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Preface

The 4th International Computer Science Symposium in Russia (CSR 2009) was
held August 18–23, 2009 in Novosibirsk, Russia, hosted by the Sobolev Institute
of Mathematics and Novosibirsk State University. It was the fourth event in the
series of regular international meetings, following CSR 2006 in St. Petersburg,
CSR 2007 in Ekaterinburg, and CSR 2008 in Moscow.

The opening lecture was given by Andrei Voronkov, and four other invited
plenary lectures were given by Sergei Odintsov, Wolfgang Thomas, Nikolai
Vereshchagin, and Hongseok Yang.

This volume contains all the accepted papers and some of the abstracts of
the invited speakers. The scope of the proposed topics for the symposium was
quite broad and covered basically all areas of computer science. We received 66
papers in total, and the Program Committee selected 29.

Yandex provided the Best Student Paper Awards; the recepients of these
awards were selected by the Program Committee:

– Dmitry Itsykson, “Structural complexity of AvgBPP”
– Yuri Pritykin and Julya Ulyashkina, “Aperiodicity measure for infinite

sequences.”

The reviewing process was organized using the EasyChair conference system,
created by Andrei Voronkov.

We are grateful to our sponsors:

– Russian Foundation for Basic Research
– Yandex (the largest Russian Internet portal providing key Web services).

We also thank the group of local organizers and in particular Pavel Salimov.

May 2009 Anna E. Frid
Andrey S. Morozov

Andrey Rybalchenko
Klaus Wagner
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Pascal Koiran
Fabrice Kordon
Margarita Korovina
Dieter Kratsch
Manfred Kufleitner
Sophie Laplante
Ranko Lazic
Ming Li
Yury Lifshits
Markus Lohrey
Irina Lomazova
Maŕıa Lopez-Valdes
Antoni Lozano
Igor Makarov
Guillaume Malod
Radu Mardare
Nicole Megow
Daniel Meister
Dieter van Melkebeek
Leonid Melnikov
Wolfgang Merkle
Xavier Molinero
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Well-Founded and Partial Stable Semantics
Logical Aspects

Pedro Cabalar1, Sergei Odintsov2, and David Pearce3,�

1 Corunna University, Corunna, Spain
cabalar@udc.es

2 Sobolev Institute of Mathematics, Novosibirsk, Russia
odintsov@math.nsc.ru

3 Universidad Rey Juan Carlos, Madrid, Spain
davidandrew.pearce@urjc.es

Abstract. This paper is devoted to logical aspects of two closely re-
lated semantics for logic programs: the partial stable model semantics of
Przymusinski [20] and the well-founded semantics of Van Gelder, Ross
and Schlipf [24]. For many years the following problem remained open:
Which (non-modal) logic can be regarded as yielding an adequate
foundation for these semantics in the sense that its minimal models (ap-
propriately defined) coincide with the partial stable models of a logic pro-
gram? Initial work on this problem was undertaken by Cabalar [5] who
proposed a frame-based semantics for a suitable logic which he called
HT 2. Preliminary axiomatics of HT 2 was presented in [6]. In this pa-
per we analyse HT 2 frames and identify them as structures of a logic
N∗ having intuitionistic positive connectives and Routley negation and
give a natural axiomatics for HT 2. We define a notion of minimal, total
HT 2 model which we call partial equilibrium model. We show that for
logic programs these models coincide with partial stable models, and we
propose the resulting partial equilibrium logic as a logical foundation for
partial stable and well-founded semantics. Finally, we discuss the strong
equivalence for theories and programs in partial equilibrium logic.

Keywords: well-founded semantics, partial stable models, equilibrium
logic, partial equilibrium logic.

1 Introduction

The well-founded semantics (WFS) of Van Gelder, Ross and Schlipf [24] has
provided one of the most popular approaches to understanding and implement-
ing default negation in logic programming. Its good computational properties

� All authors gratefully acknowledge support from the CICyT project TIC-2003-9001-
C02 and the MEC project TIN2006-15455-CO3. Additionally Pearce was partially
supported by WASP (IST-2001-37004), the MICINN Consolider project Agreement
Technologies and the project URJC-CM-2006-CET-0300. Odintsov was partially
supported by Russian Foundation for Basic Research, project RFBR-08-07-00272-a.

A. Frid et al. (Eds.): CSR 2009, LNCS 5675, pp. 1–11, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 P. Cabalar, S. Odintsov, and D. Pearce

have appealed to system developers and the well-known implementation XSB-
Prolog1 is now extensively used in AI problem solving. The partial stable model
semantics suggested by Przymusinski [20] provides a natural bridge between the
well-founded and the stable model semantics [15] that now forms the basis for
the important, emerging paradigm of answer set programming (ASP).

The present paper describes the logical foundations of WFS and the partial
stable (henceforth p-stable) model semantics. Our aim is to characterise a (non-
modal) logic whose class of minimal models (in a suitable sense of minimal)
coincides with the p-stable models and, on normal programs, contains the well-
founded model as a special case.2 We thereby obtain what we might term a
deductive base logic for inference under p-stable and well-founded semantics.3

We also obtain a means to extend p-stable semantics to arbitrary propositional
theories.

Earlier this approach was successfully used to obtain a logical framework for
the semantics of stable models and answer sets [17,18]. The logic of here-and-
there, HT , (also known as Gödel’s 3-valued logic) can be used to represent stable
models as minimal models and can be shown to be a maximal logic with the prop-
erty that equivalent theories have the same (stable model) semantics. It can also
be shown [16] thatHT characterises the important property of strong equivalence
of programs (see below) under stable semantics. In the case of well-founded and
p-stable semantics, foundational tools for studying program equivalences have
been largely lacking.

P-stable models represent only one possible path to understanding and ex-
tending the well-founded semantics. For example the technique of [2,3,4] to cap-
ture WFS via a set of program transformations has been much discussed in the
literature; and there have been various different attempts to extend WFS beyond
the syntax of normal programs. One reason for proceeding via p-stable models
is that, although they are defined with the help of program reducts, they are not
too far removed conceptually from models in the usual sense of logical seman-
tics. Thus we can hope to analyse them via standard logical and model-theoretic
methods. Second, p-stable models are a generalization of ordinary (2-valued)
stable models to a multi-valued setting; and, as noted, stable models do admit a
natural logical foundation. Third, since the well-founded model of a normal logic
program coincides with its unique least p-stable model, by capturing p-stable se-
mantics for normal programs in terms of minimal models for some logic, a further
minimization process will yield the well-founded model.

1 See http://www.cs.sunysb.edu/ sbprolog/xsb-page.html
2 We emphasise non-modal because there are well-known embeddings of say WFS into

modal nonmonotonic logics, [22,1], but these modal logics have of course a richer
logical syntax than that of the languages being embedded. Our method will be to
work with ordinary logical connectives that correspond in a trivial way with the
connectives used in logic programming.

3 The concept of deductive base is defined and studied in [10,11]), see also the discus-
sion in [18]. The main aspect to note here is that we obtain immediately the property
that if programs, viewed as sets of formulas, are equivalent in this logic, then they
are equivalent under these semantics.
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Initial work on this problem was undertaken by Cabalar [5] who found a
suitable concept of semantic frame that he called HT 2-frame, in view of the
way it generalises the structure of ordinary HT -frames. A preliminary version
of HT 2 axiomatics was presented in [6].

2 Partial Stable Models and Well-Founded Semantics

A central research topic in Logic Programming (LP) since its inception has been
to provide a logical semantics for Prolog programs. In their seminal paper [14],
van Endem and Kowalski showed that, if we set apart the control strategy of
Prolog, the semantics of a (positive) logic program can be captured by the least
Herbrand model of its set of rules, when these are interpreted as Horn clauses
in classical logic. By a positive logic program we mean a set of rules of the form
p :- q1, . . . , qn (being p called the head and q1, . . . , qn with n ≥ 0 the body)
and corresponding to the Horn clause q1 ∧ · · · ∧ qn → p. This foundational work
was soon followed by different attempts to incorporate default negation in the
rule bodies. Early efforts in this direction imposed syntactic restrictions on the
set of rules (usually limiting cyclic dependences), and provided counterintuitive
results when these restrictions were removed. The first satisfactory and widely
accepted approach to dealing with default negation was the stable model seman-
tics [15], leading to what is nowadays known as the answer set programming
(ASP) paradigm.

Moving from the original Prolog semantics to ASP has, however, some im-
portant consequences: a program in ASP may have several models or even no
model at all. Trying to get closer to the original “single model” orientation,
van Gelder, Ross and Schlipf [24] introduced WFS, so that each program with
negation had again a unique selected model (the well-founded model) but at the
price of leaving some atoms undefined.

There exist several alternative descriptions of WFS, however, we will be partic-
ularly interested in Przymusinski’s characteristation of WFS in terms of p-stable
models [20,21], since they provide a less syntax-dependent semantic definition
while they allow one to obtain the well-founded model by a simple minimisation
criterion.

A disjunctive logic program is a set of rules like4:

p1 ∧ · · · ∧ pn ∧ ¬q1 ∧ · · · ∧ ¬qm → r1 ∨ · · · ∨ rh (1)

with n ≥ 0, m ≥ 0 and h > 0 and all the qi, rj , pk are atoms. The antecedent and
consequent of (1) receive the names of rule body and head, respectively. When
all rules satisfy m = 0, the program is said to be positive disjunctive, and just
positive if all of them further satisfy h = 1. If the program has arbitrary m and
n but h = 1 for all rules, then it is called a normal logic program.

4 For simplicity sake, we use logical operators from the very beginning. Follow-
ing the standard LP notation, rule (1) would be usually written as r1 ∨ · · · ∨
rk :- p1, . . . , pn, . . . , not q1, . . . not qm.
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A 3-valued interpretation I is a mapping from the propositional signature At
to the set of truth values {0, 1, 2} respectively standing for false, undefined and
true. We can also represent the interpretation I as a pair of sets of atoms (I, I ′)
satisfying I ⊆ I ′ where I(p) = 0 iff p �∈ I ′, I(p) = 2 iff p ∈ I and I(p) = 1
otherwise (ie, p ∈ I ′ \ I).

Two ordering relations among 3-valued interpretations are defined such that,
if I1 = (I1, I ′1) and I2 = (I2, I ′2), then:

i) I1 ≤ I2 iff I1 ⊆ I2 and I ′1 ⊆ I ′2, ii) I1 
 I2 iff I1 ⊆ I2 and I ′2 ⊆ I ′1.

The ≤ relation intuitively represents the situation that one interpretation
contains “less truth” than the other. The other relation, 
, measures the degree
of knowledge in terms of undefined atoms. Interpretations with shape (I, I) are
called complete (they have no undefined atoms).

Given a 3-valued interpretation I, Przymusinski’s valuation of formulas is
defined so that conjunction is the minimum, disjunction the maximum, negation
is defined by the formula I(¬ϕ) = 2 − I(ϕ), and implication as:

I(ϕ → ψ) =
{

2 if I(ϕ) ≤ I(ψ)
0 otherwise We say that I is a 3-valued model of a

program Π , written I |=3 Π , when I(r) = 2 for every rule r ∈ Π .
The definition of partial stable model relies on a generalisation of the program

reduct [15] to the 3-valued case. Given a 3-valued interpretation I, the reduct ΠI

is formed by replacing each negated literal ¬p in program Π by truth constants
�,u or ⊥ depending on whether I(p) is 0, 1 or 2 respectively. The valuation of
new constants is fixed as I(�) = 2, I(⊥) = 0 and I(u) = 1.

Definition 1 (Partial stable model). A 3-valued interpretation I is a partial
stable model of a disjunctive logic program Π if it is a ≤-minimal model of ΠI.

Well-founded models simply correspond to partial stable models with minimal
information:

Definition 2 (Well-founded model). A 3-valued interpretation I is a well-
founded model of a disjunctive logic program Π if it is a 
-minimal partial stable
model of Π.

In [21] it is shown that, when Π is a normal logic program, the above definition
of well-founded model corresponds to the original one in [24]. This means that
any normal logic program has a 
-least p-stable model which corresponds to
its well-founded model. Naturally, disjunctive programs may have several well-
founded models (in fact, even no p-stable or well-founded model at all, as shown
in [20]).

3 Combining Intuitionistic Connectives and Routley
Negation

The logic that serves as a foundation for WFS and p-stable semantics is an
extension of the logic N∗, which can be obtained via a direct combination of
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the standard semantics for intuitionistic positive connectives and the Routley
semantics for negation operator [23]. Originally N∗ was introduced in [6] as an
extension of Došen’s logic N [12], where the negation is treated as a kind of
modal operator. We recall here the main definitions and facts regarding N∗.
Formulas of N∗ are built-up in the usual way using atoms from a given proposi-
tional signature At and the standard logical constants: ∧, ∨, →, ¬, respectively
standing for conjunction, disjunction, implication and negation. We write For
to stand for the set of all well-formed formulae of this language. The rules of
inference for N are modus ponens and the anti-monotonicity rule for negation

α → β

¬β → ¬α (RC)

The set of axioms contains the axiom schemata of positive logic:

P1. α → (β → α) P2. (α ∧ β) → α
P3. (α → (β → γ)) → ((α → β) → (α → γ)) P4. (α ∧ β) → β
P5. (α → β) → ((α → γ) → (α → (β ∧ γ))) P6. α → (α ∨ β)
P7. (α → γ) → ((β → γ) → ((α ∨ β) → γ)) P8. β → (α ∨ β)

together with the negation axioms:

N1. ¬α ∧ ¬β → ¬(α ∨ β) N2. ¬(α ∧ β) → ¬α ∨ ¬β N3. ¬(α → α) → β

The relation Γ N∗ ϕ, where Γ is a set of formulae and ϕ a formula, means
that ϕ can be inferred from elements of Γ and theorems of N∗ with the help of
modus ponens only.

Definition 3 (N∗ model). A frame for N∗ is a triple W = 〈W,≤, ∗〉 such
that: (i) W is a non empty set (of worlds), (ii) ≤ is a partial ordering on W ,
(iii) ∗ : W → W is a function such that x ≤ y iff y∗ ≤ x∗. An N∗ model
M = 〈W,≤, ∗, V 〉 is an N∗ frame W = 〈W,≤, ∗〉 augmented with a valuation
function V : At×W −→ {0, 1} satisfying:

V (p, u) = 1 & u ≤ w ⇒ V (p, w) = 1 (2)

We say in this case that M is a model over W.

V is extended to a valuation on all formulas via the following conditions.

– V (ϕ ∧ ψ,w) = 1 iff V (ϕ,w) = V (ψ,w) = 1
– V (ϕ ∨ ψ,w) = 1 iff V (ϕ,w) = 1 or V (ψ,w) = 1
– V (ϕ → ψ,w) = 1 iff for every w′ (w ≤ w′ ⇒ (V (ϕ,w′) = 1 ⇒ V (ψ,w′) = 1))
– V (¬ϕ,w) = 1 iff V (ϕ,w∗) = 0

It is easy to prove by induction that condition (2) above holds for any formula
ϕ, ie

V (ϕ, u) = 1 & u ≤ w ⇒ V (ϕ,w) = 1. (3)
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Given a model M = 〈W , V 〉 we write M, w |= ϕ or, simply w |= ϕ instead of
V (ϕ,w) = 1. A formula ϕ is true in an N∗ model M = 〈W,≤, ∗, V 〉, and we
write M |= ϕ, if w |= ϕ, for all w ∈ W . We say that ϕ is true in an N∗ frame
W if ϕ is true in every N∗ model M = 〈W , V 〉 over W . We write in this case
W |= ϕ. And finally, a formula ϕ is valid, in symbols |=N∗ ϕ, if it is true in every
N∗ model (or, equivalently, in every N∗ frame). The relation Γ |=N∗ ϕ, where
Γ is a set of formulae, means that for every N∗ model M = 〈W,≤, ∗, V 〉 and
w ∈ W the condition ∀ψ ∈ Γ (w |= ψ) implies w |= ϕ.

Theorem 1 (Strong comleteness for N∗). For every set of formulae Γ and
formula ϕ, the following equivalence holds:

Γ N∗ ϕ ⇐⇒ Γ |=N∗ ϕ.

Note that an intuitionistic negation can be defined in N∗. Fix some propositional
variable p0 and put

⊥ := ¬(p0 → p0) and − α := α → ⊥.

In this way we obtain a definitional extension of N∗. Its 〈∨,∧,→,−〉-fragment
coincides with intuitionistic logic.

4 HT ∗-Models and HT 2-Models

First we consider an N∗ extension determined by a two-element frame.

Definition 4 (HT ∗ model). An HT ∗ model is an N∗ model M = 〈WHT 2
, V 〉

over the frame WHT 2
= 〈{h, t},≤, ∗〉 such that h ≤ t, h∗ = t, t∗ =h.

The relation |=HT∗ is defined similar to |=N∗ , but on the class of HT ∗ models.
Every HT ∗ model M = 〈WHT∗

, V 〉 can be identified with a 3-valued inter-
pretation (H,T ) consisting of sets of atoms respectively verified at worlds h and
t, respectively. Indeed, by (2) we haveH ⊆ T . The validity in HT ∗ models differs
from the relation |=3 (see Section 2), but for every disjunctive program Π , we
have

(H,T ) |=3 Π ⇐⇒ (H,T ) |= Π,

which leads to the following conclusion.

Proposition 1. A 3-valued interpretation (H,T ) is a p-stable model of a dis-
junctive logic program Π iff it is a ≤-minimal HT 2 model of Π(H,T ).

To define p-stable models without using syntactic reducts we need more compli-
cated N∗ models.

Definition 5 (HT 2 model). An HT 2 model is an N∗ model M = 〈WHT 2
, V 〉

over the frame WHT 2
such that
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1. W comprises 4 worlds denoted by h, h′, t, t′,
2. ≤ is a partial ordering on W satisfying h ≤ t, h ≤ h′, h′ ≤ t′ and t ≤ t′,
3. ∗ : W → W is given by h∗ = t∗ = t′, (h′)∗ = (t′)∗ = t,
4. V is an N -valuation.

The ordering ≤ of the frame WHT 2
and the action of ∗ are represented in the

following diagram.

•

• •

•

��
����

��

��

��
t′

t h′

h

Here u < v iff v is strictly higher than u in the diagram.
Consider an HT 2 model M = 〈W,≤, ∗, V 〉 denoting by H,H ′, T, T ′ the four

sets of atoms respectively verified at each corresponding point or world h, h′, t, t′.
Since, by construction, H ⊆ H ′ and T ⊆ T ′, it is clear that we can represent M
as a pair 〈H,T〉 of 3-valued interpretations H = (H,H ′) and T = (T, T ′).

An easy observation is that, by the semantics, if (H,T) is a model then
necessarily H ≤ T, since it is easy to check that this condition is equivalent to
H ⊆ T and H ′ ⊆ T ′. Moreover, for any theory Π note that if 〈H,T〉 |= Π then
also 〈T,T〉 |= Π .

The ordering ≤ can be extended to a partial ordering � among models as
follows. We set 〈H1,T1〉 � 〈H2,T2〉 if (i) T1 = T2; (ii) H1 ≤ H2. A model
〈H,T〉 in which H = T is said to be total. Note that the term total model does
not refer to the absence of undefined atoms. To represent this, we further say
that a total partial equilibrium model is complete if T has the form (T, T ).

Definition 6 (Partial equilibrium model). A model M of a theory Π is
said to be a partial equilibrium model of Π if (i) M is total; (ii) M is minimal
among models of Π under the ordering �.

Lemma 1. For any disjunctive program Π and any HT 2 model M = 〈H,T〉:
M |= Π iff H |= ΠT and T |= Π (here H and T are considered as HT ∗ models).

The proof of this lemma easily follows from the definition of HT 2 model. Com-
bining this statement and Proposition 1 we obain.

Theorem 2 (main correspondence result). A total HT 2 model 〈T,T〉 is a
partial equilibrium model of a disjunctive program Π iff the 3-valued interpreta-
tion T is a p-stable model of Π.

Once partial stable models are captured, we can redefine well-founded models
by just minimising the information of partial equilibrium models, with a simple
rephrasing of Przymusinski’s definition for total HT 2 interpretations.

Definition 7 (Well-founded, partial equilibrium model). A partial equi-
librium model 〈T,T〉 of a theory Π is further said to be well-founded if there is
no partial equilibrium model 〈T2,T2〉 of Π such that T2 ≺ T.
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In this way, for disjunctive logic programs, well-founded partial equilibrium mod-
els trivially correspond to well-founded models in Przymusinski’s sense and there-
fore, for the case of normal programs, to the standard definition of WFS.

5 Axiomatisation of HT 2

Up to now we have only defined the set of HT 2 tautoligies and the relation
|=HT 2 . Now we define this logic syntactically. The axiomatic system given below
differs in an essential way from that of [6] in that it does not include additional
inference rules. We also obtain a new and more intuitive list of axioms, quite
different from that of [6]. Finally, we prove here the strong completeness theorem.
Let HT 2 be an N∗ extension obtained by adding the following axioms:

A1. α ∨ (α → (β ∨ (β → (γ ∨−γ))))
A2. α → ¬¬α
A3. α ∧ ¬α → ¬β ∨ ¬¬β
A4. α ∧ ¬α → β ∨ (β → γ) ∨ −γ
A5. ¬¬(β ∨ (β → γ) ∨ −γ)
A6. ¬¬α ∧ ¬¬β → (α → β) ∨ (β → α).

Theorem 3. For every set of formulae Γ and formula ϕ, the following equiva-
lence holds:

Γ HT 2 ϕ ⇐⇒ Γ |=HT 2 ϕ.

The axiomatics of HT ∗ can be obtained from that of N∗ by adding the axioms:

α ∨ (α → β) ∨ −β, α ↔ ¬¬α, α ∧ ¬α → ¬β ∨ ¬¬β.

6 Strong Equivalence wrt Partial Equilibrium Logic

The concept of strong equivalence [16] captures the idea that two theories or
logic programs are equivalent in any context. This notion is important both
conceptually and as a potential tool for simplifying nonmonotonic programs
and theories and optimising their computation. For stable semantics, strong
equivalence can be completely captured in the logic HT [16] and in ASP this
fact has given rise to a programme of research into defining and computing
different equivalence concepts, see eg [13,25]. In the case of WFS and p-stable
semantics, it was proved that the strong equivalence of arbitrary theories wrt
partial equilibrium logic can be captured in HT 2 [6].

Returning to arbitrary theories, formally in the present context:

Definition 8. Two theories Γ1 and Γ2 are said to be strongly equivalent if for
any theory Γ , theories Γ1 ∪ Γ and Γ2 ∪ Γ have the same partial equilibrium
models.
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Theorem 4. [6] Theories Γ1 and Γ2 are strongly equivalent iff Γ1 and Γ2 are
equivalent in HT 2.

The above result can be extended to show that HT 2 also captures strong equiv-
alence wrt well-founded models (ie, 
-minimal partial equilibrium models). Two
HT 2 theories Γ1 and Γ2 are called WF equivalent if for any HT 2 theory Γ , each
well founded model of Γ1 ∪ Γ is a well founded model of Γ2 ∪ Γ and vice versa.

Theorem 5. Theories Γ1 and Γ2 are WF equivalent iff Γ1 and Γ2 are equivalent
as HT 2 theories.

Note that unlike in the case of strong equivalence under stable model semantics,
we cannot assume in the general case that the formulas in Γ have the syntax of
logic program rules. So when Γ1 and Γ2 have the form of logic programs, it is
clear that HT 2 equivalence is a sufficient condition for strong equivalence, but it
is an open question whether Γ can be taken to be a logic program (of whatever
kind) in the case of non-equivalence.

7 Conclusions

We have presented a logical foundation for the partial stable model and well-
founded semantics of logic programs. Our approach has been to identify an
underlying monotonic logical framework to be used as a basis. The natural choice
is a logic in which partial stability can be expressed as a simple minimality
condition with well-foundedness as a special case. The condition of equilibrium
that captures stable models in the logic HT of here-and-there is generalised
to a minimality condition that captures partial stability in a logic HT 2 which
corresponds in a natural way to HT . In this paper we have shown how the
resulting logic can be axiomatised as an extension of the logic N∗ with Routley
negation. We have also showed that HT 2 captures the strong equivalence of
theories in partial equilibrium logic.

In this paper we have restricted attention to some of the more basic and chal-
lenging issues such as finding an axiomatic system for the logic HT 2 and estab-
lishing results on strong equivalence. Further work on partial equilibrium logic has
been reported elsewhere. In particular, in [9] the following topics are covered:

– the complexity of reasoning with partial equilibrium logic;
– the behaviour of partial equilibrium logic on disjunctive and nested logic

programs and its comparison with other semantics;
– further study of the relation of HT 2 to HT and of partial equilibrium logic

to equilibrium logic;
– general properties of partial equilibrium entailment;
– other kinds of strong equivalence results for special classes of models;
– proof theory and implementation methods for partial equilibrium logic.

In addition, in [7] studies ways to add strong or explicit negation to partial
equilibrium logic and compares this with the well-known system WFSX with
explicit negation [19].
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The Reachability Problem over Infinite Graphs
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Abstract. We survey classical and selected recent work on the reacha-
bility problem over finitely presented infinite graphs. The problem has a
history of 100 years, and it is central for automatic verification of infinite-
state systems. Our focus is on graphs that are presented in terms of word
or tree rewriting systems.

1 Historical Introduction

In a rather unknown paper of 1910, titled Die Lösung eines Spezialfalles eines
allgemeinen logischen Problems [20], Axel Thue introduced trees as representa-
tions of terms, tree rewriting rules, and the problem of deciding whether from
a given term one can reach another given term by a finite number of rewrite
steps. He treats a “special case” of this “general logical problem” since he is
doubtful about solvability in general. His prophetical statement on the mat-
ter is: “Eine Lösung dieser Aufgabe im allgemeinsten Falle dürfte vielleicht mit
unüberwindlichen Schwierigkeiten verbunden sein” (“A solution of this problem
in the most general case may perhaps be connected with unsurmountable dif-
ficulties”). Thue’s problem can be stated as the reachability problem over an
infinite directed graph; this graph has terms as vertices, and the edge relation is
defined by term rewriting rules.

Thue’s comment marks the beginning of a long and as yet unfinished track of
research – aiming at finding infinite graphs over which the reachability problem
“Given vertices u, v, is there a path from u to v?” is decidable. A central mo-
tivation today is infinite-state system verification. Another motivation is more
general, to develop an algorithmic theory of infinite models. In this context, the
reachability problem is the most basic of a family of model-checking problems,
also covering several logics in which reachability can be expressed.

The first undecidability results (in fact, showing also undecidability of Thue’s
problem) follow from the fundamental work of Turing and Post in the 1930’s
and 1940’s. A Turing machine defines an infinite graph consisting of the words
that represent Turing machine configurations and where an edge corresponds
to a step from one configuration to the next. Assuming a unique acceptance
configuration s, and considering a Turing machine that accepts a non-recursive
(but recursively enumerable) language, the reachability problem “Is there a path
from the initial configuration for the input word w to the configuration s?” is
undecidable.

A. Frid et al. (Eds.): CSR 2009, LNCS 5675, pp. 12–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The configuration graph of a Turing machine can be presented with a regular
set of words (configurations) as vertex set and an infix rewriting system defining
the edge relation. As Post showed (see e.g. [16]), the reachability problem stays
undecidable if instead one uses an edge relation defined by a coordinated prefix-
suffix rewriting. Here (namely, in the normal form of Post’s canonical systems) a
rule consists of deleting a certain prefix of a word while adding a certain suffix.

There are several approaches for detecting classes of graphs where the reach-
ability problem is decidable. An important branch of research has its focus on
models that share certain monotonicity properties and are often called “well-
structured” (see e.g. [10]). Petri nets and lossy channel systems are prominent
cases of this type where reachability was shown decidable.

Here we pursue another approach, where different forms of word and tree
rewriting (or corresponding automata theoretic concepts) are used for the pre-
sentation of graphs. The reachability problem serves here as a core problem in
an algorithmic model theory (of graphs). As an example for the automata theo-
retic presentation of graphs we mention the automatic graphs (see [3]): Here the
vertex set is given by a regular language (over a suitable alphabet), and the set
of word pairs (u, v) that belong to the edge relation are defined by an automaton
that scans u and v synchronously, letter by letter.

It is easy to see that both the infix rewriting and the coordinated prefix-suffix
rewriting as mentioned above (for Turing machines and Post’s canonical systems,
respectively) lead to automatic graphs. The first-order theory of an automatic
graph is decidable, but – as seen above – an extension of first-order logic by the
reachability relation leads to an undecidable theory. So the leading question for
the sequel has to focus on subclasses of the class of automatic graphs.

2 Variants of the Reachability Problem

We consider directed graphs in the format G = (V,E) with vertex set V and edge
relation E, and in the format G = (V, (Ea)a∈Σ) with labelled edges (where Ea

contains the edges labelled with a). Let us list a number of reachability problems
over such graphs G.

1. Plain reachability: Given u and a (finite representation of a) set T ⊆ V of
“target vertices”, is there a path from u to some vertex of T ? (A special case
deals with singleton sets T = {v}.)

2. Termination: Given u and a set T ⊆ V , does each path from u eventually
meet T ?

3. Alternating reachability: Here we consider a game where two players 1, 2
choose edges in turn, thus building up a path: Given u and a set T ⊆ V , is
there a strategy (say for Player 2) to build a path from u that reaches T ?

4. FO(E∗) model-checking: Here we refer to the expansion of graphs to
structures G′ = (V,E,E∗) and ask whether the first-order theory of G′

is decidable.
5. FO(Reg) model-checking: This is defined like FO(E∗), but we refer to edge

labeled graphs and the operators Er with a regular expression r rather than
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E∗ – Er(x, y) meaning that there is a path from x to y labeled with a word
that satisfies r.

6. MSO model-checking: Is the monadic second-order theory of G is decidable?
(Note that MSO-logic allows to express, e.g., plain reachability of T from
u by the formula saying that each set X containing u and closed under E
intersects T .)

3 Prefix Rewriting

Consider a graph G = (V, (Ea)a∈Σ) where V consists of words qw ∈ Q · Γ ∗ that
represent configurations (control state, stack content) of a pushdown automa-
ton, and where Ea consists of those configuration pairs that are induced by an
a-transition of the pushdown automaton. Thus one calls G a “pushdown graph”.
It is known (e.g., from Büchi’s analysis of “regular canonical systems” [4]) that
the configurations reachable from an initial configuration q0γ0 of a pushdown
automaton form a regular set whose representation (e.g., by a finite automaton)
can be computed from the pushdown automaton. More precisely, and more ab-
stractly: Given a prefix rewriting system S over the alphabet Γ , if W ⊆ Γ ∗ is
regular, then also the set post∗(W ) of words reachable from words in W using
rules from S is again regular. The modern proof of this result is done by the
“saturation method” ([2,9]), which basically extends a given finite automaton
(recognizing W ) by extra transitions to a new finite automaton that recognizes
post∗(W ).

This basic result has been extended in several ways. In this section we discuss
two extensions that adhere to the idea of prefix rewriting. In the next section
other extensions are treated that involve more general mechanisms of rewriting.

First, one can generalize the prefix rewriting rules u → v (with words u, v) to
rules U → V with regular sets U, V of words instead. An application as a prefix
rewrite rule is a step from a word uw to a word vw where u ∈ U, v ∈ V . The
graphs generated by these generalized prefix rewriting systems are called “prefix
recognizable” ([5]); in contrast to pushdown graphs they may have vertices of
infinite degree.

The second generalization rests on the idea of nested stacks, leading to the
so-called higher-order pushdown automata and their associated configuration
graphs. We do not give definitions here (see [6,7]) but just note that for each k
one can introduce “level-k pushdown automata” that work over nested stacks
of level k; here a standard stack is of level 1, a stack of stacks is of level 2, etc.
It is known that a highly complex landscape of (level-k pushdown-) graphs is
generated in this way. The two generalizations may also be merged by allowing
“regular rules” in the definition of higher-order pushdown automata.

It is interesting to note that for the basic model of pushdown graphs, and
for all generalizations of it mentioned above, a much stronger decidability result
than that for reachability can be shown: In all these cases of graphs, the MSO-
theory is decidable.
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4 Ground Tree Rewriting, Mixed Prefix-Suffix Rewriting

The MSO-theory of a graph is of interest in connection to automata theory. Typ-
ical sentences expressible in MSO-logic formulate the existence of a “run” (or a
“coloring”) of some device over the considered structure. However, in verifica-
tion other properties are more significant; they are related to existence of paths
rather than the existence of colorings. It is therefore useful to consider structures
that fall outside the general domain of prefix rewriting but nevertheless admit a
decision procedure e.g. for plain reachability.

A first natural approach is the idea of ground tree rewriting. We are given
a finite tree rewriting system, and the application of a rule t → t′ to a tree s
means to replace a subtree t of s by t′. In term rewriting, t, t′ are called “ground
terms”. Considering ground terms as “prefixes” of terms, we can still speak of
a kind of “prefix rewriting”. We can use these conventions to define naturally
the edge relation of a graph whose vertices are trees. In this way we build the
so-called ground tree rewriting graphs. The concept of regular tree language can
be invoked to single out vertex sets of graphs (as needed for the specification of
instances of the reachability problem).

A simple example shows that these graphs go beyond the graphs obtained
by prefix rewriting. Using the initial term (= tree) f(c, d) and the two rules
c → g(c) and d → g(d) we obtain a copy of the infinite grid, with vertices
shortly denoted as f(gi(c), gj(d)). Since it is well-known that the MSO-theory of
the infinite grid is undecidable, the MSO model-checking problem over ground
tree rewriting graphs is in general undecidable. However, it turns out that the
saturation method can be applied again for trees rather than words; so the plain
reachability problem over ground tree rewriting graphs is decidable. Even the
FO(E∗)-theory of a ground tree rewriting graph is decidable ([8]). An analysis
by Löding [14] showed that slightly more ambitious reachability problems are
undecidable, namely the termination problem, the alternating reachability prob-
lem, and the FO(Reg)-theory. For the extension of these results to graphs that
arise from unranked trees (where there is no uniform bound on the branching
index) see [15].

The second approach to be discussed here refers to words, but involves rewrit-
ing of either prefixes and suffixes. The difference to Post’s canonical systems
is the lack of coordination between applying prefix rewriting rules and suffix
rewriting rules; the order in which they are applied is arbitrary. Not only is the
reachability problem decidable over the corresponding graphs; the reachability
relation between words turns out to be rational [11,12]. The same is true when
the rules are regular (i.e., involving regular sets rather than single words), see [1].
Finally, all the undecidability results mentioned above for ground tree rewriting
graphs also hold for graphs generated by mixed prefix-suffix rewriting.

Despite this correspondence of results for the two types of graphs, there are
clearly intuitive differences between them. With the tree structure one can realize
a dynamic sequence of stacks; see the left of Figure 1 below where two stacks
are seen (the top positions being the leafs), and where an additional stack can
be opened at the rightmost leaf. Only for two stacks this can directly be realized
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also over words, using mixed prefix-suffix rewriting; see the right of the figure
where the symbol Z serves as a separator. On the other hand, mixed prefix-
suffix rewriting allows to hand over information say from left to right (by adding
symbols on the left and deleting symbols on the right), which corresponds to
a migration of information from the bottom of one stack to the bottom of the
other. This migration is not directly possible in the representation with ground
tree rewriting rules.

$
⊥

c

b
a

$
⊥

c
a

b
b

$
� a b c Z c a b b

Fig. 1. Two realizations of a pair of stacks

These differences can be fixed also in a more precise sense, by showing that
the two classes of ground tree rewriting graphs and mixed prefix-suffix rewriting
graphs are indeed incompatible (w.r.t inclusion). First, ground tree rewriting
can generate graphs with finite but unbounded degree (just consider the graph
generated from f(d, d) by the rule d → f(d, d)). Secondly, we mentioned that the
FO(E∗)-theory of a ground tree rewriting graph is decidable whereas it turns
out to be undecidable for mixed prefix-suffix rewriting graphs. The latter claim
is verified using a simple rewriting system with two rules, one that allows to
delete a letter on the left, and one that allows to delete a letter on the right. The
transitive closure of the rewrite relation E is E∗ = {(u, v) | u has infix v}. Now
one can apply a result of Quine [18] that the first-order theory of the structure
(Γ ∗, is infix of) is undecidable.

5 Concluding Remarks

These concepts and examples (presented here with a bias to work done in the
author’s group) are a first step into a widely open field that amounts to new kind
of model theory in which algorithmic results are central and where concepts of
automata theory are useful.

In this overview we concentrated on the study of graphs and the reachability
problem (in different variants). Let us end by mentioning two related aspects
that suggest further tracks of investigation.

It would be nice to have structural characterizations of the graph classes dis-
cussed above. For a single class a very elegant characterization is known, namely
for the pushdown graphs. A theorem of Muller and Schupp [17] characterizes
these graphs as the directed graphs G with an origin v0 and with bounded
degree which have only “finitely many end types”. An “end” of G is here a con-
nected graph H that is obtained as follows: Delete, for some n ≥ 0, all vertices
of distance ≤ n from v0 and let H be a connected component of the remaining
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graph. An end type is an isomorphism type of an end H . – For other types of
graphs, in particular for the automatic graphs, such a description is lacking.

A more modest method to classify graphs is to compare their recognition
power as acceptors of languages. In this case we deal with labelled graphs
G = (V, (Ea)a∈Σ) which are viewed as (possibly infinite) automata with la-
belled transitions. Assuming that the “state set” V is represented by a regular
language (say of words), one introduces two further regular sets I, F ⊆ V and
declares a word w accepted if there is a w-labelled path from I to F (see [19]).
Under these conventions, it is known that pushdown graphs with ε-transitions
recognize precisely the context-free languages and automatic graphs precisely the
context-sensitive languages. For the languages recognized by ground tree rewrit-
ing graphs and for mixed prefix-suffix rewriting graphs, only partial results are
known (see [13]).
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1 Stochastic Strings

The goal of statistics is to provide explanations (models) of observed data. We are
given some data and have to infer a plausible probabilistic hypothesis explaining
it. Consider, for example, the following scenario. We are given a “black box”. We
have turned the box on (only once) and it has produced a sequence x of million
bits. Given x, we have to infer a hypothesis about the black box.

Classical mathematical statistics does not study this question. It considers only
the case when we are given results of many independent tests of the box. How-
ever, in the real life, there are experiments that cannot be repeated. In some such
cases the common sense does provide a reasonable explanation of x. Here are three
examples: (1) The black box has printed million zeros. In this case we probably
would say that the box is able to produce only zeros. (2) The box has produced
a sequence without any regularities. In this case we would say that the box pro-
duces million independent random bits. (3) The first half of the sequence consists
of zeros and the second half has no regularities. In this case we would say that the
box produces 500000 zeros and then 500000 independent random bits.

Let us try to understand the mechanism of such common sense reasoning.
First, we can observe that in each of the three cases we have inferred a finite
set A including x. In the first case, A consists of x only. In the second case, A
consists of all sequences of length million. In the third case, the set includes all
sequences whose first half consists of only zeros. Second, in all the three cases
the set A can be described in few number of bits. That is A has low Kolmogorov
complexity.1 Third, all regularities present in x are shared by all other elements
of A. That is, x is a “typical element of A”.

It seems that the common sense reasoning works as follows: given a string x
of n bits we find a finite set A of strings of length n containing x such that

(1) A has low Kolmogorov complexity (we are interested in simple explana-
tions) and

� The work was in part supported by a RFBR grant 09-01-00709.
1 Roughly speaking, the Kolmogorov complexity of a string x is the length of a shortest

program printing x. The Kolmogorov complexity of a finite set A is defined as the
Kolmogorov complexity of the list of all elements of A in some fixed order, say, in
the lexicographical one. For a rigorous definition we refer to [2,4].
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(2) x is a typical member of A, that is x has no regularities which allow to
single out x from A.

How to define rigorously what means that x is a typical element of A? To this
end we use the notion of the randomness deficiency [5]:

d(x|A) = log2 |A| − C(x|A).

Here C(x|A) stands for the conditional Kolmogorov complexity of x given the
list of A2. The randomness deficiency has the following properties: d(x|A) is
non-negative for all x ∈ A (up to a O(log n) error term) and for every finite A
for almost all x ∈ A, d(x|A) is negligible. Thus “random” elements of A have
low randomness deficiency in A. We call x a “typical member of A” if d(x|A) is
small.

Strings that have explanationsA with properties (1) and (2) are called stochas-
tic. The first question, raised by Kolmogorov in 1983, was whether all strings are
stochastic. Formally, a string x is called α, β-stochastic (where α, β are natural
parameters) if there is a set A � x of Kolmogorov complexity at most α such
that d(x|A) ≤ β. It turns out that some strings have no explanation: they are
not α, β-stochastic for α and β proportional to n.

Theorem 1. There is a constant c such that for all large enough n the following
holds for all α, β. If α+ β < n− c logn, then there is a string x of length n that
is not α, β-stochastic. On the other hand, if α+ β > n+ c logn then all strings
of length n are α, β-stochastic (which is obvious).

This theorem was first proved, in a weaker form, in [5] (with condition 2α+β <
n − c logn in place of α + β < n − c logn). In the present form the theorem
appeared in [7].

Note that we consider only uniform distributions on finite sets as possible
probabilistic hypotheses. It is not hard to show that general distributions can
be reduced to uniform ones [7].

2 Hypotheses Selection

The second question is the following: assume that x is α, β-stochastic for some
small α, β. How do we find a set A � x with small C(A) and d(x|A)? Obviously
we look for sets A � x of low complexity. To see that a set A has low complexity
we somehow find a short description of A. But how can we verify that d(x|A) is
small? We can only verify that d(x|A) is large by describing x conditional to A
in much fewer than log |A| bits. That is, we can refute (2) and not prove it.

It seems that instead of verifying that d(x|A) is small we do what we are
able: we try to refute that. If no such refutation is found for a long time, then it
becomes plausible that d(x|A) is indeed small. On the other hand, assume that
we have found a “constructive refutation”, that is, an easily described property
2 Roughly speaking, the conditional Kolmogorov complexity of a string x given a string

y is the length of a shortest program that prints x given y as an input.
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P of elements of A such that x has the property P but the majority of elements
of A do not. In this case we can switch to a new hypothesis A′ = {x ∈ A | P (x)}.
We then have C(A′) ≈ C(A) (as P has a simple description) and |A′| � |A| (as
the majority of elements of A do not satisfy P ). Therefore

d(x|A′) = log |A′| − C(x|A′)

is much less than

log |A| − C(x|A′) ≤ log |A| − C(x|A) + C(P ) = d(x|A) + C(P ) ≈ d(x|A)

(the first inequality holds up to an O(log n) error term). Here C(P ) stands for
the Kolmogorov complexity of P , which is assumed to be negligible. Thus A′ is
much better than A as an explanation of x.

Actually, if by any means, in our search for explanations of x, we have found a
hypothesis A′ � x with lower (or equal) complexity than the current explanation
A and such that log |A′| is significantly smaller than log |A|, we usually switch
to such A′. This strategy is essentially based on the Maximal Likelihood (ML)
principle from classical statistics. Recall that ML estimator chooses a distribution
μ that maximises μ(x) (among all contemplated probability distributions). In
the case of uniform probability distributions, the probability that x is obtained
by picking a random element of A is equal to 1/|A|. Thus maximising μ(x)
corresponds to minimising |A|.

So assume that we just look for an explanation that minimises |A| among all
simple explanations. Do we finally obtain a hypothesis with small randomness
deficiency? More specifically, let MLx(α) stand for a set A that minimises |A|
among all A � x of Kolmogorov complexity at most α. Is it true that

d(x|MLx(α)) ≤ β +O(log n)

for all α, β-stochastic x? Below we will show that this is indeed the case.
Let us see what explanations would we infer using the ML strategy in the

examples (1)–(3) from the beginning of the paper. In the first example we would
certainly choose the explanation A = {x}. In the second and third examples
it depends on the complexity level α. If α = 100000, say, then the ML strat-
egy could choose the set A consisting of all sequences having the same prefix
of length α as x has (in the second example) and the set A consisting of all
sequences having the same prefix of length α + 500000 as x has (in the third
example). If α is very small, say α = 0, then there will be no explanations at
all of complexity at most α. For some small α the ML strategy might find the
explanations obtained by common sense reasoning. However we do not know the
right value α in advance.

We see that sometimes we prefer an explanationA′ to an explanationA′ even if
log |A′| � log |A| (the explanation A′ is more general than A). This happens only
when C(A′) � C(A). How do we compare hypotheses of different complexity?
It seems that we use the Minimum Description Length principle (MDL). We
prefer that hypothesis A for which C(A) + log |A| is smaller. And among two
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hypotheses with the same value of C(A)+ log |A| we prefer the simpler one. The
explanation of the term MDL is the following: the pair (the shortest description
A∗ of A, the index i of x in the list of all elements of A) is a two-part description
of x. The total length of this description is C(A)+ log |A|. The minimal possible
value for C(A) + log |A| is obviously C(x) (the Kolmogorov complexity of x).
Those A with C(A) + log |A| ≈ C(x) are called sufficient statistics of x.

In the above examples (1)–(3), the common sense explanations are sufficient
statistics of minimal complexity. Such sufficient statistics are called minimal.

If A is a sufficient statistics of x then d(x|A) is negligible, as

d(x|A) = log |A| − C(x|A) ≤ log |A| + C(A) − C(x) +O(log n). (1)

Note that sufficient statistics always exist, which is witnessed by A = {x}.
Thus MDL based search always returns in the limit a hypothesis with negligible
randomness deficiency.

However we are interested in simple explanations and not only in those having
negligible randomness deficiency. If there is a simple sufficient statistic, then the
MDL based search will find such statistic in the limit. But is there always such
statistic provided that x is α, β-stochastic?

2.1 The Case of Small α

If α is small then, obviously, the question answers in positive. Indeed, let A be
a set witnessing α, β-stochasticity of x? Then

log |A| + C(A) ≤ log |A| + α ≤ C(x|A) + β + α ≤ C(x) + β + α (2)

(the last inequality holds up to an O(1) error term). Thus A itself is a sufficient
statistic (we assume that β is small, too). Besides, A witnesses that MLx(α) ≤
log |A|, which together with (1) and (2) implies that

d(x|MLx(α)) ≤ β + α (3)

(with logarithmic precision). Thus d(x|MLx(α)) is always small provided x is
α, β-stochastic for small α, β.

2.2 The Case of Arbitrary α

Assume now that x was drawn at random from a set A that has large complexity.
Say, x was obtained by adding noise to a clean musical record y. In other words, x
was drawn at random from the setA consisting of all x′ that can by obtained from
y by adding noise of certain type. Then with high probability d(x|A) is small.
That is, we may assume that x is α, β-stochastic for small β and α = C(A) ≈
C(y). Does MDL or ML based search work well for such x? The inequalities (2)
and (3) do not guarantee that any more, if C(y) is large. Nevertheless, the
following theorem shows that both MDL search and ML search work well.
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Theorem 2 ([7]). If x is α, β-stochastic and α ≤ C(x), then there is a set A � x
with C(A) ≤ α+O(logn) and log |A| ≤ C(x)−α+β and hence C(A)+log |A| ≤
C(x) + β +O(log n) (the set A is a sufficient statistic).

Note that the explanation A from the theorem witnesses

d(x|MLx(α +O(log n))) ≤ β +O(log n). (4)

3 Structure Sets of a String

The next question is whether the inequality (4) is indeed an improvement over
the inequality (3). That is, are there α, β-stochastic strings (for small β and large
α) that are not α′, β′-stochastic for much smaller α′ and, may be, slightly larger
β′. More generally, what shape can have the “ structure set”

Sx = {〈α, β〉 | x is α, β-stochastic}?

The next theorem shows that Sx can have almost any shape. For instance, for
all large enough n there is n/2, O(logn)-stochastic string that is not n/3, n/3-
stochastic.

Theorem 3 ([7]). For every string x of length n and Kolmogorov complexity
k the set Sx is upward closed and contains some pairs that are O(log n)-close3

to the pairs 〈k, 0〉 and 〈0, n− k〉. On the other hand, for all n and k ≤ n, if an
upward closed set S ⊂ N×N contains the pairs 〈k, 0〉, 〈0, n−k〉, then there is x of
length n and complexity k+O(log n+C(S̃)) such that Sx is O(log n+C(S̃))-close
to S. Here S̃ stands for the set of minimal points in S.

By Theorem 2 the set Sx is O(log n)-close to another structure set

Lx = {〈α, γ〉 | there is A � x with C(A) ≤ α, C(A) + log |A| − C(x) ≤ γ}.

Thus Theorem 3 describes also all possible shapes of the set Lx. Theorem 3 also
provides a description of possible shapes of the following set:

Px = {〈α, δ〉 | there is A � x with C(A) ≤ α, log |A| ≤ δ}.

This set is called the Kolmogorov’s structure set, as it was defined by Kolmogorov
in [3]. Indeed, by Theorem 2, the set Px is O(log n)-close to the set

{〈α,C(x) − α+ β〉 | α ≤ C(x), 〈α, β〉 ∈ Sx} ∪ {〈α, 0〉 | α ≥ C(x)}.

3 We say that u is ε-close to v if the Euclidean distance between u and v is at most
ε. Sets U, V are ε-close if for every u ∈ U there is v ∈ V at the distance at most ε
from u and vice versa.
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Abstract. The incorrect use of pointers, such as null pointer dereference
and memory leak, is one of the most common sources of program errors.
In this talk, I will describe our techniques for automatically verifying the
absence of such pointer errors, which we have been developing for the
past three years, based on a new program logic called separation logic.

This talk has two goals. The first is to show, by demo, the current
status of techniques for automatically verifying pointer safety. The sec-
ond is to present interesting instances of the interplay between automatic
verification and program logic. In order to reduce the complexity of for-
mal (manual) verification of programs, separation logic has unusual proof
rules that exploit programming disciplines used by skilled software de-
velopers. I will explain how such rules have been used to improve the
performance of our automatic verification techniques. Regarding the in-
fluence of automatic verification on program logic, I will describe new
types of theorem proving questions on separation logic that were moti-
vated by automatic verification.
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Abstract. We apply the semantic tool of non-deterministic matrices to
characterize two important properties of canonical Gentzen-type calculi:
invertibility of rules and axiom expansion. We show that in every canoni-
cal calculus G satisfying a natural condition, the following are equivalent:
(i) the connectives of G admit axiom expansion, (ii) the rules of G are
invertible, and (iii) G has a characteristic finite deterministic matrix.

1 Introduction

Canonical systems are sequent calculi which in addition to the standard axioms
and structural rules have only logical rules in which exactly one occurrence of a
connective is introduced and no other connective is mentioned. Intuitively, the
term “canonical systems” refers to systems in which the introduction rules of a
logical connective determine the semantic meaning of that connective1. It was
shown in [1,2] that such systems are semantically characterized by two-valued
non-deterministic matrices (2Nmatrices). These structures form a natural gen-
eralization of the standard multi-valued matrices, in which the truth-value as-
signed to a complex formula is chosen non-deterministically out of a given set
of options. Moreover, there is a remarkable triple correspondence between the
existence of a characteristic 2Nmatrix for a canonical system, the ability to elim-
inate cuts in it and a constructive syntactic criterion called coherence. Here we
show that in the context of canonical systems, 2Nmatrices play a prominent role
not only in the phenomena of cut-elimination, but also in two other important
properties of sequent calculi: invertibility of logical rules and completeness of
atomic axioms (axiom expansion). The former is a key property in many de-
duction formalisms, such as Rasiowa-Sikorski (R-S) systems [12,10] (also known
as dual tableaux), where it induces an algorithm for finding a proof of a com-
plex formula, if such a proof exists. The latter is also often considered crucial
when designing “well-behaved” systems (see e.g. [9]). There are a number of
works providing syntactic and semantic criteria for these properties in various
calculi. Syntactic sufficient conditions for invertibility and axiom expansion in
sequent calculi possibly without structural rules and with quantifier rules were

1 This is according to a long tradition in the philosophy of logic, established by Gentzen
in his classical paper “Investigations Into Logical Deduction” ([8]).
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introduced in [6] and [11]. A semantic characterization of axiom expansion in
single-conclusioned sequent calculi with arbitrary structural rules was provided
in [7] in the framework of phase spaces. In the context of labeled sequent calculi
(of which canonical calculi are a particular instance), [5] shows that the existence
of a finite deterministic matrix is a necessary condition for axiom expansion. In
this paper we extend these results by showing that the existence of a finite de-
terministic matrix for a coherent canonical calculus is also a sufficient condition
for axiom expansion. Furthermore, we prove that it is also a necessary condition
for invertibility. For coherent canonical calculi G in normal form (to which ev-
ery canonical calculus can be transformed), an even stronger correspondence is
established: (i) the connectives of G admit axiom expansion, iff (ii) the rules of
G are invertible, iff (iii) G has a two-valued deterministic characteristic matrix.

2 Preliminaries

Henceforth L is a propositional language and FrmL the set of its wffs. We use
the metavariables Γ,Δ,Σ,Π for sets of L-formulas. By a sequent we shall mean
an expression of the form Γ ⇒ Δ, where Γ and Δ are finite sets of L-formulas.
A clause is a sequent consisting of atomic formulas. We use the metavariable Θ
for sets of sequents, and the metavariable Ω for sequents.

Non-deterministic Matrices and Canonical Calculi

Below we shortly reproduce the basic definitions of the framework of Nmatrices
and of canonical Gentzen-type systems from [1,2,4].

Definition 1. A non-deterministic matrix (Nmatrix) for L is a tuple M =
〈V ,D,O〉, where (i) V is a non-empty set of truth values, (ii) D (designated truth
values) is a non-empty proper subset of V, and (iii) for every n-ary connective
� of L, O includes a corresponding function �̃M : Vn → 2V \ {∅}. A valuation
v : FrmL → V is legal in an Nmatrix M if for every n-ary connective � of L:
v(�(ψ1, ..., ψn)) ∈ �̃(v(ψ1), ..., v(ψn)).

Ordinary (deterministic) matrices correspond to the case when each �̃ is a func-
tion taking singleton values only. Thus in such matrices the truth-value assigned
to �(ψ1, ..., ψn) is uniquely determined by the truth-values of its subformulas:
v(ψ1), ..., v(ψn). This, however, is not the case in Nmatrices, as v makes a non-
deterministic choice out of the set of options �̃(v(ψ1), ..., v(ψn)).

Definition 2. Let M = 〈V ,D,O〉 be some Nmatrix for L.

1. A valuation v satisfies a formula ψ (a set of formulas Γ ) in M, denoted by
v |=M ψ (v |=M Γ ), if v(ψ) ∈ D (v(ψ) ∈ D for every ψ ∈ Γ ).

2. A valuation v satisfies a sequent Ω = Γ ⇒ Δ in M if whenever v |=M Γ ,
there is some ψ ∈ Δ, such that v |=M ψ. v satisfies a set of sequents if it
satisfies every sequent in this set.

3. For two sets of formulas Γ,Δ, we write Γ M Δ if for every M-legal valu-
ation v, v |=M Γ implies that v |=M ψ for some ψ ∈ Δ.
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Notation 1. Let G be any Gentzen-type calculus. We denote Γ G Δ when a
sequent Γ0 ⇒ Δ0 is provable in G for some Γ0 ⊆ Γ and Δ0 ⊆ Δ. For a set of
sequents Θ and a sequent Ω, we denote Θ G Ω if Ω has a proof in G from Θ.

Definition 3. An Nmatrix M is characteristic for a calculus G if for every
two sets of formulas Γ,Δ: Γ G Δ iff Γ M Δ. An Nmatrix M is strongly
characteristic for G if for every set of sequents Θ and every sequent Ω: Θ G Ω
iff Θ M Ω.

As shown by the next theorem, Nmatrices can be used for characterizing logics
that cannot be characterized by finite ordinary matrices.

Theorem 1. ([2]) Let M be a two-valued Nmatrix which has at least one proper
non-deterministic operation. Then there is no finite deterministic matrix P , such
that for every two sets of formulas Γ,Δ: Γ M Δ iff Γ P Δ.

Definition 4. A canonical rule of arity n is an expression {Πi ⇒ Σi}1≤i≤m/C,
where m ≥ 0, C is either �(p1, ..., pn) ⇒ or ⇒ �(p1, ..., pn) for some n-ary con-
nective �, and for all 1 ≤ i ≤ m, Πi ⇒ Σi is a clause such that Πi, Σi ⊆
{p1, ..., pn}. An application of a canonical left introduction rule of the form
{Πi ⇒ Σi}1≤i≤m/ � (p1, ..., pn) ⇒ is any inference step of the form:

{Γ,Π∗
i ⇒ Δ,Σ∗

i }1≤i≤m

Γ, �(ψ1, ..., ψn) ⇒ Δ

where Π∗
i and Σ∗

i are obtained from Πi and Σi respectively by substituting ψj

for pj for all 1 ≤ j ≤ n and Γ,Δ are arbitrary sets of formulas. An application
of a right introduction rule is defined similarly.

We call an application an identity application when Σ∗
i = Σi and Π∗

i = Πi

for all 1 ≤ i ≤ n.

Definition 5. A Gentzen-type calculus G is canonical if in addition to the stan-
dard axioms: ψ ⇒ ψ (for any formula ψ), the cut rule

Γ,A ⇒ Δ Γ ⇒ Δ,A

Γ ⇒ Δ
(cut)

and the structural rule of weakening, G has only canonical logical rules.

Definition 6. An extended axiom is any sequent of the form Γ ⇒ Δ, where
Γ ∩Δ �= ∅. An extended axiom is atomic if Γ ∩Δ contains an atomic formula.

Definition 7. A canonical calculus G is coherent if for every two rules of the
forms Θ1/ ⇒ �(p1, ..., pn) and Θ2/ � (p1, ..., pn) ⇒, the set of clauses Θ1 ∪Θ2 is
classically inconsistent (i.e., the empty set can be derived from it using cuts).

The following well-known fact follows from the completeness of propositional
resolution:

Proposition 1. A set of clauses is satisfiable iff it is consistent.
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Notation 2. Denote the clause ⇒ pi by St
i and the clause pi ⇒ by Sf

i . Let
a = 〈a1, ..., an〉 ∈ {t, f}n. We denote Ca = {Sai

i }1≤i≤n.

Lemma 1. Let Θ be a set of clauses over {p1, ..., pn}. Let a = 〈a1, ..., an〉 ∈
{t, f}n and let v be any valuation, such that v(pi) = ai for all 1 ≤ i ≤ n. Then
Θ ∪ Ca is consistent iff v is a (classical) model of Θ.

Definition 8. ([4]) Let G be a coherent canonical calculus. The Nmatrix MG

is defined as follows for every n-ary connective � and a = 〈a1, ..., an〉 ∈ {t, f}n:

�̃MG(a1, ..., an) =

⎧⎪⎨⎪⎩
{t} if Θ/ ⇒ �(p1, ..., pn) ∈ G and Θ ∪ Ca is consistent.
{f} if Θ/ � (p1, ..., pn) ⇒∈ G and Θ ∪ Ca is consistent.
{t, f} otherwise

Theorem 2. ([4]) MG is a strongly characteristic Nmatrix for G.

The following theorem from [2,4] establishes an exact correspondence between
cut-elimination, two-valued Nmatrices, coherence of canonical calculi and their
non-triviality, where a consequence relation G between sets of formulas is said
to be trivial if for every two non-empty Γ,Δ: Γ G Δ.

Theorem 3. ([2,4]) Let G be a canonical calculus. Then the following state-
ments are equivalent: (1) G is coherent, (2) G is non-trivial, (3) G has a
strongly characteristic two-valued Nmatrix, (4) G has a characteristic two-valued
Nmatrix, (5) G admits cut-elimination.

Proposition 2. Let G be a coherent canonical calculus. Then the following is
equivalent: (i) MG is deterministic, (ii) G has a finite characteristic two-valued
deterministic matrix, (iii) G has a finite characteristic deterministic matrix.

Proof. ((i) ⇒ (ii)) and ((ii) ⇒ (iii)) are trivial. For ((iii) ⇒ (i)), assume that
MG has at least one non-deterministic operation. Then by Theorem 1, there is
no finite ordinary matrix P , such that P =M. Hence, there is no characteristic
finite deterministic matrix for G.

Equivalence of Calculi

Definition 9. Two sets of canonical rules S1 and S2 are equivalent if for every
application of R ∈ S1, its conclusion is derivable from its premises using rules
from S2 together with structural rules, and vice versa. Two canonical calculi G1
and G2 are cut-free equivalent if their rules are equivalent.

Proposition 3. For every two coherent canonical calculi G1 and G2 which are
cut-free equivalent, MG1 = MG2 .

Proof. First we shall need the following technical propositions and notations:

Notation 3. For a set of formulas Γ , denote by At(Γ ) the set of atomic for-
mulas occurring in Γ . For a sequent Ω = Γ ⇒ Δ, denote by At(Ω) the sequent
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At(Γ ) ⇒ At(Δ). For a clause Ω (a set of clauses Θ), denote by mod(Ω) the set
of all the atomic valuations2 which satisfy Ω (Θ).

Lemma 2. Let R = Θ/C be a canonical rule, where Θ = {Σi ⇒ Πi}1≤i≤m.
Consider an identity application (Defn. 4) of R with premises Ω1, . . . , Ωm and
conclusion Ω. Then (

⋂
1≤i≤m mod(At(Ωi))) \mod(At(Ω)) ⊆ mod(Θ).

Proof. Let Ω be either Γ ⇒ Δ, �(p1, . . . , pn) or �(p1, . . . , pn), Γ ⇒ Δ. Let Ωi =
Γ,Σi ⇒ Πi, Δ. Let v ∈ (

⋂
1≤i≤m mod(At(Ωi))) \mod(At(Ω)). v �∈ mod(At(Γ ⇒

Δ)) (otherwise it would be the case that v ∈ mod(At(Ω))). Thus v satisfies
At(Γ ) but does not satisfy any of the formulas in At(Δ). Let 1 ≤ i ≤ m. If v
satisfies Σi, then since v satisfies At(Ωi) = At(Γ ), Σi ⇒ At(Δ), Πi, there is some
ψ ∈ Πi, of which v is a model. Thus v satisfies Σi ⇒ Πi for all 1 ≤ i ≤ m and
so v ∈ mod(Θ).

Corollary 1. Let G be a canonical calculus. Suppose that Ω has a derivation
in G from extended atomic axioms, which consists only of identity applications
of canonical rules. If an atomic valuation v does not satisfy At(Ω), then there is
some canonical rule Θ/C applied in this derivation, such that v ∈ mod(Θ).

Proof. By induction on the length l of the derivation of Ω. For l = 1 the claim
trivially holds (v satisfies At(Ω)). Otherwise, consider the last rule applied in
the derivation, which must be an identity application of some canonical rule
Θ/C, where Θ = {Σi ⇒ Πi}1≤i≤m. Denote its premises by Ω1, . . . , Ωm and its
conclusion by Ω. Let v �∈ mod(At(Ω)). If v satisfies At(Ωi) for all 1 ≤ i ≤ m,
then by Lemma 2, v ∈ mod(Θ). Otherwise there is some 1 ≤ i ≤ m, such that
v does not satisfy At(Ωi). By the induction hypothesis, v satisfies Θ′ for some
canonical rule Θ′/C′ applied in the derivation of Ωi.

Back to the proof of Proposition 3, letG1 andG2 be two coherent canonical calculi
that are cut-free equivalent. Let � be some n-ary connective and a = 〈a1, . . . , an〉 ∈
{t, f}n. Suppose that �̃MG1

(a) = {t}. Then there is a rule in G1 of the form R =
Θ/ ⇒ �(p1, . . . , pn), such that Θ∪Ca is consistent. Consider the application of R
with premises Θ and conclusion ⇒ �(p1, . . . , pn). Let v be any atomic valuation,
such that v(pi) = ai for all 1 ≤ i ≤ n. Since Θ ∪ Ca is consistent, by Lemma 1,
v ∈ mod(Θ). Now since G1 and G2 are cut-free equivalent, there is a derivation
D of ⇒ �(p1, . . . , pn) from Θ using the rules of G2 and weakening. Since At(⇒
�(p1, . . . , pn)) = ∅, v �∈ At(⇒ �(p1, . . . , pn)), and by Corollary 1, there is some
rule Θ′/S of G2 applied in D, such that v ∈ mod(Θ′). Since the derivation of
⇒ �(p1, . . . , pn) from Θ is cut-free, it must be the case that this application is an
identity application and S is the sequent ⇒ (p1, . . . , pn). By Lemma 1, Θ′ ∪ Ca

is consistent. Hence, �̃MG2
(a) = {t}. The case when �̃MG1

(a) = {f} is handled
similarly. If �̃MG2

(a) = {t} (or �̃MG2
(a) = {f}), the proof that �̃MG1

(a) = {t}
(or �̃MG1

(a) = {f}) is symmetric to the previous case.

2 By an atomic valuation we mean any mapping from the atomic formulas of L to
{t, f}.
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We leave the following easy proposition to the reader:

Proposition 4. If a canonical calculus G is coherent, so is any canonical cal-
culus G′ which is cut-free equivalent to G.

Canonical Calculi in Normal Form
A canonical calculus may have a number of right (and left) introduction rules
for the same connective. However, below we show (an adaptation of proofs from
[3] and [5]) that any canonical calculus can be transformed (normalized) into a
cut-free equivalent calculus with at most one right and one left introduction rule
for each connective.

Definition 10. We say that sequent Γ ⇒ Δ is subsumed by a sequent Γ ′ ⇒ Δ′

if Γ ′ ⊆ Γ and Δ′ ⊆ Δ. A canonical calculus G is in normal form if (i) G has
at most one left and at most one right introduction rule for each connective, (ii)
its introduction rules have no extended axioms as their premises, and (iii) its
introduction rules have no clauses in their premises which are subsumed by some
other clause in their premises.

Lemma 3. Let R be a canonical rule having an extended axiom as one of its
premises. The rule obtained by discarding this premise is equivalent to R.

Proposition 5. Every canonical calculus G has a cut-free equivalent calculus
Gn in normal form.

Proof. Let us describe the transformation ofG into a calculusGn in normal form.
Take a pair of rules in G of the forms R1 = {Σ1

i ⇒ Π1
i }1≤i≤m/ ⇒ �(p1 . . . pn)

and R2 = {Σ2
j ⇒ Π2

j }1≤j≤l/ ⇒ �(p1 . . . pn). Replace R1 and R2 in G by R =
{Σ1

i , Σ
2
j ⇒ Π1

i , Π
2
j }1≤i≤m,1≤j≤l/ ⇒ �(p1 . . . pn). Clearly, any application of R

can be simulated by applying R1 and R2. Moreover, any application of R1 and of
R2 can be simulated by weakening and R. Hence, {R} and {R1, R2} are cut-free
equivalent. By repeatedly applying this step, we get at most one left and one
right introduction rule for each connective. Next, in the obtained rules discard
the premises which are extended axioms. By Lemma 3, G and the resulting
calculus G′ are cut-free equivalent. Finally, in each rule of G′ discard any premise
Γ ⇒ Δ subsumed by any other premise Γ ′ ⇒ Δ′. The resulting calculus is cut-
free equivalent to G′ as Γ ⇒ Δ can be derived from Γ ′ ⇒ Δ′ using weakening.

Example 1. Consider the canonical calculus GX with four introduction rules for
the binary connective X (representing XOR):

{⇒ p1 ; p2 ⇒}/ ⇒ p1Xp2 {⇒ p2 ; p1 ⇒}/ ⇒ p1Xp2

{⇒ p1 ; ⇒ p2}/p1Xp2 ⇒ {p1 ⇒ ; p2 ⇒}/p1Xp2 ⇒

This calculus can be transformed into a cut-free equivalent calculus Gn
X in normal

form as follows. We start by replacing the first two rules by the following rule:

{⇒ p1, p2 ; p1, p2 ⇒; p1 ⇒ p1 ; p2 ⇒ p2}/ ⇒ p1Xp2
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The second pair of rules can be replaced by:

{p1 ⇒ p2 ; p2 ⇒ p1; p1 ⇒ p1 ; p2 ⇒ p2}/p1Xp2 ⇒

Finally, by Lemma 3, the axioms in the premises can be discarded and we get
the following cut-free equivalent calculus Gn

X in normal form:

{⇒ p1, p2 ; p1, p2 ⇒}/ ⇒ p1Xp2 {p1 ⇒ p2 ; p2 ⇒ p1}/p1Xp2 ⇒

3 Investigating Invertibility

In this section we investigate the connection between invertibility and determin-
ism in coherent canonical calculi. We show that the latter is a necessary condition
for invertibility, which turns out to be also sufficient for calculi in normal form.
The usual definition of invertibility of rules is the following:

Definition 11. A rule R is invertible in a calculus G if for every application of
R it holds that whenever its conclusion is provable in G, also each of its premises
is provable in G.

Notation 4. Henceforth we use the metavariable R to refer to a canonical rule
of the form {Σi ⇒ Πi}1≤i≤m/ ⇒ �(p1, ..., pn).

We now introduce a useful notion which is equivalent to invertibility in the
context of canonical calculi.

Definition 12. Let G be a canonical calculus. A rule R is canonically invertible
in G if for every 1 ≤ i ≤ m: Σi ⇒ Πi has a proof in G from ⇒ �(p1, ..., pn).
Canonical invertibility for left introduction rules is defined similarly.

Remark 1. It is important to note that unlike standard invertibility, canonical
invertibility is defined for rules, and not their instances.

Proposition 6. A canonical rule is invertible in a canonical calculus G iff it is
canonically invertible in G.

Proof. (⇐) Assume w.l.o.g. that a rule R is canonically invertible in G. Consider
an application of R with premises Γ,Σ∗

1 ⇒ Δ,Π∗
1 ; . . . ; Γ,Σ∗

m ⇒ Δ,Π∗
m and

conclusion Γ ⇒ Δ, �(ψ1, ..., ψn) where for all 1 ≤ j ≤ m, Σ∗
j , Π

∗
j are obtained

from Σj, Πj by replacing each pk by ψk for all 1 ≤ k ≤ n. Suppose that G Γ ⇒
Δ, �(ψ1, ..., ψn). We need to show that G Γ,Σ∗

j ⇒ Δ,Π∗
j for all 1 ≤ j ≤ m.

Being R canonically invertible, there is a proof of Σj ⇒ Πj from ⇒ �(p1, ..., pn).
By replacing in this proof each pk by ψk and adding the contexts Γ and Δ
everywhere, we obtain a proof of Γ,Σ∗

j ⇒ Δ,Π∗
j from Γ ⇒ Δ, �(ψ1, ..., ψn).

Thus if Γ ⇒ Δ, �(ψ1, ..., ψn) is provable, so is Γ,Σ∗
j ⇒ Δ,Π∗

j . Hence R is
invertible. (⇒) Assume that R is invertible in G. Consider the application of R
with conclusion �(p1, ..., pn) ⇒ �(p1, ..., pn). Being G canonical, �(p1, ..., pn) ⇒
�(p1, ..., pn) is provable in G. Since R is invertible, its premises Σi, �(p1, ..., pn) ⇒
Πi are provable as well. By applying cut and weakening, we obtain a proof of
Σi ⇒ Πi from ⇒ �(p1, ..., pn) for every 1 ≤ i ≤ m and the claim follows.
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Next we introduce the notion of expandability of rules, and show that it is equiv-
alent to invertibility in coherent canonical calculi.

Definition 13. A canonical right introduction rule R is expandable in a canon-
ical calculus G if for every 1 ≤ i ≤ m: �(p1, ..., pn), Σi ⇒ Πi has a cut-free proof
in G. The notion of expandability in G for a left introduction rule is defined
symmetrically.

Proposition 7. For any canonical calculus G, every expandable rule is invert-
ible. If G is coherent, then every invertible rule is expandable.

Proof. Let G be any canonical calculus. Assume w.l.o.g. that the rule R is ex-
pandable in G. Hence Σi, �(p1, ..., pn) ⇒ Πi is provable for each 1 ≤ i ≤ m. By
cut, Σi ⇒ Πi is provable from ⇒ �(p1, ..., pn). Thus R is canonically invertible,
and hence invertible by Proposition 6. Now assume that G is coherent and R
is invertible in G. By Proposition 6, R is canonically invertible, and so for all
1 ≤ i ≤ m: Σi ⇒ Πi is derivable from ⇒ �(p1, . . . , pn). By adding �(p1, . . . , pn)
on the left side of all the sequents in the derivation, we obtain a derivation of
�(p1, . . . , pn), Σi ⇒ Πi in G. Since G is coherent, by Theorem 3 it admits cut-
elimination, thus we have a cut-free derivation of �(p1, . . . , pn), Σi ⇒ Πi in G,
and hence R is expandable.

Although expandability and invertibility are equivalent for coherent canonical
calculi, checking the former is an easier task, as it amounts to checking whether
a sequent is cut-free provable.

Not surprisingly, in canonical calculi which are not coherent (and hence do
not admit cut-elimination by Theorem 3), expandability is strictly stronger than
invertibility. This is demonstrated by the following example.

Example 2. Consider the following non-coherent calculus GB :

R1 = {p1 ⇒ p2}/ ⇒ p1 � p2 R2 = {p1 ⇒ p2}/p1 � p2 ⇒

Neither p1 � p2, p1 ⇒ p2 nor p1 ⇒ p2, p1 � p2 have a cut-free derivation in GB .
Indeed, while trying to find a proof bottom-up, the only rules which could be
applied are either introduction rules for � or structural rules but these do not
lead to (extended) axioms. Thus the above rules are not expandable. However,
p1 ⇒ p2 has a derivation3 (using cuts) in GB:

p1 ⇒ p1

p1, p2 ⇒ p1
(w, l)

p1 ⇒ p2 � p1
(R1)

p2 ⇒ p2

p2 ⇒ p1, p2
(w, r)

p2 � p1 ⇒ p2
(R2)

p1 ⇒ p2
(cut)

Thus R1 and R2 are invertible, although not expandable.

Proposition 8. Let G be a coherent canonical calculus. If G has an invertible
rule for �, then �̃MG is deterministic.
3 Note that by Theorem 3, GB is trivial as it is not coherent. Hence, for any two atoms

p, q: �GB p ⇒ q.
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Proof. Assume w.l.o.g. that R is invertible in G. Suppose by contradiction that
�̃MG is not deterministic. Then there is some a = 〈a1, ..., an〉 ∈ {t, f}n, such that
�̃MG(a) = {t, f}. Let v be any MG-legal valuation, such that v(pi) = ai and
v(�(p1, ..., pn)) = t (such v exists since �̃MG(a) = {t, f}). Θ ∪ Ca is inconsistent
(since otherwise by the definition of MG, it would be the case that �̃MG(a) = {t}
due to the rule R). Thus (∗) there is some 1 ≤ jv ≤ m, for which v does not
satisfy the sequent Σjv ⇒ Πjv (otherwise, since v also satisfies C〈a1,...,an〉 the
set of clauses Θ ∪ Ca would be consistent). Since R is invertible, by Proposition
6 it is also canonically invertible. Then for every 1 ≤ i ≤ m, Σi ⇒ Πi is
provable in G from ⇒ �(p1, ..., pn). Since MG is strongly characteristic for G, ⇒
�(p1, ..., pn) MG Σi ⇒ Πi for every 1 ≤ i ≤ m. Since v satisfies ⇒ �(p1, ..., pn),
it should also satisfy Σjv ⇒ Πjv , which contradicts (∗).
The following theorem establishes the correspondence between determinism, in-
vertibility and expandability:

Theorem 4. Let L be a propositional language and G a coherent canonical cal-
culus in normal form. The following statements are equivalent:

1. G has an invertible rule for �.
2. G has an expandable rule for �.
3. �̃MG is deterministic.
4. G has a rule for � and all its rules are invertible.
5. G has a rule for � and all its rules are expandable.

Proof. 1 ⇒ 3 follows by Proposition 8. 1 ⇔ 2 and 4 ⇔ 5 follow by Propo-
sition 7. 4 ⇒ 1 follows trivially. It remains to show that 3 ⇒ 5. Suppose
that MG is deterministic. By the definition of MG, there must be at least
one rule for �, as otherwise �̃MG(a) = {t, f} for every a ∈ {t, f}n. Let R be
any such rule w.l.o.g. Suppose by contradiction that R is not expandable in
G. Then there is some 1 ≤ i ≤ m, such that �(p1, ..., pn), Σi⇒Πi has no cut-
free proof in G. Since G is coherent, by Theorem 3 it admits cut-elimination,
and so �(p1, ..., pn), Σi⇒Πi is not provable in G. Since MG is a characteristic
Nmatrix for G, Σi, �(p1, ..., pn)�MGΠi. Then there is an MG-legal valuation
v, such that v |=MG {�(p1, ..., pn)} ∪ Σi and for every ψ ∈ Πi: v �|=MGψ. Let
a = 〈v(p1), ..., v(pn)〉. By Lemma 1, (∗) {Σi ⇒ Πi}1≤i≤m ∪ Ca is inconsistent.
Since MG is deterministic, either �̃MG(a) = {t} or �̃MG(a) = {f}. But the first
case is impossible by definition of MG and the fact that R is the only right
introduction rule for �. Thus �̃MG(v) = {f}, in contradiction to our assumption
that v |=MG �(p1, ..., pn). Therefore R is expandable in G.

The next example demonstrates that Theorem 4 does not hold for calculi which
are not in normal form.

Example 3. Consider the calculus GX in Example 1 and its associated (deter-
ministic) Nmatrix MGX :

X t f
t {f} {t}
f {t} {f}
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It is easy to see that ⇒ p1Xp2 �MGX
⇒ p1. Hence ⇒ p1 is not derivable in GX

from ⇒ p1Xp2 and so the first rule is not canonically invertible. By Proposition
6 it is not invertible, and by Proposition 7, it is also not expandable.

Corollary 2. If a coherent canonical calculus G in normal form has a right
(left) invertible rule for � with a non-empty set of premises, then it also has a
left (right) invertible rule for �.

Proof. Let G be a canonical coherent calculus in normal form with an invertible
rule [Θ/ ⇒ �(p1, . . . , pn)]. By Theorem 4, �̃MG is deterministic. Since Θ is non-
empty and it cannot be a set of extended axioms (recall thatG is in normal form),
there is some v �∈ mod(Θ) (cf. Notation 3). But since �̃MG(v(p1), . . . , v(pn)) is
deterministic, there must be a rule [Θ′/C′], such that Θ′ ∪ C〈v(p1),...,v(pn)〉 is con-
sistent. Since G is in normal form andΘ′ �= Θ, this cannot be a right introduction
rule for �, hence C′ is �(p1, . . . , pn) ⇒. By Theorem 4, this rule is invertible.

4 Investigating Axiom Expansion

Axiom expansion is an important property of deduction systems, which allows
for the reduction of logical axioms to the atomic case. We show that for coherent
canonical calculi this property fully characterizes the existence for a calculus of
a two-valued deterministic characteristic matrix. Furthermore we show that in
coherent canonical calculi axiom expansion is a necessary condition for invert-
ibility, which turns out to be also sufficient for calculi in normal form.

Definition 14 ([7]). An n-ary connective � admits axiom expansion in a calcu-
lus G if whenever �(p1, ..., pn) ⇒ �(p1, ..., pn) is provable in G, it has a cut-free
derivation in G from atomic axioms of the form {pi ⇒ pi}1≤i≤n.

Proposition 9. Let G be a canonical calculus. If G has an expandable rule for
�, then � admits axiom expansion in G.

Proof. Suppose without loss of generality that G has a right introduction rule
R = {Σi ⇒ Πi}1≤i≤m/ ⇒ �(p1, ..., pn), which is expandable in G. Then (∗)
Σi, �(p1, ..., pn) ⇒ Πi has a cut-free derivation in G for every 1 ≤ i ≤ m.
Note that Σi, Πi ⊆ {p1, ..., pn} and hence the sequents denoted by (∗) are
derivable from atomic axioms {pi ⇒ pi}1≤i≤n. By applying R with premises
{Σi, �(p1, ..., pn) ⇒ Πi}1≤i≤m, we obtain the required cut-free derivation of
�(p1, ..., pn) ⇒ �(p1, ..., pn) in G from atomic axioms. Thus � admits axiom
expansion in G.

Lemma 4. Let G be a canonical calculus. If a sequent Ω has a cut-free proof
in G from atomic axioms, then Ω also has a cut-free proof in G from atomic
(extended) axioms with no application of weakening.

Theorem 5. Let G be a coherent canonical calculus. � admits axiom expansion
in G iff �̃MG is deterministic.
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Proof. (⇒) If � admits axiom expansion in G then �(p1, . . . , pn) ⇒ �(p1, . . . , pn)
is cut-free derivable from atomic axioms. By Lemma 4, we can assume that the
derivation contains only extended atomic axioms and applications of canonical
rules. Since there are no cuts, it is easy to see that the applications of canonical
rules in this derivation must be identity applications of introduction rules for
�. Now since At(�(p1, . . . , pn) ⇒ �(p1, . . . , pn)) is the empty sequent, Corollary
1 ensures that for every valuation v there is some logical rule Θ/C (where C
is either ⇒ �(p1, . . . , pn) or �(p1, . . . , pn) ⇒) used in this derivation, such that
v ∈ mod(Θ). By Lemma 1, for every a = 〈a1, . . . , an〉 ∈ {t, f}n there is some
canonical rule Θ/C for �, such that Θ ∪ Ca is consistent. Thus �̃MG(a1, . . . , an)
is a singleton, and so �̃MG is deterministic.

(⇐) First transform G into a cut-free equivalent calculus Gn in normal form
(cf. Proposition 5). By Proposition 4, Gn is coherent, and by Proposition 3, MGn

is deterministic. By Theorem 4 and Proposition 9, � admits axiom expansion in
Gn and therefore also in G, since G is cut-free equivalent to Gn.

Remark 2. An alternative proof of (⇒) is contained in [5] for a generalization of
canonical calculi.

Corollary 3. For a coherent canonical calculus G, every connective admits ax-
iom expansion in G iff G has a two-valued characteristic deterministic matrix.

Proof. Follows from the theorem above and Proposition 2.

Corollary 4. If a coherent canonical calculus G has an invertible rule for �,
then � admits axiom expansion in G.

Proof. If G has an invertible rule for �, then by Proposition 7 it is also expand-
able. By Proposition 9, � admits axiom expansion in G.

We finish the paper by summarizing the correspondence between determinism,
invertibility and axiom expansion:

Corollary 5. Let L be a propositional language and G a coherent canonical
calculus in normal form with introduction rules for each connective in L. The
following are equivalent: (i) The rules of G are invertible, (ii) G has a charac-
teristic two-valued deterministic matrix, and (iii) Every connective of L admits
axiom expansion in G.

Proof. By Proposition 2, the existence of a two-valued characteristic determin-
istic matrix for G is equivalent to MG being deterministic. The rest follows by
Theorem 4, Corollary 2 and Theorem 5.

As shown by the following example the above correspondence does not hold for
calculi which are not in normal form.
Example 4. Consider the calculus GX of Example 1. Although the rules for the
connective X are not invertible, X admits axiom expansion:

p1 ⇒ p1

p1 ⇒ p1, p1Xp2

p2 ⇒ p2

p2 ⇒ p2, p1

p1 ⇒ p1

p2, p1 ⇒ p1

p2 ⇒ p1, p1Xp2

p1Xp2 ⇒ p1, p1Xp2

p2 ⇒ p2

p1Xp2, p2 ⇒ p2

p1 ⇒ p1

p2, p1 ⇒ p1

p2 ⇒ p2

p2, p1 ⇒ p2

p1Xp2, p2, p1 ⇒
p1Xp2, p2 ⇒ p1Xp2

p1Xp2 ⇒ p1Xp2
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Abstract. We consider parallel machine scheduling problems with
identical machines and preemption allowed. It is shown that every such
problem with chain precedence constraints and release dates and an
integer-concave objective function satisfies the following integrality prop-
erty : for any problem instance with integral data there exists an optimal
schedule where all interruptions occur at integral dates. As a straightfor-
ward consequence of this result, for a wide class of scheduling problems
with unit processing times a so-called preemption redundancy property
is valid. This means that every such preemptive scheduling problem is
equivalent to its non-preemptive counterpart from the viewpoint of both
its optimum value and the problem complexity. The equivalence provides
new and simpler proofs for some known complexity results and closes a
few open questions.

In the current paper we present some new structural results for preemptive
scheduling problems. This work proceeds our previous research of structural
properties of optimal solutions for preemptive scheduling problems initiated in
[2], where some general results on the existence of optimal schedules and the
existence of optimal schedules with a finite number of interruptions were es-
tablished for a wide range of scheduling problems. Furthermore, two Rational
Structure Theorems were proved in [2] for wide classes of scheduling problems,
according to which for any problem instance heaving a nonempty set of feasible
solutions there exists an optimal schedule with the following properties:

(1) the total number of interruptions grows polynomially with the number of
operations and with the number of fixed dates specified in that instance;
(2) all operation start times and completion times and all interruptions occur at
integer multiples of a rational number δ > 0 with size polynomially bounded in
the input size;
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(3) the optimal value of the objective function is an integer multiple of δ, where
the size of the integer multiplier is also polynomially bounded in the input size.

These results were established for a wide class of preemptive scheduling mod-
els including both classical and non-traditional machine scheduling and project
scheduling models with constrained resources and a large variety of objective
functions including all classical ones. An important consequence of these Ra-
tional Structure Theorems is the fact that the decision versions of preemptive
scheduling problems under consideration belong to class NP .

A significantly stronger structural property (compared to that formulated in
the above mentioned Rational Structure Theorems) is assumed, when we speak
about the integrality property. The latter means that for any problem instance
there exists an optimal preemptive schedule where all interruptions occur at
integral dates. This property is investigated in the current paper for parallel
machine problems with identical machines.

New Results. In the current paper we establish the integrality property for
the preemptive version of the parallel machine scheduling problem with chain
precedence constraints, release dates and an arbitrary regular integer-concave
objective function. As a straightforward consequence of this result, a so-called
preemption redundancy property holds for a wide class of scheduling problems
with unit processing times. In particular, this closes two open questions on
the preemption redundancy property of problems P |pj = 1, rj , pmtn|

∑
Tj and

P |pj = 1, pmtn|
∑

wjTj (see Brucker [4]). This property also implies that every
such preemptive scheduling problem is equivalent to its non-preemptive coun-
terparts from the viewpoint of both its optimum value and the problem com-
plexity. The equivalence provides new and sometimes simpler proofs for some
known complexity results. Specifically, our Theorem 3.2 implies the NP-hardness
of Pm|pj = 1, chains, pmtn|

∑
wjCj and Pm|pj = 1, chains, pmtn|

∑
Uj (pre-

viously proved in [1, 6, 19]), and the polynomial time solvability of problem
P |pj = 1, rj , pmtn|

∑
wjTj whose complexity status remained open. Further-

more, due to the strong NP-hardness of problem 1|pj = 1, chains|
∑

Tj estab-
lished by Leung and Young [13], our result implies the strong NP-hardness of the
1|pj = 1, chains, pmtn|

∑
Tj problem. To our knowledge (see also the Brucker’s

home page [21]), the complexity status of this problem was open before.

Related Results. There are few systematic studies of such structural questions
in the literature on preemptive scheduling, and most known results follow from
either (i) the fact that there is no advantage to preemption [3], [4], or (ii) the
existence or properties of polynomial time algorithms. Results following from
(i) are clearly the strongest type of structural results one could hope for for
scheduling problems. We refer to the standard scheduling literature (e.g., [12])
for many such classical results; another extensive reference is the book by Tanaev,
Gordon and Shafransky [18].

Structural results following from (ii) have been obtained mostly for parallel
machine and open shop problems. We use the standard three-field notation [12]
to describe such scheduling problems. McNaughton [14] constructs an optimal
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schedule with at most m− 1 interruptions for problem P |pmtn|Cmax on m iden-
tical parallel machines and makespan objective. Sauer and Stone [16] (see also
[15]) prove that for the parallel machine scheduling problem with n jobs, prece-
dence constraints, unit processing times and the minimum makespan objective
there is an optimal preemptive schedule with at most n − 1 preemption dates.
Gonzalez and Sahni [8] construct an optimum schedule with at most 2(m − 1)
interruptions for the uniform parallel machine version Q|pmtn|Cmax of this prob-
lem. The bounds of McNaughton and of Gonzalez and Sahni on the number of
interruptions (and preemption dates) are tight. Labetoulle et al. [10] prove that
the natural greedy algorithm for the problem Q|rj , pmtn|

∑
Cj with m machines

and n jobs finds an optimal solution with at most 2n−m interruptions. For the
unrelated parallel machine problem R|pmtn|Cmax, Lawler et al. [12] state that
a procedure of Lawler and Labetoulle [11] can be modified to yield an optimal
schedule with no more than O(m2) interruptions. Turning now to open shop
problems, Gonzalez and Sahni [7] construct an optimal schedule for the problem
O|pmtn|Cmax with m machines, n jobs and ξ operations, which has at most
ξ + n+m preemption dates. Du and Leung [5] proved the corresponding result
for O2|pmtn|

∑
j Cj . Little attention seems to have been given in the literature

to investigating of structural properties of optimal solutions for other preemptive
scheduling problems.

Paper Outline. In the next section we give definitions of basic notions. In Sec-
tion 2 we prove the integrality property for a class of parallel machine scheduling
problems. Next we give a short conclusion in the last section.

1 Definitions

For two vectors x′ = (x′1, . . . , x
′
n) and x′′ = (x′′1 , . . . , x

′′
n) we write x′ ≤ x′′, if the

inequality x′i ≤ x′′i holds for each component i.

Definition 1. We say that a function F (x) (x ∈ Rn) defined on a domain D ⊆
Rn is nondecreasing if F (x′) ≤ F (x′′) holds for any pair of vectors x′, x′′ ∈ D
such that x′ ≤ x′′.

Definition 2. We say that a function F (x) (x ∈ Rn) defined on a domain
D ⊆ Rn is continuous from the left, if for any point x ∈ D and any ε > 0 there
exists a number δ > 0 such that the inequality |F (x)−F (x′)| < ε holds for every
x′ ∈ D such that x′ ≤ x and xi − x′i ≤ δ, ∀ i = 1, . . . , n.

Definition 3. A real valued function F (x) (x ∈ Rn) is called regular, if it is
nondecreasing and continuous from the left.

Definition 4. We say that a function F (x) (x ∈ Rn) is integer-concave, if the
inequality

F (λx′ + (1 − λ)x′′) ≥ λF (x′) + (1 − λ)F (x′′)

holds for any λ ∈ [0, 1] and any x′ = (x′1, . . . , x′n), x′′ = (x′′1 , . . . , x′′n) such that
x′i, x

′′
i ∈ [ti, ti + 1] for some integer ti, i = 1, . . . , n.
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For instance, tardiness (Tj(Cj)) is a classical example of a penalty function (of
either an operation or a job completion time) which is integer-concave for any
integral due date, but not concave. Another example of such function is the being
late function (Uj(Cj)) taking 0-1 values. Consequently, the total weighted tar-
diness and the weighted number of late jobs (

∑
wjTj and

∑
wjUj) are integer-

concave functions. Of course, any linear function (like
∑

wjCj), or just concave
function (like

∑√
Cj or

∑
logCj) is integer-concave, as well.

On the other hand, such a classical objective function as the makespan is
not integer-concave. Indeed, let us consider the example with two jobs and
F (C1, C2) = max{C1, C2} .= Cmax, where Ci denotes the completion time of
job i. Let x′ = (C′

1, C
′
2) = (1, 0); x′′ = (C′′

1 , C
′′
2 ) = (0, 1). Then for the point x =

1
2x

′ + 1
2x

′′ we have F (x) = max{0.5, 0.5} = 0.5, whereas 1
2F (x′) + 1

2F (x′′) = 1,
and the required inequality is failed.

2 Integer Interruptions in Preemptive Parallel Machine
Scheduling with Integer-Concave Objective Functions

Consider the situation when n jobs J1, . . . , Jn with integer processing times
p1, . . . , pn and release dates r1, . . . , rn have to be scheduled on m parallel iden-
tical machines preemptively. Following the notation of Graham et al. [9], this
scheduling problem is denoted as P |rj , pmtn|F .

The following theorem includes some of the results from [3] and [4] as spe-
cial cases. In particular, our theorem implies the preemption redundancy for
P |rj , pj = 1, pmtn|

∑
wjUj and P |rj , pj = 1, pmtn|

∑
wjTj thereby resolving

an open question of [4].

Theorem 1. For any instance of P |rj , pmtn|F (C1, . . . , Cn) with integer pro-
cessing times and release dates and with the objective to minimize a regular
integer-concave function F (C1, . . . , Cn), there exists an optimal schedule where
all interruptions occur at integral dates.

Proof. Clearly, for any instance of the above problem the set of its feasible
schedules is nonempty, and once the objective function is regular, there always
exists an optimal schedule (as follows from Theorem 3.3 of [2]). Assume that
we are given an optimal schedule S for a given instance of the above problem.
Let Ci(S) denote the completion time of job Ji (i = 1, . . . , n) in that schedule,
and Cmax(S) = max

i=1,...,n
Ci(S). Let T = {t ∈ Z | mini ri ≤ t < Cmax(S)} be

the set of time units occupied by the schedule S. We define a bipartite graph
G = ({J1, . . . , Jn}, T ;E) such that for any job Ji and a time point t ∈ T , (Ji, t)
belongs to E if and only if ri ≤ t < Ci(S). Every edge e ∈ E has a unit capacity.
We say that a flow x = {xit | (Ji, t) ∈ E} in network G is feasible if∑

t

xit = pi, ∀ i = 1, . . . , n; (1)

∑
i

xit ≤ m, ∀ t ∈ T ; (2)



42 P. Baptiste et al.

0 ≤ xit ≤ 1, ∀ i, t. (3)

The set of feasible flows is denoted by X .
Let xit(S) be the volume of job Ji scheduled in S within the integral time

interval [t, t + 1]. It is clear that the set of values x(S) = {xit(S) | (Ji, t) ∈ E}
meets requirements (1)–(3), and therefore, the flow x(S) determined by schedule
S belongs to X .

Next, for any i = 1, . . . , n we define an integral function ti of x ∈ X :

ti(x) .= max{t |xit > 0}.

(The function is well-defined, since we may assume, w.l.o.g., all pi being positive.)
Let

C̄i(x) .= ti(x) + xiti(x), C̄(x) = (C̄1(x), . . . , C̄n(x)).

Evidently, we have
C̄i(x(S)) ≤ Ci(S). (4)

Now we define a cost function F̃ on the set X of feasible flows:

F̃ (x) .= F (C̄(x)).

It follows from (4) and the fact that F is nondecreasing

F̃ (x(S)) ≤ F (C(S)). (5)

Let us now prove that function F̃ (x) is concave on the set X of feasible flows.
Consider x′, x′′ ∈ X, λ ∈ (0, 1), x = λx′ + (1 − λ)x′′. First let us show that

ti(x) = max{ti(x′), ti(x′′)}. (6)

Indeed, since both coefficients λ and (1 − λ) are strictly positive, the value of
xit = λx′it + (1 − λ)x′′it is positive, while at least one of two components x′it and
x′′it is positive. On the other hand, if both components x′it and x′′it are zero, then
xit = 0 as well, which implies (6).

Let C̃i(x′)
.= max{C̄i(x′), ti(x′′)} and C̃i(x′′)

.= max{ti(x′), C̄i(x′′)}. Using
(6), we now prove that

C̃i(x′), C̃i(x′′) ∈ [ti(x), ti(x) + 1]. (7)

and
C̄i(x) = λC̃i(x′) + (1 − λ)C̃i(x′′). (8)

Indeed, in the case ti(x′) > ti(x′′) we have C̄i(x′′) ≤ ti(x′′) + 1 ≤ ti(x′) = ti(x),
hence, C̃i(x′′) = ti(x′), whereas C̃i(x′) = C̄i(x′) (which provides (7)). Note also
that x′′iti(x) = 0. Therefore,

λC̃i(x′) + (1 − λ)C̃i(x′′) = λC̄i(x′) + (1 − λ)ti(x′) = ti(x′) + λx′iti(x′)

= ti(x) + λx′iti(x) + (1 − λ)x′′iti(x)

= ti(x) + xiti(x) = C̄i(x).
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In the case ti(x′) < ti(x′′) the proof of (7),(8) is similar. Finally, if ti(x′) =
ti(x′′) = ti(x), then we have

C̃i(x′) = C̄i(x′) ∈ [ti(x), ti(x) + 1] and C̃i(x′′) = C̄i(x′′) ∈ [ti(x), ti(x) + 1].

So, we have (7). Using these relations, we obtain (8):

λC̃i(x′) + (1 − λ)C̃i(x′′) = λC̄i(x′) + (1 − λ)C̄i(x′′)
= ti(x) + λx′iti(x) + (1 − λ)x′′iti(x)

= ti(x) + xiti(x) = C̄i(x).

Now, we can derive

F̃ (x) = F (C̄(x))
(8)
= F (λC̃(x′) + (1 − λ)C̃(x′′))

(7) and i.c.
≥ λF (C̃(x′)) + (1 − λ)F (C̃(x′′))

n.d.
≥ λF (C̄(x′)) + (1 − λ)F (C̄(x′′)) = λF̃ (x′) + (1 − λ)F̃ (x′′),

which implies that function F̃ (x) is concave in X . (Here “i.c.” means integer-
concaveness and “n.d.” means nondecreasing.)

Let x̃ be the flow minimizing F̃ (x) over all x ∈ X . Due to (5), we have

F̃ (x̃) ≤ F̃ (x(S)) ≤ F (C(S)). (9)

Since the minimum of every concave function over a polytope is achieved on a
vertex of the polytope, and since the transportation polytope (1)–(3) is integral,
x̃ is an integer flow. Therefore, we can map the flow to a new schedule S̃, in
which all interruptions occur at integral time points. The integrality of flow x̃
implies C̄i(x̃) = Ci(S̃) for every i, and therefore,

F̃ (x̃) = F (C̄1(x̃), . . . , C̄n(x̃)) = F (C1(S̃), . . . , Cn(S̃)) = F (C(S̃)).

From (9) we have F (C(S̃)) ≤ F (C(S)), and therefore, schedule S̃ is also optimal.

A natural attempt to generalize the above theorem is to add precedence con-
straints. Unfortunately, Baptiste and Timkovsky [3] gave examples showing that
preemptions are not redundant for P2|pj = 1, intree, pmtn|

∑
Cj and P2|pj =

1, outtree, pmtn|
∑

wjCj . This means that the most we could hope for is to
add chain precedence constraints, i.e., the directed graph corresponding to these
precedence relations must be a collection of chains.

Theorem 2. For any instance of P |rj , chains, pmtn|F (C1, . . . , Cn) with integer
processing times and release dates and with the objective to minimize a regular
integer-concave function F (C1, . . . , Cn), there exists an optimal schedule where
all interruptions occur at integral dates.

Proof. The general idea for the proof is very similar to the one of Theorem 1.
The only difference is in item (3) below.
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1. Given an optimal preemptive schedule S, we construct a network G and a
flow in this network. Show that the flow is feasible for this network.

2. On the set of feasible flows of maximum capacity in network G we find the
optimal network minimizing the objective function. Since the polyhedron
corresponding to the set of maximum flows in network G is integral and the
optimal solution for a regular integer-concave objective function is attained
at a node of the polytope, this implies the existence of an integral optimal
solution (a flow in network G). This flow corresponds to an integral schedule
S∗ in which all interruptions occur at integral dates and which minimizes
our objective function.

3. We finally prove that schedule S∗ meets precedence constraints, and so, it is
feasible and optimal.

Instead of presenting the complete proof, we just mention the points in which
the proof differs from that of Theorem 1. First of all, network G = (V,E) is
slightly different from the one defined in the proof of Theorem 1. We define here
the vertex set as V = {s}∪ {τ} ∪ {J1, . . . , Jn}∪Λ∪T , where the set Λ contains
a vertex vij for every pair of jobs Ji and Jj such that Ji precedes Jj in the
precedence relations and both jobs share the same unit time interval [t, t+1] for
some t ∈ T . The edge set E is defined as follows.

1. There are n edges of capacity pj (j = 1, . . . , n) connecting the source s with
jobs {J1, . . . , Jn}.

2. There are |T | edges of capacity m connecting vertices from the set T with
the sink τ .

3. If Ji precedes Jj and for some t ∈ T we have t < Ci(S) ≤ Γj(S) < t + 1
(where Γj(S) is the starting time of job Jj in schedule S), then we define
three edges (Ji, vij), (Jj , vij) and (vij , t) of unit capacity. In this case we say
that Ji and Jj compete for the same time interval [t, t+1]. Every job Jj has
at most two time intervals where it competes with other jobs.

4. Let Ij ⊆ T be the set of ”noncompetitive” time units for job Jj , i.e.,
 Γj(S)! ≤ t < Cj(S) and job Jj does not compete with any other job
in the time interval [t, t+ 1] for t ∈ Ij . For any time unit t ∈ Ij we define an
edge (Jj , t) of unit capacity.

The intuition behind the above definition is that we define nearly the same graph,
with the only difference: if two jobs related by a precedence constraint are using
the same time interval [t, t+ 1] in a preemptive schedule, then we would like to
create some capacity constraints preventing the concurrent unit assignment of
such jobs to the same time unit t.

Given an optimal preemptive schedule S, we define the flow variables {xij} on
edges of graph G as follows. We send pi units of flow from the source s into job
vertex Ji for i = 1, . . . , n. After that we split the flow according to schedule S. If
xit(S) > 0, i.e., there is a nonzero amount of job Ji processed in the time interval
[t, t + 1], we send xit(S) units of flow from vertex Ji to vertex t ∈ T if there is
a direct edge (Ji, t). Otherwise, there exists either a successor or predecessor Jj

of Ji processed in time unit t in schedule S. In this case we send xit(S) units of
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flow to the intermediate vertex vij ∈ Λ. All other flow variables are defined by
the flow conservation constraint. This s-to-t flow is feasible since it satisfies the
flow conservation and capacity constraints.

The proof that the flow defined above is feasible for network G is straight-
forward, and the arguments to prove item (2) are the same as those used for
Theorem 1. So, it only remains to prove that any integral flow in network G
corresponds to a feasible schedule which meets precedence constraints.

Indeed, if Ji precedes Jj , then all the time units t ∈ T to which there is a
positive flow from vertex Ji are located before the time units to which there
may exist a positive flow from vertex Jj (due to the properly defined set of
edges of graph G). The only intersection of these two sets of ”time” vertices is
the ”boundary” time unit t∗ to which we have an edge from vertex vij . But due
to the integrality of the flow only one of two jobs {Ji, Jj} may produce a positive
(in fact, unit) flow from vertex Jν (ν ∈ {i, j}) to vertex t∗. Thus, all time units to
which job Ji has a nonnegative flow in network G are located strictly before the
time units to which job Jj has a nonnegative flows, which means that precedence
constraints are satisfied.

The remainder of the proof is similar to the one of Theorem 1.

3 Concluding Remarks

In this paper we establish the integrality property for the preemptive version of
the parallel machine scheduling problem with chain precedence constraints and
release dates and an arbitrary regular integer-concave objective function.

The integrality property implies the preemption redundancy for a wide class
of scheduling problems with unit processing times. It follows that all such pre-
emptive scheduling problems are equivalent to their non-preemptive counter-
parts from the complexity viewpoint. The equivalence provides a unified proof
for many previously known complexity results. Another consequence is the es-
tablishing of strong NP-hardness of the 1|pj = 1, chains, pmtn|

∑
Tj problem

and polynomial time solvability of the P |pj = 1, rj , pmtn|
∑

wjTj problem; the
complexity status of both problems was open before.
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Abstract. In this paper we investigate the following two questions:

Q1: Do there exist optimal proof systems for a given language L?
Q2: Do there exist complete problems for a given promise class C?

For concrete languages L (such as TAUT or SAT) and concrete promise
classes C (such as NP∩coNP, UP, BPP, disjoint NP-pairs etc.), these ques-
tions have been intensively studied during the last years, and a number
of characterizations have been obtained. Here we provide new character-
izations for Q1 and Q2 that apply to almost all promise classes C and
languages L, thus creating a unifying framework for the study of these
practically relevant questions.

While questions Q1 and Q2 are left open by our results, we show that
they receive affirmative answers when a small amount on advice is avail-
able in the underlying machine model. This continues a recent line of re-
search on proof systems with advice started by Cook and Kraj́ıček [6].

1 Introduction

A general proof system in the sense of Cook and Reckhow [7] can be understood
as a nondeterministic guess-and-verify algorithm. The question whether there
exist optimal or p-optimal proof systems essentially asks whether there exists
the best such verification procedure. For practical purposes, such an optimal
proof system would be extremely useful, as both the search for good verification
algorithms as well as the quest for lower bounds to the proof size could concen-
trate on the optimal system. Thus the following question is of great significance:

Q1: Do there exist (p-)optimal proof systems for a given language L?

Posed by Kra j́ıček and Pudlák [15], this question has remained unresolved for al-
most twenty years. Sufficient conditions were established by Kra j́ıček and Pudlák
[15] by NE = coNE for the existence of optimal and E = NE for p-optimal
propositional proof systems, and these conditions were subsequently weakened
by Köbler, Messner, and Torán [13]. Necessary conditions for a positive answer
to Q1 are tightly linked to the following analogue of Q1 for promise complexity
classes lacking an easy syntactic machine model:
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Q2: Do there exist complete problems for a given promise class C?

Like the first question also Q2 has a long research record, dating back to the
80’s when Kowalczyk [14] and Hartmanis and Hemachandra [12] considered this
question for NP ∩ coNP and UP. This research agenda continues to recent days
where, due to cryptographic and proof-theoretic applications, disjoint NP-pairs
have been intensively studied (cf. [8,9,11,2] and [10] for a survey).

As many computational tasks are formulated as function problems [20], it is
also interesting to extend Q2 to function classes. In this formulation Q1 becomes
a special case of Q2 because all proof systems for a given language can be
understood as a promise function class in which complete functions correspond
to p-optimal proof systems. In fact, Köbler, Messner, and Torán [13] have shown
that, with respect to Q2, proof systems provide the most difficult instances
among all promise classes, i.e., a positive answer to Q1 implies a positive answer
for Q2 for many choices of L and C.

In the present paper we continue this line of research. While Köbler, Messner,
and Torán [13] focused on the implication Q1 ⇒ Q2, we provide new character-
izations for both Q1 and Q2. In fact, from these characterizations we can also
easily read off the implication Q1 ⇒ Q2 (under suitable assumptions), thus in
addition, we provide alternative proofs for some results of [13]. Köbler, Messner,
and Torán used the notion of a test set to measure the complexity of the promise.
Here we pursue a different but related approach by representing the promise in
a language L and then using a proof system for L to verify the promise. On the
propositional level, such representations have been successfully used to express
the consistency of propositional proof systems (known as the reflection principle,
cf. [5,15]) or the disjointness of NP-pairs [16,2]. We create a unifying framework
which generalizes these methods to arbitrary languages.

We will now describe in more detail our results and the organization of the
paper. After developing the notion of representations in Sects. 2 and 3 we exam-
ine Q1 in Sect. 4 where we prove that a language L has a p-optimal proof system
if and only if all polynomial-time computable subsets of L are recursively enu-
merable. A similar characterization also holds for the existence of optimal proof
systems. This widely generalizes previous results from [18] for propositional proof
systems and provides interesting characterizations for a number of applications
like the graph isomorphism and automorphism problems.

In Sect. 5 we proceed with question Q2 where we discuss a characterization
of Q2 in terms of uniform enumerations of promise obeying machines. Section 6
then contains our results on the connections between Q1 and Q2. We show that,
under suitable assumptions, a promise class C has complete problems if and only
if there exists a proof system for some language L in which C is representable.
This also yields a general method to show the equivalence of reductions of varying
strength with respect to Q2. In addition, we obtain that L has a p-optimal proof
system if and only if every promise class expressible in L has a complete set
or function. Different versions of these results hold for both optimality and p-
optimality. We also apply these general theorems to concrete promise classes like
UP, NP ∩ coNP, and disjoint NP-pairs.
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Finally, in Sect. 7 we show that the relation between proof systems and
promise classes also holds in the presence of advice. Employing recent advances
of Cook and Kra j́ıček [6] who show that optimal propositional proof systems ex-
ist which use only one bit of advice, we obtain complete sets for a large number
of promise classes when advice is available.

Due to space restrictions we sketch or omit proofs in this extended abstract.

2 Preliminaries

We assume basic familiarity with complexity classes (cf. [1]). Our basic model of
computation are polynomial-time Turing machines and transducers. Tacitly we
assume these machines to be suitably encoded by strings. We also assume that
they always have a polynomial-time clock attached bounding their running time
such that this running time is easy to detect from the code of the machine.

For a language L and a complexity class C, the set of all C-easy subsets of L
consists of all sets A ⊆ L with A ∈ C. A class C of languages has a recursive
P-presentation (resp. NP-presentation) if there exists a recursively enumerable
list N1, N2, . . . of (non-)deterministic polynomial-time clocked Turing machines
such that L(Ni) ∈ C for i ∈ N, and, conversely, for each A ∈ C there exists an
index i with A ⊆ L(Ni). In this definition, it would also be natural to replace
A ⊆ L(Ni) by the stronger requirement A = L(Ni), but the weaker concept
suffices for our purpose.

Proof Systems. Cook and Reckhow [7] defined the notion of a proof system for
a language L quite generally as a polynomial-time computable function f with
range L. A string w with f(w) = x is called an f -proof for x ∈ L. By f ≤m x
we indicate that x has an f -proof of size ≤ m. For a subset A ⊆ L we write
f ∗ A if there is a polynomial p such that f ≤p(|x|) x for all x ∈ A.

Proof systems are compared by simulations [7,15]. If f and g are proof systems
for L, we say that g simulates f (denoted f ≤ g), if there exists a polynomial
p such that for all x ∈ L and f -proofs w of x there is a g-proof w′ of x with
|w′| ≤ p (|w|). If such a proof w′ can even be computed from w in polynomial
time, we say that g p-simulates f (denoted f ≤p g). A proof system for L is
called (p-)optimal if it (p-)simulates all proof systems for L.

Promise Classes. Following the approach of Köbler, Messner, and Torán [13],
we define promise classes in a very general way. A promise R is described as a
binary predicate between nondeterministic polynomial-time Turing machines N
and strings x, i.e., R(N, x) means that N obeys promise R on input x. A machine
N is called an R-machine if N obeys R on any input x ∈ Σ∗. Given a promise
predicate R, we define the language class CR = {L(N) | N is an R-machine }
and call it the promise class generated by R. Instead of R-machines we will also
speak of CR-machines. Similarly, we define function promise classes by replacing
L(N) by the function computed byN (cf. [13]). For functions we use the following
variant of many-one reductions (cf. [13]): f ≤ g if there exists a polynomial-time
computable function t such that f(x) = g(t(x)) for all x in the domain of f .
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In this general framework it is natural to impose further restrictions on
promise classes. One assumption which we will make throughout the paper is
the presence of universal machines, i.e., we only consider promise conditions R
such that there exists a universal machine UR which, given an R-machine N ,
input x, and time bound 0m, efficiently simulates N(x) for m steps such that
UR obeys promise R on 〈N, x, 0m〉.

Occasionally, we will need that C-machines can perform nondeterministic
polynomial-time computations without violating the promise. We make this pre-
cise via the following notion from [13]: for a complexity class A and a promise
class C defined via promise R, we say that A-assertions are useful for C if for
any language A ∈ A and any nondeterministic polynomial-time Turing machine
N the following holds: if N obeys promise R on any x ∈ A, then there exists a
language C ∈ C such that C ∩ A = L(N) ∩ A. A similar definition also applies
for function classes. Throughout this paper we will only consider promise classes
C for which P-assertions are useful. If also NP-assertions are useful for C, then
we say that C can use nondeterminism.

The set of all proof systems for a language L is an example for a promise
function class, where the promise for a given function f is rng(f) = L. We
define a larger class PS (L) where we only concentrate on correctness but not on
completeness of proof systems. This is made precise in the following definition.

Definition 1. For a language L, the promise function class PS (L) contains all
polynomial-time computable functions f with rng(f) ⊆ L.

3 Representations

In order to verify a promise, we need appropriate encodings of promise condi-
tions. In the next definition we explain how a promise condition for a machine
can be expressed in an arbitrary language.

Definition 2. A promise R is expressible in a language L if there exists a
polynomial-time computable function corr : Σ∗ × Σ∗ × 0∗ → Σ∗ such that the
following conditions hold:

1. Correctness: For every Turing machine N , for every x ∈ Σ∗ and m ∈ N, if
corr(x,N, 0m) ∈ L, then N obeys promise R on input x.

2. Completeness: For every R-machine N with polynomial time bound p, the
set Correct(N) = {corr(x,N, 0p(|x|)) | x ∈ Σ∗ } is a subset of L.

3. Local recognizability: For every Turing machine N , the set Correct(N) is
polynomial-time decidable.

We say that the promise class C generated by R is expressible in L if R is
expressible in L. If the elements corr(x,N, 0m) only depend on |x|, N , and m,
but not on x, we say that C is expressible in L by a length-depending promise.

This definition applies to both language and function promise classes. One of
the most important applications for the above concept of expressibility is to use
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L = TAUT. Expressing promise conditions by propositional tautologies is a well
known approach with a long history. For propositional proof systems, leading to
the promise function class PS (TAUT), propositional expressions are constructed
via the reflection principle of the proof system (cf. [5,15]). Propositional expres-
sions have also been used for other promise classes like disjoint NP-pairs and
its generalizations [2,3]. Typically, these expressions are even length depending.
We remark that Köbler, Messner, and Torán [13] have used a related approach,
namely the notion of a test set, to measure the complexity of promise conditions.

As a first example, consider the set of all P-easy subsets of a language L. The
next lemma shows that this promise class is always expressible in L.

Lemma 1. For every language L, the P-easy subsets of L are expressible in L.

Using expressibility of a promise class in a language L, we can verify the promise
for a given machine with the help of short proofs in some proof system for L.
This leads to the following concept:

Definition 3. Let C be a promise class which is expressible in a language L.
Let further A be a language from C and P be a proof system for L. We say
that A is representable in P if there exists a C-machine N for A such that
P ∗ Correct(N). If these P -proofs of corr(x,N, 0p(|x|)) can even be constructed
from input x in polynomial time, then we say that A is p-representable in P .

Furthermore, if every language A ∈ C is (p-)representable in P , then we say
that C is (p-)representable in P .

Intuitively, representability of A in P means that we have short P -proofs of the
promise condition of A (with respect to some C-machine for A). Given a proof
system P for L and a promise class C which is expressible in L, it makes sense to
consider the subclass of all languages or functions from C which are representable
in P . This leads to the following definition:

Definition 4. For a promise class C expressible in a languageL and a proof system
P for L, let C(P ) denote the class of all A ∈ C which are representable in P .

Note that for each A ∈ C there exists some proof system P for L such that
A ∈ C(P ), but in general C(P ) will be a strict subclass of C which enlarges for
stronger proof systems. It is, of course, interesting to ask whether these subclasses
C(P ) have sufficiently good properties. In particular, it is desirable that C(P ) is
closed under reductions. Therefore, we make the following definition:

Definition 5. A promise class C is provably closed under a reduction ≤R in L
if C is expressible in L and for each proof system P for L there exists a proof
system P ′ for L such that P ≤ P ′ and for all A ∈ C and B ∈ C(P ′), A ≤R B
implies A ∈ C(P ′).

We remark that provable closure of C under ≤R is a rather weak notion as it
does not even imply closure of C under ≤R in the ordinary sense (because of the
restriction A ∈ C). Also we do not require each subclass C(P ) to be closed under
≤R, but that for each proof system P this holds for some stronger system P ′.
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This is a sensible requirement, because proof systems for L can be defined quite
arbitrarily, and closure of C(P ) typically requires additional assumptions on P
(cf. [2] where provable closure of the class of disjoint NP-pairs under different
reductions is shown). In fact, it is not difficult to construct counterexamples:

Proposition 1. Let C be a promise class which is expressible in a language L
and let ≤R be a reduction for C. Let further P be a proof system for L such
that there exist A,B ∈ C \ C(P ) with A ≤R B. Then there exists a proof system
P ′ ≥ P such that C(P ′) is not closed under ≤R.

4 Optimal Proof Systems and Easy Subsets

In this section we search for characterizations for the existence of optimal or even
p-optimal proof systems for arbitrary languages L (Question Q1) and apply these
results to concrete choices for L. We start with a criterion for the existence of
p-optimal proof systems.

Theorem 1. Let L be a language such that PS (L) is expressible in L. Then
L has a p-optimal proof system if and only if the P-easy subsets of L have a
recursive P-presentation.

Proof (Idea). For the forward direction, we observe that every P-easy subset
of L has short proofs in some proof system for L. These proofs are translated
into short proofs in the p-optimal proof system by some polynomial-time Turing
transducer. Thus, by enumerating all polynomial-time clocked Turing transduc-
ers, we can construct a recursive P-presentation of all P-easy subsets of L.

Conversely, we construct a p-optimal proof system Popt in the following way.
A Popt -proof of a is of the form 〈π, P, certificate〉, where P is a polynomial-time
clocked transducer such that P (π) = a. The certificate assures that P (π) ∈ L.
It follows from expressibility of PS (L) in L that Correct(P ) is a P-easy subset
of L if and only if P produces only elements from L (for any input). Hence, we
can use P-presentability of the P-easy subsets of L to produce certificates. "#

By a similar argument we can provide two characterizations for the existence of
optimal proof systems.

Theorem 2. Let L be a language such that PS (L) is expressible in L. Then the
following conditions are equivalent:

1. There exists an optimal proof system for L.
2. The NP-easy subsets of L have a recursive NP-presentation.
3. The P-easy subsets of L have a recursive NP-presentation.

Given these general results, it is interesting to ask for which languages L the set
PS (L) is expressible in L. Our next lemma provides sufficient conditions:
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Lemma 2. Let L be a language fulfilling the following two conditions:

1. Natural numbers can be encoded by elements of L, i.e., there exists an in-
jective function Num : N → L which is both computable and invertible in
polynomial time.

2. L possesses an AND-function, i.e., there exists a function AND : Σ∗×Σ∗ →
Σ∗ which is both polynomial-time computable and polynomial-time invertible
such that for all x, y ∈ Σ∗, AND(x, y) ∈ L if and only if x ∈ L and y ∈ L.

Then PS (L) is expressible in L.

Using this lemma we can show L-expressibility of PS (L) for many interesting
choices of L:

Proposition 2. For any of the following languages L, the set PS (L) is express-
ible in L:

– SATi for i ∈ N (the satisfiability problem for quantified propositional formu-
las with i quantifier alternations, starting with existential quantifiers),

– TAUTi for i ∈ N (quantified propositional tautologies with i quantifier alter-
nations, starting with universal quantifiers),

– QBF (quantified propositional tautologies),
– the graph isomorphism problem GI, its complement GI, and the complement

GA of the graph automorphism problem.

For GI, which like any problem in NP has an optimal proof system, we obtain
the following characterization on the existence of a p-optimal proof system.

Corollary 1. GI has a p-optimal proof system if and only if there exists a re-
cursive P-presentation of all polynomial-time computable subsets of GI.

Let us remark that in Lemma 2, instead of an AND-function we could also use
a padding function for L. In this way we obtain a similar result as Corollary 1
for GA (which is not known to possess an AND-function).

5 Complete Sets and Enumerations

In this section we consider the question Q2, asking whether language or func-
tion promise classes have complete sets or functions. There is a long history of
equating complete sets and recursive enumerations of machines. The following
result essentially stems from [13], but particular cases of the theorem have been
been previously obtained, namely for NP ∩ coNP by Kowalczyk [14], for UP by
Hartmanis and Hemachandra [12], and, more recently, for disjoint NP-pairs by
Glaßer, Selman, and Sengupta [8]. We just formulate the theorem for language
classes, but a similar result also holds for promise function classes.

Theorem 3 (Köbler, Messner, Torán [13]). Let C be a promise class which
is closed under many-one reductions. Then C has a many-one complete problem
if and only if there exists a recursive enumeration (Ni)i≥0 of C-machines such
that C = {L(Ni) | i ≥ 0}.
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Let us note that in the proof of the forward implication of Theorem 3, the
hypothesis that C is closed under many-one reductions seems indeed crucial.
Namely, if C consists of all P-easy subsets of TAUT, then C trivially contains
a many-one complete set. On the other hand, a recursive enumeration of C-
machines as in Theorem 3 is rather unlikely to exist, as this would imply the
existence of a p-optimal propositional proof system by Theorem 1. But of course,
the P-easy subsets of TAUT are not closed under many-one reductions.

6 Optimal Proof Systems and Complete Sets

Now we are ready to analyse the relations between our central questions Q1 and
Q2 on the existence of optimal proof systems for languages L and the existence of
complete sets for promise classes C. While Köbler, Messner, and Torán [13] have
shown that for many natural choices of L and C, a positive answer to Q1 implies
a positive answer to Q2, we will provide here a number of characterizations
involving both questions. In particular, these characterizations will also yield
the above mentioned relation between Q1 and Q2 for concrete applications.

Our first result characterizes the existence of complete sets for a promise class
C by the representability of C in a proof system.

Theorem 4. Let C be a promise language (or function) class which can use
nondeterminism and let L be a language such that C is provably closed under
many-one reductions in L. Then C has a many-one complete language (or func-
tion) if and only if there exists a proof system for L in which C is representable.

Proof (Idea). For the forward implication, we code a many-one complete lan-
guage A for C into some proof system P for L. By provable closure under reduc-
tions, L has a proof system P ′ ≥ P such that C(P ′) is closed under many-one
reductions. As A ∈ C(P ′) and A is many-one complete for C, we get C(P ′) = C.

Conversely, let P be a proof system for L in which C is representable. Using
the universal machine for C, we construct a complete set for C by simulating
C-machines N on their inputs. But before we start such a simulation, we check
the promise of N by guessing short P -proofs for Correct(N). For this last step
we need that C can use nondeterminism. "#

For promise classes not using nondeterminism we obtain the following result:

Theorem 5. Let C be a promise language (or function) class which is closed
under many-one reductions and let L be a language such that C is expressible in
L. Then C has a many-one complete language (or function) if and only if L has
a proof system in which C is p-representable.

Let us mention some applications of this result. The promise class DisjNP of
disjoint NP-pairs and the class UP are expressible in TAUT, and the class NP∩
coNP is expressible in QBF (cf. [2,13,17,19]). Hence we obtain the following
corollary exemplifying our theorem.
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Corollary 2

1. Complete disjoint NP-pairs exist if and only if TAUT has a proof system in
which DisjNP is p-representable (if and only if TAUT has a proof system in
which DisjNP is representable).

2. UP has a complete language if and only if TAUT has a proof system in which
UP is p-representable.

3. NP ∩ coNP has a complete language if and only if QBF has a proof system
in which NP ∩ coNP is p-representable.

Theorem 4 also allows to derive results which show that the question of the
existence of complete problems for C does not depend on the strength of the
underlying reduction. This can be done as in the following corollary:

Corollary 3. Let ≤ and ≤′ be two reductions which are refined by many-one
reductions. Assume further that C can use nondeterminism and is both provably
closed under ≤ and ≤′ in some language L. Then C has a ≤-complete problem
if and only if C has a ≤′-complete problem.

In this way it can be shown, for example, that the question of the existence
of complete disjoint NP-pairs is equivalent for reductions ranging from strong
many-one reductions to smart Turing reductions (cf. [8,2]).

Our next result shows that question Q1 on the existence of p-optimal proof
systems for a language L can be characterized by a “universally quantified”
version of the condition from Theorem 5. Further, Q1 is even equivalent to the
existence of complete sets for all promise classes representable in L:

Theorem 6. Let L be a language such that PS (L) is expressible in L. Then the
following conditions are equivalent:

1. There exists a p-optimal proof system for L.
2. There exists a proof system for L in which any promise class which is ex-

pressible in L is p-representable.
3. There exists a proof system for L in which the class of all P-easy subsets of

L is p-representable.
4. Every promise language and function class which is expressible in L has a

many-one complete language or function.

Proof (Sketch). The proof is structured into the implications 1 ⇒ 2 ⇒ 3 ⇒ 1
and 2 ⇒ 4 ⇒ 1. For 1 ⇒ 2, let P be a p-optimal proof system for L and let
C be a promise class expressible in L. For each A ∈ C and each C-machine N
for A we can construct a proof system P ′ with short P ′-proofs of Correct(N).
Translating these proofs into the p-optimal system P , we obtain A ∈ C(P ).

Implication 2 ⇒ 3 follows from Lemma 1. For the direction 3 ⇒ 1, we need
to construct from item 3 a recursive P-presentation of all P-easy subsets of L as
in Theorem 1. This in turn yields a p-optimal proof system for L.

The equivalence between items 2 and 4 is the mentioned “universally quanti-
fied” version of Theorem 5. Finally, for 4 ⇒ 1 we use the assumption of express-
ibility of PS (L) in L. As PS (L) is a promise function class, item 4 guarantees
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the existence of a many-one complete function for PS (L), which coincides with
the notion of a p-optimal proof system for L. "#

The next theorem contains a similar statement for optimal proof systems.

Theorem 7. Let L be a language such that PS (L) is expressible in L. Then the
following conditions are equivalent:

1. There exists an optimal proof system for L.
2. L has a proof system P such that every promise class which is expressible in

L is representable in the system P .
3. L has a proof system in which all P-easy subsets of L are representable.

Combining Theorems 4 and 7 we obtain the following corollary which is essen-
tially contained in [13].

Corollary 4. Let L be a language. If L has an optimal proof system, then any
promise language or function class C which is expressible in L and which can
use nondeterminism has a complete language or function.

As the proof of the backward implication of Theorem 4 does not use provable
closure of C under reductions in L, we can formulate Corollary 4 without this
assumption.

Comparing Theorem 6 and Corollary 4, it is apparent that while we could
prove the equivalence of the existence of p-optimal proof systems for L and
complete problems for all promise classes expressible in L (Theorem 6), we did
not obtain this equivalence for optimal proof systems (cf. Corollary 4). The
reason is that PS (L), considered as a promise function class, does not seem to
have the property to use nondeterminism, because otherwise, the existence of
an optimal proof system for L would already imply the existence of a p-optimal
proof system for L. We can even obtain a slightly stronger result:

Proposition 3. If PS (SAT) can use nondeterminism, then every language with
an optimal proof system also has a p-optimal proof system.

Proof. Assume that PS (SAT) can use nondeterminism. By Proposition 2, the
class PS (SAT) is expressible in SAT. As SAT has an optimal proof system,
Corollary 4 now yields a complete function for PS (SAT) which coincides with
the notion of a p-optimal proof system for SAT. From this we conclude that
every language with an optimal proof system also has a p-optimal proof system
by a result from [3]. "#

7 Optimal Proof Systems with Advice

Whether or not there exist optimal proof systems or complete sets for promise
classes remains unanswered by our results above. Hence, our central questions
Q1 and Q2 remain open. As these problems have been open for more than twenty
years by now, many researchers tend to believe in a negative answer (of course,
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this is arguable, but in the algorithmic world negative results are usually harder
to obtain than positive ones).

Recently, Cook and Kra j́ıček [6] have introduced the concept of propositional
proof systems with advice which seems to yield a strictly more powerful model
than the classical Cook-Reckhow setting. Surprisingly, Cook and Kra j́ıček [6]
have shown that in the presence of advice, optimal propositional proof systems
exist (cf. also [4] for a generalization to arbitrary languages). Our next result
shows that the relation between optimal proof systems and complete sets for
promise classes can be transferred to the advice setting. Thus we derive from
Cook and Kra j́ıček’s results the following strong information on complete prob-
lems in the presence of advice.

Theorem 8. Let C be a promise complexity class and let L be a language such
that C is expressible in L by a length-depending promise. Then C/1 contains a
problem (or function) using one bit of advice which is many-one hard for C.

Proof (Sketch). Let 〈·, . . . , ·〉 be a polynomial-time computable length-injective
tupling function. We now define the problem (or function) AC with one advice
bit which will be many-one hard for C. Inputs are of the form 〈x, 0N , 0m〉 where
x is the input, 0N is the unary encoding of a Turing machine N , and 0m is the
time bound for N . At such an input, AC first computes the string corr(x,N, 0m).
Then AC uses its advice bit to verify whether or not corr (x,N, 0m) is in L (for
this step we could have also used the optimal proof system for L with one bit
of advice, cf. [6,4]). If corr (x,N, 0m) ∈ L, then AC simulates N on input x for
at most m steps and produces the corresponding output (in case the simulation
does not terminate it rejects or outputs some fixed element). As 〈·, . . . , ·〉 is length
injective and corr is length depending, the element corr (x,N, 0m) is uniquely
determined by |〈x, 0N , 0m〉| and therefore the advice bit of AC can in fact refer
to corr (x,N, 0m).

If A is a problem (or function) from C and N is a C-machine for A with poly-
nomial running time p, then A many-one reduces to AC via x $→ 〈x, 0N , 0p(|x|)〉.
Hence AC is many-one hard for C. "#

Let us state a concrete application of this general result. As disjoint NP-pairs
are expressible in TAUT by a length-depending promise [2], we obtain:

Corollary 5. There exist a disjoint pair (A,B) and a sequence (an)n∈N with
the following properties:

1. A and B are computable in nondeterministic polynomial time with advice an

for inputs of length n.
2. The set {〈an, 0n〉 | n ∈ N } is computable in coNP.
3. Every disjoint NP-pair is polynomial-time many-one reducible to (A,B).

Acknowledgements. We thank the anonymous referees for helpful comments
and detailed suggestions on how to improve this paper.
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Abstract. We resolve an open question by [3]: the exponential com-
plexity of deciding whether a k-CNF has a solution is the same as that
of deciding whether it has exactly one solution, both when it is promised
and when it is not promised that the input formula has a solution. We also
show that this has the same exponential complexity as deciding whether
a given variable is backbone (i.e. forced to a particular value), given the
promise that there is a solution. We show similar results for True Quan-
tified Boolean Formulas in k-CNF, k-Hitting Set (and therefore Vertex
Cover), k-Hypergraph Independent Set (and therefore Independent Set),
Max-k-SAT, Min-k-SAT, and 0-1 Integer Programming with inequalities
and k-wide constraints.

Keywords: k-SAT, unique satisfiability, exponential complexity, quan-
tified Boolean formulas, hitting set, independent set.

1 Introduction

For a problem L = {x | ∃y R(x, y)} where R is some relation, define the solutions
of x as sol(x) = {y | R(x, y)}. Define Decision-Unique-L (or DU-L) to be the
problem of deciding whether the input x has |sol(x)| = 1; Unique-L (or U-L) to
be DU-L but with the promise that |sol(x)| ≤ 1; and Satisfiable-Unique-L (or
SU-L) to be DU-L but with the promise that |sol(x)| ≥ 1.

Note that these definitions depend on R being understood from context, since
alternative formulations of a problem could lead to alternative definitions of DU-
L, U-L, SU-L, but this will rarely cause ambiguity. E.g. DU-k-SAT will be the
problem of deciding whether a given k-CNF has a unique satisfying assignment
and DU-IS will the the problem of deciding whether a given graph has a unique
independent set of size at most a given integer.

For a problem P parameterized by parameter n and solvable in time poly
(|x|)2O(n) on input x by a randomized algorithm with error ≤ 1

3 , define the ex-
ponential complexity cP of P to be the infimum of those c such that P is solvable
in time poly(|x|)2cn by a randomized algorithm with error ≤ 1

3 . For each prob-
lem considered here except for the weighted satisfiability variants, |x| ≤ poly(n),
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so that the poly(|x|) can usually be dropped from the above definition. Also, for
problems involving formulas (graphs), we will implicitly take the parameter to
be the number of variables (nodes). We can similarly define the deterministic ex-
ponential complexity dcP of a problem P by eliminating the word ’randomized’
in the above definition. Clearly cP ≤ dcP . The reverse inequality is not known,
and even a strong hypothesis like P = BPP does not obviously imply it since,
for all we know, derandomization may square running time, assuming it can be
done at all.

A Boolean formula is in conjunctive normal form (CNF) iff it is a conjunction
of disjunctions of literals - i.e. an AND of ORs of variables or their negations. A
CNF is a k-CNF iff each disjunction contains ≤ k literals. SAT is the problem
of deciding whether a given CNF has an assignment to the variables that makes
the formula true. k-SAT further restricts the input to k-CNF.

While ck-SAT ≤ cDU-k + 1-SAT is obvious (add a new variable z to each clause
and n new clauses (z → xi) for each i), the inequality is probably not tight
since, assuming the exponential time hypothesis (that c3-SAT > 0), ck-SAT in-
creases infinitely often as a function of k [6], and it would be surprising if it
did not increase with each k. [3] conjectured that the deterministic exponential
complexity of k-SAT and DU-k-SAT are the same, i.e. that

dck-SAT = dcDU-k-SAT . (1)

The current authors, in [1], incorrectly cited [3], claiming that they had shown
(1) rather than merely conjectured it. Here we remedy this - we prove (1) by
giving a deterministic polytime Turing reduction from k-SAT to SU-k-SAT such
that on an input with n variables, the oracle is called only on formulas with
≤ n+O(1) variables. Since dcSU-k-SAT ≤ dcDU-k-SAT, and self-reducibility implies
dcDU-k-SAT ≤ dck-SAT, we have

dck-SAT = dcSU-k-SAT = dcDU-k-SAT .

Via standard error reduction techniques (lemma 1), such a reduction also shows

ck-SAT = cSU-k-SAT = cDU-k-SAT . (2)

It is not known whether ck-SAT = dck-SAT, but it seems like the answer is ’no’.
E.g. [7] gives a nice table contrasting the history of the development of deter-
ministic vs. randomized k-SAT algorithms, with the more recent randomized
algorithms with significantly less exponential complexity than their determinis-
tic counterparts.

We also use the same technique to show similar results for True Quantified
Boolean Formulas in k-CNF, k-Hitting Set, Vertex Cover, k-Hypergraph Inde-
pendent Set, Independent Set, Max-k-SAT, Min-k-SAT, and 0-1 Integer Pro-
gramming with inequalities and k-wide constraints.

Our main contribution is the following technique for efficiently reducing a
problem P to SU-P : view an instance φ of P as a set of constraints C1, . . . , Cm

over a set of variables x1, . . . , xn. Starting with the empty set of constraints, add



k-SAT Is No Harder Than Decision-Unique-k-SAT 61

one constraint of φ at a time to a list and maintain the invariant that we know
a solution to the list. To add a new constraint Ci to the list, construct some
gadget that conditionally turns on Ci in the case that the variables are assigned
differently than the solution already known for the i− 1 case. Then, using this
gadget, call the oracle repeatedly to learn a solution for the i case. Knowing a
solution to the i − 1 case allows us to encode such gadgets significantly more
efficiently than we would otherwise know how to do. Although this idea is the
basis for each reduction we consider, there are significant problem-specific details
that prevent us from factoring out large common parts of the proofs.

The current work does not completely resolve the question of the exponential
complexity of satisfiability vs. that of unique satisfiability since it still does not
show ck-SAT = cU-k-SAT, though we strongly suspect it, as equality holds in the
limit as k → ∞ [1].

The reduction of Valiant and Vazirani [10] falls a bit shorter in proving this
statement about k-SAT, but is quite general: (the intersection of a nonempty
set system of size about 2m on n variables with the solutions to a system of
approximately m random linear equations over GF2) has size exactly 1 with
probability Ω(1). This idea shows the NP-hardness of U-k-SAT under random-
ized reductions but not that it has the same exponential complexity as k-SAT
because expressing an m × n random linear system in k-CNF seems to require
a quadratic increase in the number of variables. However this idea can be used
to show that cP = cU-P for any problem P where intersecting such a linear
system could be expressed with only a 1+ o(1) factor increase in the complexity
parameter, such as in CircuitSAT.

Paper Organization. §2 gives the previous work on the problem. In §3, we
define efficient reductions, which will allow a cleaner presentation. §4–7 prove
the main theorems, organized according to problem type: §4 covers constraint
satisfaction problems, §5 covers quantified Boolean formulas, §6 covers optimiza-
tion problems where the objective function is the solution size, and §7 covers
optimization problems where the objective function is the number of satisfied
constraints. §8 concludes.

2 Previous Work

[3] show that dck(r)-SAT ≤ dcDU-k-SAT where k(r)-SAT is k-SAT but where the
input is restricted to have ≤ r false clauses at one or more of the assignments
1n, 0n. Since there is nothing special about these 2 assignments, we might as well
think of this variant as requiring that the input include some assignment at which
the formula has ≤ r false clauses - i.e. that not only does the formula have a small
satisfiability gap, but that the input include a witness to such a small gap.

But it’s not immediately clear whether k(r)-SAT is a very important restric-
tion of SAT. On the one hand, the standard Cook reduction from an arbitrary
problem in NP to SAT via computation tableaux generates a k-CNF with a gap
of 1, and one can even generate a witness for this gap in polytime. This is because
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the formula generated essentially encodes, “There is a y such that after comput-
ing the predicate R(x, y), the result is true,” and only a single clause actually
encodes the part that says “the result is true”. So k(1)-SAT is NP-complete, but
the number of variables needed in a reduction to k(r)-SAT seems to be large,
even when reducing from k-SAT, and so it doesn’t seem to be very useful for
upperbounding the exponential complexity of k-SAT.

On the other hand, the expected fraction of clauses satisfied in a k-CNF
under a random assignment is 1 − 2−k, and so an assignment satisfying at least
that many clauses can be found in polytime with high probability. But H̊astad
showed, using a proof based on PCPs [4], that with no extra restriction on the
input formula, no larger a fraction can be guaranteed, unless P = NP. This
leaves unclear just how much smaller is the exponential complexity of k(r)-SAT
than that of k-SAT. We will show that they are equal.

3 Efficient Reductions

Let us say that a parameterized problem A efficiently reduces to parameterized
problem B, and write A 
 B, iff ∃ a polytime Turing reduction f from A to
B so that for each instance x of A of parameter n and oracle call y that fB(x)
makes, the parameter of y is ≤ n+O(1). Obviously, 
 is reflexive and transitive.
We will also write A ' B iff A 
 B and B 
 A.

Lemma 1. If A 
 B then dcA ≤ dcB and cA ≤ cB.

Proof. The first inequality is obvious. For the second, let MB be a random-
ized poly(|x|)2cn-time Turing machine solving B with error ≤ 1

16 = p (this can
be constructed by one with error ≤ 1

3 by taking the majority answer from 21
independent calls). Suppose fB(x) runs in time ≤ t. Define MA as f , but re-
placing each call to the oracle by r = 2 lg t calls to MB and take the majority
answer. From the union bound, the probability that MA errs is ≤ t times the
probability that a binomial random variable with parameters (r, p) is ≥ 1

2r, and
this is ≤

∑r
i=� r

2 �
(
r
i

)
pi(1 − p)r−i ≤ p

r
2 2r = 2−r. So MA solves A, takes time

≤ 2t lg t2c(n+O(1)), and errs with probability ≤ t2−r = 1
t . "#

Note that lemma 1 would hold even if we significantly loosened the notion of an
efficient reduction by allowing subexponential time, randomness with one-sided
error, and oracle calls to problems with parameter as much as n(1+o(1)), but we
will actually be demonstrating this stronger notion here. Also it should be noted
that this form of reduction is more strict than the similar SERF reductions of
[5], which allow a linear increase in the complexity parameter since they want
the loosest possible notion of reduction under which SUBEXP is closed.

4 Constraint Satisfaction Problems

4.1 k-SAT

In this section, we show the following.
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Theorem 2

k-SAT ' SU-k-SAT ' DU-k-SAT .

(1) and (2) then follow from lemma 1. Note that all problems discussed in this
paper with a parameter k are solvable in polytime for k < 2, so we will assume
throughout that k ≥ 2. For each problem P , SU-P 
 DU-P via the identity
map, so we won’t bother to state this in the proofs. Also, for each problem P
that we consider in this paper, DU-P 
 P by using self-reducibility to find a
solution and then making n more queries to decide whether there is another, so
we won’t bother to formally state this in the proofs to follow either.

For example, if P = k-SAT and the input formula is φ, we can set a variable xi,
then ask the oracle whether the formula is still satisfiable to discover a correct
setting of xi, then set xi correctly and continue similarly with the remaining
variables to get a complete solution a. Then for each variable xi, ask the oracle
whether F |xi �= ai is satisfiable.

Proof. (k-SAT 
 SU-k-SAT) Let A be an oracle for SU-k-SAT. Also, let any
predicate on ≤ k Boolean variables represent the k-clauses logically equivalent
to them; e.g. (x → y = 0) will stand for the clause {x̄, ȳ}.

Let φ = {C1, . . . , Cm} with variables x1, . . . , xn be our input formula and let
z be a new variable. For i going from 1 to m, we will find a solution a to the first
i clauses φi = {C1, . . . , Ci}, if there is one. Finding an a that satisfies 0 clauses is
trivial. Suppose that we have an a that satisfies φi−1. For each literal l in Ci, we
ask A whether φi−1 ∪ {(z → xj = aj) | j ∈ [n]} ∪ {(z̄ → l)} (which is satisfiable:
set x = a, z = 1) is uniquely satisfiable. It answers yes iff there is no solution to
φi with l = 1. If each of the |Ci| ≤ k queries gives an answer of yes, then φi, and
hence φ, is not satisfiable. If the jth query answers no, then we can safely set
the first j−1 literals of Ci to 0 and the jth literal to 1 in a partial assignment b.
At this point, we know that b can be extended to a solution to φi, and we want
to use similar calls to the oracle to find assignments to the remaining variables
to get a new assignment that satisfies φi.

More specifically, suppose we have a partial assignment b′ that we know can
be extended to a solution to φi. Let b be a partial assignment that extends b′

by setting a new variable xr to an arbitrary value br. Then we use A and the
following lemma to discover whether b can also be extended to a solution of φi,
and if not, we simply flip br. We continue in this way until we have a full solution
to φi.

Lemma 3. Let a ∈ sol(φi−1), b be a partial assignment, and ψ = φi−1 ∪ {(z →
xr = ar) | r ∈ [n]} ∪ {(z̄ → xr = br) | r ∈ domain of b}. Then ψ has a solution,
and it is unique iff b cannot be extended to a solution to φi−1.

Proof. a together with assigning z to 1 is a solution to ψ. There is no other
solution to ψ with z = 1, and ψ |z=0 forces the partial assignment b. "#

The reduction uses poly(n) time and makes ≤ mn oracle calls, each with ≤ n+1
variables, so it is efficient. "#
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4.2 Integer Programming

Let k-BIP be the problem of deciding whether there is a solution to a given
system of m linear inequalities in n Boolean variables, where each inequality
involves ≤ k variables.

Corollary 4

k-BIP ' SU-k-BIP ' DU-k-BIP .

Proof Since the construction is almost exactly the same as for k-SAT in theo-
rem 2, we only give an outline. To express α → β in the construction, use the
inequality α ≤ β. To express a negated variable x̄, use 1 − x. When adding a
new constraint Ci, ask the oracle ≤ 2k questions, one for each setting c of the
≤ k variables in Ci that satisfies Ci: is it possible to extend b ∪ c to a solu-
tion of the first i − 1 constraints? This gives a polytime reduction that makes
≤ m(2k − k + n) queries, each with ≤ n+ 1 variables. "#

4.3 Backbone Variables

Backbone variables are a tool from statistical physics for understanding the
nature of random k-SAT instances - see e.g. [8]. Dubois and Dequen [2] use
such variables in a heuristic to refute large unsatisfiable hard random 3-SAT
instances.

Given a nonempty set system S ⊆ P(U), i ∈ U is a backbone variable iff
∀a ∈ S i ∈ a ∨ ∀a ∈ S i /∈ a. xi is a backbone variable of formula φ iff xi is
a backbone variable of sol(φ). Define the k backbone variable promise problem
(k-BB) to be to decide whether a given variable is backbone in a given k-CNF
φ with the promise that φ is satisfiable.

Corollary 5

k-SAT ' k-BB .

Proof Immediate from theorem 2 since a satisfiable k-CNF has exactly 1 solution
iff each of its variables is backbone. "#

5 Extending the Result Up the PH

Define (d, k)-TQBF to be those true quantified Boolean formulas of the form
Q1

−→w 1 · · · Qd
−→w d φ where each −→w i is a (possibly empty) tuple of Boolean vari-

ables, each quantifier Qi ∈ {∃, ∀} is ∃ iff i is odd, each variable of φ ∈ k-CNF
is quantified, and the whole formula is true in the standard sense. The solutions
are those assignments to −→w 1 that make Q2

−→w 2 · · ·Qd
−→w d φ true. Then DU-(d, k)-

TQBF is essentially those (d, k)-TQBFs where the first quantifier is ∃! (“there
is a unique”) instead of ∃. If we parameterize on the total number of variables
n, then we have the following.
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Theorem 6

(d, k)-TQBF ' SU-(d, k)-TQBF ' DU-(d, k)-TQBF .

Proof. ((d, k)-TQBF 
 SU-(d, k)-TQBF) It was shown in [9] that TQBF re-
stricted to quantified 2-CNF formulas is in linear time, so we may assume wlog
that k ≥ 3. Let A be an oracle for SU-(d, k)-TQBF and F = Q1

−→w 1 · · ·Qd
−→w d φ

with variables x1, . . . , xn and clauses φ = {C1, . . . , Cm} be our input formula.
Let x1, . . . , xq be the variables in −→w 1, and y, z be variables not in F . If some
clause has only ∀ quantified literals, then player ∀ can easily win and we reject.
Otherwise, for i going from 1 to m, we will find a solution a, if there is one, to
Fi = Q1

−→w 1 · · ·Qd
−→w dφi where φi = {C1, . . . , Ci}. Finding an a that satisfies F0

is trivial. Suppose we have an a that satisfies Fi−1. We use A and the following
lemma (with b = ∅) to decide whether Fi is satisfiable.

Lemma 7. Let a ∈ sol(Fi−1), b be a partial assignment to −→w 1. Suppose lk ∈ Ci

is ∃ quantified under Qj. Let ψ = φi−1 ∪ {(z → xr = ar) | r ∈ [q]} ∪ {(z̄ →
xr = br) | r ∈ domain of b} ∪ {(z → y), {l1, . . . , lk−1, y}, {ȳ, lk, z}}, and G =
Q1z,

−→w 1 · · ·Qjy,
−→w j · · ·Qd

−→w d ψ. Then G has a solution, and it is unique iff b
cannot be extended to a solution to Fi.

Proof. a together with assigning z (and y, if j = 1) to 1 is a solution to G. There
is no other solution to G with z = 1, and G |z=0 forces the partial assignment b.
A winning strategy for player ∃ for G |z=0 is also a winning strategy for Fi: just
ignore y. Conversely, a winning strategy for Fi is a winning strategy for G |z=0
if, in addition, we set y = lk, which is possible since they are both quantified
under Qj . "#

If Fi is satisfiable, we find a solution b to Fi by starting with the empty par-
tial assignment. Suppose we have a partial assignment b′ that we know can be
extended to a solution to Fi. Let b be a partial assignment that extends b′ by
setting a new variable xr in −→w 1 to an arbitrary value br. We use A and lemma 7
to discover whether b can be extended to a solution to Fi, and if not, we flip br.
We continue in this way until we have a full solution to Fi. The reduction uses
poly(n) time and makes ≤ m(q+ 1) oracle calls, each with ≤ n+ 2 variables, so
it is efficient. "#

The same result also holds for (∞, k)-TQBF, i.e. without restricting the number
of levels of alternation, but it is less exciting since it is obvious: just add 2 empty
quantifiers at the beginning.

One could also ask whether the exponential complexity changes when !s are
placed on some subset of existential quantifiers other than just the first one. But
the above proof technique does not seem to generalize. One problem that arises
when trying to prove that the exponential complexity of the unique case (where
the ! is on a ∃ other than the first) is no more than that of the non-unique case is
that, while before it was easy to store a solution (the a variable) in a polynomial
amount of space, given a formula such as ∃x ∀y ∃z φ, it now seems like we have
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to store a whole function that maps each y to an appropriate z. It is not obvious
how to store such a function in a subexponential amount of space. But another
problem arises when trying to prove even the reverse inequality: it was easy to
show that a problem of the form ∃!x φ Turing reduces to problems of the form
∃x φ with only o(n) more variables and in a subexponential amount of time, but
how can one even Turing reduce a problem of the form ∀x ∃!y φ to problems of
the form ∀x ∃y φ with only o(n) more variables and in a subexponential amount
of time, let alone other, more complex formulas with more quantifiers?

6 Solution Optimization Problems

The following problems involve optimizing the size of the solution.

6.1 k-Hitting Set

Define the k-Hitting Set problem (k-HS) as given a k-set system and an integer
l, decide whether there is a hitting set of size ≤ l; i.e. given (U, S, l) such that
S ⊆ P(U) and ∀s ∈ S |s| ≤ k, if we define the hitting sets as {h ⊆ U | ∀s ∈
S h ∩ s �= ∅}, decide whether there is a hitting set of size ≤ l.

Theorem 8

k-HS ' SU-k-HS ' DU-k-HS .

In particular, taking k = 2 gives the result for vertex cover:

VC ' SU-VC ' DU-VC .

Proof. (k-HS 
 SU-k-HS) Let A be an oracle for SU-k-HS and let (U, S, l) with
nodes U = {x1, . . . , xn} and sets S = {C1, . . . , Cm} be our input instance. Let
z, z̄ be 2 nodes not in U . For i going from 1 to m, we will find a smallest hitting
set a of Si = {C1, . . . , Ci}. Initially, a = ∅ is a smallest hitting set of S0. Suppose
that we have a smallest hitting set a of Si−1.

Let L = (l1, . . . , ln) be an ordering of U with the nodes of Ci first. Let sets b, c
be initially empty. For j going from 1 to n, we will maintain the invariant that
at step j, if Si has a hitting set of size ≤ |a|, then the lexicographically largest
such (according to the order L, where l1 is the most significant) contains all of b
and none of c, and b∪ c = {l1, . . . , lj}. Suppose the invariant holds for j− 1. We
use A and the following lemma (with b′ = b ∪ {lj}) to discover whether b ∪ {lj}
is contained in a hitting set of Si of size ≤ |a|.

Lemma 9. Let a be a smallest hitting set of Si−1, b′ ⊆ U , and T = Si−1 ∪
{{z, z̄}} ∪ {{z̄, x} | x ∈ a} ∪ {{z, x} | x ∈ b′}. Then T has a hitting set of size
≤ |a| + 1, and it is unique iff Si does not have a hitting set of size ≤ |a| that
contains b′.

Proof. a∪{z} is a hitting set of T of size ≤ |a|+1. There is no other containing
z, and any without z contains b′. "#
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If the answer is yes (which corresponds to an oracle answer of no), we add lj to b,
otherwise to c. If c ever contains all of Ci then Si has no hitting set of size ≤ |a|, in
which case, letting l be an arbitrary element of Ci, a∪{l} is a smallest hitting set
of Si. Otherwise, we continue applying the lemma, adding elements to either b or
c, until we have a hitting set of Si of size ≤ |a|. Once we have a smallest hitting set
a for Sm, we simply compare |a| to l. The reduction uses poly(n) time and makes
≤ mn oracle calls, each with ≤ n + 2 nodes, so it is efficient. "#

6.2 k-Hypergraph Independent Set

The k-Hypergraph Independent Set problem (k-HIS) is, given a k-hypergraph
(i.e. where each edge contains ≤ k vertices) and an integer l, decide whether
there is a set I of vertices of size ≥ l such that no edge is contained in I.

Corollary 10

k-HIS ' SU-k-HIS ' DU-k-HIS .

In particular, taking k = 2 gives the result for independent set:

IS ' SU-IS ' DU-IS .

Proof. Follows immediately from theorem 8 by observing that a set of vertices
is independent and of size ≥ l iff its complement is a hitting set of the edges and
of size ≤ n− l.

6.3 Limitations

Although Hitting-Set (HS) and Set-Cover (SC) are duals of one another, it is
not as obvious how the exponential complexities of k-HS and k-SC are related.
The technique used to show theorem 8 does not seem to work for SC since
constraints are represented by the universe elements and not the sets, so adding
linearly many constraints to construct the oracle queries increases the parameter
from n to cn for some c > 1, causing the reduction to be inefficient.

The situation for k-Coloring is similar.1 Though we can easily construct an
oracle query with the right logical properties, using only the techniques here will
cause it to have linearly many more vertices, and thus only show that ck-Coloring ≤
O(cDU-k-Coloring), where the constant factor in the big-Oh does not depend on k.

7 Constraint Optimization Problems

The following problems involve optimizing the number of constraints that are
satisfied.

Max-k-SAT (Min-k-SAT) is the problem of deciding whether a given k-CNF
with an integer weight for each clause has an assignment that satisfies at least
(at most) some given weight l.
1 Here we take ’uniqueness’ of a coloring solution to mean ’unique up to permutations

of the colors’.
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Theorem 11

Max-k-SAT ' SU-Max-k-SAT ' DU-Max-k-SAT .

Proof. (Max-k-SAT 
 SU-Max-k-SAT) Let A be an oracle for SU-Max-k-SAT
and φ ∈ k-CNF, l ∈ Z be our input where φ has variables x1, . . . , xn and clauses
C1, . . . , Cm with (wlog) nonzero weights w1, . . . , wm. Let z be a variable not in
φ. For i going from 1 to m, we will find the maximum weight l′ that can be
satisfied in φi = {C1, . . . , Cm} and an assignment a that satisfies that weight.
Initially, l′ = 0 and a is arbitrary. Suppose we know the maximum weight l′ that
can be satisfied in φi−1 and a satisfies it. We want to find the maximum weight
l′′ that can be satisfied in φi. We consider 2 cases: wi > 0 and wi < 0.

If wi > 0, then l′′ ∈ [l′, l′ + wi]. For each literal l ∈ Ci and t′ ∈ (l′, l′ + wi],
we can use A and the following lemma (with b the partial assignment that sets
l = 1, and t = t′ − wi) to discover whether some assignment with l = 1 satisfies
weight ≥ t′ in φi.

Lemma 12. Let l′ be the largest weight that can be satisfied in φi−1 and let
a satisfy that weight. Let |wi| > 0 and l′ − |wi| < t ≤ l′. Let b be a partial
assignment and ψ = φi−1 ∪ {|wi| · (z → xr = ar) | r ∈ [n]} ∪ {|wi| · (z̄ →
xr = br) | r ∈ domain of b}. Then ψ has an assignment that satisfies weight
≥ t + (n + |b|)|wi|, and it is unique iff b cannot be extended to an assignment
that satisfies weight ≥ t in φi−1.

Proof. a together with z = 1 satisfies weight ≥ l′+(n+ |b|)|wi| ≥ t+(n+ |b|)|wi|
in ψ. There is no other such assignment with z = 1, and any with z = 0 agrees
with b. "#

So we can use binary search to discover l′′ using ≤ |Ci| lg(wi + 1) queries. If
l′′ = l′, then a satisfies weight l′′ in φi and we are done. Otherwise, as a slight
optimization, if the last query set the jth literal of Ci to 1, then we can safely
set literal j to 1 and literals 1 through j − 1 to 0 in the partial assignment b,
and at this point, we know that b can be extended to a full assignment satisfying
weight l′′ in φi and that b satisfies Ci (since l′′ > l′). We can continue using the
lemma to extend b to such an assignment using n− j more queries to A.

If wi < 0, then l′′ ∈ [l′ + wi, l
′]. Let b be the partial assignment that makes

Ci false. For each t ∈ (l′ + wi, l
′] we can use 1 query to A and the lemma to

discover whether there is an assignment satisfying weight ≥ t in φi. So we can
use binary search to discover l′′ using ≤ lg(|wi|+ 1) queries. If l′′ = l′ +wi, then
a satisfies weight l′′. Otherwise, we can continue using the lemma to extend b to
a full assignment satisfying weight l′′ in φi using n− |Ci| more queries.

At the end, we simply compare l′ to l. The reduction uses time polynomial in
the size of the input and makes ≤

∑
i(|Ci| lg(|wi| + 1) + n − |Ci|) oracle calls,

each with ≤ n + 1 variables, so it is efficient. "#

Theorem 11 applies to integer weights, but the proof is robust and can easily
be modified to accommodate rational weights, e.g. by first multiplying by the
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LCM of the denominators. Since the weights used in the proof have the same size
as those of the input, the same proof works for the problem restricted to unit
weights. The same proof also works for nonnegative weights, or any combination
of the above.

Negating the input weights together with the algorithm in the proof also gives
an efficient reduction from Min-k-SAT to SU-Min-k-SAT. The only rub is that
this reduction is not correct if we restrict to nonnegative weights. To handle this
case, we use a different reduction below.

Theorem 13. If we restrict to nonnegative integer weights,

Min-k-SAT ' SU-Min-k-SAT ' DU-Min-k-SAT .

Two clauses are in conflict with each other, i.e. cannot be simultaneously un-
satisfied, iff they share a variable, but positively in the one and negatively in
the other. We want to find a maximum weight independent set in the graph
with the clauses as vertices and edges between conflicting clauses. But even if
we restricted to unit weights, we cannot simply invoke corollary 10 since the
parameter here is variables, not clauses. Thus it seems like we need another
proof.

It should be pointed out that the proof below does not work if we restrict to
unit weights since the construction of ψ uses non-unit weights. There may be
some more convoluted construction using the same ideas but that avoids this
technical point.

Proof. (Min-k-SAT 
 SU-Min-k-SAT) Let A be an oracle for SU-Min-k-SAT
and φ ∈ k-CNF, l ∈ Z be our input where φ has variables x1, . . . , xn and clauses
C1, . . . , Cm with (wlog) positive weights w1, . . . , wm. Let z be a variable not in φ.
For i going from 1 to m, we will find the minimum weight l′ that can be satisfied
in φi = {C1, . . . , Ci} and an assignment a that satisfies that weight. Initially,
l′ = 0 and a is arbitrary. Suppose we know the minimum weight l′ that can be
satisfied in φi−1 and a satisfies it. The minimum weight l′′ that can be satisfied
in φi is in the interval [l′, l′+wi]. Letting b be the partial assignment that makes
Ci false, we can use the following lemma and binary search to discover l′′ using
lg(wi + 1) calls to A.

Lemma 14. Let l′ be the smallest weight that can be satisfied in φi−1 and let a
satisfy that weight. Let wi > 0 and l′ ≤ t < l′ +wi. Let b be a partial assignment
and ψ = φi−1 ∪ {wi · (z → xr �= ar) | r ∈ [n]} ∪ {wi · (z̄ → xr �= br) | r ∈
domain of b}∪{(n−|b|)wi · (z)}. Then ψ has an assignment that satisfies weight
≤ t+nwi, and it is unique iff b cannot be extended to an assignment that satisfies
weight ≤ t in φi−1.

Proof. a together with z = 1 satisfies weight ≤ l′ + nwi ≤ t + nwi in ψ. There
is no other such assignment with z = 1, and any with z = 0 agrees with b. "#

If l′′ = l′ + wi, then a satisfies weight l′′ in φi. Otherwise, we use the lemma
(with t = l′′) n− |Ci| times to extend b to a full assignment achieving weight l′′
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in φi. At the end, we simply compare l′ to l. The reduction uses time polynomial
in the size of the input and makes ≤

∑
i(lg(wi + 1) + n− |Ci|) oracle calls, each

with ≤ n+ 1 variables, so it is efficient. "#

8 Conclusions

We show a simple technique to settle conjecture (1) as well as many questions
relating the exponential complexity of similar parameterized constraint satisfac-
tion problems to their unique-solution counterparts. Our problem list here is
not intended to be exhaustive but demonstrative. Theorem 11 shows the robust-
ness of the technique, allowing considerable variation in problem specification
without disturbing the proof.

Relating the exponential complexities of such problems to their unique-solution
counterparts under the promise of at most 1 solution appears to be harder. Current
techniques [10,1] for that problem use oblivious hashing (i.e. not looking at the
input but only its size), but fall short of such strong results as are here. It seems
like new, non-oblivious techniques are needed.
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Abstract. We attack the problem of deciding whether a finite collection
of finite languages is a code, that is, possesses the unique decipherability
property in the monoid of finite languages. We investigate a few subcases
where the theory of rational relations can be employed to solve the prob-
lem. The case of unary languages is one of them and as a consequence, we
show how to decide for two given finite subsets of nonnegative integers,
whether they are the n-th root of a common set, for some n ≥ 1. We also
show that it is decidable whether a finite collection of finite languages is
a Parikh code, in the sense that whenever two products of these sets are
commutatively equivalent, so are the sequences defining these products.
Finally, we consider a nonunary special case where all finite sets consist
of words containing exactly one occurrence of the specific letter.

Keywords: Unique decipherability, finite automata, regular languages.

1 Introduction

The question whether or not a given morphism h : Σ∗ → Δ∗ is injective, that is,
whether or not the encoded message can be uniquely decoded, is fundamental
in the theory of message transmission. More precisely, the problem asks whether
or not the given set of code words possesses the unique decipherability property.
The issue for finite sets X was already affirmatively answered in 1950 with the
so-called Sardinas and Patterson algorithm, see [19]. Later, it was extended, via
syntactic monoids, to all rational sets, see [3] and its complexity was analyzed
in [7].

A particularly illustrative way of solving this problem is to construct a finite
two-tape automaton for all double representations (factorizations) of message
sequences and to reduce the testing to the emptiness problem for rational re-
lations. In [5] the same approach was used to show how to decide whether or
not, given two finite sets X and Y , the two monoids X∗ and Y ∗ they generate
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are isomorphic. This, however, works for finite sets only and the general case of
rational sets is still open.

The unique decipherability problem can be formulated for any associative
algebra. It has been studied, e.g., in the theory of trees, [15], or in the case
of multivalued encodings, [18]. In the case of the monoid of finite languages,
amazingly, little seems to be known, a splendid exception being the fact that the
set of prefix languages under the operation of concatenation product is free, that
is, any collection of finite prefix sets is a code, see [17]. A partial explanation to
the lack of such results was revealed recently when it was shown in a number
of papers, how powerful or difficult language equations are. To mention a few
examples, it is shown in [12] that even the question whether or not, for given
finite sets A,B,C,D,E, F , the equation ABiC = DEiF holds for all i ≥ 0, is
recursively undecidable, see also [14]; the maximal set commuting with a given
finite set A need not be recursive, see [13]; or the fact that two given finite sets
A and B are conjugate, i.e., that there exists a set Z such that AZ = ZB holds,
is known to be decidable only in the case of bifix sets, see [4].

Nonetheless, there are two related research topics which have been studied
in the literature. Research on decomposition of rational languages was initiated
already in Conway’s book, see [8]. Later, this research was pursued in, e.g., [11],
where also prime decompositions are defined. In another direction, unambiguous
products of languages were studied in [1] and [16]. As we shall see, it is this, or
more precisely its negation, the ambiguity, which makes our problems difficult.

As already hinted, our goal is to tackle the unique decipherability decision
problem for a finite collection of finite languages. More precisely, we want to
apply the theory of rational relations to solve a few special cases, even if the
general problem seems to be very much beyond the reach of our tools.

The structure of our presentation is as follows. In section 2, we fix the termi-
nology, recall the basic tools we are using and prove a simple case of our problem
to be decidable, namely we show how to decide, given two finite sets of integers,
whether or not some of their nonnegative powers (actually subset sums since we
are working in the additive structure) coincide. The problem can be formulated
as a natural decision question in additive number theory: decide whether or not
two finite sets of numbers are the (additive) roots of some common set.

In section 3 we extend the above proof to the unique decipherability property
for unary languages, and later in section 4 a further extension is introduced
where so-called Parikh codes are considered. We say that a collection of finite
languages is a Parikh code, in the sense that whenever two products of these sets
are commutatively equivalent, so are the two sequences defining these products.
Being a Parikh code is necessary but not sufficient for a set of finite languages
to be a code. Finally, in section 5, another approach of using rational languages
is introduced. It allows us to consider the case when all words of all sets of the
collection contain one and only one occurrence of a fixed letter. In this case, we
can decide, given two such sets, whether or not some of their powers coincide;
we also outline methods of deciding whether a given collection of special finite
languages is uniquely decipherable, that is a code.
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2 Preliminaries and an Example

In this section we fix the terminology, recall basic results and give a simple
example. For a general reference to the field, we suggest [2] and [3].

We denote by Σ a finite alphabet, and by Σ∗ the free monoid it generates.
Elements and subsets of Σ∗ are called words and languages, respectively. Other
monoids considered here are submonoids of the additive monoid of nonnegative
integers N, and Cartesian products of these and of Σ∗. Our main concern is on
finite languages and finite subsets of N and Nk, and basic tools to deal with those
rely on properties of rational, i.e., semilinear sets. We recall that a rational subset
of a monoid is a subset obtained from finite subsets by applying finitely many
times the operations of set union, product and Kleene iteration, also known as
the star-operation. The result of applying the Kleene operation to the subset X
is denoted by X∗. We shall also use the notation X+ = XX∗ = X∗X . A linear
set, in turn, is a set of the form

{a+ λ1b1 + · · ·λpbp | λi ∈ N, for i = 1, . . . , p}

where p ≥ 0 and a, bi ∈ Nk for 1 ≤ i ≤ p. A semilinear set, is a finite union of
linear sets.

We recall that a subset of Σ∗ (resp. the Cartesian product Σ∗×Δ∗) is rational
if and only if it is recognized by some finite one-tape (resp. two-tape) automaton.

It is quite straightforward to check that the family of rational sets of Nk is
identical to the family of semilinear sets. A fundamental, nontrivial property due
to Ginsburg and Spanier is that this family is closed under complement. More
precisely, we have, see [10], also [9].

Theorem 1. The family of semilinear sets is an effective Boolean algebra.

This means that not only the family is closed under the Boolean operations, but
that from a specification of two semilinear sets we can compute a specification
for the complement and the intersection. This theorem plays a crucial role in our
considerations, as well as some other closure properties of semilinear sets such
as the closure under morphic images and projections.

Now we state our basic problems. Let M be an associative algebra, that is
an algebra with a single associative operation. A subset X ⊆ M is uniquely
decipherable in M if , whenever

x1 · · ·xp = y1 · · · yq, with xi, yj ∈ X

holds, then necessarily we have

p = q and xi = yi, for i = 1, . . . , p .

This leads to the following decision issue: the unique decipherability prob-

lem for M , (UD-problem for short) asks to decide whether or not a given finite
subset of M can be uniquely deciphered.
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Two related simpler problems are:

The Power equality problem for M (PE for short) asks whether or not, for
two given finite subsets X and Y of M , some of their powers coincide, that is
whether or not Xn = Y m holds for some n,m ≥ 1.
The Common root problem for M (CR for short) asks whether or not for
two given finite subsets X and Y of M , they are distinct n-th powers of a set
for a certain n, that is, whether or not Xn = Y n holds for some n ≥ 1.

We conclude this section by illustrating our techniques with a simple exam-
ple, which, we believe, is a natural problem in additive theory of numbers. By
convention, we keep using the multiplicative notation though we work with the
additive structure of the integers. In particular if X and Y are two subsets of
integers, then XY stands for all the sums of the form x + y with x ∈ X and

y ∈ Y and the notation Xn stands for the expression

n times︷ ︸︸ ︷
X + · · · +X. E.g., with

X = {0, 1, 2} we have X2 = X +X = {0, 1, 2, 3, 4}.

Theorem 2. Given two finite subsets X,Y ⊆ N, it is recursively decidable
whether or not the equality Xn = Y m holds for some integers n,m ≥ 1.

Proof. We define a subset of N3

Z = N × (X × 1)+ \ (1 × Y )+ × N . (1)

If π1,3 is the projection of N3 onto N2 defined by π1,3(x, y, z) = (x, z), then we
claim that the following holds

(n,m) ∈ π1,3(Z) if and only if Xn �⊆ Y m .

Indeed, this follows from the construction: if (n,m) ∈ π1,3(Z) then there exist
elements x1, . . . , xn �∈ Y m, that is Xn �⊆ Y m, and conversely. Consequently,

(n,m) �∈ π1,3(Z) if and only if Xn ⊆ Y m . (2)

It follows that the set of pairs (n,m) satisfying the condition (2), which defines
a rational relation on N2, characterizes the pairs of integers for which Xn ⊆ Y m

holds. Similarly, the relation characterizing the set of pairs for which Xn ⊇ Y m

holds, is rational. As the intersection is again rational and effective, the equality
Xn = Y m holds for some integers n and m if and only if this rational relation is
nonempty. "#

Theorem 2, rather its proof, has the following immediate consequences.

Corollary 1. The common root problem of finite subsets for N is decidable.

Corollary 2. It is recursively decidable whether or not two finite subsets X and
Y of N are ultimately equivalent, i.e., whether or not there exists an integer N
such that

Xn = Y n

holds for n ≥ N .
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Of course, in either of the above corollaries, in order to get the answer “yes”,
the maximal and minimal numbers of the two subsets must necessarily coincide.
This condition holds for the second largest and smallest elements as well. For
the others, the ambiguity comes into play, and makes the problem difficult to
analyse.

A simple example from [6] showing that a square root of a set may not be
unique is as follows: take X = {0, 2, 3, 7, 10, 12, 14, 15} and Y = {0, 2, 3, 7, 12, 13,
14, 15}. Then X2 = Y 2 = [0, 30] \ {1, 8, 11, 23}.

3 The Unary Case

In this section we extend our considerations of the previous section to cover the
UD-problem for unary languages, that is we prove

Theorem 3. The unique decipherability problem is decidable for unary lan-
guages

Proof. Let Ξ = {X1, . . . , Xk} be a collection of finite unary languages. We have
to decide whether or not there exist two sequences i1, . . . , ip and j1, . . . , jq such
that

Xi1 . . .Xip = Xj1 . . .Xjq with Xiα , Xjβ
∈ Ξ and i1, . . . , ip �= j1, . . . , jq

We fix some notations. For i = 1, . . . , k let πi : Nk → N be the projection onto
the i-th component. Furthermore, let ei ∈ Nk be the vector having 1 in position
i and 0 everywhere else. We modify the expression (1) in the proof of Theorem
2 by setting

Z = Nk ×
( k⋃

j=1

(Xj × ej)
)+ \

( k⋃
j=1

(ej ×Xj)
)+ × Nk

Then we have (z1, x, z2) ∈ Z with z1, z2 ∈ Nk and x ∈ N if and only if x ∈

X(z1) \ X(z2), where X(zα) =
k∏

i=1

X
πi(zα)
i , for α = 1, 2. The last part of the

proof mimics that of Theorem 2, the only additional feature being that at the
end we have to intersect with the following rational subset of N2k

{(x, y) ∈ N2k | x, y ∈ Nk, x �= y} "#

4 Unique Parikh Decipherability

Our method allows us to go still a step further. In the previous section we were
able to solve our problem for all unary languages. Here, we can solve the general
problem at the price of substituting the condition of unique Parikh decipherabil-
ity to that of unique decipherability.
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We say that a collection Ξ = {X1, . . . , Xk} of finite languages possesses the
unique Parikh decipherabilty property if the condition

Xi1 . . .Xip ∼c Xj1 . . .Xjq

implies that
i1 . . . ip ∼c j1 . . . jq

holds, where ∼c is used to denote the commutative equivalence of languages or
words, respectively. We can formulate

Theorem 4. The unique Parikh decipherability is recursively decidable for finite
collections of finite languages in Σ∗.

Sketch of the Proof. This result is actually a generalization of Theorem 2.
Indeed, it can be shown that this latter theorem holds for subsets of Nm for
arbitrary m ≥ 1, not only for subsets of N. Now, set Σ = {a1, . . . , am} and
consider the morphism φ : Σ∗ → Nm which maps each word w ∈ Σ∗ to the
m-tuple (|w|a1 , . . . , |w|am) where |w|ai denotes the number of occurrences of the
letter ai in w. Then our problem reduces to the unique decipherability problem
for the finite collection φ(X1), . . . , φ(Xk) ⊆ Nm. �

It is worthwhile emphasizing that all our results reported so far are based on
strong closure properties of rational relations in the commutative case, in par-
ticular the closure under complement, and as a consequence under intersection.
This leads to the following comments. First, the complexity of our algorithms are
quite high, particularly due the the operation of complementation. Second, there
is no hope to extend our approach at least in a naive way, since rational relations
over free monoids with more than one generator are not closed under intersec-
tion. On the other hand, we do not see how to construct complicated examples
of collections of finite sets which would satisfy the unique Parikh decipherability,
but would not satisfy the unique decipherability property.

Two last observations. It can be readily shown as hinted in the proof of the
previous theorem, that Theorem 2 carries over from N to Nm for m ≥ 1 and
actually also to Zm. Also, since the commutative image of a rational subset of a
free monoid is a semilinear set of Nm, Theorem 4 also holds for a finite collections
of rational, not only finite, languages of a free monoid.

5 A Special Nonunary Case

In this section we consider the UD-problem, for languages over a general alpha-
bet, but in quite a restricted setting, namely we assume that the finite languages
are subsets of

(Σ \ {b})∗b(Σ \ {b})∗ for some fixed letter b ∈ Σ. (3)

We show that the problem is decidable in this case. The solution is based on
strong closure properties of rational languages.
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Theorem 5. The unique decipherability problem is decidable for any collection
of finite sets of the form (3).

Sketch of the Proof. We outline the main idea of the proof in a simple set-
ting without going into technical details. The proof is based on strong closure
properties of rational language.

We start by solving a different problem. Given two finite collections of finite
languages of type (3)

Xi for i = 1, . . . , N and,
Yi for i = 1, . . . , N,

where
Xi = {xi,s | s = 1, . . . , s(i)} for i = 1, . . . , N and
Yi = {yi,r | r = 1, . . . , r(i)}

determine whether or not
Xw = Yw (4)

holds for some w = i1 · · · ik ∈ {1, . . . , N}+. The notation Xw stands for the
product

Xw = Xi1 · · ·Xik
.

The idea is to determine the set of w ∈ {1, . . . , N}+ such that

Xw ⊆ Yw

and to test whether of not its intersection with the set of w’s such that Yw ⊆ Xw

holds, is not empty. We show that these two languages are recognized by finite
automata, therefore that the test is effective.

It suffices to prove the claim for the set of words for which the inclusion
Xw ⊆ Yw holds. We define an automaton A as follows. Its states are words over
Σ\{b} and inverses (considering the free monoid as embedded in the free group),
the empty word 1 being both the initial and final state. Its alphabet is the set

J = {(i, s) | i = 1, . . . , N and s = 1, . . . , s(i)}

The transitions are defined as follows: For two states α and β and xi,s ∈ Xi if

αxi,s = yi,rβ, for some yi,r ∈ Yi,

then there is a transition
α

(i,s)−−−→ β (5)

Actually, here are four different possibilities depending on whether α and/or β
are words, as above, or there formal inverses. These modifications are obvious.
Clearly, A is well defined (due to the form of sets Xi and Yi) finite but nondeter-
ministic automaton. Intuitively, it checks those products of X-words which can
be decomposed into Y -words as well. Note that, again according to the form of
our words, such decompositions are of the same length.
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Set I = {1, . . . , N} and define the letter-to-letter substitution π : J∗ $→ I∗

by posing π(i, s) = i. Let L be the language recognized by the automaton and
set P = π−1π(L). Then the set of w’s such that Xw ⊆ Yw holds is equal to
π(P ) \ (π(P \ L)). Since all these operations are effective and involve rational
languages, the problem (4) is decidable.

We now turn to the proof of Theorem 5 is obtained by modifying the above
construction. Since we want to decide the noncode property, that is that Xw =
Xw′ with w �= w′, we have to generate two different sequences of indices, and
then test the inclusions

Xw ⊆ Xw′ and Xw′ ⊆ Xw.

This all can be done, by defining the starting automaton A having transitions
of the form

α
((i,s),i,i′,(i′,s′))−−−−−−−−−−→ β

instead of (5). The first (resp. the last) two components are used to check the
inclusion Xw ⊆ Xw′ (resp. Xw′ ⊆ Xw), and simultaneously the second and the
third component are used to guarantee that w �= w′. We omit the details. "#
The first part of the previous proof can be reformulated as

Corollary 3. For two finite languages X,Y ⊆ (Σ\{b})∗b(Σ\{b})∗, with b ∈ Σ,
it is recursively decidable whether or not there exists an n such that Xn = Y n

holds true.

The above deserves a few comments. It relies very much on the special form of
the X-sets, that is on the fact that there is just one “marker” symbol in all words
of X sets. On the other hand, the marker need not be a symbol. That is to say
that X should satisfy the conditions that each word in X contains exactly one
occurence of a word u and each occurence of X2 contains exactly two occurences
of u.
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Abstract. In this paper we study the possibility of reducing the setup assump-
tions under which concurrent non-malleable zero knowledge protocol can be re-
alized. A natural model choice is the bare public-key (BPK) model of [6], a model
with very minimal setup assumptions. Our main contribution is to show in this
model the following about constant-round concurrent non-malleable black-box
zero-knowledge arguments.

– They can be constructed from any one-way function for any language in
NP . Here, our construction takes 5 rounds, and we can reduce it to a 4-
round (round-optimal) argument under existence of one-way permutations.

– Under number-theoretic assumptions, they admit a time-efficient instantia-
tion for some specific NP languages (e.g., all languages having efficient Σ
protocols, for which we can implement our construction using only O(1)
modular exponentiations).

Compared to the non-black-box construction in a concurrent work of [OPV, ICALP
2008] in this model, our protocol (even the construction from one-way function)
is significantly more time- and round-efficient and can be based on more general
assumptions.

1 Introduction

Zero-knowledge protocols, first introduced in [26], have received a significant amount
of attention from the research community because of their useful applications to several
cryptographic protocols in a variety of settings. As such protocols are often deployed in
distributed and asynchronous networks like the Internet, the research on these protocols
is moving towards extending the security properties of (stand-alone) zero-knowledge
protocols to models with multiple parties, asynchronous message delivery, and adver-
sarial modification to exchanged messages.

Concurrent Zero-Knowledge. The notion of concurrent zero-knowledge, first stud-
ied by [21], extends the zero-knowledge security notion to the case where multiple
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concurrent executions of the same protocol take place and a malicious adversary may
control the scheduling of the messages and corrupt multiple provers or verifiers in order
to violate the soundness or zero-knowledge properties (respectively). Unfortunately,
concurrent zero-knowledge with black-box simulation requires a logarithmic number
of rounds for languages outside BPP [7] and therefore their round-complexity is not
efficient. In the Common Reference String model, in [10] it is showed that 3-round
and time-efficient concurrent zero knowledge can be achieved. Surprisingly, using non-
black-box techniques, Barak [1] constructed a constant round non-black-box bounded
concurrent zero knowledge protocol whose time-complexity however is not efficient.

Non-Malleable Zero-Knowledge. The concept of non-malleable zero knowledge was
put forward in [20]. The issue of malleability arises in the so-called man-in-the-middle
setting, in which the adversary plays the role of the verifier in several proofs (left ses-
sions) and at the same time acts as the prover in some other proofs (right sessions),
having full control over the scheduling of the messages between parties. The serious
problem in such scenario is that the information obtained from left interactions may
help the adversary to cheat the verifier in one of the right sessions (malleability). A zero-
knowledge protocol is considered non-malleable if it is immune against such problem.
In [20], the authors give a O(logn)-round non-malleable zero-knowledge protocol in
which the adversary interacts with only one prover. Achieving non-malleability non-
interactively in the common random string model was studied in [13] and [36]. In [2], a
constant-round coin-tossing protocol assuming the existence of hash functions that are
collision-resistant against subexponential-time adversaries was presented, which can be
used to transform non-malleable non-interactive zero-knowledge in the shared random
string model into interactive non-malleable zero-knowledge in the plain model. A new
constant-round non-malleable ZK with minimum assumptions was present in [33], but
it failed to be extended to the unbounded concurrent model (but it can be viewed as
a bounded-concurrent non-malleable zero knowledge argument). Note that in [2] and
[33] non-black-box techniques were used, and thus the resulting protocols are very in-
efficient. As showed in [28], it is impossible to achieve concurrent non-malleability
without set-up assumption when the inputs (statements) for honest parties are chosen
adaptively by the adversary. Several works on this issue show the feasibility to achieve
concurrent non-malleability efficiently in the common reference string model. In [22]
Garay et al. defined the so-called Ω-protocol, a variant of Σ-protocol with straight line
extractor, and then they show a technique to transform the Ω-protocol to a concurrently
non-malleable ZK protocol. Gennaro [23] introduced multi-trapdoor commitments and
presented a very efficient ZK protocol enjoying concurrent non-malleability.

The BPK Model. A growing area of research in Cryptography is that of reducing
the setup assumptions under which certain cryptographic protocols can be realized. In
an effort to reduce the setup assumptions required for efficient zero-knowledge argu-
ments of knowledge that remain secure against concurrent man-in-the-middle attacks,
we consider the Bare Public-Key (BPK) model of [6], a model with very relaxed set-
up assumptions. Comparing with some previous model such as common reference
string model and the preprocessing model this model seems to significantly reduce
the set-up assumptions: it just assumes that each verifier deposits a public key pk in
a public file before any interaction with the prover begins, with no need of trusted
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parties. Since its introduction, many papers focusing on resettable zero knowledge in
this model appeared in recent years, but they do not address man-in-the-middle attacks.
The BPK model has been further studied in many papers, including [29,11,17,18,39,15],
where the main focus was to present constant-round concurrently sound and concur-
rent/resettable zero-knowledge protocols. Formally, the bare public-key model (BPK
model) makes the following assumptions.

1. There are two types of entities: provers and verifiers, and the entire interaction
between them can be divided into two stages; the first stage is called preprocessing
stage and only needs to be run by verifiers; at the end of the preprocessing stage, the
proof stage starts, where any pair of prover and verifier can interact. All algorithms
have access to a public file. Provers, verifiers and the public file are defined below.

2. The public file, structured as a collection of records, is empty at the beginning and
can be modified by the verifiers during the registration stage; the version of the
public file F obtained at the end of the registration stage will be used during the
proof stage.

3. An (honest) proverP is an interactive deterministic polynomial-time algorithm that
operates in the proof stage, on input a security parameter 1n, an n-bit string x ∈ L,
an auxiliary input w, a public file F and a random tape rp, where L is a language
in NP .

4. An (honest) verifierV is a pair of deterministic polynomial-time algorithms (V1, V2),
where V1 operates in the preprocessing stage and V2 operates in the proof stage. On
input a security parameter 1n and a random tape rv1,V1 generates a key pair (pk, sk)
and stores pk in the public file. On input pk, sk, an n-bit string x and a random tape
rv2, the interactive algorithm V2 performs the interactive protocol with a prover, and
outputs “accept x” or “reject x” at the end of this protocol.

Defining the Man-in-the-Middle Adversary in BPK Model. Before discussing the
possibility of achieving concurrent non-malleability in the BPK model, we define the
man-in-the-middle attack in this model. In a MIM attack in BPK model the adversary
A is allowed to act as a malicious verifier in the registration stage and control all the
communication between honest parties that take place in the proof stage:

Registration phase: A, on input the security parameter 1n, and a random string r, re-
ceives all public keys registered by honest verifiers and consequently registers up to a
polynomial number of public keys. These keys registered by A are possibly different
from those registered by honest verifiers. The public keys registered by A and honest
verifiers form public file F , and A keeps some state information st that can be used in
the proof phases.

Proof phase: Similarly as in the standard model, in this phase A is allowed to interact
with polynomial number of honest provers (left sessions) and polynomial number of
honest verifiers (right sessions), and to schedule the left sessions and the right sessions
concurrently. Recall that in each session, the common input consists of the statement to
be proven and the verifier’s public key.

Let L be a language in NP and let RL be the associated polynomial-time relation.
Informally, we say that a system (P, V ) is a (black-box) concurrently non-malleable
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zero knowledge argument of knowledge for relation RL in the BPK model and in the
presence of a MIM attack, if it satisfies the following requirements:

1. Completeness and Concurrent Zero Knowledge (as defined in [18]).
2. Extraction: For every left session i, if A, mounting the MIM attack in the BPK

model, convinces an honest verifier that the relevant statement yi ∈ L with proba-
bility p, then, there is a probabilistic polynomial-time algorithm E that, given access
to A, returns a witness wi such that (yi, wi) ∈ RL with probability negligibly close
to p.

3. Simulatability of A’s View: There exists a probabilistic polynomial-time simulator
M = [MP ,Mv] such that A’s view (in both Registration phase and proof phase)
in the real man-in-the-middle setting is computational indistinguishable from the
view View[A,MP ,MV ] simulated by M.

We remark that the above extraction requirement, although sufficient for this version of
our paper, is actually a simplified version of the one we use for our formal proof, which
is obtained by adapting known definitions from [3,19].

Our Results. In this paper, we first formally define MIM attacks in the BPK model,
and then

1. construct a 5-round concurrent non-malleable black-box zero-knowledge argument
from any one-way function for any NP language. Under the existence of one-way
permutations, we can further reduce it to a 4-round (round-optimal) argument.

2. present efficient instantiations of the above protocol for any NP language having
an efficient Σ protocol under appropriate number-theoretic assumptions (e.g., the
strong RSA problem), where efficiency metrics is, as done in the literature, with
respect to round, communication and time efficiency. In particular, the protocol
only requires O(1) (small constant) modular exponentiations.

We note that our results, as well as any results of security against man-in-the-middle
attacks in the BPK model, crucially rely on the guaranteed authentication of the data
stored in the common setup file in the BPK model, an issue apparently not specifically
used in all previous works in the BPK model (not studying MIM attacks). More details
on this issue can be found in [12].

Independent Works [4,31,19]. Barak et al. [4] show there are (non-constant round)
concurrent non-malleable ZK arguments in plain model if the statements to be proven by
honest provers are fixed in advance. Throughout this paper, we make no such assump-
tion, that is, our (both positive and negative) results hold with respect to input-adaptive
adversary which is allowed to choose statements for the honest provers adaptively (i.e.,
choose a statement based on the history of previous executions) during the whole inter-
action.

In [31], the authors study concurrent non-malleable witness-indistinguishable proto-
cols in the standard model and use their non-black-box-simulation solution to this prob-
lem to present a constant-round concurrently non-malleable zero-knowledge argument
of knowledge against MIM attacks in the BPK model. Compared to their construction,
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our main result avoids the inefficiency of all known non-black-box-simulation tech-
niques by using only black-box-simulation techniques (which in fact have quite efficient
instantiations), and relies on much weaker (in fact, minimal) complexity assumptions.

Finally, in [19] the authors present a formal definition of proofs of knowledge in the
BPK model, they prove separation results for different notions of their witness extrac-
tion requirement, and prove that a previous protocol from [18] (as well as a generaliza-
tion of it based on more general complexity assumptions) satisfies concurrent witness
extraction in the BPK model. However, we note that in [19] the authors do not consider
MIM attacks.

2 Our Main Protocol

In this section we present our main result: under general complexity assumptions,
we present a constant-round concurrently non-malleable zero-knowledge argument of
knowledge against MIM attacks for any polynomial-time relation in the BPK model.
Formally, we obtain the following

Theorem 1. Let L be a language in NP , let RL be the associated polynomial-time
relation. In the BPK model, if there exist one-way function families, there exists a
constant-round (black-box) concurrently non-malleable zero-knowledge argument of
knowledge against a MIM attack for RL.

Remarks on Complexity Assumptions, Round and Time Efficiency. We note that
the complexity assumption sufficient for our transformation is the weakest possible as
it is also necessary for non-trivial relations, due to one of the many consequences of
the main result in [32]. The above statement for our positive result focuses on strongest
generality with respect to complexity assumptions and neglects round-optimality and
time-efficiency of prover and verifier. However, we note that our transformation takes 5
rounds when implemented using arbitrary one-way function families, and can be imple-
mented in only 4 rounds (which is optimal, due to a result in [29]), when implemented
using one-way permutation families (see below for the assumptions and rounds required
to implement Σ-protocols for NP-complete languages). Furthermore, for some spe-
cific NP problem (e.g., the strong RSA problem), we can instantiate our protocol effi-
ciently, which takes only O(1) (a small constant) modular exponentiations, as we show
in Section 3.

Σ-Protocols Used in Our Construction. Σ-protocols are defined as 3-round public-
coin proofs of knowledge with some nice properties: 1) special soundness. Let (a, e, z)
be the three messages exchanged by prover P and verifier V in a session. From any
statement x and any pair of accepting transcripts (a, e, z) and (a, e′, z′) where e �=
e′, one can efficiently compute w such that (x,w) ∈ R. 2) Special honest-verifier
zero-knowledge: given the second message e and the statement x, we can compute an
accepting transcript of form (a, e, z) that is computational indistinguishable from the
real transcript between P and the honest V .

Many known efficient protocols, such as those in [27] and [37], are Σ-protocols.
Furthermore, there is a Σ-protocol for the language of Hamiltonian Graphs [5], assum-
ing that one-way permutation families exists; if the commitment scheme used by the
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protocol in [5] is implemented using the scheme in [30] from any pseudo-random gen-
erator family, then the assumption can be reduced to the existence of one-way function
families, at the cost of adding one preliminary message from the verifier. We will refer
to this modified protocol as a 4-round Σ-protocol. We will also use partially-witness-
independent Σ-protocols, where only the last message in these protocols depends on
the witness of the proved statement, while all other messages only depend on (an upper
bound on) the length of any such witness. Many Σ-protocols (including [5] for all of
NP) are partially-witness-independent.

Interestingly,Σ-protocols can be composed to proving the OR of atomic statements,
and the resulting protocol, denoted as a ΣOR-protocol, turns out to be witness indistin-
guishable. We refer readers to [14,8] for this type of composition.

In our main construction we will use two 4-round and partially-witness-independent
ΣOR-protocols for specific polynomial-time relations.

Informal Description of the Difficulties Solved by Our Transformation.The natural
starting point for our transformation is the concurrently non-malleable zero-knowledge
argument of knowledge in the CRS model from [22]. Informally speaking, this protocol
goes as follows: the prover first generates a key pair (sk′, vk′) of a one-time strong
signature scheme, then sends vk′ and proves (using a ΣOR-protocol Πp) that either he
knows a witness for the statement to be proved or he knows a valid signature of vk′ under
a signature verification key vk from the common reference string. In the last step, the
prover signs on the whole transcript of this session using sk′ and sends the signature to
the verifier. Furthermore, the simulator for this protocol uses its knowledge of the secret
key associated with the signature verification key vk in the common reference string.

A first way to adjust this protocol so that it might work in the BPK model is as follows.
Instead of taking vk from the reference string (which is not available in the BPK model),
we require the verifier to choose vk, and to give to the prover a proof (not necessarily
a zero knowledge proof) that the verifier knows the secret key sk associated with vk
(note that omitting this latter proof might make it easier for cheating verifiers to violate
the zero-knowledge requirement). It turns out that several standard attempts to present
a proof for this protocol actually fail, one major problem being in the fact that an algo-
rithm trying to use a cheating prover to break the signature scheme seems to need itself
knowledge of the signature secret key in order to be able to use the cheating prover’s
power. (This does not lead to a contradiction of the security of the signature scheme.)

A second adjustment to this protocol is as follows: the verifier chooses two signature
verification keys vk0, vk1 (rather than one), and proves knowledge of at least one of
the two associated secret keys to the prover. Analogously, the prover proves knowledge
either of a witness for the statement to be proved or of a valid signature of vk′ under any
one of the two signature verification keys vk0, vk1. However, even after this additional
fix we cannot rule out malleability interactions between the verifier’s and the prover’s
subproofs in this protocol. (A similar situation was detailed in [18], where a specific
message schedule was given, and it was showed that a malicious prover could use this
schedule and malleability attacks to elude extraction attempts.) Here, we note that a
fix based on the solution to this problem proposed by [18] would result in an inefficient
protocol that would requireO(1) exponentiations for every bit of the security parameter.
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Our final fix is that of requiring the prover to commit to a random string and prove
the knowledge that this string is either a witness for the statement to be proved or a valid
signature of vk′ under one of the two signature verification keys vk0, vk1. We will show
that with this combination of signatures and commitments we avoid the malleability at-
tacks from [18] efficiently (i.e., we show instantiations of the overall transformation
under appropriate number-theoretic assumptions that only require O(1) additional ex-
ponentiations) and only using general complexity assumptions, such as the existence of
one-way function families for the 5-round variant and of one-way permutation families
for the 4-round variant. On the other hand, as we allow the man-in-the-middle adver-
sary to register its own public keys, the analysis of security is more involved: our proof
of the extraction property of this protocol makes a novel combined use of concurrent
scheduling analysis and signature-based simulation arguments.

The formal description of our protocol uses twoΣOR-protocolsΠv, Πp, as described
below. Protocol Πv (resp., Πp) is used by the verifier (resp., prover).

The protocol (P, V )

Security parameter: 1n.
Common input: the public file F , n-bit string x ∈ L, an index i that specifies the i-th
entry pki = (ver k0, ver k1) in F , where (ver k0, ver k1) are two verification keys
of two signature schemes (KG0, Sig0, V er0) and (KG1, Sig1, V er1) that are both se-
cure against adaptive chosen message attack.
The Prover’s private input: a witness w for x ∈ L.
V ’s Private input: a secret key sk (sk is one of the signing keys corresponding to
(ver k0, ver k1), i.e, sk = sig k0 or sig k1.

P Step 0: Compute and send to V the first message of a 4-round and partially-witness-
independentΣOR-protocolΠv in which V will prove knowledge of sk that
is one of the signing keys (sig k0, sig k1).

V Step 1: compute and send to P the second message of the 4-round ΣOR-protocol
Πv; compute and send to P the first message f of a 4-roundΣOR-protocol
Πp;

P Step 1: generate a key pair (sk′, vk′) for a one-time strong signature scheme
(KG′, Sig′, V er′); pick a random string r and compute the commitment
C = COM(w, r); compute and send to V the second message a of the 4-
round ΣOR-protocolΠp in which P will prove to V that there exists (s, r)
such that: 1) C = COM(s, r), and 2) s is a witness for statement x ∈ L or
a valid signature of vk′ corresponding to V er0 or V er1; send vk′, C, a and
a random string (i.e., the challenge of the Σ-protocol) as the third message
of Πv to P ;

V Step 2: compute the fourth message of protocolΠv according to the challenge sent
by P in P Step 1; send this message to P ; send a random challenge e of
protocol Πp to P ;

P Step 2: check whether the transcript of protocolΠv is accepting; if so, compute the
last message z of protocolΠp; let tran denote the transcript of above inter-
action (i.e, the whole sequence of messages sent between parties, including
z); compute the signature δ=Sig′(sk′, tran) and send z, δ to V ;
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V Step 3: accept if and only if (f, a, e, z) is an accepting transcript of Πp and
V er′(vk′, δ, tran) = 1.

Sketch of Proofs. Due to space limitations, we just sketch the proofs of the properties
of our protocol.

Completeness. The completeness property of our protocol easily follows from the com-
pleteness of the two ΣOR subprotocols Πv, Πp used. The completeness of Πv implies
that V can run the prover’s program in protocol Πv , given any one of the secret signa-
ture keys sig k0, sig k1. The completeness of Πp implies that P can run the prover’s
program in protocol Πp, given the witness w for statement x ∈ L, and given the fact
that if x ∈ L the statement proved using Πp is also true.

Concurrent Zero-Knowledge. The proof for the concurrent zero-knowledge property is
obtained by carefully combining related proofs given in other papers (e.g., [6,22,18,15]),
and we only briefly sketch it here. Briefly speaking, we show a (black-box) simulator
that runs the following basic steps. First of all, upon receiving in a session a proof of
knowledge according to protocol Πv , the simulator runs the extractor associated with
Πv and obtains one of the two signature secret keys associated with the verifier’s public
key pki in public file F . This can be done by the simulator efficiently and regardless of
the interleaving strategy used by the concurrent adversary, as both the verifier in pro-
tocol Πv and the extractor associated with Πv can be run in expected polynomial time
(i.e., without need for a witness for the statement x ∈ L). Once this is achieved, the
simulator can derive a witness for the statement proved using protocol Πp, this witness
being a signature secret key, and thus run on a ‘straight-line mode’ (i.e., without rewind-
ing the verifier) for this particular session and all future sessions based on this public
key, regardless of the interleaving strategy used by the concurrent adversary. As the
only required verifier rewindings are those made by the extractor, and as at most one
extractor procedure is required per public key, amounting to a total of polynomially
many extractor procedures (which is a crucial advantage of using the BPK model), the
entire simulation can be carried out in expected polynomial time. The above discussion
assumes that the cheating verifier never aborts before completing a protocol execution.
However, the difficulties arising when this is not the case were already handled in the
sequential zero-knowledge, single-session setting [25], and the techniques used in this
latter paper have been extended to the concurrent zero-knowledge, multi-session set-
ting in the BPK model [18,15]. Here, the use of basic properties of the BPK model (in
particular, that one can eventually simulate a given session into a straight-line mode)
is once again crucial to guarantee that the simulation running time remains expected
polynomial time.

In the rest of this section we focus on the most interesting property of extraction.
(The property simulatability of A’s view follows directly from the proof of extraction).

Extraction. Without loss of generality, we can assume that the MIM adversary A inter-
acts with only one honest verifier V and interacts with many provers under any public
keys chosen by A from the public file F . Then we can assume that A engages in at most
polynomial number of left interactions and makes V accept at the end of the j-th right
session on input statement yj ∈ L with a probability pj

A(yj). For such A, we construct
an extractor E and a polynomial-time algorithm that satisfy the extraction requirement.
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The extractor in the registration phase. On input the security parameter 1n, E gen-
erates two key pairs (sig k0, ver k0) and (sig k1, ver k1) for the signature scheme
secure against adaptive chosen message attack; then, it registers the public key pk =
(ver k0, ver k1) on the public file and keeps sig kb as its secret key (it also stores
sig k1−b, which will be important for the extractor to successfully extract a witness),
where b is a random bit selected by E . Then E runs A’s key generation algorithm (which
takes E’s public key as input) and gets its outputs, i.e., a polynomial number of public
keys that A registers on the public file during the registration phase. At the end of this
stage, all parties are assumed to obtain the (same) public file.

The extractor in the proof phase. We first explain informally a high-level view of algo-
rithm E in this phase. First of all, upon receiving in a left session an accepting conver-
sation of a subprotocolΠv where A plays as the prover within Πv , E extracts the secret
key associated to this execution of Πv by multiple rewindings as in the extractor used
in many other papers (e.g., the main protocol in [16]). Since there are at most a polyno-
mial number of such secret keys, the expected number of rewindings is polynomial and
this entire process takes at most expected polynomial time. These secret keys allow E
to successfully simulate both the prover in the left sessions (as using a secret key it is
possible to compute in polynomial time a witness for the statement proved using sub-
protocolΠp) and the verifier in the right interactions (as sig kb is itself a witness for the
statement proved using subprotocolΠv) with A during the proof phase. A correct sim-
ulation of the interaction with A is necessary for E to later perform one more extraction
in correspondence of the i-th right session, and thus obtain the desired witness.

The proof of the property of extraction consists of the following two steps:

1. With probability negligibly close to pj
A(yj), the above extractor extractsw′ = (s, r)

such that C = COM(s, r) and s is a witness for yi ((yi, s) ∈ RL) or it is a valid
signature on vk′ corresponding to ver k0 or ver k1. This is guaranteed by the
special-soundness of Πp.

2. Show that the probability p that s is a valid signature on vk′ corresponding to
ver k0 or ver k1 is negligible. Informally, the proof of this step proceeds as fol-
lows. We first show that if p is non-negligible, then with non-negligible probability
q, s is a valid signature on vk′ corresponding to ver k1−b (which is the secret
key that E does not use in the entire extraction process). Otherwise we are able
to break either the witness indistinguishability of Πv or the computational bind-
ing of COM ; we then show that if q is non-negligible, we can construct an non-
uniform algorithm to break the existential unforgeability of the signature scheme
(KG1−b, Sig1−b, V er1−b). In this substep, we will use the fact that the transcript
of j-th right session is different from any left session and (KG′, Sig′, V er′) is an
one-time strong signature scheme.

3 Efficient Instantiation of Our Main Protocol

The goal of this section is to show that the concurrently non-malleable zero-knowledge
argument of knowledge for any polynomial-time relation presented in Section 2 has
efficient instantiations for a large subclass of languages. Specifically, if the polynomial-
time relation associated with the original NP language has an efficient Σ protocol, then
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protocol (P, V ) reduces the efficiency of the original Σ protocol only by a small con-
stant factor. Here, consistently with most cryptography literature, by efficiency we mean
the combination of round-efficiency (e.g., a 3-message Σ protocol), time-efficiency
(i.e., the protocol requires prover and/or verifier to only run a small constant number
of modular exponentiations) and communication-efficiency (i.e., the length of the pro-
tocol transcript is at most a constant times the input length).

Thus, for the rest of this section, we consider L to be a language in NP for which
the associated polynomial-time relation admits an efficient Σ protocol; note that we
do not specifically need the 4-round ΣOR protocols used in Section 2 to obtain a result
under minimal complexity assumptions. Then, consider the application of protocol from
Section 2 to languageL. By looking at its construction, we easily see that it is composed
of two subprotocols:

– a ΣOR protocol Πv to prove the knowledge of one out of 2 signature secret keys
associated with two independently generated signature public keys vk0, vk1;

– aΣOR protocolΠp to prove that a given commitment key is a commitment to either
a witness w for statement x ∈ L, or a signature of a given message based on one of
the two public keys vk0, vk1.

First of all, one can immediately see that an efficient instantiation of bothΠv, Πp would
suffice to obtain an efficient instantiation of the entire protocol. Furthermore, since the
transformations from [8,14] efficiently transform any Σ protocol into a ΣOR protocol,
and using the assumption that L has an efficient Σ protocol, we obtain that it would
actually suffice to provide an efficient Σ protocol for the following two statements:

1. proving the knowledge of a signature secret key associated with a signature public
key;

2. proving that a given commitment key is a commitment to a signature of a given
message based on a given signature public key.

About item (2), we note that an efficient protocol for this task has been given in [9]
with respect to a signature scheme based on the strong RSA problem. Then, a match-
ing solution to item (1) can be obtained using the efficient proof of knowledge of the
factorization of a product of 2 primes from [34].

4 Achieving Minimal Round Complexity

A result from [29] implies that, unless NP ⊆ BPP, at least 4 rounds are neces-
sary to provide concurrently non-malleable zero-knowledge arguments of knowledge
in the BPK model. As described, our protocol (P, V ) from Section 2 requires 5 rounds.
However, we note that by replacing the 4-round ΣOR protocol based on any one-way
function family with a 3-round ΣOR protocol based on any one-way permutation fam-
ily, we can show that the resulting protocol is a 4-round concurrently non-malleable
zero-knowledge arguments of knowledge for any polynomial-time relation in the BPK
model. Moreover, very recently, in [15], a technique is provided to construct a 3-round
ΣOR protocol based on any one-way function family in the BPK model. By using this
latter protocol instead of the 4-round ΣOR protocol currently used in (P, V ), we ob-
tain a round-optimal protocol under the minimal assumption of the existence of any
one-way function family.
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Abstract. A graph homomorphism is a vertex map which carries edges from
a source graph to edges in a target graph. We study the approximability proper-
ties of the Weighted Maximum H-Colourable Subgraph problem (MAX H -COL).
The instances of this problem are edge-weighted graphs G and the objective is
to find a subgraph of G that has maximal total edge weight, under the condition
that the subgraph has a homomorphism to H ; note that for H = Kk this prob-
lem is equivalent to MAX k-CUT. To this end, we introduce a metric structure on
the space of graphs which allows us to extend previously known approximabil-
ity results to larger classes of graphs. Specifically, the approximation algorithms
for MAX CUT by Goemans and Williamson and MAX k-CUT by Frieze and Jer-
rum can be used to yield non-trivial approximation results for MAX H -COL. For
a variety of graphs, we show near-optimality results under the Unique Games
Conjecture. We also use our method for comparing the performance of Frieze &
Jerrum’s algorithm with Håstad’s approximation algorithm for general MAX 2-
CSP. This comparison is, in most cases, favourable to Frieze & Jerrum.

Keywords: optimisation, approximability, graph homomorphism, graph H-col-
ouring, computational complexity.

1 Introduction

Let G be a simple, undirected and finite graph. Given a subset S ⊆ V (G), a cut in G
with respect to S is the set of edges from vertices in S to vertices in V (G)\S. The MAX

CUT-problem asks for the size of a largest cut in G. More generally, a k-cut in G is the
the set of edges going from Si to Sj , i �= j, where S1, . . . , Sk is a partition of V (G),
and the MAX k-CUT-problem asks for the size of a largest k-cut. The problem is readily
seen to be identical to finding a largest k-colourable subgraph of G. Furthermore, MAX

k-CUT is known to be APX-complete for every k ≥ 2 and consequently does not admit
a polynomial-time approximation scheme (PTAS).

In the absence of a PTAS, it is interesting to determine the best possible approxima-
tion ratio c within which a problem can be approximated or alternatively, the smallest
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c for which it can be proved that no polynomial-time approximation algorithm exists
(typically under some complexity-theoretic assumption such as P �= NP). Since the
1970s, the trivial approximation ratio 1/2 was the best known for MAX CUT. It was not
until 1995 that Goemans and Williamson [16], using semidefinite programming (SDP),
achieved a ratio of .878567. Until very recently no other method than SDP was known
to yield a non-trivial approximation ratio for MAX CUT. Trevisan [34] broke this bar-
rier by using algebraic graph theory techniques to reach an approximation guarantee
of .531. Frieze and Jerrum [15] determined lower bounds on the approximation ratios
for MAX k-CUT using SDP techniques. Sharpened results for small values of k have
later been obtained by de Klerk et al. [9]. Under the assumption that the Unique Games
Conjecture (UGC) holds, Khot et al. [24] showed the approximation ratio for k = 2 to
be essentially optimal and also provided upper bounds on the approximation ratio for
k > 2. Håstad [19] has shown that SDP is a universal tool for solving the general MAX

2-CSP problem over any domain, in the sense that it establishes non-trivial approxima-
tion results for all of those problems. Assuming UGC, Raghavendra’s SDP algorithms
have optimal performance for every MAX CSP [30], but the exact approximation ratios
are not yet known. In fact, even though an algorithm (doubly exponential in the domain
size) for computing these ratios for specific MAX CSP problems has emerged [31], this
should be contrasted to the infinite classes of graphs our method gives new bounds for.

Here, we study approximability properties of a generalised version of MAX k-CUT

called MAX H -COL for undirected graphs H . This is a specialisation of the MAX CSP

problem. Jonsson et al. [20] have shown that whenever H is loop-free, MAX H -COL

does not admit a PTAS, and otherwise MAX H -COL is trivial. Langberg et al. [26] have
studied the approximability of MAX H -COL when H is part of the input. We present
approximability results for MAX H -COL where H is taken from different families of
graphs. Many of these results turn out to be close to optimal under UGC. Our approach
is based on analysing approximability algorithms applied to problems which they are
not originally intended to solve. This vague idea will be clarified below.

Denote by G the set of all simple, undirected and finite graphs. A graph homomor-
phism from G to H is a vertex map which carries the edges in G to edges in H . The
existence of such a map will be denoted by G → H . If both G → H and H → G,
the graphs G and H are said to be homomorphically equivalent (denoted G ≡ H). For
a graph G ∈ G, let W(G) be the set of weight functions w : E(G) → Q+ assigning
weights to edges of G. For a w ∈ W(G), we let ‖w‖ =

∑
e∈E(G) w(e) denote the total

weight of G. Now, Weighted Maximum H-Colourable Subgraph (MAX H -COL) is the
maximisation problem with

Instance: An edge-weighted graph (G,w), where G ∈ G and w ∈ W(G).
Solution: A subgraph G′ of G such that G′ → H .
Measure: The weight of G′ with respect to w.

We remark that we consider instances where the weight functions w are given explic-
itly. Given an edge-weighted graph (G,w), denote by mcH(G,w) the measure of the
optimal solution to the problem MAX H -COL. Denote by mck(G,w) the (weighted)
size of a largest k-cut in (G,w). This notation is justified by the fact that mck(G,w) =
mcKk

(G,w). In this sense, MAX H -COL generalises MAX k-CUT.
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Let G≡ denote the set of equivalence classes of G under ≡. The relation → is defined
on G≡ in the obvious way and (G≡,→) is a lattice denoted by CS. For a more in-depth
treatment of graph homomorphisms and the lattice CS, see [17]. In this paper, we endow
G≡ with a metric d defined in the following way: for M,N ∈ G, let

d(M,N) = 1 − inf
G∈G

w∈W(G)

mcM (G,w)
mcN (G,w)

· inf
G∈G

w∈W(G)

mcN (G,w)
mcM (G,w)

. (1)

We will show that d satisfies the following property: if M,N ∈ G and mcM can be
approximated within α, then mcN can be approximated within α · (1 − d(M,N)) and
conversely, if it is NP-hard to approximate mcN within β, then mcM is not approx-
imable within β/ (1 − d(M,N)) unless P = NP. Hence, we can use d for extend-
ing known (in)approximability bounds on MAX H -COL to new and larger classes of
graphs. For instance, we can apply the algorithm of Goemans and Williamson (which
is intended for solving MAX K2-COL) to MAX C11-COL (i.e. the cycle on 11 vertices)
and analyse how well the problem is approximated (it will turn out that Goemans and
Williamson’s algorithm approximates MAX C11-COL within 0.79869). Furthermore,
we present a linear program for d(M,N) and show that the computation of d(M,N)
can be drastically simplified whenever M or N is edge-transitive.

The metric d is related to a well-studied graph parameter known as bipartite density
b(H) [1,3,6,18,27]: if H ′ is a bipartite subgraph of H with maximum number of edges,

then b(H) = e(H′)
e(H) , where e(G) is the number of edges in a graph G. Lemma 5 shows

that b(H) = 1− d(K2, H) for edge-transitive graphsH . We note that while d is invari-
ant under homomorphic equivalence, this is not true for bipartite density. There is also
a close connection to work by Šámal on cubical colourings [32,33]. In fact, it turns out
that for a graph H , the cubical colouring number χq(H) = 1/(1 − d(K2, H)).

The paper comprises two main sections. Section 2 is used for proving the basic prop-
erties of d, showing that it is well-defined on G≡, and that it is a metric. After that, we
describe how to construct the linear program for d. In section 3, we use d for study-
ing the approximability of MAX H -COL and investigate optimality issues, for several
classes of graphs. This is done by exploiting inapproximability bounds that are conse-
quences of the Unique Games Conjecture. Comparisons are also made to the bounds
achieved by the general MAX 2-CSP-algorithm by Håstad [19]. Our investigation cov-
ers a spectrum of graphs, ranging from graphs with few edges and/or containing long
shortest cycles to dense graphs containingΘ(n2) edges. The techniques used in this pa-
per seem to generalise to larger sets of problems. This and other questions are discussed
in Section 4. Due to space considerations, some proofs have been omitted.

2 Approximation via the Metric d

In this section we start out by proving basic properties of the metric d, that (G≡, d) is
a metric space, and that proximity of graphs M,N in this space lets us interrelate the
approximability of MAX M -COL and MAX N -COL. Sections 2.2 and 2.3 are devoted
to showing how to compute d.
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2.1 The Space (G≡, d)

We begin by noting that d(M,N) = 1 − s(N,M) · s(M,N) if we define s(M,N)
(for M,N ∈ G) as the infimum of mcM (G,w)

mcN (G,w) over all G ∈ G and w ∈ W(G). We now
see that the relation mcM (G,w) ≥ s(M,N) · mcN (G,w) holds for all G ∈ G and
w ∈ W(G). Using this observation, one can show that s(M,N) and thereby d(M,N)
behaves well under graph homomorphisms and homomorphic equivalence.

Lemma 1. Let M,N ∈ G and M → N . Then, for every G ∈ G and every weight
function w ∈ W(G), mcM (G,w) ≤ mcN (G,w).

Corollary 2. IfM andN are homomorphically equivalent graphs, thenmcM (G,w) =
mcN (G,w). Let M1 ≡ M2 and N1 ≡ N2 be two pairs of homomorphically equivalent
graphs. Then, for i, j, k, l ∈ {1, 2}, s(Ni,Mj) = s(Nk,Ml).

Corollary 2 shows that s and d are well-defined as functions on the set G≡ and it is
routine work to show that d is indeed a metric on this space.

We say that a maximisation problem Π can be approximated within c < 1 if there
exists a randomised polynomial-time algorithm A such that c · Opt(x) ≤ E(A(x)) ≤
Opt(x) for all instances x of Π . Proximity of graphs G and H in d allows us to de-
termine bounds on the approximability of MAX H -COL from known bounds on the
approximability of MAX G-COL:

Lemma 3. Let M,N,K be graphs. If mcM can be approximated within α, then mcN
can be approximated within α · (1 − d(M,N)). If it is NP-hard to approximate mcK
within β, then mcN is not approximable within β/ (1 − d(N,K)) unless P = NP.

Proof. Let A(G,w) be the measure of the solution returned by an algorithm which
approximates mcM within α. We know that for all G ∈ G and w ∈ W(G) we have
the inequalities mcN(G,w) ≥ s(N,M) ·mcM (G,w) and mcM (G,w) ≥ s(M,N) ·
mcN (G,w). As a consequence, mcN (G,w) ≥ mcM (G,w) · s(N,M) ≥ A(G,w) ·
s(N,M) ≥ mcM (G,w) · α · s(N,M) ≥ mcN (G,w) · α · s(N,M) · s(M,N) =
mcN (G,w) · α · (1 − d(M,N)). For the second part, assume to the contrary that there
exists a polynomial-time algorithmB that approximatesmcN within β/(1−d(N,K)).
According to the first partmcK can then be approximated within (1−d(N,K))·β/(1−
d(N,K)) = β. This is a contradiction unless P = NP. "#

2.2 Exploiting Symmetries

We will now consider general methods for computing s and d. In Lemma 4, we show
that certain weight functions provide a lower bound on mcM (G,w)/mcN (G,w), and
in Lemma 5, we provide a simpler expression for s(M,N) which depends directly on
the automorphism group and thereby the symmetries of N . This expression becomes
particularly simple whenN is edge-transitive. An immediate consequence of this is that
s(K2, H) = b(H) for edge-transitive graphs H .

We describe the solutions to MAX H -COL alternatively as follows: letG andH ∈ G,
and for any vertex map f : V (G) → V (H), let f# : E(G) → E(H) be the
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(partial) edge map induced by f . In this notation h : V (G) → V (H) is a graph
homomorphism precisely when (h#)−1(E(H)) = E(G) or, alternatively, when h#

is a total function. The set of solutions to an instance (G,w) of MAX H -COL can
then be taken to be the set of vertex maps f : V (G) → V (H) with the measure
w(f) =

∑
e∈(f#)−1(E(H)) w(e).

In the remaining part of this section, we will use this description of a solution. Let
f : V (G) → V (H) be an optimal solution to the instance (G,w) of MAX H -COL.
Define the weight wf ∈ W(H) in the following way: for each e ∈ E(H), let wf (e) =∑

e′∈(f#)−1(e)
w(e′)

mcH(G,w) . The next result is now fairly obvious:

Lemma 4. Let M,N ∈ G be two graphs. Then, for every G ∈ G, every w ∈ W(G),
and any optimal solution f to (G,w) of MAX N -COL, mcM(G,w)

mcN (G,w) ≥ mcM (N,wf ).

Let M and N ∈ G be graphs and let A = Aut∗(N) be the (edge) automorphism group
of N . We will let π ∈ A act on {u, v} ∈ E(N) by π · {u, v} = {π(u), π(v)}. The
graph N is edge-transitive if and only if A acts transitively on the edges of N . Let
Ŵ(N) be the set of weight functionsw ∈ W(N) which satisfy ‖w‖ = 1 and for which
w(e) = w(π · e) for all e ∈ E(N) and π ∈ Aut∗(N).

Lemma 5. Let M,N ∈ G. Then, s(M,N) = infw∈Ŵ(N) mcM (N,w). In particular,
when N is edge-transitive, s(M,N) = mcM (N, 1/e(N)).

Proof. Clearly, s(M,N) ≤ infw∈Ŵ(N)
mcM (N,w)
mcN (N,w) = infw∈Ŵ(N) mcM (N,w). For the

first part of the lemma, it will be sufficient to prove that the following inequality holds
for some w′ ∈ Ŵ : α = mcM(G,w)

mcN (G,w) ≥ mcM (N,w′). By taking the infimum over graphs
G and weight functions w ∈ W(G) in the left-hand side of this inequality, we see that
s(M,N) ≥ mcM (N,w′) ≥ infw∈Ŵ(N)mcM (N,w).

Let A = Aut∗(N) be the automorphism group of N . Let π ∈ A be an arbitrary au-
tomorphism of N . If f is an optimal solution to (G,w) as an instance of MAX N -COL,
then so is fπ = π◦f . Letwπ = wπ◦f . By Lemma 4, α ≥ mcM (N,wπ). Summing π in
this inequality overA gives |A|·α ≥

∑
π∈AmcM (N,wπ) ≥ mcM (N,

∑
π∈A wπ) (the

straightforward proof for the last inequality is omitted). The weight function
∑

π∈Awπ

can be determined as follows.∑
π∈A

wπ(e) =
∑
π∈A

∑
e′∈(f#)−1(π·e) w(e′)

mcN (G,w)
=

|A|
|Ae| ·

∑
e′∈(f#)−1(Ae) w(e′)

mcN (G,w)
,

where Ae denotes the orbit of e under A. Thus, w′∑
π∈A wπ/|A| ∈ Ŵ(N) and w′

satisfies α ≥ mcM (N,w′) so the first part follows.
For the second part, note that when the automorphism group A acts transitively on

E(N), there is only one orbit Ae = E(N). Then, the weight function w′ is given by

w′(e) =
1

e(N)
·
∑

e′∈(f#)−1(E(N))w(e′)

mcN (G,w)
=

1
e(N)

· mcN (G,w)
mcN (G,w)

.

"#
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2.3 Computing Distances

From Lemma 5 it follows that in order to determine s(M,N), it is sufficient to minimise
mcM (N,w) over Ŵ(N). We will now use this observation to describe a linear program
for computing s(M,N). For i ∈ {1, . . . , r}, let Ai be the orbits of Aut∗(N) acting
on E(N). The measure of a solution f when w ∈ Ŵ(N) is equal to

∑r
i=1 wi · fi,

where wi is the weight of an edge in Ai and fi is the number of edges in Ai which are
mapped to an edge in M by f . Note that given a w, the measure of a solution f depends
only on the vector (f1, . . . , fr) ∈ Nr. Therefore, take the solution space to be the set
of such vectors: F = { (f1, . . . , fr) | f is a solution to (N,w) of MAX M -COL }. Let
the variables of the linear program be w1, . . . , wr and s, wherewi represents the weight
of each element in the orbit Ai and s is an upper bound on the solutions.

min s∑
i fi · wi ≤ s for each (f1, . . . , fr) ∈ F∑
i |Ai| · wi = 1 and wi, s ≥ 0

Given a solution wi, s to this program, a weight function which minimises mcM (G,w)
is given by w(e) = wi when e ∈ Ai. The measure of this solution is s = s(M,N).

Example 6. The wheel graph on k vertices, Wk, is a graph that contains a cycle of
length k − 1 plus a vertex v not in the cycle such that v is connected to every other
vertex. We call the edges of the k − 1-cycle outer edges and the remaining k − 1 edges
spokes. It is easy to see that for odd k, the wheel graphs are homomorphically equivalent
toK3. We will now determine s(K3,Wn) for evenn ≥ 6 using the previously described
construction of a linear program. Note that the group action of Aut∗(Wn) on E(Wn)
has two orbits, one which consists of all outer edges and one which consists of all the
spokes. If we remove one outer edge or one spoke from Wk, then the resulting graph
can be mapped homomorphically onto K3. Therefore, it suffices to choose F = {f, g}
with f = (k − 1, k − 2) and g = (k − 2, k − 1) since all other solutions will have a
smaller measure than at least one of these. The program for Wk looks like this:

min s
(k − 1) · w1 + (k − 2) · w2 ≤ s
(k − 2) · w1 + (k − 1) · w2 ≤ s
(k − 1) · w1 + (k − 1) · w2 = 1
wi, s ≥ 0

The solution is w1 = w2 = 1/(2k − 2) with s(K3,Wk) = s = (2k − 3)/(2k − 2).

In some cases, it may be hard to determine the distance between H and M or N . If we
know that H is homomorphically sandwiched between M and N so that M → H →
N , then we can provide an upper bound on the distance of H to M or N by using
the distance between M and N . The following result can readily be proved from the
definition of s:

Lemma 7. Let M → H → N . Then, s(M,H) ≥ s(M,N) and s(H,N) ≥ s(M,N).
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3 Approximability of MAX H-COL

Let A be an approximation algorithm for MAX H -COL. Our method basically allows
us to measure how well A performs on other problems MAX H ′-COL. In this section,
we will apply the method to various algorithms and various graphs. We do two things
for each kind of graph under consideration: compare the performance of our method
with that of some existing, leading, approximation algorithm and investigate how close
to optimality we can get. Let v(G), e(G) denote the number of vertices and edges in G,
respectively. Our main algorithmic tools will be the following:

Theorem 8. mc2 can be approximated within αGW ≈ 0.878567 [16] and mck can be
approximated within αk ∼ 1 − 1

k + 2 ln k
k2 [15]. Let H be a graph. There is an absolute

constant c > 0 such that mcH can be approximated within 1 − t(H)
d2 · (1 − c

d2 log d)
where d = v(H) and t(H) = d2 − 2 · e(H) [19].

Here, the relation ∼ indicates two expressions whose ratio tends to 1 as k → ∞.
We note that de Klerk et al. [9] have presented the sharpest known bounds on αk for
small values of k; for instance, α3 ≥ 0.836008. We will compare the performance of
Håstad’s algorithm on MAX H -COL with the performance of the algorithms for mc2
andmck in Theorem 8 analysed using Lemma 3 and estimates of the distance d. For this
purpose, we introduce two functions, FJk and Hå, such that, if H is a graph, FJk(H)
denotes the best bound on the approximation guarantee when Frieze and Jerrum’s algo-
rithm for MAX k-CUT is applied to the problem mcH , while Hå(H) is the guarantee
when Håstad’s algorithm is used to approximate mcH . We note that the comparison is
not entirely fair since Håstad’s algorithm was probably not designed with the goal of
providing optimal results—the goal was to beat random assignments. However, it is the
currently best algorithm, with known bounds, that can approximate MAX H -COL for
arbitrary H ∈ G. This is in contrast with the algorithms of Raghavendra [30].

To be able to investigate the eventual near-optimality of our approximation method
we will rely on the Unique Games Conjecture by Khot [23]. Thus, we assume hence-
forth that UGC is true, which gives us the following inapproximability results:

Theorem 9 (Khot et al. [24]). For every ε > 0, it is NP-hard to approximate mc2
within αGW + ε. It is NP-hard to approximate mck within 1 − 1

k + 2 ln k
k2 +O( ln ln k

k2 ).

3.1 Sparse Graphs

In this section, we investigate the performance of our method on graphs which have
relatively few edges, and we see that the girth of the graphs plays a central role. The
girth of a graph is the length of a shortest cycle contained in the graph. Similarly, the
odd girth of a graph gives the length of a shortest odd cycle in the graph.

Before we proceed we need some facts about cycle graphs. Note that the odd cycles
form a chain in the lattice CS between K2 and C3 = K3 in the following way: K2 →
· · · → C2i+1 → C2i−1 → · · · → C3 = K3. Note that C2k+1 �→ K2 and C2k+1 �→
C2m+1. However, after removing one edge from C2k+1, the remaining subgraph is
isomorphic to the path P2k+1 which in turn is embeddable in both K2 and C2m+1.
Since C2k+1 is edge-transitive, Lemma 5 gives us the following result:
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Lemma 10. Let 0 < k < m be odd integers. Then, s(K2, Ck) = s(Cm, Ck) = k−1
k .

Proposition 11. Let k ≥ 3 be odd. Then, FJ2(Ck) ≥ k−1
k · αGW and Hå(Ck) = 2

k +
c

k2 log k − 2c
k3 log k . For any ε > 0, mcCk

cannot be approximated within k
k−1 ·αGW + ε.

Proof. From Lemma 10 we see that s(K2, Ck) = k−1
k which implies (using Lemma 3)

that FJ2(Ck) ≥ k−1
k ·αGW . Furthermore,mc2 cannot be approximated within αGW +

ε′ for any ε′ > 0. From the second part of Lemma 3, we get that mcCk
cannot be

approximated within k
k−1 · (αGW + ε′) for any ε′. With ε′ = ε · k−1

k the result follows.
Finally, the bound on Hå(Ck) can be obtained by noting that e(Ck) = k. "#

Håstad’s algorithm does not perform particularly well on sparse graphs; this is reflected
by its performance on cycle graphsCk where the approximation guarantee tends to zero
when k → ∞. We will see that this trend is apparent for all graph types studied in this
section. Using results of Lai & Liu [25] and Dutton & Brigham [10], we continue with
a result on a class of graphs with large girth:

Proposition 12. Let n > k ≥ 4. If H is a graph with odd girth g ≥ 2k + 1 and
minimum degree ≥ 2n−1

2(k+1) , where n = v(H), then FJ2(H) ≥ 2k
2k+1 · αGW and mcH

cannot be approximated within 2k+1
2k · αGW + ε for any ε > 0. Asymptotically, Hå(H)

is bounded by c
n2 log n + 2(ng/(g−1))3

n4n1/(g−1) − 2ng/(g−1)n1/(g−1)c
n4 log n .

Stronger results are possible if we restrict ourselves to planar graphs: Borodin et al. [7]
have proved that if H is a planar graph with girth at least 20k−2

3 , then H is (2 +
1
k )-colourable, i.e. there exists a homomorphism from H to C2k+1. By applying our
method, the following can be proved:

Proposition 13. Let H be a planar graph with girth at least g = 20k−2
3 . If v(H) = n,

then FJ2(H) ≥ 2k
2k+1 · αGW and Hå(H) ≤ 6

n − 12
n2 + c

n2 log n − 6c
n3 log n + 12c

n4 log n .

mcH cannot be approximated within 2k+1
2k · αGW + ε for any ε > 0.

Proposition 13 can be further strengthened and extended in different ways: one is to
consider a result by Dvořák et al. [11]. They have proved that every planar graph H
of odd-girth at least 9 is homomorphic to the Petersen graph P . The Petersen graph is
edge-transitive and it is known (cf. [3]) that the bipartite density of P is 4/5 or, in other
words, s(K2, P ) = 4/5. Consequently, mcH can be approximated within 4

5 · αGW but
not within 4

5 · αGW + ε for any ε > 0. This is better than Proposition 13 for planar
graphs with girth strictly less than 13. Another way of extending Proposition 13 is to
consider graphs embeddable on higher-genus surfaces. For instance, the lemma is true
for graphs embeddable on the projective plane, and it is also true for graphs of girth
strictly greater than 20k−2

3 whenever the graphs are embeddable on the torus or Klein
bottle. These bounds are direct consequences of results in Borodin et al. [7].

We conclude the section by looking at a class of graphs that have small girth. Let
0 < β < 1 be the approximation threshold for mc3, i.e. mc3 is approximable within β
but not within β+ ε for any ε > 0. Currently, we know that α3 ≤ 0.836008 ≤ β ≤ 102

103
[9,21]. The wheel graphs from Section 2.3 are homomorphically equivalent to K3 for
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odd k and we conclude (by Lemma 3) that mcWk
has the same approximability proper-

ties as mc3 in this case. For even k ≥ 6, the following result says that FJ3(Wk) → α3
when k → ∞, and Hå(Wk) tends to 0.

Proposition 14. For k ≥ 6 and even, FJ3(Wk) ≥ α3 · 2k−3
2k−2 but mcWk

is not approx-

imable within β · 2k−2
2k−3 . Hå(Wk) = 4

k − 4
k2 + c

k2 log k − 4c
k3 log k + 4c

k4 log k .

3.2 Dense and Random Graphs

We will now study dense graphs, i.e. graphs H containing Θ(v(H)2) edges. For a
graph H on n vertices, we obviously have H → Kn. Let ω(G) denote the size of the
largest clique in G and χ(G) denote the chromatic number of G. If we assume that
ω(H) ≥ r, then we also have Kr → H . Thus, if we determine s(Kr,Kn), then we
can use Lemma 7 to bound FJn(H). According to Turán [35], there exists a family of
graphs T (n, r) such that v(T (n, r)) = n, e(T (n, r)) =  

(
1 − 1

r

)
· n2

2 !, ω(T (n, r)) =
χ(T (n, r)) = r, and if G is a graph such that e(G) > e(T (v(G), r)), then ω(G) > r.

Lemma 15. Let r and n be positive integers. Then, s(Kr,Kn) = e(T (n, r))/e(Kn).

Proposition 16. Let v(H) = n and pick r ∈ N, σ ∈ R such that
⌊(

1 − 1
r

)
· n2

2

⌋
≤

σ · n2 = e(H) ≤ n(n−1)
2 . Then, FJn(H) ≥ αn · s(Kr,Kn) ∼ 1 − 1

r − 1
n + 2 lnn

n(n−1)

and Hå(H) = 2σ + (1−2σ)c
n2 log n .

Note that when r and n grow, FJn(H) tends to 1. This means that, asymptotically,
we cannot do much better. If we compare the expression for FJn(H) with the inap-
proximability bound for mcn (Theorem 9), we see that all we could hope for is a faster
convergence towards 1. As σ satisfies

(
1 − 1

r

)
· 1

2 ≤ σ ≤
(
1 − 1

n

)
· 1

2 , we conclude that
Hå(H) also tends to 1 as r and n grow. To get a better grip on how Hå(H) behaves we
look at two extreme cases.

For a maximal σ =
(
1 − 1

r

)
· 1
2 , Hå(H) becomes 1− 1

n + c
n3 log n . On the other hand,

this guarantee, for a minimal σ =
(
1 − 1

r

)
· 1

2 is 1 − 1
r + c

rn2 log n . At the same time,
it is easy to see that Frieze and Jerrum’s algorithm makes these points approximable
within αn (since, in this case, H ≡ Kn) and αr (since Turán’s theorem tells us that
H → Kr holds in this case), respectively. Our conclusion is that Frieze and Jerrum’s
and Håstad’s algorithms perform almost equally well on these graphs asymptotically.

Another way to study dense graphs is via random graphs. Let G(n, p) denote the
random graph on n vertices in which every edge is chosen randomly and independently
with probability p = p(n). We say that G(n, p) has a property A asymptotically almost
surely (a.a.s.) if the probability it satisfies A tends to 1 as n tends to infinity. Here, we let
p = c for some 0 < c < 1. For G ∈ G(n, p) it is well known that a.a.s. ω(G) assumes
one of at most two values around 2 ln n

ln(1/p) [5,29]. It is also known that, almost surely

χ(G) ∼ n
2 ln(np) ln

(
1

1−p

)
, as np → ∞ [4,28]. Let us say that χ(G) is concentrated

in width s if there exists u = u(n, p) such that a.a.s. u ≤ χ(G) ≤ u + s. Alon and
Krivelevich [2] have shown that for every constant δ > 0, if p = n−1/2−δ then χ(G) is
concentrated in width s = 1. That is, almost surely, the chromatic number takes one of
two values.
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Proposition 17. Let H ∈ G(n, p). When np → ∞, FJm(H) ∼ 1− 2
m + 2 ln m

m2 + 1
m2 −

2 ln m
m3 , where m = ω(H). Hå(H) = p− p

n + (1 − p) · c
n2 log n + pc

n3 log n .

We see that, in the limiting case, Hå(H) tends to p, while FJm(H) tends to 1. Again,
this means that, for large enough graphs, we cannot do much better. With a better anal-
ysis, one could possibly reach a faster convergence rate for FJm(H).

It is interesting to look at what happens for graphs H ∈ G(n, p) where np does not
tend to ∞ when n → ∞. We have the following result by Erdős and Rényi [14]: let
c be a positive constant and p = c

n . If c < 1, then a.a.s. no component in G(n, p)
contains more than one cycle, and no component has more than ln n

c−1−ln c vertices. Now
we see that if np → ε when n → ∞ and 0 < ε < 1, then G(n, p) almost surely
consists of components with at most one cycle. Thus, each component resembles a
cycle where, possibly, trees are attached to certain cycle vertices, and each component
is homomorphically equivalent to the cycle it contains. Since we know from Section 3.1
that Frieze and Jerrum’s algorithm performs better than Håstad’s algorithm on cycle
graphs, it follows that the same relationship holds in this part of the G(n, p) spectrum.

4 Conclusions and Open Problems

We have defined a metric on graphs that measures how well one graph can be embed-
ded in another. While not apparent from its definition, which involves taking infima
over the set of all edge-weighted graphs, we have shown that the metric can be com-
puted practically by using linear programming. Given a graph H and known approx-
imability properties for MAX H -COL, this metric allows us to deduce bounds on the
corresponding properties for graphs close to H . In other words, the metric measures
how well an algorithm for MAX H -COL works on problems MAX H ′-COL, for graphs
H ′ close to H , it also translates inapproximability results between these problems. In
principle, given a large enough set of graphs with known approximability results for
MAX H -COL, our method could be used to derive good bounds on the approxima-
bility of MAX H -COL for all graphs. If the known results were in fact tight and the
set of graphs dense in G≡ (in the topology induced by d), then we would have tight
results for all graphs. In this paper we have considered the graphs with known proper-
ties to be the complete graphs. We have shown that this set of graphs is sufficient for
achieving new bounds on several different classes of graphs, i.e. applying Frieze and
Jerrum’s algorithm to MAX H -COL gives comparable to or better results than when
applying Håstad’s MAX 2-CSP algorithm for the classes of graphs we have considered.
One possible explanation for this is that the analysis of the MAX 2-CSP algorithm only
aims to prove it better than a random solution on expectation, which may leave room
for strengthening of the approximation guarantee. At the same time, we are probably
overestimating the distance between the graphs. It is likely that both results can be im-
proved. This immediately suggests two clear directions of research. On the one hand,
we need approximability/inapproximability result pairs for MAX H -COL on a substan-
tially larger class of graphs. This can be seen considering for example MAX C5-COL.
The closest complete graph to C5 is K2, which gives us the inconsequential inapprox-
imability bound αGW · 5/4 > 1. On the other hand, we do not measure the actual
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distance from each graph to the closest complete graph. Instead, we embed each graph
between K2 and a cycle or between its largest clique and Kk, where k is greater than
or equal to the chromatic number. In the first case, Erdős [13] has proved that for any
positive integers k and l there exists a graph of chromatic number k and girth at least l.
It is obvious that such graphs cannot be sandwiched between K2 and a cycle as was the
case of the graphs of high girth in Section 3.1. Additionally, there are obviously graphs
with an arbitrarily large gap between largest clique and chromatic number. A different
idea is thus required to deal with these graphs. In general, to apply our method more
precisely, we need a better understanding of the structure of CS and how this interacts
with our metric d. Clearly, progress in either one of the directions will influence what
type of result to look for in the other direction. In light of this discussion, two interest-
ing candidates for research are the circular complete graphs and the Kneser graphs, see
for example [17]. Both of these classes generalise the complete graphs and have been
subject to substantial previous research. Partial results for d on 3-colourable circular
complete graphs have been obtained by Engström [12].

We conclude the paper by considering two other possible ways to extend our results.
Firstly, Kaporis et al. [22] have shown that mc2 is approximable within .952 for any
given average degree d and asymptotically almost all random graphs G in G(n,m =⌊

d
2n
⌋
), where G(n,m) is the probability space of random graphs on n vertices and m

edges selected uniformly at random. In a similar vein, Coja-Oghlan et al. [8] give an
algorithm that approximates mck within 1 − O(1/

√
np) in expected polynomial time,

for graphs from G(n, p). It would be interesting to know if these results could be carried
further, to other graphs G, so that better approximability bounds on MAX H -COL, for
H such that G → H , could be achieved.

Secondly, the idea of defining a metric on a space of problems which relates their
approximability can be extended to more general cases. It should not prove too difficult
to generalise the framework introduced in this paper to MAX CSP over directed graphs
or even languages consisting of a single, finitary relation. How far can this generalisa-
tion be carried out? Could it provide any insight into the approximability of MAX CSP
on arbitrary constraint languages?
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Abstract. Ordering constraints are analogous to instances of the sat-
isfiability problem in conjunctive normalform, but instead of a boolean
assignment we consider a linear ordering of the variables in question.
A clause becomes true given a linear ordering iff the relative ordering
of its variables obeys the constraint. The naturally arising satisfiability
problems are NP-complete for many types of constraints.

The present paper seems to be one of the first looking at random or-
dering constraints. Experimental evidence suggests threshold phenomena
as in the case of random k-SAT instances. We prove first that random
instances of the cyclic ordering and betweenness constraint have a sharp
threshold for unsatisfiability. Second, random instances of the cyclic or-
dering constraint are satisfiable with high probability if the number of
clauses is ≤ 1 × 	variables.

Keywords: Algorithms, logic, random structures, probabilistic analysis,
ordering.

1 Introduction

1.1 Results

Let V always be a set of n variables. A 3-clause over V is an ordered 3-tuple
(x, y, z) consisting of three different variables. A formula, also called ordering
constraint is a set of clauses. Given a linear ordering of all n variables a clause
evaluates to true if its variables satisfy a given constraint with respect to the
ordering. A formula becomes true when all its clauses are true. This is the
satisfiability problem the present paper deals with.

We consider random ordering constraints. The random instance F (V, p) or the
corresponding probability space is obtained by picking each of the n(n−1)(n−2)
clauses independently with probability p. Thus F (V, p) is analogous to the well
known random graph G(n, p). As common in the theory of random structures
this paper deals with properties holding with high probability, that is 1 − o(1)
when n becomes large and p = p(n) is a given function. We deal with the
case p = a/n2 for constant a. The definition of the random instance F (V, p) is
analogous to random 3-SAT formulas. A selection of literature on random 3-SAT
is [3] ,[8], [20].

A. Frid et al. (Eds.): CSR 2009, LNCS 5675, pp. 105–116, 2009.
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The clause (x, y, z) interpreted as cyclic ordering constraint is true iff x <
y < z or z < x < y or y < z < x : There is a cyclic permutation of (x, y, z)
which is monotonously increasing with respect to the ordering. Clauses which
are cyclic permutations of each other are equivalent, syntactically we distinguish
them. (Our results do not depend on this.) The associated satisfiability problem
is NP-complete [13]. In case of the betweenness problem the clause (x, y, z) is
true iff y is between x and z, that is we have x < y < z or z < y < x. The
satisfiability problem is NP-complete, too [21]. Basic observations which follow
readily from the literature as shown in Section 2 collects

Proposition 1. For random instances F (V, p) with p = a/n2 the following
events have high probability:
(a) For a < 0.8 the cyclic ordering and betweenness instance is satisfiable.
(b) For a > 9 · ln 3 ≈ 9.88 the cyclic ordering instance is unsatisfiable.
(c) For a > 4 · ln 2 ≈ 2.77 the betweenness instance is unsatisfiable.

The expected number of clauses of F (V, p) with p = a/n2 is an. Moreover, the
number of clauses is asymptotically equal to an with high probability. Techniques
as detailed on pages 34/35 of [5] show that analogous results hold for the random
instance obtained by picking a random set of exactly an clauses. This applies to
all of our results.

Experiments show that the random betweenness constraint is satisfiable for
an clauses with a < 1.5. It usually is unsatisfiable for a > 1.6. Our experiments
are for n ≤ 300. For the cyclic ordering constraint we observe the same threshold
phenomenon for approximately 3n clauses (and n ≤ 150.) No theoretical results
concerning these observations or even random ordering constraints in general
seem to exist. We prove that the transition from satisfiability to unsatisfiability
is by a sharp threshold.

Theorem 2. There exists C = C(n), 0.8 ≤ C ≤ 9.88 (2.77) such that for each
constant ε > 0 the cyclic ordering constraint (betweenness constraint) F (V, p)
is unsatisfiable with high probability for p = (C + ε)/n2 and satisfiable for p =
(C − ε)/n2.

We have only bounds within which the threshold value C may vary depending
on n. The situation is analogous to random 3-SAT or k-colourability of random
graphs, see [11]. As in these cases the proof of Theorem 2 is an application of
the threshold criterion of Friedgut [10] which gives no information of the value.

Given Proposition 1, it seems non-trivial to show that F (V, a/n2) is satisfiable
with high probability for any a substantially larger than 0.8. Analyzing a heuristic
algorithm which tries to find a satisfying ordering we make first progress and prove

Theorem 3. For p = a/n2 with constant a ≤ 1 the random cyclic ordering
instance F (V, p) is satisfiable with probability ≥ ε for a constant ε > 0.

Theorem 3 together with Theorem 2 implies a high probability result.

Corollary 4. The random cyclic ordering constraint with p = a/n2 and a < 1
is satisfiable with high probability.
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1.2 On the Literature

Ordering constraints differ from traditional constraints like k-SAT or more gen-
eral constraints in that the underlying assignment must be an ordering of all vari-
ables. This means that each variable can receive one out of n values. But, each
of the n values can only be used once. Altogether we have n! ≈ 2n log n >> 2n

many assignments.
Beyond random k-SAT there is much work on random constraints with finite

domain. Only a selection of the literature, in part due to Michael Molloy is [18],
[19], [16] . The paper [18] points out that thresholds may have algorithmic rel-
evance: Random instances at thresholds often have some algorithmic hardness
which makes them attractive as test cases for algorithms. No systematic exper-
imental studies of random ordering constraints seem to exist. Our experiments
appear to confirm that instances closer to the threshold become harder.

Many real world notions involve ordering. Therefore knowledge representation
formalisms often offer ordering constraints: In [15] the cyclic ordering constraint
occurs. In [6] an extended betweenness constraint is used to describe some bio-
logical situation.

Worst case aspects of ordering constraints are investigated in [14]. The au-
thors try to classify ordering constraints by their complexity. For some cases a
dichotomy, either polynomial time solvable or NP-hard is shown. The recent [4]
has more comprehensive results. The optimization version of the betweenness
constraint is treated in [1] and [7].

2 Observations

We prove Proposition 1. The 2-core of a constraint F is the (unique) largest
subformula of F in which each variable which occurs at all occurs at least twice,
that is has degree ≥ 2. The 2-core is non-trivial iff it is not empty. The next
proposition is easy to see: The satisfying order can be built one by one.

Proposition 5. Let F be a constraint which has only the trivial 2-core. F in-
terpreted as a cyclic ordering (betweenness) constraint is satisfiable.

Satisfiable constraints with non-empty 2-core are easy to find: Consider the or-
dering x < y < z < u and the constraint (x, y, z), (x, z, u), (y, z, u).

Molloy’s Theorem 1.2, on page 666 of [20], for graphs and hypergraphs is a
threshold theorem for the appearance of a non-trivial 2-core in F (V, a/n2) :

Proposition 6. Let t = min0<f<1(− ln(1 − f)/(3 · f2)).
(a) If a < t the 2-core of F (V, a/n2) is empty with high probability.
(b) If a > t the random constraint F (V , a/n2) has a 2-core of linear size with
high probability.

First insight into the curve − ln(1− f)/(3 · f2) can be obtained by looking at the
logarithm series − ln(1−f) = f+f2/2+f3/3+· · · for 0 ≤ f < 1. We observe that
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0.8 < t < 0.82 Therefore the cyclic ordering (betweenness ) constraint F (V, a/n2)
is satisfiable with high probability for a ≤ 0.8 proving Proposition 1 (a) .

Concerning unsatisfiability we can use a standard first moment argument
(known from random k-SAT): We consider the cyclic ordering constraint. Given
a fixed linear ordering we have asymptotically n3/2 clauses which are false under
a given ordering. As clauses are picked independently the probability that a ran-
dom F (V, a/n2) is true under this ordering is (1−a/n2)n3/2 < exp(−an/2). The
expected number of linear orderings satisfying F (V, a/n2) is < n!×exp(−an/2).
This approaches 0 only if a ≥ lnn. And (by Markov) F (V, a/n2) is unsatisfiable
with high probability. To prove Proposition 1 (b) and (c) we need

Lemma 7. (a) Let F be a satisfiable cyclic ordering constraint. There exists a
partition of the variables into 3 sets K,L,M, each with n/3 variables, such that
F has no clause from K ×M × L or its cyclic permutations.

(b) Let F be a satisfiable betweenness constraint. There exists a partition of
the variables into two sets K,L, each with n/2 variables, such that F has no
clause from K × L×K or L×K × L.

Proof. (a) Let K be the first third of the variables of the satisfying ordering, L
the second third, and M the last third of the variables. (b) As (a) using the first
and second half of a satisfying ordering instead.

Proposition 1 (b) and (c) can now be proved by bounding the expected number
of partitions as in Lemma 7. We have only < 3n (< 2n for the betweenness
constraint) partitions altogether. We can proceed similarly as above.

3 The Threshold

We refer to [11] which we apply to the random formulas here. They can be seen
as random 3-uniform directed hypergraphs. Unsatisfiability of a cyclic ordering
(betweenness) constraint is a monotone property, as it is preserved under the
addition of clauses. Moreover, unsatisfiability is a property which is invariant
under permutation of the variables. Therefore it satisfies the symmetry proper-
ties necessary for the application of the criterion from [11].

For a formula F we abbreviate the property that F is unsatisfiable
by UNSAT(F ), in case of the random formula F = F (V, p) we also
write UNSAT(V, p). SAT(F ) means: F is satisfiable. We say that the event
UNSAT(V, p) has a coarse threshold iff we have a critical probability pc = pc(n)
and constants ε, ε′ and δ such that ε < Pr[ UNSAT(V, pc) ] < 1 − ε and Pr[
UNSAT(V, (1 + δ)pc)] < 1 − ε′. In our case we always have pc = a/n2. This im-
plies that a threshold is coarse iff adding an arbitrarily small, but linear number
of clauses to F (V, pc) does not yield unsatisfiability with high probability (cf.
the remark after Proposition 1. )

A variety of types of random formulas is needed: The random instance
F (V, p)∪F (V, q) is constructed by first picking F (V, p) and second and indepen-
dently adding F (V, q) to the formula picked. For a given formula M the random
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formula M∗ is a random copy of M (formula isomorphic to M) on variables
from V. A formula M is balanced iff its average degree ( =

∑
x degree of x

in M / �variables of M) is at least as large as that of any subformula of M.
The formula F (V, p) ∪M∗ is the union of two independent instances of F (V, p)
and M∗. There exist several formulations of Friedgut’s threshold criterion. Most
convenient to apply is

Fact 8 (cf. Corollary 2.3 of [12]). If UNSAT(V, p) has a coarse threshold
then there exist

- a (critical) probability pc = pc(n),
- a balanced formula M and a constant b > 0 , and
- a constant ε > 0

such that for infinitely many n we have

- ε < Pr [ UNSAT(V, pc) ] < 1 − ε,
- the expected number of copies of M in F (V, pc) is ≥ b , and
- Pr [ UNSAT(F (V, pc)∪M∗) ] − Pr [ UNSAT(F (V, pc)∪F (V, εpc)) ] ≥ ε.

Fact 8 says that in case of a coarse threshold there exists a fixed M such that
adding M∗ to F (V, pc) is more likely to make F (V, pc) unsatisfiable than adding
a (small but) linear number of random clauses. We show that any M as in Fact
8 with Pr[UNSAT(F (V, pc) ∪M∗)] ≥ Pr[UNSAT(F (V, pc))] + ε, necessary for
the last inequality to hold, cannot satisfy the last inequality.

The subsequent Lemma 9 is crucial towards the threshold proof. We split the
set of variables V into two disjoint subsets U and W. U is a set of k variables
where k is a fixed constant independent of n, and W contains the remaining
n − k variables. The random instance F (U,W, p) is obtained by picking each
clause with at least one variable from U independently with probability p.

For fixed formulas F over W and F ∗ over U (think of F ∗ as an instance of
the random formula M∗ ) we consider the random formula F ∪F ∗ ∪F (U,W, p),
over V = W ∪ U, with p = a/n2, where a1 < a < a2 for constants a1, a2 > 0
a = a(n). We assume that F and F ∗ are both satisfiable as cyclic ordering
(betweenness) constraints. Let x1 < x2 < . . . < xn−k be an ordering satisfying F
and y1 < y2 < . . . < yk for F ∗ (where {x1, . . . , xn−k} = W, {y1, . . . , yk} = U.)
Let UNSAT abbreviate the event UNSAT(F ∪F ∗∪F (U,W, p)) as cyclic ordering
(betweenness) constraint. Recall that F (W, p) is the usual random instance with
variables from W. Let n be sufficiently large, ε > 0 a constant inpendent of n.
We have

Lemma 9. If Pr[UNSAT] > ε then for any constant δ > 0 the random in-
stance F ∪ F (W, δ · p) interpreted as a cyclic ordering (betweenness) constraint
is unsatisfiable with high probability.

Proof. Pr[ UNSAT ] > ε means that Pr[ UNSAT(F ∪F ∗∪F (U,W, p)) ] > ε . As
F and F ∗ are satisfiable and refer to disjoint sets of variables, unsatisfiability can
only be caused by F (U,W, p) (which connects F and F ∗. ) If F ′ = F (U,W, p)
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causes unsatisfiability then F ∪F ∗ ∪F ′ is in particular false under all orderings
with W1 < U < W2 for W1 ∪W2 = W. That is the variables of U are adjacent.
This implies: When we substitute the variables from U in F ′ with an arbitrary
variable x from W we get an unsatisfiable formula over W. (Clauses with 2
variables form U occur only with probability o(1) as k is a constant. ) The
random instance F (W, δ·p) contains clauses which are obtained by substituting U
with x and cause unsatisfiability with probability bounded below by a constant
> 0 (smaller than ε.) This is the case as Prob[ UNSAT] > ε and |U | = k is fixed.
Thus the expected number of variables x ∈ W such that the clauses with x from
F (W, δ · p) cause unsatisfiability is (small but) linear in |W |. For two variables
x �= y the clauses from F (W, δ · p) with x are almost independent from those
with y. We get concentration at the expectation with Tschebycheff’s inequality.
And with high probability F ∪ F (W, δ · p) is unsatisfiable.

Proof sketch of Theorem 2. First, we observe that the formula M from Fact
8 must be satisfiable. The assumptions in this fact imply that M only has an
empty 2-core. Second, we observe that the very last item of Fact 8 implies the
existence of a satisfiable formula F with the property: The addition of M∗ to F
is more likely to yield an unsatisfiable formula than the addition of each clause
with probability εpc. Such an F contradicts Lemma 9.

4 The Cyclic Ordering Constraint

We come to the proof of Theorem 3.

4.1 The Reduction

In addition to 3-clauses as above we need 2-clauses which are ordered pairs (x, y)
consisting of two different variables. Their interpretation is x < y throughout,
3-clauses are interpreted as cyclic ordering constraints from now on. The graph
associated to the set of 2-clauses E is called GE . It is obtained by viewing each
2-clause (x, y) as the directed edge x → y. The random instance F (V, p, q) is the
union of two independent instances of F (V, 3, p) and F (V, 2, q), with F (V, 3, p) =
F (V, p), and F (V, 2, q) picks each 2-clause with q. For A,B,C ⊆ V we use the
notation (A,B,C) = A×B × C and (A,B) = A×B. The reduction used is

Definition 10. Let F = D ∪ E be a constraint with 2-clauses E and 3-clauses
D. Let A,B be a partition of the set of variables V into two disjoint sets with
A ∪ B = V. If E contains clauses from both, (A,B) and (B,A) the constraints
FA and FB are not defined. Otherwise the constraint FA over A is defined as:

The 2-clauses of E which belong to (A,A) are in FA.
Let (x, y, z) ∈ D with at least two variables belonging to A, then

- (x, y, z) ∈ (A,A,A) ⇒ (x, y, z) ∈ FA, (x, y, z) ∈ (A,A,B) ⇒ (x, y) ∈ FA ,
- (x, y, z) ∈ (A,B,A) ⇒ (z, x) ∈ FA , (x, y, z) ∈ (B,A,A) ⇒ (y, z) ∈ FA.

Constraint FB is defined by exchanging the roles of A and B.
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The 2-clauses from F belonging to (A,B) (resp. (B,A)) get lost when construct-
ing FA and FB . When GE has a cycle the whole cycle must either belong to A or
to B in order that FA and FB are defined. In this case F is unsatisfiable anyway.
The next Lemma states the satisfiability properties preserved by the reduction.
It follows directly from Definition 10.

Lemma 11. F without 2-clauses from (B,A) is satisfiable by a linear ordering
with A < B iff FA and FB are satisfiable.

The following notions are the natural graph theoretic ones as induced by GE ,
the graph associated to the set of 2-clauses E. The outdegree of a variable x
is OdegE(x) = �clauses (x,−) ∈ E. The set of neighbors of x is NE(x) =
{y|(x, y) ∈ E}.

Definition 12. (a) The boundary B0 = B0,E is B0 = {x|Odeg(x) = 0}. The
boundary B1 = B1,E is B1 = {x|NE(x) ⊆ B0 and NE(x) is not empty}.

(b) B = BE = B0 ∪B1 is the boundary. The interior is Int = IntE = V \B.
(c) When F consists of 3-clauses D and 2-clauses E we let BF := BE ....

and so on for all these notions.

The proof of Theorem 3 is an analysis of the reduction as visualized in Figure 1.
F is a formula over V consisting only of 3-clauses. A′ is a fixed set of one half of
the variables from V and A′′ is the other half.

F

F ′ = FA′ F ′′ = FA′′

F ′
IntF ′ F ′

BF ′ F ′′
IntF ′′ F ′′

BF ′′

Fig. 1.

Note that all formulas of the tree comply with Definition 10, as any for-
mula F ′ has no 2-clauses from (BF ′ , IntF ′) by Definiton 12. We prove for
F = F (V, 3, 1/n2) : The probability that all formulas at the leaves are si-
multaneously satisfiable does not go to 0. Then F is satisfiable by applying
Lemma 11 twice.

Theorem 13 concerns the first reduction of Figure 1. The proof relies on the
fact that F ′ and F ′′ are independent instances of F (A, (1/4) · a/(n/2)2, (3/4) ·
a/(n/2)), with |A| = n/2. This holds as A′ and A′′ are sets fixed beforehand.



112 A. Goerdt

Theorem 13. Let a be a constant. F (V, 3, a/n2) is satisfiable with probability
> ε2 > 0 if F (V, b/n2, c/n) with b = (1/4)a and c = (3/4)a is satisfiable with
probability > ε > 0.

4.2 The Second Step of the Reduction

The subsequent Theorem 14 together with Theorem 13 implies Theorem 3.

Theorem 14. For F = F (V, b/n2, c/n) with b = 1/4 and c = 3/4 we have
Pr[SAT(FInt) and SAT(FB)] is bounded strictly above 0.

To prove Theorem 14 we associate a (multi-)graph to FB and to FInt.

Definition 15. Let F be a constraint of 2- and 3-clauses. The directed (multi-)
graph associated to F is denoted by GF . It has as vertices the variables of F. Its
edges are the 2-clauses of F, and for each 3-clause C = (x, y, z) of F the three
edges (x, y) , (y, z) and (x, z), each labelled with C.

By a cycle of length s in GF (or F ) we mean set of labelled edges
(x1, x2), (x2, x3), . . . , (xs, x1) in GF with x1, . . . , xs all different. Always s ≥ 2.
Obviously, F is satisfiable if GF is cycle free. In this case a satisfying ordering
can be found by topologically sorting the vertices of GF . We proceed to show
that FB and FInt are both cycle free with probability not going to 0. Note
that the edges of the associated (multi-)graphs are not necessarily independent.
Moreover, B and Int and thus FB and FInt are dependent.

Following [9] who treat the undirected case, [22] seems to be the first work on
cycles in the classical directed random graph G(n, c/n) and shows: For constant
0 ≤ c ≤ 1 Pr[G(n, c/n) has a directed cycle ] = c(1+o(1)). In [17] a giant compo-
nent threshold is shown: For constant c > 1 G(n, c/n) has a strongly connected
component of linear size. For constant c < 1 strongly connected components are
only of logarithmic size. These results provide some intuition to us.

Usually one thinks of F = F (V, p, q) as being generated by picking each
3-clause with its probability p first and then each 2-clause with q. We use a
different generation process which in the end yields the right distribution. The
process is motivated by the following formula. Given disjoint sets B0 and B1 and
considering E = F (V, 2, q) we see that Pr[B0,E = B0 and B1,E = B1] =

=
∏

x∈B0

(1 − q)n−1 ×
∏

x∈B1

Pr[NE(x) ⊆ B0 and |NE(x)| ≥ 1] ×

×
∏

x∈Int
Pr[NE(x) ∩ (V \B0) is not empty]. (1)

This is the case as edges of GE , the directed graph of E, starting at different
vertices are independent.

We have x ∈ B0,E with probability (1 − q)n−1. Let B0 be a fixed set,
b0 = |B0|. Condition on B0,E = B0 and assume that the 2-clauses E arrive. For
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any x /∈ B0 we get x ∈ B1,E with (1−(1−q)b0)(1−q)n−1−b0 . In the same way we
get for x /∈ B0 that x ∈ IntE with 1− (1− q)n−1−b0 . This suggests the following
generation process of F = F (V, p, q). The process has five independent steps,
and the probabilities multiply. (Recall Definition 12 (c).)

1. For x ∈ V decide x ∈ B0,F with probability (1 − q)n−1 and x /∈ B0,F with
probability 1 − (1 − q)n−1. We abbreviate b0 = |B0,F |.

2. For x /∈ B0,F decide independently x ∈ B1,F with

(1 − q)n−1−b0 · (1 − (1 − q)b0)
1 − (1 − q)n−1 , and x /∈ B1,F with

1 − (1 − q)n−1−b0

1 − (1 − q)n−1 .

3. We generate the 2-clauses in the boundary B = B0 ∪B1. For each x ∈ B1
we consider all clauses in (x,B0). For b0 ≥ k ≥ 1 every set of k such clauses has
probability qk(1 − q)b0−k / (1 − (1 − q)b0). Add such a random set.

4. We generate the 2-clauses with at least one variable from Int = V \B. For
x /∈ B we consider all clauses in (x, V \ B0). Each set of n − 1 − b0 ≥ k ≥ 1 of
these clauses has probability qk(1 − q)n−1−b0−k / (1 − (1 − q)n−1−b0). We add
such a random set.

5. We add each clause from (Int, B0) with probability q independently.

Formula (1) implies that this process generates the 2-clauses from F (V, p, q).
The 3-clauses are added independently. To generate F conditional on B0, B1
we start the process with Step 3. The subsequent Lemma holds as the clauses
contributing to FB are disjoint from those contributing to FInt.

Lemma 16. Let F = F (V, p, q) and let B0, B1 be given disjoint sets of variables.
Conditional on the event B0,F = B0 and B1,F = B1 the constraints FInt and
FB are independent of each other.

Notation: β0 = exp(−c) , β = exp(−c(1 − β0)) = exp (−c(1 − exp(−c))) ,
β1 = β − β0, and γ = 1 − β.

Concentration results:

Lemma 17. For F = F (V, b/n2, c/n) we have with high probability the following
asymptotic (that is, a suitable factor of 1 + o(1) must be appended) equalities:

|B0,F | = β0n, |BF | = βn, |B1,F | = β1n, |IntF | = γn.

Proof. The first equation follows from independence. The second equation fol-
lows from independence, conditioning on the fact that B0,F is a set of variables
satisfying the first equation. We only need a standard second moment argument
for the concentration. The rest is by definition of B1, Int .

Given a formula F, NOCYC(F ) means that F (or GF ) has no cycle.

Lemma 18. We consider F (V, b/n2, c/n) with b = 1/4, c = 3/4.
Let |B0| = β0n(1+ o(1)) and B1 ∩B0 = ∅ with |B1| = β1n(1+ o(1)) variables.
Let F be a random instance conditional on B0,F = B0 and B1,F = B1. The
following conditional probabilities are both > ε > 0, a constant:

(a) Pr[NOCYC (FInt)] and (b) Pr[NOCYC (FB)].
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Given the preceding three lemmas and the remark after Definition 15, Theorem
14 follows by combining them. Before presenting the proof of Lemma 18 some
values (by pocket calculator): β0 = exp(−c) ≈ 0.4723, c(1 − β0) ≈ 0.3957,

β = exp(−c(1 − β0)) ≈ 0.67319, β1 ≈ 0.2, γ ≈ 0.3268.

Proof of Lemma 18 (a). Let GInt be the multigraph of FInt. For x, y ∈Int the
edge (x, y) is induced by 3(n − 1)(n − 2) 3-clauses and by the 2-clause (x, y)
(Definitions 10 and 15). The expected number of ways this edge occurs in GInt
is equal to

b

n2 · 3(n− 1)(n− 2) +
c

n
· 1
1 − (1 − c/n)n−1−|B0|

=
(

3b+
c

γ

)
1
n

(1 + o(1)). (2)

We abbreviate d := 3b + (c/γ) = (3/4) · (1 + 1/(1 − β)). The bound dγ =
(3/4) · (2 − β) < 1 is crucial: Our β above yields dγ ≈ 0.9951.

W.l.o.g. we restrict attention to cycles which do not contain two edges induced
by the same 3-clause from F. This is easy to see, and the edges of a cycle are
independent. Therefore the expected number of cycles of length n ≥ s ≥ 2
is ≤ (γn)s/s · (d/n)s = (dγ)s/s. We have enlarged d by a small constant, to
get rid of the 1 + o(1)−factor from (2). The expected number of cycles of any
length is ≤ − ln(1− dγ) − dγ (a constant) by the logarithm series. We are in a
situation similar to the directed random graph G(n, c/n) with c < 1. The proof
in [22] shows: Different cycles are essentially independent. From this the result
mentioned after Definition 15 follows. This is tedious, and we use the Lovasz
Local Lemma from pages 53/54 of [2], instead.

First, as dγ < 1 the expected number of cycles of length > S gets arbitrarily
small for large, constant S. We restrict attention to cycles of length 2 ≤ s ≤ S.
Some notational preparation: For cs = �candidate cycles of length s, we have
cs ≤ (γn)s/s. For 1 ≤ j ≤ cs let Cs,j be the event that the j’th cycle of length
s is present. The Cs,j correspond to the events Ai in the Lovasz Local Lemma.
We set xs := (d/n)s – enlarging d slightly over its original definition above. The
event Cs,j has stochastic dependencies only with those events Ct,− whose cycle
has variables in common with the cycle of Cs,j . As s, t ≤ S, there are O((γn)t−1)
such events and

xs ·
S∏

t=2

(1 − xt)O(nt−1) = xs(1 − o(1)).

As Pr[Cs,−] ≤ xs(1 − o(1)) for all s, the assumptions of the Local Lemma hold.
We conclude using, the logarithm series, that Pr[

∧
i,s ¬Cs,i] ≥

≥
S∏

s=2

(1 − xs)cs ≥ exp

(
−

S∑
s=2

(dγ)s/s

)
+ o(1) > (1 − dγ) · exp(dγ).

This is a constant > 0 independent of S and the proof is finished.
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Proof sketch of Lemma 18 (b). Let x, y ∈ B. The expectation of the edge (x, y) /∈
(B1, B0) is (3/4)(1/n). For (x, y) ∈ (B1, B0) we get

3
4
· 1
n

·
(

1 +
1

1 − (1 − c/n)|B0|

)
=

3
4
· 1
n

· d · (1 + o(1)),

where d := 1+(1/(1− exp(−cβ0))). We have (3/4)d ≈ 3.3255 which seems large
as we need constants < 1. But (B1, B0) has only ≈ 0.1n2 many candidate edges.
This is important.

The number of candidate cycles through B of length s and with exactly k ≤
s/2 edges from (B1, B0) is

≤
(
s

k

)
· 1/s · (β1nβ0n)k · (βn)s−2k. (3)

Its probability is ((1/n)(3/4))s · dk, recall from (a) that edges of a cycle are
independent. Summing over k the expected number of cylces of length s is

≤ 1
s

(
3
4

)s

·
(
β +

β1β0d

β

)s

.

We show that the base under the exponent s is < 1. Then we can finish analo-
gously to (a) using the Local Lemma with parameters s and k, based on (3) and
the subsequent probability. Recalling the definitions of the β’s we get

β +
β1β0

β
· d = β0 · (2 − exp(−cβ0) + exp(cβ0)) .

We bound (by calculator) β0 ≤ 0.48, then c · β0 ≤ 0.36 and
exp(cβ0) ≤ 144/100 and exp(−cβ0) ≥ 100/144. Using these bounds we get

β0 · (2 − exp(−cβ0) + exp(cβ0)) < 4/3

finishing the proof sketch.

5 Conclusion

The main result of this paper, besides the threshold, is that cyclic ordering con-
straints are satisfiable beyond the 2-core threshold for 3-uniform hypergraphs.
We did not really strive for an optimal constant and possibly our constant 1
in Theorem 3 can be improved based on the techniques presented. The proof
of this Theorem is constructive in that it implies a polynomial time algorithm
(perform the reductions from Figure 1 and sort topologically) working with
probability not going to 0.

Acknowledgement. The author thanks André Lanka for helpful hints and
thoughtful questions and Anja Lau for experimental work and proof reading.
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Depth Reduction for Circuits with a Single
Layer of Modular Counting Gates

Kristoffer Arnsfelt Hansen
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Abstract. We consider the class of constant depth AND/OR circuits
augmented with a layer of modular counting gates at the bottom layer,
i.e AC0 ◦MODm circuits. We show that the following holds for several
types of gates G: by adding a gate of type G at the output, it is possible
to obtain an equivalent probabilistic depth 2 circuit of quasipolynomial
size consisting of a gate of type G at the output and a layer of modular
counting gates, i.e G ◦MODm circuits. The types of gates G we consider
are modular counting gates and threshold-style gates. For all of these,
strong lower bounds are known for (deterministic) G ◦ MODm circuits.

1 Introduction

A long standing problem in Boolean circuit complexity is to understand the com-
putational power of constant depth AND/OR circuits augmented with modular
counting (MODm) gates, i.e ACC0 circuits. One approach would be to consider
restrictions on the occurrences of the MODm gates. Restricting circuit to con-
tain MODm gates only at the layer below the output or to only contain few
MODm gates have successfully resulted in lower bounds [10,23,14,9]. We believe
that proving lower bounds for ACC0 circuits containing MODm only in a single
layer would be an important next step towards understanding ACC0 circuits.
The restriction we will study in this work is even stricter: we require that all
MODm gates occur at the bottom layer. This still gives a class of circuits for
which no strong lower bounds are known. In fact, no good lower bounds are
known for depth 3 ACC0 circuits and this is true even when the MODm gates
can occur only at the bottom layer.

More precisely, while strong lower bounds are known for AND◦OR◦MODm

circuits, no strong lower bounds are known for OR ◦ AND ◦ MODm circuits.
We remark that for these statements the precise definition of MODm gates is
crucial1. Grolmusz proved that MAJ ◦OR ◦MODm circuits require size 2Ω(n)

� Supported by a postdoc fellowship from the Carlsberg Foundation. Part of this
research was done at The University of Chicago supported by a Villum Kann Ras-
mussen postdoc fellowship.

1 Two definitions are commonly used in the literature, one being the complement
of the other. This also means that the lower bounds we review below are stated
differently than their original statement.

A. Frid et al. (Eds.): CSR 2009, LNCS 5675, pp. 117–128, 2009.
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to compute the inner product modulo 2 function IP2 [12]. For the same class
of circuits, Beigel and Maciel [4] proved that MODq requires size 2Ω(n), when
q � m, and that IPp requires size 2Ω(

√
n). They also managed to show that MAJ◦

AND ◦MODpk circuits require size 2Ω(n) to compute the MODq function, but
only when p is a prime not dividing q. Also, Jukna uses graph complexity [16] to
derive lower bounds for AND ◦OR◦MOD2 circuits; this lower bound is easily
extended to AND ◦ OR ◦ MODm circuits.

One of the strongest lower bounds obtained in Boolean circuit complexity is
the lower bound for AC0[pk] circuits by Razborov [18] and Smolensky [19]. This
result is proved in two steps. First a depth reduction is invoked, resulting in
probabilistic MODp ◦ ANDlogO(1) n circuits. Then a lower bound for these are
derived from counting arguments. Depth reduction results for the entire class
ACC0 obtained by Yao [24] and Beigel and Tarui [6] gave hope that a similar
two step approach could be used to obtain lower bounds for ACC0. Indeed by
results of H̊astad and Goldmann [15] it is then sufficient to obtain strong lower
bounds for multiparty communication complexity for logO(1) n players in the
“number on the forehead” model, but such a result currently seems out of reach.

We believe that it should be explored if a two step approach using depth
reduction can be employed for subclasses of ACC0. Indeed, the depth reduction
by Beigel and Tarui results in a class that is arguably too powerful. They show
that any ACC0 circuit is simulated by a deterministic SYM ◦ ANDlogO(1)

circuit. Beigel, Tarui and Toda proved that this latter class of circuits can even
simulate probabilistic EMAJ ◦ ACC0 circuits [7].

In this paper we derive a number of depth reduction results for AC0◦MODm

circuits. Let G denote a class of modular counting gates (modulo a prime p), exact
threshold gates, majority gates or threshold gates, i.e MODp, ETHR, MAJ or
THR gates. Then by adding a gate of type G at the output of the AC0 ◦MODm

circuit allows one to obtain a depth reduction to probabilistic G◦MODm circuits.
For each of these classes strong lower bounds are known for deterministic

circuits. For MODp◦MODm circuits lower bounds was obtained by Barrington,
Straubing and Thérien [3] (See also [2,20,13,17]). Lower bounds for MAJ ◦
MODm circuits was obtained by Goldmann [11] and finally lower bounds for
THR ◦ MODm circuits was obtained by Krause and Pudlák [17].

Our depth reduction reduction proof will use two ingredients. First, as pre-
vious results of this kind we will use constructions of probabilistic polynomials.
Secondly we will use representations of Boolean functions as Fourier sums. We
will present these in Section 2 and Section 3, respectively. Finally in Section 4
we combine these to obtain our main results. In the remainder of this section we
briefly review the necessary circuit definitions.

1.1 Constant Depth Circuits

We consider circuits built from families of unbounded fanin gates. Inputs are
allowed to be Boolean variables and their negations as well as the constants 0 and
1. In addition to AND, OR and NOT we consider MODm gates and threshold
style gates. Let x1, . . . , xn be n Boolean inputs. For a positive integer m, let
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MODm be the function that outputs 1 if and only if
∑n

i=1 xi �≡ 0 (mod m). The
majority function, MAJ, is 1 if and only if

∑n
i=1 xi ≥ n

2 . Similarly, the exact
majority function, EMAJ, is 1 if and only if

∑n
i=1 xi = n

2 . Let w ∈ Rn and let
t be any real number. The threshold function with weights w and threshold t,
THRw,t is 1 if and only if

∑n
i=1 wixi ≥ t. Similarly, the exact threshold function

with weights w and threshold t, ETHRw,t is 1 if and only if
∑n

i=1 wixi = t.
Let AND and OR denote the families of unbounded fanin AND and OR gates.

LetMODm,EMAJ,MAJ,ETHR,THRdenote the families ofMODm,EMAJ,
MAJ, ETHRw,t and THRw,t gates, for arbitraryw and t. If G is a family of Boolean
gates and C is a family of circuits we let G ◦C denote the class of circuits consisting
of a G gate taking circuits from C as inputs.

By the size of a circuit we mean the number of wires in the circuit. As is
usual we will always have a family of circuits in mind, containing a circuit for
each input length. In this way the size becomes a function of the input length.

AC0 is the class of functions computed by polynomial size constant depth
circuits built from AND, OR and NOT gates. AC0[m] is the class of functions
computed by polynomial size constant depth circuits built from AND, OR and
MODm gates. ACC0 is the union of the classes AC0[m]. We will also use the
the terms AC0, AC0[m] and ACC0 in general to denote families of circuits
whose size is not bounded by a polynomial; in such cases we will always specify
a specific size bound.

We will also consider families of probabilistic Boolean circuits. For our pur-
poses we simply define a probabilistic circuit to be a family containing for each
input length a distribution over Boolean circuits of that input length. Let f be a
Boolean function and let C be a probabilistic circuitc. We say that C computes
f with error ε if for every x ∈ {0, 1}n we have Pr[C(x) �= f(x)] ≤ ε. We say that
C computes f with one-sided positive error ε, if C computes f with error ε and
whenever f(x) = 0 we have Pr[C(x) = 0] = 1. Similarly we say that C computes
f with one-sided negative error ε, if C computes f with error ε and whenever
f(x) = 1 we have Pr[C(x) = 1] = 1.

2 Probabilistic Polynomials

Like the case of circuits we simply define probabilistic polynomials to be dis-
tributions over polynomials. We can then define when a polynomial compute
a Boolean function with error, one-sided positive error and one-sided negative
error completely analogously. As a further notion, when P is an integer polyno-
mial we say that P computes f with zero-sided error ε if P computes f with
error ε and for all x we have Pr[P (x) ∈ {0, 1} ∧ P (x) �= f(x)] = 0. Note that if
P computes f with zero-sided error, then by considering P (x)(2P (x) − 1) and
P (x)(3 − 2P (x)) we get probabilistic polynomials P1 and P2 that compute f
with zero-sided error and satisfies P1(x) ≥ 0 and P2(x) ≤ 1 for all x.

Razborov [18] and Smolensky [19] (cf. [1]) gave a simple construction of prob-
abilistic polynomials over Zp computing the OR function.
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Theorem 1 (Razborov, Smolensky). For any prime p and any ε > 0 there
is a probabilistic polynomial over Zp of degree O(log(1

ε )) that compute the OR
function with one-sided positive error at most ε.

This also gives a probabilistic polynomial that compute the AND function with
one-sided negative error.

Fermat’s little theorem gives a polynomial over Zp of constant degree p − 1,
computing the MODp function and the following extension gives the same for
the MODpk function (see e.g [6] for a proof).

Lemma 2. Let q = pk for a prime p. Then the MODq function is computed by
polynomial over Zp of degree q − 1.

Combining Theorem 1 and Lemma 2 and composing polynomials then gives the
following.

Theorem 3 (Razborov, Smolensky). Let q = pk for a prime p. Let C be
a depth h AC0[q] circuit of size S and let ε > 0. Then there is a family of
probabilistic polynomials of degree O(log(S

ε )h) that compute the output of C with
error at most ε.

Based on a theorem by Valiant and Vazirani [22], Beigel et al. [5] and Tarui [21]
gave probabilistic polynomials over the integers computing the OR function,
thereby generalizing Theorem 1, albeit at the expense of a slightly larger degree.
As with Theorem 1 it also gives probabilistic polynomials computing the AND
function.

Theorem 4 (Beigel et al., Tarui). For any ε > 0 there is a family of prob-
abilistic polynomials over Z of degree O(log(1

ε ) logn) and having coefficients of
absolute value 2O(log( 1

ε ) log(n)) that compute the OR function with one-sided pos-
itive error at most ε.

Let P (x) denote a polynomial from this family. Tarui2 considered the family of
polynomials given by Q(x) = 1−(x1+· · ·+xn+1)(P (x)−1)2 he obtained a family
of polynomials computing the OR function with zero-sided error. With these
polynomials Tarui obtained probabilistic polynomials computing the output of
AC0 circuits with zero-sided error as well. Beigel et al. subsequently gave a
simpler construction for obtaining this, that we will review next.

Theorem 5 (Tarui). Let C be a depth h AC0 circuit of size S and let
ε > 0. Then there is a family of probabilistic polynomials over Z having de-
gree O((log(S

ε ) log(S))h) and coefficients of absolute value 2O((log( S
ε ) log(S))h) that

compute the output of C with zero-sided error at most ε.

Proof. (Beigel et al.) By composing the polynomials given by Theorem 4 we
get a family of polynomials of degree O((log(S

ε ) log(S))h) and having coefficients

2 Tarui actually stated his results in terms of the NOR function making the polyno-
mials slightly different.
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of absolute value at most 2O((log( S
ε ) log(S))h) that probabilistically compute the

output of C with error at most ε. Let F denote a member of this family. Let
g be any gate of C taking inputs g1, . . . , gm. Let Pg denote a member of the
family of polynomials computing g in variables y1, . . . , ym. If g is an OR gate
define Eg by Eg(y) = (y1 + · · · + ym)(P (y) − 1). We then have that Eg(y) = 0
if and only if Pg(y) = OR(y). When g is an AND gate then similarly we define
Eg(y) = (y1 + · · · + yn − n)P (y) and we have that Eg(y) = 0 if and only if
Pg(y) = AND(y).

Now, define E(x) =
∑

g∈C(Eg(x))2. Then E(x) = 0 whenever all gates in
C are computed correctly. Then finally we have that the family of polynomials
given

G(x) = F (x) − ((F (x))2 + 1)E(x)

compute the output of C with zero-sided error at most ε.
Clearly these polynomials are of degree O((log(S

ε ) log(S))h) and have coeffi-
cients of absolute value 2O((log( S

ε ) log(S))h) as well.

3 Fourier Sum Representation

In this section we will derive representations of circuits of the form G ◦ANDd ◦
MODm for several choices of a family of Boolean gates G by Fourier sums
over a field with an mth root of unity. Conversely we will derive G ◦ MODm

circuits computing the Boolean functions represented by such representations.
Combining these two types of results then implies that the layer of ANDd gates
can be eliminated.

When G is a family of modular counting gates the appropriate setting will
be Fourier sums over a finite field. When G is a family of threshold style gates
the appropriate setting will instead be Fourier sums over the field of complex
numbers.

3.1 Modular Counting Gates

Representations of MODp ◦ ANDd ◦ MODm circuits by Fourier sums over a
finite field was introduced in the work of Barrington, Straubing and Thérien [3]
and is made entirely explicit by Barrington and Straubing [2] and further results
were obtained by Straubing and Thérien [20]. All these works actually consider
depth d + 1 (MODpk)d ◦ MODm circuits, which are converted into MODp ◦
ANDO(d) ◦MODm circuits as the first step in constructing the representation.
We will next review these results.

Let m be a positive integer and let p be a prime that does not divide m.
Choose k such that m divides pk − 1. Then the finite field F = GF(pk) contains
an mth root of unity ω. We will consider expressions in variables x1, . . . , xn of
the form

S∑
i=1

ciω
ai,1x1+...ai,nxn ,
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where ci are elements of F and ai,j are elements of Zm. We will call that a Fourier
sum over F of size S. We say such an expression E(x) computes a Boolean
function f if E(x) = f(x) for all x ∈ {0, 1}n and we say E(x) represents a
Boolean function f if E(x) ∈ Zp for all x and moreover E(x) = 0 if and only if
f(x) = 0 for all x ∈ {0, 1}n.

When x1, . . . , xn are variables from Zm then these expressions can in fact be
viewed as Fourier transforms of functions f : (Zm)n → F , thereby justifying our
terminology. For details about this we refer to the works of Barrington et al.
[3,2,20]. We have the following.

Lemma 6. A MODm gate can be computed by a Fourier sum of size 2|F |−1.

Proof. A MODm gate with inputs x1, . . . , xn can be computed by the expression

(ωx1+···+xn − 1)|F |−1

since

(ωa − 1)|F |−1 =

{
0 if a ≡ 0 (mod m)
1 if a �≡ 0 (mod m)

thereby giving a Fourier sum of size 2|F |−1.

Then taking sums of these expressions shows that a MODp ◦ MODm circuit
of size S can be computed by a Fourier sum of size at most S2(|F |−1)(p−1). But
at the expense of increasing the size of the circuit we can even introduce small
fanin AND gates as a middle layer.

Proposition 7 (Barrington et al.). Let p be a prime not dividing m. For any
MODp ◦ANDd ◦MODm circuit of size S there is a Fourier sum representing
the output of the circuit of size at most S2d(|F |−1).

Proof. We interpret the top two layers of the circuit as a polynomial over Zp in
S variables with at most S terms and of degree d. Express each MODm gate of
the circuit as a Fourier sum of size 2|F |−1. Substituting these for the variables in
the polynomial and expanding then yields the required Fourier sum representing
the output of the circuit of size at most S2d(|F |−1).

Proposition 8 (Straubing and Thérien). Suppose a Boolean function f can
be represented by a Fourier sum of size S. Then f is computed by a MODp ◦
MODm circuit of size m(p− 1)S.

Proof. The field F is a vector space over Zp. We can thus pick a basis v1, . . . , vk

of F where we can choose v1 = 1. Let π1 : F → Zp be the projection of an
element of F onto the first coordinate in the basis v1, . . . , vk. By linearity we
have

π1(
S∑

i=1

ωai,1x1+...ai,nxn) ≡
S∑

i=1

π1(ωai,1x1+...ai,nxn) (mod p) .
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Thus to compute the sum we can compute each term π1(ωai,1x1+...ai,nxn) indi-
vidually. For every 0 ≤ a < m we will have (π1(ωa)(p − 1) mod p) copies of a
MODm gate that evaluate to 1 if ai,1x1 + · · · + ai,nxn �≡ a (mod m). Further-
more we feed π1(ωa) copies of the constant 1. The sum of these will be π1(ωa)
when the term has value π1(ωa) and will be 0 otherwise. Thus taking the sum
for every a gives m(p− 1) MODm gates that compute the given term.

Combining Proposition 7 and Proposition 8 we obtain the following somewhat
surprising result, showing that a middle layer of small fanin AND gates can be
absorbed at the cost of a reasonable increase of the size of the circuit.

Theorem 9 (Straubing and Thérien). Let p be a prime not dividing m.
Then any function computed by a MODp ◦ ANDd ◦ MODm circuit of size S is
also computed by a MODp ◦ MODm circuit of size S2O(d).

3.2 Threshold Style Gates

It was suggested by Barrington and Straubing [2] to use Fourier representations
over the complex numbers to study THR ◦MODm circuits. The case of m = 2
is known as polynomial threshold functions [8] and these circuits are precisely
representations by the sign of a Fourier sum. We will derive representations for
G ◦ ANDd ◦ MODm circuits when G is a family of threshold, exact threshold
or majority gates.

Let m be a positive integer and let ω = e
2πi
m be an mth root of unity. Similarly

to the previous section we consider expressions in variables x1, . . . , xn of the form

S∑
i=1

ciω
ai,1x1+...ai,nxn ,

where ci complex numbers and ai,j are elements of Zm. We will call that a Fourier
sum over C of size S and we will call the numbers ci the coefficients. We say such
an expression E(x) computes a Boolean f if E(x) = f(x) for all x ∈ {0, 1}n.
We say that E(x) sign represents a Boolean function f if E(x) ∈ R \ {0} for all
x ∈ {0, 1}n and moreover E(x) > 0 if and only if f(x) = 1 for all x ∈ {0, 1}n.
Finally we say that E(x) equality represents a Boolean function f if E(x) ∈ R
for all x ∈ {0, 1}n and moreoverE(x) = 0 if and only f(x) = 1 for all x ∈ {0, 1}n.

As the previous case of finite fields, when x1, . . . , xn are variables from Zm

then these expressions can be viewed as Fourier transforms of functions f :
(Zm)n → C.

Lemma 10. A MODm gate can be computed by a Fourier sum of size m + 1
where the coefficients are either 1 or 1

m .

Proof. A MODm gate with inputs x1, . . . , xn can be computed by the expression

1 − 1
m

m−1∑
b=0

ωb(x1+···+xn)
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since
m−1∑
b=0

ωba =

{
m if a ≡ 0 (mod m)
0 if a �≡ 0 (mod m)

.

thereby giving a Fourier sum of size m+ 1.

With this we can now derive Fourier sum representations of different classes of
circuits. First we consider circuits with a threshold gate at the output.

Proposition 11. For any THR ◦ ANDd ◦MODm circuit of size S there is a
Fourier sum of size at most S(m + 1)d + 1 sign representing the output of the
circuit.

Proof. We will assume that the threshold value of the output gate is 0. This can
then afterward be corrected by increasing the size of the obtained Fourier sum
by 1. We interpret the top two layers of the circuit as a polynomial over R in
S variables with at most S terms and of degree d. Express each MODm gate of
the circuit as a Fourier sum of size m+ 1. Substituting these for the variables in
the polynomial yields the required Fourier sum sign representing the output of
the circuit of size at most S(m+ 1)d.

With the same proof but switching to equality representation we obtain the same
with an exact threshold gate at the output.

Proposition 12. For any ETHR ◦ ANDd ◦ MODm circuit of size S there is
a Fourier sum of size at most S(m+ 1)d + 1 equality representing the output of
the circuit.

With a majority gate at the output, we observe that the proof of Proposition 11
gives a Fourier sum where all coefficients are of the form 1

mi for i ∈ {0, . . . , d},
by Lemma 10. Then since all coefficients of the polynomial given by the top two
layers are 1, multiplying by md yields a Fourier sign representation as stated
below.

Proposition 13. For any MAJ ◦ ANDd ◦ MODm circuit of size S there is
a Fourier sum with integer coefficients of total absolute value at most S((m +
1)dmd + 1) sign representing the output of the circuit.

Proposition 14. Suppose a Boolean function f can be sign represented by a
Fourier sum over C of size S. Then f is computed by a THR ◦MODm circuit
of size mS.

Proof. By linearity we have

Re(
S∑

i=1

ciω
ai,1x1+...ai,nxn) =

S∑
i=1

Re(ciωai,1x1+...ai,nxn) .

Thus to compute the sum we can compute each term Re(ciωai,1x1+...ai,nxn) in-
dividually. For every 0 ≤ a < m we will have a MODm gate that evaluate to
1 if ai,1x1 + . . . ai,nxn �≡ a (mod m). This MODm gate is given the coefficient
−Re(ciωa) and we add Re(ciωa) to the threshold value of the output gate, which
effectively makes the MODm gate contribute the correct value to the sum.
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With the same proof we obtain a similar result for equality representation.

Proposition 15. Suppose a Boolean function f can be equality represented by
a Fourier sum over C of size S. Then f is computed by a ETHR ◦ MODm

circuit of size mS.

To be able to compute sign representations with bounded integer coefficients
we will need a slightly more involved approach, since we will only be able to
compute the sum with limited precision.

We consider the cyclotomic field Q(ω). Let ω1, . . . , ωφ(m) be the conjugates of
ω, where φ is Euler’s totient function. Let z = g(ω) where g ∈ Q[X ]. The norm
N(z) is then given by N(z) =

∏φ(m)
i=1 g(ωi). It is well known that the norm has

the property that N(z) ∈ Q and N(z) = 0 if and only if z = 0. Furthermore,
when g ∈ Z[X ] we have that N(z) ∈ Z.

Proposition 16. Let z ∈ Q(ω) be nonzero and assume z = g(ω), where g(X) ∈
Z[X ] have integer coefficients of total absolute value at most M . Then we have

|z| ≥ 1
Mφ(m)−1 .

Proof. Since g(X) ∈ Z[X ] we have that N(z) ∈ Z. Furthermore since the coeffi-
cients of g are of total absolute value at most M we have |g(ωi)| ≤ M for all i.
Thus we have

1 ≤ |N(z)| ≤

∣∣∣∣∣∣
φ(m)∏
i=1

g(ωi)

∣∣∣∣∣∣ =
φ(m)∏
i=1

|g(ωi)| ≤ |g(ω)|Mφ(m)−1

from which the result follows.

Corollary 17. Let z ∈ Q(ω) be such that Re(z) �= 0 and assume z = g(ω),
where g(X) ∈ Z[X ] have integer coefficients of total absolute value at most M .
Then we have

|Re(z)| ≥ 1
2(2M)φ(m)−1 .

Proof. Since Re(z) = 1
2 (z + z̄) Proposition 16 gives |z + z̄| ≥ 1

(2M)φ(m)−1 from
which the result follows.

Proposition 18. Suppose a Boolean function f can be sign represented by a
Fourier sum over C of size S with integer coefficients of absolute value at most
M . Then f is computed by a MAJ ◦ MODm circuit of size 4mS(2M)φ(m).

Proof. We will construct a THR ◦ MODm circuit and carefully track the size
of the integer coefficients. Following the proof of Proposition 14 we derive

Re(
S∑

i=1

ciω
ai,1x1+...ai,nxn) =

S∑
i=1

Re(ciωai,1x1+...ai,nxn) .
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Now from Corollary 17 the absolute value of the left-hand side is at least
1

2(2M)φ(m)−1 . We will approximate each term Re(ciωai,1x1+...ai,nxn) individually.
Let x be arbitrary and define ai = ai,1x1 + . . . ai,nxn. For every 0 ≤ a < m
define

ĉi,a =  4S(2M)φ(m)−1 Re(ciωa)! .

We then have that∣∣∣∣∣4S(2M)φ(m)−1 Re(
S∑

i=1

ciω
ai) −

S∑
i=1

ĉi,a

∣∣∣∣∣ ≤ S .

Since we also have that∣∣∣∣∣4S(2M)φ(m)−1 Re(
S∑

i=1

ciω
ai)

∣∣∣∣∣ ≥ 2S ,

the approximation has the correct sign. We can now conclude as in the proof of
Proposition 14. For every 0 ≤ a < m we will have a MODm gate that evaluate
to 1 if ai,1x1 + . . .ai,nxn �≡ a (mod m). This MODm gate is given the coefficient
−ĉi,a and we add ĉi,a to the threshold value of the output gate. The total absolute
value of the coefficients is bounded by m4S(2M)φ(m)−1M and the size of the
resulting MAJ ◦ MODm circuit is then at most 4mS(2M)φ(m).

As the case of modular counting gates we obtain that a middle layer of AND
gates can be absorbed with a reasonable increase in the size of the circuit by
combining the results above.

Theorem 19. Any THR ◦ ANDd ◦ MODm circuit of size S is computed by
THR ◦ MODm circuit of size S2O(d). Any ETHR ◦ ANDd ◦ MODm circuit
of size S is computed by ETHR ◦ MODm circuit of size S2O(d). Any MAJ ◦
ANDd ◦MODm circuit of size S is computed by MAJ ◦MODm circuit of size
SO(1)2O(d).

4 Depth Reduction for Circuits

In this section we will combine the results about probabilistic polynomials with
the Fourier sum representations to derive the stated depth reduction result for
circuits with a single layer of MODm gates.

Theorem 20. Let ε > 0. Any depth h + 1 AC0[p] ◦ MODm circuit of size S

is computed by a probabilistic MODp ◦ MODm circuit of size 2O(log(S) log( S
ε )h)

with error at most ε.

Proof. Let C be a depth h + 1 AC0[p] ◦ MODm circuit of size S. We first use
Theorem 3 on the AC0[p] circuit given by the top h layers of C. This gives a
probabilistic MODp ◦ANDd circuit of size Sd, where d = O(log(S

ε )h), which in
turn gives a probabilistic MODp ◦ANDd◦MODm circuit of size Sd computing
C with error at most ε. Then Theorem 9 gives a probabilistic MODp ◦MODm

circuit of size Sd2O(d) = 2O(log(S)d).
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Theorem 21. Let ε > 0. Any depth h+2 THR◦AC0◦MODm circuit of size S
is computed by a probabilistic THR◦MODm circuit of size 2O(log(S)h+1 log( S

ε )h)

with one-sided positive error at most ε.

Proof. Let C be a depth h + 2 THR ◦ AC0 ◦ MODm circuit of size S, and
let C1, . . . , CS be the AC0 ◦ MODm subcircuits that feed the output gate and
let w1, . . . , ws be the corresponding weights. We first use Theorem 5 on the
top h layers of C1, . . . , CS to give probabilistic integer polynomials P1, . . . , PS

of degree d = O((log(S
ε ) log(S))h) with zero-sided error ε/S. When wi ≥ 0 we

choose to have Pi(x) ≤ 1 and when wi < 0 we choose to have P (x) ≥ 0. In
this way we obtain that Pr[wiPi(x) ≤ wiCi(x)] = 1. We then feed all terms of
Pi to output gate, with weight given by the product of wi and the coefficient
of the term, for all i. This gives a probabilistic THR ◦ ANDd circuit for the
first h + 1 layers of C with one-sided positive error ε of size Sd+1, and thus a
probabilistic THR ◦ANDd ◦MODm circuit for C. Finally Theorem 19 gives a
THR ◦ MODm circuit of size Sd+12O(d) = 2O(log(S)d).

With a similar proofs we also obtain.

Theorem 22. Let ε > 0. Then any depth h + 2 ETHR ◦ AC0 ◦ MODm cir-
cuit of size S is computed by a probabilistic ETHR ◦ MODm circuit of size
2O(log(S)h+1 log( S

ε )h) with error at most ε. And any depth h + 1 AC0 ◦ MODm

circuit of size S is computed by a probabilistic ETHR ◦ MODm circuit of size
2O(log(S)h+1 log( S

ε )h) with one-sided error at most ε.

Theorem 23. Let ε > 0. Any depth h+2 MAJ◦AC0◦MODm circuit of size S
is computed by a probabilistic MAJ ◦MODm circuit of size 2O(log(S)h+1 log( S

ε )h)

with one-sided positive error at most ε.
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Abstract. In 1992, A. Hiltgen [1] provided the first constructions of
provably (slightly) secure cryptographic primitives, namely feebly one-
way functions. These functions are provably harder to invert than to
compute, but the complexity (viewed as circuit complexity over circuits
with arbitrary binary gates) is amplified by a constant factor only (with
the factor approaching 2).

In traditional cryptography, one-way functions are the basic primitive
of private-key and digital signature schemes, while public-key cryptosys-
tems are constructed with trapdoor functions. We continue Hiltgen’s
work by providing an example of a feebly trapdoor function where the
adversary is guaranteed to spend more time than every honest partici-
pant by a constant factor of 25

22
.

1 Introduction

Numerous public-key cryptographic protocols have been devised over the years,
and yet there exists not a single proof of their security: neither an unconditional
proof (that would necessarily imply P �= NP) nor a proof based on standard (not
problem-specific) structural complexity assumptions. While universal primitives
for one-way functions [2,3] and public-key cryptosystems are known [4] (see also
[5]), they give no connection to the core assumptions of traditional structural
complexity theory; more, the asymptotic nature of polynomial-time reductions
leaves no hope for confidence that a particular scheme cannot be broken at a
particular key length. In general, it appears like there is still a very long way to
go before cryptography can claim any provably secure public-key construction.

If we are unable to prove a superpolynomial gap between the complexities of
honest parties and adversaries, can we prove at least some gap? In 1992, Alain
Hiltgen [1] managed to present a function that is twice harder to invert than
to compute. His example is a linear function over GF (2) with a matrix that
has few non-zero entries while the inverse matrix has many non-zero entries;
the complexity gap follows by a simple argument of Lamagna and Savage [6,7]:
every bit of the output depends non-idly on many variables and all these bits
correspond to different functions, hence a lower bound on the complexity of
computing them all together. The model of computation here is the most general
� This research was partially supported by the Russian Foundation for Basic Research
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one: the number of gates in a Boolean circuit that uses arbitrary binary Boolean
gates. Note that little more could be expected for this model at present, since
known lower bounds here are linear in the number of inputs [8,9].

In this work, we construct another feebly secure cryptographic primitive:
namely, a feebly trapdoor function. Of course, in order to obtain the result, we
have to prove a lower bound on the circuit complexity of a certain function; we
use the gate elimination technique from circuit complexity of the eighties. More
formally, the complexity of inverting (decryption) without the use of trapdoor
information in our construction is at least 25

22 times greater than the complexities
of honest encryption, decryption, and key generation. We also provide hardness
amplification results that give exponential guarantees on the success probability
for weaker attackers. In Section 2.1, we give basic definitions. Section 2.2 does
preparational work, establishing some combinatorial properties of the matrices
representing hard function candidates. Section 2.3 reviews the basic method of
gate elimination, which we use to prove lower bounds on complexity, and ap-
plies it to the feeble security setting. Finally, Sections 3.1 and 3.2 present the
construction of a feebly secure trapdoor function, Section 3.3 proves hardness
amplification results, and Section 4 lists possible directions for further research.

2 Preliminaries

2.1 Basic Definitions

Let us denote by Bn,m the set of all 2m2n

functions f : Bn → Bm, where B =
{0, 1} is the field of two elements. Our computational model is Boolean circuits
with arbitrary binary gates. A circuit is a directed acyclic graph with in-degree
zero (these nodes are called circuit inputs, or variables) and two (these nodes are
called gates). Every gate is labelled by a binary Boolean function (any of the 16
functions in B2,1). Some gates are marked as outputs (to avoid extra negation
gates, we may also define an output as the negation of the value obtained in
a gate; to avoid identity gates, we also allow to define an output as the value
of a variable or the negation of the negation of it). A circuit with n inputs
and m outputs naturally computes a Boolean function in Bn,m. We denote the
size of a circuit c by C(c). The circuit complexity (or simply complexity) of a
function f , denoted (slightly abusing notation) by C(f), is the smallest number
of gates in a circuit computing f (such circuit is called an optimal circuit for
f): C(f) = minc:∀x c(x)=f(x)C(c). We may safely assume that every gate of this
circuit depends on both inputs, i.e., there are no constant functions and no
unary functions Id and NOT, because such gates can be easily eliminated from
the circuit without increasing the number of the gates.

FollowingHiltgen, for every injective fn ∈ Bn,m we candefine itsmeasure of one-

wayness MF (fn) = C(f−1
n )

C(fn) . Hiltgen’s work was to find sequences of functions f =
{fn}∞n=1 with large asymptotic constant lim infn→∞MF (fn), which Hiltgen calls
f ’s order of one-wayness. We will discuss his results in more detail in Section 2.3.
We now extend this definition in order to capture feebly secure trapdoor functions.
Since we are interested in constants here, we must pay attention to all the details.
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Definition 1. A feebly trapdoor candidate is a sequence of triples of circuits
C = {(Keyn,Evaln, Invn)}∞n=1 where:

– {Keyn}∞n=1 is a family of sampling circuits Keyn : Bn → Bpi(n) × Bti(n),
– {Evaln}∞n=1 is a family of evaluation circuits Evaln : Bpi(n)×Bm(n) → Bc(n),

and
– {Invn}∞n=1 is a family of inversion circuits Invn : Bti(n) × Bc(n) → Bm(n)

such that for every security parameter n, every seed s ∈ Bn, and every input
m ∈ Bm(n),

Invn(Keyn,2(s),Evaln(Keyn,1(s),m)) = m,

where Keyn,1(s) and Keyn,2(s) are the first pi(n) bits (“public information”) and
the last ti(n) bits (“trapdoor information”) of Keyn(s), respectively.

We call this function a “candidate” because the definition does not imply any
security, it merely sets up the dimensions and provides correct inversion. In our
constructions, m(n) = c(n) and pi(n) = ti(n). To find how secure a function
is, we introduce the notion of a break. Informally, an adversary should invert
the function without knowing the trapdoor information. We introduce break as
inversion with probability greater than 3

4 . (We later investigate security against
adversaries having smaller success probabilities, too.) We denote by C3/4(f) the
minimal size of a circuit that correctly computes a function f ∈ Bn,m on more
than 3

4 of its inputs (of length n). Obviously, C3/4(f) ≤ C(f) for all f .

Definition 2. A circuit N breaks a feebly trapdoor candidate C = {Keyn,Evaln,
Invn} on seed length n if for uniformly chosen seeds s ∈ Bn and inputs m ∈ Bm(n)

Pr
(s,m)∈U

[
N(Keyn,1(s),Evaln(Keyn,1(s),m)) = m

]
>

3
4
.

Remark 1. In fact, in what follows we prove a stronger result: we prove that no
circuit (of a certain size) can break our candidate for any random seed s, that
is, for every seed s, every adversary fails with probability at least 1/4.

For a trapdoor function to be secure, circuits that break the function should be
larger than the circuits computing it.

Definition 3. A feebly trapdoor candidate C = {Keyn,Evaln, Invn} has order
of security k if for every sequence of circuits {Nn}∞n=1 that break f on every
input length n,

lim inf
n→∞

min
{

C(Nn)
C(Keyn)

,
C(Nn)
C(Evaln)

,
C(Nn)
C(Invn)

}
≥ k.

Remark 2. One could consider key generation as a separate process and omit its
complexity from the definition of the order of security. However, we prove our
results for the definition stated above as it makes them stronger.
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Remark 3. Let us note explicitly that we are talking about one-time security.
An adversary can amortize his circuit complexity on inverting a feebly trapdoor
candidate for the second time for the same seed, for example, by computing the
trapdoor information and successfully reusing it. Thus, in our setting one has to
pick a new seed for every input.

In the next sections, we develop our construction of a feebly trapdoor function
(that is, a feebly trapdoor candidate with nontrivial order of security).

2.2 Hard Matrices

All our constructions are based on a linear function f : Bn → Bn shown by
A. Hiltgen [1] to be feebly one-way of order 3/2. We restrict ourselves to the
case when n ≡ 0 (mod 4). Note that Definition 3 carries through this restriction:
for n �≡ 0 (mod 4) one can simply consider circuit with input size equal to the
lowest multiple of 4 greater than n.

In what follows, all computations are done over F2. We use standard matrix
notation: ek is the identity k × k matrix, 0k is the zero k × k matrix, eij is a
matrix with a single non-zero element in position (i, j), ei∗ is a matrix where
the ith row consists of 1’s, and all other elements are zero, 1k is the k×k matrix
filled with 1’s, uk is the upper triangular k× k matrix (uij = 1 ⇔ i < j), lk is
the lower triangular k×k matrix (lij = 1 ⇔ i > j), and mπ is the permutation
matrix for π (mij = 1 ⇔ j = π(i)). By e, 0, 1, u, and l without subscripts we
denote the correspondent matrices of dimension n

2 × n
2 . We also set σn to be the

cyclic permutation (1 2 . . . n).
In this notation the matrix of the Hiltgen’s function f is A = en + mσn +

en, n
2 +1. We are also interested in the n × 2n matrix A consisting of A−2 and

A−1 stacked together: A =
(
A−2 A−1

)
.

The following lemma can be easily verified by direct calculation.

Lemma 1. Let n = 4k for some k ∈ N. Then

A−1 = 1n +
(

e + u 0
0 l

)
, A−2 = 1nun + un1n +

(
e + u2 0

0 l2

)
.

Lemma 2. Let n = 4k for some k ∈ N. The following statements hold.

1. All columns of A (and, hence, A−1) are different.
2. Each row of A−1 (resp., A) contains at least n

2 (resp., 5n
4 ) nonzero entries.

3. After eliminating all but two (resp., all but five) columns of A−1 (resp., A)
there remains at least one row with two nonzero entries.

Proof. Let us first interpret the results of Lemma 1. Each row of A contains two
ones (on the diagonal and to the right) except for the last row that has three
ones, in positions (n, 1), (n, n

2 + 1), and (n, n). Each row of A−1 has at least n
2

non-zero elements (ones), and the (n
2 + 1)th row does not contain a single zero.
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The A−2 matrix also has lots of ones: (1nun +un1n) is an n×n matrix filled
with zeroes and ones chequered, since

(1nun)ij = 1 ⇔ j ≡ 1 (mod 2),
(un1n)ij = 1 ⇔ i ≡ 0 (mod 2).

Moreover,

(e + u2)ij = 1 ⇔ j > i and i+ j ≡ 0 (mod 2),
(l2)ij = 1 ⇔ i > j and i+ j ≡ 0 (mod 2),

and thus A−2 has two triangular blocks filled with ones: for 1 ≤ i ≤ j ≤ n
2 and

for n
2 +1 < j < i ≤ n. Thus, each row of A−2 contains at least n

2 ones; moreover,
its triangular blocks consisting of ones coincide with the triangular blocks of A−1

filled with zeroes, and the rest is covered with zeroes and ones chequered.
The first statement is obvious.
The ith row of A−1 contains n

2 + i non-zero elements for i ≤ n
2 and n

2 + n− i
non-zero elements for i ≥ n

2 . Thus, the second statement holds for A−1. At the
same time, the ith row of A−2 contains at least 3n

4 − i
2 non-zero elements for

i ≤ n
2 and at least n

2 + 1
2 (i− n

2 − 1) non-zero elements for i > n
2 . Therefore, the

ith row of A−2 contains at least n
2 + i + 3n

4 − i
2 = 5n

4 + i
2 nonzero entries for

i ≤ n
2 and at least n

2 + n− i + n
2 + 1

2 (i− n
2 − 1) = 7n

4 − 1
2 (i− 1) ≥ 5n

4 nonzero
entries for i ≥ n

2 .
Let us nowprove the third claim. SinceA−1 has a row that contains only nonzero

entries, all but one columns of this matrix should be eliminated to leave just one
nonzero entry. The same holds for the left part of the matrixA−2 (see its first row).
The same holds for the right part of the matrix A−2 without the last column (see
its last row). �

2.3 Gate Elimination

In this section, we first briefly remind about Hiltgen’s methods and then intro-
duce gate elimination as the primary technique for proving our bounds. Hiltgen
proved all his bounds with the following very simple argument due to Lamagna
and Savage.

Proposition 1 ([6,7]; [1, Theorems 3 and 4])

1. Suppose that f : Bn → B depends non-idly on each of its n variables,
that is, for every i there exist values a1, . . . , ai−1, ai+1, . . . , an ∈ B such
that f(a1, . . . , ai−1, 0, ai+1, . . . , an) �= f(a1, . . . , ai−1, 1, ai+1, . . . , an). Then
C(f) ≥ n− 1.

2. Let f = (f (1), . . . , f (m)) : Bn → Bm, where f (k) is the kth component of f .
If the m component functions f (i) are pairwise different and each of them
satisfies C(f (i)) ≥ c ≥ 1 then C(f) ≥ c+m− 1.
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Hiltgen counted the minimal complexity of computing one bit of the input (e.g.
since each row of A−1 has at least n

2 nonzero entries, the minimal complex-
ity of each component of A−1y is n

2 ) and thus produced lower bounds on the
complexity of inverting the function (e.g. the complexity of computing A−1y is
n
2 + n− 2 = 3n

2 − 2).
Besides, in cryptography it is generally desirable to prove not only worst-

case bounds, but also that an adversary is unable to invert the function on a
substantial fraction of inputs. Indeed, for each of the matrices constructed here,
any circuit using less than the minimal necessary number of gates inverts it on
less than 3

4 of the inputs. In Hiltgen’s works, this fact followed from a very simple
observation (which was not even explicitly stated).

Lemma 3. Consider a function f =
⊕n

i=1 xi. For any g that depends on only
m < n of these variables, Prx1,...,xn [f(x1, . . . , xn) = g(xi1 , . . . , xim)] = 1

2 .

Proof. Since m < n, there exists an index j ∈ 1..n such that g does not depend
on xj . This means that for every set of values of the other variables, whatever
the value of g is, for one of the values of xj f agrees with g, and on the other
value f differs from g. This means that f differs from g on precisely 1

2 of the
inputs. �

The argument suffices for Hiltgen’s feebly one-wayness result for the square
matrix A−1: first we apply the first part of Proposition 1 and see that every
output has complexity at least n

2 − 1, and then the second part of Proposition 1
yields the necessary bound of 3n

2 − 1. Moreover, if a circuit has less than the
necessary number of gates, one of its outputs inevitably depends on less than the
necessary number of input variables, which, by Lemma 3, gives the necessary 1

2
error rate.

However, in this paper we also use non-square matrices, and it turns out that
a similar simple argument does not provide sufficient bounds for our matrices.
Therefore, we use a different way of proving lower bounds, namely gate elimi-
nation that has been previously used for every lower bound in “regular” circuit
complexity [9]. The basic idea of this method is to use the following inductive
argument. Consider function f and substitute some value c for some variable
x thus obtaining a circuit for the function f |x=c. The circuit can be simplified,
because the gates that had this variable as inputs become either unary (recollect
that the negation can be embedded into subsequent gates) or constant (in this
case we can proceed to eliminating subsequent gates). The important case here
is when the gate is non-linear, such as an AND or an OR gate. In this case it
is always possible to choose a value for an input of such gate so that this gate
becomes a constant. One then proceeds by induction as long as it is possible
to find a suitable variable that eliminates many enough gates. Evidently, the
number of eliminated gates is a lower bound on the complexity of f .

First, we prove a prerequisite to the master lemma.

Lemma 4. Let t ≥ 0. Assume that χ : Bv(n) → Bn is a linear function with
matrix X over GF (2). Assume also that all columns of X are different, there
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are no zero rows in X, and after removing any t columns of X, the matrix still
has at least one row containing at least two nonzero entries. Then C(χ) ≥ t+ 1
and, moreover, no circuit with less than t+1 gates can compute χ on more than
1
2 of the inputs.

Proof. We argue by induction on t. For t = 0 the statement is obvious: the value
of a circuit with no gates1 cannot agree on more than 1

2 of the input assignments
with a linear function essentially depending on two variables.

Let now t ≥ 1 and consider an optimal circuit of size less than t + 1 imple-
menting χ on more than 1

2 of the inputs. Let us fix a topological order on its
nodes. We denote the actual function this circuit implements by h (it does not
need to be linear, but does have to agree with χ on more than 1

2 of the inputs).
Consider the topmost gate g in this order. Since g is topmost, its incoming

edges come from the inputs of the circuit, denote them by x and y. To eliminate
a gate, we simply substitute a value to x; substituting a value for one variable is
equivalent to removing a column from the matrix, and it reduces t by at most 1.

To invoke the induction hypothesis, it remains to note that if h agrees with
χ on more than 1

2 of the inputs, then either h|x=0 or h|x=1 agrees with the
corresponding restriction of χ on more than 1

2 of the remaining inputs. Thus,
if h did compute χ on more than 1

2 of the inputs, substituting this value of x
into h would yield a function of n − 1 inputs that contradicted the induction
hypothesis. Thus, substituting this value of x into χ yields a function of n − 1
inputs satisfying the conditions of the theorem with parameter t − 1, and this
function can be computed by a circuit of size less than t− 1, which contradicts
the induction hypothesis. �

The following is a “master” lemma that we will apply to our matrices.

Lemma 5. Let t ≥ u ≥ 1. Assume that χ : Bv(n) → Bn is a linear function with
matrix X over GF (2). Assume also that all columns of X are different, every
row of X has at least u nonzero entries, and after removing any t columns of
X, the matrix still has at least one row containing at least two nonzero entries.
Then C(χ) ≥ u+ t and, moreover, C3/4(χ) ≥ u+ t.

Proof. This time, we argue by induction on u.
The induction base (u = 1) follows from Lemma 4.
Let now u ≥ 2 and consider an optimal circuit of size less than u + t imple-

menting χ on more than 3
4 of the inputs and fix a topological order on its nodes.

We denote the actual function this circuit implements by h (it does not need to
be linear, but does have to agree with χ on more than 3

4 of the inputs).
Consider the topmost gate g in this order. Since g is topmost, its incoming

edges come from the inputs of the circuit, denote them by x and y. By Lemma 3,
neither of its input variables can be marked as an output, because for u ≥ 2 each
row has at least two variables.

The following possibilities exhaust all possible cases.

1 Recall that it can still compute unary functions.
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1. One of the input variables of g, say x, enters some other gate. In this case
by setting x to any constant we can eliminate at least 2 gates. To invoke the
induction hypothesis, it remains to note that if h agrees with χ on more than
3
4 of the inputs, then either h|x=0 or h|x=1 agrees with the corresponding
restriction of χ on more than 3

4 of the remaining inputs. Thus, substituting
this value of x into χ yields a function of n−1 inputs satisfying the conditions
of the theorem with parameters u − 1 and t − 1, and this function can be
computed by a circuit of size less than u + t − 2, which contradicts the
induction hypothesis.

2. Neither x nor y enters any other gate. In this case, h is a function of neither
x nor y but only g(x, y) (if any); we show that this is impossible. Note that
χ depends on x and y separately; in particular, for one of these variables, say
x, there exists an output gate2 χi that depends only on x: χi = x⊕

⊕
z∈Z z,

where y /∈ Z. Since every gate of an optimal circuit essentially depends on
both its arguments, there exist values a and b such that g(0, a) = g(1, b).
Thus, for every assignment of the remaining variables hi �= χi either for
x = 0, y = a or for x = 1, y = b, which means that χ and h disagree on at
least 1

4 of all assignments. �

In what follows we will also use block-diagonal matrices. Intuition hints that
joint computation of two functions that have different inputs should be as hard
as computing them separately (thus, the lower bound should be the sum of
respective lower bounds). However, for certain functions it is not the case, as
seen in [9, Section 10.2] We show it for our particular case.

Lemma 6. Assume that a linear function ζ is determined by a block diagonal
matrix

ζ
(
x(1),x(2), . . . ,x(m)

)
=

⎛⎜⎜⎜⎝
X1 0 . . . 0
0 X2 . . . 0
...

...
...

0 0 . . . Xm

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x(1)

x(2)

...
x(m)

⎞⎟⎟⎟⎠ ,

and the matrices Xj satisfy the requirements of Lemma 5 with uj(n) and tj(n),
respectively (the matrices may be non-square and of different dimensions). Then
C(ζ) ≥

∑m
j=1(uj(n) + tj(n)) and, moreover, C3/4(ζ) ≥

∑m
j=1(uj(n) + tj(n)).

Proof. We proceed similarly to Lemma 5. Note that when we substitute a vari-
able from x(1), it does not change anything in X2, and vice versa. Thus we
substitute “good” variables (those that eliminate two gates) as long as we have
them and then substitute “bad” variables (eliminating one gate per step) when
we do not have good ones separately for each matrix. If one of the matrices runs
out of rows that contain at least two nonzero entries (it may happen after elim-
inating ui(n) − 1 “good” and then ti(n) − ui(n) + 2 other variables from it),
we substitute the remaining variables corresponding to this matrix and forget
about this part of the block-diagonal matrix.
2 Recall that we distinguish outputs from output gates: an output can be the negation

of a function computed in an output gate.
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It can happen, however, that one of the inputs (variables) in the topmost gate
is from x(1) and the other one is from x(2). Both cases from the proof of Lemma 5
go through smoothly in this situation: in the first case we substitute a value in
the good variable, and the second case is impossible for the same reasons.

Thus, eliminating all columns from Xi leads to eliminating at least

2(ui − 1) + (ti − ui + 2) = ti + ui

gates, and we obtain the overall bound of

C3/4(ζ) ≥
m∑

j=1

(uj+tj). �

We now formulate the direct consequences of these lemmas and note upper
bounds for our specific matrices.

Lemma 7. Let n, n′ ≡ 0 (mod 4),

α(x) = A−1x, α2(x) =
(
A−1 A−2

)
x, α∗(x) =

(
A−1 A−2 0
0 0 A−1

∗

)
x,

where A−1
∗ denotes a matrix with the same structure as A−1, but with dimension

n′ instead of n. Then C3/4(α) ≥ 3n
2 − 2, C3/4(α2) ≥ 13n

4 − 5, C3/4(α∗) ≥
3n′
2 + 13n

4 − 7.

Proof. Follows from Lemmas 5 and 6, by substituting the respective bounds
u(n) and t(n) from Lemma 2 (in particular, t(n) = n − 2 for the matrix A−1

and t(n) = 2n− 5 for A). �

Lemma 8. 1. There exists a circuit of size 3n
2 − 1 that implements the linear

function φ : Bn → Bn with matrix A−1.
2. There exists a circuit of size 7n

2 that implements the linear function φ :
B2n → Bn with matrix

(
A−1 A

)
.

3. There exists a circuit of size 5n
2 − 1 that implements the linear function

φ : B2n → Bn with matrix
(
A−1 A−1

)
.

Proof

1. First construct the sum
⊕n/2

i=1 xi (n
2 − 1 gates). Then, adding one by one

each of the inputs xi, i = n
2 ..n, compute all outputs yi, i = n

2 ..n and, by the
way, the sum of all inputs

⊕n
i=1 xi (this takes another n

2 gates). Finally, the
first n

2 outputs will be computed by “subtracting” the first n
2 inputs from

the sum of all inputs one by one (another n
2 gates).

2. To implement the left part of this matrix, we need 3n
2 − 1 gates. Afterwards

we add to each output the two bits from the right part of the matrix (three
bits in case of the last row); we add 2n+ 1 gates in this way.

3. Note that in this case φ(a, b) = ( A−1 A−1 ) ( a
b ) = A−1(a⊕b) for any a, b ∈ Bn.

Thus, we first add a⊕ b (n gates) and then implement A−1 (3n
2 − 1 gates).�
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3 The Feebly Secure Trapdoor Function

3.1 Two Constructions

We are almost ready to present the construction of our feebly trapdoor function
(recall Definition 1). In this section, we consider two different constructions, none
of which works alone; however, we will merge them into one in the subsequent
section, and the resulting mixture will be feebly secure.

In our first construction, the inversion with trapdoor is faster than inversion
without trapdoor, but, unfortunately, evaluating the function is even harder. In
terms of Definition 1, we now present a feebly trapdoor candidate with identical
lengths of the seed, public information, trapdoor, input, and output c(n) =
m(n) = pi(n) = ti(n) = n. Given a random seed, the sampler produces a pair of
public and trapdoor information (pi, ti), where ti is the random seed itself and
pi = A(ti) (thus, the sampler can be implemented using n + 1 gates). In this
construction, evaluation produces the output c for an input m as follows:

Evaln(pi,m) = A−1(pi) ⊕A(m).

An upper bound on evaluation circuit complexity follows from Lemma 8; one
can evaluate this function with a circuit of size 7n

2 . Inversion with trapdoor goes
as follows:

Invn(ti, c) = A−1(A−1(pi) ⊕ c) = A−1(ti ⊕ c).

Due to the nice linearity (note that bounds proven in previous sections do not
apply here, because the inversion matrix has a lot of identical columns), this
circuit can be implemented in 5n

2 − 1 gates: first one computes ti ⊕ c using n
gates, then one applies A−1 using another 3n

2 − 1 gates (see Lemma 8).
Finally, an adversary has to invert Bob’s message the hard way:

m = A−1(A−1(pi) ⊕ c) = A

(
pi
c

)
.

By Lemma 7, the complexity of this function is at least 13n
4 − 5 gates, and any

adversary with less than 13n
4 − 5 gates fails on at least 1/4 of the inputs.

In this construction evaluation is harder than inversion without trapdoor. In
order to fix this problem, we use also a different construction, also a candidate
trapdoor function now with c(n) = m(n) = n and pi(n) = ti(n) = 0. Our second
construction is just the Hiltgen’s feebly one-way function. Thus, the public and
trapdoor information is not used at all, and the evaluation–inversion functions
are as follows: Evaln(m) = A(m), Invn(c) = A−1(c), Advn(c) = A−1(c).

This construction, of course, is not a trapdoor function at all because inversion
is implemented with no regard for the trapdoor. For a message m of length
|m| = n the evaluation circuit has n+1 gates, while inversion, by Lemma 8, can
be performed only by circuits of 3n

2 − 1 gates each. Thus, in this construction
evaluation is easy, while inversion is hard, with or without trapdoor.
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3.2 The Combined Construction

We now combine the two functions presented in Section 3.1. The resulting one
will make it easier for both inversion with trapdoor and evaluation than for an
adversary. We split the input into two parts; the first part m1, of length n, will
be subject to our first (less trivial) construction, while the second part m2, of
length αn, will be subject to the second construction. We will choose α later to
maximize the relative hardness for an adversary.

Now each participant has a block-diagonal matrix:

Evaln(pi,m) =
(
A−1 A 0
0 0 A∗

)⎛⎝ pi
m1
m2

⎞⎠ =
(
c1
c2

)
,

Invn(ti, c) =
(
A−1 A−1 0
0 0 A−1

∗

)⎛⎝ ti
c1
c2

⎞⎠ =
(
m1
m2

)
,

Advn(pi,m) =
(
A−2 A−1 0
0 0 A−1

∗

)⎛⎝pi
c1
c2

⎞⎠ =
(
m1
m2

)
,

where A∗ denotes the matrix with the same structure as A, but with dimension
αn instead of n. Thus, in terms of Definition 1, we get a feebly trapdoor candidate
where inputs and outputs are longer than the seed and the public and trapdoor
information: pi(n) = ti(n) = n, c(n) = m(n) = (1 + α)n.

Lemma 8 yields upper bounds for evaluation and inversion with trapdoor,
and Lemma 7 yields a lower bound for the adversary: C(Evaln) ≤ 7n

2 + αn+ 1,
C(Invn) ≤ 5n

2 + 3αn
2 − 2, C3/4(Advn) ≥ 13n

4 + 3αn
2 − 7. Thus, to get a feebly

trapdoor function we simply need to choose α such that 13
4 + 3

2 > 7
2 + α and

13
4 + 3

2 >
5
2 + 3α

2 . The second inequality is trivial, and the first one yields α > 1
2 .

We would like to maximize the order of security of this trapdoor function (Def-
inition 3); since sampling is always strictly faster than evaluation and inversion
with trapdoor, we are maximizing

min
{

lim
n→∞

C3/4(Advn)
C(Invn)

, lim
n→∞

C3/4(Advn)
C(Evaln)

}
= min

{ 13
4 + 3α

2
5
2 + 3α

2

,
13
4 + 3α

2
7
2 + α

}
.

This expression reaches maximum when α = 2, and the order of security in this
case reaches 25

22 . We summarize this in the following theorem.

Theorem 1. There exists a feebly trapdoor function with the seed length pi(n) =
ti(n) = n, the length of inputs and outputs c(n) = m(n) = 3n, and the order of
security 25

22 .

3.3 Hardness Amplification

In the previous sections, we saw a construction of a linear feebly trapdoor func-
tion that guarantees that any circuit with less than precisely the necessary num-
ber of gates fails to invert this function on more that 3

4 of its inputs. In this
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section, we use this construction to design a function with a superpolynomial
bound on the probability of success (namely, 2−c

√
n+o(

√
n)). Let us denote by h

the function an adversary had to compute in the previous section, and by X its
matrix. Consider the linear function H defined by the block diagonal matrix

H
(
x(1),x(2), . . . ,x(m)

)
=

⎛⎜⎜⎜⎝
X 0 . . . 0
0 X . . . 0
...

...
...

0 0 . . . X

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x(1)

x(2)

...
x(m)

⎞⎟⎟⎟⎠ .

By Lemma 6, H has complexity at least mC(h). The dimensions of X are (1 +
α)n× (2 + α)n; we denote n′ = (1 + α)n.

Lemma 9. If a circuit computes H on more that 1
p(m) fraction of its inputs,

and for each block in H:

– all columns of X are different;
– every row of X has at least u(n) nonzero entries;
– after removing any t(n) columns of X, this matrix still has at least one row

containing at least two nonzero entries,

then the complexity of this circuit is not less than (u(n)+t(n))(m− log4/3 p(m)).

Proof. First, recall that H consists of m separate blocks with disjoint sets of
variables Xi; let us denote hi = H |Xi . Since Xi are disjoint, mistakes in com-
puting hi are independent: if a circuit C computes hi on βi fraction of its inputs
and hj on βj fraction of its inputs, it cannot compute H on more that βiβj frac-
tion of its inputs. Thus, there are at most log4/3 p(m) blocks where C violating
our claim can afford to make mistakes on more than 1

4 of the inputs. During this
proof we will call them “terrible” blocks.

We proceed by the same gate elimination induction we had been using several
times already. Consider the topmost gate and the two variables that enter it. In
the proof of Lemma 6, we marked variables as “good” or “bad” depending on
whether they fall into a block where all “good” variables have been eliminated.
This time, we do the same thing, but mark all variables in terrible blocks as
“bad” in advance. As in the previous proofs, whenever the topmost gate has at
least one “bad” variable as input, we set this variable, thus eliminating only one
gate from the circuit. Whenever the topmost gate has two “good” variables as
inputs, we should always be able to eliminate two gates from the circuit. There
are still the same basic possibilities as in Lemma 5, and we also have to always
choose the part of the input assignments space where the circuit errs on less
than 1

4 of the remaining inputs (since the initial circuit errs on less than 1
4 of

these inputs, such a subcurcuit must exist).
The rest of the proof is the same as Lemma 5. We proceed by induction,

eliminating two gates whenever two “good” variables enter a topmost gate, and
eliminating one “bad” variable whenever it enters a topmost gate. Thus, the
overall complexity is at least twice the number of “good” variables plus the
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number of remaining “bad” variables. We have to discard “terrible” blocks com-
pletely — after all, their complexity may actually be equal to zero. Thus, we get
a bound of (t+ u)(m− log4/3 p(m)). �

Note also that stacking the matrices up in a large block diagonal matrix does
not change the parameters of a feebly trapdoor function. Thus, we have obtained
the following theorem.

Theorem 2. There exists a feebly trapdoor function candidate C={Keyn,Evaln,
Invn} with the seed length pi(n) = ti(n) = n, the length of inputs and outputs
c(n) = m(n) = 3n with complexities C(Invn) ≤ 11n

2 + O(1), C(Evaln) ≤ 11n
2 +

O(1), C(Keyn) = n+1, and the order of security 25
22 . Moreover, no adversary with

less than 25
4 n − 25

4 δn
(a+1)/2 gates is able to invert this feebly trapdoor function

on more than (4/3)−δna/2+o(n) fraction of the inputs for any constant δ > 0, 1 >
a > 0.

4 Conclusion and Further Work

In this work, we have presented the first known construction of a provably secure
trapdoor function, although “security” should be understood in a very restricted
sense of Definition 3.

Here are natural directions for further research. First, it would be interesting
to devise a more natural construction. Both the second (keyless) construction
and the merge of two matrices are counter-intuitive. Second, it would be great
to substantially improve the order of security. While a certain improvement to
the constant 25

22 may be straightforward, further development will soon hit the
general obstacle of our present inability to prove lower bounds greater than
4n − o(1) for Bn → Bn functions. Moreover, the constructions based on linear
functions will never overcome a bound of n−1 gates per one bit of output; thus,
nonlinear constructions are necessary. Finally, a natural extension of this work
would be to devise other feebly secure cryptographic primitives.
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Abstract. The 2-Disjoint Connected Subgraphs problem asks if a
given graph has two vertex-disjoint connected subgraphs containing pre-
specified sets of vertices. We show that this problem is NP-complete even
if one of the sets has cardinality 2. The Longest Path Contractibil-

ity problem asks for the largest integer 
 for which an input graph can
be contracted to the path P� on 
 vertices. We show that the compu-
tational complexity of the Longest Path Contractibility problem
restricted to P�-free graphs jumps from being polynomially solvable to
being NP-hard at 
 = 6, while this jump occurs at 
 = 5 for the 2-
Disjoint Connected Subgraphs problem. We also present an exact
algorithm that solves the 2-Disjoint Connected Subgraphs problem
faster than O∗(2n) for any n-vertex P�-free graph. For 
 = 6, its running
time is O∗(1.5790n). We modify this algorithm to solve the Longest

Path Contractibility problem for P6-free graphs in O∗(1.5790n) time.

1 Introduction

There are several natural and elementary algorithmic problems that check if the
structure of some fixed graph H shows up as a pattern within the structure of
some input graph G. One of the most well-known problems is the H-Minor

Containment problem that asks whether a given graph G contains H as a
minor. A celebrated result by Robertson and Seymour [12] states that the H-
Minor Containment problem can be solved in polynomial time for every fixed
pattern graph H . They obtain this result by designing an algorithm that solves
the following problem in polynomial time for any fixed input parameter k.

Disjoint Connected Subgraphs

Instance: A graph G = (V,E) and mutually disjoint nonempty sets Z1, . . . , Zt ⊆
V such that

∑t
i=1 |Zi| ≤ k.

Question: Do there exist mutually vertex-disjoint connected subgraphsG1,. . . ,Gt

of G such that Zi ⊆ VGi for 1 ≤ i ≤ t?
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The first problem studied in this paper is the 2-Disjoint Connected Sub-

graphs problem, which is a restriction of the above problem to t = 2.
The cyclicity η(G) of a connected graph G, introduced by Blum [2], is the

largest integer � for which G is contractible to the cycle C� on � vertices. We
introduce a similar concept: the path contractibility number ϑ(G) of a graph G
is the largest integer � for which G is P�-contractible. For convenience, we define
ϑ(G) = 0 if and only if G is disconnected. The second problem studied in this
paper is the Longest Path Contractibility problem, which asks for the
path contractibility number of a given graph G.

Like the 2-Disjoint Connected Subgraphs problem, the Longest Path

Contractibility problem deals with partitioning a given graph into connected
subgraphs. Since connectivity is a “global” property, both problems are examples
of “non-local” problems, which are typically hard to solve exactly (see e.g. [5]).
In an attempt to design fast exact algorithms for such problems, one can fo-
cus on restrictions of the problem to certain graph classes. One family of graph
classes of particular interest is the family of graphs that do not contain long
induced paths. Several authors have studied restrictions of well-known NP-hard
problems, such as the k-Colorability problem (cf. [8,11,13]) and the Maxi-

mum Independent Set problem (cf. [7,10]), to the class of P�-free graphs for
several values of �.

Our Results. We show that the 2-Disjoint Connected Subgraphs problem
is already NP-complete if one of the given sets of vertices has cardinality 2. We
also show that the 2-Disjoint Connected Subgraphs problem restricted to
the class of P�-free graphs jumps from being polynomially solvable to being NP-
hard at � = 5, while for the Longest Path Contractibility problem this
jump occurs at � = 6.

A trivial algorithm solves the Two Disjoint Connected Subgraphs prob-
lem in O∗(2n) time. Let Gk,r denote the class of graphs all connected induced
subgraphs of which have a connected r-dominating set of size at most k. We
present an algorithm, called SPLIT, that solves the 2-Disjoint Connected

Subgraphs problem for n-vertex graphs in the class Gk,r in O∗((f(r))n) time
for any fixed k and r ≥ 2, where

f(r) = min
0<c≤0.5

{
max
{ 1
cc(1 − c)1−c

, 21− 2c
r−1

}}
.

The O∗-notation, used throughout the paper, suppresses factors of polyno-
mial order. In particular, SPLIT solves the 2-Disjoint Connected Subgraphs

problem for any n-vertex P6-free graph in O∗(1.5790n) time. We modify SPLIT to
obtain an O∗(1.5790n) time algorithm for the Longest Path Contractibil-

ity problem restricted to P6-free graphs on n vertices.

2 Preliminaries

All graphs in this paper are undirected, finite, and simple, i.e., without loops
and multiple edges. We refer to [4] for terminology not defined below.
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Let G = (V,E) be a graph. For a subset S ⊆ V we write G[S] to denote
the the subgraph of G induced by S. We write P� respectively C� to denote
a path respectively a cycle on � vertices. The distance dG(u, v) between two
vertices u and v in a graph G is the length |VP |−1 of a shortest path P between
them. For any vertex v ∈ V and set S ⊆ V , we write dG(v, S) to denote the
length of a shortest path from v to S, i.e., dG(v, S) := minw∈S dG(v, w). The
neighborhood of a vertex u ∈ V is the set NG(u) := {v ∈ V | uw ∈ E}. The set
N r

G(S) := {u ∈ V | dG(u, S) ≤ r} is called the r-neighborhood of a set S. A set S
r-dominates a set S′ if S′\S ⊆ N r

G(S). We also say that S r-dominates G[S′]. A
subgraph H of G is an r-dominating subgraph of G if VH r-dominates G. In case
r = 1, we use “dominating” instead of “1-dominating”. A set S ⊆ V is called a
(k, r)-center of G if |S| ≤ k and N r

G(S) = V . A set S is called connected if G[S]
is connected. The class of graphs all connected induced subgraphs of which have
a connected (k, r)-center is denoted by Gk,r . The graph G is called a split graph
if V can be partitioned into a clique and an independent set.

Let V ′ ⊂ V and p, q ∈ V \V ′. We say that p is separated from q by V ′ if every
path in G from p to q contains a vertex of V ′. A graph G is called H-free for
some graph H if G does not contain an induced subgraph isomorphic to H . The
edge contraction of edge e = uv in G removes the two end-vertices u and v from
G, and replaces them by a new vertex that is adjacent to precisely those vertices
to which u or v were adjacent. We denote the resulting graph by G\e. A graph
G is contractible to a graph H (graph G is H-contractible) if H can be obtained
from G by a sequence of edge contractions. An equivalent way of saying that G
is H-contractible is that

• for every vertex h in VH there is a corresponding nonempty subset W (h) ⊆
VG of vertices in G such that G[W (h)] is connected, and W = {W (h) | h ∈
VH} is a partition of VG; we call a set W (h) an H-witness set of G for h,
and we call W an H-witness structure of G;

• for every hi, hj ∈ VH , there is at least one edge between witness sets W (hi)
and W (hj) in G if and only if hi and hj are adjacent in H .

If for every h ∈ VH we contract the vertices in W (h) to a single vertex, then
we end up with the graph H . Note that the witness sets W (h) are not uniquely
defined in general, since there may be different sequences of edge contractions
that lead from G to H . A pair of vertices (u, v) of a graph G is P�-suitable
for some integer � ≥ 3 if and only if G has a P�-witness structure W with

Fig. 1. Two P4-witness structures of a graph; the grey vertices form a P4-suitable pair
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W (p1) = {u} and W (p�) = {v}, where P� = p1 . . . p�. See Figure 1 for two
different P4-witness structures and a P4-suitable pair of a P4-contractible graph.

A 2-coloring of a hypergraph (Q,S), where S is a collection of subsets of Q, is
a partition (Q1, Q2) of Q with Q1 ∩ S �= ∅ and Q2 ∩ S �= ∅ for all S ∈ S.

3 The 2-Disjoint Connected Subgraphs Problem

3.1 An NP-Completeness Proof

Theorem 1. The 2-Disjoint Connected Subgraphs problem restricted to
instances with |Z1| = 2 is NP-complete.

Proof. We use a reduction from 3-SAT, which is well-known to be NP-complete
(cf. [6]). Let X = {x1, . . . , xn} be a set of variables and C = {c1, . . . , cm} be a
set of clauses forming an instance of 3-SAT. Let X := {x | x ∈ X}. We construct
a graph G, depicted in Figure 2, as follows. Every literal in X ∪ X and every
clause in C is represented by a vertex in G. There is an edge between x ∈ X ∪X
and c ∈ C if and only if x appears in c. For i = 1, . . . , n − 1, xi and xi are
adjacent to both xi+1 and xi+1. We add two vertices f1 and f2 to G, where f1
is adjacent to x1 and x1, and f2 is adjacent to xn and xn.

We claim that the graph G, together with the sets Z1 := {f1, f2} and Z2 := C,
is a Yes-instance of the 2-Disjoint Connected Subgraphs problem if and
only if C is satisfiable.

x1 x2 x3 xn

x1 x2 x3 xn

f1 f2

c1 c2 cm

Fig. 2. The graph G, in case c1 = (x1 ∨ x2 ∨ x3)

Suppose t : X → {true, false} is a satisfying truth assignment for C. Let XT

(respectively XF ) be the set of variables that are set to true (respectively false)
by t, and let XT := {x | x ∈ XT } and XF := {x | x ∈ XF }. We denote the
set of true and false literals by T and F respectively, i.e., T := XT ∪ XF and
F := XF ∪ XT . Note that exactly one literal of each pair xi, xi belongs to T ,
i.e., is set to true by t, and the other one belongs to F . Hence, the vertices in
F ∪ {f1, f2} induce a connected subgraph G1 of G. Since t is a satisfying truth
assignment, every clause vertex is adjacent to a vertex in T . Hence the vertices
in T ∪C induce a connected subgraph G2 of G, which is vertex-disjoint from G1.
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To prove the reverse statement, suppose G1 and G2 are two vertex-disjoint
connected subgraphs of G such that {f1, f2} ⊆ VG1 and C ⊆ VG2 . Since f1
and f2 form an independent set in G and G1 is connected, at least one of each
pair xi, xi must belong to VG1 . Since the vertices of C form an independent
set in G, every clause vertex must be adjacent to at least one literal vertex in
(X ∪X) ∩ VG2 . Let t be a truth assignment that sets those literals to true, and
their negations to false. For each pair xi, xi both literals of which belong to VG1 ,
t sets exactly one literal to true, and the other one to false. Then t is a satisfying
truth assignment for C. "#

3.2 A Complexity Classification for P�-Free Graphs

Consider the following characterization of P4-free graphs given in [9].

Theorem 2 ([9]). A graph G is P4-free if and only if each connected induced
subgraph of G contains a dominating induced C4 or a dominating vertex.

We use this characterization of P4-free graphs in the proof of the complexity
classification of the 2-Disjoint Connected Subgraphs problem below. Note
that we have strengthened the NP-complete cases to split graphs.

Theorem 3. The 2-Disjoint Connected Subgraphs problem is polynomi-
ally solvable for P�-free graphs if � ≤ 4 and NP-complete for P�-free split graphs
if � ≥ 5.

Proof. Assume � ≤ 4. Let G = (V,E) be a P�-free, and consequently P4-free,
graph with nonempty disjoint sets Z1, Z2 ⊆ V . Suppose G, together with sets Z1
and Z2, is a Yes-instance of the 2-Disjoint Connected Subgraphs problem,
and let G1 = (V1, E1) and G2 = (V2, E2) be vertex-disjoint connected subgraphs
of G such that Zi ⊆ Vi for i = 1, 2. Note that both G1 and G2 are P4-free. As
a result of Theorem 2, there exist sets D1, D2 such that Di dominates Vi and
|Di| ∈ {1, 4} for i = 1, 2. So to check whether G, together with Z1 and Z2, is
a Yes-instance of the 2-Disjoint Connected Subgraphs problem, we act as
follows.

We guess a vertex d1 ∈ V \Z2. If d1 does not dominate Z1, we guess another
vertex d1. If d1 dominates Z1, we check if Z2 is contained in one component G2
of G[V \(Z1 ∪ {d1})]. If so, then G1 := G[Z1 ∪ {d1}] and G2 form a solution of
the 2-Disjoint Connected Subgraphs problem. Otherwise, we choose another
vertex d1. If we have checked every vertex in V \Z2 without finding a solution, then
we guess a 4-tupleD1 ⊆ V \Z2 and repeat the above procedure withD1 instead of
d1. If we do not find a solution for any 4-tupleD1, then (G,Z1, Z2) is a No-instance
of the 2-Disjoint Connected Subgraphs problem. Since we can perform all
checks in polynomial time, this finishes the proof of the polynomial cases.

We now show that the 2-Disjoint Connected Subgraphs problem is NP-
complete for P�-free split graphs if � ≥ 5. Clearly, the problem lies in NP.
We prove NP-completeness by using a reduction from the NP-complete Hy-

pergraph 2-Colorability problem that asks if a given hypergraph is 2-
colorable (cf. [6]). Let H = (Q,S) be a hypergraph with Q = {q1, . . . , qn}
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q1 q2

q3

Fig. 3. The graph G

and S = {S1, . . . , Sm}. We may assume m ≥ 2 and Si �= ∅ for each Si. Let G
be the graph obtained from the incidence graph of H by adding the vertices
S′ = {S′

1, . . . , S
′
m}, where S′

i = Si for every 1 ≤ i ≤ m, and by adding the
following edges: qiS

′
j if and only if qi ∈ S′

j , and qiqj if and only if i �= j. See
Figure 3 for the graph G obtained in this way from the hypergraph (Q,S) with
Q = {q1, q2, q3} and S = {{q1, q3}, {q1, q2}, {q1, q2, q3}}. Clearly G is a split
graph, and it is easy to check that G is P5-free, and consequently P�-free for any
� ≥ 5. We claim that G, together with the sets S and S′, is a Yes-instance of
the 2-Disjoint Connected Subgraphs problem if and only if (Q,S) has a
2-coloring.

Suppose G1 and G2 are vertex-disjoint connected subgraphs of G such that
S ⊆ VG1 and S′ ⊆ VG2 . Without loss of generality, assume that V1 := VG1 and
V2 := VG2 form a partition of V . Then there exists a partition (Q1, Q2) of Q
such that V1 = S ∪Q1 and V2 = S′ ∪Q2. Note that S is an independent set in
G. Hence Q1 �= ∅ and every vertex in S is adjacent to at least one vertex in Q1.
Similarly, Q2 �= ∅ and every vertex in S′ has at least one neighbor in Q2. Since
S′

i = Si for every 1 ≤ i ≤ m, (Q1, Q2) is a 2-coloring of (Q,S).
Now suppose (Q,S) has a 2-coloring (Q1, Q2). Then it is clear that G[S ∪Q1]

and G[S′ ∪ Q2] are connected, so we can choose G1 := G[S ∪ Q1] and G2 :=
G[S′ ∪Q2]. This finishes the proof of the NP-complete cases.

3.3 An Exact Algorithm

Here, we present an algorithm that solves the 2-Disjoint Connected Sub-

graphs problem for Gk,r for any k and r ≥ 2 faster than the trivial O∗(2n).

Lemma 1. Let G = (V,E) be a connected induced subgraph of a graph G′ ∈
Gk,r. For each subset Z ⊆ V , there exists a set D∗ ⊆ V with |D∗| ≤ (r−1)|Z|+k
such that G[D∗ ∪ Z] is connected.

Proof. By definition of Gk,r , G has a connected (k, r)-center D0. Let Di := {v ∈
V | dG(v,D0) = i} for i = 1, . . . r. Note that the sets D0, . . . , Dr form a partition
of V . Let z be any vertex of Z and suppose z ∈ Di for some 0 ≤ i ≤ r; note that
this i is uniquely defined. By definition, there exists a path P z of length i from
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z to a vertex in D0, and it is clear that D0 ∪ P z\{z} is a connected set of size
(i− 1) + |D0| that dominates z. Let P :=

⋃
z∈Z P z\{z}. Clearly, D∗ := D0 ∪ P

is a connected set dominating Z. In the worst case, we have Z ⊆ Dr and every
pair of paths P z, P z′

is vertex-disjoint, in which case |D∗| = (r− 1)|Z|+ |D0| ≤
(r − 1)|Z| + k. This finishes the proof of Lemma 1. "#

The following corollary, the straightforward proof of which has been omitted due
to page restrictions, is a result of Lemma 1.

Corollary 1. For any fixed k, the 2-Disjoint Connected Subgraphs prob-
lem for Gk,r can be solved in polynomial time if r = 1, or if one of the given sets
Z1 or Z2 of vertices has fixed size.

From now on, we assume that r ≥ 2 (and that the sets Z1, Z2 may have arbitrary
size). We present the algorithm SPLIT that solves the 2-Disjoint Connected

Subgraphs problem for any G ∈ Gk,r , or concludes that a solution does not
exist. We assume 1 ≤ |Z1| ≤ |Z2| and define Z := V \(Z1 ∪ Z2). Algorithm
SPLIT distinguishes between whether or not Z1 has a “reasonably” small size,
i.e., size at most an for some number 0 < a ≤ 1

2(r−1) , the value of which will be
determined later.
Case 1. |Z1| ≤ an. For all sets Z ′ ⊆ Z in order of increasing cardinality up
to at most (r − 1)|Z1| + k, check whether G1 := G[Z ′ ∪ Z1] is connected and
G[(Z\Z ′) ∪ Z2] has a component G2 containing all vertices of Z2. If so, output
G1 and G2. If not, choose another set Z ′ and repeat the procedure. If no solution
is found for any set Z ′, then output No.

Case 2. |Z1| > an. Perform the procedure described in Case 1 for all sets Z ′ ⊆ Z
in order of increasing cardinality up to at most /(1 − 2a)n0.

Theorem 4. For any fixed k and r ≥ 2, algorithm SPLIT solves the 2-Disjoint

Connected Subgraphs problem for any n-vertex graph in Gk,r in O∗((f(r))n)
time, where

f(r) = min
0<c≤0.5

{
max
{ 1
cc(1 − c)1−c

, 21− 2c
r−1

}}
.

Proof. LetG = (V,E) be a graph in Gk,r with |V | = n, and let Z1, Z2 ⊆ V be two
nonempty disjoint sets of vertices of G with 1 ≤ |Z1| ≤ |Z2|. If Case 1 occurs, the
correctness of SPLIT follows from Lemma 1. If Case 2 occurs, correctness follows
from the fact that all subsets ofZ may be checked if necessary, as |Z1| > an implies
|Z2| > an, and therefore |Z| ≤ (1 − 2a)n. We are left to prove that the running
time mentioned in Theorem 4 is correct. We consider Case 1 and Case 2.
Case 1. |Z1| ≤ an. In the worst case, the algorithm has to check all sets Z ′ ⊆ Z
in order of increasing cardinality up to (r − 1)|Z1| + k ≤ (r − 1)an + k. Let
c := (r − 1)a, and note that c ≤ 1

2 since we assumed a ≤ 1
2(r−1) . Then we

must check at most
∑cn+k

i=1

(
n
i

)
sets Z ′. It is not hard to see that

∑cn+k
i=1

(
n
i

)
≤

(cn+ (n− cn)k)
(

n
cn

)
. Using Stirling’s approximation, n! ≈ nne−n

√
2πn, we find
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that the number of sets we have to check is O
(

cn+(n−cn)k√
2π(1−c)cn

·
(

1
cc·(1−c)1−c

)n)
. For

each set all the required checks can be done in polynomial time. Since k is a fixed
constant, independent of n, the running time for Case 1 is O∗

((
1

cc·(1−c)1−c

)n)
.

Case 2. |Z1| > an. In the worst case, we must check all O
((

21−2a
)n)

sets of size
up to /(1− 2a)n0. Since for each set all the required checks can be done in poly-

nomial time, the running time for Case 2 is O∗
((

21−2a
)n)

= O∗
((

21− 2c
r−1

)n)
.

Since we do not know in advance whether Case 1 or Case 2 will occur, the
appropriate value of c can be computed by taking

min
0<c≤0.5

{
max

{
1

cc · (1 − c)1−c
, 21− 2c

r−1

}}
.

This finishes the proof of Theorem 4. "#

See Table 1 for the time complexities of SPLIT for some graph classes.

Table 1. The time complexities of SPLIT for some graph classes

Input graph is... SPLIT runs in...
split O∗(1.5790n)

P5-free O∗(1.5790n)
P6-free O∗(1.5790n)

P�-free (
 ≥ 7) O∗((f(
 − 3))n)
P7-free O∗(1.7737n)
P8-free O∗(1.8135n)

P100-free O∗(1.9873n)

To prove that the time complexities in Table 1 are correct, we use the following
result by Bacsó and Tuza [1].

Theorem 5 ([1]). Let � ≥ 7. A graph G is P�-free if and only if each connected
induced subgraph of G has a dominating subgraph of diameter at most �− 4.

Theorem 6. The time complexities of SPLIT shown in Table 1 are correct.

Proof. Since a graph of diameter at most �−4 has an (�−4)-dominating vertex,
every P�-free graph is in G1,�−3 for each � ≥ 7 as a result of Theorem 5. Evaluating
the function f in Theorem 4 at r = 4, r = 5 and r = 97 yields the running times
for P7-free, P8-free and P100-free graphs in Table 1. Since f(2) ≈ 1.5790, it
remains to show that both the class of split graphs and the class of P�-free
graphs for � ∈ {5, 6} belong to Gk,2 for some constant k.

Since every connected induced subgraph of a split graph has a 2-dominating
set of size 1 (namely any vertex of the “clique part” of the split graph), the
family of split graphs belongs to G1,2. We now show that the class of P6-free
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graphs is in G4,2. In [9], we prove that a graph G is P6-free if and only if each
connected induced subgraph of G contains a dominating induced C6 or a domi-
nating (not necessarily induced) complete bipartite graph. Every induced C6 has
a dominating connected set of size 4, and every complete bipartite graph has a
dominating connected set of size 2, which means that the class of P6-free graphs
is in G4,2.

The observation that the class of P5-free graphs is a subclass of the class of
P6-free graphs finishes the proof of Theorem 6. Note that the graph obtained
from a complete graph on vertices {x1, . . . , xp} by adding an edge between each
xi and a new vertex yi (which is only made adjacent to xi) is P5-free and belongs
to G1,2. This example shows that we cannot reduce r = 2 to r = 1 for P5-free
graphs. "#

4 The Longest Path Contractibility Problem

4.1 A Complexity Classification for P�-Free Graphs

Before stating the main theorem of this section, we first present a number of
useful results. Brouwer and Veldman [3] give an elegant reduction from the Hy-

pergraph 2-Colorability problem to show that the P4-Contractibility

problem is NP-complete. Given a hypergraph (Q,S) they construct a graph G
such that (Q,S) has a 2-coloring if and only if G is P4-contractible. It is not hard
to check that the graph G is P6-free, which immediately implies the following
result.

Theorem 7. The P4-Contractibility problem is NP-complete for the class
of P6-free graphs.

The (straightforward) proofs of the following lemmas have been omitted due to
page restrictions.

Lemma 2. For � ≥ 3, a graph G is P�-contractible if and only if G has a P�-
suitable pair.

Lemma 3. Let x and y be two neighbors of a vertex u in a graph G with xy ∈
EG, and let v be some other vertex in G. Then (u, v) is a P�-suitable pair of G
if and only if (u, v) is a P�-suitable pair of G\xy.

Lemma 4. For any edge xy of a P�-free graph G, the graph G\xy is P�-free.

We now present a polynomial-time algorithm for deciding whether a P5-free
graph is P4-contractible.

Theorem 8. The P4-Contractibility problem is solvable in polynomial time
for the class of P5-free graphs.
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Proof. Let G = (V,E) be a connected P5-free graph. Lemma 2 states that G
is P4-contractible if and only if G contains a P4-suitable pair (u, v). Since G
has O(|V |2) pairs (u, v), it suffices to show that we can check in polynomial
time whether a given pair (u, v) is P4-suitable. It follows from the definition of
a P4-witness structure and the P5-freeness of G that we only need to consider
pairs of vertices at distance 3. If there does not exists such a pair, then G is not
P4-contractible. Suppose (u, v) is a pair of vertices of G with dG(u, v) = 3.

Claim 1. We may without loss of generality assume that N(u) and N(v) are
independent sets of cardinality at least 2.

We prove Claim 1 as follows. Lemma 3 and Lemma 4 together immediately imply
that we may assume N(u) and N(v) to be independent sets. Now suppose that
N(u) has cardinality 1, say N(u) = {x}. It is clear that (u, v) is a P4-suitable
pair of G if and only if N(v) is contained in one component of G[V \{u, v, x}],
which can be checked in polynomial time. Hence we may assume that |N(u)| ≥ 2,
and by symmetry |N(v)| ≥ 2.

Claim 2. Let x and x′ be two vertices of G such that x is adjacent to a vertex
w ∈ N(u) but not to a vertex w′ ∈ N(u), and x′ is adjacent to w′ but not to w.
Then N(u) ⊆ N(x) ∪N(x′).

We prove Claim 2 as follows. Clearly u /∈ {x, x′}. As N(u) is an independent set
by Claim 1, u is neither adjacent to x nor to x′. Then xx′ ∈ E, since otherwise
the path x′w′uwx is an induced P5 as a result of Claim 1, contradicting the P5-
freeness of G. Now suppose there exists a vertex w′′ ∈ N(u) not in N(x)∪N(x′).
Since w′ and w′′ are not adjacent as a result of Claim 1, the path w′′uw′x′x is
an induced P5 in G. This contradiction proves Claim 2.

Claim 3. Suppose G has a P4-witness structure W with W (p1) = {u} and
W (p4) = {v}. Then at least one of the following holds:

1. there exists a vertex x ∈ W (p2)\N(u) with N(u) ⊆ N(x);
2. there exist vertices x, x′ ∈ W (p2)\N(u) with N(u) ⊆ N(x) ∪N(x′).

We prove this claim as follows. Suppose W is a P4-witness structure of G with
W (p1) = {u} and W (p4) = {v}, and suppose condition 1 does not hold. We
show that condition 2 must hold. By Claim 1, N(u) is an independent set of G
containing at least two vertices. Since N(u) ⊆ W (p2) and G[W (p2)] is connected,
we know that W (p2)\N(u) �= ∅. Let x ∈ W (p2)\N(u) be a vertex such that
|N(u) ∩ N(x)| is maximal over all vertices in W (p2)\N(u). Since condition 1
does not hold, there exists a vertex w′ ∈ N(u) that is not adjacent to x. Then
w′ is adjacent to a vertex x′ ∈ W (p2)\(N(u)∪{x}), as otherwise w′ would be an
isolated vertex in G[W (p2)]. By choice of x, there exists a vertex w ∈ N(u)∩N(x)
not adjacent to x′. By Claim 2, N(u) ⊆ N(x)∪N(x′). This finishes the proof of
Claim 3.

It remains to prove how we can check in polynomial time whether (u, v) is a P4-
suitable pair of G. If (u, v) is a P4-suitable pair of G, then by definition G has a
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P4-witness structure W with W (p1) = {u} and W (p4) = {v}. Any such witness
structure satisfies at least one of the two conditions in Claim 3. We can check in
polynomial time if these conditions hold after guessing one vertex (respectively
two vertices) in V \(N(u) ∪N(v) ∪ {u, v}). If so, we check in polynomial time if
N(v) is contained in a component of the remaining graph (without vertex v). If
all our guesses are negative, then (u, v) is not a P4-suitable pair of G. "#

Theorem 7 and Theorem 8 together yield the following result.

Theorem 9. The Longest Path Contractibility problem restricted to the
class of P�-free graphs is polynomially solvable if � ≤ 5 and NP-hard if � ≥ 6.

Proof. First assume � = 5. Let G = (V,E) be a P5-free graph. By definition,
ϑ(G) = 0 if and only if G is disconnected. Suppose G is connected. Since G
does not contain an induced path on more than four vertices, G is clearly not
contractible to such a path. Hence we have ϑ(G) ≤ 4. By Theorem 8, we can
check in polynomial time whether G is P4-contractible. If so, then ϑ(G) = 4.
Otherwise, we check if G has a P3-suitable pair. This is a necessary and sufficient
condition for P3-contractibility according to Lemma 2. We can perform this check
in polynomial time, since two vertices u, v form a P3-suitable pair of G if and only
if u and v are non-adjacent and G[V \{u, v}] is connected. If G is P3-contractible,
then ϑ(G) = 3. If G is not P3-contractible, then we conclude that ϑ(G) = 2 if G
has at least two vertices, and ϑ(G) = 1 otherwise.

Now assume � = 6. Since a graph G is P4-contractible if and only if ϑ(G) ≥ 4
and the P4-Contractibility problem is NP-complete for P6-free graphs by
Theorem 7, the Longest Path Contractibility problem is NP-hard for P6-
free graphs.

The claim for all other values of � immediately follows from the fact that
the class of P�-free graphs is a subclass of the class of P�′-free graphs whenever
� ≤ �′. "#

4.2 An Exact Algorithm

Algorithm SPLIT can be extended to an algorithm that solves the Longest

Path Contractibility problem for P6-free graphs in O∗(1.5790n) time. Hence
we have the following theorem, the proof of which has been omitted due to page
restrictions.

Theorem 10. The Longest Path Contractibility problem for P6-free
graphs on n vertices can be solved in O∗(1.5790n) time.

5 Conclusions

We showed that the 2-Disjoint Connected Subgraphs problem is already
NP-complete if one of the given sets of vertices has cardinality 2. We also showed
that the 2-Disjoint Connected Subgraphs problem for the class of P�-free
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graphs jumps from being polynomially solvable to being NP-hard at � = 5, while
for the Longest Path Contractibility problem this jump occurs at � = 6.

Our algorithm SPLIT solves the 2-Disjoint Connected Subgraphs prob-
lem for P�-free graphs faster than O∗(2n) for any �. We do not know yet how to
improve its running time for P5-free and P6-free graphs (which are in G1,2 and
G4,2, respectively) but expect we can do better for P�-free graphs with � ≥ 7
(by using a radius argument). The modification of SPLIT solves the Longest

Path Contractibility problem for P6-free graphs in O∗(1.5790n) time. Fur-
thermore, SPLIT might be modified into an exact algorithm that solves the
Longest Path Contractibility problem for P�-free graphs with � ≥ 7 as
well. The most interesting question however is to find a fast exact algorithm
for solving the 2-Disjoint Connected Subgraphs and the Longest Path

Contractibility problem for general graphs.

Acknowledgements. The authors would like to thank Asaf Levin for fruitful
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Abstract. We study the class AvgBPP that consists of distribu-
tional problems which can be solved in average polynomial time (in
terms of Levin’s average-case complexity) by randomized algorithms with
bounded error. We prove that there exists a distributional problem that is
complete for AvgBPP under polynomial-time samplable distributions.
Since we use deterministic reductions, the existence of a deterministic
algorithm with average polynomial running time for our problem would
imply AvgP = AvgBPP. Note that, while it is easy to construct a
promise problem that is complete for promise-BPP [Mil01], it is un-
known whether BPP contains complete languages. We also prove a time
hierarchy theorem for AvgBPP (there are no known time hierarchy
theorems for BPP). We compare average-case classes with their classi-
cal (worst-case) counterparts and show that the inclusions are proper.

1 Introduction

It is unknown whether BPP has a time hierarchy or complete problems under
deterministic reductions. The main obstacle is the absence of effective enumer-
ation of randomized bounded error Turing machines. Note that if P = BPP,
then BPP does have a complete problem since P does. However, there is a rel-
ativized world where BPPA has no complete languages [HH86]. The existence
of a BPP-complete problem implies a time hierarchy theorem for BPP (see for
example [Bar02]). The best current result for time hierarchy is superpolynomial:
BPTime[nlog n] � BPTime[2nε

] [KV87]. However, we are not able to prove
that BPTime[n] � BPTime[n100 log n].

The first advancement in that direction was a time hierarchy theorem for ran-
domized classes with several bits of nonuniform advice [Bar02, FS04], the latest
results include a time hierarchy for classes with only one bit of advice : BPP/1
[FS04], ZPP/1,MA/1, etc. [vMP07]. But the notion of advice used in those re-
sults is not standard as the machines can violate the promise if an advice string
is incorrect. The second advancement was a time hierarchy for heuristic ran-
domized algorithms (heuristic algorithms may err on a small fraction of inputs).
A time hierarchy for the class Heur 1
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proved in [FS04] and simplified in [Per07]. However in these results algorithms
not only sometimes give incorrect answers, but also violate the promise on a
small fraction of inputs. The ability to make errors on some inputs sometimes
helps to prove completeness results, e.g. there exists a complete public-key cryp-
tosystem if a decoding algorithm may err with some small probability [HKN+05]
(see also [GHP06]).

In this paper we study the class AvgBPP [Imp95] that consists of distri-
butional problems that can be solved in average polynomial time (in terms
of Levin’s average-case complexity [Lev86]) by randomized algorithms with
bounded error. AvgBPP corresponds to an adequate model of feasible com-
putations. If (NP,PSamp) ⊆ AvgBPP, then there are no one-way functions
[BT06].

It this paper we construct a language C and polynomial-time samplable
distribution R such that the distributional problem (C,R) is complete for
(AvgBPP,PSamp) under deterministic Turing reductions. Our construc-
tion implies that if this problem belongs to (AvgP,PSamp) (or even to
(Avg 1

nc
P,PSamp)), then (AvgBPP,PSamp) equals (AvgP,PSamp). The

same result also holds for (HeurBPP,PSamp).
We use a modification of the standard complete problem. Language C consists

of stings (M,x, 1t), where M is a randomized Turing machine, x is an input and
t is a number of steps, such that M accepts x in t steps with probability at least
1
2 . The polynomial-time sampler (that samples distribution R) tests (by multiple
executions) that M accepts (or rejects) x in t steps with probability at least 0.9.
If the test fails, the sampler generates a useless string; therefore the R-mesure
of “bad” inputs (M,x, 1t) (that violate bounded error promise) is very small.
The key observation is that an average polynomial time algorithm may work
exponential time on a very small fraction of inputs. To satisfy the domination
condition in the reduction we also include a description of a sampler in instances
of the language C.

The constructed distribution R is not uniform and is somewhat unnaturally
samplable. We give a intuitive idea why it is very hard to construct a complete
problem with uniform (or uniform-like) distribution: we prove that if there ex-
ists a complete problem for (AvgBPP,PSamp) with uniform (or uniform-like)
distribution, then there exists a partial derandomization of BPEXP; namely
for all languages L ∈ BPEXP the distributional problem (L,U) is solvable by a
deterministic algorithm with average exponential running time, where U denotes
uniform distribution.

We prove a time hierarchy theorem for the class (AvgBPP,PSamp).
Namely, we prove that for every c ≥ 1 there exists a language L and
polynomial-time samplable distribution D such that (L,D) ∈ AvgBPP and
(L,D) /∈ AvgBPTime[nc]. Our technique is an extension of the one used in
[Per07]; we also use delayed diagonalization as the base of our proof. We mod-
ify the multithreshold trick (invented in [Per07]) so that the algorithm holds
the bounded error promise on all inputs and the algorithm may work expo-
nential time on small fraction of inputs instead of violating the promise. The
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weakness of our result is that the distribution D is not uniform. It is an inter-
esting open question to prove the same for uniform D. We compare the classes
AvgP,AvgBPP,HeurP,HeurBPP with their worst-case counterparts and
show the following inclusions (for polynomial-time samplable distributions):
P � AvgP ⊆ HeurP � EXP and BPP � AvgBPP ⊆ HeurBPP �
BPEXP.

Some proofs are omitted due to the space restrictions; please refer to the full
version of the paper [Its08] for the details.

2 Preliminaries

We restrict ourselves to the binary alphabet {0, 1}; we denote the set of all binary
words as {0, 1}∗. A language is any subset of {0, 1}∗. We identify a language with
its characteristic function: x ∈ L ⇐⇒ L(x) = 1.

An ensemble of distributions D is a family of functions {Dn}∞n=1, where Dn

is a mapping {0, 1}n → [0, 1] such that
∑

x∈{0,1}n D(x) = 1. The set {x ∈
{0, 1}n|Dn(x) > 0} is called the support of Dn and is denoted as suppDn;
suppD = ∪n∈N suppDn. A distributional problem is a pair (L,D) of a language
L and an ensemble of distributions D.

Let P be the class of distributional problems and D be the class of distribu-
tions. (P,D) = {(L,D)|(L,D) ∈ P, D ∈ D}.

In this paper we consider only polynomial-time samplable distributions. An
ensemble of distributions D is called polynomial-time samplable if there exists
a polynomial-time randomized algorithm (sampler) S such that the outputs of
S(1n) are distributed according to Dn. The set of all polynomial-time samplable
distributions is denoted by PSamp. By uniform distribution U we mean the
ensemble of distributions Un, where Un is the uniform distribution on {0, 1}n.
In what follows we always mean an ensemble of distributions whenever we use
the word distribution.

The first notion of average-case tractability was given by Levin in [Lev86]. A
function t : {0, 1}∗ × N → N (with distribution D) is called polynomial on the
average1 if there exists ε > 0 such that Ex←Dn t

ε(x) = O(n). The distributional
problem is solvable in average polynomial time if there exists an algorithm that
solves it with average polynomial running time.

An equivalent definition of average-case tractability was given by Impagliazzo
[Imp95]. A distributional problem (L,D) is solvable in polynomial on the average
time if there exists an algorithm A(x, δ) (following [BT06] we call such algorithm
an errorless heuristic scheme) that may explicitly “give up” (return ⊥) so that
the following conditions are satisfied: (Effectiveness) The running time of A(x, δ)
is bounded by poly(n

δ ); (Correctness) for all x in the support of D, A(x, δ) ∈
{L(x),⊥}; (Usefulness) Prx←Dn{A(x, δ) =⊥} < δ.
1 The naive approach is to define that t(x) to be polynomial on the average if the

expectation of t(x) is polynomial. But this naive definition is not closed under some
natural operations. For example, it is easy to construct t(x) such that the expectation
of t(x) is polynomial but the expectation of t2(x) is exponential (see [BT06]).
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A formal proof of the equivalence is given in [Imp95, BT06]. The output ⊥ in
Impagliazzo’s definition corresponds to a manual interruption of the algorithm
from Levin’s definition. The set of all distributional problems which can be solved
in average polynomial time is denoted by AvgP.

Both these definitions may be extended for bounded error randomized algo-
rithms. We say that randomized algorithm A solves (L,D) with a bounded
error if for all x in the support of Dn Pr{A(x) �= L(x)} < 1

4 . In Levin’s
definition we define the running time of the algorithm A on the input x as
min{t|Pr{A(x) stops in t steps} ≥ 3

4}. The Impagliazzo-style definition is as
follows:

Definition 1 ([BT06, Definition 2.13]). The distributional problem (L,D)
is solvable in randomized average polynomial time with a bounded error if there
exists an algorithm (we call such algorithm as randomized errorless heuristic
scheme) A(x, δ) such that the following conditions are satisfied: (Effectiveness)
The running time of A(x, δ) is bounded by poly(n

δ ); (Correctness) for all x in
the support of D, Pr{A(x, δ) /∈ {L(x),⊥}} < 1

4 , where the probability is taken
over the random bits of algorithm A; (Usefulness) Prx←Dn{Pr{A(x, δ) =⊥} ≥
1
4} < δ, where the inner probability is taken over the random bits of algorithm A.

The class AvgBPP consists of all problems that are solvable in randomized
average polynomial time with a bounded error.

Lemma 1 ([BT06]). The constant 1
4 used in the correctness and usefulness

conditions of Definition 1 is arbitrary and can be replaced by anything in the
interval (2−Ω(n), 1

2 ).

For every function g(n), we define classes AvgTime[g(n)]2 and
AvgBPTime[g(n)]; the definitions are the same as the definitions of
AvgP and AvgBPP but effectiveness conditions are substituted by the
following: the running time of A(x, δ) is bounded by O(g(n

δ )). We also define
class AvgEXP =

⋃
c>0 AvgTime[2nc

].
Similarly to errorless heuristic schemes it is possible to define general heuristic

schemes. In the deterministic case we say that a distributional problem (L,D) is
solvable by a polynomial time heuristic scheme A(x, δ) if (Effectiveness) The run-
ning ofA(x, δ) is bounded by poly(n

δ ); (Usefulness) Prx←Dn{A(x, δ) �= L(x)} < δ.
In the randomized case the usefulness condition is formulated as follows: (Use-

fulness) Prx←Dn{Pr{A(x, δ) �= L(x)} ≥ 1
4} < δ, where the inner probability is

taken over the random bits of the algorithm A.
The set of all distributional problems solvable by polynomial-time (random-

ized) heuristic schemes is denoted by HeurP and HeurBPP.

2 One may argue that the usage of the notion of average-case time is a controversial
point since it uses Impagliazzio-style definition of averge-case tractability. We may
also define class AvgLevTime[nc] as the set of all distributional problems (L, D)
that can de solved in time t(n), such that Ex←Dn t1/c(x) = O(n). It may be shown
that AvgLevTime[nc] ⊆ AvgTime[nc+2] ⊆ AvgLevTime[nc+2], therefore our
definition is reasonable for our time hierarchy theorem.
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We say that a problem (L,D) is solved by a δ(n)-heuristic algorithm A if
for every n, it holds that Prx←Dn{A(x) �= L(x)} < δ(n). We say that (L,D) is
solved by an errorless δ(n)-heuristic algorithm if A is δ(n)-heuristic and A(x) ∈
{L(x),⊥} for all x and n.

The set of problems solvable by polynomial-time (errorless) δ-heuristic algo-
rithms is denoted by Heurδ(n)P (resp. Avgδ(n)P). The classes Heurδ(n)BPP
and Avgδ(n)BPP are defined similarly. The classes Heurδ(n)Time[g(n)],
Avgδ(n)Time[g(n)], Heurδ(n)BPTime[g(n)], Avgδ(n)BPTime[g(n)],
HeurTime[g(n)], HeurBPTime[g(n)] are defined in a natural way.

It is easy to see that AvgP ⊆ HeurP. Indeed it is sufficient to modify the
AvgP algorithm as follows: return 0 instead of ⊥. A similar modification and
Lemma 1 imply AvgBPP ⊆ HeurBPP. Whether these inclusions are proper
or not is an important open question [Imp95].

Now we define deterministic Turing reductions between distributional prob-
lems. We distinguish errorless and heuristic reductions since average-case classes
and heuristic classes use different computational models. Our definition is very
similar to [BDCGL92] but here we use an Impagliazzo style definition (and com-
putational model) and ensembles of distributions while [BDCGL92] used Levins
definition and distributions on the set of all binary strings.

Definition 2 (cf. [BDCGL92]). A distributional problem (L,D) is errorlessly
reducible to a problem (L′, D′), if there exists a deterministic algorithm with
an oracle T L′

(x; δ) with the following properties: (Effectiveness) running time
of T L′

(x; δ) is poly( |x|δ ); (Correctness) T L′
(x, δ) ∈ {L(x),⊥} for all x in the

support of D; (Usefulness) Prx←Dn{T L′
(x, δ) =⊥} < δ for all n ∈ N; (Domina-

tion) there exists a polynomial p(n) and subset En ⊆ {0, 1}n of small measure
Dn(En) ≤ δ such that

∑
x∈{0,1}n\En

AskT ,δ(x, y)Dn(x) ≤ p(n
δ )D′(y), where

AskT ,δ(x, y) = 1 if T L′
(x, δ) asks the oracle for a string y and AskT,δ(x, y) = 0

otherwise. Informally speaking, En is the small set on which T makes “incorrect”
queries to the oracle.

Eliminating the correctness condition and substituting the usefulness condition
by Prx←Dn{T L′

(x, δ) �= L(x)} < δ we get a definition of heuristic reduction.

The following lemma shows that the reductions defined above are reasonable.

Lemma 2. (1) If (L,D) is errorlessly reducible to (L′, D′) and (L′, D′) ∈
AvgP, then (L,D) ∈ AvgP. (2) If (L,D) is heuristically reducible to (L′, D′)
and (L′, D′) ∈ HeurP, then (L,D) ∈ HeurP.

3 Complete Problem

In this section we construct a distributional problem that is complete
for (AvgBPP,PSamp) under errorless reductions and is complete for
(HeurBPP,PSamp) under heuristic reductions.

The way tuples are encoded to be an input of an algorithm is important
in average-case complexity. Namely, we may use only a logarithmic number of
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extra bits in encoding, because in this case the uniform probability of a string
decreases only polynomially. Now we describe the way we encode tuples:

Remark 1. Let x and y be two strings of bits. One can encode the pair (x, y) as
0�log |x|�1|x|2xy, where |x|2 is the length of the string x written in binary. It is easy
to see that |(x, y)| = |x|+|y|+2/log(|x|+1)0+1. An m-tuple z = (x1, x2, . . . , xm)
can be encoded as (x1, (x2, (x3, . . . (xm−1, xm) . . . ). In this case |z| =

∑m
i=1 |xi|+

2
∑m−1

i=1 /log(|xi|+1)0+m+1 ≤
∑m

i=1 |xi|+2(m−1)/log(|z|−|xm|+1)0+m−1.

Proposition 1 (Chernoff-Hoefding bound). For X1, X2, . . . , XN identi-
cally and independently distributed such that Xi ∈ [0, 1] and E[Xi] = μ, it holds

that Pr{|
∑N

i=1 Xi

N − μ| ≥ ε} ≤ 2e−2ε2N .

We will use the Chernoff bound (Proposition 1) for several times. For this pur-
pose we fix such a number N0 that 2e−

N0
1000 < 0.001. Each time we apply Chernoff

bound, the number of random variables should be at least N0.
We assume that all Turing machines output only an element from the set

{0, 1,⊥}. Technically we may look on the first 2 bits of the first tape and interpret
“00” as 0, “11” as 1, “01” and “10” as ⊥. Let M≤m denote the Turing machine
M which is forcedly interrupted after m steps if it has not reached the final
state. The result of M≤m is the first 2 bits of the first tape. Let freq(M(x)) be
the most frequent answer from {0, 1} returned by randomized Turing machine
M on the input x and prob(M(x)) be the probability of freq(M(x)).

We construct a distributional problem (C,R), where C is a language and
R is a polynomial-time samplable distribution. The language C will be defined
explicitly, the distribution R will be defined by the sampler R. We will show that
the distributional problem (C,R) is in AvgBPP (and therefore in HeurBPP)
and that (C,R) is complete for AvgBPP under errorless reductions (in a similar
way it is possible to prove that the distributional problem (C,R) is complete for
HeurBPP under heuristic reductions).

All strings of the language C have the form (M, y, 1m, b, S, 1s), where M is the
encoding of a randomized Turing machine, y is the input of this Turing machine,
m > |y| + N0 is the number of steps that M is allowed to do, b ∈ {0, 1} is the
answer that would be used instead of an answer ⊥ of the machine M≤m, S is
the encoding of a sampler, s is the number of steps that S is allowed to do.
The language C is defined by its characteristic function: C(M, y, 1m, b, S, 1s) =⎧⎨⎩b, if Pr{M≤m(y) =⊥} ≥ 1

4 ,
freq(M≤m(y)), otherwise.

The next Lemma shows that if the mesuare of “bad” machines under the
distribution H is small enough, then the problem (C,H) is solvable in AvgBPP.

Lemma 3. Let a distribution H satisfy the following property: for every Turing
machine M , if the prob(M≤m(y)) ≤ 0.85, then H(M, y, 1m, b, S, 1s) ≤ 2e−n2

,
where n = |(M, y, 1m, b, S, 1s)|. Then (C,H) ∈ AvgBPP.
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Proof. Consider the following algorithm A(x, δ): (1) Test that the input x is a
string of the form (M, y, 1m, b, S, 1s), where m > |y|+N0, b ∈ {0, 1}. If no, then
reject. (2a) If δ > 1

2m , then execute the machine M≤m(y) for 200m2 times. If
there exists c ∈ {0, 1} that appears at least 80% times, then return c, otherwise
return ⊥. (2b) If δ ≤ 1

2m , then go through all sequences of random bits of
M≤m(y). If the fraction of answers that are equal to ⊥ is at least 1

4 , then return
b. Otherwise return the most frequent answer from {0,1}. (3) Return ⊥.

(Correctness) Let δ > 1
2m (otherwise the algorithm A works deterministi-

cally and always outputs the correct answer). If prob(M≤m(y)) ≤ 0.75, then
the Chernoff bound implies Pr{A((M, y, 1m, b, S, 1s), δ) =⊥} ≥ 0.99. Other-
wise, if prob(M≤m(y)) > 0.75, then freq(M≤m(y)) = C(M, y, 1m, b, S, 1s).
In this case the Chernoff bound implies Pr{A((M, y, 1m, b, S, 1s), δ) = 1 −
C(M, y, 1m, b, S, 1s)} ≤ 0.01.

(Usefulness) Let δ > 1
2m (otherwise the algorithm A works deterministically

and does not output ⊥). If prob(M≤m(y)) > 0.85, then the Chernoff bound
implies Pr{A((M, y, 1m, b, S, 1s), δ) =⊥} < 0.01. Otherwise, by the statement
of the Lemma, H(M, y, 1m, b, S, 1s) ≤ 2e−n2

. The total probability of all such
inputs Z may be estimated as follows: H(Z) ≤ e−n2

2n+1 ≤ 2−n < δ (for n >
N0). "#

We define the distribution R by the sampler R (this distribution will be used in
our complete problem).

Algorithm 1. The sampler R(1n):
(1) Generate a string w of length n. If it is not of the form (M, y, r, b, S, σ),
where b ∈ {0, 1}, then return w.
(2) Execute the sampler S≤|σ|(1|y|). Let x denote the result of S≤|σ|.
(3) Execute M≤|r|(x) steps for 200n2 times. If each answer from {0, 1} appears
less than 90% times, return 1n. (Note that by Remark 1 the string 1n does not
encode any tuple.)
(4) Return (M,x, 1|r|, b, S, 1|σ|).

Lemma 4. Let the sampler S correspond to a distribution D. Let z =
(M,x, 1m, b, S, 1s), n = |z|. (1) If prob(M≤m(x)) ≥ 0.95, then R(z) ≥ (1 −
2e−n2

)D(x)2−10 log(n−s+1)−5 · 2−|M|−|S|. (2) If prob(M≤m(x)) ≤ 0.85, then
R(z) ≤ 2e−n2

.

Proof. (1) With probability at least 2−10 log(n−|σ|+1)−5 · 2−|M|−|S| the sampler
R generates the string (M, y, r, b, S, σ) on the first step, where |y| = |x|, |r| =
m, |σ| = s, b ∈ {0, 1}. (By the Remark 1, at most 10 log(n− |σ| + 1) + 5 of bits
are used to determine the lengths of the tuple’s items). With probability D(x)
the sampler S outputs x on the second step of the sampler R. The Chernoff
bound implies that the test on the third step of the sampler R will be passed
with probability at least (1 − 2e−n2

).
(2) The Chernoff bound implies that the test on the third step of the sampler

R will be passed with probability at most 2e−n2
. "#
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The claim (2) of Lemma 4 implies that the distribution R satisfies the condition
of Lemma 3. Therefore we get:

Theorem 1. (C,R) ∈ AvgBPP

Remark 2. Assume that a Turing machine M has two inputs: a string x and a
rational number δ ∈ (0, 1). Let Mδ be the Turing machine that simulates M
with the value of the second parameter being equal to 1

� 1
δ �

. We may encode Mδ

as the pair (M, / 1
δ 0), where / 1

δ 0 is written in binary. By Remark 1 |(M, / 1
δ 0)| =

|M | + /log/ 1
δ 00 + 2/log |M |0 + 1, and hence 2|Mδ| ≤ 2|M|+3M2(1

δ + 1).

Theorem 2. (C,R) is a complete problem for (AvgBPP,PSamp) under er-
rorless reductions.

Proof. Let us consider a distributional problem (L,D) from AvgBPP. Let it be
solvable by a machine Mδ the running time of which is bounded by polynomial
g( |x|δ ). (We assume that both constants in the Definition 1 are decreased to 0.01
by Lemma 1). Let distribution D be generated by a sampler S with running
time bounded by the polynomial q(n).

We describe a reduction in terms of Definition 2. The reduction T C(x, δ)
makes 2 queries to the oracle: z0 = (Mδ, x, 1g( |x|

δ )+N0 , 0, S, 1q(|x|)) and z1 =
(Mδ, x, 1g( |x|

δ )+N0 , 1, S, 1q(|x|)). If the answers of the oracle are different, then
return ⊥. Otherwise return the answer of the oracle.

Let us verify all conditions of a reduction: (Effectiveness) follows from the fact
that strings z0 and z1 have lengths bounded by poly( |x|δ ).

(Correctness) If C(z0) �= C(z1), then T C(x, δ) =⊥. If C(z0) = C(z1), then
Pr{Mδ(x) =⊥} < 1

4 . By Definition 1 (with the decreased constants) Pr{Mδ(x) ∈
{L(x),⊥}} ≥ 0.99, hence Pr{Mδ(x) = L(x)} ≥ 0.74. By construction C(z0) is
the most frequent answer of Mδ on input x for g(x

δ ) steps, therefore C(z0) = L(x)
and T C(x, δ) = L(x).

(Usefulness) Prx←Dn{T C(x, δ) =⊥} = Prx←Dn{Pr{Mδ(x) =⊥} ≥ 1
4} < δ.

(Domination) Let En = {x ∈ {0, 1}n|Pr{Mδ(x) =⊥} ≥ 0.01}. By definition
of Mδ we have D(En) < δ. If δ is fixed, then x is uniquely determined by z0
and z1. By the correctness condition of Mδ for every x ∈ {0, 1}n, Pr{Mδ(x) =
1−L(x)} < 0.01 and for every x ∈ {0, 1}n\En, Pr{Mδ(x) =⊥} < 0.01. Therefore
for every x ∈ {0, 1}n \ En, Pr{Mδ(x) = L(x)} > 0.98. By the claim (1) of
Lemma 4 for x ∈ {0, 1}n \ En we have R(zi) ≥ 0.99D(x)2−5 log(n′−q(|x|)+1)−10 ·
2−|Mδ|−|S|, where n′ = |z0| = |z1|, i ∈ {0, 1}. The last inequality proves the
domination condition, since |S| is a constant and 2|Mδ| ≤ 2|M|+3(|M |+1)2(1

δ +2)
by Remark 2. "#

Theorem 2 and Lemma 2 implies

Corollary 1. (C,R) ∈ AvgP ⇐⇒ (AvgP,PSamp)=(AvgBPP,PSamp).

Theorem 3. (C,R)∈Avg 1
nc

P ⇐⇒ (AvgP,PSamp)=(AvgBPP,PSamp).
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Corollary 2. If (AvgBPP,PSamp) ⊆ (Avg 1
nc

P,PSamp), then (AvgP,
PSamp) = (AvgBPP,PSamp).

Analogously it is possible to prove the same completeness result for HeurBPP.
So classes (AvgBPP,PSamp) and (HeurBPP,PSamp) have the same com-
plete problem (although under different reductions). In particular, it means that
if (AvgBPP,PSamp) ⊆ (HeurP,PSamp), then (C,R) ∈ (HeurP,PSamp)
and (HeurP,PSamp) = (HeurBPP,PSamp). If (AvgP,PSamp) =
(AvgBPP,PSamp), then since AvgP ⊆ HeurP, we get (HeurP,PSamp) =
(HeurBPP,PSamp).

Now we give some intuition why the resulting complete problem for
(AvgBPP,PSamp) is not hard with respect to the uniform distribution, but
is hard with respect to somewhat unnatural samplable distribution. We use ideas
from [Gur91], where Gurevich shows that the existence of a complete problem in
the distributional NP with uniform distribution under deterministic reductions
implies EXP = NEXP. Gurevich used this argument as a motivation for the
usage of randomized reductions (but a complete problem for AvgBPP under
randomized reduction is trivial and useless).

Distribution D is called flat [Gur91] if there exists ε > 0 such that for every
x ∈ {0, 1}∗, D(x) ≤ 2−|x|ε .

Theorem 4. If there exists a problem (L,D) with flat distribution D
that is complete for (AvgBPP,PSamp) under errorless reductions, then
(BPEXP, U) ⊂ AvgEXP.

4 Time Hierarchy Theorem

In this section we extend techniques from [Per07] to prove a time hierarchy for
(AvgBPP,PSamp).

We consider a sequence ni such that n1 = 1, ni+1 = 22ni . We split all natural
numbers into the segments from ni to n∗

i = ni+1 − 1. For every randomized
Turing machine M we denote by M̂ the machine which on the input x executes
M(x) for 200|x|2 times and outputs the most frequent answer. (Here we assume
that all Turing machines return only one bit). Let Mi be an enumeration of
randomized Turing machines with the time bound nc+1 where every Turing
machine appears infinitely many times. We describe a language L that will be
used in the proof of a time hierarchy. On the lengths from the i-th segment
L depends on the Turing machine Mi. If ni ≤ |x| < n∗

i , then we identify x
with the real number 0.x between 0 and 1. We define θx = 1

2 + (x − 1
2 ) 1

2na .
Let πn = Pry←Un+1{M̂i(y) = 1}, where the probability is taken over y and
the random bits of Mi; x ∈ L ⇐⇒ πn ≥ θx. If |x| = n∗

i , then x ∈ L ⇐⇒
Pry←Uni

{M̂i(y) = 1} < 1
2 , where the probability is taken over y and the random

bits of M̂i.
We introduce the probability distribution D, that will help us to solve the

language L in AvgBPP. The hardest instance of L is x with θx ≈ πn. We
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define distribution D in such a way that such x will have very small probability,
therefore AvgBPP algorithm will have enough time to solve this instance. We
define the distribution D by the following sampler D.

Algorithm 2. The sampler D(1n):
(1) If n = n∗

i , then return x ← Un;
(2) Let ni ≤ n < n∗

i . Execute M̂i on a random input of length n + 1 for
106n2a+c+10 times and calculate the frequency τ̃n of answer 1.
(3) We call a string x bad if |θx− τ̃n| < ε = 1

100na and we call it good otherwise.
(4) Repeat nc+4 times: (a) Generate x ← Un; (b) If x is good, return x.
(5) Return x ← Un.

Lemma 5. Let ni ≤ n < n∗
i . (1) For all x ∈ {0, 1}n D(x) ≤ 2−n 1

1−α , where
α = 1

na+2 . (2) If |θx − πn| ≤ 1
2n , then D(x) ≤ 2−nc+2

.

Proof. (1) The probability that a uniformly generated random string is bad is
less than 2ε = 1

50na < α = 1
na+2 . The probability that a string x is generated

in the first iteration of step 4 of the sampler D is 2−n; the probability that x
is generated on the second iteration is less then α2−n, and so on. Therefore
D(x) ≤ 2−n(1 + α+ α2 + . . . ) ≤ 2−n 1

1−α . (2) The Chernoff bound implies that
Pr{|πn − τ̃n| ≤ ε

2} ≥ 1 − 2e−2nc+10 ≥ 1 − 2−nc+3
.

D(x) = Pr{x = D(1n)} = Pr{x = D(1n)| |πn − τ̃n| ≤
ε

2
}Pr{|πn − τ̃n| ≤

ε

2
}

+ Pr{x = D(1n)| |πn − τ̃n| >
ε

2
}Pr{|πn − τ̃n| >

ε

2
}

≤ Pr{x = D(1n)| |πn − τ̃n| ≤
ε

2
} + Pr{|πn − τ̃n| >

ε

2
}

≤ Pr{x = D(1n)| x is bad}+2−nc+3
≤ 2−nc+4

+2−nc+3
< 2−nc+2

. "#

Theorem 5. (L,D) ∈ AvgBPP

Proof. We show that the distributional problem (L,D) is solvable by L(x, δ) in
AvgBPP: (1) If |x| = n∗

i , then execute M̂i on all inputs of length ni and with
all sequences of random bits and return the most infrequent answer. Now we
have ni ≤ |x| < n∗

i .
(2) If δ ≥ 2−nc+2

(a) If ni ≤ |x| < n∗
i , then execute M̂i on K = 4096n3a

δ2

random inputs of length n + 1 and compute π̃n that is the frequency of the
answer 1. (b) If θx ≥ π̃n + δ

32na , return 0. (c) If θx ≤ π̃n − δ
32na , return 1. (d)

Return ⊥.
(3) If δ < 2−nc+2

, then compute πn deterministically. That is, execute M̂n on
all inputs of length n + 1 with all sequences of random bits. If θx ≤ πn, return
1, otherwise return 0.

The running time of L(x, δ) is poly( |x||δ| ). If θx ≥ πn + δ
16na , then the Chernoff

bound implies that with probability at least 0.99 (for large enough n) L(x, δ)
outputs 0 = L(x). If θx ≤ πn − δ

16na , then the Chernoff bound implies that
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with probability at least 0.99 (for large enough n) L(x, δ) outputs 1 = L(x). If
θx ≥ πn, then by the Chernoff bound the probability of the answer 1 is at most
0.01 and if θx ≤ πn, then the probability of the answer 0 is at most 0.01.

If δ > 1
2n−1 , then the probability of the answer ⊥ may be estimated as:

Prx←Dn{Pr{L(x, δ) =⊥} > 1
4} ≤ Prx←Dn{πn − δ

16na < θx < πn + δ
16na } ≤

1
1−α Prx←Un{πn − δ

16na < θx < πn + δ
16na } ≤ 1

1−α

1+ δ
8na 2n·2na

2n = na+2
na+1 ( 1

2n + δ
4 ) <

δ. If 1
2nc+2 < δ ≤ 1

2n−1 , then the δ
16na -neighbourhood of πn contains at most one

number θx and by the claim (2) of Lemma 5 D(x) < 2−nc+2
< δ. If δ ≤ 1

2nc+2 ,
then L(x, δ) �=⊥. "#
Theorem 6. (L,D) /∈ Heur 1

2−
1

na
BPTime[nc].

Proof. Proof by contradiction. Suppose that a problem (L,D) is solvable by
a Turing machine Mk in Heur 1

2−
1

na
BPTime[nc]. The claim (1) of Lemma 5

implies that for every subset S ⊆ {0, 1}n, D(S) ≤ U(S)
1−α = (na+2)U(S)

na+1 . Hence the
machine Mk correctly solves L on a set of inputs with uniform measure at least
(1
2 + 1

na )na+1
na+2 = (1

2 + 1
2na ).

Let n = n∗
k − 1 and L(x) = b ∈ {0, 1} for every x ∈ {0, 1}n∗

k. Since Mk solves
L on 1

2 + 1
2na fraction of inputs, and machine M̂k has probability of error at

most e−(n+1)2 on such inputs, we may conclude that Prx←Un+1{M̂k(x) = b} ≥
(1
2 + 1

2(n+1)a )(1− 1
e(n+1)2 ) > (1

2 + 1
4na ). However θx ∈ (1

2 −
1

4na ,
1
2 + 1

4na ), therefore
for every x ∈ {0, 1}n, L(x) = b. If we continue this reasoning we get that for
every nk ≤ n ≤ n∗

k and x ∈ {0, 1}n, L(x) = b. Hence b is the most frequent
answer of M̂k on x ∈ {0, 1}nk; it contradicts with the choice of b. "#
Note, that Heur 1

2−
1

na
BPTime[nc] ⊇ Avg 1

2−
1

na
BPTime[nc] ⊇

AvgBPTime[nc]. It completes the proof of the time hierarchy theorem
for (AvgBPP,PSamp).

5 Worst-Case vs. Average-Case Classes

Definition 3. Let C be the class of languages and D be the class of distributions.
(C,D) = {(L,D)|D ∈ D, ∃L′ ∈ C : ∀x ∈ suppD L(x) = L′(x)}.
Theorem 7. The following inclusions hold: (1) (P, U) � (AvgP, U) ⊆
(HeurP, U); (2) (HeurP,PSamp) ⊆ (EXP,PSamp); (3) There exists lan-
guage LEXP ∈ EXP such that for any distribution D ∈ PSamp, distributional
problem (LEXP , D) is not contained in (HeurP,PSamp).

And we have a similar theorem for randomized classes:

Theorem 8. The following inclusions hold: (1) (BPP, U) � (AvgBPP, U) ⊆
(HeurBPP, U); (2) (HeurBPP,PSamp) ⊆ (BPEXP,PSamp); (3) There
exists L ∈ BPEXP such that for every distribution D ∈ PSamp, the distribu-
tional problem (L,D) is not contained in (HeurBPP,PSamp).

Corollary 3. Classes AvgP,HeurP,AvgBPP and HeurBPP are not closed
under changing the distribution.
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Abstract. Asymptotically tight lower bounds are proven for the de-
terminantal complexity of the elementary symmetric polynomial Sd

n of
degree d in n variables, 2d-fold iterated matrix multiplication of the form
〈u|X1X2 . . . X2d |v〉, and the symmetric power sum polynomial

∑n
i=1 xd

i ,
for any constant d > 1.

A restriction of determinantal computation is considered in which the
underlying affine linear map must satisfy a rank lowerability property.
In this model strongly nonlinear and exponential lower bounds are
proven for several polynomial families. For example, for S2d

n it is proved
that the determinantal complexity using so-called r-lowerable maps is
Ω(nd/(2d−r)), for constants d and r with 2 ≤ d + 1 ≤ r < 2d. In the
most restrictive setting an nΩ(εn1/5−ε) lower bound is observed, for any
ε ∈ (0, 1/5) and d = �n1/5−ε�.

Keywords: Computational complexity, arithmetical circuits, determi-
nant, permanent, elementary symmetric polynomial.

1 Introduction

The main open problem in algebraic complexity theory is the resolution of
Valiant’s Hypothesis, which states that the complexity classes VP and VNP
are distinct. The question is attractive to study as a first stepping stone towards
the P versus NP conundrum, as in this area algebraic tools are more readily
available. Over the field of complex numbers VP �= VNP is known to be implied
by NP �⊆ P/poly , provided the Generalized Riemann Hypothesis is true [1].
Currently, we do not know of a reverse implication.

The complexity class VNP is characterized by the permanent polynomial
pern =

∑
σ

∏
i∈[n] xiσ(i), over fields of characteristic other than two [2], cf. [3].

Here the summation is over all permutations σ of [n]. For comparison, we have
the determinant polynomial defined by detn =

∑
σ sgn(σ)

∏
i∈[n] xiσ(i), where

sgn(σ) denotes the signature of the permutation σ. Resolution of Valiant’s Hy-
pothesis is tantamount to proving determinantal complexity lower bounds. The
determinantal complexity of a polynomial f(x), denoted by dc(f), is the min-
imum m such that f = detm(L(x)), where L(x) is a matrix whose entries are

A. Frid et al. (Eds.): CSR 2009, LNCS 5675, pp. 167–178, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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affine linear forms in x. Proving dc(pern) = nω(log n) is known to be sufficient to
separate VP from VNP. The plausibility of this condition is fueled by the fact
that computing the permanent of a 0, 1-matrix over the integers is #P-complete
[4]. By Toda’s Theorem [5] this implies the permanent is PH-hard. On the other
hand, integer determinants can be computed with NC2-circuits.

Currently the best known lower bound on determinantal complexity of the
permanent is dc(pern) ≥ n2/2, due to Mignon and Ressayre [6] (cf. [7]). Their
lower bound technique is a dimension argument employing second order partial
derivatives. Using partial derivatives of order at most two limits the technique
to proving lower bounds that are linear in the number of input variables. In this
paper the question is investigated whether any stronger results can be obtained
by considering higher than second order partial derivatives. Such higher order
considerations have proven to be instrumental in previous landmark work in
algebraic complexity theory [8,9,10,11,12].

The fundamental observation, first made by Valiant, is that determinan-
tal complexity minorizes arithmetical formula size up to constant factors, i.e.
dc(f) ≤ 2L(f) + 2 [2], cf. [13]. As a matter of fact, dc(f) = O(B(f)), where
B(f) denotes algebraic branching program size of f (See [8]). In the latter
model, currently no nonlinear lower bounds are known beyond the trivial bound
B(f) = Ω(deg(f)) and the geometric degree bounds of Baur-Strassen [14]. The
later bounds are of level Ω(n log deg(f)), and are established for general arith-
metical circuits. For explicit f of “reasonable” degree, proving strongly nonlinear
lower bounds for B(f), and even more so for dc(f), is a major open problem.

In this paper the first aim is to investigate under what additional restrictions
to the determinantal model we can achieve above goal for dc(f), and in doing
so to build tools that may assist in resolving the general case. It is shown the
Mignon-Ressayre technique can be generalized to higher order partial derivatives,
and this relates the technique to work of Nisan on algebraic branching programs
over non-commuting variables [8] and Raz on multilinear formulas [11,12]. This
will be applied to a version of determinantal complexity, in which the affine map
L is restricted to be so-called r-lowerable. This condition stipulates that there
exists a point a, such that rank L(a) ≤ m− r.

For low degree polynomials this will yield strongly nonlinear and exponential
lower bounds. For example, for the elementary symmetric polynomial of degree d
in n variables, defined by Sd

n(X) =
∑

I⊂[n],|I|=d

∏
i∈I xi, it will be shown that the

determinantal complexity of S2d
n while using r-lowerable maps is Ω(nd/(2d−r)),

for any constants d and r with 2 < d+1 ≤ r < 2d. In the most restrictive setting,
for d =  n1/5−ε!, an exponential lower bound of level nΩ(εn1/5−ε) is observed for
S2d

n , for any constant ε ∈ (0, 1/5).
The second aim of this paper is to consider unrestricted determinantal com-

plexity of several important polynomial families. For example, it will be shown
that dc(S2d−1

2n ) ≥ n and dc(S2d
2n+2) ≥ n/2, for d > 1, over fields of characteristic

zero. For constant d, this determines the determinantal complexity of Sd
n up to

a constant factor, since L(Sd
n) = O(nd3 log d) [10].
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2 Preliminaries

For integer n, [n] denotes {1, 2, . . . , n}. Let F be a field. Let X = {x1, . . . , xN}
and Y = {y1, . . . , yM} be sets of variables. Let polynomials f ∈ F [X ] and
g ∈ F [Y ] be given. For a vector r = (r1, r2, . . . , rM )T ∈ F [X ]M denote by g(r)
the polynomial obtained by substitution of yi by ri in g, for all 1 ≤ i ≤ M . For a
matrix G whose entries are elements in F [Y ], let G(r) denote the matrix that has
ij-th entry G(r)ij = Gij(r). We generalize Mignon and Ressayre’s framework
[6] for proving determinantal complexity lower bounds by considering arbitrary
order partial derivatives. Their results are obtained by setting k = 1 in the
following suite of results (Lemma 1, Proposition 1, and Lemma 2).

2.1 Partial Derivatives Matrix

Let k ≥ 1 be an integer. Define the partial derivatives matrix of a polynomial
f of order 2k, denoted by T 2kf , to be an Nk × Nk matrix of formal partial
derivatives, with rows and columns indexed by k-tuples v, w ∈ Xk, respectively,
where

(T 2kf)v,w =
∂2kf

∂v∂w
,

where ∂v is shorthand for ∂v1∂v2 . . .∂vk. In this paper (i1, i2, . . . , ik) is used as a
shorthand for the index of a row or column given by the k-tuple (xi1 , xi2 , . . . , xik

).
In expressions, taking derivatives is given precedence over substitution, e.g.
T 2kg (L(x)) means (T 2kg)(L(x)).

Lemma 1. Let k ≥ 1 be an integer. Let C be an M × N matrix with entries
from F . Let c = (c1, c2, . . . , cM )T ∈ FM . Let x = (x1, x2, . . . , xN )T be a vector
of variables. Suppose for M -vector L(x) = Cx + c of affine linear forms that
f = g(L(x)). Then

T 2kf = (CT )⊗k ·
(
T 2kg (L(x))

)
· C⊗k,

and hence for any a ∈ Fn,

rank T 2kf (a) ≤ rank T 2kg (L(a)).

Proof. Lemma 1 is proved by induction on k. The basis k = 1 is given by
Lemma 3.1 in [6], and is obtained using the chain rule as follows: ∂f

∂xi
=∑M

k=1
∂g
∂yk

(L(x)) · ∂(L(x))k

∂xi
=
∑M

k=1
∂g
∂yk

(L(x)) · Cki. Hence (T 2f)ij = ∂2f
∂xi∂xj

=∑M
k=1
∑M

l=1
∂2g

∂yk∂yl
(L(x)) · ∂(L(x))l

∂xj
· Cki =

∑M
k=1
∑M

l=1
∂2g

∂yk∂yl
(L(x)) · CljCki =∑M

k=1
∑M

l=1

(
T 2g (L(x))

)
kl

· CljCki =
(
CT · T 2g (L(x)) · C

)
ij

.
Now assume the statement of the lemma is true for a k ≥ 1. Let (v, i)(w, j) ∈

[N ]k+1. We have that

(T 2k+2f)(v,i)(w,j) =
∂2(T 2kf)vw

∂xi∂xj
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=
∂2
[
(CT )⊗k ·

(
T 2kg (L(x))

)
· C⊗k

]
vw

∂xi∂xj

=
∑

s,t∈[N ]k
[(CT )⊗k]vs ·

∂2
[
T 2kg (L(x))

]
st

∂xi∂xj
· [C⊗k]tw. (1)

Let hst = [T 2kg (L(x))]st. We have hst = [T 2kg]st(L(x)). By the base case

∂2hst

∂xi∂xj
=
[
CT ·

[
T 2[T 2kg]st

]
(L(x)) · C

]
ij

=
∑

k,l∈[N ]

CT
ik ·
[[
T 2[T 2kg]st

]
(L(x))

]
kl

· Clj

=
∑

k,l∈[N ]

CT
ik ·
[
T 2k+2g (L(x))

]
(s,k)(t,l) · Clj .

Substituting this into Expression 1, we get

(T 2k+2f)(v,i)(w,j) =∑
s,t∈[N ]k

∑
k,l∈[N ]

[(CT )⊗k]vsC
T
ik ·
[
T 2k+2g (L(x))

]
(s,k)(t,l) · Clj [C⊗k]tw

∑
s,t∈[N ]k

∑
k,l∈[N ]

[(CT )⊗(k+1)](v,i)(s,k) ·
[
T 2k+2g (L(x))

]
(s,k)(t,l) · C

⊗(k+1)](t,l)(w,j).

We conclude that T 2k+2f = (CT )⊗(k+1) · T 2k+2g (L(x)) · C⊗(k+1). "#

2.2 Rank Deficiency of the Determinant

Proposition 1. Let k ≥ 1 be an integer. Let A and C be invertible m × m
matrices. Then for any m×m matrix B,

rank T 2kdetm(B) = rank T 2kdetm (ABC).

Proof. Let X be an n × n matrix with variables with ij-th entry equal to xij .
The linear map L : X $→ AXC is invertible. So if we let f(X) = detm(L(X)),
we have by Lemma 1 that rank T 2kf (B) = rank T 2kdetm (L(B)). How-
ever, f(X) = detm(AXC) = μdetm(X), where μ = det(A)det(C) �= 0. Hence
T 2kf = μ · T 2kdetm. We conclude rank T 2kdetm (B) = rank T 2kf (B) =
rank T 2kdetm (L(B)). "#

Lemma 2. Let 2k ≥ r ≥ 1 be integers. Suppose B is an m×m matrix of rank
at most m− r. Then rank T 2kdetm (B) ≤ ((2k)!/(2k − r)!)2m2k−r.

Proof. By Proposition 1, we can assume wlog. that B equals
diag(0, 0, . . . , 0, 1, 1, . . . , 1), where there are r zeroes on the diagonal. Let
H = T 2kdetm. For i, j, s, t ∈ [m]k, on row (i,j) and column (s,t) of H we have

∂2kdetm
∂xi1j1∂xi2j2 . . . ∂xikjk

· ∂xs1t1∂xs2t2 . . . ∂xsktk
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For this entry to be nonzero when evaluated at B we must have that both
[r] ⊆ {i1, i2, . . . , ik, s1, s2, . . . , sk} and [r] ⊆ {j1, j2, . . . , jk, t1, t2, . . . , tk}. There
are ((2k)!/(2k − r)!)2 ways of fixing particular indices to be 1, 2, . . . , r. Once
fixed we are left with 2k− r variables that index rows and 2k− r variables that
index columns. These take values in the range [m]. Hence each choice of fixing
values gives rise to a submatrix of rank at most m2k−r. Observe this implies we
can write H as a sum of ((2k)!/(2k− r)!)2 matrices each with rank bounded by
m2k−r. Hence rank H ≤ ((2k)!/(2k − r)!)2m2k−r. "#

Note in [6] it is proved that rank T 2detm (B) ≤ 2m, for singular B. The
following lemma and its proof are similar to Proposition 3.3 in [11].

Lemma 3. Let f be homogeneous of degree 2d in variables X =
{x1, x2, . . . , xn}, and let g be homogeneous of degree 2e in variables Y =
{y1, y2, . . . , ym}. Then rank T 2(d+e)fg ≥ rank T 2df · rank T 2eg.

Proof. Let H = T 2(d+e)fg. The rows and columns of H are indexed by
(d + e)-sequences v and w of in variables from X ∪ Y . Hv,w equals the co-
efficient of the monomial that is the product of the entries of (v, w) in fg.
We will only consider a minor H ′ of H , where v (and similarly w) consists of
d X-variables and e Y -variables. Let s = nd and t = ne. Enumerate all d-
sequences in X : a1, a2, . . . , as. Enumerate all e-sequences in Y : b1, b2, . . . , bt.
Consider the minor with rows and columns (a1, b1), (a1, b2), . . . , (a1, bt),
(a2, b1), (a2, b2), . . . , (a2, bt), . . . , (as, b1), (as, b2), . . . , (as, bt). Observe that entry
H ′

(ai,bj),(ap,bq) = (T 2df)(ai,ap)(T 2eg)(bj ,bq). Hence H ′ = (T 2df)⊗ (T 2eg), and the
lemma follows. "#

3 The Mignon-Ressayre Bound

Mignon and Ressayre’s lower bound proof for the permanent uses the special case
where k = 1 in the framework of Section 2. The proof strategy can be outlined as
follows. Suppose f(x) = detm(L(x)), for some affine linear map L. The objective
is to find a point a ∈ Fn that simultaneously minimizes rank T 2kdetm(L(a))
and maximizes rank T 2kf(a). For points a such that f(a) = 0, L(a) must be
singular, in which case Lemma 2 yields rank T 2detm (L(a)) ≤ 2m. By Lemma
1, for any a, rank T 2f(a) ≤ rank T 2detm(L(a)). For f = pern it is possible to
find a with per(a) = 0 and rank T 2pern(a) at the maximum value n2, implying
dc(pern) ≥ n2/2.

4 r-Determinantal Complexity

Results in this section hold for any choice of the underlying field F .

Definition 1. Call a map L : Fn → Mm(F ) r-lowerable if there exists a ∈ Fn

such that rank L(a) ≤ m − r. We define the r-determinantal complexity of
a polynomial f , denoted by dcr(f), to be the minimum m for which f(x) =
detm(L(x)), where L is an r-lowerable affine linear map.
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For any r ≥ 0, dcr(f) ≤ dcr+1(f). Note that dc(f) = dc0(f), and if f−1(0) �= ∅,
then dc(f) = dc1(f).

It should be remarked that the affine maps obtained by the constructions that
show universality of the determinant of [2,13] will not be 2-lowerable, since these
constructions create an upper triangular minor in L(x) of size m−1. As a matter
of fact, universality fails in the r-determinantal model for inhomogeneous poly-
nomials, for r > 2. To give an example, let us consider computing a polynomial
f of degree four using a 3-lowerable map, where f is of the form:

f = x1x2(x3x4) + x5x6(x3x4 − 1) + g(x7, x8, . . . , xn).

Assume f(x) = detm(L(x)), where for some a, rank L(a) ≤ m−3. We have that
all (m − 2) × (m − 2) minors of L(a) are singular. Hence all 2nd order partial
derivatives of detm vanish at L(a). Since the second order partial derivatives of
f(x) are in the linear span of those of detm (See e.g. the proof of Lemma 1),
we have that all second order partial derivatives of f(x) vanish at a. For the
given f , ∂2f/∂x1∂x2 = x3x4 and ∂2f/∂x5∂x6 = x3x4 − 1, which clearly cannot
simultaneously vanish.

Whether universality fails for homogeneous polynomials in the r-
determinantal model is an open problem, for 1 < r < deg(f). We do however
have the following general lower bound theorem:

Theorem 1. For any polynomial f of degree 2d and integer r such that 1 ≤ r <

2d, dcr(f) ≥
(

(2d−r)!
(2d)!

)2/(2d−r) (
rank T 2df

)1/(2d−r).

Proof. Suppose we can write f(X) = detm(L(X)), where L is r-lowerable.
Since f is of degree 2d, for any a ∈ Fn, rank T 2df(a) = rank T 2df .
Fix arbitrary a such that L(a) has rank at most m − r. By Lemma 2,
rank T 2dDetm(L(a)) ≤ ((2d)!/(2d − r)!)2m2d−r. However, by Lemma 1,
rank T 2df(a) ≤ rank T 2dDetm(L(a)) ≤ ((2d)!/(2d− r)!)2m2d−r. "#

4.1 Applications

Theorem 2. dcr(S2d
n ) ≥

(
(2d−r)!
(2d)!

)2/(2d−r) (
n
d

)1/(2d−r), for 1 ≤ r < 2d < n.

Proof. Consider any
(
n
d

)
×
(
n
d

)
minor H of T 2dS2d

n , where rows and columns
are indexed by all d-subsets I = {i1, i2, . . . , id} and J = {j1, j2, . . . , jd} of [n],
respectively. Then

HI,J =
∂2dS2d

n

∂xi1∂xi2 . . . ∂xid
∂xj1∂xj2 . . .∂xjd

=
{

1 if I ∩ J = ∅
0 otherwise.

In other words H is the communication matrix of set disjointness, which is
known to have rank

(
n
d

)
(See page 175, [15]). The result now follows by applying

Theorem 1. "#
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Corollary 1. dcr(S2d
n ) = Ω(nd/(2d−r)), for 1 < d < r < 2d = O(1).

In the most restrictive setting one has that dc2d−1(S2d
n ) = Ω(nd), for constant

d > 1. As a matter of fact, Theorem 2 yields an exponential lower bound in this
case for non-constant d:

Corollary 2. dc2d−1(S2d
n ) = nΩ(εn1/5−ε), for any fixed 0 < ε < 1/5, where

d =  n1/5−ε!.

The above is the most restrictive case in which computability of S2d
n is not yet

ruled out by Theorem 1. Careful inspection of Theorem 1 does shows that S2d
n

cannot be computed using a 2d-lowerable map if
(
n
d

)
> (2d!)2, e.g. for all large

enough n, if d is constant.
Using Lemma 3, we obtain lower bounds for products of symmetric polyno-

mials on disjoint variables sets.

Theorem 3. For constants d > 1, p ≥ 1, and r with dp < r <
2dp, let X1, X2, . . . , Xp be disjoint sets of variables of size n each. Then
dcr(
∏

i∈[p] S
2d
n (X i)) = Ω(n2dp/(2dp−r).

Proof. Let f =
∏

i∈[p] S
2d
n (X i). By Lemma 3, rank T 2dpf ≥∏

i∈[p] rank T 2dS2d
n (X i) ≥

(
n
d

)p. The latter inequality follows from the
proof of Theorem 2. Applying Theorem 1 yields the result. "#

Next, we consider iterated matrix product. Define IMMn,d by summing
entries of an iterated matrix multiplication: IMMn,d =

∑
i,j∈[n](

∏
r∈[d]X

r)ij ,

where X1, X2, . . . , Xd are n × n matrices with disjoint sets of variables.
Since IMMn,d has algebraic branching programs of size dn, we have that
dc(IMMn,d) = O(nd), which is sublinear in the number of variables n2d.

Lemma 4. For d ≥ 1, rank T 2dIMMn,2d ≥ nd.

Proof. We prove by induction on d the following claim:

Claim. Let (g1, g2, . . . , gn) = (1, 1, . . . , 1)X1X2 . . .X2d−1X2d. Then for each i,
rank T 2dgi ≥ nd.

The case d = 1 follows directly by inspection. Now suppose, (g1, g2, . . . , gn) =
(1, 1, . . . , 1)X1X2 . . .X2d−1X2d. Let Gi = T 2dgi. Let (h1, h2, . . . , hn) =
(g1, g2, . . . , gn)X2d+1X2d+2. Consider the minor H of T 2d+2∑

i hi where rows
contain a variable from X2d+1, but not from X2d+2, and vice-versa for columns.
Provided we order at the top level rows according to variables from X2d+1 and
columns according to variables from X2d+2, this minor will be of the following
form:
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H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G1 . . . G1 0 . . . 0 . . . 0 . . . 0
0 G1 . . . G1 . . . 0 . . . 0

...
...

...
...

...
...

...
...

...
...

0 . . . 0 0 . . . 0 . . . G1 . . . G1
G2 . . . G2 0 . . . 0 . . . 0 . . . 0

0 G2 . . . G2 . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

...
0 . . . 0 0 . . . 0 . . . G2 . . . G2
...

...
...

...
...

...
...

...
...

...
Gn . . . Gn 0 . . . 0 . . . 0 . . . 0

0 Gn . . . Gn . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

...
0 . . . 0 0 . . . 0 . . . Gn . . . Gn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
For any i, T 2d+2hi is obtained by setting to zero in the above columns which
at the top level are indexed by variables X2d+2

kj with j �= i. Hence for each i,
rank T 2d+2hi ≥ n · maxk∈[n] rank Gk ≥ nd+1. This proves the claim.

Observe that in the above the individual T 2d+2hi do not interfere, in the
sense that rank H ≥ rank T 2dhi, for each i. Hence it can be observed that
rank T 2d

∑
i gi ≥ nd. "#

Combining Theorem 1 and Lemma 4 yields the following results:

Theorem 4. dcr(IMMn,2d) ≥
(

(2d−r)!
(2d)!

)2/(2d−r)
nd/(2d−r), for 1 ≤ r < 2d.

Corollary 3. dcr(IMMn,2d) = Ω(nd/2d−r), for 1 ≤ d < r < 2d = O(1).

Corollary 4. dc2d−1(IMMn,2d) = nΩ(εn1/4−ε), for any fixed 0 < ε < 1/4, where
d =  n1/4−ε!.

5 Tight Bounds on Determinantal Complexity

Results in this section hold for fields F of characteristic zero.

5.1 Elementary Symmetric Polynomials

Note using Theorem 2 with d = 1 and r = 1 yields that dc(S2
n) ≥ n/4. For

n ≥ 1, we define 2n-vector pn = (1,−1, 1,−1, . . . , 1,−1). Easily verified by in-
duction on n, we have that the univariate polynomial ((t − 1)(t + 1))n equals∑n

r=0 t
2r(−1)n−r

(
n
r

)
. Since Sd

2n(pn) is the coefficient of t2n−d we obtain the
following:
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Proposition 2. For any 1 ≤ d ≤ n, S2d−1
2n (pn) = 0.

Proposition 3. For any 0 ≤ d ≤ n, S2d
2n(pn) = (−1)d

(
n
d

)
.

Lemma 5. rank T 2S2d−1
2n (pn) = 2n, for 2 ≤ d ≤ n.

Proof. Let H = T 2S2d−1
2n . Then Hij = S2d−3

2n−2(X/xi, xj), if i �= j, and zero
otherwise. By symmetry and Proposition 2, if i and j have distinct parity,
Hij(pn) = S2d−3

2n−2(pn−1) = 0. Let Ho and He be the n × n minors of H formed
by all odd, respectively even, rows and columns. H acts independently on the
odd and even indices of a vector, so rank H = rank Ho + rank He. Ho

has zeroes on its diagonal, and by symmetry off-diagonal entries will be the
same value S2d−3

2n−2(−1,−1; pn−2). Provided this is a nonzero value, Ho will be
non-singular. A straightforward calculation shows this value is (−1)d−2

(
n−2
d−2

)
.

Similarly rank He = n. "#

Following the proof strategy as outlined in Section 3, and using the bound
rank T 2detm(B) ≤ 2m, for singular B of [6], we obtain the following corollary:

Corollary 5. dc(S2d−1
2n+1) ≥ dc(S2d−1

2n ) ≥ n, for 2 ≤ d ≤ n.

For even degree, a simple calculation shows that S2d
2n+2(a, b, pn) = 0 whenever

2ab = (n+ 1)/d.

Lemma 6. For 2 ≤ d ≤ n, there exists constant μ, such that for qn+2 = (μ(n+
1), 1

2dμ , pn), rank T 2S2d
2n+2(qn+2) ≥ n.

Proof. Let H = T 2S2d
2n+2. Consider the n × n minor H ′ of H given by rows

i and columns j, where i, j ≥ 3 and i, j are both odd. The diagonal of H ′

has all entries zero. By symmetry, H ′
i,j(qn+2) has the same value S2d−2

2n (μ(n +
1), 1

2dμ ,−1,−1, pn−2), for all for i �= j. A simple calculation shows that one can
easily pick μ large enough so this value does not vanish, in which case H ′ has
rank n. "#

Corollary 6. dc(S2d
2n+3) ≥ dc(S2d

2n+2) ≥ n/2, for 2 ≤ d ≤ n.

Shpilka and Wigderson give depth 6 arithmetical formulas of size O(nd3 log d)
for Sd

n [10]. By the universality of the determinant [2] (cf. [13]) we have dc(Sd
n) =

O(nd3 log d). Hence the following theorem holds:

Theorem 5. For any constant d > 1, dc(Sd
n) = Θ(n).

In other words, for constant d, dc(Sd
n) = Θ(L(Sd

n)). For non-constant d, it is
an open problem whether any improved upper bound can be given for dc(Sd

n)
beyond applying the universality of the determinant to best-known formu-
las. We note this can easily be done for the permanental complexity of Sd

n.
Also permanental complexity minorizes formula size, i.e. for any polynomial
f , pc(f) = O(L(f)). However, for any d, pc(Sd

n) ≤ n, over fields of charac-
teristic zero. Namely, the permanent of a matrix A whose first d rows equal
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(x1, x2, . . . , xn), and with other entries equal to one, is d!(n − d)!Sd
n. Note one

could try to obtain a polynomial hd
n that has the same support as Sd

n by tak-
ing hd

n = detn(A ◦ C), where ◦ denotes the Hadamard product, and C is some
matrix of constants C = (ij)i,j∈[n]. In this case for I ⊂ [n] of size d, the mono-
mial

∏
i∈I xi appears with coefficient ±det(C[d],I)det(C{d+1,d+2,...,n},[n]/I), where

CI,J denotes the submatrix with rows I and columns J . It is easily possible to
choose C so that all these coefficients are nonzero. However, requiring all coeffi-
cients to equal 1 will not be feasible in general. We immediately know this from
our previous investigation, since the mapping defined this way is d-lowerable.
We know by Theorem 1, one cannot compute S2d

n using 2d-lowerable maps, if(
n
d

)
> (2d!)2.

5.2 Iterated Matrix Product

Theorem 6. For any d ≥ 1, dc(IMMn,2d) ≥ n/2.

Proof. Consider the minor of T 2IMMn,2d corresponding to rows with variables
X2d−1

11 , . . . , X2d−1
1n and columns with variables of X2d. With the appropriate

ordering of variables from X2d, this minor looks like:⎛⎜⎜⎜⎝
g11 . . . g1n 0 . . . 0 . . . 0 . . . 0

0 g21 . . . g2n . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

...
0 . . . 0 0 . . . 0 . . . gn1 . . . gnn

⎞⎟⎟⎟⎠ ,

where gij = ∂2IMMn,2d/∂X
2d−1
1i ∂X2d

ij . Note gij is the same for all i, j ∈ [n].
It suffices to find point a, such that IMMn,2d(a) = 0 and gij(a) �= 0. Since gij

does not contain any variables from X2d−1 and X2d, this can easily be achieved
by setting to zero all variables in X2d−1 and X2d, and setting all other variables
to 1. "#

By the remarks before Lemma 4, we have that dc(IMMn,2d) = Θ(n), for
constant d. More generally, by means of reduction, we have for row vector 〈u|
and column vector |v〉 of variables the following corollary:

Corollary 7. For constant d, dc(〈u|X1X2 . . .X2d |v〉) = Θ(n).

5.3 Symmetric Power Sum Polynomials

The symmetric power sum polynomial of degree d in n variables is de-
fined by P d

n =
∑

i∈[n] x
d
i . P

d
n has arithmetical formula size L(P d

n ) = O(nd).
The partial derivatives matrix T 2P d

n is given by the diagonal matrix d(d −
2)diag(xd−2

1 , xd−2
2 , . . . , xd−2

n ). By the strategy described in Section 3, it suffices
to find a zero a of P d

n with all entries ai �= 0 to obtain that for all d ≥ 2,
dc(P d

n ) ≥ n/2. For an arbitrary field F of characteristic zero one achieves this
by going to an extension field G of F where the dth root of (1 − n) exists. Over
G, one takes a = (1, 1, . . . , 1, (1 − n)1/d) to show dcG(P d

n ) ≥ n/2. The lower
bound follows since dcF (P d

n ) ≥ dcG(P d
n ).
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Corollary 8. For any constant d ≥ 2, dc(P d
n) = Θ(n).

Note the statement of the corollary would be false if we drop the restriction
(which holds section-wide) on the characteristic of the underlying field, e.g.
dc(P 2

n) = 2 over GF (2).

6 Conclusions

In this paper efforts have been made to understand the current barrier to proving
strongly nonlinear determinantal complexity lower bounds. One of the main
objectives has been to demonstrate this barrier can be broken through under
the mathematically natural restriction of r-lowerability. It will be interesting to
see whether one can do this under any weaker assumptions. The inquiry leaves
us with some intriguing questions regarding determinantal representation:

Problem 1. Can S2d
n be computed using an r-lowerable map, with d < r < 2d ?

Problem 2. Can every homogeneous polynomial of degree 2d be computed using
an r-lowerable map for some r such that d < r < 2d ?

Problem 3. For non-constant d depending on n, can we give better upper bounds
for dc(Sd

n) than would be obtained by applying Valiant’s universality construc-
tion of the determinant to best-known formulas for Sd

n ?

Problem 4. Can we explicitly construct a family of polynomials of non-constant
degree d in n variables, with d = o(n), whose determinantal complexity is shown
to be Θ(n) ?
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Abstract. We study structural properties of restricted width arith-
metical circuits. It is shown that syntactically multilinear arithmetical
circuits of constant width can be efficiently simulated by syntactically
multilinear algebraic branching programs of constant width, i.e. that
sm-VSC0 ⊆ sm-VBWBP. Also, we obtain a direct characterization of
poly-size arithmetical formulas in terms of multiplicatively disjoint con-
stant width circuits, i.e. MD-VSC0 = VNC1.

For log-width weakly-skew circuits a width efficient multilinearity
preserving simulation by algebraic branching programs is given, i.e.
weaklyskew-sm-VSC1 ⊆ sm-VBP[width=log2 n].

Finally, coefficient functions are considered, and closure properties
are observed for sm-VSCi, and in general for a variety of other syntactic
multilinear restrictions of algebraic complexity classes.

1 Introduction

In this paper the computational power of space bounded computation is studied
in the arithmetical setting by considering arithmetical circuits of restricted width.
For such circuits several elementary questions are still left unanswered. We are in-
terested in the following question posed in [6]: can arithmetical circuits of constant
width and polynomial degree be simulated by polynomial size arithmetical formu-
las ? If indeed so, this would yield an equivalence, since a simulation the other way
around follows from a construction by Ben Or and Cleve [1].

One strategy to approach the above question is to investigate under what
additional assumptions one can indeed do the simulation. Mahajan and Rao
show that every syntactically multilinear constant width circuit has an equiva-
lent polynomial size arithmetical formula [6]. However, it was left open whether
this arithmetical formula can be guaranteed to be syntactically multilinear. The
starting point of this note is the observation that with a careful modification
this can in fact be achieved. In other words, letting sm-VSC0 and sm-VNC1
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stand for the syntactically multilinear restrictions of the arithmetical complexity
classes corresponding to poly-size constant width circuits and poly-size circuits
of O(log n)-depth, respectively, we have the following theorem:

Theorem 1. sm-VSC0 ⊆ sm-VNC1.

Details regarding this modification will appear in the full version of this pa-
per. Theorem 1 raises the following question: is it that syntactically multilinear
constant width arithmetical circuits are equivalent to constant width syntacti-
cally multilinear branching programs? The main result of this paper is an an-
swer to this question in the affirmative. Letting sm-VBWBP stand for the class
corresponding to poly-size algebraic branching program of constant width, we
strengthen Theorem 1 as follows:

Theorem 2. sm-VSC0 ⊆ sm-VBWBP.

Syntactically multilinear circuits can be assumed without loss of generality to be
multiplicatively disjoint (See [8]). Hence it is natural to consider enhancements
to the construction underlying Theorem 2 under the assumption of multiplica-
tive disjointness, and also the even more stringent condition of weak skewness
(See [8]). The best dependence on width we obtain under the latter restric-
tion, allowing us to conclude O(log n)-width, poly-size weakly-skew arithmetical
circuits can be simulated by O(log2 n)-width, poly-size algebraic branching pro-
gram with preservation of syntactic multilinearity. This will follow from a careful
modification of the construction given in [5].

In the general world, we observe that if a given constant width circuit is
multiplicatively disjoint, then it can be depth reduced to yield a formula. To the
best of our knowledge, this is the largest chunk of the class of constant width
arithmetical circuits which are known to have equivalent formulas.

Following [7], we study the complexity of coefficient functions of polynomials.
Closure properties will be observed that hold quite universally among the syn-
tactically multilinear circuit classes, in particular for the restricted width classes
mentioned above. Although coefficient functions are known to be VNP hard even
in the case of depth three arithmetic formulas, generally syntactically multilin-
ear circuit classes are closed for coefficient functions. Also, we show that if any
coefficient function of a polynomial is in a syntactic multilinear class, then so is
the polynomial itself. Hence, in the terminology of [7], generally a syntactically
multilinear arithmetic circuit class is stable for coefficient functions.

The rest of this paper is divided as follows. In Section 2 we introduce defini-
tions and notations. Section 3 contains the construction for weakly-skew circuits.
Section 4 contains a proof of Main Theorem 2. In Section 5 we study coefficient
functions. Finally, we end in Section 6 by posing several open problems.

2 Preliminaries

For integer n, [n] denotes the set {1, 2, . . . , n}. Let R be a commutative ring with
multiplicative identity 1. An arithmetical circuit C over R is a directed acyclic
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graph, with nodes (called gates) with labels taken from {+,×} ∪X ∪ R, where
X = {x1, x2, . . . , xn}. A node with in-degree zero must take its label from X or
R, depending on whether it represents and input or constant gate. C has at least
one node of out-degree zero called an output gate. Every gate in g computes a
polynomial in R[X ] defined in the usual way. The polynomial computed by the
circuit is the polynomial computed by the output gate, and if C has more than
one output gate, then this is the union of all such polynomials. For a gate f ,
Var(f) denotes the subset of X of variables that appear in the subcircuit rooted
at f . A circuit is layered, if the node set can be partitioned into a sequence of
sets, called layers, with edges only between consecutive layers.

Fan-in (fan-out) of C is the maximum in-degree (out-degree) of any gate in
C. The size of C is defined as the number of gates and edges (called wires) in
C. If C has a constant fan-in then we take size to be simply the total number of
gates. Depth of a circuit is the length of longest directed path in the underlying
graph. Width of a layered circuit is the maximum number of nodes at any layer.
A formula is a circuit, where fan-out of every gate is bounded by one. The formal
degree of a gate (degree for short) is defined inductively as follows: input gates
have degree one, and for an addition or multiplication gate it is the sum or
product of the degree of its inputs, respectively.

A circuit C is said to be skew, if for every multiplication gate f = g × h, one
of g or h is an input or constant gate. C is said to be weakly skew, if for every
f = g × h, either the edge (g, f) or (h, f) is a bridge in the circuit, i.e removing
the edge increase the number of weakly connected components. Further, in a
multiplicatively disjoint (MD for short) circuit, for every gate f = g × h, the
sub-circuits rooted at g and h are disjoint (as graphs). Note that MD-circuits
are generalizations of weakly skew circuits, which in turn contains skew circuits.

The following are the arithmetical circuit classes that will be used in the
next sections. These contain families of polynomials (fm)m≥1, where fm ∈
R[x1, x2, . . . , xp(m)], for some polynomial p. The measures size, width, depth,
fan-in and fan-out are all defined in terms of m.

VAC0 : poly-size, constant-depth, unbounded fan-in circuits.
VNC1 : poly-size, log-depth, constant fan-in circuits.
VF : poly size formulas.
VsSCi : poly-size, O(logi m)-width, poly-degree circuits.
VSAC1 : poly-size, log-depth, constant ×-fan-in circuits.
VP : poly-size, poly-degree circuits.

The class VNP is defined as families of polynomials (gm)m≥1, where gm =∑
b∈{0,1}q(m) fm(x, b), for polynomial q(m) and (fm)m≥1 ∈ VP.
An algebraic branching program (BP for short) is a directed acyclic graph,

where edges are labeled from X ∪ R. There are two designated nodes, s and t,
where s has in-degree zero and t has out-degree zero. We assume that a BP is
layered. Size of a BP is the number of nodes and edges in it and width is the
maximum number of nodes at any layer. Length of a BP is the number of layers in
it. Depth of a BPB equals 1+length(B). The polynomial computed by a BP P , is
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VAC0 �� VBWBP = VF =
MD-VsSC0 = VNC1

��

�������������������
VsSC0 �� VsSC1 �� VSAC1

VLWBP ��

��

VBP

��

Fig. 1. Relationship among arithmetic classes around arithmetic formulas

sm-VAC0 �� sm-VBWBP =
sm-VSC0

��

�� sm-VSC1 �� sm-VSAC1

sm-VNC1 �� sm-VLWBP ��

��

sm-VBP

��

Fig. 2. Syntactic Multilinear Versions

the sum of weights of all s-t paths in P , where the weight of a path is the product
of all edge labels in the path. We will also consider multi output BPs, where the
above is generalized in the obvious way to several nodes t1, t2, . . . , tm existing
at the last level. Note that BPs can be simulated by skew circuits and vice
versa with a constant blow up in the width. We let VBP, VLWBP and VBWBP
stand for classes corresponding to poly-size BPs of poly, log and constant width,
respectively. Known relationships among the classes defined so far are: VAC0 ⊆
VNC1 = VF = VBWBP [2,1], and VBP ⊆ VSAC1 = VP ⊆ VNP [13].

A circuit C is syntactically multilinear, if for every multiplication gate f =
g × h, Var(g) ∩ Var(h) = ∅. A BP is said to be syntactically multilinear, if
no s-t path contains the same variable twice. For a complexity class C, its syn-
tactically multilinear version is denoted by sm-C. For sSCi we drop one ‘s’ as
poly degree is implied, i.e. we write sm-VSCi and also MD-SCi. Known re-
lationships are: sm-VBWBP ⊆ sm-VsSC0 ⊆ sm-VNC1 = sm-VF ([6]) and
sm-VBP ⊆ sm-VSAC1 = sm-VP ([10]).

The above results together with the main theorem of our paper lead to the
scenario as depicted in Figures 1 and 2. The main contrasting point is that
VBWBP = VNC1 ⊆ VsSC0, whereas sm-VSC0 = sm-VBWBP ⊆ sm-VNC1.

3 Weakly Skew Circuits

The main objective of this section is to prove the following result:

Theorem 3. weaklyskew-sm-VSC0 = sm-VBWBP.

Lemma 1. Let C be an arithmetical circuit of width w and size s. Then there is
an equivalent arithmetic circuit C′ of width O(w) and size poly(s) such that fan-
in and fan-out of every gate is bounded by two, and every layer has at most one
× gate. Moreover, C′ preserves any of the properties of syntactic multilinearity,
weakly-skewness and multiplicatively disjointness.
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Proof. Let k be the bound on maximum fan-in and fan-out of C. First we can
reduce the fan-in to two by staggering the circuit and keeping copies of the gates
as and when needed. This blows up the width to 2w and size to wks. Now in a
similar manner we can ensure that the fan-out of a gate is bounded by two and
the size blow up will now be w2k2s and width will be 4w. To ensure the second
condition we need to push the gates (using staggering and dummy + gates) up
by at most 4w levels, thus making the total width 8w and size 2w2k2s. Since
k ≤ w + n and w ≤ s we have size bounded by poly(s, n). "#

For a BPB of depth dwith a single source s, we sayB is endowed with a mainline, if
there exist nodes v1, v2, . . . , vd−1 reachable only along the path s, v1, v2, . . . , vd−1,
and if the labels on this path are all set to the field constant 1. We require this
feature to ensure our construction builds programs with a single source. For BPs
B1 and B2, piping the mainline of B1 into the mainline of B2 is the operation of
removing the edge from the source of B2 to the first node v of the mainline of B2,
and adding an edge from the last node w of the mainline of B1 to v.

In the following, as a typical next step we draw an edge from an output of B1
to the source of B2. This can be from last node w, if we just want to compute
B2 or some other output in case we want to do multiplication. Note the width
of this composition is bounded by max(width(B1),width(B2)).

Lemma 2. Let C be a weakly skew circuit of width w > 1 and size s > 1 as
given by Lemma 1. Let f1, . . . , fw be the output gates of C. Then there exists an
equivalent arithmetical BP [C] of width w2 + 1, length O(2ws) and size O((w2 +
1)2ws). [C] has a single start node b and and terminal nodes [f1], . . . , [fw], v and
will be endowed with a mainline ending in v. Moreover, if C is syntactically
multilinear then so is [C].

Proof. We proceed by induction on both s and w. If s = 2, the lemma holds
trivially. If w = 2, C is a skew-circuit hence can be seen as a BP of width 3 (We
also need to add a mainline hence width is 3).

Let s > 2 and w > 2 be given, and assume that C has at least 2 layers. By
induction hypothesis, the lemma holds for all circuits of size s′ and w′, where
either s′ < s and w′ ≤ w or s′ ≤ s and w′ < w.

Wlog. assume that f1 is a × gate and f2, . . . , fw are + gates. Let C′ be the
circuit obtained by removing the output gates of C. Let g1, . . . , gw be the output
gates of C′. Wlog. assume f1 = g1×g2, and also that the edge (g1, f1) is a bridge
in the circuit. We define subcircuits D,E and of C′ as follows: D is obtained
from C′ by deleting the sub-circuit rooted at g1, E is the sub-circuit rooted at
g1. Let s′ = size(C′), w′ = width(C′), sJ = size(J) and wJ = width(J) for
J ∈ {D,E}. Note that s = s′ + w, and sJ < s for J ∈ {D,E}.

By induction hypothesis, we have branching programs [D] and [E], both en-
dowed with a mainline. Let [g1], v′ denote the output of E and [g2], . . . , [gw], v′′

denote the output nodes of [D], where v′ and v′′ are the last nodes on the
mainlines. Let [F ] be the subprogram of [D], which consists of all paths from
the source of [D] to [g2] and v′′. Construct the program [C] with output nodes
[f1], . . . , [fw], v as follows:
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Case 1. wE ≤ w − 1.
We compose [D] before [E] as follows:

1. For i, j ≥ 2, [gj ] has an edge to [fi] iff gj is an input to fi.
2. For input gates fi, draw an edge from v′′ to [fi] with the appropriate label.
3. Add an edge from [g2] to [f1].
4. Identify the start node of [E] with [f1] and relabel the output node of [E] as

[f1]. Pipe the mainline of [D] into the mainline of [E].
5. Stagger the nodes [f2], . . . , [fw] until the last level of the new program.

Size and width analysis: By induction hypothesis width([E]) ≤ (wE)2 + 1 ≤
(w − 1)2 + 1, and width([D]) ≤ w2 + 1, and length([E]) ≤ 2w−1size(E) and
length([D]) ≤ 2wsize(D). Now width([C]) = max{width([D]),width([E]) + w −
1} ≤ w2 + 1 and length([C]) = length([D]) + length([E)] ≤ 2wDsD + 2wEsE ≤
2wsD + 2w−1sE ≤ 2ws as s = sD + sE + w.

Case 2. wE = w, and hence wF ≤ w − 1 and wD ≤ w − 1.
We compose [E] before [F ] before [D] as follows:

1. Identify [g1] with the source of [F ], and pipe the mainline of [E] into the
mainline of [F ].

2. Add an edge from v′ (last node of mainline of [F ]) to the source of [D],
3. Pipe the mainline of [F ] into the mainline of [D].
4. Alongside [D] stagger the output of [F ] (which equals [f1]).
5. For i, j ≥ 2, [gj ] has an edge to [fi] iff gj is an input to fi.
6. Finally, for input gates fi, draw an edge (v′′, [fi]) with the appropriate label.

Size and width analysis: By induction hypothesis, width([E]) ≤ w2 + 1,
width([D]) ≤ (w − 1)2 + 1. Hence also width([F ]) ≤ (w − 1)2 + 1. Observe,
width([C]) ≤ max(width([E]),width([F ]),width([D]) + 1) ≤ w2 + 1.

Now, length([C]) = length([E]) + length([F ]) + length([D]) + 1 ≤ 2wsE +
2w−1sF + 2w−1sD + 1 ≤ 2w(sD + sE) + 1 ≤ 2ws. Since size of a layered BP is
length × width we have the required size bound. If C was syntactic multilinear
to start with, then it is easy to see that so is [C]. "#

Corollary 1. weaklyskew-VSC0 = VNC1 = VBWBP.

Corollary 2. weaklyskew-sm-VSC1 ⊆ sm-VBP[width = log2 n].

Conversion to Weakly Skew. We note that it is possible to process a multiplica-
tively disjoint circuit into a weakly-skew circuit with preservation of syntactic
multilinearity.

Lemma 3. For any leveled syntactically multilinear multiplicatively disjoint cir-
cuit C of width w ≥ 1 and size s ≥ 1 such that each layer has at most one
multiplication gate, there exists a leveled syntactically multilinear weakly-skew
circuit [C] of size at most sw such that for any gate g of C, there is a gate [g]
in [C] that computes the same polynomial.
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Proof. We prove the above lemma by induction on both s and w. We have two
base cases: s = 1 and w = 1. In both cases the lemma trivially holds.

Let s > 2 and w > 1 be given. By induction hypothesis, the lemma holds for
any circuit of size s′ and width w′ for which either s′ < s or w′ < w.

Case I. The output layer has addition and input gates only.
Let C′ be the circuit C excluding the output layer. Recursively process C′ and
add the output layer back to form [C] from [C′]. We have that size([C]) ≤
size([C′])w + w ≤ (s− w)w + w ≤ sw.

Case II. The output layer contains a multiplication gate f .
Let C1 and C2 be the subcircuits rooted at the inputs of the multiplication gate
f . Since C1 and C2 are disjoint, one of them is guaranteed to have width at most
w− 1. Wlog. assume C1 has width at most w− 1. Let g1, g2, . . . , gm be all gates
not in C1 that take input from C1. Let D be the subcircuits formed by the gates
in C excluding C1, where any input g taken by a gi from C1 is removed. Let
sd = size(D) and s1 = size(C1). Then s = sd +s1. Recursively process D and C1
(separately) to obtain weakly skew circuits [D] and [C1] of sizes sw

d and sw−1
1 ,

respectively. Now we put back removed inputs to each of [g1], [g2], . . . , [gm] from
the appropriate gate in [C1].

The circuit we obtain from [C1] and [D] this way is almost weakly skew. The
only issue is that the adding back of original inputs from say [g] ∈ [C1] at input
[gi] can violate the weak skewness condition for [gi] and also for gates in [C1].
We resolve this by simply duplicating the subcircuit rooted at [g]. Observe that
size([C]) ≤ sw

d +m · sw−1
1 ≤ sw

d + sd · sw−1
1 ≤ (sd + s1)w = sw. "#

The above gives an alternative proof of sm-VSC0 ⊆ sm-VBP. Namely, by above
lemma we get that sm-VSC0 ⊆ weaklyskew-sm-VP. Next use the construction
from [5] that shows weaklyskew-sm-VP ⊆ sm-VBP. The other way to arrive at
this is by Theorem 1. However, there the size of the resulting BP is O(2w2

s25w).
In this regard, Lemma 3 still yields a slightly better size bound than the con-
struction underlying Theorem 2, since there the resulting size is O(w2sw).

4 Multiplicatively Disjoint Circuits

In this section we prove Theorem 2. In fact, we prove that multiplicatively dis-
joint circuits of constant width and polynomial size can be simulated by BPs
of constant width and polynomial size preserving the syntactic multilinearity
property. In general multiplicatively disjoint circuits are equivalent to polyno-
mial degree circuits (see [8]). The following theorem can be deduced from [6]:

Theorem 4. MD-VSC0 = VNC1

Proof. Let C be a multiplicatively disjoint arithmetic circuit of width w and
size s. Let X = {x1, x2, . . . , xn} be the set of variables in the circuit. Construct
a new circuit by replacing jth occurrence of xi by a new variable yi,j , for all
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i.j. Note that C′ is a circuit with at most ns many variables and of size s and
width w. Also, as C is multiplicatively disjoint, C′ is syntactic multilinear in
the variables Y = {y1,1, y1,2 . . . , yn,s}. Now applying the construction of [6], we
get an arithmetic formula of depth O(w2 log s) and size O(2w2

s25w), but as w a
constant, we get the required formula by replacing the yi,js with xis. Now the
equivalence follows from [1]. "#

Remark 1. Note that the above theorem does not already give Theorem 2, as
the only known procedure to convert an arithmetic formula into an equivalent
bounded width branching program of [1] does not preserve syntactic multilin-
earity (For an example see [6]).

We strengthen the above result by giving a direct construction of BPs from
multiplicatively disjoint circuits.

Lemma 4. C be a multiplicatively disjoint arithmetical circuit of width w and
size s as given by Lemma 1. Let f1, . . . , fw be the output gates of C. Then there
exists an equivalent arithmetical branching program [C] of width O(w2), length
O(sw), and size O(w2sw). [C] has a single start node b and and terminal nodes
[f1], . . . , [fw], v, and will be endowed with a mainline ending in v. Moreover, if
C is syntactic multilinear then so is [C].

Proof. The proof is similar to that of Lemma 2. We proceed by induction on
both s and w. If s = 2, the lemma holds trivially. If w = 1, C is a skew-circuit,
and hence can be seen as a BP of width 3 (by adding a mainline).

Let s > 2 and w > 2 be given, and assume that C has at least 2 layers.
Suppose, by induction hypothesis that the lemma holds for all circuits of size s′

and w′, where either s′ < s and w′ ≤ w or s′ ≤ s and w′ < w.
Let C′ be the sub-circuit obtained by deleting f1, . . . , fw. LetG = {g1, . . . , gw}

be the output gates of C′. Wlog. let f1 = g1 × g2 be the only multiplication gate
at the output layer of C. Let D denote the sub-circuit rooted at g1. Since C is
multiplicatively disjoint, we have either width(D) ≤ w− 1 or width(E) ≤ w− 1.
Wlog. assume that width(D) ≤ w − 1.

Let s′ = size(C′), sD = size(D), w′ = width(C′), and wD = width(D). By
induction hypothesis, we obtain BPs [C′] and [D]. [C′] has w+ 1 output nodes,
namely [g1], . . . , [gw], v. [D] has two output nodes [g′1] and v′.

Now construct the BP [C] with output nodes [f1], . . . , [fw], v by composing
[C′] before [D] as follows: For all i ≥ 2, connect [gj ]s to [fi]s according the edges
in the circuit C, i.e edge ([gj], [fi]) is in [C] iff gj is an input for fi. In case fi is
an input gate, draw an appropriately labeled edge from v. Put an edge from [g2]
to [f1]. Now identify the start node of [D] with [f1] and re-label the terminal
node of [D] as [f1]. Do the necessary staggering to carry on the values f2, . . . , fw

to the last layer. We also pipe the mainline of [C′] into the mainline of [D].

Analysis: By induction hypothesis, we have length([C′]) ≤ s′w
′ ≤ (s − w)w

as s′ = s − w and w′ ≤ w. Furthermore, width([C′]) ≤ w′2 + 1 ≤ w2 + 1,
length([D]) ≤ swD

D ≤ (s− w)w−1, and width([D]) ≤ (w − 1)2 + 1 as sD ≤ s− w
and wD ≤ w − 1.
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Now by the construction, width([C]) = max{width([C′],width([D])+w−1} ≤
max{w2 + 1, (w − 1)2 + w − 1} ≤ w2 + 1. Hence, length([C]) = length([C′]) +
length([D]) ≤ (s − w)w + (s − w)w−1 ≤ sw, for w > 2 and w < s. Hence
size([C]) = (w2 + 1)sw. It is easy to see that this construction preserves the
syntactic multilinearity property. "#

4.1 Proof of Theorem 2

Given a syntactically multilinear circuit C of width w and size s, we first replace
all the wires carrying only ring constants in C by new variables (as done in [6]),
to get a circuit D of width wd ≤ w2 and size sd ≤ ws. Note that the circuit D is
multiplicatively disjoint. By Lemma 4 we get a syntactic multilinear BP [D] of
width w2

d +1 and size sw
d . Now replacing the introduced variables by the original

constants they represent, we get the required syntactic multilinear BP [C]. "#
Remark 2. By closer inspection of how Lemma 4 deals with input gates one can
actually conclude width([D]) ≤ w2 + 1 and size([D]) ≤ O(sw) in the above.

5 Coefficient Functions

Let f be a polynomial over variables X = {x1, x2, . . . , xn}. For a monomial m
in variables from X , the partial coefficient function coef (f,m) is defined to be
the unique polynomial g for which there exists polynomial h with none of its
monomials divisible by m such that f = mg + h.

Malod studies the complexity of computing coefficient functions computed by
class of arithmetic circuits [7]. From an old observation by Hammon, it can be
seen that the permanent polynomial equals coef (f, y1y2 . . . yn), where f is given
by the following depth three formula f =

∏
i∈[n]

∑
j∈[n] xijyj . In [7] it is shown

that Hamiltonian polynomial can be represented as a coefficient of a polynomial
g computed by polynomial size arithmetic circuits. A closer inspection shows
that this g is actually in VBP. Thus the arithmetic circuit classes which are at
least as powerful as VAC0 can generate VNP complete polynomials as coefficient
functions, and hence the coefficient functions in general are hard.

In the case of polynomials computed by syntactic multilinear circuits we will
prove that the situation is markedly different compared to the general case. For
a multilinear polynomial f over variables x1, x2, . . . , xn , we define coefficient
function mcoef (f, ·) by mcoef (f, a1, a2, . . . , an) = coef (f, xa1

1 xa2
2 . . .xan

n ), for any
a ∈ {0, 1}n. Corresponding to mcoef (f, ·) is a unique multilinear polynomial
g(x, e) in variables from X and E, such that for all a ∈ {0, 1}n, g(x, a) =
mcoef (f, a). Per abuse of notation we will denote this g by mcoef (f, a).

5.1 Closure Property

A syntactically multilinear complexity class sm-VC is said to be closed under
taking coefficients, if for any f ∈ sm-VC, mcoef (f, e) ∈ sm-VC. We have the
following identities: for any polynomials f and g,

mcoef (f + g, e) = mcoef (f, e) + mcoef (g, e). (1)
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For polynomials f and g with Var(f) ∩ Var(g) = ∅,

mcoef (fg, e) = mcoef(f, e)[ ei := 0 for xi /∈ Var(f)] ·
mcoef(g, e)[ei := 0 for xi /∈ Var(g)] ·∏
xi /∈Var (f)∪Var (g)

(1 − ei) (2)

For individual variables and constants μ we have mcoef (xi) = (xi(1 − ei) +
ei)
∏

j∈[n],j �=i(1 − ej), and mcoef (μ) = μ
∏

j∈[n](1 − ej).

Theorem 5. Each of the following syntactically multilinear classes is closed un-
der taking coefficients: sm-VP, sm-VBP, sm-VNC1, sm-VSCi, sm-VBWBP, and
sm-VACi, for all i ≥ 0.

Proof sketch. For formula classes sm-VNC1 and ACi it is immediately clear
how to convert a formula Φ computing f into a formula computing mcoef (f, e)
using Equations (1) and (2). For circuits one has to ensure the substitution at a
multiplication gate g = g1×g2 using Equation (2) are consistent with other uses
of g1 and g2. This can be guaranteed by first leveling the circuit with alternating
layers of multiplication and addition gates. "#

Consequently, we have no analogue of Hammon’s observation for the permanent
with f ∈ sm-VNC1 by [9].

Corollary 3. Permanent (and also Determinant) cannot be expressed as a coef-
ficient of some monomial of a polynomial computed by a syntactically multilinear
arithmetic formula of polynomial size.

5.2 Stability

Following [7], we say a complexity class sm-VC is stable for coefficient functions,
if sm-VC is closed under taking coefficients and whenever mcoef (f, e) ∈ sm-VC,
then f ∈ sm-VC. For a multilinear polynomial f(x, e), let Σ(E) f denote∑

b∈{0,1}m f(x, b). We say a complexity class sm-VC is closed under taking ex-
ponential sums, if whenever f(x, e) ∈ sm-VC, then Σ(E)f ∈ sm-VC. Again the
situation is contrary to the non-multilinear case, e.g. one can obtain the perma-
nent as Σ(E) f , for f ∈ VNC1 [12], cf. [3].

Theorem 6. The following are closed under exponential sums, and hence sta-
ble for coefficient functions: sm-VP, sm-VBP, sm-VNC1, sm-VSCi, sm-VBWBP,
and sm-VACi, for all i ≥ 0.

The theorem will follow from the following straightforward proposition by patch-
ing a given circuit at gates with constant multiplications of appropriate powers
of two. A proof will appear in the full version of the paper.
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Proposition 1. Let f and g be multilinear polynomials over X and E. We have
that

Σ(E) (f + g) = 2aΣ(Var(f) ∩ E) f + 2bΣ(Var(g) ∩ E) g,

where a = |E − Var(f)| and b = |E − Var(g)|. Furthermore, if f and g are
defined on disjoint variables sets,

Σ(E) fg = 2cΣ(Var(f) ∩ E) f ·Σ(Var(g) ∩ E) g,

where c = m− |Var(f) ∪ Var(g)|.

6 Open Problems

Regarding upper bounds, we pose the following four questions:

– Is sm-VSC1 ⊆ sm-VBP ?
– Is weaklyskew-sm-VSC1 ⊆ LWBP?
– Is VsSC0 ⊆ VBP ?
– Can we preserve width in Theorem 1 of [8]? If so, VsSC0 = VNC1.

Regarding lower bounds, note that constant width syntactically multilinear
arithmetical circuits require size nΩ(log n) to compute the permanent, due to
Theorem 2 and Raz’s lower bound for multilinear formulas [9]. The best known
multilinear formula for the permanent is given by Ryser, which is of size O(n2n)
[11]. Raz and Yehudayoff strengthen the lower bound to 2nΩ(1/d)

, for syntacti-
cally multilinear formulas with product depth d [10]. The latter can be simulated
within sm-VBWBP, and this class appears to be the appropriate next place in
line to strengthen the nΩ(log n) bound. One view of Theorem 2 is that it presents
an obstacle to this, i.e. despite its conceptual simplicity, the class sm-VBWBP
contains more than perhaps expected. Can we at least prove the desired strength-
ened lower bounds for width three syntactically multilinear BPs ?

Acknowledgments. The second author thanks Meena Mahajan for enlightening
discussions and useful feedback.
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grams. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162,
pp. 407–418. Springer, Heidelberg (2008)



190 M. Jansen and R. Rao B.V.

6. Mahajan, M., Raghavendra Rao, B.V.: Arithmetic circuits, syntactic multilinearity,
and the limitations of skew formulae. In: Ochmański, E., Tyszkiewicz, J. (eds.)
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Abstract. Conjunctive grammars over an alphabet Σ = {a} are stud-
ied, with the focus on the special case with a unique nonterminal sym-
bol. Such a grammar is equivalent to an equation X = ϕ(X) over sets
of natural numbers, using union, intersection and addition. It is shown
that every grammar with multiple nonterminals can be encoded into a
grammar with a single nonterminal, with a slight modification of the
language. Based on this construction, the compressed membership prob-
lem for one-nonterminal conjunctive grammars over {a} is proved to
be EXPTIME-complete, while the equivalence, finiteness and emptiness
problems for these grammars are shown to be undecidable.

1 Introduction

Conjunctive grammars are an extension of the context-free grammars with an
explicit intersection operation, introduced by Okhotin [9]. These grammars are
characterized by language equations of the form⎧⎪⎨⎪⎩

X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

(*)

in which the right-hand sides ϕi may contain union, intersection and concate-
nation of languages, as well as singleton constants; in context-free grammars,
intersection is not allowed. Despite their higher expressive power compared to
context-free grammars, conjunctive grammars still possess efficient parsing al-
gorithms and can be parsed in DTIME(n3) ∩DSPACE(n) [10], which makes
them potentially useful for practical use.

Consider the special case of a unary alphabet Σ = {a}. All unary context-free
languages are known to be regular. The question of whether conjunctive gram-
mars can generate any non-regular unary languages has been an open problem
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for some years [10], until recently solved by Jeż [2], who constructed a conjunc-
tive grammar for the language {a4n |n � 0}. This result was followed by a general
theorem due to the authors [3], which asserts representability of a large class of
unary languages by conjunctive grammars.

As strings over a one-letter alphabet can be regarded as natural numbers, lan-
guage equations (*) corresponding to unary conjunctive grammars accordingly
become equations over sets of numbers, in which concatenation of languages
is represented by element-wise addition of sets defined as S + T = {m + n |
m ∈ S, n ∈ T }. Such equations can be regarded as a generalization of integer
expressions, introduced by Stockmeyer and Meyer [13] and further studied by
McKenzie and Wagner [8]. In particular, the membership problem for integer
expressions with the operations of union and addition is NP-complete [13], and
allowing intersection makes it PSPACE-complete [8]. For equations over sets of
numbers of the form (*) and using the same operations, the membership problem
is NP-complete without intersection [1] and EXPTIME-complete with intersec-
tion [4]. The latter result was established by constructing a conjunctive grammar
that generates unary notation of all numbers in a certain EXPTIME-complete
set. The results on unary conjunctive grammars have further led to realising
the computational completeness of more general equations over sets of natural
numbers [5].

This paper investigates a special case of unary conjunctive grammars contain-
ing a unique nonterminal symbol. This subfamily has recently been studied by
Okhotin and Rondogiannis [11], who constructed a one-nonterminal conjunctive
grammar generating a non-periodic language, as well as presented two classes of
conjunctive languages that are not representable by any grammars with a single
nonterminal. The goal of this paper is to generalize the example of a nonregular
language given by Okhotin and Rondogiannis [11] to a general representability
theorem, and to explore its implications on decidability and complexity.

The main result of the paper, established in Section 3, is that for every unary
conjunctive grammar the languages generated by all of its nonterminal sym-
bols can be encoded together in a single unary language generated by a one-
nonterminal conjunctive grammar. This construction is used in Section 4 to
show that the EXPTIME-completeness result for unary conjunctive grammars
[4] holds already for one-nonterminal grammars. In Section 5, the new theorem
is used to demonstrate that equivalence, finiteness and co-finiteness problems
are already undecidable for one-nonterminal unary conjunctive grammars. At
the same time, equality to a constant language is shown to be decidable for a
large class of constants, in contrast to the multiple-nonterminal case where it is
undecidable for every fixed conjunctive constant [3].

2 Conjunctive Grammars and Systems of Equations

Conjunctive grammars generalize context-free grammars by allowing an explicit
conjunction operation in the rules.
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Definition 1 (Okhotin [9]). A conjunctive grammar is a quadruple G =
(Σ,N, P, S), in which Σ and N are disjoint finite non-empty sets of terminal
and nonterminal symbols respectively; P is a finite set of grammar rules, each
of the form

A → α1& . . .&αn (with A ∈ N , n � 1 and α1, . . . , αn ∈ (Σ ∪N)∗),

while S ∈ N is a nonterminal designated as the start symbol.

The semantics of conjunctive grammars may be defined either by term rewrit-
ing [9], or, equivalently, by a system of language equations. According to the
definition by language equations, conjunction is interpreted as intersection of
languages as follows.

Definition 2 ([10]). Let G = (Σ,N, P, S) be a conjunctive grammar. The as-
sociated system of language equations is the following system in variables N :

A =
⋃

A→α1&...&αn∈P

n⋂
i=1

αi (for all A ∈ N)

Let (. . . , LA, . . .) be its least solution and denote LG(A) := LA for each A ∈ N .
Define L(G) := LG(S).

If the right-hand side of the equation is taken as an operator on vectors of
languages, then the least fixed point of this operator is the least solution of the
system with respect to componentwise inclusion.

An equivalent definition of conjunctive grammars is given via term rewriting,
which generalizes the string rewriting used by Chomsky to define context-free
grammars.

Definition 3 ([9]). Given a conjunctive grammar G, consider terms over con-
catenation and conjunction with symbols from Σ ∪ N as atomic terms. The
relation =⇒ of immediate derivability on the set of terms is defined as follows:

– Using a rule A → α1& . . .&αn, a subterm A ∈ N of any term ϕ(A) can be
rewritten as ϕ(A) =⇒ ϕ(α1& . . .&αn).

– A conjunction of several identical strings can be rewritten by one such string:
ϕ(w& . . . &w) =⇒ ϕ(w), for every w ∈ Σ∗.

The language generated by a term ϕ is LG(ϕ) = {w | w ∈ Σ∗, ϕ =⇒∗ w}. The
language generated by the grammar is L(G) = LG(S) = {w |w ∈ Σ∗, S =⇒∗ w}.
Consider the following grammar generating the language {a4n | n � 0}, which
was the first example of a unary conjunctive grammar representing a non-regular
language.

Example 1 (Jeż [2]). The conjunctive grammar

A1 → A1A3&A2A2 | a
A2 → A1A1&A2A6 | aa
A3 → A1A2&A6A6 | aaa
A6 → A1A2&A3A3
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with the start symbol A1 generates the language L(G) = {a4n | n � 0}. In
particular, LG(Ai) = {ai·4n | n � 0} for i = 1, 2, 3, 6.

The construction in Example 1 essentially uses all four nonterminal symbols, and
there seems to be no apparent way to replicate it using a single nonterminal.
However, this was achieved in the following example:

Example 2 (Okhotin, Rondogiannis [11]). The conjunctive grammar

S → a22SS&a11SS | a9SS&aSS | a7SS&a12SS | a13SS&a14SS | a56 | a113 | a181

generates the language {a4n−8 | n � 3} ∪ {a2·4n−15 | n � 3} ∪ {a3·4n−11 | n � 3}
∪{a6·4n−9 | n � 3}.

This grammar is actually derived from Example 1, and the language it generates
encodes the languages of all four nonterminals in Example 1. Each of the four
components in the generated language represents one of the nonterminals in
Example 1 with a certain offset (8, 15, 11 and 9).

Note that the set from Example 2 is exponentially growing. At the same time,
it has been proved that if a set grows faster than exponentially (for example,
{n! | n � 1}), then it is not representable by univariate equations:

Proposition 1 (Okhotin, Rondogiannis [11]). Let S = {n1, n2, . . . , ni, . . .}
with 0 � n1 < n2 < . . . < ni < . . . be an infinite set of numbers, for which
lim infi→∞

ni

ni+1
= 0. Then S is not the least solution of any equation X = ϕ(X).

On the other hand, it is known that unary conjunctive grammars can generate
a set that grows faster than any given recursive set:

Proposition 2 (Jeż, Okhotin [3]). For every recursively enumerable set of
natural numbers S there exists a conjunctive grammar G over an alphabet {a},
such that the set Ŝ = {n | an ∈ L(G)} grows faster than S, in the sense that the
n-th smallest number of Ŝ is greater than the n-th smallest number of S, for all
n � 1.

Thus one-nonterminal conjunctive grammars are weaker in power than arbitrary
unary conjunctive grammars. However, even though one-nonterminal conjunc-
tive grammars cannot generate all unary conjunctive languages, it will now be
demonstrated that they can represent a certain encoding of every conjunctive
language.

3 One-Nonterminal Conjunctive Grammars

The goal is to simulate an arbitrary conjunctive grammar over {a} by a con-
junctive grammar with a single nonterminal symbol. The construction formalizes
and elaborates the intuitive idea of Example 2, making it provably work for any
grammar.

The first step towards the construction is a small refinement of the known nor-
mal form for conjunctive grammars. It is known that every conjunctive language
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L ⊆ Σ+ over any alphabet Σ can be generated by a conjunctive grammar in
the binary normal form [9,10], with all rules of the form A → B1C1& . . .&BnCn

with n � 1 or A → a. The following stronger form is required by the below
construction.

Lemma 1. For every conjunctive grammar G = (Σ,N, P, S) with ε /∈ L(G)
there exists a conjunctive grammar G′ = (Σ,N ′, P ′, S′) generating the same
language, in which every rule is of the form A → a with a ∈ Σ, or

A → B1C1& . . .&BnCn (with n � 2),

in which the sets {B1, C1}, . . . , {Bn, Cn} are pairwise disjoint.

A grammar in the binary normal form can be easily converted this stronger
form by making multiple copies of each nonterminal.

The next theorem is the core result of this paper.

Theorem 1. For every unary conjunctive grammar G = ({a}, {A1, . . . , Am},
P,A1) of the form given in Lemma 1 there exist numbers 0 < d1 < . . . <
dm < p depending only on m and a conjunctive grammar G′ = ({a}, {B}, P ′, B)
generating the language L(G′) = {anp−di | 1 � i � m, an ∈ LG(Ai)}.

Accordingly, the corresponding equation X = ϕ(X) over sets of natural num-
bers has a unique solution S =

⋃m
i=1 Si, where Si = {np− di | an ∈ LG(Ai)}.

Let p = 4m+2 and let di = p
4 + 4i for every nonterminal Ai. For every number

t ∈ {0, . . . , p}, the set {np− t | n � 0} is called track number t. The goal of the
construction is to represent each set Si in the track di. The rest of the tracks
should be empty.

For every rule Ai → Aj1Ak1& . . .&Aj	
Ak	

in G, the new grammar G′ contains
the rule

B → adj1+dk1−diBB& . . .&adj	
+dk	

−diBB, (1)

and for every rule Ai → a in G, let G′ have a rule

B → ap−di .

The proof of correctness of the construction will be done in terms of equations
over sets of numbers. The task is to prove that the unique solution of the equation
corresponding to G′ is S =

⋃
i Si, where Si = {np− di | an ∈ LG(Ai)}.

Each time X appears in the right-hand side of the equation, it is used in the
context of an expression ψ(X) = X+X+(di+dj−dk). The proof of the theorem
is based upon the following property of these expressions.

Lemma 2. Let i, j, k, � ∈ {1, . . . ,m} with {i, j} ∩ {k, �} = ∅. Then

(S + S + di + dj)∩ (S + S + dk + d�) = (Si +Sj + di + dj)∩ (Sk +S� + dk + d�).



196 A. Jeż and A. Okhotin

Proof. As addition is distributive over union and union is distributive over in-
tersection,

(S + S + di + dj) ∩ (S + S + dk + d�) =

=
⋃

i′,j′,k′,�′
(Si′ + Sj′ + di + dj) ∩ (Sk′ + S�′ + dk + d�)

It is sufficient to prove that if {i′, j′} �= {i, j} or {k′, �′} �= {k, �}, then the
intersection is empty. Consider any such intersection

(Si′ + Sj′ + di + dj) ∩ (Sk′ + S�′ + dk + d�) =(
{np | an ∈ L(Ai′)} − di′ + {np | an ∈ L(Aj′ )} − dj′ + di + dj

)
∩(

{np | an ∈ L(Ak′)} − dk′ + {np | an ∈ L(A�′)} − d�′ + dk + d�

)
,

and suppose it contains any number, which must consequently be equal to di +
dj − di′ − dj′ modulo p and to dk + d� − dk′ − d�′ modulo p. As each dt satisfies
p
4 < dt �

p
2 , both offsets are strictly between − p

2 and p
2 , and therefore they must

be equal to each other:

di + dj − di′ − dj′ = dk + d� − dk′ − d�′ .

Equivalently, di + dj + dk′ + d�′ = dk + d� + di′ + dj′ , and since each dt is defined
as p

4 + 4t, this holds if and only if

4i + 4j + 4k′
+ 4�′ = 4k + 4� + 4i′ + 4j′ .

Consider the largest of these eight numbers, let its value be d. Without loss of
generality, assume that it is on the left-hand side. Then the left-hand side is
greater than d. On the other hand, if no number on the right-hand side is d,
then the sum is at most 4 · d

4 = d. Thus at least one number on the right-hand
side must be equal to d as well. Removing those two numbers and giving the
same argument for the sum of 3, 2 and 1 summands yields that

{di, dj , dk′ , d�′} = {dk, d�, di′ , dj′}.

Then, by the assumption that {i, j} ∩ {k, �} = ∅,

{di, dj} = {di′ , dj′} and {dk′ , d�′} = {dk, d�},

and since the addition is commutative,

i = i′, j = j′, k = k′ and � = �′.

This completes the proof of the lemma. "#

With this property established, it can be verified that every rule for every Ai in
G is correctly simulated by the corresponding rule of G′, and that the data from
different tracks is never mixed.
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Consider the equation X = ϕ(X) over sets of numbers corresponding to G′.
Every “long” rule A → A in G, where A = Aj1Ak1& . . .&Aj	

Ak	
, is represented

in the new grammar by a rule (1), which contributes the following subexpression
to ϕ

ϕi,A (S) =
�⋂

t=1

(djt + dkt − di) + S + S =
�⋂

t=1

(djt + dkt − di) + Sjt + Skt

Altogether, the equation X = ϕ(X) takes the following form:

X =
⋃

Ai→A∈P

ϕi,A (X) ∪
⋃

Ai→a∈P

{p− di}

Now the task is to prove that the unique solution of this equation is S =
⋃

i Si,
where Si = {np− di | an ∈ LG(Ai)}.

Consider each “long” rule Ai → A with A = Aj1Ak1& . . .&AjtAkt . Then

ϕi,A (S) =
�⋂

t=1

(djt + dkt − di) + S + S =
�⋂

t=1

(djt + dkt − di) + Sjt + Skt

by Lemma 2, and it is easy to calculate that

�⋂
t=1

(djt + dkt − di) + Sjt + Skt = {np− di | an ∈ LG(A )}.

Similarly, for a “short” rule Ai → a, {p− di} = {np− di |an ∈ LG({a})}, and
altogether,

ϕ(S) =
⋃
i

⋃
Ai→B∈P

{np− di | an ∈ LG(B)} =
⋃
i

{np− di | an ∈ LG(Ai)} = S,

where the inner equality is due to the fact that (. . . , LG(Ai), . . .) is the solution
of the system of language equations associated to G. This completes the proof
of Theorem 1.

For an example of this transformation, consider the four-nonterminal gram-
mar from Example 1. It satisfies the condition in Lemma 1, but it is not precisely
in the binary normal form, as it contains rules A2 → aa and A3 → aaa. How-
ever, these rules do not affect the general construction, and one can extend the
transformation of Theorem 1 to this grammar as follows:

Example 3. For the grammar in Example 1, the constants are m = 4, p =
4m+2 = 46 = 4096, d1 = 1028, d2 = 1040, d3 = 1088 and d4 = 1280, and the
transformation yields the grammar

S → a1088SS&a1052SS | a1016SS&a1280SS | a980SS&a1472SS |
a788SS&a896SS | a3068 | a7152 | a11200

generating the language

{a4n−1028 |n � 6}∪{a2·4n−1040 |n � 6}∪{a3·4n−1088 |n � 6}∪{a6·4n−1280 |n � 6}.
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4 Complexity of the Membership Problem

The (general) membership problem for a family of grammars is stated as follows:
“Given a string w and a grammar G, determine whether w ∈ L(G)”. The mem-
bership problem is P-complete both for context-free and conjunctive grammars.

A variant of this problem, which received considerable attention in the recent
years, is the compressed membership problem [12], where the string w is given as
a context-free grammar Gw generating {w}. This problem is PSPACE-complete
for context-free grammars [7,12] and EXPTIME-complete for conjunctive gram-
mars [4]. For unary languages, the compressed representation of an is its binary
notation of length Θ(log n). In this case the problem is NP-complete for context-
free grammars [1,12], but still EXPTIME-complete for conjunctive grammars [4].

Proposition 3 (Jeż, Okhotin [4]). There exists an EXPTIME-complete set
of numbers S ⊆ N, such that the language L = {an | n ∈ S} is generated by
a conjunctive grammar. The compressed membership problem for conjunctive
grammars over a unary alphabet is EXPTIME-complete.

To show that both results still hold for one-nonterminal unary conjunctive gram-
mars, it is sufficient to take the grammar generating L and to transform it ac-
cording to Theorem 1.

Theorem 2. There exists an EXPTIME-complete set of numbers S ⊆ N, such
that the language L = {an | n ∈ S} is generated by a one-nonterminal conjunc-
tive grammar. The compressed membership problem for one-nonterminal unary
conjunctive grammars is EXPTIME-complete.

For unary context-free grammars, the compressed membership problem has dif-
ferent complexity depending on the number of nonterminals. For multiple nonter-
minals it is NP-complete [12]. However, in the one-nonterminal case an efficient
algorithm for solving this problem can be obtained using the following property:

Lemma 3. Let G = ({a}, {S}, P, S) be a one-nonterminal context-free grammar
with m rules and with the longest right-hand side of a rule of length k. Then L(G)
is periodic starting from n̂ � 2mk3(2k + 1) with a period at most 2k2.

First it is shown that from any single pair of rules S → Skia�i and S → a�j one
can deduce that p = (ki − 1)�j + �i is a period of L(G), which gives an upper
bound on the least period. As the language L(G) is over a unary alphabet,
a derivation is determined by the number of occurrences of each rule, and it
is shown that a derivation exists if and only if those numbers satisfy a certain
numerical condition. Using this representation, the derivation of every sufficiently
long string can be reduced to obtain a derivation of a shorter string, which has
the same length modulo p. Thus the periodicity starts from a short string.

Theorem 3. The compressed membership problem for one-nonterminal unary
CFGs is in NLOGSPACE.



One-Nonterminal Conjunctive Grammars over a Unary Alphabet 199

Table 1. Complexity of general membership problems

uncompressed compressed fully compressed
Context-free
general case P-complete PSPACE-complete [12] n/a
Σ = {a}, any N P-complete NP-complete [1] NP-complete [1]
Σ = {a}, N = {S} in NLOGSPACE in NLOGSPACE NP-complete

Conjunctive
general case P-complete EXPTIME-complete [4] n/a
Σ = {a}, any N P-complete EXPTIME-complete [4] EXPTIME-compl. [4]
Σ = {a}, N = {S} in P EXPTIME-complete EXPTIME-compl. [4]

By Lemma 3, the period of L(G) is small. Then the input string can be
replaced with a shorter string of a logarithmic length, and a nondeterministic
algorithm can guess its derivation, storing the compressed sentential form in
logarithmic space.

Note that the grammars are supplied to the above algorithm uncompressed,
that is, rules of the form S → a�Sk are stored using � + k symbols. Consider
another variant of the problem, the fully compressed membership problem, in
which the grammar is compressed as well, and a rule S → a�Sk is given by
binary notations of � and k. This problem is hard already for one nonterminal:

Theorem 4. The fully compressed membership problem for one-nonterminal
unary CFGs is NP-complete.

As in the NP-hardness result for integer expressions by Stockmeyer and Meyer
[13, Thm. 5.1], the proof is by encoding an instance of the knapsack problem in
a grammar, with the sizes of the objects compressed. The knapsack problem is
stated as follows: “Given integers b1, . . . , bn and z in binary notation, determine
whether there exist c1, . . . , cn ∈ {0, 1} with

∑n
i=1 bici = z”. Given an instance

of this problem, assume that z > maxi bi, and let m be the least power of two
with m � max{z, 2n} + 2. Then the grammar G with the following rules is
constructed: S → Sn, S → am2+2i−1

and S → am2+mbi+2i−1
for 1 � i � n. It

can be proved that the string w = anm2+zm+(2n−1) is in L(G) if and only if the
numbers c1, . . . , cn ∈ {0, 1} with Σn

i=1bici = z do exist.
The complexity of different cases is summarized in Table 1.

5 Decision Problems

Having established the complexity of the membership problem, let us now con-
sider some other basic properties of one-nonterminal unary conjunctive gram-
mars. In the case of multiple nonterminals, most properties are undecidable:

Proposition 4 (Jeż, Okhotin [3]). For every fixed unary conjunctive lan-
guage L0 ⊆ a∗, the problem of whether a given conjunctive grammar over {a}
generates the language L0 is Π1-complete.
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In contrast, in the case of one-nonterminal grammars, the equality to any fixed
ultimately periodic set is clearly decidable: it is sufficient to substitute it into the
equation and check whether it is turned into an equality. This approach extends
to a larger class of fixed languages:

Theorem 5. There exists an algorithm, which, given an equation X = ϕ(X)
using union, intersection, addition and ultimately periodic constants, and a fi-
nite automaton M over an alphabet Σk = {0, 1, . . . , k − 1}, determines whether
{n | the k-ary notation of n is in L(M)} is the least solution of the equation.

In particular, the theorem applies to such languages as in Examples 1–3, which
are recognized by finite automata in base-4 notation.

The algorithm works by substituting the set of numbers defined by M into
the equation. The value of each subexpression is computed in the form of a finite
automaton over Σk representing base-k notation. For Boolean operations this
is clearly possible, while the addition of sets can be done symbolically on finite
automata for their base-k representation according to the following lemma:

Lemma 4. Let L1 and L2 be regular languages over Σk = {0, 1, . . . , k−1}, with
L1 ∩ 0Σ∗

k = L2 ∩ 0Σ∗
k = ∅. Then the language {the k-ary notation of n1 + n2 |

the k-ary notation of ni is in Li} over Σk is (effectively) regular.

This shows that equality to a fixed language is decidable for one-nonterminal
conjunctive grammars for a fairly large class of constants. At the same time, the
more general problem of equivalence of two given grammars is undecidable.

Theorem 6. The equivalence problem for one-nonterminal unary conjunctive
grammars is Π1-complete.

The equivalence problem for unary conjunctive grammars with multiple nonter-
minals is Π1-complete and the proof is by reduction from this problem. Two
grammars G1 and G2 are combined into G, such that L(G1) = LG(A1) and
L(G2) = LG(A2). Let G′ be G with A1 and A2 exchanged. Once the construc-
tion of Theorem 1 is applied to G and G′, the two resulting one-nonterminal
grammars are equivalent if and only if the original grammars generate the same
language.

Theorem 7. The co-finiteness problem for one-nonterminal unary conjunctive
grammars is Σ1-complete.

The problem is in Σ1 by Theorem 5: an algorithm solving this problem can
nondeterministically guess an NFA N recognizing a co-finite language and test
whether the grammar generates L(N). The hardness is proved by reduction from
the non-emptiness problem for unary conjunctive grammars. The transformation
of Theorem 1 is applied to a given grammar, resulting in a one-nonterminal
grammar G′, and then the following p extra rules are added to G′:

S → ad1+iX&ad2+iX (0 � i � p− 1)
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Table 2. Decision problems for grammars over {a}

equiv. to reg. L0 equivalence finiteness co-finiteness
Context-free
general case undecidable undecidable decidable undecidable
Σ = {a}, any N decidable decidable decidable decidable
Σ = {a}, N = {S} decidable decidable decidable decidable
Conjunctive
general case undecidable undecidable undecidable undecidable
Σ = {a}, any N Π1-complete [3] Π1-complete [3] undecidable [3] Σ1 � · � Σ2

Σ = {a}, N = {S} decidable Π1-complete Σ1-complete Σ1-complete

If any string appears on track d1, these rules will generate all longer strings, thus
“spamming” the language to make it co-finite.

Theorem 8. The finiteness problem for one-nonterminal unary conjunctive
grammars is Σ1-complete.

The problem is in Σ1 for the same reason as in Theorem 7. The Σ1-hardness is
proved by reduction from the problem of whether L(G) �= a+ for a given unary
conjunctive grammar G. Once G is transformed to a one-nonterminal grammar
G′ (as in the previous proof), an additional conjunct is added to each rule as
follows: for every rule

S → a�1SS& . . .&a�kSS

created in Theorem 7, which generates a subset of {anp−di | n � 1} for some
number i, the final grammar has the rule

S → a�1SS& . . .&a�kSS&ap+d1−diS.

This additional conjunct acts as a filter: if any string in track d1 is missing,
then no strings of any greater length can be generated, making the generated
language finite.

The level of undecidability of both finiteness and co-finiteness problems for
conjunctive grammars with multiple nonterminals remains open, see the sum-
mary in Table 2.
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2. Jeż, A.: Conjunctive grammars can generate non-regular unary languages. Inter-
national Journal of Foundations of Computer Science 19(3), 597–615 (2008)
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4. Jeż, A., Okhotin, A.: Complexity of equations over sets of natural num-
bers. In: 25th Annual Symposium on Theoretical Aspects of Computer Science
(STACS 2008), Bordeaux, France, February 21-23, pp. 373–383 (2008)
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Abstract. We investigate the deterministic and nondeterministic state
complexity of languages that can be obtained as the concatenation of
two regular languages represented by deterministic and nondeterminis-
tic finite automata. In the nondeterministic case, we show that the whole
range of complexities from 1 to m + n can be obtained using a binary
alphabet. In the deterministic case, we get the whole range of complexi-
ties from 1 to m · 2n − 2n−1, however, to describe appropriate automata
we use a growing alphabet.

1 Introduction

The state complexity of a regular language is the smallest number of states in
any deterministic finite automaton (dfa) accepting the language. The nondeter-
ministic state complexity of a regular language is defined as the smallest number
of states in any nondeterministic finite automaton (nfa) for the language. The
(nondeterministic) state complexity of an operation on regular languages is the
smallest number of states that are sufficient and necessary in the worst case for
a dfa (an nfa, respectively) to accept the language resulting from the operation.

Some early results on the state complexity of union, concatenation, star, and
cyclic shift on languages defined by partial dfa’s have been presented by Maslov
in 1970 [20]. In the paper, some small inaccuracies occur, and, moreover, no
rigorous formal proofs are provided. The systematic study of the state complexity
of operations on regular languages began with works by Leiss [21], Birget [2,3],
and Yu et al. [28]. A lot of results in this area have been obtained. In particular,
the state complexity of operations on finite languages has been investigated by
Campeanu et al. [4] and of operations on unary language by Pighizzini and
Shallit [22]. Domaratzki [5] has studied proportional removals, and Salomaa et
al. [24] have investigated reversals in different cases. The first results on the
nondeterministic state complexity of operation on regular language have been
published by Holzer and Kutrib [10], some of them have been obtained for binary
languages in [18]. A comprehensive survey for the deterministic case has been
given by Yu in [27].
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Iwama et al. [13] stated the question of whether there always exists a minimal
nondeterministic finite automaton of n states whose equivalent minimal deter-
ministic finite automaton has exactly α states for all integers n and α satisfying
n � α � 2n. The question has also been considered in [14], where an integer Z
with n < Z < 2n is called a “magic number” if no dfa of Z states can be simu-
lated by any nfa of n states. In [17] it has been shown that there are no magic
numbers, that is, appropriate automata have been described for all integers n
and α. However, the constructions use a growing alphabet of an exponential size.
Later, in [7], the size of the alphabet has been reduced to n + 2, and finally, in
[16], the result has been proved using a fixed four-letter alphabet. On the other
hand, it is known that there are a lot of magic numbers in the unary case [8].
The cases of binary and ternary alphabets are still open.

A similar problem for complements of regular languages has been examined
in [15]. Using a growing alphabet it has been proved that all values in the range
from logn to 2n can be obtained as the nondeterministic state complexity of the
complement of an n-state nfa language. In [19], this result has been improved by
showing that it holds also for a fixed five-letter alphabet. In the same paper, the
deterministic and nondeterministic state complexity of stars and reversals of reg-
ular languages has been examined. In all cases, the whole range of complexities
up to the known upper bounds have been obtained.

In this paper, we investigate the deterministic and nondeterministic state
complexity of languages that can be obtained as the concatenation of two regular
languages represented by deterministic and nondeterministic finite automata.
We show that the nondeterministic state complexity of the concatenation of
two languages represented by nfa’s of m and n states, respectively, can be an
arbitrary value in the range from 1 to m+n. To prove the result we use a binary
alphabet (in fact, except for the case of m + n, the languages are even unary).
In the deterministic case, we get the whole range of complexities from 1 to m in
the case of n = 1, and the whole range from 1 to m · 2n − 2n−1 in the case of
n � 2. However, to describe suitable automata we use a growing alphabet.

To conclude this section, let us mention some other related works. Magic
numbers for symmetric difference nfa’s have been studied by Zijl [29]. In [11], it
has been shown that the deterministic and nondeterministic state complexity of
union and intersection of regular languages may reach each value from 1 up to the
upper bounds mn or m+ n+ 1. Similar results for the nonterminal complexity
of some operations on context-free languages have been recently obtained by
Dassow and Stiebe [6].

2 Preliminaries

In this section, we give some basic definitions, notations, and preliminary results
used throughout the paper. For further details, we refer to [25,26].

Let Σ be a finite alphabet and Σ∗ the set of all strings over the alphabet Σ
including the empty string ε. A language is any subset of Σ∗. We denote the
cardinality of a finite set A by |A| and its power-set by 2A.
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A deterministic finite automaton (dfa) is a 5-tuple M = (Q,Σ, δ, q0, F ), where
Q is a finite set of states, Σ is a finite input alphabet, δ is the transition function
that maps Q×Σ to Q, q0 is the initial state, q0 ∈ Q, and F is the set of accepting
states, F ⊆ Q. In this paper, all dfa’s are assumed to be complete, that is, the
next state δ(q, a) is defined for each state q in Q and each symbol a in Σ. The
transition function δ is extended to a function from Q×Σ∗ to Q in a natural way.
A string w in Σ∗ is accepted by the dfa M if the state δ(q0, w) is an accepting
state of the dfa M . The language accepted by the dfa M, denoted L(M), is the
set of strings {w ∈ Σ∗ | δ(q0, w) ∈ F}.

A nondeterministic finite automaton (nfa) is a 5-tuple M = (Q,Σ, δ, q0, F ),
where Q,Σ, q0 and F are defined in the same way as for a dfa, and δ is the
nondeterministic transition function that maps Q×Σ to 2Q. It can be naturally
extended to the domain Q×Σ∗. A string w in Σ∗ is accepted by the nfa M if
the set δ(q0, w) contains an accepting state of the nfa M. The language accepted
by the nfa M is the set L(M) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅}.

Two automata are said to be equivalent if they accept the same language.
A dfa (an nfa) M is called minimal if all dfa’s (all nfa’s, respectively) that are
equivalent to M have at least as many states as M . It is well-known that a dfa
M = (Q,Σ, δ, q0, F ) is minimal if (i) all states are reachable from the initial
state q0, and (ii) no two different states are equivalent.

The (deterministic) state complexity of a regular language is the number of
states in its minimal dfa. The nondeterministic state complexity of a regular lan-
guage is defined as the number of states in a minimal nfa (with a single initial
state) accepting this language. A regular language with deterministic (nonde-
terministic) state complexity n is called an n-state dfa language (an n-state nfa
language, respectively).

Every nondeterministic finite automaton M = (Q,Σ, δ, q0, F ) can be con-
verted to an equivalent deterministic finite automaton M ′ = (2Q, Σ, δ′, {q0}, F ′)
using an algorithm known as the “subset construction” [23]. The transition func-
tion δ′ is defined by δ′(R, a) =

⋃
r∈R δ(r, a), and a state R in 2Q is an accepting

state of the dfa M ′ if it contains at least one accepting state of the nfa M. The
dfa M ′ need not be minimal since some states may be unreachable or equivalent.
We call the dfa M ′ the subset automaton corresponding to the nfa M .

To prove that an nfa is minimal we use a fooling-set lower-bound technique
[1,2,3,9,12]. We recall the definition of a fooling set, and the lemma from [2]
describing this lower-bound technique.

Definition 1. A set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n} is said to be
a fooling set for a language L if for every i and j in {1, 2, . . . , n},

(F1) the string xiyi is in the language L, and
(F2) if i �= j, then at least one of the strings xiyj and xjyi is not in L.

Lemma 1 (Birget [2]). Let A be a fooling set for a regular language L. Then
every nfa recognizing the language L requires at least |A| states. "#
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3 Concatenation and Nondeterministic State Complexity

The nondeterministic state complexity of concatenation of regular languages
is m + n, and this bound can be reached by the concatenation of the binary
languages {am}∗ and {bn}∗ [10]. Our first lemma shows that the nondeterministic
state complexity of the concatenation of an m-state and an n-state unary nfa
languages may reach an arbitrary value from 1 to m+n−1. Thus we obtain the
whole range of complexities from 1 to m+ n in the nondeterministic case.

Lemma 2. For all integers m,n and α such that 1 � α � m+n−1, there exist
a minimal unary nfa A of m states and a minimal unary nfa B of n states such
that every minimal nfa for the language L(A)L(B) has α states.

Proof. We will define automata A and B over a unary alphabet. Therefore,
L(A)L(B) = L(B)L(A), and, without loss of generality, we can assume m � n.
Let us consider two cases: (1) 1 � α < m, and (2) m � α � m+ n− 1.

(1) Let 1 � α < m. Let A be the m-state nfa for the language {ε}∪ {ak | k �

m} and B be the n-state nfa accepting the language {ε} ∪ {ak | α � k � n− 1}
shown in Fig. 1. The set {(ai, am−i) | i = 0, 1, . . . ,m− 1} is a fooling set for the
language L(A) since the string am is in the language L(A), while each string ar

with 0 < r < m is not in this language. Therefore, by Lemma 1, the nfa A is
minimal. The nfa B is minimal as well since it accepts the string an−1 but does
not accept any longer string. We have L(A)L(B) = {ε} ∪ {ak | k � α}. Every
minimal nfa for the concatenation has α states.

(2) Let m � α � m+n−1, that is, α = m+β, where 0 � β � n−1. Consider
an m-state nfa for the language {ak | k � m − 1}, and an n-state nfa for the
language {ak | β � k � n− 1}. The concatenation of these two languages is the
language {ak | k � m+ β − 1} that requires m+ β nondeterministic states. "#

As a corollary, we get the following result.

Theorem 1. For all integers m,n and α such that 1 � α � m + n, there ex-
ist a minimal nondeterministic finite automaton A of m states and a minimal
nondeterministic finite automaton B of n states such that every minimal nonde-
terministic finite automaton for the language L(A)L(B) has α states. All values
from 1 to m+n− 1 can be reached by the concatenation of unary languages, the
upper bound m+ n is attained by the concatenation of binary languages. "#

...a a a a aα −1 +1α n−1αa
0 1

a ...

a ...a a a

aa

0 1 m−2 m−1

Fig. 1. The nondeterministic finite automata A and B; 1 � α < m
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4 Concatenation and State Complexity

We now turn our attention to the state complexity of languages that can be
obtained as the concatenation of an m-state and n-state dfa languages. The
upper bound is known to be m in the case of n = 1 and m ·2n −2n−1 in the case
of n � 2 [28]. These upper bounds can be reached by the concatenation of binary
languages [15]. In this section, we prove that the whole range of complexities,
up to these upper bounds, can be produced in the deterministic case. Our three
lemmata cover the following three cases:

(1) 1 � α � m,
(2) m < α � m · 2n−1,
(3) m · 2n−1 < α � m · 2n − 2n−1 = (m− 1) · 2n + 2n−1.

Proposition 1. For all integers m,n and α with 1 � α � m+n−1, there exist
a minimal unary dfa A of m states and a minimal unary dfa B of n states such
that the minimal dfa for the language L(A)L(B) has α states.

Proof. Since automata A and B will be defined over a unary alphabet, we may
assume m � n.

First, let 1 � α < m. Let A be the minimal m-state dfa for the language
{ε} ∪ {ak | k � m− 1}, and let B be the minimal n-state dfa for the language
{ε} ∪ {ak | α− 1 � k � n− 2}. Then L(A)L(B) = {ε} ∪ {ak | k � α− 1}. The
minimal dfa for this concatenation has α states.

Now, let m � α � m + n − 1, that is α = m + β, where 0 � β � n − 1.
Let A be the minimal m-state dfa for the language {ak | k � m − 1}, and
let B be the minimal n-state dfa for the language {ak | β � k � n − 2}, or,
in the case of β = n − 1, for the language {ak | k � n − 1}. The language
L(A)L(B) = {ak | k � m+ β − 1} needs m+ β deterministic states. "#

Thus we have shown the following lemma.

Lemma 3. For all integers m,n and α with 1 � α � m, there exist a minimal
unary dfa A of m states and a minimal unary dfa B of n states such that the
minimal dfa for the language L(A)L(B) has α states. "#

The next lemma deals with the case of n � 2 and m < α � m · 2n−1.

Lemma 4. For all integers m,n and α such that n � 2 and m < α � m · 2n−1,
there exist a minimal dfa A of m states and a minimal dfa B of n states, both
defined over a growing alphabet, such that the minimal dfa for the language
L(A)L(B) has α states.

Proof. If m < α � m · 2n−1, then there is an integer k with 1 � k � m, such
that (m− k) · 2n−1 + k < α � (m− (k − 1)) · 2n−1 + (k − 1). Then

α = (m− k) · 2n−1 + k + β,

where 1 � k � m and 1 � β � 2n−1 − 1.
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We are going to define an m-state dfa A, and an n-state dfa B over a growing
alphabet {a, b, c, d, f, e1, e2, . . . , eβ}. The states in the dfa A will be divided into
two groups, the first one will contain m − k states q1, q2, . . . , qm−k, the second
one will contain k states p1, p2, . . . , pk. The dfa B will have n states 1, 2, . . . , n.
Then, we will construct an nfa C for the language L(A)L(B) in a standard way,
and apply the subset construction to this nfa to get a dfa C′ for L(A)L(B).
The transitions in automata A and B will be defined in such a way that the dfa
C′ will have exactly (m − k) · 2n−1 + k + β (that is, α) reachable and pairwise
inequivalent states. We will define transitions on symbols a and b so that all
subsets {q1}∪S, where S ⊆ {1, 2, . . . , n} and 1 ∈ S, will be reachable in the dfa
C′. Transitions by symbol c will be used to reach all {qi} ∪ S (2 � i � m − k),
while transitions by symbol d will be used to reach k subsets {pj, 2} (1 � j � k).
Finally, we will use β symbols e1, e2, . . . , eβ to reach β special sets {p1} ∪ S�

(1 � � � β). The last symbol f will be used to prove the inequivalence of these
reachable subsets.

To this aim, let S1, S2, . . . , S2n−1 be all subsets of {1, 2, . . . , n} containing 1,
which are ordered in such a way that if |Si| < |Sj | then i < j. Thus, S1 = {1}.

Let Σ = {a, b, c, d, f, e1, e2, . . . eβ}.
Define anm-state dfa A = (QA, Σ, δA, q1, {q1}), whereQA = {q1, q2, . . . , qm−k}∪
{p1, p2, . . . , pk}, and the transitions are as follows:

by a and b, each state goes to state q1;
by c; there is a circle (q1q2 .. qm−k), and each states pj goes to itself;
by d, there is a circle (q1p1 .. pk), and each other state goes to q1;
by f , state pk goes to state q1, and each other state goes to p1;
by e�, each state goes to p1 for � = 1, 2, . . . , β.

Fig. 2 shows the states and the transitions on a, b, c, d, f in the deterministic
automaton A. Transitions on symbols e�, which go from each state to state p1,
are omitted in the figure.
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pc c c c... ...d d d
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a,b,d
a,b,d

a,b,c,d a,b a,b a,b

a,b

f

f
f

d, f

d, f f

c,f

m−k k

Fig. 2. The deterministic finite automaton A; transitions on a, b, c, d, f
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Define an n-state dfa B = (QB, Σ, δB, 1, {n}), where QB = {1, 2, . . . , n}, and
the transitions are defined as follows:

by a, there is a circle (1 .. n);
by b, states 1 and n go to state 1, and each other state j goes to state j + 1;
by c, each state goes to itself;
by d and f , each state goes to state 2;
by e�, each state in the set S� goes to itself, and each other state goes to

state 1 for all � = 1, 2, . . . , β. The states and the transitions on a, b, c, d, f in
the deterministic automaton B are shown in Fig. 3. Transitions by symbols
e1, e2, . . . , eβ , that depend on subsets S1, S2, . . . , Sβ, are again omitted.

1 2

b,c

a,ba,d,f

c,d,f

... n−1 n

c c

a,b a,b

c

d,f
d,f d,f

a,b

3

Fig. 3. The deterministic finite automaton B; transitions on a, b, c, d, f

Construct a nondeterministic automaton C = (QA∪QB, Σ, δ, {q1, 1}, {n}) for
the language L(A)L(B) from the dfa’s A and B by adding the transition from
a state q in QA to state 1 on a symbol s whenever δA(q, s) = q1. Let C′ be the
corresponding subset automaton. Let R be the following system of subsets of
the state set QA ∪QB:

R = {{qi} ∪ S | 1 � i � m− k, S ⊆ {1, 2, . . . , n} and 1 ∈ S} ∪
{{pj, 2} | 1 � j � k} ∪
{{p1} ∪ S� | 1 � � � β}.

There are (m− k) · 2n−1 + k+ β (that is, α) subsets in R. Let us show that the
system R is the system of all reachable and pairwise inequivalent states of the
deterministic finite automaton C′.

We are going to show that (i) each set in R is a reachable state of the DFA
C′, (ii) no other subsets are reachable in the DFA C′, (iii) the reachable states
of the DFA C′ are pairwise inequivalent. The lemma then follows immediately.

(i) Let us show that each subset in R is a reachable state in the DFA C′.
The set {q1, 1} is the initial state of the DFA C′, and so is reachable. Next,
the set {q1} ∪ {1, r2, r3, . . . , rt}, where 2 � r2 < r3 < · · · < rt � n, of size
t, can be reached from the set {q1} ∪ {1, r3 − r2 + 1, . . . , rt − r2 + 1} of size
t − 1 by the string abr2−2 since the set {q1} ∪ {1, r3 − r2 + 1, . . . , rt − r2 + 1}
goes the set {q1, 1} ∪ {2, r3 − r2 + 2, . . . , rt − r2 + 2} by a, and then to the set
{q1, 1} ∪ {r2, r3, . . . , rt} by br2−2.

Thus, the reachability of sets {q1} ∪ S, where S ⊆ {1, 2, . . . , n} and 1 ∈ S,
follows by induction. For each i with 2 � i � m − k, the set {qi} ∪ S can be
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reached from the set {q1} ∪ S by the string ci−1. Next, the initial state {q1, 1}
goes to state {p1, 2} by f , and then to state {pj, 2} by dj−1 for j = 2, 3, . . . , k.
Finally, state {q1}∪S� goes to state {p1}∪S� by e� for l = 1, 2, . . . , β. Hence all
sets in R are reachable in the DFA C′.

(ii) Let us prove that no other subset of QA ∪ QB is reachable in the DFA
C′. Since the initial state of the DFA C′ is in R, it is sufficient to show that for
each set R in R and each symbol s in Σ, the set δ(R, s) is in the system R. Let
R = {q} ∪ S be a set in R, that is, either R = {qi} ∪ S where 1 � i � m − k
and S is a subset of QB containing state 1, or R = {pj, 2} where 1 � j � k, or
R = {p1} ∪ S� where 1 � � � β. Then

• by a and b, the set R goes to a set {q1} ∪ S′, where S′ is a subset of QB

containing state 1. Each such subset is in R;
• by c, R goes to {q1} ∪ S if q = qm−k, to {qi+1} ∪ S if q = qi, or to itself;
• by d, R goes either to {pj, 2} for some j with 1 � j � k, or to the set {q1, 1, 2};
• by f , the set R goes either to the set {p1, 2} or to the set {q1, 1, 2};
• by e�, where 1 � � � β, the set R goes to the set {p1} ∪ S� in the case of
S� ⊆ S, and to a set {p1}∪S′ such that |S′| < |S�|, otherwise. In the latter case,
since the sets S1, S2, . . . , Sβ are ordered according to their cardinality, it holds
that S′ = St for some t < �, and so {p1}∪S′ is in R. Thus each set in R goes to
a set in R by each symbol, which means that R is the system of all reachable
states in the DFA C′.

(iii) To prove inequivalence notice that the string fan−1 is accepted by the
NFA C starting in state pk, but is not accepted by C starting in any other state.
Next, the string dk−jfan−1, where 1 � j � k−1, is accepted by the NFA C only
from state pj , and the string dkfan−1 is accepted by the NFA C only from state
q1. Finally, the string cm−k−i+1dkfan−1, where 2 � i � m − k, is accepted by
the NFA C only from state qi. This means that two subsets {p}∪S and {q}∪T
with p �= q are inequivalent. Consider two different reachable subsets {q}∪S and
{q} ∪ T . Then either q ∈ {q1, q2, . . . , qm−k} or q = p1 (since in R there is only
one subset containing pj for j = 2, 3, . . . , k). In the former case, the subsets S
and T must differ in a state r with r � 2, and the string an−r distinguishes the
two states {qi}∪S and {qi}∪T . In the latter case, the subsets S and T differ in
a state r in {1, 2, . . . , n} and the string an−r distinguishes {p1}∪S and {p1}∪T .
Thus the minimal DFA for the language L(A)L(B) has (m− k) · 2n−1 + k + β,
that is α, states, and the lemma follows.
Remark. In the case of k = m, we should be little bit more careful. In this
case, we do not use transitions on b, and the initial and the only accepting state
will be p1. The reachable and parwise inequivalent states in the dfa C′ will be
{p1, 1}, {p1, 1, 2}, . . . , {p1, 1, 2, . . . , n}, {pj , 2} for j = 1, 2, . . . ,m, and {p1} ∪ S�

for � = 1, 2, . . . , β−n, where S1, S2, . . . are the remaining subsets of {1, 2, . . . , n}
containing 1 ordered according to their cardinality. In this way we get all values
from m + n to m + 2n−1. The values from m to m + n − 1 are covered by
proposition 1. "#
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Our last lemma covers the remaining cases.

Lemma 5. For all integers m,n and α such that n � 2 and m · 2n−1 < α �

(m− 1) · 2n + 2n−1, there exist a minimal dfa A of m states and a minimal dfa
B of n states, both defined over a growing alphabet, such that the minimal dfa
for the language L(A)L(B) has α states.

Proof. If m · 2n−1 < α � (m − 1) · 2n + 2n−1, then there is an integer k with
2 � k � m such that (m−k) ·2n+k ·2n−1 < α � (m−(k−1)) ·2n+(k−1) ·2n−1.
Then

α = (m− k) · 2n + k · 2n−1 + β,

where 2 � k � m and 1 � β � 2n−1.
We will proceed in a similar way as in the previous lemma. The dfa’s A and B

will have a similar structure as before. However, now we will define transitions
on symbols in Σ in such a way, so that the following sets will be reachable and
pairwise inequivalent in the dfa C′ for the language L(A)L(B):

• all subsets {qi} ∪ S, where 1 � i � m− k and S is a subset of {1, 2, . . . , n},
• all subsets {pj} ∪ T , where 1 � j � k and T ⊆ {1, 2, . . . , n} and 1 ∈ T ,
• some special subsets {pk} ∪ S� for � = 1, 2, . . . , β.

To this aim, let S1, S2, . . . , S2n−1 be all subsets of the set {2, 3, . . . , n} ordered
in such a way, that if |Si| < |Sj |, then i < j.

Let Σ = {a, b, c, f, e1, e2, . . . , eβ}.
Define anm-state dfaA = (QA, Σ, δA, q1, {p1}), whereQA = {q1, q2, . . . , qm−k}∪
{p1, p2, . . . , pk}, the transitions on symbols a, b, c are shown in Fig. 4, by f , state
qm−k goes to state p1, and each other state goes to state q1; and by e�, state q1
goes to state pk, and each other state goes to state q1 for all � = 1, 2, . . . , β.
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Fig. 4. The deterministic finite automaton A; transitions on a, b, c
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Define an n-state dfa B = (QB, Σ, δB, 1, {n}), where QB = {1, 2, . . . , n},
transitions on symbols a, b, c are shown in Fig. 5, by f , each state goes to state
2, and by e�, each state in the set S� goes to itself, and each other state goes to
minS� for all � = 1, 2, . . . , β.

Construct a nondeterministic finite automaton C = (QA∪QB, Σ, δ, {q1}, {n})
from the dfa’s A and B by adding the transition from a state q in QA to state 1
on a symbol s whenever δA(q, s) = q1. Let C′ be the dfa obtained from the nfa
C by the subset construction. Let R be the following system of subsets of the
state set QA ∪QB:

R = {{qi} ∪ S | 1 � i � m− k, S ⊆ {1, 2, . . . , n}} ∪
{{pj} ∪ T | 1 � j � k, T ⊆ {1, 2, . . . , n} and 1 ∈ T } cup
{{pk} ∪ S� | 1 � � � β}.

There are (m− k) · 2n + k · 2n−1 + β subsets in R. Let us show that the system
R consists of all reachable and pairwise inequivalent states of the dfa C′.

The reachability of subsets {qi} ∪ S and {p1} ∪ T , where 1 � i � m − k,
S ⊆ {1, 2, . . . , n}, and T ⊆ {1, 2, . . . , n} with 1 ∈ T , can be shown in the same
way as in [15, Theorem 1] since the transitions on a, b in states q1, q2, . . . , qm−k, p1
and in states in QB are the same as in [15]. Each set {p1} ∪ T goes to the set
{pj}∪T (2 � j � k) by the string cj−1. The set {q1}∪S� goes to the set {pk}∪S�

for � = 1, 2, . . . , β. Thus, all subsets in R are reachable in the DFA C′.
To prove that no other subsets are reachable, again, the initial state {q1} is

in R, and for each subset R in the system R and each symbols s in Σ, the set
δ(R, s) is in the system R as well.

For the proof of the inequivalence of these states notice that the string fan−1

is accepted by the NFA C only from state qm−k, the string ck−j+1fan−1, where
1 � j � k, is accepted only from state pj, and the string am−k−ifan−1, where
1 � i < m − k, is accepted only from state qi. The proof of inequivalence now
proceeds in a similar way as in Lemma 4.

In the case of k = m, states pj go to the initial and the only final state p1
by a, by c, state pk goes to p1, by f state pk goes to p1 while the other states
go to pk, by e�, p1 goes to pk and the other states go to p1. The reachable and
inequivalent states in this case are {pj} ∪ S where 1 � j � m and S is a subset
of QB containing state 1, and the sets {pk} ∪ S� where 1 � � � β. "#

Hence we have shown the following theorem.

Theorem 2. For all integers m,n and α such that either n = 1 and 1 � α � m,
or n � 2 and 1 � α � m · 2n − 2n−1, there exist a minimal deterministic finite
automaton A of m states and a minimal deterministic finite automaton B of n
states, both defined over a growing alphabet, such that the minimal deterministic
finite automaton for the language L(A)L(B) has exactly α states. "#
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5 Conclusions

We have investigated the deterministic and nondeterministic state complexity of
languages that can be obtained as the concatenation of two regular languages
represented by deterministic and nondeterministic finite automata, respectively.

The nondeterministic state complexity of concatenation has been known to
be m + n and this bound is attained by the concatenation of binary languages
{am}∗ and {bn}∗ [10]. We have shown that all values from 1 to m+n−1 can be
obtained as the size of a minimal nfa accepting the concatenation of an m-state
and an n-state unary nfa languages. Whether or not the complexity of m+n can
be reached by the concatenation of unary languages remains open. We conjecture
that the answer is negative.

In the deterministic case, we have used a growing alphabet to define, for each
α with 1 � α � m · 2n − 2n−1, an m-state and an n-state deterministic finite
automata recognizing languages that need exactly α states for their concatena-
tion. It remains open whether the whole range of complexities for concatenation
of dfa languages can be obtained using a fixed alphabet.
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Abstract. We study the approximability of the maximum solution problem. This
problem is an optimisation variant of the constraint satisfaction problem and it
captures a wide range of interesting problems in, for example, integer program-
ming, equation solving, and graph theory. The approximability of this problem
has previously been studied in the two-element case [Khanna et al, ‘The approx-
imability of constraint satisfaction’, SIAM Journal on Computing 23(6), 2000]
and in some algebraically motivated cases [Jonsson et al, ‘MAX ONES gener-
alized to larger domains’, SIAM Journal on Computing 38(1), 2008]. We con-
tinue this line of research by considering the approximability of MAX SOL for
different types of constraints. Our investigation combined with the older results
strengthens the hypothesis that MAX SOL exhibits a pentachotomy with respect
to approximability.

Keywords: Optimisation, approximability, constraint satisfaction, algebra,
computational complexity.

1 Introduction

We study the maximum solution problem, a problem perhaps most intuitively described
as a generalisation of MAX ONES. The latter problem is that of finding an assignment
from a set of variables to a domain {0, 1} such that a given set of constraints are satisfied
and the number of variables assigned to 1 are maximised. This type of constraint satis-
faction problems are commonly parametrised by a constraint language Γ , i.e., a set of
relations describing the structure of the constraints that are allowed to appear. Among
the problems realisable by MAX ONES(Γ ) one finds the MAX INDEPENDENT SET-
problem for graphs and certain variants of MAX 0/1 PROGRAMMING. The maximum
solution problem, or MAX SOL(Γ ) for short, generalises the domain of the variable as-
signment from {0, 1} to an arbitrary finite subset of the natural numbers. The measure
of a solution is now the sum of a variable weight times its assigned value, taken over all
variables. This allows us to capture a wider array of problems, including certain prob-
lems in integer linear programming, problems in multi-valued logic [8], and in equation
solving over various algebraic structures [11]. The problem has also been studied (with
respect to computational complexity) on undirected graphs [9], i.e., when Γ consists
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of a single, symmetric binary relation. However, it is quite obvious that the systematic
study of MAX SOL is still in its infancy; for example, given an arbitrary constraint lan-
guage Γ , no plausible conjecture has been suggested for the approximability (or even
the complexity) of MAX SOL(Γ ).

The situation is quite different for MAX ONES: for any constraint language Γ , MAX

ONES(Γ ) is either polynomial-time solvable, APX-complete, poly-APX-complete, it is
NP-hard to obtain a solution of nonzero measure, or it is NP-hard to obtain any solution.
This classification and the borderlines between the different cases were presented by
Khanna et al. in [10]. For MAX SOL(Γ ), a similar classification of approximability for
homogeneous constraint languages Γ was obtained in [7], together with a (conjectured
complete) classification of the approximability for maximal constraint languages. Such
classifications are obviously interesting from a theoretical point of view, but also from a
practical point of view, where they can help identifying families of tractable constraints
and algorithms for them.

A constraint language can be extended in a complexity-preserving way to a larger set
of relations called a relational clone. Furthermore, the relational clones can be described
by algebraic operations so it makes sense talking about MAX SOL(A) where A is an
algebra. In this way, we can consider complexity-theoretic problems from an algebraic
angle and this algebraic approach [3,6] has proved to be very fruitful when studying
constraint problems. The study of MAX SOL using the algebraic approach was initiated
in [7] and we continue the algebraic study of MAX SOL in this paper. We begin by pro-
viding approximability results for certain affine algebras and 2-element algebras; these
results are used extensively in the ‘main’ classification results. These results appear
to be useful for studying other algebras as well. For instance, a classification of para-
primal algebras probably hinges on a classification of all affine algebras (via Corollary
4.12 in [14]). Our proof is based on combinatorial properties in the subspace lattices of
finite vector spaces.

The first classification determines the approximability of MAX SOL(A) when A is
a strictly simple surjective algebra. Such an algebra has a very ‘simple’ structure: all
its smaller homomorphic images and all its proper subalgebras are one-element. These
algebras can be viewed as building blocks for more complex algebras and they are
well-studied in the literature; an understanding of such algebras is probably needed in
order to make further progress using the algebraic approach. We note, for example, that
the proof of our second classification result is partly based on the results for strictly
simple surjective algebras. Concrete examples include when A is a finite field of prime
order or a Post algebra. Furthermore, these algebras generalise the two-element case
nicely since every surjective two-element algebra is strictly simple. Our proof is based
on Szendrei’s characterisation of strictly simple surjective algebras. In each case of
the characterisation, we can either use results from [7] or our new results for affine
and 2-element algebras in order to determine the approximability. The corresponding
classification of the CSP problem was carried out in [3].

The second classification considers algebras that are symmetric in the sense of [15].
Examples include algebras whose automorphism group contains the alternating group
(i.e. the permutation group containing only even permutations) and certain three-element
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algebras with cyclic automorphism groups [15]. Well-known examples are the homo-
geneous algebras; an algebra A is homogeneous if its automorphism group Aut(A) is
the full symmetric group. The approximability of MAX SOL(A) is known for all ho-
mogeneous algebras [7] and our result generalises this result. The proof is basically a
mix of Szendrei’s classification for symmetric algebras [15] and our approximability re-
sults for affine and strictly simple surjective algebras. It should be noted that our proof
is considerably simpler than the original proof for homogeneous algebras (which is a
fairly tedious case analysis). As a by-product of the proof, we also get a classification
of CSP(A) for symmetric algebras (Theorem 12.)

In order to concretise, consider the equation x = y + 1 (mod 3) over the domain
A = {0, 1, 2}. For brevity, we define R = {(x, y) | x = y + 1 (mod 3)} and note
that R = {(x, σ(x)) | x ∈ A} for the permutation σ(0) = 2, σ(1) = 0, and σ(2) = 1.
Let Γ be any relational clone containing R. It is known that for every permutation
π : A → A, {(x, π(x)) | x ∈ A} ∈ Γ if and only if π(x) ∈ Aut(Pol(Γ )) where
Pol(Γ ) denotes the algebra with universe A and the functions that preserve Γ . It is
now easy to see that Aut(Pol(Γ )) contains every even permutation on A: the identity
is always an automorphism and σ−1 is generated by σ. Thus, Pol(Γ ) is symmetric and
the approximability of MAX SOL(Γ ) can be determined using Theorem 11.

2 Preliminaries

This section is divided into two parts: we begin by giving the formal definition of the
constraint satisfaction and the maximum solution problems, and continue by review-
ing algebraic techniques for analysing relations. We will assume basic familiarity with
complexity and approximability classes (such as PO, NPO, APX and poly-APX), and
reductions (such as AP-, S-, and L-reductions) [1,10].

We formally define constraint satisfaction as follows: let A (the domain) be a finite
set and let RA denote the set of all finitary relations over A. A constraint language A
is a subset Γ ⊆ RA. The constraint satisfaction problem over the constraint language
Γ , denoted CSP(Γ ), is the decision problem with instance (V,A,C). Here, V is a set
of variables, A is a finite set of values, and C is a set of constraints {C1, . . . , Cq}, in
which each constraint Ci is a pair (si, $i) with si a list of variables of length mi, called
the constraint scope, and $i an mi-ary relation over the set A, belonging to Γ , called
the constraint relation. The question is whether or not there exists a function from V to
A such that, for each constraint in C, the image of the constraint scope is a member of
the constraint relation.

We define the maximum solution problem over a constraint language Γ (MAX

SOL(Γ )) as the maximisation problem with

Instance. A tuple (V,A,C,w), where A is a finite subset of N, (V,A,C) is a CSP

instance over Γ , and w : V → Q+ is a weight function.
Solution. An assignment f : V → A such that all constraints are satisfied.
Measure.

∑
v∈V w(v) · f(v)

Next, we consider clones and operations. As usual, let A be a domain. An operation
on A is an arbitrary function f : Ak → A and the set of all finitary operations on A is
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denoted by OA. A k-ary operation f ∈ OA can be extended to an operation on n-tuples
t1, t2, . . . , tk by f(t1, t2, . . . , tk) =

(f(t1[1], t2[1], . . . , tk[1]), f(t1[2], t2[2], . . . , tk[2]), . . . f(t1[n], t2[n], . . . , tk[n])),

where tj [i] is the i-th component of tj . Let $ ∈ RA. If f is an operation such that for
all t1, t2, . . . , tk ∈ $i f(t1, t2, . . . , tk) ∈ $i, then $ is preserved by f . If all constraint
relations in Γ are preserved by f , then Γ is preserved by f . An operation f which
preserves Γ is called a polymorphism of Γ and the set of polymorphisms is denoted
Pol(Γ ). Given a set of operations F , the set of all relations that are preserved by the
operations in F is denoted Inv(F ).

Sets of operations of the form Pol(Γ ) are known as clones, and they are well-studied
objects in algebra (cf. [12,14]). We remark that the operators Inv and Pol form a Galois
correspondence between the set of relations over A and the set of operations on A. A
comprehensive study of this correspondence can be found in [12].

A first-order formula ϕ over a constraint language Γ is said to be primitive positive
(we say ϕ is a pp-formula for short) if it is of the form ∃x : ($1(x1) ∧ . . . ∧ $k(xk))
where $1, . . . , $k ∈ Γ and x1, . . . ,xk are vectors of variables of size equal to the arity
of the corresponding relation. Note that a pp-formula ϕ with m free variables defines
an m-ary relation $ ⊆ Am; $ is the set of all tuples satisfying the formula ϕ.

We define a closure operation 〈·〉 such that $ ∈ 〈Γ 〉 if and only if the relation $ can be
obtained from Γ by pp-formulas. Sets of relations of the form 〈Γ 〉 are called relational
clones. The following theorem states that we have access to a handy S-reduction from
MAX SOL over finite subsets of 〈Γ 〉 to MAX SOL over Γ itself.

Theorem 1 ([7]). Let Γ be a constraint language and Γ ′ ⊆ 〈Γ 〉 a finite subset. Then,
MAX SOL(Γ ′) is S-reducible to MAX SOL(Γ ).

The concept of a core of a constraint language Γ has previously shown its value when
classifying the complexity of CSP(Γ ). The analogous concept of a max-core for the
optimization problem MAX SOL(Γ ) was defined in [8]: a constraint language Γ is a
max-core if and only if there is no noninjective unary operation f in Pol(Γ ) such that
f(a) ≥ a for all a ∈ A. A constraint language Γ ′ is a max-core of Γ if and only if Γ ′

is a max-core and Γ ′ = f(Γ ) for some unary operation f ∈ Pol(Γ ) such that f(a) ≥ a
for all a ∈ A. We have the following result:

Lemma 2 ([8]). If Γ ′ is a max-core of Γ , then MAX SOL(Γ ) and MAX SOL(Γ ′) are
equivalent under S-reductions.

We will now introduce the concept of an algebra and some of the terminology related
to it. For a coherent treatment of this subject, we refer to [14]. Let A be a domain.
An algebra A over A is a tuple (A;F ), where F ⊆ OA is a family of operations
on A. For the purposes of this paper, all algebras will be finite, i.e., the set A will be
finite. An operation f ∈ OA is called a term operation of A if f ∈ Pol(Inv(F )). The
set of all term operations of A will be denoted by Term(A). Two algebras over the
same universe are called term equivalent if they have the same set of term operations.
An operation f is called idempotent if f(a, . . . , a) = a for all a ∈ A. The set of
all idempotent term operations of A will be denoted by Termid(A). For a domain A,
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let CA denote the constraint language consisting of all constant, unary constraints, i.e.,
CA = {{(a)} | a ∈ A}. We use algebras to specify constraint languages and we will
often write MAX SOL(A) for the problem MAX SOL(Inv(Term(A))).

Next, we present some operations that will be important in the sequel. If A is an
abelian group, then the affine operation aA(a, b, c) : A3 → A satisfies aA(a, b, c) =
a − b + c. The discriminator operation t : A3 → A satisfies t(a, b, c) = c if a = b
and t(a, b, c) = a otherwise. The dual discriminator operation d : A3 → A satisfies
d(a, b, c) = a if a = b and d(a, b, c) = c otherwise. Finally, the switching operation
s : A3 → A satisfies s(a, b, c) = c if a = b, s(a, b, c) = b if a = c, and s(a, b, c) = a
otherwise. We remind the reader that CSP(Inv(r)) ∈ P when r ∈ {aA, t, d, s}, cf. [3,6].
The following proposition is a summary of the results from [7] which we will need:

Proposition 3. (1) MAX SOL(Inv(t)) is in PO. (2) Let R = {(a, a), (a, b), (b, a)} with
a, b ∈ A and 0 < a < b. Then, MAX SOL({R}) is APX-complete. (3) Let R =
{(0, 0), (0, b), (b, 0)} with b ∈ A and 0 < b. Then, MAX SOL({R}) is poly-APX-
complete.

3 Affine Algebras and Two-Element Algebras

In this section, we look at certain affine algebras and constraint languages over 2-
element domains. Let A = (A; +) be a finite abelian group. The finite-dimensional
vector space on A overK will be denoted KA = (A; +,K). An algebra A is said to be
affine with respect to an abelian groupA if (1) A and A have the same universe, (2) the
4-ary relation QA = {(a, b, c, d) ∈ A4 | a − b + c = d} is in Inv(A), and (3) aA is a
term operation of A. It is known that MAX SOL(A) is in APX for all affine algebras A
and that MAX SOL(A) is APX-complete for the affine algebra A = (A; aA) [7]. Here,
we will extend the latter result to cover some affine algebras with a larger set of term
operations, where the underlying group is a finite vector space.

Let KA be an n-dimensional vector space over a finite field K of size q. Let Λ0(KA)
be the constraint language consisting of all relations {(x1, . . . , xn) |

∑n
i=1 cixi = d},

for some ci ∈ K, d ∈ A and with
∑n

i=1 ci = 0. The algebra over A with operations
Pol(Λ0(KA)) is affine and we have the following result:

Theorem 4. MAX SOL(Λ0(KA)) is APX-hard for any finite dimensional vector space
KA over a finite field Kof size q ≥ 2.

The proof of this theorem relies on Lemma 5 which will be presented below. The lemma
uses the subspace structure in finite vector spaces and we will need some terminology
and notation: an affine hyperplane in KA is a coset a + S, where a ∈ A and S is a
codimension 1 subspace of KA. Let H be the set of affine hyperplanes in KA. Denote
by V the qn-dimensional vector space over Q with basis A. For any subset B ⊆ A,
let χ(B) denote the characteristic vector of B, i.e., χ(B) =

∑
a∈B a. Let g : A →

Q be any function from A to the rational numbers. We can then extend g to a linear
transformation g : V → Q by letting g(v) =

∑
i vig(ai), when v =

∑
i viai. In

particular, g(χ(B)) =
∑

a∈B g(a).
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Lemma 5. If g(χ(H)) = C for all H ∈ H and some constantC, then g(a) = C/qn−1

for all a ∈ A.

Proof. We will show that the set X = {χ(H) | H ∈ H} spans V . From this it follows
that g is uniquely determined by its values onX . The q-binomial coefficients are defined
by

bq(n, k) =
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

They count, among other things, the number of k-dimensional subspaces in an n-
dimensional vector space over a finite field of size q. The number of codimension 1
subspaces (hyperplanes) containing a fixed 1-dimensional subspace (line) is counted
by bq(n− 1, 1) (cf. [4].) We let a ∈ A be fixed and for each v ∈ A, v �= a, we
count the number of (affine) hyperplanes through a that also contain v. They are ex-
actly the hyperplanes containing the unique line through a and v and this number is

bq(n− 1, 1) = qn−1−1
q−1 . Thus,

∑
a∈H∈H χ(H) = bq(n, n− 1) · a + bq(n− 1, 1) ·

χ(A− a) = qn−1 · a+ bq(n− 1, 1) ·χ(A). Now, choose an arbitrary affine hyperplane
H1 ∈ H, let H2, . . . , Hq denote its translations and note that

∑q
i=1 χ(Hi) = χ(A).

This implies that a can be written as the following linear combination of vectors in
X : a = q1−n

(∑
a∈H∈H χ(H) − bq(n− 1, 1) ·

∑q
i=1 χ(Hi)

)
. Apply g to both sides

and use linearity to obtain g(a) = q1−n (bq(n, n− 1) · C − bq(n− 1, 1) · q · C) =

q1−n
(

qn−1
q−1 − qn−q

q−1

)
· C, from which the lemma follows. "#

The proof of Theorem 4 is a reduction from the problem MAX q-CUT. In this problem,
one is given a graph G = (V,E), and a solution σ to G is an assignment from V to
some set K of size q. The objective is to maximise the number of edges (u, v) ∈ E
such that σ(u) �= σ(v). It is well known that MAX q-CUT is APX-complete for q ≥ 2.

Proof (of Theorem 4). Let KA = (A; +,K) be a vector space of size |A| = qn. We
present an L-reduction from MAX q-CUT to MAX SOL(Λ0(KA)), which proves that
the latter is APX-hard.

Remember that we view the set of elements, A, as a subset of the natural numbers. In
order to avoid ambiguity, we will use a+ b and a− b to denote addition and subtraction
in the group and a ⊕ b for the addition of the values of the group elements a, b ∈ A.
Define g : A → N as follows:

g(a) = max
x,y∈A

{x⊕ y | x− y = a} = max
x∈A

{x⊕ (x − a)}.

Extend g to arbitrary subsets B ⊆ A through g(B) =
∑

a∈B g(a). Let 0A denote the
zero vector and note that g(0A) = 2 · maxA > g(a) for all a ∈ A \ {0A}. Hence,
g is nonconstant on A, and by Lemma 5, g must be nonconstant on the set of affine
hyperplanes in KA. Therefore, we can let H ⊆ A be a hyperplane (through the origin)
in KA and e ∈ A an element such that g(e+H) = min{g(a+H) | a ∈ A} < g(A)/q.

Let I = (V,E) be an instance of MAX q-CUT. We create an instance F (I) of MAX

SOL(Λ0(KA)) as follows. For each vi ∈ V , we create |A|/q variables xs
i , s ∈ H and

add the (|A|/q)−1 equations xs
i −x0A

i = s to F (I), for s ∈ H \{0A}. These equations



Approximability of the Maximum Solution Problem for Certain Families of Algebras 221

ensure that in a solution σ′ to F (I) it must hold that {σ′(xs
i ) | s ∈ H} = a + H for

some a ∈ A. For each edge (vi, vj) ∈ E, we create 2|A|2/q new variables yst,k
ij and

zst,k
ij for s, t ∈ H , k ∈ K , and add the following |A|2/q equations:

e+ k(xs
i − xt

j) = yst,k
ij − zst,k

ij . (1)

Finally, we let w(xs
i ) = 0 and w(y(s,t)

ij ) = w(z(s,t)
ij ) = 1. From a solution σ′ to F (I),

we derive a solution σ to I by fixing an element h⊥ ∈ A\H and letting σ(vi) = k ∈ K
when {σ′(xs

i ) | s ∈ H} = kh⊥ +H . Note that the measure of σ is independent of the
choice of h⊥.

We will now determine the measure of σ′. Note that in any solution, due to (1) and
the definition of g, we have

σ′(yst,k
ij ) ⊕ σ′(zst,k

ij ) ≤ g(e+ k(σ′(xs
i ) − σ′(xt

j))). (2)

Assume that {σ′(xs
i ) | s ∈ H} = a+H and {σ′(xt

j) | t ∈ H} = b+H . Then,

{e+ k(σ′(xs
i ) − σ′(xt

j)) | s ∈ H} = e+ k(a− b) +H,

for any fixed t ∈ H and k ∈ K . Therefore,∑
s,t∈H,k∈K

σ′(yst,k
ij ) ⊕ σ′(zst,k

ij ) ≤
∑

s,t∈H,k∈K

g(e+ k(σ′(xs
i ) − σ′(xt

j))) =

qn−1
∑
k∈K

g(e+ k(a− b) +H)

If σ(vi) = σ(vj), then a − b ∈ H , so the right-hand side equals C = qng(e + H).
Otherwise, a−b �∈ H and the right-hand side equalsD = qn−1g(A). Now, assume that
the q-cut determined by σ contains m(σ) edges. Then, the measure m′ of the solution
σ′ to F (I) is bounded by

m′(σ′) ≤ |E| · C +m(σ) · (D − C). (3)

When σ′ is an optimal solution, the inequality in (2) can be replaced by an equality and
it follows that

OPT(F (I)) = |E| · C + OPT(I) · (D − C). (4)

By a straightforward probabilistic argument, it follows that OPT(I) ≥ |E| · (1 − 1/q),
which in turn implies that

OPT(F (I)) = OPT(I)
(

|E| · C
OPT(I)

+ (D − C)
)

≤ OPT(I) · (C/(q − 1) +D) . (5)

Note that both C and D are independent of the instance I . By subtracting (3) from (4)
we get

OPT(F (I)) −m′(σ′) ≥ (OPT(I) −m(σ)) · (D − C). (6)
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By the choice of H and e, we have C = qng(e + H) < qng(A)/q = qn−1g(A) = D.
Consequently, (5) and (6) shows that F is the desired L-reduction. "#

The following consequence of Theorem 4 will be needed in the forthcoming proofs.
The endomorphism ring of KA, i.e., the ring of linear transformations on KA, will be
denoted End KA. One can consider A as a module over End KA and this module will
be denoted (End KA)A. The group of translations {x+a | a ∈ A} will be denoted T (A).

Corollary 6. Let KA be a finite dimensional vector space over a finite field K . Then,
MAX SOL(Inv(Termid(KA))) and MAX SOL(Inv(Termid((End KA)A) ∪ T (A))) are
APX-complete.

We now use Theorem 4 to extend the classification of MAX ONES(Γ ) by Khanna et
al. [10]; this result will be needed several times in the sequel. Khanna et al. have proved
a complete classification result for D = {0, 1} and their proof is easy to generalise to
the case when D = {0, a}, a > 0. If D = {a, b}, 0 < a < b, then it is possible to
exploit Post’s lattice [13] for proving a similar result. The next lemma follows without
difficulties by combining this lattice with results from Proposition 3 and Theorem 4.

Lemma 7. Let Γ be a constraint language over a 2-element domain. Then, MAX

SOL(Γ ) is either in PO, APX-complete, poly-APX-complete, it is NP-hard to find
a nonzero solution or it is NP-hard to find a feasible solution.

4 Strictly Simple Surjective Algebras

The strictly simple surjective algebras were classified by Szendrei in [16], and the com-
plexity of constraint satisfaction over such algebras was studied in [3]. Here, we do the
corresponding classification of the approximability of MAX SOL. First, we will need a
few definitions to be able to state Szendrei’s theorem.

Let A = (A;F ) be an algebra and let B ⊆ A. Let f |B denote the restriction of f to
B and let F |B = {f |B | f ∈ F}. If for every f ∈ F , it holds that f |B(B) ⊆ B, then
B = (B;F |B) is called a subalgebra of A and B is said to support this subalgebra. If
|B| < |A|, then B is called a proper subalgebra of A.

Let I be an index set and let A = (A;F ) and B = (B;F ′) be two algebras with
F = {fi : i ∈ I} and F ′ = {f ′

i : i ∈ I} such that fi and f ′
i have the same arity

ki for all i ∈ I . Then, a map h : A → B is called a homomorphism if for all i ∈ I ,
h(fi(a1, . . . , aki)) = f ′

i(h(a1), . . . , h(aki)). When h is surjective, B is called a homo-
morphic image of A. An algebra is called simple if all its smaller homomorphic images
are trivial (one-element) and strictly simple if, in addition, all its proper subalgebras are
one-element. An algebra is called surjective if all of its term operations are surjective.

Let I be a family of bijections between subsets of a set A. By R(I) we denote the
set of operations on A which preserve each relation of the form {(a, π(a)) | a ∈ A} for
π ∈ I. By Rid(I) we denote the set of idempotent operations in R(I).

Let G be a permutation group on A. Then, G is called transitive if, for any a, b ∈ A,
there exists g ∈ G such that g(a) = b. G is called regular if it is transitive and each
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nonidentity member has no fixed point.G is called primitive, or is said to act primitively
on A, if it is transitive and the algebra (A;G) is simple.

Let a be some fixed element in A, and define the relation Xa
k = {(a1, . . . , ak) ∈

Ak | ai = a for at least one i, 1 ≤ i ≤ k}. Let Fa
k denote the set of all operations pre-

serving Xa
k , and let Fa

ω =
⋂∞

k=2 Fa
k .

Theorem 8 ([16]). Let A be a finite strictly simple surjective algebra. If A has no one-
element subalgebras, then A is term equivalent to one of the following: (a) (A;R(G))
for a regular permutation groupG acting onA; (b) (A; Termid((End KA)A)∪T (A)) for

some vector space KA = (A; +,K) over a finite field K; or (c) (A,G) for a primitive
permutation group G on A. If A has one-element subalgebras, then A is idempotent
and term equivalent to one of the following algebras:

(a◦) (A;Rid(G)) for a permutation groupG onA such that every nonidentity member
of G has at most one fixed point;

(b◦) (A; Termid((End KA)A)) for some vector space KA over a finite field K;
(d) (A;Rid(G) ∩ Fa

k ) for some k (2 ≤ k ≤ ω), some element a ∈ A, and some
permutation group G acting on A such that a is the unique fixed point of every
nonidentity member of G;

(e) (A;F ) where |A| = 2 and F contains a semilattice operation; or
(f) a two-element algebra with an empty set of basic operations.

Using the results from Section 3, we can give the following classification of approx-
imability of MAX SOL(A) for finite strictly simple surjective algebras A.

Theorem 9. Let A be a finite strictly simple surjective algebra. Then, MAX SOL(A) is
either in PO, it is APX-complete, it is poly-APX-complete, or it is NP-hard to find a
solution.

Proof (sketch). If A is of type (c) or (f), then CSP(A) is NP-complete [3]. If A is of
type (a) or (a◦), then the discriminator operation t(x, y, z) is a term operation of A
and tractability follows from Proposition 3(1). If A is of type (b) or (b◦), then APX-
completeness follows from Corollary 6. If A is of type (d), then from [2,3,7], one can
deduce tractability when a = maxA, membership in poly-APX when a = 0 ∈ A
and membership in APX otherwise. To prove APX- and poly-APX-hardness in the
relevant cases, note that Xa

k ∈ Inv(A) for some k ≥ 2 and that A is idempo-
tent. The relation r = (A × {a}) ∪ ({a} × A) is pp-definable in {Xa

k} ∪ CA via
r(x, y) ≡pp ∃z : Xa

k (x, y, z, . . . , z)∧{maxA}(z) and the max-core of r is the relation
{(a, a), (a,maxA), (maxA, a)}. Thus, APX- and poly-APX-hardness follows from
Lemma 2 combined with Proposition 3(2) and 3(3). Finally, if A = (A;F ) is of type
(e), then since |A| = 2, the result follows from Lemma 7. "#

5 Symmetric Algebras

A bijective homomorphism from A to itself is called an automorphism. An algebra
A is symmetric (in the sense of Szendrei [15]) if for every subalgebra B = (B;F )
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of A, (1) the automorphism group of B acts primitively on B; and (2) for any set
C ⊆ A with |C| = |B|, C supports a subalgebra of A isomorphic to B. Examples of
symmetric algebras include homogeneous algebras and algebras whose automorphism
group contains the alternating group. Condition (2) on symmetric algebras implies that
if B = (B;F |B) is a proper subalgebra of A, then (C;F |C) is a subalgebra of A
whenever C is a subset of A with |C| ≤ |B|. Consequently, we can assign a number
ν(A), 0 ≤ ν(A) ≤ |A| − 1, to every symmetric algebra such that a proper subset
B ⊂ A is the universe of a subalgebra of A if and only if |B| ≤ ν(A). One may note
that ν(A) ≥ 1 if and only if A is idempotent.

We need some notation for describing symmetric algebras: a bijective homomor-
phism is called an isomorphism and an isomorphism between two subalgebras of an
algebra A is called an internal isomorphism of A. The set of all internal isomor-
phisms will be denoted Iso A. A k × l cross (k, l ≥ 2) is a relation on A2 of the
form X(B1, B2, b1, b2) = (B1 × {b2}) ∪ ({b1} × B2), where b1 ∈ B1, b2 ∈ B2,
|B1| = k, and |B2| = l. Let D1 denote the clone of all idempotent operations on A, and
let E1 denote the subclone of D1 consisting of all operations which in addition preserve
every relation La,b = {(a, a, a), (a, b, b), (b, a, b), (b, b, a)} where a, b ∈ A and a �= b.
For 2 ≤ m ≤ |A|, let Dm be the clone of all operations in D1 preserving every m× 2
cross. For 2 ≤ m ≤ |A|, let Em be the clone consisting of all operations f ∈ D1 for
which there exists a projection p agreeing with f on every m-element subset B of A.

Theorem 10 ([15]). Let A be a finite symmetric algebra. If A is not idempotent, then
|A| is prime and there is a cyclic group A = (A; +) such that A is term equivalent to
(A;R(T (A))), (A; Termid(A) ∪ T (A)), or (A;T (A)). If A is idempotent, then A is
term equivalent to one of the following algebras:

1. (A;R(Iso A) ∩ Dm) for some m with 1 ≤ m ≤ ν(A) or m = |A|;
2. (A;R(Iso A) ∩ Em) for some m with 1 ≤ m ≤ ν(A) or m = |A|;
3. (A; Termid(KA)) for a 1-dimensional vector space KA = (A; +,K) over a finite

field K; or
4. (A; Termid(A)) for a 4-element abelian group A = (A; +) of exponent 2.

Theorem 11. Let A be a symmetric algebra. Then, MAX SOL(A) is either in PO, it is
APX-complete, it is poly-APX-complete, or it is NP-hard to find a solution.

Proof (sketch). If A is not idempotent, then one can show that A is strictly simple and
surjective. In this case, the the result follows from Theorem 9.

Assume instead that A is idempotent; cases 3 and 4 are now immediately covered
by Corollary 6 so we suppose that A = (A;R(IsoA)∩Dm). If m = 1, then t is a term
operation and tractability follows from Proposition 3(1). When m > 1, then d is a term
operation and the membership results in APX and poly-APX follow. Furthermore, all
m× 2 crosses are in InvA and hardness can be shown by utilising max-cores.

Finally assume that A = (A;R(IsoA)∩Em) for some 1 ≤ m ≤ ν(A) or m = |A|.
When m = 1, then membership in APX can be shown based on the fact that s is a
term operation; hardness can be proved by using Lemma 7. If m > 1, then A contains
2-element subalgebras {a, b} such that each operation in A restricted to {a, b} is a
projection. Consequently, MAX SOL(A) is NP-hard for all m ≥ 2. "#
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By following the proof of Theorem 11, the complexity of CSP(A) can be determined,
too. We note that this result agrees with Conjecture 7.5 in [3] on the source of in-
tractability in finite, idempotent algebras.

Theorem 12. Let A be an idempotent symmetric algebra. If there exists a nontrivial
homomorphic image B of a subalgebra of A such that the operations of B are all
projections, then CSP(Inv(A)) is NP-complete. Otherwise, CSP(Inv(A)) is in P.

6 Discussion

The results in this paper together with the approximability classifications in [7,10] pro-
vide support for the following conjecture: for every constraint language Γ over a finite
domain D ⊆ N, MAX SOL(Γ ) is either polynomial-time solvable, APX-complete,
poly-APX-complete, it is NP-hard to obtain a solution of nonzero measure, or it is NP-
hard to obtain any solution. Where the exact borderlines between the cases lie is largely
unknown, though, and a plausible conjecture seems remote for the moment. Therefore,
we present a selection of questions that may be considered before attacking the ‘main’
approximability classification for MAX SOL.

It has been observed that classifying the complexity of CSP for all strictly simple
algebras could be seen as a possible ‘base case for induction’ [3]. This is due to the
necessary condition that for a tractable algebra, all of its subalgebras and homomorphic
images must be tractable. Furthermore, it is sufficient to study surjective algebras with
respect to CSP since the application of a unary polymorphism to a set of relations does
not change the complexity of the set [5]. For MAX SOL, however, it is possible to
turn an APX-hard problem into a problem in PO by applying a unary polymorphism
f , unless it satisfies some additional condition, such as f(a) ≥ a for all a ∈ A. It
therefore looks appealing to replace the property of the algebra being surjective by that
of the constraint language being a max-core. It should be noted that being a max-core
is not a purely algebraic property and that we do not know how, or if, it is possible to
obtain a usable characterisation of such algebras.

Kuivinen [11] has given tight inapproximability bounds (provided that P �= NP)
for the problem of solving systems of equations with integer coefficients over an arbi-
trary abelian group. In [7], this problem was shown to be APX-hard for cyclic groups
of prime order. Theorem 4 extends this result to show APX-hardness when the un-
derlying group is a finite vector space and the sum of the coefficients is 0. The next
step would be to prove APX-hardness for arbitrary abelian groups. We note that the
proof of Theorem 4 relies on a result which utilises the subspace structure of finite vec-
tor spaces. Informally, this is needed to be able to distinguish one affine hyperplane
from the average of the others. Unfortunately, it is not hard to find an abelian group
on A = {0, 1, 2, 4, 5, 6} in which the sum of the elements in all cosets of the same
nontrivial subgroup is the same: let A be the abelian group defined by the isomor-
phism f : Z6 → A, where f(0) = 0, f(1) = 1, f(2) = 4, f(3) = 6, f(4) = 5
and f(5) = 2. It is easy to check that if a + H is a coset with |H | > 1, then∑

a′∈a+H a′ = |H|
|A|
∑

a∈A a = 3 · |H |. A deeper analysis of these abelian groups is
thus needed to settle this case.
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Algebras preserving relations obtained from unrestricted systems of equations over
abelian groups are full idempotent reducts of affine algebras. Corollary 6 covers some
nonidempotent cases as well, due to the restriction of the coefficients in the equations
definingΛ0(KA). However, in the proof of Lemma 7 we find an example of a constraint
language corresponding to an affine algebra which is maxA-valid. The question which
arises is, whether or not MAX SOL(A) can be shown to be APX-hard for all affine
algebras A such that Inv(A) is not maxA-valid. As observed in the introduction, this
is probably a key question when it comes to deciding the approximability of MAX

SOL(A) when A is, for example, para-primal.
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Abstract. In this paper a comprehensive complexity analysis of clas-
sical shop scheduling problems (open shop, job shop and mixed shop)
is presented subject to joint constraints on several problem parameters,
such as the maximum processing time of an operation, the maximum
number of operations per job, and the schedule length. Thus, our re-
search continues the research line on the complexity analysis of short
scheduling initiated for the open shop and job shop problems in the pa-
per by Williamson et al. (1997). We improve upon some of the results in
that paper.

1 Introduction

The open shop, job shop and mixed shop scheduling problems are among the clas-
sical and well-studied scheduling models. These problems appear ubiquitously
in the modelling of many real-life phenomena such as industrial manufactur-
ing production lines, packet exchanges in communication networks, timetabling
etc. All these problems received a lot of attention from researchers in differ-
ent communities [8]. One of the most important questions is to understand the
boundary between efficiently (polynomially) solvable cases of the problem and
NP-complete ones. The shop scheduling problems are well-known to be notori-
ously difficult both from practical and theoretical perspectives. There are only
few efficient algorithms known in very restricted settings such as constant num-
ber of jobs or two machines, unit processing times and very special operation
precedence structure. Most other special cases are known to be NP-complete
[3,12]. A practical proof of this intractability is that a small example with 10
jobs and 10 machines posed by Fisher and Thompson [5] in 1963 remained open
for over 20 years until it was solved by Carlier and Pinson [2].

One of the popular ways to draw a boundary between easy and hard schedul-
ing problems with an integer valued objective function F (S) is to show that
checking the existence of a schedule S with value F (S) ≤ K − 1 is a polyno-
mially solvable problem while the problem of deciding if there exists a schedule
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S with F (S) ≤ K is NP-complete. The first such example in scheduling is the
proof that deciding if there exists a schedule of length three for identical parallel
machine scheduling with precedence constraints is an NP-complete problem due
to Lenstra and Rinnoy Kan [13]. Later this approach was applied to unrelated
parallel machine scheduling [14], scheduling with communication delays [9], job
shop and open shop scheduling [20], no-wait job shop scheduling [1] and many
other scheduling models. Note also that proving such an NP-completeness result
for some integer constant K and an integer valued objective function implies
a non-approximability result, that the existence of an approximation algorithm
with performance guarantee better than (K + 1)/K implies P = NP .

We now formally define the shop scheduling problems.

Problem statement. A job shop is a multi-stage production process with the
property that a given set of jobs {J1, . . . , Jn} .= J have to be processed on
a given set of machines {M1, . . . ,Mm} .= M, and each job may have to pass
through several machines. More exactly, each job Jj is a chain of mj operations
O1j , . . . , Omjj . Every operation Oij is preassigned to a machine Mij on which it
has to be processed for pij time units. The value pij is called its processing time
or length. In any feasible schedule for those n jobs, at any moment in time every
job is processed by at most one machine and every machine executes at most
one job. Furthermore, for each job Jj , the operation Oi−1,j is always completed
before starting the operation Oij , and each operation is processed without in-
terruption on the machine to which it is assigned. In an open shop the ordering
of the operations in a job is not fixed and may be chosen by the scheduler. In
a mixed shop there are jobs of the “open shop type” with any order between
operations and jobs of the “job shop type” with chain precedence constraints
between operations. For further references and a survey of the area, see Lawler,
Lenstra, Rinnooy Kan, and Shmoys [12] and Chen, Potts, and Woeginger [3].

Our goal is to find a feasible schedule that minimizes the makespan (or length)
Cmax of the schedule, i.e., the maximum completion time among all jobs. The
minimum makespan among all feasible schedules is denoted by C∗

max. Following,
the standard three-field scheduling notations we denote job shop, open shop and
mixed shop scheduling problems as J ||Cmax, O||Cmax and X ||Cmax. The middle
entry in the three-field notation will be used either to constrain the maximal
number of operations per job, denoted by op (e.g., ”op ≤ 3” will mean ”at most
three operations per job”), or to constrain the set of possible processing times
(e.g., ”pij = 1”).

Known Results. Williamson et al. [20] proved that deciding if there exists a
schedule of length three and finding such a schedule can be solved in polynomial
time for the open shop and job shop scheduling problems. On the negative side
they showed that for the job shop scheduling with at most three operations per
job and unit processing times, i.e., J |pij = 1, op ≤ 3|Cmax, deciding if there
exists a schedule of length four is an NP-complete problem. They also proved
that for the open shop scheduling with at most three operations per job and
processing times pij ∈ {1, 2}, i.e., O|pij ∈ {1, 2}, op ≤ 3|Cmax, deciding if there
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exists a schedule of length four is an NP-complete problem. Note that the open
shop problem with pij ∈ {0, 1} is just the bipartite edge-coloring problem and
therefore is a polynomially solvable problem.

The comprehensive survey paper by Shakhlevich et al. [18] reviews many
results on the complexity of the mixed shop scheduling problem. The complexity
of the problem was analyzed in the dependence of restrictions imposed on some
problem parameters, such as the number of machines, the number of the ”job-
shop-type” jobs, and the number of the ”open-shop-type” jobs. However, most of
these results are not directly related to the topic of this paper that is concentrated
on the complexity of finding ”short schedules”.

In the papers [10],[11] the authors provide a similar multi-parametric analysis
of the complexity for the connected list coloring and the generalized open shop
problem.

Our Results. In this paper we consider the three classical shop scheduling
models: the mixed shop, the job shop and the open shop scheduling problems. We
find the exact boundary for the schedule length K such that finding a schedule
with the makespan ≤ K− 1 is ”easy” and finding a schedule with the makespan
K is NP-complete. We also classify easy and hard instances depending on their
set of allowable processing times and maximum number of non-zero operations
per job. More precisely, we show that

1. deciding if there exists a schedule of length four for the open shop scheduling
problem with at most two operations with processing times pij ∈ {1, 2}, i.e.,
O|pij ∈ {1, 2}, op ≤ 2|Cmax ≤ 4, is an NP-complete problem (Theorem 11)
(this result tightens the result from [20]);

2. the job shop scheduling problem with at most two operations per job and unit
processing times, i.e., J |pij = 1, op ≤ 2|Cmax, is polynomially solvable (The-
orem 1) (The algorithm is based on the bipartite edge coloring that produces
an infeasible schedule which is later transformed into a feasible one.);

3. even more general mixed shop scheduling problem X |pij = 1, op ≤ 2|Cmax

is polynomially solvable (Theorem 2) (The algorithm is a combination of
a very efficient graph orientation algorithm and the previous algorithm for
the job shop scheduling problem. Although the general graph orientation
problem can be reduced to a Max Flow computation we show that for the
instances corresponding to the mixed shop scheduling problem there exists
a linear time algorithm.);

4. deciding if there exists a schedule of length four for the job shop scheduling
problem with at most two operations per job with processing times pij ∈
{1, 2}, i.e., J |pij ∈ {1, 2}, op ≤ 2|Cmax ≤ 4, is an NP-complete problem
(Theorem 8) (The proof of this result is highly technical and uses new type
of gadgets, different from the ones used in [20].);

5. deciding if there exists a schedule of length two for the mixed shop scheduling
problem, i.e., X ||Cmax ≤ 2, is a polynomially solvable problem (Theorem 3);

6. the problem of deciding whether an instance of X |pij = 1, op ≤ 3|Cmax, i.e.,
mixed shop scheduling problem with at most three unit operations per job
has a schedule of length at most three is NP-complete (Theorem 4);
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7. the problem of deciding whether an instance of X |pij ∈ {1, 2}, op ≤ 2|Cmax

has a schedule of length at most three is NP-complete (Theorem 5).

2 Polynomial Time Algorithm for the Mixed Shop
Scheduling Problem with at Most Two Unit Operations
per Job

We start with the reformulation of the multigraph edge coloring theorem due
to Melnikov and Vizing [15] (Theorem 2.2.1) for the job shop scheduling with
unit processing times and then show how to generalize it to the mixed shop
scheduling problem. Note that this result was first proved in [15], then generalized
by Pyatkin [16]. Finally, a very simple proof was provided by Vizing [19].

We partition the set of jobs into two subsets J =
−→J ∪ Je. The subset

−→J is
the set of jobs with exactly two non-zero operations that must be processed on
different machines, and Je is the set of the remaining (”easy”) jobs that either
consist of at most one non-zero operation or have two consecutive operations on
the same machine. Note that the original proof from [15] works in the case when
Je = ∅ but can be easily generalized to handle jobs from Je.

Let Δk =
∑

Oij |Mij=Mk
pij be the total load of machine Mk, and let Δ1k =∑

Jj∈
−→J |M1j=Mk

p1j and Δ2k =
∑

Jj∈
−→J |M2j=Mk

p2j be the total length of the first

and second operations of jobs from
−→J on machine Mk respectively. Obviously,

Δk ≥ Δ1k+Δ2k. Since in this section we consider shop scheduling problems with
unit processing times, the load of a machine is equal to the number of operations
that must be processed on that machine. Since each machine can process at most
one operation at a time and since every job can be processed by at most one
machine at a time, we obtain the following lower bound on the optimal makespan
C∗

max ≥ L = maxk max{Δk, Δ1k + 1, Δ2k + 1}. The next theorem shows that
this lower bound is tight for a special case of the job shop scheduling problem.

Theorem 1. For any instance of the job shop scheduling problem 〈J |pij =
1, op ≤ 2|Cmax 〉 there exists a schedule of length C∗

max = L which can be found
in polynomial time.

Proof. Consider the following directed multigraph
−→
G = (M, A). The vertex

set of
−→
G corresponds to the set of machines and the set of arcs corresponds

to jobs from
−→J , i.e., jobs with two unit operations on different machines. A

directed arc (Mi,Mj) corresponds to a job with the first operation on Mi and
the second operation on Mj. Thus, Δ1k and Δ2k correspond to the outdegree
and indegree of the vertex Mk ∈ M. A linear factor in multigraph

−→
G is a

subgraph such that indegree and outdegree of every vertex is at most one. Let
δ = maxk max{Δ1k, Δ2k} be the maximal semi-degree in graph

−→
G .

By the standard application of König’s Edge Coloring Theorem we could
find a decomposition of graph

−→
G into δ linear factors. Such a decomposition
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corresponds to an infeasible schedule of length δ+ 1 for the set of jobs
−→J which

can be constructed as follows.
Take an arbitrary linear factor in the decomposition and schedule all corre-

sponding first operations in the time period [0, 1] and all second operations in
the time interval [1, 2]. Repeat the procedure iteratively, taking at step τ an
arbitrary remaining linear factor and scheduling all first operations in the time
period [τ − 1, τ ] and all second operations in the time period [τ, τ + 1].

This infeasible schedule is easy to make feasible if we process all first oper-
ations on machine Mk in the time interval [0, Δ1k] and all second operations
in the time interval [L − Δ2k, L] in the order defined by the previous infeasi-
ble schedule. The feasibility of this schedule follows from the fact that first and
second operations on one machine do not overlap and the relative order of the
first and the second operations of the same job cannot be violated during the
transformation since we shift first operations toward the time 0 and we shift
second operations toward the time L. Finally, the jobs from the set Je can be
inserted into idle time periods left by the schedule for jobs in

−→J in a greedy way.
The running time of this algorithm is dominated by that of the algorithm of

computing the linear factor decomposition in multigraph
−→
G , which is equivalent

to computing δ unweighted bipartite matchings in a graph with 2|M| vertices
and |J | edges. One of the best algorithm to solve it is due to Cole, Ost and
Schirra [4] and has the running time O(|J | log δ).

We now consider the mixed shop scheduling problem 〈X |pij = 1, op ≤ 2|Cmax 〉.
In this problem the set of jobs is partitioned into three subsets J = J̄ ∪ −→J ∪
Je. The set

−→J consists of ”job-shop type” jobs with exactly two unit length
operations that must be processed on different machines in a prescribed order
between the two operations. The set J̄ consists of ”open-shop type” jobs with
exactly two unit length operations that must be processed on different machines
without a predefined order between those operations. And finally, the set Je

consists of the remaining ”easy” jobs, including the jobs with both operations
on the same machine and the jobs with at most one nonzero operation.

Consider some optimal schedule for 〈X |pij = 1, op ≤ 2|Cmax 〉. In this sched-
ule the jobs from J̄ have some orientation in which one operation of each job
precedes the other one. Given this orientation (O), the schedule length is equal
to L(O) = maxk max{Δk, Δ1k(O) + 1, Δ2k(O) + 1} by Theorem 1, where the
values of Δ1k and Δ2k depend on orientation O.

The orientation problems are among the well-studied problems of combina-
torial optimization, see the survey in [17] (Chapter 61). The classical way to
solve orientation problems is by a reduction of an orientation problem to the
Hoffman’s Circulation Theorem (Theorem 61.2 [17]). Finding a circulation is
equivalent to one maximum flow computation (Theorem 11.3 [17]). In the next
lemma we provide a more efficient way to compute the orientation O minimizing
L(O).

Lemma 1. The problem of minimizing the function L(O) over all possible ori-
entations O of jobs in J̄ is solvable in O(|J |) time.
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Proof. Let Δ = maxk Δk be the maximum machine load. Machine Mk is called
critical under orientation O if Δ1k(O) = Δ or Δ2k(O) = Δ. By Theorem 1,
under any orientation O of jobs in J̄ we have Δ ≤ L(O) ≤ Δ + 1, and the
value L(O) = Δ is attained if and only if there are no critical machines under
orientation O. Thus, our aim is to find an orientation O which provides no
critical machines (a positive answer), or to establish that such orientation does
not exist (a negative answer). In particular, we have the negative answer at once
if there exists a critical machine for the initial (empty) orientation of jobs in J̄ .
Since this can be checked immediately (by a single scanning of the input data),
we can further assume that the initial orientation contains no critical machines.

Consider the following multigraph G = (M, E). The set of vertices M corre-
sponds to the set of machines, and the set of edges E corresponds to the set of
jobs from J̄ ; d(Mk) denotes the degree of vertex Mk ∈ G. Let us formulate a
few obvious propositions.

Proposition 1. The orientation problem for edges E in G can be solved in-
dependently for each connected component of graph G, and the positive answer
for the whole graph is attained if and only if it is attained for every connected
component.

Thus, while solving the orientation problem, we can assume that G is connected.
Machine Mk (and the corresponding vertex Mk ∈ G) is called a no-problem
machine (no-problem vertex) for a given partial orientation O′ of jobs in J̄
(edges in E) if for no expansion O of orientation O′ machine Mk can become a
critical machine.

Proposition 2. Machine Mk is a no-problem machine for a given (partial) ori-
entation O′ if and only if it meets one of the following properties:
(a) machine Mk contains operations of ”easy” jobs;
(b) Δk < Δ;
(c) Δ1k(O′) > 0 and Δ2k(O′) > 0.

Proposition 3. If G is connected and contains a no-problem vertex then the
orientation problem has a positive answer which can be obtained in linear time.

Proof. First observe that we have Δ ≥ 2, because in case Δ = 1 the graph G
consists of a single edge and cannot contain a no-problem vertex.

Let M0 be a no-problem vertex in G = (M, E). By scanning the set E, we
construct a spanning tree T = (M, ET ), compute the tree-degree dT (M) of each
vertex M in the tree, and orient all edges from E \ ET arbitrarily. Scan the
set of vertices M and make up the list L of leaves of T (i.e., vertices M ∈ M
with dT (M) = 1) except M0. Let M ∈ L be the first leaf in the list, and let
e = (M,M ′) be the only edge of T incident to M . If M is a no-problem vertex,
orient e arbitrarily. Otherwise, M is incident to an arc e′ ∈ A in

−→
G , and we make

M a no-problem vertex by orienting e in the direction opposite to e′. Delete M
from tree T and decrease dT (M ′) by 1. If M ′ becomes a leaf (dT (M ′) = 1), we
add it to the end of list L and continue the above procedure, until vertex M0
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remains the only vertex of the tree. Once the only remaining vertex is M0, we
obtain the desired orientation with the positive answer.

It is clear that all steps of the procedure can be implemented in time linear
in the number of edges in G.

Due to Proposition 3 we can further assume that graphG contains no no-problem
vertices. Vertex M of graph G (and the corresponding machine M ∈ M) is called
sub-critical if it has the unit degree d(M) = 1 and one of two possible orientations
of the edge incident to M makes machine M critical.

Suppose that graph G contains a vertex M of degree 1. It is clear that M may
be either a no-problem vertex or a sub-critical vertex. Since we agreed that the
first case is excluded, we should only consider the case when there is a sub-critical
vertex M in G. The single edge e incident to M has got the unique ”positive”
orientation under which the positive answer is still possible. This conditions the
following step of the orientation algorithm.

Eliminating the unit-degree vertices. Compute the degrees of all vertices
of graph G and make the list SC of all sub-critical vertices. Take the first
vertex M ′ ∈ SC, choose the unique ”positive” orientation of its single edge
e = (M ′,M ′′), remove vertex M ′ from the list and from graph G, decrease by 1
the degree of vertex M ′′. If d(M ′′) became equal to zero, this means that e was
the last edge in graph G, and that the process of orientation of edges came to
an end. At that, if machine M ′′ became critical, this means that the answer is
negative and we could not avoid this. Otherwise, we have a positive answer.

Alternatively, if d(M ′′) became equal to 1, there may be two possible cases:
M ′′ may become either a no-problem machine or a sub-critical machine. In the
first case we can complete the orientation process with the positive answer, due
to Proposition 3. In the second case we add machine M ′′ to the end of the list
SC and continue the process.

The described process may finish with two possible outcomes. Either it exhausts
all edges inG (with the positive or negative answer), or it exhausts all unit degree
vertices. We claim that the second case also provides the positive answer.

Finding an orientation with positive answer in the case when the de-
gree of each vertex in G is at least 2. Starting with an arbitrary vertex
M ∈ G and an arbitrary edge incident to M , we easily find a cycle C in graph
G. Let us orient all edges of C ”clockwise”, thereby removing them from graph
G. Then each vertex of C will get one additional incoming arc and one addi-
tional outgoing arc, thus becoming a no-problem vertex for the obtained partial
orientation. After removing the edges of C the resulting graph G′ may become
disconnected. But since G was connected, each vertex of G′ is connected with a
(no-problem) vertex of cycle C, and we can apply the algorithm of Proposition
3 providing a positive answer.

Obviously, all parts of the described above orientation algorithm can be im-
plemented in time linear in the number of jobs, which completes the proof of
Lemma 1.
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Theorem 1 and Lemma 1 imply the following

Theorem 2. The mixed shop scheduling problem 〈X |pij = 1, op ≤ 2|Cmax 〉 can
be solved in time O(n log n).

High Multiplicity encoding. Note that the algorithms from the Theorems 1
and 2 are polynomial only under the unary encoding of the input. Under the
more efficient encoding when we have at most Λ job types and we just keep the
number of jobs λk for each type k = 1, . . . , Λ in the binary representation, the
number of jobs n = |J | might not be polynomial in the input size. Fortunately,
there are algorithms for the bipartite edge coloring problem that perform well
in such situations [17]. The algorithm of Gonzalez and Sahni [7] has running
time O(Λ2) and the algorithm of Gabow and Kariv [6] has the running time
O(mΛ logμ) where μ is the maximum job multiplicity.

The algorithm of the Theorem 2 is easy to implement in the time O(Λ). We
just need to notice that if we have at least two parallel edges between vertices
u and v in the graph G or equivalently at least two identical ”open shop type”
jobs then we could orient them in the opposite directions. Both vertices u and
v become no-problem vertices (machines) after such orientation. Therefore, it is
enough to consider the case when there is a unique job of ”open shop type” for
every pair of machines.

3 Complexity Results for Short Shop Scheduling

In the beginning of the Section we consider mixed shop scheduling problems,
providing the tight complexity classification for those problems. Next we obtain
new complexity results for job shop and open shop scheduling problems. Due to
the space limitation we omit the proofs from this extended abstract.

Theorem 3. The decision problem 〈X ||Cmax ≤ 2 〉, i.e., the problem of decid-
ing whether a given instance of the mixed shop problem has a schedule of length
at most 2 is solvable in linear time.

Theorem 4. The decision problem 〈X |pij = 1, op ≤ 3|Cmax ≤ 3 〉, i.e., the
problem of deciding whether a given instance of the mixed shop scheduling prob-
lem with at most 3 operations per job and unit processing times has a schedule
of length at most 3, is NP-complete.

Theorem 5. The decision problem 〈X |pij ∈ {1, 2}, op ≤ 2|Cmax ≤ 3 〉, i.e.,
the problem of deciding whether a given instance of the mixed shop scheduling
problem with at most 2 operations per job and processing times 1 or 2 has a
schedule of length at most 3, is NP-complete.

Theorem 6 (Williamson et al. [20]). The decision problem 〈J |pij = 1, op ≤
3|Cmax ≤ 4 〉, i.e., the problem of deciding whether a given instance of the job
shop scheduling problem with at most 3 operations per job and unit processing
times has a schedule of length at most 4, is NP-complete.



Complete Complexity Classification of Short Shop Scheduling 235

The matching positive result is obtained by a reduction to the well-known 2SAT
problem.

Theorem 7 (Williamson et al. [20]). The decision problem 〈J ||Cmax ≤ 3 〉
is polynomially solvable.

Theorems 1, 6 and 7 raise a natural question. What is the complexity status
of the job shop scheduling problem with at most two operations per job and
non-unit processing times?

Theorem 8. The decision problem 〈J | pij ∈ {1, 2}, op ≤ 2 |Cmax ≤ 4 〉, i.e.,
the problem of deciding whether a given instance of the job shop problem with at
most 2 operations per job and processing times 1 or 2 has a schedule of length
at most 4, is NP-complete.

Theorem 9 (Williamson et al. [20]). The decision problem 〈O|pij ∈ {1, 2},
op ≤ 3|Cmax ≤ 4 〉, i.e., the problem of deciding whether a given instance of the
open shop problem with at most 3 operations per job and processing times one
or two has a schedule of length at most 4, is NP-complete.

The corresponding positive result is obtained by using an algorithm for weighted
bipartite matching.

Theorem 10 (Williamson et al. [20]). The decision problem 〈O||Cmax ≤ 3 〉
is polynomially solvable.

The following theorem is a refinement of the above negative result to a more
restrictive instances with at most two operations per job.

Theorem 11. The decision problem 〈O|pij ∈ {1, 2}, op ≤ 2|Cmax ≤ 4 〉, i.e.,
the problem of deciding whether a given instance of the open shop problem with
at most 2 operations per job and processing times one or two has a schedule of
length at most 4, is NP-complete.

4 Conclusion

In this paper we provided a complete complexity classification of the decision
problems for job shop, open shop and mixed shop scheduling models with respect
to different combinations of joint constraints on problem parameters, such as:
the maximum number of operations per job, the maximum processing time of
an operation, and the upper bound on schedule length. We established that the
family of subproblems has a basis system consisting of ten subproblems, five of
which are polynomially solvable and another five are NP-complete.

The natural question is to extend our classification to additional problem pa-
rameters, such as the maximum number of operations per machine, the number
of machines, and the number of jobs.

It would be also of interest to obtain a similar problem classification for the
preemptive shop scheduling problems. The most difficult problem is to under-
stand the preemptive mixed shop scheduling case, since we could have optimal
schedules with preemptions in non-integral time moments for very simple in-
stances of this problem.
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Abstract. It is shown that the compressed word problem for an HNN-
extension 〈H, t | t−1at = ϕ(a)(a ∈ A)〉 with A finite is polynomial time
Turing-reducible to the compressed word problem for the base group H .
An analogous result for amalgamated free products is shown as well.

1 Introduction

Since it was introduced by Dehn in 1910, the word problem for groups has
emerged to a fundamental computational problem linking group theory, topol-
ogy, mathematical logic, and computer science. The word problem for a finitely
generated groupG asks, whether a given word over the generators ofG represents
the identity of G, see Section 2 for more details. Dehn proved the decidability
of the word problem for surface groups. On the other hand, 50 years after the
appearance of Dehn’s work, Novikov and independently Boone proved the exis-
tence of a finitely presented group with undecidable word problem, see [11] for
references. However, many natural classes of groups with decidable word prob-
lem are known, as for instance finitely generated linear groups, automatic groups
and one-relator groups. With the rise of computational complexity theory, also
the complexity of the word problem became an active research area. This devel-
opment has gained further attention by potential applications of combinatorial
group theory for secure cryptographic systems [12].

In order to prove upper bounds on the complexity of the word problem for
a group G, a “compressed” variant of the word problem for G was introduced
in [7,8,15]. In the compressed word problem for G, the input word over the gen-
erators is not given explicitly but succinctly via a straight-line program (SLP
for short). This is a context free grammar that generates exactly one word, see
Section 2. Since the length of this word may grow exponentially with the size
(number of productions) of the SLP, SLPs can be seen indeed as a succinct string
representation. SLPs turned out to be a very flexible compressed representation
of strings, which are well suited for studying algorithms for compressed data. In
[8,15] it was shown that the word problem for the automorphism group Aut(G)
of G can be reduced in polynomial time to the compressed word problem for G.
In [7], it was shown that the compressed word problem for a finitely generated
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free group F can be solved in polynomial time. Hence, the word problem for
Aut(F ) turned out to be solvable in polynomial time [15], which solved an open
problem from [6]. In [8], this result was also generalized to graph groups (also
known as right-angled Artin groups).

In this paper, we prove a transfer theorem for the compressed word problem
of HNN-extensions [3]. For a base group H , two isomorphic subgroups A,B ≤ H ,
and an isomorphism ϕ : A → B, the corresponding HNN-extension is the group

G = 〈H, t | t−1at = ϕ(a) (a ∈ A)〉. (1)

Intuitively, it is obtained by adding to H a new generator t (the stable letter) in
such a way that conjugation of A by t realizes ϕ. The subgroups A and B are also
called the associated subgroups. A related operation is that of the amalgamated
free product of two groups H1 and H2 with isomorphic subgroups A1 ≤ H1,
A2 ≤ H2 and an isomorphism ϕ : A1 → A2. The corresponding amalgamated
free product is the group 〈H1∗H2 | a = ϕ(a) (a ∈ A1)〉. Intuitively, it results from
the free product H1 ∗H2 by identifying every element a ∈ A1 with ϕ(a) ∈ A2.
The subgroups A1 and A2 are also called the amalgamated subgroups.

HNN-extensions were introduced by Higman, Neumann, and Neumann in 1949
[3]. They proved that H embeds into the group G from (1). Modern proofs of
the above mentioned Novikov-Boone theorem use HNN-extensions as the main
tool for constructing finitely presented groups with an undecidable word problem
[11]. In particular, arbitrary HNN-extensions do not preserve good algorithmic
properties of groups like decidability of the word problem. In this paper, we
restrict to HNN-extensions (resp. amalgamated free products) with finite asso-
ciated (resp. amalgamated) subgroups, which is an important subcase. Stallings
[16] proved that a group has more than one end if and only if it is either an
HNN-extension with finite associated subgroups or an amalgamated free prod-
uct with finite amalgamated subgroups. Moreover, a group is virtually-free (i.e.,
has a free subgroup of finite index) if and only if it can be built up from finite
groups using amalgamated free products with finite amalgamated subgroups and
HNN-extensions with finite associated subgroups [2].

It is not hard to see that the word problem for an HNN-extension (1) with A
finite can be reduced in polynomial time to the word problem of the base group
H . The main result of this paper extends this transfer theorem to the compressed
setting: the compressed word problem for (1) with A finite can be reduced in poly-
nomial time to the compressed word problem for H . In fact, we prove a slightly
more general result, which deals with HNN-extensions with several stable letters
t1, . . . , tn, where the number n is part of the input. For each stable letter ti the
input contains a partial isomorphism ϕi from the fixed finite subgroup A ≤ H to
the fixed finite subgroup B ≤ H and we consider the multiple HNN-extension
G = 〈H, t1, . . . , tn | t−1

i ati = ϕi(a) (1 ≤ i ≤ n, a ∈ dom(ϕi))〉. Our poly-
nomial time reduction consists of a sequence of polynomial time reductions. In
a first step, we reduce the compressed word problem for G to the same problem
for reduced sequences. These are strings (over the generators of H and the sym-
bols t1, t−1

1 , . . . , tn, t
−1
n ) that do not contain a substring of the form t−1

i wti (resp.
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tiwt
−1
i ), where the string w represents a group element from the domain (resp.

range) of ϕi. In a second step, we reduce the number n of stable letters to a con-
stant δ, which only depends on the size of the fixed subgroup A. The main step
of the paper reduces the compressed word problem for reduced sequences over an
HNN-extension with k ≤ δ many stable letters (and associated partial isomor-
phisms from A to B) into two simpler problems: (i) the same problem but with
only k − 1 many stable letters and (ii) the same problem (with at most δ many
stable letters) but with associated subgroups that are strictly smaller than A. By
iterating this procedure, we arrive after a constant number of iterations (where
each iteration is a polynomial time reduction) at a compressed word problem for
which we directly know the existence of a polynomial time reduction to the com-
pressed word problem for the base group H . Since the composition of a constant
number of polynomial time reductions is again a polynomial time reduction, our
main result follows.

The main reduction step in our algorithm uses techniques similar to those
from [9], where a transfer theorem for solving equations over HNN-extensions
with finite associated subgroups was shown.

From the close relationship of HNN-extensions with amalgamated free prod-
ucts, a polynomial time reduction from the compressed problem for an amal-
gamated free product 〈H1 ∗ H2 | a = ϕ(a) (a ∈ A1)〉 (with A1 finite) to the
compressed word problems of H1 and H2 is deduced in the final Section 4. This
result generalizes a corresponding result for free products from [8].

A full version of this paper can be found at [4].

2 Preliminaries

Groups and the word problem. For background in combinatorial group
theory see [11]. For a group G and two elements x, y ∈ G we denote with xy =
y−1xy the conjugation of x by y. Let G be a finitely generated group and let Σ
be a finite group generating set for G. Hence, Σ±1 = Σ ∪Σ−1 is a finite monoid
generating set for G and there exists a canonical monoid homomorphism h :
(Σ±1)∗ → G, which maps a word w ∈ (Σ±1)∗ to the group element represented
by w. For u, v ∈ (Σ±1)∗ we will also say that u = v in G in case h(u) = h(v).
The word problem for G w.r.t. Σ is the following decision problem:

INPUT: A word w ∈ (Σ±1)∗.
QUESTION: w = 1 in G?

It is well known that if Γ is another finite generating set for G, then the word
problem for G w.r.t. Σ is logspace many-one reducible to the word problem for
G w.r.t. Γ . This justifies one to speak just of the word problem for the group G.

The free group F (Σ) generated by Σ can be defined as the quotient monoid
F (Σ) = (Σ±1)∗/{aa−1 = ε | a ∈ Σ±1}, where ε denotes the empty word. A
group presentation is a pair (Σ,R), where Σ is an alphabet of symbols and R is
a set of relations of the form u = v, where u, v ∈ (Σ±1)∗. The group defined by
this presentation is denoted by 〈Σ | R〉. It is defined as the quotient F (Σ)/N(R),
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whereN(R) is the smallest normal subgroup of the free group F (Σ) that contains
all elements uv−1 with (u = v) ∈ R. In particular F (Σ) = 〈Σ | ∅〉. Of course,
one can assume that all relations are of the form r = 1. In fact, usually the set
of relations is given by a set of relators R ⊆ (Σ±1)∗, which corresponds to the
set {r = 1 | r ∈ R} of relations.

The free product of two groups G1 and G2 is denoted by G1 ∗ G2. If Gi '
〈Σi | Ri〉 for i ∈ {1, 2} with Σ1 ∩Σ2 = ∅, then G1 ∗G2 ' 〈Σ1 ∪Σ2 | R1 ∪R2〉.

Straight-line programs. We are using straight-line programs as a compressed
representation of strings with reoccuring subpatterns [14]. A straight-line pro-
gram (SLP) over the alphabet Γ is a context free grammar A = (V, Γ, S, P ),
where V is the set of nonterminals, Γ is the set of terminals, S ∈ V is the initial
nonterminal, and P ⊆ V × (V ∪ Γ )∗ is the set of productions such that (i) for
every X ∈ V there is exactly one α ∈ (V ∪ Γ )∗ with (X,α) ∈ P and (ii) there
is no cycle in the relation {(X,Y ) ∈ V × V | ∃α : (X,α) ∈ P, Y occurs in α}.
A production (X,α) is also written as X → α. The language generated by the
SLP A contains exactly one word val(A). Moreover, every nonterminal X ∈ V
generates exactly one word that is denoted by val(A, X), or briefly val(X), if A
is clear from the context. The size of A is |A| =

∑
(X,α)∈P |α|. It can be seen

easily that an SLP can be transformed in polynomial time into an SLP in Chom-
sky normal form, which means that all productions have the form A → BC or
A → a for A,B,C ∈ V and a ∈ Γ .

Let G be a finitely generated group and Σ a finite generating set for G. The
compressed word problem for G w.r.t. Σ is the following decision problem:

INPUT: An SLP A over the terminal alphabet Σ±1.
OUTPUT: Does val(A) = 1 hold in G?

In this problem, the input size is |A|. As for the ordinary word problem, the
complexity of the compressed word problem does not depend on the chosen
generating set. This allows one to speak of the compressed word problem for the
group G. The compressed word problem for G is also denoted by CWP(G).

Polynomial time Turing-reductions. For two computational problems A
and B, we write A ≤P

T B if A is polynomial time Turing-reducible to B. This
means that A can be decided by a deterministic polynomial time Turing-machine
that uses B as an oracle. Clearly, ≤P

T is transitive, and A ≤P
T B ∈ P implies

A ∈ P. More generally, if A,B1, . . . , Bn are computational problems, then we
write A ≤P

T {B1, . . . , Bn} if A ≤P
T

⋃n
i=1({i} × Bi) (the set

⋃n
i=1({i} × Bi) is

basically the disjoint union of the Bi with every element from Bi marked by i).

HNN-extensions. Let H = 〈Σ | R〉 be a base group with isomorphic subgroups
Ai, Bi ≤ H (1 ≤ i ≤ n) and isomorphisms ϕi : Ai → Bi. Let h : (Σ±1)∗ → H
be the canonical morphism, which maps a word w ∈ (Σ±1)∗ to the element of
H it represents. We consider the HNN-extension

G = 〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ Ai)〉. (2)
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This means that G = 〈Σ ∪ {t1, . . . , tn} | R ∪ {ati = ϕi(a) | 1 ≤ i ≤ n, a ∈ Ai}〉.
It is known that the base group H naturally embeds into G [3]. In this paper,
we will be only concerned with the case that all groups A1, . . . , An are finite and
that Σ is finite. In this situation, we may assume that

⋃n
i=1(Ai ∪Bi) ⊆ Σ. We

say that Ai and Bi are associated subgroups in the HNN-extension G. For the
following, the notations Ai(+1) = Ai and Ai(−1) = Bi are useful. Note that
ϕα

i : Ai(α) → Ai(−α) for α ∈ {+1,−1}.
A word u ∈ (Σ±1 ∪ {t1, t−1

1 , . . . , tn, t
−1
n })∗ is reduced if u does not contain

a factor of the form t−α
i wtαi for α ∈ {1,−1}, w ∈ (Σ±1)∗ and h(w) ∈ Ai(α).

With Red(H,ϕ1, . . . , ϕn) we denote the set of all reduced words. For a word
u ∈ (Σ±1 ∪ {t1, t−1

1 , . . . , tn, t
−1
n })∗ let us denote with πt(u) the projection of u

to the alphabet {t1, t−1
1 , . . . , tn, t

−1
n }. The following Lemma provides a necessary

and sufficient condition for equality of reduced strings in the group (2) [10]:

Lemma 2.1. Let u = u0t
α1
i1
u1 · · · tα	

i	
u� and v = v0t

β1
j1
v1 · · · tβm

jm
vm be reduced

words with u0, . . . , u�, v0, . . . , vm ∈ (Σ±1)∗, α1, . . . , α�, β1, . . . , βm ∈ {1,−1},
and i1, . . . , i�, j1, . . . , jm ∈ {1, . . . , n}. Then u = v in the HNN-extension G from
(2) if and only if the following hold:

(a) πt(u) = πt(v) (i.e., � = m, ik = jk, and αk = βk for 1 ≤ k ≤ �)
(b) there exist c1, . . . , c2m ∈

⋃n
k=1(Ak ∪Bk) such that:

– ukc2k+1 = c2kvk in H for 0 ≤ k ≤ � (here we set c0 = c2�+1 = 1)
– c2k−1 ∈ Aik

(αk) and c2k = ϕαk
ik

(c2k−1) ∈ Aik
(−αk) for 1 ≤ k ≤ �.

Condition (b) of the lemma can be visualized by a diagram of the following form
(also called a Van Kampen diagram, see [11] for more details), where � = m = 4.
Light-shaded (resp. dark-shaded) faces represent relations in H (resp. relations
of the form ctαi = tαi ϕ

α
i (c) with c ∈ Ai(α)).

u0

tα1
i1

u1
tα2
i2 u2 tα3

i3 u3 tα4
i4

u4

v0
tα1
i1 v1 tα2

i2
v2 tα3

i3

v3 tα4
i4

v4

c1 c2 c3 c4 c5 c6 c7 c8

Some simple compressed word problems. Plandowski [13] has shown that
for two SLPs A and B it can be checked in polynomial time whether val(A) =
val(B). In other words: the compressed word problem for a free monoid can be
solved in polynomial time. In [7], this result was extended to free groups. A
further generalization to free products G1 ∗G2 was shown in [8]:

Theorem 2.2. CWP(G1 ∗G2) ≤P
T {CWP(G1),CWP(G2)}.

For our reduction of the compressed word problem of an HNN-extension to the
compressed word problem of the base group, we need the special case that in
(2) we have H = A1 = · · · = An = B1 = · · · = Bn (in particular, H is finite).
In this case, we can even assume that the finite group H (represented by its
multiplication table) is part of the input:
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Lemma 2.3. The following problem can be solved in polynomial time:

INPUT: A finite group H, automorphisms ϕi : H → H (1 ≤ i ≤ n), and an
SLP A over the alphabet H ∪ {t1, t−1

1 , . . . tn, t
−1
n }.

QUESTION: val(A) = 1 in 〈H, t1, . . . , tn | hti = ϕi(h) (1 ≤ i ≤ n, h ∈ H)〉?

Proof. Let s ∈ (H ∪ {t1, t−1
1 , . . . tn, t

−1
n })∗. From the defining equations of the

group G = 〈H, t1, . . . , tn | hti = ϕi(h) (1 ≤ i ≤ n, h ∈ H)〉 it follows that there
exists a unique h ∈ H with s = πt(s)h in G. Hence, s = 1 in G if and only if
πt(s) = 1 in the free group F (t1, . . . , tn) and h = 1 in H .

Now, let A be an SLP over the alphabet H ∪ {t1, t−1
1 , . . . tn, t

−1
n }. W.l.o.g.

assume that A is in Chomsky normal form. It is straightforward to compute
an SLP for the projection πt(val(A)). Since by Theorem 2.2 the compressed
word problem for the free group F (t1, . . . , tn) can be solved in polynomial time,
it suffices to compute for every nonterminal A of A the unique hA ∈ H with
val(A) = πt(val(A))hA in G. We compute the elements hA bottom up. The case
that the right-hand side for A is a terminal symbol from H ∪{t1, t−1

1 , . . . tn, t
−1
n }

is clear. Hence, assume that A → BC is a production of A and assume that
hB, hC ∈ H are already computed. Hence, inG we have val(A) = val(B)val(C) =
πt(val(B))hBπt(val(C))hC . Thus, it suffices to compute the unique h ∈ H with
hBπt(val(C)) = πt(val(C))h in G. Note that if πt(val(C)) = tα1

i1
tα2
i2

· · · tαn

in
, then

h = ϕαn

in
(· · ·ϕα2

i2
(ϕα1

i1
(hB)) · · · ) = (ϕα1

i1
◦ · · · ◦ ϕαn

in
)(hB).

The automorphism f = ϕα1
i1

◦ · · · ◦ ϕαn

in
can be easily computed from an SLP

C for the string πt(val(C)) by replacing in C the terminal symbol ti (resp. t−1
i )

by ϕi (resp. ϕ−1
i ). This allows to compute f bottom-up and then to compute

f(hB). "#

Note that the group 〈H, t1, . . . , tn | hti = ϕi(h) (1 ≤ i ≤ n, h ∈ H)〉 is the
semidirect product H �ϕ F , where F = F (t1, . . . , tn) is the free group generated
by t1, . . . , tn and the homomorphism ϕ : F → Aut(H) is defined by ϕ(ti) = ϕi.

3 Compressed Word Problem of an HNN-Extension

In this section we show that the compressed word problem for an HNN-extension
of the form (1) is polynomial time Turing-reducible to the compressed word
problem for H . In fact, we prove the existence of such a reduction for a slightly
more general problem, which we introduce below.

For the further consideration, let us fix the group H together with the finite
subgroups A and B. Let Σ be a finite generating set for H . These data are
fixed, i.e., they will not belong to the input of computational problems. In the
following, when writing down a multiple HNN-extension

〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉, (3)

we allow implicitly that every ϕi is only partially defined on A. Thus, (3) is in
fact an abbreviation for 〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ dom(ϕi))〉.
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Note that there is only a fixed number of partial isomorphisms from A to B, but
we allow ϕi = ϕj for i �= j in (3).

Let us introduce several restrictions and extensions of CWP(G). Our most
general problem is the following computational problem UCWP(H,A,B) (the
letter “U” stands for “uniform”, meaning that a list of partial isomorphisms
from A to B is part of the input):

INPUT: Partial isomorphisms ϕi : A → B (1 ≤ i ≤ n) and an SLP A over the
alphabet Σ±1 ∪ {t1, t−1

1 , . . . , tn, t
−1
n }.

QUESTION: val(A) = 1 in 〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉?
The restriction of this problem UCWP(H,A,B) to reduced input strings is de-
noted by RUCWP(H,A,B). It is formally defined as the following problem:

INPUT: Partial isomorphisms ϕi : A → B (1 ≤ i ≤ n) and SLPs A,B over the al-
phabetΣ±1∪{t1, t−1

1 , . . . , tn, t
−1
n } such that val(A), val(B) ∈ Red(H,ϕ1, . . . , ϕn).

QUESTION: val(A) = val(B) in 〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉?
Let us now consider a fixed list of partial isomorphisms ϕ1, . . . , ϕn : A → B.
Then RCWP(H,A,B, ϕ1, . . . , ϕn) is the following computational problem:

INPUT: Two SLPs A and B over the alphabet Σ±1 ∪ {t1, t−1
1 , . . . , tn, t

−1
n } such

that val(A), val(B) ∈ Red(H,ϕ1, . . . , ϕn).
QUESTION: val(A) = val(B) in 〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉?
Our main result is:

Theorem 3.1. UCWP(H,A,B) ≤T
P CWP(H).

The rest of Section 3 sketches the main steps of our proof of Theorem 3.1. First,
we state that we may restrict ourselves to SLPs that evaluate to reduced strings:

Lemma 3.2. UCWP(H,A,B) ≤T
P RUCWP(H,A,B). More precisely, there is

a polynomial time Turing-reduction from UCWP(H,A,B) to RUCWP(H,A,B)
that on input (ϕ1, . . . , ϕn,A) only asks RUCWP(H,A,B)-queries of the form
(ϕ1, . . . , ϕn,A

′,B′) (thus, the list of partial isomorphisms is not changed).

Lemma 3.3. Let ϕ1, . . . , ϕn : A → B be fixed partial isomorphisms. Then
CWP(〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉) is polynomial time
Turing-reducible to RCWP(H,A,B, ϕ1, . . . , ϕn).

Roughly, the strategy in the proofs of Lemma 3.2 and Lemma 3.3 is to transform
bottom up the rules of the input SLP A into new rules (for the same set of
nonterminals) such that the new rules generate from a nonterminal A a reduced
string, which is equivalent in the HNN-extension to the string that is generated
from A in the original SLP A. The same technique was applied in [7] in order
to compute an SLP for irreducible normal form in free group for a given SLP-
compressed string.

In a second step we show that the number of different stable letters can be
reduced to a constant. For this, it is important to note that the associated
subgroups A,B ≤ H do not belong to the input; so their size is a fixed constant.
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Fix the constant δ = 2 · |A|! · 2|A|. Note that the number of HNN-extensions
of the form 〈H, t1, . . . , tk | ati = ψi(a) (1 ≤ i ≤ k, a ∈ A)〉 with k ≤ δ is
constant. The following lemma says that RUCWP(H,A,B) can be reduced in
polynomial time to one of the problems RCWP(H,A,B, ψ1, . . . , ψk). Moreover,
we can determine in polynomial time, which of these problems arises.

Lemma 3.4. There exists a polynomial time algorithm for the following:

INPUT: Partial isomorphisms ϕ1, . . . , ϕn : A → B and SLPs A,B over the al-
phabet Σ±1∪{t1, t−1

1 , . . . , tn, t
−1
n } such that val(A), val(B) ∈ Red(H,ϕ1, . . . , ϕn).

OUTPUT: Partial isomorphisms ψ1, . . . , ψk : A → B where k ≤ δ and SLPs A′,
B′ over the alphabet Σ±1 ∪ {t1, t−1

1 , . . . , tk, t
−1
k } such that:

– For every 1 ≤ i ≤ k there exists 1 ≤ j ≤ n with ψi = ϕj.
– val(A′), val(B′) ∈ Red(H,ψ1, . . . , ψk)
– val(A) = val(B) in 〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉 if and

only if val(A′) = val(B′) in 〈H, t1, . . . , tk | ati = ψi(a) (1 ≤ i ≤ k, a ∈ A)〉.

Proof. Fix an input (ϕ1, . . . , ϕn,A,B) for the problem RUCWP(H,A,B). In par-
ticular, val(A), val(B) ∈ Red(H,ϕ1, . . . , ϕn). Define the function τ : {1, . . . , n} →
{1, . . . , n} by

τ(i) = min{k | ϕk = ϕi}.
This mapping can be easily computed in polynomial time from the sequence
ϕ1, . . . , ϕn. Assume w.l.o.g. that ran(τ) = {1, . . . , γ} for some γ ≤ n. Note that
γ ≤ |A|! · 2|A| = δ

2 . For every ti (1 ≤ i ≤ γ) we take two stable letters ti,0 and
ti,1. Hence, the total number of stable letters is at most δ. Moreover, we define
a sequential transducer T which, reading as input the word u0t

α1
i1
u1 · · · tαm

im
um

(with u0, . . . , um ∈ (Σ±1)+ and 1 ≤ i1, . . . , im ≤ n) returns

T (w) = u0 t
α1
τ(i1),1 u1 t

α2
τ(i2),0

u2 t
α3
τ(i3),1

u3 · · · tαm

τ(im),m mod 2 um.

Finally, we define the HNN-extension

G′ = 〈H, t1,0, t1,1, . . . , tγ,0, tγ,1 | ati,k = ϕi(a) (1 ≤ i ≤ γ, k ∈ {0, 1}, a ∈ A)〉.

This HNN-extension has 2γ ≤ δ many stable letters; it is the HNN-extension
〈H, t1, . . . , tk | ati = ψi(a) (1 ≤ i ≤ k, a ∈ A)〉 from the lemma.

Claim. Let u, v ∈ Red(H,ϕ1, . . . , ϕn) be reduced. Then also T (u) and T (v) are
reduced. Moreover, the following are equivalent:

(a) u = v in 〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉
(b) T (u) = T (v) in the HNN-extension G′ and πt(u) = πt(v).

Proof of the claim. Let u = u0t
α1
i1
u1 · · · tα	

i	
u� and v = v0t

β1
j1
v1 · · · tβm

jm
vm. The first

statement is obvious due to the fact that T (u) does not contain a subword of
the form tαi,kwt

β
j,k for k ∈ {0, 1}, and similarly for T (v).

For (a) ⇒ (b) note that by Lemma 2.1, u = v in 〈H, t1, . . . , tn | ati =
ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉 implies πt(u) = πt(v) (i.e. � = m, α1 = β1, . . . , αm =
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βm, i1 = j1, . . . , im = jm), and that there exists a Van Kampen diagram of the
following form:

(†)
u0

tα1
i1

u1
tα2
i2 u2 tαm

im

um

v0
tα1
i1 v1 tα2

i2
v2 tαm

im

vm

c1 c2 c3 c4 c5 · · · c2m−1 c2m

The defining equations of G′ imply that the following is a valid Van Kampen
diagram in G′:

(‡)
u0

tα1
τ(i1),1 u1

tα2
τ(i2),0 u2 tαm

τ(im),m mod 2

um

v0

tα1
τ(i1),1

v1 tα2
τ(i2),0

v2 tαm

τ(im),m mod 2

vm

c1 c2 c3 c4 c5 · · · c2m−1 c2m

Hence, T (u) = T (v) in G′.
For (b) ⇒ (a) note that we have already seen that T (u) and T (v) are reduced.

Hence, T (u) = T (v) in G′ together with πt(u) = πt(v) implies that there exists
a Van Kampen diagram of the form (‡). Again, we can replace the dark-shaded
t-faces by the corresponding t-faces of G in order to obtain a diagram of the
form (†). This proofs the claim.

By the previous claim, T (val(A)) and T (val(B)) are reduced. Moreover, by [1],
SLPs A′ and B′ for these strings can be computed in polynomial time from the
SLPS A and B, respectively. In case πt(val(A)) �= πt(val(B)) we choose these
SLPs such that e.g. val(A′) = t1 and val(B′) = t−1

1 . Hence, val(A′) = val(B′) in
G′ if and only if val(A) = val(B) in 〈H, t1, . . . , tn | ati = ϕi(a)(1 ≤ i ≤ n, a ∈ A)〉.
This proves the lemma. "#

Due to Lemma 3.4 it suffices to concentrate our effort on problems of the form
RCWP(H,A,B, ϕ1, . . . , ϕk), where k ≤ δ. We have to check whether for two
given SLP-compressed reduced strings u and v conditions (a) and (b) from
Lemma 2.1 are satisfied. Condition (a) can be easily checked by computing SLPs
for πt(u) and πt(v) and then checking for equality using Plandowski’s algorithm
[13]. The whole difficulty lies in checking condition (b) from Lemma 2.1. Let

G0 = 〈H, t1, . . . , tk | ati = ϕi(a) (1 ≤ i ≤ k, a ∈ A)〉 (4)

and let us choose i ∈ {1, . . . , k} such that |dom(ϕi)| is maximal. W.l.o.g. assume
that i = 1. Let dom(ϕ1) = A1 ≤ A and ran(ϕ1) = B1 ≤ B. We write t for t1 in
the following and define Γ = Σ ∪ {t2, . . . , tk}. We can write our HNN-extension
G0 from (4) as
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G0 = 〈K, t | at = ϕ1(a) (a ∈ A1)〉, where (5)
K = 〈H, t2, . . . , tk | ati = ϕi(a) (2 ≤ i ≤ k, a ∈ A)〉. (6)

The latter group K is generated by Γ . The main reduction step in our algorithm
is expressed in the following lemma:

Lemma 3.5. RCWP(H,A,B, ϕ1, . . . , ϕk) is polynomial time Turing-reducible
to the problems RCWP(H,A,B, ϕ2, . . . , ϕk) and RUCWP(A1, A1, A1).

Let us briefly sketch the proof of Lemma 3.5: Let (A,B) be an input for the
problem RCWP(H,A,B, ϕ1, . . . , ϕk) with k ≤ δ. Thus, A and B are SLPs over
the alphabet Σ±1 ∪ {t1, t−1

1 , . . . , tk, t
−1
k } = Γ±1 ∪ {t, t−1} with val(A), val(B) ∈

Red(H,ϕ1, . . . , ϕk). Hence, we also have val(A), val(B) ∈ Red(K,ϕ1). W.l.o.g.
we may assume that πt(val(A)) = πt(val(B)). This property can be checked in
polynomial time using Plandowski’s algorithm [13], and if it is not satisfied then
we have val(A) �= val(B) in G0.

In a first step, we modify the SLPs A and B in such a way that in a first step
they generate strings of the form X0t

α1X1 · · · tαmXm and Y0t
α1Y1 · · · tαmYm, re-

spectively. Here the Xi and Yj are nonterminals that generate in a second phase
strings over the alphabet Γ±1. This is possible in polynomial time but requires
some work. Then, we transform our RCWP(H,A,B, ϕ1, . . . , ϕk)-instance (A,B)
into a compressed word problem for a new group G1 that is generated by the
stable letter t and the symbols X1, . . . , Xm, Y1, . . . , Ym. Here, the idea is to ab-
stract as far as possible from the concrete structure of the original base group
K. In some sense, we only keep those K-relations that are necessary to prove
(or disprove) that val(A) = val(B) in the group G0. These K-relations are trans-
lated into relations on the “generic” symbols X1, . . . , Xm, Y1, . . . , Ym. In order
to compute these relations, we need oracle access to CWP(K) or alternatively
(by Lemma 3.3) to RCWP(H,A,B, ϕ2, . . . , ϕk). Using Tietze transformations
[11], our new group G1 is finally transformed into an HNN-extension with base
group A1 — this gives us the RUCWP(A1, A1, A1)-instance in Lemma 3.5.

We now apply Lemma 3.4 to the problem RUCWP(A1, A1, A1) (one of the
two target problems in Lemma 3.5). An input for this problem can be reduced
in polynomial time to an instance of a problem RCWP(A1, A1, A1, ψ1, . . . , ψk),
where ψ1, . . . , ψk : A1 → A1 are partial automorphisms and k ≤ δ (we have
k ≤ 2|A1|! · 2|A1| ≤ 2|A|! · 2|A| = δ). Hence, we are faced with an HNN-extension
of the form G2 = 〈A1, t1, . . . , tk | ati = ψi(a) (1 ≤ i ≤ k, a ∈ dom(ψi))〉.
Next, we separate the (constantly many) stable letters t1, . . . , tk that occur in
the RCWP(A1, A1, A1, ψ1, . . . , ψk)-instance into two sets: {t1, . . . , tk} = S1 ∪ S2
where S1 = {ti | dom(ψi) = A1} and S2 = {t1, . . . , tk}\S1. W.l.o.g. assume that
S2 = {t1, . . . , t�}. Then we can write our HNN-extension G2 as

G2 = 〈H ′, t1, . . . , t� | ati = ψi(a) (1 ≤ i ≤ �, a ∈ dom(ψi)〉, (7)

where H ′ = 〈A1, t�+1, . . . , tk | ati = ψi(a) (� + 1 ≤ i ≤ k, a ∈ A1)〉. Note
that |dom(ψi)| < |A1| for every 1 ≤ i ≤ � and that A1 = dom(ψi) for every
�+1 ≤ i ≤ k. By Lemma 2.3, CWP(H ′) can be solved in polynomial time; H ′ is
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in fact the semidirect product A1 �ϕF (t�+1, . . . , tk), where ϕ : F (t�+1, . . . , tk) →
Aut(A1) is defined by ϕ(ti) = ψi. Recall also that A1 was chosen to be of
maximal cardinality among the domains of all partial isomorphisms ϕ1, . . . , ϕk.
The following proposition summarizes what we have shown so far:

Proposition 3.6. Let ϕ1, . . . , ϕk : A → B be partial isomorphisms, where k ≤
δ, A1 = dom(ϕ1), and w.l.o.g |A1| ≥ |dom(ϕi)| for 1 ≤ i ≤ k. From an instance
(A,B) of the problem RCWP(H,A,B, ϕ1, . . . , ϕk) we can compute in polynomial
time with oracle access to the problem RCWP(H,A,B, ϕ2, . . . , ϕk)

(1) a semidirect product A1 �ϕ F , where F is a free group of rank at most δ,
(2) partial automorphisms ψ1, . . . , ψ� : A1 → A1 with � ≤ δ and |dom(ψi)| <

|A1| for all 1 ≤ i ≤ �, and
(3) an RCWP(A1�ϕF,A1, A1, ψ1, . . . , ψ�)-instance, which is positive if and only

if the initial RCWP(H,A,B, ϕ1, . . . , ϕk)-instance (A,B) is positive.

Note that in (1) there are only constantly many semidirect products of the
form A1 �ϕ F and that CWP(A1 �ϕ F ) can be solved in polynomial time by
Lemma 2.3. We are now ready to prove the main theorem of this paper.

Proof of Theorem 3.1. By Lemma 3.2 and Lemma 3.4 it suffices to solve a prob-
lem RCWP(H,A,B, ϕ1, . . . , ϕδ) in polynomial time. For this we apply Proposi-
tion 3.6 repeatedly. We obtain a computation tree, where the root is labeled with
an RCWP(H,A,B, ϕ1, . . . , ϕδ)-instance and every other node is labeled with an
instance of a problem RCWP(C�ϕF,C,C, θ1, . . . , θp), where F is a free group of
rank at most δ, C is a subgroup of our finite group A, and p ≤ δ. The number of
these problems is bounded by some fixed constant. Since along each edge in the
tree, either the number of stable letters reduces by one, or the maximal size of an
associated subgroup becomes strictly smaller, the height of the tree is bounded
by a constant (it is at most |A| · δ = 2 · |A| · |A|! · 2|A|). Moreover, along each
tree edge, the size of a problem instance can grow only polynomially. Hence,
each problem instance that appears in the computation tree has polynomial size
w.r.t. the input size. Hence, the total running time is bounded polynomially. "#

4 Amalgamated Free Products

Let H1 and H2 be two finitely generated groups. Let A1 ≤ H1 and A2 ≤ H2 be
finite and ϕ : A1 $→ A2 an isomorphism. The amalgamated free product of H1
and H2, amalgamating the subgroups A1 and A2 by the isomorphism ϕ, is the
group G = 〈H1 ∗H2 | a = ϕ(a) (a ∈ A1)〉.

Theorem 4.1. Let G = 〈H1 ∗H2 | a = ϕ(a) (a ∈ A1)〉 be an amalgamated free
product with A1 finite. Then CWP(G) ≤P

T {CWP(H1),CWP(H2)}.

Proof. It is well known [11, Theorem 2.6, p. 187] that G can be embedded into
the HNN-extension G′ = 〈H1∗H2, t | at = ϕ(a) (a ∈ A1)〉 by the homomorphism
Φ with Φ(x) = t−1xt for x ∈ H1 and Φ(x) = x for x ∈ H2. Given an SLP A we
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can easily compute an SLP B with val(B) = Φ(val(A)). We obtain: val(A) = 1
in G ⇐⇒ Φ(val(A)) = 1 in Φ(G) ⇐⇒ val(B) = 1 in G′. By Theorem 3.1 and
Theorem 2.2, CWP(G′) can be solved in polynomial time with oracle access to
CWP(H1) and CWP(H2). "#

5 Open Problems

We have shown that the compressed word problem for an HNN-extension with
finite associated subgroups is polynomial time Turing-reducible to the com-
pressed word problem for the base group. Here, the base group and the as-
sociated subgroups are fixed, i.e. are not part of the input. One might also
consider the uniform compressed word problem for HNN-extensions of the form
〈H, t | at = ϕ(a) (a ∈ A)〉, where H is a finite group that is part of the input.
It is not clear, whether this problem can be solved in polynomial time. Finally,
one might also consider the compressed word problem for HNN-extensions of
semigroups [5].
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Abstract. Muchnik’s theorem about simple conditional descriptions
states that for all strings a and b there exists a short program p trans-
forming a to b that has the least possible length and is simple conditional
on b. In this paper we present two new proofs of this theorem. The first
one is based on the on-line matching algorithm for bipartite graphs. The
second one, based on extractors, can be generalized to prove a version of
Muchnik’s theorem for space-bounded Kolmogorov complexity.

1 Muchnik’s Theorem

An. Muchnik [8] has proven the following theorem:

Theorem 1. Let a and b be two binary strings, C (a) < n and C (a|b) < k. Then
there exists a string p such that

• C (a|p, b) = O(log n);
• C (p) ≤ k +O(log n);
• C (p|a) = O(log n).

Here C (u) stands for Kolmogorov complexity of string u (the length of a shortest
program generating u); conditional complexity of u given v (the length of a
shortest program that translates v to u) is denoted by C (u|v), see [5]. The
constants hidden in O(log n) do not depend on n, k, a, b, p.

Informally, this theorem says that there exists a program p that transforms
b to a, has the minimal possible complexity C (a|b) (up to a logarithmic term)
and, moreover, can be easily obtained from a. (The last requirement is crucial,
otherwise the statement becomes a trivial reformulation of the definition of con-
ditional Kolmogorov complexity.)

This theorem is an algorithmic counterpart of Slepian–Wolf theorem [12] in
multisource information theory. Assume that somebody (S) knows b and wants
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to know a. We know a and want to send some message p to S that will allow
S to reconstruct a. How long should be this message? Do we need to know b to
be able to find such a message? Muchnik’s theorem provides a negative answer
to the last question (in a sense: we still need a logarithmic advice). Indeed, the
absolute minimum for a complexity of a piece of information p that together
with b allows S to reconstruct a, is C (a|b). It is easy to see that this minimum
can be achieved (with logarithmic precision) by a string p that has logarithmic
complexity conditional to a and b. But it turns out that in fact b is not needed
and we can provide p that is simple conditional to a and still does the job.

In many cases statements about Kolmogorov complexity have combinato-
rial counterparts (and sometimes it is easy to show the equivalence between
complexity and combinatorial statements). In the present paper we investigate
two different combinatorial objects closely related to Muchnik’s theorem and its
proof.

First (Sect. 2), we define the on-line matching problem for bipartite graphs.
We formulate some combinatorial statement about on-line matchings. This state-
ment (1) easily implies Muchnik’s theorem and (2) can be proven using the same
ideas (slightly modified) that were used by Muchnik in his original proof.

Second (Sect. 3), following [4], we use expanders and their combinatorial prop-
erties. Based on this technique, we give a new proof of Muchnik’s theorem. With
this method we prove a version of this theorem for polynomial space Kolmogorov
complexity and also for some very special version of polynomial time Kolmogorov
complexity.

Due to the lack of space some technical details are omitted. Complete proofs
may be found in the full version of this paper [1].

2 Muchnik’s Theorem and On-Line Matchings

2.1 On-Line Matchings

Consider a bipartite graph with the left part L, the right part R and a set of
edges E ⊂ L × R. Let s be some integer. We are interested in the following
property of the graph:

for any subset L′ of L of size at most s there exists a subset E′ ⊂ E that
performs a bijection between L′ and some R′ ⊂ R.

A necessary and sufficient condition for this property is provided by the well
known Hall theorem: For each set L′ ⊂ L of size t ≤ s the set of all neighbors
of elements of L′ contains at least t elements.

x

This condition is not sufficient for the following on-line
version of matching. We assume that an adversary gives
us elements of the left part L (up to s elements) one by
one. At each step we should provide a counterpart for each
given element x, i.e., to choose some neighbor y ∈ R not
used before. (This choice is final and cannot be changed
later.)
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Providing a matching on-line (when next steps of the adversary are not known
in advance) is a more subtle problem than the usual off-line matching. Now the
Hall criterion cannot be used as a sufficient condition. For example, for the graph
shown on the picture, one can find a matching for each subset of size at most 2
of the left part, but this cannot be done on-line (we are blocked if the adversary
starts with x).

Now we formulate a combinatorial statement about on-line matching and then
show that this property implies Muchnik’s theorem (Sect. 2.2) and prove this
property (Sect. 2.3).

Combinatorial statement about on-line matchings (OM). There exists
a constant c such that for every integers n and k ≤ n there exists a bipartite
graph E ⊂ L×R whose left part L has size 2n, right part R has size 2knc, each
vertex in L has at most nc neighbors in R, and on-line matching is possible up to
size 2k.

(So the size of the on-line matching is close to the size of R up to a polynomial
factor, and the degrees of all L-elements are polynomially bounded.)

2.2 Proof of Muchnik’s Theorem

First we show how (OM) implies Muchnik’s theorem. We may assume without
loss of generality that the length of the string a (instead of its complexity) is
less than n. Indeed, if we replace a by a shortest program that generates a, all
complexities involving a change by only O(log n) term: knowing the shortest
program for a, we can get a without any additional information, and to get a
shortest program for a given a we need only to know C (a) (try all programs
of length C (a) until one of them produces a). There may exist several differ-
ent shortest programs for the word a; we take that one which appears first in
exhaustive search over all programs of length C (a).

Consider the graph E provided by (OM) with parameters n and k. Its left
part L is interpreted as the set of all strings of length less than n; therefore,
a is an element of L. Let us enumerate all strings x of length less than n such
that C (x|b) < k. There exist at most 2k such strings, and a is one of them. The
property (OM) implies that it is possible to find an on-line matching for all these
strings (in the order they appear during the enumeration). Let p be an element
of R that corresponds to a in this matching.

Let us check that p satisfies all the conditions of Muchnik’s theorem. First
of all, note that the graph E can be chosen in such a way that its complexity
is O(log n). Indeed, (OM) guarantees that a graph with the required properties
exist. Given n and k, we can perform an exhaustive search until the first graph
with these properties is found. This graph is a computable function of n and k,
so its complexity does not exceed C (n, k) = O(log n).

If a is given (as well as n and k), then p can be specified by its ordinal number
in the list of a-neighbors. This list contains at most nc elements, so the ordinal
number contains O(log n) bits.
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To specify p without knowing a, we give the ordinal number of p in R, which
is k + O(log n) bits long. (Again n and k are used, but this is another O(log n)
bits.)

To reconstruct a from b and p, we run the enumerating of all strings of lengths
less than n that have conditional complexity (relative to b, which is known) less
than k, and find R-counterparts for them (using (OM)) until p appears. Then a
is the L-counterpart of p in this matching.

Formally speaking, for given n and k we should fix not only a graph G but
also some on-line matching procedure, and use the same procedure both for
constructing p and for reconstructing a from b and p. "#

2.3 On-Line Matchings Exist

It remains to prove the statement (OM). Our proof follows the original Muchnik’s
argument adapted for the combinatorial setting.

First, let us prove a weaker statement when on-line matchings are replaced by
off-line matchings (in this case the statement can be reformulated using Hall’s
criterion).

Off-line version of (OM). There exists a constant c such that for any integers
n and k ≤ n there exists a bipartite graph E ⊂ L×R whose left part L is of size
2n, the right part R is of size 2knc, each vertex in L has at most nc neighbors
in R and for any subset X ⊂ L of size t ≤ 2k the set N(X) of all neighbors of
all elements of X contains at least t elements.

We prove this statement by probabilistic arguments. We choose at random
(uniformly and independently) nc neighbors for each vertex l ∈ L. In this way
we obtain a (random) graph where all vertices in L have degree at most nc (it
can be less, as two independent choices for some vertex may coincide).

We claim that this random graph has the required property with positive
probability. If it does not, there exists a set X ⊂ L of some size t ≤ 2n and a set
Y of size less than t such that all neighbors of all elements of X belong to Y .
For fixed X and Y the probability of this event is bounded by

( 1
nc

)tnc

since
we made tnc independent choices (nc times for each of t elements) and for each
choice the probability to get into Y is at most 1/nc (the set Y covers at most
1/nc fraction of points in R).

To bound the probability of violating the required property of the graph, we
multiply the bound above by the number of pairs X , Y . The set X can be chosen
in at most (2n)t different ways (for each of t elements we have at most 2n choices;
actually the number is smaller since the order of elements does not matter), and
for Y we have at most (2knc)t choices. Further we sum up these bounds for all
t ≤ 2k. Therefore the total bound is

2k∑
t=1

(
1
nc

)tnc

(2n)t (2knc
)t
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This is a geometric series; the sum is less than 1 (which is our goal) if the
base is small. The base is(

1
nc

)nc

(2n)
(
2knc

)
=

2n+k

nc(nc−1)

and c = 2 makes it small enough (it even tends to zero as n → ∞). Off-line
version is proven. "#
Now we have to prove (OM) in its original (on-line) version. Fix a graph E ⊂
L × R that satisfies the conditions for the off-line version (for given n and k).
Now we use the same graph in on-line setting with the following straightforward
(“greedy”) strategy. When a new element x ∈ L arrives, we check if it has
neighbors that are not used yet. If yes, one of these neighbors is chosen to be a
counterpart of x. If not, x is “rejected”.

Before we explain what to do with the rejected elements, let us prove that at
most half of 2k given elements could be rejected. Assume that more than 2k−1

elements are rejected. Then less than 2k−1 elements are served and therefore
less than 2k−1 elements of R are used as counterparts. But all neighbors of all
rejected elements are used (since this is the only reason for rejection), and we get
the contradiction with the condition #N(X) ≥ #X if X is the set of rejected
elements.

Now we need to deal with rejected elements. They are forwarded to the “next
layer” where the new task is to find on-line matching for 2k−1 elements. If we
can do this, then we combine both graphs using the same L and disjoint right
parts R1 and R2. And the elements rejected at the first layer are satisfied at
the second one. In other terms: (n, k) on-line problem is reduced to (n, k) off-
line problem and (n, k − 1) on-line problem. The latter can then be reduced to
(n, k − 1) off-line and (n, k − 2) on-line problems etc.

Finally we get k levels. At each level we serve at least half of the requests and
forwards the remaining ones to the next layer. After k levels of filtering only one
request can be left unserved, so one more layer is enough. (Note that we may
use copies of the same graph on all layers.)

More precisely, we have proven the following statement: Let E ⊂ L × R be
a graph that satisfies the conditions of the off-line version for given n and k.
Replace each element in R by (k+ 1) copies, all connected to the same elements
of L as before. Then the new graph provides on-line matchings up to size 2k.

Note that this construction multiplies the size of R and the degree of vertices
in L by only (k + 1) (a polynomial in n factor). The statement (OM) is proven.

"#

3 Muchnik’s Theorem and Extractors

In this section we present another proof of Muchnik’s theorem based on the
notion of extractors. This technique was first used in a similar situation in [4].
With this technique we prove some versions of Muchnik’s theorem for resource-
bounded Kolmogorov complexity (this result was presented in the Master thesis
of one of the authors [6]).
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3.1 Extractors

Let G be a bipartite graph with N vertices in the left part and M vertices in the
right part. The graph may have multiple edges. Let all vertices of the left part
have the same degree D. Let us fix an integer K > 0 and a real number ε > 0.

Definition 1. A bipartite graph G is a (K, ε)-extractor if for all subsets S of its
left part such that |S| ≥ K and for all subsets Y of the right part the inequality∣∣∣∣E(S, Y )

D · |S| − |Y |
M

∣∣∣∣ < ε (1)

holds, where E(S, Y ) stands for the number of edges between S and Y .

In the sequel we always assume that N , M and D are powers of 2 and use n,
m and d to denote their logarithms. In this case the extractor may be seen as a
function that maps a pair of binary strings of length n = logN (an index of a
vertex on the left) and d = logD (an index of an edge incident to this vertex)
to a binary string of length m = logM (an index of the corresponding vertex on
the right).

The extractor property may be reformulated as follows: consider a uniform
distribution on a set S of left-part vertices. The probability of getting a vertex in
Y by taking a random neighbor of a random vertex in S is equal to E(S, Y )/(D ·
|S|); this probability must be ε-close to |Y |/M , i.e. the probability of getting a
vertex in Y by taking a random vertex in the right part.

It can be proven that (for an extractor graph) a similar property holds not
only for uniform distributions on S, but for all distributions with min-entropy at
least k = logK (this means that no string appears with probability greater than
1/K). That is, an extractor extracts m almost random bits from n quasi-random
bits using d truly random bits. For a good extractor m should be close to k + d
and d should be small. Standard probabilistic argument shows that for all n, k
and ε extractors with near-optimal parameters m and d do exist:

Theorem 2. For all 1 < K ≤ N , M > 0 and ε > 0, there exists an (K, ε)-
extractor with

D =
⌈
max

{
M

K
· ln 2
ε2

,
1
ε2

(
ln
N

K
+ 1
)}⌉

.

In logarithmic scale:

d = log(n− k) + 2 log(1/ε) +O(1) and m = k + d− 2 log(1/ε) −O(1).

The proof may be found in [2], which also proves that these parameters are
optimal up to an additive term O(log(1/ε)).

So far no explicit constructions of optimal extractors have been invented. By
saying the extractor is explicit we mean that there exists a family of extractors for
different parameters n and k, other parameters are computable in time poly(n),
and the extractor itself as a function of two arguments is computable in poly(n)
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time. All known explicit constructions are not optimal in at least one parameter:
they either use too many truly random bits, or not fully extract randomness (i.e.,
m � k + d), or work not for all values of k. In the sequel we use the following
theorem proven in [3]:

Theorem 3. For all 1 < k ≤ n and ε > 1/ poly(n) there exists an explicit
(2k, ε)-extractor for m = k + d and d = O((log n log logn)2).

(For the sake of brevity we use O(log3 n) instead of O((log n log logn)2) in our
theorems.)

3.2 The Proof of Muchnik’s Theorem

Now we show how to prove Muchnik’s theorem using the extractor technique.
Consider an extractor with some N , K, D, M and ε. Let S be a subset of its
left part with less than K vertices. We say that a right-part element is bad for S
if it has more than 2DK/M neighbors in S, and we say that a left-part element
is dangerous in S if all its neighbors are bad for S.

Lemma 1. The number of dangerous elements in S is less than 2εK.

Proof. We may assume without loss of generality that S contains exactly K
elements (the sets of bad and dangerous elements can only increase when S
increases.)

It is immediately clear that the fraction of bad right-part vertices is at most 1/2,
because the degree of a bad vertex is at least twice as large as the average degree.
The extractor property reduces this bound from 1/2 to ε. Indeed, let δ be the
fraction of bad elements in the right part. Then the fraction of edges going to bad
elements (among all edges starting at S) is at least 2δ. Due to the extractor prop-
erty, the difference between these fractions should be less than ε. The inequality
δ < ε follows.

Now we count dangerous elements in S. If their fraction in S exceeds 2ε,
then the fraction of edges going to the bad elements (among all edges leaving S)
exceeds 2ε too. But the fraction of bad vertices is less than ε, and the difference
between two fractions should be at most ε due to the extractor property. "#

Now we present a new proof of Muchnik’s theorem. As we have seen before,
we may assume without loss of generality that the length of a is less than n.
Moreover, we assume that conditional complexity C (a|b) equals k−1 (otherwise
we decrease k) and that k < n (otherwise the theorem is obvious, take p = a).

Consider an extractor with parameters n, k, d = O(log n), m = k and ε =
1/n3; it exists due to Theorem 2. (The choice of ε will become clear later).

There exists an extractor (with given parameters) of complexity 2 logn+O(1).
Indeed, only n and k are needed to describe such an extractor: other parame-
ters are functions of n and k, and we search through all bipartite graphs with
given parameters in some natural order until the first extractor with required
parameters is found. (This search requires a very long time, so this extractor is
not explicit.)
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Now assume that an extractor is fixed. We treat the left part of the extractor
as the set of all binary strings of length less than n (including a), and the right
part as the set of all binary strings of length m = k (we will choose p among
them). Consider the set Sb of all strings in the left part such that their complexity
conditional to b is less than k (a belongs to this set).

We want to apply Lemma 1 to the set Sb and prove that a is not dangerous in
Sb (otherwise it would have too small complexity). So it has a neighbor p that
is not bad for Sb, and this p has the required properties. According to this plan,
let us consider two cases.

Case 1. If a is not dangerous in Sb then it has a neighbor p that is not bad for
Sb. Let us show that p satisfies the claim of the theorem.

Complexity of p is at most k +O(1) because its length is k.
Conditional complexity C (p|a) is logarithmic because p is a neighbor of a in

the extractor and to specify p we need a description of the extractor (2 logn +
O(1) bits) and the ordinal number of p among the neighbors of a (i.e., d =
logD = O(log n) bits).

As p is not bad for Sb, it has less than 2D neighbors in Sb. If b is known,
the set Sb can be algorithmically enumerated; so neighbors of p in Sb can be
enumerated too. Thus, to describe a given p and b, we need only a description of
the extractor and the ordinal number of a in the enumeration of the neighbors
of p in Sb, i.e., O(log n) bits in total.

Case 2. Assume that a is dangerous in Sb. Since the set Sb is enumerable, the sets
of all bad vertices (for Sb) and all dangerous elements in Sb are also enumerable.
Therefore, a can be specified by the string b, the extractor and the ordinal
number of a in the enumeration. This ordinal number consists of k−3 logn+O(1)
bits due to the choice of ε. So, the full description of a given b consists of
k − logn + O(1) bits. This contradicts the assumption that C (a|b) = k − 1.
Thus, the second case is impossible and Muchnik’s theorem is proven. "#

3.3 Several Conditions and Prefix Extractors

In [8] An. Muchnik proved also the following generalization of Theorem 1:

Theorem 4. Let a, b and c be binary strings, and let n, k and l be numbers such
that C (a) < n, C (a|b) < k and C (a|c) < l. Then there exist strings p and q of
length k and l, such that one of them is a prefix of the other and the conditional
complexities C (a|p, b), C (a|q, c), C (p|a), C (q|a) are of order O(log n).

This theorem is quite non-trivial: indeed, it says that information about a that
is missing in b and c can be represented by two strings such that one is a prefix
of the other (though b and c could be totally unrelated). It implies also that
for every three strings a, b, c of length at most n the minimal complexity of a
program that transforms a to c and at the same time transforms b to c is at
most max(C (c|a),C (c|b)) +O(log n).



258 D. Musatov, A. Romashchenko, and A. Shen

In fact a similar statement can be proven not only for two but for many (even
for poly(n)) conditions. For the sake of brevity we consider only the statement
with two conditions.

This theorem also can be proven using extractors. An extractor can be viewed
as a function E : {0, 1}n × {0, 1}d → {0, 1}m. We say that a (2k, ε)-extractor is
a prefix extractor if for every i ≤ k its prefix of length m − i (i.e., a function
Ei : {0, 1}n × {0, 1}d → {0, 1}m−i determined as a prefix of the initial function)
is a (2k−i, ε)-extractor. By using probabilistic method the following theorem can
be proven:

Theorem 5. For all 1 < k ≤ n and ε > 0 there exists a prefix (2k, ε)-extractor
with parameters d = logn+2 log(1/ε)+O(1) and m = k+d−2 log(1/ε)−O(1).

The proof is quite similar to the proof of Theorem 3: the probabilistic argument
shows that a random graph has the required property with probability close to
1; the restriction of a random graph is also a random graph, and the intersection
of several events having probability close to 1 is not empty. "#
However, using prefix extractors is not enough; we need to modify the argument,
since now we need to find two related neighbors in two graphs. So we modify
the notion of a dangerous vertex and use the following analog of Lemma 1:
Lemma 2. Let us call a left-part element weakly dangerous in S if at least half
of its neighbors are bad for S. Then the number of weakly dangerous elements
in S is at most 4εK.

The proof is similar to the proof of Lemma 1: since only half of all neighbors are
bad, we need twice more elements. "#
Now we give a new proof of Theorem 5 based on prefix extractors. Fix a prefix
extractor E with parameters n, k, d = O(log n), m = k and ε = 1/n3 (again,
we may assume that complexity of this extractor is 2 logn+O(1)). We also may
assume that C (a|b) = k − 1, C (a|c) = l − 1 and (without loss of generality)
k ≥ l.

Let Sb and Sc be the sets of strings of conditional complexity less than k and
l conditional to b and c respectively. Call an element weakly dangerous in Sb if it
is weakly dangerous (in Sb) in the original extractor and weakly dangerous in Sc

if it is weakly dangerous (in Sc) in the l-bit prefix of E. Since this prefix Ek−l is
also an extractor, the statement of Lemma 2 holds for Sc. The string a belongs
to the intersection of Sb and Sc and is not weakly dangerous in both. Hence,
a random neighbor and its prefix are not bad for Sb [resp. Sc] with probability
greater than 1/2. So we can find a k-bit string p such that p and its l-bit prefix
q are not bad for Sb and Sc respectively.

They satisfy the requirements. Indeed, the conditional complexities C (p|a)
and C (q|a) are logarithmic because p and q can be specified by their ordinal
numbers among neighbors of a in the extractor. The string a may be obtained
from p and b because p is not bad for Sb in E; similarly, a can be obtained from q
and c because q is not bad for Sc in Ek−l. This completes the proof of Muchnik’s
theorem for two conditions. "#
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3.4 Muchnik’s Theorem about Resource-Bounded Complexity

The arguments from Sect. 3.2 together with constructions of explicit extractors
imply some versions of Muchnik’s theorem for resource-bounded Kolmogorov
complexity. In this section we present such a theorem for the space-bounded
complexity.

First of all, the definitions. Let ϕ be a multi-tape Turing machine that trans-
forms pairs of binary strings to binary strings. Conditional complexity C t,s

ϕ (a|b)
is the length of the shortest x such that ϕ(x, b) produced a in (at most) t steps
using space (at most) s. It is known (see [5]) that there exists an optimal de-
scription method ψ in the following sense: for every ϕ there exists a constant c
such that

C ct log t,cs
ψ (a|b) ≤ C t,s

ϕ (a|b) + c

We fix such a method ψ, and in the sequel use notations C t,s instead of C t,s
ψ .

Now we present our variant of Muchnik’s theorem for space-bounded Kol-
mogorov complexity:

Theorem 6. Let a and b be binary strings and n, k and s be numbers such that
C∞,s(a) < n and C∞,s(a|b) < k. Then there exists a binary string p, such that

• C∞,O(s)+poly(n)(a|p, b) = O(log3 n);
• C∞,s(p) ≤ k +O(log n);
• C∞,poly(n)(p|a) = O(log3 n),

where all constants in O- and poly-notation depend only on the choice of the
optimal description method.

Proof. The proof of this theorem starts as an effectivization of the argument
of Sect. 3. To find p effectively, we use an explicit extractor. This increases the
conditional complexity of p (when a is given) from O(log n) to O(log3 n), because
known explicit extractors use that many truly random bits. The advantage is
that now to obtain p from a we need polynomial space (even polynomial time).

First we prove the theorem assuming that the space bound s is space-
constructible (i.e., given n we can compute s using space s). Later we explain
how to get rid of this restriction.

Assuming that a is not dangerous and p is a good (=not bad) neighbor of
a, we can recover a from b and p using O(log3 n) extra bits of information and
O(s) + poly(n) space. Indeed, for any string a′ we can test in O(s) + poly(n)
space whether C∞,s(a′|b) < k (we need a counter to stop the computation when
it becomes too long to be terminating, but this is just another O(s) if s is
known: testing sequentially all strings of length less than k does not increase
the space). Therefore, knowing b and p we can enumerate all the strings a′ with
this property that are neighbors of p and wait until a string with a given ordinal
number appears.

The difficulty arises when we try to prove that a is not dangerous; indeed we
can enumerate (or recognize: for space complexity it is the same) all dangerous
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strings in space O(s) + poly(n), and the number of dangerous strings is small,
but this does not give us a contradiction since the space increased from s to
O(s) + poly(n), and even small increase destroys the argument. So we cannot
assume a is not dangerous and need to deal somehow with dangerous elements.

To overcome this difficulty, we use the same argument as in Sect. 2.3. The
dangerous elements are treated on the next layer, with reduced k and other
extractor graph. We need O(k) layers (in fact even O(k/ logn) layers) since at
every next layer the number of dangerous elements that still need to be served
is reduced at least by n factor. Note also that the space overhead needed to
keep the accounting information is poly(n) and we never need to run in parallel
several computations that require space s.

So we get the theorem for space-constructible s. In the general case some
changes are needed (we used s to restrict the computation space). Let us se-
quentially use space bounds s′ = 1, 2, . . .: to enumerate all strings a′ such that
C∞,s(a′|b) < k, we sequentially enumerate all strings that can be obtained
from b and k-bit encoding using space s′ = 1, 2, etc. The corresponding set in-
creases as s′ increases, and at some point we enumerate all strings a′ such that
C∞,s(a′|b) < k (though this moment is not known to us). Note that we can avoid
multiple copies of the same string: performing the enumeration for s′, we check
for every string whether it has appeared earlier (using s′ − 1 instead of s′). This
requires a lot of time, but only O(s) space. Knowing the ordinal number of a in
the entire enumeration, we stop as soon as it is achieved; hence, the enumeration
process requires only space O(s)+poly(n) (though s is not specified explicitely).

Similarly, the set of dangerous a (that go to second or higher layer) increases
as s′ increases, and can be enumerated sequentially for s′ = 0, 1, 2 . . . without
repetitions in O(s′) + poly(n) space. Therefore, at every layer we can use the
same argument (enumerating all the elements that reach this layer and at the
same time are neighbors of p until we produce as many of them as required). "#

3.5 Muchnik’s Theorem for CAM -Complexity

The arguments from the previous sections cannot be applied for Kolmogorov
complexity with polynomial time bound. Roughly speaking, the obstacle is the
fact that we cannot implement an exhaustive search (over the list of ‘bad’ strings)
in polynomial time (unless P = NP ). The best result that we can prove for
poly-time bounded complexity involves a version of Kolmogorov complexity in-
troduced in [10]:

Definition 2. Let Un be a non-deterministic universal Turing machine. Arthur-
Merlin complexity CAM t(x|y) is the length of a shortest string p such that

1. Probr[Un(y, p, r) accepts, and all accepting pass return x] > 2/3
2. Un(y, p, r) stops in at most time t (for all branches of non-deterministic

computation).

As always, CAM t(x) := CAM t(x|λ).
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Intuitively, a CAM -description p of a string x (given another string y) is an
interactive Arthur–Merlin protocol: Arthur himself can do probabilistic polyno-
mial computations, and can ask questions to all-powerful (but not trustworthy)
Merlin; Merlin can do any computations and provide to Arthur any requested
certificate. So, Arthur should ask such questions that the certificates returned
by Merlin could be effectively used to generate x. With this version of resource-
bounded Kolmogorov complexity we have a variant of the Muchnik theorem:

Theorem 7. For every polynomial t1 there exists a polynomial t2 such that
the following condition holds. For all strings a, b of length at most n such that
C t1(n),∞(a|b) ≤ k, there exists a string p of length k +O(log3 n) such that

– C t2(n),∞(p|a) = O(log3 n) and
– CAM t2(n)(a|b, p) = O(log3 n).

In the proof of this theorem we cannot use an arbitrary effective extractor. We
employ very essentially the properties of one particular extractor constructed by
L. Trevisan [11]. Our arguments mostly repeat the proof of Theorem 3 from [10].
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An Optimal Bloom Filter Replacement Based on
Matrix Solving�

Ely Porat

Bar-Ilan University

Abstract. We suggest a method for holding a dictionary data structure,
which maps keys to values, in the spirit of Bloom Filters. The space
requirements of the dictionary we suggest are much smaller than those
of a hashtable. We allow storing n keys, each mapped to value which is
a string of k bits. Our suggested method requires nk + o(n) bits space
to store the dictionary, and O(n) time to produce the data structure,
and allows answering a membership query in O(1) memory probes. The
dictionary size does not depend on the size of the keys. However, reducing
the space requirements of the data structure comes at a certain cost. Our
dictionary has a small probability of a one sided error. When attempting
to obtain the value for a key that is stored in the dictionary we always get
the correct answer. However, when testing for membership of an element
that is not stored in the dictionary, we may get an incorrect answer,
and when requesting the value of such an element we may get a certain
random value. Our method is based on solving equations in GF (2k) and
using several hash functions.

Another significant advantage of our suggested method is that we do
not require using sophisticated hash functions. We only require pair-
wise independent hash functions. We also suggest a data structure that
requires only nk bits space, has O(n2) preprocessing time, and has a
O(log n) query time. However, this data structures requires a uniform
hash functions.

In order replace a Bloom Filter of n elements with an error proability
of 2−k, we require nk + o(n) memory bits, O(1) query time, O(n) pre-
processing time, and only pairwise independent hash function. Even the
most advanced previously known Bloom Filter would require nk + O(n)
space, and a uniform hash functions, so our method is significantly less
space consuming especially when k is small.

Our suggested dictionary can replace Bloom Filters, and has many
applications. A few application examples are dictionaries for storing bad
passwords, differential files in databases, Internet caching and distributed
storage systems.

1 Introduction

A Bloom Filter is a very basic data structure which, given a set of n elements,
allows us to quickly decide whether a given element is in the set or not. The main
� A video presentation can be found in http://www.youtube.com/

watch?v=947gWqwkhu0.
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advantage of Bloom Filters is that they are very memory efficient — a Bloom
Filter only requires space linear in the number of elements in the set, while other
data structures use memory linear in the size of the represented elements in the
set. When the elements stored in the set do not have a succinct representation,
this is a very significant advantage. For example, consider strings, with average
size of 800 bits. A hashtable for storing 100,000,000 such strings would require
at least 800*100,000,000 bits, so a hard disk must be used for the table, and
lookups would be rather slow. A basic Bloom Filter based structure would only
require 145,000,000 bits, which can easily be stored in the main memory. On the
other hand, the Bloom Filter achieves this at a certain cost. A Bloom Filter has
a certain probability of returning a wrong answer. The error is one sided: if the
key is in the set, the Bloom Filter will always return the correct answer, but if
the key is not in the set, it might return a wrong answer. However, for many
applications, it is possible to overcome this problem, and still gain from the low
space requirements of the Bloom Filter.

The main use of the Bloom Filter is to reduce the memory that the data struc-
ture uses. The basic Bloom Filter [1] (invented in 1970) used n log e memory bits
and returned the answer using a single probe to memory, with error probability
of 1

2 (for a false positive). One way to reduce the error probability is to run the
basic Bloom Filter k times, therefore it would require nk log e memory bits and
k memory probes in order to answer a query.

2 Related Work

During the past few years, several papers have been published on Bloom Fil-
ter [3,5,6,12,15]. Most of which provided methods for reducing the memory and
the number of probes required, but only considered the case where k is big
enough. One more disadvantage of these newer methods is that they do not
allow “insertion” operations, which were possible to perform using the original
Bloom Filter technique. Yet another disadvantage of these newer methods is
that they require universal hash functions. Such functions are computationally
inefficient, or have large memory requirements. Recently two papers [4,7] were
published which used the same idea of matrix solving in bloom filter like this
paper. These papers were done independent to our results. However we think
that this paper still have some more issue with worth publishing.

In this paper we provide a new data structure that can replace Bloom Filters,
and has lower space requirements. Our data structure requires nk+o(n) memory
bits (which is optimal up to o(n)), and each query takes O(1) memory probes.
However, like most of the other Bloom Filter replacements, our data structure
is static and does not support insertions. Building our data structure requires
O(n) preprocessing time and O(n) memory. This data structure is based on
solving equations, and uses hash functions. We only require hash functions that
are pairwise independent.

In addition, we suggest a similar data structure that requires only nk memory
bits, O(log n) query time, and O(n2) preprocessing time. However, this data
structure requires uniform hash functions.
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3 Applications of Bloom Filters

Bloom Filters, as well as Bloom Filter replacements such as the one we suggest,
have many applications. A good survey of Bloom Filter uses can be found in [2].
A few examples are given below.

Dictionaries: Early versions of UNIX’s spell checker used a Bloom Filter of the
dictionary instead of the dictionary itself. This Bloom Filter left several words
misspelled, but the memory in these days was valuable resource and the memory
it save was worth it [11,15].

The Bloom Filter was proposed as a method to succinctly store a dictionary
of unsuitable passwords for security purposes by Spafford [16]. Manber and Wu
describe a simple way to extend the technique so that passwords that are within
edit distance 1 of the dictionary word are also not allowed [10]. In this setting,
a false positive could force a user to avoid a password even if it is not really in
the set of unsuitable passwords.

Databases: Bloom Filters can also be used for differential files [9,16]. Suppose
that all the changes to a database that occur during the day are stored in a
differential file and are updated back to the database only at the end of a day.
During that day, every read from the database should first be checked in that
differential file to be sure that the record read is the most recent. This file might
be large, so reading through it can be slow, as opposed to querying a database,
but still obligated. A possible solution to this problem is keeping a Bloom Filter
of the records that have changed. Here, a false positive forces a read of the
differential file even when a record has not been changed.

Internet Cache Protocol: Fan, Cao, Almeida, and Broder describe Summary
Cache, which uses Bloom Filters for Web cache sharing [8]. In this setup, proxies
cooperate in the following way: on a cache miss, a proxy attempts to determine if
another proxy cache holds the desired Web page; if so, a request is made to that
proxy rather than trying to obtain that page from the Web. For such a scheme to
be effective, proxies must know the contents of other proxy caches. In Summary
Cache, to reduce message traffic, proxies do not transfer URL lists corresponding
to the exact contents of their caches, but instead periodically broadcast Bloom
Filters that represent the contents of their cache. If a proxy wishes to determine
if another proxy has a page in its cache, it checks the appropriate Bloom Filter.
In the case of a false positive, a proxy may request a page from another proxy,
only to find that that proxy does not actually have that page cached. In that
case, some additional delay has been incurred. But the load on the proxy servers
was reduced therefore making them work faster.

Caching for Google’s BigTables: BigTable is a distributed storage system for
managing structured data that is designed to scale to a very large size: petabytes
of data across thousands of commodity servers. Many projects at Google store
data in BigTables, including web indexing, Google Earth, and Google Finance.
These applications place very different demands on the BigTable, both in terms
of data size (from URLs to web pages to satellite imagery) and latency
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requirements (from back end bulk processing to real-time data serving). De-
spite these varied demands, BigTable has successfully provided a flexible, high-
performance solution for all of the above Google products. In some of the
BigTable applications most of the queries aren’t in the table. In BigTables Bloom
Filter is used to determine whether a query is in the BigTable in first place, thus
reducing disk accesses. A Bloom Filter can be also used in the client side as well
to reduce the communication and latency.

4 Outline

The structure of this paper is as follows: In section 5 we define the dictionary
data structure and give a high-level view of our method, as well as a basic result.
In section 6 we show how to improve the data structure to support queries in
O(1) time, and how to do the preprocessing in O(n) time. In section 7 we show
several methods to reduce constants hidden in these space complexity, which may
be important in practice. In section 8 we explain why and how simple pairwise
independents hash function are enough. In section 9 we show how to use the
dictionary data structure in order to get a good Bloom Filter replacement.

5 Dictionary Based on Matrix Solving

Dictionaries are data structures that hold key-value pairs. This section describes
a method for concise representation of dictionaries with one sided errors, in the
spirit of Bloom Filters.

Definition 1. A one sided error dictionary (U,k,n) is a data structure that
holds values for keys. It is a mapping from x1, x2, . . . , xn ∈ U to d1, d2, . . . , dn ∈
{0, 1, . . . , 2k − 1}. Given a key xi, a dictionary allows retrieving di. However,
given a key x which is not one of the xi’s it may return any value.

We now show how to build a dictionary which requires a storage space of nk+o(n)
bits. The high level concept behind our method is solving equations. Assume we
have a fully random hash function h from U to n variable equation in GF (2k)
(we later show how to remove the fully random assumption later), i.e. h : U →
GF (2k)n. We go over all the xi’s and we write the equation h(xi) · b = di.
We get n equations with n variables. If these equations are independent we can
solve them in O(n3) time. This can be done in a one time preprocessing, after
which we can store the hash function h and the vector b as our data structure.
The vector b requires nk bits space. To answer a query x we apply h on x and
compute h(x) · b and return the answer. If x is one of the xi’s we get the correct
di. If x is not one of the xi’s we might return an erroneous answer. The overall
query time is O(n).

However, this process only works when we get an independent set of equations.
We now examine the probability of obtaining such an independent equation set.
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Theorem 1. The probability that our method generates an independent set of
n equations on n+ c variables in the field GF (2k) is at least 1 − 1

2kc(2k−1)

Proof. We order the generated equations according to the order in which they
are constructed. The set of the equations is dependent when there exist i such
that equations 1, 2, . . . , i − 1 and equation i are dependent. The probability
that equation i and equations 1, 2, . . . , i − 1 are dependent is at most (2k)i

(2k)n+c

(the probability is even lower when there are dependent equations before that
index). We apply the union bound and get that the probability that there exists
an i such that the equation i and the equations before it are dependent is at
most

∑n
i=0

(2k)i

(2k)n+c <
1

2kc(2k−1)

Corollary 1. Even for c = 0 we get an independent set of equations with con-
stant probability. Therefore we need to run the preprocessing algorithm O(1)
time, each time with a different hash function, in order to get an independent
set of equations.

The main disadvantage of this data structure is that it requires O(n) time in
order to answer a query. One possible improvement can be achieved by using
t-sparse equations.

Definition 2. t-sparse equations are equations of the form∑n
i=1 ai, where |{ai|ai �= 0}| ≤ t.

Using t-sparse equations the query time shrinks to t memory probes, O(t) time.
However we need at least m = n(1 + e−t−ε) variables in our equations set in
order to have a full independent equations set.

Theorem 2. If we have n t-sparse random equations in less than m = n(1 +
e−t−ε) variables, the equations will be dependent with high probability.

Proof. When we have n t-sparse random equations on m = n(1 + e−t−ε) there
are some variables that we do not use. Because we can look on it as throwing
t × n balls to m cells. The expected number of empty cells is m(1 − 1

m )tn ≈
me−

tn
m . Therefore the expected number of variables we use in our equations is

m(1 − e−
tn
m ). If m(1 − e−

tn
m ) < n, we get n equations on less then n variables

and therefore they will not be independent.

Actually if we take n(1+e−t) we will have a good probability to get independent
set of equations.

Note that the preprocessing of the “sparse” data structure is O(tn2), using
the Wiedemann algorithm [18] for solving sparse linear equations.

6 Improved Dictionary

We now show how to reduce the query time to O(1) memory probes. We also
reduce the preprocessing time to O(n). The high level idea behind the method
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suggested in this section is to divide x1, x2, . . . , xn randomly to small buckets,
and to run the same algorithm on each of the buckets.

We can randomly hash the keys to n
s buckets using hash function h1 : U →

{1, 2, . . . , n
s }. The expected number of keys in each bucket would be s, and if s is

big enough, with high probability there will not be a bucket with more then 2s
keys (if there such a bucket we can choose another hash function h1 and so on).
Querying for x is done by simply applying h1(x) and going to the h1(x)’th data
structure. In that data structure we query for x as done in section 5. The h1(x)
data structure does not contain more then 2s keys, so it would take O(s) time
to answer the query. The preprocessing is now performed by choosing h1 and
checking if there is no bucket with more than 2s keys. If there is such a bucket,
we choose another hash function h1. This is done O(1) times. We then divide
the keys x1, x2, . . . , xn to the buckets and run the same preprocessing method
described in section 5 on each bucket.

Overall it would take O(n
s s

3) = O(ns2). The memory that this data structure
consumes is nk+O(n

s logn) memory bits. The O(n
s logn) is required in order to

maintain pointers to each of the data structures. Naturally, our method works
best when s is small. However, if we reduce s too much we we lose the fact
that with high probability there is no bucket which is bigger then 2s, and the
O(n

s logn) becomes significant.
We solve this problem by using a two-level hashing. We first explain the

preprocessing and then show how to run a query. Given x1, x2, . . . , xn we hash
them using h1 : U → {1, 2, . . . , n

log2 n
}, which we now only require to be pairwise

independent, to n
log2 n

buckets. It might be the case that there are some buckets
which more then 2 log4 n keys. We call such big buckets bad buckets. We choose
another h1 hash function only if we will get more then n

log2 n
keys hashed to bad

buckets.

Theorem 3. The probability that there are more then n
log2 n

keys hashed to bad
buckets is at most 1

2

Proof. We denote by Bi the number of keys hashed to bucket i. Using Markov’s
inequality we get:

Pr [Bucket i is bad] = Pr
[
Bi > 2 log4 n

]
= Pr

[
Bi > 2 log2 E(Bi)

]
<

1
2 log2 n

Denote by Xi the event that xi is hashed to a bad bucket, and by X =
∑n

i=1 Xi

the number of keys hashed to a bad bucket. Pr [Xi = 1] < 1
2 log2 n

therefore

E(X) < n
2 log2 n

. Pr
[
X > n

log2 n

]
< Pr [X > 2E(X)] < 1

2 by markov inequality.

Corollary 2. It takes O(n) time to find a hash function h1 that we can use for
the rest of the procedure.

After we find a good hash function h1, we deal with all the keys that are hashed
to a bad bucket using a regular dictionary data structure. It takes at most
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O( n
log n ) = o(n) bits (we can easily modify it to take O( n

logc n ) bits for any
constant c).

Denote by Bi the number of keys hashed by h1 to bucket i. Each good bucket
i (such that Bi < 2 log4 n) is splitted again to sub-buckets using h2,i : U →
{1, 2, . . . , Bi

1
2

√
log n

k

} (we now assume that h2,i is fully random, in section 8 we

show how to relax this assumption). If we get a sub-bucket which is bigger then√
log n
2k we choose another h2,i.

Theorem 4. When we split a bucket to a sub-buckets the probability that there

exist sub-bucket which more then
√

log n
2k keys hashed to it is at most 1

2

Proof. The expected number of keys hashed to a sub-bucket is 1
2

√
log n

k . Using
Chernoff’s inequality we get that the probability for each sub-bucket to have

more then
√

log n
2k is much smaller then 1

log4 n
. Using the union bound we get

that the probability that there exist a sub-bucket with more then
√

log n
2k is

smaller then 1
2 , since we have less then log4 n

2 sub-buckets.

Corollary 3. It takes O(Bi) time to find such an h2,i. Overall, finding a hash
function h2,i for all i’s requires O(n) time.

We now have many smaller dictionary sub-problems. Each one of them has a

size of less then
√

log n
2k . We solve each one of them using the method mentioned

in section 5. For each sub problem we get a random matrix of size bounded by√
log n
2k ×

√
log n
2k over GF (2k). The number of different such matrices is at most

2k(
√

log n
2k )2 =

√
n. Thus we can list all the different matrices and solve them in

advance in time O(
√
n log1.5 n), and the list would require O(

√
n logn) memory

bits.
Thus the preprocessing takes O(n) time, since we can solve each sub-problem

by simply looking in the list.
We store the data structure as follows. We store all the keys which map to

bad buckets using a regular dictionary, with o(n) memory bits. We store a big
array of less then n words, each consisting of k bits which are the concatenation
of all the sub-buckets in all the buckets. We also store a select data structure
which gives us the ability to jump in O(1) memory probes to each of the buckets
and sub-buckets. It requires o(n) memory bits as well. Finally, we store all the
hash functions. In section 8 we show how they can be stored. Overall we use
nk + o(n) memory bits.

To answer a query we simply use h1 in order to see to which of the bucket we
need to go. If it is a bad bucket, we look for the query in the regular dictionary
data structure. Otherwise we use h2,i in order to find in which sub-bucket the
query falls. All the operation up to this point take O(1) time, and we use one
probe to the memory to retrieve h2,i. We use the dictionary data structure of
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the sub-bucket in order to answer the query. It takes O(1) probes to the memory

(we retrieve
√

log nk
2 bits in these probes, and in the last probe we take a word),

but it takes O(
√

log n
2k ) time to retrieve the answer. In order to reduce that time

to O(1) we have two options: we can either use sparse equations or we can
construct a table holding all the answers to all of the possible equations on all
of the possibles assignments, and answer the query in O(1) time by probing a
table for getting the answer1.

7 Practical Improvements

We now examine a few practical improvements for our method.

Sparse equations: Whenever we use the solution of section 5 (even inside the
sub-buckets) we can use lnn sparse equations set (in the sub-bucket case it is
ln logn). This still works fine even when we use only n variables, therefore it
requires nk + o(n) memory bits. Note that this will not work if we take only
even number of variables per equation.

Another sparse equations improvement is to create equations which will be
more or less local i.e. the {i|ai �= 0} will be close to each other. This way need less
memory probes, because in each memory probe we can get O(log n) continues
bits.

Another counting argument: If we make each sub-bucket bigger, we can gain in
the o(n) overhead. Denote by s the maximum number of keys hashed to a sub-
bucket. For each such sub-bucket (from section 6). In section 6 we had a certain
preprocessing analysis. We now give an alternative one. In each sub-bucket we
hash keys to {1, 2, . . . , s2}. With probability of at least 1

2 there will not be any
collision in this hash. If we do have a collision we choose another hash function.
On average, 2 bits are required to store which hash function we use in each sub-
bucket. We now have a list of at most s keys from the universe {1, 2, . . . , s2},
where each key gets a value in GF (2k). Note that if we have the same set of keys
in two different sub-buckets, we can use the same set of equations even if they
do not get the same values — being a full rank equations set does not depand
on the values (the free vector).

Thus, the number of different sets of equations we use is
(
s2

s

)
. For s < log n

2 log log n

we get o(
√
n) different equations sets. For each of the equations sets we com-

pute the inverse and store it in a hashtable. The naive way to perform the pre-
processing using this technique takes

∑#sub−bucket
i=1 O(sub − bucket − size2) =

O(n log n
log log n ) time, because we need to multiply the inverse matrix by the data

for each sub-bucket. However we can collect O(log n) sub-buckets that map to
the same matrix (inverse matrix) and multiply the same matrix by O(log n) dif-
ferent values vectors. We get O(log n) speed up in time using word operations.

1 We can play a little more with the size of each sub-bucket in order to do this in o(n)
space.
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Therefore the preprocessing running time shrinks back to O(n). Making the
equations O(ln logn) sparse and local we get O(1) query time as well2.

A real nk solution: We can get rid of the extra o(n), by solving n equations in
n variables. Each equation will be lnn sparse equation. The preprocessing time
takes O(n2) using the block Wiedemann algorithm [17], and the query takes
O(log n) time. Note that we need to use a uniform hash function for this result.

8 Using Simple Hash Functions

We only assume a truly random hash function inside the buckets. Each bucket
consist of at most log4 n keys. Therefore we can construct hash function by
simply using array R of log8 n random numbers and a pairwise independent
hash function h : U → {0, 1, . . . , log8 n}. The result for the new hash function
is R[h(x)]. Given that we hash at most log4 n keys. The probability that there
exist two keys that use the same random number is less then 1

2 . Therefore we
got a random enough hash function with probability 1

2 . If we store 2 log hash
functions like this, with probability bigger then 1 − 1

n each bucket will have at
least one hash function which will satisfied it. The only extra space required is
O(log9 n) memory bits.

9 Membership Queries

We first define a membership data structure.

Definition 3. A Membership data structure(n,k) for x1, x, . . . , xn ∈ U is a data
structure that allows answering membership queries. Given a query x where x is
one of the xi’s, the data structure always returns 1, and given a query x where
x is not one of the xi it returns 0 with probability of at least 2−k.

We can easily build a membership data structure given a dictionary data struc-
ture. We simply choose random pairwise independent hash function h : U →
{0, 1, . . . , 2k − 1} and we store a dictionary that map xi to h(xi).

In order to check if x is in the data structure we simply query x from the
dictionary data structure and check if it’s value equal to h(x). If x is in the data
structure it will always return 1.

Theorem 5. If x isn’t in the data structure we will return 1 with probability
2−k.

Proof. We choose the hash function independent from the dictionary data struc-
ture. Therefore the answer of the query x from the dictionary data structure,
if x isn’t a member is a k-bit string which is independent to h(x). Then the
probability that they are equal is 2−k because h(x) is random.

2 Using tables as well.
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10 Conclusions and Open Problems

We have suggested a new data structure that can replace Bloom Filters. This
data structure allows maintaining a dictionary mapping keys to values, and al-
lows retrieving the value for a key with a one sided error. Our method has
significant advantages over Bloom Filter and other previously know Bloom Fil-
ter replacements. It uses only nk + o(n) memory bits (which is optimal up to
o(n)), and each query takes O(1) memory probes. Also, we only require pairwise
independent hash function.

We have also suggested a similar data structure, that has an even lower space
requirement, of only nk memory bits. However, it has a O(log n) query time and
requires O(n2) preprocessing time. Also, this data structure requires uniform
hash functions.

Despite its advantages, the method we suggest, like several other Bloom Filter
replacements, does not allow “insertion” operations, which the original Bloom
Filter technique does support.

We believe the preprocessing phase of our algorithm can be distributed easily.
In fact, we believe it should be distributed in most applications, due to the
memory it consumes.

There are several directions open for future research. First, it will be inter-
esting to see if it is possible to design a data structure which only requires one
pass on the input elements and with small additional memory. Also, it may be
possible to develope a fully dynamic data structure, with space requirements
lower than those of the traditional Bloom Filter.
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Abstract. We introduce the notion of aperiodicity measure for infinite
symbolic sequences. Informally speaking, the aperiodicity measure of a
sequence is the maximum number (between 0 and 1) such that this se-
quence differs from each of its non-identical shifts in at least fraction of
symbols being this number. We give lower and upper bounds on the ape-
riodicity measure of a sequence over a fixed alphabet. We compute the
aperiodicity measure for the Thue–Morse sequence and its natural gener-
alization the Prouhet sequences, and also prove the aperiodicity measure
of the Sturmian sequences to be 0. Finally, we construct an automatic
sequence with the aperiodicity measure arbitrarily close to 1.

1 Introduction

Combinatorics on words is a deeply studied field in theoretical computer science
and discrete mathematics. In this paper we focus on infinite words, or sequences,
over a finite alphabet. Periodic sequences have the simplest structure, and it is
natural to try to measure how far a sequence may be from any periodic sequence.

In this paper we introduce the notion of aperiodicity measure AM for infinite
symbolic sequences. Our definition is based on the discrete version of Besicovitch
distance that was used by Morse and Hedlund [14] when defining sequences
that they called almost periodic1. The same approach was also used in [7] when
defining α-aperiodic two-dimensional sequences. As it is essentially noticed in [7],
if AM(x) > α for a sequence x, then x has Besicovitch distance at least α/2 with
every eventually periodic sequence. In [14] it is also proved that AM(t) � 1/4
where t is the Thue–Morse sequence.

Informally speaking, the aperiodicity measure of a sequence is the maximum
number (between 0 and 1) such that this sequence differs from each of its non-
identical shifts in at least fraction of symbols being this number. Our interest
to this notion was mostly inspired by the following conjecture from the per-
sonal communication with B. Durand, A. Romashchenko, and A. Shen, that we
positively prove as Theorem 6.

1 This term “almost periodic” from [14] should not be mixed with the recent usage
of the term “almost periodic sequence” which stands for sequences also known as
uniformly recurrent or minimal, e.g., see [16] for a survey.

A. Frid et al. (Eds.): CSR 2009, LNCS 5675, pp. 274–285, 2009.
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Conjecture. For every α < 1 there exists an automatic sequence x such that
AM(x) � α.

The solution of this conjecture allows to simplify the construction of a strongly
aperiodic tiling from [7].

Besides this conjecture, we believe that the notion of aperiodicity measure is
interesting and natural itself, and the main goal of the paper is to support this
statement.

Other similar notions and results have appeared in the literature: to name
a few, see [14] on Besicovitch-almost-periodic sequences, [8] on tilings of the
Thue–Morse sequence, [10] on approximate squares in sequences. The closest
to ours seems to be the notion of correlation measure introduced in [12] and
then studied in a series of papers currently concluding with [5], see also [13]
and many others. Their correlation measure of order 2 is essentially the same
as our aperiodicity measure for binary sequences, though in general motivation,
frameworks, and approaches are somewhat different. After the submission of our
paper, we became aware of the recent paper [9] continuing the investigations of
the aforementioned correlation measure. In particular, a result from [9] improves
the result of our Theorem 2 below.

The paper is organized as follows. In Section 2 we give necessary preliminaries.
In Section 3 we define the aperiodicity measure AM of an infinite sequence
and then study some basic properties of this notion. We prove that there exist
sequences with AM arbitrarily close to 1 (Theorem 1), though there exists an
upper bound strictly less than 1 for AM of sequences over a fixed finite alphabet
(Theorem 2). Then we calculate AM for the Thue–Morse sequence (Theorem 3)
and for the Sturmian sequences (Theorem 4). In Section 4 we construct an
automatic sequence with AM arbitrarily close to 1 (Theorem 6), though first
we prove that the Prouhet sequences, natural generalization of the Thue–Morse
sequence, do not suffice for this purpose (Theorem 5). Due to space constraints,
some proofs are only sketched. Section 5 concludes the paper with a number of
open problems.

2 Preliminaries

We use all common definitions and notions of combinatorics on words, which
can be found, i.e., in [4] or [11]. We recall some of them here for establishing our
notations.

The number of elements in a finite set X is denoted #X . Let N be the set of
natural numbers {0, 1, 2, . . .}. We use [i, j] for denoting the segment of natural
numbers {i, i+1, i+ 2, . . . , j}, while the segment [0, j] is simply denoted [j]. Let
A be a finite alphabet. We consider finite words as mappings u : [n−1] → A and
denote the length of u by |u|, that is, u = u(0)u(1)u(2) . . . u(|u| − 2)u(|u| − 1).
An empty word is denoted Λ. We also deal with sequences over this alphabet,
i.e., mappings x : N → A, and denote the set of these sequences by AN. A word
of the form x[0, i] for some i is called a prefix of x, and respectively a sequence
of the form x(i)x(i + 1)x(i + 2) . . . for some i is called a suffix of x. A left
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shift L maps a sequence to the same sequence with the first symbol cut, that is,
Lx = L(x(0)x(1)x(2) . . . ) = x(1)x(2) . . . .

A sequence x is periodic if for some T > 0 we have x(i) = x(i + T ) for each
i ∈ N. This T is called a period of x. A sequence is eventually periodic if some
of its suffixes is periodic.

Let A, B be finite alphabets. A mapping φ : A∗ → B∗ is called a morphism
if φ(uv) = φ(u)φ(v) for all u, v ∈ A∗. Obviously, a morphism is determined
by its values on single-letter words. A morphism is k-uniform if |φ(a)| = k
for each a ∈ A. A 1-uniform morphism is called a coding. For x ∈ AN denote
φ(x) = φ(x(0))φ(x(1))φ(x(2)) . . . Further we consider only morphisms of the
form A∗ → A∗. Let φ(t) = tu for some t ∈ A, u ∈ A∗. Then for all natural
m < n the word φn(t) begins with the word φm(t), so φ∞(t) = limn→∞ φn(t) =
tuφ(u)φ2(u)φ3(u) . . . is correctly defined. If φn(u) �= Λ for all n, then φ∞(t)
is infinite. In this case φ is said to be prolongable on t. Sequences of the form
h(φ∞(t)) for a coding h : A → B are called morphic, of the form φ∞(t) are called
pure morphic.

Unless stated otherwise, usually in this paper we assume A = {0, . . . , k − 1}
for some k ∈ N and assume usual operations + and · in A modulo k. We also
assume t = 0 ∈ A, that is, we usually iterate a morphism on symbol 0 to obtain
a sequence.

The class of morphic sequences of the form h(φ∞(t)) with φ being k-uniform
coincides with the class of so-called k-automatic sequences. Sequences that are
k-automatic for some k, are called simply automatic (this class was introduced
in [6] under the name of uniform tag sequences and was widely studied after-
wards, see [4]).

The famous Thue–Morse sequence t = 011010011001011010010110 . . . is the
automatic sequence generated by the morphism 0 → 01, 1 → 10. This sequence
can also be defined using conditions t(0) = 0 and t(2n) = t(n) and t(2n+ 1) =
1− t(n) for every n. The Thue–Morse sequence has several other names (due to
other researchers who discovered it independently), a lot of interesting properties
and appears in a lot of contexts; for a survey on the Thue–Morse sequence see [2]
and also [4,11].

Another famous class of sequences is that of Sturmian sequences. They were
introduced in [15] and have been widely studied since that time, e.g., see [11].
Sturmian sequences have many different equivalent definitions, and we will use
the following, via (lower) mechanical sequences. For real numbers α and ρ with
0 < α < 1, α irrational, and 0 � ρ < 1, let cα,ρ(n) =  α(n+1)+ρ!− αn+ρ! be
the Sturmian sequence with parameters α and ρ. Here  y! for a real number y is
the maximal integer not greater than y. Let fr(y) = y− y! for a real y to be its
fractional part. Note that cα,ρ(n) = 0 if 0 � fr(αn+ ρ) < 1 − α and cα,ρ(n) = 1
if 1 − α � fr(αn + ρ) < 1. For example, the well-known Fibonacci sequence
f = 010010100100101001010 . . . that can be obtained as φ∞(0) for φ(0) = 01,
φ(1) = 0, is the Sturmian sequence f = c1/γ2,1/γ2 where γ = 1+

√
5

2 is the
golden ratio.
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3 Aperiodicity Measure

The Besicovitch distance between sequences x and y is defined as d(x, y) =
lim infn→∞

1
n#{i : i ∈ [n−1], x(i) �= y(i)}. Then define the aperiodicity measure

of a sequence x to be AM(x) = inf{d(x, Lnx) : n � 1}. In other words, AM(x) is
the maximum number between 0 and 1 such that x differs from every non-trivial
shift of x in at least AM(x) fraction of symbols. Let sn = lim supm→∞

1
m#{i :

i ∈ [m− 1], x(i) = x(i + n)}. Then AM(x) = 1 − sup{sn : n � 1}.
Clearly if a sequence x is eventually periodic with a period p then sp = 1

and therefore AM(x) = 0. The opposite is not necessarily true, though if AM(x)
is relatively small then it is reasonable to think of x as close to a periodic
sequence. We prove that AM(x) = 0 for the Sturmian sequences x (Theorem 4)
that are often considered as close to periodic. Note that if AM(x) > α for a
sequence x, then x has Besicovitch distance at least α/2 with every eventually
periodic sequence. Indeed, suppose d(x, y) < α/2 for an eventually periodic
sequence y with a period p. Then d(Lpx, x) � d(Lpx, Lpy)+d(Lpy, y)+d(y, x) =
d(x, y)+0+d(y, x) < α, since the Besicovitch distance is symmetric and satisfies
the triangle inequality.

In Section 4 we prove that there exist automatic sequences with aperiodicity
measure arbitrarily close to 1. However, if we do not require a sequence to be
automatic, then the sequence with aperiodicity measure arbitrarily close to 1
can easily be proved to exist.

Theorem 1. For every α < 1 there exists a sequence x such that AM(x) � α.

Proof. Let x be a sequence over an alphabet with k symbols. It is not difficult to
prove that x can be chosen so that for every n the fraction of i’s such that x(i) =
x(i+n), exists and is equal to 1

k . Indeed, for every fixed n the Lebesgue measure
(should not be mixed with aperiodicity measure!) of sequences not satisfying the
above condition, is 0. Therefore, total Lebesgue measure of “bad” sequences is 0.

Let us choose such x. Then sn = 1
k for every n. Therefore AM(x) = 1− 1

k . "#

However, for every fixed alphabet the aperiodicity measure can be bounded from
above by some number strictly less than 1.

Theorem 2. If a sequence x has no more than k symbols, then AM(x) � 1− 1
2k .

Proof. Suppose the alphabet of the sequence is A = {0, . . . , k − 1}.
The first observation we can make is that among any k + 1 consecutive sym-

bols of x there is one that occurs twice, by pigeonhole principle. After proper
calculation similar to what we do below, one gets AM(x) � 1 − 1

k2 .
Generalizing this idea, let u = x[l, l + N ] be some segment of x, and for

0 � j � k − 1 denote by rj how many times symbol j occurs in u. We have∑k−1
j=0 rj = N + 1. For a symbol j ∈ A, there are rj(rj−1)

2 pairs (p, q) with
p, q ∈ [l, l + N ], p < q, such that x(p) = x(q) = j. Therefore #{(p, q) : p, q ∈
[l, l+N ], p < q, x(p) = x(q)} =

∑k−1
j=0

1
2rj(rj −1) =

∑k−1
j=0

1
2r

2
j − N+1

2 �
1
2k (N +

1)2− 1
2 (N+1), where we used the Cauchy’s inequality

∑k−1
j=0 r

2
j �

1
k

(∑k−1
j=0 rj

)2
.
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Now let us approximate
∑N

n=1 sn:

N∑
n=1

1
m

#{i ∈ [m− 1] : x(i) = x(i + n)}

=
1
m

#{(i, n) : i ∈ [m− 1], n ∈ [1, N ], x(i) = x(i + n)}

�

�m/N�−1∑
t=0

1
m

#{(i, n) : i ∈ [Nt,N(t+ 1) − 1], n ∈ [1, N ], x(i) = x(i + n)}

�

�m/N�−1∑
t=0

1
m

#{(p, q) : p, q ∈ [Nt,N(t+ 1)], p < q, x(p) = x(q)}

�

 m/N!
m

(
(N + 1)2

2k
− N + 1

2

)
→ (N + 1)2

2kN
− N + 1

2N

as m → ∞. Thus
∑N

n=1 sn �
(N+1)2

2kN − N+1
2N , and therefore sn �

(N+1)2

2kN2 − N+1
2N2

for some n such that 1 � n � N . Tending N → ∞, we can find sn arbitrarily
close to 1

2k , therefore AM(x) � 1 − 1
2k . "#

Note that in [9] the upper bound 1− 1
k was obtained for aperiodicity measure of

sequences over k-letter alphabet which matches the lower bound from Theorem 1.
Now we compute the aperiodicity measure for some well known sequences.

Theorem 3. AM(t) = 1
3 .

Proof. Let sm
n = 1

m#{i ∈ [m− 1] : t(i) = t(i + n)}.
First of all, clearly sm

0 = 1 for every m. Then one can obtain the following
equations for sm

n :

s2m
2n = sm

n ,

s2m+1
2n =

m+ 1
2m+ 1

sm+1
n +

m

2m+ 1
sm

n ,

s2m
2n+1 = 1 − 1

2
(sm

n + sm
n+1),

s2m+1
2n+1 =

m+ 1
2m+ 1

(1 − sm+1
n ) +

m

2m+ 1
(1 − sm

n+1)

(1)

for every m and n.
The idea is to consider separately even and odd indices of the sequence. Let

us prove for instance the fourth equation. Indeed,

s2m+1
2n+1 =

1
2m+ 1

#{i ∈ [2m] : t(i) = t(i + 2n+ 1)}

=
1

2m+ 1
#{i ∈ [m] : t(2i) = t(2i+ 2n+ 1)}+



Aperiodicity Measure for Infinite Sequences 279

1
2m+ 1

#{i ∈ [m− 1] : t(2i+ 1) = t(2i+ 1 + 2n+ 1)}

=
1

2m+ 1
#{i ∈ [m] : t(i) �= t(i + n)}+

1
2m+ 1

#{i ∈ [m− 1] : t(i) �= t(i+ n+ 1)}

=
m+ 1
2m+ 1

(1 − sm+1
n ) +

m

2m+ 1
(1 − sm

n+1),

where we used equations t(2i) = t(i) and t(2i+1) = 1−t(i) for the Thue–Morse
sequence. Other equations from (1) are proved in a similar way.

From (1) we derive

s2m
1 =

1
2
− 1

2
sm
1 , s2m+1

1 =
m

2m+ 1
(1 − sm

1 ).

Note that s11 = 0. Our goal is to prove that limm→∞ sm
1 = 1

3 . Let sm
1 = 1

3 + am.
Then we have a1 = − 1

3 , a2m = − 1
2am, and a2m+1 = − m

2m+1am − 1
6m+3 . Let

bm = 3mam. Then b1 = −1, b2m = 6ma2m = −3mam = −bm and b2m+1 =
3(2m+ 1)a2m+1 = −3mam − 1 = −bm − 1, from what it can easily be seen that
|bm| = O(logm), and therefore limm→∞ am = 0 and there exists limm→∞ sm

1 =
s1 = 1

3 .
Now from (1) one can prove that sn = limm→∞ sm

n = limm→∞
1
m#{i ∈

[m− 1] : t(i) = t(i + n)} exists for every n � 2, and moreover one gets

s2n = sn, s2n+1 = 1 − 1
2
(sn + sn+1)

for every n, and s0 = 1, s1 = 1
3 .

Now it is easy to see by induction that 1
3 � sn �

2
3 for every n � 1. And since

s3 = 2
3 , then AM(t) = 1 − 2

3 = 1
3 . "#

Note that most part of the proof of Theorem 3 was spent on proving the existence
of limits sn = limm→∞ sm

n . If one is ready to assume that these limits exist, then
the proof becomes much simpler and shorter. Though we do not know how to
prove the existence of these limits simpler, we will be omitting such proofs later,
since they are all similar to each other and rather technical.

Theorem 4. If x is Sturmian, then AM(x) = 0.

Proof. Let x = cα,ρ be a Sturmian sequence. Recall that by definition 0 < α < 1,
α irrational, and 0 � ρ < 1.

Our goal is to show that sn can be arbitrarily close to 1. Then from the
definition of aperiodicity measure it follows that AM(x) = 0.

Let ε > 0. Since α is irrational, we can find n such that fr(nα) < ε. We have
1
m#{i ∈ [m−1] : x(i) = x(i+n)} = 1− 1

m#{i ∈ [m−1] : x(i) �= x(i+n)}. Recall
that x(j) = 0 if 0 � fr(αj + ρ) < 1 − α and x(j) = 1 if 1 − α � fr(αj + ρ) < 1
for every j. Note also that fr(α(i + n) + ρ) = fr(fr(αi + ρ) + fr(αn)). Therefore
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{i ∈ [m− 1] : x(i) �= x(i + n)}
⊆ {i ∈ [m− 1] : 1 − α− ε � fr(αi + ρ) < 1 − α}

∪ {i ∈ [m− 1] : 1 − ε � fr(αi + ρ) < 1}.

Therefore, #{i ∈ [m − 1] : x(i) �= x(i + n)} � #{i ∈ [m − 1] : 1 − α −
ε � fr(αi + ρ) < 1 − α} + #{i ∈ [m − 1] : 1 − ε � fr(αi + ρ) < 1} which
is asymptotically < 2εm as m → ∞. Indeed, it is well known that for every
irrational β, every real γ, every real a, b such that 0 � a < b � 1, we have
limm→∞

1
m#{i ∈ [m − 1] : a � fr(βi + γ) � b} = b − a, that is, the sequence

(fr(βi+ γ))∞i=0 is uniformly distributed in [0, 1] (the Kronecker–Weyl Theorem).
Thus sn > 1 − 2ε. Since ε can be chosen arbitrarily small, it follows that

AM(x) = 0. "#

4 Automatic Sequences with High Aperiodicity Measure

The following generalization of the Thue–Morse sequence was called Prouhet
sequences in [1] (see [17]) and has been widely studied (e.g., see [3,19] etc.).

Let φ : {0, . . . , k − 1}∗ → {0, . . . , k − 1}∗ be as follows:

φ(0) = 0 1 2 3 . . . (k − 2) (k − 1)
φ(1) = 1 2 3 . . . (k − 2) (k − 1) 0
φ(2) = 2 3 . . . (k − 2) (k − 1) 0 1
. . .

φ(k − 1) = (k − 1) 0 1 2 3 . . . (k − 2),

in other words, (φ(i))(j) = i + j (where + is modulo k) for 0 � i, j � k − 1.
Let tk = φ∞(0). Initially it was conjectured that tk may have high aperiodicity
measure. However, it turns out to be not the case.

Theorem 5. AM(tk) �
2

k+1 − 2
kk−1(k+1) .

Proof (sketch). Remind that sn = lim supm→∞
1
m#{i ∈ [m − 1] : x(i) = x(i +

n)}. Let us generalize this and define sn(d) = lim supm→∞
1
m#{i ∈ [m − 1] :

x(i + n) − x(i) = d}. That is, sn(0) = sn.
It is clear that s0(0) = 1 and s0(d) = 0 for 1 � d � k − 1.
In the same manner as what we did in the proof of Theorem 3, one can prove

the existence of limits sn(d) = limm→∞
1
m#{i ∈ [m − 1] : x(i + n) − x(i) = d}

and obtain the following equations:

skn+p(d) =
k − p

k
sn(d− p) +

p

k
sn+1(d− p) (2)

for every n and every d, p such that 0 � d, p � k − 1.
In particular, one can derive the following equations s1(d) = k−1

k s0(d − 1) +
1
ks1(d− 1) for 0 � d � k − 1 and prove that

s1(0) =
k − 1
kk − 1

and s1(d) = kk−d k − 1
kk − 1
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for 1 � d � k − 1.
One can prove for 0 � i � k by induction on i that

ski−1(k − i) =
1
ki

(
1 +

k − 1
k + 1

k2i − 1
kk − 1

)
using s0(0) = 1 and ski+1−1(k − (i + 1)) = 1

kski−1(k − i) + k−1
k ski(k − i) =

1
kski−1(k − i) + k−1

k ki k−1
kk−1 (follows from equations (2)). In particular,

skk−1(0) =
1
kk

(
1 +

k − 1
k + 1

k2k − 1
kk − 1

)
= 1 − 2

k + 1
+

2
kk−1(k + 1)

,

from what it follows that AM(tk) �
2

k+1 − 2
kk−1(k+1) . "#

We believe that AM(tk) = 2
k+1 − 2

kk−1(k+1) though did not manage to show this.
To prove this, one has to find the maximum of the above sequence sn(0), and
we believe that this maximum is indeed reached in n = kk − 1. This statement
is supported by computer tests we performed.

An additional interest to study sequences tk is in the following alternative
definition for these sequences. Let fk(i) be the sum of digits of i written in
base k. Then tk(i) ≡ fk(i) (mod k). This representation is well known for the
Thue–Morse sequence. One may ask the following question: what is the number
n such that the fraction of numbers i for which fk(i) ≡ fk(i + n) (mod k) is
maximum possible? We conjecture that this n is kk − 1, that is, the number
consisting of k − 1 digits k − 1 in base k, and this maximum possible fraction is
1 − 2

k+1 + 2
kk−1(k+1) , that is, approximately 1 − 2

k+1 for large k.
Other interesting regularities we noticed while performing some computer

tests, are the following. Let s
(k)
n (d) in this paragraph be the value of sn(d)

for tk. Let argmaxn f(n) for f : N → R be the smallest value of the argument n
on which f(n) reaches its maximum. It seems that argmaxn s

(k)
n (0) = kk − 1

(see above), argmaxn s
(k)
n (−1) = 1, argmaxn s

(k)
n (−2) = kk−1 + 1. It seems

also for instance that argmaxn s
(4)
n (1) = 33323334 (here lower index k means

base k representation), and argmaxn s
(5)
n (1) = 4444344445. It also seems that

argmaxn s
(5)
n (2) = 1000100015. Sequences tk and the aforementioned regulari-

ties should definitely be studied more properly, especially keeping in mind the
alternative definition from the previous paragraph.

Now we construct automatic sequences with the aperiodicity measure arbi-
trarily close to 1.

Theorem 6. For every α < 1 there exists an automatic sequence x such that
AM(x) � α.

Proof (sketch). Let k � 3 and let φ : {0, . . . , k − 1}∗ → {0, . . . , k − 1}∗ be such
that (φ(i))(j) = i + 1 + 2 + · · · + (j − 1) + j (where + is always modulo k) for
0 � i, j � k − 1. Let xk = φ∞(0). For instance, if k = 5, then φ is as follows:



282 Y. Pritykin and J. Ulyashkina

φ(0) = 01310
φ(1) = 12421
φ(2) = 23032
φ(3) = 34143
φ(4) = 40204,

and x5 = 013101242134143124210131012421 . . .

Claim. If k � 3 is prime, then AM(xk) = 1 − 2
k .

Let us define sm
n (d) = 1

m#{i ∈ [m− 1] : xk(i+ n) − xk(i) = d}.
It follows from the definition that for every m we have sm

0 (0) = 1 and sm
0 (d) =

0 for 1 � d � k − 1. Analogously to the proof of Theorem 3, for every n, every
m � 1, and every d, p, t such that 0 � d, p, t � k−1, one can obtain the following
equations (compare with equations (1)):

skm+t
kn+p (d)

=
1

km+ t

k−p−1∑
j=0

mjs
mj
n

(
d− p(p+ 1)

2
− jp

)

+
1

km+ t

k−1∑
j=k−p

mjs
mj

n+1

(
d− p(p+ 1)

2
− jp

)
,

(3)

where mj = m+ 1 for j < t and mj = m for j � t. The idea again is to consider
separately sets of indices {ik+ j : i ∈ N} for different j such that 0 � j � k− 1.

In particular, one can derive from (3) that skm+t
1 (0) = m

km+ts
m
1 (0) and skm+t

1

(d) = 1
km+t (md−1 +msm

1 (d)) for 1 � d � k − 1. Our goal is to prove that there
exist limm→∞ sm

1 (0) = 0 and limm→∞ sm
1 (d) = 1

k−1 for 1 � d � k − 1.
The former equation is clear, since st

1(0) = 0 for 1 � t � k− 1 can be checked
easily. For the latter, fix some d such that 1 � d � k− 1 and let bm be such that
sm
1 (d) = 1

k−1 + bm

m . Then one gets bkm+t = md−1 −m − t
k−1 + bm, from what

it is easy to see that |bm| = O(logm). Therefore there exists limm→∞ sm
1 (d) =

s1(d) = 1
k−1 .

Using (3), now one can prove by induction on n the existence of limits sn(d) =
limm→∞

1
m#{i ∈ [m − 1] : x(i + n) − x(i) = d} and to obtain the following

equations:

skn+p(d)=
1
k

⎛⎝k−p−1∑
j=0

sn

(
d− p(p+ 1)

2
− jp

)
+

k−1∑
j=k−p

sn+1

(
d− p(p+ 1)

2
− jp

)⎞⎠
(4)

for every n and every d, p such that 0 � d, p � k − 1.
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For instance, for k = 5 we get

s5m(d) = sm(d)

s5m+1(d) =
1
5
(sm(d− 1) + sm(d− 2) + sm(d− 3) + sm(d− 4) + sm+1(d− 5))

s5m+2(d)=
1
5
(sm(d− 3)+sm(d− 5)+sm(d− 7)+sm+1(d− 9)+sm+1(d− 11))

. . .

Clearly, s0(0) = 1 and s0(d) = 0 for 1 � d � k − 1. We already proved that
s1(0) = 0 and s1(d) = 1

k−1 for 1 � d � k − 1.
Using (4), it is easy to see that sk−1(0) = 1

ks0(0) + 1
k

∑k−1
j=1 s1(j) = 2

k .
Now it is easy to prove using equations (4) that sn(d) �

2
k for every d and

n � 1. Indeed, note that k is prime (this is the first time we use it), and therefore
{d− p(p+1)

2 − p, d− p(p+1)
2 − 2p, . . . , d− p(p+1)

2 − kp} = {0, . . . , k − 1}. Thus for
n � 0 and 1 � p � k − 1 we have

skn+p(d)

=
1
k

⎛⎝k−p−1∑
j=0

sn

(
d− p(p + 1)

2
− jp

)
+

k−1∑
j=k−p

sn+1

(
d− p(p + 1)

2
− jp

)⎞⎠
�

1
k

k−1∑
j=0

sn(j) +
1
k

k−1∑
j=0

sn+1(j) =
1
k

+
1
k

=
2
k
,

and we also need skn(d) = sn(d) for n � 1.
Therefore AM(xk) = 1 − sup{sn(0) : n � 1} = 1 − sk−1(0) = 1 − 2

k . "#

5 Conclusion and Open Problems

In this paper we introduced the notion of aperiodicity measure for infinite sym-
bolic sequences. It seems that this notion was not studied before, though looks
very natural at least from a combinatorial point of view. However, the results of
our paper are far from sufficient before we could say that the notion of aperi-
odicity measure is properly studied. Here we formulate some open questions, in
addition to those listed throughout the paper, that we think may be interesting
for future research.

1. As we already discussed, AM(x) of a sequence x over the alphabet with k
symbols ranges from 0 to 1− 1

k . What values in this range may the aperiod-
icity measure have?

2. For each k � 2, what is the maximum possible AM(x) for an automatic
sequence x over the alphabet of k symbols? For a morphic sequence? What
values can the aperiodicity measure of a morphic sequence have?

3. For each k � 2, what is the maximum possible AM(x) for a k-automatic x?
What values can the aperiodicity measure of a k-automatic sequence have?
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4. For which sequences x can one take lim instead of lim sup in the definition
of sn(x) = lim sup 1

m#{i ∈ [m− 1] : x(i) = x(i+n)}, that is, when does this
limit exist? In particular, does it exist for every automatic sequence x? Is it
true that if this limit exists for n = 1, then it exists for all n?

5. Study the behavior of the sequence sn, and more generally, of the sequence
sn(i) for different i, more properly. In particular, describe its set of accumu-
lation points.

6. Calculate the aperiodicity measure for some other sequences and classes of
sequences, for instance, for the Toeplitz sequences, some morphic sequences,
some generalizations of the Sturmian sequences, etc.

7. We characterized the aperiodicity measure of some sequences and suggested
that this work should be continued. However, one can also ask the inverse
question: to characterize the set of sequences with some fixed aperiodicity
measure α. This is specifically interesting for the extremal values α = 0 and
α = 1 − 1

k for k-letter sequences.
8. There is a generic way (an algorithm) to calculate the aperiodicity measure

for morphic sequences. For example, this can be seen in the following way.
Let the Cartesian product of sequences x and y be the sequence x× y such
that (x×y)(n) = (x(n), y(n)). Then for a morphic x, the sequence x×Lpx is
morhic, since it can be obtained from x by a finite transduction (e.g., see [4]).
Then it only remains to calculate the frequency of letters in x × Lpx (e.g.,
see [18]). However, this method is clearly non-practical. Is there a sufficiently
simpler method to calculate the aperiodicity measure for morphic sequences?
Or at least for automatic sequences? In particular, can one generalize the
method used in the proofs of Theorems 3, 5, 6?

Acknowledgements

The authors are grateful to A. Semenov and N. Vereshchagin for their permanent
support, and also to S. Avgustinovich, B. Durand, A. Frid, A. Romashchenko,
A. Shen for fruitful discussions, as well as to anonymous referees for many useful
comments.

References

1. Adler, A., Li, S.-Y.R.: Magic cubes and Prouhet sequences. American Mathemat-
ical Monthly 84, 618–627 (1977)

2. Allouche, J.-P., Shallit, J.: The ubiquitous Prouhet–Thue–Morse sequence. In:
Proceedings of Sequences and their applications, SETA 1998, pp. 1–16. Springer,
Heidelberg (1999)

3. Allouche, J.-P., Shallit, J.: Sums of digits, overlaps, and palindromes. Discrete
Mathematics and Theoretical Computer Science 4, 1–10 (2000)

4. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, General-
izations. Cambridge University Press, Cambridge (2003)
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12. Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences. I. Measure of
pseudorandomness, the Legendre symbol. Acta Arithmetica 82(4), 365–377 (1997)
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Abstract. We study the complexity of testing if two given matroids
are isomorphic. The problem is easily seen to be in Σp

2 . In the case of
linear matroids, which are represented over polynomially growing fields,
we note that the problem is unlikely to be Σp

2 -complete and is coNP-
hard. We show that when the rank of the matroid is bounded by a
constant, linear matroid isomorphism and matroid isomorphism are both
polynomial time many-one equivalent to graph isomorphism.

We give a polynomial time Turing reduction from graphic matroid
isomorphism problem to the graph isomorphism problem. We then give
a polynomial time many-one reduction from bounded rank matroid iso-
morphism problem to graphic matroid isomorphism, thus showing that
all the above problems are polynomial time equivalent.

Further, for linear and graphic matroids, we prove that the automor-
phism problem is polynomial time equivalent to the corresponding iso-
morphism problems. In addition, we give a polynomial time membership
test algorithm for the automorphism group of a graphic matroid.

1 Introduction

Isomorphism problems over various mathematical structures have been a source
of intriguing problems in complexity theory (see [1]). The most important prob-
lem of this domain is the well-known graph isomorphism problem. Though the
complexity characterisation of the general version of this problem is still un-
known, there have been various interesting special cases of the problem which
are known to have polynomial time algorithms [10,12] and many structural re-
sults are known [9,11,17]. In this paper we talk about isomorphism problem
associated with matroids.

A matroid M is a combinatorial object defined over a finite set S (of size
m) called the ground set, equipped with a non-empty family I of subsets of
S (containing the empty subset) which is closed under taking of subsets and
� This work was supported in part by the National Natural Science Foundation of

China Grant 60553001, and the National Basic Research Program of China Grant
2007CB807900,2007CB807901.

A. Frid et al. (Eds.): CSR 2009, LNCS 5675, pp. 286–298, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



On the Complexity of Matroid Isomorphism Problems 287

satisfies the exchange axiom : for any I1, I2 ∈ I such that |I1| > |I2|, ∃x ∈ I1 \I2,
I2 ∪ {x} ∈ I. The sets in I are called independent sets. The rank of the matroid
is the size of the maximal independent set. This provides useful abstractions of
many concepts in combinatorics and linear algebra and is well studied [15]. We
study the problem of testing isomorphism between two given matroids.

Two matroids M1 and M2 are said to be isomorphic if there is a bijection
between the elements of the ground set which maps independent sets to inde-
pendent sets (or equivalently circuits to circuits, or bases to bases, see section 2).
Quite naturally, the representation of the input matroids is important in deciding
the complexity of the algorithmic problem.

There are several equivalent representations of a matroid. For example, enu-
merating the maximal independent sets (called bases) or the minimal dependent
sets (called circuits) also defines the matroid. These representations, although
can be exponential in the size of the ground set, indeed exist for every matroid, by
definition. With this enumerative representation, Mayhew [13] studied the ma-
troid isomorphism problem, and shows that the problem is equivalent to graph
isomorphism problem. However, a natural question is whether the problem is
difficult when the representation of the matroid is more implicit? In a black-box
setting, one can also consider the input representation in the form of an oracle
or a black-box, where the oracle answers whether a given set is independent
or not.

More implicit (and efficient) representation of matroids have been studied.
One natural way is to identify the given matroid with matroids defined over
combinatorial or algebraic objects which have implicit descriptions. A general
framework in this direction is the representation of a matroid over a field. A
matroid M = (S, I) of rank r is said to be representable over a field F if there is
a map, φ : S → Fr such that, ∀A ⊆ S, A ∈ I ⇐⇒ φ(A) is linearly independent
over Fr as a vector space. However, there are matroids which do not admit linear
representations over any field. (For example, the Vamós Matroid, See Proposition
6.1.10, [15].). In contrast, there are matroids (called regular matroids) which
admit linear representations over all fields.

Another natural representation for a matroid is over graphs. For any graph
X , we can associate a matroid M(X) as follows: the set of edges of X is the
ground set, and the acyclic subgraphs of the given graph form the independent
sets. A matroid M is called a graphic matroid (also called polygon matroid or
cyclic matroid) if it is isomorphic to M(X) for some graph X . It is known that
graphic matroids are linear. Indeed, the incidence matrix of the graph will give a
representation over F2. There are linear matroids which are not graphic. (See [15]
for more details.)

The above definitions themselves highlight the importance of testing isomor-
phism between two given matroids. We study the isomorphism problem for the
case of linear matroids (Linear Matroid Isomorphism problem (LMI) and graphic
matroids (Graphic Matroid Isomorphism problem (GMI)) where the inputs are
in the implicit representation (matrices and graphs resp.).
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From a complexity perspective, the general case of the problem (where the
matroid is given as an independent set oracle) is in Σp

2 . However, it is not even
clear a priori if the problem is in NP even in the above restricted cases where there
are implicit representations. But we note that for the case of graphic matroids
the problem admits an NP algorithm. Hence an intriguing question is about the
comparison of this problem to the well studied graph isomorphism problem.

An important result in this direction, due to Whitney (see [19]), says that in
the case of 3-connected graphs, the graphs are isomorphic if and only if the cor-
responding matroids are isomorphic (see section 5). Thus the problems of testing
isomorphism of graphs and of the corresponding graphic matroids are equivalent
for the case of 3-connected graphs. Despite this similarity between the problems,
to the best of our knowledge, there has not been a systematic study of GMI and
its relationships to graph isomorphism problem (GI). This immediately gives a
motivation to study the isomorphism problem for 3-connected graphs. In partic-
ular, from the recent results on graph isomorphism problem for these classes of
graphs [4], it follows that graphic matroid isomorphism problem for 3-connected
planar graphs is L-complete.

In this context we study the general, linear and graphic matroid isomorphism
problems. Our main contributions in the paper are as follows:

– We prove that when the rank of the matroid is bounded, linear matroid iso-
morphism and matroid isomorphism are both equivalent to GI (Theorem 2)1

– We develop tools to handle colouring of ground set elements in the context of
the isomorphism problem. We show that coloured versions of linear matroid
isomorphism and graphic matroid isomorphism are as hard as the general
version (Lemma 2, 1). As an immediate application of this, we show that the
automorphism problems for graphic matroids and linear matroids are poly-
nomial time Turing equivalent to the corresponding isomorphism problems.
In this context, we also give a polynomial time membership test algorithm
for the automorphism group of a graphic matroid (Theorem 8).

– We give a polynomial time Turing reduction (Theorem 3) from graphic ma-
troid isomorphism problem to the graph isomorphism problem by developing
an edge colouring scheme which algorithmically uses a decomposition given
by [7] (and [3]). Our reduction, in particular implies that the graphic ma-
troid isomorphism testing for planar graphs can be done in deterministic
polynomial time (Corollary 2).

– Finally, we give a reduction from bounded rank matroid isomorphism prob-
lem to graphic matroid isomorphism (Theorem 5), thus showing that all the
above problems are poly-time equivalent.

Due to space limitations we have omitted many proofs. The omitted proofs can
be found in the full version [16].

1 We note that, although not explicitly stated, the equivalence of bounded rank ma-
troid isomorphism and and graph isomorphism also follows from the results of May-
hew [13]. However, it is not immediately clear if the GI-hard instances of [13] are
linearly representable. Our proof is different and extend this to linear matroids.
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2 Notations and Preliminaries

All the complexity classes used here are standard and we refer the reader to any
standard text book (for e.g. see [5]).

An isomorphism between two matroids M1 and M2 is a bijection φ : S1 → S2
such that ∀C ⊆ S1 : C ∈ C1 ⇐⇒ φ(C) ∈ C2, where C1 and C2 are the family of
circuits of the matroids M1 and M2 respectively. It is clear that for two matroids
to be isomorphic the ground set has to be of the same size (say m) and they
have to be of the same rank (say r). Now we state the computational problems
more precisely.
Problem 1 (Matroid Isomorphism(MI)). Given two matroids M1 and M2 as
their ground sets and the independent set oracles, test if M1 ∼= M2.

Given a matrix An×m over a field F, we can define a matroid M [A] with columns
of A as the ground set (of m elements) and linearly independent columns as the
independent sets of M [A]. A matroid M = (E, I) of rank r (≤ n) is said to
be representable over F, if there exists a matrix A ∈ Fr×m such that M is
isomorphic to the matroid M [A]. Linear matroids are matroids representable
over fields. We assume that the field on which the matroid is represented is also
a part of the input as the table for both operations, and that the field has at
least m elements and at most poly(m) elements.
Problem 2 (Linear Matroid Isomorphism(LMI)). Given two matrices A
and B over a given field F, test if M [A] ∼= M [B].

As mentioned in the introduction, given a graph X = (V,E) (|V | = n, |E| = m),
a classical way to associate a matroid M(X) with X is to treat E as ground set
elements, the bases of M(X) are spanning forests of X . Equivalently circuits of
M(X) are simple cycles in X . A matroid M is called graphic iff ∃X such that
M is isomorphic to M(X).

Problem 3 (Graphic Matroid Isomorphism(GMI)). Given two graphs X1
and X2, test if M(X1) ∼= M(X2)?.

We denote by PMI, the version of GMI where the input graphs are planar.
Another associated terminology in the literature is about 2-isomorphism. Two
graphs X1 and X2 are said to be 2-isomorphic (denoted by X1 ∼=2 X2) if their
corresponding graphic matroids are isomorphic. Thus the above problem asks
to test if two given graphs are 2-isomorphic. In a rather surprising result, Whit-
ney [20] came up with a combinatorial characterisation of 2-isomorphic graphs.
See [15] for more details.

3 Linear Matroid Isomorphism

In this section we present some observations and results on LMI. Some of these
follow easily from the techniques in the literature. We make them explicit in a
form that is relevant to the problem that we are considering.
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As a basic complexity bound, it is easy to see that MI ∈ Σp
2 . Indeed, the

algorithm will existentially guess a bijection σ : S1 → S2 and universally verify
if for every subset C ⊆ S1, C ∈ C1 ⇐⇒ σ(C) ∈ C2 using the independent set
oracle. We first observe that using the arguments similar to that of [11] one can
show,

Theorem 1. LMI ∈ Σp
2 . In addition, LMI is ΣP

2 -hard =⇒ PH = ΣP
3 .

Using the results of [14] and noting that uniform matroids are representable, we
have the following,

Proposition 1. LMI is coNP-hard.

The above proposition also holds when the representation is over infinite fields.
In this case, the proposition also more directly follows from a result of Hlinený
[6], where it is shown that the problem of testing if a spike (a special kind of
matroids) represented by a matrix over Q is the free spike is coNP complete. He
also derives a linear representation for spikes.

Now we look at bounded rank variants of the problem. We denote by LMIb

(MIb), the restriction of LMI (MI) for which the input matrices have rank
bounded by b. In the following, we use the following construction due to Babai
[2] to prove LMIb ≡p

m GI.
Given a graph X = (V,E) and a k ∈ [3, d], where d is the minimum vertex

degree of X , define a matroid M = Stk(X) of rank k with the ground set as E
as follows: every subset of k − 1 edges is independent in M and every subset of
E with k edges is independent if and only if they do not share a common vertex.
Babai proved that Aut(X) ∼= Aut(Stk(X)) and also gave a linear representation
for Stk(X) (Lemma 2.1 in [2]) for all k in the above range. By tightening Babai’s
result, we obtain the following theorem, (See [16] for more details.)

Theorem 2. For any constant b ≥ 3, LMIb ≡p
m GI.

The above reduction (LMIb ≤p
m GI) works even if the matroids are not linear,

provided they are given via an independent set oracle. This gives the following
corollary.

Corollary 1. LMIb ≡p
m MIb ≡p

m GI.

4 Isomorphism Problem of Coloured Matroids

Vertex or edge colouring is a classical tool used extensively in proving various
results in graph isomorphism problem. We develop similar techniques for matroid
isomorphism problems too.

An edge-k-colouring of a graph X = (V,E) is a function f : E → {1, . . . , k}.
Given two graphs X1 = (V1, E1, f1) and X2 = (V2, E2, f2) with edge colourings,
the Coloured-GMI asks for an isomorphism which preserves the colours of the
edges. Not surprisingly, we can prove the following.
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Lemma 1. Coloured-GMI is AC0 many-one reducible to GMI.

Using linear algebraic constructions, which we defer to the full version due to
shortage of space, we generalise the above construction to the case of linear
matroid isomorphism. Coloured-LMI denotes the variant of LMI where the
inputs are the linear matroids M1 and M2 along with colour functions ci :
{1, . . . ,m} → N, i ∈ {1, 2}. The problem is to test if there is an isomorphism
between M1 and M2 which preserves the colours of the column indices. We have,

Lemma 2. Coloured-LMI is AC0 many-one reducible to LMI.

5 Graphic Matroid Isomorphism

In this section we study GMI. Unlike in the case of the graph isomorphism
problem, an NP upper bound is not so obvious for GMI. We start with the
discussion of an NP upper bound for GMI.

Whitney gave an exact characterisation of when two graphs are 2-isomorphic,
in terms of three operations; twisting, cleaving and identification. (see [15].) Note
that it is sufficient to find 2-isomorphisms between 2-connected components of
X1 and X2. In fact, any matching between the sets of 2-connected components
whose edges connect 2-isomorphic components will serve the purpose. This is
because, any 2-isomorphism preserves simple cycles, and any simple cycle of a
graph is always within a 2-connected component. Hence we can assume that
both the input graphs are 2-connected and in the case of 2-connected graphs,
twist is the only possible operation.

The set of separating pairs does not change under a twist operation. Moreover,
despite the fact that the twist operations need not commute, Truemper [18]
proved : for any two 2-connected 2-isomorphic graphs X and Y (on n vertices),
X can be transformed to graph X ′ isomorphic to Y through a sequence at most
n− 2 twists.

Using this lemma we get an NP upper bound for GMI. Given two graphs,
X1 and X2, the NP machine just guesses the sequence of n− 2 separating pairs
which corresponding to the 2-isomorphism. For each pair, guess the cut w.r.t
which the twist operation is to be done, and apply each of them in sequence to
the graph X1 to obtain a graph X ′

1. Now ask if X ′
1
∼= X ′

2. This gives an upper
bound of ∃.GI ⊆ NP. Thus we have,

Proposition 2. GMI is in NP.

This can also be seen as an NP-reduction from GMI to GI. Now we will give a
deterministic reduction from GMI to GI. Although, this does not improve the
NP upper bound, it implies that GMI cannot be NP-hard unless PH collapses.
This deterministic reduction, stated in the theorem 3 below, is the main result
of the paper.

Theorem 3. GMI ≤p
T GI.
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Let us first look into the case of 3-connected graphs. A separating pair is a pair
of vertices whose deletion leaves the graph disconnected. A 3-connected graph
is a connected graph which does not have any separating pairs. Whitney ([19])
proved the following equivalence,

Theorem 4 ([19]). X1 and X2 be 3-connected graphs, X1 ∼=2 X2 ⇐⇒X1∼= X2.

Before giving a formal proof of Theorem 3, we describe the idea roughly here:

Basic Idea. Let X1 and X2 be the given graphs. From the above discussion,
we can assume that the given graph is 2-connected.

In [7], Hopcroft and Tarjan proved that every 2-connected graph can be de-
composed uniquely into a tree of 3-connected components, bonds or polygons.2

Moreover, [7] showed that this decomposition can be computed in polynomial
time. The idea is to then find the isomorphism classes of these 3-connected
components using queries to GI (see theorem 4), and then colour the tree nodes
with the corresponding isomorphism class, and then compute a coloured tree
isomorphism between the two trees produced from the two graphs.

A first mind block is that these isomorphisms between the 3-connected com-
ponents need not map separating pairs to separating pairs. We overcome this by
colouring the separating pairs (in fact the edge between them), with a canonical
label of the two sub trees which the corresponding edge connects. To support
this, we observe the following. There may be many isomorphisms between two
3-connected components which preserves the colours of the separating pairs.
However, the order in which the vertices are mapped within a separating pair is
irrelevant, since any order will be canonical up to a twist operation with respect
to the separating pair.

So with the new colouring, the isomorphism between 3-connected components
maps a separating pair to a separating pair, if and only if the two pairs of sub
trees are isomorphic. However, even if this is the case, the coloured sub trees
need not be isomorphic. This creates a simultaneity problem of colouring of the
3-connected components and the tree nodes and thus a second mind block.

We overcome this by colouring again using the code for coloured sub trees, and
then finding the new isomorphism classes between the 3-connected components.
This process is iterated till the colours stabilise on the tree as well as on the
individual separating pairs (since there are only linear number of 3-connected
components). Once this is ensured, we can recover the 2-isomorphism of the orig-
inal graph by weaving the isomorphism of the 3-connected components guided
by the tree adjacency relationship. In addition, if two 3-connected components
are indeed isomorphic in the correctly aligned way, the above colouring scheme,
at any point, does not distinguish between them.

2 Cunningham et al. [3] shows that any graphic matroid M(X) is isomorphic to
M(X1) ⊕ M(X2) . . . ⊕ M(Xk)/{e1, e2, . . . , ek}, where M(X1), . . . , M(Xk) are 3-
connected components, bonds or polygons of M(X) and e1, . . . , ek are the virtual
edges. However, it is unclear if this can be turned into a reduction from GMI to GI

using edge/vertex colouring.
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Breaking into Tree of 3-connected components. We use the algorithm
of Hopcroft and Tarjan [7] to compute the set of 3-connected components of a
2-connected graph in polynomial time. We will now describe some details of the
algorithm which we will exploit.

Let X(V,E) be a 2-connected graph. Let Y be a connected component of
X \ {a, b}, where {a, b} is a separating pair. X is an excisable component w.r.t
{a, b} if X \Y has at least 2 edges and is 2-connected. The operation of excising
Y from X results in two graphs: C1 = X \ Y plus a virtual edge joining (a, b),
and C2 = the induced subgraph on X ∪ {a, b} plus a virtual edge joining (a, b).
This operation may introduce multiple edges.

The decomposition of X into its 3-connected components is achieved by the
repeated application of the excising operation (we call the corresponding sep-
arating pairs as excised pairs) until all the resulting graphs are free of excis-
able components. This decomposition is represented by a graph GX with the
3-connected components of X as its vertices and two components are adjacent
in GX if and only if they share a virtual edge. In the above explanation, the
graph GX need not be a tree as the components which share a separating pair
will form a clique.

To make it a tree, [7] introduces another component corresponding to the
virtual edges thus identifying all the virtual edges created in the same excising
operation with each other.

Instead, we do a surgery on the original graph X and the graph GX . We add
an edge between all the excised pairs (excised while obtaining GX) to get the
graph X ′. Notice that, following the same series of decomposition gives a new
graph TX which is the same as GX except that the cliques are replaced by star
centred at a newly introduced vertex (component) corresponding to the newly
introduced excised edges in X ′. The newly introduced edges form a 3-connected
component themselves with one virtual edge corresponding to each edge of the
clique they replace.

We list down the properties of the tree TX for further reference. (1) For every
node in t ∈ TX , there is exactly one 3-connected component in X ′. We denote
this by ct. (2) For every edge e = (u, v) ∈ TX , there are exactly two virtual
edges, one each in the 3-connected components cu and cv. We call these virtual
edges as the twin edges of each other. (3) For any given graph X , TX is unique
up to isomorphism (since GX is unique [7]). In addition, TX can be obtained
from GX in polynomial time.

The following claim states that (we omit the proof) this surgery in the graphs
does not affect the existence of 2-isomorphisms.

Claim. X1 ∼=2 X2 ⇐⇒ X ′
1
∼=2 X

′
2.

Thus it is sufficient to give an algorithm to test if X ′
1
∼=2 X

′
2, which we describe

as follows.

Input: 2-connected graphs X ′
1 and X ′

2 and tree of 3-connected components T1 and T2.

Output: Yes if X ′
1
∼=2 X ′

2, and No otherwise.
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Algorithm:

Notation: code(T ) denotes the canonical label3 for a tree T .

1. Initialise T ′
1 = T1, T ′

2 = T2.

2. Repeat

(a) Set T1 = T ′
1, T2 = T ′

2.
(b) For each edge e = (u, v) ∈ Ti, i ∈ {1, 2}:

Let Ti(e, u) and Ti(e, v) be subtrees of Ti obtained by deleting the edge e,
containing u and v respectively.
Colour virtual edges corresponding to the separating pairs in the components
cu and cv with the set {code(Ti(e, u)),code(Ti(e, v))}. From now on, ct de-
notes the coloured 3-connected component corresponding to node t ∈ T1 ∪ T2.

(c) Let S1 and S2 be the set of coloured 3-connected components of X ′
1 and X ′

2

and let S = S1 ∪ S2. Using queries to GI (see Proposition 3) find out the
isomorphism classes in S. Let C1, . . . , Cq denote the isomorphism classes.

(d) Colour each node t ∈ Ti, i ∈ {1, 2}, with colour 
 if ct ∈ C�. (This gives two
coloured trees T ′

1 and T ′
2.)

Until (code(Ti) �= code(T ′
i ), ∀i ∈ {1, 2})

3. Check if T ′
1
∼= T ′

2 preserving the colours. Answer Yes if T ′
1
∼= T ′

2, and No otherwise.

First we prove that the algorithm terminates in linear number of iterations of
the repeat-until loop. Let qi denote the number of isomorphism classes of the set
of the coloured 3-connected components after the ith iteration. We claim that, if
the termination condition is not satisfied, then |qi| > |qi−1|. To see this, suppose
the termination is not satisfied. This means that the coloured tree T ′

1 is different
from T1. This can happen only when the colour of a 3-connected component cv,
v ∈ T1 ∪T2 changes. In addition, this can only increase the isomorphism classes.
Thus |qi| > |qi−1|. Since q can be at most 2n, this shows that the algorithm exits
the loop after at most 2n steps.

Now we prove the correctness of the algorithm. We follow the notation de-
scribed in the algorithm.

Lemma 3. X ′
1
∼=2 X

′
2. ⇐⇒ T ′

1
∼= T ′

2.

Proof. We give a proof sketch here.
(⇒) This dirction is easy and we omit the proof.
(⇐) First, we recall some definitions needed in the proof. A centre of a tree T is
defined as a vertex v such that maxu∈T d(u, v) is minimised at v, where d(u, v)
is the number of edges in the unique path from u to v. It is known that every
tree T has a centre consisting of a single vertex or a pair of adjacent vertices.
The minimum achieved at the centre is called the height of the tree, denoted by
ht(T ).

3 When T is coloured, code(T ) is the code of the tree obtained after attaching the
necessary gadgets to the coloured nodes. Notice that even after colouring, the graph
is still a tree. In addition, for any T , code(T ) can be computed in P.
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Claim. Let ψ be a colour preserving isomorphism between T ′
1 and T ′

2, and χt is an
isomorphism between the 3-connected components ct and cψ(t). Then, X ′

1
∼=2 X

′
2

via a map σ such that ∀t ∈ T ′
1, ∀e ∈ ct ∩ E1 : σ(e) = χt(e) where E1 is the set

of edges in X ′
1.

Proof. The proof is by induction on height of the trees h = ht(T ′
1) = ht(T ′

2),
where the height (and centre) is computed with respect to the underlying tree
ignoring colours on the vertices. Base case is when h = 0; that is, T ′

1 and T ′
2

have just one node (3-connected component) without any virtual edges. Simply
define σ = χ. By Theorem 4, this gives the required 2-isomorphism. Suppose
that if h = ht(T ′

1) = ht(T ′
2) < k, the above claim is true. For the induction step,

suppose further that T ′
1
∼= T ′

2 via ψ, and ht(T ′
1) = ht(T ′

2) = k. Notice that ψ
should map the centre(s) of T1 to that of T2. We consider two cases.

In the first case, T ′
1 and T ′

2 have unique centres α and β. It is clear that ψ(α) =
β. Let c1 and c2 be the corresponding coloured (as in step 2b) 3-connected
components. Therefore, there is a colour preserving isomorphism χ = χα between
cα and cβ . Let f1, . . . fk be the virtual edges in cα corresponding to the tree edges
e1 = (α, v1), . . . , ek = (α, vk) where v1, . . . , vk are neighbours of α in T ′

1. Denote
ψ(ei) by e′i, and ψ(vi) by v′i.

Observe that only virtual edges are coloured in the 3-connected components in
step 2b while determining their isomorphism classes. Therefore, for each i, χ(fi)
will be a virtual edge in cβ , and in addition, with the same colour as fi. That
is, {code(T1(ei, α)),code(T1(ei, vi))} = {code(T2(e′i, β)),code(T2(e′i, v′

i)))}. Since α
and β are the centres of T ′

1 and T ′
2, it must be the case that in the above set

equality, code(T1(ei, vi)) = code(T2(e′i, v
′
i)). From the termination condition

of the algorithm, this implies that code(T ′
1(ei, vi)) = code(T ′

2(e
′
i, v

′
i)). Hence,

T ′
1(ei, vi) ∼= T ′

2(e′i, v
′
i). In addition, ht(vi) = ht(v′i) < k. Let X ′

fi
and X ′

χ(fi)
denote the subgraphs of X ′

1 and X ′
2 corresponding to T ′

1(ei, vi) and T ′
2(e′i, v

′
i) re-

spectively. By induction hypothesis, the graphs X ′
fi

and X ′
χ(fi) are 2-isomorphic

via σi which agrees with the corresponding χt for t ∈ T ′
1(ei, vi). Define πi as a

map between the set of all edges, such that it agrees with σi on all edges of X ′
f(i)

and with χt (for t ∈ T ′
1(ei, vi)) on the coloured virtual edges.

We claim that πi must map the twin-edge of fi to twin-edge of τ(fi). Suppose
not. By the property of the colouring, this implies that there is a subtree of
T ′

1(ei, vi) isomorphic to T ′
1 \ T ′

1(ei, vi). This contradicts the assumption that cα
is the centre of T ′

1.
For each edge e ∈ E1, define σ(e) to be χ(e) when e ∈ cα and to be πi(e)

when e ∈ Efi (edges of Xfi).
From the above argument, χ = χα and σi indeed agrees on where it maps fi

to. This ensures that every cycle passing through the separating pairs of cα gets
preserved. Thus σ is a 2-isomorphism between X ′

1 and X ′
2.

For case 2, let T ′
1 and T ′

2 have two centres (α1, α2) and (β1, β2) respectively.
An essentially similar argument works in this case too.

This completes the proof of correctness of the algorithm (Lemma 3).

To complete the proof of Theorem 3, we need the following proposition:
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Proposition 3. Coloured-GMI for 3-connected graphs reduces to GI.

Observe that the above construction does not use non-planar gadgets. It is known
that isomorphism testing for planar 3-connected graphs can be done in linear
time [7] (in fact in L [4]) we get the following.

Corollary 2. PMI ∈ P.

Now we give a polynomial time many-one reduction from MIb to GMI.

Theorem 5. MIb ≤p
m GMI.

Combining Corollary 1, Theorem 3 and Theorem 5 we have,

Theorem 6. GI ≡p
T GMI ≡p

T MIb ≡p
T LMIb.

6 Matroid Automorphism Problem

With any isomorphism problem, there is an associated automorphism problem
i.e, to find a generating set for the automorphism group of the underlying object.
Relating the isomorphism problem to the corresponding automorphism problem
gives access to algebraic tools associated with the automorphism groups. In the
case of graphs, studying automorphism problem has been fruitful.(e.g. see [12].)
In this section we turn our attention to Matroid automorphism problem.

An automorphism of a matroid M = (S, C) (where S is the ground set and
C is the set of circuits) is a permutation φ of elements of S such that ∀C ⊆
S, C ∈ C ⇐⇒ φ(C) ∈ C. Aut(M) denotes the group of automorphisms of the
matroid M . When the matroid is graphic we denote by Aut(X) and Aut(MX)
the automorphism group of the graph and the graphic matroid respectively.

To begin with, we note that given a graph X , and a permutation π ∈ Sm,
it is not clear a priori how to check if π ∈ Aut(MX) efficiently. This is because
we need to ensure that π preserves all the simple cycles, and there could be
exponentially many of them. Note that such a membership test (given a π ∈ Sn)
for Aut(X) can be done easily by testing whether π preserves all the edges. We
provide an efficient test for this problem, i.e.,

Theorem 7. Given any π ∈ Sm, testing if π ∈ Aut(MX) can be done in P.

To prove the above theorem, we use the notion of a cycle bases of X . A cycle
basis of a graph X is a minimal set of cycles B of X such that every cycle in X
can be written as a linear combination (viewing every cycle as a vector in Fm

2 )
of the cycles in B. Let B denote the set of all cycle basis of the graph X .

Lemma 4. Let π ∈ Sn, ∃B ∈ B : π(B) ∈ B =⇒ ∀B ∈ B : π(B) ∈ B

Lemma 5. Let π ∈ Sm, and let B ∈ B, then π ∈ Aut(MX) ⇐⇒ π(B) ∈ B.

Using Lemmas 4 and 5 it follows that, given a permutation π, to test if π ∈
Aut(MX) it suffices to check if for a cycle basis B of X , π(B) is also a cycle basis.
Given a graph X a cycle basis B can be computed in polynomial time (see e.g,
[8]). Now it suffices to show:
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Lemma 6. Given a permutation π ∈ Sm, and a cycle basis B ∈ B, testing
whether π(B) is a cycle basis, can be done in polynomial time.

Notice that similar arguments can also give another proof of Proposition 2. As
in the case of graphs, we can define automorphism problems for matroids.

Matroid Automorphism(MA): Given a matroid M as independent set or-
acle, compute a generating set for Aut(M).

We define GMA and LMA as the corresponding automorphism problems for
graphic and linear matroids, when the input is a graph and matrix respectively.
Using the colouring techniques from Section 4, we prove the following.

Theorem 8. LMI ≡p
T LMA, and GMI ≡p

T GMA.
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Abstract. Anonymity protocols are not secure unless the communica-
tion structure is not learnable even in the case that the entire network
traffic can be monitored by an adversary. When the true communication
structure is cloaked under anonymity sets, the adversary may disclose
the peers of a certain user by waiting for the observations to contain a
unique minimum hitting set. This approach has been called the hitting
set attack in the literature. We give the first mathematical analysis on
the number of observations required to learn a unique minimum hitting
set. Because this attack involves solving an NP-hard problem in each
round, we propose two new learning algorithms, both of which are very
efficient computationally. The first one breaks anonymity by combining
the most suspicious elements into a hitting set. Because this algorithm
is not capable of verifying its hypothesis, it is imperative to estimate the
required number of observations. On the other hand, the second one is
able to prove its hypothesis correct, but needs more observations.

1 Introduction

Analysing learning algorithms helps to understand the complexity of hard prob-
lems. When solutions to a certain problem turn out to be learnable in little
time, the resulting algorithm can be employed to solve the problem in every-day
applications. In so far, learnability yields a positive answer to the question of
tractability.

Conversely, a system that relies on the intractability of a computational prob-
lem can be proven useless, or at least endangered, by adequate results on the
learnability of that problem. In this paper, we show how such results can be
used to analyze an anonymity system that relies on the hardness of the unique
minimum hitting set problem. In fact, this so called hitting set attack [6] sets a
limit to the possible anonymity of persistent communication in any anonymity
system if we follow the well-accepted definition of anonymity as “the state of
being not identifiable within a set of subjects, the anonymity set.” [5]. Thus, we
begin with a short introduction to the general field of anonymity techniques in
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order to justify our model. George Danezis and Claudia Diaz have recently pub-
lished a comprehensive “Survey on Anonymous Communication Channels” [3],
to which we refer the interested reader for further details.

1.1 Anonymity Techniques

To protect traffic information, a number of anonymity techniques have been
suggested [1,2], An anonymity technique —a so called MIX server— collects n
data packets from n distinct users, changing the appearance and order of the
packets so that no outsider can link an incoming packet to an outgoing packet.
Thus, this mechanism conceals the specific communication relationships of Alice
amidst the additional traffic of the other users. Following this general description
we model the attacker and the anonymity system so that the attacker observes
and records all sets of incoming and outgoing packets to and from a MIX if
Alice has contributed with a message. Hence, the following abstract model can
be used:

Assume [6] that the set of all peers is A = {1, 2, . . . , N} and that Alice fre-
quently communicates with a subset B of A, say B = {1, 2, . . . ,m}. Then the
aim of the adversary is to learn B. Since Alice uses a strong anonymity tech-
nique, the elements of B are only observable in terms of anonymity sets (more
precisely, multisets), i.e., the adversary makes observations Oi consisting of one
element from B and n−1 additional elements from A, with multiple occurrences
possible. For the adversary, given only one observation and uniform distribution,
each element of Oi is equally likely to be the real peer partner. To learn B, the
adversary collects a number of observations O1,O2, . . . ,Ot and tries to deter-
mine the set of real peer partners. The resulting question is: what is the minimum
number of t required to learn B?

It is commonly believed in the security community1, as well as intuitive from
an information theoretic point of view, that non-uniform distributions only ease
the task of revealing that piece of information, as they eliminate maximum
uncertainty. Thus, the uniform distribution model is not only mathematically
smooth but can also be justified as a kind of worst-case scenario for the adversary,
provided that the anonymizer cannot adapt to the model or algorithm used by
the adversary.

In earlier scholarship [6], a learning algorithm based on the computation of
hitting sets2 has been suggested and evaluated using simulations, and it has been
shown that B is exactly learnable if the learning algorithm can identify a unique
minimum hitting set3. Informally, B can be identified as the unique minimum
hitting set of O1,O2, . . . ,Ot, because B has to intersect (hit) all observations by
1 “All other things being equal, anonymity is the stronger, the larger the respective

anonymity set is and the more evenly distributed the sending or receiving, respec-
tively, of the subjects within that set is.” [8]

2 Given a family of multisets O1,O2, . . . ,Ot, a set B is called a hitting set for this
family iff, for every 1 ≤ i ≤ t, |B ∩ Oi| > 0.

3 We call a hitting set B unique minimum for a family O1,O2, . . . ,Ot iff |B| < |C|
for every other hitting set C �= B.
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construction. For the sake of simplicity, the number of peer partners |B| is often
assumed to be known. In this work, we give a theoretical analysis by assuming
the same parameters N := |A|, m := |B|, and n := |Oi|. Surprisingly, our results
do not depend on any knowledge of N , m or n.

1.2 Contributions

The paper at hand consists of three main results, the first of which is a bound
on the number t of observations required for B to be a unique minimum hitting
set, rather than just a hitting set of possibly minimum size, for O1, . . . ,Ot.
This is followed by two learning algorithms with distinct objectives. The first,
simple one shows that the unique minimum hitting set can be learnt efficiently
and within a small number of observations in many settings. The second, more
involved one relies on more preconditions and is highly likely to take more time,
but it is able to prove its hypothesis correct with high probability.

It is easy to see that B can be identified in the limit even if m is not known: A
text that contains all observations contains a multisets {i, . . . , i} for every i ∈ B
as well. A simple learning strategy is to present the set of all i’s seen in such
pure observations. If m is known, this strategy is even self-monitoring. As such
pure observations will only occur extremely rarely in practice, however, such a
learning algorithm seems to be rather useless. Knowledge about the underlying
probability distribution leads to much faster algorithms [10].

When using more sophisticated learning algorithms, the correctness of a hy-
pothesis H can be shown by proving that H is a unique minimum hitting set [6].
Whereas it is easy to verify that H is a hitting set, determining uniqueness is
known to be NP-complete. Until now, this has been an obstacle for the hitting
set attack [6]. Exploiting a special structure of the hitting set instances, however,
the second algorithm can prove uniqueness in linear time.

The following table gives some examples for the numbers of observations
required to reach an error probability of at most 1/100 in each of the three
aforementioned contexts: uniqueness (U), simple algorithm (A1), and advanced
algorithm (A2). The parameters have been chosen to exemplify practically plau-
sible configurations. On the other hand, the results show nontrivial dependency
upon parameter variation for the derived worst-case bounds.

m n N U A1 A2
10 20 20000 19 14898 783048
10 50 50000 22 14899 759100
20 50 20000 53 66468 580094
20 50 50000 46 66259 1449190

Note that all three bounds are upper limits on the security of an anonymity
system under varying thread models.

2 The Uniqueness of Hitting Sets

In this section, we show bounds on the probability for B to become a unique
minimum hitting set after a certain number of observations. There are many



302 D. Kesdogan et al.

experimental results on the learning speed of the hitting set attack (see, e.g., [6])
and corresponding conjectures, but as of today, there has been no accompany-
ing mathematical investigation. Let us first recall and formalize the objects in
question.

Definition 1. Let O1, . . . ,Ot be a sequence of observations, where each Oi is a
length-n multiset taken from A that contains at least one element from B. For
any element i ∈ A, Zi denotes the number of observations containing i. Let ZB

and ZA\B be random variables that have the same distribution as Zi for i ∈ B
and i ∈ A \B, respectively. Let finally

pA\B := 1 −
(
1 − 1

N

)n−1
.

Note that pA\B describes the probability that a fixed element from A\B occurs
in a random observation. We are now able to establish the first result.

Theorem 1. The probability that B is not a unique minimum hitting set for
O1, . . . ,Ot is at most

(
N
m

)
exp(− 1

m (1 −m/N)n−1t).

Proof. By construction, B is a hitting set for O1, . . . ,Ot. Let

H :=
{
H ⊆ A

∣∣ |H | = m,H �= B
}

=
(
A

m

)
\ {B}.

In order for B to be unique, the family H must not contain any hitting set for
O1, . . . ,Ot. That is, there has to exist an i ∈ {1, . . . , t} for every H ∈ H such
that H ∩ Oi = ∅.

Each Oi can be written as {bi} ∪ Ai, where bi ∈ B and Ai is a multiset
consisting of n − 1 elements from A. Since H �= B, there exists an x ∈ B \H .
The probability for the event [bi = x] is 1/m, and the probability of choosing an
element from A \H when choosing from A is (N −m)/N . Hence,

Pr[H ∩ Oi = ∅] ≥ 1
m

(N −m

N

)n−1
.

This implies

Pr[∀i H ∩ Oi �= ∅] ≤
(
1 − 1

m

(N −m

N

)n−1)t

≤ e−
1
m (1−m/N)n−1t

and, finally,

Pr[∃H ∈ H ∀i H ∩ Oi �= ∅] ≤
(
N

m

)
e−

1
m (1−m/N)n−1t.

"#
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3 A Simple Learning Algorithm

The unostentatious algorithm investigated in this section tries to learn B by
combining the elements i ∈ A of the largest Zi into a hitting set for the present
sequence O1, . . . ,Ot of observations. We prove that with a certain probability,
this method suffices to learn B within a bounded number of observations. The
following lemma establishes two expectations required for future calculations.

Lemma 1

EZB =
t

m
+ t(1 − 1

m
)pA\B

EZA\B = tpA\B

Proof. Each Oi can be written as Oi = {bi} ∪ Ai for some bi ∈ B and a
multiset Ai consisting of n − 1 elements from A. For a single observation Oi,
the probability for some fixed j ∈ B to be bi is 1/m. The probability for j
to be chosen into Ai is pA\B. By the principle of inclusion/exclusion, we get
Pr[j ∈ Oi] = Pr[bi = j] + Pr[bi �= j] Pr[j ∈ Ai] = 1/m+ (1 − 1/m)pA\B. By ad-
ditivity of expectation, EZB = EZj = tPr[j ∈ Oi]. A similar but even simpler
argument shows the second claim. "#

We also define the order 3 on A to ease the descriptions of our algorithms.
Notice that 3 is obviously total.

Definition 2. For i, j ∈ A and occurrence counters Zi, Zj, let

i 3 j ≡ ((Zi > Zj) ∨ ((Zi = Zj) ∧ (i > j))).

Moreover, let i1, . . . , iN be the elements from A sorted according to 3, or, in a
more formal notation, i1 3 i2 3 . . . 3 iN .

Surprisingly, our first algorithm does not even need to know m. Instead, it just
uses a kind of greedy majority vote to compute its hypothesis. There is, however,
no guarantee that it will learn B entirely, unless no subset of B forms a hitting
set for the present sequence of observations.

1. Initially, set t := 0 and Zi := 0 for all i ∈ A.
2. Increase t and read the t-th observation Ot. For every element i ∈ A that

occurs at least once in Ot, increase Zi.
3. Set Ht := ∅. Add i1, i2, . . . to Ht until Ht is a hitting set for O1, . . . ,Ot. Go

to step (2).

We want to show that the hypothesis Ht is likely to be (partly) correct after a
certain number of observations, at least in the case that the (first two of the)
following three conditions hold for an appropriate number c:

P1 ≡ Zi ≥ EZB − c
√
EZB for all i ∈ B,

P2 ≡ Zi ≤ EZA\B + c
√
EZA\B for all i ∈ A \B, and

P3 ≡ for all i ∈ B there is a 1 ≤ j ≤ t such that B ∩ Oj = {i}.
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Lemma 2

Pr[P̄1] ≤ e−c2/2,

Pr[P̄2] ≤ e−c2/3,

Pr[P̄3] ≤ m · exp
(
− 1
m

(
1 − m− 1

N

)n−1
t
)
.

Proof. The first two claims follow from Chernoff bounds [7, 4.6] because Zi is
binomially distributed. To see the third claim, check that for an arbitrary i ∈ B,

α := Pr[∀1 ≤ j ≤ t. B ∩Oj �= {i}] =
(
1 − 1

m

(
1 − m− 1

N

)n−1)t

and estimate according to Pr[∃i ∈ B. ∀1 ≤ j ≤ t. B ∩ Oj �= {i}] ≤ mα as well
as (1 − β)t ≤ e−βt. "#

Corollary 1. Pr[P1 ∧ P2] ≥ 1 − e−c2/2 − e−c2/3 ≥ 1 − 2e−c2/3.

We first establish a bound for the partial correctness, i.e., that the hypothesis
contains only elements from B.

Lemma 3. Pr[Ht �⊆ B] ≤ 2 exp(−t(1 − pA\B)2/12m2).

Proof. Let c =
√
t(1−pA\B)/2m and apply Corollary 1 to see that P1∧P2 holds

with probability at least 1 − 2 exp(−t(1 − pA\B)2/12m2).
It is obvious that Ht ⊆ B as soon as Zi > Zj for all i ∈ B and j ∈ A \ B,

since in that case, the algorithm chooses only elements from B for addition to Ht.
Under the assumption that P1 and P2 hold, it hence suffices to have that

EZB − c
√
EZB > EZA\B + c

√
EZA\B.

Using the definitions of EZB and EZA\B as well as simple transformations, it
is easy to see that this is the case whenever

t >

(
cm

1 − pA\B

(√ 1
m

+ (1 − 1/m)pA\B + √
pA\B

))2

. (1)

According to the fact that pA\B < 1, the right hand side of (1) is strictly less
than (2cm/(1 − pA\B))2 = t. Hence, (1) holds for all t. "#

In addition, we want to estimate the probability for the algorithm to find B
itself.

Lemma 4

Pr[Ht �= B] ≤ 2 exp(−t(1 − pA\B)2/12m2) +m exp
(
− 1
m

(
1 − m− 1

N

)n−1
t
)
.
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Proof. For a sequence O1, . . . ,Ot of observations, let us call an i ∈ B dispensable
if B \ {i} is a hitting set, that is, if there is no 1 ≤ j ≤ t such that B ∩Oj = {i}.
Moreover, we call B oversaturated if it contains at least one dispensable element.
For some i ∈ B and 1 ≤ j ≤ t, we have that

Pr[B ∩ Oj = {i}] =
1
m

(
1 − m− 1

N

)n−1
.

It is hence easy to see that, for an arbitrary i ∈ B,

Pr[i is dispensable] =
(
1 − 1

m

(
1 − m− 1

N

)n−1)t

≤ e−
1
m (1−m−1

N )n−1t.

There are only two ways for Ht not to equal B: if Ht is not even a subset of B,
or if B contains a dispensable element. Thus,

Pr[Ht �= B] ≤ Pr[Ht �⊆ B] + Pr[B is oversaturated].

Using the bounds calculated above and in Lemma 3, the claim follows. "#

In what follows, S denotes the sampling complexity, that is, the number of
observations required to learn B. Formally, S = min{ t | Hτ = B for all τ ≥
t }. Our algorithm is likely to find B, or a subset thereof, rather efficiently in
many settings. However, there is no guarantee that it will not abandon a correct
hypothesis in the future. In particular, the algorithm is not conservative. To
establish a bound on S, we have to use the bound from Lemma 4 on infinitely
many values.

Theorem 2. Pr[S > t] ≤ 2e−d1t/(1 − e−d1) + me−d2t/(1 − e−d2), where d1 =
(1 − pA\B)2/12m2 and d2 = 1

m (1 − (m− 1)/N)n−1.

Proof. Lemma 4 implies that Pr[Hτ �= B] ≤ 2e−d1t + me−d2t. Summing up for
all τ ≥ t yields the claim. "#

4 An Advanced Learning Algorithm

The aforementioned algorithm may compute a correct hypothesis within only a
small number of observations in many settings, but it is not capable of proving
the hypothesis correct. In opposition to that, our advanced algorithm is able
to check and prove that its hypothesis is correct, but does not work for ill-
conditioned combinations of N , m, and n. These, however, can be avoided by
demanding that, e.g., pA\B < 1/m2. Note that this condition will be satisfied
whenever N is much larger than n and m. For instance, it holds for the values
depicted in the table that concludes Section 1.

In what follows, we formalize three conditions that will be crucial in the
development. For the moment, let c be an arbitrary number,

Q1 ≡ Zi ≤ EZB + c
√
EZA\B for all i ∈ B,
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Q2 ≡ Zi ≥ EZB − c
√
EZA\B for all i ∈ B, and

Q3 ≡ Zi ≤ EZA\B + c
√
EZA\B for all i ∈ A \B.

It will turn out that these three properties ensure that B is a unique minimum
hitting set for O1, . . . ,Ot, given appropriate values for pA\B and t.

Lemma 5

Pr[Q̄1] ≤ exp
(
−c2

3
pA\B

1/m+ (1 − 1/m)pA\B

)
,

Pr[Q̄2] ≤ exp
(
−c2

2
pA\B

1/m+ (1 − 1/m)pA\B

)
,

Pr[Q̄3] ≤ e−c2/3.

Proof. The claims follow from Chernoff bounds [7, (4.6)]. "#

For the rest of the paper, let us fix c =
√

6 ln 5/mpA\B. This allows for the
following result, which is necessary for the applicability of our second algorithm.

Lemma 6. Pr[Q1 ∧Q2 ∧Q3] > 1
2 .

Proof. Using the above lemma, we get that Pr[Q̄1],Pr[Q̄2] ≤ 1
5 . Observe that

c > 3 in any case, implying that Pr[Q̄3] < 1
10 . Altogether, we get the result that

Pr[Q̄1 ∨ Q̄2 ∨ Q̄3] < 1
5 + 1

5 + 1
10 = 1

2 . "#

The second algorithm is described below. Whereas the first two steps are exactly
the same as in the first method, the Zi are then used for entirely different
computations. Since the Zi are in descending order, h represents the maximum
number of observations that can be explained (hit) when we replace at least one
element of Ht. Thus, if h < t, Ht is the only hitting set of its size that is able to
explain our observations, the unique minimum hitting set.

1. Initially, set t := 0 and Zi := 0 for all i ∈ A.
2. Increase t and read the t-th observation Ot. For every element i ∈ A that

occurs at least once in Ot, increase Zi.
3. Set Ht := {i1, . . . , im} and h := Zi1 + . . . + Zim−1 + Zim+1 .
4. Output Ht. If h < t, then claim that Ht = B and stop. Otherwise go to

step (2).

Observe that, instead of assuming m to be known, the algorithm can simply
choose the smallest m such that {i1, . . . , im} is a hitting set, just as in the simple
Algorithm. The following theorem and the trailing corollary show some condi-
tions under which B becomes a unique minimum hitting set, where uniqueness
follows from a simple counting argument that is easy to check.

Theorem 3. Let pA\B < 1/m2 and assume

t >
6 ln(5)m

(1/m− pA\B(m− 1 + 1/m))2
.
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In the event that Q1, Q2 and Q3 hold, we have that B is a unique minimum
hitting set for O1, . . . ,Ot. Moreover, the elements in B occur in more observa-
tions than any element from A \ B, and every other m-element set H ⊆ A has∑

i∈H Zi < t.

Proof. By definition, B is a hitting set for O1, . . . ,Ot. Notice that in particular
this implies

∑
i∈B Zi ≥ t. We will show that replacing even a single element

from B by an element from A \B results in missing the required lower bound of
t occurrences. This will imply that B can be obtained by majority voting and
that no proper subset suffices to cover all observations. Thus the claim follows.

To see the statement in question, let us look at an upper bound on the number
of observations hit by m− 1 elements from B and one element from A \B. Such
an upper bound is given by Q1 and Q3:

(m− 1)(EZB + c
√
EZA\B) + EZA\B + c

√
EZA\B

= (m− 1)EZB + EZA\B +mc
√
EZA\B

= (m− 1)
t

m
+ (m− 1)t

(
1 − 1

m

)
pA\B + tpA\B +mc

√
tpA\B

We want to show that the upper bound lies below t. Equivalently, it suffices
to prove that

mc

√
pA\B

t
< 1 −

(
m− 1
mpA\B

+
(m− 1)2

m
+ 1
)
pA\B.

Using pA\B < 1/m2, a simple calculation shows that the right hand side of the
inequality is positive. Thus we have to ensure that

√
t >

mc
√
pA\B

1 −
(
(m− 1)/mpA\B + (m− 1)2/m+ 1

)
pA\B

.

This is equivalent to

t >
m2c2pA\B

(1/m− pA\B(m− 1 + 1/m))2
=

6 ln(5)m
(1/m− pA\B(m− 1 + 1/m))2

.

"#
Corollary 2. Let pA\B < 1/m2 and assume t > c2m2(1 + 1/m). In the event
that Q1, Q2 and Q3 hold, we have that B is a unique minimum hitting set for
O1, . . . ,Ot. Moreover, the elements in B occur in more observations than any
element from A \B, and every other m-element set H ⊆ A has

∑
i∈H Zi < t.

Proof. Observe that t > c2m2(1 + 1/m) and pA\B < 1/m2 imply

t >
6 ln(5)m

(1/m− pA\B(m− 1 + 1/m))2
.

Thus, the claim follows according to Theorem 3. "#
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Let S′ denote the minimum number t of observations our advanced algorithm
takes before it claims that Ht = B. Using the above as well as older results, we
can easily derive bounds on S′ as follows.

Theorem 4. If pA\B < 1/m2, then Pr[S′ ≥ c2m2(1 + 1/m)] < 1
2 .

Proof. Combine Lemma 6 and Corollary 2. "#

Corollary 3. If pA\B < 1/m2, then Pr[S′ ≥ kc2m2(1 + 1/m)] ≤ 2−k.

Proof. The claim follows from [9, Theorem 6] if the algorithm is both conserva-
tive and rearrangement-independent. This can be established by modifying the
algorithm as to use ∅ as its hypothesis unless h < t, that is, unless the algorithm
claims that Ht = B. "#

5 Conclusions

We have seen that learning algorithms can be used to break anonymity protocols.
Whereas even a small number of observations may give enough information to
match communication partners, the required computation involves solving hard
problems. Given the chance to make many observations, however, the instances
tend to have a certain structure that can be exploited in order to find the secret
in question efficiently.

Once again, this shows how hard problems can be seen to be tractable —
at least with high probability— in every-day applications, meaning that most
instances that occur in practice are not so computationally hard at all. Policywise
this implies that it does not suffice to base anonymity or security in general on
the intractability of a computational problem. Instead, we need to look closer
at the hardness of the problem instances arising in the protocol at hand. This
is an approach taken by an active community of researchers in the field of exact
and parameterized algorithms for hard problems (See, e.g., [4] for a survey).
Our results argue for a close collaboration with this community when designing
security protocols, in order to forestall unexpected attacks.

It remains to test the algorithms on data collected in real networks. Efforts
in this direction are under way. In addition, it would be interesting to see lower
bounds on the number of observations our algorithms require.
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Abstract. We show, by a non-trivial application of the color-coding method of
Alon et al. [2], that BUDGETED UNIQUE COVERAGE (a variant of SET COVER)
is fixed-parameter tractable, answering an open problem posed in [13]. We also
give improved fixed-parameter tractable algorithms for two special cases of BUD-
GETED UNIQUE COVERAGE: UNIQUE COVERAGE (the unweighted version) and
BUDGETED MAX CUT.

To derandomize our algorithms we use an interesting variation of k-perfect
hash families known as (k, s)-hash families which were studied by Alon et al. [1]
in the context of a class of codes called parent identifying codes [3]. In this set-
ting, for every s-element subset S of the universe, and every k-element subset X
of S, there exists a function that maps X injectively and maps the remaining
elements of S into a different range.

We give several bounds on the size of (k, s)-hash families. We believe that
our application of color-coding may be used for other problems and that this is
the first application of (k, s)-hash families to a problem outside the domain of
coding theory.

1 Introduction

The UNIQUE COVERAGE problem is a variant of SET COVER where, given a family of
subsets of a finite universe, one is interested in finding a subfamily that maximizes the
number of elements uniquely covered. This problem is motivated by a real-world appli-
cation arising in wireless networks and has connections to several problems including
MAX CUT and MAXIMUM COVERAGE [10].

Demaine et al. [5] introduced this problem and gave efficient approximation al-
gorithms and inapproximability results. Moser et al. [13] studied the parameterized
complexity of UNIQUE COVERAGE. They show that the problem is fixed-parameter
tractable when parameterized by the number of elements to be uniquely covered. In
particular, they left open the parameterized complexity of the more general version
where elements have integral profits and sets have integral costs and one is interested
in maximizing the total profit of elements uniquely covered by a minimum cost sub-
family. In this paper, we show that (the standard parameterized version of) BUDGETED

UNIQUE COVERAGE is fixed-parameter tractable. We also give improved algorithms
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for two special cases of BUDGETED UNIQUE COVERAGE: UNIQUE COVERAGE, the
unweighted version of the problem and BUDGETED MAX CUT, a weighted variant
of the well-known MAX CUT problem. See [7] and [9] for other related work on the
UNIQUE COVERAGE problem.

In the BUDGETED UNIQUE COVERAGE problem, we are given a universe, where
each element has a positive integral profit and a family of subsets of the universe,
where each set has a positive integral cost. The question is whether there is a subfamily
with total cost at most B that uniquely covers elements with total profit at least k. We
show that this problem is fixed-parameter tractable with parameters k and B using the
color-coding technique introduced by Alon et al. [2]. It is possible to derandomize the
algorithm using standard s-perfect hash families where s is the maximum number of
elements in a solution subfamily. However, we can use a variation of s-perfect fami-
lies called (k, s)-hash families which were introduced in the context of a class of codes
called parent identifying codes [3,1]. To the best of our knowledge, we provide the first
application of this class of hash families outside the domain of coding theory.

The rest of this paper is organized as follows. In Section 2, we apply color-coding
to BUDGETED UNIQUE COVERAGE and show that it is fixed-parameter tractable. This
section also contains the description of the hash families we use for derandomization. In
Section 3 we consider two special cases of BUDGETED UNIQUE COVERAGE: UNIQUE

COVERAGE and BUDGETED MAX CUT, and give better deterministic algorithms for
these problems than the ones presented in [13]. We conclude with some open problems
in Section 4. Complete proofs appear in a full version of this paper [12].

A parameterized problem is fixed-parameter tractable (FPT) if there is an algorithm
that takes as input an instance (x, k) of the problem and correctly decides whether it is a
YES or NO-instance in time O(f(k) · |x|O(1)), where f is some arbitrary function of the
parameter k. When there is more than one parameter, k would represent an appropriate
function (the sum or the maximum of them, for example) of the parameters. For further
details and an introduction to parameterized complexity, we refer to [6,8,14]. For an
integer n, by [n] we denote the set {1, 2, . . .n}. We let e denote the base of the natural
logarithm (denoted by ln) and log denote logarithms to base 2. We let Q denote the
set of rationals, Z the set of integers, and for a number a, we use Q≥a to denote the
set {x ∈ Q : x ≥ a}.

2 Budgeted Unique Coverage

An instance of UNIQUE COVERAGE consists of a family F of m subsets of a finite
universe U of size n and a nonnegative integer k. The question is whether there exists
a subfamily F ′ ⊆ F that covers k elements uniquely. An element is said to be cov-
ered uniquely by F ′ if it appears in exactly one set of F ′. An instance of BUDGETED

UNIQUE COVERAGE contains, in addition to U and F , a cost function c : F → Z+,
a profit function p : U → Z+ and nonnegative integers k and B. The question, in this
case, is whether there exists a subfamily F ′ ⊆ F of total cost at most B such that the
total profit of elements uniquely covered by F ′ is at least k.

In [13] it was shown that BUDGETED UNIQUE COVERAGE with arbitrarily small
positive (rational) costs and profits is not fixed-parameter tractable with parameters B
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and k, unless P = NP. Further, BUDGETED UNIQUE COVERAGE is W [1]-hard when
parameterized by the budget B alone, even when cost and profit functions are integral.
In this paper, we assume that both costs and profits assume positive integral values and
that both B and k are parameters. Let (U ,F , c, p, B, k) be an instance of BUDGETED

UNIQUE COVERAGE. We may assume that for all Si, Sj ∈ F , i �= j, we have

– Si �= Sj ;
– c(Si) ≤ B;
– |Si| ≤ k − 1.

For if c(Si) > B then Si cannot be part of any solution and may be discarded; if |Si| ≥
k then the given instance is trivially a YES-instance. We make these assumptions im-
plicitly in the rest of the paper.

Demaine et al. [5] show that there exists an Ω(1/ logn)-approximation algorithm
for BUDGETED UNIQUE COVERAGE (Theorem 4.1). We use the same proof technique
to show the following.

Lemma 1. Let (U ,F , c, p, B, k) be an instance of BUDGETED UNIQUE COVERAGE

and let c : F → Q≥1 and p : U → Q≥1. Then either

1. we can find in polynomial time a subfamily F ′ ⊆ F with total cost at most B such
that the total profit of elements uniquely covered by F ′ is at least k; or

2. for every subfamily H with total cost at most B, we have |
⋃

S∈H S| ≤ 18k logB.

Proof. Appears in the full version [12]. "#

The first step of our algorithm is to apply Step 1 of Lemma 1. From now on we assume
that every subfamily of total cost at most B covers at most 18k logB elements of the
universe.

We now proceed to show that BUDGETED UNIQUE COVERAGE is FPT. We first
show this for the case when the costs and profits are all one and then handle the more
general case of integral costs and profits. Therefore let (U ,F , B, k) be an instance of
BUDGETED UNIQUE COVERAGE with unit costs and profits. For this version of the
problem, we have to decide whether there exists a subfamily F ′ ⊆ F of size at most B
that uniquely covers at least k elements. A subfamily F ′ of size at most B that uniquely
covers at least k elements is called a solution subfamily.

To develop our color-coding algorithm, we use two sets of colors Cg and Cb with the
understanding that the (good) colors from Cg are used for the elements that are uniquely
covered and the (bad) colors from Cb are used for the remaining elements. In the present
setting, Cg = {1, . . . , k} and Cb = {k + 1}.

Remark. For our algorithms, any subset of k colors can play the role of good colors.
For ease of presentation, we fix a set of good and bad colors while describing our
randomized algorithms. Our derandomized algorithms assume that any set of k colors
may be good colors.

We now describe the notion of a good configuration. Given h : U → Cg 4 Cb and
F ′ ⊆ F , define h(F ′) :=

⋃
{i∈S,S∈F ′}{h(i)} and U(F ′) :=

⋃
S∈F ′ S.
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Definition 1. Given h : U → Cg 4 Cb and C′
g ⊆ Cg, we say that

a. F ′ ⊆ F has a good configuration with respect to (wrt) h and C′
g if

1. h(F ′) ∩ Cg = C′
g, and

2. the elements of U(F ′) that are assigned colors from C′
g have distinct colors

and are uniquely covered by F ′.
b. F has a good configuration wrt h and C′

g if there exists a subfamily F ′ with a good
configuration wrt h and C′

g . Call F ′ a witness subfamily.

A solution subfamily (for the unit costs and profits version) is a subfamily F ′ ⊆ F with
at most B sets and which uniquely covers at least k elements.

The next lemma shows that if h is chosen uniformly at random from the space of all
functions f : U → [k + 1] and (U ,F , B, k) is a YES-instance of BUDGETED UNIQUE

COVERAGE with unit costs and profits, then with high probability a solution subfam-
ily F ′ has a good configuration wrt h and Cg. Note that such a uniformly chosen hmaps
every element from U uniformly at random to an element in [k + 1].

Lemma 2. Let (U ,F , B, k) be a YES-instance of BUDGETED UNIQUE COVERAGE

with unit costs and profits and let h : U → [k + 1] be a function chosen uniformly
at random. Then a solution subfamily F ′ has a good configuration wrt h and Cg with
probability at least 2−k(18 log B log(k+1)−log k+log e).

Proof. Let F ′ be a solution subfamily with at mostB sets that covers the elementsQ =
{i1, . . . , ik} uniquely. Then p := |U(F ′)| ≤ 18k logB, by Lemma 1. To complete the
proof, we show that F ′ has a good configuration with respect to h and Cg with proba-
bility at least 2−k(18 log B log(k+1)−log k+log e). For F ′ to have a good configuration, we
must have h(i) = k + 1 for all i ∈ U(F ′) \ Q and h(i1), . . . , h(ik) a permutation
of 1, . . . , k. The probability Pr that this happens is:

Pr = 1
(k+1)|U(F′)\Q| × k!

(k+1)k ≥
(

k
e

)k 1
(k+1)p = ek ln(k/e)−p ln(k+1)

≥ ek ln(k/e)−18k log B ln(k+1) ≥ 2−k(18 log B log(k+1)−log k+log e) "#

Given a coloring h, how do we find out whether F has a good configuration wrt h
and Cg? We answer this next.

Finding a good configuration. Observe that if F has a good configuration wrt h and Cg,
then any witness subfamily F ′ covers at least k elements uniquely. To locate such a
family of size at most B we use dynamic programming over subsets of Cg. To this end,
let W be a 2k × B array where we identify the rows of W with subsets of Cg and the
columns with the size of a subfamily. For a fixed coloring function h, a subset C′

g ⊆ Cg

and 1 ≤ i ≤ B, define W [C′
g][i] as follows:

W [C′
g][i] =

⎧⎨⎩
1, if there exists F ′ ⊆ F , with |F ′| ≤ i, with a good con-

figuration wrt C′
g and h.

0, otherwise.

The entry corresponding to W [∅][i] is set to 1 for all 1 ≤ i ≤ B, as a convention. We
fill this array in increasing order of the sizes of subsets of Cg. Let T be the family of all
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sets S ∈ F such that h(S)∩Cg ⊆ C′
g . Let g(S) denote the set of good colors used in S.

Then W [C′
g][i] =

∨
S∈T W [C′

g \ g(S)][i− 1].
The correctness of the algorithm is immediate. Clearly if W [Cg][B] = 1, then a

subfamily with at most B sets that uniquely covers at least k elements exists, and can
be found out by simply storing the witness families F ′ for every entry in the table and
backtracking. The time taken by the algorithm is O(2kBmk), since the size of the array
is 2kB and each entry of the array can be filled in time O(mk), where m = |F|.

Lemma 3. Let (U ,F , B, k) be an instance of BUDGETED UNIQUE COVERAGE with
unit costs and profits and h : U → C a coloring function. Then we can find a subfam-
ily F ′ of size at most B which has a good configuration wrt h and Cg, if there exists
one, in time O(2kBmk).

A randomized algorithm for BUDGETED UNIQUE COVERAGE with unit costs and prof-
its is as follows.

1. Randomly choose a coloring function h : U → {1, . . . , k + 1}.
2. Apply Lemma 3 and check whether there exists a family F ′ of size at most B that

is witness to a good configuration wrt h and Cg . If such a family exists, return YES,
else go to Step 1.

By Lemma 2, if the given instance is a YES-instance, the probability that a solution
subfamily F ′ has a good configuration wrt a randomly chosen function h : U → C
and Cg is at least 2−k(18 log B log(k+1)−log k+log e). By Lemma 3, we can find such a
subfamily in time O(2kBmk).

Theorem 1. Let (U ,F , B, k) be an instance of BUDGETED UNIQUE COVERAGE with
unit costs and profits. There exists a randomized algorithm that finds a subfamily F ′

of size at most B covering at least k elements uniquely, if there exists one, in ex-
pected O(218k log B log(k+1) ·Bmk) time.

2.1 Improving the Run-Time

It is clear that if a solution subfamily F ′ is to have a good configuration wrt a randomly
chosen coloring function h and Cg, then h must assign all the non-uniquely covered
elements of F ′ the color in Cb. Intuitively, if we increase the number of colors in Cb,
we increase the probability that a specific target subfamily has a good configuration wrt
a randomly chosen coloring function. We formalize this intuition below. We need the
following inequality whose proof we omit.

Lemma 4. For all t ≥ 2k,
(

t−k
t

)t ≥ (2e)−k.

Lemma 5. Let (U ,F , B, k) be a YES-instance of BUDGETED UNIQUE COVERAGE

with unit costs and profits; let Cg = [k], Cb = {k+1, . . . , q} and C = [q] so that q ≥ 2k.
If h : U → C is chosen uniformly at random then every solution subfamily F ′ with p
elements of the universe has a good configuration wrt h and Cg with probability at

least e−k
(

k
q−k

)k

(2e)−
kp
q .
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Proof. Let the set of elements uniquely covered by F ′ be Q = {i1, . . . , ik}. For F ′

to have a good configuration, the function h must map every element of U(F ′) \ Q
to Cb and map Q to Cg injectively. Therefore the probability Pr that F ′ has a good
configuration wrt Cg and a randomly chosen h is:

Pr = (q−k)p−k

qp−k × k!
qk ≥

(
q−k

q

)p (
1

q−k

)k

kke−k

≥ e−k
(

k
q−k

)k(
1 − k

q

)p

≥ e−k
(

k
q−k

)k

(2e)−
kp
q (by Lemma 4). "#

If (U ,F , B, k) is a YES-instance of BUDGETED UNIQUE COVERAGE with unit costs
and profits then p ≤ 18k logB. Also observe that B ≥ 2, for otherwise the given
instance is a NO-instance. Setting p = 18k logB and q = k + p in Lemma 5 we can
show that a solution subfamily F ′ has a good configuration wrt a randomly chosen
coloring function h and Cg with probability at least 2−8.2k−k log log B . Combining this
with Lemma 3, we obtain:

Theorem 2. Let (U ,F , B, k) be an instance of BUDGETED UNIQUE COVERAGE with
unit costs and profits. Then we can find a subfamily F ′ of size at most B covering at
least k elements uniquely, if there exists one, in O(29.2k+k log log B · Bmk) expected
time.

2.2 Derandomization

We now discuss how to derandomize the algorithms described in the last subsection. In
general, randomized algorithms based on the color-coding method are derandomized
using a suitable family of hash functions or “universal sets”. We need a family of func-
tions from U to [t], where t ≥ k+1, such that for all S ⊆ U of size s = /18k logB0 and
all X ⊆ S of size k, there exists a function h in the family which maps X injectively
and the colors it assigns to the elements in S \X are different from the ones it assigns
to those in X .

Such hash families are called (k, s)-hash families (with domain [n] and range [t])
and they were introduced by Barg et al. [3] in the context of particular class of codes
called parent identifying codes. At this point, we recall the definition of an (n, t, s)-
perfect hash family. A family H of functions from [n] to [t] is called an (n, t, s)-perfect
hash family if for every subset X ⊆ [n] of size s, there is a function h ∈ H that
maps X injectively. Note that an (n, t, s)-perfect hash family is a (k, s)-hash family
with domain [n] and range [t], and a (k, s)-hash family with domain [n] and range [t]
is an (n, t, k)-perfect hash family. Therefore (k, s)-hash families may be thought of as
standing in between k-perfect and s-perfect hash families.

Our deterministic algorithm simply uses functions from these families H for col-
oring and is described below. Given an instance (U ,F , B, k) of BUDGETED UNIQUE

COVERAGE with unit costs and profits, we let n = |U|, C = [t], and s to be the closest
integer to our estimate in Lemma 1, which is O(k logB).
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Deterministic Algorithm
for each h ∈ H do

for each subset X ⊆ C of size k do

1. Define Cg = X and Cb = C \X ;
2. Apply Lemma 3 and check whether there exists a subfamily F ′ of

size at most B which has a good configuration wrt Cg and h;
3. if yes, then return the corresponding F ′;

return NO;

The correctness of the algorithm follows from the description—if a witness subfamily
for the given F exists, at least one h ∈ H will color all the uniquely covered elements of
the witness subfamily distinctly, thereby resulting in a good configuration. The running
time of the algorithm is O

(
|H| ·

(
t
k

)
· 2kBmk

)
.

Alon et al. [1] provide explicit constructions of (k, s)-hash families when the range
is k + 1 and ks, respectively.

Theorem 3 (Alon et al. [1]). There exists an absolute constant c > 0 such that for
all 2 ≤ k < s there is an explicit construction of a (k, s)-hash family H with domain [n]
and range [k+ 1] of size at most 2ck log s · logk+1 n. When the range is [ks], there exists
an explicit construction of a (k, s)-hash family of size O(k2s2 logn).

If t = k+1, then by the above theorem, the running time of our deterministic algorithm
is O(2O(k log k+k log log B) · Bmk · logn); when t = ks, the running time works out to
be O(2O(k log k+k log log B) ·mk5 ·B log2 B · logn).

Theorem 4. Let (U ,F , B, k) be an instance of BUDGETED UNIQUE COVERAGE with
unit costs and profits. Then we can find a subfamily F ′ of size at most B covering at
least k elements uniquely, if there exists one, in time O(2O(k log k+k log log B) · Bmk ·
logn).

We next give alternate running time bounds using standard s-perfect hash families for
derandomizing our algorithm.

Theorem 5. ( [2,15,4]) There exist explicit constructions of (n, t, s)-perfect hash fam-
ilies of size 2O(s) logn when t = s, and of size sO(1) logn when t = s2. In fact, for the
case t = s, an explicit construction of an s-perfect hash family of size 6.4s log2 n in
time 6.4sn log2 n is known.

For t = s, using the construction of s-perfect hash families by Chen et al. [4], we
obtain a running time of O(6.4s log2 n ·

(
s
k

)
· 2k · Bkm). Since s = O(k logB), this

expression simplifies to of O(2O(k log B) · log2 n ·Bmk). For t = s2, we can use a hash
family of size sO(1) logn [2], and the expression for the running time then works out to
be O(2O(k log k+k log log B) · logn · Bmk). We thus have

Theorem 6. Let (U ,F , B, k) be an instance of BUDGETED UNIQUE COVERAGE with
unit costs and profits. Then we can find a subfamily F ′ of size at most B covering
at least k elements uniquely, if there exists one, in time O(f(k,B) · log2 n · Bmk),
where f(k,B) = min{2O(k log B), 2O(k log k+k log log B)}.
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If we ignore constants, Theorem 6 gives a run-time which is at least as good as that in
Theorem 4.

We now consider existential results concerning hash families. The following is
known about (n, t, s)-hash families.

Theorem 7 ([11]). For all positive integers n ≥ t ≥ s ≥ 2, there exists an (n, t, s)-
perfect hash family Δ(n, t, s) of size es2/ts lnn.

Alon et al. [1] provided existential bounds for (k, s)-hash functions for the case when
t = k + 1. If we assume that s ≥ 2k, then their existential bound works out to (2e)s ·
ek ln s · s lnn. In the lemmas that follow, we provide existential bounds for an arbitrary
range.

Lemma 6. Let k ≤ s ≤ n be positive integers and let t ≥ 2k be an integer. There
exists a (k, s)-hash family H with domain [n] and range [t] of size (2e)sk/t · s logn.

Proof. Let A = {h : [n] → [t]} be the set of all functions from [n] to [t]. For h ∈ A,
S ⊆ [n] of size s and X ⊆ S of size k, define h to be (X,S)-hashing if h maps X
injectively such that h(X) ∩ h(S \X) = ∅ and not (X,S)-hashing otherwise.

Fix S ⊆ [n] of size s and X ⊆ S of size k. The probability Pr that a function h
picked uniformly at random from A is (X,S)-hashing, is given by:

Pr =

(
t
k

)
k!(t− k)s−k

ts
>

(
t

k

)k

·
(
k

e

)k

· 1
tk

·
(
t− k

t

)s−k

=
1
ek

(
t− k

t

)s−k

≥ 1
ek

·
(

1
2e

)k(s−k)/t

(By Lemma 4.)

≥
(

1
2e

)ks/t

.

The probability that the function h is not (X,S)-hashing is less than 1 − (2e)−ks/t.
If we pick N functions uniformly at random from A then the probability that none
of these functions is (X,S)-hashing is less than (1 − (2e)−ks/t))N . The probability
that none of these N functions is (X,S)-hashing for some (S,X) pair is less than(
n
s

)(
s
k

)
(1−(2e)−ks/t)N , which in turn is less than ns(1−(2e)−ks/t)N . For this family

of N functions to be (X,S)-hashing for every (S,X) pair, we would want ns(1 −
(2e)−ks/t)N to be at most one. A simple calculation yields that this will hold when
N ≥ (2e)ks/ts logn. "#

Lemma 7. Let k ≤ s ≤ n be positive integers and let t ≥ k + 1. There exists a
(k, s)-hash family H with domain [n] and range [t] of size 2O(k log(s/k)) · s logn .

Proof. Let F = Δ(n,m, s), the (n,m, s)-perfect hash family obtained from Theo-
rem 7, where we set m = /s2/(k log(s/k))0. Let G be a family of functions gX

from [m] to [t], indexed by k-element subsets X of [m] as follows. The function gX

maps X in an one-one, onto fashion to {1, . . . , k} and maps an element of [m] − X
to an arbitrary element in {k + 1, . . . , t}. Our required family T of functions from [n]
to [t] is obtained by composing the families F and G. It is easy to see that T is an s-
discriminating (n, t, k)-perfect hash family and has the claimed bound for its size. "#
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Note that Lemma 6 requires that t ≥ 2k and that for Lemma 7 we have no restriction
on t. Also observe that had we an explicit construction of a (k, s)-hash family satisfying
the bound in Lemma 6, then by setting s = t = O(k logB), we would have obtained a
running time of O(2O(k log log B) · s logn) which is significantly better than that given
in Theorem 6. We believe that this is motivation for studying explicit constructions of
(k, s)-hash families for an arbitrary range.

2.3 Generalized Costs and Profits

The dynamic programming procedure described for the case of unit profits and costs can
be scaled to handle the more general case when costs are positive integers and profits
rational numbers ≥ 1 and vice versa. The modifications required are omitted from this
extended abstract. We obtain the following result analogous to Theorem 6:

Theorem 8. Let (U ,F , B, k) be an instance of BUDGETED UNIQUE COVERAGE with
either integral costs and rational profits ≥ 1 or with rational costs ≥ 1 and integral
profits. Then one can find a subfamily F ′ of total cost at most B that uniquely covers
elements with total profit at least k, if there exists one, in timeO(f(k,B)·Bmk log2 n),
where f(k,B) = min{2O(k log B), 2O(k log k+k log log B)}.

3 Faster Deterministic Algorithms for Special Cases

We now present faster deterministic algorithms than the ones presented in [13] for two
special cases of BUDGETED UNIQUE COVERAGE: UNIQUE COVERAGE (the unbud-
geted version) and BUDGETED MAX CUT.

3.1 Unique Coverage

An instance (U ,F , k) of UNIQUE COVERAGE can be viewed as an instance of BUD-
GETED UNIQUE COVERAGE where the costs and profits are all one and the budgetB =
k as we do not need more than k sets to cover k elements uniquely. Using Theorem 6,
we immediately obtain an algorithm with run-time O(2O(k log k) · |F| ·k2 logn). In this
subsection we present an algorithm for UNIQUE COVERAGE that runs in determinis-
tic O(2O(k log log k) · |F| · k+ |F|2) time beating the O(4k2 · |F|) algorithm in [13]. We
first need some lower bounds on the number of elements that can be uniquely covered
in any instance of UNIQUE COVERAGE.

Define the frequency fu of an element u ∈ U to be the number of sets in the family F
that contain u. Let γ denote the maximum frequency, that is, γ = maxu∈U{fu}.

Lemma 8. There exists a subfamily F ′ ⊆ F such that F ′ covers at least n/(4e log γ)
elements uniquely. Furthermore, such a subfamily can be found in polynomial time.

Proof. Similar to the proof of Lemma 1 and appears in the full version [12]. "#

Lemma 9. Let M = maxS∈F{|S|}. Then there exists a subfamily F ′ that covers at
least n/(8e logM) elements uniquely. Furthermore, such a subfamily can be found in
polynomial time.
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Proof. We begin by constructing a subfamily F ′ from F that is minimal in the sense
that every set in F ′ covers at least one element in U uniquely. Such a subfamily is easily
obtained, by going over every set in the family and checking if it has at least one element
which is not contained in any other set. Let m′ denote the size of the subfamily F ′. For
the proof of the lemma we distinguish two cases based on m′:

Case 1: m′ ≥ n/2. As the subfamily is minimal, by construction, we are immediately
able to cover at least n/2 elements uniquely. Thus F ′ itself satisfies the claim of the
lemma.

Case 2: m′ < n/2. In this case, we first claim that |{u ∈ F ′ : f(u) < M}| ≥ n/2.
If not, then there would be more than n/2 elements whose frequency is at least M ,
which implies that

∑
S∈F ′ |S| > Mn/2. On the other hand,

∑
S∈F ′ |S| is clearly at

most M(n/2 − 1) (because there are strictly less than n/2 sets in the family and the
size of any set in the family is bounded by M ). The claim implies that there exists a set
of at least n/2 elements whose frequency is less than M . Denote this set of elements
by V . Consider the family F ′′ obtained from F ′ as follows: F ′′ = {S ∩ V | S ∈
F ′}. Applying Lemma 8 to the instance (V ,F ′′), we obtain a subfamily T of F ′′ that
covers at least n/(8e logM) elements uniquely. The corresponding subfamily of F ′

will clearly cover the same set of elements uniquely in U . This completes the proof of
the lemma. "#

Using these lower bounds on the number of elements that are uniquely covered, we
can upper bound the size of a YES-instance of the UNIQUE COVERAGE problem as
a function of the parameter k. Let (U ,F , k) be an instance of UNIQUE COVERAGE.
If k ≤ n/8e log(k − 1), then there exists a subfamily that covers k elements uniquely.
If not, we have k > n/8e log k, which implies that n < 8ek log k.

Lemma 10. Let (U ,F , k) be an instance of UNIQUE COVERAGE. Then, in polyno-
mial time, we can either find a subfamily covering at least k elements uniquely, or an
equivalent instance where the size of the universe is O(k log k).

An improved algorithm for UNIQUE COVERAGE first applies Lemma 10 and obtains
an instance of UNIQUE COVERAGE, (U ,F , k), where n = |U| ≤ O(k log k). Now
we examine all k-sized subsets X of the universe U and check whether there ex-
ists a subfamily that covers it uniquely. Let X = {ui1 , ui2 , . . . , uik

}, and let h be
a function that maps X injectively to {1, . . . , k} and each element in U \ X to the
color k+1. Applying Lemma 3 to the instance (U ,F , B = k, k), with the coloring func-
tion h described above gives us an algorithm to find the desired F ′ in time O(2kk2m).
Note that a factor of k can be avoided by directly applying dynamic programming
over subsets of X . The size of U is upper bounded by 8ek log k and hence the total
number of subsets that need to be examined is at most

(8ek log k
k

)
, which is bounded

above by (8e log k)k ≤ 24.5k+k log log k. Combining this with the above discussion
results in:

Theorem 9. Given an instance (U ,F , k) of UNIQUE COVERAGE, one can find a sub-
family that uniquely covers at least k elements, if there exists one, in timeO(f(k)·mk+
m2), where f(k) = 25.5k+k log log k.



320 N. Misra et al.

3.2 Budgeted Max Cut

An instance of BUDGETED MAX CUT consists of an undirected graph G = (V,E) on
n vertices and m edges; a cost function c : V → Z+; a profit function p : E → Z+;
and positive integers k and B. The question is whether there exists a cut (T, V − T ),
∅ �= T �= V , such that the total cost of the vertices in T is at most B and the total profit
of the edges crossing the cut is at least k. This problem can be modelled as an instance
BUDGETED UNIQUE COVERAGE by taking U = E and F = {Sv : v ∈ V }, where
Sv = {e ∈ E : e is incident on v}.

In [13], an algorithm with run-time O((B2 · k · 2k)min{B,k} ·mO(1)) was described
for BUDGETED MAX CUT. Here we develop an algorithm with run-time O(2O(k) ·
Bmk · log2 n). Given S ⊆ V , we let c(S) denote the total cost of the elements of S.
If (S, V − S) is a cut in a graph G, then p(S, V − S) is the total profit of edges across
the cut. Define the profit p̂(v) of a vertex v to be the sum of the profits of all the edges
incident on it.

Lemma 11. If (G,B, k, c, p) is a YES-instance of BUDGETED MAX CUT then there
exists a cut (S, S − V ) such that c(S) ≤ B, p(S, V − S) ≥ k, and |

⋃
v∈S Sv| ≤ 4k.

Proof. Since we are given a YES-instance of the problem, there exists a cut (T, T ′)
such that c(T ) ≤ B and p(T, T ′) ≥ k. Call a vertex v of T redundant if p(T − v, T ′ ∪
v) ≥ k. From (T, T ′), obtain a cut (S, S′) such that S ⊂ T and S does not contain
any redundant vertices. Observe that c(S) ≤ B and p(S, S′) ≥ k. For any v ∈ S,
p̂(v) ≤ k − 1 and p(S − v, S′ ∪ v) ≤ k − 1. Therefore p(S, S′) ≤ 2k. For v ∈ S,
partition Sv as Iv 4 Cv , where Iv is the set of edges incident on v that lie entirely
in S and Cv are the edges that lie across the cut (S, S′). Clearly p(Iv) ≤ p(Cv), for
otherwise, p(S−v, S′∪v) > p(S, S′), a contradiction to the fact thatS has no redundant
vertices. Therefore

∑
v∈S p(Iv) ≤

∑
v∈S p(Cv) ≤ 2k. This yields

∑
v∈S p̂(v) ≤ 4k.

Since the profits are at least one, we have |
⋃

v∈S Sv| ≤ 4k. "#

We use the deterministic algorithm outlined before Theorem 6 with t = s = 4k and
a 4k-uniform perfect hash family by Chen et al. [4]. The running time then works out
to O(6.44k log2 n ·

(4k
k

)
· 2kBmk) which simplifies to O(213.8k ·Bmk · log2 n).

Theorem 10. Let (G,B, k, c, p) be an instance of BUDGETED MAX CUT. Then we
can find a cut (S, S′) such that c(S) ≤ B and p(S, S′) ≥ k, if there exists one, in time
O(213.8k ·Bmk · log2 n).

4 Conclusions

In this paper we gave fixed-parameter tractable algorithms for BUDGETED UNIQUE

COVERAGE and several of its variants. Our algorithms were based on an application
of the well-known method of color-coding. Our randomized algorithms have good run-
ning times but the deterministic algorithms make use of either (k, s)-hash families or
perfect hash families and this introduces large constants in the running times, a common
enough phenomenon when derandomizing randomized algorithms using such function
families [2]. Our use of (k, s)-hash families to derandomize our algorithms is perhaps



The Budgeted Unique Coverage Problem and Color-Coding 321

the first application outside the domain of coding theory and it suggests the importance
of such hash families. It will be interesting to explicitly construct (k, s)-hash families
of size promised by Lemma 6 and explore other applications of our generalization of
the color-coding technique.

Acknowledgements. We thank Srikanth Srinivasan for discussions about Lemma 6.
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Abstract. We present the formal verification of a gate-level computer
system, in which a complex processor and external devices run in parallel.
The system specification is an instruction set architecture with concur-
rently running visible devices. To the best of our knowledge this is the
first formal treatment of integrating devices into a gate-level computer
system.

1 Introduction

Modern computer systems are used in many safety and security critical contexts,
e.g. cars or planes, where errors can lead to huge costs and loss of life. Even if sets
of components (hardware or software) are functionally correct, bugs may show up
when integrating the components into a single system. The perhaps most famous
example of such an integration bug led to the crash of an Ariane 5 rocket; it was
caused by an integer overflow in a software component that was correct for the
predecessor rocket but had its assumptions violated in the new one [1]. Pervasive
verification [2,3] attempts to verify systems completely including the interaction
of all components, thus minimizing the set of system assumptions.

The basis of a pervasive verification is a verified target architecture. In this
paper we present the implementation and verification of a complex gate-level
computer system, which consists of a pipelined processor and a number of mem-
ory mapped I/O devices. The gate-level system is verified against an instruction
set architecture model as seen by an assembly programmer. This model consists
of a processor specification (describing the effects of instruction execution) and
specifications of the devices. While at the gate-level the processor and the de-
vices run in parallel, at the architecture level they run concurrently, i.e. perform
execution steps non-deterministically one after each other.

Context and Related Work. The hardware computer system described in this
paper forms the basis of a verified system stack developed and verified in the
Verisoft project [2,4]. The hardware core is based on the VAMP processor [5,6],
� This work was supported by the German Federal Ministry of Education and Research
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which is, to the best of our knowledge, the most complex verified processor in
the open literature. The VAMP processor was first verified in the interactive the-
orem prover PVS. Because the rest of the Verisoft systems stack is developed in
Isabelle/HOL we developed and verified the VAMP processor again in Isabelle/
HOL to guarantee the pervasiveness of our verification effort. While we reused
the old top-level proof strategy, we simultaneously succeeded in speeding up the
verification by solving lower-level proof goals with our automatic hardware veri-
fication environment IHaVeIt integrated into Isabelle [7]. We could decrease user
interaction by ca. 40% compared to the purely interactive proofs in PVS.

The closest related work in systems verification is the famous CLI stack [8].
This stack consists of a non-pipelined processor, an assembler, a compiler for a
simple high-level language, and an elementary operating system kernel, but is
lacking external devices. In 2002 J S. Moore [3], the principal researcher of the
CLI stack project, declared the formal verification of a computer system with
devices a grand challenge.

Devices are often modeled and verified as stand-alone systems [9, 10]. For
instance, a device is modeled at some level and then certain model properties
are checked. To use devices in a hardware / software system, though, they have
to be modeled at different levels, as we do here.

Hillebrand et al. [11] previously presented the paper-and-pencil formalisations
of a system with a hard disk drive. They define the system at the gate and
the assembly level and sketch correctness arguments relating these models. The
arguments, however, are complicated and depend on the concrete device model.
By changing the sampling of external interrupt in the implementation we obtain
a generic and much cleaner (and formally verified) solution (cf. Sect. 3).

Alkassar et al. [12] present a concurrent assembly-level model for a processor
with I/O memory mapped devices and some paper-and-pencil formalizations.
The model is used in [13] to formally prove the correctness of a hard disk driver
at the assembly level. Moreover, in the Verisoft project the assembly model has
been connected to the machine-code model presented here [4].

2 Assembly-Level Computer System

We define the instruction set architecture (ISA) of a processor with a number of
memory-mapped devices Di (cf. Fig. 1). Compared to regular ISA definitions in
addition to the processor state, the combined architecture also includes device
states. Processor and devices may interact (i) by the processor accessing devices
and (ii) by the device causing interrupts. Devices can also make steps on their
own when interacting with an external environment (e.g. a network). Therefore
we model the computation of ISA with devices as a concurrent computation.

Processor. A processor configuration cP is a tuple consisting of (i) two program
counters cP.pc and cP.dpc implementing delayed branching, (ii) general purpose,
floating point, and special purpose register files cP.gpr , cP.fpr , cP.spr , and (iii) a
byte addressable memory cP.m.
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Processor Devices
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Environment

eev

Fig. 1. Overview of a computer system with processor and devices

Devices are mapped into the processor memory and can be accessed by the
processor via regular read and write operations. In addition devices can signal
an interrupt to the processor via an external event signal (cf. Fig. 1).

Let DA denote the set of memory addresses mapping to devices, which are
disjoint from regular physical memory addresses. The processor indicates an
access to a device via the device interface input difi and receives the device’s
response on the device interface output difo.

Formally, let the predicates lw(cP) and sw(cP) indicate load and store word
instructions and let ea(cP) and RD(cP) denote the address and affected processor
register for such operations (see Müller and Paul [14] for full definitions).

The device interface input has the following four components: (i) the read flag
difi .rd = lw(cP) ∧ ea(cP) ∈ DA is set for a load from a device address, (ii) the
write flag difi .wr = sw(cP) ∧ ea(cP) ∈ DA is set for a store to a device address,
(iii) the address difi .a = ea(cP) is set to the effective address, with ea[14 : 12]
specifying the accessed device and ea[11 : 2] specifying the accessed device port
(we support up to eight devices with up to 1024 ports of width 32 bits), and
finally (iv) the data input difi .din = cP.gpr [RD(cP)] is set to the store operand.

The device interface output difo ∈ {0, 1}32 contains the device’s response for
a load operation on a device.

The processor model is defined by the output function ΩP and the next state
function ΔP. The former takes a processor state cP and computes a device input
difi to the device as defined above. The latter takes a processor state cP, a device
output difo, and an external event vector eev (where eev [i] is set iff device Di

signals an interrupt). It returns the next processor state c′P.
The configurations of all devices are represented as a mapping cD from device

indices i to the corresponding device configuration.
Our device model is sequential in the sense that a device may progress either

due to a processor access or an input from the external environment. To distin-
guish both cases we extend the set of device indices by the processor index P
and denote this set by PD .

The device transition function ΔD specifies the interaction of the devices with
the processor and the external environment. It takes a processor-device index
idx ∈ PD , an input from the external environment eifi , an input from the
processor difi , and a combined device configuration cD. It returns a new device
configuration cD

′, an output to the processor difo, and an external output eifo.
Depending on the input index idx and the device input difi , the transition

function ΔD is defined according to the following three cases: (i) If idx �= P , the
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device idx makes step with the external input eifi and the given difi is ignored.
(ii) If idx = P ∧ (difi .wr ∨ difi .rd), a device step is triggered by a processor
access. In this case ΔD ignores the given eifi and produces an arbitrary eifo. The
accessed device and the access-type is specified by the given difi . (iii) Otherwise
the processor does not access any device and ΔD does nothing. The device output
function ΩD computes the external event vector eev for the processor based on
the current device configurations.

Combined System. By combining the processor and device models we obtain
a model for the overall system with devices as depicted in Fig. 1. This model
allows interaction with environment via eifi and eifo whereas the communication
between processor and devices is not visible from the outside anymore.

A configuration of the combined model consists of a processor configuration
c.cP and device configurations c.cD. We define a transition function ΔPD and an
output function ΩPD. Both functions take the same three inputs: a processor-
device index idx , a combined configuration c.(cP, cD), and an external input eifi .

We introduce some more notation for the transition and the output function.
Let difi = ΩP(c.cP) be the input from the processor to the devices. Let eifi be
input from external environment. Let (c′.cD, difo, eifo) = ΔD(idx , c.cD, eifi , difi)
denote the updated device configuration, the device output to the processor,
and the external output. Let eev = ΩD(c′.cD) denote the external event vec-
tor, which is computed based on the updated device configuration. Finally, if
idx = P then c′.cP denotes the updated processor configuration, i.e. c′.cP =
ΔP(c.cP, eev , difo). Otherwise c′.cP denotes the unchanged processor configura-
tion, i.e. c′.cP = c.cP.

The transition function ΔPD returns the new configuration c′.(cP, cD). The
output function ΩPD simply returns the output to the external environment eifo.

A run of the combined system is defined for a given number of steps and a
computational sequence σ ∈ N → PD . The latter designates the interleaving
of the processor and device steps. A run starts with an initial configuration c0.
During a run the system receives inputs from the external environment as an
input sequence c.eifi ∈ N → eifi that maps step numbers to the corresponding
inputs. A run for i steps results in a new configuration c(i,σ).(cP, cD) and external
output sequence c.eifo(i,σ) ∈ N → eifo. The new configuration is computed by
recursive application of ΔPD and the output sequence by application of ΩPD.

3 Gate-Level Computer System

In this section we define a computer system at the gate level. This system has a
similar structure to the system introduce above, i.e. it consists of the processor
VAMP and a generic model for the implementation of external devices. The
processor and the devices are connected via a common bus. All components of
the system run in parallel and are clocked with the same hardware clock.

Processor. The VAMP processor [15] is a pipelined processor with out-of-order
execution. Figure 2 gives an overview of the data path of the VAMP processor.
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Fig. 2. Data path of the VAMP
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Fig. 3. Timing of a device read

The pipeline of the VAMP consists of five stages. In stage IF an instruction is
fetched from the memory. In stage ID the instruction is decoded and put in a
reservation station. The source operands are read from the processor’s registers
or forwarding paths. Both stages operate in order, realizing a pipelined imple-
mentation of the delayed-PC architecture [14] with one delay slot per control-flow
instruction. The stages EX, C, and WB implement the Tomasulo algorithm [16]
for out-of-order execution. In stage EX the instruction is executed, i.e. the re-
sult of the instruction is computed. In this stage memory and device accesses,
if needed, are executed. The instruction result is then put on the common data
bus in stage C. Finally, in stage WB the computed result is written back to the
register file in-order. This is implemented via a reorder buffer (ROB). As soon as
the oldest instruction result in the ROB becomes valid, it can be written back to
the register file. The write back is the last step of the instruction execution and it
signals that the instruction is leaving the processor. The ROB is also used to im-
plement precise interrupts. If an instruction is interrupted, previous instructions
are written back and later instructions are flushed. The interrupted instruction
is written back or flushed depending on the interrupt type (repeat or continue).
We distinguish two interrupt sources: internal (e.g. for page fault or overflow)
and external (e.g. for reset or I/O interrupts). Internal interrupts are computed
during instruction execution while external interrupts are an additional input
bus of the VAMP.

For a detailed description of the processor core implementation see [17].

The VAMP Communication Interfaces. The VAMP communicates with two
“off-the-chip” components: the external devices and the memory. The processor
employs the following communication buses: (i) device interface input and output
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(difi and difo), (ii) memory interface input and output (mifi and mifo), and
(iii) an external event vector eev with which devices signal their interrupts.

The VAMP accesses devices by setting the bit difi .req. The type of access
(read or write) is given by bit difi .w . The accessed address is set on difi .a ∈ B30

and data for the write access are on difi .din ∈ B32. The accessed device sets
difo.reqp to signal that it is processing a request and cannot accept a new one.
An active value of bit difo.brdy signals that in the next cycle the request is
finished and the data on difo.dout ∈ B32 will be valid. Figure 3 shows a typical
processor-device communication. The memory protocol is similar.

Memory. Memory is a non-modeled external component. We define its content
by observing memory interfaces. Let M 0 be an initial memory content. Let mifi t

and mifot be the state of the memory buses at cycle t. We introduce a function
bw(mifi t,M t−1(a)) ∈ B64 which computes the new content of the cell on address
a. Let predicate busyt signal the end of a memory access. Let the shorthand wr t

�

mifi t.bwb �= 08 denote if a non zero number of bytes is written. The memory
content M t at cycle t > 0 is recursively defined as M t(a) = bw(mifi t,M t−1(a))
if mifi t.a = a ∧ ¬busy t ∧ wr t and M t(a) = M t−1(a) else.

Sampling External Interrupts. Previously, the VAMP has sampled external in-
terrupts on the eev bus in the WB stage [15]. This is problematic, however,
when relating the gate-level implementation to the instruction-set architecture.
For example, consider an instruction that clears (acknowledges) a device inter-
rupt. In the implementation, after the device access completes the device lowers
its interrupt and the instruction leaves the memory unit. To reach the WB stage,
the instruction needs several hardware cycles (cf. Fig. 2). In this time frame the
device may reactivate its interrupt, which will then be sampled for the same
instruction in the WB stage. From an assembly programmer’s point of view,
however, the new interrupt belongs to, or should affect, the next instruction.

In [11] an (informal) device-specific solution was proposed for this problem,
still sampling all external interrupts in the WB stage. Here, we solve this prob-
lem generically and hence much more elegantly. Revisiting the instruction-set
architecture, we may distinguish two types of device accesses: active ones that
are performed when executing load / store instruction on device addresses and
passive reads that occur when external interrupts are sampled. This interpreta-
tion reveals that every instruction (with external interrupts enabled) executes
at least one device access and that active accesses are always accompanied by
a passive read. To avoid any “shadow” scenarios devices should be accessed ex-
actly once per instruction. Obviously, the instructions without any active device
access already satisfy this requirement. For the other instructions we satisfy the
requirement by sampling externals interrupts at the time when the device access
completes. Thus, the access result and the external interrupts are read at the
same cycle.

Notably, other implementations described in literature do not solve the above
problem. For example, in [18] and in the MIPS-R3000 family [19, Chapter 8]
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external interrupt are sampled before instruction issue and before the memory
stage, respectively. Both implementations still may access external devices twice.

Devices. All gate-level devices make a step in every cycle, which is the main
difference to the ISA-level devices. Configurations of all devices are combined in
a mapping hD from device indices i to the corresponding device configuration.
An input from external environment to all devices is represented as a mapping
eifis from device indices to device inputs. Similarly, an output from all devices
is a mapping eifos from device indices to device outputs.

The step function δD defines the behavior of devices. It takes input from the
environment for all devices eifis , processor input difi , state of all devices hD, and
reset bit. It produces new state h′D, outputs to the processor difo, output to the
environment eifos , and external interrupts for the processor eev .

We make an assumption that δD obey the processor-device protocol (Fig. 3).

Combined System. The gate-level computer system consists of the VAMP and
the generic device model. The VAMP and devices communicate via the internal
device interface buses difi , difo, and eev . These buses introduce one cycle delay
in the communication, e.g. the VAMP places the request on the difi and at the
next cycle the device reads these data.

The next-state function updates the processor and the devices by the applica-
tion of their next-state functions. It also defines the communication between the
system components and the external world. For the combined VAMP-Devices
system the external world consists of the memory chips and the external en-
vironment of the devices. Formally, the step function computes the next state
h′PD.(hP, hD) based on a given system state hPD.(hP, hD), inputs from the de-
vice environment eifis and the memory mifo. It also computes the outputs to
the external environment eifos of the devices and to the memory mifi .

A run of the combined model is defined recursively by the application of the
next-state function for a given number of hardware cycles. We employ ht.eifis to
denote the device inputs from the external environment at cycle t. We denote the
input from the external memory at cycle t as ht.mifo. A run for t cycles starting
from a configuration hinit

PD results in a new configuration ht.(hP, hD) outputs to
the external environment ht.eifos , and outputs to the external memory ht.mifi .

4 Computer System Correctness Criterion

We define a scheduling function which relates gate-level runs with their ISA-
level counterparts. Its definition is based on special hardware events indicating
progress at the gate level, which has to be reflected at the ISA-level. We split
events into two groups, processor-sided and external-environment-sided.

Processor-Sided Events. The result of any instruction without memory or device
access is finally computed at the write back stage, i.e. at the cycle when the
instruction is leaving the VAMP. We use the notation wbt to denote the value
of the hardware write-back signal at cycle t.
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Fig. 4. Abstraction of hardware cycles to a computational sequence

An instruction writing to the memory or accessing a device forces irreversible
changes of the memory / device when the access ends. The access cycle precedes
the write back cycle of the instruction. Thus, external state is altered before the
instruction leaves the processor. Therefore, memory and device correctness have
to be treated specially. To built a precise relation, we need a cycle where the
result of a device access is put on the bus (Fig. 3). We denote this event at cycle
t by dat. Note that da has almost the same semantics as wb, because once a
device access is done its effect cannot be rolled back.

External-Environment-Sided Events. Device steps can be triggered by the ex-
ternal environment. We introduce a function DevIds which, for a given device
state hD and the external inputs eifis , computes a computational sequence
σ = DevIds(hD, eifis) consisting of only device identifiers. Thus, sequence σ
corresponds to the devices making step due to that input eifis . The definition
of this function depends on the concrete device instances and how the gate-level
device model has to be abstracted. The only restriction we put on DevIds is that
it should not return a sequence with duplicate device identifiers. We present two
examples for function DevIds : (i) modeling every implementation step in the
specification, i.e. DevIds always returns a computational sequence which con-
tains all device identifiers. (ii) purging those steps of a gate-level device which
have no effect, e.g. if the state of the device did not change, its identifier is not
in the result of DevIds .

We define the scheduling function sIPD. For a given number of hardware cycles
it returns a computational sequence σ. Figure 4 depicts how a gate-level run for a
system with three devices can be mapped to a computational sequence. Function
sIPD is defined by recursion on hardware cycles. Let us abbreviate σt = sIPD(t).
At cycle zero we return the empty sequence [ ], i.e. σ0 = [ ]. For the recursion
step let boolean flag was dat be true if there was the end of a device access but
this instruction is not yet written back, i.e. was da t = ∃t′ < t . dat′ ∧ ∀t′′ ∈]t′ :
t[ .¬wbt′′ . We define the recursive step of sIPD as follows:

σt+1 = σt ◦

⎧⎪⎨⎪⎩
DevIds(ht.hD, ht.eifis) ◦ [P ] if dat

[P ] ◦ DevIds(ht.hD, ht.eifis) if wbt ∧ ¬was da ∧ ¬da t

DevIds(ht.hD, ht.eifis) otherwise
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Assumptions. We can only state and prove a relation between the gate-level
and the ISA-level models if they receive the same inputs. We define a predicate
sync eifis that tests if inputs from the external environments between cycles ts
and te are synchronised. If a device with identifier σte(j) makes a step at t $→ t+1
(with ts ≤ t < te), this device makes this step with the input ht.eifis(idx ). We
compute this hardware cycle as t = AddedAt(j). Then, we compare input for
the device ht.eifis(idx ) with the specification input c.eifi j for step j. Similarly,
we define a predicate sync eifos that tests whether an output sequence to the
external environment of implementation and specification match.

The gate-level and the ISA-level device models are based on the generic step
functions δD and ΔD, respectively. We keep them generic to instantiate them
with needed devices. To state anything about runs of these models, we have to
specify how results of these functions are related with each other.

We introduce a predicate simD that holds if the implementation states of all
devices are in a relation with their specification. We make a “one-step” assump-
tion specifying a relationship between one step of the-gate level device model
and a sequence of steps in the specification of devices with respect to sIPD. We
define this assumption for any initial state and any input sequence.

simD (h0.hD, cσ0
.cD) ∧ sync eifis(0, 1, h.eifis , c.eifi) ∧ h.difi = cσ1

.difi =⇒
simD (h1.hD, cσ1

.cD) ∧ sync eifos(0, 1, h.eifos , cσ1
.eifo)∧

h1.difo.dout = cσ1
.difo ∧ h1.eev = cσ1

.eev

Software Conditions. Sometimes it is impossible or too expensive to implement
handling of some exceptions in the hardware. These special cases restrict the
software which can be executed on the developed hardware. We call these re-
strictions software conditions [5]. We present two software conditions for the
VAMP processor, which also hold for the gate-level computer system.

The first condition excludes RAW hazards for the self-modifying assembly
code [15,20]. This condition makes use of so-called sync-instructions, which drain
the processor pipeline. Other than that a sync-instruction should act as a no-op.
In the VAMP the instruction movs2i IEEEf R0 has sync semantics. Hillebrand
[21] observed that jumping to and returning from an interrupt service routine has
sync semantics, too. The software condition requires at least one sync instruction
between any two instructions which produce a RAW hazard for instruction fetch.

In the presence of external devices, we need another software condition which
guarantees the absence of accesses to the undefined address space. The main
issue is the liveness because neither memory nor devices respond to an access to
the undefined address space, and hence, such an access never terminates.

The Simulation Theorem. Our correctness criterion states that every implemen-
tation run can be simulated by a specification run. The time notions, hardware
cycles and computational sequences, are related via a function sIPD. Device
states and system outputs are related via simD and sync eifos , respectively. We
introduce a predicate Rconf (hP, cP) which tests processor states.
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The VAMP has more registers than the ISA processor. The registers, which
are present in both models, are called the visible registers (from a programmer’s
point of view). These include general purpose registers and program counters.
Other implementation registers are called invisible. They hold partial results
of instruction execution, e.g. the internal registers of the functional units. The
predicate Rconf (hP, cP) tests the visible registers of the VAMP and the ISA.

Some VAMP components, e.g. the program counters, may have values that
never occur in the specification. Therefore, the correctness criterion of the VAMP
is stated after every interrupt [15], which is signaled by signal JISR. At these
cycles all visible registers of VAMP and ISA must have equal values.

We can now formulate the simulation theorem. Let inputs for the processor-
device models be synchronised with respect to sync eifis and let the initial states
be equivalent. Let the assembly code satisfy the software conditions. Let σt =
sIPD(t). We show that the gate-level model after t cycles and ISA-level model
after executing σt have equivalent states and produce equal outputs.

Rconf (h0.hP, c[ ].c.cP) ∧ M 0 = c[ ].c.cP.M∧
simD (h0.hD, cσ0

.c.cD) ∧ sync eifis(0, t, h.eifis , c.eifi) =⇒
Rconf (ht.hP, cσt

.c.cP) ∧ M t = cσt

.c.cP.M∧
simD (ht.hD, cσt

.c.cD) ∧ sync eifos(0, t, h.eifos , cσt

.eifo)

The theorem proof can be found in [22]. Note that in the proof of this theorem
the shadow scenarios for sampling interrupts (Sect. 3) show up.

5 Summary

We have presented a formally verified computer system at the gate-level, con-
sisting of a processor and external devices. To the best of our knowledge, this is
the first formal treatment of device integration at the gate and ISA level.

The base of the computer system is a pipelined processor, which is called
VAMP. It is a 32-bit RISC processor featuring out-of-order execution with five
functional units, precise interrupts, and address translation. In contrast to previ-
ous work, we verified the VAMP in the context of pervasive system verification,
considering also external devices. Moreover, the formal verification of the com-
bined system, allowed us to establish a clean semantics of the external interrupts.
External devices can be easily integrated in the computer system. For example,
the integration of a controller for a time-triggered bus was shown in [22]; the
resulting system can be used an electronic control unit (ECU) in a distributed
automotive system. These results are formalized and mechanically proved in
the interactive theorem prover Isabelle/HOL. We also synthesised and ran the
verified ECU on an FPGA and the unit size is ca. 5M gate equivalents.1

Proof Comparison and Statistics. We compare our results with the previous
work on the VAMP processor. The original VAMP project is carried out in the
1 This is joint work with Andrey Shadrin.



332 M. Hillebrand and S. Tverdyshev

Table 1. Verification efforts in PVS and Isabelle/HOL with IHaVeIt

Prover Verification target Person years Theorems Proof steps

PVS VAMP (no FPU, MU) 3 966 37666

Isabelle VAMP (no FPU, MU) 1.5 1206 20455
Devices 0.5 52 967
Combining systems 0.7 118 2714

Total 2.7 1376 24316

interactive theorem prover PVS. In Table 1 we show verification efforts in PVS
and in Isabelle/HOL in terms of person years, number of theorems, and number
of proof steps. This comparison cannot be 100% “fair”, because the nature and
power of these systems are too different, our work in Isabelle/HOL is based on
the proof strategy developed in PVS. The latter reason explains why we could
finish the proofs in less person years. The difference in proof steps is due to the
fact that PVS proofs are done purely interactively while proofs in Isabelle/HOL
are partially automated. In terms of proofs steps, ca. 40% of user work can be
saved thanks to IHaVeIt [7]. For the same reason there are more theorems in
Isabelle/HOL since all automatically proven results (e.g. subgoals of a theorem)
are formulated as separate lemmas.

Future Work. We see several interesting topics for future work. Alekhin [23]
verified a memory unit with a translation look-aside buffer to speed up address
translation. We plan to formally integrate his results into our system. There
are formal liveness proofs for the Tomasulo scheduler and the VAMP functional
units, but no combined liveness proof yet for the entire processor. Finally, the
device model could be extended with direct memory accesses.
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Abstract. In this paper we consider a nondeterministic computation
performed by deterministic multi-head 2-way automata with a read-only
access to an auxiliary memory. The memory contains additional data
(a guess) and the computation is successful iff it is successful for some
memory content.

Also we consider the case of restricted guesses in which a guess should
satisfy some constraint.

We show that the standard complexity classes such as L, NL, P, NP,
PSPACE can be characterized in terms of these models of nondeterminis-
tic computation. These characterizations differ from the well-known ones
by absence of alternation.

Keywords: automaton, nondeterminism, language, complexity class.

The standard way to define a nondeterministic computation by an automaton
or a Turing machine is to change a transition function by a transition relation.
In a nondeterministic state of a computational device a computation branches
into several computation paths.

There is another way to introduce a nondeterminism. Suppose that a com-
putational device has an additional data (a guess or a certificate or a proof of
correctness) and performs a deterministic computation operating with an input
data and a guess data.

Sometimes these variants of introducing nondeterminism lead to equivalent
computational models. The class NP, for example, can be defined in both ways
using Turing machines.

If we restrict computational power then these variants may differ drastically.
The aim of this paper is to investigate models of nondeterminism based on the
second variant for multi-head 2-way automata.

It is well-known1 that computation abilities of deterministic multi-head 2-way
automata are equivalent to Turing machines with a logarithmically bounded
auxiliary memory. In other words, they recognize languages from the class L.

Nondeterministic (in the sense of transition relation) multi-head 2-way au-
tomata recognize languages from the class NL. One can rewrite a definition of a
� The work is supported by the RFBR grants 08–01–00414, 09-01-00709 and the grant
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nondeterministic automaton in terms of guess data. For this purpose the 1-way
read-only guess tape should be used.

Here we introduce a more general model of an auxiliary read-only memory
(see definitions in Section 1). Guess data are stored in cells of a memory and at
each moment of time an automaton has an access to the exactly one memory
cell. Possible moves between memory cells form a directed graph (a memory
graph). An automaton can choose between finite number of variants only. So the
natural condition on the memory graph is a finite fan-out in each vertex (i.e. a
memory cell).

The most natural variant of an auxiliary memory is a 2-way tape. This
model appears to be very close to nonerasing nondeterministic stack automata
(NENSA) [12,10]. The automata with the 2-way read-only guess tape recognize
the same class of languages PSPACE as NENSA do.

A read-only memory may be useful in nondeterministic settings. Neverthe-
less, automata with a read-only nondeterministic memory can be related with
a special variant of deterministic computation with an auxiliary memory, which
is called WORM-automata (see Subsection 1.1). The WORM-automata with
the 2-way guess tape are similar to the nonerasing deterministic stack automata
(NEDSA) and also recognize the languages from the class PSPACE.

Also we introduce a nondeterministic computation with a restricted guess. An
example of restricted guess is a sparse guess . Sparseness of a guess means that a
guess tape contains the only one (or finitely many) non-empty symbol and the
rest symbols stored on the tape are empty.

We focus our attention on a more restricted memory model, so-called 1.5-way
tape. It was used in research of quantum automata [1]. For classic automata
1.5-way tape means an 1-way tape with a reset option, i.e. a possibility to make
move into the initial cell from any memory cell.

The main results of this paper concern the 1.5-way tape memory.
The automata with the 1.5-way guess tape recognize the class PSPACE (The-

orem 2 below) as the 2-way guess tape automata do. But the WORM-automata
with this memory type recognize the class P only (Theorem 1). 1.5-way au-
tomata with sparse guesses recognize the class NP(Theorem 3). These results
show that the 1.5-way guess tape is potentially more suitable to characterize
various complexity classes.

An interesting feature of all these results is a formal absence of resource
bounds in characterizations of resource-bounded classes such as P, NP and so
on. It should be noted that there is a primary result of this sort: many heads are
equivalent to logarithmic space. The rest of the results are based on this fact.

The main technical tool in study of the 1.5-way tape is calculations modulo
polynomially bounded integer. These calculations can be performed on a log-
arithmic space. To compute a length of a part of the guess tape we use the
simple algorithm: go along the part and increase a counter modulo p. The latter
operation can be done on logarithmic space.

There are many results on characterizations of complexity classes in terms
of some sort of automata. The classes L, NL, P, PSPACE have the well-known
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characterizations by deterministic, nondeterministic, alternating and synchro-
nized alternating 2-way automata [5,11,7]. There are also characterizations of
NP, the polynomial hierarchy and some other complexity classes in terms of
alternating auxiliary stack automata [9].

Our results differ from these characterization because the models considered
in this paper do not use alternation.

Some results in theory of tree-walking automata can be translated to our
framework. In this case a memory model is a tree. For example, it follows from [3]
that the automata with a read-only access to a tree memory recognize the lan-
guages from the class EXP.

It is worth to mention a paper [4], which contains the characterizations of P,
NP and PSPACE in terms of nondeterminism only. The difference is in the nature
of nondeterminism introduced. In [4] nondeterministic colorings of n-dimensional
words are considered, where n is the input size. Contrary, our main results concern
the case of 1-dimensional guess memory, which is potentially infinite. Using a po-
tentially infinite tape makes more difficult an interpretation of the results in terms
of descriptive complexity theory (see, e.g., the book [8]). For example, the results
in [4] are directly related with Fagin’s theorem that characterizes the class NP in
terms of the second-order logic. To establish a similar relation to our characteri-
zation of the class NP one need specify suitably restricted infinite models. Up to
the moment we know no way to implement this idea.

The rest of paper is organized as follows. In Section 1 we introduce our basic
computational model: multi-head 2-way automata with a nondeterministic aux-
iliary memory. Section 2 contains results about the 1-way, the 1.5-way and the
2-way guess tapes. In Section 3 we introduce a model of a restricted guess and
give characterizations of NP in terms of this model. In Section 4 we make some
remarks on a more general memory model, which is called a monoid memory.

Details of proofs are omitted here due to space limitations. They can be found
in the preprint [15].

1 Automata with an Auxiliary Read-Only Memory

In this section we provide definitions for a model of nondeterministic compu-
tation by automata with an auxiliary read-only memory. The definitions fix an
informal idea explained in the introductory section.

Definition 1. A memory model is a directed graph (M,E), an initial cell m0 ∈
M and a marking map g : E → G from the edges of the graph to some finite set
G. The marking map satisfies the following conditions:

– g(u, v) �= g(u,w) for v �= w (edges outgoing from the vertex can be distin-
guished by their marks);

– for each u ∈ M and a ∈ G there is an edge (u, v) ∈ E such that g(u, v) = a.

In other words, the map g restricted to the set of edges outgoing from a vertex
is a bijection.

For any finite alphabet Δ a memory content μ is a map μ : M → Δ.
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Definition 2. An h-head automaton A with an auxiliary memory of model M
(an M -automaton for brevity) is characterized by

– a finite state set Q,
– a finite input alphabet I = Σ ∪ {&, '}, Σ ∩ {&, '} = ∅,
– a finite memory alphabet Δ,
– a transition function δ : Q× Ih ×Δ → Q×{−1, 0, 1}h× (G∪0), which maps

an (h + 2)-tuple (the current state, symbols the heads on the input tape,
the symbol in the current memory cell) to an (h + 2)-tuple (a new state, a
motion command for each head, a command of changing memory cell),

– an initial state q0 ∈ Q,
– a set of accepting states Qa ⊂ Q.

A configuration of the automaton A is an (h + 2)-tuple (q, i1, . . . , ih,m) (the
state, the positions of the heads, the memory cell). A surface configuration of
the automaton A is an (h + 1)-tuple (q, i1, . . . , ih).

The transition function defines a transformation on the set of the configurations.
A motion command for a head is an element from the set {−1, 0,+1} indicating
the shift of the head along the input tape. A command of changing memory cell
is an element of the marking set G or an empty command 0. In the case of a
non-empty command g ∈ G the automaton moves out the current memory cell
along the edge marked by g. The empty command do not change the memory
cell.

An automaton A operates on an input word w ∈ Σ∗ in natural way. We
assume that the input word is extended by the endmarkers {&, '} indicating the
beginning and the end of the word. The automaton starts from the initial state
q0, the initial position of each head is the leftmost symbol of the input word,
the initial memory cell is m0. On each step of operation the automaton changes
the configuration as described above. The automaton stops iff either it reaches
an accepting state or a head goes out the area bounded by the endmarkers.

Definition 3. An automaton A accepts an input word w iff for some memory
content μ it stops in an accepting state.

The automaton recognizes the language L iff for any w ∈ L it accepts w and
for any w /∈ L it do not accept w.

We denote by M -NFA the class of languages recognized by automata with an
auxiliary memory of model M .

1.1 Determinization

A nontrivial use of an auxiliary read-only memory is inevitably nondeterministic.
Changing the read-only mode by the read-write mode in many cases leads to a
broader language class. This contradicts an intuition that a deterministic model
is weaker than a nondeterministic one.

In this subsection we describe a variant of deterministic use of an auxiliary
memory of model M which gives a subclass of M -NFA. It is the WORM (write
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once, read many) mode. A WORM-M automaton should fill a new memory
cell by a symbol when it enter the cell the first time. In further operation the
automaton can not change the content of the cell.

Below we give a formal definition compatible with the above nondeterministic
model.

Definition 4. A WORM-memory automaton on memory model M (a WORM-
M automaton for brevity) is characterized by

– a finite state set Q,
– a finite input alphabet I = Σ ∪ {&, '}, Σ ∩ {&, '} = ∅,
– a finite memory alphabet Δ ∪ {void},
– a transition function δ, which maps a (h+2)-tuple (the current state, symbols

of the input word under the heads, the symbol in the current memory cell) to
a (h+ 2)-tuple (a new state, a motion command for each head, a command
of changing memory cell),

– the initial state q0 ∈ Q,
– the set of accepting states Qa ⊂ Q,
– the set of writing states Qw ⊂ Q.
– a filling memory function ϕ : Qf → Δ,

At the start of operation all memory cells are void. A WORM-memory automa-
ton operates in the same way as a nondeterministic M -automaton except the
moments of entering a writing state. In that moment the filling function is ap-
plied to the current state of the automaton. If the current memory cell is visited
at first time then the value of the filling function is assigned to the cell and
the automaton continues operation by application of the transition function.
An attempt to change the content of a cell visited before causes the error as
well as an attempt to apply the transition function at a void cell. In the case
of an error the automaton stops the operation and do not accept the input
word.

So, during a successful operation the automaton enters a new memory cell in
a writing state. Also note that if the automaton writes the non-void symbol d
to the cell containing the symbol d then no error occurs. We call this property
‘a freedom of writing the same’.

We denote by M -WORM the class of languages recognized by deterministic
automata with an auxiliary WORM-memory of model M .

Lemma 1. M -WORM ⊆ M -NFA.

The idea of the proof is simple: a nondeterministic M -automaton A simulating
a WORM-M memory automaton B expects a memory content consistent with
the operation of B. Details can be found in [15].

Due to Lemma 1 one can regard the WORM-M automata as a specific case
of M -automata.
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2 Complexity Classes Recognized by Automata with an
Auxiliary Tape Memory

2.1 1-Way Tape

Let W1 be an infinite 1-way tape (Fig. 1). The class W1-NFA is just the class
NL. Indeed, a W1-automaton can read a symbol from the guess tape once. This
symbol can be used to make a nondeterministic choice in a transition relation.

Note also that W1-WORM = L because a symbol from the W1-tape can not
be reread.

. . . . . .

Fig. 1. 1-way tape W1

. . . . . .
+ + + + +

− − − − −
−

Fig. 2. 2-way tape W2

2.2 2-Way Tape

Let W2 be an infinite 2-way tape (Fig. 2). For graphs of fan-out > 1 we should
also indicate the marking of edges. In the case of W2 the marking is natural:
mark ‘+’ is placed on the edges going from a vertex n to the vertex n+ 1, mark
‘−’ is placed on the edges going to the opposite direction.

It was mentioned above that W2-NFA = PSPACE because W2-automata is
almost the same as nonerasing nondeterministic stack automata and NENSA
recognize the class PSPACE [12].

NENSA is able to make arbitrary nondeterministic transitions while an
W2-automaton should follow data read from the guess tape. It means that W2-
automata are weaker than NENSA, so W2-NFA ⊆ PSPACE. The reverse inclu-
sion is valid even for WORM-W2 automata. Indeed, a WORM-W2 automaton
is able to write a computational history of a Turing machine computation on a
polynomially bounded space. For this purpose the automaton should move on
distances polynomially bounded by the input size. This can be done by imple-
menting polynomially bounded counters.

Thus, W2-NFA ⊆ PSPACE ⊆ W2-WORM ⊆ W2-NFA (the last inclusion is
due to Lemma 1).

2.3 1.5-Way Tape

The memory model W1.5 is pictured on the Fig. 3. Edges going to the right are
marked by ‘+’ and edges going to the initial vertex are marked by ‘−’.

Theorem 1. W1.5-WORM = P.

The inclusion P ⊆ W1.5-WORM follows from the fact that a WORM-W1.5 au-
tomaton A is able to simulate a WORM-W2 automaton B on a polynomially
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Fig. 3. 1.5-way tape W1.5

bounded space by implementing a polynomially bounded counter that keeps a
position of B on the W2-tape.

The reverse inclusion follows from two simple observations. The first observa-
tions holds for general W1.5-automata.

Lemma 2. Let A be a W1.5-automaton and #Q be the number of its states.
Then any accepting computation of A includes no more than #Q moves to the
initial cell.

Proof. After each return move the automaton A scans the same tape content
and its behavior is deterministic. So, if A starts the scan process from the same
state twice it loops and never reach an accepting state.

Thus, the number of return moves is no more than the number of the states. "#

The second observation is specific to the WORM-W1.5 automata.

Proposition 1. Let A be a WORM-W1.5 automaton, h be the number of heads,
n be the length of the input word w and #Q is the number of the states of A. If
A accepts w then between two subsequent return moves the automaton visits no
more than nh#Q new cells.

Proof. There are no more than nh#Q surface configurations of A. If the automa-
ton pass through more than nh#Q new cells, some surface configuration occurs
twice. It means that the automaton loops and moves to the right infinitely. "#

These facts immediately imply that an operation of a WORM-W1.5 automaton
can be simulated by a Turing machine in polynomial time.

Thus the WORM-W1.5-automata are weaker than the WORM-W2 automata.
As for nondeterministic automata, 1.5-way tape provides the same computa-
tional power as 2-way tape.

Theorem 2. W1.5-NFA = PSPACE.

In one direction the inclusion is obvious:

W1.5-NFA ⊆ W2-NFA = PSPACE . (1)

To prove the inclusion PSPACE ⊆ W1.5-NFA we show that a W1.5-automaton
is able to check correctness of a computational history for a Turing machine
computation on a polynomially bounded space. Configurations of the Turing
machine are represented in special form using arithmetic encoding of binary
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words [13,14]. Namely, a word w ∈ {0, 1}∗ is encoded by a positive integer c(w)
written in binary as 1w.

A TM configuration �qar will be encoded by a 4-tuple (c(�), q, a, c(rR)), where
rR denote the reversal of the word r.

It is easy to verify that the integers c(�) and c(rR) before and after each step
of the TM computation are related by equations

y = 2x, y = 2x+ 1, x = 2y + 1, x = 2y , (2)

where x is the old value and y is the new value of c(�) or c(rR). The exact choice
of a relation depends on the pair q, a and parities of c(�), c(rR).

For a computation on a polynomial space it is sufficient to check relations (2)
modulo polynomially bounded integers. A particular modular check can be done
by a W1-automaton that scans the description of the computational history
from the left to the right. So a W1.5-automaton can perform all modular checks
jumping back to the initial cell before starting the next modular check.

The correctness of this procedure follows from the Chinese remainder theorem
and the prime number theorem [2].

Details of the proof outlined above can be found in [15].

3 The Restricted Guess Case

In this section we introduce a generalization of the nondeterminism model.
Namely, we will put a restriction on the form of a guess. The restriction can
change a computational power of the model.

Definition 5. Let T ⊆ ΔM be a subset of memory contents. We say that a
M -automaton A accepts a word w with a T -restricted guess iff it accepts w
operating on some memory content μ from the set T .

We denote by M(T )-NFA the corresponding class of languages recognizable by
M -automata with a T -restricted guess.

Of course, in general M(T )-NFA �⊆ M -NFA. For example, let T is the set
of all valid computational histories of a Turing machines. Then W2(T )-NFA
contains all recursively enumerable languages.

We are interested in restrictions that describe subclasses of M -NFA. To guar-
antee the inclusion M(T )-NFA ⊆ M -NFA it is sufficient to construct an au-
tomaton V that checks compatibility of memory content η in visited cells with
the set T . Compatibility means that η can be extended to some τ ∈ T . As an
example of this kind of restriction we introduce sparse guesses .

Definition 6. Let Δ = {0} ∪ Δ′. A k-sparse guess contains no more than k
symbols from the Δ′.

We denote by Uk the set of k-sparse guesses.

Below we consider sparse guesses for tape memories.
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3.1 Sparse Guesses for 1.5-Way Tape

The following facts can be verified easily by use of an informal idea of guess
verification described above.

Lemma 3. W1.5(Uk)-NFA ⊆ W1.5-NFA for any k.

Lemma 4. W1.5(U1)-NFA ⊆ W1.5(Uk)-NFA.

Proofs can be found in [15].
Now we give a characterization of the classes W1.5(Uk)-NFA.

Theorem 3. W1.5(Uk)-NFA = NP for k ≥ 1.

The proof of Theorem 3 is divided into two parts.

Lemma 5. NP ⊆ W1.5(U1)-NFA for k ≥ 1.

An U1-guess can mark a cell on the W1.5-tape by a nonzero symbol. The distance
d between the initial and the marked cell can be used to encode an information.
The Chinese remainder theorem guarantee that one can encode polynomially
many bits by residues modulo polynomially bounded primes. A W1.5-automaton
A recognizing an NP-language L expects that these bits form a computational
history of a nondeterministic computation by a nondeterministic Turing machine
recognizing the language L. To verify a guess the automaton A needs to extract
a bit indexed by a prime p from the encoded data. This can be done computing
the distance d modulo p.

Detailed exposition of the proof is contained in [15].

Lemma 6. W1.5(Uk)-NFA ⊆ NP for any k.

Due to Lemma 2 to find out the result of a W1.5-automaton A operation on a
Uk-guess one can divide the operation into polynomially many phases such that
during each phase the W1.5-automaton moves to the right and behaves like a
W1-automaton.

Note that the size of the set S of surface configurations of the W1.5-automaton
A is polynomially bounded by the input size. Changing a surface configuration
after the reading of the symbol 0 is described by a map α0 : S → S. Iterations
of the map α0 stabilize on some cycle: αi+�

0 = αi
0 for sufficiently large i. an

The length � of the cycle is polynomially bounded. From these observations one
can easily conclude that if the W1.5-automaton A accepts on some Uk-guess
then it accepts on a Uk-guess of exponential length, where the length of guess is
the maximum of distances between the initial cell and cells marked by nonzero
symbols.

So the positions of cells marked by nonzero symbols can be specified non-
deterministically by NTM running in polynomial time. Given the positions one
can compute the result of operation of the W1.5-automaton A in deterministic
polynomial time. For this purpose an algorithm of fast computation of matrix
exponentiation can be applied.
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Details of the proof can be found in [15].
Now Theorem 3 follows from Lemmata 4, 5, 6:

NP ⊆ W1.5(U1)-NFA ⊆ W1.5(Uk)-NFA ⊆ NP . (3)

3.2 Sparse Guesses for 2-Way Tape

Uk-guesses can be verified on the 2-way tape also.

Lemma 7. W2(Uk)-NFA ⊆ W2-NFA for any k.

This analog of Lemma 4 is proved in a straightforward way.
It is appeared that the class W2(U1)-NFA is rather weak.

Theorem 4. Aux2DC ⊆ W2(U1)-NFA ⊆ Aux2NC ⊂ P.

Here Aux2NC (Aux2DC) is the class of languages recognized by nondeterministic
(deterministic) 2-way counter automata with a logarithmic auxiliary memory.

This effect is due to the absence of the root label in the initial cell. Using a
non-zero symbol as the root label a W2-automaton can simulate a deterministic
counter automaton. Thus we obtain the first inclusion in Theorem 4.

To prove the second inclusion note that a position of the unique nonzero sym-
bol on the tape can be found by a nondeterministic counter automaton (NCA)
nondeterministically. After that the automaton can simulate the operation of a
W2-automaton A on a U1-guess using the value of the counter to indicate the
position of the W2-automaton on the 2-way tape. This works well while the
W2-automaton is to the right of the cell marked by the nonzero symbol.

It is appeared that a behavior of the W2-automaton while it moves between
the initial and the marked cell can be simulated by the NCA nondeterministically
using a logarithmic space. Details of the simulation can be found in [15].

The last inclusion in Theorem 4 follows from the Cook theorem [6]. The Cook
theorem implies

Aux2PDA = AuxN2PDA = P , (4)

where Aux2PDA is the class of languages recognized by deterministic 2-way
pushdown automata with a logarithmic auxiliary memory and AuxN2PDA is
the class of languages recognized by nondeterministic 2-way pushdown automata
with a logarithmic auxiliary memory.

For k ≥ 2 the classes W2(Uk)-NFA coincide with NP.

Theorem 5. W2(Uk)-NFA = NP for k ≥ 2.

Note that Theorem 3 implies that W2(U2)-NFA ⊇ NP because one nonzero
symbol can be used to mark the initial cell and the other can be used for a
simulation of a U1-guess for a W1.5-automaton.

The reverse inclusion can be proved in a way similar to the the proof of
Lemma 6.
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4 Monoid Memory

In this final section we briefly outline a natural extension of tape memories. The
results mentioned below can be easily obtained by translation some well-known
folklore facts to our settings.

Let G be a monoid generated by a set G′ = {g1, . . . , gn}. Then the memory
of type (G,G′) is defined by the Cayley graph of the monoid M : the vertex set
is G, an edge marked gk goes from a vertex x to the vertex xgk.

1-way and 2-way tapes are examples of monoid memory. It follows immediately
from definitions that W1-NFA = (N, {+1})-NFA. Also it is easy to see that
W2-NFA = (Z, {+1,−1)})-NFA.

There is a weak upper bound for the classes M -NFA of a monoid memory M .

Theorem 6. Let M be a monoid. If the word problem for M is decidable then
M -NFA ⊆ Σ1, where Σ1 is the class of recursively enumerable languages.

The proof follows from the observation that a decision procedure for the word
problem for the monoid M can be used to enumerate accepting computation
histories of a M -automaton.

For many monoids and groups the bound of Theorem 6 is exact.
Take, for example, a Z2 memory. The generators of Z2 are chosen naturally:

(±1, 0) and (0,±1).
The word problem for Z2 is decidable. So by Theorem 6 Z2-NFA ⊆ Σ1.
On the other hand, a Z2-automaton is able to verify the correctness of compu-

tational history of an arbitrary Turing machine computation. The automaton ex-
pects a guess containing subsequent Turing machine configurations in subsequent
rows of Z2. Correctness of computational history in this form is a conjunction of
local conditions that can be verified by the automaton walking on Z2.

Thus Z2-NFA = Σ1. As a corollary we get the following theorem.

Theorem 7. Let G be a group with decidable word problem and Z2 is a subgroup
of the group G. Then G-NFA = Σ1.
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Abstract. A homomorphism from a graph G to a graph H (in this pa-
per, both simple, undirected graphs) is a mapping f : V (G) → V (H)
such that if uv ∈ E(G) then f(u)f(v) ∈ E(H). The problem Hom(G, H)
of deciding whether there is a homomorphism is NP-complete, and in
fact the fastest known algorithm for the general case has a running time
of O∗

(
n(H)cn(G)

)
,1 for a constant 0 < c < 1. In this paper, we consider

restrictions on the graphs G and H such that the problem can be solved
in plain-exponential time, i.e. in time O∗

(
cn(G)+n(H)

)
for some con-

stant c. Previous research has identified two such restrictions. If H = Kk

or contains Kk as a core (i.e. a homomorphically equivalent subgraph),
then Hom(G, H) is the k-coloring problem, which can be solved in time
O∗
(
2n(G)

)
(Björklund, Husfeldt, Koivisto); and if H has treewidth at

most k, then Hom(G, H) can be solved in time O∗
(
(k + 3)n(G)

)
(Fomin,

Heggernes, Kratsch, 2007). We extend these results to cases of bounded
cliquewidth: if H has cliquewidth at most k, then we can count the num-
ber of homomorphisms from G to H in time O∗

(
(2k + 1)max(n(G),n(H))

)
,

including the time for finding a k-expression for H . The result extends
to deciding Hom(G, H) when H has a core with a k-expression, in this
case with a somewhat worse running time.

If G has cliquewidth at most k, then a similar result holds, with a
worse dependency on k: We are able to count Hom(G, H) in time roughly
O∗
(
(2k + 1)n(G) + 22kn(H)

)
, and this also extends to when G has a core

of cliquewidth at most k with a similar running time.

1 Introduction

A homomorphism from a graph G to a graph H is a mapping of the vertices of G
to the vertices of H that preserves adjacency (i.e. neighbours in G are mapped
to neighbours in H); we write G → H if one exists. The graph homomorphism
problem Hom(G,H), of deciding whether G → H , occupies an interesting place
in terms of exact time complexity; let us make an overview of what is known
and not.
1 The notation O∗(·) signifies that polynomial factors have been ignored.

A. Frid et al. (Eds.): CSR 2009, LNCS 5675, pp. 346–355, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In the following, G and H are graph classes restricting the input: Hom(G,H) is
the class of problems Hom(G,H) for G ∈ G, H ∈ H. A dash (as in Hom(−,H))
represents the class of all graphs, i.e. no restrictions. We are assuming that all
graphs are simple and undirected. For more on the homomorphism problem in
general, we refer to the book by Hell and Nešetřil [16]. Also, in addition to the
decision and counting problems considered in this paper, optimization variants
have been considered and studied in [14,13,12] and in [18].

1.1 Background

Beginning in some sense from the bottom, the polynomial cases of Hom(G,−)
and Hom(−,H) are completely known (assuming standard complexity theo-
retical assumptions). For Hom(−,H), there is a dichotomy due to Hell and
Nešetřil [15]: Hom(−,H) is in P if every H ∈ H is bipartite, in which case the
problem Hom(G,H) corresponds to checking whether G is bipartite, and NP-
complete otherwise (including Hom(−, {H}) for a single non-bipartite graph H).
For example, Hom(−, {K3}) corresponds to 3-coloring.

For Hom(G,−), there is a dichotomy due to Grohe [11]: Hom(G,−) is in P
if every G ∈ G either has bounded treewidth or is homomorphically equivalent
to a graph of bounded treewidth (its core – see Section 2 for definitions). In
every other case, the problem is W[1]-hard, thus not in P unless FPT=W[1]
(the classes FPT and W[1] come from the field of parameterized complexity
[6,9]). In particular, Hom(G,−) is trivially in P for every finite G.

There may be other polynomial cases of Hom(G,H) where both sides are
restricted, but we are not aware of this having been studied.

Moving on, the most famous special cases of homomorphism correspond to
restricting G or H to being cliques. Specifically, Hom(G,Kk) is the problem of
finding a k-colouring of G (thus explaining why the graph homomorphism prob-
lem is also known as H-colouring). For this problem, algorithms were recently,
famously, presented by Björklund, Husfeldt, and Koivisto [1] which solve it in
time O∗(2n(G)

)
for all k (older results, with different methods, exist with running

times O∗(cn(G)
)

for c > 2.4 [19,7,2]). On the other side, Hom(Kk, H) amounts
to finding a k-clique in H , which can of course be done in time O∗(2n(H)

)
for

all k. These two cases also correspond to two other lower bounds on the time
complexity of graph homomorphism (from [10]):

– If Hom(G,H) could be solved in time O (p(n(G)) · f(n(H))) for a polyno-
mial p(n) and any function f(n), then there would be a polynomial-time
algorithm for the NP-complete k-colouring problems (implying P=NP).

– If Hom(G,H) could be solved in time O (f(n(G)) · p(n(H))) for a polyno-
mial p(n) and any function f(n), then the k-clique problem would be in
FPT, implying FPT=W[1].

However, there is still a lot of room between these lower bounds and the best
upper bound, which is O∗(n(H)cn(G)

)
for a constant c < 1, using an algorithm

by Williams [21]. In particular, as asked by Fomin, Heggernes, and Kratsch [10],
can Hom(G,H) be solved in time O∗(cn(G)+n(H)

)
for a constant c?
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This question is still open, but for a generalisation of graph homomorphism we
know (again under a complexity theoretical assumption) that the answer is neg-
ative. A (d, 2)-CSP instance consists of n variables, with d possible values, and
arbitrary binary constraints (i.e. constraints on the values of pairs of variables).
Thus, Hom(G,H) is an instance of (n(H), 2)-CSP. Traxler [20] recently showed
that assuming ETH (i.e. unless 3-SAT has subexponential time algorithms [17]),
(d, 2)-CSP requires time Ω∗(dcn) for some constant c > 0.2

1.2 Our Contributions

In this paper, we focus on restricted cases of graph homomorphism for which
we can show the existence of plain-exponential time algorithms, i.e. cases of
Hom(−,H) for which we can show algorithms running in time O∗(cn(G)

)
(and to

a lesser extent the converse for Hom(G,−)). We are aware of two previous results
of this type. One is the k-coloring problems, and instances equivalent to them
(if χ(H) = ω(H) = k, then Hom(G,H) is again equivalent to k-coloring). The
other is the case of bounded treewidth: if the treewidth of H is at most k, then
Fomin, Heggernes, and Kratsch showed an algorithm for deciding Hom(G,H)
with a running time of O∗((k + 3)n(G)

)
[10].

We connect the question to the concept of cliquewidth [4,5]: we show that if
H has cliquewidth at most k (written cwd(H) ≤ k), then Hom(G,H) can be
counted in time O∗((2k + 1)max(n(G),n(H))

)
, and if the core of H has cliquewidth

at most k, then Hom(G,H) can be decided in time (O (k))max(n(G),n(H)). Both
results include the time for finding a k-expression. As far as the existence of
plain-exponential time algorithms goes, this extends both previous results, as
cliques have cliquewidth 2, and the cliquewidth of a graph is bounded by a
function of its treewidth [5].

For restrictions Hom(G,−), we show a plain-exponential algorithm for the
same case: if cwd(G) ≤ k for every G ∈ G, then Hom(G,−) can be counted
in time O∗

(
c
max(n(G),n(H))
k

)
, where the constant ck depends on k. Here, the

dependency is worse: we get ck = 22k.
The organisation of the paper is as follows: Section 2 contains preliminaries,

and a simple exponential-time algorithm for finding k-expressions for bounded k.
Section 3 presents our result for Hom(−,H), Section 4 presents our result for
Hom(G,−), and Section 5 contains some conclusions and further questions.

2 Preliminaries

2.1 Graph Homomorphism

Definition 1. Given graphs G = (VG, EG) and H = (VH , EH), a homomor-
phism from G to H is a mapping f : VG → VH such that for any edge uv in G,
2 Let us also remark that [20] excludes the existence of algorithms with a running

time of O∗(cd+n
)

for (d, 2)-CSP, as performing the variable reduction of [20] with
a target domain size of log n would produce a running time like dO(n/ log log n) for
(d, 2)-CSP, which would count as subexponential.
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f(u)f(v) is an edge in H. If one exists, we say that G is homomorphic to H,
written G → H. The graph homomorphism problem Hom(G,H) is the problem
of deciding whether G → H. For classes of graphs G and H, Hom(G,H) is the
graph homomorphism problem restricted to inputs G ∈ G, H ∈ H. A graph class
given as − (e.g. Hom(−,H) and Hom(G,−)) means the class of all graphs.

We need a few basic facts about homomorphisms (see [16] for more).

Proposition 1. Homomorphisms compose: if G → H and H → H ′, then G →
H ′. Also, G → Kk if and only if G is k-colourable.

Definition 2. G,H are homomorphically equivalent if G → H and H → G.
A core is a graph G which is not homomorphically equivalent to any proper
subgraph of itself; a core of a graph G is a minimal subgraph of G which is
homomorphically equivalent to G.

Proposition 2. All cores of a graph G are isomorphic, thus we speak of the
core of G. Also, the core of G is an induced subgraph of G.

2.2 Cliquewidth

Definition 3. A k-expression for a graph G is an expression using k different
labels that constructs G using the following steps [4,5]:

– ·i: Construct a graph with one vertex, giving the vertex the label i.
– ρi→j(G): Relabel all vertices of G with label i to label j.
– ηij(G), for i �= j: Add edges between all vertices of labels i and j in G, i.e.

add edges uv for any vertices u, v where u has label i and v has label j.
– G1 ⊕G2: Create the disjoint union of G1 and G2.

A graph G has cliquewidth k, denoted cwd(G) = k, if k is the smallest number
such that there exists a k-expression for G. A k-expression is linear if one side
of every disjoint union operation is a single vertex (e.g. H ′ ⊕ ·i rather than a
general H ′ ⊕H ′′). The linear cliquewidth of H is the smallest number such that
there exists a linear k-expression for H.

Example 1. A 2-expression for K4 is η12(ρ2→1(η12(ρ2→1(η12(·1 ⊕·2))⊕·2))⊕·2).
This expression is linear. In general, all cliques Kk with k ≥ 2 have linear
cliquewidth and cliquewidth both 2.

Definition 4. We say that a k-expression, constructing a graph G, is in stan-
dard form if for every operation G1 ⊕ G2, Gi = G[V (Gi)] for i = 1, 2, i.e. all
edges in G between vertices of G1 (and G2) have already been created before the
⊕ operation. We will throughout this paper assume that all k-expressions are in
standard form. Note that a k-expression can be easily transformed to an equiv-
alent k-expression in standard form (by recursively adding η-operations to the
expressions for the graphs G1, G2 on both sides of a union operation G1 ⊕G2),
and that the length of the result is still polynomial in n.
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Proposition 3 ([5]). If G is a graph and G[S] for S ⊆ V (G) an induced sub-
graph, then cwd(G[S]) ≤ cwd(G).

The problem of finding the cliquewidth of a graph is NP-hard in general [8], and
the complexity of finding a k-expression for a fixed k > 3 is unknown – it is
not even known whether it is polynomial. (A graph has a 1-expression only if
it has no edges, and a 2-expression if and only if it has no induced P4 (path on
four vertices); for k = 3 a polynomial-time algorithm exists [3].) However, in this
paper, we will not need polynomial-time constructions: since our algorithms take
(O (k))n time, we can afford to use an exact algorithm with the same behaviour
for finding a k-expression. This algorithm is given next.

2.3 Constructing a k-Expression for Bounded k

We now show how to find a k-expression for a graph G, provided that we are
allowed to use time (O (k))n. We want to stress that we have not made any par-
ticular effort to minimize the running time of this construction; at the moment,
it is fast enough that it is not the bottleneck of our homomorphism algorithm,
which is all we need.

Theorem 1. If cwd(G) ≤ k, then a k-expression for G can be found in time
O∗((2k + 1)n(G)

)
.

Proof. We will create a table of size (k + 1)n(G) containing a k-expression for
each partitioning S1, . . . , Sk of each vertex set S ⊆ V (G) (with the vertices of
label i being Si). Let the sets S be considered in order of increasing cardinal-
ity. For the base cases |S| = 1, the expression is trivial; if |S| > 1, then the
corresponding expression must contain a union operation G′ ⊕ G′′, for graphs
G′ = G[S′] and G′′ = G[S′′] corresponding to a split of S into vertex sets S′,
S′′, so G′ and G′′ are graphs for which we already know k-expressions. We will
create the expressions for all partitionings of S in two phases, first going through
all expressions without relabelling operations ρ (e.g. for creating partitionings
of S with k non-empty label classes), then using this data to find expressions
which do contain relabelling operations. Thus, first split S all (2k)|S| ways into
partitionings of S′ and S′′, verify that there are k-expressions for these partition-
ings for the resulting G′ and G′′, and that the existence of edges connecting G′

and G′′ follows the pattern of vertex labels. If so, register a k-expression for the
resulting partitioning of S (keeping only one expression per partitioning). This
phase takes O∗((2k)|S|) time.

In the second phase, go through the possible partitionings of S in order of
decreasing number of non-empty partitions, and consider for each partitioning
of S each possible single relabelling operation ρi→j in turn. If appending ρi→j to
a k-expression leads to a k-expression for a partitioning of S that previously did
not have one, register the new k-expression. This phase uses only polynomial time
for each partitioning of S, thus time O∗(k|S|). Also note that every partitioning
of S for which a k-expression is possible will have received a k-expression at the
end of this process.
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Ignoring polynomial factors, the whole algorithm runs in time

∑
S⊆V

(2k)|S| =
n∑

i=0

(
n

i

)
(2k)i = (2k + 1)n

and creates a k-expression for G. "#

The case of linear k-expressions is easier:

Theorem 2. If G has a linear k-expression, then one can be found in time
O∗((k + 2)n(G)

)
.

Proof. The algorithm runs as the previous proof, except that in the first phase
for each S, instead of (2k)|S| ways to split G[S] into G[S′]⊕G[S′′], there are now
only (k + 1)|S| ways to split (k labels on one side of ⊕, plus one on the other).
The second phase is then identical. "#

3 Homomorphism to Graphs with Bounded Cliquewidth

In this section, we present our main result: Hom(−,H) can be counted in time
O∗((2k + 1)max(n(G),n(H))

)
when every H ∈ H has cliquewidth at most k. Per

Theorem 1, we can find a k-expression for a given H in this time; we start by
showing how to use this expression to solve Hom(G,H), then consider some
variations.

3.1 Homomorphism to a Graph with a k-Expression

We now show how to decide or count Hom(G,H) in time O∗((2k + 1)n(G)
)

assuming that a k-expression for H has already been given. The method is a
direct application of dynamic programming techniques.

Theorem 3. Given a k-expression for H, Hom(G,H) can be counted in time
O∗((2k + 1)n(G)

)
.

Proof. Let the k-expression for H be h. The algorithm will work as a recursion
over the disjoint union operations ⊕ of h through dynamic programming: for
every operation H ′ ⊕ H ′′, we will use caches for H ′ and H ′′ giving for each
partitioning S1, . . . , Sk of a set S ⊆ V (G) the number of homomorphisms from
G[S] to H ′ (resp. to H ′′) mapping Si to vertices of label i. We will call a k-
expression trivial if it contains no disjoint union operation, i.e. the graph H
is a single vertex, assume with label i. These cases form the base cases of the
recursion, and the corresponding cache is easily constructed (if any Sj �= ∅ for
j �= i, or if E(G[S]) �= ∅ then the answer is 0, otherwise 1).

Assuming that h is not trivial, let h be a sequence of non-⊕ operations, referred
to as the head of h, applied to some expression h′ ⊕ h′′ (where h′ and h′′ are
k-expressions generating the graphs H ′ resp. H ′′ with vertex sets V ′

H resp. V ′′
H).

As stated, we assume that all edges in H between vertices of H ′ are added by h′
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(and likewise for H ′′). Let there be caches for h′ and h′′ as described above. We
can then create a cache for h that answers the same questions for Hom(G[S], H)
for all possible partitionings S1, . . . , Sk of each S ⊆ V (G) by looping through
all (2k+ 1)n(G) assignments of V (G) to either not be included in S, or to one of
the 2k combinations of vertex label and corresponding graph (H ′ or H ′′).

Specifically, for each such considered assignment of vertices, verify in poly-
nomial time that the split of S into S′ = S′

1, . . . , S
′
k mapping to H ′ and S′′ =

S′′
1 , . . . , S

′′
k mapping to H ′′ does not break any edge (i.e. for each edge u′u′′ in G

such that u′ is assigned to label i in H ′ and u′′ to label j in H ′′, check that an
ηij operation exists in the head of h), query the caches for the corresponding
numbers of homomorphisms Hom(G[S′], H ′) and Hom(G[S′′], H ′′) following the
partitionings of S′, S′′, and if all tests pass, add the resulting number of homo-
morphisms to the right entry of the cache for h (remembering to account for
relabelling operations ρ in the head of h).

As constructing the cache for a trivial expression Hom(G[S], ·i) is trivial, and
every further cache can be constructed from previous caches, by induction the
cache corresponding to the outermost query Hom(G,H) can be created in time
O∗((2k + 1)n(G)

)
, and the number of homomorphisms G → H can be calculated

from this in time O∗(kn(G)
)
. "#

Remark 1. Variations of the problem can be solved using the same method; we
sketch two here. First, a homomorphism f : V (G) → V (H) is vertex-surjective if
f−1(v) �= ∅ for every v ∈ V (H). We can make our method consider only vertex-
surjective homomorphisms by enforcing the condition in the base cases ·i; the
property will then be maintained in the inductive steps.

Second, Gutin et al. [14] considered an optimization variant, where for every
u ∈ V (G) and v ∈ V (H) there is an associated cost cv(u) of mapping u to v,
and a homomorphism f minimizing

∑
u∈V (G) cf(v)(u) is sought. The property

that the caches only contain information on minimum-cost homomorphisms for
each query can be enforced in the base cases (where each suggested mapping
has one fix cost only – the operations ·i are assumed to now also give the name
of the new vertex), and maintained through the inductive steps (where the cost
of a homomorphism to H0 built from H ′ ⊕ H ′′ is the sum of the costs of the
homomorphisms to H ′, H ′′).

Corollary 1. Hom(G,H) can be counted in time O∗((2k + 1)max(n(G),n(H))
)

if
the cliquewith of H is at most k.

If we settle for linear k-expressions, the base (2k + 1) in the running time can
be improved to (k + 2). The proof is omitted, as it is very close to Theorem 3.

Theorem 4. Hom(G,H) when H has a linear k-expression can be counted in
time O∗((k + 2)max(n(G),n(H))

)
.

3.2 Extension to Core of H

If H is itself not a core, then it may be that H has large cliquewidth but that the
core HC of H has bounded cliquewidth, such as the example that χ(H) = ω(H)
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(in which case a clique of H is the core). For the decision case, we can handle
these cases as well, as G → H if and only if G → HC , at the cost of a bigger
base of the running time.

Theorem 5. If a graph G has a core GC with cwd(GC) ≤ k, then GC and a
k-expression for GC can be found in time O∗((2(2k + 1))n(G)

)
.

Proof. Since cwd(G[S]) ≤ cwd(G) for induced subgraphs G[S] of G, every
induced subgraph of GC will have a cliquewidth bounded by k. Thus, we can con-
struct k-expressions for progressively larger induced subgraphs G[S], as in Theo-
rem 1, getting in time O∗((2k + 1)n(G)

)
a list of k-expressions for those induced

subgraphs G[S] that have any. Then, for each such G[S] we check Hom(G,G[S])
using Theorem 3, using time bounded by O∗((2(2k + 1))n(G)

)
. If the core GC

has cwd(GC) ≤ k, then eventually we will reach GC = G[S] and find a homo-
morphism, thus confirming G[S] = GC . "#

Corollary 2. Hom(G,H) when the core of H has cliquewidth at most k can be
decided in time O (k)max(n(G),n(H)).

4 Left-Side Restrictions

Although our main focus is restrictions on H, as such restrictions more com-
monly represent typical problem classes (in Hom(G,H), and more generally in
the case of relational homomorphisms, commonly H can be seen as representing
a problem type, and G representing an instance of this problem), we show in
this section that restricting the cliquewidth of G also leads to plain-exponential
time cases, although with a rather worse dependency on the cliquewidth: if
cwd(G) = k, then we can solve Hom(G,H) in time O∗(22kn(H)

)
, plus the time

for constructing a k-expression for G. Note, however, that simply converting
the trivial running time of O∗(n(H)n(G)

)
to O∗(n(H)f(k)

)
would have lead to

new polynomial cases, including a polynomial-time algorithm for k-clique, and
so could not be expected.

Theorem 6. If a k-expression for G is known, then Hom(G,H) can be counted
in time O∗(22kn(H)

)
.

Proof. The problem is once again solved through dynamic programming over
the components of the k-expression, though this time, we need to store more
information in the caches. Specifically, our cache for a graph G′ or G′′ occurring
in an expressionG′⊕G′′ will be used to give, for k not necessarily disjoint subsets
Vi of V (H), the number of homomorphisms from G′ to H such that the targets
in V (H) of vertices of label i in G′ are exactly Vi (i.e. homomorphisms f such
that Vi = {f(u) |u ∈ V (G) has label i} for i = 1, . . . , k). Once again, the caches
for the base cases ·i are trivial (since G′ is then a single vertex, it can be mapped
to any single target in V (H)).

Thus, assume that we are working on a k-expression g0 creating a graph G0,
consisting of a head of edge creations η and relabelling operations ρ, applied to
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the result of a disjoint union operation G′ ⊕G′′. Every pair of homomorphisms
f ′ : V (G′) → V (H) and f ′′ : V (G′′) → V (H) compose into one mapping
f : V (G0) → V (H), and our task is to check whether f is a homomorphism,
i.e. to verify that all edges created in the head of g0 are mapped to edges in H .
This can be done using the information in the caches: Assume that all edges
between labels i and j are created in the head of g0, and let V ′

i resp. V ′′
j be the

targets of label i in G′ resp. label j in G′′. If there are u ∈ V ′
i , v ∈ V ′′

j such
that uv is not an edge of H (in particular, if u = v), then some edge in G0 is
broken by f : Since V ′

i and V ′′
j are the exact targets, there are vertices u′ ∈ V ′

i

with f(u′) = u and v′′ ∈ V ′′
j with f(v′′) = v, and an edge u′v′′ in G0 which is

broken by f . The same check holds for label j in G′ and label i in G′′, and if
both checks pass, then no edge between labels i and j are broken by f . Thus, for
a particular combination of targets V ′

i of labels of G′ and V ′′
i of labels of G′′, we

can decide using a polynomial number of polynomial-time checks whether the
created mappings f would be homomorphisms or not.

Now the cache for G0 can be assembled using queries to the caches for G′, G′′:
With 2n(H) options for each set of targets, the time for this step is bounded by
O∗((2n(H))2k

)
= O∗(22kn(H)

)
. By induction, the cache for G can be created,

and the total number of homomorphisms can be counted from this. "#
Corollary 3. If G has cliquewidth at most k, then Hom(G,H) can be counted
in plain-exponential time O∗((2k + 1)n(G) + 22kn(H)

)
. Under the weaker assump-

tion that the core of G has cliquewidth at most k, Hom(G,H) can be decided in
time O∗((2(2k + 1))n(G) + 22kn(H)

)
.

5 Conclusions

We have showed that homomorphisms from G to H can be counted in plain-
exponential time O∗

(
c
n(G)+n(H)
k

)
when either G or H has cliquewidth at most

k (ck depending on k). This unifies and extends previous plain-exponential time
classes for the problem.

Nevertheless, there is a simple case of plain-exponential time for Hom(−,H)
which our results do not cover: if the graphs H ∈ H have bounded degree
Δ(H) ≤ d, then we can trivially solve the problem through branching in time
O∗(dn(H)

)
. Is there yet another case of plain-exponential time Hom(−,H) which

covers both the cliquewidth and the bounded degree cases?
Also, we have to ask about homomorphism for directed graphs, and relational

homomorphism in general [16,11]. These problems cover the CSP problems, so
we know that plain-exponential time algorithms are impossible in general [20].
Can we identify plain-exponential time classes for these problems?
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Abstract. We prove the following facts about the language recognition
power of Kondacs-Watrous quantum finite automata in the unbounded
error setting: One-way automata of this kind recognize all and only the
stochastic languages. When the tape head is allowed two-way (or even
“1.5-way”) movement, more languages become recognizable. This leads
to the conclusion that quantum Turing machines are more powerful than
probabilistic Turing machines when restricted to constant space bounds.

1 Introduction

Several alternative models [3, 4, 6, 10, 13, 17, 19] of quantum finite automata
(QFA’s) have been studied in the recent years. Most of the attention in this
regard has been focused on the classes of languages recognized by these ma-
chines with bounded error [3, 5, 10, 13]. In this paper, we examine the com-
putational power of one of the most popular QFA models, the measure-many
(Kondacs-Watrous) QFA, in the unbounded error setting. We give a complete
characterization of the class of languages recognized by one-way QFA’s of this
kind; they turn out to recognize all and only the stochastic languages. We also
show that allowing the tape head to “stay put” for some steps during its left-
to-right traversal of the input increases the language recognition power of these
QFA’s. This contrasts the situation in the classical probabilistic models, where
two-way and one-way automata are equivalent in power in this setting [12]. We
conclude that quantum Turing machines are strictly more powerful than their
probabilistic counterparts when restricted to constant space bounds.

The rest of this paper is structured as follows: Section 2 contains the relevant
background information. Section 3 presents our results. Section 4 is a conclusion.

2 Preliminaries

In this section, we give a brief review of the definitions and facts that will be
used in the rest of the paper.
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2.1 Classical Automata

A 1-way probabilistic finite automaton (1PFA) [22] with n ∈ Z+ states is a 5
tuple P = (S,Σ, {Aσ | σ ∈ Σ}, v0, F ), where

1. S = {s1, · · · , sn} is the set of states,
2. Σ is the finite input alphabet,
3. Aσ is the n × n real-valued stochastic transition matrix for symbol σ, that

is, Aσ(i, j) is the value of the transition probability from state si to state sj

when reading symbol σ,
4. v0 is a 1×n vector representing the initial distribution of the states, that is,

the ith entry of v0 is the probability that P is initially in state si, and,
5. F ⊆ S is the set of accepting states.

For an input string w ∈ Σ∗, the computation of P can be traced using the
relations

vj = vj−1Awj (1)
Aw = Aw1Aw2 · · ·Aw|w| (2)

v|w| = v0Aw, (3)

where wi is the ith symbol of w and vj is the vector of states after step j
(1 ≤ i, j ≤ |w|). The acceptance probability of w is

fP(w) =
∑
si∈F

v|w|(i),

where v|w|(i) denotes the ith entry of v|w|. The language L ⊆ Σ∗ recognized by
P with cut-point λ ∈ [0, 1) is defined as

L = {w | w ∈ Σ∗, fP(w) > λ}.

Languages recognized by 1PFA’s with cut-point form the class of stochastic
languages.

Theorem 1. [21] If L is a stochastic language, then for any λ ∈ (0, 1), there
exists a 1PFA that recognizes L with cut-point λ.

The generalized probabilistic finite automaton (GPFA) [23] model is a general-
ization of the 1PFA model where neither the transition matrices nor the state
vectors need to be stochastic. Additionally, a GPFA has a final vector f, which is
a column vector with real entries, instead of the set of accepting states. Formally,
a generalized probabilistic finite automaton (GPFA) with n ∈ Z+ states is a 5
tuple G = (S,Σ, {Aσ | σ ∈ Σ}, v0, f), where

1. S is the set of n states,
2. Σ is the finite input alphabet,
3. Aσ is the n× n real-valued transition matrix for symbol σ,
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4. v0 is the real-valued initial 1 × n vector, and,
5. f is the real-valued final n× 1 vector.

For an input string w ∈ Σ∗, the acceptance probability of w by GPFA G is
calculated as

fG(w) = v0Awf = v|w|f,

where Aw is as defined in Equation 2. Note that the range of fG is R. The
language L ⊆ Σ∗ recognized by G with cut-point λ ∈ R is defined as

L = {w | w ∈ Σ∗, fP(w) > λ}.

It is known that the class of languages recognized by GPFA’s with cut-point is
precisely the class of stochastic languages [23].

Theorem 2. [23] If L is recognized with cut-point λ1 ∈ R by a GPFA with n
states, then there exist a 1PFA P with O(n2) states and a cut-point λ2 ∈ [0, 1)
such that P recognizes L with cut-point λ2.

Another generalization of the 1PFA is the two-way probabilistic automaton
(2PFA) model [14], in which the input string is viewed as written on a tape
flanked by two end-markers, and the machine has a tape head which can move
to the left or stay put, as well as moving to the right. This additional capability
does not increase the recognition power; the class of languages recognized by
2PFA’s with cut-point is again equal to the stochastic languages [12].

2.2 Quantum Automata

A 1-way Kondacs-Watrous quantum finite automaton (KWQFA) [13] with n ∈
Z+ states is a 5-tuple M = (Q,Σ, {Uσ | σ ∈ Σ ∪ {�, $}}, Qacc, Qrej), where

1. Q = {q1, · · · qn} is the set of states, such that q1 is the initial state,
2. Σ is the finite input alphabet not containing the symbols � and $,
3. Uσ is the n × n complex-valued unitary transition matrix for symbol σ ∈

Σ ∪ {�, $} such that Uσ(j, i) = α if the amplitude of the transition from qi

to qj is α when reading the symbol σ,
4. Qacc and Qrej, disjoint subsets of Q, are the sets of accepting and rejecting

states.

Additionally, Qnon = Q \ (Qacc ∪ Qrej) is the set of non-halting states; Pnon,
Pacc, and Prej are diagonal zero-one projection matrices, which project the state
vector onto the subspaces of non-halting, accepting, and rejecting states, such
that Pnon(j, j) = 1 if qj ∈ Qnon, Pacc(j, j) = 1 if qj ∈ Qacc, and Prej(j, j) = 1 if
qj ∈ Qrej , respectively; Γ = Σ ∪ {�, $} is the tape alphabet where � and $ are
the end-markers, and for input string w ∈ Σ∗, the tape contains �w$.

The state vector, by an unfortunate twist of convention between probabilistic
and quantum automata, is a column vector, and is denoted as |u〉. Its conjugate
transpose is a row vector, and is denoted by 〈u|.



Languages Recognized with Unbounded Error by Quantum Finite Automata 359

The computation of M proceeds as follows: |u0〉 is the initial state vector,
where |u0〉(1) = 1 and all other entries are zeros, and |un

0 〉 = |u0〉. For a given
input string w ∈ Σ∗, w = �w$,

|ui〉 = Uwi |un
i−1〉, (4)

|un
i 〉 = Pnon|ui〉, |ua

i 〉 = Pacc|ui〉, |ur
i 〉 = Prej|ui〉, (5)

PM,acc(i) = PM,acc(i− 1) + 〈ua
i |ua

i 〉, (6)
PM,rej(i) = PM,rej(i− 1) + 〈ur

i |ur
i 〉, (7)

where 1 ≤ i ≤ |w|, |ui〉 is the state vector after the ith step, and PM,acc and
PM,rej are finite sequences that trace the acceptance and rejection probabili-
ties that have accumulated so far during the computation, with initial values
PM,acc(0) = 0 and PM,rej(0) = 0, respectively. Equations 4 and 5 mean that
the machine undergoes two operations in each step. First, its state vector evolves
according to the unitary transformation dictated by the scanned symbol. Then,
it is measured to see whether it has accepted, rejected, or not halted yet. As seen
in Equations 6 and 7, the acceptance and rejection probabilities are calculated
using the amplitudes of the relevant states. Halting states “drop out” of the
state vector, and computation continues with only the non-halting states having
nonzero amplitude.

The probability that M accepts input w is

fM(w) = PM,acc(|�w$|),

and the language L ⊆ Σ∗ recognized by M with cut-point λ ∈ [0, 1) is defined
as

L = {w | w ∈ Σ∗, fM(w) > λ}.

The class of languages recognized by KWQFA’s with cut-point (i.e. with un-
bounded error) has been studied by Brodsky and Pippenger [10], who named it
UMM, and proved some closure properties1. Analogously to Theorem 1, any
language in UMM can be recognized by a KWQFA with cutpoint 1

2 .
KWQFA’s can be generalized by allowing the tape head more freedom of

movement.
A 1.5-way quantum finite automaton (1.5QFA) [3] can be seen as a generalized

KWQFA where the tape head is allowed to stay put, and does not have to move
right in all steps. The transition function δ : Q × Γ × Q × {0, 1} → C of a
1.5QFA, where Q and Γ are as defined above, is interpreted as follows: For each
q, q

′ ∈ Q, δ ∈ Γ and d ∈ {0, 1}, δ(q, σ, q′
, d) is the amplitude with which the

machine currently in state q and scanning symbol σ will change to state q
′
and

move its head d symbols to the right.
Not every transition function of the form described above can be used in

a 1.5QFA. The additional restrictions imposed by quantum theory on δ are
1 Note that the proof in [10] that UMM is closed under complementation contains an

error, as the construction presented there does not work for the case of input strings
whose acceptance probabilities equal the cut-point.
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described in detail in [13]. In the particular 1.5QFA we will describe in the
proof of Theorem 4, every transition entering the same state involves the tape
head moving in the same direction (either right or stationary). We represent
this feature of a state q using the appropriate one of the notations −→q ,↓ q for
this state in the machine description. With this simplification, considering the
Hilbert space �2(Q), a syntactically correct 1.5QFA can be specified easily by
just providing a unitary operator Uσ : �2(Q) → �2(Q) for each symbol σ ∈ Γ ,
exactly as described earlier for one-way KWQFA’s. δ can then be specified to be
just

δ(q, σ, q
′
, d) =

{
〈q′ |Uσ|q〉 if D(q

′
) = d

0 if D(q
′
) �= d

,

where the function D : Q → {0, 1} maps each state to the single direction in
which all incoming transitions to this state move the tape head.

A pair of the form (state, head position) is called a configuration of a 1.5QFA.
A 1.5QFA which is working on a tape of n symbols (including the end-markers)
has therefore n|Q| different configurations. Initially, the head is on the left end-
marker, and so the machine starts in the configuration (q0, 0). At later steps
of the computation, the machine may exist in superpositions of more than one
configuration. It is sometimes useful to visualize such superpositions of multiple
configurations as snapshots of the machine running in multiple parallel compu-
tation paths.

As described above for KWQFA’s, each step of the computation consists of a
unitary transformation of the current superposition according to the transition
function, followed by a measurement to see whether the machine has accepted,
rejected, or not halted yet. The probability of each outcome is determined by
the amplitudes of the relevant configurations in the present superposition. The
observation of accepting (rejecting) configurations cause the accumulated accep-
tance (rejection) probability to be updated accordingly. The machine continues
running from a superposition of the non-halting configurations.

In the 2-way quantum finite automaton (2QFA) [13] model, the tape head
is allowed to go left, as well as staying put and going to the right, and the
exposition above regarding 1.5QFA’s can be generalized in a straightforward
manner to 2QFA’s.

3 Main Results

Our first result is a complete characterization of UMM.

Lemma 1. Any language recognized with cutpoint 1
2 by a 1PFA with n states

can be recognized with cutpoint 1
2 by a KWQFA with O(n) states.

Proof. Due to space constraints, we will just give a sketch of the proof. Given a
1PFA P with state set {s1, s2, · · · , sn} that recognizes language L with cutpoint
1
2 , we first modify it so that it treats the end-marker symbols � and $ correctly,
with the acceptance and rejection probabilities at the end of the computation
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accumulating in a single accept and a single reject state, named sn+1 and sn+2,
respectively. We then construct a KWQFA M with O(n) states that recognizes
L with cutpoint 1

2 .
For each original state si of P , there will be a corresponding non-halting state

qi of M (1 ≤ i ≤ n). M will have an accepting state named qn+1 corresponding
to sn+1, and a rejecting state named qn+2 corresponding to sn+2. The remaining
states of M are accepting and rejecting states that will be described shortly.

The idea behind the construction is to convert the stochastic transition ma-
trices of P to unitary transition matrices of M by adding new rows and columns
(corresponding to new halting states), so that the distribution of the probabili-
ties in the state vector of P is “imitated” by the distribution of the amplitudes
of the non-halting states of M: For any position t of the input tape, there will
be a positive real number kt such that the amplitude of qi just after M reads the
tth symbol equals kt times the probability of si just after P reads that symbol
(1 ≤ i ≤ n). The newly added halting states will come in accept/reject pairs, so
that transitions to them during the computation will add equal amounts to the
overall acceptance and rejection probabilities, and therefore will not affect the
decision on the membership of the input in L.

For an input string w ∈ Σ∗, let w = �w$ denote the corresponding tape
content including the end-markers, and let fP(w) and fM(w) represent the ac-
ceptance probabilities of P and M, respectively, for w.

After reading symbol $, the amplitude of qn+1 is k|w|fP(w), recalling that
fP(w) is summed up in sn+1. The amplitude of qn+2 at that point equals k|w|(1−
fP(w)). The total acceptance probability of M turns out [25] to be

fM(w) =
1
2

+
k2
|w|
2

(2fP(w) − 1),

where 0 < k|w| ≤ 1. If w ∈ L, then fP(w) > 1
2 , and so fM(w) > 1

2 . If w /∈ L,
then fP(w) ≤ 1

2 , and so fM(w) ≤ 1
2 . "#

The standard definitions of PFA’s and QFA’s that we gave in Section 2 allow
arbitrary real numbers as transition amplitudes, and therefore the related lan-
guage classes include undecidable languages [22]. To rectify this situation, one
may restrict the amplitudes to efficiently computable numbers, as in [7]. Our
results in this section remain valid in that case as well.

Lemma 2. Let M be a KWQFA with n states and fM : Σ∗ → [0, 1] be its
acceptance probability function. Then there exists a GPFA G with O(n2) states
such that fM(w) = fG(w) for all w ∈ Σ∗.

Proof. The proof is omitted due to space constraints, see [25]. Note that this
result also follows from independent work by Li and Qiu [15]. "#

Theorem 3. UMM equals the class of stochastic languages.

Proof. Follows from Lemma 1, Lemma 2, and Theorem 2. "#
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We now show that, unlike classical probabilistic finite automata, allowing the
tape head to “stay put” for some steps during its left-to-right traversal of the
input increases the language recognition power of quantum finite automata in
the unbounded error case.

Theorem 4. UMM is a proper subset of the class of languages recognized by
1.5QFA’s with unbounded error.

Proof. By the definition of 1.5QFA’s and Theorem 3, every stochastic language
can be recognized with unbounded error by 1.5QFA’s. We will show that the
context-free nonstochastic language [18]

L1 = {axbay1bay2b · · ·aytb | x, t, y1, · · · , yt ∈ Z+ and ∃k (1 ≤ k ≤ t), x =
k∑

i=1

yi}

over the alphabet {a, b} can be recognized with unbounded error by a 1.5QFA
with cutpoint 1

2 . Consider the 1.5QFA Q = (Q,Σ, δ,Qacc, Qrej), where Σ =
{a, b} and the state sets are as follows:

Qnon = {−→q0} ∪ {−→qi | 1 ≤ i ≤ 6} ∪ {−→pi | 1 ≤ i ≤ 6} ∪ {−→ai | 1 ≤ i ≤ 4}
∪ {−→ri | 1 ≤ i ≤ 4} ∪ {↓wi | 1 ≤ i ≤ 6},

Qacc = {↓Ai | 1 ≤ i ≤ 10}, Qrej = {↓Ri | 1 ≤ i ≤ 18}.

Let each Uσ act as indicated in Figures 1 and 2, and extend each to be unitary.
Let δ be related to the Uσ as described in Section 2.

Machine Q starts computation on symbol � by branching into two paths, path1

and path2, with equal probability. Each path and their subpaths, to be described
later, check whether the input is of the form (aa∗b)(aa∗b)(aa∗b)∗. The different
stages of the program indicated in Figures 1 and 2 correspond to the subtasks of
this regular expression check. Stage I ends successfully if the input begins with
(aa∗b). Stage II checks the second (aa∗b). Finally, Stage III controls whether the
input ends with (aa∗b)∗.

The reader will note that many transitions in the machine are of the form

Uσ|qi〉 = |ψ〉 + α|Ak〉 + α|Rk〉,

where |ψ〉 is a superposition of configurations such that 〈ψ|ψ〉 = 1 − 2α2,
Ak ∈ Qacc, Rk ∈ Qrej . The equal-probability transitions to the “twin halt-
ing states” Ak and Rk are included to ensure that the matrices are unitary,
without upsetting the “accept/reject balance” until a final decision about the
membership of the input in L1 is reached. If the regular expression check men-
tioned above fails, each path in question terminates in a rejecting configuration,
and the overall probability of acceptance of the machine turns out to be less
than 1

2 . If the input is indeed of the form (aa∗b)(aa∗b)(aa∗b)∗, the acceptance
probability is at least 1

2 , and whether 1
2 will be exceeded or not depends on the

following additional tasks performed by the computation paths in order to test
for the equality mentioned in the definition of L1:
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Stages U�, Ua U$

U�|−→q0〉 = 1√
2
|−→q1〉 + 1√

2
|−→p1〉

I
(path1)

Ua|−→q1 〉 = 1√
2
|−→q2〉 + 1

2
|↓A1〉 + 1

2
|↓R1〉

Ua|−→q2 〉 = 1√
2
|−→q2〉 − 1

2
|↓A1〉 − 1

2
|↓R1〉

U$|−→q1〉 = |↓R3〉
U$|−→q2〉 = |↓R4〉
U$|−→q3〉 = |↓R5〉

I
(path2)

Ua|−→p1〉 = |↓w1〉
Ua|↓w1〉 = 1√

2
|−→p2〉 + 1

2
|↓A2〉 + 1

2
|↓R2〉

Ua|−→p2〉 = |↓w2〉
Ua|↓w2〉 = 1√

2
|−→p2〉 − 1

2
|↓A2〉 − 1

2
|↓R2〉

U$|−→p1〉 = |↓R6〉
U$|−→p2〉 = |↓R7〉
U$|−→p3〉 = |↓R8〉

II
(path1)

Ua|−→q3 〉 = |↓w3〉
Ua|↓w3〉 = 1√

2
|−→q4〉 + 1

2
|↓A3〉 + 1

2
|↓R3〉

Ua|−→q4 〉 = |↓w4〉
Ua|↓w4〉 = 1√

2
|−→q4〉 − 1

2
|↓A3〉 − 1

2
|↓R3〉

U$|−→q4〉 = |↓R9〉
U$|−→q5〉 = 1

2
|↓A1〉 + 1

2
|↓R1〉

II
(path2)

Ua|−→p3〉 = 1√
2
|−→p4〉 + 1

2
|↓A4〉 + 1

2
|↓R4〉

Ua|−→p4〉 = 1√
2
|−→p4〉 − 1

2
|↓A4〉 − 1

2
|↓R4〉

U$|−→p4〉 = |↓R10〉
U$|−→p5〉 = 1

2
|↓A2〉 + 1

2
|↓R2〉

III
(path1)

Ua|−→q5 〉 = |↓w5〉
Ua|↓w5〉 = 1√

2
|−→q6〉 + 1

2
|↓A5〉 + 1

2
|↓R5〉

Ua|−→q6 〉 = |↓w6〉
Ua|↓w6〉 = 1√

2
|−→q6〉 − 1

2
|↓A5〉 − 1

2
|↓R5〉

U$|−→q6〉 = |↓R11〉

III
(path2)

Ua|−→p5〉 = 1√
2
|−→p6〉 + 1

2
|↓A6〉 + 1

2
|↓R6〉

Ua|−→p6〉 = 1√
2
|−→p6〉 − 1

2
|↓A6〉 − 1

2
|↓R6〉 U$|−→p6〉 = |↓R12〉

III
(pathaccept)

Ua|−→a1〉 = 1√
2
|−→a2〉 + 1

2
|↓A7〉 + 1

2
|↓R7〉

Ua|−→a2〉 = 1√
2
|−→a2〉 − 1

2
|↓A7〉 − 1

2
|↓R7〉

Ua|−→a3〉 = 1√
2
|−→a4〉 + 1

2
|↓A8〉 + 1

2
|↓R8〉

Ua|−→a4〉 = 1√
2
|−→a4〉 − 1

2
|↓A8〉 − 1

2
|↓R8〉

U$|−→a1〉 = |↓A3〉
U$|−→a3〉 = |↓A4〉
U$|−→a2〉 = |↓R13〉
U$|−→a4〉 = |↓R14〉

III
(pathreject)

Ua|−→r1〉 = 1√
2
|−→r2〉 + 1

2
|↓A9〉 + 1

2
|↓R9〉

Ua|−→r2〉 = 1√
2
|−→r2〉 − 1

2
|↓A9〉 − 1

2
|↓R9〉

Ua|−→r3〉 = 1√
2
|−→r4〉 + 1

2
|↓A10〉 + 1

2
|↓R10〉

Ua|−→r4〉 = 1√
2
|−→r4〉 − 1

2
|↓A10〉 − 1

2
|↓R10〉

U$|−→r1〉 = |↓R15〉
U$|−→r3〉 = |↓R16〉
U$|−→r2〉 = |↓R17〉
U$|−→r4〉 = |↓R18〉

Fig. 1. Specification of the transition function of Q (part 1)

1. path1 walks over the a’s at the speed of one tape square per step until
reading the first b. After that point, path1 pauses for one step over each a
before moving on to the next symbol.

2. path2 pauses for one step over each a until reading the first b. After that
point, path2 walks over each a at the speed of one square per step.

3. On each b except the first one, path1 and path2 split to take the following
two courses of action with equal probability:
(a) In the first alternative, path1 and path2 perform a two-way quantum

Fourier transform (QFT) [13]:
i. The targetsof theQFTare twonew computationalpaths, i.e.,pathaccept

and pathreject. Disregarding the equal-probability transitions to the
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Stages Ub

I
(path1)

Ub|−→q1〉 = |↓R5〉
Ub|−→q2〉 = |−→q3〉
Ub|−→q3〉 = |↓R6〉

I
(path2)

Ub|−→p1〉 = |↓R7〉
Ub|−→p2〉 = |−→p3〉
Ub|−→p3〉 = |↓R8〉

II
(path1)

Ub|−→q4〉 = 1
2
|−→q5〉 + 1

2
√

2
|−→a1〉 + 1

2
√

2
|−→r1〉 + 1

2
|↓A1〉 + 1

2
|↓R1〉

Ub|−→q5〉 = |↓R9〉
II

(path2)
Ub|−→p4〉 = 1

2
|−→p5〉 + 1

2
√

2
|−→a1〉 − 1

2
√

2
|−→r1〉 + 1

2
|↓A2〉 + 1

2
|↓R2〉

Ub|−→p5〉 = |↓R10〉
III

(path1)
Ub|−→q6〉 = 1

2
|−→q5〉 + 1

2
√

2
|−→a1〉 + 1

2
√

2
|−→r1〉 − 1

2
|↓A1〉 − 1

2
|↓R1〉

III
(path2)

Ub|−→p6〉 = 1
2
|−→p5〉 + 1

2
√

2
|−→a1〉 − 1

2
√

2
|−→r1〉 − 1

2
|↓A2〉 − 1

2
|↓R2〉

III
(pathaccept)

Ub|−→a2〉 = 1√
2
|−→a3〉 + 1

2
|↓A3〉 + 1

2
|↓R3〉

Ub|−→a1〉 = |↓R11〉
Ub|−→a4〉 = 1√

2
|−→a3〉 − 1

2
|↓A3〉 − 1

2
|↓R3〉

Ub|−→a3〉 = |↓R12〉

III
(pathreject)

Ub|−→r2〉 = 1√
2
|−→r3〉 + 1

2
|↓A4〉 + 1

2
|↓R4〉

Ub|−→r1〉 = |↓R13〉
Ub|−→r4〉 = 1√

2
|−→r3〉 − 1

2
|↓A4〉 − 1

2
|↓R4〉

Ub|−→r3〉 = |↓R14〉

Fig. 2. Specification of the transition function of Q (part 2)

twin halting states mentioned above, the QFT is realized as:

path1 → 1√
2
pathaccept +

1√
2
pathreject

path2 → 1√
2
pathaccept −

1√
2
pathreject

ii. pathaccept and pathreject continue computation at the speed of path2,
walking over the b’s without performing the QFT any more.

(b) In the second alternative, path1 and path2 continue computation without
performing the QFT.

4. On symbol $, pathaccept enters an accepting state, pathreject enters a reject-
ing state, path1 and path2 enter accepting and rejecting states with equal
probability.

Suppose that the input is of the form

w = axbay1bay2b · · ·aytb,

where x, t, y1, · · · , yt ∈ Z+.
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path1 reaches the first b earlier than path2. Once it has passed the first b,
path2 becomes faster, and may or may not catch up with path1, depending on
the number of a’s in the input after the first b. The two paths can meet on
the symbol following the x’th a after the first b, since at that point path1 will
have paused for the same number of steps as path2. Only if that symbol is a b,
the two paths will perform a QFT in the same place and at the same time. To
paraphrase, if there exists a k (1 ≤ k ≤ t) such that x =

∑k
i=1 yi , path1 and

path2 meet over the (k + 1)th b and perform the QFT at the same step. If there
is no such k, the paths either never meet, or meet over an a without a QFT.

The pathaccept and pathrejects that are offshoots of path1 continue their traversal
of the string faster than path1. On the other hand, the offshoots of path2 continue
their traversal at the same speed as path2.

By definition, the twin halting states reached during the computation con-
tribute equal amounts to the acceptance and rejection probabilities. path1 and
path2 accept and reject equiprobably when they reach the end of the string. If
path1 and path2 never perform the QFT at the same time and in the same posi-
tion, every QFT produces two equal-probability paths which perform identical
tasks, except that one accepts and the other one rejects at the end.

The overall acceptance and rejection probabilities are equal, 1
2 , unless a

pathreject with positive amplitude and a pathreject with negative amplitude can
meet and therefore cancel each other. In such a case, the surviving pathaccept’s
will contribute the additional acceptance probability that will tip the balance.
As described above, such a cancellation is only possible when path1 and path2

perform the QFT together.
Therefore, if w ∈ L1, the overall acceptance probability is greater than 1

2 . If
w /∈ L1, the overall acceptance probability does not exceed 1

2 . "#

4 Concluding Remarks

In this paper, we examined the capabilities of measure-many (Kondacs-Watrous)
quantum finite automata in the unbounded error setting. We gave a full char-
acterization of the class of languages recognized by one-way QFA’s of this kind;
they turn out to recognize all and only the stochastic languages. We also showed
that allowing the tape head to “stay put” for some steps during its left-to-right
traversal of the input increases the language recognition power of quantum fi-
nite automata in the unbounded error case. This means that two-way (and even
“1.5-way”) QFA’s are strictly more powerful than 1QFA’s; whereas 2PFA’s are
known to be equivalent in power to 1PFA’s [12] in this setting.

The relationship between the computational powers of quantum Turing ma-
chines and probabilistic Turing machines with unbounded error were examined
by Adleman, DeMarrais and Huang [2] and Ablayev and Gainutdinova [1] in
the context of time bounds, and by Watrous [24] for space bounds. Watrous
showed that, for s satisfying s(n) = Ω(logn), space O(s) bounded QTM’s and
PTM’s are equivalent in power, and left the question of comparing these models
for s = o(logn) open. Since two-way finite automata with suitable restrictions
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(which do not affect our constructions) on the transition amplitudes are equiva-
lent to Turing machines restricted to constant space bounds, our results provide
an answer to this question; QTM’s are strictly more powerful than PTM’s in
this case2.

Theorem 3 has some obvious ramifications about upper bounds on the num-
bers of states of KWQFA’s that recognize regular languages. All the well-known
results [16, 21] about the “state economy” provided by NFA’s and PFA’s over
DFA’s carry over easily to KWQFA’s. Lemma 1 can be specialized to show that
an n-state DFA can be simulated by an unbounded-error KWQFA with O(n)
states, and cut-point 0.

The class of languages recognized with unbounded error by measure-once
QFA’s [17] is known [8] to be a proper subset of the stochastic languages. In
work subsequent to the completion of this paper [26], we were able to show that
the related classes for several one-way QFA variants ([9, 19, 20], and the one-way
version of the machines of [6],) that are at least as general as the KWQFA equal
UMM as well. One important model for which no such characterization is yet
known is the Latvian QFA [4]. Another question left open in this work is the
relationship between the computational powers of 1.5QFA’s and 2QFA’s.
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Jirásková, Galina 203
Jonsson, Peter 92, 215
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