
On Models of a Nondeterministic Computation

Mikhail N. Vyalyi�

Dorodnitsyn Computing Center of RAS,
Vavilova, 40, Moscow 119991, Russia

vyalyi@gmail.com

Abstract. In this paper we consider a nondeterministic computation
performed by deterministic multi-head 2-way automata with a read-only
access to an auxiliary memory. The memory contains additional data
(a guess) and the computation is successful iff it is successful for some
memory content.

Also we consider the case of restricted guesses in which a guess should
satisfy some constraint.

We show that the standard complexity classes such as L, NL, P, NP,
PSPACE can be characterized in terms of these models of nondeterminis-
tic computation. These characterizations differ from the well-known ones
by absence of alternation.

Keywords: automaton, nondeterminism, language, complexity class.

The standard way to define a nondeterministic computation by an automaton
or a Turing machine is to change a transition function by a transition relation.
In a nondeterministic state of a computational device a computation branches
into several computation paths.

There is another way to introduce a nondeterminism. Suppose that a com-
putational device has an additional data (a guess or a certificate or a proof of
correctness) and performs a deterministic computation operating with an input
data and a guess data.

Sometimes these variants of introducing nondeterminism lead to equivalent
computational models. The class NP, for example, can be defined in both ways
using Turing machines.

If we restrict computational power then these variants may differ drastically.
The aim of this paper is to investigate models of nondeterminism based on the
second variant for multi-head 2-way automata.

It is well-known1 that computation abilities of deterministic multi-head 2-way
automata are equivalent to Turing machines with a logarithmically bounded
auxiliary memory. In other words, they recognize languages from the class L.

Nondeterministic (in the sense of transition relation) multi-head 2-way au-
tomata recognize languages from the class NL. One can rewrite a definition of a
� The work is supported by the RFBR grants 08–01–00414, 09-01-00709 and the grant

NS 5294.2008.1.
1 O. H. Ibarra [12] attributed this result to A. Cobham and coauthors referring to an

unpublished manuscript.

A. Frid et al. (Eds.): CSR 2009, LNCS 5675, pp. 334–345, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Models of a Nondeterministic Computation 335

nondeterministic automaton in terms of guess data. For this purpose the 1-way
read-only guess tape should be used.

Here we introduce a more general model of an auxiliary read-only memory
(see definitions in Section 1). Guess data are stored in cells of a memory and at
each moment of time an automaton has an access to the exactly one memory
cell. Possible moves between memory cells form a directed graph (a memory
graph). An automaton can choose between finite number of variants only. So the
natural condition on the memory graph is a finite fan-out in each vertex (i.e. a
memory cell).

The most natural variant of an auxiliary memory is a 2-way tape. This
model appears to be very close to nonerasing nondeterministic stack automata
(NENSA) [12,10]. The automata with the 2-way read-only guess tape recognize
the same class of languages PSPACE as NENSA do.

A read-only memory may be useful in nondeterministic settings. Neverthe-
less, automata with a read-only nondeterministic memory can be related with
a special variant of deterministic computation with an auxiliary memory, which
is called WORM-automata (see Subsection 1.1). The WORM-automata with
the 2-way guess tape are similar to the nonerasing deterministic stack automata
(NEDSA) and also recognize the languages from the class PSPACE.

Also we introduce a nondeterministic computation with a restricted guess. An
example of restricted guess is a sparse guess . Sparseness of a guess means that a
guess tape contains the only one (or finitely many) non-empty symbol and the
rest symbols stored on the tape are empty.

We focus our attention on a more restricted memory model, so-called 1.5-way
tape. It was used in research of quantum automata [1]. For classic automata
1.5-way tape means an 1-way tape with a reset option, i.e. a possibility to make
move into the initial cell from any memory cell.

The main results of this paper concern the 1.5-way tape memory.
The automata with the 1.5-way guess tape recognize the class PSPACE (The-

orem 2 below) as the 2-way guess tape automata do. But the WORM-automata
with this memory type recognize the class P only (Theorem 1). 1.5-way au-
tomata with sparse guesses recognize the class NP(Theorem 3). These results
show that the 1.5-way guess tape is potentially more suitable to characterize
various complexity classes.

An interesting feature of all these results is a formal absence of resource
bounds in characterizations of resource-bounded classes such as P, NP and so
on. It should be noted that there is a primary result of this sort: many heads are
equivalent to logarithmic space. The rest of the results are based on this fact.

The main technical tool in study of the 1.5-way tape is calculations modulo
polynomially bounded integer. These calculations can be performed on a log-
arithmic space. To compute a length of a part of the guess tape we use the
simple algorithm: go along the part and increase a counter modulo p. The latter
operation can be done on logarithmic space.

There are many results on characterizations of complexity classes in terms
of some sort of automata. The classes L, NL, P, PSPACE have the well-known

336 M.N. Vyalyi

characterizations by deterministic, nondeterministic, alternating and synchro-
nized alternating 2-way automata [5,11,7]. There are also characterizations of
NP, the polynomial hierarchy and some other complexity classes in terms of
alternating auxiliary stack automata [9].

Our results differ from these characterization because the models considered
in this paper do not use alternation.

Some results in theory of tree-walking automata can be translated to our
framework. In this case a memory model is a tree. For example, it follows from [3]
that the automata with a read-only access to a tree memory recognize the lan-
guages from the class EXP.

It is worth to mention a paper [4], which contains the characterizations of P,
NP and PSPACE in terms of nondeterminism only. The difference is in the nature
of nondeterminism introduced. In [4] nondeterministic colorings of n-dimensional
words are considered, where n is the input size. Contrary, our main results concern
the case of 1-dimensional guess memory, which is potentially infinite. Using a po-
tentially infinite tape makes more difficult an interpretation of the results in terms
of descriptive complexity theory (see, e.g., the book [8]). For example, the results
in [4] are directly related with Fagin’s theorem that characterizes the class NP in
terms of the second-order logic. To establish a similar relation to our characteri-
zation of the class NP one need specify suitably restricted infinite models. Up to
the moment we know no way to implement this idea.

The rest of paper is organized as follows. In Section 1 we introduce our basic
computational model: multi-head 2-way automata with a nondeterministic aux-
iliary memory. Section 2 contains results about the 1-way, the 1.5-way and the
2-way guess tapes. In Section 3 we introduce a model of a restricted guess and
give characterizations of NP in terms of this model. In Section 4 we make some
remarks on a more general memory model, which is called a monoid memory.

Details of proofs are omitted here due to space limitations. They can be found
in the preprint [15].

1 Automata with an Auxiliary Read-Only Memory

In this section we provide definitions for a model of nondeterministic compu-
tation by automata with an auxiliary read-only memory. The definitions fix an
informal idea explained in the introductory section.

Definition 1. A memory model is a directed graph (M, E), an initial cell m0 ∈
M and a marking map g : E → G from the edges of the graph to some finite set
G. The marking map satisfies the following conditions:

– g(u, v) �= g(u, w) for v �= w (edges outgoing from the vertex can be distin-
guished by their marks);

– for each u ∈ M and a ∈ G there is an edge (u, v) ∈ E such that g(u, v) = a.

In other words, the map g restricted to the set of edges outgoing from a vertex
is a bijection.

For any finite alphabet Δ a memory content μ is a map μ : M → Δ.

On Models of a Nondeterministic Computation 337

Definition 2. An h-head automaton A with an auxiliary memory of model M
(an M -automaton for brevity) is characterized by

– a finite state set Q,
– a finite input alphabet I = Σ ∪ {�, �}, Σ ∩ {�, �} = ∅,
– a finite memory alphabet Δ,
– a transition function δ : Q× Ih×Δ → Q×{−1, 0, 1}h× (G∪0), which maps

an (h + 2)-tuple (the current state, symbols the heads on the input tape,
the symbol in the current memory cell) to an (h + 2)-tuple (a new state, a
motion command for each head, a command of changing memory cell),

– an initial state q0 ∈ Q,
– a set of accepting states Qa ⊂ Q.

A configuration of the automaton A is an (h + 2)-tuple (q, i1, . . . , ih, m) (the
state, the positions of the heads, the memory cell). A surface configuration of
the automaton A is an (h + 1)-tuple (q, i1, . . . , ih).

The transition function defines a transformation on the set of the configurations.
A motion command for a head is an element from the set {−1, 0, +1} indicating
the shift of the head along the input tape. A command of changing memory cell
is an element of the marking set G or an empty command 0. In the case of a
non-empty command g ∈ G the automaton moves out the current memory cell
along the edge marked by g. The empty command do not change the memory
cell.

An automaton A operates on an input word w ∈ Σ∗ in natural way. We
assume that the input word is extended by the endmarkers {�, �} indicating the
beginning and the end of the word. The automaton starts from the initial state
q0, the initial position of each head is the leftmost symbol of the input word,
the initial memory cell is m0. On each step of operation the automaton changes
the configuration as described above. The automaton stops iff either it reaches
an accepting state or a head goes out the area bounded by the endmarkers.

Definition 3. An automaton A accepts an input word w iff for some memory
content μ it stops in an accepting state.

The automaton recognizes the language L iff for any w ∈ L it accepts w and
for any w /∈ L it do not accept w.

We denote by M -NFA the class of languages recognized by automata with an
auxiliary memory of model M .

1.1 Determinization

A nontrivial use of an auxiliary read-only memory is inevitably nondeterministic.
Changing the read-only mode by the read-write mode in many cases leads to a
broader language class. This contradicts an intuition that a deterministic model
is weaker than a nondeterministic one.

In this subsection we describe a variant of deterministic use of an auxiliary
memory of model M which gives a subclass of M -NFA. It is the WORM (write

338 M.N. Vyalyi

once, read many) mode. A WORM-M automaton should fill a new memory
cell by a symbol when it enter the cell the first time. In further operation the
automaton can not change the content of the cell.

Below we give a formal definition compatible with the above nondeterministic
model.

Definition 4. A WORM-memory automaton on memory model M (a WORM-
M automaton for brevity) is characterized by

– a finite state set Q,
– a finite input alphabet I = Σ ∪ {�, �}, Σ ∩ {�, �} = ∅,
– a finite memory alphabet Δ ∪ {void},
– a transition function δ, which maps a (h+2)-tuple (the current state, symbols

of the input word under the heads, the symbol in the current memory cell) to
a (h + 2)-tuple (a new state, a motion command for each head, a command
of changing memory cell),

– the initial state q0 ∈ Q,
– the set of accepting states Qa ⊂ Q,
– the set of writing states Qw ⊂ Q.
– a filling memory function ϕ : Qf → Δ,

At the start of operation all memory cells are void. A WORM-memory automa-
ton operates in the same way as a nondeterministic M -automaton except the
moments of entering a writing state. In that moment the filling function is ap-
plied to the current state of the automaton. If the current memory cell is visited
at first time then the value of the filling function is assigned to the cell and
the automaton continues operation by application of the transition function.
An attempt to change the content of a cell visited before causes the error as
well as an attempt to apply the transition function at a void cell. In the case
of an error the automaton stops the operation and do not accept the input
word.

So, during a successful operation the automaton enters a new memory cell in
a writing state. Also note that if the automaton writes the non-void symbol d
to the cell containing the symbol d then no error occurs. We call this property
‘a freedom of writing the same’.

We denote by M -WORM the class of languages recognized by deterministic
automata with an auxiliary WORM-memory of model M .

Lemma 1. M -WORM ⊆ M -NFA.

The idea of the proof is simple: a nondeterministic M -automaton A simulating
a WORM-M memory automaton B expects a memory content consistent with
the operation of B. Details can be found in [15].

Due to Lemma 1 one can regard the WORM-M automata as a specific case
of M -automata.

On Models of a Nondeterministic Computation 339

2 Complexity Classes Recognized by Automata with an
Auxiliary Tape Memory

2.1 1-Way Tape

Let W1 be an infinite 1-way tape (Fig. 1). The class W1-NFA is just the class
NL. Indeed, a W1-automaton can read a symbol from the guess tape once. This
symbol can be used to make a nondeterministic choice in a transition relation.

Note also that W1-WORM = L because a symbol from the W1-tape can not
be reread.

.

Fig. 1. 1-way tape W1

.
+ + + + +

− − − − −
−

Fig. 2. 2-way tape W2

2.2 2-Way Tape

Let W2 be an infinite 2-way tape (Fig. 2). For graphs of fan-out > 1 we should
also indicate the marking of edges. In the case of W2 the marking is natural:
mark ‘+’ is placed on the edges going from a vertex n to the vertex n + 1, mark
‘−’ is placed on the edges going to the opposite direction.

It was mentioned above that W2-NFA = PSPACE because W2-automata is
almost the same as nonerasing nondeterministic stack automata and NENSA
recognize the class PSPACE [12].

NENSA is able to make arbitrary nondeterministic transitions while an
W2-automaton should follow data read from the guess tape. It means that W2-
automata are weaker than NENSA, so W2-NFA ⊆ PSPACE. The reverse inclu-
sion is valid even for WORM-W2 automata. Indeed, a WORM-W2 automaton
is able to write a computational history of a Turing machine computation on a
polynomially bounded space. For this purpose the automaton should move on
distances polynomially bounded by the input size. This can be done by imple-
menting polynomially bounded counters.

Thus, W2-NFA ⊆ PSPACE ⊆ W2-WORM ⊆ W2-NFA (the last inclusion is
due to Lemma 1).

2.3 1.5-Way Tape

The memory model W1.5 is pictured on the Fig. 3. Edges going to the right are
marked by ‘+’ and edges going to the initial vertex are marked by ‘−’.

Theorem 1. W1.5-WORM = P.

The inclusion P ⊆ W1.5-WORM follows from the fact that a WORM-W1.5 au-
tomaton A is able to simulate a WORM-W2 automaton B on a polynomially

340 M.N. Vyalyi

.−
+ + + + +

−

Fig. 3. 1.5-way tape W1.5

bounded space by implementing a polynomially bounded counter that keeps a
position of B on the W2-tape.

The reverse inclusion follows from two simple observations. The first observa-
tions holds for general W1.5-automata.

Lemma 2. Let A be a W1.5-automaton and #Q be the number of its states.
Then any accepting computation of A includes no more than #Q moves to the
initial cell.

Proof. After each return move the automaton A scans the same tape content
and its behavior is deterministic. So, if A starts the scan process from the same
state twice it loops and never reach an accepting state.

Thus, the number of return moves is no more than the number of the states. 	

The second observation is specific to the WORM-W1.5 automata.

Proposition 1. Let A be a WORM-W1.5 automaton, h be the number of heads,
n be the length of the input word w and #Q is the number of the states of A. If
A accepts w then between two subsequent return moves the automaton visits no
more than nh#Q new cells.

Proof. There are no more than nh#Q surface configurations of A. If the automa-
ton pass through more than nh#Q new cells, some surface configuration occurs
twice. It means that the automaton loops and moves to the right infinitely. 	

These facts immediately imply that an operation of a WORM-W1.5 automaton
can be simulated by a Turing machine in polynomial time.

Thus the WORM-W1.5-automata are weaker than the WORM-W2 automata.
As for nondeterministic automata, 1.5-way tape provides the same computa-
tional power as 2-way tape.

Theorem 2. W1.5-NFA = PSPACE.

In one direction the inclusion is obvious:

W1.5-NFA ⊆ W2-NFA = PSPACE . (1)

To prove the inclusion PSPACE ⊆ W1.5-NFA we show that a W1.5-automaton
is able to check correctness of a computational history for a Turing machine
computation on a polynomially bounded space. Configurations of the Turing
machine are represented in special form using arithmetic encoding of binary

On Models of a Nondeterministic Computation 341

words [13,14]. Namely, a word w ∈ {0, 1}∗ is encoded by a positive integer c(w)
written in binary as 1w.

A TM configuration �qar will be encoded by a 4-tuple (c(�), q, a, c(rR)), where
rR denote the reversal of the word r.

It is easy to verify that the integers c(�) and c(rR) before and after each step
of the TM computation are related by equations

y = 2x, y = 2x + 1, x = 2y + 1, x = 2y , (2)

where x is the old value and y is the new value of c(�) or c(rR). The exact choice
of a relation depends on the pair q, a and parities of c(�), c(rR).

For a computation on a polynomial space it is sufficient to check relations (2)
modulo polynomially bounded integers. A particular modular check can be done
by a W1-automaton that scans the description of the computational history
from the left to the right. So a W1.5-automaton can perform all modular checks
jumping back to the initial cell before starting the next modular check.

The correctness of this procedure follows from the Chinese remainder theorem
and the prime number theorem [2].

Details of the proof outlined above can be found in [15].

3 The Restricted Guess Case

In this section we introduce a generalization of the nondeterminism model.
Namely, we will put a restriction on the form of a guess. The restriction can
change a computational power of the model.

Definition 5. Let T ⊆ ΔM be a subset of memory contents. We say that a
M -automaton A accepts a word w with a T -restricted guess iff it accepts w
operating on some memory content μ from the set T .

We denote by M(T)-NFA the corresponding class of languages recognizable by
M -automata with a T -restricted guess.

Of course, in general M(T)-NFA �⊆ M -NFA. For example, let T is the set
of all valid computational histories of a Turing machines. Then W2(T)-NFA
contains all recursively enumerable languages.

We are interested in restrictions that describe subclasses of M -NFA. To guar-
antee the inclusion M(T)-NFA ⊆ M -NFA it is sufficient to construct an au-
tomaton V that checks compatibility of memory content η in visited cells with
the set T . Compatibility means that η can be extended to some τ ∈ T . As an
example of this kind of restriction we introduce sparse guesses .

Definition 6. Let Δ = {0} ∪ Δ′. A k-sparse guess contains no more than k
symbols from the Δ′.

We denote by Uk the set of k-sparse guesses.

Below we consider sparse guesses for tape memories.

342 M.N. Vyalyi

3.1 Sparse Guesses for 1.5-Way Tape

The following facts can be verified easily by use of an informal idea of guess
verification described above.

Lemma 3. W1.5(Uk)-NFA ⊆ W1.5-NFA for any k.

Lemma 4. W1.5(U1)-NFA ⊆ W1.5(Uk)-NFA.

Proofs can be found in [15].
Now we give a characterization of the classes W1.5(Uk)-NFA.

Theorem 3. W1.5(Uk)-NFA = NP for k ≥ 1.

The proof of Theorem 3 is divided into two parts.

Lemma 5. NP ⊆ W1.5(U1)-NFA for k ≥ 1.

An U1-guess can mark a cell on the W1.5-tape by a nonzero symbol. The distance
d between the initial and the marked cell can be used to encode an information.
The Chinese remainder theorem guarantee that one can encode polynomially
many bits by residues modulo polynomially bounded primes. A W1.5-automaton
A recognizing an NP-language L expects that these bits form a computational
history of a nondeterministic computation by a nondeterministic Turing machine
recognizing the language L. To verify a guess the automaton A needs to extract
a bit indexed by a prime p from the encoded data. This can be done computing
the distance d modulo p.

Detailed exposition of the proof is contained in [15].

Lemma 6. W1.5(Uk)-NFA ⊆ NP for any k.

Due to Lemma 2 to find out the result of a W1.5-automaton A operation on a
Uk-guess one can divide the operation into polynomially many phases such that
during each phase the W1.5-automaton moves to the right and behaves like a
W1-automaton.

Note that the size of the set S of surface configurations of the W1.5-automaton
A is polynomially bounded by the input size. Changing a surface configuration
after the reading of the symbol 0 is described by a map α0 : S → S. Iterations
of the map α0 stabilize on some cycle: αi+�

0 = αi
0 for sufficiently large i. an

The length � of the cycle is polynomially bounded. From these observations one
can easily conclude that if the W1.5-automaton A accepts on some Uk-guess
then it accepts on a Uk-guess of exponential length, where the length of guess is
the maximum of distances between the initial cell and cells marked by nonzero
symbols.

So the positions of cells marked by nonzero symbols can be specified non-
deterministically by NTM running in polynomial time. Given the positions one
can compute the result of operation of the W1.5-automaton A in deterministic
polynomial time. For this purpose an algorithm of fast computation of matrix
exponentiation can be applied.

On Models of a Nondeterministic Computation 343

Details of the proof can be found in [15].
Now Theorem 3 follows from Lemmata 4, 5, 6:

NP ⊆ W1.5(U1)-NFA ⊆ W1.5(Uk)-NFA ⊆ NP . (3)

3.2 Sparse Guesses for 2-Way Tape

Uk-guesses can be verified on the 2-way tape also.

Lemma 7. W2(Uk)-NFA ⊆ W2-NFA for any k.

This analog of Lemma 4 is proved in a straightforward way.
It is appeared that the class W2(U1)-NFA is rather weak.

Theorem 4. Aux2DC ⊆ W2(U1)-NFA ⊆ Aux2NC ⊂ P.

Here Aux2NC (Aux2DC) is the class of languages recognized by nondeterministic
(deterministic) 2-way counter automata with a logarithmic auxiliary memory.

This effect is due to the absence of the root label in the initial cell. Using a
non-zero symbol as the root label a W2-automaton can simulate a deterministic
counter automaton. Thus we obtain the first inclusion in Theorem 4.

To prove the second inclusion note that a position of the unique nonzero sym-
bol on the tape can be found by a nondeterministic counter automaton (NCA)
nondeterministically. After that the automaton can simulate the operation of a
W2-automaton A on a U1-guess using the value of the counter to indicate the
position of the W2-automaton on the 2-way tape. This works well while the
W2-automaton is to the right of the cell marked by the nonzero symbol.

It is appeared that a behavior of the W2-automaton while it moves between
the initial and the marked cell can be simulated by the NCA nondeterministically
using a logarithmic space. Details of the simulation can be found in [15].

The last inclusion in Theorem 4 follows from the Cook theorem [6]. The Cook
theorem implies

Aux2PDA = AuxN2PDA = P , (4)

where Aux2PDA is the class of languages recognized by deterministic 2-way
pushdown automata with a logarithmic auxiliary memory and AuxN2PDA is
the class of languages recognized by nondeterministic 2-way pushdown automata
with a logarithmic auxiliary memory.

For k ≥ 2 the classes W2(Uk)-NFA coincide with NP.

Theorem 5. W2(Uk)-NFA = NP for k ≥ 2.

Note that Theorem 3 implies that W2(U2)-NFA ⊇ NP because one nonzero
symbol can be used to mark the initial cell and the other can be used for a
simulation of a U1-guess for a W1.5-automaton.

The reverse inclusion can be proved in a way similar to the the proof of
Lemma 6.

344 M.N. Vyalyi

4 Monoid Memory

In this final section we briefly outline a natural extension of tape memories. The
results mentioned below can be easily obtained by translation some well-known
folklore facts to our settings.

Let G be a monoid generated by a set G′ = {g1, . . . , gn}. Then the memory
of type (G, G′) is defined by the Cayley graph of the monoid M : the vertex set
is G, an edge marked gk goes from a vertex x to the vertex xgk.

1-way and 2-way tapes are examples of monoid memory. It follows immediately
from definitions that W1-NFA = (N, {+1})-NFA. Also it is easy to see that
W2-NFA = (Z, {+1,−1)})-NFA.

There is a weak upper bound for the classes M -NFA of a monoid memory M .

Theorem 6. Let M be a monoid. If the word problem for M is decidable then
M -NFA ⊆ Σ1, where Σ1 is the class of recursively enumerable languages.

The proof follows from the observation that a decision procedure for the word
problem for the monoid M can be used to enumerate accepting computation
histories of a M -automaton.

For many monoids and groups the bound of Theorem 6 is exact.
Take, for example, a Z

2 memory. The generators of Z
2 are chosen naturally:

(±1, 0) and (0,±1).
The word problem for Z

2 is decidable. So by Theorem 6 Z
2-NFA ⊆ Σ1.

On the other hand, a Z
2-automaton is able to verify the correctness of compu-

tational history of an arbitrary Turing machine computation. The automaton ex-
pects a guess containing subsequent Turing machine configurations in subsequent
rows of Z

2. Correctness of computational history in this form is a conjunction of
local conditions that can be verified by the automaton walking on Z

2.
Thus Z

2-NFA = Σ1. As a corollary we get the following theorem.

Theorem 7. Let G be a group with decidable word problem and Z
2 is a subgroup

of the group G. Then G-NFA = Σ1.

Acknowledgments

The author is deeply indebted to S. Tarasov for numerous valuable discussions
and helpful references.

References

1. Amano, M., Iwama, K.: Undecidability on Quantum Finite Automata. In: Pro-
ceedings of the Thirty-First Annual ACM Symposium on Theory of Computing,
pp. 368–375. ACM, New York (1999)

2. Bach, E., Shallit, J.: Algorithmic Number Theory. Efficient Algorithms, vol. I. MIT
Press, Cambridge (1996)

On Models of a Nondeterministic Computation 345

3. Bojańczyk, M.: Tree-Walking Automata,
http://www.mimuw.edu.pl/~bojan/papers/twasurvey.pdf

4. Borchert, B.: Formal Language Characterizations of P, NP, and PSPACE (2003)
(submitted)

5. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. of ACM 28, 114–133
(1981)

6. Cook, S.A.: Characterization of Pushdown Machines in Terms of Time-Bounded
Computers. J. of ACM 18, 4–18 (1971)

7. Geffert, V.: A Communication Hierarchy of Parallel Computations. Theoretical
Computer Science 198, 99–130 (1998)

8. Grädel, E., Kolaitis, P., Libkin, L.: Finite Model Theory and its Applications.
Springer, Heidelberg (2007)

9. Holzer, M., McKenzie, P.: Alternating and Empty Alternating Auxiliary Stack
Automata. Theoretical Computer Science 299, 307–326 (2003)

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

11. Hromkovič, J., Karhumäki, J., Rovan, B., Slobodová, A.: On the Power of Syn-
cronization in Parallel Computations. Discr. Appl. Math. 32, 155–182 (1991)

12. Ibarra, O.H.: Characterizations of Some Tape and Time Complexity Classes of
Turing Machines of Multihead and Auxiliary Stack Automata. J. of Comp. and
Sys. Sci. 5, 88–117 (1971)

13. Shen, A., Vereshchagin, N.: Mathematical Logic and Computation Theory. Lan-
guages and Calculi. In: MCCME, Moscow (1999) (in Russian)

14. Smullyan, R.M.: Theory of Formal Systems. Princeton Univ. Press, Princeton
(1961)

15. Vyalyi, M.N.: On Models of a Nondeterministic Computation. Electronic preprint,
arXiv:0811.2586 (2008)

http://www.mimuw.edu.pl/~bojan/papers/twasurvey.pdf

	On Models of a Nondeterministic Computation
	Automata with an Auxiliary Read-Only Memory
	Determinization

	Complexity Classes Recognized by Automata with an Auxiliary Tape Memory
	1-Way Tape
	2-Way Tape
	1.5-Way Tape

	The Restricted Guess Case
	Sparse Guesses for 1.5-Way Tape
	Sparse Guesses for 2-Way Tape

	Monoid Memory
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

