are a fundamental building block of modern cryptography. As
such, it is imperative to develop and to provide to practitioners efficient schemes
in which we have the highest confidence of security. The focus of this work
is, therefore, on designing “short” signatures secure under the weakest possible
complexity assumptions in the standard model.

Most of today’s short signature schemes can be divided into three categories:
schemes that use random oracles (e.g., [10,26,22,2,23,4,15,14]), schemes that
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require strong complexity assumptions (e.g., Strong RSA [13,7], q-Strong Diffie-
Hellman [3] and LRSW [5]) and (recently) schemes where the signer must main-
tain state [18]. The one prior anomaly is the short and stateless signature scheme
due to Waters [29], which is secure under the Computational Diffie-Hellman
(CDH) assumption in bilinear groups in the standard model.

Our Contribution. We provide the first short and stateless signature scheme
secure under RSA in the standard model. While there are several “standard”
variants of the RSA assumption, the one we employ is that given a modulus N
(chosen as the product of two large safe primes), a random exponent e less than
and relatively prime to φ(N), and a random y ∈ Z∗

N , it is hard to compute x
such that y = xe mod N . (The restriction to safe primes can be removed.)

In our scheme, a signature is comprised of one element of Z∗
N and one integer.

This is roughly the same size as the Strong RSA signatures of Gennaro, Halevi
and Rabin [13]. The Strong RSA signatures of Cramer and Shoup [7] are even
larger, requiring two elements in Z∗

N and one integer (for the basic scheme) or one
element in Z

∗
N , one prime and one integer (for the trapdoor hash scheme). (We

note that Fischlin [12] and Hofheinz-Kiltz [17] provide more efficient versions
of Cramer-Shoup signatures.) Our public keys are also short, requiring only the
modulus N , one element of Z∗

N , one integer and one PRF seed. In contrast, the
Waters’ public keys are asymptotically larger, requiring O(λ) group elements,
where λ is the security parameter.

To realize our new construction, we introduce an entirely new proof technique
for digital signatures, which we’ll describe in detail shortly. We view this new
technique as a major contribution of the work. To demonstrate its usefulness
beyond RSA, we show that it can be applied in the CDH setting to obtain a
variant of the Waters signatures [29].

Both of these signatures are also online/offline signatures, where the majority
of the signer’s computation can be performed offline before she knows the mes-
sage. In Section 5, we discuss further computational optimizations and tradeoffs
for our RSA scheme.

Intuition behind the Construction and Proof Technique. Our proof strategy be-
gins with the previously-known method for constructing fully-secure signatures
from weakly-secure signatures and a chameleon hash. Since chameleon hash func-
tions exist under the hardness of factoring [19] and the RSA assumption [1,18],
one only needs to design an appropriate weakly-secure scheme under RSA. Al-
though, even this has proven an elusive task.

To design a weakly-secure scheme, we do as follows. Suppose the RSA chal-
lenge is (N, y, e∗) with the goal of computing y1/e∗

mod N . Suppose the adver-
sary provides us with the n-bit messages M1, . . . , Mq. Denote as w the shortest
prefix of M∗, the message on which the adversary will later forge, that is differ-
ent from all other prefixes of M1, . . . , Mq. Our strategy is to find w and then at
this “point” embed the challenge exponent e∗. Of course, until the end of the
game, the simulator does not know what M∗ will be.
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To find w, the simulator takes a guess as follows. If q = 0, meaning the
adversary does not request any signatures, then the simulator only needs to
guess the first bit of M∗ and set w to this. If q ≥ 1, the simulator may simply
guess a pair (i∗, t∗), where 1 ≤ i∗ ≤ q and 1 ≤ t∗ ≤ n. Interpret this pair as
saying that Mi∗ is a message with the longest prefix in common with M∗ and
the first location at which these two strings differ is t∗. (There may be more
than one message in M1, . . . , Mq containing the longest common prefix; guessing
any one of them will suffice for our analysis.) If q ≥ 1, then clearly, a valid pair
(i∗, t∗) must exist and indeed, the simulator will have at least a 1/(qn) chance
of guessing it.

Next we turn to embedding the challenge. We need to design a signature
scheme that depends on all prefixes of its message. Let the public key contain
the modulus N , a random h ∈ Z∗

N and a hash function H that maps arbitrary
strings to prime numbers. Let M (i) denote the first i bits of M . For i = 1 to n,
compute ei = H(M (i)). Then let the signature be

σ = h
∏n

i=1 e−1
i mod N.

In the security proof, the simulator selects H so that H(w) = e∗. In other
words, the simulator designs the public key so that the challenge exponent e∗ is
used in the forged signature on M∗, but in none of the signatures for M1, . . . , Mq.
Thus, by properly setting h to be y raised to the product of all primes corre-
sponding to all prefixes of M1, . . . , Mq, the simulator can answer its q signing
queries and yet extract from the forgery the RSA solution y1/e∗

mod N .

Brief Background on Short, Standard-Model Signatures. It is worthwhile to
briefly compare our results to some short schemes in the standard model.

First, Dwork and Naor [9] and Cramer and Damg̊ard [6] show how to make
tree-based signatures shorter by using a “wide” tree (i.e., a larger branching
factor) under the RSA assumption in the standard model. Roughly, there exists
a trade-off where the tree depth can be decreased by a factor of lg w if the size
of the public parameters is increased by a factor of w. However, the focus of this
work is on finding even shorter signatures.

One approach has been to consider schemes under stronger complexity as-
sumptions, such as Strong RSA [13,7], q-Strong Diffie-Hellman [3] and LRSW [5].
All of these schemes rely on the hardness of problems which, for any given in-
stance, there are an exponential number of valid solutions. This stands in sharp
contrast to problems such as RSA and CDH, where for any given instance, there
is only one solution. Moreover, the latter two schemes require that the number
of elements in the problem input grows with the number of signing queries made
by the adversary. For instance, the q-Strong Diffie-Hellman assumption requires
that given a generator g of prime order p and the tuple (gx, gx2

, . . . , gxq

), it is
hard to compute (c, g1/(x+c)) for any c ∈ Z∗

p. Thus, if the adversary asks for q
signatures, then the problem must remain hard when q powers of x are released.
In RSA and CDH (and Strong RSA), the number of input elements is always a
small constant, independent of the adversary’s behavior. To obtain high confi-
dence in the security of our schemes, we should based them on the simplest and
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weakest assumptions possible. In fairness, these excellent works have laid the
foundation of our result and they are still unrivaled in their computational effi-
ciency by our RSA scheme. Now that we have “short” RSA signatures, it would
be of great interest to reduce the cost of signing and verification. See Section 5.

Another type of strong complexity assumption is to assume RSA is secure
against sub-exponential-time attackers and apply complexity leveraging tech-
niques. Micali, Rabin and Vadhan [20] did this to construct verifiable unpre-
dictable functions, which immediately admit a signature scheme. In contrast, we
only assume the RSA problem is hard for polynomial-time attackers; in other
words, all our reductions are polynomial in the security parameter.

Earlier this year, Hohenberger and Waters [18] presented short RSA and CDH
based schemes secure in the standard model, where the signer had to maintain a
counter value as state. This counter was incremented with each signature issued.
Unfortunately, their scheme was compromised if the signer accidentally issued
two signatures with the same counter value. Indeed, while early signatures, such
as those of Goldwasser, Micali and Rivest [16], were stateful, the concept of the
stateless signature has become so ingrained in practice that it is really more of
a requirement than an extra feature. Moreover, stateful signatures are harder
for systems designers to work with because, in addition to protecting the secret
key, they must also safeguard a counter value (in writable memory) from being
maliciously rolled back by an adversary.

2 Generic Transformation of Weakly-Secure Signatures
to Fully-Secure Signatures Using Chameleon Hashes

2.1 Signature Schemes

A signature scheme is a tuple of the following algorithms:

KeyGen(1λ): the key generation algorithm outputs a keypair (PK, SK).
Sign(SK, M): the signing algorithm takes in a secret key SK, and a message

M , and produces a signature σ.
Verify(PK, M, σ): the verification algorithm takes in a public key PK, a mes-

sage M , and a purported signature σ, and returns 1 if the signature is valid
and 0 otherwise.

2.2 GMR Unforgeability

The basic security notion for signatures is existential unforgeability with respect
to adaptive chosen-message attacks as formalized by Goldwasser, Micali and
Rivest [16]. It is defined using the following game between a challenger and an
adversary A over message spaceM:

Setup: The challenger runs the algorithm KeyGen(1λ) to obtain the public
key PK and the secret key SK, and gives PK to the adversary.
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Queries: Proceeding adaptively, the adversary may request a signature on any
message M ∈ M and the challenger will respond with σ ← Sign(SK, M).
Let Q be the set of messages queried by the adversary.

Output: Eventually, the adversary will output a pair (M, σ) and is said to win
the game if M �∈ Q and Verify(PK, M, σ) = 1.

We define AdvA to be the probability that adversary A wins in the above
game.

Definition 1 (Unforgeability against Adaptive Chosen Message At-
tacks [16]). A signature scheme (KeyGen,Sign,Verify) is existentially un-
forgeable with respect to adaptive chosen message attacks if for all probabilistic
polynomial time adversaries A, AdvA is negligible in λ.

2.3 Weak Unforgeability

Several works (e.g., [3]) consider a weaker definition called existential unforgeabil-
ity with respect to weak chosen-message attacks. It is defined using the following
game between a challenger and an adversary A over message spaceM:

Queries: The adversary sends the challenger a list Q of messages M1, . . . , Mn ∈
M.

Response: The challenger runs the algorithm KeyGen(1λ) to obtain the pub-
lic key PK and the secret key SK. Next, the challenger signs each queried
message as σi ← Sign(SK, Mi) for i = 1 to n. The challenger then sends
PK, σ1, . . . , σn to the adversary.

Output: Eventually, the adversary will output a pair (M, σ) and is said to win
the game if M �∈ Q and Verify(PK, M, σ) = 1.

We define Advweak
A to be the probability that adversary A wins in the above

game.

Definition 2 (Unforgeability against Weak Chosen Message Attacks).
A signature scheme (KeyGen,Sign,Verify) is existentially unforgeable with
respect to weak chosen message attacks if for all probabilistic polynomial time
adversaries A, Advweak

A is negligible in λ.

2.4 Chameleon Hashes

As formalized by Krawczyk and Rabin [19], a chameleon hash function H takes
two inputs: a message m and randomness r. It is collision-resistant with the
additional property that, given special trapdoor information, any target y and
any message m′, it is possible to efficiently find a value r′ such that H(m′, r′) = y.
Secure constructions exist in the standard model under the discrete logarithm
assumption [19], the hardness of factoring [19], and the RSA assumption [1,18].
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2.5 Generic Transformation

We now recall a generic construction for building unforgeable signatures out
of weak unforgeable signatures and chameleon hashes, as used in many prior
signature constructions such as [19,28,3,18]. Let (G, S, V ) be a weak unforgeable
scheme for n-bit messages. Let chameleon hash family H map inputs as {0, 1}�×
{0, 1}k → {0, 1}n. Consider a scheme for �-bit messages constructed as:

KeyGen(1λ): Select a random chameleon hash H ∈ H. Run G(1λ) to obtain
the keypair (pk , sk). The public key is PK = (pk , H) and the secret key is
SK = (sk , H).

Sign(SK, M ∈ {0, 1}�): Pick a random r ∈ {0, 1}k. Compute x = H(M, r), and
then σ′ ← S(sk , x). Output the signature σ = (σ′, r).

Verify(PK, M, σ): Parse σ as (σ′, r). Compute x = H(M, r) and then output
V (pk , x, σ′).

Lemma 1. If (G, S, V ) is a weakly-secure scheme according to Definition 2 and
H is a secure chameleon hash family, then the above scheme is a fully-secure
scheme according to Definition 1.

While this construction is well known (e.g., [19,28,3,18]), we provide an explicit
proof of the above lemma in the full version of this work.

3 Algebraic Settings and Complexity Assumptions

3.1 RSA Assumption and Other Facts

We begin by recalling some basic facts and complexity assumptions.

Assumption 1 (RSA [25]). Let k be the security parameter. Let positive in-
teger N be the product of two k-bit, distinct odd primes p, q. Let e be a randomly
chosen positive integer less than and relatively prime to φ(N) = (p− 1)(q − 1).
Given (N, e) and a random y ∈ Z∗

N , it is hard to compute x such that xe ≡ y
mod N .

In the Strong RSA assumption, the adversary is given (N, y) and succeeds
by producing any integer pair (e, x) such that e > 1 and xe ≡ y mod N . The
standard RSA version is much more restrictive on the adversary.

In Section 4, we will restrict ourselves to the RSA assumption where N = pq
is the product of two safe primes p = 2p′ + 1 and q = 2q′ + 1. (Technically,
we will want that the prime exponents used during signing do not divide φ(N).
While safe primes will make this argument simpler, they are not necessary.)

Our RSA-based scheme will require a primality test, such as the efficient test
of Miller and Rabin [21,24]. We will also use the following facts.

Lemma 2 (Shamir [27]). Given x, y ∈ Zn together with a, b ∈ Z such that
xa = yb and gcd(a, b) = 1, there is an efficient algorithm for computing z ∈ Zn

such that za = y.
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Theorem 2 (Prime Number Theorem). Define π(x) as the number of
primes ≤ x. For x > 1,

π(x) >
x

lg x
.

3.2 Bilinear Groups and the CDH Assumption

Let G and GT be groups of prime order p. A bilinear map is an efficient mapping
e : G×G→ GT which is both: (bilinear) for all g ∈ G and a, b← Zp, e(ga, gb) =
e(g, g)ab; and (non-degenerate) if g generates G, then e(g, g) �= 1.

Assumption 3 (Computational Diffie-Hellman [8]). Let g generate a
group G of prime order p ∈ Θ(2λ). For all p.p.t. adversaries A, the following
probability is negligible in λ:

Pr[a, b,← Zp; z ← A(g, ga, gb) : z = gab].

4 An RSA-Based Construction

4.1 A Weakly-Secure Scheme

Setup(1λ). The setup algorithm chooses an RSA modulus N , such that 2� <
φ(N) < 2�+2, where � is another security parameter derived from 1λ. It then
chooses a random value h ∈ Z∗

N .
Next, it chooses a random key K for the PRF function F : {0, 1}∗ → {0, 1}�

and a random c ∈ {0, 1}�. It then establishes a function H(·) : {0, 1}∗ → {0, 1}�
as follows:

HK,c(z) = FK(i, z)⊕ c,

where i, called the resolving index for z, is the smallest i ≥ 1 such that FK(i, z)⊕c
is odd and prime.

The public key PK is (N, h, c, K), where anyone can compute H() using c and
K from the public key. The secret key SK is the factorization of N together with
the (public) values (c, K), which are necessary for the signer to compute H().

Sign(SK, M ∈ {0, 1}n). To sign messages larger than n bits, one could first
apply a collision-resistant hash function to the message. Let M (i) denote the
first i bits of M ; that is, the length i prefix of M . For i = 1 to n, it computes
ei = HK,c(M (i)). Finally, it outputs the signature

σ = h
∏n

i=1 e−1
i mod N.

Note: if any ei divides φ(N), then σ may not be defined. In this event, the
signer will output SK as the signature, since we are using safe primes and thus
2ei + 1 divides N . We will later argue that this event occurs with negligible
probability.
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Verify(PK, M, σ). The verification algorithm first computes the appropriate
primes as follows: for i = 1 to n, it computes ei = HK,c(M (i)). The algorithm
accepts if and only if

σ
∏n

i=1 ei ≡ h mod N.

4.2 Proof of Security

Theorem 4 (Weak Security under RSA). If the RSA assumption holds
when N is the product of two safe primes, then the above signature scheme is
weakly unforgeable as in Definition 2.

Proof. As in the stateful signatures of [18], our reduction will disregard all RSA
challenges (N, e∗, y) where e∗ is not an odd prime less than 2�. We recall from [18]
that good challenges will occur with polynomial probability. By construction,
φ(N) < 2�+2. We also know, by Theorem 2, that the number of primes ≤ 2� is
≥ 2�

� . Thus, a loose bound on the probability of e∗ being a prime in the proper
range is (2�

� )/2�+2 = 1
4� .

Suppose there is an adversary A against the above signature scheme for n-bit
messages that makes at most q(λ) queries where q() is a polynomial and succeeds
in forging with probability ε. (We say q queries where it is clear from context.)
We show that this adversary can be used to break (good challenges for) RSA
with probability approximately ε/(qn�λ), where q, n, � are all polynomial in the
security parameter λ. On input (N, e∗, y), where e∗ is an odd prime < 2�, our
RSA solver B proceeds as:

Setup: AdversaryAmust first provide B with the messages M1, . . . , Mq on which
it will request to see signatures. B wishes to guess the shortest prefix of M∗, the
message on which the adversary will later forge, that is different from all other
prefixes of M1, . . . , Mq.

– If q = 0, B guesses w ∈ {0, 1} at random and sets value t∗ = 1. When A
does not ask for any signatures, then the first prefix (i.e., bit) of the forgery
message M∗ will be used later to embed the challenge, and B need only guess
it with probability 1/2.

– If q ≥ 1, the simulator guesses at random 1 ≤ i∗ ≤ q (a message with the
longest prefix in common with the forgery message1) and 1 ≤ t∗ ≤ n (the
length of the longest common prefix plus one). We will later argue that B’s
guesses are correct with probability ≥ 1/(qn). The values (i∗, t∗) define the
t∗-bit string w comprised of the first (t∗ − 1) bits of Mi∗ followed by the
complement of Mi∗ ’s t∗ bit. In other words, if B’s guesses are correct, then
we know that w is the t∗-bit prefix of the message on which the adversary
will forge, and moreover, that no other signatures will be issued with this
prefix.

1 More than one message in M1, . . . , Mq may share this longest common prefix. Guess-
ing any one of them will suffice for this analysis.
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Armed with this information, B proceeds to set up the public key as:

1. Select a random PRF seed K.
2. Select a random index 1 ≤ j ≤ �λ and set c = FK(j, w) ⊕ e∗.
3. Abort if any of the following conditions hold:

(a) j is not the resolving index of HK,c(w).
(b) Some prime is not locally unique or divides φ(N). Let P (Mi) be the

vector of n primes derived as HK,c(M
(k)
i ) for k = 1 to n. Abort if, for

any i, P (Mi) contains a repeated prime or a prime that divides φ(N)
(i.e., a prime p such that 2p + 1 divides N).

(c) e∗ ∈ S, where S is defined as the set of all unique primes across all
vectors P (Mi) for i = 1 to q.

4. Set
h = y

∏
ei∈S ei mod N.

The maximum size of S is qn − 1. To A, h will appear to be distributed
randomly in Z∗

N .
5. Send the public key PK = (N, h, c, K) to A.

Sign: B can create a signature on any message M provided during the Setup as
follows.

1. Compute the vector of n primes P (M) (i.e., the set HK,c(M
(k)
i ) for k = 1

to n).
2. Compute the signature as

σ = y
∏

ei∈[S−P(M)] ei mod N.

Extract from Forgery: Eventually, A will output a forgery (M∗, σ). If M∗(t∗) �=
w, then abort; the Setup guess was not correct.

Now, we wish to extract the RSA solution. Consider the vector of primes
P (M∗). If any member of P (M∗) divides φ(N) (i.e., a prime p such that 2p + 1
divides N), then B can factor N and compute the RSA solution y1/e∗

mod N .
Otherwise, let α be the number of times e∗ appears in P (M∗). We know from

our Setup that α ≥ 1. Now, consider the following settings:

x = σ(e∗)α−1∏
ei∈P (M∗),ei �=e∗ ei , y = y, a = e∗, b =

∏
ei∈S

ei

First, we see that xa = yb. Second, we know that gcd(a, b) = 1, since all values
are primes and e∗ �∈ S. Thus, B can apply Lemma 2 to efficiently compute a
value z ∈ ZN such that za = y. B outputs z as the RSA solution.

Analysis. We now argue that any successful adversaryA against our scheme will
have success in the game presented by B. To do this, we first define a sequence
of games, where the first game models the real security game and the final game
is exactly the view of the adversary when interacting with B. We then show via
a series of claims that if a A is successful against Game j, then it will also be
successful against Game j + 1.



Short and Stateless Signatures from the RSA Assumption 663

Game 1: This game is defined to be the same as the security game of the
scheme.

Game 2: The same as Game 1, with the exception that A fails if some prime
is not locally unique or divides φ(N) (as described in Setup abort condition
(b)).

Game 3: The same as Game 2, with the exception that A fails if e∗ ∈ S.
Game 4: The same as Game 3, with the exception that at the beginning of the

game B guesses w as follows:
– if q = 0, w is chosen at random from {0, 1};
– else, a random pair (i∗, t∗) is chosen, where 1 ≤ i∗ ≤ q and 1 ≤ t∗ ≤ n.

Together with M1, . . . , Mq, this defines the string w as comprised of the
first (t∗ − 1) bits of Mi∗ followed by the complement of Mi∗ ’s t∗th bit.

Now A fails if the message on which he forges does not have prefix w.
Game 5: The same as Game 4, with the exception that A fails if the resolving

index of HK,c(w) is greater than �λ.
Game 6: The same as Game 5, with the exception that at the beginning of the

game B guesses an index 1 ≤ j∗ ≤ �λ and A fails is the resolving index of
HK,c(w) is not j∗.

Game 7: The same as Game 6, with the exception that at the beginning of the
game B chooses a random PRF seed K (as before) and a random e ∈ {0, 1}�
and then sets c = FK(j∗, w) ⊕ e.

Game 8: The same as Game 7, with the exception that c is set as
c = FK(j∗, w) ⊕ e∗, where e∗ is the �-bit prime from the RSA challenge.

Game 8 is exactly the view of the adversary when interacting with B. In the
full version of this paper, we complete this argument by linking the probability
of A’s success in these games via a series of claims. The only non-negligible
probability gaps come between Games 3 and 4, where there is a factor 1/(qn)
loss, and between Games 5 and 6, where there is a factor 1/(�λ) loss.

4.3 Short, Fully-Secure RSA Signatures

We obtain a fully-secure signature scheme by combining our RSA-based weakly
unforgeable signatures with any suitable chameleon hash function. Standard
model chameleon hashes exist under the hardness of factoring [19] and RSA
[1,18]. The following result is immediate from Theorem 4 and Lemma 1.

Corollary 1 (Full Security under RSA). Let (G′, S′, V ′) be the signature
scheme described in Section 4.1. Let H be a chameleon hash function family
secure under the RSA assumption. Let (G, S, V ) be the signature scheme resulting
from the generic transformation in Section 2.5 on (G′, S′, V ′) and H. Then
(G, S, V ) is a fully-secure signature scheme, according to Definition 1, under
the RSA assumption.

The resulting signatures are very short. A signature contains one element from
Z∗

N and one k-bit integer, where k is derived from the security parameter and
the settings of the chameleon hash when using the standard model, RSA-based
hash in [1,18]. We provide more details on this in the full version.
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5 Optimizations for the RSA Construction

While the main efficiency focus of this work is on simultaneously achieving a
short public key and signature under RSA, we now briefly turn our attention
to methods for improving the computational efficiency of these signatures. A
significant computational overhead for both the signer and the verifier in our
RSA scheme is the generation and testing of primes necessary to compute the
hash function H(). The signer also must perform one exponentiation, where the
exponent may be reduced modulo φ(N), while the verification cost is roughly n
exponentiations of �-bit exponents.

5.1 Online/Offline Signatures

In an online/offline signature as introduced by Even, Goldreich and Micali [11],
the scheme is designed so that the signer can do the bulk of his computational
work before the message is known to him. This paradigm is extremely useful for
many applications which require a quick response time once a message comes
in, but where the device may otherwise have relatively longer periods of inactiv-
ity. Fortunately, our RSA scheme (as well as our later CDH scheme) have this
property.

To see this, recall the generic structure of our fully-secure signature scheme
from Section 2.5. The signer can, offline, choose a random n-bit message X ,
sign X using the weakly-secure scheme, and then later use the trapdoor of the
chameleon hash to link this signature to any desired message M . Thus, all of the
expensive primality testing and the single exponentiation for our scheme can be
performed offline by the signer. Indeed, this use of a chameleon hash to obtain
online/offline signatures was previously suggested by Shamir and Tauman [28].

5.2 Send Resolving Indices with the Signature

One of the main verification costs is searching for the n resolving indices. Each
signature verification requires an expected n� primality tests; i.e., an expected �
per evaluation of HK,c(M (i)), for i = 1 to n. The number of primality tests could
be reduced to n by sending a vector of resolving indices along with the signature.
While the size of the signature would increase by roughly n · log(�λ) bits (i.e., the
number of resolving indices n by the representation of their maximum likely value
�λ), this is still considerably smaller than several prior tree-based approaches.

The danger of attack on this scheme is that a malicious signer will send
a higher index than the resolving index. However, suppose that a maximum
resolving index T = �λ is posted in the public key and that honest verifiers reject
if any of the sender’s indices exceed this value. Then we can alter our prior proof
to fit this variation as well. The simulator B behaves as before, except that she
guesses which resolving index the adversary A will choose for the evaluation of
w, between 1 and T = �λ, and later uses this value to extract the RSA solution.
As B is already guessing the resolving index in our current reduction (see Game
6), there is no additional concrete security loss.
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5.3 Using a Larger Alphabet

In the current scheme, the message is broken up into n 1-bit chunks, which each
correspond to a prime exponent. Finding these n primes is costly for both the
signer and the verifier, and the verification then requires n exponentiations (of
one prime each). Suppose we break the message up into larger, k-bit chunks. The
benefit of this approach would be that only n/k primes need now be found and
used in verification. The drawback is that the concrete security of the scheme
would decrease by a factor of 1/(2k − 1), because now the simulator must guess
within the chunk pointed to by (i∗, t∗), which of the 2k − 1 values the forger
will later use. In the binary case, the bit pointed to by (i∗, t∗) was always the
complement of Mi∗ ’s t∗th bit.

Considering k = 2, however, we cut the cost of signature generation and veri-
fication in half, for only a 1/3 reduction in concrete security. In some scenarios,
this may be acceptable.

5.4 Using Smaller Prime Exponents

In the current scheme, primes are chosen to be of � bits where 2� is roughly
the size of φ(N). We could instead select � to be smaller, but where 2� is still
exponential in the security parameter. The main benefit of this approach would
be a slightly more efficient scheme at the cost of a security proof with respect to
a different variant of the RSA problem, namely, inverting RSA with a random
prime exponent of bit-length less than or equal to �.

6 A CDH-Based Construction

Our RSA proof techniques can be translated into the CDH setting as well. Inter-
estingly, this provides new insights about the security of the only prior (stateless)
scheme known to be secure under CDH in the standard model: the Waters sig-
natures [29]. We present an entirely new method for reasoning about the weak
unforgeability of these signatures under CDH. By adding a chameleon hash, we
obtain a fully-secure scheme which is a derivative of the Waters signatures. The
main contribution here is a much shorter, cleaner security argument as well as
a demonstration that our RSA proof techniques are likely to be useful in other
settings.

6.1 The Waters Signatures

Recall the Waters signature scheme [29], which is known to be fully-secure under
the Computational Diffie-Hellman assumption in the standard model.

Setup(1λ). The setup algorithm selects a bilinear group G of prime order p > 2λ.
It chooses a random exponent a ∈ Zp. Let n be a security parameter derived
from λ. It chooses random group elements g, v0, v1, . . . , vn ∈ G. The secret key
is a and the public key is output as:

g, v0, v1, . . . , vn, e(g, g)a.
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Sign(SK, M ∈ {0, 1}n). The message space is treated as n-bits; to sign arbitrarily
long messages one could first apply a collision-resistant hash function. Here Mi

denotes the ith bit of M . The signer chooses a random r ∈ Zp and then outputs
the signature as:

σ1 = ga

(
v0

n∏
i=1

vMi

i

)r

, σ2 = gr.

Verify(PK, M ∈ {0, 1}n, σ = (σ1, σ2)) The verification algorithm uses the bilin-
ear map to verify the signature by checking that

e(σ1, g) = e(g, g)ae(v0

n∏
i=1

vMi

i , σ2).

6.2 Proof of Security

Theorem 5 (Weak Security under CDH). If the CDH assumption holds in
G, then the Waters signature scheme is weakly unforgeable as in Definition 2.

Proof. Suppose we have an adversaryA against the above signature scheme that
makes at most q(λ) queries where q() is a polynomial and succeeds in forging
with probability ε. (We say q queries where it is clear from context.) We show
that this adversary can be used to break CDH with probability ≥ ε/(qn). On
input (g, ga, gb), our CDH solver B proceeds as follows:

Setup: AdversaryAmust first provide B with the messages M1, . . . , Mq on which
it will request to see signatures. B wishes to guess the shortest prefix of M∗, the
message on which the adversary will later forge, that is different from all other
prefixes of M1, . . . , Mq.

– If q = 0, B guesses w ∈ {0, 1} at random and sets value t∗ = 1. When A
does not ask for any signatures, then the first prefix (i.e., bit) of the forgery
message M∗ will be used later to embed the challenge, and B need only guess
it with probability 1/2.

– If q ≥ 1, the simulator guesses at random 1 ≤ i∗ ≤ q (a message with the
longest prefix in common with the forgery message2) and 1 ≤ t∗ ≤ n (the
length of the longest common prefix plus one). We will later argue that B’s
guesses are correct with probability ≥ 1/(qn). The values (i∗, t∗) define the
t∗-bit string w comprised of the first (t∗ − 1) bits of Mi∗ followed by the
complement of Mi∗ ’s t∗ bit. In other words, if B’s guesses are correct, then
we know that w is the t∗-bit prefix of the message on which the adversary
will forge, and moreover, that no other signatures will be issued with this
prefix.

2 More than one message in M1, . . . , Mq may share this longest common prefix. Guess-
ing any one of them will suffice for this analysis.
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Armed with this information, B proceeds to set up the public key as:

1. Set e(g, g)α = e(ga, gb), thus the secret key will implicitly be set to α = ab.
2. Pick random values y0, . . . , yn ∈ Zp.
3. Set v0 = gy0

∏t∗

i=1(g
a)wi .

4. For i = 1 to n, set

vi =

⎧⎪⎨⎪⎩
gyi if i > t∗;
g−agyi else if wi = 1;
gagyi otherwise (wi = 0).

Here wi denotes the ith bit of w. The key observation here is that all ga

terms will cancel out for signatures with prefix w and that this won’t be
true for any other t∗-bit prefix.

5. Send PK = (g, v0, . . . , vn, e(g, g)α) to A.

Sign: B can create a signature on any message M provided during the Setup.
Let β =

∑t∗

i=1 wi be the number of 1’s in w. Let γ =
∑t∗

i=1 mi(1 − 2wi), where
mi denotes the ith bit of M . Notice that β + γ =

∑t∗

i=1 wi + mi(1 − 2wi); this
is equal to the number of bits that differ between w and the first t∗ bits of M .
By our setup, β + γ �= 0 for all messages provided by the adversary.

1. Select a random value r′ ∈ Zp.
2. Set σ2 = (g−b)1/(β+γ)gr′

; this implicitly sets σ2 = gr with r = −b/(β+γ)+r′.
3. Set σ1 = σ

y0+
∑n

i=1 miyi

2 gar′(β+γ). To see that this is properly formed relative
to σ2, note that the value we want is:

σ1 = gab

(
v0

n∏
i=1

vmi

i

)r

= gab
(
gy0+βagγag

∑n
i=1 miyi

)r

=

gab
(
ga(β+γ)

)r (
gy0

∑n
i=1 miyi

)r

=
(
ga(β+γ)

)r′ (
gy0

∑n
i=1 miyi

)r

=

σ
y0+

∑n
i=1 miyi

2 gar′(β+γ).

4. Output the signature (σ1, σ2).

Extract from Forgery: Eventually, A will output a forgery (M, σ = (σ1, σ2)). If
M (t∗) �= w, then abort; the Setup guess was not correct. From the construction,
one can see that B’s guesses are correct with probability ≥ 1/(qn), because the
distribution of the public key and signature responses is the same for all possible
guesses. Now, to extract the CDH solution gab, the main idea is that the forgery
is of the form σ1 = gabgzr, σ2 = gr for a value z known to B, and thus it can
compute σ1/σz

2 = gab. To see this, let mi denote the ith bit of M and observe
that:

gz = v0

n∏
i=1

vmi

i = gy0+βa
t∗∏

i=1

gami(1−2wi)
n∏

i=1

gmiyi ,



668 S. Hohenberger and B. Waters

and thus that

z = y0 +

(
β +

t∗∑
i=1

mi(1− 2wi)

)
a +

n∑
i=1

miyi.

Observe that up to t∗, it holds that mi = wi. Recall that β =
∑t∗

i=1 wi was
chosen as the number of 1’s in w. Thus, β +

∑t∗

i=1 wi(1− 2wi) = β −
∑t∗

i=1 wi is
equal to zero and z simplifies to y0 +

∏n
i=1 gmiyi .

6.3 Short, Fully-Secure CDH Signatures

We obtain a fully-secure signature scheme by combining the above CDH-based
weakly unforgeable signatures with any suitable chameleon hash function. Stan-
dard model chameleon hashes exist under the discrete-logarithm assumption [19]
(and thus under CDH). The following result is immediate from Theorem 5 and
Lemma 1.

Corollary 2 (Full Security under CDH). Let (G′, S′, V ′) be the signature
scheme described in Section 6.1. Let H be a chameleon hash function family
secure under the CDH assumption. Let (G, S, V ) be the signature scheme result-
ing from the generic transformation in Section 2.5 on (G′, S′, V ′) and H. Then
(G, S, V ) is a fully-secure signature scheme, according to Definition 1, under the
CDH assumption.

The resulting signatures are fairly short. A signature contains two elements from
G and one k-bit value, where k is derived from the security parameter and the
choice of the chameleon hash. Weak signing requires only two exponentiations,
since the signer can choose v0, . . . , vn such that she knows their discrete loga-
rithms base g. Verification requires only two pairings. Of course, this is mostly
a theoretical exercise as the Waters signatures are more efficient on all counts.

7 Conclusion and Open Problems

In this work, we presented the first stateless signatures with short public keys and
short signatures secure under the RSA assumption in the standard model. This
answers a long-standing open problem as to whether or not such a construction
was possible. Indeed, this is the only known scheme to satisfy all of the above
requirements under a computational assumption with a short input and a single
valid output.

The construction requires a new proof technique for reasoning about the se-
curity of signature schemes. We demonstrate that this technique is of broader
interest by showing how to apply it in the CDH setting to obtain a new security
proof for the Waters signatures [29]. Interestingly, both our constructions are also
online/offline signatures, where the vast majority of the signing computation can
be done offline before the signer knows the message.
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We leave open several interesting problems. The Waters signatures and our
variant here offer short signatures, but a public key of O(λ) elements, where
λ is the security parameter. It is still unknown how to realize standard model
CDH signatures where both the signatures and the public key are short. While
we offer many computational optimizations for our RSA scheme in Section 5, it
would be of great practical significance to obtain faster signing and verification
times. Finally, given the usefulness of signatures in designing stronger encryption,
anonymous credentials, electronic cash, etc., it would be worthwhile to revisit
some of these systems and try to weaken the complexity assumptions on which
they are founded.
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Abstract. The notion of smooth projective hash functions was proposed
by Cramer and Shoup and can be seen as special type of zero-knowledge
proof system for a language. Though originally used as a means to build
efficient chosen-ciphertext secure public-key encryption schemes, some
variations of the Cramer-Shoup smooth projective hash functions also
found applications in several other contexts, such as password-based au-
thenticated key exchange and oblivious transfer. In this paper, we first
address the problem of building smooth projective hash functions for
more complex languages. More precisely, we show how to build such
functions for languages that can be described in terms of disjunctions
and conjunctions of simpler languages for which smooth projective hash
functions are known to exist. Next, we illustrate how the use of smooth
projective hash functions with more complex languages can be efficiently
associated to extractable commitment schemes and avoid the need for
zero-knowledge proofs. Finally, we explain how to apply these results to
provide more efficient solutions to two well-known cryptographic prob-
lems: a public-key certification which guarantees the knowledge of the
private key by the user without random oracles or zero-knowledge proofs
and adaptive security for password-based authenticated key exchange
protocols in the universal composability framework with erasures.

1 Introduction

In [16], Cramer and Shoup introduced a new primitive called smooth projective
hashing and showed how to use it to generalize their chosen-ciphertext secure
public-key encryption scheme [15]. The new abstraction not only provided a
more intuitive description of the original encryption scheme, but also resulted
in several new instantiations based on different security assumptions such as
quadratic residuosity and N -residuosity [31].

The notion of smooth projective hash functions (SPHF, [16], after slight mod-
ifications [22]) has been proven quite useful and has found applications in several
other contexts, such as password-based authenticated key exchange (PAKE, [22])
and oblivious transfer [27]. In the context of PAKE protocols, the work of Gen-
naro and Lindell abstracted and generalized (under various indistinguishability
assumptions) the earlier protocol by Katz, Ostrovsky, and Yung [28] and has
become the basis of several other schemes [1,3,8]. In the context of oblivious
transfer, the work of Kalai [27] also generalized earlier protocols by Naor and
Pinkas [30] and by Aiello, Ishai, and Reingold [2].

S. Halevi (Ed.): CRYPTO 2009, LNCS 5677, pp. 671–689, 2009.
c© International Association for Cryptologic Research 2009
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To better understand the power of SPHF, let us briefly recall what they
are. First, the definition of SPHF requires the existence of a domain X and an
underlying NP language L such that it is computationally hard to distinguish
a random element in L from a random element in X \ L. For instance, in the
particular case of the PAKE scheme in [13], the language L is defined as the
set of triples {(c, �, m)} such that c is an encryption of m with label � under a
public key given in the common reference string (CRS). The semantic security
of the encryption scheme guarantees computational indistinguishability between
elements from L and from X .

One of the key properties that make SPHF so useful is that, for a point x ∈ L,
the hash value can be computed using either a secret hashing key hk, or a public
projected key hp (depending on x [22] or not [16]) together with a witness w
to the fact that x ∈ L. Another important property of these functions is that,
given the projected key hp, their output is uniquely defined for points x ∈ L
and statistically indistinguishable from random for points x ∈ X \L. Moreover,
without the knowledge of the witness w to the fact that x ∈ L, the output of
these functions on x is also pseudo-random.

The first main contribution of this paper is to extend the line of work on
SPHF, the element-based version proposed by [22], to take into account more
complex NP languages. We show how to build SPHF for languages that can
be described in terms of disjunctions and conjunctions of simpler languages for
which SPHF are known to exist. For instance, let Hm represent a family of SPHF
for the language {(c)}, where c is the encryption of m under a given public key.
Using our tools, one can build a family of SPHF for the language {(c)}, where c
is the encryption of either 0 or 1, by combining H0 and H1.

One of the advantages of building SPHF for more complex languages is that
it allows us to simplify the design of the primitives to which they are associated.
To demonstrate this, we consider in this paper the specific case of extractable
commitment schemes. In most protocols in which extractable commitments are
used, the capability of extracting the committed message usually depends on
the commitment being properly generated. To achieve this goal and enforce
the correct generation of the commitment, it is often the case that additional
mechanisms, such as zero-knowledge proofs, may have to be used. This is the
case, for instance, of several protocols where a specific public-key registration
phase is required, such as most of the cryptographic protocols with dynamic
groups (multisignatures [9,29], group signatures [18], etc). Such a framework is
sometimes named registered public-key model, where a proof of knowledge of the
secret key is required before any certification.

To be able to build more efficient extractable commitment schemes and avoid
the use of possibly expensive concurrent zero-knowledge proofs, a second main
contribution of this paper is to generalize the concept of extractable commit-
ments so that extraction may fail if the commitment is not properly generated.
More specifically, we introduce a new notion of L-extractable commitments in
which extraction is only guaranteed if the committed value belongs to the lan-
guage L and may fail otherwise. The main intuition behind this generalization
is that, when used together with a SPHF for the language L, the cases in which
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extraction may fail will not be very important as the output of the SPHF will
be statistically indistinguishable from random in such cases.

Applications
Registered Public-Key Setting. For many cryptographic protocols, for
proving the security even when users can dynamically join the system, the sim-
ulator described in the security proof often needs to know the private keys of
the authorized users, which is called the registered public-key setting, in order to
avoid rogue-attacks [9]. This should anyway be the correct way to proceed for a
certification authority: it certifies a public key to a user if and only if the latter
provides a proof of knowledge of the associated private key. However, in order
to allow concurrency, intricate zero-knowledge proofs are required, which makes
the certification process either secure in the random oracle model [6] only, or
inefficient in the standard model.

In this paper, we show how SPHF with conditionally extractable commitments
can help to solve this problem efficiently, in the standard model, by establishing
a secure channel between the players, with keys that are either the same for the
two parties if the commitment has been correctly built, or perfectly independent
in the other case.

Adaptively-secure PAKE schemes. We thereafter study more involved
key exchange schemes. In 1992, Bellovin and Merritt [7] suggested a method to
authenticate a key exchange based on simple passwords, possibly drawn from
a space so small that an adversary might enumerate off-line all possible values.
Because of the practical interest of such a primitive, many schemes have been
proposed and studied. In 2005, Canetti et al. [13] proposed an ideal functionality
for PAKE protocols, in the universal composability (UC) framework [11,14], and
showed how a simple variant of the Gennaro-Lindell methodology [22] could lead
to a secure protocol. Though quite efficient, their protocol is not known to be
secure against adaptive adversaries, where they can corrupt players at any time,
and learn their internal states. The first ones to propose an adaptively-secure
PAKE in the UC framework were Barak et al. [3] using general techniques from
multi-party computation (MPC). Though conceptually simple, their solution
yields quite inefficient schemes.

Here, we take a different approach. Instead of using general MPC techniques,
we extend the Gennaro-Lindell methodology to deal with adaptive corruptions
by using a non-malleable conditionally-extractable and equivocable commitment
scheme with an associated SPHF family. The new scheme is adaptively secure
in the common reference string model in the UC framework under standard
complexity assumptions with erasures.

Related work
Commitments. Commitment schemes are one of the most fundamental cryp-
tographic primitives, being used in several cryptographic applications such as
zero-knowledge proofs [25] and secure multi-party computation [24]. Even quite
practical protocols need them, as already explained above in the public-key reg-
istration setting, but also in password-based authenticated key exchange [22].
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They allow a user to commit a value x into a public value C, such that the
latter does not reveal any information about x (the hiding property), but C can
be opened later to x only: one cannot change its mind (the binding property).
Various additional properties are often required, such as non-malleability, ex-
tractability and equivocability. Canetti and Fischlin [12] provided an ideal func-
tionality for such a primitive and showed that achieving all these properties
at the same time was impossible in the UC plain model. They also provided
the first candidate in the CRS model. Damgård and Nielsen [17] later proposed
another construction of universally composable commitments, that is more effi-
cient for some applications. Since we want to avoid the use of possibly inefficient
proofs of relations present in the Damgård-Nielsen construction and given that
the Canetti-Fischlin construction is well suited for our purpose of designing an
associated smooth hash function, we opted to use the latter as the starting point
for our constructions.

PAKE. The password-based setting was first considered by Bellovin and Mer-
ritt [7] and followed by many proposals. In 2000, Bellare, Pointcheval, and Rog-
away [5] as well as Boyko, MacKenzie, and Patel [10] proposed security models
and proved variants of the protocol of [7], under ideal assumptions, such as the
random oracle model [6]. Soon after, Katz, Ostrovsky, and Yung [28] and Gol-
dreich and Lindell [23] proposed the first protocols with a proof of security in the
standard model, with the former being based on the decisional Diffie-Hellman as-
sumption and the latter on general assumptions. Later, Gennaro and Lindell [22]
proposed an abstraction and generalization of the KOY protocol and became the
basis of several other variants, including ours in the last section.

Organization of the Paper. In Section 2, we review the basic primitives
needed in this paper. Then, in Section 3, we describe our first contribution:
SPHF families on conjunctions and disjunctions of languages. In Section 4 we
combine that with our second contribution, conditionally-extractable commit-
ments. We focus on the ElGamal-based commitment, since this is enough to
build more efficient public-key certification protocols. Finally, in Section 5, we
add equivocability to the commitment, borrowing techniques from Canetti and
Fischlin [12]. Then, we add the non-malleability property, granted the Cramer-
Shoup encryption scheme, which can then be used to build an adaptively-secure
PAKE in the UC framework, based on the Gennaro and Lindell [22] framework.
Due to space restrictions, formal definitions, proofs, and application details were
postponed to the appendix.

2 Commitments

In the following, we focus on Pedersen commitments, and certification of Schnorr-
like public keys, hence, we work in the discrete logarithm setting. As a con-
sequence, to get extractable commitments, we use encryption schemes from
the same family: the ElGamal encryption [21] and the labeled version of the
Cramer-Shoup encryption scheme [15] (for achieving non-malleability).
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Labeled Public-Key Encryption. Labeled encryption [32] is a variation of
the usual encryption notion that takes into account the presence of labels in the
encryption and decryption algorithms. More precisely, both the encryption and
decryption algorithms have an additional input parameter, referred to as a label,
and the decryption algorithm should only correctly decrypt a ciphertext if its
input label matches the label used to create that ciphertext.

The security notion for labeled encryption is similar to that of standard en-
cryption schemes. The main difference is that, whenever the adversary wishes
to ask a query to its Left-or-Right encryption oracle in the indistinguishability
security game (IND-CPA) [4,26], in addition to providing a pair of messages
(m0, m1), it also has to provide a target label � to obtain the challenge cipher-
text c. When chosen-ciphertext security (IND-CCA) is concerned, the adversary
is also allowed to query its decryption oracle on any pair (�′, c′) as long as �′ �= �
or the ciphertext c′ does not match the output c of a query to its Left-or-Right
encryption oracle whose input includes the label �. For formal security definitions
for labeled encryption schemes, please refer to [1,13].

One of the advantages of using labeled encryption, which we exploit in this pa-
per, is that we can easily combine several IND-CCA labeled encryption schemes
with the help of a strongly unforgeable one-time signature scheme so that the
resulting scheme remains IND-CCA [20].

ElGamal and Cramer-Shoup Encryption. We denote by G a cyclic group
of prime order q where q is large (n bits), and g a generator for this group. Let
pk = (g1, g2, c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , h = gz

1 , H) be the public key of the Cramer-
Shoup scheme, where g1 and g2 are random group elements, x1, x2, y1, y2 and z
are random scalars in Zq, and H is a collision-resistant hash function (actually,
second-preimage resistance is enough), and sk = (x1, x2, y1, y2, z) the associated
private key. Note that (g1, h) will also be seen as the public key of the ElGamal
encryption, with z the associated private key. For the sake of simplicity, we
assume in the following that public keys will additionally contain all the global
parameters, such as the group G.

If M ∈ G, the multiplicative ElGamal encryption is defined as EG×
pk(M ; r) =

(u1 = gr
1 , e = hrM), which can be decrypted by M = e/uz

1. If M ∈ Zq, the
additive ElGamal encryption is defined as EG+

pk(M ; r) = (u1 = gr
1 , e = hrgM ).

Note that EG×
pk(g

M ; r) = EG+
pk(M ; r). It can be decrypted after an additional

discrete logarithm computation: M must be small enough. Similarly, if M ∈ G,
the multiplicative labeled Cramer-Shoup encryption is defined as CS×

pk

�
(M ; r) =

(u1, u2, e, v), such that u1 = gr
1, u2 = gr

2, e = hrM , θ = H(�, u1, u2, e) and
v = (cdθ)r. Decryption works as above, with M = e/uz

1, but only if the ciphertext
is valid: v = ux1+θy1

1 ux2+θy2
2 . If M ∈ Zq, its additive encryption CS+

pk

�
(M ; r) is

such that e = hrgM . The following relation holds CS×
pk

�
(gM ; r) = CS+

pk

�
(M ; r).

The decryption applies as above if M is small enough.
As already noted, from any Cramer-Shoup ciphertext (u1, u2, e, v) of a mes-

sage M with randomness r, whatever the label � is, one can extract (u1, e) as
an ElGamal ciphertext of the same message M with the same randomness r.
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This extraction applies independently of the additive or multiplicative version
since the decryption works the same for the ElGamal and the Cramer-Shoup
ciphertexts, except for the validity check that provides the CCA security level to
the Cramer-Shoup encryption scheme, whereas the ElGamal encryption scheme
achieves IND-CPA security level only.

Commitments. With a commitment scheme, a player can commit to a secret
value x by publishing a commitment C = com(x; r) with randomness r, in such
a way that C reveals nothing about the secret x, which is called the hiding
property. The player can later open C to reveal x, by publishing x and a de-
commitment, also referred to as witness, in a publicly verifiable way: the player
cannot open C to any other value than x, which is the binding property. In
many cases, the decommitment consists of the random r itself or some part of it.
In this paper, we only consider commitment schemes in the common reference
string (CRS) model in which the common parameters, referred to as the CRS,
are generated honestly and available to all parties.

Note that an IND-CPA public-key encryption scheme provides such a com-
mitment scheme: the binding property is guaranteed by the uniqueness of the
plaintext (perfectly binding), and the hiding property is guaranteed by the
IND-CPA security (computationally hiding). In this case, the CRS simply con-
sists of the public-key of the encryption scheme. The Pedersen commitment
C = comPed(x; r) = gxhr provides a perfectly hiding, but computationally bind-
ing commitment under the intractability of the discrete logarithm of h in basis g.

We now present additional properties that can be satisfied by the commit-
ment. First, we say that a commitment is extractable if there exists an efficient
algorithm, called an extractor, capable of generating a new set of common pa-
rameters (i.e., a new CRS) whose distribution is equivalent to that of an hon-
estly generated CRS and such that it can extract the committed value x from
any commitment C. This is of course only possible for computationally hiding
commitments, such as encryption schemes: the decryption key is the extraction
trapdoor. Second, we say that a commitment is equivocable if there exists an
efficient algorithm, called an equivocator, capable of generating a new CRS and
a commitment with similar distributions to those of the actual scheme and such
that the commitment can be opened in different ways. Again, this is possible for
computationally binding commitments only, such as the Pedersen commitment:
the knowledge of the discrete logarithm of h in basis g is a trapdoor that allows
the opening of a commitment in more than one way. Finally, a non-malleable
commitment ensures that if an adversary that receives a commitment C of some
unknown value x can generate a valid commitment for a related value y, then
a simulator could perform as well without seeing C. A public-key encryption
scheme that is IND-CCA provides such a non-malleable commitment [22]. For
formal security definitions for commitment schemes, please refer to [22,19,12].

In the following, we use encryption schemes in order to construct commit-
ments, which immediately implies the hiding, binding and extractable proper-
ties, as said above. However, when one uses the additive versions of ElGamal or
Cramer-Shoup encryption schemes, extractability (or decryption) is only possible
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if the committed values (or plaintexts) are small enough, hence our notion of L-
extractable commitments (see Section 4) which will mean that the commitment
is extractable if the committed value lies in the language L. More precisely, we
will split the value to be committed in small pieces (that lie in the language L),
but we will then need to be sure that they actually lie in this language to guar-
antee extractability. We thus introduce smooth hash functions in order to allow
communications if the commitments are valid only.

3 Smooth Hash Functions on Conjunctions and
Disjunctions of Languages

Smooth Projective Hash Functions. Projective hash function families were
first introduced by Cramer and Shoup [16] as a means to design chosen-ciphertext
secure encryption schemes. We here use the definitions of Gennaro and Lin-
dell [22], who later showed how to use such families to build secure password-
based authenticated key exchange protocols, together with non-malleable
commitments. In addition to commitment schemes, we also consider here fami-
lies of SPHF associated to labeled encryption as done by Canetti et al. [13] and
by Abdalla and Pointcheval [1].

Let X be the domain of these functions and let L be a certain subset of points
of this domain (a language). A key property of these functions is that, for points
in L, their values can be computed by using either a secret hashing key or a
public projected key. While the computation using the secret hashing key works
for all points in the domain X of the hash function, the computation using a
public projected key only works for points x ∈ L and requires the knowledge of
the witness w to the fact that x ∈ L. A projective hash function family is said to
be smooth if the value of the function on inputs that are outside the particular
subset L of the domain are independent of the projected key. Another important
property of these functions is that, given the projected key hp, their output is
uniquely defined for points x ∈ L. Moreover, if L is a hard partitioned subset
of X (i.e., it is computationally hard to distinguish a random element in L from
a random element in X \ L), this output is also pseudo-random if one does not
know a witness w to the fact that x ∈ L [22]. The interested reader is referred
to the full version for more formal definitions.

In the particular case of the Gennaro-Lindell scheme [22], the subset Lpk,m

was defined as the set of {(c)} such that c is a commitment of m using pub-
lic parameters pk: there exists r for which c = compk(m; r) where com is the
committing algorithm of the commitment scheme. In the case of the CHKLM
scheme [13], the subset Lpk,(�,m) was defined as the set of {(c)} such that c is
an encryption of m with label �, under the public key pk: there exists r for
which c = E�

pk
(m; r) where E is the encryption algorithm of the labeled encryp-

tion scheme. In the case of a standard encryption scheme, the label is simply
omitted. The interested reader is referred to [22,13,1] for more details.

Languages. Since we want to use more general languages, we need more de-
tailed notations. Let LPKE be a labeled encryption scheme with public key pk.
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Let X be the range of the encryption algorithm. Here are three useful examples
of languages L in X :

– the valid ciphertexts c of m under pk, L(LPKE,pk),(�,m) = {c|∃r c = E�
pk
(m; r)};

– the valid ciphertexts c of m1 or m2 under pk (that is, a disjunction of two
versions of the former languages), L(LPKE,pk),(�,m1∨m2) = L(LPKE,pk),(�,m1)∪
L(LPKE,pk),(�,m2);

– the valid ciphertexts c under pk, L(LPKE,pk),(�,∗) = {c|∃m ∃r c = E�
pk
(m; r)}.

If the encryption scheme is IND-CPA, the first two are hard partitioned subsets
of X . The last one can also be a hard partitioned subset in some cases: for the
Cramer-Shoup encryption, L � X = G4 and, in order to distinguish a valid
ciphertext from an invalid one, one has to break the DDH problem. However, for
the ElGamal encryption scheme, all the ciphertexts are valid, hence L = X = G2.

More complex languages can be defined, with disjunctions as above, or con-
junctions: the pairs of ciphertexts (a, b) such that a ∈ L(LPKE,pk),(�,0∨1) and
b ∈ L(LPKE,pk),(�,2∨3). This set can be obtained by (L(LPKE,pk),(�,0∨1)) × X) ∩
(X × L(LPKE,pk),(�,2∨3)).

Likewise, we can define more general languages based on other primitives
such as commitment schemes. The definition would be similar to the one above,
with pk playing the role of the common parameters, Epk playing the role of the
committing algorithm, (m, �) playing the role of the input message, and c playing
the role of the commitment.

More generally, in the following, we denote the language by the generic nota-
tion L(Sch,ρ),aux where aux denotes all the parameters useful to characterize the
language (such as the label used, or a plaintext), ρ denotes the public parame-
ters such as a public key pk, and Sch denotes the primitive used to define the
language, such as an encryption scheme LPKE or a commitment scheme Com.
When there is no ambiguity, the associated primitive Sch will be omitted.

We now present new constructions of SPHF to deal with more complex
languages, such as disjunctions and conjunctions of any languages. The con-
structions are presented for two languages but can be easily extended to any
polynomial number of languages. We then discuss about possible information
leakage at the end of this section. The properties of correctness, smoothness and
pseudo-randomness are easily verified by these new smooth hash systems. Due
to the lack of space, the formal proofs can be found in the full version.

Conjunction of two Generic Smooth Hashes. Let us consider an encryp-
tion or commitment scheme defined by public parameters and a public key ag-
gregated in ρ. X is the range of the elements we want to study (ciphertexts,
tuples of ciphertexts, commitments, etc), and L1 = L1,ρ,aux and L2 = L2,ρ,aux

are hard partitioned subsets of X , which specify the expected properties (valid
ciphertexts, ciphertexts of a specific plaintext, etc). We consider situations where
X possesses a group structure, which is the case if we consider ciphertexts or
tuples of ciphertexts from an homomorphic encryption scheme. We thus denote
by ⊕ the commutative law of the group (and by % the opposite operation, such
that c⊕ a% a = c).
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We assume to be given two smooth hash systems SHS1 and SHS2, on the sets
corresponding to the languages L1 and L2: SHSi = {HashKGi, ProjKGi, Hashi,
ProjHashi}. Here, HashKGi and ProjKGi denote the hashing key and the projected
key generators, and Hashi and ProjHashi the algorithms that compute the hash
function using hki and hpi respectively.

Let c be an element of X , and r1 and r2 two elements chosen at random.
We denote by hk1 = HashKG1(ρ, aux, r1), hk2 = HashKG2(ρ, aux, r2), hp1 =
ProjKG1(hk1; ρ, aux, c), and hp2 = ProjKG2(hk2; ρ, aux, c) the keys. A smooth
hash system for the language L = L1∩L2 is then defined as follows, if c ∈ L1∩L2
and wi is a witness that c ∈ Li, for i = 1, 2:

HashKGL(ρ, aux, r = r1‖r2) = hk = (hk1, hk2)
ProjKGL(hk; ρ, aux, c) = hp = (hp1, hp2)

HashL(hk; ρ, aux, c) = Hash1(hk1; ρ, aux, c)⊕ Hash2(hk2; ρ, aux, c)
ProjHashL(hp; ρ, aux, c; (w1, w2)) = ProjHash1(hp1; ρ, aux, c; w1)

⊕ProjHash2(hp2; ρ, aux, c; w2)

Disjunction of two Generic Smooth Hashes. Let L1 and L2 be two lan-
guages as described above. We assume to be given two smooth hash systems
SHS1 and SHS2 with respect to these languages. We define L = L1 ∪ L2 and
construct a smooth projective hash function for this language as follows:

HashKGL(ρ, aux, r = r1‖r2) = hk = (hk1, hk2)
ProjKGL(hk; ρ, aux, c) = hp = (hp1, hp2, hpΔ = Hash1(hk1; ρ, aux, c)

⊕Hash2(hk2; ρ, aux, c))
HashL(hk; ρ, aux, c) = Hash1(hk1; ρ, aux, c)

ProjHashL(hp; ρ, aux, c; w) = ProjHash1(hp1; ρ, aux, c; w) if c ∈ L1
or hpΔ % ProjHash2(hp2; ρ, aux, c; w) if c ∈ L2

where w is a witness of c ∈ Li for i ∈ {1, 2}. Then ProjHashi(hpi; ρ, aux, c; w) =
Hashi(hki; ρ, aux, c). The player in charge of computing this value is supposed
to know w, and in particular the language which c belongs to (the index i).

Uniformity and Independence. In the above definition of SPHF (contrarily
to the original Cramer-Shoup [16] definition), the value of the projected key
formally depends on the ciphertext/commitment c. However, in some cases, one
may not want to reveal any information about this dependency. In fact, in certain
cases such as in the construction of a SPHF for equivocable and extractable
commitments in Section 5, one may not even want to leak any information
about the auxiliary elements aux. When no information is revealed about aux,
it means that the details about the exact language will be concealed.

We thus add a notion similar to the smoothness, but for the projected key: the
projected key may or may not depend on c (and aux), but its distribution does
not: Let us denote by Dρ,aux,c the distribution {hp | hk = HashKGL(ρ, aux, r)
and hp = ProjKGL(hk; ρ, aux, c)}, on the projected keys. If, for any c, c′ ∈ X ,
Dρ,aux,c′ and Dρ,aux,c are indistinguishable, then we say that the smooth hash
system has the 1-uniformity property. If, for any c, c′ ∈ X , and any auxiliary
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elements aux, aux′, Dρ,aux′,c′ and Dρ,aux,c are indistinguishable, we name it
2-uniformity property.

More than indistinguishability of distributions, the actual projected key hp
may not depend at all on c, as in the Cramer and Shoup’s definition. Then, we say
that the smooth hash system guarantees 1-independence (resp. 2-independence
if it does not depend on aux either). Note that the latter independence notions
immediately imply the respective uniformity notions.

As an example, the smooth hash system associated with the ElGamal cryp-
tosystem (see Section 4 page 680) guarantees 2-independence. On the other hand,
the analogous system associated with the Cramer-Shoup encryption (see the full
version) guarantees 2-uniformity only. For smooth hash systems combinations,
one can note that in the case of disjunctions, one can get, at best, the uniformity
property, since hash computations on the commitment are needed for generat-
ing the projected key. Furthermore, this is satisfied under the condition that the
two underlying smooth hash systems already satisfy this property (see the full
version for more details and proofs).

Finally, one should note that, in the case of disjunction, the view of the
projected hash value could leak some information about the sub-language in
which the input lies, if an adversary sends a fake hpΔ. The adversary could
indeed check whether ProjHashL(hp; ρ, aux, c; w) equals Hash1(hk1; ρ, aux, c) or
hpΔ %Hash2(hk2; ρ, aux, c). But first, it does not contradict any security notion
for smooth hash systems; second, in all the applications below, the projected
hash value is never revealed; and third, in the extractable commitments below,
because of the global conjunction of the languages, an exponential exhaustive
search would be needed to exploit this information, even if the committed value
is a low-entropy one.

4 A Conditionally Extractable Commitment

ElGamal Commitment and Associated Smooth Hash. The ElGamal com-
mitment is realized in the common reference string model, where the CRS ρ
contains (G, pk), as defined in Section 2, for the ElGamal encryption scheme.
In practice, sk should not be known by anybody, but in the security analy-
sis, sk will be the extraction trapdoor. Let the input of the committing algo-
rithm be a scalar M ∈ Zq. The commitment algorithm consists of choosing a
random r and computing the following ElGamal encryption under random r:
C = EG+

pk(M, r) = (u1 = gr
1, e = hrgM ).

The smooth projective hashing, associated with this commitment scheme and
the language L = L(EG+,ρ),M ⊂ X = G2 of the additive ElGamal ciphertexts C
of M under the global parameters and public key defined by ρ, is the family
based on the underlying ElGamal encryption scheme, as defined in [22]:

HashKG((EG+, ρ), M) = hk = (γ1 , γ3)
$← Zq × Zq

Hash(hk; (EG+, ρ), M, C) = (u1)
γ1 (eg−M )γ3

ProjKG(hk; (EG+, ρ), M, C) = hp = (g1)γ1 (h)γ3

ProjHash(hp; (EG+, ρ), M, C; r) = (hp)r
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First, under the DDH problem (semantic security of the ElGamal encryption
scheme), L is a hard partitioned subset of X = G2. Then, for C = EG+

pk(M, r),
and thus with the witness r, the algorithms are defined as above using the same
notations as in [22].

L-extractable Commitments. Note that the value gM would be easily ex-
tractable from this commitment (seen as the multiplicative ElGamal encryp-
tion). However, one can extract M itself (the actual committed value) only if
its size is small enough so that it can be found as a solution to the discrete
logarithm problem. In order to obtain “extractability” (up to a certain point, see
below), one should rather commit to it in a bit-by-bit way.

Let us denote M ∈ Zq by
∑m

i=1 Mi · 2i−1, where m ≤ n. Its commitment is
comEGpk(M) = (b1, . . . , bm), where bi = EG+

pk(Mi · 2i−1, ri) = (u1,i = g1
ri , ei =

hrigMi·2i−1
), for i = 1, . . . , m. The homomorphic property of the encryption

scheme allows to obtain, from this tuple, the above simple commitment of M
C = EG+

pk(M, r) = (u1, e) = (
∏

u1,i,
∏

ei) =
∏

bi, for r =
∑

ri.
We now precise what we mean by “extractability”: Here, the commitment will be
extractable if the messages Mi are bits (or at least small enough), but we cannot
ensure that it will be extractable otherwise. More generally, this leads to a new
notion of L−extractable commitments, which means that we allow the primitive
not to be extractable if the message does not belong to a certain language L
(e.g. the language of encryptions of 0 or 1), which is informally the language of
all commitments valid and “of good shape”, and is included into the set X of all
commitments.

Smooth Hash Functions. For the above protocol, we need a smooth hash
system on the language L = L1 ∩ L2, where L1 = {(b1, . . . , bm) | ∀i, bi ∈
L(EG+,ρ),0∨1}, L2 = {(b1, . . . , bm) | C =

∏
i bi ∈ L(EG×,ρ),gM }, to within a

factor (corresponding to the offest 2i−1) with
L(EG+,ρ),0∨1 = L(EG+,ρ),0 ∪ L(EG+,ρ),1 L(EG+,ρ),0 = {C | ∃r C = EG+

pk(0, r)}
L(EG×,ρ),gM = {C | ∃r C = EG×

pk(g
M , r)} L(EG+,ρ),1 = {C | ∃r C = EG+

pk(1, r)}
It is easy to see that this boils down to constructing a smooth hash system

corresponding to a conjunction and disjunction of languages, as presented in the
previous section.

Certification of Public Keys
Description. A classical application of extractable commitments is in the certi-
fication of public keys (when we want to be sure that a person joining the system
actually knows the associated private key). Suppose that a user U owns a pair
of secret and public keys, and would like to have the public key certified by the
authority. A natural property is that the authority will not certify this public
key unless it is sure that the user really owns the related private key, which
is usually ensured by a zero-knowledge proof of knowledge: the user knows the
private key if a successful extractor exists.

Here we present a construction that possesses the same property without
requiring any explicit proof of knowledge, furthermore in a concurrent way since
there is no need of any rewinding:
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– First, the user sends his public key gM , along with a bit-by-bit L-extractable
commitment of the private key M , i.e. a tuple comEGpk(M) = (b1, . . . , bm)
as described above, from which one can derive C =

∏
bi = EG+

pk(M, r) =
EG×

pk(g
M , r).

– We define the smooth hash system related to the language L1 ∩ L2, where
L1 = ∩iL1,i, with L1,i the language of the tuples where the i-th component
bi is an encryption of 0 or 1, and L2 is the language of the tuples where
the derived C =

∏
bi is an encryption of the public key gM (under the

multiplicative ElGamal, as in Section 4 page 680).
Note that when the tuple (b1, . . . , bm) lies in L1∩L2, it really corresponds

to an extractable commitment of the private key M associated to the public
key gM : each bi encrypts a bit, and can thus be decrypted, which provides
the i-th bit of M .

– The authority computes a hash key hk, the corresponding projected key hp
on (b1, . . . , bm) and the related hash value Hash on (b1, . . . , bm). It sends hp
to U along with Cert ⊕ Hash, where Cert is the expected certificate. Note
that if Hash is not large enough, a pseudo-random generator can be used to
expand it.

– The user is then able to recover his certificate if and only if he can com-
pute Hash: this value can be computed with the algorithm ProjHash on
(b1, . . . , bm), from hp. But it also requires a witness w proving that the tuple
(b1, . . . , bm) lies in L1 ∩ L2.

With the properties of the smooth hash system, if the user correctly computed
the commitment, he knows the witness w, and can get the same mask Hash to
extract the certificate. If the user cheated, the smoothness property makes Hash
perfectly unpredictable: no information is leaked about the certificate.

Security Analysis. Let us outline the security proof of the above protocol.
First, the security model is the following: no one can obtain a certificate on a
public key if it does not know the associated private key (that is, if no simulator
can extract the private key). In other words, the adversary wins if it is able to
output (gM , Cert) and no simulator can produce M .

The formal attack game can thus be described as follows: the adversary A
interacts several times with the authority, by sending public keys and com-
mitments, and asks for the corresponding certificates. It then outputs a pair
(gM , Cert) and wins if no simulator is able to extract M from the transcript.

The simulator works as follows: it is given access to a certification (signing)
oracle, and generates a pair of public and private keys (sk, pk) for the ElGa-
mal encryption. The public key is set as the CRS that defines the commitment
scheme. The private key will thus be the extraction trapdoor.

When the simulator receives a certification request, with a public key and
a commitment, it first tries to extract the associated private key, granted the
extraction trapdoor. In case of success, the simulator asks the signing oracle to
provide it with the corresponding certificate on the public key, and complete the
process as described in the protocol. However, extraction may fail if the com-
mitments are not well constructed (not in L1∩L2). In such a case, the simulator
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sends back a random bit-string of appropriate length. In case of successful ex-
traction, the answer received by the user is exactly the expected one. In case of
failure, it is perfectly indistinguishable too since the smoothness property of the
hash function would make a perfectly random mask Hash (since the input is not
in the language).

After several interactions, A outputs a pair (gM , Cert), which is forwarded by
the simulator. Either gM has been queried to the signing oracle, which means
that the extraction had succeeded, the simulator knows M and the adversary
did not win the attack game, or this is a valid signature on a new message:
existential forgery under chosen-message attack.

5 A Conditionally Extractable Equivocable Commitment

In this section, we enhance the previous commitment schemes with equivocabil-
ity, which is not a trivial task when one wants to keep the extraction property.
Note that we first build a malleable extractable and equivocable commitment
using the ElGamal-based commitment (see Section 4 page 680), but one can
address the non-malleability property by simply building the commitment upon
the Cramer-Shoup encryption scheme. All the details of this extension are given
in the full version. In the following, if b is a bit, we denote its complement by b
(i.e., b = 1− b). We furthermore denote by x[i] the ith bit of the bit-string x.

Equivocability. Commitments that are both extractable and equivocable seem
to be very difficult to obtain. Canetti and Fischlin [12] proposed a solution but
for one bit only. Damgård and Nielsen [17] proposed later another construc-
tion. But for efficiency reasons, in our specific context, we extend the former
proposal. In this section, we thus enhance our previous commitment (that is
already L-extractable) to make it equivocable, using the Canetti and Fischlin’s
approach. Section 5 page 686 will then apply a non-malleable variant of our new
commitment together with the associated smooth hash function family in order
to build a password-authenticated key exchange protocol with adaptive security
in the UC framework [11]. The resulting protocol is reasonably efficient and,
in particular, more efficient than the protocol by Barak et al. [3], which to our
knowledge is the only one achieving the same level of security in the standard
model.

Description of the Commitment. Our commitment scheme is a natural
extension of Canetti-Fischlin commitment scheme [12], in a bit-by-bit way. It
indeed uses the ElGamal public-key encryption scheme, for each bit of the bit-
string. Let (y1 , . . . , ym

) be random elements in G. This commitment is realized
in the common reference string model, the CRS ρ contains (G, pk), where pk is
an ElGamal public key and the private key is unknown to anybody, except to
the commitment extractor. It also includes this tuple (y1 , . . . , ym), for which the
discrete logarithms in basis g are unknown to anybody, except to the commit-
ment equivocator. Let the input of the committing algorithm be a bit-string
π =

∑m
i=1 πi · 2i−1. The algorithm works as follows:
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– For i = 1, . . . , m, it chooses a random value x
i,πi

=
∑n

j=1 x
i,πi

[j] · 2j−1 and
sets x

i,πi
= 0.

– For i = 1, . . . , m, the algorithm commits to πi, using the random x
i,πi

:
a

i
= comPed(πi, xi,πi

) = g
x

i,πi yπi
i

and defining a = (a1 , . . . , am
).

– For i = 1, . . . , m, it computes the ElGamal commitments (see the previous
section) of x

i,δ
, for δ = 0, 1: (bi,δ = (b

i,δ
[j])j = comEGpk(xi,δ

), where b
i,δ

[j] =
EG+

pk(xi,δ
[j] · 2j−1, r

i,δ
[j]). One can directly extract from the computation of

the b
i,δ

[j] an encryption B
i,δ

of x
i,δ

: B
i,δ

=
∏

j b
i,δ

[j] = EG+
pk(xi,δ

, r
i,δ

), where
r

i,δ
is the sum of the random coins r

i,δ
[j].

The entire random string for this commitment is (where n is the bit-length of the
prime order q of the group G) R = (x1,π1

, (r1,0 [1], r1,1 [1], . . . , r1,0 [n], r1,1 [n]), . . . ,
xm,πm

, (rm,0 [1], . . . , rm,1 [n])). From which, all the values ri,πi
[j] can be erased,

letting the opening data (witness of the committed value) become limited to
w = (x1,π1

, (r1,π1
[1], . . . , r1,π1

[n]), . . . , x
m,πm

, (r
m,πm

[1], . . . , r
m,πm

[n])). The out-
put of the committing algorithm, of the bit-string π, using the random R,
is comρ(π; R) = (a,b), where a = (a

i
= comPed(πi, xi,πi

))i,b = (b
i,δ

[j] =
EG+

pk(xi,δ
[j] · 2j−1, r

i,δ
[j]))i,δ,j .

Opening. In order to open this commitment to π, the above witness w (with
the value π) is indeed enough: one can build again, for all i and j, bi,πi

[j] =
EG+

pk(xi,πi
[j] · 2j−1, r

i,πi
[j]), and check them with b. One can then also compute

again all the a
i
= comPed(πi, xi,πi

), and check them with a. The erased random
elements would help to check the encryptions of zeroes, what we do not want,
since the equivocability property will exploit that.

Properties. Let us briefly check the security properties, which are formally
proven in the full version. First, because of the perfectly hiding property of
the Pedersen commitment, unless some information is leaked about the x

i,δ
[j]’s,

no information is leaked about the πi’s. And granted the semantic security of
the ElGamal encryption scheme, the former privacy is guaranteed. Since the
Pedersen commitment is (computationally) binding, the a

i
’s cannot be opened

in two ways, but only one pair (πi, xi,πi
) is possible. Let us now consider the new

extended properties:

– (conditional) extractability is provided by the bit-by-bit encryption. With
the decryption key sk, one can decrypt all the b

i,δ
[j], and get the x

i,δ
(un-

less the ciphertexts contain values different from 0 and 1, which will be one
condition for extractability). Then, one can check, for i = 1, . . . , m, whether
a

i
= comPed(0, x

i,0) or a
i

= comPed(1, x
i,1), which provides πi (unless none

of the equalities is satisfied, which will be another condition for extractability).
– equivocability is possible using the Pedersen commitment trapdoor. Instead

of taking a random x
i,πi

and then x
i,πi

= 0, which specifies πi as the com-
mitted bit, one takes a random xi,0 , computes ai = comPed(0, xi,0), but also
extracts x

i,1 so that a
i

= comPed(1, x
i,1) too (which is possible with the

knowledge of discrete logarithm of yi in basis g, the trapdoor). The rest of
the commitment procedure remains the same, but now, one can open any
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bit-string for π, using the appropriate x
i,πi

and the corresponding random
elements (the simulator did not erase).

The Associated Smooth Projective Hash Function. As noticed above, our
new commitment scheme is conditionally extractable (one can recover the x

i,δ
’s,

and then the committed value π), under the conditions that all the ElGamal
ciphertexts encrypt either 0 or 1, and the a

i
is a commitment of either 0 or 1,

with random xi,0 or xi,1 .
As before, one wants to make the two hash values (direct computation and the

one from the projected key) be the same if the two parties use the same input π
and perfectly independent if they use different inputs (smoothness). One fur-
thermore wants to control that each a

i
is actually a Pedersen commitment of πi

using the encrypted random x
i,πi

, and thus g
x

i,πi = a
i
/yπi

i : the extracted x
i,πi

is really the private key M related to a given public key gM that is a
i
/yπi

i in
our case. Using the same notations as in Section 4 page 680, we want to define
a smooth hash system showing that, for all i, δ, j, b

i,δ
[j] ∈ L(EG+,ρ),0∨1 and, for

all i, B
i,πi
∈ L(EG×,ρ),(a

i
/yi

πi ), where B
i,πi

=
∏

j b
i,πi

[j].

Combinations of these smooth hashes. Let C be the above commitment
of π using randomness R as defined in Section 5 page 683. We now precise
the language Lρ,π, consisting informally of all the valid commitments “of good
shape”:

Lρ,π =
{

C

∣∣∣∣∃R s. t. C = comρ(π, R) and ∀i ∀j b
i,πi

[j] ∈ L(EG+,ρ),0∨1
and ∀i B

i,πi
∈ L(EG×,ρ),a

i
/yi

πi

}
The smooth hash system for this language relies on the smooth hash systems

described previously, using the generic construction for conjunctions and disjunc-
tions as described in Section 3. The precise definition of this language (which
is constructed from conjunctions and disjunctions of simple languages) can be
found in the full version, omitting the labels and replacing the Cramer-Shoup
encryption CS+ by the ElGamal one EG+.

Properties: Uniformity and Independence. With a non-malleable vari-
ant of such a commitment and smooth hash function, it is possible to improve
the establishment of a secure channel between two players, from the one pre-
sented Section 4 page 681. More precisely, two parties can agree on a common
key if they both share a common (low entropy) password π. However, a more
involved protocol than the one proposed in Section 4 is needed to achieve all the
required properties of a password-authenticated key exchange protocol, as it will
be explained in Section 5 page 686 and proven in the full version.

Nevertheless, there may seem to be a leakage of information because of the
language that depends on the input π: the projected key hp seems to contain
some information about π, that can be used in another execution by an adversary.
Hence the independence and uniformity notions presented Section 3 page 679,
which ensure that hp does not contain any information about π. Proofs of these
properties can be found in the full version.
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Estimation of the Complexity. Globally, each operation (commitment, pro-
jected key, hashing and projected hashing) requiresO(mn) exponentiations in G,
with small constants (at most 16).

UC-Secure PAKE with Adaptive Security. The primitive presented above,
but using the Cramer-Shoup encryption scheme (as described in the full version)
is a non-malleable conditionally extractable and equivocable commitment. We
now sketch how to use this new primitive in order to construct the first ef-
ficient adaptively-secure password-authenticated key exchange protocol in the
UC framework with erasures. For lack of space, all the details can be found in
the full version. The passwords are not known at the beginning of the simulation:
S will manage to correct the errors (thanks to the equivocability) but without
erasures there would remain clues on how the computations were held, which
would give indications on the passwords used.

Our protocol is based on that of Gennaro and Lindell [22]. At a high level,
the players in the KOY/GL protocol exchange CCA-secure encryptions of the
password, under the public-key found in the common reference string, which are
essentially commitments of the password. Then, they compute the session key
by combining smooth projective hashes of the two password/ciphertext pairs.
The security of this protocol relies on the properties of smoothness and pseudo-
randomness of the smooth projective hash function. But as noted by Canetti et
al in [13], the KOY/GL protocol is not known to achieve UC security: the main
issue is that the ideal-model simulator must be able to extract the password
used by the adversary before playing, which is impossible if the simulator is the
initiator (on behalf of the client), leading to such situation in which the simulator
is stuck with an incorrect ciphertext and will not be able to predict the value of
the session key.

To overcome this problem, the authors of [13] made the client send a pre-flow
which also contains an encryption of the password. The server then sends its
own encryption, and finally the client sends another encryption, as well as a
zero-knowledge proof showing that both ciphertexts are consistent and encrypt
the same password. This time the simulator, playing as the client or the server, is
able to use the correct password, recovered from the encrypted value sent earlier
by the other party. The pre-flow is never used in the remaining of the protocol,
hence the simulator can send a fake one, and simulate the zero-knowledge proof.

Unfortunately, the modification above does not seem to work when dealing
with adaptive adversaries, which is the case in which we are interested. This is
because the simulator cannot correctly open the commitment when the adversary
corrupts the client after the pre-flow has been sent. A similar remark applies to
the case in which the server gets corrupted after sending its first message. As a
result, in addition to being extractable, the commitment scheme also needs to
be equivocable for the simulator to be able to provide a consistent view to the
adversary. Since the use of the equivocable and extractable commitment schemes
also seems to solve the problem of proving the original Gennaro-Lindell protocol
secure in the UC model, we opted to use that protocol as the starting point of
our protocol.



Smooth Projective Hashing for Conditionally Extractable Commitments 687

These remarks are indeed enough (along with minor modifications) to
obtain adaptive security. Thus, our solution essentially consists in using our
non-malleable extractable and equivocable commitment scheme in the Gennaro-
Lindell protocol when computing the first two flows. As presented in the previous
subsections, extractability may be conditional: We include this condition in the
language of the smooth hash function (note that the projected keys sent do not
leak any information about the password). Additional technical modifications
were also needed to make things work and can be found in the full version.
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