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Foreword

Space is one of the fundamental categories by means of which we perceive and
experience the world around us. Behaviour takes place in space, and the geograph-
ical context of behaviour is important in shaping that behaviour. While space by
itself explains very little, spatial processes and the spatial patterning of behaviour
have long been viewed as a key to understanding, explaining, and predicting much
of human behaviour.

Whether or not spatial analysis is a separate academic field, the fact remains
that, in the past 20 years, spatial analysis has become an important by-product of
the interest in and the need to understand georeferenced data. The current interest
in the mainstream social sciences to geography in general, and location and spatial
interaction in particular is a relatively recent phenomenon. This interest has gener-
ated an increasing demand for methods, techniques, and tools that allow an explicit
treatment of space in empirical applications. Thus, spatial analysis tends to play
an increasingly important role in measurement, hypothesis generation, and valida-
tion of theoretical constructs, activities that are crucial in the development of new
knowledge. The fact that the 2008 Nobel Prize in economics was awarded to Paul
Krugman indicates this increasing attention being given to spatially related phenom-
ena and processes. Given the growing number of academics currently doing research
on spatially related subjects, and the large number of questions being asked about
spatial processes, the time has come for reflecting on the progress made in spatial
analysis.

As an editor of the book series, I highly welcome the present edited volume
on Progress in Spatial Analysis with a focus on theory and methods, and thematic
applications across several academic disciplines. The effort is a worthy intellec-
tual descendent of previous volumes in the series, including Anselin and Florax’s
New Direction in Spatial Econometrics in 1995, Fischer and Getis’ Recent Devel-
opments in Spatial Analysis in 1997, and Anselin, Florax, and Rey’s Advances in
Spatial Econometrics in 2004.

I am pleased to realize the mixture of very well-established leaders in the field
of spatial analysis and a new generation of scholars who, one hopes, will con-
tinue to carry the torch ignited more than 50 years ago at the dawn of Quantitative
Geography and Regional Science. In this spirit, it is my hour to formally proffer
the welcome to this edited volume, and to the effort poured into bringing major

vii
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developments and applications into a single source representing recent publications
in spatial analysis. I anticipate that this volume will become a valuable reference, as
the previous offerings in the series.

Vienna Manfred M. Fischer
May, 2009
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Progress in Spatial Analysis: Introduction

Antonio Páez, Julie Le Gallo, Ron N. Buliung, and Sandy Dall’Erba

1 Background

With its roots in geography and regional science spatial analysis has experienced
remarkable growth in recent years in terms of theory, methods, and applications. The
series of books, that in the past decade have collected research in spatial analysis and
econometrics, provide both documented evidence and a powerful platform to further
this upwards trend. Among the collections that have done so stand those compiled
by Anselin and Florax (New Directions in Spatial Econometrics, 1994), Fischer and
Getis (Recent Developments in Spatial Analysis, 1997), and Anselin, Florax and Rey
(Advances in Spatial Econometrics, 2004). In the spirit of this series of volumes, the
present book aims at promoting the development and use of methods for the analysis
of spatial data and processes.

Traditionally, the core audience for the spatial analysis literature has been found
in the Quantitative Geography and Regional Science communities, but also increas-
ingly within the allied disciplines of Spatial and Regional Economics, Urban and
Regional Planning and Development, Civil Engineering, Real Estate Studies, and
Epidemiology, among others. Previous edited volumes, in particular the two spatial
econometrics collections cited above, tended to emphasize, in addition to theoretical
and methodological developments, economics and regional economics applications.
In this book, we have made an attempt to capture a broader cross-section of themes,
to include fields where spatial analysis has represented in recent years a boon
for applications, which have in turn encouraged further technical developments.
Besides the disciplines represented in previous collections of papers, up-and-coming
areas that are seen to be making more extensive use of spatial analytical tools include
transportation and land use analysis, political and economic geography, and the
analysis of population and health issues. In order to provide a faithful picture of the
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current state of spatial analysis it is also our wish to present recent theoretical and
methodological developments. Together, this collection of theoretical and method-
ological papers, and thematic applications, will project, we hope, the image of a
thriving and dynamic field, with wide-ranging intellectually stimulating challenges,
and rich opportunities for applied research that promises to promote and advance
data analysis in a variety of fields.

In terms of the contributions collected for this volume, the papers represent a
selection of research presented at the 54th North American Meetings of the Regional
Science Association International celebrated in Savannah, Georgia, in November of
2007, as well as a small number of invited papers. All contributions were subjected
to a strict process of peer review; the outcome is a set of papers that have been orga-
nized, in addition to a section on Theory and Methods, into four thematic sections:
Transportation and Land Use Analysis, Population and Health Issues, Political and
Economic Geography, and Regional Applications. Some of these areas have tra-
ditionally been associated with the use of spatial analytical tools (e.g., regional
applications). Others represent nascent opportunities for the development and use
of spatial analysis (e.g., transportation and land use, population and health). It is
our hope that this edited volume will simultaneously help to consolidate the reputa-
tion and value of spatial analysis established by previous titles in the series, and to
increase awareness about the utility of spatial analysis in other application domains.

2 Theory and Methods

Five chapters comprise the section on theory and methods. Pace and LeSage, in
chapter “Omitted Variable Biases of OLS and Spatial Lag Models”, address a ques-
tion that has received relatively little attention in the spatial econometrics literature,
namely, the effect of omitted variables in regression analysis. This research is moti-
vated by the conjecture that omitted variable bias is less severe in spatial models than
in ordinary regression approaches. One of the bases for this conjecture is that the
additional components in a spatial model are perhaps sufficiently capturing missing
relationships to offset the effect of bias. The problem of omitted variables in spatial
analysis, on the other hand, is complicated by the fact that spatial variables often
display non-negligible amounts of spatial autocorrelation. Most likely, this will be
the case for both the included and the omitted variables. In order to sort out what
the impacts of this are, the authors develop a very general framework that allows
them to derive results for a wide range of situations likely found in applied research.
The analytical derivations presented in the chapter are backed by extensive simula-
tion experiments that help to give a feeling for the magnitude of bias under different
cases. The results indicate that, contrary to the original conjecture, omitted variable
bias is magnified by the presence of spatial dependence. Several implications lead
to useful guidelines for applied research.
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Chapter “Topology, Dependency Tests and Estimation Bias in Network Autore-
gressive Models”, by Farber, Páez and Volz, also deals with a specification issue in
spatial modeling, namely the definition of spatial weights matrices, the instrument
used to specify how spatial cross-sectional observations are connected. While this
matrix is usually defined based on geographic criteria (e.g., contiguity, distance-
based matrices, nearest-neighbors matrices etc.), there has recently been increas-
ing interest in using a network-based connectivity specification. The subject of this
chapter is the structure of the weights matrix and the effect of network topology
on the estimation of network autocorrelation models and statistical tests of depen-
dence. The authors investigate, both analytically and through extensive Monte-Carlo
simulations, the power of the likelihood ratio (LR) tests for network dependence
in SAR and SEM models. They first show that for all the model specifications,
the level of network dependence is the most significant factor in predicting the
power of the LR test, albeit with a non linear effect and differently for SAR and
SEM models. Second, the effects of network density and clustering on the power
of the LR test are analyzed. Finally, the relationship between bias and the various
topological properties of networks are graphically illustrated. In sum, the vari-
ous results unambiguously show that the topology of the weights matrix used in
autocorrelation models has a strong impact on statistical tests and the accuracy of
maximum-likelihood estimates.

Fingleton and Le Gallo, in chapter “Endogeneity in a Spatial Context: Properties
of Estimators”, are concerned with the important issue of identifying appropriate
estimators when dealing with endogeneity in a spatial econometric context. While
the appropriate treatment and estimation of the endogenous spatial lag has received
a good deal of attention, the analysis of effects related to other endogenous vari-
ables has been less popular. Based on their previous work, the authors focus on
the case where endogeneity is induced by the omission of a (spatially autoregres-
sive) variable. They show the inconsistency of the usual OLS estimators induced by
omitting a significant variable that should be in the regression model but which is
unmeasured and hence is present in the residual. A simulation experiment is imple-
mented that demonstrates how an augmented spatial Durbin model with a complex
error process is a reasonably appropriate estimator. This is estimated using 2SLS
(2 Stage-Least-Square) and SHAC (Spatial Heteroskedasticity and Autocorrelation
Consistent) estimator for the variance-covariance matrix. This estimator performs
better in terms of bias and Root Mean Square Error than the OLS-SHAC estimator.
They reach the same conclusion when they modify the properties of the omitted
variable used in their Monte-Carlo simulations. The discussion moves on to the
case where endogeneity is a consequence of simultaneity and errors in variables.
The authors conclude again that the 2SLS-SHAC estimation of the spatial Durbin
model is better than an OLS-SHAC estimation of a single equation model where the
endogeneity problem remains untreated.

Chapter “Dealing with Spatiotemporal Heterogeneity: The Generalized BME
Model” by Yu, Christakos and Bogaert, discusses a stochastic approach for studying
physical and social systems and their attributes, when these systems are charac-
terized by heterogeneous space-time variations under conditions of multi-sourced
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uncertainty. The proposed Generalized Bayesian Maximum Entropy approach
emerges from the fusing together of generalized spatiotemporal random field the-
ory and a Bayesian Maximum Entropy mode of thinking. The result is a versatile
approach to conduct spatiotemporal analysis and mapping that exhibits a number
of attractive features, including the following: the approach makes no restric-
tive assumptions concerning estimator linearity and probabilistic normality (i.e.,
non-linear estimators and non-Gaussian distributions are naturally incorporated);
it can be used to study natural systems with heterogeneous space-time dependence
patterns; it can also account for various kinds of physical knowledge (core and case-
specific) concerning the system under study; and it provides a general framework
from which mainstream methods can be derived as special cases. The proposed
space-time approach is applicable in a variety of knowledge domains (e.g., phys-
ical, health, social and cultural). Numerical experiments provide key insights into
the computational implementation and comparative performance of the approach.

Along the lines of spatial heterogeneity, a long standing question refers to insta-
bility or nonstationarity in spatial models. Although this issue can be traced back
to the development of Casetti’s expansion method in the early 1970s, it has claimed
renewed attention in light of newer methods for exploring local variations in spa-
tial autocorrelation patterns and multivariate relationships (e.g., LISA, Getis-Ord
statistics, geographically weighted regression or GWR). The problem of spatial
instability is important as it refers to the well-known problem of the complex rela-
tions between spatial heterogeneity and spatial autocorrelation. The last chapter
in this section by López, Mur, and Angulo, approaches this issue and investigates
models where the intensity of spatial autocorrelation depends on the geographical
location of each observation. In this respect, the chapter first presents a simple LM
test of parameter instability for the spatial autocorrelation coefficient in a spatial lag
model. Second, an extensive Monte-Carlo exercise is undertaken to study the distor-
tions affecting the usual cross-sectional diagnostic measures (spatial autocorrelation
LM tests, Jarque-Bera, Breusch-Pagan, White and RESET tests), when the assump-
tion of constant spatial autocorrelation does not hold. Third, a local estimation
algorithm labeled “zoom estimation”, which can be considered an extension of the
SALE model (Pace and LeSage 2004) is suggested and its performance with regard
to the “zoom size” is evaluated with Monte-Carlo experiments. Finally, a strategy to
identify spatial regimes in the spatial autocorrelation coefficient is proposed and
compared to four other strategies based respectively on the k-means algorithm,
Gaussian mixture models for multipolarity, Getis-Ord statistics, and trimmed mean
classification rule. By providing novel information regarding the effect of spatial
instability on usual diagnostic measures and specification search strategies, as well
as giving suggestions to identify the presence and form of spatial regimes, this
chapter represents a valuable step toward increasing our understanding of spatial
instability in spatial econometric models.
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3 Thematic Applications

3.1 Spatial Analysis of Land Use and Transportation Systems

The impressive visual qualities of transport and land use systems and processes in
the real world have arguably not been matched by an equally impressive and con-
structive exercise in abstract data visualization. The availability of both proprietary
and open environments for data analysis and visualization, coupled with the imple-
mentation of innovative approaches for data visualization presents an opportunity
to advance the state-of-the-art with regards to the visual communication of spa-
tial, temporal, and social qualities of transport and land use processes. Moreover,
progress in automatic data collection through onboard GPS, cellular phone traces,
or smart cards increases requirements for useful approaches and tools for summa-
rizing and communicating the complexity and relevance of emerging modalities
for communication and spatial interaction. Chapter “Seeing Is Believing”: Explor-
ing Opportunities for the Visualization of Activity–Travel and Land Use Processes
in Space–Time, by Buliung and Morency, has as its objective to introduce recent
innovations with regards to both platforms and approaches for the visualization of
transportation and land use processes. To draw a parallel with “the arts,” visualiza-
tion can be compared to an anamorphosis interpreter wherein the act of visualization
makes use of specialized devices (e.g., computer programs, statistical tools, GIS,
interactive spreadsheets), or compels the viewer to occupy a specific perspective
(e.g., spatial, temporal or social feature), with a view to reconstituting the “original”
for the purpose of developing a clearer understanding of “process.” Using examples
drawn primarily from Montreal and the Greater Toronto Area, Canada, this chapter
demonstrates how visualization techniques and tools can be used, often in a comple-
mentary way, to clarify transport- and land use-related spatial, temporal and social
processes.

In addition to the exploration of transportation and land use processes, through
visualization techniques, there has been considerable recent work on the confirma-
tory analysis, via multivariate techniques, of transport and land use phenomena.
Four papers in this section apply spatial analytical techniques to the investigation of
different aspects of land development and travel behavior. The first contribution in
this group, by Munroe, is concerned with the expansion and rapid growth of urban
areas, a process that can occur unevenly across space and through time. The avail-
ability of detailed spatial and temporal data describing land use, combined with
the application of spatial and temporal modeling approaches (e.g., spatial logis-
tic regression, hazard models), facilitates, in Chapter “Pattern-Based Evaluation
of Peri-Urban Development in Delaware County, Ohio, USA: Roads, Zoning and
Spatial Externalities”, the detection and description of the global and local spatial
properties of urban growth – i.e., dispersion, decentralization, fragmentation. The
more abstract conceptualization of urban sprawl, as a somewhat even and regular
expansion of urban areas into rural or peri-urban places, can be replaced by a more
detailed, empirically informed view of key development processes and outcomes.
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Investigation of peri-urban development in Delaware County, Ohio, is based on a
discrete time-to-event model for Delaware County, one of the fastest growing coun-
ties in the US, located north of the state capital of Columbus, Ohio. Overall, the
results suggest that the process of urban expansion/dispersion has simultaneously
included an increase in the local clustering of development. A simulation experiment
examines the sensitivity of predicted patterns of residential growth to policy and/or
market-based drivers of growth processes including: density (intensification), access
to roads, and development externalities. Controlling for the timing of development,
avoidance of development, maximum density zoning policies, and distance to major
roads emerge as factors contributing to the fragmentation of residential development
in the county. From a policy perspective, the findings suggest that cooperative land
use management at the township level, and open space preservation, are potentially
useful approaches to control the growth processes described within the chapter.

Also related to the topic of sprawling development, “Chapter Demand for Open
Space and Urban Sprawl: The Case of Knox County, Tennessee” by Cho, Lam-
bert, Roberts and Kim, is concerned with the demand for open space. While there
is limited consensus in the literature regarding the conceptualization and measure-
ment of urban sprawl, scholars, practitioners, and governments, consider the study
and implementation of growth management to be an important intellectual and
practical exercise. The research reported in this chapter makes use of a two-step
spatial modeling approach to examine the efficacy of open space conservation as
a policy tool for managing urban sprawl. The conceptualization of sprawl chosen
by the authors includes processes of expansion or encroachment into rural areas,
and the leapfrogging of development. The case study of Knox County presents
an interesting situation because the county has experienced rapid growth overall,
with some local heterogeneity (spatially and temporally) in the pace of residen-
tial development. Analysis is supported by a very detailed spatial database of the
region obtained from secondary sources, and the use of GIS techniques and remote
sensing data to quantify household access to open space. The spatial modeling task
combines hedonic price modeling with geographically weighted regression. Com-
parative analysis of model results indicates that the GWR (spatial error) model
provides an important complement to the global (OLS) alternative. With regard to
policy, the results appear to be open to several interpretations; acting freely in the
market, affluent households may be willing to pay (i.e., buy into policy) to preserve
open space, on the one hand, or demand open space at the edge, potentially giving
rise to additional and perhaps undesirable patterns of growth – particularly in the
absence of an appropriate regulatory framework.

The next two chapters are concerned with issues in travel behavior. One theme
that has interested geographers and planners for some time is the existence of
differential patterns of mobility by gender. The tenth chapter is entitled Multilevel
Models of Commute Times for Men and Women. In his contribution, Zolnik exam-
ines, from a spatial perspective, the well-documented issue of the commuting-time
gender gap. Research has often presented evidence suggesting that women typi-
cally have shorter commutes than men. Sociological and economic explanations
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have been advanced, with some recent evidence suggesting some convergence in the
generalized cost of commuting, particularly at the margins of male/female income
distributions, and within certain occupational or ethnic groups. The research pre-
sented in this chapter draws independent (male, female) and pooled (male and
female) samples from the 2001 US National Household Travel Survey, which are
used to estimate multi-level models of self-reported journey to work commute
time. The samples included individuals who worked and commuted (within a sin-
gle Metropolitan Statistical Area) by private vehicle the week prior to the survey.
Income and occupation effects appeared to be stronger for women, while access to
private vehicles appeared to have a stronger positive influence on commute times for
male workers. Interestingly, Zolnik concludes that his findings lend little support to
the household responsibility hypothesis. Apart from strong congestion effects dif-
ferentiable by sex, his findings suggest only marginal commute time savings with
changes in development intensity and the mixing of land uses.

The final chapter in this section, by Goetzke, is concerned with two topics of cur-
rent interest from the spatial analysis and travel behavior perspectives: the role of
spatial effects in choice models, and the possibility that information spillovers may
lead to interdependent choice processes. The research reported in chapter “Walka-
bility as a Summary Measure in a Spatially Autoregressive Mode Choice Model:
An Instrumental Variable Approach” is motivated by the difficulties posed by the
non-linear functional form of spatially autoregressive binary choice models (logit or
probit models), especially if the analyst does not wish to assume a conditional spa-
tial structure, which has the disadvantage that it imposes a strong restriction on the
model. On the other hand, a linear probability model (LPM) can easily be extended
to a spatially autoregressive model with few additional difficulties. However, a
LPM exhibits by definition always heteroskedasticity, which makes the estimation
inefficient. Empirically, the model proposed is demonstrated using the 1997/1998
New York Metropolitan Transportation Council comprehensive regional household
travel diary survey, in analysis that aims at determining whether social spill-over
effects exists for walking commutes in Manhattan (i.e., a large enough sample size
to adequately capture pedestrian behavior). The spatial process is modeled using
the instrumental variable 2SLS method. In a third step, the LPM is additionally
corrected for heteroskedasticity using a weighted least square approach with the
assumption of a binomial distribution in the error term. The estimation method pro-
posed is extended to a probit/logit model where the spatial process is also modeled
using the instrumental variable approach (spatially autocorrelated IV probit/logit
model). The results of both models are compared with the results of a condi-
tional spatially autoregressive probit/logit model. This application shows that the
instrumental variable method for estimating spatially autoregressive probability
models is able to overcome the shortcomings of a conditional spatially autoregres-
sive binary choice model, besides being relatively straightforward to implement.
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3.2 Economic and Political Geography

The second thematic section is comprised of four chapters dealing with various
topics in economic and political geography. In Chapter “Employment Density in
Ile-de-France: Evidence from Local Regressions”, Guillain and Le Gallo address
the issue of suburbanization in the Ile-de-France region in France. With the devel-
opment of peripheral employment centers, the spatial organization of the region’s
activities does not necessarily correspond to the traditional monocentric model. The
aims of this chapter are first to understand whether the Central Business District
(CBD) does still influence the employment distribution in Ile-de-France, and sec-
ondly, if so, whether this effect differs by sector. In order to answer these questions,
the authors identify first the location of employment centers by measuring the spatial
agglomeration of economic activities, with global and local spatial autocorrelation
statistics. Second, they conduct an in-depth analysis of the centers by identify-
ing their sectoral specialization and their attractiveness for strategic activities. The
authors use various spatial econometric specifications of the density functions and
perform local regressions, using geographically weighted regression, where the rate
at which density falls with distance from the CBD is estimated for each observation.
The local regressions facilitate the detection of changes in density by distance (het-
erogeneous distribution) and direction (anisotropic distribution) from the CBD. The
main results of this study indicate that the CBD still influences total employment in
Ile-de-France but that its influence varies by sector, distance, and direction from the
CBD. From a political viewpoint, their conclusions provide new insights about the
location strategies of households and economic activities in Ile-de-France.

Chapter “The Geographic Dimensions of Electoral Polarization in the 2004 U.S.
Presidential Vote”, by Sue Wing and Walker, is motivated by the apparent divi-
siveness of the 2004 US presidential election. This observation gave rise to the
exploration of the hypothesis that the U.S. electorate is geographically polarized.
Using spatial econometric analyses, these authors investigate the effects of the char-
acteristics of populations and places on voter turnout in favor of George W. Bush.
Specifically, the authors identify key factors affecting Bush’s odds of success at the
national level, and demonstrate how these aggregate effects vary over finer spatial
scales. The results provide an intriguing first look at overall spatial patterns in the
correlates of voting behavior, and argue for a new way of thinking of polarization as
a phenomenon which occurs within individual sub-groups across space, with geog-
raphy playing a crucial role at both local and regional scales, but in ways which are
not easily categorized or explained.

The topic analyzed in chapter “Gender Wage Differentials and the Spatial Con-
centration of High-Technology Industries”, by Echeverri-Carroll and Ayala, deals
with gender wage differentials in cities and is relevant for the study of the issues
of agglomeration, the productivity of cities and the existence of localization and
urbanization economics. From a methodological perspective, the work deals with
specific econometric problems linked to the analysis of spatial microeconomic
data: heteroskedasticity and endogeneity. Previous studies have found that male
workers attain higher wages in cities (high-tech cities in particular) with a large
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endowment of human capital than in those with a low endowment. New Eco-
nomic Geography models maintain that the higher wages of males are linked to
productivity-enhancing effects from the (formal and informal) exchange of knowl-
edge that characterizes high-tech cities. The authors question whether women enjoy
similar productivity-enhancing effects. A large sample is drawn from the 5% PUMS
of the 2000 Census of Population, and is used to estimate regressions separately
for a sample of male and female workers, accounting for arbitrary clustering, het-
eroskedasticity in the error terms, and endogeneity. The estimates show that after
controlling for individual- and city-level variables that affect wages, male workers
that live in a high-tech city and work in a high-tech industry, holding other factors
fixed, indeed earn more than comparable female workers. The results support the
view that women might benefit less from knowledge networks that are predominant
among high-tech industry workers in high-tech cities and from the demand for talent
exercised by these industries.

Among the wide range of spatial econometric applications, fiscal and mone-
tary economic applications remain quite scarce. Chapter “Fiscal Policy and Interest
Rates: The Role of Financial and Economic Integration”, by Claeys, Moreno and
Suriñach, fills this gap by analyzing the role of spatial spillovers in the crowding-
out effects of fiscal expansion on interest rates. The chapter parts from the common
belief that fiscal expansion raises interest rates. However, the crowding-out effects
of deficits have been found to be small or non-existent. One explanation is that
financial integration offsets interest rate differentials on globalized bond markets.
As a result, the authors measure the degree of integration of government bond mar-
kets, using spatial modeling techniques, with a view to taking this spillover effect
on financial markets into account. Using a panel of 101 countries and annual data
on interest rates and fiscal policy covering the period 1990–2005, the main finding
is that the crowding out effect on domestic interest rates is significant, but that it
is reduced by spillover across borders. The detected spillover effect is important
in major crises or in periods of coordinated policy actions. The result is generally
robust to various measures of cross-country linkages, and indicates strong spillover
effects among EU countries.

3.3 Spatial Analysis of Population and Health Issues

The next three chapters in the volume are concerned with the spatial analysis of
various aspects of population and health. In chapter “Spatial Models of Health
Outcomes and Health Behaviors: The Role of Health Care Accessibility and Avail-
ability”, Waldorf and Chen address the question of whether poor spatial accessibility
to health care providers leads to poor health outcomes. Their work focuses on the 80
counties of Indiana, a state that, as many other across the US, experiences a spatial
mismatch between the location of supply and demand for medical care as well as
spatial variations in the quality of medical facilities. This problem presents a chal-
lenge for policymakers who need to determine how to equitably allocate medical
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resources to improve public health in general and help medically underserved rural
areas in particular. The study is grounded on the measurement of accessibility
(as opposed to availability) of health care providers in order to better capture the
distance-cost faced by patients wishing to receive treatment. It is worthwhile to note
that while accessibility to health care has been extensively studied, the approach
presented in this chapter is innovative for two reasons. First, accessibility to health
care is linked through a modeling framework to health outcomes. Second, the mod-
els are estimated after the inclusion of spatial dependence effects. In the case of
health outcomes, spatial dependence may be a statistical artifact, but it can also be
grounded in behavioral processes such as imitation behavior and the spatial diffu-
sion of cultural norms influencing health care utilization. These effects could also
be a result of underlying factors such as poor labor market conditions which affect
people’s access to health insurance and thus ultimately people’s health. The mod-
els reported in the chapter are estimated for six health outcome variables relating
to the health status of infants and the elderly, and four health behavior variables.
The results indicate that the impact of health behaviors, health care accessibility,
and spatial dependence varies across the various health outcomes investigated. The
authors conclude that, from a policy perspective, it is important to recognize that
efforts to improve health behaviors in one county could impact health behaviors in
neighboring counties, eventually trickling down through an entire state.

While the research of Waldorf and Chen is concerned with the effect of acces-
sibility to health care on health outcomes, the work of Woltman and Newbold in
chapter “Immigrant Women, Preventive Health and Place in Canadian CMAs” is
related to the utilization of health services, with a particular focus on immigrants
in Canada. While the health status of immigrants has been studied extensively, the
health service challenges facing immigrants are perhaps less understood. This chap-
ter advances current thinking on the use of health care services by immigrant women
in Canadian Census Metropolitan Areas (CMAs), and more specifically, the utiliza-
tion by immigrant women of cervical cancer screening. Analysis is conducted by
examining the multilevel factors associated with Pap (smear) testing in native-born
and immigrant women. Cross-sectional multi-level logistic regression analysis is
then used to detect individual and neighborhood level correlates of lifetime uptake
(i.e., ever had a Pap test), and regular use (i.e., a test within the last three years) of
Pap testing. Individual data are drawn from the Canadian Community Health Survey
(Cycle. 2.1, 2003) for the population of interest, namely immigrant and native-born
women between the ages of 18 and 69, living in the Montréal, Toronto, and the
Vancouver Census Metropolitan Areas. Contextual factors are constructed by link-
ing individual level data with census tract profile data from the 2001 Census of
Canada. The results indicate the presence of between-neighborhood variation in
uptake. Immigrant status and cultural origin appear to be significantly associated
with lifetime uptake, although uptake appears to be less common amongst recent
immigrant women and women of Chinese, South Asian and other Asian back-
grounds. The results also suggest that neighbourhood disadvantage (i.e., a composite
index) and immigrant concentration are positively associated with regular Pap test-
ing. Findings concerning the role of culture and immigration status, coupled with
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the reported neighbourhood effects, lend support to the development of neighbour-
hood level interventions focused on increasing the awareness of recent immigrant
women of the availability of cervical cancer screening services.

The last chapter in this section, by Lambert, Wilcox, Clark, Murphy and Park,
combines in the most explicit way the two themes of population and health.
The question posed for this chapter is the extent to which new-generation retire-
ment communities are responsible for agglomeration within the health care sector.
Demographers estimate that over the next 18 years at least 400,000 retiring baby
boomers will migrate beyond their state borders each year, carrying with them an
average of $320,000 to spend on a new home. It is no surprise then that migrat-
ing retirees can stimulate economic growth and development in their host rural
communities. Factors of import to migrating seniors with respect to residential site
selection include health care service availability, recreational amenities, affordable
housing, low taxes, and proximity to friends and family. The geographical focus
of this paper is the Southeastern US, an area that has experienced an extraordinary
influx of retiring seniors since 1990. As more retiring seniors choose a particular
residential location, demand for health services will presumably increase, creat-
ing new employment opportunities. On the other hand, migrating seniors may be
attracted to communities with a wider array of health care services. This prob-
lem is reminiscent of the “jobs-to-people/people-to-jobs” conundrum. In order to
tease out these relationships, the authors draw from recent developments in the spa-
tial econometric literature to develop a regional adjustment econometric model that
accounts for endogeneity and heteroskedasticity. The results of the analysis suggest
that rural communities, able to support diversified health services are at a compara-
tive advantage with respect to attracting retirees, whereas provision of such services
in counties near metropolitan centers appears to be of reduced importance. In addi-
tion, there is evidence that retiree in-migration is correlated with overall growth in
the health sector.

3.4 Regional Applications

The last set of papers in the book includes applications of spatial analysis to
questions focused on regional systems. Chapter “Evolution of the Influence of
Geography on the Location of Production in Spain (1930–2005)”, by Chasco and
López, is concerned with the relative importance of geographic features on the loca-
tion of production in Spain. Based on a panel of 47 Spanish provinces and the
1930–2005 period, they quantify how much of the spatial pattern of GDP can be
attributed to only exogenous first nature elements (physical and political geography)
and how much can be derived from endogenous second nature factors (man-made
agglomeration economies). The authors employ an analysis of variance (ANOVA)
to infer the unobservable importance of first nature indirectly in a stepwise proce-
dure. In order to disentangle the two net effects empirically, as well as their mixed
effect, they control for second nature because every locational endowment will be
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reinforced and overlaid by second nature advantages. In a dynamic context, they
also estimate how much agglomeration can be explained by both gross and net sec-
ond nature with the aim of isolating the importance of first nature alone. The authors
stress the fact their results could be biased if some potential econometric questions
(multicollinearity, relevant missing variables, endogeneity and more particularly
spatial effects) were not properly taken into account. They conclude that produc-
tion is not randomly distributed across Spanish regions: 88% of the GDP’s spatial
variation can be explained by the direct and indirect effects of geography. After
controlling for agglomeration economies and interaction effects of the first/second
nature, the net influence of natural geography goes from 20% in 1950 to 6–7%
nowadays. On the other hand, while second nature agglomeration forces (e.g., trans-
port and communications) were dominant in the 1930s, they were overcome by first
nature geography by the end of the period. These results also differ across the two
spatial regimes that characterize the country: the coast plus the Madrid metropolitan
area, and the hinterland. Overall, the research presented in this chapter represents
an innovative way to measure the extent to which regional policies are able to favor
agglomeration in areas without clear geographic advantages.

The spatial dynamics of regional systems is the topic of chapter “Comparative
Spatial Dynamics of Regional Systems”, by Rey and Ye, and in particular, the
dynamics of income convergence. These authors note that the focus of research, hav-
ing shifted from the national to the regional perspective in the early 1990s, continued
to be dealt with using the same theoretical and technical frameworks underpin-
ning national growth research. By the end of the 1990s, however, the geographical
dimension of convergence issues had already attracted substantial attention. This
chapter contributes to the literature on income convergence by considering two of
the world’s largest and deeply entangled economies, the US and China, at differ-
ent developmental stages, and by bringing to bear some of the most recent tools in
exploratory spatial data. In addition to their use for convergence analysis, the new
set of statistical measurements introduced in this chapter open up new opportunities
for scientific visualization and the generation of hypothesis in other fields that deal
with dynamic space-time processes.

The closing paper, contributed by Koch, examines regional growth and conver-
gence. The literature focusing on issues of growth and convergence from the specific
perspective of spatial econometrics techniques is today extensive. The studies in
this area focus on the interdependence between nations and regions, highlighting
how the economy of one country or region is not independent of the economies
of neighbouring countries or regions (and perhaps non-neighbours as well). How-
ever, a common feature of these papers is that the spatial econometric specifications
are introduced in an ad hoc way, i.e., spatial lag or spatial error models are esti-
mated, and the choice of the specification tends to be based on statistical criteria.
Recently, theoretical foundations of spatial dependence have been suggested. Chap-
ter “Growth and Spatial Dependence in Europe” is representative of this trend since
it presents an augmented Solow model that includes spatial externalities and spatial
interdependence among economies. A spatial econometric reduced form allows the
testing of the effects of the rate on saving, the rate of population growth and location
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on per worker income, and on the conditional convergence process in Europe. Based
on a sample of European regions, the econometric model leads to estimates of struc-
tural parameters close to predicted values while Marshallian externalities are found
to be non-significant.

The articles in this book therefore highlight the importance of spatial effects
in various themes and applications. Each of them opens new research areas and
we hope that they will foster further advances in spatial statistics and spatial
econometrics.



Part I
Theory and Methods



Omitted Variable Biases of OLS
and Spatial Lag Models

R. Kelley Pace and James P. LeSage

1 Introduction

Numerous authors have suggested that omitted variables affect spatial regression
methods less than ordinary least-squares (OLS; Dubin 1988; Brasington and Hite
2005, Cressie 1993). To explore these conjectures, we derive an expression for
OLS omitted variable bias in a univariate model with spatial dependence in the
disturbances and explanatory variables. There are a number of motivations for mak-
ing this set of assumptions regarding the disturbances and explanatory variables.
First, in spatial regression models each observation represents a region or point
located in space, for example, census tracts, counties or individual houses. Sample
data used as explanatory variables in these models typically consists of socioeco-
nomic, census and other characteristics of the regional or point locations associated
with each observation. Therefore, spatial dependence in the explanatory variables
seems likely, motivating our choice of this assumption. Note, the literature rarely
examines the spatial character of the explanatory variables, but this can affect the
relative performance of OLS as shown below. Second, application of OLS models
to regional data samples frequently leads to spatial dependence in the regression
disturbances, providing a justification for this assumption. Finally, there are a host
of latent unobservable and frequently unmeasurable influences that are likely to
impact spatial regression relationships. For example, factors such as location and
other types of amenities, highway accessibility, school quality or neighborhood
prestige may exert an influence on the dependent variable in hedonic house price
models. It is unlikely that explanatory variables are readily available to capture all
of these types of latent influences. This type of reasoning motivates our focus on the
impact of omitted explanatory variables. Since the omitted and included explanatory
variables are both likely to exhibit spatial dependence based on the same spatial con-
nectivity structure, it seems likely that omitted and included variables will exhibit

R.K. Pace (B)
E. J. Ourso College of Business Administration, Department of Finance, Louisiana State
University, Baton Rouge, LA 70803-6308, USA,
e-mail: kelley@pace.am
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non-zero covariance. The expression we derive for OLS bias in these circumstances
shows that positive dependence in the disturbances and explanatory variables when
omitted variables are correlated with included explanatory variables magnifies the
magnitude of conventional least-squares omitted variables bias.

We extend the considerations above to also include models where the depen-
dent variable exhibits spatial dependence, following a spatial autoregressive process.
LeSage and Pace (2009) provide a number of different motivations for how spatial
dependence in the dependent variable arises in spatial regression relationships. It is
well-known that spatial dependence in the dependent variable leads to bias in OLS
estimates (Anselin 1988). We show that this type of spatial dependence in the pres-
ence of omitted variables exacerbates the usual bias that arises when applying OLS
to this type of sample data. In particular, the bias is magnified, with the magnitude
of bias depending on the strength of spatial dependence in: the disturbances, the
dependent variable, and the explanatory variable included in the model.

Our derivation shows that the combination of an omitted variable, spatial depen-
dence in the disturbances, dependent and explanatory variables leads to an implied
model specification that includes spatial lags of both the dependent and explanatory
variables. This type of model has been labeled a spatial Durbin model (SDM) in the
literature (Anselin 1988). Estimates based on the SDM specification which matches
the implied DGP in this set of circumstances shrinks the bias relative to OLS.

In the following section, we consider the implications of omitted variables in
the presence of spatial dependence for OLS estimates. Next we demonstrate that
the SDM model specification matches a reparameterization of the DGP that results
from various assumptions on omitted variables and spatial dependence. We consider
an expression for the omitted variables bias that arises when the SDM model is used
to produce estimates, and compare this to the bias expression for OLS estimates.
We show that the magnitude of omitted variable bias for the SDM model does not
exhibit the magnification of OLS and it no longer depends on the magnitude of
spatial dependence in the disturbances, dependent, or independent variables. These
desirable properties of the SDM model provide a strong motivation for use of this
model specification in applied practice.

2 Spatial Dependencies and OLS Bias

We begin with a frequently used spatial econometric model specification shown
in (1) and (2). Equation (1) represents a spatial autoregressive process governing
the dependent variable and (2) adds the assumption of spatial autoregressive distur-
bances. This model has been labeled SAC by LeSage (1999) and a spatial autore-
gressive model with autoregressive disturbances by Kelejian and Prucha (1998).
It should be noted that we will work with a model involving simple univariate
explanatory and omitted variable vectors for simplicity. There is no reason to believe
that the results we derive here would not extend to the more general case involving
matrices of explanatory variables in place of the univariate vector.
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y D xˇ C ˛Wy C " (1)

" D �W "C � (2)

� D xy C u (3)

x D �Wx C � (4)

In (1) through (4), the n by 1 vector y represents observations on the dependent
variable, x represents an n by 1 vector of observations on a non-constant explana-
tory variable, "; �; u, and � represent various types of n by 1 disturbance vectors,
˛; ˇ; �; �, and � represent scalar parameters, and W is an n by n non-negative
symmetric spatial weight matrix with zeros on the diagonal. We assume that u is
distributedN

�
0; �2u In

�
; � is distributedN

�
0; �2u In

�
, and u is independent of �. For

simplicity, we exclude the intercept term from the model.
We extend the conventional SAC model specification using (3) that adds the

assumption of an omitted variable correlated with the explanatory variable x. The
strength of correlation is determined by the parameter � and the variance of the noise
vector u, �2u . The last equation, (4) adds the assumption of a spatial dependence in
the explanatory variable x, which is governed by a spatial autoregressive process
with dependence parameter �. We focus on non-negative spatial dependence, by
assuming ˛; �; � 2 Œ0; 1/. We note that in the case where � D 0, there is no covari-
ance between the included explanatory variable x and the omitted variable �. In the
case where � D 0, the explanatory variable does not exhibit spatial dependence, and
when ˛ D 0, the dependent variable does not exhibit spatial dependence. Similarly
� D 0 eliminates spatial dependence in the disturbances.

The weight matrix has positive elements Wij when observations i and j are
neighbors, and we assume each observation has at least one neighbor. The sym-
metry of W contrasts with the usual lag operator matrix L from time series, since
L is strictly triangular containing zeros on the diagonal. Powers of L are also
strictly triangular with zeros on the diagonal, so that L2 specifies a two-period
time lag whereas L creates a single period time lag. It is never the case that pro-
duces observations that point back to include the present time period. In contrast,
W 2 specifies neighbors to the neighbors identified by the matrix W , and since the
neighbor of the neighbor to an observation includes the observation itself due to
symmetry, W 2 has positive elements on the diagonal. This results in a form of
simultaneous dependence among spatial observations that does not occur in time
series analysis, making spatial regression models distinct from time series regres-
sions. We use the same spatial weight matrix W to specify the pattern of spatial
dependence in the explanatory variable, which seems reasonable since this matrix
reflects the spatial configuration of both the dependent and independent variable
observations.

We assume thatW is symmetric and real, so the n by 1 vector of eigenvalues 	W
is real. For simplicity, we assume the eigenvalues are unique, the principal eigen-
value of W equals 1, and this is the maximum eigenvalue as well. This is not a
restrictive assumption since dividing any candidate weight matrix by its principal
eigenvalue would yield a weight matrix with a principal eigenvalue of 1.
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Since the sum of the eigenvalues (tr(W )) equals 0, the minimum eigenvalue is
negative, but the minimum eigenvalue is not the principal eigenvalue, and
min.	W / > �1. Therefore, for some real scalar 
 2 .min.	W /�1; 1/, In � 
W will
be symmetric, positive definite, and thus .In � 
W /�1 exists. Clearly, 
 2 Œ0; 1/

is sufficient for positive definite In � 
W . Finally, since the maximum eigenvalue
equals 1, tr.W 2j / � 1 (all eigenvalues of even powered matrices are non-negative
and the largest eigenvalue equals 1) and 0 for any integer j > 0 (traces of
non-negative matrices are non-negative).

We rewrite (1) to solve for y using F .˛/ D .In�˛W /�1 and this yields (5). We
rewrite (2) to solve for " usingG.�/ D .In ��W /�1 and substitute x� C u for � via
(3) to yield (6). Similarly, we rewrite (4) to isolate x using H.�/ D .In � �W /�1
to produce (7). Equation (8) summarizes the definitions.

y D F.˛/xˇ C F.˛/" (5)

" D G.�/.x� C u/ (6)

x D H.�/� (7)

F.˛/ D .In � ˛W /�1 (8)

G.�/ D .In � �W /�1
H.�/ D .In � �W /�1

Taken together, (5), (6), and (7) lead to the DGP shown in (9).

y D F.˛/H.�/�ˇ C F.˛/G.�/H.�/�� C F.˛/G.�/u (9)

Given the assumptions made concerning the matrix W , the matrix inverses: F.˛/,
G.�/, H.�/ exist. We refer to (9) as a DGP since this expression could be used
with vectors �; u of random deviates to generate a dependent variable vector y from
the model and assumptions set forth. Given the structure of the model set forth in
(1)–(4), the parameters ˛; �; �; � allow us to generate dependent variable vectors
that reflect varying combinations of our assumptions. For example, setting � D 0

and maintaining positive values for ˛; �; � would produce a vector y reflecting
no covariance between the included and omitted variable vectors x and �. Sim-
ilarly, setting � D 0 while maintaining positive values for the other parameters
.˛; �; �/ would produce a vector y from a model having no spatial dependence in
the explanatory variable x.

OLS estimates Ǒ
o D .x0x/�1x0y represent “best linear unbiased” estimates when

the DGP matches that of the ordinary regression model: y D xˇC", and the Gauss–
Markov assumptions. These require the vector x to be fixed in repeated sampling
and the disturbances to have constant variance and zero covariance.

However, suppose that the true DGP is (9) and we apply the least-squares
expressions to produce the estimates in (10). That is, we apply least-squares in the
circumstances considered here involving spatial dependence in the dependent vari-
able, disturbances and the model contains an omitted variable that is correlated with
the spatially dependent included variable.
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Ǒ
o D �0H.�/F.˛/H.�/�

�0H.'/2�
ˇ C � 0H.�/F.˛/G.�/H.�/�

�0H.�/2�
�

C�0H.�/F.˛/G.�/u
�0H.�/2�

(10)

This expression can be further simplified. To do so, we turn to some additional
results. We begin by defining (11),

R.A/ D d 0Ad
d 0d

(11)

Q.A/ D d 0Ar
d 0d

where d , r are distributed N.0; �2dIn/, N.0; �
2
r In/ with r independent of d , and

A is a n by n symmetric real matrix. Using different techniques, both Barry and
Pace (1999), and Girard (1989) show that:

E.R.A// D t r.A/

n
(12)

�2R.A/ D 2�2	.A/

n
E.Q.A// D 0

where tr denotes the trace operator and �2	.A/ is the variance of the eigenvalues of
matrix A. Obviously, E.d 0Ar/ D 0 due to the independence of r and d , while
d 0d > 0 so that E.Q.A// D 0.

Consider a variation of (11) involving n by n symmetric real matrices A and B .

R.A=B/ D d 0Ad
d 0Bd

D .d 0d/�1 d 0Ad
.d 0d/�1 d 0Bd

(13)

From (12), the expectation of the numerator of (13) equals t r.A/=n, and the expec-
tation of the denominator of (13) equals t r.B/=n. Also, an implication of (12) is
that as n ! 1, the variance of the numerator and denominator go to 0. Therefore,

plimn!1R.A=B/ D t r.A/

t r.B/
(14)

Applying these results to expression (10), results in the third term of (10) vanishing
asymptotically via (12). Applying result (14) to the first two terms of (10), and
using the cyclical properties of the trace, produces expression (15) and its equivalent
abbreviated form in (16).
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p lim n!1 Ǒ
o D t r

�
H.�/2F.˛/

�

t r ŒH.�/2�
ˇ C t r

�
H.�/2F.˛/G.�/

�

t r ŒH.�/2�
�

D Tˇ.�; ˛/ˇ C T�.�; ˛; �/� (15)

Tˇ.�; ˛/ D t r
�
H.�/2F.˛/

�

t r ŒH.�/2�

D T�.�; ˛; �/ D t r
�
H.�/2F .˛/ G .�/

�

t r ŒH.�/2�
(16)

Naturally, as the factors Tˇ .�; ˛/ and T� .�; ˛; �/ rise above 1, the bias of using
OLS to produce estimates for a model with a dependent variable y generated
using our spatial DGP from (9) can increase. This will be especially true when
ˇ and � have the same signs. We will show that Tˇ .�; ˛/ > 1 for ˛ > 0 and
T� .�; ˛; �/ > 1 when spatial dependence in the dependent variable y or distur-
bances exists .˛ > 0 or � > 0), and that spatial dependence in the explanatory
variable � > 0 amplifies these factors. Our strategy involves showing that when
no spatial dependence in the explanatory variable exists .� > 0/, Tˇ .0; ˛/ > 1

when ˛ > 0 and T� .0; ˛; �/ > 1 when ˛ > 0 or � > 0. We then show that
Tˇ .�; ˛/ > Tˇ .0; ˛/ and that T� .�; ˛; �/ > T� .0; ˛; �/ when � > 0.

We begin by showing that Tˇ .�; ˛/ > 1 when ˛ > 0, � > 0 and T� .�; ˛; �/>1
when ˛ or � are positive and � D 0 (no spatial dependence in the explanatory
variable). To see the first assertion, let 
m represent some positive scalar parameter.
Since .In � 
mW /�1 D InC
2mW 2C� � � , and since t r .In/ D n, t r

�
W 2j

� � 1, and
t r

�
W 2j�1� � 0; t r .In � 
mW /

�1 > n. To generalize this, let 
1 > 0 or 
2 > 0 and
consider P .
1; 
2/ D .In � 
1 W /

�1 .In � 
2W /
�1 D In C �1W C �2W

2 C � � �
where � > 0. Since products and sums of positive parameters (
1, 
2) are positive,
t r Œ.P .
1; 
2/� > n because t r .In/ D n, t r

�
W 2j

� � 1, and t r
�
W 2j�1� � 0.

When � D 0, this describes the numerator of both Tˇ .0; ˛/ and T� .0; ˛; �/ and the
denominator of both terms is n. Consequently, Tˇ .0; ˛/ > 1 and T� .0; ˛; �/ > 1.

We now turn to the effect of positive spatial dependence in the explanatory vari-
able .� > 0/ on Tˇ .�; ˛/ and T� .�; ˛; �/. We show that Tˇ .�; ˛/ > Tˇ .0; ˛/ and
T� .�; ˛; �/ > T� .0; ˛; �/ for � > 0. Let  and ‰ be monotonic functions of sim-
ilar symmetric matrices so that both  and ‰ are symmetric positive definite and
are not proportional to an identity matrix. Given these assumptions, consider the
assertion in (17). Multiplying both sides by the positive scalar t r .‰/ =n does not
change the direction of the inequality and this leads to (18). Since ‰ and  are
based upon the same eigenvalues (similar matrices) and are monotonic functions of
these eigenvalues, the eigenvalues of ‰ and  have the same ordering. Moreover,
the eigenvalues of ‰ are the product of these ordered eigenvalues as shown in
equation (19).
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t r ./

n
<
tr .‰/

tr .‰/
(17)

t r./

n

tr.‰/

n
<
tr.‰/

n
(18)

"
n�1

nX
iD1

	 .‰/i �Œn
�1

nX
iD1

	 ./i

#
<

"
n�1

nX
iD1

	 .‰/i 	 ./i

#
(19)

In fact, (19) is a restatement of the Chebyshev sum inequality from Gradshteyn and
Ryzhik (1980). Expression (19) holds true as a strict inequality, since the eigen-
values are not all the same (because  and ‰ are not proportional to the identity
matrix). Substitution of ‰ D H.�/2 and  D F .˛/ or  D F .˛/G .�/ proves
the assertion that Tˇ .�; ˛/ > Tˇ .0; ˛/ and T� .�; ˛; �/ > T� .0; ˛; �/ for � > 0;

where the strict inequality arises because the eigenvalues of W and the monotonic
functions of the eigenvalues of W are not similar to the identity matrix.

As already indicated, our expression (9) for the DGP allows us to consider spe-
cial cases that arise from various settings of the control parameters ˛; �; �; � . We
enumerate how some of these special cases impact omitted variables bias in various
applied situations using our results applied to the expressions from (15).

1. Spatial dependence in the disturbances and explanatory variable, but no covari-
ance between the explanatory variable and omitted variable. This results from
setting the parameters .p>0; �>0; ˛ D 0; � D 0/. In this case, plimn!1 Ǒ

o D
ˇ, and there is no asymptotic bias.

2. Spatial dependence in the explanatory variable in the presence of an omitted
variable that is correlated with the included explanatory variable but no spatial
dependence in the dependent variable or disturbances. This results from set-
ting the parameters .� > 0; � > 0; ˛ D 0; � D 0/. In this case, plimn!1 Ǒ

o D
ˇ C � , and we have the standard omitted variable bias that would arise in the
least-squares model.

3. Spatial dependence in y and the explanatory variable with no correlation between
the explanatory and omitted. This results from setting the parameters

�
˛ > 0;

� > 0; � D 0
�
. In this case, plimn!1 Ǒ

o D Tˇ .� > 0; ˛ > 0/ ˇ, and OLS
has asymptotic bias amplified by the parameter ˛ reflecting the strength of spa-
tial dependence in y and by � representing the strength of dependence in the
explanatory variable.

4. No spatial dependence in y, spatial dependence in the disturbances and the
explanatory variables with an omitted variable that is correlated with the included
explanatory variable. This results from setting the parameters

�
� > 0; � > 0;

� > 0; ˛ D 0
�
. In this case, plimn!1 Ǒ

o D ˇ C T� .� > 0; ˛ D 0; � > 0/ � ,
and OLS has omitted variables bias amplified by the spatial dependence in the
disturbances and in the explanatory variable reflected by the magnitudes of the
scalar parameters � and �.

The first result is well-known, and the second is a minor extension of the conven-
tional omitted variables case for least-squares. The third result shows the bias from
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applying OLS when the true DGP produces spatial dependence in the dependent
variable y, and there is spatial dependence in the included explanatory variable. The
bias for this case exceeds that shown in Anselin (1988) due to the spatial dependence
in the explanatory variable. The fourth case shows that the usual result that spatial
dependence in the disturbances does not lead to bias in OLS estimates does not hold
in the presence of an omitted variable (that is correlated with the included explana-
tory variable). We find that spatial dependence in the disturbances (and/or in the
explanatory variable) in the presence of omitted variables leads to a magnification
of the conventional omitted variables bias.

To obtain some feel for the magnitudes of these biases, we conducted a small
Monte Carlo experiment. In the computations, we simulated a square random set of
1,000 locations and used these locations to compute a contiguity-based matrix W .
The resulting 1,000 by symmetric spatial weight matrix W was standardized to be
stochastic (doubly stochastic). We set ˇ D 0:75 and � D 0:25 for all trials. The
setting for y reflects a relatively low level of correlation between the included and
omitted variables. GivenW and a value for ˛ , �, and � we used the DGP to simulate
y for 1,000 trials. For each trial we calculated the estimate Ǒ

o and recorded the
average of the estimates. We did this for 27 combinations of ,̨ �, and �. For each of
these 27 cases we also computed the theoreticalE. Ǒ

o/. Table 1 shows the empirical
average of the estimates and the theoretically expected estimates for the 27 cases.
The theoretical and empirical results show close agreement, and the table documents
that serious bias can occur when omitted variables combine with spatial dependence
in the disturbance process. This is especially true if there is spatial dependence in
the regressors, a realistic prospect in applied use of spatial regression models that
seems to have been overlooked in the literature. For example, OLS estimates yield
an empirical average of 3.9984 (expectation of 4.0221) when �, ˛, and ‰ equal 0.8,
even though ˇ D 0:75 and � D 0:25. That is, we have a fivefold bias in the OLS
estimates.

3 A Comparison with Spatial Lag Models

We consider the contrast between the above results for least-squares estimates and
those for estimates from spatial lag models that match the DGP arising from the
presence of omitted variables in the face of spatial dependence.

We begin with the DGP (9) which we repeat in (20). In (21) we substitute in
x for H.�/v as we condition upon x in this analysis. We introduce the identity
G.�/G�1.�/ in (22), rearrange terms in (23) using the linearity of G�1.�/ D In �
�W , and arrive at the final expression in (24).

y D F.˛/H.�/vˇ C F.˛/G.�/H.�/vy C F .˛/G.�/u (20)

y D F.˛/xˇ C F.˛/G.�/xy C F.˛/G.�/u (21)
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Table 1 Mean Ǒ
o and E

� Ǒ
o

�
as function of spatial dependence .ˇ D 0:75; � D 0:25/

Case Parameter Empirical Theoretical

� � ˛ Mean Ǒ
o E. Ǒ

o/

1 0.0000 0.0000 0.0000 1.0020 1.0000
2 0.4000 0.0000 0.0000 0.9999 1.0000
3 0.8000 0.0000 0.0000 0.9993 1.0000
4 0.0000 0.0000 0.4000 1.0382 1.0376
5 0.4000 0.0000 0.4000 1.1366 1.1363
6 0.8000 0.0000 0.4000 1.3401 1.3438
7 0.0000 0.0000 0.8000 1.2531 1.2540
8 0.4000 0.0000 0.8000 1.6176 1.6161
9 0.8000 0.0000 0.8000 2.5559 2.5666

10 0.0000 0.4000 0.0000 1.0076 1.0094
11 0.4000 0.4000 0.0000 1.0361 1.0341
12 0.8000 0.4000 0.0000 1.0862 1.0860
13 0.0000 0.4000 0.4000 1.0604 1.0592
14 0.4000 0.4000 0.4000 1.1918 1.1915
15 0.8000 0.4000 0.4000 1.4722 1.4771
16 0.0000 0.4000 0.8000 1.3121 1.3080
17 0.4000 0.4000 0.8000 1.7348 1.7361
18 0.8000 0.4000 0.8000 2.8559 2.8723
19 0.0000 0.8000 0.0000 1.0638 1.0635
20 0.4000 0.8000 0.0000 1.1570 1.1540
21 0.8000 0.8000 0.0000 1.3897 1.3917
22 0.0000 0.8000 0.4000 1.1450 1.1458
23 0.4000 0.8000 0.4000 1.3759 1.3762
24 0.8000 0.8000 0.4000 1.9511 1.9552
25 0.0000 0.8000 0.8000 1.4952 1.5006
26 0.4000 0.8000 0.8000 2.1363 2.1475
27 0.8000 0.8000 0.8000 3.9984 4.0221

y D F.˛/G.�/G�1.�/xˇ C F.˛/G.�/xy C F.˛/G.�/u (22)

y D F.˛/G.�/xˇCF.˛/G.�/Wx .��ˇ/C F .˛/G.�/xy

C F.˛/G.�/u (23)

y D F.˛/G.�/x Œˇ C ��CF.˛/G.�/Wx Œ��ˇ�CF.˛/G.�/u (24)

We can transform the DGP in (24) to arrive at an estimation model in (26) containing
spatial lags of the dependent and independent variables, which we label the spatial
lag model (SLM).

G�1.�/F�1.˛/y D xˇ CWx‰ C � (25)

.In � �W / .In � ˛W / y D xˇ CWx‰ C � (26)

y D xˇ CWx‰ C .˛ C �/Wy � ˛�W 2y C u (27)
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For the case where there is no spatial dependence in the disturbances so that � D 0,
we have the SDM in (28).

.In � ˛W /y D xˇ CWx‰ C � (28)

y D xˇ CWx‰ C ˛Wy C u

The SLM model result in (27) points to a potential problem that has been discussed
in the spatial econometrics literature. This model specification could lead to what is
known as a label switching identification problem, if we do not impose the theoreti-
cally implied restriction on the estimated parameters ˛ and �. In part, this potential
for identification problems arises from our use the same spatial weight matrix W
in the specification for dependence in both y and x as well as the disturbances for
purposes of simplicity. Kelejian and Prucha (2007) show that in the absence of omit-
ted variables the model is identified when using the same spatial weight matrix W
for the dependent variable and disturbances, provided that the parameter ˇ D 0:

However, the absence of omitted variables in their consideration results in a sim-
pler model that does not include the two expressions containing spatial lags of the
dependent variable, .˛ C �/Wy, and �˛�W 2y.

We proceed by working with the SLM model, but assume that the restrictions
are used to avoid the potential identification problem. Unlike many restrictions, the
restrictions on label switching will not affect the value of the likelihood. Assuming
consistency of maximum likelihood estimates for the spatial lag model parame-
ters ˇ;‰; �, and ˛, these estimates from the SLM model will equal the underlying
structural parameters from the DGP in large samples (Kelejian and Prucha 1998;
Lee 2004; Mardia and Marshall 1984). In other words, the asymptotic expected
values equal the corresponding parameters in the reparameterized DGP (27), so that

E
� Q̌� D ˇC� ,E

� Q‰� D ��ˇ, E . Q�/ D �, andE . Q̨ / D ˛. There is no asymptotic

bias in estimates of ˛ and � for the SLM model that arise from omitted variables.
(This would also be true for the SDM model that would arise in cases where � D 0.)

However, the asymptotic bias in this model’s estimates for ˇ that arise from an

omitted variable is E
� Q̌� � ˇ D � . Unlike the results for OLS in (15), the bias

for the SLM does not depend on x, eliminating the influence of the parameter �
reflecting spatial dependence in the included variable x, nor does it depend on spatial
dependence in the disturbances reflected by the parameter �. Instead, the SLM has
a constant bias that depends only upon the strength of relation between the included
and omitted explanatory variables reflected by � . (The same holds true for the SDM
model which arises in the case where � D 0.)

4 Conclusion

The nature of omitted variables bias arising in OLS estimates versus spatial lag
model estimates was explored. We assumed that the DGP reflected a situation
where spatial dependence existed in the disturbances, the dependent variable, and
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the explanatory variables, and we assumed that the omitted variables were corre-
lated with the included explanatory variable. We established that spatial dependence
in the explanatory variable exacerbates the usual bias that arises when using OLS
to estimate a model relationship generated by a typical spatial econometric model
specification that includes dependence in both the disturbances as well as the
dependent variable.

Unlike the standard least-squares result for the case of omitted variables, the pres-
ence of spatial dependence magnifies conventional omitted variables bias in OLS
estimates. We derived expressions for the amplification in bias showing that this
depends on the strength of spatial dependence in the disturbances, dependent vari-
able, and explanatory variables. In contrast, we show that using spatial econometric
model specifications containing spatial lags of both the dependent and explanatory
variables (that we labeled SDM and SLM) produces estimates whose bias matches
the conventional omitted variables case. Our results provide a strong econometric
motivation for using spatial econometric model specification such as the SDM and
SLM in applied situations where the presence of omitted variables are suspected.
The theoretical results presented here also confirm conjectures made by number
of authors that omitted variables affect spatial regression methods less than OLS
(Brasington and Hite 2005; Dubin 1988; Cressie 1993).

To summarize our findings from the standpoint of a practitioner, we make the
following observations. If only the disturbances and explanatory variables exhibit
spatial dependence and there is no omitted variable that is correlated with the
included explanatory variable, OLS and spatial models should both yield similar
regression parameter estimates for large data sets (Pace 1997). This theoretical
result is interesting in light of empirical studies that continue to uncover exam-
ples where the spatial and OLS estimates differ materially in large samples. The
differential sensitivity to omitted variable bias set forth here may account for these
observed differences between least-squares and spatial regression estimates reported
in applied work. For example, Lee and Pace (2005) examined retail sales and found
that OLS estimates for the impact of store size on sales had a significant, negative
effect while the spatial model produced a positive significant estimate. In addition,
they found that spatial estimates reversed the sign of a number of other counterintu-
itive OLS parameter estimates. Similarly, Brasington and Hite (2005) in a model of
demand for environmental quality found that OLS produced positive and insignif-
icant estimates for the price of environmental quality, whereas a spatial lag model
resulted in negative and significant estimates.

Finally, the method used here may aid in understanding other spatial model spec-
ifications such as the matrix exponential, conditional autoregressions, and moving
average autoregressions in the presence of omitted variables and spatial dependence
(LeSage and Pace 2007; LeSage and Pace 2009). Related work considers the issue
of omitted variables in a spatial context using a combination of GMM and HAC esti-
mation procedure applied to models involving right-hand-side endogenous variables
(Fingelton and Le Gallo 2009).
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Topology, Dependency Tests and Estimation
Bias in Network Autoregressive Models

Steven Farber, Antonio Páez, and Erik Volz

1 Introduction

Regression analyses based on spatial datasets often display spatial autocorrela-
tion in the substantive part of the model, or residual pattern in the disturbances.
A researcher conducting investigations of a spatial dataset must be able to identify
whether this is the case, and if so, what model specification is more appropriate
for the data and problem at hand. If autocorrelation is embedded in the dependent
variable, the following spatial autoregressive (SAR) model with a spatial lag can be
used:

y D �Wy C Xˇ C ";

" � N.0; �2/: (1)

On the other hand, when there is residual pattern in the error component of the
traditional regression model, the spatial error model (SEM) can be used:

y D Xˇ C u;

u D �Wu C ";

" � N.0; �2/: (2)

In the above equations, W is the spatial weight matrix representing the structure of
the spatial relationships between observations, � is the spatial dependence parame-
ter, u is a vector of autocorrelated disturbances, and all other terms are the elements
commonly found in ordinary linear regression analysis.

The spatial models above are used in situations where the spatial structure
of a set of observations can be represented by a generalized weight matrix con-
forming to certain constraints which ensure some desirable asymptotic properties
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(Anselin 1988b). Most applications to date are concerned with the type of areal data
common in socio-economic research. Recently, in addition, there has been increased
interest in a network-based conceptualization of the weight matrix, with both
applied and technical issues receiving some attention in the literature
(Dow et al. 1982; Leenders 2002; Anselin 2003; Páez and Scott 2007). In the
network autocorrelation model, the weight matrix is a numerical representation of
the network structure, the links connecting observations in the network. It is anal-
ogous to the adjacency matrix borrowed from graph theory. In a comparison of
spatial and network weight matrices, Farber et al. (2009) provided evidence that
topological properties of real-world networks differ from those of graphs represent-
ing regular and irregular spatial systems. Further, using simulations they found that
statistical tests to identify network dependence in a model of substantive autocor-
relation were related to the topological characteristics of the networks. However
they considered only one type of model (SAR) and one type of network defini-
tion (Poisson-generated degree distribution). The main objective of this chapter
is to extend the line of research initiated by the work of Farber et al. (2009) by
investigating the properties of tests used to identify spatial error autocorrelation
in a SEM model, and by using network structures generated with an exponential
degree-distribution function.

The work reported in this chapter on the power of tests for spatial autocorrela-
tion effects draws and benefits from recent research by Smith (2009) and Mizruchi
et al. (2008) who investigated the impact of weight matrix characteristics on esti-
mation bias of the spatial dependence and regression parameters. Specifically,
Smith (2009) shows analytically that the negative bias observed in simulations
by Mizruchi et al. (2008) is a function of weight matrix density. In this chapter,
the effect of bias on the likelihood ratio test of significant spatial dependence is
investigated analytically, and the relationship between bias and network topology
is further explored through visualizations and a regression analysis of simulation
results.

The chapter is structured as follows. The relevant literature is reviewed in the
next section, followed by a description of the experimental design in Sect. 3. The
simulation results are presented graphically and discussed in Sect. 4, and further
organized and explored within a modelling framework in Sect. 5. This is followed
by concluding remarks and a discussion of outstanding issues in Sect. 6.

2 Literature Review

2.1 Monte Carlo Simulation and the Properties
of Tests for Dependence

Due to the complex functional specifications of tests for spatial dependence, ana-
lytical descriptions of test properties are difficult to obtain. In response, a rather
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voluminous collection of simulation studies has arisen as a tried and tested
method for obtaining practical guidelines regarding the properties of tests. Florax
and de Graaff (2004) provide a chronological summary of the progression of sim-
ulation studies exploring tests for spatial autocorrelation. Early on, simulation was
used to describe the properties of statistical tests of autocorrelation as applied to raw
cross-sectional data – statistics such as Moran’s Coefficient (Cliff and Ord 1973,
1975, 1981; Haining 1977, 1978) – and to model regression residuals (Bartels
and Hordijk 1977). In the late 1980s, following Anselin’s (1988a) work concern-
ing maximum likelihood estimates and their associated Lagrange Multiplier (LM)
tests, a stream of simulation studies have explored the properties, in many cases the
small sample properties, of dependence tests (Anselin and Rey 1991; Anselin 1995;
Cordy and Griffith 1993). These studies consistently conclude that the power of
tests increases with the magnitude of the spatial parameter or parameters, and with
sample size.

Simulation has long been used to explore the impact of weight matrix specifi-
cation on spatial models. Stetzer (1982) used simulation methods to determine that
weighting functions impact spatial parameter estimates, and Anselin later identi-
fied simulation methods as a means for exploring weight matrix specification in
general (Anselin 1986). Following this, simulation was used to explore the issue
of over- and under-specification of the weight matrix (Florax and Rey 1995),
and the connectivity function used to define binary weight matrices (Kelejian and
Robinson 1998). Kelejian and Robinson went one step further to quantify their test
results by regressing the observed test rejection frequencies against the characteris-
tics of the matrices used in their simulations. This technique was similarly applied
by Farber et al. (2009) and again in Sect. 5 below.

Recently, simulation has been used to explore the impact of weight matrix
topology on the network versions of SAR models. While simulation has sel-
dom been used to investigate network topology and test strengths it has in two
examples recently been used to study the impact of matrix density on estima-
tion bias, a different but related issue. Mizruchi and Neuman (2008) found an
increasing relationship between estimation bias of the dependence parameter and
network density. In their conclusions they state that topological characteristics
besides density are likely not relevant in determining bias, but they do suggest
that due diligence is necessary, and that other classes of network structures (such
as networks with different degree distribution functions) should nonetheless be
investigated.

In an attempt to explain Mizruchi and Neuman’s findings, Smith (2009) ana-
lytically investigated the relationship between estimation bias and network density.
His argument is constructed around the behaviour of the SAR and SEM likelihood
functions when the weight matrix is fully connected. In this case, the likelihood
functions are unbounded as O� decreases toward its minimum bound. It follows that
networks within the neighbourhood of the fully connected one will inherit some of
the properties of the degenerate case, namely, negative bias.
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2.2 Network Topology

Network topology is a topic that has been widely investigated in the fields of
mathematics, physics, and sociology. The geographies of networks has long been
researched within the spatial sciences (Kansky 1963; Haggett and Chorly 1970) but
the relationship between network topology and spatial econometric models is only
now coming into focus. Recently, with the increase in size of real world networks
that can be analyzed, statistical descriptions of network attributes have become
necessary to obtain detailed information about connectivity that can no longer be
obtained from visualization techniques (Newman 2003). A number of methods have
been devised to gain a statistical description of large complex networks. Given such
a statistical description, it is possible to investigate the effects of network topology
on the behaviour of models such as those discussed in this chapter.

Among the different properties of networks discussed by Newman (2003,
pp. 180–196), two measures of network topology have been singled out by recent
research as important: degree distribution and clustering (often referred to as transi-
tivity). For example, work pioneered by Barabasi regarding the degree distribution
in many large complex networks has shown that networks follow scale-free or
power-law distributions in empirical situations (e.g. Barabasi and Albert 1999).
Simultaneously, the work of Watts and colleagues has demonstrated the important
effects of clustering on network structure (e.g. Watts and Strogatz 1998).

The degree of a node in a network is the number of contacts to and from a node.
In what follows, we consider only undirected networks, so that these are equivalent
concepts. The degree distribution describes the frequency with which a randomly
chosen node from a large network will have a given degree. Empirically, a summary
measure of the degree distribution is mean degree z, defined as the average number
of connections per unit of analysis.

Clustering measures the tendency of two nodes to have common neighbours. This
property is sometimes described in the social networks literature as the probability
that the friend of my friend is also my friend – in other words, it is a measure of
transitivity in a network. Most work on clustering has focused on the small-world
problem, that is, the tendency for networks with high clustering to simultaneously
have short mean path length (i.e. the expected minimum path length between two
randomly chosen nodes in a well-connected network). But clustering can have
important affects on network topology in its own right, such as on the giant com-
ponent size of a random network (Volz 2004). We use the definition of clustering
proposed in Newman (2003). Accordingly, the clustering coefficient is given by the
proportion of triads in a network out of those which could theoretically exist (a triad
is a subset of three units, and the possible connections between them):

C D 3N�

N3

whereN� is the number of triads in the network andN3 is the number of connected
triplets of nodes. Note that in every triad there are three connected triplets.
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2.3 Behaviour of the Likelihood Ratio Test When W is Dense

In this section, the likelihood functions for SAR and OLS are used to explain the
observed negative relationship between matrix density and test strength reported by
Farber et al. (2009). Through substitution, it is possible to derive a simple formula
for the likelihood ratio test. Simulations are then used to illustrate the behaviour of
the individual components comprising the test.

Consider the SAR model where y is a spatially lagged variable:

y D �Wy C Xˇ C " (3)

Páez et al. (2008) demonstrate that the OLS estimate for ˇ, Ǒ
OLS is biased and:

E
h Ǒ

OLS

i
D .X0X/�1X0.I � �W/�1Xˇ: (4)

The well known log-likelihood function for the linear regression model is:

LOLS D �n
2

ln 2� � n

2
ln �2OLS � 1

2�2OLS

�
y � X Ǒ

OLS

�0 �
y � X Ǒ

OLS

�
: (5)

Substituting �2OLS with its conditional estimate

�2OLS D 1

n

�
y � X Ǒ

OLS

�0 �
y � X Ǒ

OLS

�
(6)

into equation (5) we obtain

LOLS D �n
2

ln 2� � n

2
� n

2
ln
1

n
� n

2
ln

h
.y � X Ǒ

OLS/
0.y � X Ǒ

OLS/
i
: (7)

Similarly, the well known log-likelihood function of the SAR model is:

LSAR D �n
2

ln 2� � n

2
�2SAR C ln jI � O�SARWj

� 1

2�2SAR

�
.I � O�SARW/ y � X Ǒ

SAR

�0 �
.I � O�SARW/ y � X Ǒ

SAR

�
:

(8)

Since

O�2SAR D 1

n

�
.I � O�SARW/ y � X Ǒ

SAR

�0 �
.I � O�SARW/ y � X Ǒ

SAR

�
(9)



34 S. Farber et al.

substituting (9) into (8) it is possible to obtain:

LSAR D �n
2

ln 2� � n

2
� n

2
ln
1

n
C ln jI � O�SARWj

� n

2
ln

��
.I � O�SARW/ y � X Ǒ

SAR

�0 �
.I � O�SARW/ y � X Ǒ

SAR

�	
:

(10)

Using (7) and (10) the likelihood-ratio test can be expressed as:

LR D 2 .LSAR � LOLS/

D 2 ln jI � O�SARWj
�n ln

��
.I � O�SARW/ y � X Ǒ

SAR

�0 �
.I � O�SARW/ y � X Ǒ

SAR

�	

Cn ln

��
y � X Ǒ

OLS

�0 �
y � X Ǒ

OLS

�	
: (11)

But (11) can be simply rewritten as

LR D 2 ln jI � O�SARWj � n ln
� O"SAR0 O"SAR

� C n ln
� O"OLS 0 O"OLS

�
: (12)

It follows from (9) that

LR D 2 ln jI � O�SARWj � n ln
�
n O�2SAR

� C n ln
�
n O�2OLS

�
(13)

Given the complex interactions embedded in each of the three terms in (13), and
the difficulties associated with probing the effect of increasing density on the test,
it is useful to proceed by illustrating the situation with a simple numerical experi-
ment. In order to do this, twenty 100 � 100 binary symmetric matrices with zeros
along the main diagonals were randomly generated while controlling for matrix
density. Density, in this case, is the number of non-zero entries divided by 9,900,
the maximum possible number of non-zero entries for a 100 � 100 weight matrix.
Matrices were constructed for each level of density between 0.05 and 0.95 in
increments of 0.05 and scaled by their largest eigenvalues to make the results compa-
rable with Smith (2009) and Mizruchi and Neuman (2008). For each matrix, 1,000
SAR models were identified using exogenously determined coefficients and ran-
domly drawn errors and covariates. The results of the numerical experiment are
shown in Table 1. As expected, the likelihood ratio score declines with increas-
ing density. It is apparent that the log-determinant term in the sixth column is
negative but approaches zero as density increases. Thus, the true cause of the
declining likelihood ratio is the decline of the third term toward the second (in
the seventh and eighth columns of Table 1). In other words, as density increases
the OLS residual variance approaches the residual variance for the SAR model,
and the two terms effectively cancel each other out. Since the log-determinant
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Table 1 Impact of matrix density on likelihood ratio

Matrix
Density

Mean 1st LR
Termb

2nd LR
Termc

3rd LR
Termd

LR

O�a (0.3) Ǒ
0 (1.8) Ǒ

1 (1.2) Ǒ
2 (1.6)

0.05 0.300 1.77 1.20 1.61 �1.26 459.52 600.84 140:06

0.10 0.300 1.81 1.20 1.60 �0.77 457.68 568.42 109:97

0.15 0.300 1.81 1.20 1.60 �0.56 457.61 544.95 86:78

0.20 0.297 1.85 1.20 1.60 �0.43 456.88 521.62 64:31

0.25 0.298 1.84 1.20 1.60 �0.36 456.40 514.20 57:44

0.30 0.299 1.79 1.20 1.61 �0.31 455.82 493.12 36:99

0.35 0.294 1.88 1.20 1.60 �0.26 455.55 487.05 31:24

0.40 0.295 1.89 1.20 1.60 �0.24 456.25 486.25 29:77

0.45 0.296 1.87 1.20 1.60 �0.21 456.13 482.41 26:07

0.50 0.292 1.92 1.20 1.60 �0.19 455.74 477.01 21:08

0.55 0.295 1.88 1.20 1.60 �0.18 455.65 471.40 15:57

0.60 0.292 1.93 1.20 1.60 �0.16 455.93 475.02 18:93

0.65 0.289 1.98 1.20 1.60 �0.15 456.38 468.65 12:12

0.70 0.293 1.94 1.20 1.60 �0.14 455.22 470.78 15:42

0.75 0.287 2.03 1.19 1.60 �0.13 456.00 464.95 8:82

0.80 0.269 2.32 1.20 1.60 �0.11 454.76 460.82 5:96

0.85 0.274 2.22 1.20 1.60 �0.11 455.85 461.84 5:89

0.90 0.237 2.85 1.20 1.60 �0.07 456.38 459.38 2:92

0.95 0.214 3.24 1.20 1.60 �0.06 456.32 458.59 2:22

aTrue values in parentheses
b2 ln jI � O�SAR W j
cn lnn O�2SAR
dn lnn O�2OLS

term is negligible, the sum of the three terms approaches zero suggesting that the
LR test will fail to reject the null hypothesis even in the presence of substantive
autocorrelation.

Interestingly, the behaviour of the third term from (13) as seen in Table 1 sug-
gests that the OLS estimate of the residual variance improves as network density
increases. In this respect, the behaviour of the autocorrelation model is rather con-
stant across the range of densities investigated but its relative advantage over the
OLS model decreases with increasing density. This is an important subtlety to recog-
nize since it attributes the behaviour of the likelihood-ratio test to the OLS estimates
of variance and not to those for the SAR model.

We can use analysis to formalize the above finding and propose a potential cause
for it. If O�2OLS is converging toward O�2SAR then from (9) and substituting (4) into (6)
we see that this implies:

�
y � X.X0X/�1X0.I � �W/�1XB

� �
�
.I � O�SARW/y � X Ǒ

SAR

�
(14)

One case for (14) arises when .I � �W/ and .I � O�SARW/ simultaneously approach
the identity matrix. Unfortunately, this cannot be the cause since .I � �W/ certainly
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does not approach I with increasing matrix density. Currently it is not apparent why
(14) holds for dense matrices and this analysis has indeed sprouted an interesting
question to be answered in the future.

Another interesting question arises when considering that extreme negative esti-
mation bias of the spatial parameter may incorrectly cause the likelihood ratio test
to reject the null hypothesis even when no real autocorrelation is present. To test for
this effect, the simulation experiment above was repeated for � D 0 and � D �0:3
(the table of results is omitted for brevity). In the first case, no Type I errors are
committed despite similar levels of bias in estimating � and the regression con-
stant at higher levels of matrix density as seen in Table 1. Furthermore, O�2OLS and
O�2SAR are very similar across all matrix densities, resulting in consistent levels of
the likelihood ratio. The fact that .I � �W/ is equal to the identity matrix when
� D 0 in conjunction with only slight levels of bias found in O�SAR is likely respon-
sible for this result. For the second case, negative bias in O�SAR might be expected
to increase the size of the likelihood-ratio. This however is not the case. Instead, as
density increases, even though estimation inflates the magnitude of estimated auto-
correlation, O�2OLS converges toward O�2SAR as before resulting in smaller and smaller
likelihood ratios.

3 Experimental Design

The above section illustrates how the different components of the likelihood ratio
test behave as network density increases toward its upper bound. In this section,
the behaviour of the likelihood ratio test is explored further. Specifically, various
additional topological properties are introduced into the simulation experiments,
including network size, degree distribution function, the mean degree of connectiv-
ity, and the clustering coefficient. Additionally, the relationship between estimation
bias and network density observed in Smith (2009) and Mizruchi et al. (2008) is
revisited with respect to the larger set of topological properties discussed herein.

3.1 Simulating Networks with Tunable Degree Distribution
and Clustering Coefficient

Given the two statistical descriptions of complex networks previously described
(degree distribution and clustering), a natural problem arises as to how to cre-
ate model networks which possess arbitrary combinations of these topologies. In
order to generate the networks, in this chapter we employ the approach developed
by Volz (2004) for generating random networks with any desired combination of
degree distribution and clustering. Such networks allow us to explore a parameter
space with potentially important implications for model behaviour. Readers seeking
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a more detailed description of the network generation process are encouraged to
read Volz (2004).

For our application, networks are generated to exhibit a range of topologies, with
both large and small levels of clustering, and degree distributions.

3.2 Monte Carlo Simulations

The Monte Carlo procedure undertaken commences with the creation of a simulated
social network with known degree distribution function, clustering coefficient, and
sample size. The domain of networks investigated herein can be described as the set
of quadruplets:

Nets D f.s; z; c; f /g
s 2 f100; 500; 1000g;
z 2 f1:5; 3:5; 5:5; 7:5g;
c 2 f0:2; 0:3; 0:4; 0:5; 0:6; 0:7g;
f 2 fpoisson; exponentialg

where s is the sample size, z is the mean of the degree distribution function with
functional form f , and c is the clustering coefficient. In comparison to the wide
range of densities explored in Sect. 2, the networks generated in the simulation study
all have densities between 0.1% and 8%. This limits the scope of analysis to net-
works with densities comparable to geographic adjacency configurations (Farber
and Páez 2009) and a possible direction for future research is to repeat this analysis
on a range of densities approximating dense real-world networks and beyond into
the theoretically achievable ranges of high density networks in Table 1. A further
note about the range of variables tested is that different levels of mean degree imply
different levels of network density depending on the total network size. For exam-
ple when N D 100 nodes, a mean degree of 7.5 implies a network density of 0.076
versus 0.0076 for N D 1;000. Empirically we can imagine some types of networks,
such as networks of immediate family relationships, which naturally decrease in
density as the number of families in the network increases. In this respect, the mean
degree can be thought of as an attribute of the linking function for the network
which is invariant under network size. It is important to remark that for a given
degree function the density will vary with different network sizes. At this point, the
impact of scale effects can only be guessed at since the relationship between mean
degree and density prevents the extrapolation of the results to topological properties
beyond the range explicitly considered here.

Networks in this study were generated using the Poisson distribution,

pk D zke�z .kŠ/�1 ; for k � 0;
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and the discretized exponential distribution:

pk D
Z kC1

k

.1=	/ e�t= 	dt

D
�
1 � e�1= 	� e�k= 	; for k � 0

where the mean of the distribution, z, equals 1=	.
According to Volz (2004), the Poisson and Exponential distributions are com-

monly employed in network simulations. For this reason, these two distributions are
incorporated into his network generation algorithm. Previous work has considered
only the Poisson distribution, and this choice can help clarify whether other distri-
butions have similar impacts or not. If the selection of the distribution turns out to
have an impact, that would provide evidence that the mean degree by itself may not
be a sufficient indicator to assess potential loss of power in tests and bias in estima-
tion, and that more complete descriptions of the distribution implicit in matrix W
would be appropriate in empirical settings. Also, an avenue for further research is
to consider other distributions such as power-law and log-normal distributions that
are mentioned in the social networks literature. In total 144 networks were used in
the experiments:

jNetsj D jsj � jcj � jzj � jf j D 3 � 4 � 6 � 2 D 144

The next step in the experiment is to generate regression data with known amounts
of network autocorrelation for each of the synthetic networks. The weight matri-
ces are row-standardized so as to constrain the identifiable range of the spatial
dependence parameter to Œ�1=!; 1� where ! is the largest positive eigenvalue of
matrix W. In all, twelve levels of network dependence are investigated using the
following levels of � 2 f0; 0:01; 0:05; 0:10; 0:15; 0:20; 0:25; 0:30; 0:35; 0:40; 0:45;
0:50g. This range was selected because it reflects both the dominance in empiri-
cal settings of positive autocorrelation while also allowing for the testing of Type
I errors. Moreover, likelihood ratio tests assume nearly perfect power when the
true spatial dependence parameter is larger than 0.5 (Farber et al. 2009). The data
generation process relies on random number draws to construct the error vector
" � N.0; 1/ and the matrix of independent variables which includes a constant
term and two random variables drawn from a uniform distribution over the range
[2,5]. The dependent variable is then computed with known � (drawn from the set
of possible values given above) and ˇ, by solving (1) and (2) for y as follows:

SAR Model W y D .I � �W/�1.XB C "/

SEM Model W y D XB C .I � �W/�1"

Following data generation, the model is estimated using LeSage’s Spatial-
Econometrics Toolbox for Matlab and all relevant results are stored for analysis



Topology, Dependency Tests and Estimation Bias in Network Autoregressive Models 39

(LeSage 1999). Repeating this process 1,000 times for each combination of � and W
provides us with reliable estimates of estimation bias and rejection frequencies of a
variety of statistical tests of network dependence.

The tests considered herein are based on the principles of maximum likelihood
and are used to assess the presence of network autocorrelation in the dependent
variable (for the SAR model) or the error vector (in the case of the SEM model).
Given either of these models, the null hypothesis of zero autocorrelation is H0 W
� D 0 while the alternative hypothesis is Ha W � ¤ 0. Under the null condition both
the SAR and SEM models are reduced to the standard linear regression model. The
most frequently used tests of this type generally fall into three categories (likelihood
ratio, Wald tests, and Lagrange multipliers). They have been shown to converge
asymptotically, and previous experiments indicate that the differences between the
tests within the domain of values used here are negligible (Farber et al. 2009). Thus,
for sake of simplicity and brevity, only the likelihood ratio test is reported in this
chapter.

The LR test statistic is �2 distributed with one degree of freedom so the null
hypothesis of no network dependence is rejected at the 95% confidence level when
LR > 3:841. The power of the test can thus be quantified as the test rejection
frequency for each combination of weight matrix and exogenously determined level
of autocorrelation.

4 Simulation Results

The Monte Carlo simulations provide measures of mean estimates for the regression
parameters, estimation bias, and rejection frequency of the likelihood ratio test for
each model and network/rho combination. Each of these vectors of results will be
analyzed graphically or modeled statistically.

4.1 Likelihood Ratio Tests

To complement previous work on power of tests and network topology (Farber
et al. 2009), the analysis is extended to networks generated with an exponen-
tial degree distribution function and to the SEM specification. Figure 1 shows the
average likelihood ratio rejection frequencies for each combination of model and
network type over different values of �. Generally, it can be seen that the LR test
is much more powerful when testing for dependence in a SAR model compared
to a SEM model (coinciding with previous findings (Anselin 1995)) and is more
powerful given the exponential networks as compared to the Poisson networks.
Interestingly, on average the test achieves an 80% rejection frequency at � D 0:25

for the SEM models and at values between 0.05 and 0.1 for the SAR models. The
rejection frequencies used to produce Fig. 1 are for networks of varying sizes, degree
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Fig. 1 LR test rejection frequency for difference levels of spatial dependence

distributions and clustering coefficients; therefore they mask all of the variation of
test strength with respect to network topology and merely illustrate the most general
of relationships between test strength, model specification and degree distribution
function.

4.2 Power of Test and Sample Size

Figure 2 shows the difference in rejection frequency for networks with 100 versus
1,000 observations. Generally, the four curves have a similar shape indicating that
sample size affects the rejection frequency most negatively in the middle of the
autocorrelation range and most negligibly near � D 0 and � D 0:5. The figure
suggests that the LR test for error correlation is the most severely affected by small
sample size. Rejection rates for networks with 100 observations are up to 80 per-
centage points lower than for networks with 1,000 observations in the case of SEM
while only up to 45 points lower for SAR models. The results also suggest that the
SAR model with exponential networks is practically immune to the effects of small
sample size for � > 0:1.

Figure 3 illustrates directly how sample size impacts the SEM rejection rate
curves. For networks with 1,000 observations, the trajectory of the curve is steeply
positive in the range of 0.05 and 0.15, indicating that the test becomes very pow-
erful very quickly in the lower range of �. However, the rate of increase is less
pronounced and smoother for the smaller networks with no sharp increases in test
strength. Clearly practitioners using the SEM model on a small dataset should be
weary of the limited test strength (in the lower range of simulated �’s) and should
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Fig. 2 The impact of sample size on rejection frequency

Fig. 3 Rejection frequency curves for two different sample sizes

not necessarily draw strong conclusions if their test for error autocorrelation fails to
reject the null hypothesis.

4.3 Power of Test, Mean Degree and Sample Size

Previous results suggest that degree distribution is a significant factor in determin-
ing the power of tests (Farber et al. 2009). Moreover, the higher the ratio of mean
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Fig. 4 The impact of mean degree on small networks

Fig. 5 The impact of mean degree on large networks

degree to sample size, the denser the weight matrix and the weaker the power. The
key question is how much so. Figures 4 and 5 show the differences in test power
between networks with the largest and smallest mean degree and sample size. Inter-
estingly, the figures suggest that sample size and mean degree interact and impact
test strength in a variety of ways. The first observation is that the power of the LR test
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for SAR models on networks with exponentially distributed degrees is quite robust
to changes in mean degree except for 0:01 < � < 0:1. The LR test for the SAR
model using a Poisson distributed degree function appears to be the most sensitive to
increases in mean degree, especially in the range of 0:01 < � < 0:3 when the test is
at least 30 and up to 90 percentage points weaker in more connected networks. The
shapes of the curves for the SEM specifications differ substantially to those for the
SAR specifications. While the SEM-Poisson combination produces slightly weaker
LR strengths than the SEM-Exponential tests, the most striking observation is that
both SEM curves are right-shifted indicating a relative immunity to mean degree in
the lower ranges of �, and a vulnerability to degree in the higher investigated ranges
of the spatial parameter (0:2 < � < 0:5).

The curves in Fig. 5 can be used to determine the degree to which increasing
sample size mitigates the impact of mean degree on test strength. Since increasing
sample size decreases weight matrix density for any given mean degree, we expect
to find the curves in Fig. 5 to be flatter than those in Fig. 4. It is clearly seen that
the effect of increasing sample size is an overall scale reduction in test weakness
and a left-shift of the curves’ minima. While the curves in Fig. 4 appear clustered
by model specification (SEM versus SAR curves), those in Fig. 5 either appear clus-
tered by degree distribution function (Poisson versus exponential) or not clustered at
all; specifically, the test strengths on Poisson networks are more negatively impacted
by mean degree than for exponential networks.

4.4 Power of Test and Clustering

Results from Farber et al. (2009) indicate that the clustering coefficient, a mea-
sure of overall transitivity, does not impact test strength for SAR models using a
Poisson degree distribution function. As seen in Fig. 6, the impact of clustering is

Fig. 6 The impact of clustering on rejection frequency
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negligible on SAR models with both distribution function specifications. Whereas
clustering does not have a discernable impact on tests for SAR dependence, there
does seem to be a weak positive relationship between clustering and test strength
for SEM dependence. To date there are no analytically driven results that would
predict these simulation results, and these observations necessitate the investiga-
tion of the likelihood functions with respect to clustering before they can be fully
understood.

4.5 Power of Test and Matrix Density

Recent work has identified matrix density to be an important determinant of esti-
mation bias in spatial and network regression models (Smith 2009). Given a binary
weight matrix W of size n x n, density is calculated as:

D D
P

i

P
j wij

n.n � 1/

which is simply the sum of all the entries divided by the total number of possible
entries.

Figure 7 shows the relationship between average test power and matrix density
for each combination of model and degree distribution function. Each data point on

Fig. 7 The impact of matrix density on rejection frequency
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the vertical axis is the LR rejection rate averaged over all � and C for each sam-
ple size and mean degree. The data points are clustered along the horizontal access
due to the three disjoint sample-sizes used in the simulations. It appears that test
strength generally declined with matrix density for all four data series. In support
of the findings above, the LR tests are strongest for the SAR-exponential case and
are quite insensitive to changes in matrix density. While the curve for SAR-Poisson
is shifted upward from the SEM curves, the average rate of decline among the three
curves appears to be equivalent. Notice that the exponential matrices contain fewer
highly connected nodes in comparison to their Poisson distributed counterparts with
similar mean degree and this may be one reason for improved LR test strengths for
exponential network specifications.

4.6 Estimation Bias

Theoretically, one would expect the likelihood ratio tests to fail to reject the null
hypothesis when the estimated � parameter is downward biased, as was shown
to occur in dense networks by Smith (2009) and Mizruchi and Neuman (2008).
However, neither Smith nor Mizruchi and Neuman investigate the possible impact
of network structure (besides link density) on estimation bias. In this section we
explore the simulation results to verify the previous findings regarding network
density, and extend the frontier by investigating the impact of other topological
properties.

In this context, the mean bias of the estimate for a given network and model
specification is defined as:

PR
r . O�r � �/
R

;

where r is an iteration index, R is the total number of iterations (1,000 in our
experiments), � is the true network dependence parameter, and O�r is the estimated
dependence parameter in iteration r .

To begin, Fig. 8 displays the average mean bias for each level of � and combi-
nation of model/network specification. In concordance with previously published
results, the amount of negative estimation bias increases with � (Mizruchi and
Neuman 2008). This indicates that bias is a decreasing function of the spatial depen-
dence parameter (at least in the range of parameters tested). Interestingly, the SEM
estimates are far more biased than the SAR estimates which on average show a
very weak negative bias. Theoretically, both the SEM and SAR estimates should be
unbiased when using a properly specified weight matrix. In an effort to explore its
possible causes, estimation bias is investigated with respect to the same topological
properties used to explore LR test strength above.
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Fig. 8 Dependence parameter estimation bias for different levels of dependence

Fig. 9 The impact of sample size on dependence parameter estimation bias

4.7 Estimation Bias and Sample Size

The difference in estimation bias between the largest and smallest networks is dis-
played in Fig. 9. The figure shows that bias is not impacted by sample size for the
SAR-exponential iterations. However, for the SAR-Poisson models the bias differ-
ence increases with � until 0.4 and then starts to decrease slightly. This indicates that
as � increases the bias-reducing impact of increasing sample size gets stronger. This
is true in general for both SEM specifications as well, however the inflection points
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occur slightly earlier at � D 0:35. The fact that increasing sample size reduces
bias is not surprising since the strength of most statistical tests increases with sam-
ple size. Additionally however, bias is known to increase with density, which is
inversely related to sample size. So in this specific case, it is difficult to separate and
differentiate between the effects of increasing sample size and decreasing matrix
density (see below for more). The fact that the impact of sample-size varies with �
is difficult to explain and suggests that bias is functionally related to an interacting
term containing sample-size and dependence.

4.8 Estimation Bias and Mean Degree Distribution

Figure 10 illustrates the impact of mean degree on estimation bias for the dif-
ferent levels of dependence. The trends for the different specifications are quite
unique. As before, estimates for the SAR-exponential specification seem immune
to degree distribution. On the other hand, the impact of high mean degree on
the SAR-Poisson estimates grows more negative with increasing dependence up
to � D 0:45 at which point the trend seems to reverse. The impact on SEM-
exponential estimates decreases consistently with increasing dependence, while the
impact on SEM-Poisson estimates is erratic for � < 0:2 and then decreases smoothly
with increasing dependence. As before, it is not surprising that bias is negatively
impacted by increasing mean degree; however the interaction between mean degree
and dependence is puzzling.

Fig. 10 The impact of mean degree on dependence parameter estimation bias
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Fig. 11 The effect of clustering on dependence parameter estimation bias

4.9 Estimation Bias and Clustering Coefficient

Figure 11 shows the mean estimation bias for each combination of � and C ,
averaging over all sample sizes and mean degrees. The figure clearly shows that
while bias increases with autocorrelation, the scale of bias decreases with increas-
ing clustering. Moreover, the impact of clustering on estimation bias appears to
be far more pronounced than that on LR test rejection above (Fig. 6), indicating
that density is not necessarily the only relevant topological characteristic. While
the impact of clustering seems to be strongly positive on both SEM specifica-
tions, it is only mildly effective and seemingly ineffective on the SAR-Poisson and
SAR-exponential specifications respectively.

4.10 Estimation Bias and Matrix Density

The impact of matrix density on estimation bias is shown in Fig. 12. Each charted
observation corresponds to the mean matrix density and estimation bias for each
combination of sample size and degree distribution. This was done to simplify
the chart especially since matrix density does not vary with � and only varies
slightly with clustering. As expected, the chart confirms previous results by indi-
cating that weight matrix density increases estimation bias, except in the case of
SAR-exponential, which does not seem to be impacted by matrix density. While
Mizruchi and Neuman’s findings that network density introduces bias in the esti-
mates of � are confirmed by the experiments herein, other topological properties
also seem relevant to the bias discussion. Of course, if density causes bias, then
so would degree distribution and sample size since they are functionally related
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Fig. 12 The relationship between matrix density and estimation bias

properties. But the relationship between bias and network clustering displayed in
Fig. 11 is unrelated to density and suggests that the causes of bias are related to
topology in a more complex manner than previously suggested.

5 Regression Analysis

5.1 Logistic Regression for LR Test Results

Table 2 contains the results from a series of simple logistic regression models used
to explore the relative influence of the various topological properties on LR rejection
frequency. A separate regression is calibrated for each model type and degree dis-
tribution function in order to capture the heterogeneities between cases as observed
in Sect. 4. In each case, the dependent variable is the frequency of LR test rejections
over 1,000 trials. The purpose of the regressions is to organize the vast amount of
simulation results into a parsimoniously defined functional relationship between LR
rejection frequency and the topology of the networks. A linear model is a simple way
to quantify and compare the impact of the various topological factors investigated
herein. In order to allow for non-linear relationships, the topological characteris-
tics of the networks, namely size, mean degree, and clustering, have been coded
into dummy variables representing each factor level. While not displayed for the
sake of brevity, several other model specifications were experimented with before
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settling with the ones in Table 2. In particular, sample-size and mean degree were
replaced by the continuous measure of network density. Also, the dummy variables
representing different levels of the clustering coefficient were replaced with the con-
tinuous measure of actual achieved clustering. In both cases, the signs and scales of
the continuous variables were commensurate with the results in Table 2, however the
model-fits did decrease slightly, and the imposition of the linearity constraint associ-
ated with the use of a single continuous variable was unfavourable. Furthermore, the

Table 2 Results of rejection frequency logistic regression

SAR-Poisson SAR-Exponential

b t B t

Constant -4.12 �166:1 -4.24 �165:5
Sample size
n D 100 Reference
n D 500 2.46 178:8 1.76 88:3

n D 1000 3.18 209:3 2.23 112:3

Mean degree
z D 1:5 Reference
z D 3:5 -1.15 �69:0 -0.26 �1:7E C 07

z D 5:5 -3.11 �171:1 -0.62 �35:2
z D 7:5 -4.06 �214:9 -0.80 �45:1
Clustering coefficient
c D 0:2 Reference
c D 0:3 -0.26 �15:2 0.03 2:2E C 06

c D 0:4 -0.23 �13:5 0.06 3:8E C 06

c D 0:5 -0.14 �8:2 0.09 6:0E C 06

c D 0:6 0.08 4:9 0.02 1:1E C 06

c D 0:7 -0.14 �8:2 0.01 8:7E C 05

Lag strength
� D 0:00 Reference
� D 0:01 0.95 41:3 1.70 86:2

� D 0:05 4.51 195:7 5.92 235:0

� D 0:10 6.50 251:4 10.54 96:0

� D 0:15 7.71 268:2 39.19 2168:9

� D 0:20 8.40 274:5 39.19 2168:9

� D 0:25 9.02 276:2 39.19 2168:9

� D 0:30 9.67 270:5 39.19 2168:9

� D 0:35 10.38 251:4 39.19 2168:9

� D 0:40 11.18 215:0 39.19 2168:9

� D 0:45 12.12 163:3 39.19 2168:9

� D 0:50 13.16 111:3 39.19 2168:9

Summary statistics
Deviance 40949.0 9263.1
Pseudo-R2 0.9765 0.9938
SSE 2.8605 0.5747

(continued)
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Table 2 (continued)

SEM-Poisson SEM-Exponential

B t B t

Constant -5.92 �242:8 -6.47 �258:3
Sample size
n D 100

n D 500 3.05 266:2 2.97 253:6

n D 1000 4.02 308:0 3.96 296:2

Mean degree
z D 1:5

z D 3:5 -0.6 �51:4 -0.36 �32:8
z D 5:5 -1.26 �112:4 -0.78 �70:3
z D 7:5 -1.81 �158:4 -0.73 �65:6
Clustering coefficient
c D 0:2

c D 0:3 0.07 5:4 0.43 32:9

c D 0:4 0.16 12:4 0.55 41:6

c D 0:5 0.36 27:3 0.76 57:2

c D 0:6 0.50 37:8 0.82 61:4

c D 0:7 0.52 39:5 0.84 62:6

Lag strength
� D 0:00

� D 0:01 -0.01 �0:2 0.05 1:8

� D 0:05 1.29 56:4 1.28 56:9

� D 0:10 3.06 141:2 3.06 143:1

� D 0:15 4.54 202:8 4.62 206:6

� D 0:20 5.58 237:9 5.67 240:6

� D 0:25 6.35 260:0 6.37 261:1

� D 0:30 6.94 275:0 6.93 275:6

� D 0:35 7.51 286:4 7.51 286:2

� D 0:40 8.07 293:0 8.13 289:3

� D 0:45 8.57 292:9 8.73 281:2

� D 0:50 9.10 284:7 9.39 258:8

Summary statistics
Deviance 29271.0 32195.0
Pseudo-R2 0.9887 0.9845
SSE 1.6064 2.192

binary nature of the final set of variables displayed in Table 2 allows for the direct
interpretation and comparison of coefficients. The unfortunate functional relation-
ship, densityD N� (mean degree)/(N � N–N), obviates the possibility to include
these three variables simultaneously into a regression model without introducing
high levels of multicolinearity. To this end, including the two terms (size and degree)
was an appropriate way to model the rejection frequencies although it does inhibit
the ability to estimate the impact of density directly.
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All of the coefficients in all the models are significant with a very high degree
of confidence as indicated by their associated t-values. It is noteworthy that such a
high level of significance is achieved in part due to the extremely large sample size.
One thousand repetitions for each of the 72 networks (per model and distribution
function) and 12 levels of rho results in an overall sample size of 864,000 observa-
tions. Given such a large sample size it becomes necessary to use the t-values as a
relative measure of significance between coefficients. In this way it becomes quite
clear that the coefficients for clustering are the least reliable, and caution should
be used when drawing conclusions based on them.1 As an interesting side-note,
the replacement of the clustering dummy variables with a single continuous vari-
able produced a similarly low t-value for the clustering variable. Conversely, the
single continuous density measure obtained an extremely high t-value when it
replaced the sample size and mean degree variables in Table 2.

The coefficients themselves can be used to judge the relative influence of each
variable on the rejection frequency. In all the models, the level of dependence
obtains the highest regression coefficients. This confirms the above visual analy-
sis whereby rejection frequency uniformly increased with the size of �. It is also
important to observe the diminishing rate of increase of the regression coefficients
as � increases. This indicates that the relationship between dependence level and LR
rejection frequency is non-linear, an important finding that can be used in the future
to validate analytical attempts at exploring the likelihood-ratio. Comparing the coef-
ficients between the models, we observe that influence of dependence is stronger in
the SAR models than in the SEM specifications.

Following dependence, sample size and degree distribution are the next most
influential factors. Sample size seems to be a consistently strong positive influence
on test-strength. Mean degree on the other hand has a negative influence, but its
impact is for more pronounced in the Poisson cases, and especially in the SAR-
Poisson case. It is difficult to determine exactly why this is, but the differences may
be derived from the differences between the shapes of the distribution density func-
tions. In particular, the Poisson distribution is more concentrated around its mean
so most nodes obtain the mean number of connections. The exponential distribu-
tion is more dispersed and positively skewed, with most nodes obtaining a small
number of connections, and some obtaining a very large number. The net effect is
that for a given mean-degree and sample size, the simulated Poisson networks are
more connected than the exponential ones. This might explain why mean-degree
has a stronger influence on the Poisson networks than on the exponential ones. The
models achieve a very high pseudo-R2, an indication that a strong linear relation-
ship exists between the observed and estimated rejection probabilities as seen in
the scatterplots in Fig. 13. A second summary statistic, the sum of squared errors
(SSE) is useful in comparing the strength of the models’ fit. Considering that the

1 The visualizations in Sect. 4 indicate that the LR test for SAR-exponential is extremely strong,
even for quite small values of dependence. This would explain the extremely high coefficients on
the dependence parameters, and perhaps the extremely significant but extremely small coefficients
for clustering.
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Fig. 13 Goodness of fit scatterplots

range of observed values for the four regressions is [0,1], the SSE indicates that
the logistic model for SAR-exponential achieves the closest overall fit, followed by
SEM-Poisson, SEM-Exponential, and SAR-Poisson. It is difficult to interpret why
the models achieve the different levels of fit that they do, but it does appear that
fit is related to the number of observed values at the extremes of the range [0,1].
The scatterplots also show evidence of overestimation near LR D 0 and LR D 1

and underestimation within the middle of the range. However, since the main focus
of these logistic regressions is not predictive but explanatory, this pattern of over-
and underestimation while noteworthy does not invalidate inferences drawn about
topological characteristics from the regression coefficients.

6 Conclusions

This chapter expanded on previous work investigating the role of network topology
on estimating network autocorrelation models and statistical tests of dependence.
The work reported here benefits from recent research that includes advances in both



54 S. Farber et al.

analytical work and simulation studies. In this spirit, this chapter investigates the
power of the likelihood ratio test for network dependence both analytically and
with numerical simulations. The results of the two analyses are confirmatory in
the sense that they are mutually supportive of the hypothesis regarding the negative
relationship between test power and network density.

As part of the simulation study herein, the power of LR tests and estimation bias
of SAR and SEM models were visualized with respect to three network sizes, two
degree distribution functions, four levels of mean degree, six levels of clustering and
twelve levels of autocorrelation used in the data generation process. General patterns
of relationships between the factors were exposed through a series of visualizations
and then organized in a logistic regression analysis.

For all model specifications, the level of network dependence indicated by � is
the most significant factor in predicting the power of the LR test – and test strength is
shown to increase with �. The visualizations illustrate how the rate of increase of test
power with respect to � is non-linear and that tests for SAR models achieve higher
power levels at lower levels of dependence as compared to SEM models. Similarly,
tests on networks with exponential degree distributions are stronger than those with
Poisson distributions, but this effect is far more pronounced in the case of SAR.
A potential avenue for future research is to show analytically via an investigation
of the LR statistics for SAR and SEM why � has a stronger positive effect on test
strength in the SAR cases.

Second to the level of dependence are the combined effects of network size and
mean degree. These factors while analyzed independently jointly define the concept
of matrix density. Besides the SAR-exponential case which achieves almost perfect
test strength in all of the simulations, the impacts of size and mean degree on test
strength are very strong. For example, the SAR-Poisson test can be 90% stronger in
networks with 1,000 nodes versus 100 and 70% stronger in loosely connected net-
works versus those with a mean degree of 7.5. When analyzed jointly, density has
a very strong and negative impact on rejection frequency. While the range of net-
work densities tested herein is quite small (roughly [0.01,0.075]) compared to other
studies, the impact on test strength is very evident for all of the model formulations.
Generally, network density more negatively impacts the SEM models with rejection
frequencies ranging from 70 to 30% within the range of densities tested.

Third, the impact of clustering, while found to be significant in the logistic regres-
sion, is clearly not as influential as the other factors in determining test power. At
this time, since clustering is unrelated to network density, there is still no analyti-
cal evidence that explains why clustering should have any impact on test power at
all, so the particular pattern observed of increased power with increasing clustering
is puzzling. We do know that highly clustered networks typically contain a higher
frequency of isolated subgroups of nodes within the network and consequently a
smaller giant component size. Investigating if this might be playing a role in the
estimation of SAR or SEM models is a potentially rewarding future research avenue.

In addition to LR test power, in response to the recent evidence in the literature
of estimation bias in models with dense weight matrices, we graphically illustrated
the relationship between bias and the various topological properties of networks
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discussed above. Our findings are generally supportive of other research – primarily
that bias increases with density – however the images in Sect. 4 clearly illustrate
that this relationship is non-linear, and that the various topological characteristics
interact to produce complex effects. Moreover, for the first time, clustering has been
shown to reduce the level of bias in the estimate. Again, future research is required
to further current understanding of this issue.

Finally, the last contribution of this chapter was to illustrate analytically why the
strength of the LR test diminishes with increasing network density. The argument
helps to identify the behaviour of the various terms which constitute the likeli-
hood ratio with respect to changes in network density. Future work to solidify the
argument into a formal proof and to extend the analysis to SEM specifications and
specifications based on various levels of network clustering is needed.

The experiments in this chapter clearly illustrate that the topology of the network
represented by matrix W used in autocorrelation models will impact the power of
commonly used statistical tests and the accuracy of maximum-likelihood estimates.
One of the general results found in the chapter is that bias and LR strength are worse
for Poisson distributed networks than the exponential networks even when density
is held constant. This may be attributed to the nature of the degree distributions. Of
particular relevance to our study is that for a given mean (and therefore density),
a higher frequency of low-degree nodes are generated in the exponential networks,
suggesting that the distribution of the amount of network influence (i.e. the number
of neighbours associated with each point) has some influence in determining how
topology effects estimation bias and test strength.2 Since the distribution function
is found to be an active factor it is now clear that mean degree and network density
are not the only relevant descriptors of matrix W and other commonly used degree-
distributions, such as the power-law distribution, should be thoroughly investigated.

A second general finding in need of an explanation is the prevalence for more bias
and weaker test strengths in SEM specifications as compared to SAR models. While
neither SEM nor SAR estimates of ˇ should be biased when the true W matrix is
used, we know from (4) that OLS estimates for a SAR process are biased while
those for SEM processes are not. This suggests that OLS achieves better estimation
results for SEM processes. But, since the likelihood ratio is a function of the relative
strength of the spatial model over OLS estimation, it follows that the LR test may
generally be weaker in a SEM context as compared to a SAR context. A thorough
analysis with the aid of some simulations will help solidify this argument in the
future. Interestingly, while Smith (2009) shows that both SAR and SEM estimates
of � are biased when W is dense, we still do not know why the SEM estimates
appear to be more biased than SAR estimates and how this effects the power of the
likelihood ratio test.

The implications of the findings regarding the likelihood ratio test in this research
are twofold. First, practitioners utilizing network autocorrelation models in their
research are advised to compare the topological characteristics of their networks

2 We are grateful to the anonymous reviewer who brought this interpretation to our attention.
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with those investigated herein. For if they find themselves using dense and less
clustered networks they may incorrectly fail to observe significant autocorrelation
even if the dependence does truly exist. Second, the chapter advances the theoretical
knowledge of the factors influencing the likelihood ratio test since it is shown for
the first time that it varies with respect to the degree of clustering and the degree
distribution function specification in addition to sample-size and degree of connec-
tivity. While the research in this chapter was focused on illustrating the existence of
network topology effects, more research is needed in order to better understand why
network composition, namely clustering and distribution function specification are
related to both the likelihood ratio test and the bias in estimating the dependence
parameter.
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Endogeneity in a Spatial Context:
Properties of Estimators

Bernard Fingleton and Julie Le Gallo

1 Introduction

Endogeneity is a pervasive problem in applied econometrics, and this is no less true
in spatial econometrics. However, while the appropriate treatment and estimation of
the endogenous spatial lag has received a good deal of attention (Cliff and Ord 1981;
Upton and Fingleton 1985; Anselin 1988, 2006), the analysis of the effects of other
endogenous variables has been rather neglected so far.

Nevertheless, it is known that the consistent estimation of spatial lag models with
additional endogenous variables is straightforward since it can be accomplished by
two-stage least squares, with the lower orders of the spatial lags of the exogenous
variables as instruments (see Anselin and Lozano-Gracia 2008; Dall’erba and Le
Gallo 2008 for applications of this procedure). In addition, the case of endoge-
nous variables and a spatial error process has been considered by Kelejian and
Prucha (2004). Their paper generalizes the Kelejian and Prucha (1998) feasible gen-
eralized spatial two-stage least squares estimator to allow for additional endogenous
variables on the right hand side when there is an explicit set of simultaneous equa-
tions. Kelejian and Prucha (2007) consider a general spatial regression model that
allows for endogenous regressors, their spatial lags, as well as exogenous regres-
sors, emphasizing that their model may, in particular, represent the i th equation of a
simultaneous system of equations, but also mentioning its applicability to endogene-
ity in general. Fingleton and Le Gallo (2008a, b) develop the approach to consider
endogeneity from various sources with either autoregressive or moving average
error processes. However, there are certain specific aspects of spatial economet-
rics that lead to a somewhat different treatment of the endogeneity problem and its
solution. In this chapter, we outline the problem in the spatial context, focusing on
the relative impact of different sources of endogeneity. In particular, we focus on
endogeneity and hence the inconsistency of the usual OLS estimators induced by
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omitting a significant variable that should be in the regression model but which is
unmeasured and hence is present in the residual. We also consider simultaneity and
errors-in-variables.

The outline of the chapter is as follows. The next section describes the main
sources of inconsistency considered in this chapter, namely omitted variables, simul-
taneity and measurement error. Also, we consider the particular case of omitted
variables in a spatial context. Then, we perform the Monte-Carlo simulations aimed
at analyzing the performance of a spatial Durbin model as a potential remedy for
bias and inconsistency. The last section concludes.

2 Endogeneity and Spatial Econometric Models

We begin with a brief summary of the three sources of inconsistency considered
in this chapter: simultaneity, omitted variable(s), and errors-in-variables (measure-
ment error). We exclude the fourth source, namely the inclusion in a time series
model of a lagged dependent variable as an explanatory variable where there is
serial correlation in the disturbances. In each case, the source of the inconsistency
is an inappropriate application of the usual OLS estimating equation. Consider for
instance the case of a simple linear regression: Yi D b0 C b1Xi C ei , where ei is the
error term with the usual properties. The OLS estimate of the coefficient b1 is:

Ob1 D

nP
iD1

.Xi � NX/.Yi � NY /
nP
iD1

.Xi � NX/2
D Cov.Xi ; Yi /

Var.Xi /
(1)

where NX D �Pn
iD1 Xi

�
=n, NY D �Pn

iD1 Yi
�
=n and n is the sample size.

It is easy to show that this leads to:

Ob1 D b1 C Cov .Xi ; ei /

Var .Xi /
(2)

and that the consistency of the OLS estimator relies on the assumption that
Cov .Xi ; ei / D 0, a condition that is violated under the four sources of endogene-
ity mentioned above. As a very simple example of simultaneity, consider the two
variable system: (

Yi D b1Xi C ei

Xi D �1Yi C vi
(3)

Simply estimating Yi D b1Xi C ei by OLS leads to Cov .Xi ; ei / ¤ 0, since:

Yi D b1vi C ei

1 � b1�1
and Xi D �1ei C vi

1 � b1�1
(4)
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and hence X is correlated with e.
In the case of error-in-variables, suppose that the explanatory variable Xi is

measured imprecisely by QXi and we wish to estimate the true relationship Yi D
b1Xi C ei . In fact, using QXi , the true relationship becomes:

Yi D b0 C b1 QXi C �
b1

�
Xi � QXi

� C ei
�

(5)

since b1 QXi � b1 QXi D 0. Suppose we estimate Yi D b0 C b1 QXi C �i , then
the error term �i D b1

�
Xi � QXi

� C ei contains the difference
�
Xi � QXi

�
. If

Cov
� QXi;

�
Xi � QXi

�� ¤ 0 then the OLS estimator Ob1 from Yi D b0 C b1 QXi C �i is a
biased and inconsistent estimator of the true parameter b1 in Yi D b0 C b1Xi C ei .

Finally, in the case of inconsistency arising from omitted variables, consider the
true relationship Yi D b1Xi C b2Z C ei , but Z is omitted so that the estimated
equation is Yi D b1Xi C �i , where �i D b2Z C ei . If Cov .X;Z/ ¤ 0, then
Cov .X; �/ ¤ 0 and OLS is inconsistent.

One of the issues that has been raised in the recent literature has been whether an
endogenous spatial lag needs necessarily be part of a spatial model. From a theoret-
ical perspective, it has been acknowledged that the inclusion of a spatial lag is more
generally appropriate than simply modeling spatial dependence via a spatial error
process alone (see, for instance, Fingleton and López-Bazo (2006), in the context of
growth econometrics and modeling of regional convergence).

Recently, Pace and LeSage (2008) and LeSage and Pace (2008) arrive at a simi-
lar conclusion from a purely statistical perspective. Conventionally, in time series
analysis, the lagged endogenous variable is often used to capture the effects of
omitted variables. Therefore, we envisage that the presence of the endogenous lag
should help mitigate omitted variable bias in spatial regressions. They demonstrate
that when one omits a variable which has spatial dependence because it is a spa-
tial autoregressive process, and this variable is correlated with an included variable,
then the resulting data generating process is the spatial Durbin model. The spatial
Durbin is the model containing both endogenous and exogenous spatial lags, as
given by Burridge (1981):

Y D �W Y CXb CWX� C e (6)

where Y is the (n � 1) vector of observations on the dependent variable; X is an
(n�k) matrix of observations on k exogenous variables with b as the corresponding
(k � 1) vector of parameters; e is the (n � 1) vector of i:i:d . error terms; W is
a (n�n) non-stochastic spatial weights matrix, with zeros on the main diagonal and
non-negative values for Wij , i ¤ j . Conventionally,W is normalized so that rows
sum to 1. In this case, the endogenous lag

Pn
jD1 Wij Yj is the weighted average of

Yi in locations j D 1; : : :; n for which Wij > 0. The parameter � < 1 quantifies
the spatial dependence of Y on connected regions, as designated by the non-zero
elements of W .

Consider the case of the model specification Yi D b1Xi C �i in which the
error term comprises an omitted variable, so that �i D Zi where Zi is spatially
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autocorrelated. We make an initial assumption that this autocorrelation is a spatial
autoregressive process, so that, following LeSage and Pace (2008):

Z D �WZ C " (7)

and assume that "� i id �
0; �2In

�
. If we estimate Y D Xb1C�, then we are subject

to omitted variable inconsistency if this equation is estimated by OLS, provided that
Cov .X;Z/ ¤ 0. The solution to this problem suggested by Pace and LeSage (2008)
and LeSage and Pace (2008), is to eliminate the effect of the omitted variable by esti-
mating a spatial Durbin model. This derives from an assumption that the correlation
between X and Z causes correlation between X and " D .I � �W /Z and that this
correlation is linear of the form:

" D X�C � (8)

We assume here that � � i id �
0; �2In

�
. It follows that:

Y D Xb1 C .I � �W /�1 .X�C �/

.I � �W / Y D .I � �W /Xb1 C .X�C �/

Y D �W Y CX .b1 C �/ � �WXb1 C � (9)

Y D �W Y CX� CWX Qb C �

This indicates that althoughZ is omitted, providedW is known, unbiased estimates
of the coefficients b1, � in Y D Xb1 C �WZC " can be obtained by fitting this last
equation in (9).

We next analyze the case where there is a spatial error process in addition to an
omitted variable Z. This is a natural extension to what has already been considered
and is important because we can never be sure that we have captured all of the
spatial dependency by invoking specifically autoregressive variables such as Z. We
prefer the less restrictive assumption that there might remain an unmodeled source
of spatial dependence that can be captured by an error process. We consider here
simply the autoregressive error process, so that the data generating process is given
by:

Y D Xb1 CZb2 C e

Z D �WZ C " (10)

e D 	Me C �

It is easy to show that this is exactly equivalent to:

Y D �W Y CX� CWX Qb C � C .I � �W / .I � 	M/�1 � (11)

We estimate (11) using two-stage least squares (2sls) and a spatial HAC (SHAC)
estimation procedure (Kelejian and Prucha 2007). If the disturbances in (11) had
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been a simple parametric (AR or MA) error process, then for reasons of efficiency
we might have preferred to treat it explicitly as such in estimation. However, SHAC
provides consistent estimates of the error covariance matrix under rather general
assumptions, accommodating various patterns of correlation and heteroscedastic-
ity, including spatial ARMA(p; q) errors, and is appropriate in an IV context. In the
wider context, going beyond (11) and extending to our other sources of endogeneity,
namely simultaneity and measurement error as we do below, we exploit the gener-
ality of SHAC as a means of obtaining consistent covariance matrix estimates. In
particular, Kelejian and Prucha 2007 assume that the (n� 1) disturbance vector e is
generated as follows:

e D R� (12)

where R is an (n � n) non-stochastic matrix whose elements are not known. The
asymptotic distribution of the corresponding IV estimators implies the following
variance-covariance matrix:

‰ D n�1 QZ0† QZ (13)

with† D �
�ij

�
denotes the variance-covariance matrix of e and QZ denotes a (n�f )

full column rank matrix of instruments. Kelejian and Prucha (2007) show that the
SHAC estimator for its (r; s)th element is:

O‰rs D n�1
nX
iD1

nX
jD1

Qzir Qzjs Oei OejK
�
d�
ij =dn

�
(14)

where Oei is the IV residual for observation i ; dij is the distance between unit i and
unit j ; dn is the bandwidth andK(.) is the Kernel function with the usual properties.
In this chapter, we focus on the Parzen kernel as given by Andrews (1991), which is
as follows:

K.x/ D

8
ˆ̂<
ˆ̂:

1 � 6x2 C 6 jxj3 for 0 � jxj � 1=2

2 .1 � jxj/3 for 1=2 � jxj � 1

0 otherwise

(15)

3 The Omitted Variable Case

As we have noted in the previous section, there is a specific circumstance in which
we can estimate the augmented spatial Durbin model and consequently avoid omit-
ted variable bias. While Z is unknown, what is required is precise knowledge of W
which is part of the equation Z D �WZ C ". In this section, we investigate the
validity of these assertions using Monte-Carlo simulations aimed at analyzing the
properties of estimators in augmented spatial Durbin models when there are omitted
variables that are spatially autocorrelated.

We focus on two characteristics. First, the bias is defined as the median of the
distribution minus the true value. Second, the RMSE, which gives equal weight
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to the two importation considerations for estimation: bias and dispersion. In the-
ory, RMSE is the square root of the weighted average of the mean and variance.
However, here we use the approximation given in Kelejian and Prucha (1999) and
Kapoor et al. (2007):

RMSE D
"
bias2 C

�
IQ

1:35

	2#0:5
(16)

where IQ is the difference between the 75 and 25% quantiles. This reduces to the
standard RMSE statistic under a normal distribution, but will be more robust to
outliers that may occasionally be generated by the Monte-Carlo replications.

In order to explore the bias and RMSE associated with our augmented spatial
Durbin specification, as in (11), which includes the complex error process, we carry
out various simulations.

The initial analysis is based on the following set-up. There are n D 225 square
regions. We defineW as a (15�15) matrix, withWjk D 1 when regions j and k are
contiguous (rook’s definition) and Wjk D 0 otherwise. This matrix is subsequently
standardized so that rows sum to 1. Moreover, we generate some artificial data for
this landscape as follows: � �N .0; 1/, X D 1C x � y � 1:5x2 C 5:5xy � 0:5y2,
where x is the x-coordinate and y is the y-coordinate of each cell on the (15 � 15)
matrix. This yields a spatially autocorrelated quadratic surface shown in Fig. 1a. We
also assume � D 0:5 and initially assume that �, the level of correlation between X
and Z, is equal to 0.5. Given these data, we generate Z D .I � �W /�1 .X�C �/.
Finally, assuming b1 D 1, b2 D 1, M D W , and e�N .0; 1/, we generate the data
using:

Y D b1X C b2Z C .I � 	M/�1 e (17)

for 	 D 0:8.
The augmented spatial Durbin (11) yields estimates of �, Qb and �, obtained via

SHAC using the Parzen kernel with a cut-off distance on the lattice of 50 units.
Since W Y is endogenous, in addition to the exogenous variable X and its spatial
lag WX, we divide the exogenous variableX into three groups, indexing the highest
ranking values by C1, the middle ranked values by 0 and the lower ranked val-
ues by �1. This instrument is defined by analogy with the three-group method for
measurement errors (Kennedy 2003) and has been used in a spatial framework by
Fingleton (2003). In addition, we use the spatial lag of the three groups variable as
an ancillary instrument. Repeating this process 100 times gives parameter estimate
distributions. The estimates of the coefficients equal to � D 0:5, � D b1 C � D 1:5

and Qb D ��b1 D �0:5 for WY, X and WX respectively, are given in Fig. 1b–d.
Additional evidence regarding the bias and RMSE of the augmented spatial

Durbin estimator on a .20 � 20/ lattice, corresponding to n D 400 is provided
by Table 1. In this case, we compute the bias using the median of the O� distribu-
tion resulting from 500 replications. Given Z D �WZ C ", we find that the bias
is comparatively small under the augmented spatial Durbin specification. Table 1
indicates that there is evidently positive bias for 	 D �0:9, 0, 0.9 and � D 0:2, 0.5,
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Fig. 1 Exogenous variable spatial distribution (a) and augmented spatial Durbin parameter
distribution (b, c and d) resulting from Monte-Carlo simulations

Table 1 Spatial Durbin: 2sls-SHAC estimator bias and RMSE for b1; omitted variable

	 Bias RMSE

� D 0:9 � D 0:5 � D 0:2 � D 0:9 � D 0:5 � D 0:2

�0.9 0.017615 0.023954 0.037268 0.106243 0.113733 0.101879
0 0.019026 0.014714 0.038249 0.110610 0.101569 0.100245
0.9 0.018510 0.027462 0.055672 0.104558 0.102497 0.102581

Table 2 OLS-SHAC estimator bias and RMSE for b1; ignoring omitted variable

	 Bias RMSE

�0.9 0.397457 0.397463
0 0.397577 0.397582
0.9 0.397505 0.397511

0.9, but this is small compared to the bias, equal to median. Ob1/ � b1, produced by
OLS-SHAC estimates of:

Y D b1X C .I � 	M/�1e (18)

that is, estimates obtained by ignoring the omitted variable Z from the data gener-
ating process. These estimates are given in Table 2.
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Fig. 2 Monte-Carlo distributions of the X parameter in (17) estimated by fitting (18) and (11)

Thus far we have assumed that Z D .I � �W /�1 .X�C �/ and shown that the
augmented spatial Durbin (11) provides estimates of the coefficient on variable X
that are evidently less biased than estimates using (18). Unfortunately the precise
form of the W matrix may in practice be unknown, or the spatial pattern in Z may
not be defined by an autoregressive process. Therefore, we next explore properties
of the augmented spatial Durbin estimator given such an unknown omitted variable,
comparing them with b1 estimates provided by (18).

For that purpose, let Z D 10C 9:5x� 2y, so that the correlation betweenX and
Z is equal to 0.2726. Assume that the data are generated using (17) using in this
case the parameters b1 D 1, b2 D 1, 	 D 0:8 and e�N .0; 1/. Figure 2 on the left
provides the distribution of 500 estimated b1s from (18) obtained using OLS-SHAC
for n D 400, based on the Parzen kernel with a cut-off distance on the lattice of
50 units. On the right, Fig. 2 shows the distribution of O' from (11) via 2sls-SHAC,
again using the Parzen kernel with a cut-off distance on the lattice of 50 units, with
the exogenous variableX and its spatial lag WX plus the three groups as instruments
as above. It is again apparent that the estimates using (11) are relatively unbiased.

Table 3 summarizes the bias and RMSE for 500 replications of both (11) and
(18) with data generated by (17). We use the sameX;Z variables and parameters as
were used to generate Fig. 2, but allow the parameter 	 to vary, being equal to �0:9,
0 and 0.9.

Table 4 is generated exactly as Table 3, with the “single” difference that Z D
10 C 3:5x � 20y or that Z D 1 C x � y C 1:5x2. Consequently, the correlation
between X and Z is equal to �0:6498 and to 0.37122 respectively. The bias is
larger and negative, although again the bias and RMSE remain much smaller when
estimation is via the augmented spatial Durbin than when the problem of an omitted
variable is ignored and (18) is estimated.
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Table 3 OLS-SHAC and 2sls-SHAC estimator bias and RMSE for b1
	 Bias RMSE

Equation (11) Equation (14) Equation (11) Equation (14)

�0.9 0.014535 0.145090 0.024364 0.145090
0 0.014671 0.145090 0.015515 0.145090
0.9 0.014038 0.144994 0.015188 0.144997

Table 4 OLS-SHAC and 2sls-SHAC estimator bias and RMSE for b1
	 Bias RMSE

Equation (11) Equation (14) Equation (11) Equation (14)

Z D 10C 3:5x � 20y

�0.9 �0.098457 �0.341260 0.102742 0.341260
0 �40.098083 �0.341264 0.098326 0.341264
0.9 �0.097348 �0.341189 0.097545 0.341191

Z D 1C x � y C 1:5x2

�0.9 �0.01627 0.406744 0.029315 0.406744
0 �0.01538 0.406746 0.016545 0.406746
0.9 �0.01468 0.406848 0.015816 0.406850

Table 5 OLS-SHAC and 2sls-SHAC estimator bias and RMSE for b1
	 Bias RMSE

Equation (11) Equation (14) Equation (11) Equation (14)

b1 D 1; b2 D 1

�0.9 �0.01159 0.001201 0.013735 0.001202
0 �0.00019 0.001206 0.005985 0.001210
0.9 �0.00029 0.001245 0.005169 0.001602

b1 D 0:5; b2 D 100

�0.9 0.013744 0.119725 0.034811 0.119725
0 0.014417 0.119617 0.015985 0.119620
0.9 0.015044 0.119727 0.016075 0.119727

Consider next the case whereZ is a dummy variable, generated so that Z equals
1 when X is greater than its mean, and zero otherwise, thus inducing correlation
(0.8246) betweenZ andX . Table 5 displays the result in two cases. In the first case,
b1 D 1, b2 D 1 while in the second case, b1 D 0:5, b2 D 100. Our results are the
outcome of 500 replications. We use the Parzen kernel with a cut-off of 50 and the
same instruments as before for 2sls-SHAC estimation. These results show that in the
first case, while (11) produces a smaller bias, it is associated with a larger RMSE.
In the second case, the bias and RMSE clearly favor estimation by (11).

In this section, we showed that under specific circumstances, the omission of a
spatially autoregressive variable of the form Z D �WZ C " leads to only small
bias and RMSE for the parameter estimate of correlated variable X when estimated
via an augmented spatial Durbin model (11) using 2sls-HAC. This small bias and
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RMSE is considered in comparison to what would be obtained by simply estimating
the model without attempting to make any correction to allow for the absence of Z
from the estimating equation. We then showed, from the limited number of simula-
tions we have carried out, that the superiority of the augmented spatial Durbin model
seems quite evident across a range of scenarios, even when the spatial pattern in
omitted variable Z does not conform to the spatial autoregressive structure hitherto
assumed. The estimates continue to support the notion that estimating the spatial
Durbin is to an extent superior to doing nothing. In other words, while we cannot
claim consistency or unbiasedness for our approach, the use of the spatial Durbin
model as an estimator does seem, to some extent, to mollify the quite serious impact
of omitted variable bias that otherwise would occur. Given this, we now go on to
explore the impact of using (11) as an estimator when we have endogeneity due to
the other causes outlined in the introduction, simultaneity and measurement errors.

4 Simultaneity and Measurement Errors

We begin our investigations with the case where endogeneity is due to system feed-
back. In order to analyze the properties of an augmented spatial Durbin model in this
case, we consider a set-up that is similar to that of Anselin et al. (1997) and Fingleton
and Le Gallo (2008a) where endogeneity is a result of feedback in a two-equation
system. The two equations are as follows:

yi D b0 C b1x1i C �qi C ui (19a)

qi D ˛0 C ˛1v1i C ˛2yi C �i (19b)

where yi and qi are the endogenous variables for observation i ; x1i and �1i are the
exogenous variables for observation i ; b0, b1, � , ˛0, ˛1, ˛2 are unknown parameters
to be estimated. We assume that the error terms are kept entirely separate by generat-
ing two innovations: �1 � i id

�
0; �21 In

�
and �2 � i id �

0; �22 In
�
, with �21 D �22 D 1,

and then u and � as follows: � D �2 and:

ui D 	
X
j¤i

wij uj C �i (20)

or in matrix terms: u D .I�	W /�1� with 	 as the spatial autoregressive coefficient.
Given the set-up, the endogenous variables y and q must be generated using

reduced forms:

yi D ı0 C ı1x1i C ı2�1i C ı3�i C ui
ı4

(21a)

qi D !0 C !1x1i C !2�1i C !3ui C �i

ı4
(21b)
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with: ı0 D .b0 C �˛0/ =ı4; ı1 D b1=ı4; ı2 D �˛1=ı4; ı3 D �=ı4; ı4 D 1 � �˛2;
!0 D .˛0 C ˛2b0/ =ı4; !1 D ˛2b1=ı4; !2 D ˛1=ı4; !3 D ˛2=ı4.

As previously, we assume that the spatial units are located on a square grid at
locations f.r; s/ W r; s D 0; 1; : : : mg. Therefore, the total number of units is n D
.mC 1/2. The spatial weights matrix is a standardized rook-type matrix: two units
are neighbors if their Euclidian distance is less than or equal to one. The coefficients
b0, b1, ˛0, � , ˛0 and ˛1 are set to 1 and ˛2 is set to 0.9. The spatial parameter 	 takes
on 3 values: �0:9, 0 and 0.9 and three lattice sizes have been specified: 121, 225
and 400.

Two cases have been considered relating to the method used to generate the vari-
ables. In the first case, x1 and �1 are generated from uniform distributions. In the
second case, both x1 and �1 are spatially autocorrelated, i.e. they are generated as
follows: x1 D .I � 0:5W /�1 �3 where �3 � i id .0; In/, and v1 D .I � 0:5W /�1 �4
where �4 � i id .0; In/. For each combination of spatial parameter 	 and sample
size, we perform 500 replications.

Table 6 displays the bias and RMSE for the parameter � , which is the coefficient
associated with the endogenous variable q, when OLS is applied to (19a) combined
with SHAC estimation of the variance–covariance matrix. In the latter case, we use
as previously a Parzen kernel, where dn D �

n1=4
�

and where [z] denotes the nearest
integer that is less than or equal to z.

We note that in all cases, the biases and RMSE’s are symmetrically increasing
when the absolute value of the spatial error coefficient is increasing. Also, they
remain quite small and stable with increasing sample sizes. They are smaller when
x1 and �1 are generated from a spatial autoregressive model than when they are
generated from a uniform distribution.

Table 7 displays the bias and RMSE for the same parameter � , associated to
the endogenous variable q, when a spatial Durbin model is estimated, including
x1 and �1 but also an endogenous spatial lag, together with spatial lags of x1 and
q. As previously, in addition to the exogenous variables and their spatial lags, we
divide the exogenous variable x1 into three groups, and use this three groups variable
and its spatial lag as additional instruments. The model is then estimated using a
combination of instrumental variables method and SHAC model for the variance–
covariance matrix.

Table 6 OLS-SHAC estimator bias and RMSE for � ; simple model; simultaneity

	 Bias RMSE

n D 121 n D 225 n D 400 n D 121 n D 225 n D 400

x1 and v1 generated from a uniform distribution
�0.9 0.087024 0.085787 0.085239 0.08734 0.086000 0.08534

0 0.047353 0.047454 0.047604 0.04759 0.047600 0.04766
0.9 0.083356 0.084112 0.083921 0.08380 0.084320 0.08406

x1 and v1 generated from a spatial autoregressive model
�0.9 0.070423 0.068735 0.067791 0.071185 0.069092 0.068017

0 0.029910 0.029123 0.029564 0.030268 0.029306 0.029667
0.9 0.064828 0.066985 0.066628 0.065679 0.067432 0.066865
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Table 7 IV-SHAC estimator bias and RMSE for � ; spatial Durbin model; simultaneity

	 Bias RMSE

n D 121 n D 225 n D 400 n D 121 n D 225 n D 400

x1 and v1 generated from a uniform distribution
�0.9 0.044564 0.044095 0.044706 0.047090 0.046300 0.046640

0 0.047116 0.047651 0.047406 0.047500 0.047830 0.047520
0.9 0.045475 0.045672 0.045775 0.048360 0.048150 0.047670

x1 and v1 generated from a spatial autoregressive model
�0.9 0.031398 0.029600 0.028885 0.037190 0.035469 0.036051

0 0.031167 0.031125 0.030771 0.031883 0.031636 0.031155
0.9 0.030216 0.030472 0.030284 0.031708 0.031653 0.031564

As previously, the biases and RMSEs are smaller when x1 and �1 are generated
from a spatial autoregressive model than when they are generated from a uniform
distribution. However, contrary to what we obtained when the model was estimated
with OLS, they do not vary when the level of spatial autocorrelation varies. More-
over, they are lower than the values obtained when the simple model is estimated by
OLS. This would indicate that, as in the omitted variable case, estimating a spatial
Durbin model tends to decrease the extent of bias arising from system feedback.

The third source of endogeneity we analyze corresponds to the case where a
measurement error affects one explanatory variable. In this case, assume that the
data generating process corresponds to (19a) with spatial error autocorrelation as
in (20). However, we assume that qi is not observable. Instead, it is measured with
errors (while x1 is measured without errors) and we observe:

Qq D q C v (22)

where v is a normally and independently distributed stochastic measurement error,
which is independent of the explanatory variable x1 and of the error term u.

Therefore, the Monte-Carlo simulation in this case runs as follows. With the same
set-up for the parameter values for b0, b1, � and 	, we generate the variables q and x1
in two different ways: from a uniform distribution or as spatially autocorrelated
variables. Then, y is generated using (19a) and a spatial autoregressive process for
the error term. Finally, we generate v with �2v D 0:1 and compute Qq D q C v.
Note that we have tried different values for the variance of the measurement error v.
Indeed, as documented in the literature (Hausman 2001), it plays a significant role
in the extent of the attenuation bias that arises from measurement error affecting an
explanatory variable.

Table 8 displays the bias and RMSE for the parameter � when OLS is applied to
the following equation combined with SHAC estimation of the variance–covariance
matrix with 500 replications:

yi D b0 C b1x1i C � Qqi C ui (23)
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Table 8 OLS-SHAC estimator bias and RMSE for � ; simple model; measurement error

	 Bias RMSE

n D 121 n D 225 n D 400 n D 121 n D 225 n D 400

x1 and q generated from a uniform distribution
�0.9 �0.074931 �0.113590 �0.100580 0.634160 0.472750 0.380260

0 �0.104320 �0.119100 �0.098239 0.330620 0.254160 0.187990
0.9 �0.077574 �0.105580 �0.068526 0.646860 0.497910 0.326100

x1 and q generated from a spatial autoregressive model
�0.9 0.005215 �0.006506 �0.0038462 0.119650 0.086081 0.067147

0 �0.007061 �0.005668 �0.006294 0.083374 0.059154 0.042928
0.9 �0.010263 �0.007889 �0.002871 0.247620 0.178490 0.132040

Table 9 IV-SHAC estimator bias and RMSE for � ; spatial Durbin model; measurement error

	 Bias RMSE

n D 121 n D 225 n D 400 n D 121 n D 225 n D 400

x1 and q generated from a uniform distribution
�0.9 �0:079840 �0:089403 �0:117530 0.304830 0.264390 0.203220

0 �0:119570 �0:105440 �0:103350 0.357710 0.269830 0.216560
0.9 �0:110730 �0:116980 �0:103310 0.353990 0.271830 0.199030

x1 and q generated from a spatial autoregressive model
�0.9 �0:008120 �0:012887 �0:007996 0.098675 0.071002 0.051835

0 �0:013136 �0:005938 �0:011747 0.097058 0.072987 0.054614
0.9 �0:011640 �0:008574 �0:016839 0.104920 0.073784 0.055478

Table 9 displays the bias and RMSE for the same parameter � , when a spatial Durbin
model is estimated using the instrumental variables method, including x1 and Qq,
an endogenous spatial lag, together with spatial lags of x1 and Qq. The three-group
variables associated with x1 and Qq, together with their spatial lags are added as
further instruments.

In this case, the effect of using a spatial Durbin model rather than a simple model
to account for the effects of measurement errors primarily shows up in the RMSEs.
Indeed, they are significantly lower in the latter case. Moreover, the sensitivity of
the � ’s RMSE to the level of spatial autocorrelation is, as in the simultaneity case,
lower when using a spatial Durbin model. Finally, given the low variance attributed
to the measurement error, the attenuation bias is here rather limited.

5 Conclusions

The presence of multiple endogenous variables on the right hand side of single
equation spatial econometric models inevitably leads to 2sls, which is known to
be a consistent estimator, although the practical application of 2sls often presents
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problems because of the difficulty of finding appropriate instruments. Given this, it
is apt to consider alternative approaches to estimation as possible solutions to the
problems caused by endogeneity.

In this chapter, we have focused on one particularly interesting case in the spa-
tial context, which allows consistent estimation when endogeneity is induced by
the omission of a (spatially autoregressive) variable. The approach uses the spatial
Durbin model, which is the appropriate estimator given that the omitted variable is
a spatially autoregressive process with known matrix W and is correlated with an
exogenous variable. In the chapter we extend the data generating process (which
includes the omitted variable) by allowing additional spatial dependence in the
errors, and this leads to an augmented spatial Durbin model with a complex error
process as a reasonably appropriate estimator, which we estimate using 2sls and
SHAC. We explore the performance of the augmented spatial Durbin model relative
to OLS-SHAC estimation of a specification minus the omitted variable. We then
proceed to carry out Monte-Carlo simulations in which the omitted variable has dif-
ferent properties. We show that, for a limited range of simulations and compared
with OLS-SHAC estimation of the omitted variable model, the spatial Durbin esti-
mated by 2sls-SHAC remains superior in terms of bias and RMSE. We then proceed
to the case where endogeneity is a consequence of simultaneity and errors in vari-
ables, and find that 2sls-SHAC estimation of the spatial Durbin model continues
to provide superior estimates compared with ignoring the problem and estimat-
ing via OLS-SHAC a single equation model in which the endogeneity of one of
the right hand side regressors (due to simultaneity or errors in variables) goes
unacknowledged.

Finally, while we have shown some advantages associated with estimating the
spatial Durbin, we do not claim that it is a consistent estimator; rather, we have
shown that it appears to be better than simply ignoring the presence of endogeneity.
The resulting estimates would appear to have less bias and a lower RMSE than they
otherwise would have. At this point in time we do not know how using the spa-
tial Durbin performs vis-à-vis spatial models with additional endogenous variables
estimated via two-stage least squares, using as instruments the lower orders of the
spatial lags of the exogenous variables. This is left for future research.
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Dealing with Spatiotemporal Heterogeneity:
The Generalized BME Model

Hwa-Lung Yu, George Christakos, and Patrick Bogaert

1 Introduction

Geographical studies involving natural systems and their attributes (e.g., envi-
ronmental processes, land use parameters, human exposure indicators, disease
variables, and financial indexes) often need to quantitatively assess spatiotempo-
ral dependence and generate informative maps of the attributes across space-time.
These are important, indeed, goals of spatiotemporal systems modelling and data
analysis introduced in a modern statistical framework by Christakos (1990, 1991a,b,
1992). Subsequent works include Goodall and Mardia (1994), Haas (1995),
Bogaert (1996), Christakos and Hristopulos (1998), and Kyriakidis and Jour-
nel (1999). Among the more recent developments one should notice the works of
Serre et al. (2003), Kolovos et al. (2002, 2004), Douaik et al. (2004), Christakos
et al. (2002, 2005), Stein (2005), Law et al. (2006), Porcu et al. (2006, 2008), Yu
et al. (2007a–c), Renshaw et al. (2008), and Ruiz-Medina et al. (2008a,b).

In this chapter we present a spatiotemporal approach that is based on the fusion
of two entities with separate goals and distinct conceptual structures: the gen-
eralized random field theory, on the one hand, and the epistematics knowledge
synthesis framework, on the other. The entity resulting from this fusion is the Gen-
eralized Bayesian Maximum Entropy (GBME) approach that can be used in the
spatiotemporal analysis and mapping of a wide variety of natural systems (phys-
ical, biological, social and cultural) with heterogeneous space-time patterns and
dependence structures under condition of multi-sourced uncertainty.
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2 Method

Epistemologically, GBME distinguishes between two major knowledge bases (KB):

1. The general or core KB (denoted by G) that includes: scientific laws and the-
ories, mechanistic models, ecologic systems, population dynamics and social
structures; theoretical space-time dependence models that are relevant to the sys-
tem under investigation; and logical rules and reasoning principles of the human
agents.

2. The site-specific or specificatory KB (denoted by S ) that includes different
sources associated with the particular system, such as: hard measurements char-
acterized by a satisfactory level of accuracy (for all practical purposes); and soft
data that include a non-negligible amount of uncertainty (secondary sources,
imperfect observations, categorical data and fuzzy inputs).

In many applications of spatiotemporal data analysis under conditions of uncer-
tainty, including temporal GIS (Christakos et al. 2002), one considers a spatiotem-
poral attributeX.p/; p D .s; t/, where the vector s denotes spatial location and the
scalar t denotes time. Accordingly, the pmap D Œphard ; psof t ; pk�

T is a vector of
space-time mapping points, which include hard data points .phard /, soft data points
.psof t / and estimation points .pk/.

Stochastic representation of an attribute X.p/ with heterogeneous space-time
variation features is achieved by means of the powerful class of generalized spa-
tiotemporal random fields (Christakos 1990, 1991a). Mathematically, one considers
an operator Q that (a) transforms the original attribute X.p/ to a homogeneous/
stationary field and (b) expresses the degree of departure from homogeneity and
stationarity in terms of its corresponding orders � and � (which vary across com-
posite space-time). The �; � give information about the mechanism underlying the
attribute’s space-time distribution.

A variety of mathematical Q-operators was examined by Christakos (1992)
and Christakos and Hristopulos (1998). For example, the random vector X D
ŒX.p1/; X.p2/; : : : ; X.pN /�

T can be decomposed as (Vyas and Christakos 1997):

X D Fˇ C†; (1)

where F is a matrix of space-time monomials with degrees �; �; the ˇ is a vector of
monomial coefficients; and† D Œ".p1/; ".p2/; : : : ; ".pN /�

T is a random fluctuation
vector. Then, the generalized random field operator can be expressed by:

Q D I � F.FTF/�1FT ; (2)

which removes the heterogeneous trend in the space-time variation of X.p/, i.e.
Q.F ˇ/ D 0.

The ordinary covariance cX.p;p
0/ of X.p/ is nonhomogeneous in space/

nonstationary in time and can be decomposed as:

cX.p;p
0/ D �X.p � p0/C P�=�.p;p

0/; (3)
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where p � p0 D .s � s0; t � t 0/ D .r; �/I P�=� is a polynomial function with
spatial and temporal degrees � and �, respectively; and �X is the so-called general-
ized spatiotemporal covariance. There are several theoretical �X models (Christakos
and Bogaert 1996; Christakos and Hristopulos 1998). In many applications an
anisotropic space-time continuum is considered where the spatial variation is a func-
tion of spatial distance and the temporal variation is a function of time distance
along with an anisotropy parameter ˛ (Stein 1998). In these applications, a suitable
generalized covariance model is as follows (Yu and Christakos 2009):

�X.&/ D cı& C
Xmax.�;�/

�D0 .�1/�C1a�&2�C1; (4)

where & D p
r2 C ˛ �2, and the coefficients c and a� should satisfy a set of the

permissible conditions (Yu 2005; Yu et al. 2007a); the order of the anisotropic
model is determined by the higher heterogeneity order, max.�; �/. The covariance
matrix estimation can be performed by means of the weighted least square tech-
nique (Christakos and Thesing 1993) or the maximum likelihood and the minimum
variance unbiased quadratic estimation techniques (Kitanidis 1983; PardoIguzquiza
1997). An important feature of GBME is that only �X is required in spatiotemporal
mapping. The class of generalized covariances is richer than that of the ordinary
ones (Christakos 1991a).

In view of the above considerations, the GBME framework distinguishes between
three main stages of spatiotemporal modelling and mapping that are described next.

2.1 Structural Stage

At this stage, GBME generates a probability density function (pdf), fG , across
space-time based on the available G-KB. In the case that X .p/ is a generalized
random field, the G-KB may include the theoretical model �X and the heterogene-
ity orders �; �. The fG model that satisfies the evolutionary principle of maximum
expected epistemic information subject to G-KB is as follows (Christakos 2000):

fG
�
�map

� D A�1 exp

�
�1
2
‚

�
�map;�map

�	 � N
�
0;Q�map Q

T
�

(5)

where ‚
�
�map;�map

� D QT
�
�map

�
c�1
Q

�
�map

�
Q

�
�map

� I
cQ

�
�map

� D Q
�
�map

�
QT

�
�map

�
, where the bar denotes stochastic expectation;

�map is a space-time realization of X .p/ associated with pmapI �map is the matrix
of the corresponding generalized covariances;N denotes the normal pdf; and A is a
normalization coefficient. In light of some variate distribution results in Gupta and
Nagar (2000), the pdf fG in (5) can be simplified as follows (Yu 2005):

fG
�
�map

� � N
�
Fˇ;�map

�
: (6)
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The generalized covariance model �map is conditionally positive definite, whereas
cQ

�
�map

�
is the “ordinary” covariance which is positive definite.

Despite the Gaussian shape of fG in (6), the potentially non-positive definite
character of �map can induce numerical instabilities when the fG is directly calcu-
lated using the Gaussian formulation. Therefore, the calculation of fG is based on
(5) to assure numerical stability of the calculations. This involves the calculation
of the spatiotemporal increments Q

�
�map

�
at each local neighborhood which, in

turn, depends on the unknown attribute value at the estimation point. In this study,
the latter is assigned a uniform prior pdf to account for the non-informative state of
uncertainty. If the �map is positive-definite, a more efficient numerical technique can
be used by adopting the conditional Gaussian property (Gupta and Nagar, 2000). Let
the matrix form of �map be:

�map D
2
4
Kkk Kkh Kks

Khk Khh Khs

Ksk Ksh Kss

3
5 D

�
Kkk Kkd

Kdk Kdd

	
; (7)

where the subscripts denote covariances between various combinations of hard-soft-
estimation points (hs D phard -psof t ; hh D phard -phard ; kk D pk-pk; kd D
phard -pdata , etc.). Equation (6) can lead to the following computationally efficient
expression (Yu 2005):

fG
�
�map

� � N
�
Mkjd ;Kkjd

�
N

�
Msjh;Ksjh

�
N .Mh;Khh/ ; (8)

where the Mh is a vector of attribute means at the data points; the Mkjd and Msjh
are vectors of conditional means at the estimation points given the data points, and
at the soft data points given the hard data points, respectively; the Khh is a vector
of generalized covariances between the hard data points; and the Kkjd , and Ksjh
are vectors of conditional generalized covariances at the estimation points given the
data points, and at the soft data points given the hard data points, respectively. These
vectors can be calculated as follows (Yu and Christakos 2009):

Mkjd D Mk CKdk K
�1
kk .�data �Mdata/

Msjh D Ms CKsh K
�1
hh .�hard �Mh/

Kkjd D Kk �KdkK
�1
kk Kkd

Ksjh D Kss �Ksh K
�1
hh Khs

9>>>>>=
>>>>>;
; (9)

where Mh; Ms and Mk are the vectors of random field means at all hard data, soft
data, and estimation points, respectively; as above, Khh; Kss; Kkk; Kdk and Ksh

are vectors of generalized covariances between, the hard data points, the soft data
points, the estimation points, the data and the estimation points, and the soft and the
hard data points, respectively.
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Table 1 Examples of S-KB

(a) Hard data (exact numerical values)
�hard at points phard .

P rob
�
xhard D �hard

� D 1

(b) Soft data in the form of intervals of possible
values (uncertain data) are available at
points psof t .

P rob
�
a < xsof t < b

� D 1; a and b are
vectors of the lower and upper bounds of the
intervals

(c) Soft data in the form of probability
functions

P rob
�
xsof t < u

� D R u
�1

d�sof t fS

�
�sof t

�
,

fS is a soft datum pdf

2.2 Specificatory Stage

At this stage, the case-specific knowledge available, S , is expressed into a form
suitable for quantitative analysis. Common formulations of the S -KB include those
depicted in Table 1. Case c is clearly a generalization of case b above; e.g., an inter-
val datum is a pdf fS uniformly distributed between the lower and upper bounds of
the interval. Various other types of soft information that can be considered by the
GBME technique are discussed in Yu and Christakos (2006), Kolovos et al. (2006)
and Yu et al. (2007a).

2.3 Integration Stage

At this stage, the solution, fG , of the structural stage above is updated using the
evolutionary adaptation principle subject to S -KB (Christakos 2000, 2008), thus
leading to the integration pdf:

fK .�k/ D A�1
Z

D

d„S .�soft/ fG
�
�map

�
; (10)

where A is a normalization constant; and the „S and D denote, respectively, a
specificatory operator and the information range determined by the S -KB. The new
pdf (10) describes the distribution of the X .p/ values at each estimation point
pk in light of the total knowledge base K D G [ S . The pdf expression (10) is
also known as the operational Bayesian conditional (to be distinguished from the
standard Bayesian rule; see discussion in Christakos 2002).

For illustration, Table 2 presents some examples of S -KB together with the cor-
responding „S and D. The fS denotes the probability function derived from S at
the soft data points, I is a vector of X .p/ interval values at these points, and Ik is
a vector of interval values at the estimation points themselves. The integration pdf
(10), which is generally non-Gaussian, offers a complete stochastic characterization
of X .p/ at each space-time point that integrates a wide variety of data (hard and
soft) as well as the relevant core knowledge (�X ; �; � etc.).
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Table 2 Examples of soft data with integration domain D and operator „S – see, Equation (10)

S D „S

Interval I �sof t
Probabilistic I fS

�
�sof t

�
Functional I [ Ik fS

�
�sof t ; �k

�

From the integration pdf (10) we obtain various kinds of estimates across the
space-time domain:

BMEmode �k;mode W max�k
fK .�k/

BMEmean �k;mean W R
d �k �kfK .�k/



; (11)

The BMEmode provides the most likely value at the estimation point; the BMEmean
minimizes the mean square estimation error.

Since the �k;mean is used in the numerical experiment of the following section,
we provide here some explicit expressions of the estimate:

�k;mean D A�1
Z

D

d�k d�sof t �k fS
�
�sof t

�
exp

�
�1
2
‚

�
�map;�map

�	
; (12)

and the associated estimation error variance:

�2k D A�1
Z

D

d�k d�sof t

�
�k � �k;mean

�2
fS

�
�sof t

�

� exp

�
�1
2
‚

�
�map;�map

�	
; (13)

respectively.
Spatiotemporal GBME analysis and mapping possesses a number of attractive

features (Yu and Christakos 2009). These are summarized in Table 3.
Below, we continue the presentation of spatiotemporal GBME analysis by means

of numerical experimentation.

3 Numerical Experiments

Certain implementation features and performance indicators of the GBME approach
can be investigated with the help of numerical experiments in controlled environ-
ments (Yu and Christakos 2009). The GBME approach is numerically compared
with generalized kriging (GK), which is an advanced statistical regression tech-
nique of space-time estimation, also known as universal or intrinsic spatiotemporal
kriging (Christakos 1990; Christakos and Raghu 1996).
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Table 3 Summary of theoretical GBME properties

Its methodological underpinnings rely on evolutionary concepts of brain and behavioural
sciences rather than on mechanistic schemes and technical recipes that lack cognitive
reasoning substance.

Nonlinear estimators and non-Gaussian laws are automatically incorporated; i.e. no restrictive
assumptions concerning estimator linearity and probabilistic normality are made.

It can study systems with heterogeneous space-time dependence patterns and synthesize
various kinds of knowledge bases (core and site-specific) in a general and unified framework
rather than in an ad hoc and arbitrary manner.

It can readily consider uncertain yet valuable information at the estimation (prediction) points
themselves, when available.

It provides a sound space-time attribute characterization in terms of the complete predictive pdf
at every point rather than just the first two estimation moments. In this way, more than one
possibility can be available at each point, as far as estimation is concerned.

It derives several mainstream techniques (such as statistical regression, kriging and Gaussian
process) as its special cases, a fact that amply demonstrates GBME’s generalization power.

A spatiotemporal domain, Es;t , was considered with dimensions s1 � s2 � t 2
Œ0; 1� � Œ0; 1� � Œ0; 3� in suitable units, which includes 21 � 21 � 4 grid nodes
(i.e., the vector pmap has 1764 elements). A heterogeneous (spatially nonhomoge-
neous/temporally nonstationary) attribute X.p/ D X.s1; s2; t/ is simulated having
a space-time dependent mean:

X.s1; s2; t/ D 4 cos.5s1/C 2s2 C 0:5 cos

�
1

2
t

�
I (14)

and the corresponding fluctuation field Y.s1; s2; t/ has zero mean and space-time
covariance:

cY .r; �/ D c0 expŒ�3r=ar � 3�=a� �; (15)

where c0 D 3; ar D 0:5 and a� D 3 in suitable units. The separable covariance
model was chosen since the random field generated using the model (15) exhibits
a more complex pattern than other commonly used models (Gaussian or spheri-
cal models). This model refers to the fluctuation field .Y / and not the original
space-time heterogeneous field .X/. For illustration purposes, three X.s1; s2; t/-
realizations are plotted in Fig. 1 (top row) at times t D 0, 1 and 2.

3.1 Experiment 1

A set of 30 hard data were drawn from the X .s1; s2; t/ simulated field (Fig. 1, top
row) at space-time points selected at random in the domain Es;t (i.e., the phard

has 30 elements). Soft data in the form of uniform distributions were generated at
ten randomly selected points (psof t has ten elements; Fig. 2). Each soft datum has a
mean equal to the closest simulatedX .s1; s2; t/ D � value and a range�˙0:5j�j. In
this experiment, theG-KB includes the theoretical model of space-time dependence



82 H.-L. Yu et al.

1

0.5

0.5

0
1

0.5

0
0 0.5 1 0.5 0.5 1

0
1

0 1 0

Fig. 1 Simulated random field realizations (top row); estimated field using GBME (middle row);
and estimated field using GK (bottom row) at times t D 0 (left column), t D 1 (middle column),
and t D 2 (right column)
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Fig. 2 Hard data (black circles), soft data in the form of uniform distributions (white circles),
across space-time
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in terms of �; � and �X . For illustration, Figs. 3 and 4 show maps of the heterogene-
ity orders at times t D 0; 1; 2. These maps offer information about relative trends
in space-time. Spatial variation is more significant than temporal variation. Spatial
and temporal trends are interrelated, since the geographicalX .s1; s2; t/ distribution
is also affected by temporal mechanisms. Not only the spatial order � changes in
space, but the temporal order � varies in space, as well. These observations are
in agreement with the spatiotemporal meantrend (14) of the simulated field. Due
to its theoretical ability to rigorously incorporate various forms of S -KB in a uni-
fied theoretical framework, the GBME readily takes into consideration the 30 hard
and the 10 soft data without any ad hoc modifications or computational schemes of
questionable physical meaning and mathematical accuracy.

1

0.8

0.6

0.4

0.2

0

0 1 2

0.50 10.5 0.5 10 1 0

Fig. 3 Space-time distributions of the value of spatial order �. (Left) t D 0, (Middle) t D 1, and
(Right) t D 2
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0.4
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1

0

0

0 0 10.50

Fig. 4 Space-time distributions of the value of temporal order �. (Left) t D 0, (Middle) t D 1,
and (Right) t D 2
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Next, by synthesizing the various core and case-specific knowledge sources, the
GBME generated pdf fK at all 484 grid points of the domain Es;t , and from these
pdf the space-time estimates O�k;mean were derived at each grid point. For illustration,
in Fig. 1 (middle row) the estimated maps are plotted at times t D 0; 1; 2. These
GBME maps provide an adequate representation of the simulated maps (Fig. 1, top
row). Local space-time neighborhoods were conveniently used at every estimation
point of the domain Es;t . Figures 3 and 4 show that the space-time heterogeneity
orders .�; �/ vary between the different neighborhoods.

In view of its superior theoretical structure (Table 3), GBME should perform
better than GK in numerical tests, as well (when such a comparison is possible
and makes sense). To carry out a numerical comparison, space-time estimates were
generated using GK. The GK makes certain restrictive assumptions concerning esti-
mator linearity and probabilistic normality, and in this particular experiment GK
readily processed only the 30 hard data (ad hoc modifications and approximations
that allow GK to indirectly and partially account for the information provided by
the soft data will be examined in the following numerical experiments).

GK estimates at times t D 0; 1; 2 are shown in Fig. 1, bottom row. Clearly, the
generated GBME maps constitute a considerable improvement over the GK maps.
To further support this conclusion, the histograms of the estimation errors (“sim-
ulated values-estimated values”) for the two methods are plotted in Fig. 5. As was
expected, GBME leads to more accurate estimates than GK (e.g., the GBME estima-
tion errors are more closely concentrated around zero error than the GK estimations
errors). GBME offers a complete characterization in terms of the non-Gaussian pdf
fK at each space-time point (different shapes are possible at different points), from
which the estimates O�k;mean are calculated. The non-Gaussian shape implies that in
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Fig. 5 Histograms of the estimation errors of the GBME (continuous line) and GK (dashed line)
methods
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some cases it may be possible to obtain better maps in terms of the estimates O�k;mode
and O�k;median, also readily calculated from the fK . Such flexibility is not allowed by
most mainstream methods, including GK and other statistical regression techniques.

Soft data generation as used in the present experiment may not be appropriate in
real-world situations where the data amount is limited. Thus, soft data in the form
of the uniform and the Gaussian probability laws were assumed, respectively, in the
following Experiments 2 and 3. Moreover, in the GK context, instead of ignoring
soft information, the mean values of the soft data are calculated across space-time
and used as an additional set of hard data (more precisely, “hardened” soft data) in
connection with the GK technique.

3.2 Experiment 2

As in Experiment 1, hard data points were drawn from the simulated field at 30
space-time points selected at random. This time, however, soft data in the form
of uniform distributions Œ� � 0:6 j�j; �C 0:4 j�j� were generated at ten randomly
selected space-time points (Fig. 6) having a mean value different than the simulated
field value at each point.

GBME’s theoretical support readily and rigorously takes into consideration the
30 hard and the 10 soft data in a unified framework, with no need to employ any
kind of approximation or computational trick. GBME generates estimates O�k;mean
at the 484 mapping points in the domain Es;t . The GK technique, on the other hand,
while it can readily process the same 30 hard data as GBME, it cannot account for
the information provided by the 10 soft data in a direct and theoretically unified
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Fig. 6 Hard data (black circles) and uniform distributed data (white circles) across space-time
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Fig. 7 Histograms of the estimation errors of the GBME (continuous line) and GK (dashed line)
methods

manner. Instead, an ad hoc scheme was used that generated 10 more “hardened”
soft data in terms of the expected X .s1; s2; t/ value at each soft datum point (i.e.,
the mean value was obtained from the uniform distribution at each point). Space-
time estimates were then derived at the 484 mapping points in Es;t using GK. As
is clearly demonstrated by the histograms of the estimation errors (“simulated field
value-estimated value”) for the two methods (Fig. 7), the GBME again leads to more
accurate estimates than the GK method.

3.3 Experiment 3

As above, hard data points were drawn from the simulated field at 30 space-time
points selected at random. Soft data in the form of Gaussian distributions were gen-
erated at ten randomly selected points with each mean equal to the local �� 0:1 j�j
value and variance equal to three units (Fig. 8).

As before, the GBME’s theoretical support readily takes into consideration the
30 hard and the 10 Gaussian data. GBME estimates O�k;mean were derived at all 484
mapping points in the space-time domain Es;t .

The GK technique used the same 30 hard data, but its mathematical apparatus
could only indirectly and incompletely account for the soft information in terms
of the mean value of the Gaussian distribution at each soft data point, thus gen-
erating ten more (“hardended” soft data) values treated as hard data. Space-time
GK estimates were subsequently obtained, and the histograms of the estimation
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Fig. 8 Hard data (black circles), and Gaussian-distributed data (white circles) across space-time
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Fig. 9 Histograms of the estimation errors of the GBME (continuous line) and GK (dashed line)
methods

errors for the two methods were plotted in Fig. 9. Under the current experimental
circumstances, the spatiotemporal GBME analysis once more showed a superior
performance compared to the GK technique. In addition, some real-world case
studies are discussed in Yu and Christakos (2009).
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4 Discussion

Due to its strong theoretical support and computational efficiency, GBME is a more
accurate and realistic approach of spatiotemporal data analysis than many main-
stream quantitative geography methods. Numerical comparisons of the conventional
GK technique vs. the GBME approach were made in this chapter. When comparing
GBME vs. GK, one should keep in mind that GBME readily considers non-Gaussian
distributions (e.g., Eq. 10), whereas GK is implicitly restricted by the Gaussian
assumption (Kitanidis and Shen 1996); and that GBME is generally a non-linear
estimator, whereas the GK is limited to linear estimators.

Although many statisticians prefer to routinely use the mean value of the prob-
ability distribution at each (soft data) point as the “hardened” value to be used in
space-time estimation (e.g., GK), there are often sound reasons for making a dif-
ferent choice in accordance with the epistemic context of the situation. Selecting
different values from the distribution at different points (say, mean, highest, lowest,
most probable and most improbable values), rather than insisting on the mean value
at all points, provides sufficient flexibility and may be a more realistic approach.
For example, a spatiotemporal analysis that, on occasion, takes into account low-
probability values, may turn out to be very informative, since, when these values
occur, they can be highly consequential (as practitioners of the financial markets
can testify, it does not matter how rare an event is if its occurrence is too costly to
bear).

The experimental GBME performance was shown to be generally superior to
that of GK. This is due to the more general theoretical structure of GBME vs. GK
and the different ways the two methods incorporate soft information. The GBME
accomplishes the spatiotemporal analysis tasks in a theoretically general and unified
manner (e.g., accounts for complete information provided by soft data), whereas the
GK results are highly influenced by its restrictive assumptions and the occasional
tricks used to “harden” the available uncertain information. Also, if the soft data
mean value is not exactly the same as the true value, GK can produce biased esti-
mation results (Figs. 7 and 9). On the other hand, even when the soft data mean (or
mode) does not coincide with the true value, GBME analysis will still be more accu-
rate and less biased than GK. This is very valuable in practical applications where a
significant amount of inaccurate or highly uncertain data is considered.

5 Conclusions

A GBME approach was discussed that can be used in the case of natural sys-
tems and attributes with spatiotemporal heterogeneities. On theoretical grounds
the GBME approach has certain important advantages compared to mainstream
methods (including statistical regression, standard Bayesian, Gaussian process and
geostatistical kriging techniques). The computational GBME properties were also
investigated by means of numerical experiments under controlled conditions in
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which GBME was compared to the GK technique (which is considered the most
general and powerful among the mainstream geostatistics techniques):

� The estimation domain of the GBME is much larger than that of many main-
stream techniques, since the former includes non-linear estimators and non-
Gaussian probability laws. Statistical regression, on the other hand, is often
based on some kind of linearity and Gaussian assumptions (this is the case of
geostatistical kriging, statistical regression and Gaussian process techniques).

� Instead of formulating a “modified” GK matrix to incorporate the effect of soft
data in a mathematically approximate and physically questionable manner, the
GBME analysis accounts for the uncertain information of site-specific datasets
in a rigorous and unified manner.

� GBME is based on a generalized stochastic theory especially developed for
space-time heterogeneous random fields and does not employ any ad hoc assump-
tions and approximations (e.g., no deterministic trend is arbitrarily defined and
substracted from the original data, as in certain statistical regression techniques).

GBME analysis – together with other spatiotemporal analysis, modelling and map-
ping techniques – can be found in the SEKS-GUI software library (Spatiotempo-
ral Epistematics Knowledge Synthesis-Graphical User Interface). This library is
available at the following webpages:

Geography Department, San Diego State University (California, USA):
http://geography.sdsu.edu/Research/Projects/SEKS-GUI/SEKS-GUI.html
and:
Department of Bioenvironmental Systems Engineering, National Taiwan Univer-
sity (Taipei, Taiwan):
http://homepage.ntu.edu.tw/�hlyu/software/SEKSGUI/SEKSHome.html
See, also, Kolovos et al. (2006) and Yu et al. (2007a).
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Local Estimation of Spatial Autocorrelation
Processes

Fernando López, Jesús Mur, and Ana Angulo

1 Introduction

The difficulties caused by the lack of stability in the parameters of an economet-
ric model are well known: biased and inconsistent estimators, misleading tests and,
in general, wrong inference. Their importance explains the attention that the liter-
ature has dedicated to the problem. The first formal test of parameter stability is
that of Chow (1960), which considers only one break point, known a priori, under
the assumption of constant variances. Dufour (1982) extends the discussion to the
case of multiple regimes and Phillips and Ploberger (1994) and Rossi (2005) place
it in a context of model selection. Simultaneously, Quandt (1960) started another
line of research in which the break point is unknown and the variance can change.
The CUSUM test, based on recursive residuals (Brown et al. 1975), the various
methods for endogenizing the choice of the break point (as in Banerjee et al. 1992),
and the extension to multiple structural changes in a system of equations (Qu and
Perron 2007) are natural proposals in this line. Other more peculiar approaches
include the tests for continuous parameter variation (Hansen 1996), the Markov
switching regression (Garcı́a and Perron 1996) and the Bayesian approaches (e.g.,
Salazar 1982; Zivot and Phillips and Ploberger 1994; Koop and Potter 2007).

The discussion quickly took on a spatial context with the work of Casetti (1972,
1991), in which a parametric approach predominates. In fact, Casetti proposes
explicitly modeling how the break in the parameters is produced through the so-
called “contextual” variables. In the nineties, there was a great leap forwards when
concern about the “pockets of local nonstationarity,” characteristic of the literature
dedicated to the LISA (Getis and Ord 1992; Anselin 1995) coincided with the devel-
opment of nonparametric procedures for analyzing spatial data (McMillen 1996;
McMillen and McDonald 1997). The best-known approach in this line is what
Brunsdon et al. (1996) call Geographically Weighted Regressions (GWR in what
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follows), whose immediate precursor are the Locally Weighted Regressions (LWR
from now on) proposed in the seminal papers of Cleveland (1979) and Cleveland
and Devlin (1988). In all these papers, interest shifts from the general to the local.
Some have a merely descriptive objective, as in the case of the LISA, while others
adopt more ambitious proposals, like the LWR and the GWR.

The convenience of local approaches is clear when the heterogeneity of the data
is very high and escapes the control of the model or when the appropriate functional
form is doubtful, in which case it is recommendable to use generic and flexible
specifications. In a spatial context, the LWR or GWR estimation has also been used
to correct the problems of spatial correlation that come from an inadequate treatment
of the spatial heterogeneity in the data (Páez et al. 2002a,b).

The question that we wish to deal with is in the same line, although chang-
ing the focus slightly. We analyze what happens when the heterogeneity that we
observe in the data is a consequence of the instability in the mechanisms of spa-
tial dependence that act in the model. This is the idea developed by Rietveld and
Wintershoven (1998) referring to a “border effect” that operates between regions
which are geographically contiguous but separated by an international frontier (an
idea later taken up by Lacombe 2004; Ertur et al. 2006). As pointed out by Bruns-
dom et al. (1998, p. 958) the “alternative conjecture. . . . that in some areas this
spatial influence is more marked than in others” may be preferable in cases of great
heterogeneity. Pace and Lesage (2004) focus the discussion on the estimation of
models with symptoms of instability of this type for which they propose a recursive
maximum-likelihood algorithm, called SALE (Spatial Autoregressive Local Esti-
mation), which Ertur et al. (2007) convert into the BSALE by introducing Bayesian
criteria.

Our intention is to better understand the problem of instability in the spatial
dependence mechanisms. Furthermore, we will analyze how the local estimation
algorithms work when applied to autoregressive spatial structures. In Sect. 2, we
look at the problem in greater detail. Using a ML approach, we develop a pre-
liminary test of parameter stability in the parameter of spatial dependence. The
remaining sections of the chapter deal with a Monte Carlo exercise which constitutes
the main part of our work. The design of the exercise appears in Sect. 3. In Sect. 4,
we analyze the consequences of a break of this type on the most common diagnostic
measures in applied research. In Sect. 5, we examine the behavior of the SALE esti-
mation under different conditions. In Sect. 6, we consider possible solutions to the
problem of how to identify the regions that are affected by the problem of structural
breaks. Finally, Sect. 7 presents our conclusions and the lines that remain open for
further research.

2 Instability in Parameters of Spatial Autocorrelation

Our point of departure will be the case of an econometric cross-sectional model
with spatial dependence of a substantive nature (the Spatial Lag Model, SLM in
what follows), specified under the assumption of stability:
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y D �Wy C xˇ C "; " � N
�
0; �2I

�
(1)

where y is the (R�1) vector of the observations of the endogenous variable, x is
an (R�k) matrix of observations of the k explanatory variables, � is a random vec-
tor of error terms and W is an (R�R) exogenous weighting matrix. Finally, � is a
parameter of spatial interaction and ˇ a (k�1) vector of coefficients.

The model of (1) has been specified under the assumption of homogeneity, which
may not hold in some circumstances. As indicated by McMillen (2004, p. 232):
“spatial relationships are typically more complicated. Statistical tests based on sim-
ple functional forms often reveal that coefficients vary over space”; in other words,
a certain heterogeneity that is omitted from the base model often persists in the data.
The solutions proposed in the literature try to give more flexibility to the specifica-
tion of (1) by acting either on the systematic part of the equation or on the error
term. In the first case, an intermediate alternative is to group the regions into clubs
that share the same vector of parameters. This solution is common in the analysis
of regional convergence (Baumol 1986; Quah 1986), where each vector of parame-
ters identifies a stationary state. However, in more extreme cases, this option is not
enough (because the equation is a poor approximation, because the geographical
effects are very important, etc.) and it will be necessary to make use of nonparamet-
ric methods like the LWR or the GWR. The introduction of heteroskedasticity into
the error term, by groups or at the individual level, is another way of dealing with
problems of heterogeneity (Anselin 1988b). All this discussion is well documented
in the literature and we will not go into further details here.

Our interest lies in the assumption that parameter ¡ is constant in (1). Habitually,
this is a maintained hypothesis which can cause problems if it is imposed unduly.
Brunsdom et al. (1996, p. 1962) find “that the level of homeownerships exhibits
a different level of clustering (or autocorrelation) in different areas” (in the hous-
ing market of Tyne and Wear in northeast England), while Parent and Riou (2005,
p. 767) conclude that the process of the spatial diffusion of knowledge in Europe
presents “an increasing spatial dependence as we move from the core of Europe
to the peripheral regions.” Di Giacinto (2003), Pace and Lesage (2004), Ertur
et al. (2007) and Mur et al. (2008) also find evidence of instability in the mechanisms
of spatial dependence that they introduce into their respective applications.

Going back to the SLM of (1), a simple way of giving greater flexibility to the
autoregressive part of the model is to add several spatial lags of the endogenous
variable to the right-hand side of the equation. Each lag, as in Huang (1984), is
associated with an interaction parameter and a specific weighting matrix:

y D �1W1y C �2W2y C � � � C �pWpy C xˇ C "; " � N
�
0; �2I

�
(2)

The matrices Wj should be linearly independent for the model to be identified and,
habitually, they are specified in decreasing order of proximity. Nevertheless, they
can also be used to alter the intensity with which certain points are related to the
others. The equation that corresponds to this proposal is:
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y D �Wy C �W�y C xˇ C "; " � N
�
0; �2I

�
(3)

where W is the common weighting matrix associated with an overall level of
dependence, as measured by the parameter �. We use the matrix W� to inter-
vene in the regions with peculiarities, measured by the parameter � . The matrix
W� must reproduce a certain part of matrix W for the resulting variable, W*y, to
be able to be treated as a dummy variable of the multiplicative type with respect
to Wy. With small changes, the same idea appears in the works of Rietveld and
Wintershoven (1998), Lacombe (2004), Ertur et al. (2006), and Mur et al. (2008).

The generalization of (3) leads us to model (4) where the capacity of each region
to interact with its surroundings is a circumstance specific to each region:

y D �HWy C xˇ C "; " � N
�
0; �2I

�

H D diag fh .Zr˛/ I r D 1; 2; : : : :;Rg
˛ D �

˛0 ˛
� �0

Zr D �
1 zr

�

h .Zr˛/ < 1I h .˛0/ D � < 1

9
>>>>=
>>>>;

(4)

with vectors ˛ and Zr of order .2 � 1/. As before, the hypothesis is that there is
a basic level of dependence for all the regions, associated with parameter �. If this
parameter is zero, the conclusion is that there is no cross-sectional dependence in the
sample and the discussion finishes at this point. Only if coefficient � is different from
zero, is there any point in asking whether it is, furthermore, constant over space. In
(4), we propose that the intensity of the dependencies evolves depending on a certain
variable.1 It is not necessary for the function h[-] to be known, although it must
be finite, continuous and stable over space. In these conditions, the fundamental
piece of information is the indicator of heterogeneity, variable z, whose variability
generates instability in the measures of spatial dependence.

For example, in the paper of Parent and Riou (2005), the stock of R&D infras-
tructures is an important factor for explaining the different capacity of interaction
of a region with its neighbors in the question of technological innovations. If zr is
a regional indicator of this type of infrastructures, a reasonable option may be to
introduce a logistic function into h[-]:

h .zr˛/ D e˛0C˛1zr

1C e˛0C˛1zr

so that its capacity for interaction improves if ˛1 > 0 and worsens if ˛1 < 0.
Fisher and Stirböck (2006), examining the hypothesis of convergence between the
European regions, find evidence of a club structure between the center of the conti-
nent and the periphery. If these differences also affected the mechanisms of spatial

1 For simplicity, we suppose that this capacity of interaction only depends on one factor, although
the discussion can be generalized to the case of p variables.
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dependence, it would be sufficient to specify the function h[-] as:

h .zr˛/ D ˛0 .1C ˛1dr/

where dr is a binary variable that takes the value 1 if the region belongs to the center
and zero otherwise.

The estimation of model (4), assuming normality, can be resolved by Max-
imum Likelihood (ML) methods. We can write the log-likelihood function
(Anselin 1988a):

l .yI 
/ D �R

2
ln .2�/ � R

2
ln �2 C ln jAj � .Ay � xˇ/0 .Ay � xˇ/

2�2
(5)

where A D I��HW and there are kCpC2 parameters: 
 D �
�; ˇ; ˛; �2

�
’, p being

the number of parameters included in ˛. Assuming that the break responds to only
one variable, the number of parameters is k C 3 and the score, highly nonlinear, is:

@l

@̌
D 1

�2
.Ay � xˇ/0 x

@l

@�
D �trA�1HW C .Ay � xˇ/0 HWy

�2

@l

@˛
D ��trA�1H1ZW C �

.Ay � xˇ/0 H1ZWy

2�2

@l

@�2
D � N

2�2
C .Ay � xˇ/0 .Ay � xˇ/

2�4

9
>>>>>>>>>>>=
>>>>>>>>>>>;

(6)

Matrices H1 and Z come from the differential of H, @H
@˛

D H1
Z, where:

H1 D

2
6666664

@h.z0

1˛/
@.z0

1˛/
0 � � � 0

0
@h.z0

2˛/
@.z0

2˛/
� � � 0

� � � � � � � � � � � �
0 0 � � � @h.z0

R˛/
@.z0

R˛/

3
7777775

I Z D

2
666664

z1 0 0 � � � 0

0 z2 0 � � � 0

0 0 z3 � � � 0

� � � � � � � � � � � � � � �
0 0 0 � � � zR

3
777775

(7)

If we have all the information about the break (characteristics of the function h[-], of
the indicator z, etc.), the system of (6) can be resolved using, for example, numerical
methods. Otherwise, the previous exercise is a merely theoretical artifice.

An interesting aspect of this approach is that it allows us to resolve tests of sta-
bility in the mechanism of spatial dependence. In accordance with the specification
of (4), our interest focuses on:

H0 W ˛� D 0

HA W ˛� ¤ 0



(8)
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The null hypothesis implies that there is no break in the coefficient of spatial depen-
dence, in relation to the variable used, while the alternative points towards a certain
mechanism of break in which the indicator z intervenes. The test is conditioned
upon the indicator used in clear analogy with respect to the heteroskedasticity test
of Breusch and Pagan (1979). The Lagrange Multiplier is relatively simple to obtain
because we only need the estimation of the model under the null; that is, of the SLM
model of (1). The expression of the statistic is the following:

) LMSLM
Break D

2
64

�
trA�1ZW � "0ZWy

2�2

�2

I�
11 � I�

12V .'/ I�
21

3
75 (9)

In this expression, � is the vector of ML residuals while the terms of the denomi-
nator come from the information matrix of the model of (4), under the null of (8).
Specifically:

I�

11 D I˛˛I I�

12 D
h

I˛� I˛�2 I˛ˇ
i

I I�

21 D I�

12
0

! I˛˛ D
�

trA0�1
�
ZW0

A
�1ZW C W0

Z
2WA

�1
� C ˇ0x0
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0�1W0

Z
2WA

�1xˇ

�2

	

! I˛� D
�
2trA�1ZWA�1W C ˇ0x0

A
0�1W0ZWA

�1xˇ

�2

	

! I˛�2 D trZWA
�1

�2
(10)

! Iˇ˛ D ˇ0x0
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0�1W0Zx
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! V .'/ D

2
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I�� I��2 I�ˇ
i��2 I�2�2 0

I�ˇ 0 Iˇˇ

3
75

�1

' is the vector of parameters of the SLM, under the assumption of homogeneity,
' D �

�; ˇ; �2
�
’, and V .'/ its covariance matrix.

In the discussion above we have adopted a parametric perspective to the prob-
lem of the lack of instability, which has allowed us to resolve an exercise of ML
inference with full information. If we introduce uncertainty into this scenario, either
because the function that relates the endogenous variable to the regressors of (1) is
unknown or because we lack information about the characteristics of the break that
affects the mechanisms of spatial dependence, the situation becomes more favorable
to the application of nonparametric methods. In the following sections, we examine
more deeply the advantages and disadvantages of local algorithms, like the SALE,
through a Monte Carlo exercise.
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3 Main Characteristics of the Monte Carlo Experiment

Multiple factors, from the purely economic to the statistical or geographical, inter-
vene in a structural break. In this contribution, we have decided to focus on the
basic aspects of the problem by designing a simple Monte Carlo experiment. To
begin with, the model simulated only includes one exogenous variable, along with
the constant and the spatial lag of the endogenous variable. In matrix notation:

y D �Wy C Xˇ C "

" � N
�
0; �2I

�



(11)

where X D Œ1; x� and ˇ D Œˇ0; ˇ1�. The data of variable x come from a N(0,1) dis-
tribution, as do those of � (that is, �2 D 1 in 11); obviously, both distributions are
independent. In all cases, ˇ0 has been set to 2 and ˇ1 to 3.2 We have used regular lat-
tice systems of orders .7 � 7/ and .20 � 20/. This means that the sample sizes are 49
and 400 observations, respectively. The weighting matrix has been specified accord-
ingly, first of a binary type using a contiguity criterion and queen-type movements.
Afterwards, the resulting matrix has been row-standardized in the usual way.

We have introduced a break of the discrete type, with only two values in the
coefficient of spatial autocorrelation, so that each parameter acts in one part of the
space:

y D HWy C Xˇ C "

" � N
�
0; �2I

�
)

H D diag fhrI r D 1; 2; : : : :;Rg where hr D
(
�a if r 2 Periphery .resp. West/
�b if r 2 Center .resp. East/

(12)

We defined two spatial regimes which correspond to an East–West and a Center–
Periphery structure, as shown in Fig. 1. The color, white or gray, identifies the cells
included in each regime.

We have used several combinations of values for the parameters of spatial auto-
correlation, as shown in Table 1. Case 0 is the control case and includes a medium
level of spatial interaction, 0.5, which is homogeneous for the whole lattice. The
other cases cover different situations. In Case 1, there are very important discrepan-
cies in the values of the spatial interaction coefficients whereas they are small in the
other two cases. In Case 3, there is a high level of spatial dependence and Case 2 is
closer to the control case, with a medium level of spatial dependence. Finally, each
configuration has been repeated 1,000 times.

2 If � were zero in (11), the R2 coefficient of the corresponding OLS regression should oscillate
around 0.9.
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7x7 7x7 20x20
East-West Center-Periphery

20x20

Fig. 1 Spatial regimes used in the experiment

Table 1 Coefficients used in
the simulation

�a �b

Case 0 0.5 0.5
Case 1 0.1 0.9
Case 2 0.4 0.6
Case 3 0.8 0.9

4 Diagnostic Measures and Maximum Likelihood Estimation
When There Is Instability in the Mechanisms of Spatial
Interaction

We think it interesting, firstly, to examine what happens to the usual diagnostic
measures, obtained from the Ordinary Least Squares (OLS) estimation, when we
introduce a structural break into the parameter of spatial autocorrelation. That is,
having estimated the static version of the model of (11), y D XˇC u, we check the
results for symptoms of misspecification. Specifically, we will test for the hypothe-
sis of normality, using the test of Jarque-Bera (JB), homoskedasticity, by means of
the Breusch-Pagan (BP) and White (WH) tests, and linearity, through the RESET
test up to order 3 (Greene 2003). We also include the usual tests of spatial depen-
dence, namely, Moran’s I, the LMERR, the LMEL, the LMLAG, the LMLE and
the SARMA tests (Florax and de Graaff 2004). The results corresponding to the
mean and standard deviation for each of these tests, together with the percentage of
rejections of the respective null hypothesis at the 5% level of significance, appear in
Tables 2 and 3.

There are several results worth highlighting. For example, the strong signs of
non-normality that we find in the OLS residuals, in spite of the normality of the
random term of the DGP. The distortion suffered by the JB test is the consequence
of a certain bimodality of the data induced by the existence of two spatial regimes in
the DGP. As is well known, the null hypothesis of the JB test is that the skewness of
the OLS residuals is zero and the kurtosis is 3. The break in the mechanism of spa-
tial dependence gives rise to OLS residuals which are clearly non-symmetrical with
respect to the origin and that tend to be leptokurtic. The impact of the bimodality
gets stronger as the difference between the coefficients that operate in the two zones
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Table 2 Diagnostic statistics in the static model. No spatial effects. Lattice: 7� 7a

I LM LAG LM ERR LMEL LMLE SAR MA JB BP WH RE SET

Case 0 Mean 2:71 6:88 25:22 0:86 19:21 26:08 1:57 0:98 2:03 1:02

Std 1:03 4:95 7:66 1:13 6:06 7:46 2:08 1:56 2:02 1:07

% Rej. 76:6 99:9 67:8 3:1 99:4 99:8 2:9 4:5 4:3 5:2

East–West regime

Case 1 Mean 7:86 54:94 55:05 4:00 4:11 59:05 6:64 0:97 2:60 1:16

Std 0:52 6:98 10:12 4:80 4:70 6:68 3:26 1:51 2:42 1:15

% Rej. 100:0 100:0 100:0 36:1 37:3 100:0 46:3 5:6 9:2 9:0

Case 2 Mean 3:81 13:79 27:61 1:20 15:01 28:81 2:23 1:02 2:03 1:10

Std 1:32 8:71 10:07 1:74 6:53 10:09 3:57 1:50 2:04 1:21

% Rej. 90:3 99:8 87:1 7:3 96:1 99:5 6:0 5:8 5:3 7:8

Case 3 Mean 6:78 41:44 55:04 0:75 14:35 55:79 3:16 0:99 2:27 1:19

Std 1:07 12:09 10:32 1:13 7:27 10:14 2:80 1:39 2:11 1:33

% Rej. 100:0 100:0 100:0 3:1 94:2 100:0 9:5 4:3 5:0 8:6

Center–Periphery regime

Case 1 Mean 4:37 17:60 15:55 4:48 2:43 20:03 18:12 1:66 2:05 1:07

Std 1:22 7:62 8:66 3:62 2:83 8:17 12:85 2:28 2:27 1:30

% Rej. 93:5 89:8 92:2 50:4 22:1 92:5 84:5 12:4 5:7 6:4

Case 2 Mean 2:65 6:72 20:26 0:86 14:40 21:13 1:89 0:96 1:95 1:09

Std 1:08 4:97 7:39 1:22 6:08 7:28 2:81 1:37 1:98 1:18

% Rej. 73:6 99:7 65:4 4:3 97:2 98:9 5:9 4:8 4:0 7:6

Case 3 Mean 5:34 25:28 46:89 0:54 22:16 47:44 1:74 1:02 2:14 1:07

Std 0:85 7:85 8:41 0:69 6:00 8:36 1:74 1:47 1:98 1:15

% Rej. 99:9 100:0 99:8 0:3 99:7 100:0 2:7 5:8 4:7 5:9

a% Rej.: Percentage of rejection at the 5% level of significance

of the lattice increases. The heteroskedasticity tests also react to the break in param-
eter � although only when the sample size is large (lattice of 20 � 20) and the
difference between the two coefficients of autocorrelation is high. Moreover, the
East–West regime has a greater tendency to show problems of heteroskedasticity
than the Center–Periphery regime. Lastly, the RESET test does not detect significant
problems.

The results tend to confirm the lack of cross-sectional independence in the data.
Moran’s I, as well as the raw Lagrange Multipliers (LMERR and LMLAG), almost
always reject their null hypotheses. The average value of these statistics increases
with the size of the lattice, much more rapidly than their standard deviation. For the
largest sample, Table 3, the raw Multipliers take very high values. Another aspect to
underline is the behavior of the robust Multipliers (LMEL and LMLE). The model
that we are simulating is of the SLM type, so we should accept the null hypothesis
of the LMEL test and reject that of the LMLE. This only occurs in the control case
or when the difference between the coefficients of autocorrelation is low (cases 2
and 3) and, simultaneously, the sample size is small (7 � 7 lattice). The break tends
to confuse the two tests so that the LMEL rejects the null hypothesis more than it
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Table 3 Diagnostics statistics in the static model. No spatial effects. Lattice: 20� 20a

I LM LAG LM ERR LMEL LMLE SAR MA JB BP WH RESET

Case 0 Mean 8:47 71:19 222:4 0:89 152:1 223:2 2:24 1:20 2:22 0:99

Std 1:12 18:55 25:86 1:19 17:82 26:07 2:49 1:71 2:47 1:06

% Rej. 100:0 100:0 100:0 3:6 100:0 100:0 7:2 7:4 6:4 5:4

East–West regime

Case 1 Mean 25:99 665:6 665:3 16:45 16:13 681:7 42:14 4:41 12:18 0:98

Std 0:28 14:25 21:04 10:57 12:70 12:72 5:30 3:16 5:79 0:93

% Rej. 100:0 100:0 100:0 92:5 83:5 100:0 100:0 47:1 86:6 3:9

Case 2 Mean 13:03 168:4 268:5 15:64 115:7 284:1 9:24 2:00 2:90 1:04

Std 1:39 35:48 37:76 7:57 19:89 40:23 8:86 2:85 3:06 1:02

% Rej. 100:0 100:0 100:0 97:5 100:0 100:0 56:1 16:% 13:6 5:7

Case 3 Mean 23:42 540:9 612:6 6:72 78:46 619:3 22:56 2:00 3:43 1:03

Std 0:84 38:11 37:84 4:92 19:20 34:50 21:78 2:83 3:33 1:00

% Rej. 100:0 100:0 100:0 66:0 100:0 100:0 97:0 16:1 18:7 5:6

Center–Periphery regime

Case 1 Mean 24:35 584:5 540:3 52:79 8:54 593:0 214:5 5:34 3:96 1:06

Std 0:50 23:70 48:12 24:70 8:55 26:62 70:16 5:77 3:41 1:20

% Rej. 100:0 100:0 100:0 99:9 61:4 100:0 100:0 48:3 22:2 6:2

Case 2 Mean 10:74 115:3 211:8 10:20 106:6 222:0 12:72 1:68 2:32 0:98

Std 1:62 34:24 34:87 6:98 18:53 38:44 14:42 2:50 2:38 1:01

% Rej. 100:0 100:0 100:0 79:7 100:0 100:0 61:6 13:5 7:3 4:9

Case 3 Mean 21:06 438:2 542:4 5:89 110:1 548:2 33:08 1:85 2:55 1:06

Std 1:25 50:83 42:27 3:72 21:20 40:89 32:35 2:73 2:44 1:06

% Rej. 100:0 100:0 100:0 66:5 100:0 100:0 84:7 14:4 8:9 5:5
a% Rej.: Percentage of rejection at the 5% level of significance

should while the LMLE seems to be downwardly biased. The sample size does not
correct these anomalies; on the contrary, it accentuates them.

If there is a break in �, the malfunctioning of two robust Multipliers complicates
the selection of the right model. It could be shown that the suggestion of Florax
et al. (2003) in relation to the model that should be specified in situations where both
robust (and raw) Multipliers are significant: “If both tests are significant, estimate
the specification pointed to by the more significant of the two tests. For example, if
LMLAG > LMERR then estimate the spatial lag model (. . . ). If LMLAG < LMERR
then estimate the spatial error model” (p. 561), results in a clear bias towards the
spatial error model, SEM. This situation contrasts very sharply to what happens
in the control case, where we tend to select the spatial lag model, SLM, on most
occasions.

In Table 4, we present some details of the performance of the LMSLM
Break test intro-

duced in Sect. 2. Specifically, the table shows the percentage of rejections of the null
hypothesis of stability in the parameter �. We also include the results of the Chow
test of parameter stability and of the Rao Score test of no cross-sectional correlation
in the residuals of an SLM (Anselin and Bera 1998), applied in both cases to the
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Table 4 Testing the SLM, under the hypothesis of stabilitya

7� 7 20� 20

RS	j� LMSLM
Break CHOW RS	j� LMSLM

Break CHOW

Case 0 Mean 1:01 1:03 2:27 0:95 1:06 2:11

Std 1:41 1:46 2:62 1:31 1:52 2:14

% Rej. 5:0 4:7 7:3 4:5 6:7 6:5

East–West regime

Case 1 Mean 4:13 15:66 40:75 4:46 33:20 108:09

Std 3:89 7:20 22:92 5:33 6:28 27:22

% Rej. 42:3% 100:0% 99:6% 40:5% 100:0% 100:0%

Case 2 Mean 1:61 8:02 9:38 8:84 56:84 51:61

Std 2:19 5:11 7:65 7:40 12:92 16:36

% Rej. 12:4% 77:0% 60:1% 70:2% 100:0% 100:0%

Case 3 Mean 3:05 12:23 16:30 11:29 51:91 68:93

Std 3:64 6:96 11:40 9:97 20:89 26:80

% Rej. 29:1 93:1 83:9 74:0 100:0 100:0

Center–Periphery regime

Case 1 Mean 6:72 54:33 79:36 14:99 220:81 219:36

Std 4:42 17:74 42:91 9:87 74:05 58:24

% Rej. 70:6 99:7 98:0 91:0 100:0 100:0

Case 2 Mean 1:25 7:46 8:07 6:82 70:48 48:51

Std 1:80 6:44 7:09 5:37 18:79 15:69

% Rej. 7:3 63:5 52:1 64:8 100:0 100:0

Case 3 Mean 1:80 11:58 14:58 15:36 110:64 88:37

Std 2:18 6:77 9:94 9:46 29:89 23:63

% Rej. 14:3 85:1 80:5 90:6 100:0 100:0
a% Rej.: Percentage of rejection at the 5% level of significance

model of (11). The null hypothesis of the first test (Anselin 1990) is that the vector
of parameters ˇ is constant, assuming stability in the parameter �. Under the null
hypothesis, the Chow test is distributed, asymptotically, as a �2(k), the order of ˇ
being k. The Rao Score test, RS	j�, is a �2(1) under the null.

The results of Table 4 indicate that the SLM of (11) will not, probably, pass
the check. That is, there is a fairly high probability of finding symptoms of cross-
sectional correlation in the residuals of the model and, almost certainly, traces of
a structural break will be observed. It should not be forgotten that, although the
error term of the DGP is a white noise, (11) is misspecified due to the lack of sta-
bility in the coefficient �. This misspecification will produce ML residuals with a
strong structure of cross-sectional dependence, which will increase differences in
the autoregressive coefficients. Furthermore, the LMSLM

Break and CHOW tests coincide
in their rejection of their respective null hypotheses of stability, the first correctly
but the second spuriously. If we reverse the starting point, introducing a break
into the vector ˇ of the DGP while the parameter � remains stable, the situation
does not change substantially. The three statistics tend to reject their respective null
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hypothesis with a higher probability as the sample size increases or as the break
becomes more serious.

The solution is to re-specify the model of (11) in order to identify the origin of the
instability in the ML estimations. To do so, we first introduce a break into the vector
ˇ and replicate the tests of misspecification; then, we do the same but introducing
the break into the coefficient �. If the cause of the instability is in the vector ˇ, the
first enlarged model, but not the second, should pass the check, and vice versa.3

5 Local Estimation in the Cases of Stability
and Instability in the DGP

Briefly stated, the local estimation technique consists of fitting individual regres-
sions to selected points in the sample, with more weight assigned to observations
that are closer to the point of interest (McMillen 1996). Repeating this exercise for
every point in the sample, we can construct estimation surfaces in order to discuss
the nonstationarity of each parameter in the model. The concept of “closeness” is
flexible and must be adapted to the objectives of the study. Moreover, the distri-
bution of the weights among the neighboring observations with respect to point
r is determined by the kernel function (Cressie 1991). In the case of the GWR,
this is a decreasing function of the distance between the points, and the bandwidth
determines how rapidly the weights decline with distance. We decided to use a rect-
angular or uniform kernel with a fixed bandwidth of m for every point. This means
that the m nearest neighbors will receive a weight of one, and the other points zero.

In our case we have to resolve the local estimation of an SLM for which it
is not advisable to use the OLS algorithm. Following the example of Brunsdon
et al. (1998) and of Pace and Lesage (2004), we will obtain the local estimators
from the ML estimation of the local model:

y.m/r D �.m/r W.m/
r y.m/r C x.m/r ˇ.m/r C u.m/r I u.m/r � N

�
0; �2r;mIm

�
(13)

The indexes r and m mean that the data correspond to the local system defined by m
elements around point r. Therefore, y.m/r D .yr; yi1 ; yi2 ; : : : ; yim�1 / where ik 2 N .r/,
being N(r) the bundle of indexes of the m-1 neighbours nearest to the point r. The
same criterion is used to define x.m/r . Matrix W.m/

r refers to the weighting matrix
obtained for this local system, defined with the same connectivity criteria that are
used to obtain the global W matrix, specified following standard criteria. Finally
�.m/r , ˇ.m/r and �2r;m are the local parameters of interest. This is what we call the
Zoom estimation (different to the SALE algorithm of Pace and Lesage (2004), in
that, in each local system, we use the matrix W.m/

r specific for the local network

3 The tables of estimated power for the cases just described have not been included for reasons of
length but are available from the authors upon request.
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around point r). We refer to m as the Zoom size (equivalent to window size in
nonparametric literature).

The aim of the present section is to study the behavior of the Zoom algorithm
in different situations. Specifically, we want to know the reaction of this algorithm
when the DGP that has intervened in the generation of the data is stable. In the sec-
ond part, we use data that have been generated in a context of instability. Throughout
this section, we pay particular attention to the estimation of the parameter �.

5.1 The Zoom Estimation When the DGP Is Stable

If the mechanism of spatial dependence is the same for all the space, the best option
is to apply ML using all the sample information available. Asymptotically, the ML
estimators are unbiased, consistent and efficient. The local estimation restricts the
quantity of information used at each estimation point, depending on the kernel func-
tion. This means that it makes no sense to speak about consistency and efficiency:
the local estimators will be biased and inconsistent.4 Therefore, neither the Law
of Large Numbers nor the Central Limit Theorem (Davidson 2000) are applicable.
In spite of these comments, we think that it is interesting to examine what type of
local estimations we obtain for the parameter � and its sensitivity to changes in the
Zoom size.

This part of the Monte Carlo experiment maintains the design of the previous
section but introduces the restriction of stability in the parameter �, for which we
use three different values (0.1, 0.5 and 0.8). With respect to the value of m, we
decided to use small Zooms with a maximum size of half the sampling space. This
means that for the 7 � 7 lattice we have considered Zooms of sizes 9, 16 and 25
around each cell and for the 20 � 20 lattice 9, 16, 25 and 100.

The main results appear on the contour plots of Figs. 2 and 3. Each line on these
plots links points at which the mean of the local estimation of the parameter is the
same, after resolving 1,000 iterations (we have identical information about the other
parameters of the model, which are omitted for reasons of space).

We have also obtained several indices with which to measure the bias of the Zoom
estimation of the parameter �. The first is the Average Global Bias:

S� D 1

R

RX
rD1

. N�.m/r � �/ with N�.m/r D 1

1000

1000X
kD1

�.m/r r D 1; : : : ;R (14)

where �.m/r is the local estimation at point r considering a Zoom of size m. The
second is the usual Mean Squared Error:

4 If the function were linear and the model were well specified, the local estimators would be
unbiased, as is the case with the LWR or GWR estimation.
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Fig. 2 Spatial distribution of �r. Lattice 7� 7.�/

MSE� D 1

R

RX
rD1

�
N�.m/r � �

�2
(15)

Table 5 presents the results of these indices, together with some other statistics like
the mean, maximum and minimum values for each series of values of �.m/r .

As we said earlier, the ML local estimators of an SLM are biased because of
the nonlinearity of the algorithm,5 which leads to a tendency to underestimate the
parameter �. The index S� is always negative, indicating that the average estimation
of �.m/r is systematically smaller than the true value of �. Moreover, in all the cases,
the maximum value obtained from the local algorithm is smaller than the true value
of �. The size of the bias, measured by the ECM, grows when the ratiom=R becomes
smaller and diminishes when the size of the Zoom increases.

5 An additional source of bias is that we are not using the original, global, W weighting matrix but
specify the corresponding local weighting matrix, W.m/

r for each local system of estimation.
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Fig. 3 Spatial distribution of �r. Lattice 20 � 20

Table 5 Zoom estimation under the null hypothesis. Some descriptive statistics

7� 7 20 � 20

0:1 0:5 0:8 0:1 0:5 0:8

Zoom 16 N�.m/r 0:045 0:355 0:629 0:038 0:308 0:568

S� �0:055 �0:145 �0:171 �0:062 �0:192 �0:232
ECM� 0:003 0:021 0:029 0:004 0:037 0:055

Zoom 25 N�.m/r 0:066 0:404 0:706 0:055 0:353 0:634

S� �0:034 �0:096 �0:094 �0:045 �0:147 �0:166
Zoom 49 ECM� 0:001 0:009 0:009 0:002 0:022 0:028

N�.m/r – – – 0:072 0:410 0:709

S� – – – �0:028 �0:090 �0:091
ECM� – – – 0:001 0:009 0:009

Another interesting aspect is the stability observed in the spatial distribution of
the estimations of �.m/r . The shape of the contour plots tends to repeat itself in the dif-
ferent cases, independently of the lattice used. As we increase the size of the Zoom,
the dispersion of the local estimations is significantly reduced. In spite of this sta-
bility, it is easy to recognize a kind of doughnut effect in all the figures: the contour
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plots tend to drop at the center of the lattice. The lowest zones of the estimations, in
all cases, are in the central part of the lattice while, as we move out from the center,
the average of the local estimations increases slightly. This doughnut effect shows
irregularities when the Zoom is small but they tend to disappear for large Zooms.

5.2 The Zoom Estimation When the DGP Is Not Stable

Now we focus on the behavior of the Zoom algorithm when the DGP is not stable
due to instability in coefficient �. We expect that the instability in this parameter
will have some impact on the local estimation algorithm, helping us to identify the
characteristics of the structural break.

In this case, we have extended the Monte Carlo exercise using series of data gen-
erated with the DGP of (11) but introducing the structural break described in Fig. 1
and Table 1. The break contains only two regimes of parameters. Table 6 presents
a summary of the main results obtained from this part of the simulation, including
the minimum, the maximum and the mean value of the estimates of ¡.m/r after 1,000
draws. We present the results for only two Zoom sizes, 16 and 25 nearest neighbors.

The range of variation of the local estimates depends, mainly, on the values of
the real parameters used in the DGP. In any case, this dispersion is higher than
that observed in the case of stability in Table 5. Moreover, the tendency of the ML
algorithm to underestimate the parameter � disappears in this case and we can find
estimates below and above the corresponding local true parameters.

Apparently, the local estimations are more precise when the regimes are not
mixed, as occurs in the East–West structure. The use of large Zooms tends to
smooth out the discrepancies between the local estimations, which has positive

Table 6 Zoom estimation when the DGP is unstable in �a. Descriptive statistics

East–West regime Center–Periphery regime
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

7� 7

Zoom 16 Min 0:026 0:276 0:676 0:265 0:175 0:334

Max 0:966 0:927 0:991 0:880 0:845 0:932

Mean 0:607 0:629 0:883 0:711 0:685 0:824

Zoom 25 Min 0:086 0:375 0:863 0:626 0:528 0:687

Max 0:984 0:949 0:998 0:910 0:871 0:952

Mean 0:834 0:831 0:966 0:864 0:820 0:917

20� 20

Zoom 16 Min 0:003 0:206 0:542 �0:151 0:025 0:328

Max 0:974 0:927 0:994 0:745 0:587 0:741

Mean 0:485 0:398 0:744 0:218 0:247 0:547

Zoom 25 Min 0:052 0:159 0:596 0:005 0:264 0:690

Max 0:963 0:984 0:998 0:988 0:947 0:998

Mean 0:501 0:401 0:788 0:622 0:523 0:869
a The values of the parameters associated to each case are as follows: Case 1 (�a D 0:1I �b D
0:9/, Case 2 (�a D 0:4I �b D 0:6/, Case 3 (�a D 0:8I �b D 0:9)
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consequences (the contour plots are more structured) but also some negative ones
(the transition from one regime to the other is more diffuse). As was expected, the
size of the lattice has only a minor impact.

The spatial distributions of the local estimations for the different cases simu-
lated appear in the contour plots of Figs. 4 and 5. These figures confirm that the
Zoom algorithm produces useful information to discuss whether there is a problem
of instability in our model.

As we have already stated, the local estimation seems to work better in structures
of an East–West type (when the regimes tend to be separate), and the size of the
Zoom appears to be more important than the size of the sample. In fact, this tech-
nique is more efficient when the size of the Zoom is small. In this case, the discrep-
ancies between the local estimations are greater and their spatial distribution adjusts
better to the spatial distribution of the regimes in the parameters. As we increase the
size of the Zoom, the general appearance of the contour plots is not so sharp.

We also find a doughnut effect in this case. If there is Center–Periphery type
regime in which the parameter that intervenes in the central region of the lattice is
higher than that which acts on the Periphery, we find an unexpected fall in the local
estimations corresponding to the central zone. If the break is of the East–West type,
with a higher value in the East, the local estimations corresponding to this part of
the lattice tend to fall as we move to the right. In Fig. 6, we show two contour plots
obtained from the .20 � 20/ lattice with a Zoom size of 16, which are representative
of the two cases. The anomaly is less evident when the spatial break is of the East–
West type because the transition from one regime to the other is quick and the fall
produced as we move towards the right is less steep.

6 A Proposal to Identify Spatial Regimes in the Parameter
of Spatial Interaction

If, as we suggested in the previous section, local estimation may be a useful tool
for detecting situations of instability in the parameter �, the problem now is how
to identify the regions that belong to each regime of parameters. This situation is
nothing new in the literature and we can find interesting proposals there (see, e.g.,
Tsionas 2000; Bloom et al. 2003; LeGallo et al. 2003; Ertur et al. 2006; Fisher
and Stirböck, 2006; LeGallo and Dall’erba 2006; Ramajo et al. 2008; or Battisti
and Di Vaio 2007). In general, these papers make use of some indicator of local
spatial dependence like the Gi statistic of Getis–Ord (Getis and Ord 1992) or employ
techniques based on the mixing of distribution functions (for mixture densities, see
Titterington et al. 1985; McLachlan and Peel 2000).

The strategy that we propose is based on the use of two descriptive techniques.
First we use the Zoom algorithm to obtain the local estimation of the parameter
� and, with the results, we carry out a cluster analysis. The idea is to use this
procedure to detect zones in which a mechanism of spatial dependence, different
to the rest of the space, seems to be acting. The final decision as to whether there are



110 F. López et al.

Zoom 
16

7 7

Zoom 
25

0.1

0.1

0.1

0.
1

0.1

0.1

0.1

0.
2

0.2

0.2

0.
2

0.
3

0.
3

0.3

0.
4

0.4

0.4

0.5

0.5

0.5
0.6

0.6

0.
6 0.

7

7.0

0.7

0.
8

8.0

0.8

0.
8

0.9

0.
9

0.
9

0.9

0.
9

0.9

1 2 3 4 5 6 7
1

2

3

4

5

6

7

0.10.
1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0
.5

0.5

0.6

0.6

0.6

0.7

0.7

0.
7

0.7

0.8

0
.8

0.8

0.
8

0.9

0
.9

0.9

0.
9

1 2 3 4 5 6 7
1

2

3

4

5

6

7

0.3

0.
3

0.4

0.
4

0.4

0.5

0.
5

0.5

0.6

0.
6

0.6

0.6

0.6

0.
7

7.0

0.7

0.7

0.7

0.
8

0.
8

0.8

0.8

0.
8

0.8

0.9

0.
9 0.9

1 2 3 4 5 6 7
1

2

3

4

5

6

0.4

0.4

0.5

0.5

0.6
0.

6

0.7

0.
7

0.7

0.8

0.8

0.8

0.
8

0.9

9.
0

0.
9

0.9

0.9

1 2 3 4 5 6 7
1

2

3

4

5

6

7

0
.7

0.8

0.
8

0.8

0.9

0.
9

0.9

0.9

0
.9

0.9

1 2 3 4 5 6 7
1

2

3

4

5

6

0.9

0.9

0.95

0
.9

5

0.95

0.
95

0.
95

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Lattice 20 x 20

Zoom 
16

Zoom 
25

0.1

1.0

0.1

0.2

2.0

0.2

3.0

0.3

0.
3

0.4

4.0
4.0

0.5
0.5

0.
5

0.6

6.0
0.

6

0.7

7.0
0.

7

0.7
0.7

0.8

8.0
0.

8

0.
8

0.8
0.8

0.9

9.0
0.

9

0.9

0.
9

0.9

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

0.
1

0.
1

0.
1

0.2

2.0

0.2

3.
0

0.3

0.
3

0.4

4.0
4.0

0.5

5.0
5.0

0.6

6.0

0.6

0.
7

7.0
7.0
8.0

8.0

0.
8

0.
8

0.8

0.9
0.9

9.0

0.
9

0.9

0.9

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

0.3

0.
3

0.
3

0.4

4.0
4.0

0.
4

0.4

0.4

0.4

0.4

0.
4

0.4
0.4

0.5

5.0
0.

5

0.
5

0.5
0.5

0.6

6.0

0.
6

0.
6

6.
0

0.6

0.7

7.0
0.

7

0.
7

0.7
0.7

0.8

0.
8

0.
8

0.
8

8.0

0.8

0.9

0.
9

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

0.
3

0.3

0.3
0.3

0.3

4.
0

0.4

0.
4

0.5
0.5

0.
5

0.
5

0.5
0.5

0.5

0.5

0.6
0.6

0.
6

0.
6

0.6

0.60.
7

7.0

0.7 0.
7

0.7
0.7

0.8

8.0
0.

8

8.0
8.0

0.80.
9

9.0

9.
0

9.0
9.0

0.9

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

0.6

0.
6

0.6

0.
6

0.6

0.7

0.
7

0.
7

0.7

0.7

0.7

0.8

0.
8

0.
8

0.
8

0.8
0.8

0.9

9.0

0.9

0.
9

0.
9

0.
9

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

0.
7

0.7
0.7

0.7

0.7

0.8

8.0
0.

8

0.
8

0.
8

0.8

0.
9

9.0
0.

9

0.
9

0.9

0.9

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

Lattice 7 x 7

Case 1: ρa=0.1; ρb=0.9 Case 2:ρa=0.4; ρb=0.6 Case 3:ρa=0.8; ρb=0.9

Case 1: ρa=0.1; ρb=0.9 Case 2:ρa=0.4; ρb=0.6 Case 3:ρa=0.8; ρb=0.9

Fig. 4 Spatial distribution of �r under the break. East–West structure

significant differences or not in these mechanisms must be taken, obviously, using
formal statistical criteria such as the test LMSLM

Break, or some adjusted version of it.
In this section, we are going to compare four strategies for obtaining clusters.

The first two allow us to form as many groups as necessary while the other two only
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Fig. 5 Spatial distribution of �r under the break. Center–Periphery structure
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Size of the Zoom: 16. Lattice 20x20. 
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Fig. 6 The doughnut effect and the Zoom estimation

allow the formation of two clusters. The first is the algorithm known as k-means
(Seber 1984) in which, on the basis of two randomly selected cells, others are
added with the aim of minimizing a measure of internal distance between the val-
ues of �.m/r . The algorithm has been repeated 10 times starting with different points,
selecting the solution that offers the lowest internal distance, so that the final solu-
tion does not depend on the initial points. The second, called Gaussian Mixture
Models (GM), uses the Expectation Maximization (EM) algorithm to identify the
regimes (McLachlan and Peel 2000). This method has also been used to identify
clusters of regions of homogeneous behavior in the presence of spatial dependence
(Tsionas 2000; Bloom et al. 2003; Battisti and Di Vaio 2007). It is adequate when
we suspect that there is a mixture of several populations in the data, each of them
coming from a Gaussian distribution with different first and second order moments.
As before, the EM algorithm has been repeated 10 times in each case and we have
selected the solution that maximizes the likelihood of the solution.

We also present the results of two other techniques that only allow us to tackle
bipolarity. The first is well known in the literature and is based on the sign of the
standardized Gi statistic obtained from the local estimations of the coefficient �
(LeGallo et al. 2003; Ertur et al. 2006; Fisher and Stirböck 2006; LeGallo and
Dall’erba 2006; Ramajo et al. 2008). Lastly, we also include a very simple clas-
sification rule based on the 10% trimmed mean (tme): we assign the regions whose
value of �.m/r is lower than the trimmed mean to one cluster and the others to the
other cluster.

Table 7 evaluates the effectiveness of these four techniques through the average
percentage of cells correctly classified after the 1,000 iterations. The results allow us
to draw important conclusions. For example, the percentage of correctly classified
cells improves in the four criteria as the difference between �a and �b increases. The
size of the Zoom is another important factor. The worst results are obtained when
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Table 7 Percentage of cells correctly classified

Center–Periphery East–West
km GM Gi tme km GM Gi tme

Case 1: �a D 0:1; �b D 0:9

Zoom 9 20� 20 0.815 0.950 0.842 0.790 0.703 0.688 0.755 0.715
Zoom 16 0.815 0.955 0.842 0.790 0.914 0.882 0.933 0.911
Zoom 25 0.767 0.792 0.766 0.766 0.882 0.842 0.897 0.879
Zoom 49 0.380 0.692 0.478 0.641 0.636 0.570 0.669 0.625
Zoom 9 7� 7 0.664 0.416 0.565 0.672 0.775 0.794 0.801 0.848
Zoom 16 0.353 0.355 0.196 0.506 0.751 0.828 0.808 0.805
Zoom 25 0.154 0.235 0.183 0.303 0.589 0.745 0.720 0.666

Case 2: �a D 0:4I �b D 0:6

Zoom 9 20� 20 0.531 0.410 0.605 0.594 0.525 0.513 0.545 0.527
Zoom 16 0.528 0.409 0.603 0.592 0.664 0.547 0.729 0.679
Zoom 25 0.724 0.744 0.689 0.716 0.591 0.524 0.732 0.671
Zoom 49 0.499 0.638 0.465 0.584 0.283 0.316 0.325 0.282
Zoom 9 7� 7 0.457 0.443 0.489 0.554 0.573 0.559 0.619 0.637
Zoom 16 0.332 0.335 0.234 0.464 0.672 0.695 0.702 0.712
Zoom 25 0.205 0.202 0.169 0.379 0.602 0.669 0.683 0.596

Case 3: �a D 0:8I �b D 0:9

Zoom 9 20� 20 0.399 0.490 0.522 0.548 0.475 0.466 0.457 0.463
Zoom 16 0.423 0.546 0.519 0.548 0.599 0.645 0.637 0.644
Zoom 25 0.430 0.492 0.381 0.603 0.635 0.633 0.643 0.641
Zoom 49 0.473 0.630 0.253 0.583 0.414 0.352 0.495 0.363
Zoom 9 7� 7 0.349 0.314 0.356 0.541 0.469 0.470 0.488 0.499
Zoom 16 0.255 0.259 0.183 0.411 0.544 0.527 0.620 0.466
Zoom 25 0.111 0.141 0.183 0.313 0.639 0.642 0.649 0.430

the size is large. A bandwidth of between 9 and 16 seems to be the most adequate to
identify the composition of the clusters, no matter what happens with the other fac-
tors (sample size, structure, etc.). The size of the lattice is also of some importance,
though much less, in the number of correct classifications (the percentage falls as
the size of the lattice decreases). The difference is inappreciable with respect to the
spatial regime of the break.

There is no criterion that clearly dominates over the others when constituting the
clusters. The k-means presents the worst results in most cases. That based on the
trimmed mean works well with small sample sizes (7 � 7 lattice) and also when
the distance between the values of � is small. The differences between the other two
methods (GM and Gi) are difficult to appreciate, especially with medium and large
.20 � 20/ samples. Nevertheless, the GM method has the advantage of being more
general, its statistical basis is more solid and it allows the constitution of two or
more regimes.
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7 Conclusions

The use of models which include rigid, uniform spatial structures for the whole set
of regions has evolved, in recent decades, towards more flexible specifications. In
this process, the concept of local estimates appears very important. Our suggestion
is that this trend must be extended to models in which there are mechanisms of
spatial dependence, in spite of the computational cost implied.

In this work, we have presented a wide Monte Carlo exercise dedicated specif-
ically to checking the possibilities of the local estimation techniques. The main
conclusions that we have obtained from this experiment are the following:

� Local estimation may be a useful technique since it has the potential to provide
accurate estimates even when the true model is not known. However, it should
be used with caution because, in general, we will perceive symptoms of hetero-
geneity in the local estimates with and without spatial breaks in the parameter of
spatial dependence.

� In relation to the above, it is important to have some statistical test that con-
firms/rejects the existence of spatial breaks.

� The size of the Zoom (the bandwidth in kernel literature) appears to be one of
the most important aspects in the performance of the local estimation algorithm.
This technique seems to work better with very small Zoom sizes.

� The problem of identifying the regions that belong to the different regimes is not
simple. A geographical cluster analysis is the possibility that we have explored
in this chapter and, although the results are not thoroughly disappointing, we are
sure that its performance could be improved.
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Fisher M, Stirböck C (2006) Pan-European regional income growth and club-convergence. Insights

from a spatial econometric perspective. Ann Reg Sci 40:693–721
Florax R, de Graaff T (2004) The performance of diagnostics tests for spatial dependence in lin-

ear regression models: a meta-analysis of simulation studies. In: Anselin L, Florax R, Rey S
(eds) Advances in spatial econometrics: methodology, tools and applications. Springer, Berlin,
pp 29–65

Florax R, Folmer H, Rey S (2003) Specification searches in spatial econometrics: the relevance of
Hendry’s methodology. Reg Sci Urban Econ 33:557–579

Garcı́a R, Perron P (1996) An analysis of the real interest rate under regime shifts. Rev Econ Stat
78:111–125

Getis A, Ord J (1992) The analysis of spatial association by use of distance statistics. Geog Anal
24:189–206

Greene W (2003) Econometric analysis. Prentice Hall, New York
Hansen B (1996) Inference when a nuisance parameter is not identified under the null hypothesis.

Econometrica 64:413–430
Huang J (1984) The autoregressive moving average model for spatial analysis. Aust J Stat

26:169–178
Koop G, Potter S (2007) Estimation and forecasting in models with multiple breaks. Rev Econ

Stud 74:763–789
Lacombe D (2004) Does econometric methodology matter? An analysis of public policy using

spatial econometric techniques. Geogr Anal 36:105–118
LeGallo J, Dall’erba S (2006) Evaluating the temporal and spatial heterogeneity of the European

convergence process, 1980–1999. J Reg Sci 46:269–288
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Mur J, López F, Angulo A (2008) Symptoms of instability in models of spatial dependence. Geogr

Anal 40:189–211
Pace K, Lesage J (2004) Spatial autoregressive local estimation. In: Getis A, Mur J, Zoller H (eds)

Spatial econometrics and spatial statistics. Palgrave, London, pp 31–51
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“Seeing Is Believing”: Exploring Opportunities
for the Visualization of Activity–Travel
and Land Use Processes in Space–Time

Ron N. Buliung and Catherine Morency

1 Introduction

The study of the relationship between activity–travel behaviour and the develop-
ment of city-regions is a matter of great concern among researchers and urban
planners. Much of the current debate focuses on understanding and influencing the
relationship between transportation and land use systems, with a view to achiev-
ing economic, sustainability, and quality of life policy objectives. The essence of
the transport-land use link is that the development of “new” or the presence of
“old” transport infrastructure (e.g., road, rail, etc.) increases the relative accessi-
bility and hence attractiveness of place, giving rise to several possible outcomes
including: the enhancement of economic growth and spatial interaction. The eco-
nomic benefits that materialize in this context, however, have been the subject of
debate (Black 2001).

Accessibility effects have also become prominent in policy-based discourse and
research focused on the efficacy of urban design as a mechanism for reducing
transports’ negative externalities. Researchers have set out to test the conventional
wisdom that placing and mixing the “things” people want to or have to do, close
to where people “want” to or “have to” live or work, will facilitate reductions in
automobile use, energy consumption, and environmental emissions (e.g., Buliung
and Kanaroglou 2006b; Cervero and Kockelman 1997; Crane 2000). The results
appear to be somewhat inconsistent, with context specific evidence suggesting that
the relationship between transport and land use tends to vary from person to person,
and place to place.

Understanding how transportation and land use processes evolve both indepen-
dently and jointly in space–time, and how these systems influence one another, is a
complex endeavour that can arguably be enhanced through the development and
application of tools for graphical analysis and data visualization. In the current
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context, where transportation and land use data are becoming more abundant,
available in an increasing variety of formats, and collected using a wide range
of instruments, the opportunity exists to usefully increase stakeholder and insti-
tutional awareness of the possible policy and programme relevant applications of
public data. Moreover, the availability of proprietary and open software environ-
ments, coupled with implementation of innovative approaches for data collection,
presents fresh opportunities for the construction of spatiotemporal knowledge of
transport and land use processes. Opportunities now exist to match the impressive
and occasionally controversial visual qualities of transport and land use systems
with comparatively impressive and instructive experiments with data visualization.

The goal of this chapter is to make the case for engaging more fully with the
exploratory analysis, visualization, and ultimately the communication of various
spatial, temporal and demographic qualities of transportation and land use systems
and processes. Using examples drawn primarily from the Greater Montreal Area
(GMA) and the Greater Toronto Area (GTA), Canada, the chapter examines how
numerous and appropriate visualization techniques and tools can be used, often in
a complementary way, to clarify the spatial and temporal qualities of transport and
land use processes.

The chapter is organized into five sections. First, some discussions on the role
of visualization in the spatial analysis process are reported. Then, a general frame-
work for analysing, understanding and observing the urban system is presented,
along with a description of the two city-regions that provide the contextual set-
ting for the chapter. A third section focuses on examples of the visualization of
selected outcomes of activity–travel processes. Attention then turns toward visual-
izing the land-use system and development processes. The chapter concludes with
summary observations concerning the visualization examples presented throughout
the chapter.

2 The “Art and Science” of Visualization

The greatest value of a picture is when it forces us to notice what we never expected
to see.

(Tukey 1977)
Data visualization and graphical analysis have historically featured prominently

across disciplines centred on the construction of knowledge of natural processes
and human activities (e.g., CSISS 2008; Tufte 2001). Recent examples, including
the ground-breaking 3D rendering, visualization, and analysis of the Mona Lisa
(Borgeat et al. 2007), and Time Magazine’s, “One Day in America” exposé on com-
muting within major US cities (Time 2007) suggest that visualization is coming of
age, becoming a more regular part of the scientific and human experience than ever
before.

The aim of scientific or data visualization is to increase human understanding of
complex processes through the creation and viewing of imagery constructed from
data (Gahegan 2000; Hearnshaw and Unwin 1994). To draw a parallel with “the
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arts,” visualization can be compared to an anamorphosis interpreter wherein the act
of visualization makes use of specialized devices (e.g., computer programs, statisti-
cal tools, GIS, interactive spreadsheets), or compels the viewer to occupy a specific
perspective (spatial, temporal, or social feature), with a view to reconstituting the
“original” for the purpose of developing a clearer understanding of “process.”

From a scientific or quasi-scientific perspective, visualization can be viewed
as an exploratory exercise and, when used interactively by modellers, can be
applied to support hypothesis generation and case study analyses (Buliung and
Kanaroglou 2006a; Buliung et al. 2008; Gahegan 2000). In other words, visual-
ization can make use of available data to engage in the a priori exploration and
development of hypotheses that may be formally and more rigorously tested later.
When visualization tools are rigorously constructed, they can also prevent data
from being misused or misinterpreted by non-specialists, particularly when the
analyst implements constraints that prevent non-specialist development of erro-
neous relationships in n-dimensional space that violate statistical or other scientific
principles.

Visualization can also be conceptualized as a communication process. If done
well, i.e., attention is given to achieving clarity, precision, and efficiency, visualiza-
tion can facilitate the representation of processes using structures and schematics
which are less abstract, making it easier for non-specialists to understand com-
plex human and/or physical processes. The communication motivation also provides
opportunities for the democratization of specialized knowledge through the engage-
ment of lay-audiences in “conversations” about complex phenomena. Examples
of this sort can be taken from the participatory planning literature, where stake-
holders, professional planners, and other decision makers simultaneously engage
with the visualization process to shape planning decisions and outcomes (e.g.,
Al-Kodmany 1999, 2002; Lewis and Sheppard 2006; Tress and Tress 2003).

The case for visualization has been argued by many, with perhaps the most salient
and earliest endorsements emerging from John Tukey’s influential work, published
in 1977, “Exploratory Data Analysis”. The concept of EDA (Exploratory Data Anal-
ysis) initiated many discussions with respect to graphical methods and tools for data
processing and analysis. The aim of EDA is to facilitate the identification of pat-
terns in data using graphical, visual, and numerical methods. EDA is typically more
descriptive (and intuitive) than formal.

While EDA methods facilitate pattern identification within a dataset, they do not
explicitly integrate the spatial quality of data that describe geographical processes.
The development and widespread availability of GIS then made inevitable the emer-
gence of exploratory techniques specifically dedicated to spatial data (Anselin 1995).
Exploratory spatial data analysis (ESDA) is the extension of EDA to spatial data,
integrating additional techniques to detect spatial patterns and formulate and test
hypothesis based on the geography of processes (Haining et al. 2000).

As a “geographical” extension of visualization, geovisualization maintains an
important role in spatial analysis and ESDA (Haining et al. 2000; Wise et al. 1999).
Geovisualization integrates spatial and non-spatial theory, methods, and technolo-
gies to facilitate exploration, analysis, synthesis, and communication of geographical



122 R.N. Buliung and C. Morency

processes and data (MacEachren and Kraak 2001). Haining et al. (2000), argue that
the focus on “the visual” is justifiable because: (1) the power of modern graphical
interfaces means that graphics are no longer a way of simply presenting results in the
form of maps or graphs, but a tool for the extraction of information from data; and
(2) graphical, exploratory methods are felt to be more intuitive for non-specialists
when compared with numerical spatial methods, enabling broader participation in
the scientific process.

Haining’s position arguably favours the horizontal construction of scientific
knowledge, a model that is useful in certain contexts (e.g., participatory plan-
ning), and potentially unworkable in other cases (i.e., instances where the testing
of “theory” and development of “laws” occasionally relies on the application of
more sophisticated computationally intensive or “classical” approaches to hypothe-
sis testing). With this caveat in mind, the opportunity to enhance our understanding
of processes in space–time through geovisualization provides adequate justification
for the practice.

2.1 A Brief Note on “Tools”

The “integrative” aspect of geovisualization, and the goal of simplifying the com-
plexity of spatial processes and data is largely facilitated by the efforts of a relatively
small number of spatial scientists, and private agencies, who engage in the devel-
opment of software for ESDA. These initiatives have involved various platforms
and philosophies for development and distribution. While the advancement of geo-
graphic data analysis capabilities within the proprietary domain are widely known
(e.g., ESRI, MapInfo), less attention, beyond the academic domain, has been given
to the advancement of Free and/or Open Source (OS) projects. In this chapter, exam-
ples have been developed using both proprietary (e.g., ESRI’s ArcGIS, Microsoft
Excel), and Open Source (e.g., the R Language and its libraries) software.

Open source (OS) projects are generally distinguishable from their proprietary
counterparts because they typically include data and code in the distribution. More-
over, the range of OS licensing options enhances the process of collaborative,
transparent, incremental, and rapid application development. Current OS activi-
ties related to spatial analysis and geovisualization include GRASS, THUBAN,
SAGA, the spatstat, spdep, and aspace packages for R (Baddley and Turner 2005;
Bivand 2006; Buliung and Remmel 2008), the R-Grass interface (Bivand and
Neteler 2000), STARS (Rey and Janikas 2006), Terralib, and Geovista (Takatsuka
and Gahegan 2002). Open Source organizations have also developed to support
knowledge exchange and the distribution of OS GIS and spatial analysis software
(e.g., OSGeo.org, opensourcegis.org, FreeGIS.org, MapTools.org).

Spatial analysis freeware has also become available, with GeoDA (Anselin
et al. 2006) and CrimeStat (Levine 2006), for example, offering a wide range of
capabilities for the visualization and analysis of spatial processes. ESDA toolkits in
general have also become increasingly interactive over time, providing opportunities
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to link planar and non-planar views of data in both static and dynamic ways
(e.g., Anselin 1995, 2000; Anselin et al. 2006; Buliung and Kanaroglou 2006a;
Kwan 2000).

The evolution of Tukey’s EDA toward the widely distributed ESDA solutions
available today presents researchers interested in the relationship between urban
policy and urban change with an opportunity to engage in innovative spatial science.
Using examples drawn from two of Canada’s largest city-regions, the GTA, and the
GMA, the remainder of the chapter demonstrates the application of geovisualization
to the study of transportation and land use processes. Where possible (i.e., similar
data are available), comparative exploratory analyses have been undertaken. The
overall goal of the chapter, however, is not to comparatively describe the geography
of transport and land use across the city-regions, but to illustrate, using secondary
data from these places, the utility of visualization for enhancing our understanding
of urban spatial processes.

3 Geovisualizing Transportation and Land Use Processes

Understanding interactions between activity–travel and land use processes is a com-
plex task. For some time, researchers have engaged in the empirical study of the
reciprocal influences shared across transportation and land use systems. The liter-
ature suggests that the magnitude and direction of the effects tend to vary from
place to place, and across segments of the population (Badoe and Miller 2000;
Buliung and Kanaroglou 2006b). Moreover, the influences arguably operate at
different geographical and temporal scales. With a view to advancing current
thinking on the behavioural and physical aspects of transport and land use inter-
actions, Morency (2004) proposed a conceptualization of the urban system based
on ten critical dimensions (Fig. 1). The framework embodies much of the theoret-
ical and empirical data on the subject of activity–travel behaviour developed since
Jones (1979).

Morency’s framework specifies that observed urban travel behaviours proceed
from and contribute to the structuring of housing, transportation and activity func-
tions. Activity–travel behaviours are intimately linked to individuals and households
and to space–time decisions regarding residential location and activity participation.
Formalising the urban system using ten comprehensive dimensions can arguably
draw the attention of decision makers toward specific interactions. Enhancing this
conceptual experience with dynamic, theoretically grounded, data-based views of
how key agents and processes evolve in space–time can also clarify urban issues for
various stakeholders. The visualization exercise can therefore become part of stake-
holder conversations regarding policy and planning issues (i.e., Al-Kodmany 1999).
Using this framework as a conceptual background, the remainder of the chapter
presents examples of the geovisualization of urban processes.
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Fig. 1 Critical dimensions and interactions between activity-travel and land-use systems

3.1 Regional Context and Data Sources

The geovisualization examples have been constructed using data drawn from two of
Canada’s largest city-regions, the GMA and the GTA (Fig. 2). The GTA is Canada’s
largest metropolitan region, with a population exceeding five million. During the
last decade, the population of the suburban regional municipalities has grown at
a faster rate than the City of Toronto, historically, the economic and cultural hub
of the region. The GMA is the largest urban area in the province of Quebec, with
3.5 million inhabitants distributed across 5,500 km2. Over the last 15 years, and
across both study areas, the population has become more geographically dispersed,
household size has decreased, and car ownership has been on the rise.

Large-scale travel surveys (trip diary) are conducted regularly in both city-
regions and used to support academic and practitioner research and planning activi-
ties. Around 5% of households are surveyed in the GTA as part of the Transportation
Tomorrow Survey, while roughly 5% of the population are interviewed, in the GMA.
Both surveys are conducted approximately every 5 years; data in Montreal have been
collected since 1970, while the TTS was first launched in 1986. The surveys facili-
tate construction of large datasets containing demographic data on households and
individuals, as well as spatiotemporal details regarding daily trips.

Other secondary datasets are available in both regions to document additional
transport-related issues. For example, data from other types of surveys or observation
systems can be used to study additional dimensions of transportation and land
use systems. Transaction datasets from carsharing organizations, retail databases,
parking inventories, car ownership files, and GPS traces from onboard systems can
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Fig. 2 The Greater Toronto Area (GTA) and Greater Montreal Area (GMA)

provide insights to behavioural processes that are typically not observed through
the sort of large scale, legacy travel surveys conducted in both regions. At the same
time, developing large representative samples for regional scale analysis and mod-
elling is arguably difficult using the sort of “near” real-time data collection enabled
by new integrative mobility technologies.

4 Activity–Travel Processes

Activity–Travel processes (e.g., planning/scheduling) can give rise to the movement
of objects, such as people, families, friends, cars, or information in space–time.
For some time, and in the presence of increasingly available space–time activ-
ity microdata, and GIS tools, Transportation Geographers have been developing
approaches to manage and visualize activity–travel data within a spatiotemporal
context (e.g., Buliung and Kanaroglou 2006a; Kwan 2000; Shaw and Wang 2000;
Shaw et al. 2008). In this section, examples of both the implicit and explicit pro-
cessing of the location of objects over time are presented. For instance, the 24-h
monitoring of people example explicitly incorporates space–time in the visualiza-
tion experiment, while accumulation profiles (i.e., a running count of activity–travel
objects in space–time) implicitly reference the spatial and temporal dimensions of
travel demand.

4.1 People and Cars in Space and Time

Population size and density are often included in travel behaviour models to explain
systematic variation in travel demand (e.g., transit share, kilometres travelled, trip
generation). Metrics of this sort are also used as benchmarks for understanding the
extent to which cities and regions are moving toward planning goals, such as the
intensification of land use. Typically, these metrics are examined at a single point in
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time. However, such a static measurement approach does not reflect the potentially
time-varying use of space by people or other moving objects (e.g., cars). While
pursuing the study of the time-varying use of systems and space is not new (e.g.,
Civic Transportation Committee 1915; Goodchild and Janelle 1984; Janelle and
Goodchild 1983), the availability of GIS, and activity–travel micro-data presents
new opportunities to communicate to stakeholders how cities and regions are used
in space and time (e.g., Time 2007).

Travel survey data as detailed as those available in both Montreal and Toronto
enable exploration of temporal variation in the use of space by people and house-
holds during a typical weekday. It is possible to follow moving objects in space–
time, using time of departure for every trip, estimated travel times, and the precise
location of trip ends. The 24-h record of travel demand permits evaluation of poten-
tially more useful indicators of spatial occupancy, in comparison to classical static
measures. In the following set of examples, travel data were processed for both
the GMA and GTA to explore spatiotemporal patterns of mobility. First, data were
processed to document the daily mobility of residents across the two city-regions,
to assess the importance of regional sub-areas in providing activity opportunities
(e.g., central business district, other centres), and to expose any day–night differ-
ential in the occupancy of local environments. Additionally, the reported examples
were developed using separate “tools” to illustrate the utility of both proprietary
and Open Source solutions for this sort of data exploration. Second, data were pro-
cessed, for the GMA only, to classify boroughs (geopolitical areas) according to
their attractiveness with respect to activity provision and parking supply.

With respect to the first application, and for the GMA only, an animation of the
activity of respondents, on a 24-h basis, was produced by allocating time-stamped
trip-ends to 1 km2 grid cells in a grid-based tessellation (raster) covering the study
area. Six snapshots of the daily mobility of people over space are presented as 3D
maps in Fig. 3. Each cell is projected from the plane by a factor equivalent to the
population (survey respondents) density in every cell at a specific hour of a typical
weekday. In addition to being clearly understood by non-specialists, this visualiza-
tion gathers all of the information required to compute dynamic densities over time.
For example, the data suggest that, at 12h00, the population density is 80 times
higher in the central business district (up to 13,000 people per km2 for the most
active cells) compared with what is observed in the evening, a level of activity that
is never reached in outer areas.

This experiment appears to follow the conclusions of other scholars concern-
ing the continued significance of the Montreal CBD as a place of work (Shearmur
and Coffey 2002), while simultaneously highlighting other “busy” sub-areas. At
the unit level, the approach facilitates estimation of the inequality between day
and night densities. This visualization approach is currently in use by Montreal’s
Metropolitan Agency of Transportation to summarise daily patterns of mobility in
space–time. Interestingly, the visualization approach is also used to communicate to
local constituencies, the value-added proposition of the travel survey data collection
programme.
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Fig. 3 Chronology of the spatial location of the mobile population during an average weekday in
the GMA (1998)

A similar example has been developed for the GTA using data from the 2001
Transportation Tomorrow Survey (Fig. 4). While the Montreal example was devel-
oped using the ArcScene extension to ESRI’s ArcGIS proprietary software, the GTA
example has been developed using the scatterplot3d library from the Open Source
R language for statistical and graphical analysis (see www.r-project.org). In this
case, a 3D scatterplot (e.g., lollipop plot) has been developed by projecting traffic
zone centroids from the plane by a factor equivalent to the trip density (number of
trip-ends/traffic zone size in km2) associated with each zone for a prescribed time
interval.

The time interval indicated on each panel refers to the start-time of trips end-
ing in each traffic zone. The series conveys an initial sketch of the trip density for
all purposes (conducted by any mode) across the study area during the early to
mid-morning, mid-day, and late afternoon to evening time periods. The lighter grey
points represent the location of those traffic zones in the top 5%, with respect to trip
density, for the prescribed time interval. Of course, the travel data can be explored
further by examining trips by purpose, mode, and/or market segment.

The print-form visualization (Fig. 4) sheds light on the time-varying nature of
travel demand in the GTA, and the overwhelming intensity of travel to the City of
Toronto during a typical weekday. A more complete picture of the GTAs regional
economy emerges when those zones with the highest travel densities are removed
from the exploration (Fig. 5), decentralized sub-centres are clearly more visible.
Moreover, both figures convey the time-varying intensity of use of those sub-centres
located to the east and west of Toronto, immediately adjacent to Lake Ontario.

Scholars have noted the unique differences across Montreal and Toronto with
respect to the spatial structure of the regional economy (Shearmur and Coffey 2002).
In contrast to the centralization of economic productivity in Montreal, empirical
work has shown that the GTA has typically followed “US” development patterns
characterized by a decline in the share of jobs located in the CBD, and the consoli-
dation of growth in secondary suburban centres. The identification of decentralized
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Fig. 4 Chronology of the spatial location of the mobile population during a typical weekday in
the GTA & Hamilton (2001)
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traffic zones in the top 5% with respect to trip density (Figs. 4 and 5) provides
additional evidence of a polycentric economy in the GTA.

Overall, however, while the total share of regional employment located in the
central area of both city-regions has declined during the post-war era (Heisz and
LaRochelle-Côté 2005) – the city centres in both the GTA and GMA continue to be
used more intensively than other places across the regions. Notably, the Montreal
and Toronto visualization experiments highlight the continued power and identity
of the central business districts of two of Canada’s oldest and largest cities within
their broader regional economies.

The second application of the GMA travel survey data explores the attractiveness
of geopolitical sub-areas with respect to activity participation and parking supply.
People and car accumulation profiles (e.g., PAP and CAP) are developed to examine
variation in the accumulation of these potentially mobile objects across space, for
a specified time period. Since all the attributes of the moving object travel with it
(household and people attributes), it is also possible to describe the set of objects
simultaneously located in a specific zone using these attributes. Holding the desti-
nation constant, and collecting trips originating in other districts, clarifies the use
of space by the non-resident users of the fixed destination. Moreover, the approach
translates the “abstract” origin-destination flow matrix into a coherent graphic (e.g.,
Tufte 2001), facilitating analysis and discussion of the spatiality of travel demand
using familiar geo-political constructs (e.g., neighbourhoods, boroughs, etc.).
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As an example of the PAP approach, Fig. 6 reveals, at each time of the day, the
extent to which non-resident users (i.e., individuals living in five large areas linked
to specific transportation planning agencies and urban planning strategies) bene-
fit from activity destinations located in the central part of the GMA. For example,
around 15h00, there are more than 200,000 people located in this area, with more
than 35% not being residents of the Montreal Island (hence not directly contributing
to the local fiscal burden). For policy makers and planners, the approach facili-
tates visual exploration of the tensions between the use of space by central city and
suburban residents. Measuring the consumption of centralized infrastructure by non-
residents helps assess the scale of the benefits non-residents receive by accessing
opportunities located in the CBD. Evidence of this sort can inform action directed
at distributing the costs associated with the provision of centralized activities and
infrastructure equitably across all users of the urban system.

The availability of subsidized parking influences mode choice toward solo-
driving, particularly for the journey to work (Downs 2004; Willson and Shoup 1990).
Moreover, the opportunity cost of providing parking spaces in urban markets with
high land values is arguably very high. Understanding spatiotemporal trends in the
demand for parking can inform the development of parking availability and taxation
strategies aimed at adjusting the use of private and public parking resources, or shift-
ing demand toward “sustainable” alternatives. Despite the relevance of parking to
transportation planning, few public agencies have access to parking inventory data
and when they do, the data are often incomplete (private/public parking) and limited
to capacity (no information on the use of the parking spaces) (Morency et al. 2006).
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The last two regional travel surveys conducted in the GMA asked questions
regarding the type of parking space available at trip destinations. Responses include
data on the physical type of parking (street, outdoor, indoor) and cost (free, paid,
employer subsidized). These data have been used to construct car accumulation pro-
files (CAP) that demonstrate the availability and use of parking in space–time. CAPs
were first developed for Montreal’s Metropolitan Agency of Transportation as a
means for having standardized and sector-based statistics on parking availability and
use (Morency and Trépanier 2008). For example, the data indicate that the Montreal
CBD has the highest car density, highest proportion of immobile cars (cars owned
by residents that are not used), lowest internal use index (proportion of the parking
spaces � hours used by residents), and highest emptying factor (ratio between the
number of cars at 12h00 and the number of cars at 4h00) during a typical weekday.
Following publication of the Montreal Transportation Plan, boroughs were asked
to develop specific projects based on their respective transportation issues. In this
context, CAP figures (e.g., Fig. 7) were produced along with maps illustrating the
spatial distribution of vehicles parked in an area throughout a typical day (Fig. 8).

4.2 Spatio-Demographic Travel Indicators

Many city-regions are undergoing or are expected to undergo dramatic demographic
changes that will hold important implications for urban planning, policy, and service
provision (e.g., transportation, health, etc.). Profound changes are expected to arise
as Canada’s population “ages in place” or elsewhere (Health Canada 2002). Trans-
portation planners and engineers should therefore be prepared to meet the needs of a
population increasingly composed of non-working individuals, many of whom will
experience progressively reduced mobility as they age. In addition to heavy cultural
trends that have occurred in recent years, age and life cycle also influence the travel
behaviours of individuals (Morency and Chapleau 2008). In this context, it is critical
that planners be aware of demographic trends and the links between demographic
change and travel behaviours.

The transportation-oriented age pyramid is introduced here, as a new approach to
operationalize the spatiodemographic visualization of travel demand. The example
shown in Fig. 9 was developed to provide comprehensive data on the demography
of transportation to local planning authorities in Montreal (Morency 2004). Sim-
ilar to the PAP and CAP experiments, standard spreadsheet functions are used
to facilitate interactive geodemographic visualization of transportation processes
(Chapleau and Morency 2005). What is new and relevant in this visualization tool
is the possibility to simultaneously observe demographic change and travel demand
in space–time. Combining the well-known age-pyramid with regional travel sur-
vey and geopolitical boundary data provides an intuitive visual framework for
understanding interactions between people, where they live, and how they use the
transportation system. For example, Fig. 9 presents the 1987 and 1998 age pyramids
for the population of central Montreal. Each cohort is segmented according to transit
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Fig. 7 2003 Car accumulation profile (CAP), four districts (x: time of day, y: number of cars)

use: people who have used transit at least once during the day are classified as transit
users, all other mobile respondents as non-transit users, and the residual population
as non-movers for the observation period. The figure demonstrates the evolution of
the age pyramid over time and the decline in transit use across all cohorts. Other
activity–travel dimensions – i.e., duration, type, or kilometres travelled by mode,
can also be visualized using a similar approach.
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Number of cars parked in the borough at 7:00 (2003)

250 cars
28 640 cars

Number of cars parked in the borough at 12:00 (2003)

250 cars
34 170 cars

Number of cars parked in the borough at 17:00 (2003)

250 cars
32 430 cars

Number of cars parked in the borough at 22:00 (2003)

250 cars
26 990 cars

Fig. 8 Monitoring of the number of cars parked in a specific area during a typical weekday
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Fig. 9 Demographic structure with segmentation related to transit use (1987 & 1998 OD surveys),
central Montreal
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5 Land Use Processes

Land-use processes refer to the evolution, in space and time, of the objects that
define how an area is structured, and to a certain extent, how space is used by var-
ious behavioural agents (e.g., individuals, firms, households). Land uses provide
the built-environment foundation for activities and travel that occur in the “phys-
ical” city-region. Land-use processes, however, can also include the development
of infrastructure that facilitate activities in Cyberspace and/or virtual worlds (e.g.,
Buliung 2007; Dodge and Kitchin 2001). In this chapter, focus is given to the geo-
visualization of land use in the physical city-region. The examples focus on the
conceptualization of transportation as a “type” of land use, and the evolution of
commercial development in space–time.

5.1 Transportation Network Coverage

The location of development, and consumers, relative to a city’s central busi-
ness district (CBD) is often used to describe patterns of development and settle-
ment, and as a predictor of travel behaviour. This monocentric conceptualization
of the spatial structure of the city-region has changed somewhat because many
cities have evolved away from Von Thünen’s isolated state (Anas et al. 1998;
Shearmur and Coffey 2002). Nevertheless, distance to the CBD remains a variable
of interest to scholars and practitioners interested in the dispersion and expansion
of economic activity across space (e.g., Bonnafous and Tabourin 1998; Peguy 2002;
Scheou 1998).

The radioconcentric conceptualization of space can be adjusted, however, with
a view to understanding the space occupied by the transportation system by trad-
ing Euclidean distance with network distance, and Euclidean space with network
space. This sort of abstraction can be valuable for understanding the coverage of
transportation infrastructure (e.g., networks, stations, etc.).

Four conceptualizations of urban space are advanced in this chapter, and used to
describe: (a) the spatial deviation of the city-region from the radioconcentric con-
ceptualization, and (b) the coverage of the city-region by transportation facilities
(Fig. 10). The four models of urban space considered here include:

1. Isotropic Uniform Space (IUS): the radioconcentric space measured around an
urban centre, of area �r2

2. Urban Area Space (UAS): an area equal to the IUS excluding territories beyond
the extent of the spatial planning district (i.e., the space covered by a regional
origin-by-destination travel survey, or the spatial extent of the developed urban
area)

3. Transportation Network Space (TNS): the surface covered by a passenger trans-
portation network, estimated using a uniform buffer (e.g., 100 m) applied to either
side of a network’s road segments. The area of this space, for any radial distance
r from the CBD, is given by the sum of buffered segments
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Isotropic Uniform Space (IUS) Urban Area Space (UAS)

Transportation Network Space (TNS) Public Transit Network Space (PTNS)

Fig. 10 Geopolitical and network based conceptualizations of urban areas

4. Public Transit Network Space (PTNS): This space is a subset of the TNS since the
public transit network is generally superimposed over the road network, even in
the case of heavy transit (subway, rail) where stations are necessarily linked to the
road network. This measure of transit network coverage is more complex because
the level of supply fluctuates throughout the day, the week and the season. In
this example, the PTNS is estimated by the application of an accessibility buffer
(500 m) around every bus stop, subway and rail station, notwithstanding the level
of service. Only the part of this accessibility buffer located inside the TNS is
considered. The 500-m limit assures the coverage of the space accessible by foot,
and avoids the inclusion of undeveloped areas (around heavy transit stations).

Within the current framework, and for a given radial distance r from the CBD,
it is always the case that: IUS � UAS � TNS � PTNS . Relationships between
these spatial abstractions are further developed here into indices that hold value
for measuring the proportion of an urban area occupied by: (a) the urban area as
defined by its geopolital extent; (b) the road transportation network; and (c) the
passenger transit system. Following the introduction of the indices, two examples
are developed for the GMA.
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The Spatial Discontinuity Index (SDI) measures the proportion of the theoretical
isotropic space occupied by the developed urban area. The SDI is expressed as:
SDI.r/ D UAS.r/=IUS.r/, where r is simply the radial distance used to define
the isotropic limit of the estimation. The index provides a summary measure of the
deviation of an urban area from the radioconcentric model. For the GMA, the city
of Montreal occupies almost 90% of the IUS inside a 20-km radius. This proportion
declines gradually beyond 30 km. At the regional scale, the urban area represents
less than 40% of the IUS (> 60 km radius from CBD).

The Network Occupancy Index (NOI) provides a summary measure of the share
of an urban area covered by the road transportation network: NOI.r/ D TNS.r/=

UAS.r/. In the GMA, approximately 37.5% of the urban area is covered by the
transportation network. As expected, the NOI increases to roughly 90% inside a
10 km radius from the CBD. The NOI can be used to enhance understanding of
geographical variation in the supply of road transportation facilities. For example,
Fig. 11 shows the spatial distribution of the NOI estimated for 100 traffic analy-
sis zones. As expected, the result suggests a decline in the use of space for road
transportation with distance from the Montreal CBD.

Lastly, the Transit Network Occupancy Index (TNOI) expresses the proportion of
the TNS allocated to operational transit services: TNOI.r/ D PTNS.r/=TNS.r/.
As Fig. 11 suggests, the supply of transit infrastructure declines steadily with dis-
tance from the Montreal CBD. At the GMA scale, transit covers roughly 40% of
the transportation network. In the core area, the transit network practically covers
the entire transportation network, while the supply of transit infrastructure appears
to be unequivocally negligible in the suburban districts. These indicators provide
a synthetic profile of network coverage at the metropolitan scale by mode, com-
plementing classical measures of network accessibility (i.e., population and activity
locations within a specified distance of transit facilities).

The spatial conceptualization and measurement of transportation network cover-
age described here can facilitate the development of unique spatial perspectives on
the allocation of urban land to the transportation system. The relationship between
the value of the various indices and proximity to the CBD are not entirely unex-
pected due to the historical and contemporary significance of central Montreal to the
regional economy. Future work with these measures should, however, examine their
sensitivity to several well known geographical estimation problems. The boundary
delineation problem, and the scale and zoning effects associated with the modifi-
able areal unit problem (MAUP) are expected to influence the estimation results
(Openshaw and Taylor 1979).

While an exhaustive and specific diagnosis of the sensitivity of these metrics
to geographical estimation problems is beyond the scope of this chapter, there
is some value in the hypothetical exploration of the issues. With respect to the
boundary delineation problem, the SDI will exhibit sensitivity to the researcher’s
conceptualization and measurement of the built-up or developed UAS. The dynamic
disequilibria of land use processes at the “edge,” and the adaptive re-use or whole-
sale transformation of industrial spaces within the “urban area,” complicates the task
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Fig. 11 Network Occupancy Index (top) and Transit Network Occupancy Index (bottom)
estimated for 100 traffic analysis zones

of fixing the urban area to a discrete contiguous space. As a result, and given an IUS
with a fixed radius, r , the value of the SDI will increase with the size of the UAS.

The scale component of the modifiable areal unit problem refers to the inconsis-
tency or variation in results across scales of analysis, while the zoning effect pertains
to changes in results manifest in the permutation of zone boundaries given a fixed
analytical scale (Openshaw and Taylor 1979). Notably, the indicators of urban area
and network coverage described above are sensitive to the specification of the scale



138 R.N. Buliung and C. Morency

parameter (r). Specifically, and as described in the text, estimates of urban area
(SDI) and network (NOI, TNOI) coverage have been shown to decline with distance
from the Montreal CBD.

This is not necessarily an undesirable property of these metrics because the scale
dependent variability of the estimates is precisely what the analyst is seeking to
describe (i.e., the change in network coverage with distance from a major centre).
Perhaps more problematic, and related to the scale effect, is the identification of the
specific intervals at which the indicators should be estimated, with a view to effec-
tively communicating the geography of urban area and network coverage. Moreover,
and specifically related to the indicators of network coverage, additional attention
should be given to the specification of buffer-size (i.e., the proportion of a traffic
zone covered by the network will increase with buffer-size).

With regard to zoning effects, the graphical display and estimation of the NOI
and TNOI shown in Fig. 11 is expected to change with the permutation of zone
boundaries. Assuming a fixed scale of analysis (i.e., the number of zones is held con-
stant), the proportion of each zone covered by transportation facilities is expected
to change with an adjustment to the geography of zone boundaries. Speculatively,
and for Montreal, a similar understanding of spatial variation in network coverage at
the global scale (e.g., across the GMA) is expected to materialize (i.e., the concen-
tration of transit close to the CBD), despite local variation in the results. The next
section changes course, demonstrating the use of spatial statistics for describing the
evolution of commercial development processes in space–time.

5.2 Commercial Development in Space–Time

The most significant structural change in North America’s retail economy dur-
ing the last decade or more has been the introduction of new formats (Jones and
Doucet 2000). In particular, the introduction of the “big-box” store – i.e., a store that
is typically three times larger than other facilities in the same category, has funda-
mentally altered the geography of retailing, from the way consumers interact with
retail opportunities, to the pace and spatial patterning of development. What fol-
lows is an experiment designed to demonstrate the utility of geovisualization as an
approach to exploring regional variation in the intensity of power centre retail devel-
opment (i.e., three or more big-box retailers with a shared parking lot) across the
GTA during the period 1996–2005. In this context, geovisualization can be used as a
mechanism to quantify spatiotemporal patterns of growth, with a view to improving
our understanding of the geography of commercial development processes.

Data for the series of examples have been drawn from the Centre for the Study
of Commercial Activity (CSCA) retail databases, Ryerson University, Toronto. The
CSCA databases provide a comprehensive national inventory of Canadian retailing.
Since the early 1990s, these data have been used to trace the evolution of new retail
formats in the Canadian retail economy. Each record contains information on the
location, type of business, size, and type of location (enclosed mall, big-box stores).
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In this case, a database has been extracted to reflect the location of retail power
centres across the GTA for each year covering the period 1996–2005. Each power
centre is modelled as a planar coordinate pair .xi ; yi /, with a weight, wi , attached
to reflect the total retail square footage of each power centre location (i.e., the sum
of the retail square footage of the individual retail locations included in the power
centre).

Two spatial analytic approaches are demonstrated, the first approach involves the
use of kernel estimation, a method developed to obtain smooth probability estimates
from univariate or multivariate data (Bailey and Gatrell 1995). The kernel approach
has been used elsewhere to describe spatial variation in various types of point
events recorded in cross-sectional surveys. Examples include, firm locations (Maoh
and Kanaroglou 2007), the incidence of disease (Bailey and Gatrell 1995), and
the spatial and spatiotemporal variation in activity–travel behaviour (Buliung 2001;
Kwan 2000). The second approach applies a centrographic statistic, weighted mean
centre, to explore the spatial expansion of big-box retail capacity over time
(Bachi 1963; Ebdon 1988).

The weighted bivariate kernel density used in the first example can be ex-
pressed as:

Of .x; y/ D
nX
iD1

K


Œwi � Ii � � 1

2��2
e

h
.x��x/2C.y��y/2

i
=2�2
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where Kfg is a bivariate probability density function referred to as the kernel, wi is
a weight attached to each power centre i (retail square footage), Ii is the intensity
of the spatial point process at each observed power centre (i.e., the mean number of
retail locations per unit area), x; y are planar x and y coordinates representing the
location of each power centre, and � is a scale parameter or bandwidth (specified in
measurement units).

There are several decisions left to the analyst when applying kernel estimation.
First, the kernel functionKfg can take one of several possible forms (e.g., Gaussian,
quartic, triangular), and second, a decision needs to be taken regarding the value for
the scale parameter, � (Bailey and Gatrell 1995; Levine 2006). The choice regard-
ing Kfg is typically guided by the application context. For example, regional scale
analyses are potentially better suited to the application of the Gaussian distribu-
tion because the function returns estimates of spatial intensity for every tessellated
location across the study area (Levine 2006).

With respect to the scale parameter, the degree of smoothing is influenced by
the specification of � , with larger values providing a smoother estimate of spatial
intensity. While empirical approaches to identify an appropriate bandwidth have
been introduced to the literature (Bailey and Gatrell 1995; Levine 2006; Rowlingson
and Diggle 1993), selection can also arise from a quasi-empirical approach where
the analyst qualitatively evaluates successive interpolations. A decision regarding
the scale parameter will be influenced by the degree to which a particular value of �
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Fig. 12 Weighted Gaussian bivariate kernel estimation

provides an instructive view of the spatial process under examination. It is this latter
approach that has been adopted in this case.

A demonstrative example of the input and result of the kernel estimation process
is shown in Fig. 12 .� D 4;500m/. A bivariate kernel estimate has been created
for the spatial pattern of weighted (retail square footage) power centre retail loca-
tions identified for the year 2000. The estimation was achieved by inputting the
weighted power centre locations to a weighted Gaussian bivariate kernel func-
tion implemented in the spatstat library for R (see Baddley and Turner 2005).
Regional trends in power centre retailing become apparent, as overlapping retail
events (weighted point locations) are transformed into a smoothed surface of retail
development intensity. The resulting surface provides a cross-sectional view of the
multiple foci of power retailing in the GTA. The data indicate greater intensity of
power retail development in the outer suburbs.

The power centre data from the CSCA database have been organized into a
discrete time-series reflecting the spatial pattern of operational power centres dur-
ing each year for the period 1996–2005. The procedure outlined above has been
independently applied to each power centre distribution .� D 4;500m/.

Notably, and while it is not possible to demonstrate in the print medium, the
panels have also been organized into an animation, established to illustrate the spa-
tiotemporal evolution of power retail development (Buliung and Hernandez 2007).
A uniform scale and gradient are applied to all panels based on the range of esti-
mated values for the year 2005. This approach facilitates visual comparison across
the years included in the analysis.

The visualization effectively communicates the suburban focus of power retail
development during the 10-year period. Overall, the data suggest that (a) power
retailing has emerged primarily as a suburban phenomena; (b) that there is regional
variation in the intensity of this sort of retail activity; (c) that specific regional nodes
have materialized during the last decade or more; (d) that established nodes within
the inner and outer-suburbs have, in many cases, continued to expand over time; and
(e) that there is one sub-area in particular, at the north-western edge of the City of



Seeing Is Believing 141

Toronto, that appears to have the largest share of overall power retail capacity in the
region.

Centrographic analysis has also been conducted to demonstrate an alternative
and perhaps more general approach to describe the geographical trend in power
centre growth. Centrographic statistics include bivariate summary measures such as
the mean centre and standard distance (Bachi 1963). The mean centre of a spatial
point pattern is essentially a bivariate extension of the univariate mean (Bachi 1963).
When spatial point data are available in a time series, estimation and geovisualiza-
tion of the mean centre across a set of prescribed time intervals can provide insight
into the geographical migration of a process through time. For example, the US
Census Bureau has used the mean centre to illustrate the westward movement of the
population of the US between 1790 and 2000 (US Census Bureau 2007). Applying
a weight to the mean centre has the advantage of drawing the bivariate mean toward
point events with large weights.

The weighted mean centre for the spatial point pattern of power centre locations,
from a particular year in the longitudinal power centre database can be expresses as:
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where . Nxt ; Nyt / is a 1 � 2 coordinate vector defining the location of the weighted
mean centre in Cartesian space for time t (e.g., one of the years during the period
1996–2005),xi;t and yi;t are planar coordinates describing the geographical location
of each power centre destination i during year t , and wi;t is a weight variable (i.e.,
total retail square footage of power centre i in year t).

The result of estimating the weighted mean centre (WMC) for each power cen-
tre distribution during the period 1996–2005 is shown in panel A of Fig. 13. Panel
B shows the same series of WMCs displayed at a scale defined by the minimum
and maximum coordinate locations of the WMC points in the series. In addition,
each WMC in panel B has been scaled to reflect the change in retail square footage
within the overall retail system from one year to the next. This scale factor, ı, is ex-
pressed as:
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where Si;t represents the total retail square footage of a power centre i in the time
series during year t , and Si;t�1, is the total retail square footage of a power centre i
during the previous year. All WMCs in the series have been connected by a hatched
line (WMC Path) to aid in the visual interpretation of the migration of the power
centre development process during the 10-year observation period.

Complementing the results of the kernel estimation, the evidence suggests a
period of overall expansion of power retail capacity measured in terms of retail
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Fig. 13 Geovisualization of power retail capacity in the Greater Toronto Area (1997–2005)

square footage. With respect to the geography of the development process, the
WMC path suggests the presence, in time, of periods of outward expansion and
horizontal infill (i.e., take note of the growth between 1998 and 1999, versus the
changing location of the WMC estimates from 1999 to 2001). The period of rela-
tively rapid growth in power centre capacity that occurred during the late 1990s, a
time period in which the study area experienced strong economic growth, appears
to be followed more recently by positive, but marginal capacity increases.

The development of power retail capacity within the GTA has been explored
in this section using bivariate kernel estimation and centrographic statistics. The
bivariate kernel provides a more intuitive visual sketch of retail change for both
specialist and non-specialist audiences than the centrographic analysis. The geovi-
sualization of retail development presented in Fig. 14 arguably satisfies many of the
criteria for graphical excellence outlined by Tufte (2001). The viewer is encouraged
to think about “process” over “method,” the data are presented in a uniform, coher-
ent manner, the example serves a clear purpose, a relatively large volume of data are
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Fig. 14 Centrographic estimation and geovisualization of power centre expansion

displayed in a relatively small space, and the data are nested within statistical and
verbal descriptions of method and process.

6 Conclusion

The geovisualization process is integrative; combining theory, methods, and tech-
nology to facilitate the construction of knowledge about processes through the
identification of patterns in spatial data. If executed thoughtfully, geovisualization
can be used to effectively communicate “ideas” to heterogeneous audiences com-
prised of individuals with and without specialized knowledge about the processes
under investigation. Arguably, the practice is most effective when it serves as “part”
of a conversation, and when it simultaneously reduces the complexity or abstraction
of the original information, revealing fundamental qualities of spatial phenomena.

In this chapter, attention has been given to the geovisualization of transportation
and land use processes. Most examples were developed with a view to exposing
the dynamic behaviours of urban agents (e.g., individuals), objects (e.g., cars),
and systems (e.g., transportation networks, commercial activities). The examples
demonstrate how intrinsically abstract, geographically situated data structures (e.g.,
origin-destination matrices, retail databases) can be transformed into intuitive spa-
tiotemporal constructs that shed light on the use and evolution of urban systems
in space and time. The various examples also illustrate how visualization tools can
assist in unravelling complex phenomena and translate, into a universal language,
the most important outputs and trends sometimes hidden within the original data.

Many of the examples, particularly those drawn from the GMA (e.g., accumula-
tion profiles, transportation-oriented age pyramids), have been used to communicate
the spatiotemporal and demographic qualities of the city-region’s transportation and
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land use system to professional planners, engineers, and other community stake-
holders. The examples from the GTA have yet to be applied in a similar manner,
and have been constructed with a view to visualizing what is intuitively under-
stood about the demand for travel in the GTA, and to add-value to research aimed
at understanding commercial development processes. In this regard, the chapter
included examples covering the continuum from scientific visualization to public
realm communication (MacEachren 1995).

A key ingredient facilitating the sort of exploratory and visual analyses described
in this chapter is the availability of the necessary expertise and resources to gather
and interpret the appropriate data. While the outcome of geovisualization can be
graphical results intended for a lay audience, it goes without saying that the ana-
lyst should have a rich, theoretically grounded understanding of the processes being
conveyed. In addition, and reflecting upon the various epistemological traditions
that permeate the social sciences, engineering, and natural sciences, “seeing” should
more appropriately be viewed as “part” of, or one approach for constructing or test-
ing “beliefs” about urban processes. Geovisualization is simultaneously an “art and
science,” a technology enabled, data-driven practice that can arguably add value to
inquiry, no matter the lens.
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Heisz A., LaRochelle-Côté S (2005) Work and commuting in census metropolitan areas, 1996–
2001. (Catalogue No. 89–613-MIE). Ottawa, Statistics Canada

Janelle DG, Goodchild M (1983) Diurnal patterns of social group distributions in a Canadian city.
Econ Geogr 59:403–425

Jones K, Doucet M (2000) Big-box retailing and the urban retail structure: the case of the Toronto
area. J Retailing Consum Serv 7:233–247

Jones, P.M. (1979) New approaches to understanding travel behavior: the human activity approach.
In: Hensher DA, Stopher PR (eds) Behavioural travel modelling, Redwood Burn Ltd, London,
pp 55–80

Kwan, MP (2000) Interactive geovisualization of activity-travel patterns using three-dimensional
geographical information systems: a methodological exploration with a large data set. Transport
Res C 8:185–203

Levine N (2006) Crime mapping and the Crimestat program. Geogr Anal 38:41–56
Lewis JL, Sheppard SRJ (2006) Culture and communication: can landscape visualization

improve forest management consultation with indigenous communities? Landsc Urban Plann
77:291–313

MacEachren AM (1995) How maps work: representation, visualization, and design. The Guilford
Press, New York.

MacEachren AM, Kraak M-J (2001) Research challenges in geovisualization. Cartography and
Geographic Information Science 28:3–12

Maoh H, Kanaroglou PS (2007) Geographic clustering of firms and urban form: a multivariate
analysis. J Geogr Syst 9:29–52
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Pattern-Based Evaluation of Peri-Urban
Development in Delaware County, Ohio, USA:
Roads, Zoning and Spatial Externalities

Darla K. Munroe

1 Introduction

As urban areas continue to disperse and decentralize, new urban growth is increas-
ingly occurring in peri-urban or rural areas beyond the suburban fringe, but within
commuting distance of metropolitan areas. This trend is referred to in a variety
of ways, including urban expansion, urban dispersion, or peri-urbanization. Many
communities are concerned with seemingly uncontrolled urban sprawl and expan-
sion into peri-urban areas for a variety of reasons, including the fiscal, environmental
and social impacts associated with urban land-use change. Urbanization can alter
major biogeochemical cycles, add or remove species, and have drastic effects on
habitat (Vitousek et al. 1997), particularly when such development is low-density
and scattered (Theobald 2004). Urban decentralization can also decimate the inner-
city tax base (Downs 1999). Growth at the urban fringe, or in the rural portions of
metropolitan counties, has greatly increased, and is of significantly lower density
than the surrounding urbanized areas and clusters (Heimlich and Anderson, 2001).
In Ohio, low-density development outside urbanized areas has increased from 58 to
72% of total land area between 1970 and 2000 (Partridge and Clark 2008).

Explanations for fragmented urban development patterns include effective
decreases in development costs due to improvements in roads and highways (Anas
et al. 1998), flight-from-blight processes as medium-higher income residents flee
perceived urban ills such as higher crime and lower quality schools in search of
greater stability in outlying areas (Mieskowski and Mills 1993; Downs 1999), avoid-
ance of spatial externalities such as congestion (Irwin 2002)¸ uncoordinated local
land use policy where jurisdictions compete for new growth (Carruthers and Ulfars-
son 2002; Byun and Esparza 2005), and the effects of developer behavior (Byun
and Esparza 2005). All of these explanations could be paired against the so-called
“natural evolution” hypothesis (Mieskowski and Mills 1993) that states that urban
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growth and decentralization are inevitable in an era of rising average incomes and
falling agricultural prices, which effectively reduce the opportunity cost of land
development at the urban fringe.

This chapter reports on a study conducted to examine patterns of land con-
version and development within one of the fastest growing counties in the U.S.,
Delaware County, located near Columbus, Ohio (Fig. 1). According to the U.S. Cen-
sus, the population of Delaware County was 66,929 in 1990 and 109,989 in 2000,
a 64% increase. Residential land conversion is continually unfolding, and the loca-
tion of past changes influence future conversion (An and Brown 2008). Explaining
peri-urban development, and designing policy requires careful attention to (1) the
inter-temporal nature of urban growth; (2) the spatially heterogeneous landscape
upon which such growth is ultimately distributed; and (4) how overall development
patterns reflect such processes in the aggregate. Several techniques are used to study
the growth and change of Delaware County in time and space. First, a descrip-
tive analysis of the spatial pattern of urban change was undertaken to quantify the
amount of urban decentralization that has occurred concomitant with a qualitatively
new pattern of growth. Then, a complementary log–log survival model of land con-
version was estimated to explain the overall impact of various spatial factors on
the timing of development. Finally, parameters from the survival models were used
to simulate predicted patterns of growth under three scenarios. In these scenarios,
hypothetical development risk was estimated holding the following factors constant
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(i.e., as if they had not influenced the pattern): (1) proximity to roads, (2) maxi-
mum density policies, and (4) the percentage of development within 1=2 to 3=4
miles of each parcel, to examine how each of these factors influenced the overall
configuration of exurban development.

The remainder of the chapter is organized as follows. First, a description of the
study area is given. Then, the conceptual model underlying the empirical analysis
is explained. Third, the methods are described, including the implementation of a
complementary log–log survival model to estimate the probability of land conver-
sion between 1988 and 2003, and a landscape pattern analysis of Delaware County.
The discussion of the results is followed by a summary of the paper and concluding
remarks.

2 Study Area and Data

Delaware County is located within the Columbus, Ohio, Metropolitan Statistical
Area (MSA). Its county seat, the city of Delaware, lies just 27 miles (44 km)
from downtown Columbus (Fig. 1) and 12 miles (20 km) from the county’s south-
ern boundary. Since 1995, growth within the Columbus MSA was significantly
higher than in any other metropolitan area in Ohio, especially when compared
with its outlying counties, such as Delaware (Partridge et al. 2007). Despite dra-
matic residential development, Delaware County remains agriculturally important.
Though the county is generally flat, with much prime agricultural land, there is some
variation in topographical relief, and more importantly, there are several water reser-
voirs throughout (Hite et al. 2003), with recreational opportunities including water
sports and hiking trails.

Parcel data and records of land conversion between 1988 and 2003 were obtained
from the Delaware County Auditor. The year 1988 reflects a period just before
development accelerated and became a public concern in Columbus. For example,
the impact of “urban sprawl” on local farmers was first discussed in the early 1990s
(see Steel, 1992). Data obtained from the tax assessor included parcel boundaries,
zoning delineation, tax district and the year a new structure was built. Because the
focus of this paper is land-use conversion, a “peri-urban field” was defined accord-
ing to Clark et al. (2005). This field includes only those parcels outside portions
of the county designated by the U.S. Census in 2003 to be “urbanized” or “urban
clusters” (i.e., leaving parcels in rural areas at the urban fringe). It is possible that
certain areas classified as urbanized in 2003 would have been agricultural in 1988,
effectively underbounding the true peri-urban field. However, a more conservative
representation of peri-urbia may be preferable to including observations within the
higher density portions of the county.

The subdivision of an agricultural parcel in the process of conversion to res-
idential development is the fundamental process of interest here. Records of the
original agricultural parcels are not directly available, however. From the database
of parcels developed in rural areas, individual parcels developed as one subdivision
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were determined. Out of 69,467 total parcels developed since 1980, 51,157 parcels
or roughly 74% were developed within subdivisions. The remaining 18,310 parcels
(26%) were recorded as developed individually, not as part of a subdivision. In order
to represent the subdivision of an agricultural parcel as the key theoretical process,
parcels developed within one subdivision were aggregated to one observation, and
parcels developed individually were kept as unique observations.1 Within the peri-
urban field, those agricultural parcels that were either converted to residential uses
or remained in agricultural use from 1988 to 2003 summed to 7,245 observations.

The attribute “year built” is used as a proxy for the year the original agricul-
tural parcel was subdivided because the date of sale of the undeveloped parcel was
unavailable. Year built can be problematic because if a structure on an existing res-
idential parcel is torn down and rebuilt, “year built” reflects the year of this new
construction. This problem is less likely in the study area because the peri-urban
field lies outside of urbanized areas and urban clusters where most such redevelop-
ment occurs, and the greatest amount of residential land conversion has happened
during the time interval under observation (1988–2003). One remaining confound-
ing factor that cannot be observed is whether agricultural land is bought by a third
party and held for speculative value until some further time point. Data on such
speculative purchase of land is difficult to obtain. If speculative purchases occur
randomly within a county, this effect would not confound the identification of other
key influences.

3 Processes Underlying Peri-Urban Development

3.1 Timing of Development

In order to examine the processes underlying land conversion at the urban fringe,
economists have traditionally focused on explaining how rural land uses, such as
agriculture, come to be replaced by other urban uses, such as residential. Such
explanations generally compare estimated economic returns from agriculture with
those of urban uses. Agricultural returns may be relatively easy to observe, given the
underlying productivity of a particular parcel and producer price indices. Changes
in urban returns, or urban land rent, may be harder to quantify, as conversion is the
local realization of urban-level growth processes (due to income growth, population
growth, or both (Munroe and York 2003)). Therefore, urban growth pressure, which

1 There are two possible measurement errors that could be induced by this method: (1) multiple
agricultural parcels were simultaneously converted within one subdivision; and (2) one agricultural
parcel was subdivided to create more than one of the developed parcels not part of a subdivision.
To the degree that the optimal development timing process considered the full spatial extent of the
eventual subdivisions, problem (1) should not cause bias in the model coefficients. Problem (2)
could potentially cause bias, but of unknown direction; because estimation was run on a spatially
stratified sample, this potential bias was likely minimized.
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in turn increases the opportunity cost of agricultural production at the urban fringe,
can be conceptualized as a latent variable that is not directly observable, but may be
related to timing.

Capozza and Helsley (1989) developed the classic model of development timing
by postulating that land should be converted to a residential use when the expected
annualized value of residential benefits is equal to foregone agricultural rents plus
conversion costs. Irwin (2002) adapted this model to yearly time steps, which is
not unreasonable given an expected time lag between the sale, subdivision and
subsequent development of an agricultural parcel. The value of development of an
agricultural parcel i , at the optimal time t� can be represented as:

V
�
i; t�

� �
1X
tD0

A
�
i; t� C t

�
ıt ; (1)

where V is net returns from the sale of the parcel i less conversion costs, A is
foregone agricultural returns from farming an additional time step t , and ı is the
discount rate of the landowner, i.e., the amount by which she discounts the value of
the sale of the parcel in the future (Irwin 2002). Because land value is rising over
time, if the agricultural landowner is to maximize returns from the sale of a given
parcel that is unique in its particular attributes, it may be worthwhile to delay devel-
opment of the parcel until some future date when net returns are at their highest.
Irwin (2002) state that if returns are positive (i.e., exceed agricultural revenues), and
the landowner will receive more at time t� than t� C 1, the owner will develop at
the smallest t (i.e., at the earliest possible time) satisfying the inequality:

V .i; T C 1/� fV .i; T / �A .i; T /g
V .i; T /� A .i; T /

< r; (2)

where the ratio of additional returns from waiting another year to develop, over the
returns in developing during the current time period, is less than the interest rate.
Thus, the analyst must pay attention (a) to the fact that parcels are heterogeneous in
terms of their underlying productivity for agriculture or respective market value for
development, based on spatial attributes, and (b) to the temporally dependent nature
of the development process: the underlying risk of development is higher at certain
times than others. How these two factors come together in a particular setting will
influence the total amount and spatial configuration of new residential land.

3.2 Spatial Influences

There are myriad spatial factors, operating at various scales, influencing urban land-
use change and urban form (Verburg et al. 2004). Urban land-use conversion may
result from federal policies such as mortgage interest deductions, regional popu-
lation and employment trends, accessibility and available transportation to local
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community public goods and amenities (Zhang 2001). It is generally assumed that
development is more likely to occur in areas where conversion costs arising from
topographical variations are lowest. Ironically, the soil that tends to be the best for
agricultural production is also prime for development. The ruggedness of the terrain
can also increase conversion costs, though households may prefer areas with such
relief (Lake et al. 2000).

Any number of land-use policies, such as development taxes and zoning, can
affect the timing of development, as well as the amount and location of develop-
ment. Hite et al. (2003) has emphasized that local variations in tax rates and public
services matter a great deal when examining development trends in the peri-urban
landscape. The timing and the amount of development may be affected because of
increased conversion costs, as well as the opportunity costs induced by restrictive
development policies limiting land conversion. Interestingly, the spatial location of
development can be affected both directly and indirectly by policy. First, the spa-
tial pattern that development takes can directly relate to new costs generated by
policy, particularly if such policies are heterogeneous in space. For example, mini-
mum lot sizes may be higher in outlying areas, causing development in those areas
to be less densely distributed than it would be without the policy. There can also
be indirect spatial effects; restrictions on development in one location, all things
equal, could lead to increased development in a neighboring location. For example
Esparza and Carruthers (2000) showed that land-use density requirements led to the
“leapfrogging” of development in Arizona.

Prior research (Irwin et al. 2003; Irwin 2002, 2004; Munroe 2007) has demon-
strated that spatial externality effects can influence returns to land use. These
influences are not generated by the individual land owner, but are a cost or a benefit
accruing to a land owner. For instance, Irwin (2002) demonstrated that the estimated
pattern of development was significantly more fragmented along the Baltimore –
Washington, D.C. corridor, all other factors held equal, due to an observed pattern
of avoiding previously densely developed areas. Land conversion in the neighbor-
hood of a particular parcel can also alter the timing of development for neighboring
parcels. Access to opportunities such as commercial land, and the desire to avoid
industrial land uses can also be important (Munroe 2007). Finally, proximity to valu-
able natural amenities has been shown to be an important part of returns to land use,
often making a significant contribution to land value (Irwin 2002; Campbell and
Munroe 2007).

One can assume that urban conversion is likely to be irreversible: once a parcel
has been subdivided and built-up, it is unlikely that it will return to its agricul-
tural state. Therefore, it is reasonable to assume that there is a spatiotemporal path
dependence in how development unfolds (An and Brown 2008). Two implications of
development timing models have particular relevance for understanding the spatial
pattern of land conversion. First, there must be net benefits to clearing, less conver-
sion costs; and second, it may be optimal to delay conversion until some time in the
future when net benefits are higher. Thus, though on average more desirable land is
likely to be converted, at the margins the most desirable land may be held for future
conversion. For example, a plausible scenario may be that early on, there is limited
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demand for newly converted land in peri-urban regions, and marginally productive
agricultural areas would be the first to drop out. As development pressure increases,
developers may “upgrade” their offered product by selecting those areas most likely
to command the highest premium, and other factors may become more important.
Spatially, this implies that areas proximate to valuable natural amenities, for exam-
ple, could be developed later because the market price per acre for these parcels will
be higher.

4 Methods

Statistical land-use models can be useful for summarizing available information
regarding past changes, in order to investigate underlying processes or predict
where new change is likely to occur (Veldkamp and Lambin 2001; Munroe and
Müller 2007). Statistical models are often less useful in providing insights on the
development process when the process itself is not temporally stationary (An and
Brown 2008), though there is a growing literature engaging with the issue of the
timing of land-use change more centrally (Irwin 2002, 2004; Vance and Geoghe-
gan 2002; Hite et al. 2003; An and Brown 2008). In this chapter, both survival
models and landscape pattern analysis approaches were used to study patterns
of land conversion and development within Delaware County, Ohio. The analy-
sis described in the remainder of the chapter proceeds as follows: (1) descriptive
analysis was conducted of the spatial pattern of development within the study area
between 1988 and 2003; (2) the association between spatial factors and the observed
timing of development was then examined using multivariate survival models; (4)
the sensitivity of the results to variation in key processes was examined by holding
several development and policy-based factors constant and re-estimating develop-
ment probabilities; and (5) the likely aggregate spatial effect of these factors on the
overall pattern of development (e.g., dispersed, compact) is considered.

4.1 Landscape Pattern Analysis of Development 1988–2003

Three measures of landscape pattern were used to examine variations in the configu-
ration of recent residential development in Delaware County: the number of patches
(e.g., the number of clusters of contiguous parcels that share a common boundary),
the landscape shape index (LSI), and Euclidean nearest neighbor distance between
noncontiguous (isolated) patches of developed land. Each of these approaches is
briefly described below.

In order to quantify landscape fragmentation (e.g., urban land conversion that
affects the configuration and connectivity of remaining agricultural land in a non-
linear way), it is useful to characterize new developments in terms of the relative
complexity of the landscape, as some function of the edge to area ratio. In other
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Fig. 2 Graphical illustration of variations in edge-to-area ratio and the corresponding landscape
shape index (LSI). (a) A square patch made up of nine individual squares of dimension 2� 2. (b)
A non-square patch made up of the same nine individual squares, arranged less squarely. (c) A
non-square patch made up of nine individual squares, arranged nearly linearly

words, more compact development has a smaller impact on the configuration of
remaining agricultural land. The LSI is a desirable measure of the amount of edge
in the landscape because it controls for the fact that patches may vary in size. More-
over, the index does not penalize for a large patch with a correspondingly large edge
length. The LSI is defined as follows:

LSI D E

minE
; (3)

where E represents the total edge in the landscape (e.g., the sum of the perime-
ter of patch boundaries) divided by the minimum total length of edge that would
be possible if the landscape were a single patch (e.g., all residential parcels were
contiguous) (McGarigal et al. 2002). Thus, it is an area-weighted measure of edge
density. The LSI ranges from one (most compact) to infinity (the most edge-to-area).
As the value of the LSI increases, the more fragmented the distribution of individual
patches of development (Fig. 2). The Euclidean nearest neighbor distance (or ENN)
is a measure of the Euclidean distance from a patch to the nearest neighboring patch
of the same cover type (in meters) from edge to edge. The survival analysis and sim-
ulation study described in the following sections provides complementary insight to
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the factors driving the patterns of development described through the application of
these landscape ecology metrics.

4.2 Survival Models

Timing-of-development models, coupled with information regarding the spatial het-
erogeneity of the land surface, have proven exceedingly useful in explaining where
and when development is likely to happen. These models are typically specified
to explain the point in time when a particular parcel is developed as a function of
the spatial variation in several key attributes of residential property (e.g., proximity
to roads and natural features, surrounding land uses, and land-use policy). Statis-
tically, the sort of conceptual model of development timing described earlier (e.g.,
Capozza and Helsley 1989) can be implemented using survival analysis. Within
a land use change context, survival models allow the researcher to estimate the
conditional probability of conversion, given that a particular parcel has remained
undeveloped for some duration. Certain factors, related to the suitability of land
for conversion, neighborhood variables, and access to amenities, employment and
commercial activities, will amplify or dampen the risk of conversion. Some of these
factors are static, and some change over time. In land-use change analyses, there are
several examples of such models (Irwin 2002, 2004; Vance and Geoghegan 2002;
An and Brown 2008) investigating agricultural land conversion, or the clearing of
forest for agricultural uses.

For this analysis, a complementary log–log formulation of a hazard model
was implemented, following McCullagh (1980). The standard hazard function
(Cox 1972) defines the risk of failure at time t conditional on the value of the
covariates for each observation, x:

	.t I x/ D 	0.t/ exp.ˇx/ (4)

where 	0 is the hazard function when x D 0, and ˇ is a set of parameters to be
estimated that indicate the effect of the covariates on the likelihood that a particular
agricultural parcel will be developed, compared to the overall rate of conversion
	0 .t/. From the hazard function, we can derive the survival function (S )

	 .t/ D �d log ŒS .t/� =dt; (5)

where S .t/ is the probability of survival (e.g., an agricultural parcel remaining in
agriculture) up to time t . Following from (4) and (5):

S .t C�t/ =S .t/ D exp Œ� exp .˛t C ˇkxk/� ; (6)

where the left hand side of (6) expresses the conditional probability that observation
k will remain in agriculture beyond t given that it has not been developed up until t .
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The coefficient ˛t represents the log of the integral of the hazard function over total
duration t . Finally, if the intervals (t , tC�t) are indexed by i , increasing with time,
the model can expressed in the complementary log–log formulation:

logŒ�log .1 � pi /� D exp.˛i � ˇkxk/; (7)

where pi is the probability of the developed occurring in time period i conditional
on conversion not happening prior to i (Abbott 1985).

The complementary log–log formulation of the hazard model is appealing due to
several properties. These models allow for the specification of temporally varying
covariates (Allison 1982), and allow for a specification of time that is not entirely
continuous; i.e., that the event is only specific to the year in which occurred (Vance
and Geoghegan 2002). This specification is useful here because the construction
of a residential parcel is measured in the tax asessor’s data at yearly intervals,
a coarse representation of the underlying temporal dynamics of land conversion
(An and Brown 2008).

Survival models can indicate how specific factors influence the likelihood of an
individual parcel’s conversion from an agricultural to a residential land use. Because
urban growth pressure varies over time, conversion of agricultural parcels is more
likely to occur at certain points in time than others (Irwin 2002). Therefore, it is
empirically (and theoretically) challenging to separate the influence of spatial and
non-spatial parcel attributes from the overall average affect of development pres-
sure, which is not directly measurable. A well-specified survival model allows the
researcher to separate the influence of spatial factors from the question of timing;
ex-post specification testing and evaluation of model fit are important to check this
assumption (An and Brown 2008).

4.3 Survival Model Estimation

Each parcel was coded as agricultural (0) or residential (1) for each yearly time
step, depending on its development history. Use of the full dataset in estimation was
not computationally feasible; the model was estimated using a subset of the data. A
30% spatially stratified sample2 was drawn (2,331 parcels) and the model parame-
ters were used to estimate the probability of conversion for all the observations (a
total of out of a total 7,245 parcels). A White-Huber correction for underlying het-
eroskedasticity in the model residuals was applied. The estimated coefficients were
also used to generate predicted values for each of the different scenarios in the sim-
ulation analysis described later in the paper. Following the estimation of the survival

2 Fitting a model using only a sample of the data increases the risk that the estimated parameters are
specific to the observations selected. Three distinct samples were initially drawn, and neither coef-
ficients nor standard errors varied significantly. In addition, tests of leverage, i.e., for multivariate
outliers, were also not significant.
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model, the parcel layers were transformed into grids with a cell size of 10;000 ft2

(or approximately 929m2). This was done to examine whether the conversion of
agricultural land to an urban use occurred more often within more compact (dis-
crete blocks of converted land) or fragmented (individual, isolated parcels) parts of
the study area. Proximate cells of agriculture or urban land were aggregated into
one “patch” if they were contiguous, including diagonal neighbors. The software
package Fragstats (McGarigal et al. 2002) was then used to evaluate landscape
configuration.

Independent variables were included in the specification of the survival model to
estimate the average effect, independent of time period, of relevant spatial factors
in contributing to the risk of development. To capture the effect of accessibility
to economic and cultural opportunities on the likelihood of development, network
distance to the core area of the Metropolitan Statistical Area (Columbus, capital
city of Ohio) as well as the micropolitan city of Delaware were included. Euclidean
distance to the nearest major highway and interstates (from the 2000 Census TIGER
line files) was also included. Historical datasets regarding roads were not available;
however, the limited access highways were in existence through the duration of the
study period. To capture the effect of the spatially varying terrain on the risk of
development, the estimated percentage of prime farmland within each parcel and
the maximum slope (in degrees) were also included.

Several potential externality influences were also controlled for. First, because
there are a number of lakes and reservoirs with recreational opportunities within
the county, Euclidean distance to the nearest water body was calculated. It is also
assumed that surrounding residential development can either increase or decrease
development risk. The presence of existing development may reduce an unde-
veloped parcel’s development risk, if negative externalities such as congestion
and avoidance of neighboring development are present. On the other hand, more
locally, there may be positive spillover effects from existing development due to
common amenities within a neighborhood or otherwise unmeasured spatial auto-
correlation (Irwin 2002). In order to specify the size of the neighborhood where
spillovers are likely to occur, Fleming (2000) suggests the use of geostatistical tech-
niques to determine the effective distance of positive or negative spillovers. In this
research, two neighborhoods were used: the proportion of previously developed
land within a 1=2 mile radius of each parcel, and between 1=2 and 3=4 miles of
each parcel the year before conversion at each time step. Semivariogram analysis
(Cressie 1993), conducted using the Geostatistical Analyst in ArcGIS, indicated
that the observed spatial autocorrelation in the year built variable peaked at approx-
imately 2,320 ft (1=2 mile D 2,640 ft); negative spatial autocorrelation was evi-
dent beyond this distance, dropping off to insignificance at approximately 4,000 ft
(3/4 mile D 3,960 ft).

To study the spatial effects of variation in land-use policy, data on the maximum
allowable density, according to the relevant township plan, was recorded for each
parcel. Within Delaware County, there are 25 separate townships or municipalities
that have the ability to set their own allowable densities, measured as the maximum
number of dwelling units allowed per acre. Within the county, these densities range
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Table 1 Landscape pattern analysis, 1988–2003

% Developed Contiguous Shape Nearest neighbor
areaa patches index distance, m

1980 22.75 2,252 65.91 0.1264
1990 26.04 1,924 63.49 0.1279
1995 28.75 1,636 61.01 0.1304
2000 32.10 1261 56.84 0.1420
2003 32.90 1,126 54.06 0.1507
% change, 1988–2003 44.65 �50.00 �17.98 19.23
aIncludes all developed parcels (residential, commercial and industrial).

Fig. 3 Landscape pattern analysis of Delaware County, 1988–2003. (a) Percent developed area (of
total land) and Euclidean nearest neighbor distance edge-to-edge between contiguous parcels (km).
(b) The number of patches (contiguous parcels sharing a common boundary) and the landscape
shape index (higher D greater proportional edge in the landscape)

from as low as 1.0 unit per two acres to 9.09 units per acre (or from nearly 125
to 2,000 units per km2). All variables were tested for deviations from normality,
especially those calculated as proportions, and transformed as necessary. All vari-
ables except the maximum allowable density and the proportions of surrounding
developed land were transformed using a natural logarithm.

5 Results

The presentation of the results begins with a descriptive analysis of development
pattern. Then, exploratory data analysis was conducted, comparing residential and
agricultural parcels. Third, the results from the complementary log–log survival
models are presented. Finally, the results of the simulation analysis are discussed.
Table 1 reports the results of the landscape pattern analysis of the entirety of devel-
oped land (defined as the total acreage contained within the sum of commercial,
industrial, residential and developed public lands parcels) in Delaware County at
various intervals between 1988 and 2003. Fig. 3 contains a graphical depiction of
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these changes. Out of a total land area of 1; 146 km2, nearly 23% was developed
in 1980, whereas in 2003, 33% of this area was developed, an increase of nearly
45%. Surprisingly, the number of contiguous patches decreased by 50% and the
shape index (as a relative measure of total edge in the landscape) decreased by
nearly 18%. Both of these trends in the metrics indicate that across the landscape,
development was more compact in 2003 than it was in 1988. At the same time,
the mean Euclidean nearest neighbor distance across contiguous patches of devel-
oped parcels increased by nearly 20%. Therefore, there appears to be interesting
changes in development pattern unfolding in this county. Total developed area has
increased dramatically in this 15-year period, and much of this development has
occurred in non-contiguous clusters outside small municipalities. These distinct
patches of development have become, on average, more dispersed than they were at
the beginning of this period, though in the aggregate, the configuration of contigu-
ous patches of development is slightly more compact than before. Visual inspection
indicates that initial developments were more scattered, and a significant amount of
infill occurred over time, corresponding in part to an increase in peri-urban subdi-
visions, as more development occurred along arterial roads. To the degree to which
newer parcels are more likely to share common boundaries with existing parcels,
this observed pattern is consistent with infill.

Table 2 contains descriptive statistics for all peri-urban parcels, broken up into
agricultural (censored observations, remaining unconverted by 2003) and residential
parcels. There were fewer than 30 industrial parcels developed in this time period.
Overtime, there was some development of commercial space across the county, but
the year of development for commercial parcels was not available; thus, these areas
were not included in the analysis. The median values for these variables differed
significantly between the two groups according to a nonparametric Mann–Whitney
U-test (p < 0:01), except for the maximum allowable density. Distance to Colum-
bus, interstate access points and water, and the percentage share of prime farmland
are all higher on agricultural parcels. Slope, distance to Delaware (county seat), and
the proportion of developed land within 1=2 and 3=4 miles were all, on average,
higher on converted parcels.

Table 3 presents the estimated coefficients for the complementary log–log model
associating the previously described factors with the risk of urban conversion
between 1988 and 2003. A significant increase in the instantaneous risk of develop-
ment (implying that an increase in the relevant covariate would make development
of a particular parcel more likely at all time periods) was associated with slope,
distance to water and the proportion of developed land within 1=2 mile of the par-
cel. A significant decrease in the instantaneous risk of development was associated
with increasing density per acre (higher maximum density zoning made conver-
sion less likely, all things equal) and with the proportion of developed land farther
than 1=2 mile, but less than 3=4 miles away. Because the coefficients of the hazard
model are difficult to interpret with regard to the change in probability of conver-
sion, they can be transformed by exponentiation into “relative risk ratios,” which
are bounded between 0 and infinity. To examine the average contribution (separate
from time) of each of these independent variables on the probability of conversion,
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Table 2 Descriptive statistics, peri-urban agricultural parcels, and parcels developed, 1988–2003

Agricultural parcels

Mean Median Std. Dev. Min. Max.

Lot size, acres 37:49 28:25 37:42 0:01 509:25

Slope, degrees 0:30 0:15 0:50 0:00 10:15

Dist. to Columbus 22:38 22:56 5:10 10:47 33:96

Dist. to Delaware 8:96 8:48 4:23 1:11 19:99

Dist. to nearest major road 2:43 1:96 1:90 0:00 9:21

Dist. to nearest interstate 7:50 6:56 4:73 0:00 19:62

Percent prime farmland 80:47 82 16:51 58:00 99:00

Dist. to water 2:04 1:74 1:32 0:00 6:02

Maximum density (units per acre) 3:45 2 2:25 0:50 9:09

Proportion developed within
1/2 mile, 1988

0:27 0:23 0:21 0:00 0:95

Proportion developed within
1/2 mile, 2003

0:33 0:21 0:24 0:00 0:99

Proportion developed between
1/2 and 3/4 miles, 1988

0:27 0:29 0:20 0:00 0:93

Proportion developed between
1/2 and 3/4 miles, 2003

0:35 0:31 0:23 0:00 0:95

Year built n/a n/a n/a n/a
N 4,389

Residential parcels developed 1988–2003

Lot size, acres 5:99 5:01 6:14 0:11 100:67

Slope, degrees 3:61 2:49 3:08 0:00 19:54

Dist. to Columbus 20:45 20:46 4:65 10:15 33:86

Dist. to Delaware 9:52 8:66 4:39 1:00 20:06

Dist. to nearest major road 2:45 2:15 1:58 0:00 9:17

Dist. to nearest interstate 6:04 5:60 4:09 0:06 19:28

Percent prime farmland 76:92 79 15:94 30:50 99:00

Dist. to water 1:85 1:51 1:40 0:00 6:20

Maximum density (units per acre) 3:53 2 2:17 0:50 9:09

Proportion developed within
1/2 mile, 1988

0:35 0:29 0:19 0:00 0:95

Proportion developed within
1/2 mile, 2003

0:51 0:33 0:21 0:01 0:99

Proportion developed between
1/2 and 3/4 miles, 1988

0:32 0:40 0:18 0:00 0:93

Proportion developed between
1/2 and 3/4 miles, 2003

0:42 0:51 0:21 0:00 0:97

Year built 1996:13 1997 4:58 1988 2003
N 2,856
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Table 3 Results of complementary log–log model of urban conversion, 1988–2003

30% sample n D 2,331 Beta Std. Error Prob. Relative % change in
risk ratio prob. with unit

change in X

Intercept �7:5687 2:4451 0:00 0:0005

Distance to Columbus 0:1339 0:1842 0:47 1:1433 14:33

Distance to Delaware �0:0713 0:0806 0:38 0:9312 �6:88
Slope 1:3283 0:0396 0:00 3:7746 277:46

Distance to major road 0:0542 0:0401 0:18 1:0557 5:57

Distance to water 0:136 0:038 0:00 1:1457 14:57

Density per acre �0:155 0:0469 0:00 0:8564 �14:36
Proportion developed

within 1/2 mile
3:1603 0:2486 0:00 23:5777 2; 257:77

Proportion developed
between 1/2 and 3/4
mile away

�1:8805 0:2913 0:00 0:1525 �84:75

Log likelihood D �3; 630:74 �2 D 0:375

we can subtract one and multiply by 100 to derive percentages. For example, a
one unit increase in slope, all things equal, increases the likelihood of conversion
by 277%. Because of multicollinearity, the influence of interstate accessibility and
prime farmland were dropped from the analysis. The effect of distance to roads
was not significant; this coefficient had a comparatively large standard error (e.g.,
development risk was likely high both close to and far from roads). One issue
with the influence of accessibility is that temporally varying information for these
variables is not available, including such factors as road widening or other improve-
ments, which may be significant in the aggregate.3 Likewise, development was
more likely close to Delaware and far from Columbus, but these effects were not
significant.

Regarding the temporally varying covariates (e.g., the map of surrounding land
use that was updated in each time period), there are interesting results to report.
Conversion probability was very highly positively associated with the proportion of
developed land within 1=2 mile of a parcel, while at the same time negatively asso-
ciated with the proportion of development greater than 1=2 mile but less than 3=4
mile away. This finding supports the interpretation of the landscape pattern analysis:
that considerable infill happens within small-to-medium “clusters” of development
over time, but these clusters are relatively spread out. It is important to note, however
that unmeasured influences associated with local development risk may be captured
by the smaller neighborhood density variable, particularly if these influences tend
to be spatially correlated (Irwin and Bockstael 2004).

3 However, road improvements are unlikely to be independent of development risk: roads are more
likely to be widened where prior growth has occurred.
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6 Simulations

To connect three suggested drivers of dispersed development (roads, inconsistent
policy and spatial externalities) to the observed pattern of change in Delaware,
three simulations were conducted: (1) no maximum density; i.e., observations were
treated as if there were no differences in zoning density requirements across the
county; (2) no negative spatial externality effect; i.e., the “avoidance” effect of
development within 1=2 to 3=4 miles was dropped; and (4) no effect of distance
to roads. Table 4 presents the results of this analysis. In each case, the described
predictor variable (e.g., density, externalities, roads) was held constant across all
parcels, and new predicted probabilities were generated. Following Irwin (2002) it
was assumed that the same number of parcels (2,856) would be developed in each
scenario; thus, each time the 2,856 parcels with the highest estimated instantaneous
risk were coded as developed, whereas the remaining 4,380 parcels were coded as
agricultural.

These models were evaluated on the basis of overall fit against the observed
parcels as well as their ability to replicate the observed landscape pattern. First, the
peri-urban pattern generated by the base model was compared against the observed
data. To evaluate predictive accuracy, the Kappa statistic was employed; this statistic
is commonly used in the land-use modeling community (Pontius 2002). The Kappa
statistic compares the ratio of predicted to observed land-use changes (in this case,
conversion), adjusted by the expected number of predicted outcomes that may occur
by chance. For example, if we have two outcomes (agricultural, residential) that are
observed with equal frequency, a model that randomly assigns observations to one
or the other category could be expected to obtain 50% accuracy. A Kappa value
above 0.60 is said to have substantial agreement (Landis and Koch 1977). Pattern
outcomes were compared using total area developed (summing the acreage of con-
verted parcels), the number of contiguous patches, the LSI, and the mean estimated
Euclidean nearest neighbor distance between isolated patches of development.

The base model yielded a Kappa statistic of 0.83, which implies an excellent
overall fit. Regarding the various landscape metrics, all of the metrics estimated
on the base model were within 6% of the actual values, except for total developed

Table 4 Landscape pattern analysis of actual and predicted development patterns

Landscape pattern Total developed Contiguous Landscape Euclidean Kappa
analysis area, sq. km patches shape index nearest statistic

neighbor
distance, km

Observed conversion pattern 0.1552 1,599 53.72 18.08 n/a
Base model 0.2095 1,526 50.26 17.48 0.8255

Simulations
1. No maximum density 0.2295 1,462 49.88 16.52 0.7226
2. No negative spatial externality 0.2677 1,358 46.84 16.33 0.6087
3. No roads 0.2264 1,467 49.95 16.45 0.7295
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parcels, which was predicted to be about 35% higher than actual. This result is
not surprising, however, due to the fact that agricultural parcels are much larger
on average than residential ones, so commission errors (false positives) bear a large
penalty for this metric. Across the various simulations, the least “correct” simulation
in terms of the Kappa statistic was the one omitting negative spatial externalities.
This simulation had the highest predicted developed area, the fewest number of
contiguous patches, and the smallest LSI and Euclidean nearest neighbor distance.
This result is completely intuitive because if there is no penalty on the instanta-
neous risk of development due to surrounding development, we would expect the
resulting development pattern to be much more compact than with this effect. Con-
versely, with the omission of a spatially varying maximum density requirement,
there appears to be fewer contiguous patches, a lower shape index and lower near-
est neighbor distance than the base model (with roughly an 8% difference overall
in these patterns). Finally, though the distance to roads variable was not signifi-
cant, omitting its effect resulted in small differences in pattern relative to the base,
roughly consistent with the maximum density effect. It is interesting to note that
omitting maximum density and roads both decreased the number of patches, the
shape index and the nearest neighbor distance compared to the base, but less so
than the negative spatial externality effect. Overall prediction in these two scenarios
varied between 7 and 10% from the base model.

7 Discussion

It is possible to have some confidence that the estimated model separates temporal
trends in development from the average spatial influences. On the whole, the esti-
mated results conform to theory. One notable exception is that distance from water
bodies was positively associated with development risk: indicating that at any given
time, areas farther from water are more desirable. This counterintuitive fact can be
explained by the fact that recent subdivisions have been built very close to these
water bodies and are among the most expensive real estate in the county. Moreover,
due to additional costs of construction because of hydrological constraints in these
areas, it was relatively expensive to build in these locations. Given that urban growth
pressure rises over time before peaking, and the Capozza and Helsley (1989) model
posits that decision-makers are optimizing returns from development over time, it
could be that it was not financially lucrative to build in these areas until recently.

The impact of slope on development can be complicated, and the average effect
on development risk could be either negative or positive. Steeper slopes are likely
to increase construction costs, so development risk could be lower in areas of steep
slope. On the other hand, steeper areas are the least valuable for agriculture, and
thus have a low opportunity cost. In addition, steeper slopes can provide a scenic
view, which may make these areas more desirable (Cavailhès et al. 2006). Because
increases in slope in Delaware were also associated with higher instantaneous risk
of development, it is likely that the marginal agricultural value and/or the aesthetic
value of steeper slopes increased the development risk.
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Regarding the effect of the other covariates, it is surprising that the measures
of accessibility were largely insignificant, though the simulation analysis indi-
cates that the effect of access to roads is perhaps not unimportant, just highly
variable. Because of the well-documented endogeneity between roads and devel-
opment (Anas et al. 1998; Irwin and Bockstael 2001), a statistical correction for this
endogeneity may be helpful.

There is also evidence to suggest that variation in maximum density zoning
affects development timing. Areas with higher maximum density are less attractive
for developers, because land is more scarce and perhaps less desirable to consumers.
The simulation analysis indicates that there are likely important indirect effects
related to these policies: growth would be more compact in the county as a whole
if density requirements were equal everywhere. Finally, the finding of variation
in development risk according to the proportion of development within two non-
overlapping spatial neighborhoods was very interesting. Within 1=2 mile, a greater
proportion of prior development very significantly increased development risk: this
effect was of higher magnitude than any other. However, greater than 1=2 mile and
less than 3=4mile, development was much less likely. Therefore, there appears to be
a balance: small neighborhoods, or neighborhood subdivisions are the norm in this
area, but relatively isolated areas are preferable, perhaps related to a premium resi-
dents are willing to pay for surrounding open space (Irwin 2002). If such avoidance
of neighborhood externalities is truly this important as to greatly influence over-
all development patterns as the simulations suggest, policy makers concerned with
fragmented development should address this effect. One way to do so would be to
increase plans for mixed-use development, perhaps by including improved, perma-
nent open space for neighborhood residents. Particularly because the environmental
impacts of increasing urban decentralization may be nonlinear, fine-scale variations
in low-density urban form warrant more attention (Theobald 2004).

8 Conclusion

Given recent advances in spatial analytical tools and technology, coupled with newly
available spatial data, increasingly sophisticated models of the development process
are possible (Irwin et al. 2003). New insights include the recognition that urban
development processes can be spatially heterogeneous, depending on how land con-
version pressures are allocated on a variable landscape (Irwin and Bockstael 2004).
In addition to predicting the location of land-use changes, land-use models that pro-
vide insights regarding landscape level patterns (or spatial configuration) can be
useful for planning and policy (Parker and Meretsky 2004). This research indicates
that inconsistent local land-use policy and more growth in lower density areas both
contribute to the emergence of a peri-urban landscape that was more disperse in
2003 than in 1988. Furthermore, the findings suggest that development in Delaware
County has not simply been a “natural evolution” of the Columbus metropolitan
area.
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Statistical land-use models have traditionally been useful for exploring the where
and the why of land-use change, but it has been analytically more difficult to focus
on the when (An and Brown 2008). The overarching objective of this analysis was
to explore the relative influence of various spatial factors on the observed pat-
tern of peri-urban residential development in Delaware County, given that such
development likely exhibits spatiotemporal path-dependency. The estimated com-
plementary log–log model allows the researcher to ask, given that a certain level
of development is expected at a certain point in time, where is this development
likely to be distributed? Thus, we can abstract from the temporally dependent nature
of the development process to explore how various influences amplify or dampen
development risk over space. Then, in turn, the collective pattern, both the amount
and configuration of residential development, in the county can be shown to vary
depending on how urban growth pressure touches down on the spatially heteroge-
neous landscape, and how past conversion continues to influence future patterns.

Overall, the results indicated that though development has become more far-
flung or dispersed overtime (i.e., increasingly permeating into the far reaches of
the county), such development is more compact than it was in 1988. Thus, in terms
of fiscal impact, such as service provision, the trend of increasing dispersion of res-
idential clusters may be partially offset by the increasingly locally clustered nature
of new development. Because increased maximum density appears to reduce devel-
opment within a particular township, increased cooperation among townships in
setting and enforcing land-use policies may curb some of the decentralization pres-
sure. Finally, the results were consistent with the assumption that more scenic areas
or bucolic landscapes remain a development pull, which might imply that suburban
jurisdictions may need to think carefully about open space preservation and other
such efforts to reduce the flight of their constituents to farther outlying areas.
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Demand for Open Space and Urban Sprawl:
The Case of Knox County, Tennessee

Seong-Hoon Cho, Dayton M. Lambert, Roland K. Roberts,
and Seung Gyu Kim

1 Introduction

Urban sprawl is often blamed for causing negative environmental effects from
unsustainable land consumption and increased traffic congestion. While there is
no generally accepted definition of urban sprawl, the process is well-described as
the expansion of urban development into rural areas surrounding major cities, and
the leapfrogging of development beyond the city’s outer boundary into smaller
rural settlements (Hanham and Spiker 2005). Many studies have pointed toward
the lifestyle choices of the economically affluent society for the rapid growth of
urban sprawl (Brueckner 2000; Carruthers and Ulfarsson 2002; Frumkin 2002; Gor-
don and Richardson 1998, 2000, 2001a,b; Krieger 2005; Nechyba and Walsh 2004;
Skaburskis 2000; Stone and Gibbins 2002). These lifestyle choices include pref-
erences for larger homes and lot sizes, low density housing, mobility afforded by
private vehicles, and the demand for open space. This kind of growth has raised
concern about the potential negative impacts, especially the loss of benefits provided
by farmland and open space, and higher costs of infrastructure and community ser-
vices. Concerns about the negative consequences of urban sprawl have led local
policymakers and nongovernmental activists to turn to urban and suburban open
space conservation as potential mechanisms to counter urban sprawl.

One example of these mechanisms includes “smart growth” policies. Smart
growth policies are development initiatives that protect open space and farmland,
revitalize communities, keep housing affordable, and provide more transportation

1International City/County Management Association (2007) has laid out 100 policies and guide-
lines for communities to realize smart growth. The mechanisms include zoning, building design,
transfer of development rights (TDRs), purchase of development rights (PDRs), multimodal trans-
portation systems, and land value taxation. We do not address mechanisms other than land value
taxation in this chapter.
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choices (International City/County Management Association 2008).1 Local govern-
ments have incorporated “smart growth” principles designed to encourage compact
development and preserve open space to curtail urban sprawl (Tracy 2003). Com-
pact development is a key component of most smart growth policies. A large body
of planning literature has addressed a variety of local strategies that are grouped
under the rubric of “smart growth” (e.g., Blakely 1994; Daniels 2001; Handy 2005;
Weitz 1999).

Local and regional governments have incorporated smart growth principles to
stimulate demand for private and public open space. Some communities with com-
mitments to stimulate demand for open space through smart growth directives
continue to struggle with policy implementation (Cho and Roberts 2007). Stimulat-
ing demand for open space is challenging because little is known about the factors
influencing it (Bates and Santerre 2001). Consequently, clearly defined policy tools
to stimulate demand for open space are lacking. Understanding the structure of
demand for open space is crucial to planners as they place more emphasis on
smart growth policies to stimulate demand for open space. More specifically, the
sensitivity of demand to factors closely associated with urban sprawl, i.e., income,
house and lot size, housing density, and price of open space, needs to be examined.

Studies have estimated the willingness to pay for open space using contin-
gent valuation methods (Blaine et al. 2003; Breffle et al. 1998; Rosenberger and
Walsh 1997; Sorg et al. 1985; Stevens 1990; Tyrväinen and Väänänen 1998). How-
ever, Flores and Carson (1997) explain that demand for public or environmental
goods is not necessarily the same as the willingness to pay for these goods. In addi-
tion, Cummings and Taylor (1999) show that willingness to pay estimates are often
subject to hypothetical bias when derived from contingent valuation methods. Bates
and Santerre (2001) estimated the local public demand for open space using two-
stage least squares endogeneizing the price of open space. While their study was the
first attempt to estimate demand for open space, the model had limitations. First,
the price and income elasticities of demand for open space were assumed to be
constant across communities. This assumption disregards possible spatial hetero-
geneity with respect to estimates of the elasticities. Spatial heterogeneity refers to
variation in some condition or measure from one geographic area to another (Cho
et al. 2006), which also has adverse effects on the properties of least squares estima-
tors (Anselin 1988). Second, spatial dependencies causing spatial autocorrelation
were not considered in their study. Spatial dependencies between cross-sectional
units may lead to biased, inefficient, or inconsistent estimates.2

2 There are two distinct forms of spatial dependence, namely spatial error dependence and spatial
lag dependence. Spatial error dependence occurs where the dependence pertains to the error terms,
whilst spatial lag dependence occurs where the dependence pertains to the dependent variable.
Spatial error dependence is likely to yield inefficient, but unbiased and consistent estimates of
standard errors while spatial lag dependence likely yields biased and inconsistent estimates arising
form the endogenous nature of the lagged dependent variable (Anselin 1988). In this analysis, we
only address the issue of spatial error dependence.
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In this chapter, a geographically weighted regression (GWR), modified to attend
to problems arising from spatial error dependencies, is used to estimate the demand
for open space with cross-sectional data from Knox County, Tennessee. GWR
allows local elasticities of demand for open space to be measured and mapped. The
maps of GWR parameter estimates in particular may help policy makers or planners
in developing location-specific smart growth policies to stimulate demand for open
space.

In the next section, we develop the empirical model that uses a two-step pro-
cedure to estimate the demand for open space. Section 3 describes the study area
and data. The empirical results are discussed in Sect. 4. Policy implications with
respect to the findings and general conclusions are provided in the final section of
the chapter.

2 Empirical Model

The following two-step procedure was applied to estimate the demand for open
space. In the first step, the marginal implicit price of open space was estimated with
a hedonic price model at the parcel level using GWR corrected for spatial error
autocorrelation. GWR allows coefficients to vary across space by way of a moving
window regression (Brunsdon et al. 1996).3 In step two, an open-space demand
equation was estimated using the marginal implicit price of open space estimated in
the first step as a proxy for the price of open space. As in the first step, this demand
relationship was estimated at the parcel level using GWR corrected for spatial error
autocorrelation.

2.1 Step 1 – Estimation of the Marginal Implicit Price
of Open Space

Because demand for open space is largely determined by the housing market, which
in turn is a function of demand for open space within a reasonable neighborhood,
i.e., a 1.0-mile radius (circular shaped buffer), a system of simultaneous equations
was estimated to represent the demand for open space and the hedonic housing price
(Geoghegan et al. 2003; Irwin and Bockstael 2001; Walsh 2007). Following Irwin
and Bockstael (2001), the instrumental variables (IV) estimation approach was used
to account for open-space endogeneity,

lnpi D ’xi C “ ln Ooi C ©i (1)

ln oi D ”¦i C ˜i (2)

3 GWR is a computationally intensive modeling approach. Each model run for this study took
approximately 72 h to complete.
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where ln pi is the natural log of the value of house i ; xi is a vector of factors
determining the value of house i ; ln oi is the natural log of open space in the vicinity
of house i ; Ooi is the predicted value from (2); �i is a vector of instruments that are
correlated with ln oi and uncorrelated with "i ; and ."i ; �i / are a random disturbances
with expected values of zero and unknown variances. The instruments used in (2)
are identified in Table 1.

The GWR hedonic model with spatially autocorrelated disturbances is:

lnpi D
X

k
“k .ui ; vi / Oxik C ©i ; ©i D œ

Xn

jD1;j¤i wij ©j C Ÿi ;

Ÿi � i id
�
0; ¢2

�
(3)

where Oxik is a vector of exogenous variables, including the predicted value of ln Ooi ;
.ui ; vi / denotes the coordinates of the i th location in the housing market; ˇk .ui ; vi /
represents the local parameters associated with house i ; wij is an element of an
m by n spatial weighting matrix between points i and j ; and 	 is a spatial error
autoregressive parameter.

The specification in (3) allows a continuous surface of parameter values with spa-
tially autocorrelated disturbances, and measurements taken at certain points denote
the spatial heterogeneity of the surface (Fotheringham et al. 2002). Previous studies
have found that a log transformation of the distance and area explanatory variables
generally performs better than a simple linear functional form, as the log transforma-
tion captures the declining effects of these distance variables (Bin and Polasky 2004;
Iwata et al. 2000; Mahan et al. 2000). Thus, a natural log transformation of the
distance and area-related variables is used in this study.

Given estimation of (3), GWR residuals are tested for spatial error autocorre-
lation using a Lagrange Multiplier (LM) test (Anselin 1988). A row-standardized
inverse distance matrix was used to test the hypothesis of spatial error indepen-
dence. Rejection of the null hypothesis suggests a GWR-spatial autoregressive error
model (GWR-SEM) as a way to address spatial heterogeneity and spatial error
autocorrelation. The GWR-SEM combines well-founded methods typically used in
conventional spatial econometric analyses, i.e., the Cochran–Orcutt method of fil-
tering dependent and explanatory variables to address spatial error autocorrelation
(Anselin 1988), with local regression techniques in a parametric framework. The
filtering mechanism Œ.I � œW/� partials out spatial error autocorrelation associated
with the explanatory and dependent variables while estimating local coefficients. It
helps to envision GWR as running n parametric regressions at n locations to control
spatial heterogeneity, and then testing whether the residuals generated by these local
regressions are spatially correlated. If the hypothesis of no spatial autocorrelation is
rejected, conventional methods are applied to filter the dependent and explanatory
variables (e.g., Anselin 1988, p. 183), and the GWR model is estimated again using
the transformed variables.

A convenient procedure to estimate 	 is Kelejian and Prucha’s (1998) general
moments approach, based on the set of GWR residuals. Given determination of 	,
the closed form solution to (3) is:
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Table 1 Variable names, definitions, and descriptive statistics

Variable (Unit) Definition Mean Std. Dev.

Dependent variable
Housing price ($) Sale price adjusted to 2000 by

the housing price index
129,610.227 95,460.498

Variables closely associated with urban sprawl
Incomea ($) Median household income 51,505.871 20,940.122
Finished areaa (feet2) Total finished square footage of

house
1,929.689 975.633

Lot sizea (feet2) Total parcel square footage 25895.720 69956.690
Housing densitya

(houses per acre)
Housing density for

census-block group
1.105 0.927

Open space�
103 � feet2

� Area of open space within a
buffer of 1.0 mile drawn
around each house sale
transaction

53,822.711 15,490.449

Price of open space ($) Marginal implicit price of
increasing additional
10,000 ft2 of open space
within 1.0-mile buffer
(assuming individual
housing price and
open-space area)

47.618 38.610

Structural variables
Agea (year) Year house was built subtracted

from 2006
29.207 21.733

Bricka Dummy variable for brick
siding (1 if brick, 0
otherwise)

0.254 0.435

Poola Dummy variable for swimming
pool (1 if pool, 0 otherwise)

0.055 0.229

Garagea Dummy variable for garage (1
if garage, 0 otherwise)

0.635 0.481

Bedrooma Number of bedrooms in house 3.068 0.647
Storiesa Height of house in number of

stories
1.340 0.474

Fireplacea Number of fireplaces in house 0.729 0.575
Quality of constructiona Dummy variable for quality of

construction (1 if excellent,
very good and good, 0
otherwise)

0.352 0.478

Condition of structurea Dummy variable for condition
of structure (1 if excellent,
very good and good, 0
otherwise)

0.734 0.442

Distance variables
Distance to CBDa (feet) Distance to the central business

district
44,552.592 20,713.081

Distance to greenwaya

(feet)
Distance to nearest greenway 7,886.866 5,573.062

(continued)
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Table 1 (continued)
Variable (Unit) Definition Mean Std. Dev.

Distance to railroada

(feet)
Distance to nearest railroad 6,978.618 5,463.655

Distance to sidewalka

(feet)
Distance to nearest sidewalk 3,060.270 4,229.282

Distance to parka (feet) Distance to nearest park 8,652.930 5,556.530
Park sizea (feet2) Size of nearest park 1,454.759 5,094.984
Distance to golf coursea

(feet)
Distance to nearest golf course 10,680.078 4,942.615

Distance to water bodya

(feet)
Dist. to nearest stream, lake,

river, or other water body
8,440.579 5,884.047

Size of water bodya

(1,000 feet2)
Size of nearest water body 19,632.026 39,026.745

High school district dummy variables (1 if in School District)
Doylea Dummy variable for Doyle

High School District
0.077 0.266

Beardena Dummy variable for Bearden
High School District

0.157 0.363

Cartera Dummy variable for Carter
High School District

0.027 0.161

Centrala Dummy variable for Central
High School District

0.092 0.290

Fultona Dummy variable for Fulton
High School District

0.053 0.224

Gibbsa Dummy variable for Gibbs
High School District

0.055 0.228

Hallsa Dummy variable for Halls
High School District

0.057 0.231

Karnsa Dummy variable for Karns
High School District

0.147 0.354

Powella Dummy variable for Powell
High School District

0.065 0.247

Farraguta Dummy variable for Farragut
High School District

0.148 0.355

Austina Dummy variable for Austin
High School District

0.014 0.116

Census block-group variables
Vacancy ratea (ratio) Vacancy rate for census-block

group (2000)
0.063 0.031

Unemployment ratea

(ratio)
Unemployment rate for

census-block group (2000)
0.037 0.029

Travel time to worka

(min)
Average travel time to work for

census-block group (2000)
22.519 3.314

Other variables
Knoxvillea Dummy variable for City of

Knoxville (1 if Knoxville, 0
otherwise)

0.343 0.475

(continued)
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Table 1 (continued)
Variable (Unit) Definition Mean Std. Dev.

Flooda Dummy variable for 500-year
floodplain (1 if in stream
protection area, 0 otherwise)

0.010 0.097

Interfacea Dummy variable for
rural–urban interface (1 if in
census block of mixed
rural–urban housing, 0
otherwise)

0.223 0.417

Urban growth areaa Dummy variable for urban
growth area (1 if in urban
growth area, 0 otherwise)

0.083 0.276

Planned growth areaa Dummy variable for planned
growth area (1 if in planned
growth area, 0 otherwise)

0.431 0.495

Seasona Dummy variable for season of
sale (1 if April through
September, 0 otherwise)

0.559 0.497

Prime interest ratea Average prime interest rate less
average inflation rate

4.267 2.104

aIndicates instrumental variables used in the first step estimation

Ǒ .ui ; vi / D .X0 .I � 	W/0A.I � 	W/X/�1X0 .I � 	W/0A .I � 	W/P

(4)

which is analogous to the GLS estimator in the spatial econometric literature,
ˇSEM D .X0.I–	W/0�.I–	W/X/�1X0.I–	W/0�.I–	W/y , where � is a an n by n
diagonal matrix with a set of weights corresponding with each observation, except
that it generates i sets of local parameters. The n by n matrix A (which is a func-
tion of ui and vi ) addresses spatial heterogeneity, with diagonal elements identifying
the location of other houses relative to house i and zeros in off-diagonal positions
(Fotheringham et al. 2002). Houses near house i have more influence in the esti-
mation of the parameters associated with house i than other houses located farther
away.

When 	 D 0, (4) generates the usual GWR estimates. Pseudo-standard errors for
the i sets of regression parameters are based on the covariance matrix (cov):

cov . Ǒ .ui ; vi // D ¢2i .X
0 .I � œW/0A .I � œW/X/�1 (5)

where �2i D e0.I�	W/0A.I�	W/e=.q�k/ is the variance associated with the i th
regression point (Fotheringham et al. 2002).4 Statistical significance of the estimates
from the GWR-SEM at the i th regression point is evaluated with the Pseudo-t tests

4 Those standard errors do not take into consideration the first stage estimation. Further studies will
consider a covariance matrix adjusted for the first stage regression.
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derived from the Pseudo-standard errors of the location-specific covariance matri-
ces. Based on the GWR-SEM, the marginal implicit price of an additional 10; 000 ft2

of open space is estimated.

2.2 Step 2 – Open-Space Demand Estimation

The demand for open space is estimated using the marginal implicit price of open
space estimated in the first step as a proxy for the price of open space. The demand
equation for open space in the GWR framework is:

ln oi D —.ui ; vi / ln Opi C
X

k
’k.ui ; vi /xik C ¤i ; k D 1; : : : ; m5 (6)

where ln Opi is the natural log of the estimated marginal implicit price of open space
for house i , and xik is the kth ofm variables determining the demand of open space
for house i . The xik includes variables closely associated with urban sprawl (e.g.,
income, house and lot size, and housing density), structural attributes of the house,
census-block group variables (e.g., vacancy rate, unemployment rate, and travel time
to work), distance measures to amenities (e.g., lakes, parks) or disamenities (e.g.,
railroads), school districts, and other spatial dummy variables (e.g., urban growth
area and planned growth area) (see Table 1 for the complete list). The statistical
significance of the local estimates at the i th regression point is evaluated with t-tests
derived from the standard errors of the location-specific covariance matrices.

Another concern in regression models with many explanatory variables is mul-
ticollinearity, which occurs when two (or more) independent variables are linearly
related. Multicollinearity may inflate estimates of standard errors, rendering hypoth-
esis testing inconclusive. Multicollinearity can be detected by variance inflation
factors (VIF) (Maddala 1992). VIFs are a scaled version of the multiple correlation
coefficients between a variable and the rest of the independent variables (Mad-
dala 1983). There is no clear guideline for how large the VIF must be to reflect
serious multicollinearity, but a rule of thumb is that multicollinearity may be a
problem if the VIF for an independent variable is greater than ten (Gujarati 1995).
The VIFs were lower than ten for all but three variables, namely dummy variables
differentiating the rural–urban interface (22), the City of Knoxville (12), and the
Bearden high school district (11) in the demand for open space equation. In general,
multicollinearity does not appear to be too great a concern because many of the
location-specific coefficients were significantly different from zero at the 5% level.6

5 Covariance of Opi is not adjusted for first stage regression.
6 If the VIF is large but the coefficient is significant, multicollinearity is not a problem with respect
to the estimation of the standard errors. If a coefficient is significant using a weak t-test caused
by collinearity (inflated standard error), it would be significant using the stronger t-test associated
with the lack of collinearity (inflated standard error).
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Nevertheless, those three variables with high VIFs were not excluded for lack of
sufficient justification.

3 Study Area and Data

Knox County, Tennessee was chosen as a case study for this research because (1)
Knoxville is the eighth most sprawling U.S. metropolitan region (Ewing et al. 2002),
and (2) the area consists of both rapid and slow regions of housing growth. Knox
County is located in East Tennessee, one of the three “Grand Divisions” in the state.
The City of Knoxville is the county seat of Knox County. Knoxville comprises
101miles2 of the 526miles2 within Knox County. Total populations of Knoxville
and the Knoxville Metropolitan Area were 173,890 and 655,400 in 2000, respec-
tively (US Census Bureau 2002). The University of Tennessee and the headquarters
of Tennessee Valley Authority (TVA) are near downtown Knoxville, and the US
Department of Energy’s Oak Ridge National Laboratory is 15 miles northwest of
Knoxville. These institutions are the major employers of the area. Maryville is
located approximately 14 miles southwest of Knoxville and it is home to ALCOA,
the largest producer of aluminum in the United States. Farragut, a bedroom commu-
nity, is located along the edge of the western end of Knox County (see Fig. 1). The
Smoky Mountains, the most-visited National Park in the United States, and a large
quantity of lake acreage (17miles2 of water bodies) developed by the TVA are on
Knoxville’s doorstep.

It is important to note that push/pull factors of the geography surrounding
the study area were not modeled because data were not available. However, to
our knowledge, no other hedonic studies have successfully addressed this issue.
Admittedly, these omitted factors may cause some estimates to be biased. But under-
standing this context beforehand aids in the interpretation of patterns generated by
mapped coefficients. It is also important to note that the results of this study may not
be representative of other urban areas. The data set does not represent most typical
urban areas, and because of the local amenities and job opportunities, Knox County
may be more of an outlier case compared to other rapidly growing metropolitan
areas. Nevertheless, the methods used in this case study can be applied to other
urban areas where similar data exist.

This research used five GIS data sets: individual parcel data, satellite imagery
data, census-block group data, boundary data, and environmental feature data. The
individual parcel data, i.e., sales price, lot size, and structural information, were
obtained from the Knoxville, Knox County, Knoxville Utilities Board Geographic
Information System (KGIS 2009), and the Knox County Tax Assessor’s Office. Data
were used for single-family home sales transactions between 1998 and 2002 in Knox
County, Tennessee. A total of 22,704 single-family home sales were recorded dur-
ing this period. Of the 22,704 houses sold, 15,500 were randomly selected for this
analysis. County officials suggested that sales prices below $40,000 were probably
gifts, donations, or inheritances, and would therefore not reflect true market value.
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Fig. 1 Study area

Officials also suggested that parcel records less than 1;000 ft2 might be misinfor-
mation. Therefore, parcels smaller than 1;000 ft2 were eliminated from the sample
data. There were 15,335 observations after eliminating these outliers. Selecting a
random sample of sales transactions saved time in running the GWR. Prices were
converted to 2000 (year) dollars to account for real estate market fluctuations in the
Knoxville metro region. This adjustment was made using the annual housing price
index for the Knoxville metro statistical area obtained from the Office of Federal
Housing Enterprise Oversight (OFHEO 2006).

Land cover information was derived from Landsat 7 imagery for 2001. The clas-
sified national land cover database from the multi resolution land characteristics
consortium (NLCD 2001) includes the GIS map used in the analysis to identify
open space in the study area. There are 21 land cover classifications in the NLCD
2001 database. Of the 21 classified land covers, 11 classifications were considered
as open space in our study.7 The open-space classification was loosely based on the
definition of “open area” or “open space” in Sect. 239-y of the General Municipal
Law (Open space inventory 1999).8

7 The 11 classifications include developed open space, barren land (rock/sand/clay), deciduous
forest, evergreen forest, mixed forest, shrub/scrub, grassland/herbaceous, pasture/hay, cultivated
crops, woody wetlands, and emergent herbaceous wetlands.
8 Section 239-y defines “open area” as any area characterized by natural beauty or, whose existing
openness, natural condition or present state of use, if preserved, would enhance the present or
potential value of abutting or surrounding development or would offer substantial conformance
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1 mile buffer
Transaction parcel in downtown area
Open space
Built area

0.1250 0.25 0.5 0.75 1
Miles

1 mile buffer
Transaction parcel in rural area
Open space
Built area

0.1250 0.25 0.5 0.75 1
Miles

1 mile

Fig. 2 Transaction parcel with surrounding open space and 1.0-mile buffer

To define the open-space demand for individual households, the space in the
11 open-space classifications was aggregated within a 1.0-mile radius (buffer) of
each housing sales transaction (see Fig. 2). Buffer sizes found in the literature were
not consistent, resulting in different estimates of open space value (McConnell
and Walls 2005). For example, Geoghegan et al. (2003) used two buffers, a 100-
m radius around the property and a 1,600-m radius. Acharya and Bennett (2001)
also used a 1,600-m buffer. Nelson et al. (2004) used 0.1-mile, 0.25-mile, and 1.0-
mile buffers and Irwin (2002) used a 400-m buffer. Lichtenberg et al. (2007) used
buffers of 0.5, 1, and 2 miles. Although buffer sizes are arbitrarily chosen without
using a systematic framework, a 1-mile buffer was chosen for this study because the
1-mile distance is what can be enjoyed within an easy walk assuming sidewalks or
uncongested roads.

The boundary data, i.e., high school districts and jurisdiction and growth bound-
aries, were obtained from the Knoxville-Knox County Metropolitan Planning Com-
mission (KGIS 2009). Three classifications of land, i.e., rural areas, urban growth
area (UGA), and planned growth area (PGA), and jurisdiction boundaries are used
to capture the effects of regional core boundaries, as well as, inner and outer suburb
boundaries. The rural areas include land to be preserved for farming, recreation, and
other non-urban uses. The UGA is reasonably compact but adequate to accommo-
date the entire city’s expected growth for the next 20 years. The PGAs are large
enough to accommodate urban growth expected to occur in unincorporated areas

with the planning objectives of the municipality or would maintain or enhance the conservation of
natural or scenic resources.
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over the next 20 years (MPC 2001). Most current residential development exists
within the boundaries of Knoxville and Farragut while the UGA and PGA serve as
designated areas for future development. Farragut and UGA also function as suburb
boundaries.

Environmental feature data such as water bodies and golf courses were found in
the Environmental Systems Research Institute Data and Maps 2004 (ESRI 2004).
Other environmental feature data such as railroads were acquired from KGIS (2009).
The study area consists of 234 census-block groups. Information from these census-
block groups was assigned to houses located within the boundaries of the block
groups. The timing of the census and sales records did not match except for 2000.
However, given the periodic nature of census taking, census data for 2000 were
considered proxies for real time data for 1998, 1999, 2001, and 2002. By the same
token, variables created from the 2001 national land cover database were used as
proxies for the other years because open space was not expected to change apprecia-
bly during the study period. Detailed statistics for individual variables are reported
in Table 1.

4 Empirical Results

The overall performance of the hedonic price and open-space demand equations
estimated with GWR, GWR-SEM, and OLS are compared in Table 2. The OLS
model is called the “global model” hereafter, in contrast to the GWR models (GWR
and GWR-SEM). The spatial error Lagrange Multiplier (LM) statistic for the GWR
model is 82% lower than the LM statistic for the global model, and the GWR-SEM
model reduces the spatial LM statistic by 96% compared with GWR. In the open-
space demand equation, the spatial LM statistic for the GWR model is 39% lower
than for the global model, and the GWR-SEM model further reduces the spatial
LM statistic by 4% compared with GWR. Nevertheless, the null hypothesis of no
spatial error autocorrelation is still rejected in the hedonic and open-space demand
equations using the GWR-SEM estimation method. Spatial error autocorrelation
remains in both equations. Although the local models significantly mitigate spatial
autocorrelation in both equations, they do not completely eliminate it and, thus,
the statistical results must be interpreted with caution. As a result, the GWR-SEM
model can be viewed as a complement to the global model rather than an alternative
to it.

In the hedonic model, the Akaike Information Criterion (AIC) for the GWR-
SEM model is 3,045, lower than for the global model (4,655), and slightly lower
than for the GWR model (3,502). The error sum of squares for the GWR-SEM
model is 1,066, lower than for the global model (1,206) and slightly lower than for
the GWR model (1,085). The global F -test comparing the global and local models
confirms that the GWR and GWR-SEM models outperform the global model. Given
these diagnostics, estimates from the GWR-SEM specification are used to calculate
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Table 2 Comparison of performance among OLS, GWR, and GWR-SEM

Statistic Hedonic price (Dependent Open-space demand (Dependent
variable D ln (Housing price)) variable D ln (open-space area

within 1-mile buffer)
OLS GWR GWR-SEM OLS GWR GWR-SEM

Error sum of
squares

1,206 1,085 1,066 490 220 77

Global F test 11.05 21.59 187.48 21.59
Spatial error LM

testa
2,786 497 18 189,902 115,905 111,263

AIC 4,655 3,502 3,045 �8;948 �21;189 1,130
aCritical value for LM test at 0.01% is 15.14 (1 degree of freedom)

marginal implicit prices of open space and create maps. The marginal implicit prices
are mapped to visually highlight their spatial variations.

In the open-space demand equation, the corrected AIC for the GWR model is
�21;189, lower than for the global (�8;948) and the GWR-SEM (1,130) mod-
els. The error sum of squares for the GWR-SEM model is 77, lower than for the
global (490) and the GWR (220) models. The global F-test comparing the global and
local models confirms that the GWR and GWR-SEM models outperform the global
model. The overall fit of the GWR-SEM model is better than the GWR model, and
the GWR-SEM model more effectively accounts for spatial error autocorrelation.
Given these diagnostics, the estimates of the demand for open space are discussed
based on the GWR-SEM estimates.

The results of the global hedonic price equation and the open-space demand
equation are presented in Table 3. The estimates from the local model (GWR-SEM)
are too numerous to show in Table 3. Instead, the coefficients for open space in the
hedonic model and the coefficients for the variables closely associated with urban
sprawl, i.e., income, house and lot size, housing density, and price of open space
that are significant at the level of 5% are mapped in the Figs. 3–8.

The positive coefficient for open space in the global hedonic model indicates
that households place significant value on more open space in the area surrounding
their houses. An additional 10; 000 ft2 of open space within a 1.0-mile buffer adds
$42 to the value of a house, other things constant. The estimated marginal implicit
prices for open space for individual households, that are significant at the 5% level
in the hedonic GWR-SEM model, are mapped in Fig. 3. The map indicates that
open space significantly influences housing prices in the entire study area and the
amenity values of open space increase from the east toward west Knox County.
The open space area within a 1-mile buffer varies inversely with price and directly
with income. According to the regression results of the global open-space demand
equation, the price elasticity of open-space demand is �0:07. The income elasticity
of open-space demand in the global model is 0.07. Both elasticities are significant at
the 1% level. The results imply that the demand curve for open space is downward
sloping on average and open space is a normal good in the Knoxville area; demand
for open space increases with household income.
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Table 3 Parameter global estimates of global (OLS) models

Variable Dependent Variable = ln Dependent Variable = ln
(house price) (open space)
Coefficient Std. Error Coefficient Std. Error

Intercept 3:830��� 1:274 14:392��� 0:124

Variables closely associated with urban sprawl

Income 0:070��� 0:004

ln (Finished area) 0:545��� 0:009 0:031��� 0:005

ln (Lot size) 0:049��� 0:005 0:026��� 0:002

Housing density �0:029��� 0:002

ln (Open space) 0:021�� 0:086

ln (Price of open space) �0:070��� 0:004

Structural variables
Age �0:004��� 0:000 �0:002��� 0:000

Brick 0:073��� 0:006

Pool 0:060��� 0:010

Garage 0:091��� 0:006

Bedroom 0:016��� 0:005

Stories 0:096��� 0:007

Fireplace 0:042��� 0:005

Quality of construction 0:168��� 0:007

Condition of structure 0:098��� 0:006

Census block-group variables
Vacancy rate �0:079 0:094 0:006 0:059

Unemployment rate �0:059 0:147 �1:116��� 0:061

Travel time to work 0:000 0:001 0:008��� 0:001

Distance variables
ln (Dist. to CBD) �0:044 0:032 0:283��� 0:009

ln (Dist. to greenway) �0:027��� 0:004 0:026��� 0:002

ln (Dist. to railroad) 0:002 0:003 0:020��� 0:002

ln (Dist. to sidewalk) �0:019��� 0:004 0:027��� 0:002

ln (Dist. to park) �0:002 0:005 �0:039��� 0:002

ln (Park size) 0:017��� 0:004 �0:021��� 0:002

ln (Dist. to golf course) �0:004 0:007 �0:056��� 0:003

ln (Dist. to water body) �0:036��� 0:003 �0:007��� 0:002

ln (Size of water body) 0:005��� 0:001 �0:004��� 0:001

High school district dummy variables
Doyle �0:248��� 0:057 0:548��� 0:010

Bearden �0:046�� 0:021 �0:152��� 0:008

Carter �0:233��� 0:028 0:141��� 0:013

Central �0:100��� 0:017 0:135��� 0:008

Fulton �0:039 0:024 �0:214��� 0:010

Gibbs �0:202��� 0:025 0:145��� 0:011

Halls �0:127��� 0:023 0:117��� 0:011

Karns �0:080��� 0:013 �0:031��� 0:008

(continued)
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Table 3 (continued)
Variable Dependent Variable = ln Dependent Variable = ln

(house price) (open space)
Coefficient Std. Error Coefficient Std. Error

Powell �0:110��� 0:020 0:082��� 0:010

Farragut �0:079��� 0:030 �0:251��� 0:011

Austin �0:230��� 0:027 0:016 0:016

Other variables
Knoxville �0:056��� 0:013 0:049��� 0:009

Flood �0:017��� 0:024 �0:009 0:015

Interface 0:001 0:009 0:002 0:006

Urban growth area �0:021 0:014 0:077��� 0:008

Planned growth area 0:006 0:011 �0:067��� 0:006

Season 0:024��� 0:005

Prime CPI 0:003��� 0:001 0:000 0:001

Adjusted R2 0:732 0:730
���, ��, and � indicate statistical significance at the 1%, 5%, and 10% levels respectively. Sample
size is 15,335 and the optimal number of neighbors is 6,080

Fig. 3 Marginal implicit price of open space (10,000 square foot increase in open space)

Figure 4 shows that areas exist within Knox County where the demand for open
space is upward sloping. This may be explained by speculative investing in open
space in these regions. Generally, people invest in houses with rising values. These
kinds of investments can result in an upward sloping demand curve for houses
(Dusansky et al. 2004). Likewise, people may be inclined to invest in houses that are
surrounded by open space of greater value for the same speculative purpose. Those
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Fig. 4 Price elasticity of open-space demand
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Fig. 5 Income elasticity of open-space demand
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Fig. 6 Lot size elasticity of open-space demand

Fig. 7 Finished-area elasticity of open-space demand
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Fig. 8 Housing-density elasticity of open-space demand

areas are mostly inside Knoxville and Farragut, with some exceptions. Figure 5
shows that the demand for open space is more responsive to changes in income
in the western end of Knoxville than in the rest of the County. The highly respon-
sive demand for open space to changes in income in this area is consistent with the
case of Connecticut communities (Bates and Santerre 2001).

The patterns in the southwest corner of Knox County and the town of Farragut
probably result from this area being a bedroom community with affluent neighbor-
hoods where many individuals work in private high-tech occupations; for example,
scientists at the Oak Ridge National Laboratory or faculty at the University of Ten-
nessee. This area has experienced rapid development of residential and commercial
properties because of its location with respect to commuting. Demand for houses in
this area is also driven by access to amenities such as shopping areas, parks, public
infrastructure, and privacy on the urban fringe.

Open space area within a 1-mile buffer is positively associated with finished
area and lot size at the 1% level. These results imply that properties with larger
houses and lot sizes are likely to have greater open space within a 1-mile buffer.
The finished-area (representing house size) elasticity of open-space demand is 0.03,
and the lot-size elasticity of open-space demand is 0.03. Contrary to the findings
of other studies where open space was a substitute for large residential lots (e.g.,
Thorsnes 2002), these results imply that house and lot sizes, and open space are
complementary goods (on average) within the study area.

Figures 6 and 7 show regions with negative lot-size elasticities of open-space
demand and negative finished-area elasticities of open-space demand mostly inside
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of Knoxville boundary, indicating substitutability between house and lot size, and
open space. The results indicate that house and lot size, and open space can be
both complimentary and substitute goods depending on the local area, with comple-
mentarities being the dominant relationship on average and substitutability existing
inside the Knoxville boundary.

The open space area within a 1-mile buffer is negatively associated with hous-
ing density at the 1% level. The housing-density elasticity of open-space demand is
�0:03. This result implies that houses located within areas of lower density hous-
ing are likely to have greater open space within a 1-mile buffer. Most areas, other
than some area near the western end of Knoxville, have negative housing-density
elasticities (Fig.8).

5 Conclusions

This case study examined the demand for open space in Knox County, Tennessee,
United States. A GWR was modified to simultaneously model spatial heterogene-
ity and spatial error autocorrelation issues. The approach allows local elasticities of
demand for open space to be measured and mapped. The empirical findings sug-
gest that amenity values for open space are higher in west Knox County, and the
demand for open space is more responsive to changes in income in the western end
of Knoxville than the rest of the County. These patterns observed in the western
end of Knoxville and in southwest Knox County coincide with the characteristics
of preferences of persons employed by the Oak Ridge National Laboratory and the
University of Tennessee. We also find that house and lot size, and open space can be
complimentary or substitute goods, depending on the location, with complementar-
ities being the dominant relationship on average while substitutability exists inside
of city boundary.

Given the results, local officials may consider adopting location-specific policies.
A smart growth policy encouraging higher-density housing with more surrounding
open space might be fruitful in some parts of Knox County because the county
has significant amenity values for open space as a whole. Local policymakers may
encourage greater amounts of locally owned private and public open space in west
Knox County, given the higher amenity values for open space. For example, some
households may be more willing to pay into a fund designed to preserve neighbor-
hood open space by purchasing development rights. Under this scenario, promoting
compact development by stimulating demand for locally owned open space will
likely be more successful in areas where demand for open space is higher because
households would be more inclined to endorse and participate in programs or poli-
cies preserving open space, at least in the short term. However, with greater supply
flexibility and occupier mobility, alongside growing open space demand, house-
holds can move to locations with more open space in the medium-to-long term.
This mobility could give rise to sprawl over the longer term as households demand
greater amounts of open space farther from the city center. Thus, the purchase of
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development rights may be a limited short-term solution unless sprawl is counter-
acted by regulatory policy.

A tool for achieving smart growth, such as conservation subdivisions that uses
substitutability of public open space for larger residential lots is more likely to be
successful inside the Knoxville boundary because house size, lot size, and open
space are substitute goods; thus households may be more receptive to policies
emphasizing substituting public open space for larger private lots.

Given the higher income elasiticies of demand for open space in the western
end of Knoxville, increasing demand for locally owned private and public open
space is expected to be higher in this area of growing economy activity. Because
dynamic market forces in the western end of Knoxville are rapidly transforming
open space into residential and commercial uses, open space may be in short supply
compared with the growing demand for open space. Economic theory suggests that
a market failure may arise when individuals do not consider the intangible bene-
fits of open space, the social costs of excessive commuting, or the marginal social
infrastructure costs of new development when engaging in private activities (Bates
and Santerre 2001). Brueckner (2000) recommends greater imposition of regulatory
types of conservation policies, i.e., development taxes, congestion tolls, and impact
fees, to prevent any further urban sprawl and to preserve open space. These types of
policies may be useful to planners in Knoxville for the medium to long term.

The empirical results suggest another possible interpretation of the hedonic
regression. Households located in higher income areas place relatively higher value
on open space. Because demand for open space is present, it may be that house-
holds in the higher income areas, that can afford the value of open space, end up
being so-called “pioneers” living at, or beyond, the edge of the urban area in subur-
ban and exurban lots surrounded by open space. This sort of market embodies the
initial conditions for the provision of additional amenities and demand for them in
the exurbs. This in turn may give rise to sprawl (e.g., residential, retail, services)
over the medium to long term.9

One limitation of using the implicit price of open space as a proxy for the actual
open-space price is that the implicit price of open space is a function of nearby
house prices, ceteris paribus. The housing and open land prices were moderately
correlated (0.48). As a result, the value of open space quality (i.e., composition,
shape, and historic value) was not entirely represented in the implicit price of open
space. In addition, the GWR-SEM econometric approach applied in this analysis
addresses autocorrelation between disturbances. Future development of the general
class of GWR models will focus on accommodating spatial lag processes (SAR)
using an instrumental variables approach. Introduction of an autoregressive lag term
in the GWR framework would allow for spatially heterogeneous clustering effects,
suggesting that spatial dependencies in some regions are stronger than in others. We
leave this model for further consideration, as well as development of the appropriate
statistical tests to diagnose such processes in the GWR framework.

9 We thank the editor for this insight.
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Multilevel Models of Commute Times
for Men and Women

Edmund J. Zolnik

1 Introduction

The commuting time discrepancy between men and women is known as the com-
muting time gender gap. Empirical evidence for the gender gap seems to be
conclusive. However, recent research on commuting times in San Francisco (Gossen
and Purvis 2005) and Philadelphia (Weinberger 2007) suggests that the gender
gap is less ubiquitous than previously thought. To test whether or not the attenu-
ation of the gender gap is idiosyncratic to single-city analyses of commuting times,
national data is used to specify three statistical models of private-vehicle commut-
ing times for men-only, women-only, and pooled men–women subsamples from the
2001 National Household Travel Survey (NHTS). The first goal of this chapter is
to ascertain what personal characteristics of men and women and what locational
characteristics of cities have the greatest affect on private-vehicle commuting times.
The second goal of this chapter is to ascertain how much of the variation in com-
muting times for men and women originates within cities and how much originates
between cities.

2 Review of the Literature

Empirical evidence on the shorter commute times of women in the US is extensive.
Early in the twentieth century, Pratt (1911) found that women’s commute times were
shorter than men’s in New York City even after controlling for hours worked. Later
in the twentieth century, Ericksen (1977) found that residential location within a
metropolitan area had a dramatic effect on commute times for women in the US.
Women who resided in central cities took the longest to get to work, while women,
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who resided outside of central cities, but within a metropolitan area, took longer to
get to work than women who resided outside of metropolitan areas. Race/ethnicity
and residential location were also shown to have some association with differences
in commute times. Black women took longer to get to work than white women
regardless of residential location, and blacks living outside of metropolitan areas
had longer commutes than whites living in central cities. However, results from a
regression analysis with commute time as the dependent variable, and race, marital
status, residence, age of youngest child, and type of transportation as independent
variables, showed that after controlling for type of transportation, commute times for
central-city women were not longer, on average, and that suburban women had the
longest commutes (Ericksen 1977). In addition, married women had shorter work
trips than unmarried women, and women with very young children were shown to
have shorter commute times. Overall, Ericksen (1977) found that women with more
household responsibilities commuted shorter distances and suburban women had the
longest commute times. Given that women still have less access to private vehicles
than men (Lansing and Hendricks 1967; Doyle and Taylor 2000), the suburbaniza-
tion of employment confined women to smaller geographic areas in their job search.
The net result was that women were unable to compete with men for jobs across
the full extent of spatial labor markets. Subsequent research on spatial containment
by McLafferty and Preston (1991), England (1993), Hanson and Pratt (1995), and
Wyly (1998) also found that women’s commute times were shorter than men’s.

The unanimity in the empirical evidence on the shorter commutes of women is in
sharp contrast to the ambiguity in economic theory on the origins of the commuting
time gender gap (White 1977; White 1986). Economic theory divides commut-
ing costs into monetary costs and time costs. Monetary costs refer to outlays to
own and operate a private vehicle if the work trip is by automobile or fares if the
work trip is by bus, train, or boat, for example. Time costs are dependent on the
wages of the commuter. If the commuter earns a higher wage, they should value
their commute time more highly and be less willing to commute. Because women
typically earn lower wages than men (Rosenbloom 2006), economic theory sug-
gests that women should value their commute time less and be more willing to take
longer commutes. However, because women earn less in total than men, monetary
costs consume a larger proportion of women’s incomes which may compel them to
commute less. Besides wages and income, housing prices and other socioeconomic
variables are also predictors of commute times. Because commute times are man-
ifestations of access to home and work, women’s shorter commutes may also be
attributable to differences in home and work locations between men and women.
Assuming households are the same with regard to skills and preferences in a mono-
centric city, if work locations are fixed in the central city, workers will opt for longer
commutes if compensated with lower housing prices. Relaxing the assumption of
equal skills, higher-income workers will prefer to locate a greater distance from
the central city than lower-income workers who will ultimately experience shorter
commutes to jobs in the central city. If home locations are fixed, workers will opt for
longer commutes if compensated with higher wages. If home and work locational
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decisions occur simultaneously in a monocentric city, then longer commutes will be
synonymous with lower housing prices and higher wages.

Economic theory suggests that men and women with the same preferences and
socioeconomic characteristics will exhibit the same commuting behavior. However,
traditionally, men and women differed in their socioeconomic characteristics, e.g.,
educational attainment, incomes, and occupations (Johnston-Anumonwo 1992).
Research by Hanson and Johnston (1985) suggested that female-dominated jobs
were more uniformly distributed within Baltimore than were male-dominated jobs
which may help explain why women’s commutes were shorter than men’s. Like-
wise, because women still shoulder more household commitments than men, wages
associated with longer commutes may not be valued as highly as time away from
home. Therefore, women may commute less because of the nonmonetary costs of
commuting attributable to their household commitments (Madden 1981). A review
of the available evidence by Turner and Niemeier (1997) found less than univer-
sal empirical support for the household responsibility hypothesis as in Gordon
et al. (1989). However, their analysis of a subset of data on 13,074 commutes
from the 1990 National Personal Transportation Survey (NPTS) tended to sup-
port the household responsibility hypothesis as an explanation for women’s shorter
commutes.

Nevertheless, theory on the spatial segmentation of labor markets (Hanson and
Pratt 1988b; 1991) continues to show that commute times for women are shorter
than commute times for men regardless of occupation. For example, Weinberger
(2007) found that male-dominated work locations were less evenly distributed spa-
tially than were female-dominated work locations in Philadelphia. Because home
locations were more evenly distributed spatially, Weinberger expected commute
times for women employed in male-dominated industries to rival commute times
for men employed in male-dominated industries. Unexpectedly, commute times
for women were shorter than commute times for men whether the woman was
fully employed in a male-dominated, neutral, or female-dominated industry or not.
Results from Weinberger suggest that sex is still a better determinant of commute
times than the spatial distribution of male-dominated versus female-dominated jobs.

More recent research on the commuting gender gap seems to support the con-
tention of Rosenbloom (1978) that as women work more, differences in travel
behavior between men and women may disappear (Crane 2007). Research by
Doyle and Taylor (2000) supports results from McLafferty and Preston (1991)
which show that race or ethnicity interact with gender to affect commute times.
Gossen and Purvis (2005) found that, except for 50–59 year olds, commute times
for working men and women were approximately the same in San Francisco in
2000. Weinberger (2007) found that the commute time discrepancy between men
and women who were fully employed decreased by thirty seconds between 1990
and 2000 in Philadelphia. Likewise, in 2000, the gender gap narrowed for women
employed in male-dominated, neutral, or female-dominated jobs.

Results from single-city analyses of commuting seem to suggest that the com-
muting time gender gap is not as ubiquitous as previously thought. But what if the
attenuation of the commuting time gender gap is idiosyncratic to San Francisco



198 E.J. Zolnik

(Gossen and Purvis 2005) or Philadelphia (Weinberger 2007)? As well, results from
single-city analyses are only able to control for intra-city variation in commuting
times between men and women. The emergence of polycentric labor markets and
the continuous dispersion of jobs away from employment centers, e.g., may impact
the commuting time gender gap differently in different cities. Indeed, the empiri-
cal evidence suggests that differences exist in the degree of job dispersion across
US cities (Glaeser and Maré 2001). Research has yet to be conducted to gauge the
influence of interurban differences in the degree of job dispersion and other urban
spatial characteristics on the commuting time gender gap.

In order to test if the attenuation in the commute time gender gap is idiosyn-
cratic to single-city analyses of commuting, equally sized subsamples of commuting
data for men and women were extracted from a secondary data source on national
travel behavior. Household data on commuters was then incorporated into statistical
models which account for the spatial development patterns of cities throughout the
United States. The specification of three models of private-vehicle commutes – one
for men-only, one for women-only, and one for a pooled men–women subsample –
provides an innovative approach for studying the variation in commute time differ-
entials between men and women throughout the US urban system. If job sprawl,
e.g., exacerbates the commuting time gender gap by lengthening commute times for
men and women, then the chapter may provide empirical evidence to support urban
planning which promotes the centralization of employment. The next two sections
provide further details on the data and methodology, respectively.

3 Data

Data for private-vehicle commuters are from the 2001 NHTS. The 2001 NHTS was
a cross-sectional survey of travel behavior in the United States. The 2001 NHTS
used a non-clustered, probability sampling design to sample the travel behavior of
the civilian, non-institutional population of the United States. To minimize sampling
error, random-digit dialing was used to create a list of eligible telephone numbers for
the 2001 NHTS. To protect the confidentiality of respondents, information to iden-
tify home and workplace locations for the 160,758 persons and 69,817 households
in the 2001 NHTS was withheld.

To select subsamples of working households, only households whose respon-
dent worked the week prior to the 2001 NHTS were eligible for selection. To
focus on intrametropolitan commuters, only respondents whose home and work
locations were in the same MSA were selected. To select private-vehicle com-
muters, only respondents who commuted to work by car, pickup truck, van, or
sport utility vehicle, the week prior to the 2001 NHTS, were eligible for selec-
tion. To account for the nesting of households within MSAs, only households
without missing data at the household- or MSA-level were included. Selection
of households and MSAs from the 2001 NHTS, which met the above criteria,
left a subsample of 4,011 male-respondent households nested within 43 MSAs,
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and a subsample of 4,793 female-respondent households nested within 43 MSAs.
To ensure equal representation of male- and female-respondent households, 4,011
female-respondent households were randomly selected from the women-only sub-
sample to match the sample size of the men-only subsample. Finally, the men-only
.n D 4;011/ and women-only .n D 4;011/ subsamples were merged to create a
pooled men-and-women .n D 8;022/ subsample.

The dependent variable was the self-reported commute time in minutes it usually
took respondents to get from home to work the week prior to the 2001 NHTS. Data
for an equal number of male- and female-respondent households in the men-only
.n D 4;011/, women-only .n D 4;011/, and pooled men-and-women .n D 8;022/

subsamples includes information on the respondent and their household. Informa-
tion on the respondent includes: age; ethnicity; occupation; and employment status
(full-time or part-time). Information on the household includes: total income; life-
cycle stage; and the ratio of vehicles to workers. Data for MSAs .n D 43/ includes:
congestion; land area in square kilometers; population size; census region; sprawl;
and a dummy variable indicating the presence of commuter rail. The measure of
congestion is the travel time index (TTI) from the Texas Transportation Institute
(2008). The TTI is a unitless ratio of travel times during peak periods to travel
times during free-flow periods (Schrank and Lomax 2007). The geography of the
TTI is the urbanized area within MSAs. To account for the difference in geography
between the TTI and the other MSA-level independent variables, the vast majority,
i.e., over 80%, of male- and female-respondent households in the 2001 NHTS sub-
samples reside in the urbanized areas of their respective MSAs. The four measures
of sprawl are from Ewing et al. (2002; 2003), and reflect multiple dimensions of the
phenomena – density, land use, centering, and accessibility. Each dimension repre-
sents a characteristic of sprawl from the social science literature and includes: low
residential density; segregated land uses; lack of significant centers; and poor street
accessibility.

The mean score for the residential density-, land use mix-, degree of centering-,
and street accessibility-scores was 100.00. A score below 100.00 is indicative of
more sprawl, while a score above 100.00 indicates less sprawl. Of the 50 MSAs in
the 2001 NHTS, data for congestion and land area were unavailable for Greensboro,
Norfolk, and West Palm Beach, and sprawl data was unavailable for Charlotte, Las
Vegas, Louisville, and Nashville. The exclusion of these MSAs left a final MSA-
level sample size of 43 (Fig. 1).

4 Methodology

Analyzing the commuting time gender gap with the latest release of national data on
travel behavior in the United States won’t make an especially noteworthy contribu-
tion to the commuting literature. After all, Gordon et al. (1989) used 1977 and 1983
national data from the NPTS to study the gender differences in metropolitan travel
behavior. Likewise, Turner and Niemeier (1997) used national data from the 1990
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Fig. 1 Population size of MSAs (n D 43) by region

NPTS to study the household responsibility hypothesis. However, as Wyly (1998)
notes:

[q]uantitative analyses of national samples of commuting data often overlook interurban
variations, focusing instead on aggregate behavioral regularities; and some datasets (e.g.,
the National Personal Transportation Survey) invite national-level analysis but provide
insufficient samples for comparisons across different cities. (p. 398)

To overcome the intraurban sample size limitations of the NPTS, Wyly used national
data from the 1990 Integrated Public Use Microdata Series to study the spatial con-
tainment of women in the US urban system. In this chapter, a multilevel approach
is adopted to undertake a quantitative analysis of national travel behavior data
that examines interurban variations in the commuting time gender gap. Exam-
ples of multilevel models of commuting in the Untied States (Bhat 2000; Weber
and Kwan 2003) and the Netherlands (Smit 1997; Snellen et al. 2002; Schwanen
et al. 2004) are evident in the literature; however examples of multilevel models of
the commuting time gender gap are not.

The different multilevel model specifications in this chapter reflect divergent
goals as well as an attempt to take advantage of applying a multilevel approach
to studying the commuting time gender gap. The first advantage of a multilevel
approach is its ability to account for nesting in the data structure of commut-
ing events for men and women – commuters located within MSAs. Second, the
interurban sample size limitations of national travel behavior data sources, such
as the older NPTS and the newer NHTS, are not as problematic with a multilevel
approach because the sample sizes required at higher levels of analysis are usu-
ally more restrictive than are sample sizes at lower levels of analysis (Snijders and
Bosker 1999). The minimum sample size required at the higher level of analysis to
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avoid bias in the estimation of the higher level standard errors is not unequivocal.
Snijders and Bosker (1999) suggest a minimum sample size at the higher level of
analysis of ten, while Maas and Hox (2004) suggest a minimum sample size at the
higher level of analysis of fifty. Therefore, the sample sizes at the higher levels of
analysis .n D 43/ in the multilevel models reported here are closer to the high end
of the minimum sample sizes suggested in the literature. Third, multilevel models
allow for the decomposition of variation in commuting times across household- and
MSA-levels of analysis. Therefore, a multilevel model partitions variation in com-
mute times into between-household, within-MSA and between-MSA components.
The ability to partition variation between household (compositional determinants),
and MSA covariates (contextual determinants) provides a methodology to estimate
the proportion of variation in commuting times that is attributable to the charac-
teristics of commuters, and the proportion attributable to the characteristics of the
places where people commute. Fourth, multilevel models of commute times avoid
violations of untenable homoscedasticity assumptions.

Each commute time multilevel model is a two-level model of households .h/
at the micro-level nested within MSAs (m) at the macro-level (Raudenbush and
Bryk 2002). Within each MSA, commute times are modeled as a function of
household-level independent variables plus a household-level error term:

Yhm D ˇ0m C ˇ1mX1hm C ˇ2mX2hm C : : :C ˇPmXPhm C rhm (1)

where:

� Yhm is the commute time of household h in MSA m;
� ˇ0m is the y-intercept term in MSA m;
� XPhm are p D 1; : : : ; P household-level predictors of commute time;
� ˇPm are the level-1 coefficients that indicate the direction and strength of the

association between each household characteristic, XPh, and the outcome in
MSA m; and

� rhm is a level-1 random effect term that represents the deviation of households
hm’s commute time from the predicted commute time based on the household-
level model. These residual household effects are assumed to be normally dis-
tributed with a mean of zero and a variance of �2.

Each multilevel model is a random-intercepts model, i.e., the y-intercept is random
and all of the regression coefficients at level-1 are fixed. The model for variation
between MSAs is as follows. For the household effect ˇ0m,

ˇ0m D �00 C �01W1m C �02W2m C : : :C �0QWQm C u0m (2)

where:

� �00 is the y-intercept term in the MSA-level model for ˇ0m;
� WQm is an MSA-level predictor of the household effect ˇ0m;
� �0Q is the corresponding level-2 coefficient that represents the direction and

strength of the association between MSA characteristicWQm and ˇ0m; and
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� u0m is a level-2 random effect term that represents the deviation of MSA m’s
coefficient, ˇ0m, from its predicted value based on the MSA-level model.

Each commute time multilevel model was estimated using HLM 6.06 (Raudenbush
et al. 2004). The estimation method was restricted maximum likelihood. The fol-
lowing sections discuss the analysis and conclusions as to the effect of interurban
variations in MSA-level characteristics on the commuting time gender gap in the
US urban system.

5 Findings

To control for variation in commute times for male and female private-vehicle
commuters in the US urban system, separate multilevel models of private-vehicle
commute times were specified and estimated for men-only, women-only, and pooled
men–women subsamples from the 2001 NHTS. The major advantage of this multi-
level approach to the analysis of the commuting time gender gap is that it accounts
for the nested structure of national travel behavior survey data (Goldstein 1991).
That is, male private-vehicle commuters .n D 4;011/ nested within MSAs .n D
43/, female private-vehicle commuters .n D 4;011/ nested within MSAs .n D 43/,
and male and female private-vehicle commuters .n D 8;022/ nested within MSAs
.n D 43/.

The next four subsections report descriptive statistics for the household- and
MSA-level dependent and independent variables, as well as the model estima-
tion results. In the first subsection, descriptive statistics for the household- and
MSA-level dependent and independent variables are reported. In the second, third,
and fourth subsections, results from men-only, women-only, and pooled men–
women multilevel models are reported. The fifth and sixth subsections report on
the analysis of the geographic variation in the commuting time gender gap and the
share of commute time variation explained by the various levels of the specified
models.

5.1 Descriptive Statistics for the Household- and MSA-Level
Dependent and Independent Variables

Table 1 provides descriptive statistics for the household-level dependent variables
in the men-only .n D 4;011/, women-only .n D 4;011/, and pooled men–women
.n D 8;022/ subsamples from the 2001 NHTS. As expected, commute times were
3:07 min longer for men than for women. On average, commute times for men were
longest in the Northeast (27:15 min) and shortest in the Midwest (23:51 min), while
commute times for women were longest in the South (24:43 min) and shortest in
the Midwest (20:16 min). Commute times were longer for men than for women in
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all regions. The largest gender gap was in the Northeast (4:58 min) and the smallest
gender gap was in the West (1:51 min). Regional comparison of commute times
was examined by estimating the coefficient of variation, expressed as a percentage,
nationally and for each regional subsample. Nationally, coefficients of variation in
commute times for men (66.69%) and women (67.19%) were approximately the
same. Regionally, however, coefficients of variation in commute times were lower
for men than women in the Northeast (69.72% vs. 72.05%) and West (66.04%
vs. 69.17%) and higher in the Midwest (65.28% vs. 60.78%) and South (63.73%
vs. 63.27%). The detected regional differences in commuting behavior support the
argument to control for regional variation in private-vehicle commute times in the
multilevel models.

Table 1 also provides descriptive statistics for the household-level independent
variables for all subsamples. The descriptive statistics for continuous independent
variables are the mean and standard deviation, while the descriptive statistic for
discrete independent variables is the percentage. Except for income, the categories
with the highest percentages in the men-only, women-only, and pooled men–women
subsamples were approximately the same. That is, the income category with the
highest percentage of men was $50,000 to $74,999 (25.60%), while the income
category with the highest percentage of women was $25,000 to $49,999 (30.27%).

Such a result reaffirms the notion that women earn less than men. On the one
hand, the typical respondents in the men-only, women-only, and pooled men–
women subsamples were:

� 43 years old;
� white;
� married/partnered with children; and
� employed full-time in professional occupations.

Consistent with empirical evidence on gender differences in access to private vehi-
cles, the typical male respondent lived in a household with a 1.31 vehicle to worker
ratio, while the typical female respondent lived in a household with a 1.14 vehicle
to worker ratio. The other household characteristics that most distinguished men
and women in the subsamples, besides income and the ratio of vehicles to workers
were occupation and employment status (full-time or part-time). As expected, more
women were employed in clerical occupations, while more men were employed
in manufacturing occupations. Also as expected, more men worked full-time and
more women worked part-time. Overall, however, these descriptive data lend sup-
port to the hypothesis that the socioeconomic characteristics of men and women are
presently more alike than in the past.

Table 2 provides descriptive statistics for the MSA-level independent variables.
The typical MSA:

� had a congestion measure of 1.22, 30:00-min trips during free-flow periods took
37:00 min during peak periods;

� had a land area of 1,746.26 km2;
� had a population size greater than or equal to 3,000,000;
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Table 1 Descriptive statistics for household-level dependent and independent variables for men-
only, women-only, and pooled men–women subsamples

Variable
Category Men Women Men–Women

Commute time (min) 25:91.17:28/ 22:80.15:32/ 25:35.16:40/

Age 43:25.11:35/ 42:99.11:11/ 43:12.11:23/

Ethnicity
White 78:16% 77:36% 77:76%
African American 5:76% 8:80% 7:28%
Asian 6:56% 4:34% 5:45%
AI/ANa 0:27% 0:60% 0:44%
NH/PIb 0:80% 0:82% 0:81%
Hispanic/Mexican 3:24% 2:99% 3:12%
Other 5:21% 5:06% 5:15%

Income
<$25,000 6:13% 9:37% 7:75%
$25,000 to $49,999 25:18% 30:27% 27:72%
$50,000 to $74,999 25:60% 23:59% 24:59%
$75,000 to $99,999 20:17% 18:05% 19:11%
�$100,000 22:91% 18:72% 20:82%

Life cycle
1 Adult – no children 18:72% 18:85% 18:79%
1 Adult – children 2:79% 9:60% 6:20%
2C Adults – no children 35:18% 31:26% 33:22%
2C Adults – children 43:31% 40:29% 41:80%

Occupation
Service 20:62% 20:67% 20:64%
Clerical 3:64% 24:41% 14:02%
Manufacturing 22:69% 4:14% 13:41%
Professional 53:05% 50:79% 51:92%

Work
Full-time 94:56% 80:88% 87:72%
Part-time 4:94% 18:67% 11:81%
Multiple jobs 0:50% 0:45% 0:47%
Vehicles to workers 1:31.0:65/ 1:14.0:45/ 1:22.0:57/

Descriptive statistics reflect means and standard deviations for continuous variables and percent-
ages for discrete variables. The standard deviations appear in parentheses after the means for the
continuous variables and the percentages refer to the share of the subsample in each category of
the discrete variables.
a American Indian/Alaskan Native.
b Native Hawaiian/Pacific Islander.

� was located in the Southern region of the coterminous US;
� had a residential density score of 104.37, a land use mix score of 99.97, a degree

of centering score of 101.59, and a street accessibility score of 102.12; and
� had commuter rail.
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Table 2 Descriptive statistics for MSA-level independent variables for men-only, women-only,
and pooled men–women subsamples

Variable
Category Men Women Men–Women

Congestion
Travel time index 1:22.0:10/ 1:22.0:10/ 1:22.0:10/

Land area (1,000 km2/ 1:75.1:35/ 1:75.1:35/ 1:75.1:35/

Population size
Medium (0.5M to <1M) 6:68% 5:98% 6:33%
Large (�1M to 3M) 31:71% 34:51% 33:11%
Very large (�3M) 61:61% 59:51% 60:56%

Region
Northeast 29:69% 29:97% 29:83%
Midwest 17:73% 19:20% 18:46%
South 30:62% 30:82% 30:72%
West 21:96% 20:02% 20:99%

Sprawl
Residential density 104:37.27:47/ 104:37.27:47/ 104:37.27:47/

Land use mix 99:97.20:04/ 99:97.20:04/ 99:97.20:04/

Degree of centering 101:59.22:17/ 101:59.22:17/ 101:59.22:17/

Street accessibility 102:12.26:22/ 102:12.26:22/ 102:12.26:22/

Commuter rail (Yes) 50:91% 50:69% 50:80%
Commuter rail (No) 49:09% 49:31% 49:20%

Descriptive statistics reflect means and standard deviations for continuous variables and percent-
ages for discrete variables. The standard deviations appear in parentheses after the means for the
continuous variables and the percentages refer to the share of the subsample in each category of
the discrete variables.

5.2 Men-Only Multilevel Model

Results from the household-level of the men-only multilevel model appear in the
Men column of Table 3. Only statistically significant coefficients are reported. The
referent category for each discrete independent variable represents the typical male
respondent. At the household-level, men whose total income was less than $25,000
and $25,000 to $49,999 commuted 4:02 and 3:35 min less, respectively, than men
whose total income was $50,000 to $74,999. Single men with no children commuted
2:37 min less than married/partnered men with children. Men who worked part-time
commuted 3:35 min less than men who worked full-time. Finally, a one unit increase
in the vehicle to worker ratio increased commute times for men by 1:20 min.

Results from the MSA-level of the men-only multilevel model appear in the Men
column of Table 4. Only statistically-significant coefficients are reported. The ref-
erent category for the discrete independent variables population size, region, and
commuter rail represents the typical MSA. At the MSA-level, a one unit increase
in the value of the congestion measure and land area is associated with an increase
in the commute times of men of 7:07 and 0:01 min, respectively. Commute times
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Table 3 Household-level coefficients and standard errors for men-only, women-only, and pooled
men–women multilevel models
Variable
Category Men Women Men–Women

Y-Intercept 27.69 (0.46)��� 26.96 (0.77)��� 2.48 (0.01)���

Age
Ethnicity
White Referent Referent Referent
African American
Asian
AI=ANa

NH=PIb 6.40 (2.93)��

Hispanic/Mexican
Other 0.05 (0.02)��

Income
<$25,000 �4:03(1.13)��� �2:19 (0.79)��� �0:05(0.03)�

$25,000 to $49,999 �3:59(0.99)��� Referent Referent
$50,000 to $74,999 Referent 0.05 (0.02)���

$75,000 to $99,999 2.15 (0.70)��� 0.11 (0.02)���

�$100,000 3.11 (0.47)��� 0.13 (0.02)���

Life cycle
1 Adult – no children �2:62(0.64)���

1 Adult – children
2C Adults – no children
2C Adults – children Referent Referent Referent
Occupation
Service �3:29(0.75)��� �0:07(0.02)���

Clerical �1:34(0.67)�� �0:05(0.02)��

Manufacturing 1.94 (0.74)��

Professional Referent Referent Referent
Work
Full-time Referent Referent Referent
Part-time �3:59(0.48)��� �3:01 (0.45)��� �0:15(0.01)���

Multiple jobs
Vehicles to workers 1.33 (0.48)�� 0.91 (0.50)� 0.04 (0.01)���

Referent category represents typical respondent. Standard errors appear in parentheses after coef-
ficients. �, ��, and ��� indicate 90%, 95%, and 99% significance levels, respectively.
a American Indian/Alaskan Native.
b Native Hawaiian/Pacific Islander.

for men were, on average, 2:36 min shorter in large population-sized MSAs than in
very large population-sized MSAs. Finally, a one unit increase in residential density
score is associated with a decrease in commute times of men of 0:01 min. Overall,
results from the men-only multilevel model suggest that:

� low-income men commute less than middle-income men;
� single men without children commute less than married/partnered men with

children;
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Table 4 MSA-level coefficients and standard errors for men-only, women-only, and pooled men–
women multilevel models
Variable
Category Men Women Men–Women

Congestion
Travel time index 7.11 (3.18)�� �11:18 (4.76)�� 0.18 (0.07)��

Land area .km2/ 0.001 (2e-4)��� 0.001 (3e-4)��� 0.00003 (5e-6)���

Population size
Medium (0.5M to <1M)
Large (�1M to <3M) 2.95 (0.67)��� �0:08 (0.02)���

Very large (�3M) Referent Referent Referent
Region
Northeast �4:79 (0.03)���

Midwest �3:66 (0.60)���

South Referent Referent Referent
West
Sprawl
Residential density �0:02 (0.01)��� �0:04 (0.01)�� �0:001 (2e-4)���

Land use mix �0:001 (4e-4)��

Degree of centering
Street accessibility
Commuter rail (Yes) Referent Referent Referent
Commuter rail (No) �2:85 (0.59)���

Referent category represents typical respondent. Standard errors appear in parentheses after
coefficients. �, ��, and ��� indicate 90%, 95%, and 99% significance levels, respectively.

� men who work part-time commute less than men who work full-time; and
� men with more access to private vehicles commute more than men with less

access to private vehicles.

On average, commute times in the men-only subsample were shorter in less con-
gested, large population-sized MSAs.

5.3 Women-Only Multilevel Model

Results from the household-level of the women-only multilevel model appear in the
Women column of Table 3. Only statistically-significant coefficients are reported.
The referent category for each discrete independent variable represents the typ-
ical female respondent. At the household-level, Native Hawaiian/Pacific Islander
women commuted 6:24 min more than white women. Women whose total income
was less than $25,000 commuted 2:11 min less than women whose total income was
$25,000 to $49,999, while women whose total income was $75,000 to $99,999 and
greater than or equal to $100,000 commuted 2:09 and 3:07 min more, respectively,
than women whose total income was $25,000 to $49,999. Women employed in ser-
vice and clerical occupations commuted 3:17 and 1:20 min less, respectively, than
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women employed in professional occupations, while women employed in manufac-
turing occupations commuted 1:56 min more than women employed in professional
occupations. Women who worked part-time commuted 3:01 min less than women
who worked full-time. Finally, a one unit increase in the vehicle to worker ratio
increased commute times for women by 0:55 min.

Results from the MSA-level of the women-only multilevel model appear in the
Women column of Table 4. Only statistically-significant coefficients are reported.
The referent category for the discrete independent variables population size, region,
and commuter rail represents the typical MSA. At the MSA-level, a one unit
increase in the value of the congestion measure is associated with a decrease in
the commute times of women of 11:11 min, while a one unit increase in land area is
associated with an increase in the commute times of women of 0:01 min. Commute
times for women were, on average, 4:47 and 3:40 min shorter in Northeastern and
Midwestern MSAs, respectively, than in Southern MSAs. A one unit increase in res-
idential density score is associated with a decrease in the commute times of women
of 0:02 min. Finally, commute times for women were 2:51 min shorter in MSAs that
had commuter rail than in MSAs that did not have commuter rail.

Overall, results from the women-only multilevel model suggest that:

� Native Hawaiian/Pacific Islander women commute more than white women;
� high-income women commute more than low-income women;
� women with manufacturing jobs commute more than women with service jobs;
� women who work part-time commute less than women who work full-time; and
� women with more access to private vehicles commute more than women with

less access to private vehicles.

On average, commute times in the women-only subsample were shorter in more
congested, Northeastern and Midwestern MSAs that had commuter rail.

5.4 Pooled Men–Women Multilevel Model

Results from the household-level of the pooled men–women multilevel model
appear in the Men–Women column of Table 3. Only statistically significant coef-
ficients are reported. The referent category for each discrete independent variable
represents the typical male and female respondent. At the household-level, men
and women in the “Other” ethnic category, which includes men and women who
self identify with two or more ethnic categories, commuted 1:49 min more than
white men and women. Men and women whose total income was less than $25,000
commuted 1:18 min less than men and women whose total income was $25,000
to $49,999, while men and women whose total income was $50,000 to $74,999,
$75,000 to $99,999, and greater than or equal to $100,000 commuted 1:37, 3:31,
and 3:58 min more, respectively, than men and women whose total income was
$25,000 to $49,999. Men and women employed in service and clerical occupations
commuted 1:55 and 1:38 min less, respectively, than men and women employed
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in professional occupations. Men and women who worked part-time commuted
3:55 min less than men and women who worked full-time. Finally, a one unit
increase in the vehicle to worker ratio increased commute times for men and women
by 1:19 min.

Results from the MSA-level of the pooled men–women multilevel model appear
in the Men–Women column of Table 4. Only statistically significant coefficients are
reported. The referent categories for the discrete independent variables population
size, region, and commuter rail represent the typical MSA. At the MSA-level, a one
unit increase in the value of the congestion measure and land area is associated with
an increase in the commute times of men and women of 5:08 and 0:01 min, respec-
tively. Commute times for men and women were, on average, 2:53 min shorter in
large population-sized MSAs than in very large population-sized MSAs. Finally,
a one unit increase in residential density and land use mix score is associated
with a decrease in the commute times of men and women of 0:01 and 0:01 min,
respectively. Overall, results from the pooled men–women multilevel model suggest
that:

� men and women who self identify with two or more ethnic categories commute
more than white men and women;

� high-income men and women commute more than low-income men and women;
� men and women with service jobs commute less than men and women with

professional jobs;
� men and women who work part-time commute less than men and women who

work full-time; and
� men and women with more access to private vehicles commute slightly more

than men and women with less access to private vehicles.

On average, commute times for the typical male and female in the pooled men–
women subsample were shorter in less congested, large population-sized MSAs.

5.5 Analysis of MSA-Level Residuals from Multilevel Models

Analysis of the MSA-level residuals from the men-only, women-only, and pooled
men–women multilevel models offers valuable information on the geographic vari-
ation in the commuting time gender gap. On the one hand, in four MSAs – Austin,
Buffalo, Minneapolis, and San Francisco – commute times for men were longer
than predicted based on the men-only multilevel model and commute times for
women were shorter than predicted based on the women-only multilevel model
(Fig. 2). These four men-longer commute and women-shorter commute MSAs are
located in all four census regions. In seven MSAs – Atlanta, Kansas City, Miami,
New Orleans, Oklahoma City, Philadelphia, and San Antonio – commute times
for men fell into the predicted category based on the men-only multilevel model
and commute times for women were shorter than predicted based on the women-
only multilevel model. These seven men-moderate commute and women-shorter
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commute MSAs are mostly located in the South. On the other hand, in one MSA
– Los Angeles – commute times for men were shorter than predicted based on
the men-only multilevel model and commute times for women were longer than
predicted based on the women-only multilevel model. In two MSAs – Pittsburgh
and Portland – commute times for men were shorter than predicted based on the
men-only multilevel model and commute times for women fell into the predicted
category based on the men-only multilevel model. Overall, two of the three men-
shorter commute and women-longer or moderate commute MSAs are located in
the West. Finally, in two MSAs – Saint Louis and Washington – commute times
for both men and women were longer than predicted; in 11 MSAs – Columbus,
Dallas, Hartford, Houston, Indianapolis, Jacksonville, New York, Orlando, Provi-
dence, Seattle, and Tampa – commute times for both men and women fell into the
predicted category; and in five MSAs – Denver, Detroit, Grand Rapids, Milwaukee,
and Phoenix – commute times for both men and women were shorter than predicted
based on the men-only and women-only multilevel models, respectively. Analyzing
MSA-specific residuals extends previous research on geographic variation in the
commuting time gender gap (Wyly 1998) by showing that women’s commute times
are longer than predicted and men’s commute times are shorter than predicted in the
West; particularly in Los Angeles. Analysis of the MSA-level residuals also shows
that men’s commute times were longer than predicted and women’s commute times
were shorter than predicted in San Francisco, which runs counter to Gossen and
Purvis’ (2005) finding of an attenuation in the commuting time gender gap.

5.6 Proportion of Variance Between and Within MSAs

The intraclass correlation coefficient (ICC) is used here to measure the proportion
of variance in private-vehicle commute times between MSAs (Raudenbush and
Bryk 2002; Snijders and Bosker 1999). The ICC is applicable only to random-
intercept models such as the men-only, women-only, and pooled men–women
multilevel models reported in this chapter. To estimate the ICC, estimates of
between-MSA and within-MSA variability are substituted for the parameters in the
following equation:

� D �00

�00 C �2
(3)

where:

� is the ICC;
�00 captures between-MSA variability; and
�2 captures within-MSA variability.

Estimation of the ICCs for the men-only, women-only, and pooled men–women
multilevel models reveal that 0.03%, 0.07%, and 0.05%, respectively, of the vari-
ance in private-vehicle commute times was between MSAs. Thus, just as Schwanen
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Fig. 2 Regional differences in commute times from men-only, women-only, and pooled men–
women multilevel models
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et al. (2004) found, place/spatial characteristics account for a small proportion of
the total variation in private-vehicle commuting outcomes.

6 Discussion

Comparison of results at the household-level between the men-only, women-only,
and pooled men–women multilevel models tend to support the contention of eco-
nomic theory (White 1977; 1986) that commute time differences are at least partially
attributable to income and occupational differences between men and women. Total
incomes were, on average, lower in the women subsample than in the men sub-
sample, and men and women in low-income categories commuted less than men
and women in middle- and high-income categories. However, commute times for
women in the highest-income categories were longer by 3:07 and 2:09 min, respec-
tively, in comparison to commute times for women in the middle-income category.
This finding suggests that higher incomes were more synonymous with longer com-
mutes for women than for men. Occupation had different effects on commute times
for men and women. None of the occupational categories had an effect on commute
times for men. But, as expected, commute times for women employed in female-
dominated industries such as service and clerical were shorter than for women
employed in professional occupations. Such a result is consistent with other studies
where shorter commute times for women employed in female-dominated indus-
tries have been reported (Wyly 1998). Interestingly, commute times for women
employed in male-dominated, manufacturing occupations were longer than for
women employed in professional occupations. Such a result is not consistent with
results from a study conducted in Philadelphia, for example, where commute times
for women were found to be shorter than commute times for men, regardless of the
gender-industry pairing (Weinberger 2007). The results also suggest that access to
private vehicles contributes to private-vehicle commute time differences between
men and women. Access to private vehicles was lower for women in the women-
only subsample than for men in the men-only subsample. However, the association
between private-vehicle commute times and the ratio of vehicles to workers was
positive for both men and women, and greater access to private vehicles appeared to
lengthen commute times for men more than for women.

Comparison of household-level findings across all models offers no support for
the household responsibility hypothesis (Turner and Niemeier 1997); none of the
lifecycle-stage categories for women were statistically significant in the women-
only multilevel model. Interestingly, even though the percentage of women in the
women-only subsample who worked part-time was higher than the percentage of
men in the men-only subsample who worked part-time, private-vehicle commute
times were shorter for men (3:35 min) and women (3:01 min) who worked part-time
by approximately the same amount. Such a result suggests that part-time work had
the same effect on private-vehicle commute times for men and women.
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Comparing model results at the MSA-level indicates that congestion had the
largest differential effect on the commute times of men and women. Congestion,
measured using the TTI, is associated with an increase of 7:07 min in private-vehicle
commute times for men in the men-only subsample and a decrease of 11:11 min for
women in the women-only subsample. In contrast to these results, commute times
for women were, on average, shorter in Northeastern and Midwestern MSAs than
in Western MSAs where congestion was highest. Taken together, the large differ-
ential effect of congestion on commute times for men and women appears to be
a phenomenon specific to Los Angeles, where congestion was ranked first among
the 43 MSAs, and where commute times were shorter than expected for men and
longer than expected for women based on the men-only and women-only multilevel
models, respectively. Land area was associated with an increase in commute times
for men and women by the same amount. As expected, sprawl, measured here as a
function of residential density and land use mix, had negative effects on commute
times for men and women. That is, higher residential density and better land use
mix appears to lower commute times.

The coefficient estimates for land area, residential density, and land use mix are
statistically significant, but the strength of the associations between each of these
variables and private-vehicle commute times, for men and women, is very small.
Interestingly, the degree of centering, which predominantly reflects job sprawl,
was not statistically significant. Such a result tends to contradict arguments that
job sprawl in urban labor markets contributes to the commuting time gender gap
(Wyly 1998). Finally, commute times for women in MSAs that did not have com-
muter rail were shorter than commute times for women in MSAs that did have
commuter rail. Such a result suggests that the absence of public alternatives leads
to more private-vehicle commuting which is more time efficient for longer distance
commutes.

7 Conclusions

A reassessment of home-work linkages by Hanson and Pratt (1988a) underscores
the need to consider how the, “home-work link functions for a variety of diverse
household types in a variety of local contexts” and “to make explanations scale
specific” (p. 318). In total, the results reported in this chapter suggest that composi-
tional effects such as income and occupation have a greater impact on variation in
commute times for men and women than contextual spatial effects such as sprawl.
As such, results from the chapter are more supportive of economic rather than
household responsibility explanations for the commuting time gender gap. Further,
the results point away from polycentricity and job sprawl as major contributors to
the commuting time gender gap (Rosenbloom 2006). Nonetheless, one contextual
effect – congestion – has a large differential impact on commute times for men
and women especially in Los Angeles. Likewise, regional variations in commute
times for women are evident – commute times are shorter for women in the South
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and longer for women in the West. Taken together, a multilevel approach to the
commuting time gender gap shows that a single-city analysis is suitable to study
intraurban variations in commute times for men and women, but that a multi-city
analysis is able to capture interurban and interregional variations in congestion that
greatly impact the commuting time gender gap.
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Walkability as a Summary Measure in a
Spatially Autoregressive Mode Choice Model:
An Instrumental Variable Approach

Frank Goetzke and Patrick M. Andrade

1 Introduction

In recent years it has become more common to include social interactions or neigh-
borhood effects (also called social network effects) in transportation modeling.
These models are typically in the tradition of Brock and Durlauf (2001, 2002) who
were among the first to propose a discrete choice model that includes social interac-
tions and neighborhood effects. However, their approach is inherently non-spatial,
while the topology of social interactions and neighborhood effects can be best cap-
tured spatially (Leenders 2002; Páez et al. 2008a). Therefore, some of the latest
articles in transportation modeling have moved towards explicitly incorporating the
spatially autoregressive structure of social network effects into their models (e.g.
Dugundi and Walker 2005; Páez and Scott 2007; Goetzke 2008). This new direc-
tion in transportation research is not all that surprising, given the success of spatial
econometrics as an emerging modeling method across social science disciplines.

The econometric strategy to implement an independent variable representing
social interactions and neighborhood effects, as proposed by Brock and Durlauf
(2001, 2002), is to use the group mean of the observed dependent choice variable,
as defined by social interactions and neighborhood effects. This approach can be
spatially extended if the group mean is based on spatial relations, as in traffic analy-
sis zones (Dugundi and Walker 2005), a spatial weight matrix (Goetzke 2008), or a
matrix based on personal relations (Páez and Scott 2007). Therefore, choices could
be modeled as a function of the typical choice determinants in travel behavior anal-
ysis (e.g. personal, household, trip and mode characteristics), or as choices of either
a non-spatial group or spatial neighbors. Empirical work dealing with mode choice
decisions by Dugundi and Walker (2005), and Goetzke (2008) give evidence that
the mode choice decisions of spatial neighbors are indeed associated with the mode
choice decision of the individual.
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However, do we really know if a positive regression coefficient for network
effects is an indication of the existence of social interactions and neighborhood
effects? Manski (2000), in his analysis of social interactions, differentiates between
endogenous interactions and contextual interactions, as well as correlated effects.
Only endogenous and contextual interactions are identified as true social phenom-
ena, while correlated effects are described as nonsocial in nature.

The difference between endogenous and contextual interactions is that an agent’s
behavior varies, in the first case, with the behavior of the group, and in the second
case, with the social characteristics of the group. For example, applying Manski’s
concept to walking mode choice decision making, endogenous interactions are at
work if a person’s probability to be a pedestrian increases with the number of
walking neighbors, independent of the neighbor’s social characteristics. Contex-
tual interactions exist if a person’s probability to be a pedestrian rather depends on
the social characteristics of those neighbors. Manski shows that both endogenous
and contextual interactions illustrate dissimilar ways of how a group influences the
actions of a group member. At the same time, he also proves that it is impossible to
empirically separate between the two kinds of interactions using econometric mod-
eling, because the mean of that group’s behavior is determined by the mean of the
social characteristics of the group members.

The difficulty to distinguish between endogenous and contextual interactions is
the first part of what Manski calls the reflection problem. The other part of the
reflection problem, is the identification of social interaction in contrast to corre-
lated effects. Correlated effects are at play if members of a group behave similarly
because they face the same environment, such as increased walking mode share
caused by better pedestrian transportation infrastructure. The isolation of social
interactions is only possible by controlling for environmental effects in all com-
pleteness. However, in an econometric model this will only be successful if the
environmental effects vary between groups and/or neighborhoods, and also between
individuals within groups and/or neighborhoods. The latter condition it is not so dif-
ficult to fulfill, but meeting the first one may be almost impossible. An alternative
condition would be a homogeneous environment.

In this chapter, we contend that it is important to include social interactions
and correlated effects in the mode choice model as one combined spatial spillover
variable. The reasons for this are twofold: The spatial spillover variable serves
the purpose to avoid a possible omitted variable bias; and, in addition, the spatial
spillover variable can be seen as a proxy for the mode-friendliness in the neigh-
borhood (Goetzke 2003). Within the context of the choice to walk, the distinction
between endogenous and contextual interactions may be important for designing
certain policies to change pedestrian mode share: For example, a campaign that
promotes walking would exhibit social spillovers only for endogenous interactions,
but not for contextual interactions. In a different situation, however, when the objec-
tive is to identify the existence of social interactions in walking, the first part of the
reflection problem does not play a role, as long as we are not trying to determine the
nature of the interaction.
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Following this premise, the first objective of this research is to investigate the
spatially autoregressive structure in mode choice modeling. In technical terms, this
necessitates an endogenous spatially lagged term which, in concert with the non-
linearity of logit and probit models, complicates all efforts to set up an appropriate
and also solvable maximum likelihood function. One way around the problem is
what Anselin (2002) called the conditional spatially autoregressive discrete choice
model, where the statistical inference is restricted because of the assumption that
the spatial effect is determined prior to the dependent variable, and not simultane-
ously. While this assumption may not reflect the true model in mode choice decision
making, and may generate inconsistent regression coefficient estimates, it is where
the latest research in transportation modeling stands. Outside of the transportation
field, Fleming (2004) is one of the few who addresses the problem of endogeneity in
spatially autoregressive discrete choice models, and discusses complex techniques
to account for the spatial lag term, but all of those suggested methods are highly
computationally intensive and thus, difficult to implement.

This brings us to the second objective of this chapter, which is methodological
in nature: We propose to circumvent the above described computational difficul-
ties by using an instrumental variable approach for estimating the spatial lag term
regression coefficient. We implement this instrumental variable approach both in
conjunction with a linear probability mode choice model, and in conjunction with
a logit mode choice model. We find in both cases, that the walkability variable
improves the regression, and that the walkability regression coefficient is posi-
tive and significantly different from zero, indicating that walking exhibits social
interactions and/or correlated effects. Furthermore, we find some evidence that the
inclusion of the walkability variable avoided an omitted variable bias.

A case study using the 1997/1998 New York Metropolitan Transportation Council
(NYMTC) household survey data allows us to develop a binomial mode choice
model for home-based work trips less than 2 miles, where walking is one choice
and all remaining modes the other choice. We are going to interpret the spatial
spillover variable as a summary measure of the neighborhood’s “walkability,” essen-
tially combining the social interactions with correlated effects. Using New York as
a case study has the added advantage that transportation infrastructure for all modes
is more or less homogeneous for the central boroughs of the city. This, in turn, con-
tributes to isolated social interactions (social network effects) by providing better
control for the correlated effects (transportation environment).

2 Econometric Model

The starting point of our spatially autoregressive mode choice model is research
by Evans et al. (1992) and Brueckner and Largey (2006) that makes use of an
instrumental variable to account for the endogeneity of a social network variable
in a discrete choice model, the spatially autoregressive 2-stage least square method
(2-SLS) with a continuous dependent variable of Anselin (1988) and Land and
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Deane (1992), as well as Fleming’s (2004) non-linear least square approach for
spatially autoregressive discrete choice models. The basic idea behind our method-
ology is the following: First we estimate walkability as an instrumental variable
by regressing the spatially weighted neighbor’s pedestrian mode share on all social
characteristics of both the observed household and the spatially lagged neighbors.
Then, in a second step, we use the instrumental variable as the autoregressive term
to estimate the mode choice model, both as a linear probability model as well as
a logit model. The linear probability model (LPM) estimation with the instrumen-
tal variable follows essentially the 2-SLS approach; however, it also needs to be
corrected for heteroskedasticity using the weighted least square method.

While the literature offers plenty of spatially autocorrelated 2-SLS models
(Anselin 1988; Land and Deane 1992), as well as linear probability models that were
corrected for heteroskedasticity using a weighted least square approach (Wooldridge
2005), to the best of our knowledge these ideas have not been synthesized into one;
there is certainly no such model in the field of transportation mode choice model-
ing. Furthermore, while Evans et al. (1992) used an instrumental variable approach
in combination with a logit model to account for endogeneity, it is new to do so for
the spatially autoregressive term in a logit model. Both concepts are not only inno-
vative in solving the endogeneity problem of the spatially autoregressive term in the
context of discrete choice models, but are also simple to implement.

The mode choice model to be estimated is as follows:

y D ˛ C Wy	C Xˇ C e (1)

Depending on whether the model is an LPM or a logit model with n observations,
y is the n x 1 vector of either the observed, chosen mode (walking or not) or the
latent variable representing the unobserved utility of the chosen mode, Wy is the
spatial lag term with W being the spatial weight matrix, X is the n x m matrix of
m personal, household trip and mode characteristics, and e is the n x 1 vector of
random error terms. The constant term is ˛; 	 is the regression coefficient for the
spatial lag term and the m x 1 vector of regression coefficient for X is ˇ.

Before we can run the mode choice model in (1), we need to first estimate Wy
by regressing it on feasible instruments in addition to the personal and household
characteristics (X), and to then use in (1) the fitted values y� instead of Wy. This is
necessary in order to take care of the endogeneity of the spatial lag term, where Wy
is determined simultaneously with y.

In the instrumental variable regression, Wy becomes the dependent variable,
which is derived by spatially weighting the three closest neighbors by distance. The
instruments are the personal and household characteristics of these three neighbors.
We decided to restrict the number of neighbors to three in order to avoid too much
multicollinearity. Therefore, instrumental variable regression looks as follows:

Wy D ” C Xı C X.�1/�C X.�2/
 C X.�3/� C u (2)
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where X is the n x k matrix of k personal and household characteristics, X.i/ is the n
x k matrix of k personal and household characteristics for the i -th spatially lagged
neighbor and u is the n x 1 vector of random error terms. The constant term is ”, and
ı; �; 
 as well as Ÿ are the corresponding k x 1 vectors of regression coefficients.
After running (2) and calculating the fitted values

y� D ” C Xı C X.�1/�C X.�2/
 C X.�3/� (3)

we can use y� to finally estimate equation (1):

y D ˛ C y�œC Xˇ C e (4)

The regression coefficients should now be unbiased as long as (4) is estimated as a
linear probability model or logit model. If (4) is a linear probability model, however,
we need in a third step to further correct for heteroskedasticity, so that the estimation
results are also efficient, meaning that we can trust standard errors and t-values for
evaluating the significance of the regression coefficients. Since the LHS variable is
binary, a binomial distribution can be assumed, which means that for observation i
the conditional variance of yi given the vector xi is:

Var.yi jxi/ D p.xi/Œ1 � p.xi/� (5)

Since p.xi/ D yi
�� can be derived by computing the fitted probability values in (4),

(5) can be rewritten as
hi D yi

��.1 � yi
��/ (6)

where 1=
p
hi is then applied as the weight in a weighted least square estimation of

(4). With this procedure, the estimation becomes both consistent and efficient.

3 Data and Instrumental Variables

The data employed for this model comes from the 1997/1998 comprehensive
regional household travel diary conducted for the Best-Practice Travel Demand
Forecasting Model by the New York Metropolitan Transportation Council (NYMTC
2004). The data was collected for the metropolitan areas of 28 counties, which
include, besides the five central city boroughs, counties of upstate New York, Long
Island, New Jersey and Connecticut. For our study, however, we only use data from
four New York City boroughs: Manhattan, Queens Brooklyn, and Staten Island. The
main reasons for choosing these four boroughs are:

� The New York City area has a relatively high density of surveyed households,
allowing the calculated spatially weighted mean pedestrian share to be meaning-
ful for the mode choice model. Outside of the New York City area, distances
between neighbors included in the survey become rather large.
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� Only in New York City is the number of pedestrians high enough to get the
variability in the dataset desired for econometric analysis. Also, within New
York City we do not have to be too concerned about differences in the walking
infrastructure or the service quality of alternate modes.

For the mode choice model, only trips from home to work within a walking dis-
tance of 2 miles (40 min) were included. The literature in transportation modeling
distinguishes between three typical trip purposes: Home-based work (HBW) trips,
non-home based (NHB) trips, and home-based other (HBO) trips. Each trip pur-
pose should be modeled separately, since mode choice determinants are expected
to differ. Purely for practical reasons we decided to restrict the analysis only to
HBW trips. After applying all these restrictions, we decided to exclude the Bronx
because the number of observations became too small, so the final sample size was
541 observations. Figure 1 shows a map with the household locations of all the
included trips.

If the binary choice variable was set to one, it indicates that the trip was done by
walking. All remaining modes, such as automobile or public transit were set equal
to zero. As shown in Table 1, a little more than half of the people included in the
dataset walk to work. The following personal, household, trip and mode character-
istics were included as explanatory variables: Race (“Black,” “Asian” or “White”),
gender (“Male”), “With disability,” household “Income less than $50k,” age (“Under

Fig. 1 Map with the household locations of all the included trips
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Table 1 Descriptive statistics of all included variables

Mean Standard deviation

Walking 0:503 0:501

Black 0:076 0:265

Asian 0:059 0:236

White 0:697 0:460

Male 0:521 0:500

With disability 0:009 0:096

Income less than $50k 0:325 0:469

Under 30 years old 0:194 0:396

Over 55 years old 0:141 0:348

Distance to work 0:914 0:588

No car 0:434 0:496

Walkability 0:513 0:404

30 years old” or “Over 55 years old”), “Distance to work,” as well as whether the
person has no access to a car (“No car”) and “Walkability.”

Approximately 7.5% of those included are black, about 6% are Asian and 70%
are white. More than half are male and a bit less than 1% have a disability. About one
third of the households make less than $50,000 annually. Roughly 20% are younger
than 30 years and almost 15% are older than 55 years. The mean travel distance to
work is just below 1 mile.

The number of households with access to a car is more than 40%. However,
like the walkability variable, automobile ownership and mode choice may be deter-
mined simultaneously. Therefore, we have modeled the “No car” variable as an
instrumental variable as well. We regressed the “No car” variable on the personal
and household characteristics (race, gender, disability status, income and age), using
both, a heteroskedasticity-corrected linear probability model and logit model. The
predicted group membership (whether or not the person has access to a car) were
exactly the same for both models, therefore, the estimation method did not have an
impact on the results. Since we used the predicted group membership, rather than the
probabilities of the LPM, the instrumental variable will not be a linear combination
of already included variables, despite the lack of true instruments.

The walkability variable was derived as the, by distance, spatially weighted mean
walking mode share of the three closest neighbors. The mean value of the walka-
bility variable is just over 50%. For the instrumental variable estimation we used
as instruments the personal and household characteristics (race, gender, disability
status, income and age) of the three closest neighbors. We restricted the number
of spatial lags to three for two reasons: First, only the mode choice of the nearest
neighbors gives information about walkability and a larger number of spatial lags
would have increased the distance of the neighbors by quite a bit. Second, the larger
the number of spatial lags, the more multicollinearity will be encountered in the
estimation.
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Table 1 exhibits the summary statistics (mean and standard deviation) of all the
dependent, explanatory and instrumental variables included in the mode
choice model.

4 Discussion

Model (1) and Model (2) are the heteroskedasticity-corrected weighted least square
linear probability mode choice models; Model (1) is without the walkability variable
and Model (2) is with the walkability variable. Both models have a reasonably good
fit for an LPM. For Model (2) the adjusted-R2 value of 0.501 is somewhat better
than for Model (1) with an adjusted-R2 value of 0.457. In both models, only the
regression coefficients of the constant terms, as well as for the variables “Over 55
years old” and “Distance to work” are significantly different from zero at least at
the 10% significance level. In addition the “Walkability” coefficient in Model (2) is
significantly different from zero as well. They also have all the expected signs. So
do all the remaining coefficient estimates. The regression results for the two linear
probability models are summarized in Table 2.

Both models show that the longer the trip is the lower is the probability for a
person to walk, as indicated by the negative sign of “Distance to work”. These
regression coefficients are significantly different from zero at the 1% level. Also,
“Over 55 years old people” are less likely to walk compared to the reference

Table 2 Linear probability regression model results

Model (1) Model (2)

Observations 541 541
Adjusted R2 0:457 0:501

F -test 46:449��� 50:347���

Constant term 0:751��� (0.062) 0:596��� (0.076)
Black �0:086 (0.062) �0:077 (0.051)
Asian 0:009 (0.094) �0:013 (0.087)
White 0:084 (0.055) 0:059 (0.053)
Male �0:017 (0.033) �0:006 (0.029)
With disability �0:106 (0.180) �0:069 (0.179)
Income less than $50k 0:034 (0.055) 0:022 (0.037)
Under 30 years old 0:040 (0.054) 0:038 (0.053)
Over 55 years old �0:067� (0.040) �0:076�� (0.035)
Distance to work �0:346��� (0.029) �0:319��� (0.030)
No car (IV) 0:023 (0.069) 0:044 (0.063)
Walkability (IV) 0:293��� (0.081)
% correctly predicted: total 0:699 0:688

Walk D 0 .n D 272/ 0:676 0:691

Walk D 1 .n D 269/ 0:721 0:688
�p < 0:1, ��p < 0:05, ���p < 0:01, standard errors are in parenthesis
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category of 30 to 55 years old people. Again, the sign coefficient estimate is
negative. While the significance level for this coefficient is only at the 10% level
in Model (1), it is significant at the 5% level in Model (2).

The most surprising result may be that “No car” is not significantly different from
zero. However, recalling that the variable is an instrumental variable, this means
that by removing all the unexplained shocks in the error term, the variable is made
exogenous. Therefore, once the simultaneity is accounted for, the interpretation is
clearly that automobile access does not matter for the decision to walk, everything
else being equal. The same is true for race, gender, disability status and income.
Also, people “Under 30 years old” do not have a significantly different propensity
to walk than the reference category of “30 to 55 years old.”

In Model (2), the regression coefficient of the added “Walkability” variable turns
out to be positive and significantly different from zero at the 1% level. It does not
only improve the overall fit, but also the value of the F -test. Therefore, it can be
said, that “Walkability” adds information to the model.

Comparing the two models, the main issue at hand is the constant term. They are
both positive and significantly different from zero at the 1% level. However, while
all the other coefficient estimates remain largely unchanged, this is not completely
true for the constant terms. In Model (2) the constant term is lower than in Model
(1) so that the effect coming from the walkability variable can be accounted for. For
ease let’s assume that all variables, except “Walkability” take on the value of zero,
then we have in Model (1) a probability to walk of 0.751. In Model (2) however, the
probability depends on the value of “Walkability”. If “Walkability” is equal to zero
then the probability for walking is 0.596, more than 15% points less than in Model
(1), but if “Walkability” is equal to one then the probability for walking is 0.889,
almost 14% points more than in Model (2). The probability for walking is the same
in both models if the value for “Walkability” is 0.529.

Therefore, the model shows that walking does not only depend on personal,
household and trip characteristics, but also on the walkability variable. The prob-
ability for walking increases with a higher walking mode share, because of social
interactions between neighbors (Network effects) and/or correlated effects (common
environment and shared infrastructure).

Finally, in a simulation we have calculated the predicted group membership for
both models. We find that while the two models have almost the same predictive
power overall (just under 70%), Model (1) is marginally better in predicting walking
while Model (2) is better at predicting non-walking trips. This is not surprising,
given the lack of the walkability variable in combination with a higher constant
term makes it more difficult in Model (1) to reach low probability values.

Table 3 shows the results of the logit mode choice models. Model (3) does not
include the walkability variable and Model (4) includes it. In terms of the signs
and significance of the coefficient estimates, the results of the logit mode choice
models are very similar to the results of the linear probability mode choice mod-
els. Again, they both have a reasonably good fit for a logit model, as measured
by the Pseudo-R2. The fit for the model with the walkability variable, Model
(4), is again marginally better than for the one without, Model (3), 0.276 as
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Table 3 Logit regression model results

Model (3) Model (4)

Observations 541 541
�2 Log likelihood 633:789 624:459

Pseudo-R2 0:258 0:276

Constant term 1:261��� .0:316/ 0:365 (0.431)
Black �0:705 .0:448/ �0:608 (0.452)
Asian 0:042 .0:473/ �0:020 (0.478)
White 0:408 .0:289/ 0:256 (0.296)
Male �0:012 .0:193/ �0:024 (0.195)
With disability �0:393 .1:171/ �0:179 (1.163)
Income less then $50k 0:195 .:291/ 0:204 (.294)
Under 30 years old 0:282 .:284/ 0:343 (.285)
Over 55 years old �0:344 .:311/ �0:264 (.316)
Distance to work �1:703��� .:185/ �1:570��� (.189)
No car (IV) 0:002 .:395/ 0:054 (.398)
Walkability (IV) 1:648��� (.544)
% correctly predicted: total 0:693 0:697

Walk D 0 .n D 272/ 0:658 0:691

Walk D 1 .n D 269/ 0:729 0:702
�p < 0:1, ��p < 0:05, ���p < 0:01, standard errors are in parenthesis

opposed to 0.258. Only the “Distance to work” coefficient is significantly differ-
ent from zero in both models. As expected, the sign is negative and the signifi-
cance is at the 1-percent level. Therefore the propensity to walk again decreases
with the distance to work. While in Model (3) the constant term is positive and
significantly different from zero that is not true for Model (4), where the con-
stant term is positive but not significantly different from zero. Instead, however,
the “Walkability” coefficient in Model (4) is positive and significantly different
from zero.

Models (3) and (4) tell exactly the same story as Models (1) and (2), but in
an even more pronounced way: The signs of all logit mode choice model coef-
ficient estimates are the same as for the linear probability mode choice model,
except for “Asian,” whose coefficient estimate is not significantly different from
zero. Also, the regression coefficients between Models (3) and (4) change nei-
ther sign nor magnitude, except for the constant term. In a logit mode choice
model, the constant term can be interpreted as the relative preference towards
the alternative-specific mode. This means that while in Model (3) the reference
group (values for personal and household characteristics are zero) prefers walk-
ing for HBW trips in New York City below 2 miles, this bias towards walk-
ing vanishes in Model (4) as soon as walkability is included as an explanatory
variable.

The simulation results for Models (3) and (4) are also comparable to the ones for
Models (1) and (2). This time Model (4) performs marginally better than Model (3),
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Table 4 Observed and forecasted walking mode share for the whole dataset

Overall Walkability < 0:5 Walkability � 0:5

Observed Probabilities: 0.503 0.332 0.663
Model (1) 0.491 0.462 0.519
Model (2) 0.498 0.442 0.549
Model (3) 0.503 0.469 0.534
Model (4) 0.503 0.441 0.560
Group membership:
Model (1) 0.516 0.450 0.577
Model (2) 0.597 0.385 0.601
Model (3) 0.529 0.458 0.595
Model (4) 0.506 0.400 0.605

Predicted values closest to observed values are in bold

but it is still the case that Model (3) better predicts walking trips, while Model (4)
better predicts non-walking trips.

Analyzing a final performance measure, the superiority of Models (2) and (4) is
further consolidated. As shown in Table 4, the models with the spatially autoregres-
sive term do not only have enhanced forecasts for overall walking mode share, as
measured either in probabilities or predicted group membership, but this result is
consistent if we split the dataset at a walkability value of 0.5. Models (2) and (4)
forecasts improve over the models without the walkability variable, sometimes con-
siderably. This means that the spatially autocorrelated mode choice models perform
especially better if the area has varying walking mode shares. The models with-
out walkability encounter a systematic bias: while all models overestimate areas
with low walkability and underestimate areas with high walkability, the models
without the spatially autocorrelated term are worse in their estimates than the spa-
tially autoregressive models. This result is consistent with the omitted variable bias
reflected in the constant term.

In summary, it can be said that both Models (2) and (4) are an improvement
over Models (1) and (3), because they not only better forecast overall walking mode
share, but also because they account for walkability and, therefore, avoid an omitted
variable bias, especially in the constant term. The general results in the regression
coefficient estimates do not differ, whether the model is a linear probability mode
choice model or logit mode choice model.

5 Conclusion

In this chapter we have shown that the mode choice for walking in the city of
New York is spatially autocorrelated, and that this autocorrelation can be modeled
employing an instrumental variable approach. The instrumental variable is a com-
posite measure for social interactions (interpreted as changes in individual behavior
as a function of group behavior) as well as correlated effects (interpreted as changes
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in individual behavior as a function of the common environment and shared infras-
tructure). Overall, this effect is a summary of walkability. The approach presented
here is without any major computational problems and, therefore, straightforward
to implement. While the predictive power of the model with walkability is sim-
ilar to the model without walkability, the model fit improves with the inclusion
of the autoregressive term, and it avoid omitted variable bias, especially in the
constant term.

We tested the instrumental variable approach for the autoregressive term using
both a heteroskedasticity-corrected weighted least square linear probability mode
choice model and a logit mode choice model, and found no major differences in
their results. The instrumental variable approach for the linear probability model is
essentially equivalent to the well-established 2-SLS estimation method.

The innovation is in the application to a discrete choice model with a spatially
autoregressive term. Linear probability models, however, have one major downside,
namely that they are restricted to just two choices. This, however, is not true for
logit models. Therefore, by showing that the performance of both models is com-
patible, it would be easy to imagine that this approach can be successfully applied
to McFadden-type conditional model choice models, as well as multinomial choice
and nested mode choice models (McFadden 1974; Train 2003). Especially in the
context of multinomial mode choice models, it may be possible to use the autore-
gressive mode-friendliness term as a mode-specific variable, which differs for each
mode alternative (see Páez et al. 2008b).

Finally, the spatially autocorrelated mode choice model is not only technically
superior, but also preferable for evaluating policies which do not refer to the walka-
bility variable. This is especially important for transportation planning, where major
investment decisions are based on a travel demand forecasting model. If the mode
choice component of the travel demand forecasting model exhibits a systematic
bias stemming from an omitted variable (spatial lag term), then derived investment
decisions may be not economically efficient anymore (Goetzke 2003, 2008).
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Páez A, Scott DM, Volz E (2008b) A discrete choice approach to modeling social influence on
individual decision making. Environ Plann B 35:1055–1069

Train K (2003) Discrete choice methods with simulation. Cambridge University Press,
Cambridge, UK

Wooldridge JM (2005) Introductory econometrics: a modern approach. South-Western College
Publishing, Florence, KY



Part III
Economic and Political Geography



Employment Density in Ile-de-France:
Evidence from Local Regressions

Rachel Guillain and Julie Le Gallo

1 Introduction

In recent decades, cities have experienced a particularly intense phase of urban
sprawl. Urban growth has been characterized by the spatial concentration of popula-
tion in urban areas and the concomitant extension of those urban areas (Nechyba and
Walsh 2004). Urban sprawl has also been accompanied by major reorganizations
of urban areas with regard to the location choices of households and firms. More
specifically, most cities in developed countries have experienced several waves of
suburbanization of economic activities: “an economic definition of suburbanization
is a reduction in the fraction of a metropolitan area’s population or employment
that is located in the central city (corresponding to increased activity in surrounding
suburbs)” (Mills 1999).

Suburbanization of economic activities has an impact on urban structure: cities
are not exclusively organized with a Central Business District (CBD) around which
land values, employment, and population densities decrease with distance. On the
contrary, they are more and more characterized by a polycentric organization:
employment is concentrated in several centers within urban areas. Strategic activi-
ties (headquarters and high-order producer services) play a major role in this process
by locating themselves selectively in these various centers. The development of
peripheral employment centers – where a significant proportion of these activities
are located, reproducing the functions of the CBD – is accordingly viewed as the
decline of the CBD (Stanback 1991).

However, some studies have challenged this idea that suburbanization of strategic
activities implies the decline of the CBD. On the contrary, such reorganization may
reinforce the supremacy of the CBD with more pronounced specialization in the
high-order services in finance, insurance and legal services. This phenomenon has
been observed in North-American cities (Coffey and Shearmur 2002) and in Europe,
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and more particularly in the Paris urban area in France (Guillain et al. 2006). These
results are found by the following method. First, employment centers are identi-
fied by measuring the spatial agglomeration of economic activities, with global and
local spatial autocorrelation statistics. Second, a sectoral analysis of the centers is
conducted, characterizing the specialization of these centers and their attractiveness
for strategic activities.

The capacity of attraction of employment centers is not their only charac-
teristic. They should also be able to structure their environment by shaping the
economic organization of employment and population densities within the urban
area. Another way to identify urban employment centers, then, is to measure this
influence characteristic (McMillen and McDonald 1998; McMillen 2001).

In this context, we aim at determining whether the Paris CBD has any structur-
ing power over the economic activities in Ile-de-France, which is the French capital
region encompassing the city of Paris. Indeed, since Guillain et al. (2006) iden-
tified the CBD in Paris as an employment center using techniques measuring the
agglomeration of economic activities, it remains to be seen whether it also shapes
its environment. If so, the CBD will combine the two attributes of a center in a city,
namely attracting activities and influencing the organization of economic activities
around.

We set out, then, to answer two questions: Does the CBD still influence employ-
ment distribution in Ile-de-France? Does that influence differ by sector and by
direction from the CBD?

Focusing on the influence of Paris CBD does not mean we claim that the region of
Paris has to be perceived as monocentric. On the contrary, the identification of other
employment subcenters that Guillain et al. (2006) have undertaken leads to perceive
the region of Paris as a polycentric space. However, our point in this chapter is
that a particular focus on the CBD is required because of the history of this center.
Indeed, over the period 1965–2000, several regional plans have been applied to orga-
nize and support decentralization of economic activities because of the well-known
hypertrophy of the Paris CBD. While planning policies did not aim at reducing the
influence of Paris CBD, a possible unexpected impact could be that this CBD does
not influence its environment anymore.

The two questions are addressed in two steps. The first step involves estimat-
ing the density gradient, which is the proportion rate at which density falls with
distance, using global regressions. A significant positive density gradient would cor-
roborate findings by Guillain et al. (2006) showing that the CBD is still powerful in
Ile-de-France. We perform these analyses for total employment and for six sectors to
determine whether the CBD’s influence differs by sector. Spatial econometric spec-
ifications for the density functions are used (Anselin 1988, 2006). The second step
is to perform local regressions, using Geographically Weighted Regression (GWR),
where one density gradient is estimated for each observation. Indeed, global regres-
sions imply a constant influence with the distance and direction to the CBD. More
complex influences could be relevant: density gradient may vary with distance to
the CBD and the density gradient distribution may be anisotropic. To perform these
local regressions, we use the specifications suggested by Páez et al. (2002a,b), who
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place GWR within the context of a spatial model of error variance heterogeneity. In
this framework, locational heterogeneity and the form of spatial autocorrelation can
be tested for and the appropriate GWR model with spatial effects is estimated using
the maximum likelihood method.

This chapter is organized as follows. The data and the spatial weights matrix are
presented in the next section. Then, econometric results obtained with global and
local regressions are presented. The last section concludes.

2 Data and Spatial Weights Matrix

With almost 11 million people and some five million jobs, Ile-de-France is the
biggest region in France and is also the French capital region. It represents 18.8% of
the national population and produces 29% of national GDP, so that GDP per inhabi-
tant in this region exceeds the national average by 55%. By comparison, the GDP in
Ile-de-France is the highest of the six main economic regions in Europe (Brussels in
Belgium, London in United Kingdom, Ile-de-France, Randstadt, Rhin-Main, Rhin-
Rhur in Germany) and the Ile-de-France region is similar to the regions of London
and Rhin-Ruhr in terms of employment and population (IAURIF 1999).1 With about
600,000 employees in the industrial sector, the Ile-de-France region is not only one
of the most industrial region in France – even if a loss of about 555,000 employees
has been observed during the 1978–1997 period – but also in Europe: the region is
more industrialized than the Brussels or London region but less than the Rhin-Main
and Rhin-Rhur. However, the Ile-de-France economy is largely oriented towards the
service sector: 80% of the regional employment is in this sector, versus 72% at the
national level (IAURIF 2001). Head offices are very present in Ile-de-France and
reveal the economic power of the region: they represent about 40% of the regional
establishments and one company with 100 employees or more in three has its head
office in Ile-de-France and more precisely in the CBD of Paris (IAURIF (1999). Not
only is the Ile-de-France the administrative French capital but it is also the core of
the French and European economies.

The region covers 12;000 km2, which is 2.2% of the land area of France. It con-
sists of 1,280 communes (French municipalities) and the 20 districts (arrondisse-
ments) of the city of Paris. Since 1964, the metropolitan region has been divided
into eight departments: Paris, Seine-et-Marne, Yvelines, Essonne, Hauts-de-
Seine, Seine-Saint-Denis, Val-de-Marne and Val-d’Oise. Figure 1 shows the 1,300
geographic areas of our sample and the eight departments.

Historically, the CBD of the Ile-de-France is considered to be formed by the 1st,
2nd, 8th, 9th and 17th arrondissements of Paris because firms traditionally located
mainly in this part of the city of Paris (IAURIF 1999). These arrondissements have

1 The comparisons has been made by the Group for European Metropolitan Areas Comparative
Analysis in 1996 by using data of 1994 for GDP, data of 1995 for population and data of 1996 for
employment (IAURIF 1999).
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Hauts-de-Seine

Yvelines

Paris
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Val-de-Marne

Seine-Saint-Denis

Seine-et-Marne

Fig. 1 Departments and communes in Ile-de-France. Scale: 1:9,000

been identified as an employment center by Guillain et al. (2006). As a consequence,
it is relevant to still consider these arrondissements as the CBD and to investigate
the influence of the CBD on the surrounding areas. For this purpose, the centroid of
the first arrondissement is considered as the representative point of the CBD but the
results are quite similar if any other centroid of the CBD is considered. The suburban
areas are the areas outside the city of Paris: the departments of Hauts-de-Seine,
Val-de-Marne, and Seine-Saint-Denis form the inner ring (Première Couronne) and
the departments of Essonne, Seine-et-Marne, Val-d’Oise, and Yvelines form the
outer ring (Seconde Couronne).

The influence of CBD has to be viewed in the light of active planning policy car-
ried in Ile-de-France since 1965. The spatial organization of Ile-de-France has long
been considered as typically monocentric with the development of economic activi-
ties mainly focused in and immediately around Paris. To relieve congestion of Paris
associated with the expected growth of population and employment, the authorities
organized a polycentric expansion with the development of La Défense2 and five
new towns (villes nouvelles). In this context, a hypothesis has to be considered: the
CBD could have lost its power to shape the organization of economic activities. Our
study provides an answer to that question both for total employment and for the key
economic sectors. Figure 2 shows the locations of the CBD, the new towns, and the
two main airports.

2 La Défense is an area located west of Paris and the intention was to create a second CBD for
Ile-de-France because of the hypertrophy of the existing CBD (Piercy, 1999).
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Fig. 2 CBD, new towns and highways. Scale: 1:9,000

In conducting our analysis, we use the Population Censuses compiled by the
French National Institute of Statistics and Economic Studies (INSEE) for 1999. The
employment data are measured at the commune level and classified by INSEE’s
industrial classification NAF 700 (Nomenclature d’Activités Française) for 1999.
For reasons of reliability, data cannot be used at commune level for 700 sectors.
Obviously, there is a trade-off between the level of spatial disaggregation and the
level of sectoral disaggregation. Since our analysis is more meaningful with a fine
spatial scale, we have used a sectoral disaggregation of total employment into six
sectors, covering both manufacturing and service activities: industry, high-tech,
finance-insurance, high-order services, consumer services, standard services. We
thus obtain a general picture of the distribution of employment in Ile-de-France and
a more detailed picture for certain key sectors.

We distinguish high-order services and standard services because of their struc-
tural differences. High-order services require high levels of information and qual-
ification whereas standard services require fewer levels of qualification and are
less information-dependent. For example, legal services, management consulting
and advertising are high-order services while cleaning or security services are
standard services. Moreover, we gain insight into potentially varied behavior for
manufacturing versus services sectors and for business-oriented versus population-
oriented services.

Finally, in order to implement the spatial statistical and econometric analysis,
spatial interdependence between observations needs to be modeled by means of
a row-standardized spatial weights matrix W . From an applied perspective, we
have based our choice on the geographical characteristics of the spatial units, and
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more specifically on their heterogeneity in size. This leads us to choose a nearest-
neighbors matrix. These matrices are computed from the distance between the units’
centroı̈ds and imply that each spatial unit, regardless of location, is connected to the
same number k of neighbors. The general form of a k-nearest neighbors weights
matrix W .k/ is defined as:

8
ˆ̂<
ˆ̂:

w�
ij
.k/ D 0 if i D j; 8k

w�
ij
.k/ D 1 if dij � di .k/

w�
ij
.k/ D 0 if dij > di .k/

and wij .k/ D w�
ij .k/=

X
j

w�
ij .k/ (1)

where w�
ij .k/ is an element of the unstandardized weights matrix; wij .k/ is an

element of the standardized weights matrix and di .k/ is a critical cut-off distance
defined for each unit i : it is the kth order smallest distance between unit i and all
the other units such as each unit i has exactly k neighbors. Since, using a contiguity
criteria, the average number of neighbors in our sample is 5.80, we present the
results with k = 6.3 However, we have evaluated the robustness of our results to the
choice of the weights matrix. Therefore, as Guillain et al. (2006), we have also used
a simple contiguity weights matrix and a distance-based matrix. All our results are
robust to that choice.

3 Global Results

A first look of these data (cf. Table 1) indicates that total employment is rather
evenly distributed between Paris, the inner ring and the outer ring. The situation
is different, however, from one sector to another, and the weight of Paris in total
employment of Ile-de-France appears to be quite variable. The sectors that are
the most concentrated in Paris are finance-insurance (54.33% of total employment
in finance-insurance) and to a certain extent consumer services (36.64% of total
employment in consumer services). However, the high-order services and the stan-
dard services are mostly located in the inner ring with respectively 39.62% and
39.22% of total employment in this area. Finally, the outer ring concentrates a large
proportion of industrial employment (40.07% of total industrial employment) and
high-tech employment, this sector being located mainly outside Paris since only
9.20% of high-tech employment is located there.

The analysis of urban structures is usually conducted using employment density
functions including the distance from the CBD as an explanatory factor. Although
they are commonly used for population densities, density functions have been
applied to employment by Erickson (1982), Waddell and Shukla (1993), McMillen
and McDonald (1998) or Sridhar (2007), among others.

3 The maximum distance to the sixth nearest neighbor represents 7% of the diameter or the region.
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Table 1 Distribution of employment in Ile-de-France

Total jobs in % in Paris % in the % in the
Ile-de-France inner ring outer ring

Total employment 3,314,495 30,87 36,73 32,39
Industry 371,262 26.44 33.48 40.07
High-Tech 229,279 9.20 41.65 49.15
Finance-Insurance 256,205 54.33 30.97 14.70
High-order services 637,510 35.97 39.62 24.41
Consumer services 547,927 36.64 29.78 33.59
Standard services 185,133 30.42 39.22 30.36

Many functional forms can be used to model urban densities.4 In this chapter,
we use the negative exponential function as a starting point. Indeed, while most
complex models could be considered, we argue below that the local analysis that will
be undertaken in the next section will better capture the irregularities of employment
densities in Ile-de-France. The negative exponential function is written as follows:

Di D DCBDe
��uiC"i (2)

where Di is the employment density of observation i , measured as the number of
employees per square meter; DCBD is the employment density at the CBD; � is
the density gradient and measures the proportional rate at which population density
falls with distance, ui is the distance of observation u from the CBD and "i is the
error term with the usual properties, i D 1; : : :1;300. All distances are measured in
straight-line kilometers from the centroı̈d of the first arrondissement. The function
is then estimated by taking logs of (2) on both sides:

lnDi D lnDCBD � �ui C "i (3)

As pointed out by Anselin and Can (1986), Griffith and Can (1995), Baumont
et al. (2004) or Griffith and Wong (2007), the reliability of inference made using
density functions may be affected by the presence of spatial autocorrelation. There-
fore, in order to detect the appropriate form of spatial autocorrelation, we use the
classical “specific to general” specification search approach outlined in Anselin
(1995) using tests described in Anselin et al. (1996). When a formal theory is lack-
ing, this strategy provides ways to discriminate between a spatial lag and a spatial
error model using the Ordinary Least Squares (OLS) residuals. More specifically,
Anselin et al. (1996) suggest Lagrange Multiplier (LM) tests (resp. LMERR and
LMLAG) and their robust versions (resp. R-LMERR and R-LMLAG). The deci-
sion rule used to choose the most appropriate specification is as follows: if LMLAG
(resp. LMERR) is more significant than LMERR (resp. LMLAG) and R-LMLAG
(resp. R-LMERR) is significant whereas R-LMERR (resp. R-LMLAG) is not, then

4 See for instance McDonald (1989) for a literature review on urban population density functions.
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Table 2 Spatial autocorrelation LM tests for model (3), total employment

LM-LAG R-LMLAG LMERR R-LMERR

Total employment 769.466 0.189 776.352 7.075
(0.000) (0.663) (0.000) (0.008)

n D 1; 300 observations. P -values are in brackets. LMLAG stands for the
Lagrange Multiplier test for a spatial lag and R-LMLAG is its robust ver-
sion. LMERR stands for the Lagrange Multiplier test for residual spatial
autocorrelation and R-LMERR is its robust version (Anselin et al. 1996)

the most appropriate model is the spatial autoregressive model (resp. the spatial
error model).

We have therefore estimated the model described in (3) by OLS and computed
the LM tests. Following the decision rule described above, the results, displayed in
Table 2 for total employment, show that the spatial error model is preferable to a
spatial lag model. It is also the case for the different sectors. We therefore adopt the
following error structure, in matrix form:

" D œW "C � (4)

where œ is the spatial error coefficient and � � i id.0; �2In/with nD 1;300. We have
estimated (3) with spatial error autocorrelation as in (4) using maximum likelihood
(ML). However, because non-normality of the error terms and heteroscedasticity
may affect the results, we have also estimated all the models using Generalized
Methods of Moments (Kelejian and Prucha 1999) or with a non-parametric het-
eroscedasticity and autocorrelation consistent estimator of the variance-covariance
matrix in a spatial context (Kelejian and Prucha 2007). The results obtained are
qualitatively and quantitatively similar to those presented here.5

The results obtained using ML estimation for total employment and for the six
sectors are displayed in Tables 3 and 4. It appears that the spatial coefficient œ is
always positive and significant. Spatial autocorrelation is more important for total
employment ( Oœ D 0:675) than for the six sectors considered (with Oœ ranging from
0.259 to 0.465).

The density gradient for total employment is positive and significant, indicating
that overall the CBD still influences employment distribution in Ile-de-France. More
specifically, the 8.5% value of the estimated gradient indicates that the employment
density decreases by 8.5% for each kilometer from the CBD. However, the situation
is very different from one sector to another. Indeed, the value of the density gra-
dient is significant for all sectors except for employment in high-tech and standard
services. Three cases must be distinguished.

Firstly, for employment in industry, high-order services, and consumer services,
the density gradient is positive and significant, although it is not as large as for total

5 The results obtained in this section have been obtained using the spatial econometrics toolbox in
Matlab (LeSage 1999).
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Table 3 ML estimation results for global employment density functions (1)

Total Industrial High-Tech Finance-insurance
employment employment employment employment

Constant 1:401 �1:503 �2:259 �2:633
.0:000/ .0:000/ .0:000/ .0:000/

Distance from CBD .��/ �0:085 �0:028 �0:004 0:017

.0:000/ .0:000/ .0:399/ .0:000/

œ 0:675 0:304 0:261 0:318

.0:000/ .0:000/ .0:000/ .0:000/

�2 1:655 5:196 5:924 6:021

Sq. corr. 0:718 0:113 0:044 0:065

nD 1;300 observations. P -values are in brackets. Sq. corr. is the squared correlation between
predicted values and actual values

Table 4 ML estimation results for global employment density functions (2)

High-order services
employment

Consumer services
employment

Standard services
employment

Constant �1:496 �1:044 �2:404
.0:000/ .0:129/ .0:000/

Distance from �0:033 �0:044 �0:002
CBD .��/ .0:000/ .0:000/ .0:582/

œ 0:465 0:365 0:259

.0:000/ .0:000/ .0:000/

�2 5:076 2:587 6:153

Sq. corr. 0:214 0:215 0:044

n D 1;300 observations. P -values in brackets. Sq. corr. is the squared correlation
between predicted values and actual values

employment. It is larger for consumer services than for industry and high-order
services. In other words, employment in consumer services decreases more quickly
with distance from the CBD that does employment in industry or employment in
high-order services.

Secondly, the gradient is not significant for high-tech employment and employ-
ment in standard services. This seems to indicate that the CBD does not influence
the distribution of employment in Ile-de-France for these two sectors so location of
employment in these sectors is not governed by distance from the CBD.

Thirdly, we do not obtain the expected positive sign for employment in finance-
insurance: it is negative and significant. This seems to indicate the farther a commune
is located from the CBD, the more employment there is in this commune for this
sector. This would imply a repellent effect of the CBD. This counter-intuitive result
requires closer scrutiny since the analysis by Guillain et al. (2006) points to a pro-
nounced location of employment in finance-insurance in and immediately around
the CBD.

A local analysis of density gradients is required to explain this counter-intuitive
result for finance-insurance and the absence of influence of the CBD on high-tech
employment and employment in standard services. Moreover, even when the sign of
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the global estimated density gradient is the expected one, a local analysis is relevant.
Indeed, global gradients may mask large local disparities: different patterns may be
observed for different distances and/or different directions from the CBD.

4 Local Results

Numerous studies have been undertaken to better capture the irregularities of pop-
ulation and employment densities in urban areas (McDonald 1989). For example,
Anderson (1985) or Alperovich (1995) suggests using cubic spline specifications
when population densities do not decrease homogeneously with distance from
the CBD. Brueckner (1986) estimates distance-oriented density functions, with an
unknown number of possible regimes, using switching regressions. Alperovich and
Deutsch (2002) find evidence of two distinct regimes in the urban area of Tel-Aviv.
Baumont et al. (2004) use a spline-exponential function. In fact, all these studies
take account of spatial heterogeneity in different ways: the estimated coefficients
differ depending on their distance from the CBD or on the spatial regime they belong
to. However, all these different solutions suppose that the form of spatial heterogene-
ity is known a priori. On the other hand, misspecification of spatial heterogeneity
may affect estimations.

Therefore, rather than imposing a structure on the form taken by spatial het-
erogeneity by extending the negative exponential function to more complex specifi-
cations, we use a generic and more flexible specification based on GWR
(Fotheringham et al. 2004; Leung et al. 2000) yielding locally linear estimates.
Indeed, as López et al. (2008) show using Monte-Carlo simulations, local approa-
ches are useful when the heterogeneity in the data is high and when the appropri-
ate functional form is not known. This is the case in our sample, as we consider a
relatively large urban area and six different sectors, the amount of heterogeneity is
therefore very important.

The local version of the negative exponential model can be written as:

lnDo D lnDCBD;o � �ouo C "o (5)

where o is a specific geographical location, which could be any point included
among the sample observations. In addition, we follow Páez et al. (2002a) by consid-
ering GWR as a model of error variance heterogeneity, with heterogeneity having a
precise geographical interpretation, which is labeled locational heterogeneity. More
precisely, the variance-covariance matrix of the error terms of (5) is defined as a
.n; n/ matrix such as: o D E

�
"o"

0
o

� D �2oGo with the diagonal elements:

!oi D �2o exp.�od2oi / (6)

where doi is the distance between a focal point o and commune i for which the
data are available, with i D 1; : : : n and n D 1;300. In this case, the variance is a
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Table 5 LM tests (maximum) of spatial autocorrelation and locational heterogeneity

LMLAG� LMERR� LM-LH

Total employment 852:594� 864:551� 36:671�

Industrial employment 150:654� 152:297� 146:290�

High-Tech employment 76:031� 77:164� 52:712�

Finance-insurance employment 67:831� 69:946� 10:178�

High-order services employment 364:404� 367:659� 168:072�

Consumer services employment 261:085� 263:780� 188:899�

Standard services employment 103:326� 106:226� 87:567�

n D 1; 300 observations. � denotes significance at 5% using the adjustment by Páez
et al. (2002a). LMLAG� is the LM test for an omitted spatial lag in the GWR model,
LMERR� is the LM test for an omitted spatial error autocorrelation in the GWR model
and LM-LH is the LM test for locational heterogeneity in the GWR-SEA model

function of two parameters, �2o and �o, it ensures the usual regularity conditions and
has a geographical interpretation. The underlying model of homogeneity is provided
by the case where �o D 0 since in this case the model reduces to the usual constant
variance. Páez et al. (2002a) suggest an estimation method for models described in
(5) and (6) based on maximum likelihood and a LM test for locational heterogeneity,
which is in fact a test of heteroscedasticity,H0 W �o D 0, one for each focal point o.
In addition, this model can easily be extended to incorporate spatial autocorrelation,
either in the form of a spatial lag or a spatial error term (Páez et al. 2002b), also
estimated using maximum likelihood. This framework further allows testing for the
presence of several forms of misspecification, i.e. locational heterogeneity in global
spatial models and the presence of spatial autocorrelation in GWR models, using
LM tests, one for each focal point o.

We have therefore estimated the model described in (5) with error variance as in
(6) using maximum likelihood at every location, giving a total of 1,300 local mod-
els.6 First, we computed the LM tests for an omitted spatial lag (LMLAG�) and an
omitted spatial error (LMERR�) in the GWR model. Because of a problem of multi-
ple comparisons, their level of significance was adjusted for simultaneous inference
by a procedure described in Páez et al. (2002a). Table 5 shows the maximum val-
ues among the 1,300 local tests for LMLAG� and LMERR�. For total employment
and all six sectors, all Lagrange multiplier tests are significant at the 5% level and
the size of the tests suggests that an omitted spatial error is the dominant effect,
similarly to what is found with global models.7

We have therefore estimated a GWR model incorporating a spatial error struc-
ture, labeled GWR-SEA:

6 We thank A. Páez for sharing the Matlab programs used to estimate the models.
7 Although the difference between the values of LM-LAG and LM-ERR is small, we select the
spatial error model since it is consistent with the global analysis.
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Fig. 3 Geographic distribution of the density gradient for total employment. Scale 1:9,000

"o D œo

nX
jD1

woj "j C �o (7)

where œo is the spatial error coefficient for focal point o and commune i and
the error term �o has a variance structure as in (6). The maximum value of the
Lagrange multiplier test for locational heterogeneity .�o D 0/ in a GWR-SEA model
is reported in the third column of Table 5, where the significance level has again been
adjusted. It is significant at 5%, indicating that variance, and consequently all the
other parameters of the model, do indeed depend on location.

Our parameter of interest is the density gradient. We therefore display the local
density gradients in Fig. 3 for total employment and in Figs. 4–9 for the six sectors,
obtained using maximum likelihood to estimate the parameters of model described
in (7) for a total of 1,300 local models. Only statistically significant local density
gradients are represented, their values being color coded. Non-significant density
gradients are associated with the communes left in blank.

The map for total employment (Fig. 3) shows that the CBD still influences the
spatial organization of employment in Ile-de-France. Indeed, clusters of similar val-
ues of local density gradients that are all significant are observed around the CBD
while gradient values decline progressively in Ile-de-France. In other words, the
decrease in total employment is even less important with distance from the CBD.
However, the geographic distribution of local density gradients is not concentric: the
decline of the density gradient is not uniform in all directions; it is more pronounced
along a south-north corridor, through the CBD. Moreover, density gradients decline
more rapidly north of the CBD, possibly because this is a declining area, with
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-0.026 - -0.013
0.013 - 0.051
0.051 - 0.089
0.089 - 0.128
0.128 - 0.176
not significant

Fig. 4 Geographic distribution of the density gradient for industrial employment. Scale 1:9,000

-0.025 - -0.018
0.027 - 0.072
0.072 - 0.115
0.115 - 0.161
0.161 - 0.223
not significant

Fig. 5 Geographic distribution of the density gradient for high-order services employment. Scale
1:9,000

numerous firms closing and industrial wastelands that have not yet been redeveloped
(IAURIF 2003).

Analyzing the distribution of the density gradients for each of the six sectors, we
can distinguish several cases. In particular, the distribution of local density gradients
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-0.044 - -0.03
0.03 - -0.013
0.017 - 0.055
0.055 - 0.095
0.095 - 0.152
not significant

Fig. 6 Geographic distribution of the density gradient for high-tech employment. Scale 1:9,000

-0.044 - -0.035
0.035 - -0.014
0.01 - 0.061
0.061 - 0.109
0.109 - 0.176
not significant

Fig. 7 Geographic distribution of the density gradient for standard services employment. Scale
1:9,000
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-0.052 - -0.034
0.034 - -0.018
0.25 - 0.047
0.047 - 0.086
0.086 - 0.169
not significant

Fig. 8 Geographic distribution of the density gradient for finance-insurance employment. Scale
1:9,000

-0.013 - -0.03
0.03 - -0.068
0.68 - 0.105
0.105 - 0.147
0.147 - 0.19
not significant

Fig. 9 Geographic distribution of the density gradient for consumer services employment. Scale
1:9,000
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for industrial employment (Fig. 4) is similar to that of total employment. Again, we
observe an organization of local gradients along a south–north corridor with higher
density gradients values north of Paris, corroborating the idea of a zone in industrial
decline. This decline has led to complete or partial closing-down of industrial sites,
which were not entirely rehabilitated in 1999. The opening of “Stade de France”
(sportive complex) in the North of Paris (Plaine Saint-Denis) in 1998 for the soc-
cer world championship is part of the rehabilitation of this area. However, contrary
to total employment, there is a zone of non-significant values east of Paris, in the
outer ring, and then a zone in which the estimated density gradients are positive.
This observation may be linked to a weak presence of industrial employment in the
eastern part of the outer ring.

Similar comments apply for the geographic distribution of the density gradient
for employment in high-order services (Fig. 5).

The geographic distribution of the density gradient for high-tech employment
(Fig. 6) is also similar to that of total employment albeit with some important dif-
ferences. Firstly, the zone of non-significant values is not limited to a strip east
of Ile-de-France but surrounds the entire zone of significant values. Secondly,
in the east of the outer ring is a large zone where local density gradient have
unexpected negative values. Moreover, this zone is relatively large and the gradi-
ent increases more than for industrial employment. These two features combined
explain why the global density gradient is not significant. However, the results are
more intuitive when looking at the distribution of local values: the CBD remains
a center around which the density gradients are organized decreasingly while the
repellent effect is only effective on the outskirts of Ile-de-France. These charac-
teristics are globally similar for employment in standard services (Fig. 7). As for
high-tech employment, non-significant values of the density gradient and significant
negative density gradients are located in the outer ring.

The geographic distribution of the density gradient for employment in finance-
insurance (Fig. 8) is the most different from all the other distributions. The zone of
positive and significant density gradients is located mainly in the inner ring and is
made up of concentric circles. Then, we observe a circle of non-significant values
of density gradients and circles of increasing negative values of the density gradi-
ent. This pattern of density gradient explains why, at global level, the sign is not the
expected one. However, as in the preceding case, there is a decrease of local den-
sity gradients around the CBD. This density gradient pattern for finance-insurance
must be linked to specific features of the sector. For one thing, the CBD is very
attractive for finance-insurance (Guillain et al. 2006), due to the prestige implied by
an address in this center, and more particularly because markets are internationally
oriented (Coffey et al. 1996). This attraction to the CBD implies a sudden sharp
decrease in density gradients. For another thing, one of the components of this sec-
tor is not linked to high-order services but to services to the population (Alvergne
and Shearmur 2003). The available data do not allow these activities to be distin-
guished. Therefore, the geographical distribution of these gradients may reflect the
dichotomy of the finance-insurance sector.
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Finally, for consumer services (Fig. 9), a concentric distribution pattern of distri-
bution of density gradient is observed, even though the decrease in density gradients
is higher in the north of Ile-de-France. This distribution globally follows that of the
population. There is here a feature typical of European cities: city centers not only
attract employment, as do North-American cities, but they are also preferred areas
for residential choice because of the diversity of their cultural heritage and amenities
(Brueckner et al. 1999).

To sum up, the analysis of local density gradients made it possible to reveal con-
trasted situations in the value of these gradients, which are concealed when a total
gradient alone is considered. Undertaking a study on various sectors is not sufficient
to reveal the full complexity of the geographical distribution of the employment den-
sity gradients. On the contrary, an analysis of the local values allows highlighting
situations that are differentiated not only in terms of the geographical distributions
of the values from the local gradients but also in the spatial orientations considered
around the traditional business district.

5 Conclusion

Urban sprawl, suburbanization of economic activities, and increased congestion
costs and land values in the downtown areas are factors that have challenged the
role and the importance of the traditional CBD in cities. In this chapter, we have
analyzed whether and to what extent the CBD of Paris still shapes employment in
Ile-de-France or whether, on the contrary, in the face of these various changes, its
influence has become more limited. To that end, we chose to supplement the paper
by Guillain et al. (2006), which identified employment centers using methods based
on agglomeration of activities, with an econometric analysis. This analysis involves
estimating employment density functions, linking employment density to distance
from the first arrondissement of Paris. Analysis of the sign and the significance of
the associated coefficient – the employment density gradient – provides a measure
of the CBD’s influence. We depart from earlier papers on this type of functions in
three respects.

First, we consider the CBD’s influence on total employment at the same time as
its on six sectors, whose location choices are likely to be different. Second, to allow
for the fact that density gradients may differ with distance (heterogeneous distri-
bution) and direction (anisotropic distribution) from the CBD, we estimate local
regressions, with one estimated density gradient for each commune. Third this anal-
ysis of heterogeneity is coupled with spatial autocorrelation, using the framework
devised by Páez et al. (2002a,b).

The main results of our study indicate that the CBD still influences total employ-
ment in Ile-de-France but that its influence is indeed very different depending on
sectors and depending on the distance and direction of the commune from the CBD.
While this influence is overall manifest for total employment, industrial employ-
ment, employment in high-order services, and consumer employment, the CBD
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seems to have a repellent effect for finance-insurance employment and no effect for
either high-tech employment or employment in standard services. However, these
results hide wide geographic disparities in the distributions of employment density
gradients. In particular, density gradients values decrease more or less quickly in
Ile-de-France depending on sectors and along a south–north corridor. The repellent
effect and the absence of effect globally observed for one of the six sectors is in fact
implied by a major decrease of the gradient around the CBD, which is interpreted as
a strong influence of this CBD on its immediate environment and a repellent effect
on the fringes of Ile-de-France.

Finally, the CBD still influences the location of employment in Ile-de-France,
but this influence is variable and complex. This study can be extended. In particu-
lar, the functional form used is a negative exponential function. Other specifications
have been suggested for population density functions (McDonald 1989) and we will
analyze the robustness of the results obtained with the selected specification. More-
over, the polycentric structure of Ile-de-France will have to be taken into account,
by using polycentric density functions so that the influence of the secondary centers
of employment in Ile-de-France can also be analyzed.

Estimations of global and local densities around the centers in a city can provide
insights for planners about the location strategies of economic activities. Indeed,
since urban sprawl of activities and population increases the commuting in the city,
congestion and pollution are the counterparts of this movement. As a consequence,
opportunities of densification are discussed now, which require to determine the
distribution of densities.
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L’Information Géographique 1:33–36

Sridhar KS (2007) Density gradients and their determinants. Reg Sci Urban Econ 37:314–344
Stanback Jr, TM (1991) The new suburbanization. Challenge to the central city. Westview Press,

Oxford
Waddell P, Shukla V (1993) Employment dynamics, spatial restructuring and the business cycle.

Geogr Anal 25:35–52



The Geographic Dimensions of Electoral
Polarization in the 2004 U.S. Presidential Vote

Ian Sue Wing and Joan L. Walker

1 Introduction

The 2004 U.S. presidential election was one of the most divisive in recent history
(Pew Research Center 2004). The divisions in the electorate are popularly seen as
the culmination of a process of political polarization underway since the 1970s (e.g.,
Frank 2004), and are epitomized by the now-ubiquitous map of the United States
which shows swaths of red (i.e., majority Republican) states in the center of the
country surrounded by blue (i.e., majority Democratic) states on the east and west
coasts and in the north central region. In this chapter we investigate the geographic
dimensions of political polarization in the United States through the lens of the
2004 election. We elucidate the principal contours of the divisions in the electorate,
and characterize the manner in which the effects of the correlates of voting behav-
ior cluster regionally. We take an ecological approach, using spatial econometrics
to estimate the interregional divergence in the influences of the characteristics of
populations and places on the odds of the Republican vote. To this end we employ
aggregated data on 3,106 counties in the lower 48 states, which is the finest spatial
scale at which both electoral returns and a variety of demographic and contextual
variables are readily available.

Our goal is to push the limits of ecological analysis in electoral geography.
We first develop a theoretical framework in which geography plays a central
role in electoral polarization. Our central hypothesis, which draws on themes in
the political science literature (Johnston et al. 2004; Cho and Rudolph 2008), is
that a number of social processes that operate at fine spatial scales tend to push
individuals voters’ views into closer alignment with the ideological preferences
of their geographically proximate majority – a phenomenon we call “localized
entrenchment.” Drawing on the sociological literature on polarization (DiMaggio
et al. 1996; Evans 2003), we circumvent the well-documented handicap of weak

I. Sue Wing (B)
Department of Geography & Environment, Boston University, 675 Commonwealth Avenue,
Boston, MA 02215, USA,
e-mail: isw@bu.edu
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correlation between demographic attributes and ideology by employing a richer
array of explanatory variables than prior spatial statistical analyses (e.g., O’Loughlin
et al. 1994). We then apply spatial statistical techniques that exploit the spatial inter-
relationships among the electoral returns and our set of covariates, and find strong
indications of entrenchment. Finally, we employ advanced methods to character-
ize the spatial heterogeneity in our estimated relationships – rather than re-estimate
our aggregate statistical model on different regional sub-samples, we use geograph-
ically weighted regression (GWR). This technique enables us to exploit the spatial
interdependencies among the entire universe of counties to estimate the fine-scale
geographic variation in our covariates’ influences on the 2004 presidential vote,
while simultaneously controlling for the underlying spatial distributions of the char-
acteristics of people and places. The patterns of agglomeration in the resulting
influences on voting behavior are consistent with our explanation of how local
entrenchment might induce polarization of the electorate.

We report three sets of results. First, we construct Local Moran’s I statistics to
analyze the spatial clustering of county election returns. We find substantial spa-
tial autocorrelation in voting patterns, evidence that the returns for democrats and
Republicans were significantly clustered in different regions of the United States,
and indications of divergence among different sub-populations’ vote distributions
based on the spatial clustering of their demographic characteristics. Second, we
perform spatial regressions at the aggregate level which identify the demographic
and contextual factors that significantly impact the odds of voting Republican.
We partition this propensity into direct influences associated with the attributes of
counties and their populations, and indirect influences associated with the voting
behavior and demographic characteristics of neighboring jurisdictions. The latter
effects are particularly large, in many cases outweighing the former, and highlight
the importance of the geographically varying contextual factors that are central to
the predictions of our core hypothesis. Finally, our GWR results indicate consider-
able heterogeneity in the influence of several of our explanatory variables, and, most
tellingly, regional agglomeration in their signs, which suggests that electoral polar-
ization manifests itself as cross-cutting divisions in the U.S. electorate, not between
population sub-groups but within sub-groups over space.

Given the nature of our analysis and results, we raise two caveats at the out-
set. First, when it comes to uncovering the mechanisms through which polarization
occurs, we barely scratch the surface. Our more modest objectives are to clarify the
irreducible spatial components of the divisions in the American electorate, and to
outline their broad contours as the first phase of a program of more rigorous statis-
tical testing. The second caution concerns the ecological fallacy. In particular, we
take pains to distinguish what we do find: divergent patterns of spatial clustering
in the impacts of the characteristics of counties and their populations on the vote,
from what we do not: how the sign and magnitude of the effects of individuals’
characteristics on their own voting behavior vary over space. The distinction
between these inferences cannot be too sharply drawn (Goodman 1953; Hanushek
et al. 1974).
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The remainder of the chapter is organized into four sections. In Sect. 2 we set the
stage by discussing our motivations and framing our inquiry. In Sect. 3 we describe
the sources of data used in our analysis, and illustrate the spatial heterogeneity in
key variables. We outline our methods of analysis in Sect. 4 and present and discuss
the results in Sect. 5. We conclude in Sect. 6 with directions for future research.

2 Entrenchment: Geography’s Role in Political Polarization

Political polarization is the segregation of the electorate along issue opinion and/or
ideological lines, with concentration of voters about opposing extreme positions
and concomitant erosion of moderate “centrist” preferences. The phenomenon is
illustrated in Fig. 1, which plots the distribution of preferences in the electorate
on a left-leaning (liberal) versus right-leaning (conservative) scale. In panel A,
which draws on Fiorina and Abrams (2008), distribution A-I is not polarized, and
exhibits the classic “single peaked” preferences of a centrist majority. By contrast,
the bimodal distribution A-II, shown by the dashed line, illustrates the polarization
of voters into equal opposing factions. The gray Distribution A-III, about which
we say more below, is intermediate between A-I and A-II, with fatter tails and a
less distinct peak indicating voters’ movement away from the center toward the
extremes.

The reality of the U.S. electoral landscape is far more complex that this picture
suggests, however. Despite considerable heterogeneity in American voters’ attitudes
and beliefs, there is no evidence that the distribution of the electorate is either
bimodal, or has recently become substantially more disperse – especially in light of
the long view of history (Ansolabehere et al. 2006; Fiorina et al. 2006; Fiorina and
Abrams 2008; Klinkner 2004; Klinkner and Hapanowicz 2005). There is, however,
abundant evidence that the parties’ candidates and activists alike have become
increasingly partisan, and have staked out increasingly divergent positions on a
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Fig. 1 Electoral polarization: a conceptual framework
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range of issues (Bartels 2000; Fleisher and Bond 2004; Mellow and Trubowitz 2005;
Poole and Rosenthal 2001; Stonecash et al. 2002).1 Also, there are at best only
weak indications of a rising intensity of opposing political views among the gen-
eral electorate, and then only for a handful of “hot-button” issues such as abortion
or homosexual persons’ right to marry (DiMaggio et al. 1996; Evans 2003; Fiorina
and Abrams 2008), while the distribution of liberal and conservative views on the
broad spectrum of issues appears to have remained fairly even (Fiorina et al. 2006).
What has occurred is a public redefinition of the labels “liberal” and “conservative,”
which, along with polarized choices offered in the political arena, has served to
heighten issues’ salience to voters, and has induced them to self-categorize and align
more closely with one or the other party despite unchanged underlying preferences
(Hetherington 2001; Baldassarri and Gelman 2008; Miller and Hoffmann 1999).
These dynamics have led many analysts to conclude that Americans feel more
polarized than they in fact are.

Our own view is that while the “red versus blue state” conception of polariza-
tion is undeniably simplistic, to claim that the electorate is not divided is to deny
the essential geographic dimension of the phenomenon.2 Klinkner (2004) cites a
particularly apposite example which captures the essence of the phenomenon. In
1972, New Yorker magazine contributor Pauline Kael expressed surprise at Richard
Nixon’s re-election as president, saying “Nobody I know voted for him.” The same
could be said in 2004. Despite the fact that Republican incumbent George Bush
was returned to office with 52% of the national electorate, few people in Wash-
ington, DC knew anyone who voted for him – he gained just 7% of the electorate
there. Likewise, few people in Idaho’s Madison County knew anyone who voted for
Democratic challenger John Kerry, whose record there was similarly dismal. And
although Bush won by a margin of 60% or greater in 54% of counties while Kerry
enjoyed a similar margin in only 5% of counties, these “landslide” jurisdictions were
home to 47% of the electorate. Moreover, 38 out of 50 states were carried by one
or the other candidate with a margin of 5 percentage points or greater, with a stark

1 Glaeser et al. (2005) develop a theory of strategic extremism which illustrates the incentives
political parties have to divide on issues in order to increase their chances of winning at the polls.
Partisanship turns on two key elements: among voters, the existence of an intensive margin where
the level of support matters (e.g., turnout or donations, as opposed to the extensive margin of
voting) and which parties can activate by taking extreme positions that appeal to their respective
bases, and the ability of parties to target extreme statements to their own supporters while bypassing
those of the opposition, thereby avoiding a backlash. Below, we note that this sort of targeting
becomes easier the more the electorate is ideologically segregated along geographical lines.
2 This is an example of the modifiable areal unit problem (Openshaw 1984). Differences between
the number of Democratic and Republican votes were as large between red and blue counties
within some states as they were between some red and blue states. Using counties as the unit of
analysis is attractive precisely because, unlike states, congressional districts or electoral precincts,
their geographic boundaries are independent of electoral processes relevant to the presidential vote.
The consequent absence of selection bias makes us confident in exploiting county characteristics
as strictly exogenous covariates in our subsequent analyses.
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divergence in the attitudes and beliefs espoused by the voters in states with Repub-
lican and Democratic majorities (e.g., Abramowitz and Saunders 2008: Table 6;
Glaeser and Ward 2006: Table 1).

The geographic evidence typically adduced in support of the no-polarization the-
sis is that county-level returns exhibit variances and indices of dissimilarity that
are low and stable, as well as indices of isolation for each party’s turnout that are
similar in magnitude and fluctuate with no apparent long-run trend (Glaeser and
Ward 2006; Klinkner and Hapanowicz 2005). But these same data indicate substan-
tial geographic clustering of voting patterns in recent presidential elections (Kim
et al. 2003), a phenomenon which persists into 2004. Democratic and Republican
voters were more likely than not to be exposed only to individuals who voted in a
similar way, with the result that one fifth of those supporting either party would have
needed to relocate for the distribution of votes to be spatially uniform. The latter is
the highest percentage since the 1940s (Glaeser and Ward 2006: Fig. 2).3

The statistical manifestation of this sort of division is shown in Fig. 1b, which
illustrates a hypothetical situation in which the electorate is divided among two
disjoint regions. Distribution B-I indicates the preferences of centrist voters, whose
members are distributed among both regions. A conservative-leaning sub-population
of voters with distribution B-II resides in one region, while a liberal-leaning sub-
population with distribution B-III resides in the other. It is easy to see that in this
society the aggregate preferences B-IV are the same as the intermediate distribution
A-III, with zero mean and fair degree of central tendency, but with an electorate that
feels – and is – polarized, but along geographic lines.

Our main contention is that this picture describes the 2004 presidential elec-
tion, not in Kael’s literal sense of the regional distributions of electoral returns, but
rather in terms of the preferences that DiMaggio et al. (1996), Evans (2003) and
others have sought to measure.4 Because of the ecological nature of our data, our
indicators of preference boil down to the influences of the characteristics of popu-
lations and places on the propensity to vote Republican or Democratic. Indeed, we
demonstrate that along a number of key dimensions the influence of characteristics
on the propensity to vote exhibit substantial spatial agglomeration, with geographic
clustering of counties with divergent preferences, as in Fig. 1b.

In conducting our investigation we take up the gauntlet thrown down by Fiorina
and Abrams (2008), demonstrating the strength and stability of the associations
between the voting behavior on one hand and the characteristics of populations and

3 These statistics were computed for our sample of 3,106 counties in the lower 48 states. Indices of
isolation measure the likelihood of Republicans’ and democrats’ exposure to the opposing group
at 55% and 51%, respectively, while non-uniformity in the pattern of votes is given by the index of
dissimilarity at 22%.
4 Note that B-IV’s variance and excess kurtosis are larger than A-II’s These authors test whether
these two moments of the distributions of survey respondents’ attitudes on a diverse array of social
issues have increased over time.
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Fig. 2 Box plot of descriptive statistics of the dataset

places on the other.5 Consistent with our interest in the segregation of the electorate
over space, and cognizant of the strictures imposed by the cross-sectional data at
our disposal, we reinterpret their (temporal) notion of stability to focus on how the
correlates of voter behavior vary geographically.

Our first task is to articulate testable propositions about how regionally segre-
gated voter distributions like B-II and B-III might arise. Shifts in the American
electorate at broad geographic scales have been well documented, with sorting and
clustering of individuals with similar ideological leanings arising as unintended con-
sequence of interstate migration (Frey 2000; Gimpel and Schuknecht 2001), as well

5 “contrasts in individual sociocultural characteristics are not direct indicators of political polariza-
tion. Hence, contrasts in such characteristics may or may not constitute evidence of polarization.
Analysts must provide additional information about the strength of the links between social charac-
teristics and relevant political variables, as well as information about the stability of such linkages.”
(p. 568)
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as (intentional) ideological realignment in various regions of the United States.6

But it seems unlikely that these forces by themselves are strong enough to generate
either the regional homogeneity or intensity of preferences that underpin Fig. 1b.

In our view, the key element is how individuals’ social and political values are
shaped – and reinforced – by context and agglomeration at finer geographic scales.7

Our thesis is that the same social forces that facilitate political participation con-
tribute to ideological reinforcement at the local level. Cho and Rudolph (2008)
identify four processes which are relevant in this regard:8

1. Residential self-selection, whereby citizens’ characteristics jointly predict their
residential and ideological preferences, and individuals choose to live near to
others who are socially and demographically similar to them, leading to spatial
clustering of voting tendencies.9

2. Voter mobilization, in which partisan elites selectively target segments of the
electorate on the basis of demographic attributes which are spatially clustered,
especially in closely contested states or electoral districts. Spatially homogenous
preferences facilitate targeting of extreme political statements to demographic
groups to which they may have particular salience, catalyzing party alignment
and turnout (cf. fn. 5).10

6 For example, southern conservative voters switching from Democratic to Republican
(Schreckhise and Shields 2003; Bullock et al. 2005; Valentino and Sears 2005), northeastern vot-
ers becoming increasingly liberal (Speel 1998), and the rise of the mountain west as a conservative
voting bloc (Marchant-Shapiro and Patterson 1995).
7 For example, Glaeser and Ward (2006, p. 131A): “These differences in beliefs within the United
States drive home a central point about how politically relevant beliefs are formed. People in differ-
ent states have been exposed to quite similar evidence through national media outlets, but they have
reached radically different conclusions, and continue to hold these conclusions despite being aware
that others disagree. This disagreement requires either different prior beliefs or some other devia-
tion from Bayesian reasoning. One natural alternative model is that people base opinions mostly
on the views of those around them. As such, local interactions are critical, and these provide plenty
of possibility for wide geographic variation: : :”
8 See also Johnston et al. (2004), who develop a slightly different taxonomy.
9 Despite anecdotal evidence (e.g., Bishop 2008; Bishop and Cushing 2004) and statistical indi-
cations particular kinds of neighborhood environments influence their residents’ ideological
leanings, irrespective of demographic composition (Williamson 2008), the political sources and
consequences of self-selection have yet to be thoroughly investigated.
10 For example, Mutz (2002, p. 852): “Homogeneous environments are ideal for purposes of
encouraging political mobilization. Like-minded people can encourage one another in their view-
points, promote recognition of common problems, and spur one another on to collective action.
Heterogeneity makes these same activities much harder. Participation and involvement are best
encouraged by social environments that offer reinforcement and encouragement, not ones that
raise the social costs of political engagement.” Also, Williamson (2008, pp. 20–21): “: : : the spa-
tial sorting of residents by political ideology, once it reaches a sufficiently advanced stage, may
help create what Lazarsfeld, Berelson, and Gaudet (1944) termed a ‘reinforcement effect’; not only
might residents of a very conservative suburb be less likely to hear a liberal viewpoint from their
neighbors but such areas will likely be targeted and contacted frequently by conservative political
activists while being relatively ignored by liberal political activists, further reinforcing the relation-
ship between spatial context and individual political outlook.” Homogeneity facilitates a political
campaign’s ability to mobilize voters by reducing the cost of what Lazarsfeld et al. (1944) refer to
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3. Social interaction, the set of mutually-responsive behaviors adopted by individ-
uals in social networks. Social interactions may amplify ideological divisions
because organized networks such as civic associations are a particularly effective
mechanism for the exchange of political information (McClurg 2003), but such
information tends to be systematical biased due to homophily – the propensity
of individuals to interact with others who are similar to them (e.g., McPherson
et al. 2001). Social interactions also promote ideological homogeneity through
the process of social learning, with views that are consonant with (dissonant
from) those of the majority of network participants receiving positive (negative)
reinforcement, leading to closer alignment of preferences within the network.11

Finally, the fact that these effects transpire through direct interpersonal contact
(and even non-verbal cues) suggests that the phenomenon of closer individual
alignment with the local majority should only persist over a limited spatial domain.

4. So-called “casual observation,” the indirect, often involuntary, social interac-
tion induced by the characteristics of an individual’s environment.12 A key
implication is that the physical attributes of citizens’ action spaces are likely
to significantly influence their ideological preferences, independent of neigh-
borhood demographics (cf. Williamson 2008). Non-political, day-to-day social
interactions remain a key source of political information for Americans (Klofstad
et al. 2006), with the workplace being the principal forum in which they are
exposed to dissonant political views (Mutz and Mondak 2006). This suggests
that the spatial domain of political influence is not limited to the neighborhood
in which an individual resides, and may extend well beyond her commuting
distance.

At a minimum, these processes imply that voters’ preferences should be influenced
by those of the citizens around them. But, in view of the reinforcing character of
the first three processes, we further claim that the likely outcome will be a phe-
nomenon which we term “localized entrenchment”: in the absence of exogenous
shocks, communities remain locked in a cycle of reinforcement of the values held by
their ideological majorities, with corresponding suppression of the inward diffusion
of countervailing viewpoints and ideas, leading to entrenchment of attitudes, beliefs
and, ultimately, voting behavior. Our view of entrenchment as closer alignment

as activation (“not to form new opinions but raise old opinions over the thresholds of awareness
and decision,” p. 74), and reinforcement (“to secure and stabilize and solidify [: : :] vote intention
and finally to translate it into an actual vote,” p. 88).
11 For example, Huckfeldt and Sprague (1995). For formal models of this process see Baldassarri
and Bearman (2007), Dixit and Weibull (2007) and Glaeser and Sunstein (2009).
12 For example, Cho and Rudolph (2008, p. 277): “Casual observation exposes citizens to mean-
ingful information through low-intensity neighbourhood cues such as the display of yard signs,
bumper stickers, or simple observations and biases created by how neighbors dress and behave,
what types of cars they drive, or how well their garden is groomed. Such low-intensity cues
may influence behavior by subtly communicating information about the prevailing norms and
sentiments within a community. In particular, they may provide signals about a local commu-
nity’s political culture and ethic or the nature and distribution of political preferences within that
community.”
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between the individual vote and the local majority vote is consistent with evidence
of increased party identification by voters (Miller and Hoffmann 1999), ideologi-
cal cleavages along geographic lines (Abramowitz and Saunders 2008; fn. 6) and
regional concentration of the Democratic and Republican parties’ representation in
the U.S. Congress (Mellow and Trubowitz 2005).

The econometric consequences of local entrenchment are spatial correlation and
endogeneity. These are anticipated by the economic literature on social interactions
(Manski 1993, 2002; Glaeser et al. 2003), which suggests that the group of citi-
zens in the zone of political influence around a particular individual will impact
her vote decision in three ways. The first is endogenous effects, where the group’s
average voting behavior affects the individual’s vote, which could potentially reflect
the influences of any or all of the four processes above. The second is contextual or
exogenous effects, where the group’s average (exogenous) characteristics affect the
individual’s vote. This might reflect processes 3 and/or 4, as well as the spatial clus-
tering of citizens with similar characteristics for reasons other than self-selection.
The third is correlated effects, where the individual’s error term is correlated with the
error terms of members of the group because of similar characteristics not observed
by the econometrician (process 4), sorting or selection of individuals based on who
they are (process 1), or exposure to common shocks (process 2, and the polarized
character of choices in the political arena more generally).

An additional consideration is that our ecological data on citizens’ characteristics
and votes at the level of the county (not the individual) forces us to reinterpret these
effects in terms of areal units and their neighboring jurisdictions. We argue that even
though this invariably introduces aggregation bias of unknown magnitude and sign,
such a reinterpretation is still valid because of exogeneity in the boundaries of our
areal units (see fn. 2) and the potentially long spatial reach of processes of casual
observation. Moreover, the fact that we know the location of each observation means
that the three effects above neatly correspond to the components of different spatial
econometric models. Endogenous effects are captured by the coefficient on the spa-
tially lagged county vote in a spatial autoregressive model; contextual effects are
captured by the coefficients on spatial lags of the covariates; and correlated effects
are indicated by the coefficient on the spatially lagged error term in a spatial error
model. Quite likely, all three effects are simultaneously at work in our dataset, which
presents a challenge for estimation.

3 Data

Our dependent variable is the vector of votes cast for Bush as a share of total votes
at the county level. We estimate the size of total electorate as the sum of ballots
cast for Bush, Kerry and independent candidate Ralph Nader, data for which were
downloaded from the CBS News election 2004 website.13

13 These data are of necessity approximate, not being adjusted for the results of recounts in Ohio
and New Mexico. There were additional independent candidates on the ballot in each state, but the
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For explanatory variables we selected a broad spectrum of demographic char-
acteristics that are likely to have influenced individuals’ voting decisions, which
we organized into categories similar to those used in prior analyses of political
polarization (DiMaggio et al. 1996; Evans 2003).

We employ four sets of demographic variables at the county level. These are
the distribution of income, measured over four income categories; housing costs;
the distribution of educational attainment, measured over five grades; racial and
ethnic composition; and age, sex and national origin. These data were obtained the
2000 U.S. Census and Current Population Estimates data files, and are coded as
percentages of either the total or the voting-age population within each county.

We also employ two categories of variables on economic characteristics of
places: median household income, unemployment and the composition of employ-
ment; and local geographic characteristics such as population growth, the size of
the local electorate, whether the county belonged to the core (urban) or outlying
(suburban) region of a metropolitan statistical area (MSA), travel time to work and
prevalence of commuting outside one’s county of residence. Unemployment and
wage data were compiled from U.S. Bureau of Labor Statistics Local Area Unem-
ployment Statistics and U.S. Bureau of Economic Analysis Regional Economic
Information System data files, respectively, while local geographic variables were
collected from the 2000 Census and Current Population Estimates.

We include three additional sets of variables in an attempt to proxy for issues
which exit polls indicate played an important role in the election: the war on ter-
ror and U.S. military intervention in Iraq, and “moral” or “family” values. Based
on social interaction theory, we hypothesize that attitudes toward the former issue
among the general population will be most strongly shaped by personal knowledge
of – and face-to-face interaction with – individuals who have served or are cur-
rently serving in the armed forces, and that the diffusion of attitudes will increase
with geographic proximity to clusters of this sub-group (e.g., counties which host
or immediately surround active military bases). Accordingly, we code for attitudes
toward the war on terror using Census data on the fractions of veterans and active
military personnel in counties’ population.

Like no other set of issues, moral values are the bellwether of electoral polar-
ization as the reflection a so-called “culture war” (Hunter 1992; Miller and
Hoffmann 1999; Evans and Nunn 2005). Pew Research Center (2004) notes that
moral values are not precisely defined, but encompass conservative views on sub-
jects as diverse the appropriate role of religious expression and proselytization in
public life, marriage and divorce, women’s fertility and right of access to abor-
tion, and child-rearing in a traditional nuclear family setting. The multivariate and
ambiguous character of values, coupled with the fact that they are not directly
observable even at the individual level, means that our ability to precisely identify
their effects using aggregate data is weak at best.

numbers of votes cast for them were small. Neither of these factors seems likely to significantly
change our main results.
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With regard to religion, a useful indicator is the distribution of adherents to differ-
ent faiths – particularly evangelical Christians – among the population. We use data
from Glenmary Research Center (2004) to construct the distribution of individuals
with different religious affiliations by county, which we code as shares of the popu-
lation.14 We proxy for attitudes to marriage using data on the fraction of population
separated or divorced tabulated by the Census. Although some data are available
on rates of teen pregnancy, out-of-wedlock births and abortion rates, they are not
disaggregated to the county level, and were not used in our analyses.15 To proxy for
attitudes to fertility and child-rearing practices, we employ Census data on average
family size, the average number of children per household, and the percentage of
households headed by a female with no husband present.16

Our final set of covariates captures an important aspect of the debate over val-
ues which played out in the 2004 election, namely, the polarization of attitudes
toward homosexuals, especially the legalization of same-sex marriage, civil unions
or domestic partnership benefits. There is a dearth of data on either the geographic
distribution of either gay persons or general attitudes toward them. However, dur-
ing 2004 eleven states enacted ballot initiatives to ban same-sex marriages.17 In
an attempt to capture the effect of related attitudes on the vote, we treat these ini-
tiatives as an exogenous shock, and construct a dummy variable for gay marriage
bans (GMB), coding the counties in these states as ones and the remaining coun-
ties in our sample as zeros. Following Campbell and Monson (2008), we include
the interaction between this dummy and the percentage of Evangelical Christians
in the population as a proxy for the potentially galvanizing influence of the ballot
initiatives on turnout by evangelical voters for the Republican party.

We restrict our analysis to the contiguous counties of the lower 48 states, drop-
ping counties in Alaska (for which disaggregate election returns are not tabulated)
and Hawaii. Remaining counties for which one or more variables were missing were
also dropped. Our final sample consists of 3,106 observations (denoted below by
N ), which we geo-coded using the county centroids from the Census 2000 gazetteer
files.

Figure 2 presents the distributions of the variables as box plots to facilitate
comparison. A few covariates, such as the percentages of Asian Americans or

14 Campbell and Monson (2008) note that this database suffers from a number of problems, prin-
cipally non-response bias in survey questionnaires, omission of non-denominational churches –
which account for an increasing share of religious participation, and an inability to track the number
of residents of one county who attend church in another.
15 These data are available online from the Alan Guttmacher Institute. Preliminary regressions indi-
cated that the state-level incidence of abortion and teen pregnancy were not significant predictors
of the odds of voting Republican, in part because of their collinearity with state fixed effects.
16 Our use of the proportions of divorced persons and households headed by single females is
admittedly crude. In particular, it is hard to know whether the statistical effect of these variables
on electoral outcomes is driven by the voting behavior of people in these groups or by morally
conservative voters’ negative reactions to the former.
17 The states are: Arkansas, Georgia, Kentucky, Michigan, Mississippi, Montana, North Dakota,
Ohio, Oklahoma, Oregon and Utah.
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persons on active duty in the armed forces, have small magnitudes and exhibit very
little variation. Conversely, other variables, such as the percentage of evangelicals
and non-adherents, persons of solely Caucasian background, the average number of
children per family, and the share of counties’ electorates voting for Bush, all vary
substantially across counties. In the working paper version of the article (Sue Wing
and Walker 2005) we provide additional descriptive statistics that show that these
variables exhibit significant interregional heterogeneity.

Our aim is to identify the association between the dependent variable and
independent variables above, and then characterize the spatial variations in these
relationships. To do this we turn to our spatial econometric toolkit.

4 Methods

Our analysis proceeds in three phases, the algebraic details of which can be found in
an appendix to the preliminary version of this chapter (Sue Wing and Walker 2005).
Our first task is to characterize the degree of spatial polarization in the vote by exam-
ining the intensity and geographic scope of spatial clustering in county-level returns.
Following Kim et al. (2003), we compute the vector of Local Moran’s I statistics
for Bush’s share of the electorate in each county. Rather than use their method of
employing county-to-county commuting flows as a spatial weighting variable, we
construct a symmetric spatial weighting matrix (W ) based on a simpler distance-
based scheme.18 We use the results of this calculation to generate maps the regions
of statistically significant spatial clustering of votes.

Our second task is to test the predictions of our local entrenchment hypothesis by
investigating the effects of the explanatory variables in Sect. 3 on the odds of vot-
ing Republican at the national level. We estimate the following linear-in-logarithms
logistic model:

Y D Xˇ C u; (1)

in which the dependent variable is an N � 1 vector of the log-odds ratios of each
county voting Republican,

yc D log .pc � .1 � pc// ; c 2 N (2)

where the subscript c indicates counties and pc is the probability of c’s Republi-
can vote, estimated by Bush’s share of the total votes cast, X is an N � k matrix of
covariates given by the logarithms of the continuous independent variables in Fig. 1,

18 Consistent with our discussion of the prominent role of social interactions, we defined the neigh-
borhood of each county as a radius of 200 km, which is approximately twice the distance traveled
at the highest state-mandated speed limit (75 mph) for the maximum average commute time in
Fig. 2. The advantage of this scheme is that every row in W has at least one non-zero off-diagonal
element, which allowed us to row-standardize the resulting matrix of distances without having to
worry about divide-by-zero errors.
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as well as the dummy variables and interaction terms described in the previous
section. We interpret the coefficient ˇ as the vector of elasticities of the odds of
voting Republican with respect to the k covariates at the county level.

The overall explanatory power of the basic model in (1) was good, but (not
surprisingly) tests of the residuals indicated that the disturbance vector u exhibits
significant spatial autocorrelation (without state dummies, the Moran’s I standard
deviate D 57:55, p < 0:01). The likely culprits are spatial sorting and selection of
voters on the basis of demographics, as well the omission of contextual variables,
common shocks – especially congressional and gubernatorial elections which were
simultaneously being held in each state, and the endogenous effects of surrounding
counties’ votes.

To test how much of the spatial dependency in the errors could be explained
by omitted contextual factors, we included fixed effects for each state. This dra-
matically improved the fit and mitigated the degree of spatial autocorrelation, but
tests of the residuals still indicated problems (Moran’s I standard deviate D 33:44,
p < 0:01). Moreover, Lagrange multiplier tests of the residuals for an omitted spa-
tially lagged dependent variable (LM¡) and spatially autocorrelated errors (LMœ)
led us to reject the linear model, with or without state dummies.19

Encouraged by these results, we turned to more sophisticated estimators capable
of capturing the effects of interest: the spatial lag model

Y D �W Y CX ˇ C "; (3)

and the spatial error model, which augments (1) with:

u D 	W u C ": (4)

The variable " is an N � 1 vector of i.i.d. errors, � is a spatial lag correlation param-
eter, 	 is a spatial error correlation parameter, andW is the N �N matrix of spatial
weights described above. The models corresponding to (3) and (4) were estimated
by maximum likelihood.

There is little a priori guidance as to which of these models is more appropriate.
Spatial lag models are more common in the political science literature, and assume
that the effects of a county’s attributes on the odds of voting Republican are influ-
enced by neighboring counties votes (i.e., endogenous effects), via the parameter �.
On the other hand, the spatial error model assumes that spatial autocorrelation can
be explained by aggregation bias, sorting and selection, or spatially varying omitted
variables (i.e., correlated effects), captured by the parameter 	.

Our estimates of the two parameters indicate a high degree of spatial dependency
in the data (� D 0:40 and 	 D 0:96, both p < 0:01), and the challenge we faced
was to apportion this dependency among the three effects above. To this end, we

19 For the basic model, LM¡ D 2695:41 (p < 0:01) and LMœ D 1044:49 (p < 0:01), while for the
fixed effects model, LM¡ D 523:08 (p < 0:01) and LMœ D 278:27 (p < 0:01).
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employed Anselin et al.’s (1996) Lagrange multiplier tests of the spatial lag and
spatial error specifications being mutually contaminated by each other, but both the
test for error dependence in the possible presence of a missing lagged dependent
variable (LMœ

�), and the test for a missing lagged dependent variable in the pos-
sible presence of spatially correlated disturbances (LM¡

�), had power against each
other. In both tests the null was rejected for the basic as well as the fixed-effects
models,20 but the test of robustness of the spatial error model against contamina-
tion by a spatially lagged dependent variable saw rejection of the null at the higher
level of significance, apparently favoring the spatial error model. The log-likelihood
and AIC statistics supported this conclusion, indicating that the spatial error model
has the better fit to the data, however the extent of autocorrelation in the spatial
error model remained a concern, especially since 	 subsumed both endogenous and
contextual effects.

In light of McMillen’s (2003) critique that spatial dependence in the error term
might simply indicate misspecification – especially given our potential omission
of spatially correlated right hand side variables, we decided to pursue a third
alternative: the unconstrained spatial Durbin model:

Y D �W Y CXˇ CWX� C " (5)

This model nests both our lag and error specifications through the restrictions � D 0
and � D ��ˇ, respectively (Anselin 2002). The latter “common factor hypothesis”
(Burridge 1981) is decisively rejected by a likelihood ratio test (LR D 336:3, p <
0:01), suggesting that residual spatial autocorrelation in the error term of (3) arises
as a consequence of omitted spatial lags of the covariates (i.e., contextual effects).
Accordingly, we relied on the results of (5) for our insights regarding the aggregate-
level correlates of voting patterns in 2004, subject to the caveat that our results likely
overstate endogenous and contextual effects while giving short shrift to correlated
effects.

Our third task is to bring the results of the previous phases together to elucidate
the implications of local entrenchment for the polarization of the U.S. electorate.
In the preliminary phase of our analysis we re-estimated eq. (5) on contiguous
subsamples of counties defined by the nine U.S. census divisions. The parameter
estimates varied markedly among regions in magnitude, sign and significance, indi-
cating that the national-level estimates mask substantial spatial heterogeneity. But
given the hypothesized importance of local environmental influences for counties’
voting behavior, we sought a way to systematically characterize how the parameters
of (5) vary over fine geographic scales.

Accordingly, to capture the full extent of spatial non-stationarity in our data we
re-estimated our model as a GWR, a nonparametric technique that generates inter-
cept and slope parameters for every county by running a sequence of locally linear

20 For the basic model LM¡
� D 172:99 (p < 0:01) and LMœ

� D 1823:91 (p < 0:01), while for
the fixed-effects model LM¡

� D 73:96 (p < 0:01) and LMœ
� D 318:77 (p < 0:01).
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regressions on a sub-sample of data from nearby counties (Brunsdon et al. 1996;
Fotheringham et al. 1997, 2002). The GWR model can be written:

ZcY D ZcX
c C vc (6)

in which Zc is the matrix of local spatial weights centered around the cth county,21

and 
c is a spatially-varying k � 1 vector of parameters associated with observation
c. The latter allows us to map and analyze the spatial variation and clustering in
our aggregate results. The fact that the GWR method estimates an intercept for each
county drastically diminishes the ability of state dummies and spatial lags to cap-
ture unobserved contextual effects, and in any case, the computational exigencies
of estimating many additional parameters overwhelmed our computing resources.22

We therefore used GWR to estimate only our basic linear model. Our final step
was to test for polarization by examining whether the resulting vector of local odds
elasticities 
c exhibited significant spatial clustering along each of its dimensions
(indicating entrenchment), and whether the clusters gave rise to distributions of
effects similar to Fig. 1b.

5 Results

5.1 The Spatial Clustering of Votes and Covariates

Applying Moran’s test to county vote returns reveals significant global spatial auto-
correlation in the election results (Moran’s I standard deviate D 109:68, p < 0:01).
We compute local Moran’s I statistics for the Republican share of the vote and key
independent variables, and plot the results as a series of significance maps, shown
in Fig. 3. A two-tailed test of significance (p < 0:05) allowed us to classify each
observation as one which exhibited significant spatial clustering of voting returns
for Bush above (dark gray) or below (light gray) the sample means.

Significant clustering in the share of the electorate voting Republican, shown in
panel A, is comparable to that found by Kim et al. (2003, p. 749, Fig. 2b), with
clustering above the national average in large swaths of the Midwest, West Central
and upper Mountain regions, as well as pockets in Appalachia, and clustering below
the average in the Northeast and North Central regions, as well as in pockets along
the Pacific coast and in southern Texas and Florida. Such agglomeration is precisely

21 Specifically, Zc D diagŒZ1c; : : : ;ZNc� is an N � N diagonal matrix of c’s distance-based

weights expressed as a local kernel, Zjc D exp
�
�0:5 �

djc=h
�2�

, in which djc is the distance

between c and other counties .j /, and the spatial interaction radius is given by a fixed bandwidth
parameter, h, that we estimate using a crossvalidation procedure.
22 All our analyses were performed using the spatial packages for the R statistical language
(Bivand 2006; Bivand and Brunstad 2006).
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Fig. 3 Local Moran’s I significance maps of votes and key covariates

what one would expect to be associated with an electorate that is polarized over
space. It is natural to inquire into the factors on which such clustering might depend.
For example, the ideological sorting of populations could be based on any number
of factors such as income, race or religion. Preliminary insight into this question can
be gained by visually inspecting the patterns of spatial clustering of the explanatory
variables.

Panels B–F show the results of computing Local Moran’s I statistic for a subset
of the covariates in Fig. 2. The average number of children per family is clustered
above the mean in pockets around the Great Lakes and across the South and South-
west, and clusters below the mean in the Ohio River valley and pockets in Florida
and the Midwest. Median household in-come exhibits significant positive clustering
in the northeast and upper Midwest, as well as in pockets in the mountain west and
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along the Pacific coast, with significant negative clustering in pockets throughout the
Mississippi river valley, the west and the southeast of the country. The proportion
of the population with post-secondary education is clustered above the mean in the
northeast and in swaths across the upper Mountain West and coastal California, and
clusters below the mean across the South. The share of Caucasians in the popula-
tion is positively clustered in the North and East and negatively clustered across the
South, particularly in the Southwest, the share of African Americans is positively
clustered in the Southeast and negatively clustered in the North Central region, while
the share of Evangelicals is positively clustered in the South and negatively clustered
in the Northeast, Mountain and Western regions.

The relationships between the clustering of voting returns and the covariates are
not obvious. To shed light on these associations, in Fig. 4 we follow Ansolabehere
et al. (2006) and plot the distributions of the log odds ratio at the county level (see
(1)) for different subsets of the data based on the clustering of the variables in Fig. 3.
We examine how the propensity to vote Republican is distributed across counties
which exhibit significant spatial clustering above or below the means of our subset
of variables by constructing separate kernel density estimates, weighted according
to the distribution of the electorate across the counties in each sample. A right-
ward (leftward) shift of the distributions thus indicates citizens’ propensity to vote
Republican (Democratic). To facilitate comparison we superimpose the plots of the
densities on the reference vote distribution of the national electorate, shown in gray,
whose unimodality at zero is often taken as prima facie evidence against polarization
(e.g., Ansolabehere et al. 2006).

In panel A, the positive clustering of the vote in the center of the country indicates
strongly Republican preferences in the less populous counties there, with counties
that do not exhibit significant clustering leaning slightly Republican, and the more
populous counties that cluster negatively on the east and west coasts with exhibiting
preferences that are moderately Democratic but with a negatively skewed distribu-
tion. A very different picture emerges if we segment the electorate according to the
spatial clustering of fertility, however. In panel B, the large mass of non-clustered
counties mirrors the shape of the aggregate vote distribution, while regions with
families that have less than the average number of children tend to lean slightly
Republican. Surprisingly, clusters of counties with greater-than-average numbers of
kids per family have a bimodal distribution, with similar numbers of voters lean-
ing Republican and Democratic. A similar pattern is exhibited by the influence of
Caucasian populations (panel E), with a higher propensity to vote Republican in
clusters of less racially diverse counties, centrist preferences is counties that are
not clustered, and a bimodal distribution in clusters of counties with smaller-than-
average white populations.

Segmenting the electorate based on the clustering of household income and edu-
cational attainment (panels C and D) yields similar results. Counties belonging
to low-income and low-education clusters seem to have fairly strong Republican
leanings, non-clustered counties show a slight propensity in this direction, and
the preferences of counties in high-income and high-education clusters are largely
centrist, with slight Democratic leanings. In panel F, clustering of counties with
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Fig. 4 Log-odds of voting republican by county clusters

larger-than-average proportions of evangelical adherents is strongly associated with
voting Republican. This influence is less strong but still substantial for counties
where clustering is not significant, are the large number of voters in clusters of
counties with lower-than-average populations of evangelical Christians seem to have
centrist or slightly Democratic preferences. Qualitatively similar patterns emerge on
the basis of indicators local geographic context (not shown). The vote distributions
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for urban and non-urban counties are markedly different, with rural, and espe-
cially suburban, contexts exhibiting a strong propensity to vote Republican (cf.
McKee 2007, 2008; Williamson 2008).

Overall, the spatial agglomeration in both voting returns and selected covariates
is broadly consistent with the predictions of our local entrenchment hypothesis. But
even though agglomeration appears to be somewhat related to divisions in voting
behavior, the precise association is not readily discernable. With the exception of
panel F, Fig. 4 clearly indicates the dominance of the non-clustered subsample’s
influence on the aggregate vote distribution. Thus, although entrenchment might
well be occurring, there is no polarization of electoral returns across easily observ-
able demographic segments of counties’ populations, as anticipated by Fiorina and
Abrams (2008).23 But the key issue is whether, and if so, how, entrenchment might
be affecting the propensity to vote, controlling for demographic characteristics. Our
ability to draw inferences in this regard is limited by the univariate character of
Fig. 4’s distributions, which fails to capture the simultaneous influences of multiple
spatially clustered variables on the vote distribution. To address this issue we turn
to our regression model, which rigorously establishes the statistical associations
between the vote distribution and all of our covariates, controlling for the myriad
patterns of spatial clustering in the data.

5.2 Aggregate-Level Regression Results

Our aggregate-level estimation results are summarized in Table 1. For our preferred
specification, a Lagrange multiplier test of the spatial Durbin model’s errors did not
indicate significant residual spatial autocorrelation (LM D 2:6, p > 0:10), which
in our opinion vindicates our statistical approach. The spatial autoregressive param-
eter is positive and significant (� D 0:3, p < 0:01), and its magnitude suggests
that the spatial clustering of voting behavior is accompanied by substantial endoge-
nous effects, even after demographic and contextual influences are controlled for.24

Moreover, with few exceptions the contextual influences associated with spatial lags
of the covariates share the same sign as their direct counterparts. Thus, although

23 For example, as in racially polarized voting, where whites and non-whites have divergent ideo-
logical preferences which push their vote distributions in opposite directions away from the mean,
like B-II and B-III in Fig 1b.
24 Our results suggest that the “social multiplier” associated with voting in the 2004 U.S. pres-
idential election is around 1.4. This is substantially smaller than the values found by Glaeser
et al. (2003) for the peer effects of college roommates, criminal behavior in cities, or the human
capital spillovers in urban labor markets. This outcome is not surprising given that ballots are
secret, and that even with early voting, individuals are only exposed to the influence of neigh-
bors’ self-announced behavior for at most three weeks. (Although more prolonged exposure might
result from proximity to intensely partisan voters.) It therefore seems more plausible that � is pick-
ing up the influence of correlated effects associated with counties’ common exposure to political
campaigns, and the reflection of that stimulus in their residents’ everyday social interactions.
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Table 1 Spatial Durbin model results

Direct effects .ˇ/ Spatial lag effects .�/

% Fam. inc. <$15k �0:010 .0:034/ �0:543 .0:233/��

% Fam. inc. $15–35k 0:193 .0:058/
���

0:592.0:371/

% Fam. inc. $35–75k �0:363 .0:063/��� �1:300 .0:413/���

% Fam. inc. $75–150k �0:095 .0:033/���

0:184.0:241/

%<9th grade 0:064 .0:023/
���

0:198.0:126/

% Some high school 0:255 .0:035/
��� �0:211.0:212/

% High school grad. 0:512 .0:059/
���

0:404.0:352/

% Some college 0:473 .0:052/
���

0:565 .0:324/
�

% Bachelor’s degree 0:091 .0:031/
���

0:332 .0:192/
�

% White only 0:953 .0:037/
��� �0:322 .0:153/��

% Latino 0:009 .0:010/ 0:086 .0:045/
�

% Foreign-born �0:006 .0:009/ �0:159 .0:049/���

% Fem. H. H. No husb. �0:646 .0:037/��� �0:040.0:217/
Avg. family size 1:478 .0:380/

��� �0:989.2:326/
Avg. kids per family 0:426 .0:122/

���

1:364 .0:781/
�

% Veterans �0:068 .0:039/� 0:217.0:214/

% Evangelical 0:003 .0:005/ 0:080 .0:029/
���

% Mainline protestant 0:006 .0:006/ �0:153 .0:041/���

% Catholic �0:004 .0:002/� 0:016.0:022/

% Unclaimed 0:027 .0:012/
��

0:232 .0:063/
���

Median HH inc. 0:383 .0:092/
���

0:314.0:498/

% Unemployment �0:079 .0:018/���

0:012.0:085/

% Workforce agric. 0:026 .0:008/
��� �0:106 .0:052/��

% Workforce mfg. 0:038 .0:010/
���

0:071.0:053/

% of nat’l electorate �0:005.0:009/ �0:227 .0:056/���

% Work outside cnty. �0:025 .0:012/�� �0:293 .0:081/���

Avg. travel time �0:276 .0:040/��� �0:474 .0:258/�
Pop. change 2000–03 0:646 .0:166/

���

1:314.0:907/

Suburban county �0:070 .0:017/��� �0:236.0:183/
Rural county �0:052 .0:015/��� �0:099.0:141/
GMB �0:063.0:182/ �1:735 .0:396/���

GMB � % Evangelical 0:473 .0:079/
���

0:797 .0:438/
�

� 0:297 .0:063/
���

LR test 18:759 ���

Log likelihood �43:62
ML residual variance 0:060

AIC 405:23

LM resid. autocorrelation 2:622

The dependent variable is the log odds of voting Republican (eq. 2); asymptotic standard errors in
parentheses; �p < 0:1, ��p < 0:05, ���p < 0:01
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the various characteristics of populations and places influence county-level voting
returns in different directions, these effects are almost uniformly amplified by their
geographic context. These, we argue, are powerful pieces of evidence in support of
the local entrenchment thesis.

Income, Income Distribution and Housing: Counties with higher median house-
hold incomes are significantly more likely to vote Republican, consistent with
Kim et al. (2003). Simultaneously, however, having high proportions of families
with moderately high and particularly middle incomes ($35–$150;000) signifi-
cantly lowers the odds of voting Republican, as does proximity to larger popula-
tions of the poorest families (<$15;000). Larger shares of low-income households
($15–$35;000) have the reverse effect. The fact that we drop the proportion of fam-
ilies with the highest income (>$150;000) from the regression to avoid collinearity
then suggests that the propensity to vote Republican varies with income according
to a U-shaped distribution. Once the spatial dependence in the data is accounted for,
housing values do not have a significant effect.

Education: Surprisingly, larger proportions of persons at all levels of educational
attainment are significantly associated with higher odds of voting Republican. As
before, we interpret this result in light of the fact that we drop the proportion
of highest-attaining persons (those with postgraduate training) to avoid collinear-
ity. The suggestion is that the propensity to vote Republican varies with education
according to an inverted U-shaped distribution, with larger proportions of very low
and very high attaining individuals substantially reducing the propensity to vote
Republican. Interestingly, contextual influences amplify these forces in both direc-
tions, with the odds of voting for Bush reinforced by clustering of individuals with
some post-secondary education and attenuated by clustering of college graduates.

Race and Ethnicity: The influences of Asian- and African-American populations
were tiny and not statistically significant, which led us to drop these variables from
the model. Proximity to higher proportions of persons of Latin American origin
is associated with increased odds of voting Republican. The proportion of persons
reporting purely Caucasian origins has a similar influence, but its magnitude is an
order of magnitude larger. Interestingly, the coefficient on the spatial lag of this
sub-population has the opposite sign. The likely reason is that core metro counties,
which on average had larger minority populations, tended to vote for Kerry in signif-
icantly higher numbers relative to their surrounding suburban counties, which had a
significantly higher proportion of white residents.25

Age, Sex and National Origin: The percentages of the elderly and voting age
females in the population did not appear to significantly influence the 2004 vote.
However, proximity to clusters of persons born outside the United States had a small
negative impact on the odds of voting Republican.

Moral/Family Values: The effect of the share of divorced or separated individuals
in the population was not significant, in line with findings of the broad acceptance of
this social phenomenon (e.g., Thornton and Young-DeMarco 2001). The proportion

25 Kruskal-Wallis rank-sum tests indicated significant differences between suburban and core metro
counties’ distributions of the vote and the proportion of the population self-identifying as white
only.
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of households headed by a single female was strongly associated with lower odds
of voting for Bush, while the corresponding spatial lagged variable is not signif-
icant. This result appears less consistent with the “values-voter” hypothesis than
with interest group behavior by poor single mothers, who, as the principal ben-
eficiaries of the American welfare system (Gensler 1996) were directly impacted
by Republican-initiated conservative social policies such as accelerated welfare-
to-work transitions (see, e.g., Allard 2007). The direct effects of higher average
fertility and, especially, larger family sizes were significant and positive. The odds
elasticities for family size and proximity to large populations of children are both
particularly large, and the similarity in their magnitudes is not surprising given these
variables’ high correlation.

Iraq/War on Terror: Our proxies for the spatial distribution of attitudes to U.S.
foreign policy perform poorly. The proportion of active duty personnel in the popu-
lation is not significant, while the effect of the proportion of veterans is positive and
significant, but small. Thus, bearing in mind the significant limitations of our data,
we find little evidence that in 2004 security concerns trumped values in influencing
voter behavior (cf. Hillygus and Shields 2005).

Religious Affiliation: We do not find that the shares of adherents to various reli-
gious denominations and substantially increase the odds of voting Republican. The
share of Catholics and the spatially lagged percentage of mainline Protestants in the
population both have small, negative and significant effects, while the spatial lag of
the proportion of Evangelicals is significant, positive and not as large, and the frac-
tion of persons with no religious affiliation is significantly positive in the spatial lag
and spatial error models. These results are consistent with previous evidence of low
turnout among conservative protestants (Manza and Brooks 1997; Woodberry and
Smith 1998), as well as the conclusion that religious issues on their own made little
difference to the outcome of the election (Hillygus and Shields 2005; Campbell and
Monson 2008).

Employment: High unemployment rates are associated with significant reduc-
tions in the odds of voting Republican (consistent with Kim et al. 2003), while the
fractions of the workforce in agriculture and manufacturing both have the oppo-
site effect. As well, the coefficient on the spatial lag of agricultural employment
is negative, which appears to reflect the fact that suburban counties have signifi-
cantly lower agricultural employment than their surrounding rural counties without
significant differences in their vote distributions.26

Local Geographic Factors: The rate of population increase has a large, positive
and significant effect of the odds of voting for Bush, whereas travel time to work,
the fraction of population commuting outside the county, being a suburban or rural
county, or neighboring a more populous county all have smaller negative impacts.
The association between a higher propensity to vote Republican voting behavior
and rapid growth of the population reflects the effect of migration on spatial sort-
ing along ideological lines, and is consistent with Gimpel and Schuknecht’s (2001)

26 Kruskal-Wallis tests indicated significant differences between suburban and rural counties’
distributions of the proportion of jobs in agriculture, but not their voting patterns.
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finding that interstate in-migration has aided Republicans whereas out-migration
has aided democrats. The influence of commute time may simply reflect the fact
that voters in the highly urbanized and strongly Democratic areas of the northeast
and the west coast live closer to where they work and thus enjoy shorter commutes.
But it also suggests a higher probability of counties’ residents being exposed to
social contexts that are potentially differ from their own neighborhoods, with conse-
quent inward diffusion of a diversity of political ideas and beliefs (cf. our discussion
of process 4 in the previous section), which would tend to mitigate local entrench-
ment. The sign of the effects of suburban and rural dummies is at odds with previous
findings (McKee 2007, 2008; Williamson 2008), indicating that once contextual and
endogenous factors are controlled for, the environment in these types of locales does
not appear to strongly increase – or, for that matter, reduce – the propensity to vote
Republican.

Gay Marriage Bans: Surprisingly, we find that at the national level, the GMB
dummy has a consistently negative, but indirect, impact on the odds of voting
Republican.27 Nevertheless, the interaction between the GMB dummy and the evan-
gelical population has strongly positive direct and indirect effects. These two results,
taken together with our prior finding that the concentration of evangelical adher-
ents appears to have little effect on its own, are consistent with Campbell and
Monson’s (2008) conclusion that the state ballot initiatives to ban same-sex mar-
riage served to increase turnout among moral conservatives. If one compares the
magnitudes of the two sets of coefficients, the most interesting feature is the sug-
gestion that at the aggregate level the ballot initiatives may have provoked a backlash
which was big enough to compensate for its positive (direct and indirect) influences
on evangelical turnout.

These results confirm both the existence and importance of effects that are consis-
tent with local entrenchment. Furthermore, the fact that the prevalence of minority
populations and our proxies for voters’ economic status and orientation on moral
values end up having the strongest influence suggests that these are key dimen-
sions along which there was significant segmentation of the American electorate in
the 2004 election. Nevertheless, our conclusions are tempered by the fact that the
elasticities in Table 1 are national averages that do not indicate how these divisions
might have played out spatially. To shed light on this question we turn to the results
of our GWR analysis.

6 Geographically Weighted Regression

Our GWR results are summarized in Fig. 5. Estimation of the model was plagued by
multicollinearity between the average number of kids and the average family size by
county, which led us to drop the former variable from our specification. The residual

27 Given our coding of GMB as a state dummy variable, the significance of the indirect spatial lag
(as opposed to the direct) coefficient is to be expected, as it is by definition a wide-area effect.
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Fig. 5 Geographically weighted regression results

variance and the AIC statistic indicate an improvement in the fit over the spatial
Durbin model above, and the distribution of local R2 values, which ranges from
0.47 to 0.97 with a mean of 0.73, suggests that the GWR model’s overall ability
to account for the local spatial variation in the dependent variable is quite good.
Our optimal bandwidth estimated through crossvalidation is substantially larger than
the one used to compute the weights in the spatial Durbin model, with the result
that the global values of the GWR parameters

� N
�
differ slightly from the odds

elasticities of the previous section.28 Even so, the overall results are basically the
same. With the exception of family size, all of the parameters are less than one in

28 Globally, the signs and relative magnitudes of the estimates are similar. However, the magnitudes
of almost half of the estimates shrink while the rest increase. The median values of the parameter
distributions are in closer agreement with the signs of our spatial Durbin estimates, though slight
differences in their magnitudes persist.
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absolute magnitude, which suggests that on average most covariates do not exert
overwhelmingly large effects on the electoral returns.

Looking beyond averages, we see that the most important features of the county-
level results are the variance of the parameter distributions, and the considerable
spatial heterogeneity in the magnitude and sign of the influences of our covariates
on the election returns. Our estimates can be classified into three types: (i) variables
whose overall impact is large enough to be definitively signed, especially population
change, household income and family size, (ii) those whose global impact is neg-
ligible but whose spatial variation is large, such as the proportions of veterans and
very poor households, and GMB and its interaction term, and (iii) those whose aver-
age impact and its cross-county variance are both small – the category into which
the majority of variables falls.

None of the covariates whose average estimates are significantly positive or neg-
ative exhibits tight clustering of their effects on individual counties’ propensity to
vote. Furthermore, once we control for the influences of other attributes, GWR does
not produce not a simple relationship between the cross-county variation in a par-
ticular factor (i.e., column of X ) and the variation exhibited by that factor’s odds
elasticities (i.e., the corresponding column of 
c in (6)). These results are consistent
with our previous findings, and reinforce the point that the electorate is not polarized
along easily observable demographic lines. While characteristics such as median
household income, average commute time, and the proportions of Caucasians, per-
sons in middle income families, and households headed by single females come
closest in this regard, with average effects that are large and either significantly pos-
itive or negative in at least three-quarters of our sample, even they exhibit substantial
non-stationarity.

Category-(i) covariates (above) which seem most likely to shift the vote in a
particular direction exert the opposite impact in a substantial minority of coun-
ties, and category-(ii) covariates exhibit effects of similar intensity but opposite sign
in equally large numbers of counties. Due to the local character of the regression,
these attributes are the ones for which the dependence of counties’ odds of voting
Republican on similar propensities among their neighbors will be the most obvious.

To test this proposition we examine the patterns of agglomeration in the odds
elasticities with large spatial variation. Our strategy is to once again compute local
Moran’s I statistics, this time for the vector of parameters associated with each
covariate .
c/, and, as in Fig. 3, display the results as a series of significance
maps.29 The results appear in Fig. 6, which illustrates the striking spatial trends
of agglomeration in our estimates. The effect of each of the six characteristics on
the propensity of a particular county to vote Republican or Democratic depends on
how that attribute influences the ideological leaning of its neighbors, which exert
an amplifying effect within the clusters. While our GWR model is not able to iden-
tify either the precise channels through which these feedbacks operate, or how their

29 In conducting these analyses we employ our original 200-km bandwidth kernel.
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Fig. 6 Local Moran’s I significance maps of GWR odds elasticities

signs and intensities vary, it is nonetheless clear that the clustering in Fig. 6 reflects
the influences of the spatially lagged variables seen in the previous section.

It is a challenge to even describe – not to mention intuitively account for the ori-
gins of – these patterns (Sue Wing and Walker 2005). Accordingly, we move directly
to comparing the distributions of the elasticity values for counties within and outside
the various clusters in Fig. 6. The latter results are summarized in Fig. 7 as kernel
density estimates of the distributions of odds elasticities that are weighted by coun-
ties’ shares of the national electorate and segmented according to their propensity to
cluster significantly above or below their respective means. The distributions bear
a striking resemblance to Fig. 1b, especially the influence of family size (panel B),
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Fig. 7 GWR odds elasticities of voting republican by county clusters

for which 54% of the electorate tended to cluster below the mean and 17% clus-
tered above, and median household income (panel D), for which the corresponding
proportions are 24 and 48%. We note that these variables have multimodal aggre-
gate distributions with fairly large variances, especially the effect of family size,
with its long upper tail. The distributions of spatially-clustered elasticities for com-
mute time and the proportion of Caucasians (panels A and E) are also bimodal, with
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18% (21%) of the probability mass in the former (latter) case clustered above the
mean and 55% (46%) clustered below. By contrast, the distributions for population
change and the proportion of middle income families (panels C and F) exhibit a
greater degree of central tendency, with the majority of voters in residing counties
that are not significantly clustered in one way or the other.

These results support our hypothesis that local entrenchment is associated with
polarization of the electorate. We uncover similar evidence in the distributions of
spatial clustering of other, less wide-ranging odds elasticities, but we leave the elab-
oration of these details to future work. Our findings underscore the subtle point
that polarization is an inherently multidimensional phenomenon. Stepping back, it
is clear that the overall picture is not as simple as the one articulated in popular
discourse – we show that despite the fact that votes for different parties cluster
regionally, they are not concentrated in disjoint subsets of the electorate. Rather,
along dimensions such as race, income, and indicia of family values the United
States appears to be divided into disjoint swaths of geographically contiguous coun-
ties, with the same attribute amplifying the propensity to vote Republican in one set
of regions while simultaneously exerting the opposite influence in another.

Given this, it is easy to see why a simple pattern of red and blue states does not
arise: it is not the case that the same counties cluster above or below the mean along
all, or even most, dimensions of the space of characteristics. A particular county’s
odds elasticities might be in a “high-high” cluster in some dimensions, while in
other dimensions they might be in a “low-low” cluster – or not belong to a cluster
at all. The county’s ultimate propensity to vote one way or another is the scalar
product of these varying local odds elasticities and its actual characteristics (i.e.,
Xc
c), which generally differs from the influence that an individual characteristic
(given by the relevant element of 
c) might have. The implication is that in the
U.S. context, electoral polarization should be thought of as a series of cross-cutting
divisions that manifest themselves not between population sub-groups but within
individual sub-groups over space.

We close by qualifying this conclusion with an important caveat. Wheeler and
Tiefelsdorf (2005) find that the GWR algorithm can potentially induce spatial bias
in the local parameter estimate that is sufficiently large to invalidate their meaning-
ful interpretation.30 The considerable spatial dependence in our GWR results might
then lead one to question the extent to which we are able to trust the local values of
the odds elasticities, and in particular their patterns of clustering which are the basis
of our inferences about polarization. To address this issue, we follow Wheeler and
Tiefelsdorf’s (2005) recommendations and examine the extent of local and global

30 These authors find that a simple model with two independent variables, the coefficients asso-
ciated with each covariate may exhibit collinearity even if the underlying exogenous variables in
the data generating process are uncorrelated, and a high degree of spatial correlation between two
covariates increases the potential for the two sets of coefficients to exhibit interdependent, spa-
tially opposing patterns of effects. In both cases the upshot is spurious spatial trends in the GWR
estimates.
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Fig. 8 GWR odds elasticities: global and local correlations

correlation among the six sets of odds elasticities in Figs. 6 and 7. The results of our
robustness tests are summarized in Fig. 8 as scatterplots of the coefficient estimates
(upper panels) and distributions of their local correlations (lower panels). The odds
elasticities are not globally correlated, but there are indications of correlation at the
local level, particularly between the effects of average family size and the propor-
tion of Caucasians in the population, and population change and median household
income. These tests are not conclusive. But in the absence of strong prima facie evi-
dence of bias we are confident that our results stand. In any event, there is no easy
way to remedy the effects of spatial multicollinearity within the analytic framework
developed here. Quite likely, efforts in this regard will require an entirely separate
program of analysis and testing (e.g., along the lines of Wheeler 2007). The best we
can do given the constraints of available space is to flag this issue as a priority for
future research.
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7 Conclusion

This paper sheds new light on the fundamental role of geography in determining
both the outcome of the 2004 U.S. presidential election, and the polarized character
of the American electorate more generally. Our guiding hypothesis is that polariza-
tion of the U.S. electorate has occurred over space and is attributable to a process of
local entrenchment, whereby a variety of social forces amplify county populations’
propensity to vote Republican or Democratic.

Analyzing data from a large sample of counties in the lower 48 states, we find the
influences on voting behavior associated with contextual and endogenous factors to
be broadly consistent with the predictions of our thesis, with considerable spatial
clustering in both electoral returns and the characteristics of populations and places
clearly pointing to the amplification of the effects on the vote of the attributes of
populations and places. A much richer picture emerges when we explicitly account
for the geographic variations in these estimates. At the global level, our GWR odds-
elasticities basically agree with the results of our aggregate-level analyses, while at
the local level exhibiting substantial heterogeneity in both magnitude and sign, and
strong spatial trends. The latter imply that in the U.S. context electoral polariza-
tion is not synonymous with segmentation across population sub-groups following
observable demographic characteristics. Rather, polarization appears to be a phe-
nomenon which occurs within individual sub-groups across space. Furthermore,
geography matters in ways that are crucial, but not easily explained using aggre-
gate data analysis. It is not simply the case that the spatial distribution of population
characteristics drives the interregional differences of voting patterns observed in the
2004 presidential elections. Rather, the latter emerge from the reinforcing influence
of the local social context on the effects of the racial composition, income, and, less
tangibly, social values of counties’ populations.

Our hope is that this study will motivate geographers and political scientists
alike to employ disaggregate individual data to account for the detailed social
mechanisms that give rise to these broad spatial trends.
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Gender Wage Differentials and the Spatial
Concentration of High-Technology Industries

Elsie Echeverri-Carroll and Sofı́a G. Ayala

1 Introduction

Moretti (2004) finds that the distribution of human capital across cities in the United
States became more unequal during the 1990s. He believes that one reason for the
increased concentration of human capital in some metropolitan areas was the high-
tech boom of that decade, since it benefited a handful of already highly skilled cities.
This trend reflects the decisions of skilled workers and the skill-intensive industries
that employed them to colocate in the same cities or regions (high-tech clusters).
Zucker et al. (1998), for instance, find that the entry decisions of new biotechnology
firms in cities depends on the stock of human capital in outstanding scientists there,
as measured by the number of relevant academic publications. Colocation benefits
workers (who enjoy the productivity-enhancing effects associated with local learn-
ing processes) as well as high-tech firms (which profit from highly productive and
creative workers who enhance the firms’ innovation processes).

The primary cooperative linkages in high-technology clusters are those related
to knowledge exchange. As Fingleton (2004) note, sharing knowledge is the key
to the generation and maintenance of innovation flows that are particularly relevant
in these clusters. A strong evidence of the learning networks-innovation relation-
ship comes from studies showing that patents (a proxy for innovations) are more
likely to emerge from the same states or metropolitan areas as the cited patents than
one would expect based in the preexisting concentration of related research activity
(Jaffe et al. 1993).

Several previous empirical studies show that workers are more productive and
make higher wages in cities with a large concentration of human capital (Rauch
1993; Echeverri-Carroll and Ayala 2004, 2006; Glaeser and Maré 2001; Acemoglu
and Angrist 2000; Ciccone and Peri 2006; Moretti 2004). These studies attribute the
higher productivity of workers in cities rich in human capital to knowledge exter-
nalities that arise when the presence of educated workers makes other workers more
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productive. Marshall (1890) was among the first to recognize that social interactions
among workers create learning opportunities that enhance productivity.

As far as we are aware, all the work to date has considered the effect of a
city’s human-capital externalities on male wages only (Yankow 2006; Glaeser and
Maré 2001; Acemoglu and Angrist 2000; Echeverri-Carroll and Ayala 2009), or
on wages of a sample of workers of both genders combined (Rauch 1993; Glaeser
et al. 1992; Black and Henderson 1999; Ciccone and Peri 2006; Moretti 2004). In
the present study, we examine the effect of human-capital externalities separately
for women and men in the United States on the basis of data from the 2000 Census
of Population.

This chapter presents empirical evidence of the effects on wages of living in a
city with a large endowment of human capital separately for college-educated men
and women. A key difference of our study from previous ones is that we focus
on human-capital externalities in high-tech relative to low-tech cities. Our interest
is on technology-oriented learning processes that affect technical innovations. On
the contrary, previous studies proxy human-capital externalities by variables such
as the average level of education in the city, capturing the knowledge externalities
occurring in any field – including those that are not technology oriented (such as
music, theater, English, or cooking).

Three questions interest us. First, do wage differences between high-tech and
low-tech cities exist for female workers as they do for male workers? Second, are
the wage differences between high-tech and low-tech cities across genders statisti-
cally significant? Third, of the overall wage gap between male and female workers,
what proportion is due to: (a) differences by gender in the patterns of high/low-tech
city wage differentials, (b) differences in the distribution of male and female work-
ers among high-tech cities, and (c) differences by gender in productivity-related
factors?

Our research is close to the analysis by McCall (1998) on the effects of clustering
high-technology manufacturing and service industries on wage premiums for men
and women. She finds that regions specializing in high-tech manufacturing and ser-
vices are associated with a higher absolute level of gender wage inequality among
the college educated. In her view, existing transformations of the economy based on
technology advances in manufacturing and services are biased toward well-educated
male workers, even though women as well as men receive wage premiums relative to
the average labor market. This finding is consistent with temporal trends that show
smaller declines over time in the gender wage gap for college-educated workers
(Blau and Kahn 1994).

McCall (1998) does not correct for the potential endogeneity of the high-tech
employment concentration variable. Her results may reflect the selection effect of
relatively more-educated or higher-ability male and female workers choosing to
locate in cities with a large proportion of local employment in high-tech manu-
facturing and services. Moreover, she measures spatial clustering as the proportion
of employment in high-tech manufacturing and services. This measure does not
account for industry-city scale effects (explained later). Our empirical strategy
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deals with both of these issues. First, we manage the possible endogeneity of
the high-tech-city variable by using an instrumental variable (IV) approach. Sec-
ond, we use the horizontal clustering measure to estimate high-tech-employment
concentration with respect to the national average.

For both sexes, we find that the high-tech-city coefficients are significant at the
1% level. In addition, high-tech-city effects appear approximately 30% greater for
men than for women. Indeed, the high-tech-city wage elasticity is 0.13 for women
and 0.17 for men. Using a standard t-test, however, we find no significant differ-
ences between the regression coefficients of both sexes. Hence, there do not seem
to be gender disparities in the effect of high-tech city on wages, although there are
statistically significant male and female wage premiums associated with living in a
high-tech city.

Another indicator of gender differences comes from a decomposition of the over-
all gender wage gap using the Oaxaca (1973)–Blinder (1973) decomposition. We
find that the overall gender wage gap, measured as the difference between mean log
wages of male and female workers, stands at 0.25. This outcome indicates that the
average female college-educated worker earns 75% of the mean male wage. More-
over, depending on which gender wage structure is used, the results illustrate that a
very small percentage, between 0.02% and 0.03%, of the overall gender wage gap
can be explained by the fact that (on average) women live in cities where the propor-
tion of high-tech employment is lower. Our findings suggest that between 0.235%
and 0.239% of the overall gender wage gap derives from differences between
high-tech-city wage elasticities for men and women. The latter result should be
interpreted with caution, however, because the wage elasticity in a high-tech city is
not significantly different for both sexes.

The remainder of this chapter is organized as follows. Section 2 reviews the lit-
erature of human-capital externalities, interindustry gender wage differentials, and
case studies of high-tech regions. In this context, it analyzes why we would expect
gender skill-based wage differences across high-tech and low-tech cities. Section 3
describes our data and the variables used in the statistical analysis, including our def-
inition of high-tech cities. Section 4 explains our econometric approach. Section 5
presents the results from our OLS and IV models of the effects of high-tech cities
on urban wages by gender, and discusses the validity of our instruments. Section 6
introduces the Oaxaca (1973)–Blinder (1973) decomposition. Section 7 contains our
conclusions.

2 High-Tech Cities and the Gender Gap

Starting in the 1980s, the economy bifurcated into two interrelated worlds of
industries ruled by different economics. As Arthur (1996, p. 100) explains, “: : :
diminishing returns hold sway in the traditional part of the economy – the process-
ing industries. Increasing returns reign in the newer part – the knowledge-based
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industries.”1 In this regard, Teece (2002) observes that the economy has undergone
a transformation largely from the processing of raw materials and the manufacturing
of products to the processing of information along with the development, applica-
tion, and transfer of new knowledge. As a consequence, diminishing-returns activ-
ities have been replaced by those involving increasing benefits in knowledge-based
industries.

Teece (2002) notes that increasing returns relate to mechanisms of positive
feedback that reinforce the winners and challenge the losers. In our view, these
feedback processes are not only related to industry-specific externalities2 but also
to location-specific externalities (human-capital spillovers) that tend to perpetu-
ate the agglomeration of knowledge-based firms in the same few core regions
(Malecki 1981). Saxenian (1994) describes how knowledge externalities in Silicon
Valley are associated with a region where relationships are easily formed and
maintained, technical and market information is exchanged, new enterprises are
conceived, and networks are developed. Storper and Venables (2003) point out that
knowledge “rubs off” on people in places such as Silicon Valley or London. The
result is that people in these “buzz cities” should be highly productive because they
interact and cooperate with other high-ability people, are well placed to commu-
nicate complex ideas with them, and are highly motivated.3 In their view, to be
able to reap these benefits in full almost invariably requires colocation rather than
occasional interludes of face-to-face contacts.

This chapter deals with gender wage differences in high-tech cities, defined as
those cities with higher-than-expected employment in high-tech industries. In this
regard, it is important first to review what we know about gender wage differentials
across industries, which empirical analyses have shown to be large and persis-
tent even after controlling for a broad set of worker characteristics. These studies
report that workers of the same quality may receive different wages depending on
the industry in which they work (Edin and Zetterberg 1992; Krueger and Sum-
mers 1988). Yet, as noted by Gannon et al. (2007), it is surprising to observe that the
evidence regarding the interplay between gender wage gaps and interindustry wage
differentials is limited. To our knowledge, only two previous studies have focused
on this interplay – an earlier paper by Fields and Wolff (1995) and the more recent
one by Gannon et al. (2007).

Using the 1988 U.S. Current Population Survey, Fields and Wolff (1995)
find significant industry wage differentials for women and men after controlling

1 Returns to scale refers to a technical property of production that examines changes in output sub-
sequent to a proportional change in all inputs. There are constant returns to scale if output increases
by that same proportional change, and increasing (decreasing) returns to scale if it increases by
more (less) than that proportional change.
2 Teece (2002) explains that positive industry-specific feedbacks are associated with standards
and network consumption externalities. For instance, if standards are proprietary, ownership of
a dominant standard can yield significant rents.
3 The authors introduce the concept of “buzz cities” resulting from the increasing importance of
colocation of economic activities that involve the exchange of tacit knowledge or complex ideas.
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for productivity-related individual characteristics. Gannon et al. (2007) study
interindustry wage differentials in six European countries: Belgium, Denmark, Ire-
land, Italy, Spain, and the United Kingdom. Their results show that even when
controlling for working conditions, as well as for individual and firm characteristics,
gender wage differentials exist between workers employed in different industries.
They find that (on average) women have an interindustry wage differential of
between 11% and 18% below that of men, and that industry effects explain between
0% and 29% of the overall wage gap.

Fields and Wolff (1995) review the literature on interindustry wage differentials
and conclude that four models explain them. High wages will be paid in industries in
which monitoring is difficult and the failure of workers to perform up to standards
is costly (shirking model). High wages are also a firm’s strategy to reduce labor
turnover (turnover model), to attract a better-quality workforce (selection model), or
to improve morale among workers (sociological model). Perhaps the most appropri-
ate model to explain the well-documented fact that high-tech firms (and industries)
pay higher wages than their low-tech counterparts is that they need to attract the
best engineers and scientists to develop new products and processes continuously
(selection model). These models do not, however, explain gender wage differences
across industries, nor how the geography of knowledge spillovers impacts gender
wage differences.

At least one reason why workers who live in a high-tech city might be observed
to have higher wages than those who do not is that knowledge is a partially nonex-
cludable good. Thus, it generates externalities or spillovers. Therefore, creators or
owners of knowledge cannot always exclude others from making unauthorized use
of it (Grossman and Helpman 1991).4 Living in a high-tech city facilitates access
to tacit information (knowledge). Therefore, a tech-city wage premium exists for
workers who might have above-average market productivity. Access to knowledge,
to the extent that it increases labor productivity, translates into higher wages. Indeed,
Echeverri-Carroll and Ayala (2009) present evidence of a tech-city wage premium of
approximately 4.6% for male workers. Here we question: Is there a smaller/higher
high-tech-city wage premium for female workers?

McCall (2001) finds that the average gender wage gap in the United States is
significantly greater in high-tech services and high-tech manufacturing regions than
in low-tech ones. She explains that if high-tech industries adopt technologies that
are biased toward well-educated male workers, even though women as well as men
received wage premiums relative to the average labor market, regions specializing in
high-tech manufacturing and services would be associated with higher gender wage
inequalities, especially among the college educated.

The literature reviewed in this section shows significant industry wage differ-
entials for women and men. Thus, female and male workers of the same quality
receive different wages in the same industry. These gender wage inequalities result
not only from gender differences in skills but also from industry-specific gender-bias

4 Excludability of a good reflects both legal and technological considerations.
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strategies such as the adoption of technologies that favor men. Our focus in this
chapter is on the effect on gender wage inequality of knowledge externalities asso-
ciated with the “informal” networks prevalent in high-tech cities (Saxenian 1994).
Our hypothesis is that the possible exclusion of women, fully or partially, from city-
based “informal” networks could intensify the gender wage gap across high-tech
and low-tech areas associated with industry-specific gender-bias policies. Empiri-
cally, it means that even after controlling for whether a worker works in a high-tech
industry or not, we still find gender wage differences associated with living in a
high-tech city.

3 Data and Variables

This two-part section describes the data used in our econometric analysis. In the
first part, we explain variables at both the individual and city levels (non-high-tech
related) and their data sources. In the second part, we define and provide the data
sources for two high-tech variables: high-tech city and high-tech industry.

3.1 Non-High-Tech Variables

We use a sample obtained from the 5% Public Use Microdata Sample (PUMS) of the
2000 Census of Population. Our sample is comprised of male and female workers
with both a college education and a strong attachment to the labor market (full-
time workers): those aged 18–65 working full time (at least 35 hours per week),
neither self-employed nor in the military, and who worked at least fourteen weeks
in the year preceding the census. Using those parameters, we obtained samples of
484,899 and 396,143 college-educated male and female full-time workers respec-
tively residing in the hundred most populous cities (MSAs/PMSAs). We chose only
the top hundred metros because 76% of the total urban population in the United
States lived in those metro areas in 2000.

Our dependent variable is the logarithm of hourly wages (annual wage and
salary earnings divided by the product of weeks worked and usual weekly hours).
Our independent variables (from human-capital theory) identify observed individual
characteristics that affect wages, such as years of college education and its square,5

potential level of experience (age minus years of schooling minus six), and poten-
tial experience squared. Other independent variables included in our analysis are
five general occupational categories, with services being the omitted occupational

5 Although our sample includes only college-educated workers, we thought that it was important to
include the variable years of education to capture differential effects beyond undergraduate college
education.
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category.6 Marital status is 1 if the individual is married, race is 1 if the individual is
nonwhite, and disability is 1 if the individual has a personal health limitation. These
variables are from the 5% PUMS of the 2000 Census of Population.

We also control for city-level variables shown by previous research to affect vari-
ation of wages among individuals (Rauch 1993; Echeverri-Carroll and Ayala 2009).
In particular, we control for a city’s climate as well its proximity to a coast or the
Great Lakes. Climate is a composite score that ranges from 0 (poor weather) to 100
(mild weather). A dummy variable for coastal location equals 1 if an MSA/PMSA
borders an ocean or any of the Great Lakes, and 0 if not. We also control for the
arts endowment in a metro area and for the census region where the city is located.
Art is a composite score that ranges from 0 (the lowest arts endowment) to 100
(the highest).7 Data for climate, coast, and art comes from the 2000 Places Rated
Almanac.

In a recent paper, Henderson (2007) notes that most empirical work on urban
knowledge spillovers does not distinguish between localized knowledge effects and
agglomeration economies. In his view, failure to do so could confound and over-
estimate the actual effects on productivity of the selected proxy for knowledge
externalities with other effects resulting from the agglomeration of people and eco-
nomic activity. Indeed, he points out that a proxy for agglomeration economies is an
essential regressor in econometric models (like ours) that try to measure the effects
of localized knowledge externalities on wages. We control for agglomeration effects
using MSA/PMSA population from the 2000 Census of Population.8

3.2 High-Tech Variables

For high-tech indicators, we employ two variables in our econometric analysis. The
first is a control for whether the individual works for a high-tech industry – a dummy
variable equal to 1 if this is the case (and 0 otherwise). The second, a variable that
conceptualizes the purpose of our research, is a dummy equal to 1 if the individual
lives in a high-tech city (and 0 otherwise). To understand more clearly the concept of
high-tech cities, we first need to define high-tech industries because high-tech cities
are simply cities with employment higher than expected in high-tech industries.

6 Services includes the following occupations: health care support, protective services, food prepa-
ration and serving related occupations, building and grounds cleaning and maintenance, and
personal care and services.
7 The highest score is given to metropolitan areas with the larger number of art museums, annual
museum attendance, per capita museum attendance, annual ballet performances, touring artist
bookings, opera performances, professional theater performances, and symphony performances.
8 Some evidence suggests that the productivity of all types of labor (and therefore wages) rises
with the size of a city (Segal 1976; Shefer 1973; Sveikauskas 1975). Others, like Garofalo and
Fogarty (1979), believe that only the productivity of skilled labor rises with city size. Thus, there
is consensus that city size increases the productivity of skilled workers, but there is disagreement
about its effects on unskilled labor.
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Although there is no single authoritative definition of high-technology industries
(or firms), there is wide agreement on their general characteristics (Hecker 1999).
The Office of Technology Assessment (1982) describes high-technology firms as
those engaged in the design, development, and introduction of new products and/or
innovative manufacturing processes through the systematic application of scientific
and technical knowledge. To classify firms or industries by their relative innovative-
ness, studies use a large variety of proxies for innovations (Chapple et al. 2004). In
most current studies, though, the main proxy used is the employment of scientific
and technical workers (Hecker 1999; Chapple et al. 2004; Yu 2004).9 High-tech
industries are those with a large proportion of workers in scientific and technical
occupations or technology-oriented occupations (Richie et al. 1983).

Many studies from the U.S. Department of Labor define four Standard Occupa-
tional Categories as technology-oriented occupations: engineers, life and physical
scientists, computer professionals and mathematicians (except actuaries), and engi-
neering, computer, and scientific managers (Hadlock et al. 1991; Hecker 1999,
2005; Luker and Lyons 1997). Workers in these occupations need in-depth knowl-
edge of theories and principles of science, engineering, and mathematics. Such
knowledge is generally acquired through specialized post-high-school education –
ranging from an associate degree to a doctorate – in some field of technology. Recent
studies exclude from these four broad occupational categories those at the assistant
and technician levels (Chapple et al. 2004; Yu 2004). We adopt the more recent
definition under the premise that high-tech industries are defined mainly by their
innovativeness, a variable more easily captured by technology-oriented workers
with at least a college degree.

Following Hecker (1999) and Chapple et al. (2004), we calculate the number
of technology-oriented workers (TOW) in each four-digit NAICs industry using
the 2002 Occupational Employment Statistics (OES) from the Bureau of Labor
Statistics. A limitation of the survey is that OES censors employment data for cer-
tain occupations. We find that the underestimation of TOW that arises from this
censoring, however, is relatively small.10

Hecker (1999) classifies an industry as high tech if its percentage of TOW is
at least twice the national average, but Chapple et al. (2004) require at least three
times the national average. OES data show that the average of TOW, for all 294
industries (four-digit NAICS) in the United States, was 3.15% in 2002. Thus, we
classify industries as high tech if the proportion of TOW is at least 6.3% (twice the
national average). We find 33 high-tech sectors among the 154 manufacturing and
service NAICS. To verify the robustness of our estimates, we also define high-tech

9 This definition has gained wide acceptance partly because it closely matches a growing body
of research suggesting that human capital (i.e., skilled labor) may be a better gauge and more
important driver of economic development than other indicators (Yu 2004).
10 Of the 154 manufacturing and services industries in the OES database (by four-digit 2002
NAICS), only 12 industries have more than 30% unreported employment in the four technology-
oriented occupations. In contrast, 74 industries have less than 10% of unreported employment in
these occupations. The rest (68 industries) have between 10% and 30% of unreported employment.
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industries as those with at least three times the national average of TOW, or at least
9.45%. This stricter definition gives us 25 high-tech manufacturing and services
NAICS.

We are now ready to build a measure that allows us to classify cities as high tech
or low tech. We are not interested in finding overall measures of industry concentra-
tion such as via Gini coefficients (Krugman 1993), the dartboard approach (Ellison
and Glaeser 1997), or indices of specialization (Midelfart-Knarvik et al. 2000).
Instead, we need a measure that captures the absolute concentration of high-tech
activity, such as the location quotient (LQ). As Ratanawaraha and Polenske (2007)
note, however, the LQ indicates whether an area has a higher or lower share of a par-
ticular industry’s employment (e.g., high-tech employment) than the national share,
but it does not provide information regarding the absolute size of the industry in that
area (industry-city scale effect).

The lack of scale sensitivity of the LQ led Fingleton (2004, 2006, 2007) to
develop the Horizontal Cluster Location Quotient (HCLQ). They define a horizon-
tal cluster simply as a spatial agglomeration of firms in a particular industry and the
HCLQ as the number of jobs in the local industry that exceeds its expected number.
The expected number is the number of jobs in the industry that would correspond
to the area having the national share of the industry, and therefore producing an LQ
equal to 1. The horizontal cluster measure is the difference between the actual and
expected numbers of high-tech jobs, hence HCLQg D Eg – OEg. In our case, Eg is
the 2000 high-tech employment in city “g,” whereas OEg is the expected high-tech
employment in that city. Positive HCLQg values indicate that the larger the actual
high-tech employment .Eg/ in city g is from the expected high-tech employment
. OEg/, the more spatially concentrated the high-tech industry in that city will be.
Negative values indicate that the high-tech industry employment in the city is less
than the expected high-tech employment, indicating that the high-tech industry is
not very concentrated in the city.

Using the Horizontal Cluster measure
�
HCLQg

�
, we develop a dummy vari-

able equal to 1 if the worker lives in a city with a positive HCLQg value, and 0
if the worker lives in a city with a negative HCLQg value. High-tech cities are
then those with higher-than-expected employment in high-tech industries. Low-
tech cities are those that show lower-than-expected concentration of employment
in high-tech industries.

4 Empirical Framework

In this section, we first describe how we obtain the estimates of our wage equa-
tions, accounting for potential endogenous explanatory variables. Then we explain
our measure of the gender wage gap based on the Oaxaca (1973)–Blinder (1973)
decomposition of differences in average wages.
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4.1 Estimating the Wage Equation with Endogenous Regressors

Our log wage equation that accounts for the value of living in a high-tech city for
each gender group g (male or female) is the traditional Mincer (1974) equation:

LogW
g
i D Xg 0

i ˇ C Zg 0
.i/

 C ıHg

.i/
C "

g
i (1)

LogW
g
i is the log hourly wage of individual i in gender group g. Xg

i is a vector of
observed individual characteristics that affect wages in both gender groups. Zg

.i/
is

the vector that identifies general characteristics of the city in which individual i in
gender group g resides that affect his or her productivity.Hg

.i/
is a dummy variable

indicating whether individual i in gender group g lives in a high-tech city. And ©gi
denotes the error term for individual i in gender group g.

The high-tech-city effect on wages could perhaps be a sign of a selection effect
where relatively more-educated or higher-ability male and female workers choose
to locate in these cities. In this case, there is a clear potential for correlation between
factors that influence the decision to live in a high-tech city and the error term in the
wage equation. Such factors remain unobserved to the analyst and hence become
incorporated into the error term of the wage equation. Specifically, if the decision
to live in a high-tech city is correlated with ability, and ability only enters the wage
equation through an additive error term, then OLS produces estimates that are biased
and inconsistent. This correlation gives rise to the need for estimators, such as the
instrumental variable model, that account for the possible endogeneity of the high-
tech-city variable.11

We use two city-level characteristics as excluded instruments that affect the
decision of a college-educated worker to locate in a high-tech city: logarithm of
venture-capital investment and logarithm of defense expenditures. Case studies of
high-tech regions document high levels of defense expenditure (Newman 1998) and
venture-capital investment (Belke et al. 2003; Florida and Smith 1993) in these
cities. Venture-capital-investment data by metropolitan area for 2000 come from
Thomson Venture Economics/NVCA. Data on total prime contract awards in dollars
come from the Department of Defense.12

Our choice of excluded instruments complies with assumptions that are the basis
for selecting good ones. The first assumption is that our excluded instruments will
affect the decision of a worker to live in a high-tech city versus a low-tech city.
Specifically, we assume that skilled male and female workers who choose to live in
high-tech cities tend to do so because these cities increase their probability to work
for a diversity of knowledge-intensive organizations, including venture-capital firms

11 Our IV estimation is conducted using the ivreg2 module programmed for Stata by Baum
et al. (2003, 2007, 2007a).
12 Data on prime contract awards state/county summary are available online at http://siadapp.dmdc.
osd.mil/procurement/historical reports/geographic/geostat.html. Data are for 2001 since county
data were not published before this period.
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(e.g., as management consultants) or companies receiving Department of Defense
prime contract awards (e.g., as research scientists).13

The second assumption made in choosing our instruments is that they do not
directly affect individual wages. In their study of the impact of venture-capital
investment in employment at the country level, Belke et al. (2003, p. 26) note
that dynamic models (rather than static ones) better support significant impact of
venture-capital investment on the growth of employment. The long-term effect of
venture capital on employment tends to be associated with the fact that venture
capital finances mainly innovative new firms, which often have significant failure
rates (Gorman and Sahlman 1989; Manigart et al. 2002). This empirical evidence
supports the view that venture-capital investment in a city at time t0 affects local
wages at a future time tn. Similarly, given the nature of multi-year Department of
Defense contracts, employment effects tend to be long term as well. Thus, defense
expenditure at time t0 will also mainly affect employment and wages at a future
time tn.

Studies on the effects of high technology on wages usually need to control not
only for the endogeneity of the high-tech-city indicators but also for sample selec-
tion bias. Self-selection into work may introduce bias in the estimation of wage
equations, especially for female workers. In this case, bivariate selectivity models
are normally used, in which the researcher models two simultaneous decisions –
whether or not to work and whether or not to work in a high-tech city (see, for
instance, Cutillo and Di Pietro 2006). The self-selection issue, however, is impor-
tant only in the case where the female sample has very little attachment to the labor
market, which is not our case. Our samples, from the 2000 Census of Population,
of male and female workers with college education have a strong attachment to the
labor market. These data show that 82% of college-educated women and 94% of
male employees with similar education work full time.

4.2 Estimating the Gender Wage Gap

To complete our analysis, we decomposed the overall gender wage gap to assess
what proportion is due to: (a) differences between male and female high-tech-city
elasticities, (b) differences in the proportion of workers living in a high-tech city
by gender, and (c) differences by gender in all the other factors. To do so, we used
the decomposition procedure developed by Oaxaca (1973) and Blinder (1973), who
show that the difference between the average hourly wage (in logarithms) of men
and women can be decomposed as follows:

NWm � NWf D � NHm � NHf

� Oım C NHf

� Oım � Oıf
�

C � NXm � NXf
� Ǒ

m C NXf
� Ǒ

m � P̌
f

�
(2)

13 Venture firms often provide capital and management expertise.
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where the male wage structure is used to assess the gender wage gap, or alternatively:

NWm � NWf D � NHm � NHf

� Oıf C NHm

� Oım � Oıf
�

C � NXm � NXf
� Ǒ

f C NXm
� Ǒ

m � P̌
f

�
(3)

where the female wage structure is used. The indices m and f refer respectively
to male and female workers. NW represents the average (Naperian logarithm) of
the hourly wage, NH is the average value of the high-tech city variable (propor-
tion of gender-specific workers in high-tech cities), and NX is a vector containing an
intercept and the average value of the individual characteristics of the workers, the
general characteristics of the city where they live, and the region where the city is
located. The IV regression coefficients pertaining toH andX respectively are Oı and
Ǒ, as reported in Table 1 for male workers and Table 2 for female workers.

Table 1 Determinants of (log of) individual hourly wages for male workers

Model 1 Model 2 Model 3 Model 4
OLS OLS OLS IV-Fuller

Intercept 0:667�� 1:168��� 1:018��� 1:190���

.0:264/ .0:221/ .0:236/ .0:240/

Yrs of college education 0:145��� 0:086��� 0:075��� 0:072���

.0:028/ .0:023/ .0:022/ .0:022/

Yrs of college education sq �0:003��� �0:001� �0:001 �0:001
.0:0007/ .0:0006/ .0:0006/ .0:0006/

Potential experience 0:043��� 0:044��� 0:044��� 0:044���

.0:001/ .0:001/ .0:0006/ .0:0007/

Potential experience squared �0:001��� �0:001��� �0:001��� �0:001���

.0:00001/ .0:00001/ .0:00001/ .0:00001/

Race (non-white = 1) �0:122��� �0:128��� �0:148��� �0:150���

.0:016/ .0:011/ .0:013/ .0:012/

Disability (limitation = 1) �0:109��� �0:101��� �0:104��� �0:102���

.0:004/ .0:004/ .0:004/ .0:004/

Marital status (married = 1) 0:190��� 0:185��� 0:195��� 0:196���

.0:010/ .0:010/ .0:007/ .0:007/

Professional or managerial 0:362��� 0:285��� 0:287��� 0:287���

.0:013/ .0:011/ .0:010/ .0:010/

Technologist 0:126��� 0:081��� 0:085��� 0:085���

.0:011/ .0:012/ .0:011/ .0:012/

Sales, administrative support 0:208��� 0:150��� 0:151��� 0:151���

.0:011/ .0:010/ .0:010/ .0:010/

Manual (craft/operator/laborer) �0:049��� �0:080��� �0:075��� �0:076���

.0:014/ .0:014/ .0:013/ .0:013/

High-tech industry 0:216��� 0:211��� 0:199���

.0:011/ .0:010/ .0:010/

(continued)
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Table 1 (continued)
Model 1 Model 2 Model 3 Model 4
OLS OLS OLS IV-Fuller

High-tech city 0:067��� 0:057��� 0:170���

.0:025/ .0:017/ .0:043/

Climate score 0:0007�� 0:0007

.0:0003/ .0:0004/

Coast 0:062��� 0:057��

.0:018/ .0:023/

Arts score 0:002��� �0:0006
.0:0006/ .0:001/

Northeast 0:034 0:029

.0:025/ .0:031/

Midwest 0:010 �0:008
.0:022/ .0:028/

West 0:017 �0:036
.0:033/ .0:047/

Population 7:13e�9�� 1:4e�8���

.3:51e�9/ .4:82e�9/
Orthogonality of instruments:
Hansen’s J statistic 0:209

[p-value] Œ0:648�

Relevance of Instruments:
Partial R2 0:202

F-stat (First-stage regression) 24:71

[p-value] Œ0:000�

Kleibergen–Paap rk LM statistic 80,031
[p-value] Œ0:000�

Kleibergen–Paap Wald rk F stat 79,504
[p-value] Œ0:000�

Anderson–Rubin Wald test 11:96

[p-value] Œ0:000�

Endogeneity – high-tech city:
Hausman test 8:102

[p-value] Œ0:004�

Observationsa 484,899 484,899 484,899 481,222

Levels of statistical significance are represented as follows: ���p � 0:01, ��p � 0:05, and
�p � 0:10. Standard errors in parenthesis are robust to arbitrary heteroskedasticity and intra-
group (MSA) correlation
Excluded instruments: log of venture capital investments and log of defense expenditures in the
city
aFour MSAs (El Paso, TX; Gary, IN; McAllen-Edinburg-Mission, TX; Wichita, KS) were dropped
from the sample employed in the IV models because of unreported venture capital investments
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Table 2 Determinants of (log of) individual hourly wages for female workers

Model 1 Model 2 Model 3 Model 4
OLS OLS OLS IV-Fuller

Intercept �0:796��� �1:114��� �1:325��� �1:267���

.0:232/ .0:261/ .0:230/ .0:243/

Yrs of college education 0:280��� 0:306��� 0:301��� 0:303���

.0:024/ .0:027/ .0:025/ .0:026/

Yrs of college education sq �0:006��� �0:007��� �0:007��� �0:007���

.0:0006/ .0:0007/ .0:0006/ .0:0007/

Potential experience 0:037��� 0:037��� 0:038��� 0:038���

.0:0007/ .0:0008/ .0:0007/ .0:0007/

Potential experience squared �0:001��� �0:001��� �0:001��� �0:001���

.0:00001/ .0:00002/ .0:00001/ .0:00001/

Race (non-white = 1) �0:028��� �0:031��� �0:054��� �0:054���

.0:008/ .0:006/ .0:008/ .0:008/

Disability (limitation = 1) �0:075��� �0:068��� �0:072��� �0:070���

.0:004/ .0:003/ .0:004/ .0:004/

Marital status (married = 1) 0:031��� 0:033��� 0:042��� 0:042���

.0:006/ .0:006/ .0:004/ .0:004/

Professional or managerial 0:417��� 0:376��� 0:379��� 0:380���

.0:011/ .0:011/ .0:012/ .0:012/

Technologist 0:408��� 0:397��� 0:402��� 0:404���

.0:015/ .0:014/ .0:016/ .0:016/

Sales, administrative support 0:220��� 0:174��� 0:175��� 0:175���

.0:012/ .0:011/ .0:012/ .0:012/

Manual (craft/operator/laborer) 0:041�� �0:009 �0:004 �0:004
.0:016/ .0:015/ .0:016/ .0:016/

High-tech industry 0:212��� 0:204��� 0:196���

.0:010/ .0:008/ .0:008/

High-tech city 0:055� 0:052��� 0:127���

.0:030/ .0:017/ .0:043/

Climate score 0:001�� 0:001��

.0:0003/ .0:0004/

Coast 0:053�� 0:050��

.0:020/ .0:022/

Arts score 0:001�� 0:0001

.0:0006/ .0:001/

Northeast 0:042� 0:042

.0:024/ .0:029/

Midwest 0:013 0:0006

.0:022/ .0:023/

West 0:007 �0:026
.0:033/ .0:047/

Population 1:2e�8��� 1:6e�8���

.3:72e�9/ .5:06e�9/
Orthogonality of Instruments:
Hansen’s J statistic 0:757

[p-value] Œ0:384�

(continued)
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Table 2 (continued)
Model 1 Model 2 Model 3 Model 4
OLS OLS OLS IV-Fuller

Relevance of Instruments:
Partial R2 0.204
F-stat (First-stage regression) 25.18
[p-value] [0.000]
Kleibergen–Paap rk LM statistic 64,203
[p-value] [0.000]
Kleibergen–Paap Wald rk F stat 61,583
[p-value] [0.000]
Anderson–Rubin Wald test 6.70
[p-value] [0.002]
Endogeneity – high-tech city:
Hausman test 4.134
[p-value] [0.042]
Observationsa 396,143 396,143 396,143 392,860

See notes in Table 1

5 Empirical Results

This section is divided in two parts. Part one presents the results of our OLS and IV
models for the male (Table 1) and female (Table 2) samples. All the models account
for clustering (by metro area) and heteroskedasticity in the error terms.14 Part two
shows the analysis of the validity of the instrumental variables.

5.1 Benchmark and IV Models

Model 1 presents results of the log wage model controlling for human-capital
characteristics and occupation of the male and female workers. The signs and mag-
nitude of the coefficients on the observed individual characteristics for both male
and female workers are as expected (see Tables 1 and 2). All the coefficients are
significant at the 1% or 5% levels for both samples.

Model 2 expands the log wage model, introducing two new variables of par-
ticular interest in this study: whether the worker works in a high-tech industry
and/or lives in a high-tech city. The variable that identifies whether the worker
works for a high-tech industry is positive and statistically significant at the 1%
level for both genders. College-educated, full-time male and female workers who

14 Clustering arises in our case since it may be reasonable to assume that observations of individuals
drawn from the same city (cluster) are correlated with each other, but individuals from different
cities are not. The intraclass correlation may vary from cluster to cluster (the cluster analog to
heteroskedasticity).
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work in a high-tech industry make wages that are 21% higher than their respec-
tive counterparts in low-tech industries. Moreover, as predicted by the theory, male
workers make 6.7% more when working in a high-tech city than their counterparts
in low-tech cities (Table 1), while women in high-tech cities make 5.5% more than
their counterparts in low-tech cities (Table 2).

Model 3 controls for other city-level variables that previous studies find to be
important determinants of individual wages. Similar to a study by Rauch (1993), we
find that the variable coast/Great Lakes is positive and significant at the 1% level
for male and female workers. Rauch (1993) argues that wages should be higher in
port cities due to their privileged access to the gains from international trade. The
coefficients on climate and arts are also positive and statistically significant for both
groups. Rauch (1993) finds similar productivity effects associated with mild cli-
mates and cities with large arts endowments. Population is positive and significant,
indicating that large cities tend to pay higher wages for college-educated workers.

The coefficients for the dummies that identify the census region where the
worker’s city is located were not significant at conventional levels in explaining
variations in individual wages. Controlling for city-level variables reduces the value
of the tech-city wage premium from 6.7% to 5.7% for males (Table 1) and from
5.5% to 5.2% for females (Table 2). Thus, some of the tech-city effects on wages
identified in Model 2 are really the effects of other observable city-level variables
on wages. The high-tech-city coefficients for both samples are still positive and
highly significant, however, supporting the hypothesis that there is a tech-city wage
premium for both male and female workers.

Model 4 shows the estimated coefficients and standard errors for the IV model
using the Fuller-modified LIML estimator for the male (Table 1) and female (Table 2)
cases. The high-tech-city variable is significant for both groups at the 1% level.
These effects are considerably larger than those obtained using OLS regressions.
The high-tech-city coefficient increased for the male sample, from 0.057 in the OLS
model to 0.17 in the IV model. A similar trend is observed in the female sample,
where this coefficient also increased from 0.052 in the OLS model to 0.13. More-
over, the difference between OLS and IV high-tech-city coefficients for both genders
is significant at conventional levels.15

High-tech-city IV coefficients that are substantially higher than the correspond-
ing OLS estimates for both male and female workers may be explained by the
existence of gender-specific heterogeneity in individual returns, as well as by the
fact that our study is based on instruments influencing only the location decision

15 Under the assumption that family ties could hinder women mobility, we run the female IV regres-
sion adding the number of children (NOC) as an excluded instrument. However, an LR redundancy
test shows that the NOC is a redundant instrument indicating that the asymptotic efficiency of the
estimation is not improved by using it. This result is in line with recent evidence showing that
college-educated women are in fact more interregionally mobile than men (Faggian et al. 2007).
As noted by Faggian et al. (2007), the overall evidence on the migration of women is, however,
very limited and, more importantly, it largely ignores the interaction between human capital and
migration.
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of individuals with high marginal returns. This conclusion is also consistent with
the Local Average Treatment Effect (LATE) interpretation of instrumental variables
(Imbens and Angrist 1994), according to which IV identifies the average marginal
return of those who comply with the assignment-to-treatment mechanism implied
in the instruments. Thus, the estimate recovered by IV does not necessarily coincide
with the average marginal return in the population but rather the average marginal
return for the population subgroup affected by exogenous variation in the high-tech-
city outcome.16 These differences between OLS and IV estimates might also reflect
measurement errors in our Horizontal Cluster indicator related to the aggregation of
industries in two broad categories: high tech and low tech.

Our IV results for both samples are robust when using a horizontal cluster mea-
sure built on the assumption that high-tech industries are those with at least three
times the national average of TOW. The results are also robust to alternative esti-
mators – in particular, the limited information maximum likelihood (LIML), the
two-stage efficient generalized method of moments (GMM2S), and the traditional
IV two-stage least squares (2SLS).

5.2 Examining Instrument Validity

The Hansen J statistics (adjusted for the clustered-error structure) in Table 1 (for
male workers) and Table 2 (for female workers) indicate that the instruments satisfy
the orthogonality condition. In both samples, they are appropriately uncorrelated
with the disturbance processes. The test of instrument relevance demonstrates that
the set of instruments has acceptable strength for the log wage equation for males
(Partial R2 D 0:202) and females (Partial R2 D 0:204) and F -statistics larger than
20 for both groups.17 As noted by Baum (2006), however, the distribution of this
F statistic is nonstandard. Other statistics are, therefore, required to test for the
correlation between the instruments and the endogenous variable.

A more general approach for testing the relevance of instrumental variables is
the underidentification test, or test for the rank of a matrix. Recently, Kleibergen
and Paap (2006) have proposed two more general versions of these statistics that
are robust to heteroskedasticity and intra-class correlation: the rk Wald statistic

16 As Morgan and Winship (2008) explain, the new IV literature suggests that IV techniques are
more effective for estimating narrowly defined causal effects than for estimating average causal
effects. For instance, suppose that we could brainwash workers, erasing their location decisions at
will and assign them to a high-tech or low-tech city using a lottery. The IV estimator identifies the
average causal effect for the subset of workers that would chose to live in a high-tech city if wining
the lottery (compliers) and the group of workers that would live in a low-tech city if not wining
the lottery (defiers). It would not identify the average causal effect for workers that would live in
a high-tech city even if not winning the lottery (always takers) or the group that would live in a
low-tech city even if winning the lottery (never takers).
17 Bound et al. (1995) suggest that the first-stage F -statistic must be larger than 10 for IV inference
to be reliable.
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and the rk LM statistic.18 Rejection of the null implies full rank and identification,
while failure to reject the null implies the matrix is rank deficient and the equation
is underidentified (Baum et al. 2007). As Tables 1 and 2 show, the rk LM statis-
tic (pm D 0:000; pf D 0:000) strongly reject the null, in both the male and female
samples, implying full rank and that our models are identified.

As Baum et al. (2007) note, the weak instrument problem can arise even when
the correlation between the endogenous variable and the instruments is significant at
conventional levels, at the 1% or 5% levels and the researcher is using a large sample.
Testing for weak identification is therefore necessary. In the presence of het-
eroskedasticity or clustering, Baum et al. (2007) propose to use the Kleibergen–
Paap Wald rk F statistic. We rely on the critical values tabulated in Stock and
Yogo (2005).19 For our Fuller-LIML estimation with two instruments and one
endogenous variable, the critical value for having at most 5% of the OLS bias left
in the IV estimation is 13.46. The values for this statistic presented in Tables 1 and
2 are clearly larger than this value for both the male and female models, indicating
that we do not seem to have a problem with weak instruments. This critical value
nevertheless depends on an assumption of uncorrelated errors within cities that our
data may violate.

We estimate an alternative statistic that is robust to the presence of weak instru-
ments: the Anderson–Rubin (A–R) statistic.20 The null hypothesis tested is that the
coefficients of the endogenous regressors in the structural equation are jointly equal
to zero.21 As Tables 1 and 2 show, the A–R statistics (pm D 0:000; pf D 0:002)
comfortably reject the null that all endogenous regressors are jointly equal to zero
for the male and female samples at the 1% levels. This statistic signals that we do
not have a weak instruments problem for any of the samples.

Finally, the asymptotic variance of the IV estimator is always larger, and
sometimes much larger, than the asymptotic variance of the OLS estimator
(Wooldridge 2006). This loss of efficiency is a price worth paying only if the OLS
estimator is biased and inconsistent. The Hausman statistic tests the null hypothesis
that the OLS estimator is consistent and fully efficient.22 We find that endogeneity

18 The LM version of the Kleibergen–Paap rk statistic can be considered a generalization of the
Anderson canonical correlation rank statistic to the non-i.i.d. case. Similarly, the Wald version of
the rk statistic reduces to the Cragg-Donald statistic when the errors are i.i.d.
19 Critical values from Stock and Yogo (2005) are only available for i.i.d. errors. Baum et al. (2007)
suggest that when using the rk statistic to test for weak identification, users should either apply
with caution the critical values compiled by Stock and Yogo (2005) for the i.i.d. case, or refer to
the older “rule of thumb” of Staiger and Stock (1997), that the F -statistic should be at least 10
before dismissing weak identification as a problem.
20 The A–R statistic provides a Wald test, whereas the closely related Stock and Wright (LM) S
statistic provides an LM or GMM distance test of the same hypothesis (Baum et al. 2007).
21 Because our models are estimated with a robust covariance matrix estimator, both the A–R
statistics (F and ¦2 versions) and the S statistic are correspondingly robust.
22 The Hausman test is sensitive to several types of misspecification. In particular, the Hausman
test performs poorly if the correlation between potentially endogenous variables and instruments
is low. That is, the performance of the Hausman test in the presence of weak instruments is very
poor (Chmelarova and Hill 2004).
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does indeed exist among workers living in high-tech cities. The Hausman test
statistic is positive and significantly different from zero (¦2 D 8:102; pD 0:004 for
males; ¦2 D 4:134; pD 0:04 for females). As already reported, once this endogene-
ity is accounted for, the effect of high-tech city on wages increases significantly for
both male and female workers, giving support to the view that OLS estimates for
high-tech-city wage premiums are biased in both samples.

6 Decomposition of the Gender Wage Gap

In the last section of our analysis, we consider the factors that account for the overall
gender wage differences. We are particularly interested in the contribution played by
dissimilarities by gender in both high-tech-city wage effects and the distribution of
employment across high-tech cities. As already indicated, the overall gender wage
gap can be decomposed into three elements: (a) the variation due to differences in
the male and female estimated high-tech-city coefficients, (b) the variation due to
the different employment distributions of men and women across high-tech cities,
and (c) the variation explained by all the other factors (the difference in the male
and female intercepts and the effects of all other variables besides high-tech city in
the wage equation).

Table 3 shows the results. We find that the overall gender wage gap, measured
as the difference between mean log wages of male and female workers, stands at
0.25. This figure means that the average female worker earns 75% of the mean
male wage. Moreover, depending on which gender wage structure is used, results
indicate that a mild proportion, between 0.02% and 0.03%, of the overall gen-
der wage gap can be explained by the fact that (on average) women live in cities
where the proportions of high-tech employment are lower.23 Our results suggest
that between 0.235% and 0.239% of the overall gender wage gap derives from
differences between high-tech-city wage elasticities for men and women. The latter
result, however, should be interpreted with caution because the high-tech-city wage
elasticity is not significantly different for both sexes.

Table 3 Decomposition of the gender wage gap

Percentage of overall wage gap due to differences in:
Wage structure: Overall gender

wage gap:
Wm �Wf

Proportion of employment
in high-tech cities:�
Hm �Hf

� Oım.f /

High-tech-city wage
elasticities:
Hf .m/

�Oım � Oıf
�

Male wage structure 0.256 0.03% 0.235%
Female wage structure 0.256 0.02% 0.239%

23 We find that at least 2% more male workers live in high-tech cities than female workers.
Moreover, we find that this difference is statistically significant.
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7 Conclusions

The Graduate School of Management of the University of California, Davis, recently
released a report titled “2007 UC Davis Study of California Women Business
Leaders: A Census of Women Directors and Executive Officers.” The report details
the presence of women at the very top of the 400 largest public companies in Califor-
nia. It states that Silicon Valley companies based in Santa Clara County (where San
Jose is located) ranked last in the state, elevating fewer women to executive ranks
and corporate boards than any other county in California. Only 9% of the compa-
nies in the county have promoted women to top posts, and a mere 7% of corporate
boards include even one woman.

The report does not speculate on the reasons why women are not found in top
executive positions. An obvious one is that fewer women choose to study engineer-
ing and science. After interviewing some experts in the community when reporting
on the UC Davis study, however, the San Jose Mercury News suggested another rea-
son: Networks favor men. “Silicon Valley is as much who you know as what you
know. Men have broader networks because they have been in the field longer. And
when they reach for their Rolodexes, they are more likely to find other men because
the tech industry is dominated by men” (Schwanhausser 2007).

In a previous study, Echeverri-Carroll and Ayala (2009) found that, on average,
college-educated male workers have a high-tech-city wage premium of approx-
imately 6.2% (regardless of the industry). This evidence is consistent with the
hypothesis that highly skilled workers do best in high-tech cities because they
benefit from being around other highly skilled workers. Using a different mea-
sure of high-tech-employment clustering, we find (in this chapter) a much larger
high-tech-city wage premium for college-educated male workers – 17.7% over their
counterparts living in low-tech cities.

Although many studies present evidence of city-based human-capital externali-
ties, they measure this effect for male workers only (or for a joint sample of male
and female workers). To our knowledge, this paper is the first to address the issue of
the effect of knowledge externalities on female workers. We find that indeed there
is a female-specific high-tech-city wage premium of 14.6%. Thus, college-educated
female workers who live in a high-tech city have wages that are on average 14.6%
higher than their counterparts in low-tech cities. We find, however (using a stan-
dard t-test), that the difference between the high-tech-city coefficients for male and
female workers (17.7 and 14.6, respectively) is not statistically significant.

Although results from a Oaxaca (1973)–Blinder (1973) decomposition present
evidence that some of the average gender wage differences in our sample are
explained by the fact that more women live in cities with a relatively smaller propor-
tion of high-tech employment, this contribution is mild (0.02–0.03%). Most of the
gender wage differences seem to come from other variables in our model, or perhaps
from industry-specific strategies (e.g., glass-ceiling policies) that are unobserved in
our sample, rather than from the exclusion of women from knowledge networks in
high-tech cities, as the informal evidence suggests.
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Fiscal Policy and Interest Rates: The Role
of Financial and Economic Integration

Peter Claeys, Rosina Moreno, and Jordi Suriñach

1 Introduction

A government running a deficit needs to turn to financial markets to place this
additional public debt. Newly issued public bonds compete for financing with bonds
issued by private agents. The additional demand created by the fiscal expansion
pushes up interest rates, and eventually crowds out private investment. Not all
economists agree that consolidating public finances would immediately reduce pres-
sure on interest rates, however. Despite a vast literature testing crowding out, there
is actually surprisingly little robust empirical support for this hypothesis.1

Interest rates are insulated from fiscal policy under two alternative conditions.
The first explanation for a zero impact of deficits on aggregate macroeconomic vari-
ables is that economic agents anticipate paying down currently high deficits with
higher taxes in the future. Under Ricardian Equivalence, private saving fully off-
sets the effect of higher public consumption (for a given level of taxation). Few
economists would consider the assumptions underlying the Ricardian Equivalence
null as realistic, however. More elaborate macroeconomic models that depart from
the baseline Ricardian assumption easily find real economic effects of fiscal pol-
icy. There is by now also a large body of empirical evidence that clearly refutes the
Ricardian hypothesis (Blanchard and Perotti 2002).

A second explanation for the lacking crowding out effect is capital mobility.
Fiscal deficits need not be financed by domestic financial resources only. Capital
flows between economically integrated economies, offsetting any interest rate dif-
ferentials that follow upon an increase in the domestic supply of government bonds.
Under full capital mobility, domestic and foreign agents alike diversify their asset

1 See the contrasting arguments of the European Commission (2004) and the Bush Administration
(Gale and Orszag 2003).
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portfolio across borders. As a consequence, the budget decision of one government
affects the financing conditions of all other governments on international capital
markets. Domestic interest rates rise in proportion to the amount of bonds issued
worldwide. For a small open economy, the crowding out effect would tend to zero.
In practice, capital mobility is far from complete, as imperfect information, risk
aversion and imperfect substitutability of domestic and foreign bonds introduce a
home bias in portfolio decisions. As a consequence, the spillover is likely to be less
than complete.

The empirical models that are used to assess the crowding out effect of fiscal
policy fail to account for this spillover. A baseline test for crowding out typi-
cally regresses a domestic interest rate on some domestic fiscal indicator. Even
simple extensions of this model to include the effects of fiscal policy in open
economies require quite restrictive assumptions on parameterization. Often, one
simply controls for a set of additional (foreign) explanatory variables. Usually, only
a particular subset of countries is examined, or identical restrictions are imposed
on the transmission of fiscal policy across all countries. Due to the dimension
of open economy models, even simple extensions quickly exhaust the available
degrees of freedom. In practice, the interactions are much more complex. Spillover
works out on global financial markets, and affects a large group of countries
contemporaneously.

In this chapter, we use spatial techniques to account for this spillover. We delib-
erately keep the baseline model as simple as possible to make the strongest possible
case for spillover. We test a panel model that explains interest rates by fiscal vari-
ables to analyze crowding out of fiscal policy. The spatial model simply extends this
baseline model for the spillover effect in all nearby foreign economies. In particu-
lar, we test the spillover of interest rates on financial markets in a spatial lag model.
We then control also for spatially distributed economic linkages in a spatial error
model. We test this model on a large cross section of OECD and emerging mar-
ket economies over the period 1990–2005. Our main finding is that the domestic
crowding effect of fiscal policy is sizeable. But the spillover on financial markets
offsets the significant effects of larger deficits on interest rates. We cannot iden-
tify whether this spillover is the direct effect of financial market integration, or the
by-product of the economic integration of countries. Spillover is much stronger in
the mid-1990s when there were major crises, or policy actions were being coor-
dinated between governments. Various measures of cross-country linkages give
broadly similar results. The main findings are also robust to alternative specifica-
tions and data definitions. Finally, we find the spillover to be quite strong among
EU countries.

The chapter is structured as follows. First, we provide a simple theoretical model
for testing crowding out, and the effects of financial and economic integration. We
consequently specify the spatial model for including this spillover. We then discuss
the results of the baseline model of spillover of fiscal policies, and provide several
robustness checks. The final section summarizes the main results, and discusses
some policy implications.
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2 Crowding Out and Spillover

Crowding out of interest rates is typically analyzed in a partial equilibrium “loanable
funds” model (Barro 1992). This model determines the interest rate on assets from
the equilibrium between the demand and supply of bonds. Both the private sector
and the government turn to financial markets to look for finance. Firms invest the
capital raised on stock or bond markets (b) to invest in new capital stock. Additional
government financing is necessary when the government runs a deficit (d). Financial
intermediaries channel the demand for bonds of the private sector, both at home (f)
and abroad .f�/, to match the total supply of domestic bonds .b C d/:

b C d D f C f � (1)

We can illustrate all the major points of the analysis with this simple partial equilib-
rium model.2 Consider the case in which the government runs a higher deficit d. For
a given demand for bonds f C f�, the increased supply of debt will put downward
pressure on the price of government bonds. Ceteris paribus, this rise in bond yields
is making it more difficult for the private sector to seek finance on capital markets:
government finance crowds out private bonds b on capital markets (Cebula 1998).
However, the demand for additional bonds is likely affected by the government’s
decision to lend. Under two alternative theoretical conditions, private sector savings
fully offset the additional supply of bonds.

First, if economic agents anticipate the pay down of higher deficits they set aside
savings for the higher tax burden in future periods. In the limit, domestic private
saving fully offsets the effect of the higher public dissaving d. Under this Ricardian
Equivalence hypothesis, a higher deficit d does not have an impact on aggregate
macroeconomic variables at all. Many economists consider Ricardian Equivalence
as a reasonable starting point for the analysis of fiscal policy. Few would endorse it
as a realistic description, however. The view that private savings offset the change
in public savings is not based on a firm empirical rejection since Ricardian Equiv-
alence is not directly testable. But plenty of empirical studies have examined the
alternative hypothesis that fiscal policy has any real economic effects. Recent evi-
dence seems to converge on at least some expansionary effects on major economic
variables (Blanchard and Perotti 2002). More elaborate macroeconomic models that
depart from the baseline Ricardian assumption easily find support for these real
economic effects of fiscal policy. It therefore seems a safe assumption to reject the
Ricardian Equivalence hypothesis.

Second, when financial markets are integrated across borders, the foreign demand
for bonds f� can shift as well. In open economies that are economically integrated
and do not impede trade or financial flows, capital flows move massively so as to

2 These partial equilibrium models have been extended for intertemporal saving behaviour
(Laubach 2003; Engen and Hubbard 2004). Dynamic macroeconomic models that include both
debt non-neutrality and long term interest rates have not been developed yet, due to their
complexity.
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offset any interest rate differential. Under these circumstances, the supply of savings
is very interest rate elastic: even a small rise in d is likely to trigger a large increase
in f�. The higher is capital mobility, the weaker will be the reaction of domestic
interest rates to a change in the supply of domestic bonds. Under the null of full
capital mobility, the rise in interest rates is simply proportional to each country’s
total indebtedness on the global bond market. Consequently, due to the spillover on
international bond markets, the crowding out effect of deficits is only a fraction of
the total rise under autarchy. In reality, this dilution is likely to be less than complete
as capital mobility is partial: domestic private agents prefer to invest in domestic
financial assets. As a consequence, domestic savings and investment are highly cor-
related (the “Feldstein-Horioka” puzzle). This “home bias” depends on information
imperfections on foreign financial markets. Neither are financial assets in different
countries perfect substitutes, due to exchange rate, inflation and default risk. Due
to differences in regulation across countries, risk averse agents may prefer to invest
in domestic assets only. Moreover, private agents are likely to hold a larger portion
of domestic public debt. Governments often prefer to place debt only domestically
in order to avoid having to pay exchange rate premia, and as a commitment not to
default on debt put with its own citizens. As a consequence, complete spillover is
unlikely, yet it is hard to put a precise size on the spillover effect. The spillover is
likely to be stronger between economies that are more closely integrated.

3 A Spatial Test for Crowding Out

The most common test for crowding out based on the loanable funds model takes
a very simple form: it basically explains domestic interest rates by domestic fiscal
balances (in this case, the surplus st ).

it D ˛ C ˇst C "t (2a)

We measure by the coefficient ˇ the degree of crowding out. The large number of
studies that have employed various definitions of the government surplus, interest
rates, econometric approaches and data sets to test (2a) can basically give support
for any view.3 There are two cases in which we would not reject ˇ D 0. First,
we would not find a significant crowding out effect under Ricardian Equivalence.
Second, we may not be able to reject ˇ D 0 if there is capital mobility between
open economies.

However, a specification like (2a) does not account for these spillover effects
of financial markets. Basically, the test for crowding out only considers domestic
variables, but does not account for the integration of the domestic economy with

3 See the references in Barth et al. (1991) and the overview article by the European Commission
(2004).
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foreign economies. Existing empirical evidence on the effect of integration is little,
and uses alternative ways for netting out the international linkages from the domestic
crowding out effect. Due to the omission of these foreign variables that explain the
spillover effect, ˇ would be biased downward. The reasoning is that the domestic
effect of fiscal expansions will likely be larger once a proxy Xt for the foreign
demand for bonds f� is introduced.

it D ˛ C ˇst C �Xt C "t (2b)

One alternative is to condition the relation between interest rates and deficits on
foreign capital inflows (Cebula and Koch 1994). Another is to assess directly the
effects of deficits on interest rates abroad. In (2c), we explain interest rates in country
A by the crowding out by deficits in country A, and in addition a direct crowding
out effect of deficits in country B.

iA;t D ˛ C ˇsA;t C �sB;t C "t (2c)

The coefficient � measures the size of the spillover effect. In order to estimate a
specification similar to (2c), plenty of identifying restrictions are necessary that
severely reduce the dimension of the open economy model. Usually, only a par-
ticular subset of countries can be examined, or identical restrictions are imposed
on the transmission across all countries in a panel. Cohen and Garnier (1991) find
a positive effect of US deficits on interest rates in several G7 countries. Ardagna
et al. (2007) find significant crowding out effects from both domestic and foreign
fiscal expansions in a panel of OECD countries. Marcellino (2002) or Giuliodori and
Beetsma (2005) consider the impact of shocks to German fiscal policy on the French
and Italian economy. Paesani et al. (2006) take a somewhat different approach by
identifying spillover from shocks to bond markets on internationally linked capital
markets. This allows them also to consider the direction of the spillover.

An alternative control that models the linkages between domestic and foreign
bond markets is to include the level of foreign interest rates in (2b).

iA;t D ˛ C ˇsA;t C �iB;t C "t (2d)

Quite a few papers include foreign interest rates in the analysis of crowding out.
Chinn and Frankel (2007) take the German long-term rate as the benchmark in their
study of US fiscal policy. Caporale and Williams (2002) or Paesani et al. (2006)
reduce their sample to a few G7 economies and use in turn the interest rate from the
other country as a benchmark. The assumption that domestic interest rates directly
depends on a single foreign benchmark rate, is rather strong. Ideally, one would like
to control for the level of interest rates in various countries. Most papers construct
as the benchmark interest rate an aggregate “world” interest rate. Tanzi and Lutz
(1993) argue that at the world level all spillover effects should cancel out and a sig-
nificant crowding out effect of fiscal policy restored. They aggregate all domestic
deficits and examine the effect on global interest rates. Ford and Laxton (1999) and
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De Haan and Knot (1995) do the same for OECD and EU countries respectively.
Faini (2006) calculates an average euro area interest rate, and considers the fiscal
effect on interest rates at home and at EMU level contemporaneously in a panel
framework. In empirical applications, modeling the transmission across financial
markets requires quite restrictive assumptions. Assumptions like these likely bias
the direction and the strength of the spillover effect. We would expect that on finan-
cial markets, spillover is at work between different markets contemporaneously.
Spillover should also be stronger between markets that are more closely connected.

A convenient way to think of these complex linkages is with an exogenously
specified matrix W that specifies the structure and intensity of the “closeness” of
different observations. The element wij of W represents the proximity between two
observations i and j . A common specification for this weight matrix W is physical
contiguity. Bordering regions are believed to have closer links. It is straightforward
to find other W’s that reflect either economic distance between countries, such as
geographic distance, trade, level of economic development, cultural or institutional
differences. A pattern of spatial interaction in a variable implies that the distribution
of this variable across observations is not random, and therefore the co-movement
of interest rates on integrated financial markets will bias the OLS estimates of (2a).
With spatial spillover, parameter estimates are biased, inefficient and inconsistent
(Anselin 1988). This bias may explain the mixed findings in the empirical literature
testing crowding out and spillover.

By introducing spatial lags (i.e. interest rates in neighboring countries) we
directly control for the interaction with the level of interest rates in close by units.
We can rewrite (2d) more generally as a spatial autoregressive model:

in;t D ˛ C ˇsn;t C �W in;t C "n;t (3a)

In specification (3a) we control the crowding out effect in country n for the inter-
action with interest rates in all neighboring countries (the term W in). This is a
weighted measure of interest rates in the countries with which a country has “eco-
nomic links.” This spatial lag term has to be treated as an endogenous variable;
(3a) can be estimated with ML-techniques. A positive (and significant) coefficient
� indicates spillover. We can also recast the test of significance of � as a test for the
degree of financial market integration: the larger �, the more integrated are financial
markets. A significant spatial lag also reduces the bias in the estimate of the direct
crowding out effect ˇ.

Financial integration is not the only factor behind the co-movement of bond
markets. Real economic integration affects macroeconomic conditions globally, and
there is quite some evidence for increased synchronization of business cycles (Doyle
and Faust 2002). Instead of a direct spillover on financial markets, the spillover
could alternatively be due to a co-movement of some omitted economic variables,
unrelated to financial market integration, that vary across space. There are two
possible ways to account for these effects of real economic integration. First, and
as in (2b), we proxy the economic co-movement across countries by introducing
other (domestic) macroeconomic variables. Although an OLS regression of (2b)
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still yields unbiased estimates, inference may be misleading since the precision of
the estimates is affected. Alternatively, we can introduce such spatial links in the
residuals of the empirical model. Hence, we qualify model (2a) to include a spatial
correlation structure of the error term "n. We then rewrite (2a) as follows:

in;t D ˛ C ˇsn;t C "n;t
"n;t D 	W "n;t C �n;t

(3b)

In this spatial error model, �n;t is a white noise error term. The parameter 	 in (3b) is
the spatial autoregressive parameter, and reflects the spillover across countries due
to economic integration.

Financial and real economic integration probably work in the same direction. Co-
movements in macroeconomic factors also drive the synchronization of financial
markets. It is likely that economies with close economic (trade) links also have
more tightly linked financial markets. As a consequence, the spillover effects of
financial markets and economic integration may be similar, and hard to distinguish.
This observational equivalence may cause the spatial lag and spatial error model to
give very similar results (Kaminsky and Reinhart 2000).4

3.1 Specification

We argue that we can recover significant crowding out effects of fiscal policy on
interest rates if we use a spatial extension of the simple baseline model (2a) to
analyze the spillover effect of fiscal policy. Hence, we depart from a model as (2a)
and use spatial techniques to test and model the crowding out and spillover effect of
fiscal policy.

We are interested in two effects in the spatial model. In first instance, we test the
crowding out effect of domestic deficits on domestic interest rates .ˇ/. We expect
that a higher surplus (lower deficit) has a significantly negative effect on inter-
est rates. Secondly, the spatial model allows testing for the effect of interest rates
abroad. The more interest rates rise in other countries, the higher will be the domes-
tic interest rate as well. If interest rates are very close, this suggests that global credit
markets are fairly integrated. The pool of loanable funds any government draws
from, exceeds the available funds in the domestic credit market only. We expect that
this spillover effect will be significant, and positive.

The interpretation of the spillover effect is different in the spatial lag or error
model. First, in the spatial lag model, we look at the aggregate effect of all other
countries’ interest rates on the home country’s interest rate. We interpret a significant
spatial lag as evidence of a direct spillover of fiscal policy on financial markets. The

4 Models (3a) and (3b) can be combined in a general specification that encompasses both effects.
We do not test a general spatial model in this paper.
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spatial lag parameter � is the slope of this reaction function, and measures the degree
of financial integration. Positive spatial correlation in interest rates exists if � > 0,
whereas there is evidence of negative spatial correlation if � < 0.5

The economic interpretation of the model (3b) with spatial links in the errors is
slightly different. A shock to the domestic interest rate, which is not explained by
fiscal policy, spills over to all other observations that are “close.” Spatial correlation
in the error term reflects a similar reaction of countries’ interest rates to shocks,
because of omitted variables that are spatially correlated. This indicates important
economic channels of spillover, but is not related to fiscal policy per se. A positive
	 indicates positive spatial correlation of the shocks; negative 	 shows that shocks
are of opposite sign.

3.2 Data

We estimate these two spatial models on a panel of 101 countries, for which we
have annual data on interest rates and fiscal policy covering the period 1990–2005.
A panel model allows combining the typical analysis of domestic crowding out in a
time series model, with the spillover of interest rates in the cross-section dimension.
We tie both dimensions and the structure of linkages across countries, with a weight
matrix W that reflects geographical distance.6 Countries that are more distant are
assumed to have weaker economic links. Geographic distance usually is a good
proxy for economic linkages (as in the gravity model, for example). We show that
our results do not depend on this specific assumption, and we check our results for
different definitions of W.

Spatial panel data models have only recently been developed, and not all their
properties have been examined. Our starting point is the fixed effect panel model
in which subsequently spatial dependence is accounted for by including a spatially
lagged term of the dependent variable. This is the expression given in (3a), including
a country specific fixed effect. The standard estimation method for the fixed effect
model is to eliminate the intercept term of the regression by expressing all variables
as a deviation from their time average, and then using standard OLS estimators. In
presence of spatial autocorrelation it is common practice to use maximum likelihood
methods to estimate the demeaned equation. These spatial autoregressive models

5 A spatial test for financial market integration could be equally applied to other financial assets. We
look at the spillover effects of government bonds on interest rates for two reasons. First, spillover
on government bond markets is policy relevant. In contrast to private bond issues, fiscal policy
could introduce distortions on government bond markets. That is, there are not only pecuniary
implications for other domestic or foreign issuers. Second, we can include many countries in our
sample as government bonds are the most comparable asset across countries. They are usually the
least risky asset and are traded on the most liquid market.
6 We assign a centre to each country, and use its coordinates to calculate the distance between these
centroids. We use a GIS software for these calculations.
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Table 1 Data sources
Series Definition Source

Interest rate 1- to 5-year government bond
yield or corresponding (%)

IMF/IFS Central Banks

Surplus Surplus/GDP ratio (%) IMF General government
Statistics

Public debt Debt/GDP ratio (%) IMF General government
Statistics

Short-term interest rate Central Bank, T-bill 3 months
or corresponding (%)

IMF

Long-term interest rate 10-year government bond yield
or corresponding (%)

IMF

GDP per capita US $ PPP Penn World Tables
Exports Export CIF IMF Dots
Imports Import FOB IMF Dots
Distance Great circle distance Matlab
Common border Authors
Dummies Trade agreement WTO
Country characteristics Latitude/longitude

Rose (2000)

are estimated through the maximum likelihood method of estimation developed by
Elhorst (2003).7

We use a nominal long-term interest rate (5–10 years) as our dependent variable.
Deficits are usually argued to affect long-term interest rates. Not that many coun-
tries outside the OECD have been able to issue long-term bonds, however. Most
emerging market economies have financed deficits with short-term bonds at a 5
years horizon at most. Similarly, fiscal data for many countries are available only
over recent years. The surplus to GDP ratios all come from the IMF Government
Statistics Database. As we prefer working with balanced panels over the full sam-
ple period, we consequently had to eliminate a large number of countries from the
study. Due to variable data quality, we also decided to remove some outlier obser-
vations. We first run a simple pooled estimate and quitted the observation if the
standard error exceeds three times the residual variance. Eventually, we have 496
observations on 31 countries over 16 years. This keeps in the sample mostly OECD
countries and a few emerging market economies.8 The sources of data are shown in
Table 1.

7 Consistent estimation of the individual fixed effects is not possible as n grows large, due to the
incidental parameter problem. Anselin and Le Gallo (2008) argue that “since spatial models rely on
the asymptotics in the cross-sectional dimension to obtain consistency and asymptotic normality
of estimators, this would preclude the fixed effects model from being extended with a spatial lag.”
However, Anselin and Le Gallo (2008) show that for consistent estimates of “, the demeaned spatial
regressions from ML estimation like in Elhorst (2003) are appropriate. One complication with this
is that the variance covariance matrix of the demeaned error term is different from the usual one.
Alternative approaches to the Elhorst estimation are still a topic of ongoing research.
8 The sample includes the following EU countries (Austria, Belgium, Denmark, Finland, France,
Germany, Hungary, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, the UK), some
other OECD countries (Australia, Canada, Japan, Korea, New Zealand, Switzerland, Turkey, the
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4 Results for the Baseline Model

4.1 Spillover on Financial Markets: The Spatial Lag Model

We first estimate a simple pooled OLS regression of (2a), without any further restric-
tions on the spatial effects, to replicate the crowding out effect of similar studies.
Table 1 reveals a very significant and quite strong crowding out effect: a rise in the
surplus of 1% of GDP leads to a 109 basis points fall in the interest rate. This result
continues to hold even if we impose more structure on the pooled model. A priori,
we would prefer to use a fixed effects estimator. First, we include a specific group
of countries. Even if we draw a number of countries from the global sample of
economies, this draw is not random (Baltagi 2001). Second, the specification (2a) is
rather basic, and we do not control for other relevant determinants of interest rates.
The setting of fiscal policy is rather heterogeneous across countries. As a conse-
quence, the country-specific effect is likely correlated with the explanatory variable
(the surplus). The Hausmann test indicates that a fixed effects estimator is indeed
preferable. It has also been more common in this literature to use simple pooled esti-
mates or panel fixed effects estimators (Frankel and Chinn 2005; Kinoshita 2006).
We report both, and find that the panel estimates of ˇ in the fixed or random effects
model are very similar (Table 2).

Our estimate is on the high end of the range of estimates found in the literature.
In the overview study of the European Commission (2004), the crowding out effect
varies between about 20 and 100 basis points.9 For the United States, the crowding
out effect is usually estimated to be around 40 basis points (Canzoneri et al. 2002;
Laubach 2003; Engen and Hubbard 2004). This result is also confirmed by VAR
studies on US data, like Dai and Phillipon (2005). For EU countries, the crowding
out effect is mostly smaller in magnitude (Faini 2006). What explains the strong

Table 2 Baseline model, pooled and panel estimates; and spatial panel lag model (W-matrix D
distance)

ˇ t-stat � t-stat

Pooled �1:09 �5:22 – –
Panel Panel, fixed effects �1:16 �5:30 – –

Panel, random effects �1:06 �5:20 – –

Hausmann test statistic 15.05 (0.00)

Panel, fixed effects �0:45 �4:54 0:55 8:09

Spatial lag Panel, random effects �0:46 2:02 0:51 0:00

Panel, spatial + time period fixed effects �0:43 �4:09 �0:05 �0:37

United States) and emerging markets (Colombia, Lebanon, Mexico, Pakistan, Peru, Philippines,
Singapore, South Africa, Thailand).
9 See in particular the overview table in European Commission (2004) on pp. 153–55.
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crowding out effect in our estimates then? Most other papers examine the crowding
out effect of deficits in a single country. In contrast, panel studies, like ours, have
found much stronger effects. Chinn and Frankel (2007) estimate a crowding out of
interest rates between 150 and 200 basis points in a panel of the United States and
the largest EU countries. Similarly, Ardagna et al. (2007) use panel VAR techniques
to look at the impact of deficits on interest rates in a panel of OECD countries and
find a rise of 150 basis points after 10 years. De Haan and Knot (1995) reach sim-
ilar conclusions for the large EU countries. Hence, the inclusion of more countries
in a cross-section analysis of deficits and interest rates typically delivers stronger
crowding out effects. We actually observe a similar effect in single country stud-
ies in which control variables for international capital flows are included. Cebula
and Koch (1994) find that interest rates rise by more than 60 basis points after a
1% increase in the deficit ratio, whereas capital flows reduce the effect by about
24 points. Chinn and Frankel (2007) find a stronger impact on rates, once foreign
interest rates are controlled for. Tanzi and Lutz (1993) aggregate data for the G7
and find a rise in long-term rates of about 150 basis points. These results suggest
that a control for the spillover effect from other countries is important. Omission of
linkages on international financial markets biases the findings of crowding out.

As the estimate of ˇ is quite likely biased, inefficient and inconsistent, we now
introduce the spatial extension. In the second panel of Table 2, we present the esti-
mates of different versions of the spatial lag model. The baseline estimate is the
spatial lag model with fixed effects. We find that the crowding out effect halves in
case a spatial lag is included: a deficit of 1% of GDP pushes up interest rates by
45 basis points. The spillover effect is very significant and quite large: a 1% rise in
interest rates abroad also raises domestic rates by about 0.55%. The consequence
is that an increase in the deficit of 1% will cause domestic interest rates to rise by
45 basis points. Consequently, the second round effect of the deficit is to push up
interest rates abroad by a further 25 .�0.55%�45 pp/ basis points. A government
creating a deficit still faces a quite steep increase in domestic rates, but part of this
increase spills over abroad.

The crowding out effect in the spatial lag model is more in line with the results
of the empirical studies of single countries. This suggests that the control for the
spatial links indeed corrects the initial panel estimates. As regards our findings on
spillover, it is slightly harder to compare its size. Most studies simply report that
the domestic crowding out effect is larger than the foreign spillover effect. Caporale
and Williams (2002) find this result for the United States; and Faini (2006) reports
similar results for the EU countries. Ardagna et al. (2007) report that the aggre-
gate (world) deficit affects domestic interest rates, but its impact is less relevant
than that of domestic fiscal policy. In different settings, other studies have found
close connections between interest rates across borders (Minford and Peel 2007).
Nonetheless, country-specific factors still play a role in explaining the deviation of
domestic interest rates from the evolution in worldwide interest rates (Breedon et al.
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Table 3 Baseline model, spatial panel error model (W-matrix D distance)

ˇ t-stat 	 t-stat

Panel, fixed effects �0:44 �4:17 0:56 8:42

Panel, random effects �0:48 �4:26 0:52 5:28

Panel, spatial C time period fixed effects �0:43 �4:10 �0:06 �0:43

1999). One of the main reasons is a change in the fiscal policy stance.10 Few studies
report the impact that international capital flows or foreign interest rates have on
domestic interest rates. Cebula and Koch (1994) find a similarly strong reduction in
interest rates (24 pp) as we do.

The co-movement of interest rates may not just reflect the integration of finan-
cial markets. Economic integration makes countries susceptible to global economic
developments. Trade, financial integration and similar economic structures raise the
co-movement of business cycles internationally (Imbs 2004). Economics shocks
that are common to a group of countries would display a close synchronization of
economic variables. This might show up in a significant spillover effect. We intro-
duce a time period fixed effect in the spatial panel to absorb these common shocks.
We indeed find that the spillover effect is much smaller in this case, whereas the
crowding out effect remains as strong (Table 2).

4.2 Financial and Real Economic Integration

An alternative possibility is that the co-movements of economic variables are also
spatially distributed. Another way to model these economic links is to incorporate a
spatial structure in the residuals of the baseline model. The assumption is that these
economic factors, except interest rates, are spatially distributed across economies.
We estimate this spatial error panel model (3b).

By controlling for these spatial linkages, we pick up a significant crowding out
effect. Table 3 shows that the results are very similar to those of the spatial lag
model. Moreover, the spillover effect causes a 1% rise in foreign rates to raise
domestic rates by 56 basis points. We can not identify whether spillover is due to
either financial market integration, or the co-movement of macroeconomic variables
(Kaminsky and Reinhart 2000).

4.3 Some Control Variables

Alternatively, one may consider a correction of the baseline model (2a) with a spatial
structure for the errors too naive. The factors that determine interest rates are plenty

10 Note that for other assets than government bonds, most empirical papers find similar results on
the importance of spillover. Ehrmann et al. (2005) find that asset prices react more strongly to
domestic shocks, but still allows for a strong spillover between the US and EU markets.
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Table 4 Augmented model, spatial panel lag model, spatial fixed effects, specifications (W-matrix
D distance). See (4)

ˇ t-stat � t-stat 
 t-stat

Baseline �0:45 �4:54 0:55 8:09 – –

Xt D
8
<
:

Debt �0:16 �2:94 0:73 17:28 �0:00 2:07

Short-term interest rate 0:00 0:00 �0:53 �2:98 0:04 2:78

Inflation 0:01 0:29 0:34 3:37 0:01 0:28

of course, and the surplus is certainly not the only determinant of (long-term) inter-
est rates. One often stated reason for the ambiguous findings regarding crowding
out is the contemporaneous influence of monetary policy, automatic fiscal stabiliz-
ers, interest payments on outstanding debt and any economic effects of fiscal policy
itself.11 We test extensions of the spatial lag model that control for these additional
regressorsXn;t , as in (4):12

in;t D ˛ C ˇsn;t C �W in;t C 
Xn;t C "n;t (4)

It is quite common in the empirical literature on crowding out to directly test the
effect of public debt on (long-term) interest rates, instead of using deficits. The
argument is that public debt substitutes private capital, and hence it the stock of
debt that has an impact on the level of interest rates (Engen and Hubbard 2004).
Moreover, the initial fiscal position of countries matters for crowding out. Fiscal
policy has non-linear effects. At higher levels of debt, interest rates typically react
more strongly to higher deficits (Ardagna et al. 2007). In particular, emerging market
economies start paying a higher risk premium for fiscal indiscipline (Zoli 2004).

Table 4 reports the estimates of the spatial panel lag model with fixed effects for a
model augmented with public debt. Controlling for public debt gives an interesting
result. The crowding out effect of the surplus becomes less strong: interest rates rise
by a mere 16 basis points after a 1% rise in the deficit. Ardagna et al. (2007) find a
short run effect of deficits of about 10 basis points, after controlling for debt. This
effect accumulates over time to about 100 basis points, especially as the debt ratio
rises. The impact of debt – albeit significant – is very small.

These results fall in a similar range as in the other studies. Single country studies
find rather modest crowding out effect of higher public debt. The consensus estimate
ranges between 2 and 7 basis points for the United States with a variety of method-
ologies (Ford and Laxton 1999; Canzoneri et al. 2002; Laubach 2003; Engen and

11 These effects could cause some problems of endogeneity in (2a), but these feedback effects
are likely small. IV estimates are not considered in most of the literature, however. Spatial panel
models that control for endogeneity of the regressors have not been developed yet.
12 In the spatial econometrics literature, the bottom-up approach for searching an adequate speci-
fication prevails. The so-called Hendry approach is not common. Florax et al. (2003) demonstrate
that the specific-to-general approach slightly outperforms the Hendry approach in the case of the
estimation of linear spatial models.
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Hubbard 2004).13 As for the impact of the surplus on interest rates, studies that
control for links between different countries, or use a cross-section approach, find
slightly stronger effects of debt. For example, the impact of debt is slightly stronger
for the EU countries than in the United States (Faini 2006). Pooled estimates for a
group of OECD countries show a rise of about 25 basis points after a rise in domes-
tic debt (Ford and Laxton 1999; Orr et al. 1995). A similar effect is found by Tanzi
and Lutz (1993).

Interestingly, the spillover effect is much stronger and is estimated very precisely.
Three quarters of a 1% rise in the interest rates spills over to close by countries. After
all crowding out and spillover effects have worked out, a 1% rise in the deficit will
push up interest rates by 16 basis points at home, and by 12 basis points abroad.

Long-term interest rates are very much influenced by monetary policy in the short
term.14 We control in two different ways for its effect. First, we include a short-term
interest rate in the specification. At short horizons, monetary policy sets interest
rates to stabilize inflation and output. Central bank decisions directly influence the
financing conditions of the government (and its interest payments on outstanding
debt). The insignificance of the crowding out effect confirms that the short run
impact of a higher deficit may be significant in raising interest rates, but it is not
very important and it is blurred by the impact of monetary policy. But once a con-
trol for short-term rates is included, the spatial lag coefficient � is negative. Such a
negative spillover effect can only be explained by a substantial spatial transmission
of changes in short-term interest rates, which offset the co-movement of long-term
interest rates between neighbouring countries. Other studies also illustrate this co-
movement of short-term rates across borders (Minford and Peel 2007; Ehrmann
et al. 2005). Second, we include also the inflation rate.15 Higher inflation eases
pressures on deficits as it erodes the real value of outstanding debt. We find that
the spillover is not really affected by the spatial variations in inflation.

4.4 Time Variation in the Crowding Out Effect

Financial and economic integration can explain why changes in asset markets have
large effects on other financial markets. Globalization is often argued to have

13 The only exception is Friedman (2005), who finds that a 1% rise in the debt ratio increases
interest rates by 90 basis points.
14 Crowding out is obscured by static specification of the relation between deficits and interest rates
in (2a). The reason is that government bonds are actually traded on financial markets. As financial
markets are forward looking, it is the anticipation of upcoming deficits, rather than the current
fiscal balance, that results in higher long term rates instantly. A few studies include expectations
about the deficit or ratings, and directly analyse the effect of these budget projections on expected
interest rates (Laubach 2003). These data are available for a limited sample only. Papers that look
into the effect of deficit announcements by the government, or analyse the effect of deficits on risk
premia usually ignore the spillover effects of fiscal policy, with the exception of Kitchen (1996).
15 Data on inflation expectations are not available for all countries in the sample.
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strengthened the spillover between economies in two different ways. On the one
hand, as integration is a gradual process, we are likely to observe a change over
time in the strength of spillover. On the other hand, there could be turbulence in the
spillover channel due to financial or economic crises. Tranquil periods in which
there is a normal degree of real and financial interdependence suddenly switch
to an environment with wild co-movements during currency and financial crises
(Claessens et al. 2001). Some authors argue this distinction is only apparent, and
interdependence is determined by real factors that change only gradually over time
(Boyer et al. 1999; Forbes and Rigobon 2002). The results in Table 2 showed that
common shocks might be more important in explaining interdependencies across
countries than a genuine spillover from other economies. If interest rates are indeed
driven by some common factors in any given year, then we would not expect to see
a spillover effect in a year-by-year estimation of the spatial lag model. All inter-
dependencies would be absorbed by the constant term in this cross-section model.
Note that if spatial links are predominantly determined by contagious crises across
emerging economies, the annual frequency of fiscal data may not pick up the high
frequency movements on financial markets due to sudden crises.

We turn again to the standard spatial lag model for explaining the variation in
interest rates by fiscal variables but estimate it at a cross-sectional level for each year.
Note that the efficiency of these cross-section estimates is smaller than in the panel
case. Figure 1 plots the coefficients of an ML estimation of the baseline regression
over the sample 1990–2005.

We have three major results. First, there is a crowding out effect of fiscal policy
on interest rates: a fall in the surplus (higher deficit) raises interest rates. Second,
the spillover effect is not particularly stable. The spatial lag coefficient varies in a
rather large band between 0 and 40 basis points since the mid-1990s, but there are
some strong drops in 1994 and 2004. Finally, both effects vary over time. We can
distinguish three different episodes. In the first half of the 1990s, fiscal policy has
hardly any crowding out effects. Foreign interest rates tend to go in the opposite
direction of domestic rates. In a second period, which goes from the mid-1990s to
the year 2000, crowding out is significant and large. At the same time, spillover
becomes stronger as well. Starting in 1999, crowding out and spillover both become
less pronounced. There is a gradual decline in the estimated coefficients ˇ and �.
These results are also corroborated by the findings of a cross-section estimation of
the spatial error model.

These results teach us some important lessons. First, if we compare these findings
with our panel estimates with time period effects, we cannot clearly attribute the
smaller spillover effect to common shocks only. There is an important change in the
crowding out effect as well.

It is not surprising that spatial links are increasingly important in explaining the
transmission of interest rates across borders. Increasing globalization is believed to
have spurred capital mobility and increased trade flows. Linkages on international
markets have certainly become much stronger than they were a decade ago. More-
over, the 1990s have seen several large crises that have spread to other countries.
The 1994 Tequila crisis in Mexico was the first big “fiscal crash.” The Asian Flu
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that started in 1997 in Thailand set off a series of problems in the Asian Tigers,
but spread globally. Russia defaulted in 1998 after Brazil had devalued the real a
few months before. Argentina defaulted in 2001 and Turkey experienced fiscal and
monetary trouble in the same year. Since then, no major “emerging market” crisis
has occurred. We find a break in spillover: there are no significant spatial links since
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2001. In contrast to the 1990s, domestic crises have had much less impact abroad in
recent years. There could be two reasons for this. First, domestic crises are less seri-
ous now than they were in the 1990s. Second, even though financial and economic
integration are progressing, contagion is now much weaker. Other studies have also
found that spillover has become much weaker in recent years. Forbes and Chinn
(2004) also find evidence of stronger links over the period 1996–2000. Didier et al.
(2006) show that the co-movement of emerging market bond spreads and returns
have been declining since 2000. Mauro et al. (2006) present similar results.

The reasons for the changes in the crowding out effect are unclear. Large inter-
national crises can explain the large crowding out effect in the mid-1990s. In fact,
some – but not all – of the emerging market crises started with domestic fiscal prob-
lems. High and rapidly growing public debt cast current monetary policy strategies
into doubt, and meant high interest rates to prevent capital from fleeing the country.
This is only a partial explanation, however. For lack of data, we have not been able
to include many emerging markets in the sample. And even if these economies in
crisis had a global impact, the mere size of their budget problems is probably too
small to affect interest rates in industrialized economies. Instead, fiscal policy in
both the United States and the EU was much more focused on debt consolidation
in the 1990s. The Clinton Administration governed a 10% reduction in public debt
in the span of 5 years, in part helped by the strongly booming economy. In addition,
EU countries decided on a common fiscal retrenchment and a strict monetary policy
stance to prepare for EMU. EU countries had to abide by the rules of the Stability
and Growth Pact in order to qualify for the eurozone. After this joint consolidation
effort, budget discipline has become less tight. It should not come as a surprise that
after the entry in the EMU in 1999, crowding out is much smaller.

5 Some Robustness Checks

5.1 Global or Local Linkages

We immediately pick up on the previous explanation for the change in the crowd-
ing out effect. Fiscal consolidation in the EU countries might indeed be responsible
for the large crowding out effect in the mid-1990s. There are additional reasons to
expect a stronger spillover effect between EU member states over time. Strong inter-
linkages are the consequence of ongoing economic and financial integration, and
this must have strengthened the spillover of economic policies between these coun-
tries. In addition, for those EU countries participating in monetary union, spillover
may even be stronger. A common monetary policy has spurred financial integration
and probably also trade links. If different governments borrow in the same cur-
rency, as in a monetary union, free riding makes each government disregard its own
intertemporal budget constraint (Chari and Kehoe 2007). A variety of reasons may
be invoked for the lack of credibility of the no bailout clause that prevents other
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governments (or the central bank) from rescuing the insolvent government. The off-
setting interest rate effects do not need to materialize then, as default premia are
spread out over all members of the union.16 In the absence of agreements specifying
the fiscal relations between governments, the crowding out effect depends – ceteris
paribus – on the aggregate fiscal policy stance of all member states.

Could spatial links be stronger between particular groups of countries, or are
capital markets truly global? We run the same baseline model for some subsamples
of countries. We are particularly interested in the subgroup of EU countries. The
results of the spatial tests must be taken with some caution since we include only 13
EU countries. The properties of spatial panel tests are instead asymptotically valid.

Table 5 summarizes the results of the different specifications of the spatial panel.
Crowding out is much less significant for an EU country. In contrast to the “global”
sample, a 1% deficit raises interest rates by only 10 basis points. Notwithstanding,
the total effect on interest rates is much larger due to the spillover effect. Nearly
90% of an interest rate rise is transmitted to other EU countries. A 1% deficit rais-
ing domestic rates by 10 points will – in a second step – cause a rise in foreign
rates of about 9 basis points. Hence, deficits will raise interest rates by nearly the
same amount at home as in another EU country. As before, the panel with fixed or
random effects gives very similar results. There is again some evidence that com-
mon shocks are driving interest rates. The results of the spatial panel model are
somehow altered when accounting for time period fixed effects. The spillover effect

Table 5 Baseline model, spatial panel lag, country groups (W-matrix D distance)

EU15 (number of observations D 208)

Spatial lag ˇ t-stat � t-stat
Panel, fixed effects �0:10 �2:54 0:86 36:46

Panel, random effects �0:11 �2:02 0:86 33:37

Panel, spatial C time period fixed effects �0:01 �0:09 0:29 2:56

Spatial error ˇ t-stat 	 t-stat
Panel, fixed effects �0:03 �0:52 0:88 43:35

Panel, random effects �0:21 �3:77 0:81 22:13

Panel, spatial C time period fixed effects �0:00 �0:09 0:26 2:31

OECD (number of observations D 352)

Panel, fixed effects �0:45 �4:54 0:55 8:09

Panel, random effects �0:46 �1:54 0:53 6:69

Panel, spatial C time period fixed effects �0:43 �4:09 �0:05 �0:37
Spatial error ˇ t-stat 	 t-stat
Panel, fixed effects �0:44 �4:17 0:56 8:42

Panel, random effects �0:48 �4:26 0:52 5:28

Panel, spatial C time period fixed effects �0:43 �4:10 �0:06 �0:43

16 Yardstick comparisons across governments may partially undo this spillover, if the accumulation
of debt by one government increases the relative creditworthiness of comparable governments.
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is much weaker, and the crowding out effect is completely absent. As regards the
source of the spillover, there is not much evidence to identify the role of financial
or economic integration in the transmission of interest rates across EU countries.
The estimates of the spatial error model show an important spillover effect, but no
crowding out.

Most studies have examined spillover between OECD countries. We look at the
industrialized economies, but exclude the most recently acceded member states. Our
baseline results for the global sample are not much affected: crowding out effects
are significant and spatial links are rather large. The estimates are of the same order
as for the global sample.

5.2 Different Weight Matrices

For all previous results, we have used a measure of geographical distance as a proxy
for cross country economic linkages. We check if the results are robust to other
definitions of the weight matrix W, and focus on the spatial panel lag model with
fixed effects.17 We first try out some different measures of distance. We alterna-
tively measure the (inverted) distance between countries as the distance between
capital cities, or the great circle distance between country centroids.18 Table 6 shows
that the point estimates are very similar, and so is the significance of both effects.
A more common choice of the weighting matrix in spatial studies is physical con-
tiguity. Countries that share a common border are believed to transmit effects to
their direct neighbors, but no effect at all to far-away countries. Under this type of
transmission mechanism, crowding out is only marginally stronger, but the spatial
effect is negative. The reason is that border links are an awkward choice, as there are
plenty of missing observations in our sample. Only a few European countries share
a common border, but most other economies are isolated from each other (i.e. there
are many zeros in the weighting matrix). This downplays the importance of spatial
transmission.

Physical distance is at best a proxy for the integration of countries’ financial
markets, but still gives little economic content to “being close.” Our estimates of
the spillover effect could be quite conservative as a consequence. We experiment
with some more “economic” weight matrices. It is often argued that trade is a major
channel for economic transmission across countries. We therefore use different pos-
sible weight matrices incorporating bilateral exports and imports. We scale total
exports from country i to country j by total exports of country i .19 Similarly, for

17 This result is robust for the other panel models.
18 A great circle is the shortest path between two points along the surface of a sphere.
19 All data are in USD, trade data are FOB or CIF. Spatial panel models cannot handle time varying
weight matrices. We arbitrarily fix exports and imports at a base year in the mid-of-sample (1998).
Two countries are “close” if they have strong bilateral trade (relative to the other trading partners).
In contrast to the literature on contagion, we do not use the competition for export shares on third
markets (Forbes and Chinn 2004).
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Table 6 Baseline model, spatial panel lag model, various weight matrices

ˇ t-stat � t-stat

Panel, fixed effects
Inverted distancea �0:45 �4:54 0:55 8:09

Inverted distanceb �0:48 �4:81 0:40 5:72

Circle distance �0:45 �4:57 0:53 7:59

Border �0:64 �5:62 �0:24 �3:86
Country size�distance �0:45 �4:54 0:55 8:09

Exports �0:45 �4:55 0:55 9:37

Imports �0:45 �4:57 0:55 9:09

Trade �0:45 �4:55 0:54 9:11

Free trade area �0:54 �5:16 0:20 1:96

GDP per capita �0:48 �4:76 0:41 5:83

Panel, random effects
Inverted distancea �0:46 �2:02 0:51 0:00

Inverted distanceb �0:49 �2:09 0:37 5:15

Circle distance �0:47 �1:63 0:50 6:62

Border �0:53 �2:75 0:19 0:00

Country size�distance �0:46 �2:05 0:53 0:00

Exports �0:49 �2:30 0:40 5:15

Imports �0:48 �2:22 0:43 0:00

Trade �0:48 �2:24 0:44 0:00

Free trade area �0:55 �2:30 0:18 3:52

GDP per capita �0:49 �1:96 0:37 0:00

Panel, spatial and time period fixed effects
Inverted distancea �0:43 �4:09 �0:05 �0:37
Inverted distanceb �0:43 �4:11 0:04 0:48

Circle distance �0:43 �4:09 �0:05 �0:39
Border �0:44 �4:09 �0:24 �3:82
Country size�distance �0:43 �4:09 �0:05 �0:37
Exports �0:43 �4:06 0:10 1:12

Imports �0:43 �4:07 0:06 0:58

Trade �0:43 �4:06 0:08 0:83

Free trade area �0:41 �3:94 �0:11 �0:88
GDP per capita �0:43 �4:10 0:01 0:14

aDistance between centroids of the country coordinates
bDistance between capital cities

imports of country j we scale by total imports of country j .20 We also weigh by
total trade, summing bilateral exports and imports, and dividing by total trade of the
country. As a consequence, these weight matrices are asymmetric: the strength of
the transmission depends on the size and importance of each country. For example,
the United States may trade a lot with Colombia, yet the importance of this trade

20 The two numbers do not match for statistical reasons. This is known as the “missing trade”
problem.
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volume for the US economy is tiny. In contrast, for Colombia, US trade is much
more important. We would expect the spillover from the United States to Colombia
to be much stronger than vice versa. This weight matrix better reflects the strength of
transmission from large to small economies. Surprisingly, none of the results of the
baseline model is altered very much. The crowding out effect is as large as before,
and so is the spatial effect. Kelejian et al. (2006) similarly find little differences
between the use of trade or distance matrices in their analysis of financial market
spillover. This result confirms that distance is a good proxy for trade and economic
relations in a gravity model.

One might argue that trade is endogenous to the strength of the economic links.
We choose an alternative weight matrix that has a dummy if two countries are in
a free trade agreement. This results in a slightly stronger crowding out effect, and
weaker spatial links. However, the results could be biased. There are a few countries
only that do not have some kind of bilateral trade agreement in our sample. As a
consequence, the importance of spatial links is probably understated.

The panel model provides an average effect of fiscal policy on interest rates,
while arguably these crowding out and spillover effects may differ across coun-
tries. Changes in fiscal policy in the large industrialized economies are likely to
have a larger effect on smaller economies. The transmission of economic events is
likely to run in one direction. For example, measured by great circle distance, Ger-
many is equally distant from France and Hungary. The impact of changes in the
German economy is likely to be large for both countries. Yet, the inverse impact of
the French economy on Germany is almost certainly much larger than that of the
Hungarian economy. We control for the direction of spillover and the importance
of transmission between economies by multiplying country size (GDP in USD PPP
terms) by physical distance. Nonetheless, the results do not change much if we use
this asymmetric weight matrix.

Both industrialized and emerging market economies are increasingly open to
financial markets. Financial integration between industrialized economies is grad-
ually proceeding with economic integration. Instead, emerging market economies
could be subject to contagious crises that spread from a crisis in another emerging
market, but are unrelated to the economic fundamentals (and in particular the fiscal
position) of the country itself. Economic crises may spread faster between emerging
markets that are more exposed on financial markets, have similar macroeconomic
characteristics or are prone to information asymmetries that trigger sunspot crises.
As a final robustness check, we try to model these various channels of contagion.
We capture the heterogeneity between industrialized and emerging economies by
the difference in economic development. We use a weight matrix in which spa-
tial links are stronger if the difference of (log) per capita income (in PPP USD) is
smaller. We do not find significant differences in the crowding out effect, and the
spatial effects remain as strong as with the other weight matrices.

Our weight matrix is a rather rough attempt to distinguish links between indus-
trialized and emerging market economies. We have not attempted to model these
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channels of contagion with alternative definitions of the weight matrix.21 It has
been argued that these alternative channels may be less important than the clas-
sical transmission channels, such as trade (see the findings of Gerlach and Smets
1995). Eichengreen and Rose (2001) and Forbes and Chinn (2004) also find that
real and financial linkages are predominantly determined by “real” trade integration.
Kaminsky and Reinhart (2000) argue that trade or financial links are hard to
distinguish, and hence often both specifications give very similar results.

5.3 Alternative Data Definitions

Fiscal policy is argued to affect interest rates at long horizons. This can be tested in
most industrialized economies that are able to issue long-term bonds at a horizon of
10 or more years. Not that many countries outside the OECD have been able to issue
long-term bonds, however. Most developing economies can only get finance on cap-
ital markets at short horizons, and have financed deficits with short-term bonds at a
5-year horizon at most. We add to the sample those countries that issue government
bonds at a horizon shorter than 5 years, and also use a short- to medium-term interest
rate (of 1–5 years) as our dependent variable for the countries in the initial sample.
Table 7 gives the results of the spatial panel lag model with fixed effects. For the
baseline model, the results barely change. If we augment the model with some addi-
tional control variables, the results still do not change very much. This is surprising,
given that with a few exceptions (Barth et al. 1984), the literature usually does not
find effects of deficits on short-term rates (Cebula 2000). We also add several con-
trol variables to this specification, and confirm the previous results. The crowding
out effect is weaker when we add public debt, but the spillover effect becomes much
stronger. If we add inflation, only the spillover effect is important. When data are
available, we also add as a control the long-term rate. In this case, both the crowding
out and spillover effect disappear.

The level of interest rates is determined by many other factors than fiscal policy.
As argued before, it is the level of public debt that determines crowding out. The
addition of new stock of public debt should instead put additional pressure on the
change in interest rates. Hence, instead of using the level of interest rates as the
dependent variable, one should use the first difference instead. Table 7 shows that
this does not affect the estimates of the crowding out effect, nor of the spillover. The
addition of control variables does not change our conclusions.

Finally, some other studies have used the yield to filter out any of the short-term
effects of fiscal or monetary policy, and analyze the impact of expected deficits on
interest rates. The argument is that higher future deficits translate into higher interest
rates in the future, and hence, a steepening of the yield curve. By using the yield as

21 Alternative definitions could be: interest rate spread, stock market index, exchange rate regime,
real exchange rate, competition for bank lending, or international reserves. Data on these other
channels are unfortunately not completely available for all countries in our sample.
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Table 7 Augmented model, spatial panel lag model, spatial fixed effects, specifications
(W-matrix D distance). See (4)
Dependent Short-term interest rate ˇ t-stat � t-stat

Baseline �0:52 �2:66 0:48 6:39

Xt D
8
<
:

Debt �0:09 �2:03 0:77 21:39

Long-term interest rate 0:03 0:16 0:14 1:23

Inflation 0:01 0:24 0:45 5:65

Dependent � long-term interest rate ˇ t-stat � t-stat
Baseline �0:61 �2:72 0:44 5:44

Xt D
8<
:

Debt �0:09 �1:91 0:76 19:54

Short-term interest rate 0:00 0:00 0:00 �0:01
Inflation 0:01 0:24 0:42 5:09

Dependent � interest rate ˇ t-stat � t-stat
Baseline �0:56 �2:03 0:29 3:05

Xt D
8<
:

Debt �0:09 �2:03 0:77 21:39

Long-term interest rate 0:14 0:65 0:21 1:94

Inflation 0:05 1:62 0:44 5:77

Dependent Yield ˇ t-stat � t-stat
Baseline �0:52 �2:66 0:48 6:39

Xt D


Debt �0:12 �2:94 0:73 17:95

Inflation 0:03 1:03 0:35 3:84

the dependent variable, there is no need to model the factors that drive the level of
interest rates. We subtract from the long-term interest rate the short-term rate, and
use this yield as a dependent variable. The estimation of the baseline model does
not show very different results, even if we add the usual control variables.

6 Conclusions

There is much discussion about the effect of fiscal expansions on interest rates.
This variety in our opinion is due to the little robust empirical endorsement for
crowding out. A lack of response of interest rates can be justified under two dif-
ferent theoretical conditions. First, under Ricardian Equivalence, deficits do not
affect macroeconomic variables as economic agents anticipate the paydown of
higher deficits with future taxes. Second, capital flows between economically inte-
grated economies offset any interest rate differentials that follow upon an increase
in the supply of government bonds. Fiscal deficits are not necessarily financed by
domestic financial resources only. Financing conditions of governments depend on
international capital markets.

Theoretical models of open economies displaying non-neutrality of debt and
including long-term interest rates have not been developed. With little theoretical
guidance, the robustness of the empirical tests is important. In this chapter, we
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concentrate on modeling the crowding out effect of deficits on interest rates in open
economies. We extend a simple empirical model for testing crowding out and test it
with spatial techniques. Spatial models impose few restrictions on the spillover, as
the contemporaneous interactions on many capital markets is taken into account.

Our main finding is that there are significant and robust effects of larger deficits
on interest rates. Spillover mitigates this effect. It is not obvious that this spillover
is related to fiscal policy directly, as both financial and economic integration may
drive the spillover. Spillover is much stronger in the mid-1990s when there are major
crises, or policy actions have been coordinated between governments. We find the
spillover effect to be particularly strong among EU countries.

Our results have some implications for fiscal policy. The argument for coordina-
tion of fiscal policy is perhaps not convincing in case the spillover occurs on capital
markets. After all, the mitigating effect of financial markets is a purely pecuniary
externality and does not really require international coordination. The allocation
of savings to the public or private sector, whether at home or abroad, is efficient.
Nonetheless, in case spillover is related to contagion on financial markets (in the
case of emerging economies) or to monetary union (in the case of EMU) this distorts
capital markets. Some institutional correction mechanisms might then be necessary.
Given that crowding out, and spillover, is quite strong in the EMU, this justifies
fiscal rules as in the Stability and Growth Pact.
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Spatial Models of Health Outcomes
and Health Behaviors: The Role of Health
Care Accessibility and Availability

Brigitte S. Waldorf and Susan E. Chen

1 Introduction

It is still open to debate whether increased availability and accessibility of physicians
and health care services has a significant beneficial impact on the health status of
populations in the United States. While there is convincing evidence that increased
availability and accessibility has a significant beneficial impact on the health status
of populations in developing countries (see, e.g., Lavy et al. 1996; Frankenberger
1995; Perry and Gesler 2000), a large body of literature suggests that additional
resources spent on health do not significantly reduce mortality in the United States
(Thornton 2002; Hadley 1982; Auster et al. 1969). A recent review of the liter-
ature on primary care and health in developed countries, however, suggests that
the supply of primary care physicians is positively related to population health
(Starfield et al. 2005). Moreover, medical care may not influence gross mortality
but it may affect mortality rates of particular subgroups, the morbidity of the popula-
tion, and preventative health behaviors (Anderson and Morrison 1989). In addition,
spatial variations in the use and quality of medical care (Skinner 2006; Chan et al.
2006) may confound a simple link between access to health care and health care
outcomes. The mixed evidence on the link between population health and health
service provision and accessibility challenges policymakers who have to determine
how to equitably allocate medical resources to improve public health, particularly
in medically underserved areas.

Accessibility is a multidimensional concept and can be broadly defined as the
ability of a population to obtain health care services. It varies across space because
neither health professionals nor residents are uniformly distributed (Luo and Wang
2003). Previous research has addressed the connection between space and health but
has generally ignored conceptual and methodological advancements in the spatial
sciences. In particular, two issues have been treated in a rather rudimentary fashion.
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First, although there is a large literature on measuring the spatial accessibility of
medical care,1 studies that addressed the link between access and health status have
used crude measure, such as a simple enumeration of physicians within an area.
Thus, they de facto measure availability (the number of locally available service
points from which a patient can choose) rather than accessibility which accounts for
the distances people need to travel to take advantage of health care services. Second,
previous research has used spatially referenced data but has not yet fully explored
spatial dependencies. The Dartmouth Health Atlas, for example, is an effort to track
and document geographic differences in health outcomes, health care utilization,
and medical expenditure. The results of a number of the studies using the Dart-
mouth data have shown that there are large geographic differences in the three main
outcomes (see, e.g., Wennberg et al. 2002). Moreover, the studies suggest that these
differences may be generated by some unobserved process – perhaps of a spatial
nature.

This study aims to rectify these oversights by choosing a traditional avail-
ability measure, plus a more sophisticated measure of spatial accessibility as the
key explanatory variables of health outcomes and health behaviors. Moreover,
we directly address spatial dependencies. Spatial dependence may arise when a
county’s health outcomes and behaviors are correlated with those in neighboring
counties. It can be a statistical artifact, but it can also be grounded in behavioral
processes such as imitation behavior and the spatial diffusion of cultural norms
influencing health care utilization. They could also be a result of underlying fac-
tors such as poor labor market conditions which affect people’s access to health
insurance and thus ultimately people’s health.

A traditional health production function is transferred to a spatial setting, amena-
ble to spatially aggregated data where spatial accessibility and availability of health
care serve as the key explanatory variables. To account for spatial processes and
to avoid potential misspecifications, the model allows for spatial dependence. The
empirical analysis focuses on vulnerable groups – the elderly, children, and pregnant
women – and utilizes county-level data from the Indiana State Department of Health
and the U.S. Census Bureau. The health outcome variables include mortality mea-
sures for infants and the elderly; the health behavior variables focus on pregnancy
related behaviors.

The remainder of this chapter is organized as follows. The second section
summarizes the literature and provides a conceptualization of the link between
accessibility and health status, with special attention to the spatial manifestations
of the linkages. The third section presents the empirical analysis. It begins with
a profile of the study area, followed by a description and exploratory analysis of
the variables used in the study, the model specifications, and the presentation of
empirical results. We conclude with a discussion and implication of our findings.

1 For an overview, see Guagliardo (2004).
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2 Background

2.1 Literature Review

In 2005, the U.S. federal government spent over 2.25 billion dollars on programs
designed to increase access to physicians and health care services in the United
States. Despite the large amount of spending on these programs, there are still 3,032
Health Professionals Shortage Areas in the U.S. (GAO 2006). While it is clear
that there is a spatially unequal distribution of both primary and specialized health
care professionals in the United States, more evidence is needed to understand the
association between access to care and health status.

Access to medical care includes affordability, accommodation, acceptability,
availability, and accessibility (Penchansky and Thomas 1981). The first three dimen-
sions, extensively reviewed in Wyszewianski (2002), are considered non-spatial and
have been given considerable attention in the literature. They reflect health care
financing arrangements and the access barriers of an economic, social and cultural
nature. The final two dimensions are spatial in nature and reflect the adequacy of
the supply of health care providers inside a region while taking into account such
factors as distance, travel time, and the demand for services. In this study, we focus
mainly on the spatial dimensions of accessibility.

Spatial accessibility is a necessary, albeit not sufficient pre-requisite for equitable
high-quality health care services for all population segments of society, whether
they reside in urban agglomerations or in peripheral rural areas. However, spatial
barriers – most notably long travel distances to health care facilities – are signifi-
cant factors contributing to the exclusion from high-quality medical care.2 Indeed,
McDonald and Coburn (1988) showed that prenatal care utilization decreases with
increasing travel times to providers.

A review of the literature shows no consensus on the relationship between spatial
accessibility and health status. Using data from the 1960s on individuals living in 39
city size strata, Newhouse and Friedlander (1980) related physiological measures of
individual health status, such as diastolic blood pressure and cholesterol to an area’s
medical resources measured by various indicators, such as the number of physicians
per residents and number of hospital beds. They did not find a relationship and
concluded “that in the United States what an individual does for himself is probably
more important to his health than the quantity of medical-care resources in his area
of residence” (p. 214). Similarly, Krakauer et al. (1996) – using data aggregated to
the Health Care Service Area for the Medicare population – could not find evidence

2 Though extremely important on the supply side, lack of data does not allow us to refine supply to
include physicians’ willingness to accept different types of patients (e.g., Medicare or Medicaid).
The focus is thus solely on physical proximity to health care providers.
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that physician supply reduces mortality or morbidity, measured by ambulatory care
sensitive conditions.3

Shi and Starfield (2001) focused on the effects of primary care physician supply,
income inequality, and a battery of socio-economic variables on mortality among
Blacks and Whites across U.S. metropolitan areas in 1990. They found that white,
but not black mortality is significantly associated with primary care physician sup-
ply and income inequality. Shi et al. (2003) used data for the 50 U.S. states to
investigate that same relationship during four time periods. Their results suggested
that increased supply of primary care physicians significantly lowers mortality, in
contrast to specialty care physician supply which has the opposite effect.

Mansfield et al. (1999) used county level data for the United States to investigate
the factors influencing premature mortality, defined as the number of life-years lost
before age 75. They found that the influence of socio-economic and demographic
variables on premature mortality exceeds the influence of the supply of medical care.
Moreover, the effect of primary physician supply on premature mortality depends
on the geographic context, lowering premature mortality in metropolitan counties
but increasing it in rural counties.

While the study by Mansfield et al. (1999) emphasizes that the link between med-
ical resources and health may very well be context-specific, there is also evidence
that improved resources may be beneficial for vulnerable population groups. That is,
for particular subgroups such as infants and the elderly it does appear that health care
resources matter. Hadley (1982), in a study of the Medicare population, found that
a one percent increase in Medicare expenditure would lower mortality among black
males by 16%. Similarly, Corman et al. (1987) found that approximately 56.5%
of the decline in black neonatal mortality in the United States between 1964 and
1982 can be attributed to health care programs and medical innovations. Allen and
Kamradt (1991) report decreasing infant mortality rates with increasing physician
availability in Indiana counties.

The link between access to medical care and health has also been the focus of
many studies conducted in other countries such as England and Canada. The results
from these studies are important because the socialized healthcare systems in these
countries remove the financial barriers to seeking health care. Interestingly, these
studies also paint an inconclusive picture of the link between health care and popu-
lation health status. Especially in Canada, where large areas are sparsely populated
and very remote, accessibility takes on added significance. In these sparsely popu-
lated areas, there may also be rationing of health care resources within a health care
facility as well.

In England, Goyder et al. (2000) used individual data on patients who had been
diagnosed with diabetes, to investigate the factors that influence whether patients
attended a hospital diabetes clinic or had a diabetes review subsequent to the diag-
nosis. They found that living in a deprived area negatively affected the chance of a

3 Ambulatory care sensitive conditions are health care conditions evident when a patient is admitted
for ambulatory care and presumed to be sensitive to the adequacy (availability) of ambulatory care.
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diabetes review. Contrary to this finding, Gulliford et al. (2004) looked at the rela-
tionship between general practitioner supply and mortality in 99 health authorities
in 1999 and did not find evidence to support the hypothesis that increased supply
lowers mortality. In Canada, Veugelers et al. (2004) investigated a specific health
condition – hypertension. They used individual data in combination with contextual
information about the individual’s neighborhood to investigate variations in diagno-
sis and treatment. Using the number of physician visits per person as the measure
for health care delivery, they cannot establish a relationship between health care
delivery and either diagnosis or treatment of hypertension.

This brief review of the literature shows a lack of consensus on the effect of medi-
cal resources on mortality. There does seem to be agreement that socioeconomic and
behavioral factors are more strongly associated with mortality than access (Fuchs
1974; Joyce et al. 1992; Wolfe 1986). Mokdad et al. (2004) find that almost half
of all deaths in the United States can be attributed to preventable factors that range
from poor diet and physical inactivity to firearms and toxic agents. They also find
that the estimated contribution of health care to a population’s health status is small,
only about 15%. This estimate is for the entire population and therefore does not
accurately depict the effect that health care may have on more vulnerable groups in
the population. Our study contributes to the literature by focusing explicitly on the
health outcomes of vulnerable groups, infants and the elderly.

The literature review also reveals that existing studies differ with respect to the
chosen health outcome/behavior/condition variables and the spatial scale. They are
similar though in that almost all of them used cross-sectional data4 to measure the
association between medical resources and health outcomes, thus exploiting varia-
tion across space to examine the link between access and health. Another common
thread is the reliance on availability measures rather than accessibility measures.
Our study contributes to this literature by using both types of measures, and by
explicitly accounting for spatial linkages. The following section outlines the spatial
modeling approach.

2.2 Modeling the Link Between Health Status and Accessibility

Generally, the health production function hypothesizes health status to be dependent
on a variety of inputs that refer to lifestyle, the environment, genetic endow-
ments, and medical resources (Folland et al. 1997). Health status is usually mea-
sured by mortality or morbidity, and the inputs into the health production function
include socioeconomic variables, behavioral factors, and factors measuring access
to medical care.

4 One notable exception is Shi et al. (2003) who used panel data to study the effect of primary care
physician access on mortality.
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In this study, we estimate an aggregate health production function to test the
hypothesis that poor spatial accessibility to health care services leads to poor
health status. Thus, the health status, Y, of region i ’s population, is expressed as
a linear function of regional characteristics, X. The linear predictor includes the
spatial accessibility of health care services as the key explanatory variable and other
regional characteristics consistent with the health production function, such as the
population’s socio-economic status and the area’s contextual setting along the rural-
urban continuum. The implied model, Y D f.X/, suggests that health outcomes in
a region are a function of local characteristics. However, in a multi-regional setting
health outcomes may also be affected by the diffusion of norms and values that influ-
ence health behaviors and health outcomes (Rice and Smith 2001). Prime examples
are cultural norms impacting health care usage or dietary and exercise habits. In par-
ticular for adolescents, peer influences can strongly affect their alcohol and tobacco
consumption as well as their sexual behavior.

Spatially, the sphere of influence for such norms may not coincide with admin-
istrative boundaries. Moreover, the influence of norms and values is not confined
within any fixed boundaries but may diffuse through space. The most obvious
behavioral manifestation of such diffusion is imitation behavior: people mimic the
activities and habits of those who live in close proximity. Ultimately, such diffusion
and imitation will result in spatial spillovers (see Fig. 1) and the clustering of similar
health behaviors and health outcomes across space.

The spillovers have implications for the specification of a spatial health produc-
tion function. Omitting spillovers from the model implies that their effects will be
erroneously attributed to the impact of the structural factors included in the health
production function. Furthermore, the parameter estimates will be biased and the
errors of the model will be spatially autocorrelated.

We thus adopt a two-stage strategy to model the spatial health production func-
tion. In the first step, we model the health status variable, Y, as a linear function of
the predictor variables, X. If the residuals are spatially autocorrelated, we will cor-
rect for the spatial autocorrelation in the second step, by using maximum likelihood
techniques to estimate either a spatial error (2a) or spatial lag (2b) model:

Non � spatial Model W Y D X“C ©; ©� N.0; ¢2/ (1)

Inputs of the HPF
Spatial
Spillovers

Health Behaviors in Region i

Health Behaviors in Region j

Health Outcomes in Region i

Health Outcomes in Region j

Fig. 1 Spatial linkages of a health production function (HPF)
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Spatial error model W Y D X“C ©; and © D œW©C �;� � N.0; ¢2/ (2a)

Spatial lag model W Y D ¡WY C X“C © or Y D .I � ¡W/�1fX“C ©g (2b)

Y is the n � 1 vector describing the health status in regions i D 1; : : : ; n; X is the
n�k matrix of predictor variables, “ is a k�1 vector of parameters and © is the n�1
error vector. W is an exogenously specified n � n weight matrix that summarizes
the spatial linkages relevant for spillovers. If the spillovers operate as contagious
processes, then a first-order contiguity matrix will be a good approximation of the
spatial linkages.

3 Empirical Analysis

3.1 Study Area

Indiana is a Midwestern state with a long tradition in both agriculture and man-
ufacturing. Not surprisingly, thus, almost a third (29.2%) of Indiana’s 6.3 million
residents live in rural areas, compared to only 21% in the nation. Indiana’s urban sys-
tem follows a typical hierarchy with its centrally located capital city, Indianapolis.
Indianapolis accounts for more than 10% of the total population and is comple-
mented by a series of smaller regional centers that are almost uniformly distributed
across the state. An anomaly to this almost perfect Christallerian city system is the
northwestern region of the state. This region is part of the tri-state Chicago Consol-
idated Metropolitan Area, houses a very urban population and its economic base is
comprised of the typical rustbelt industries.

Indiana’s health care service provision ranks below the national average (Table 1).
Using the number of physicians per capita as an indicator, Indiana ranks 39th among
the 50 states. Indiana has only 213 physicians per 100,000 residents and is ranked far
below the national average of 266 physicians per 100,000 residents. Massachusetts
takes the lead with 450 physicians per 100,000 residents, followed by Maryland and
New York State with 411 and 389, respectively. Even when comparing Indiana to
other Midwestern states, it still ranks quite low. The deficit of physicians is slightly
compensated by an above average number of nurses per capita. With 877 nurses per
100,000 residents, Indiana exceeds the national average of 824 nurses per 100,000
residents and ranks 25th among U.S. states.

Taking a closer look inside Indiana reveals stark disparities across the 92 coun-
ties. On average, there are 99 physicians per 100,000 county residents. With 306
physicians per 100,000 residents, Marion County (Indianapolis) has the highest
number of physicians per capita, followed by Vanderburgh County (Evansville) with
289 physicians per 100,000. At the other end of the spectrum are small, predomi-
nantly rural counties with as few as only seven physicians per 100,000 residents. It is
thus not surprising that the vast majority of a recent survey in rural Indiana rated the
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Table 1 Physicians and nurses per 100,000 residents in 2004

Rank State Physicians per
100,000 residents

Rank State Nurses per
100,000
residents

Top Three
1 Massachusetts 450 1 South Dakota 1; 207

2 Maryland 411 2 North Dakota 1; 179

3 New York 389 3 Massachusetts 1; 177

Midwestern States
10 Minnesota 281 5 Iowa 1; 107

11 Illinois 272 13 Minnesota 1; 018

18 Ohio 261 14 Missouri 997

22 Wisconsin 254 15 Ohio 985

27 Michigan 240 16 Wisconsin 939

29 Missouri 239 23 Illinois 895

39 Indiana 213 25 Indiana 877

46 Iowa 187 29 Michigan 841

United States 266 United States 824

Source: http://www.census.gov/compendia/statab/health nutrition/health care resources/

lack of rural health care and health services as a top priority for State Government
(PCRD 2006).

Within Indiana, the number of physicians per county resident is positively corre-
lated with population size .r D 0.654/. The bias towards the most urban centers is
visualized in Fig. 2. It portrays the cumulative distribution of physicians relative to
the cumulative population distribution after sorting the counties in ascending order
by population size. The curves for each specialty area are below the 45ı line, sug-
gesting that the least populated counties house a disproportionately small share of
physicians. The disparities are weakest for primary care and emergency medicine.
They are, however, quite drastic for internal medicine: almost 39% of all internists
are located in the largest county, Marion County. These patterns suggest that Indi-
ana’s mixture of urban and rural counties sets the stage for an inequitable provision
of health care services with health care professionals being disproportionately
located in urban centers.

4 Data and Measurements

The empirical analysis uses four types of variables: health outcome variables, health
behavioral variables, measures of spatial access to health care services, and control
variables measuring important socio-economic differences across Indiana counties.
All variables are measured at the county level. Table 2 shows data sources and
descriptive statistics.
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Fig. 2 Cumulative distribution of physicians relative to the cumulative population distribution
across Indiana counties, 2003

4.1 Health Outcomes

Finding adequate measures of a population’s health status is a pervasive problem
in empirical research. Morbidity measures are certainly good proxies but they are
difficult to obtain, especially when using spatially aggregated data. Most studies
thus turn to mortality measures because they are reliable and easily obtainable from
vital statistics.

We chose outcome measures for two vulnerable groups expected to be most sen-
sitive to medical resources, namely infants and the elderly. For infants we chose the
percentage of babies with low birth weight (less than 2,500 g) and infant mortality.
Infant mortality is a direct reflection of geographic access to hospitals. Proximity
to a neonatal care unit can vastly improve the outcomes of premature and low birth
weight infants (Cifuentes et al. 2002). Arguably, advances in neonatal care (in par-
ticular the introduction of NICU in hospitals) accounted for much improvement in
infant mortality over the last decade.

Typically, the infant mortality rate is defined as the number of babies dying prior
to the first birthday per 1,000 live births. However, the United States is a low mor-
tality country and infant mortality has become a rare event, at least from a statistical
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Table 2 Variable definitions and descriptive statistics

Variable Definition Mean Std. Dev. Min Max

IMR Infant mortality rate,
cumulative 1990–2003a

7:46 1:74 3:40 11:72

%LBW % Low birth weight 2003b 7:55 1:48 4:10 10:60

MORT Age-adjusted elderly.55C/
mortality rate, 2003b

35:83 3:70 24:30 45:80

CVD Cardiovascular disease
deaths per 100,000
elderly .55C/, 2003b

1512:8 266:6 792:3 2395:3

Cancer Cancer deaths per 100,000
elderly .55C/, 2003b

948:06 135:3 608:7 1294:1

Smoking % mothers smoking during
pregnancy 2003a

22:28 5:87 5:00 35:00

Prenatal % mothers receiving
prenatal care during 1st
trimester, 2003a

82:81 6:63 46:50 93:50

Teenpreg Teenage pregnancy rate,
2003a

42:08 12:06 14:80 70:90

Healthy % Kids with a healthy
beginning 2002a

21:52 3:56 9:50 29:80

Nurse Nurses per 10,000
residentsc

9:93 2:72 4:30 17:64

Hospital Accessibility to hospital
care, Ai d

0:25 0:21 0:00 1:00

Income Medium household income
[$1,000], 2003c

42:37 6:99 32:7 80:88

Education % population .25C/ with
college degree, 2003c

14:56 6:65 7:60 48:90

Uninsured % uninsured, 2003c 10:76 2:10 6:19 16:49

Rurality Index of relative rurality,
2000e

0:40 0:10 0:12 0:58

aKids Count Indiana
bIndiana Health Department
cStats Indiana
dUnal et al. (2007)
eWaldorf (2007)

point of view. Thus, using annual data at a small spatial scale, such as at the county
level, implies that many counties did not record any infant deaths. To circumvent the
small-number problem, we analyzed the cumulative infant mortality rate for 1990
to 2003.

The key outcome variable for the older population is the age-adjusted elderly
mortality rate. It is the sum of county-specific mortality rates for persons of age 55
or older, applied to a standard population.5 In addition to overall elderly mortality,

5 The standardization removes the effects of variations in mortality due to differences in the age
composition.
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we also focus on cause-specific mortality rates for the elderly. These include the two
main causes of death, cancer and cardiovascular disease.6 Both cancer and cardio-
vascular diseases are sensitive to early diagnosis and treatment and the associated
mortality is expected to be influenced by access to health care.

4.2 Health Behavior Variables

Using cross-sectional data is useful in understanding geographic differences in
health and can provide valuable information to local health policy decision mak-
ers on how to target scarce resources (e.g., Wennberg et al. 2002). However, using
mortality as a measure of health status is not without problems in cross-sectional
analysis. Mortality is responsive to the cumulative exposure to medical resources
over an entire lifetime not just to the contemporaneous exposure. We thus extend
our analysis to a battery of health behavior variables that are better measures of the
effect of contemporaneous medical resources on health.

The health behavior variables include the percentage of mothers receiving pre-
natal care during the first trimester, the percentage of mothers who smoked during
pregnancy, and the teenage pregnancy rate. In addition, we also use a compos-
ite measure that combines information on maternal health behavioral indicators.
It is referred to as the percentage of kids with a healthy start and defined as the
percent of total births with no birth characteristics that research has shown to neg-
atively impact children’s later school success: prenatal care beginning after the first
trimester, maternal weight gain of less than 20 pounds, mother smoked during preg-
nancy, mother drank alcohol during pregnancy, three or more older siblings, and
mother’s last birth less than 19 months prior.

4.3 Measures of Spatial Accessibility

In the empirical analysis, we utilize two access variables. First, as an indicator of
primary care, we use a nurse-to-population ratio, defined as the number of nurses
per 10,000 county residents (NURSE). We chose nurses rather than primary care
physicians because a good deal of primary care in rural areas is provided by nurses
who are contracted with physicians who may have their main practice in a different

6 In this study the cause-specific mortality rates for the elderly are defined as all deaths due to
a disease (independent of age) per 100,000 residents of age 55 or older. Thus, the events in the
numerator do not perfectly match the population-at-risk in the denominator. However, for cancer
and CVD it is quite rare that the events in the numerator involve people under the age of 55. In
2000, 93% of all deaths due to cardiovascular disease and 87% of all cancer deaths were among
persons age 55 or older (U.S. National Center for Health Statistics, Vital Statistics of the United
States, annual and National Vital Statistics Report, NSVR).
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county. Since primary care is typically consumed locally we specified it as an avail-
ability measure rather than an accessibility measure. Thus, the measure does not
account for distance-discounted primary care services in other counties.

Second, following Luo and Wang (2003), we use a gravity-based measure of spa-
tial accessibility to health care. It is based on the idea that any resident can utilize all
health care services in the state, not just those in the county of residence. However,
services in close proximity are more valuable to the user than those further away. In
our study, services are operationalized as the number of hospital beds.7 In total, 214
hospitals throughout Indiana were included in the study.

The specification of the gravity-based accessibility measure for Indiana counties
is taken from Unal et al. (2007). For residents in county i , health services in county
j are discounted by distance, dij . The accessibility measure also accounts for the
demand from other users, discounted by distance. More formally, demand-adjusted
accessibility, Ai;, for the population in county i; i D 1; : : : ; m is defined as:

Ai D
nX

jD1

Sj d
�1
ij

Vj
(3)

where Sj is the service capacity at provider location j; j D 1; : : : ; n; dij is
the distance between the population in county i and provider location j , and the
denominator, Vj , represents demand for the care facility at location j :

Vj D
mX
kD1

Pkd
�1
kj (4)

A critical component of the measure is the distance between the county population
and the service provider. Instead of simply assuming that, on average, county resi-
dents are located at the county midpoint, we more accurately measure the distances
by taking the spatial arrangement of the population within a county into account.
The county population is assigned to three possible locations, p D 1, 2, 3. The
three locations are the midpoint of the largest city within the county .p D 1/, the
midpoint of the second largest city within the county .p D 2/, and the county mid-
point .p D 3/. The distance from county i to a service provider j; dij , is thus
defined as the weighted average:

dij D 1

Pi

3X
pD1

Pipdpj (5)

7 In a preliminary analysis we also used an accessibility measure in which the service capacity is
defined as a county’s total number of physicians, allocated to the hospital locations in proportion
to the size of the hospital. While this is an approximation of the internal (within-county) spatial
distribution of physicians, it does account for the tendency of physicians to locate close to hospitals
so as to take advantage of agglomeration economies. Using access to physicians yields similar
results as the results reported in this chapter.
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where Pip is the population at location p of county i , and Pi is the total county
population. Distances between population points and service providers, dpj , were
obtained in ArcGIS using hospitals’ exact addresses.

4.4 Control Variables

The control variables address variation in health outcomes and health behaviors due
to income, education, health insurance coverage, and degree of rurality.8 Income is
measured as median household income, and education is measured as the percentage
of the adult county population with at least a bachelor’s degree. Health insurance
coverage, an important indicator for financial barriers to health care provision, is
measured as the percentage of county residents who do not have health insurance.
High income levels, a greater percentage of well educated county residents, and a
low percentage of uninsured residents are hypothesized to have a beneficial effect on
health outcomes and behaviors. Finally, the spatial setting is further characterized by
the index of relative rurality (Waldorf 2007). The index provides a more nuanced dif-
ferentiation of rural settings than the frequently used metro/non-metro dichotomy.
It is a composite measure that combines population size, population density, and
distance to the closest metropolitan area. The index indicates a county’s position on
a continuous scale bounded by zero (least rural) to one (most rural) and is calibrated
using all U.S. counties (except those in Hawaii and Alaska).

Race and ethnic compositions are not included as controls. Indiana has a mostly
(89%) white population. African Americans are the largest minority group (8.8%)
and are highly segregated with more than 63% of African Americans living in only
2 of the 92 counties (Lake and Marion counties). Preliminary analysis showed that
race and ethnicity do not have significant impacts on health outcomes and behaviors
in a multivariate context. That is, after controlling for income, education, insurance
coverage, and rurality, the racial and ethnic composition has no effect on health
status at the county level.

4.5 Exploratory Spatial Data Analysis

In the spatial data analysis, performed using the GeoDa software, we defined the
weight matrix, W, as a 92 � 92 spatial contiguity matrix for Indiana’s counties.
After row-standardization, W takes on the form:

wij D
(
1=ki if i ¤ j share a common border

0 otherwise
(6)

8 Note that, for the cumulative infant mortality model, the control variables are averages of the
1990 value and the value of the year specified in Table 2.
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Table 3 Spatial autocorrelation (Moran’s I ) of variables across Indiana counties

Variable Moran’s I p-value

Health outcomes IMR 0:068 0:108

%LBW �0:024 0:439

MORT 0:073 0:102

CVD 0:227 0:001

Cancer 0:089 0:063

Health behaviors Smoking 0:242 0:001

Prenatal 0:177 0:003

Teenpreg 0:007 0:369

Healthy 0:049 0:178

Access Nurse 0:300 0:001

Hospital 0:068 0:116

Controls Income 0:253 0:002

Education 0:102 0:047

Uninsured 0:139 0:010

Rurality 0:140 0:011

where a “common border” is defined as sharing at least one point, and ki is the
number of counties bordering county i .

Table 3 reports Moran’s I and the associated p-values9 for all variables included
in the analysis. Overall, the health-related variables show surprisingly little spa-
tial autocorrelation, whereas the control variables are highly spatially correlated.
Among the health outcome variables, cardiovascular disease mortality is the only
variable that is highly spatially clustered whereas cancer mortality is weakly clus-
tered. For all other health outcome variables, we cannot find sufficient evidence for
a non-random pattern. Among the health behavior variables only variables related
to the behavior of pregnant women are spatially clustered suggesting that the spa-
tial diffusion of norms regarding healthy behaviors may well play a role for this
sub-population.

Interestingly, for the availability and accessibility variables only the distribution
of nurses per capita (availability) is spatially correlated whereas access to hospi-
tal care is randomly distributed across space. Finally, all of the control variables
are spatially clustered. The clustering is most pronounced for the income variable.
Moreover, much of the spatial sorting that created the distribution of the popula-
tion by income and educational attainment level seems to be related to the degree
of rurality. The highly educated tend to be clustered in the most urban settings (low
IRR values), in a corridor that stretches from Tippecanoe County to Monroe County
and includes Indianapolis and the surrounding counties.

The series of maps shown in Figs. 3–5 allow us to localize the spatial clusters
in space. Figure 3 shows the spatial distributions of elderly cardiovascular disease
mortality and cancer mortality. High cardiovascular disease mortality is clustered

9 The p-value refers to the test of Ho W E.I / D �1=.n� 1/ versus H1 W E.I / ¤ �1=.n� 1/ and
is based on 999 permutations under the randomization assumption.
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Fig. 3 Spatial distribution of elderly CVD mortality (left) and elderly cancer mortality (right)

Fig. 4 Spatial distribution of maternal smoking rates (left) and rates of prenatal care (right)

in southwestern Indiana, as well as in a smaller group of counties in the north-
central portion of Indiana. Counties with low cardiovascular disease mortality are
concentrated in the southeast, the northeast, and in counties around Indianapolis.
High cancer mortality is concentrated along the western border to Illinois and some
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Fig. 5 Spatial distribution of nurses per person (left) and access to hospital care (right)

counties in northwestern Indiana. There are also three smaller clusters of low cancer
mortality, located around Indianapolis, at the southern border to Kentucky, and at the
southeastern border to Ohio.

Figure 4 shows the spatial distributions of the two variables characterizing preg-
nant women’s health behaviors. In some areas, the two spatial distributions are
almost contradictory. For example, the counties along the northern border have very
low maternal smoking rates, but the rate of pregnant women seeking prenatal care
during the first trimester is also very low. Overall, the bivariate correlation between
these two health behaviors is close to zero .r D 0.142/ and the maps suggest that
different types of healthy behaviors do not necessarily co-locate in space.

Figure 5 shows the spatial distributions of the availability and accessibility vari-
ables. Statistically, only the availability variable (nurses per residents) is highly
clustered in space (Table 3). However, Fig. 5 shows that, overall, availability and
accessibility are co-locating, meaning that counties with good access to hospitals
tend to have a high nurse per person ratio .r D 0.373/. An obvious exception
is the southwest corner of the state where several counties have poor access to
hospital care but a high nurses-to-residents ratio. Counties with the best access to
hospital care are located in and around Indianapolis as well as around the northern
state border. Good access to hospital care is also prevalent in the regional cen-
ters, namely Allen County (Fort Wayne), Tippecanoe County (Lafayette), Monroe
County (Bloomington) and Vanderburgh County (Evansville), Vigo County (Terre
Haute), Jefferson County (New Albany), Madison County (Anderson), The most
underserved counties with poor access to hospital care are concentrated in the
southern rural portion of Indiana, especially along the Ohio River.
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4.6 Estimation Results

Tables 4–7 show the estimation results for health outcomes and health behaviors,
using the availability of primary care (NURSE) and accessibility to hospital care
(HOSPITAL), respectively, as the key explanatory variable. In both tables, the upper
panels show the results for the baseline models that do not take into account spatial
dependencies. The lower panels provide the results for spatial lag models.

Before discussing the linkage between health care access, spatial spillovers, and
health status, several observations on the systematic variation of health outcome
and health behaviors can be made. Overall, the estimated health production func-
tions do a much better job accounting for variations in health behaviors than for
variations in health outcomes. For elderly mortality this is not surprising given that
the model only accounts for contemporaneous conditions. Interestingly, the model
performance is particularly poor for the broad measure of elderly mortality (MORT)
but performs better for the cause-specific mortality measures, CVD and CANCER.

Table 4 Outcomes as a function of primary care availability (NURSE)a

IMR %LBW MORT CVD Cancer
b b b b b

Intercept 12:433.���/ 12:554.���/ 42:373.���/ 2188:112.���/ 1269:616.���/

Income �0:079.��/ �0:041 �0:097 �17:560.���/ �7:567.���/

Education �0:058 �0:082.��/ �0:125 �11:590.��/ �2:064
Uninsured 0:088 �0:062 �0:164 0:857 1:330

Rurality �7:133.���/ �5:110.��/ �1:953 �431:092 �32:890
Nurse 0:077 0:063 0:192 40:267.���/ 2:811

Diagnostics
R2 0:341.���/ 0:144.��/ 0:073 0:306.���/ 0:188.���/

Moran’s I 0:311 0:090 1:510 1:960.��/ 1:990.��/

LM lag 0:098 0:278 0:956 4:227.��/ 1:274

Robust LM lag 0:433 1:191 0:333 2:236 1:157

LM error 0:003 0:967 1:252 2:394 2:482

Robust LM error 0:532 0:967 0:630 0:403 2:365

b
Intercept 1771:614.���/

Income �14:675.���/

Education �12:195.��/

Uninsured 0:300

Rurality �530:397.�/
Nurse 33:900.���/

� 0:271.��/

R2 0:346

The number of observations is n D 92
aThe asterisks identify significance at the 0.01, 0.05, and 0.10 level using ��� , �� and �,
respectively
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Table 5 Behaviors as a function of primary care availability (NURSE)a

Smoking Prenatal Teenpreg Healthy
b b b b

Intercept 59:449.���/ 106:195.���/ 86:678.���/ 20:594.���/

Income �0:534.���/ �0:337.���/ �0:074 0:131.��/

Education �0:212.��/ 0:288.��/ �1:163.���/ 0:116.�/

Uninsured �1:008.���/ �2:338.���/ 0:703 �0:629.���/

Rurality 0:765 15:283.��/ �59:72.���/ �0:011
Nurse �0:091 0:581.���/ �0:839.�/ 0:046

Diagnostics
R2 0:545.���/ 0:563.���/ 0:420.���/ 0:464.���/

Moran’s I 2:584.���/ 1:866.�/ 1:370 0:130

LM lag 6:133.��/ 3:565.�/ 0:063 0:305

Robust LM lag 1:665 1:457 1:283 0:464

LM error 4:581.��/ 2:125 0:971 0:037

Robust LM error 0:112 0:016 2:191 0:197

b b
Intercept 50:130.���/ 87:820.�/

Income �0:476.���/ �0:309.���/

Education �0:216.���/ 0:279

Uninsured �0:948.���/ �2:238.���/

Rurality �0:475 14:424.��/

Nurse �0:103 0:556.���/

� 0:310.���/ 0:204.�/

R2 0:584 0:582

The number of observations is n D 92
aThe asterisks identify significance at the 0.01, 0.05 and 0.10 level using ���, �� and �,
respectively

Turning to the inputs of the health production function, the results suggest that
income has, by and large, the expected beneficial effect on health outcomes and
health behaviors. Infant mortality, cause-specific elderly mortality, and smoking
prevalence among pregnant women decrease with increasing median household
income. In addition, the percentage of kids with a healthy start is estimated to
grow as a county’s median income increases. Contrary to our expectation, median
household income has a negative effect on the percentage of pregnant women seek-
ing prenatal care during the first trimester. Interestingly, the income variable has
no impact on teenage pregnancy rates. This may be because the variable only
accounts for pregnancies that resulted in a live birth. Other pregnancy outcomes,
i.e., miscarriages, induced abortions and still births, are not included in the variable.

The education variable does not affect health outcomes but has a beneficial
effect on health behaviors. The higher the percentage of the college educated pop-
ulation, the lower the prevalence of smoking during pregnancy, the higher the
percentage of pregnant women seeking prenatal care during the first trimester,
and the lower the teenage pregnancy rate. The estimations suggest quite disturb-
ing impacts of financial barriers on health behaviors. As the share of the uninsured
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Table 6 Outcome as a function of accessibility of hospital care (HOSPITAL)a

IMR %LBW MORT CVD Cancer

b b b b b

Intercept 13:688.���/ 13:954.���/ 40:313.���/ 2448:863.���/ 1228:031.���/

Income �0:068.��/ �0:038 �0:060 �12:929.��/ �6:986.��/

Education �0:038 �0:073.��/ �0:137 �9:812 �2:316
Uninsured 0:072 �0:071 �0:199 �5:628 0:806

Rurality �9:993.���/ �6:895.��/ 2:935 �537:732 57:337

Hospital �0:571 �0:895 4:163 117:476 73:432

Diagnostics

R2 0:333.���/ 0:140.��/ 0:076 0:198.���/ 0:189.���/

Moran’s I 0:897 0:074 0:968 3:111.���/ 1:632

LM lag 0:556 0:174 0:796 9:632.���/ 1:222

Robust LM Lag 0:089 0:893 1:244 2:490 0:228

LM error 0:409 0:028 0:473 7:508.���/ 1:756

Robust LM error 0:001 0:746 0:921 0:366 0:762

b

Intercept 1694:471.���/

Income �9:416.�/
Education �11:688.��/

Uninsured �5:070
Rurality �500:336
Hospital 195:028

� 0:390.���/

R2 0:292

The number of observations is n D 92
aThe asterisks identify significance at the 0.01, 0.05 and 0.10 level using ���, �� and �,
respectively

population increases – an indicator of financial barriers to health care – the percent-
age of women seeking prenatal care declines and so does the share of kids with a
healthy start.

The effect of rurality is quite interesting. In a recent policy brief of the National
Rural Health Association (NRHA 2006) it was suggested that health status varies
by rurality in a nonlinear fashion: mortality being highest in the most rural places,
decreasing with increasing urbanization but shifting upward for the most urban-
ized central cities. In our study we could not find non-linear effects of rurality.10 In
contradiction to common perceptions of rural areas, we instead find that in Indi-
ana, increasing rurality is associated with decreasing infant mortality, declining
teenage pregnancy, and an increased percentage of pregnant women seeking early
prenatal care.

Turning now to the important linkage between medical care access and health
status, our estimations by and large confirm the results of previous studies. When
focusing on hospital care accessibility (Tables 6 and 7), the results suggest that

10 We experimented with different specifications for the rurality variable, including nonlinearities.
However, none of the non-linear specifications yielded significant results.
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Table 7 Behavior as a function of accessibility of hospital care (HOSPITAL)a

Smoking Prenatal Teenpreg Healthy
b b b b

Intercept 58:155.���/ 108:027.���/ 72:786.���/ 20:821.���/

Income �0:542.���/ �0:261.��/ �0:134 0:136.��/

Education �0:220.��/ 0:302.��/ �1:253.���/ 0:118.�/

Uninsured �0:994.���/ �2:434.���/ 0:828 �0:637.���/

Rurality 2:157 16:899.�/ �43:68.��/ �0:018
Hospital 0:504 3:802 6:778 0:210

Diagnostics
R2 0:544.���/ 0:530.���/ 0:400.���/ 0:463.���/

Moran’s I 2:360.��/ 1:628 1:606 0:104

LM Lag 6:068.��/ 3:509 0:132 0:312

Robust LM lag 2:000 1:779 2:365 0:614

LM error 4:085.��/ 1:744 1:689 0:019

Robust LM error 0:016 0:014 3:923.��/ 0:321

b
Intercept 48:969.���/

Income �0:486.���/

Education �0:224.��/

Uninsured �0:932.���/

Rurality 0:727

Hospital 0:314

� 0:308.���/

R2 0:582

The number of observations is n D 92
aThe asterisks identify significance at the 0.01, 0.05 and 0.10 level using ���, �� and �,
respectively

accessibility does not have a beneficial effect for any of the mortality variables or
any health behavior variables. Thus, similar to Newhouse and Friedlander (1980)
and Thornton (2002) we can conclude that – once socio-economic differences are
taken into account – the health status is not affected by accessibility to specialized
medical resources.

However, focusing on the impact of primary care, (Tables 4 and 5), a slightly
more nuanced picture emerges. The estimations suggest that primary care availabil-
ity does not have a beneficial impact on health outcomes, at least not when measured
via mortality. However, primary care availability does make a difference for health
behaviors. Increasing the nurse-to-population ratio significantly increases the per-
centage of pregnant women seeking early prenatal care and it significantly reduces
teenage pregnancy rates. These results thus partially support Starfield et al. (2005)
who argue “that primary care improves health [: : : and : : :] that health is better in
areas with more primary care physicians” (p. 459). The diagnostics reveal that spa-
tial processes are at work for one health outcome variable (cardiovascular disease
mortality of the elderly) and two health behavior variables (smoking prevalence
among pregnant women and prenatal care utilization). In each case, Moran’s I for
the error terms are significant. Moreover, the (robust) Lagrange multiplier tests for
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the lag are significant and the test statistic exceeds that for the Lagrange multiplier
test for the error. Thus, the diagnostics point in the direction of spatial lag models
as the proper specification, and implicitly to the existence of spillover effects as dis-
cussed in Sect. 2.2. The estimated spatial lag, O¡, is most pronounced for smoking
prevalence during pregnancy, thus a behavior that is easily copied by others. This
finding is supported by Nakajima (2007) who finds positive peer effects on youth
smoking behavior. Similarly, prenatal care utilization very much depends on knowl-
edge and acceptance, and thus is influenced by those living in close proximity. Our
results confirm the existence of such spatial spillovers. Another interesting result is
that the only health outcome variable that exhibits spatial spillovers, is cardiovascu-
lar disease mortality. Cardiovascular disease is not only sensitive to early diagnosis
and treatment, but is also affected by lifestyle choices regarding diet, physical activ-
ity, smoking and alcohol consumption. This again points to spatial spillovers that
come into play when analyzing health behaviors.

5 Summary and Conclusions

This chapter asks whether poor spatial accessibility leads to poor health outcomes.
If people are unwilling or unable to travel long distances for basic preventive and
curative care, then physical distance between health care providers and consumers
is an important barrier to care with potentially detrimental consequences for a pop-
ulation’s health status. Better understanding the linkage between health access and
health outcomes is particularly important given that the United States is spending
billions on improving health care access.

We tackle this issue by estimating spatial health production functions, using data
for Indiana counties. Indiana provides an ideal setting because of its mixed compo-
sition, featuring both very rural counties with fewer than 6,000 residents and highly
urbanized areas such as the core counties of the Indianapolis-Carmel metropoli-
tan area. The input variables include information on income, education, insurance,
degree of rurality and medical resources. Two sets of health production functions
are estimated that utilize different specifications of the medical resource variable.
One uses an availability measure of the mostly locally consumed primary care ser-
vices, the other uses a gravity-based spatial accessibility measure for hospital care.
The models are estimated for six health outcome variables relating to infants and
the elderly, and four health behavior variables. All models are tested for spatial
dependencies.

We find that health outcomes, measured by mortality, are not influenced by access
to medical resource, whether measured as availability of primary care or distance-
based accessibility to hospital care. Thus, similar to other studies, our results suggest
that the relationship between health care accessibility and health status is difficult to
establish when using mortality to measure health status.11 In contrast, we find that

11 Mortality statistics are, however, available publicly and thus are very useful for evaluation
purposes.
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health behaviors – notably the percentage of pregnant women seeking prenatal care
during the first trimester – are positively affected by health care accessibility.

For cardiovascular disease mortality and for two of the health behaviors –
smoking during pregnancy and the percentage of pregnant women seeking prenatal
care during the first trimester – we find evidence of spatial spillovers. This sug-
gests that cultures and norms guiding health behaviors are not spatially fixed but
diffuse across space. From a policy perspective, it is thus important to recognize
that efforts to improve health behaviors in one locality will impact health behaviors
in neighboring areas as well, and thus eventually trickle through the entire system.

This research is a pilot study of the relationship between spatial accessibility to
health care and health outcomes. As such, the regressions reflect the exploratory
nature of this study but also highlight a number of problems that arise when deal-
ing with spatially aggregated cross-sectional data. First, mortality and morbidity are
influenced by life-time exposure to external conditions rather than contemporane-
ous exposure. Thus, dealing with the impacts of migration and regional change is
important, especially in fast-growing states. Indiana is comparatively stable but the
issue will gain importance when extending the focus to the nation. For example, the
American Community Survey suggests that only 2.2% of Indiana’s 2006 popula-
tion lived in a different county in the previous year, making Indiana one of the least
mobile states in the country. In comparison, the equivalent percentages are 6.2% for
Nevada, 5.8% for Arizona, and 4.4% for Florida. Moreover, migration will gain in
importance when the focus switches to population groups that are more mobile than
infants, and when including the main destination states of post-retirement migra-
tion. For example, in states like Florida and Arizona, a large portion of the elderly
are newcomers who moved into the states following retirement. Thus, their health
status may be strongly influenced by past access to health care in their county/state
of origin. In those states it will also be more difficult to assess the demand for health
care as it is likely to fluctuate due to retirees’ temporary movements (e.g., residing
in Arizona during the winter only).

Second, future work should also account for ecological bias resulting from aggre-
gate data by using modern econometric methods proposed in the epidemiological
and statistical sciences. Particularly promising is a strategy suggested by Haneuse
and Wakefield (2004). They decompose the error term to take into account random
effects that may vary by rurality and/or other control variables. In addition, the ran-
dom effects can then be unstructured or can be assumed to depend on the spatial
structure of the data. Unfortunately, methods that use other data sources to provide
bounds on the estimated effects cannot be utilized given the paucity of data below
the county level for many of the health statistics used in our analysis̃.

Third, when extending the pilot study to a nationwide analysis, even starker dis-
parities in health status and health care accessibility are expected and more attention
should be paid to spatial scale issues. On the one hand, counties are too small to
provide reliable data on some health outcomes. For example, in low mortality coun-
tries, such as the United States, infant mortality occurs rarely: only 6.5 out of 1,000
babies die before their first birthday. Thus, for small counties the expected number
of infant deaths may well be less than one. On the other hand, counties may be



Spatial Models of Health Outcomes and Health Behaviors 361

too big to identify small-scale spillovers, may have a high degree of internal het-
erogeneity, and be particularly prone to ecological fallacies. Moreover, it may be
necessary to define separate spatial regimes responsive to inherent differences in
spatial organization between, for example, the western and eastern portions of the
United States.

Finally, future research should also pay attention to the effects of alternative spa-
tial structures. The pilot study reported here is based on contiguity, yet does not
take into account asymmetries in interaction. Such asymmetries are very likely in
Indiana where the capital, Indianapolis, assumes urban primacy and the major trans-
portation lines radiate to/from the capital. Commuter flows or migration flows may
provide guidance for the specification of such alternative spatial structures.
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Immigrant Women, Preventive Health
and Place in Canadian CMAs

Kelly Woltman and K. Bruce Newbold

1 Introduction

Cervical cancer is a disease that affects women of all ages (Health Canada 2002).
It is one of the most common malignant diseases in women (Duarte-Franco and
Franco 2003), with an estimated 9,900 potential years of life lost due to this disease
in Canada in 2003 (National Cancer Institute of Canada 2007). Given its slow pro-
gression, identifiable cytological precursors and effective treatments, cervical cancer
is also one of the most preventable human cancers (Leyden et al. 2005). With rou-
tine cervical cancer screening, the disease is preventable and curable when detected
at an early stage (Fehringer et al. 2005; Johnston et al. 2004; Yi 1994). The recent
introduction of the HPV vaccine is expected to also have significant health benefits.

Cervical cancer screening commonly uses a Papanicolaou test or smear (referred
to subsequently within this paper as Pap test) for early detection. Early detection
provides the opportunity to observe any signs of pre-cancerous changes and elimi-
nate abnormal cells before these they become cancerous. According to the Canadian
Task Force on Preventive Health Care (formerly the Periodic Health Examination)
and guidelines from the National Workshop on Screening for Cancer of the Cervix
(Miller et al. 1991; Morrison 1994), screening is recommended following the initi-
ation of sexual activity or at age 18. After two normal smears, routine Pap testing is
advised every 3 years until the age of 69.

While more frequent testing may be considered for women at high risk (first
intercourse at less than 18 years of age, multiple sexual partners, partner with multi-
ple sexual partners, low socio-economic status) (Health Canada 2002), participation
in Pap testing is understood to be the most effective means of decreasing mortality
rates from this invasive cancer and is effective in preventing invasive cervical can-
cer (Eddy 1990; Fehringer et al. 2005; Health Canada 2002; Johnston et al. 2004;
Miller et al. 1991).
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While overall mortality rates from this disease are decreasing (National Cancer
Institute of Canada 2007; Eddy 1990; Miller et al. 1991), approximately half of the
women who develop invasive cervical cancer have never had a Pap test (Parboosingh
et al. 1997). Most notably, failure to participate in Pap testing is the single greatest
risk factor for poor outcomes in women who develop cervical cancer (Morrison
1994).

While notably a public health issue, the question of Pap test uptake crosses into
the domains of health geography, population geography, and spatial analysis. From a
demographic perspective, recent immigrants are typically less likely to be screened
for chronic conditions and cancers compared to their longer-term immigrant and
native-born counterparts (DesMeules et al. 2004; Goel 1994; Hyman and Guruge
2002; Hyman et al. 2002; Leduc and Proulx 2004; McDonald and Kennedy 2005;
Newbold 2005; Woltman and Newbold 2007). Recent immigrant women may be
at a higher risk for cervical cancer, primarily because this group has lower rates
of Pap testing (McDonald and Kennedy 2007), particularly amongst more recent
arrivals (Duarte-Franco and Franco 2003). For example, 27% of immigrant women
in Hamilton-Wentworth, Canada, have never had a Pap test, compared to 9% of
non-immigrant women (Black and Zsoldos 2003).

While McDonald and Kennedy (2007) noted that the use of Pap smear testing by
immigrant women increased with duration of residence in Canada, rates still varied
widely. Lack of knowledge, unease, and the cultural incongruity that immigrants
experience upon arrival may deter the use of health services (Hyman 2001), espe-
cially those services that are not necessarily considered essential by the individual.
Physician use and recommendation is also strongly linked to uptake of Pap tests
(Grossman 1972; Kenkel 1994). Additional factors associated with a lack of screen-
ing include being single, older, low income, certain ethnic backgrounds, (Hyman
et al. 2003), low level of education, and speaking neither English nor French (Goel
1994; Bryant et al. 2002; Woltman and Newbold 2007). In particular, Asian origins
have been noted to have lower uptake, even after multiple years in Canada (Juon
et al. 2003; McDonald and Kennedy 2007). Given Canada’s changing demograph-
ics, including increased immigrant numbers and a diversity of immigrant sources, a
growing number of women may be at risk. Moreover, recent immigrants are increas-
ingly racialized, increasing the likelihood that they face barriers to health care
associated with structural (e.g. socio-economic) inequalities and barriers associated
with race, culture and language.

The uptake of Pap screening tests is also an inherently geographical problem,
linking community, health and population. Indeed, health geography has a long
tradition of considering disease diffusion and variations in health status across
space. More recent work has focused on context (place) and composition (individ-
ual characteristics) and the collective in shaping health and its determinants (Diez
Roux 2001, 2002; Ellaway and Macintyre 2001; Macintyre et al. 1993, 2002). As
Frohlich et al. (2002) note, such studies are important for determining if health sta-
tus variations between different communities are a result of individual or aggregate
attributes. Research has increasingly attempted to tease out the relative contributions
of contextual and compositional effects in examining the complex link between
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health status, lifestyle behaviours, and context. However, the recent literature (i.e.,
Macintyre et al. 2002) also argues that to be meaningful, place may function as
a residual category unless it is properly and explicitly defined as to how it may
influence health.

In the context of immigrant settlement, immigrants tend to be highly concen-
trated within the nation’s largest and most diverse cities. Toronto, Vancouver and
Montreal represent the largest immigrant receiving centres in Canada, with 45.7%
of the total immigrant population in Canada choosing to live in Toronto, 39.6%
in Vancouver and 19% in Montreal in 2001 (Chui et al. 2007). Often settling in
affordable and low-income areas (Glazier et al. 2004), recent immigrants may be
particularly vulnerable to poor health outcomes subject to limited (or non) use of
preventative health services.

Uptake of screening may also vary by place (see, e.g. Ng et al. 2004), and
interactions between areas and people may also influence screening participation
(Woltman and Newbold 2007). Independent of individual characteristics, it is rec-
ognized that an individual’s immediate environment may possess both material and
social characteristics that are potentially linked to health-seeking behaviours (Diez
Roux 2001; Glazier et al. 2004; Ross et al. 2004). For example, neighbourhoods
could be sources of important information and support with regard to screening
(McDonald and Kennedy 2005). Given that immigrants as a group are less likely to
participate in these services, knowledge of these health services may be less likely
when immigrants are living closely together (Woltman and Newbold 2007). That is,
for example, could women in places with high immigrant concentrations face even
greater risk? What are the spatial correlates of uptake, and how does it vary across
space? Area level or neighbourhood characteristics might help explain the uptake of
preventive health care behaviours.

Notably, the independent importance of individual and neighbourhood factors on
the utilization of preventive care has not been investigated. Moreover, immigrant
women represent an understudied population. This segment of the Canadian popu-
lation is becoming an increasingly diverse group, with growing numbers from Asia,
Africa, the Caribbean, Latin America and Eastern Europe (Citizenship and Immi-
gration Canada 2001). This is also important in that socio-cultural and racialized
barriers may be affecting health care utilization more than ever before. Canada’s
immigrant population is becoming a more heterogeneous group, which may ulti-
mately lead to further disparities among cultural groups in rates of cervical cancer
incidence and mortality (Duarte-Franco and Franco 2003).

The purpose of this paper is therefore to investigate the multilevel characteris-
tics associated with the utilization (lifetime and regular use) of preventive cervical
cancer screening in immigrant and native-born women residing in Canada’s three
largest Census Metropolitan Areas (CMAs). In order to address these objectives,
the following questions are investigated:

� Is there evidence of between neighbourhood variation in the utilization of cervi-
cal cancer screening?

� Does the neighbourhood concentration of immigrants account for between area
differences?
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� Does utilization differ between immigrant and native-born women?
� To what extent does CMA moderate the association between immigrant status

and utilization?
� Is there evidence of cultural differences?

2 Methods

Data on the use of Pap tests is drawn from Cycle 2.1 (2003) of Statistics Canada’s
Canadian Community Health Survey (CCHS) master file. The objective of the
CCHS is to provide timely, reliable, cross-sectional estimates of health determi-
nants, health status and health system use at sub-provincial levels. A multi-stage
stratified cluster design was used to sample household dwellings, which covered
approximately 98% of the Canadian population aged 12 and older living in pri-
vate households. Additional data comes from the 2001 Canadian census public use
microdata file, which offers demographic, social and economic information on the
population of Canada at various geographical scales.

The current analysis is set at the census tract scale. Using Statistics Canada’s
postal code conversion file to link with the postal codes of CCHS respondents, the
2001 census was used to provide demographic and socio-economic measures for
the census tracts (neighbourhoods) in which respondents were residing. Unsuccess-
ful geocodes were examined on a case by case basis to determine why they did
not geocode, with less than 5% of records ultimately discarded due to unsuccessful
geocoding.

Defining census tracts as neighbourhoods offer a number of advantages. Impor-
tantly, the use of census tracts provides direct linkage to statistical measures provided
by Statistics Canada. Although there is disagreement in the literature concerning the
best way to capture the concept of “neighbourhood,” recent research suggests cen-
sus tracts are good proxies (Diez Roux 2001; Ross et al. 2004) as compared to
socially constructed areas, which are often loosely defined and often lack the ability
to link to other statistical data. Indeed, the comparison of several “neighbourhood”
units of analysis suggests that census tracts are good proxies for natural neighbour-
hood boundaries in studies of neighbourhood effects on health (Ross et al. 2004).
However, given debate over the definition and division of space (see, e.g. Moon and
Brown 1998), we also regard the partitioning of space as worthy of scrutiny and
carry out this task through seeing if a particular set of sub-areas – census tracts – are
associated with the uptake of Pap tests or not.

Women between the ages of 18 and 69, residing in the Montreal, Toronto and
Vancouver CMAs were selected. Two dependent variables are considered: lifetime
and regular Pap tests (Hyman et al. 2002). The first dependent variable asks whether
the respondent has ever had a Pap test. This variable captures individual lifetime
uptake of cervical cancer screening, which may include having had a Pap test in
countries other than Canada. However, Hyman et al. (2002) found that once initial
barriers to screening were overcome, there was less variation between immigrant
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groups in the proportion of women who engaged in regular screening. Therefore,
the second dependent variable asks those who reported ever having had a Pap test
whether the respondent has had a Pap test within the past 3 years. The construction
of this variable is based upon Canadian screening guidelines, which recommends
that women have regular Pap testing at least every 3 years. This variable examines
regular use of cervical screening services. It is important to note that this variable
may not capture “regular” routine screening; for example, this could be the case if a
woman’s one and only test has been in this 3 year window. Approximately 2.8% of
this sample was lost due to non-response (don’t know, refused, not stated).

Based on a review of the literature and hypothesized relationships, demographic,
health, acculturation and socio-economic variables associated with the uptake of
cervical cancer screening were identified (see Table 1). Individual-level variables
included age, marital status and cultural origin (based on self-reported cultural/racial
origin), self-reported general health, contact with a general practitioner in the past
year, and immigrant status. Immigrant status distinguished between recent (resident
for less than 10 years) and long-term (resident greater than 10 years) immigrants ver-
sus native-born (Canadian-born). As a measure of acculturation, a woman’s ability
to speak at least one of Canada’s official languages was included. Socio-economic
characteristics included educational attainment and household income adequacy.

Derived from the census tract profile data from the Canadian census (Statistics
Canada 2007), the neighbourhood proportion of immigrants was also included. The
percentage of immigrants at the neighbourhood (census tract) level was expressed
in increments of ten (i.e., 25% took on a value of 2.5). In addition, a neighbour-
hood disadvantage index score (NDIS) was derived from five variables including
proportion of the total neighbourhood income coming from government transfer
payments, proportion of the neighbourhood 15 years and older without a secondary
school diploma, mean household income, proportion of families in the neighbour-
hood with household incomes below the poverty line, and proportion of individuals
in the neighbourhood 15 years and older who were unemployed (Boyle and Lipman
2002). These five variables were entered into a principal component analysis. One
factor emerged that accounted for approximately 68.0% of the total explained vari-
ance. To represent NDIS, a factor regression score was calculated by weighting each
of the five variables by its factor loading.

The analyses entailed use of multilevel logistic regression models, with estima-
tion conducted using the MLwiN software. Unlike traditional multivariate methods
that require aggregation or disaggregation so that variables can reflect the individual
or group level, a multilevel approach can identify relationships among variables
measured at both the individual and group levels. This approach is needed to
account for the correlation of responses within naturally formed groupings, such
as neighbourhoods (Boyle and Lipman 2002). Multilevel models were developed to
simultaneously consider i individual females (Level 1) within j neighbourhoods in
Montreal, Toronto and Vancouver (Level 2). This model is defined as:

Logit .�ij / D ˇ0j C ˇi�ij

ˇ0j D ˇ0C �0j (1)
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Table 1 Definition and coding of covariates

Variable description Coding

Age in years Mean centred
Marital status
Married, common-law Reference category
Separated, divorced, widowed Dummy indicator (1 D yes, 0 D no)
Single Dummy indicator (1 D yes, 0 D no)
Educational attainment
Less than high school Dummy indicator (1 D yes, 0 D no)
High school graduate Reference category
Post secondary graduate Dummy indicator (1 D yes, 0 D no)
Household income adequacy
Low Dummy indicator (1 D yes, 0 D no)
Middle (lower middle, upper middle quartile) Reference category
High Dummy indicator (1 D yes, 0 D no)
Self-reported general health
Negative (fair, poor) Reference category
Positive (excellent, very good, good) Dummy indicator (1 D yes, 0 D no)
CMA
Montreal Reference category
Toronto Dummy indicator (1 D yes, 0 D no)
Vancouver Dummy indicator (1 D yes, 0 D no)
Neighbourhood proportion of immigrants
Variable calculated from 2001 census (see text) (10% increments)
Immigrant status
Native-born (non-immigrant) Reference category
Recent immigrant (resident for � 10 years) Dummy indicator (1 D yes, 0 D no)
Long-term immigrant (resident > 10 years) Dummy indicator (1 D yes, 0 D no)
Can converse in English and/or French
Yes Reference category
No Dummy indicator (1 D yes, 0 D no)
Consultation with GP/family doctor within the past 12 months
No Reference category
Yes Dummy indicator (1 D yes, 0 D no)
Cultural/racial origin
White Reference category
Black Dummy indicator (1 D yes, 0 D no)
Other Asian (Japanese, Korean) Dummy indicator (1 D yes, 0 D no)
Filipino Dummy indicator (1 D yes, 0 D no)
Chinese Dummy indicator (1 D yes, 0 D no)
South Asian (East Indian, Pakistani, Sri Lankan) Dummy indicator (1 D yes, 0 D no)
South East Asian (Laotian, Cambodian, Indonesian,

Vietnamese)
Dummy indicator (1 D yes, 0 D no)

Other (native, Arab, Afghan, Iranian, self-reported other,
multiple races)

Dummy indicator (1 D yes, 0 D no)

Neighbourhood disadvantage index score
Proportion of the total neighbourhood income coming from

government transfer payments
Proportion of the neighbourhood 15 years and older without a

secondary school diploma
Mean household income (reverse coded)
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In models with two levels of analysis, each level is associated with its own,
unexplained residual error. At the individual level, the residual error is constrained
to 1 in logistic regression; each successive level is associated with its own error term,
which estimates the residual between-neighbourhood variation (Snijders and Bosker
1999). This effectively means residual error is partitioned across levels in multi-
level modelling. As highlighted by Boyle and Lipman (2002), the partitioning of
responses across neighbourhoods is particularly important because it estimates the
potential for measured and unmeasured neighbourhood variables to explain place-
to-place variation in cervical cancer screening utilization. As articulated by Snijders
and Bosker (1999), the proportion of variance accounted for by neighbourhoods can
be calculated using the intra-class correlation coefficient (ICC), which is defined as:

� D �2=
�
� C �2=3

�
: (2)

This coefficient is the ratio between the neighbourhood level variation and the total
variation (sum of the individual and neighbourhood level variation), where a decline
in the ICC indicates that the differences between neighbourhoods have been reduced
by the inclusion of explanatory variables (Ross et al. 2004).

Models for lifetime and regular Pap tests were similarly developed to evalu-
ate neighbourhood association with cervical cancer screening service utilization.
In each case, a series of five models were developed. The first model created was
the null model with no explanatory variables; this serves to estimate the relative
importance of individual and neighbourhood effects in accounting for variation
in the outcome (Ross et al. 2005). From the null model, additional models were
built incrementally, first controlling for age (mean centred), marital status, socio-
economic variables, NDIS, health-related covariates, and CMA of residence. Then
the neighbourhood proportion of immigrant and immigrant-related variables were
added to create the third model. In the fourth model, CMA variables and interactions
between CMA and immigrant status were included, along with English/French lan-
guage ability. With the addition of cultural origin, the full model was created. Odds
ratios and associated 95% confidence intervals were estimated.

3 Results

The total (weighted) sample for analysis represented 3,474,352 females aged 18
to 69 residing in the Montreal, Toronto and Vancouver CMAs. The distribution of
the sample over the three CMAs is 32% in Montreal, 47% in Toronto and 21% in
Vancouver. While the majority of the sample was born in Canada, close to 39% were
immigrants. The sample contained a high percentage of immigrants, which was
expected given the research focus on the three largest CMAs in Canada which are
recognized as the country’s largest immigrant receiving centres (Statistics Canada
2007).
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3.1 Lifetime Uptake

Overall, approximately 89% of native-born, 61% of recent immigrants (less than
10 years), and 85% of long-term (greater than 10 years) immigrant women reported
ever having had a Pap test. Tables 2 and 3 display the multilevel results for lifetime
Pap testing. These tables consist of a series of increasingly complex models. The
dependent variable is lifetime Pap uptake, or whether the respondent had ever had a
Pap smear. Building upon the null model, Model 2 reveals that a higher level of edu-

Table 2 Multilevel logistic regression models: lifetime Pap uptake

Fixed Effects Null Model Model 2 Model 3
“ (se) “ (se) “ (se)

Intercept 1.87� (0.04) 1.50� (0.15) 2.02� (0.16)

OR (95% CI) OR (95% CI)
Age centred 1.04� (1.03–1.04) 1.04� (1.03–1.05)
Education
Less than high

school
0.53� (0.43–0.66) 0.51� (0.41–0.64)

Post secondary
graduate

1.56� (1.33–1.82) 1.80� (1.53–2.12)

Income adequacy
Low 0.74� (0.60–0.91) 0.89 (0.72–1.11)
High 1.57� (1.32–1.87) 1.18 (0.98–1.42)
Marital status
Separated, widowed,

divorced
0.89 (0.71–1.10) 0.70� (0.56–0.88)

Single 0.48� (0.41–0.57) 0.31� (0.25–0.37)
Neighbourhood

disadvantage
index score

0.86� (0.80–0.92) 1.04 (0.95–1.13)

Self-reported health
Positive 1.20 (0.96–1.49) 1.18 (0.94–1.48)
Consultation with

GP/family doctor
Yes 1.95� (1.65–2.29) 1.91� (1.62–2.26)
CMA
Toronto 0.81� (0.67–0.97) 1.79� (1.40–2.30)
Vancouver 0.89 (0.73–1.08) 1.73� (1.36–2.19)
Neighbourhood

proportion of
immigrant

0.34� (0.20–0.61)

Immigrant status
Recent immigrant 0.16� (0.13–0.20)
Long-term

immigrant
0.50� (0.41–0.61)

(continued)
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Table 2 (continued)
Fixed Effects Model 4 Model 5

“ (se) “ (se)

Intercept 1.96� (0.17) 1.417� (0.13)

OR (95% CI) OR (95% CI)
Age centred 1.03� (1.03–1.04) 1.03� (1.02–1.04)
Education
Less than high school 0.54� (0.43–0.67) 0.52� (0.42–0.65)
Post secondary graduate 1.75� (1.49–2.06) 1.79� (1.52–2.12)
Income adequacy
Low 0.91 (0.73–1.13) 0.94 (0.75–1.17)
High 1.18 (0.98–1.42) 1.16 (0.96–1.39)
Marital status
Separated, widowed, divorced 0.69� (0.55–0.86) 0.62� (0.49–0.79)
Single 0.30� (0.25–0.36) 0.29� (0.23–0.33)
Neighbourhood disadvantage index score 1.05 (0.96–1.14) 1.02 (0.93–1.11)
Self-reported health
Positive 1.17� (0.94–1.47) 1.13 (0.89–1.42)
Consultation with GP/family doctor
Yes 1.93� (1.63–2.28) 1.90� (1.60–2.25)
CMA
Toronto 1.93� (1.45–2.56) 1.75 (1.32–2.34)
Vancouver 2.55� (1.90–3.44) 2.67� (1.97–3.62)
Neighbourhood proportion of immigrant 0.33� (0.19–0.58) 0.65 (0.36–1.15)
Immigrant status
Recent immigrant 0.34� (0.22–0.52) 0.37� (0.24–0.59)
Long-term immigrant 0.60� (0.40–0.90) 0.67� (0.43–1.02)
Cross-level interactions
Montreal� recent immigrant status 0.57� (0.34–0.93) 0.80 (0.48–1.34)
Montreal� long-term immigrant status 0.92 (0.57–1.49) 1.14 (0.69–1.87)
Vancouver� recent immigrant status 0.32� (0.19–0.54) 0.51� (0.30–0.89)
Vancouver� long-term immigrant status 0.58 (0.34–0.98) 0.88 (0.50–1.52)
Can converse in English and/or French
No, neither English nor French 0.53� (0.42–0.67) 0.72 (0.51–1.00)
Cultural/racial origin
Black 1.36 (0.89–2.08)
Other Asian 0.46� (0.25–0.83)
Filipino 0.48� (0.30–0.77)
Chinese 0.25� (0.19–0.33)
South Asian 0.27� (0.20–0.38)
South East Asian 0.24� (0.14–0.42)
Latin American 1.63 (0.86–3.11)
Other 1.55� (1.14–2.12)
�p < 0:05, �p < 0:01, �p < 0:001, OR Odds Ratio, 95% CI Confidence Interval
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Table 3 Summary of variance (standard error) components, multilevel logistic regression, lifetime
Pap uptake

Random Effects Null Model Model 2 Model 3 Model 4 Model 5

Level 2, neighbourhood 0.261 0.231 0.125 0.096 0.067
(0.06) (0.07) (0.06) (0.06) (0.06)

Level 1, individual 1.00 1.00 1.00 1.00 1.00
Intra-class correlation coefficient (%) 7.35 6.56 3.66 2.84 2.00

cation, higher household income adequacy, and having had contact with a general
practitioner within the past year are associated with uptake. On the other hand, being
single, achieving less than a high school education, reporting low household income
adequacy, residing in Toronto (relative to Montreal) and living in a disadvantaged
neighbourhood are negatively associated with uptake. Self-reported health-status is
not significantly associated with uptake. As immigrant-specific covariates are con-
sidered in Model 3, income adequacy covariates and neighbourhood disadvantage
are also reduced to non-significance.

As shown in Table 2 (Model 3), the odds of ever having a Pap test signifi-
cantly decrease by 0.34 with every 10% increase in the concentration of immi-
grants. Also, the odds of having a Pap test are 0.16 and 0.50 for recent and
long-term immigrant women, respectively, relative to Canadian born women. Simi-
lar to being single; being separated, widowed or divorced was negatively associated
with uptake, relative to being married or living common-law. Furthermore, the
direction of association between Toronto and uptake has reversed: relative to Mon-
treal, women in Toronto and Vancouver are now more likely to have ever had a
Pap test.

To examine the extent to which CMA residence moderates the association
between immigrant status and uptake, four cross-level interactions are added in
Model 4. Relative to non-immigrants residing in Montreal, the results indicate
that recent immigrants in Toronto, along with recent and long-term immigrants
in Vancouver, are less likely to have ever had a Pap test. However, a number of
these effects become non-significant once cultural origin is taken into considera-
tion (Model 5). The association between use and recent immigrants in Vancouver
remains significant .p < 0.05/. In relation to the white reference group, being
Chinese, South Asian and other Asian origins decreases the likelihood of Pap test-
ing. Cultural origin also appears to partially explain the effect of neighbourhood
concentration of immigrants, wherein this effect became insignificant.

Table 3 highlights evidence of between neighbourhood variations in the lifetime
use of Pap testing. According to the null model, the amount of variation attributable
to neighbourhoods was approximately 7.4%. Controlling for demographic, socio-
economic, health-related factors and CMA residency, Model 2 explains only a small
proportion of between neighbourhood variability. On the other hand, immigrant
status, immigrant interactions and cultural origin appear to account for a larger pro-
portion of this variability. For example, Model 3 reveals that the concentration of
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immigrants at the neighbourhood level and immigrant status exhibit strong associ-
ations with uptake. This appears to account for approximately half of the between
neighbourhood differences. In the full model (Model 5), the amount of variation
attributable to the neighbourhood is decreased by 5.2 percentage points.

3.2 Regular Pap Testing

Building upon lifetime uptake, the following section considers whether or not a
woman had a Pap test within the past 3 years (regular Pap test). Among women who
have participated in Pap testing, approximately 89% of native-born, 93% of recent
immigrants, and 86% of long-term immigrant women reported having a similar test
within the past 3 years. Regular use among recent immigrants appears to be con-
sistent with that of their native-born and long-term immigrant counterparts, if not
higher.

Tables 4 and 5 display the multilevel logistic regression results for regular Pap
testing. The dependent variable is having had a Pap test within the past 3 years
(regular Pap). After controlling for the null model (Table 4), Model 2 reveals that
age exhibits a strong and negative association with regular use, whereas positive
health status, contact with a general practitioner and residing in Toronto are strong
and positively association with use. However, the effect of Toronto is reduced to
non-significance in Model 3. Nevertheless, neighbourhood disadvantage appears to
be negatively associated with use. In addition to age and health covariates, neigh-
bourhood concentration of immigrants is positively associated with regular use. The
odds of having had a Pap test within the last 3 years increases by 2.21 with every
10% increase in the concentration of immigrants.

Findings also reveal that individual immigrant status and language ability are not
significantly associated with regular use. CMA covariates are also insignificant in
Model 3 and onwards. In Model 3 of this particular analysis, the potential interac-
tions between CMA and immigrant status were examined in preliminary analyses,
but were removed from the model because of insignificance. The effects of culture
are examined finally in Model 4. Compared to the white reference group, Chinese
cultural origin is significantly associated with use. Model 4 also reveals that the
effects of age and neighbourhood disadvantage remain negatively associated with
use, whereas positive health, contact with a general practitioner and neighbourhood
concentration of immigrant remains positively associated with use.

Table 5 summarizes the variance components of the models discussed above.
According to the null model, approximately 3% of the variation is attributable to
neighbourhoods. The variance at the neighbourhood-level decreased with the addi-
tion of individual- and neighbourhood-level covariates. After controlling for these
covariates, the models are able to account for half of the neighbourhood variability;
the final model was able to explain 1.5% of the variation between neighbourhoods.
While individual characteristics explain much of the variation in neighbourhoods,
neighbourhood characteristics were also determinants of utilization.
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Table 4 Multilevel logistic regression models: regular Pap testing

Fixed Effects Null Model Model 2 Model 3
“ (se) “ (se) “ (se)

Intercept 1.99� (0.04) 0.79� (0.15) 0.70� (0.16)

OR 95%CI OR 95%CI
Age centred 0.94� (0.94–0.95) 0.94� (0.94–0.95)
Education
Less than high

school
0.94 (0.74–1.19) 0.95 (0.75–1.20)

Post secondary
graduate

1.09 (0.92–1.30) 1.07 (0.90–1.28)

Income adequacy
Low 0.92 (0.71–1.19) 0.92 (0.71–1.19)
High 1.17 (0.97–1.40) 1.18 (0.98–1.42)
Marital status
Separated, widowed,

divorced
0.90 (0.75–1.08) 0.91 (0.75–1.09)

Single 0.88 (0.71–1.10) 0.87 (0.70–1.09)
Neighbourhood

disadvantage
index score

0.92 (0.85–1.00) 0.87� (0.79–0.95)

Self-reported health
Positive 1.72� (1.40–2.11) 1.73� (1.41–2.13)
Consultation with

GP/family doctor
Yes 2.7� (2.25–3.23) 1.10� (0.92–1.32)
CMA
Toronto 1.11� (0.93–1.34) 0.87 (0.68–1.11)
Vancouver 1.15 (0.94–1.40) 0.94 (0.74–1.19)
Neighbourhood

proportion of
immigrant

2.21� (1.23–3.97)

Immigrant status
Recent immigrant 1.12 (0.77–1.62)
Long-term

immigrant
1.00 (0.83–1.21)

Can converse in
English and/or
French

No, neither English
nor French

1.09 (0.67–1.79)

Intercept 0.69� (0.16)

OR 95%CI
Age centred 0.94� (0.94–0.95)
Education

(continued)
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Table 4 (continued)
Fixed Effects Model 4

“ (se)

Less than high
school

0.95 (0.75–1.21)

Post secondary
graduate

1.08 (0.91–1.29)

Income adequacy
Low 0.90 (0.70–1.17)
High 1.18 (0.98–1.42)
Marital status
Separated, widowed,

divorced
0.90 (0.75–1.09)

Single 0.86 (0.69–1.08)
Neighbourhood

disadvantage
index score

0.87� (0.80–0.96)

Self-reported health
Positive 1.75� (1.42–2.15)
Consultation with

GP/family doctor
Yes 2.67� (2.23–3.20)
CMA
Toronto 0.88 (0.69–1.13)
Vancouver 0.94 (0.74–1.19)
Neighbourhood

proportion of
immigrant

2.11� (1.17–3.82)

Immigrant status
Recent immigrant 1.09 (0.74–1.63)
Long-term

immigrant
0.98 (0.79–1.20)

Can converse in
English and/or
French

No, neither English
nor French

0.97 (0.58–1.62)

Cultural/racial origin
Black 1.33 (0.78–2.27)
Other Asian 0.70 (0.35–1.41)
Filipino 0.75 (0.41–1.37)
Chinese 1.57� (1.01–2.44)
South Asian 0.72 (0.45–1.15)
South East Asian 0.61 (0.24–1.56)
Latin American 1.42 (0.59–3.40)
Other 1.15 (0.77–1.74)
�p < 0:05, �p < 0:01, �p < 0:001, OR Odds Ratio, 95% CI Confidence Interval
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Table 5 Summary of variance (standard error) components, multilevel logistic regression, regular
Pap use

Random Effects Null Model Model 2 Model 3 Model 4

Level 2, neighbourhood 0.103(0.06) 0.06(0.07) 0.053(0.07) 0.050(0.06)
Level 1, individual 1.00 1.00 1.00 1.00
Intra-class correlation coefficient (%) 3.04 1.79 1.59 1.50

4 Discussion

This cross-sectional women’s health study has focused on multi-level influences
on the lifetime uptake and regular use of cervical cancer screening (Pap testing)
services among women in the Montreal, Toronto and Vancouver CMAs. Given
the limitation of this study’s cross-sectional design, longitudinal information could
provide insight into the temporal directions of the associations, and is necessary to
better understand whether or not women are having regular Pap tests. A lack of data
regarding the role of women’s attitudes, beliefs and knowledge regarding preventive
health practices also limits this research. In addition, this study relied upon self-
reported information about Pap testing, which may be subject to recall bias. Data
constraints also meant that this study was not able to test for lack of knowledge of
the importance of Pap screening, or a lack of time to undertake screening. However,
the CCHS was particularly valuable given the focus on immigrants, and interviews
were conducted in over 22 different languages.

Findings reveal that dissimilarities in lifetime uptake exist between the native-
born and the foreign-born populations after controlling for age, marital status, socio-
economic status, and health covariates. Building upon earlier studies (Goel 1994;
Maxwell et al. 2001; Woltman and Newbold 2007), this research has found that
recent and long-term immigrant status is strongly and inversely associated with ever
having had a Pap test. In other words, recent immigrants are less likely to have
had a Pap test, with the likelihood of uptake increasing with duration of residence,
in line with findings by McDonald and Kennedy (2007). Possible explanations for
the lower uptake amongst recent arrivals include lack of knowledge, lack of time,
language barriers and cultural factors (Black and Zsoldos 2003; Hyman and Guruge
2002; Newbold 2005; Woltman and Newbold 2007).

Additional individual-level characteristics such as age, Asian origins, marital
status and contact with a general practitioner were found to be associated with
uptake, and are consistent with earlier Canadian studies (Bryant et al. 2002; Gupta
et al. 2002; Hyman et al. 2002, 2003; Maxwell et al. 2001; Snider et al. 1996).
Results also indicate that language ability became insignificant once culture was
considered in uptake.

In terms of the factors associated with having had a Pap test within the past
3 years (regular Pap test), neighbourhood disadvantage and the neighbourhood
concentration of immigrants appear to be significant predictors. In such cases,
the size and relative completeness of an immigrant community may alter uptake



Immigrant Women, Preventive Health and Place in Canadian CMAs 377

rates, with lower rates likely to be associated with less institutionally complete
neighbourhoods. Although modest, there was significant between-neighbourhood
variation (7.4%), suggesting that policies targeting Pap screening uptake could focus
on both people and places. There also appears to be significant differences between
neighbourhoods and CMAs in the uptake of cervical cancer screening among recent
immigrant arrivals. While results indicate that the association between CMA and
cervical cancer screening differs by immigrant status, these interactions lose their
statistical significance after controlling for cultural origin. This may be due to
differences in the cultural background of immigrants living in these urban cen-
tres. For example, Vancouver is home to many immigrants arriving from China,
which suggests that uptake may reflect cultural differences. This may also be true
at the neighbourhood level where controlling for cultural origin reduces the effect
attributable to the neighbourhood concentration of immigrants to non-significance.

Findings also suggest that place is important in the use of regular Pap testing.
Approximately 3% of variation in regular use appears to be attributable to between-
neighbourhood differences. This suggests that there are discernible differences
between neighbourhoods and between people within neighbourhoods
(Merlo et al. 2005). In other words, there is moderate evidence to suggest that
a possible neighbourhood contextual phenomenon is shaping individual screen-
ing behaviour. Factors such as neighbourhood disadvantage and neighbourhood
immigrant concentration assist in explaining this variance.

These results provide additional insights into the preventive health behaviours
of immigrant and native-born women. After controlling for age, socio-economic
and demographic and health-related characteristics, neighbourhood disadvantage
and the neighbourhood concentration of immigrants plays a significant role. Among
women who have had a least one Pap test, there appears to be a strong and positive
association between neighbourhood concentration and regular Pap test use. That
is, a higher neighbourhood concentration of immigrants is associated with positive
routine screening behaviours among women who already participate in screening.
Building upon the determinants of health literature, this research has also found that
neighbourhood disadvantage is negatively correlated with cervical cancer screening
service use, above and beyond individual socio-economic status.

Chinese origin was associated with having had a Pap test within the past 3 years.
Although echoing Hyman et al. (2002) who noted that there was less variation
between immigrant groups in the proportion of women who engaged in regular
screening once initial barriers to screening were overcome, the direction of this
relationship is distinctly different from the first set of analyses (lifetime uptake),
which suggested that participating in cervical cancer screening is negatively associ-
ated with women of Asian background. This raises two possible explanations. First,
the structure of the question that explores the use of Pap tests (and other preven-
tative health care issues) is likely important. That is, the current research focused
on both lifetime use (have you ever had a Pap test) and regular use (in the past
3 years). The differential use of these questions in the existing literature may account
for disparities in findings. Second, issues that closely reflect the ethnic or cultural
makeup of the immigrant population, including diverse issues such as gender roles,
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trust of western medicine, attitudes and beliefs about reproductive health practices,
may create differentials in the use of preventive health care, and ultimately health.
There may be a cultural avoidance of invasive medical tests, such as Pap testing
(Harlan et al. 1991), which can serve to further isolate a community (Gupta et al.
2002). Additional research is required to better understand the impact of utiliza-
tion and health-seeking behaviours associated with immigrant status versus ethnic
and cultural background, along with contextual factors and individual risk reduction
(Harlan et al. 1991; Pickett and Pearl 2001).

Finally, this work raises other issues. First, with the increasing prevalence of
HPV vaccines that are targeted toward young women, analysis of the relationship
between vaccine awareness, uptake, and continued use of Pap screening will be
important. Second, given the potential clustering of immigrants within cities, the
geographical availability of doctors offices or clinics for screening, and the role of
neighbourhoods and neighbourhood disadvantage in determining Pap screen uptake,
we are left within an interesting spatial modelling problem. Although left for future
work, research could focus on testing for local spatial autocorrelation of the response
variables, expressed as rates of participation at the census tract level. Alternatively,
the spatial clustering of the geocoded incidence of participation in Pap testing could
be considered.
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Is Growth in the Health Sector Correlated
with Later-Life Migration?

Dayton M. Lambert, Michael D. Wilcox, Christopher D. Clark,
Brian Murphy, and William M. Park

1 Introduction

The aging population of the United States has long been a subject of debate and
inquiry for development planners, policy makers, and researchers. The doubling of
the population of Americans older than 65 since 1960 (while the population younger
than 65 has grown by only one half) (Fuguitt et al. 2002), has prompted interest in
their effect on the economies in which they live (Serow 2003) and their potential as
a resource for rural economic development (Fagan 1988; Fagan and Longino 1993;
Reeder 1998). Interest in these issues intensified as the baby boomer generation
approached retirement age. The retirement of this age cohort is likely to have pro-
found effects on the nation and its economy as this cohort is not only much larger
than previous age cohorts, but also healthier and wealthier due to economic growth
and advances in the quality of healthcare.

Older Americans increasingly have the means and the motivation to migrate to
a different area upon retirement. For example, it is estimated that over the next
18 years, approximately 400,000 retirees each year – with an average of $320,000
to spend on a new home – will choose to relocate beyond their state borders (Vestal
2006). The South and West have been and continue to be popular destinations for
these migrants (Serow 2001; He and Schachter 2003), although more are choos-
ing to locate outside of the traditional retirement areas of Florida and Arizona
(Vestal 2006). One driving force of this shift is the “halfback” phenomenon in the
Southeast where retirees who had previously migrated to the coast are returning
halfway back to their ancestral homes by relocating to areas such as the South-
ern Appalachian mountain regions of eastern Tennessee, western North Carolina,
and northern Georgia (Park et al. 2007). Further, later-life migrants are frequently
settling in rural places or small towns (Fuguitt et al. 2002). For example, in 2000
a half million more persons above 60 moved into non-metro counties than out of
them (Beale 2005). These trends beg the question of how the recent in-migration of
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older Americans is affecting local economies, particularly in rural areas where the
marginal effect of in-migration may be proportionally greater than in more populous
urban areas.

Recognizing this opportunity, many state and local governments have turned to
attracting later-life migrants as a component of rural economic development policy
(Fagan 1988; Fagan and Longino 1993; Reeder 1998). The lure of such a policy
to rural communities can largely be attributed to declines in traditional sources of
rural economic activity and to the relatively greater impact later-life migrants are
likely to have on local government revenues than on expenditures. The relatively
high levels of wealth among these migrants, coupled with the absence of school-age
children from their households, suggests that they will augment local tax bases by
increasing property values and retail spending without increasing education expen-
ditures, which are typically a large component of local government spending (e.g.,
Mullins and Rosentraub 1992; Serow 2003; Park et al. 2007). Furthermore, these
later-life migrants foster a “mailbox economy” where expenditures on local goods
and services are financed by income from outside a community as opposed to local,
re-circulated dollars (Haas et al. 2006).1

Numerous studies have examined the effect of later-life in-migration on local
economies (see Serow (2003) for a comprehensive review) and many have consid-
ered the effects from a rural economic and community development perspective
(e.g., Aday and Miles 1982; Hodge 1991; Mullins and Rosentraub 1992; Rowles
and Watkins 1993; Stallmann et al. 1999). Although later-life migrants make signif-
icant expenditures in local economies (Haas 1990, p. 388), several studies suggest
that these expenditures primarily create low skill, low wage, service sector jobs (e.g.,
Beale and Fuguitt 1990; Glasgow and Reeder 1990; Reeder and Glasgow 1990; Day
and Bartlett 2000).

However, as Day and Bartlett (2000) note, the high skill, high wage, health and
medical care service sub-sector is of particular importance to later-life migrants.
A number of studies find that the availability of healthcare services is an important
factor in destination choice (e.g., Toseland and Rasch 1978; Regnier and Gelwicks
1981; Dwight 1985; Park et al. 2007). In fact, retirement communities often use the
availability of local health care services as a marketing tool (Dwight 1985; Dine
1988; Loomis et al. 1989). Thus, the spatial distribution of health care services may
play an important role in determining the spatial relocation patterns of later-life
migrants. But what is less clear is how the relocation patterns of later life migrants
affect the spatial distribution of health care services.

There is an extensive literature addressing the geographic distribution of physi-
cians and other health care resources (e.g., Newhouse et al. 1982; Jiang and Begun
2002; Freed et al. 2004; Mistretta 2007).2 A wide variety of factors determine

1 The mailbox economy is a term which refers to the source of income for many retirees. Examples
include Social Security, private pensions, etc. all of which are derived from outside the local
economy.
2 A primary concern in this literature is measuring access to physicians or to other health care
services (e.g., Joseph and Bantock 1982; Wing and Reynolds 1988; Rosenthal et al. 2005; Pathman
et al. 2006).
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the distribution of physicians, including; geographical preferences (regions, states,
counties, and typologies such as rural versus urban), population (amount, growth
and density), physician attributes (specialty, number, and density), patient attributes
(income, education levels, age distribution and prevalence of insurance types), local
or regional health sector characteristics (wages, number of hospital beds, number,
type or concentration of hospitals, and Health Maintenance Organization [HMO]
penetration), public expenditures (education and health), and employment mea-
sures (unemployment, importance of specific sectors, firm size) (Brasure et al. 1999;
Escarce et al. 2000; Jiang and Begun 2002; Rosenthal et al. 2005; Mistretta 2007;
Wall and Brown 2007).

This chapter contributes to this literature by analyzing whether an inflow of later-
life migrants is correlated with growth in the health care sector as measured by
changes in the concentration of health care providers. The attraction of substantial
numbers of later-life migrants has the potential to disproportionately increase the
demand for health care services. On average, these migrants are often older and
have higher expectations of care, along with a greater ability to pay for specific
health care services than residents in rural areas (e.g., Park et al. 2007). Moreover,
significant later life migration to a particular rural community could allow the com-
munity’s health care providers to exploit agglomeration economies in the health care
sector (Connor et al. 1995; Bates and Santerre 2005) and grow into regional medical
centers servicing surrounding rural areas.

However, there are a number of factors that may mitigate or confound the effect
of later life migrants on growth in health care services. In general, individuals who
do migrate upon retirement are often healthier than other members of their age
cohort (Barsby and Cox 1975; Patrick 1980; Sickles and Taubman 1986). Further-
more, as these migrants grow older and their health begins to deteriorate, they often
return to their “ancestral homes” to be near family and friends who can serve as
caregivers or who can provide comfort after the loss of a spouse (Serow and Charity
1988; Colsher and Wallace 1990). There may also be constraints on the growth of
rural health care sectors. A consistent finding reported in the literature examining
the spatial distribution of health care services is that the ratio of the number of physi-
cians to total population is considerably higher in suburbs and wealthy urban areas
than it is in rural areas and inner cities (Rosenthal et al. 2005; Mistretta 2007). The
unevenness of this spatial distribution is largely attributable to the concentration of
medical specialists in more densely populated areas where the hospitals, laboratories
and other services on which these specialists depend are located (Jiang and Begun
2002). For example, Brasure et al. (1999) found that increments in population den-
sity played a significant role in a physician’s decision to enter a market, indicating
that low populations may serve as a barrier to entry for a wide variety of physician
types. Other characteristics of the health care industry, such as mutual ownership
or alliances between urban and rural healthcare service providers, may also limit
growth in the rural health care sector (Reardon 1996; Ricketts 2000).

Haas and Crandall (1988) explored how the influx of later-life migrants affected
rural health care systems using a case study of two counties (one in Florida and
one in North Carolina). Their results indicated that a major factor contributing to
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physicians moving their practice from one area to another was the presence of a
population that would require care in their particular specialty. In fact, 61% of physi-
cians surveyed reported that over half of their clientele were over age of 65, and
47% believed that later-life migrants had a direct effect on the growing number of
physicians, especially internists, internal medicine sub-specialists and surgical spe-
cialists who typically treat older patients (Haas and Crandall 1988). Other studies
measured the effect of age distribution (e.g., proportion of population over the age
of 65) rather than actual later-life migration. A general conclusion of these stud-
ies is that areas where population age is skewed upward generally have the same or
more family/general practitioners and fewer specialists (Brasure et al. 1999; Escarce
et al. 2000; Jiang and Begun 2002). Jiang and Begun (2002) posit that an urban area
with a higher proportion of elderly may be “regarded as economically declining,
and thus, less attractive to physicians.” However, this result may be sensitive to the
fact that only urban areas were included in their analysis.

The relationship between later life migrants and growth in the health care sector
is the quintessential “jobs-to-people” or “people-to-jobs” question. There is substan-
tial evidence suggesting that these migrants consider the availability of health care
services in selecting their relocation destination. Less clear is the extent to which
later life migrants promote growth in the local health care sector. Understanding
the effects of later-life migrants on the rural health care sector is important, in part,
because of the important role the sector often plays in the community. The health
care sector is often a major component of the local economy as it is typically one of
the largest employment sectors, often second only to public education, and is impor-
tant in attracting and retaining retirees and businesses (Doeksen et al. 1996). Also,
since the extent of health care services provided in rural areas is often quite limited,
in part due to the closure of rural hospitals in the last few decades (Reardon 1996;
Capalbo and Heggem 1999), an expansion of these services could have significant
welfare impacts on rural residents.

Thus, this chapter examines the “jobs-to-people” side of the question for the
Southeastern United States. Specifically, did a change in the number of in-migrating
seniors between 1995 and 2000 correlate with a change in the number of persons
working in the health care sector from 2000 to 2004?3 The focus is on the South-
east (AL, AR, GA, LA, MS, NC, SC, and TN), where relatively rapid growth in
later-age migrants is occurring and on rural areas, given the economic develop-
ment aspirations many rural areas hold for later-life migration. We explain changes
in the concentration of health professionals from 2000 to 2004 using aggregate,
county-level data. A series of spatial lag process models are used to explain growth
(or decline) in the concentration of registered nurses (RNs), medical doctors (MDs),
and sub-sets of MDs (i.e., office-based surgical specialists, office-based medical
specialists, and other office-based specialists) as a function of local demographic,
economic, and infrastructural attributes, as well as the influx of migrating cohorts

3 Due to data limitations, it was not possible to examine the other direction; i.e., to what extent was
growth in the health care sector correlated with in-migrating seniors?
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from 1995 to 2000. We hypothesize that the relationships between local factors and
growth in the concentration of health care professionals may be different between
urban core and rural counties. To accommodate this form of spatial heterogeneity,
we interact a rural-urban index with main effect factors, therefore allowing marginal
effects to vary geographically. Shedding light on how the anticipated increase in
later-life migrants during the next decade will affect demand for health care services
in particular and local economic development in general will assist policymakers
and development professionals seeking ways to diversify the economic portfolio of
rural communities.

The remainder of this chapter is organized as follows. The next section describes
the data and model used in the empirical analysis. Spatial econometric issues
are discussed, including model selection and robust covariance estimation proce-
dures. Results are presented and discussed in the third section. Finally, the chapter
concludes with some thoughts on the analysis and on possible future research
directions.

2 Data and Empirical Model

The hypothesis that migrating seniors influenced the concentration of health care
employment was tested by regressing aggregate county-level control measures and
the percent of 1995–2000 in-migrants comprised of individuals in the 35–54, 55–69,
and 70 years and above age cohorts (2000 Census) on the change in employ-
ment concentration of MDs (2000–2004) and RNs (2000–2003) (Area Resource
File 2005) (Table 1). MDs were disaggregated into three sub-professions: office-
based surgical specialists, office-based medical specialists, and other office-based
specialists (all 2000–2004). Office-based practices include physicians engaged in
patient care. This group includes physicians in solo practice, group practice, or
other patient care employment. The office-based group also includes physicians in
patient services such as those provided by pathologists and radiologists. Surgical
specialists are physicians providing colon/rectal surgery, general surgery, neurolog-
ical surgery, obstetrics-gynecological surgery, ophthalmology, orthopedic surgery,
otolaryngology, plastic surgery, thoracic surgery, and urology. Medical specialists
include allergy and immunologists, cardiovascular physicians, dermatologists, epi-
demiologists, gastroenterologists, internal medicine specialists, pediatricians, and
pulmonary disease specialists. Other specialists include anesthesiologists, child
psychiatrists, radiologists, emergency medicine technicians, forensic pathologists,
geneticists, neurologists, public health professionals and general preventative medi-
cine, oncologists, and other unspecified medical specialists. RNs include full-time
registered nurses, and nurses working in nursing homes or state general hospitals.

Change in the employment concentration of these professionals was measured
using the natural log of the ratio of their location quotients (LQ) between 2000 and
2004. The location quotient is constructed relative to employment in each state;
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Table 1 Summary statisticsa

Variable Abbreviation Mean Standard error

ln LQ, MDs 2000–2004 MD 0:2944 0:2222

ln LQ, Office-based medical specialists 2000–2004 OMS 1:0960 0:4304

ln LQ, Office-based surgical specialists 2000–2004 OSS 0:0242 0:4005

ln LQ, Other office-based specialists 2000–2004 OOS �0:0404 0:4562

ln LQ, RNs 2000–2003 RN 21:8393 0:7601

ln LQ, MDs 2000 MD00 �2:1295 0:2250

ln LQ, Office-based medical specialists 2000 OMS00 �7:0900 0:5080

ln LQ, Office-based surgical specialists 2000 OSS00 �10:5051 0:5989

ln LQ, Other office-based specialists 2000 OOS00 �11:1637 0:6031

ln LQ, RNs 2000 RN00 �30:1596 0:6307

ln �population density, 1990–2000 dPOPDENS 0:1329 0:0046

ln Median household income, 2000 MEHHY 1:1624 0:0079

ln Hospital beds per capita, 2000 HBPC �11:4950 0:4410

ln Health expenditure/population, 1997 HEXP �5:4239 0:2536

% 25C with high school diploma, 2000 HS 70:5116 0:2690

% employment in agriculture, 2000 PERAG 4:4275 0:1385

% employment in construction, 2000 PERCON 8:3875 0:0927

% employment in manufacturing, 2000 PERMAN 21:6071 0:3214

Unemployment rate, 2000 UNEMP 5:6422 0:1003

% commuting, 2000 COMM 34:0660 0:6799

% white, 2000 WHT 71:7672 0:7421

% population 65C, 1999 POPO65 13:3459 0:1156

% in-migrants, 30–54, 1995–2000 IN3054 32:9744 0:1751

% in-migrants, 55–69, 1995–2000 IN5569 9:6109 0:1657

% in-migrants, 70C, 1995–2000 IN70UP 5:1015 0:0870

Rurality index (RI), 2000 RI 0:4835 0:0051
aN D 688. States included in the sample are AL, AR, GA, LA, MS, NC, SC, and TN
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where k D MDs, RNs, office-based surgical specialists, office-based medical spe-
cialists, and other office-based specialists; ek is the number of persons occupying the
kth profession in the i th county; e is total employment in the i th county;Ek;s is the
number of individuals in the kth profession in the sth state; and Es is total employ-
ment in the sth state. This perspective appreciates potential heterogeneity between
states due to policy or other unobservable factors specific to a particular state.

The effect of local control factors and migrating cohorts on change in the
employment concentration of these professions was estimated using a linear model:

k�LQ2004
2000 D f

�
W k�LQ2004

2000;
kLQ2000; IS2000; LM2000;

�HS2000;DC2000; SC2000;�MIGg
1995�2000; RI2000

� (2)
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where W k�LQ2004
2000 is the spatial lag of the 2000–2004 change in employment

concentration; IS are industry structure variables; LM are labor market character-
istics; HS are local health care resources; DC are demographic characteristics; SC
are settlement attributes; �MIGg

1995–2000 is the proportion of the gth in-migrating
cohort relative to all in-migrants locating in county i between 1995–2000; and RI is
Waldorf’s (2006) rurality index (RI) constructed using 2000 census data. We a pri-
ori hypothesize that county-level change in each measure is a function of change
in neighboring counties by specifying (2) as a spatial lag process model (Anselin
and Florax 1995, discussed below). Model selection procedures explicitly test these
assumptions (discussed below).

The RI measure is composed of population, population density, the percent of the
population designated as rural or urban according to the US Census, and the distance
of a county to a metropolitan county categorized using the Office of Management
and Budget (OMB) urban core-non-core county classification system. All other
explanatory variables in (2) were interacted with the rurality index to gauge the
influence of local control factors and cohort in-migration on changes in employment
concentration in the health profession across an urban-rural continuum.

2.1 Migration Cohorts

The proportion (%) of total in-migrants to a county between 1995 and 2000 com-
prised of individuals in one of three different age cohorts (35–54, 55–69, and 70C)
was used to measure the impact of in-migration by age cohort on changes in employ-
ment concentration in the medical profession between 2000 and 2004. Changes in
net migration between 1995 and 2000 for the three migrating age cohorts were cal-
culated using data from the 2000 decennial US Census (Fig. 1). A significantly
higher percentage of metropolitan counties had positive net migration (“net inflow”)
for the 35–54 and 70C age cohorts, while the reverse was true for the 55–69 age
cohort, with a higher percentage of non-metropolitan counties experiencing net
inflow than was the case for metropolitan counties.

The primary focus is on later-life migration and its correlation with growth in
the health sector. This is not to be confused with retiree migration, though the two
terms have been used interchangeably since the 1980s (Haas et al. 2006). Here, life
course is represented by age and not by employment status. The three cohorts were
selected to reflect heterogeneous health status (House et al. 2005), and therefore
demand for health services by progressively more aged cohorts (Wolinsky et al.
1986). The 55–69 and 70C age cohorts represent the migrating senior populations.
The 35–54 cohort represents the “Baby Boomer” generation all of whom (including
those born during 1961–1964) aged into the cohort by 2000.
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Fig. 1 Distribution of quantile proportions of total in-migrants composed of individuals in the
55–69 (top panel) and 70C age cohorts (bottom panel)

2.2 Control Variables

Five sets of control measures are included to reflect conditions at the beginning of
the period (Table 1). First, industry structure, as measured by the proportions of
total county employment employed in agriculture, construction, and manufacturing,
comes from the Regional Economic Information System files from the Bureau of
Economic Analysis.

The second set of control measures is comprised of labor market characteristics,
specifically, the unemployment rate, the natural log of median household income,
and the proportion of the population older than 25 with a high school diploma – all
from the 2005 Area Resource Files data compilation. Counties with relatively higher
median household incomes may be attractive to healthcare providers, although the
effect of higher incomes on changes in the relative concentration of healthcare
providers is somewhat ambiguous. County unemployment rate was used to con-
trol for local job market characteristics. The proportion of the population above 25
with a high school degree reflects human capital potential and in urban analysis has
been linked to economic growth.

The third set of control measures, settlement characteristics, includes the percent
of the work-force commuting out of the county and the natural log of the change in
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population density from 1990 to 2000. Population density enters the model as a
change variable to control for regional economic and demographic inertia that may
influence the location choice of medical professionals.4 Higher out-commuting rates
indicate greater relative economic activity in neighboring counties, likely implying
low growth in healthcare employment. Alternatively, greater increases in population
density should lead to more rapid growth in the healthcare sector, ceteris paribus.

The fourth set of control measures are demographic characteristics. These fac-
tors are represented by the percentage of the population that is white and the
percentage of the population that was 65 or older in 1999. In the past, the per-
centage of population aged 65 or older might reflect a history of population decline.
However, since many rural counties have become magnets for later-life migrants,
a high proportion of citizens at or beyond retirement age are now perhaps just as
likely to reflect county attractiveness as a retirement destination to this age group.
While population loss is unlikely to promote an increase in healthcare employment,
the presence of an aging population may serve to attract healthcare providers.

The last set of control measures is comprised of health care resources. The nat-
ural log of hospital beds per capita at the beginning of the period was used as a
measure of access to health care and of the relative size of the county hospital
network. All else equal, it is hypothesized that growth in the MD and RN pro-
fessions will be positively correlated with this measure, but the magnitude of the
relationship may vary with each occupation. For RN’s and office-based surgeons,
the relationship is expected to be strongest. Registered nurses care for short- and
long-term patients. Surgical specialists depend on specialized equipment and other
infrastructure provided by hospitals. Medical specialists tend to concentrate in more
densely populated counties providing human and physical capital, which supports
technologies used by these specialists as well as offering a larger market for the high
fixed cost services they provide.

The aggregated MD measure represents all MD’s including general practitioners,
pediatricians, and the specialized MD’s. While specialists may be more limited in
rural areas without access to scale economies, the lower infrastructure requirements
for other MD’s (e.g., general practitioners) may mean that proximity to a medi-
cal hub is not as important. For difficult medical problems, patients will usually
be referred to a regional medical center by their local personal care physician. The
total number of hospital beds and the 2000 Census population were obtained from
the ARF (2005) data base. The second measure – total county health care expendi-
tures per capita (1997) – was extracted from the Census of Government Files (1997).
Holding other factors constant, it is hypothesized that counties with relatively higher
health care expenditures per capita will experience growth in the MD and RN pro-
fessions as these expenditures may reflect the establishment or maintenance of a
more extensive health care infrastructure, specialized medical technologies, and
demand for affordable health care.

4 The rurality index controls for 2000 “base” level effects since it is determined in part by popu-
lation density, inter alia additional demographic measures of settlement concentration. Because of
this, 2000 population concentration measures were not included in the regression models.
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2.3 Spatial Econometric Issues

Recent years have witnessed an increasing number of applied studies in geography,
economics, and regional science in which the spatial dimension of population and
economic growth are incorporated in regression models (e.g., Bao et al. 2004;
Moreno et al. 2004; Boarnet et al. 2005; Cohen and Paul 2005; Lambert et al. 2006;
McGranahan et al. 2006; Cho et al. 2007; Monchuk et al. 2007; Wojan et al. 2008).
This surge was fueled by recent theoretical developments in spatial econometrics
along with better access to spatial data and the increased availability of easy-to-use
computational tools.

Most regional growth studies use a spatial process model going back to Whittle
(1954), in which an endogenous variable is specified to depend on spatial inter-
actions between cross-sectional units plus a disturbance term. The interactions are
modeled as a weighted average of nearby cross-sectional units, and the endogenous
variable comprising the interactions is usually referred to as a spatially lagged vari-
able. The weights are grouped in a matrix identifying neighborhood connections,
which forms the distinctive core of spatial process models. The model is termed a
spatial autoregressive lag model in the terminology of Anselin and Florax (1995).
Whittle’s spatial autoregressive lag model (SAR) was popularized and extended by
Cliff and Ord (1973, 1981), who distinguished models in which the disturbances
follow a spatial autoregressive process. The general model, which contains a spa-
tially lagged endogenous variable, as well as spatially autoregressive disturbances
in addition to exogenous variables, is called a spatial autoregressive model with
autoregressive (AR) disturbance of order (1,1) (SARAR) (Anselin 1988; Anselin
and Florax 1995); y D �W1y C X“ C ©; © D œW2© C u, u � iid.0;�/, where W1

and W2 are (possibly identical) matrices defining interrelationships between spatial
units, and EŒuu0� D �.

Spatial process models are typically estimated using maximum likelihood or gen-
eralized moment (GM) procedures. A GM approach is used here because we have
no reason to believe that the errors generated by our models are normally distributed.
A county with a given change in employment or business establishment growth .yi /
may be surrounded by other counties

Xn

j;i¤j wij yj (3)

with similar growth rates. Feedback between spatial units may be significant; mean-
ing that growth in one county is dependent on or explained by growth in surrounding
counties. Significant interaction suggests information spillovers, thick labor mar-
kets, or forward-backward economic linkages across space (Anselin 2002; Moreno
et al. 2004). Agglomerative effects, as we use the term here, imply some form of
regional clustering or “spillover” due to centripetal effects (Fujita et al. 1999), sug-
gesting the presence of “thick” labor markets or access to relatively larger demand
markets. Significant positive spillover is consistent with this outcome. On the other
hand, significant negative spillover may suggest that high occupational growth in
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one region is negatively correlated with growth in surrounding regions (i.e., cen-
trifugal effects), or immobile factors are at work (e.g., barriers to labor are high,
or resources are fixed), which may be indicative of “deglomeration” effects. These
hypotheses are tested by the significance of the autoregressive parameter �.

In this application, the lag process is modeled using a row-standardized first-
order queen contiguity matrix, which identifies local neighborhoods of counties.
However, the parametric and structural assumptions about the error process are
relaxed. Spatial error occurs when omitted variables follow a spatial structure such
that � ¤ ¢u

2I (Anselin 1988). Non-spherical errors may be simultaneously caused
by heteroskedasticity or autocorrelated error processes, and are usually linked to het-
erogeneity associated with cross-sectional spatial units (Kelejian and Prucha 2007).
Inclusion of fixed effects is one approach to tackle this problem. But when the data
is a cross-section, and in cases where the causes of spatial heterogeneity cannot be
identified as discrete units (such as census blocks or states), the researcher must
specify spatial structure vis-à-vis W2, often-times with little in the way of theoret-
ical guidance.5;6 Instead, we take a non-parametric approach motivated by Conley
(1999) and Kelejian and Prucha (2007) using spatial heteroskedastic-spatial auto-
correlation robust (spatial HAC) covariance matrices to model potential spatial error
dependence in the regressions.

2.4 Heteroskedastic-Spatial Autocorrelation Robust Standard
Error Estimation

The approach taken by Conley (1999) and Kelejian and Prucha (2007) extends the
Newey-West class of heteroskedastic-autocorrelation consistent (HAC) covariance
matrices developed for time series analysis to dependence between cross-sectional
units. Recall the asymptotic covariance matrix of the general method of moments
(GMM) estimator:

AsyVar.“GMM/ D .M0PM/�1M0Q.Q0Q/�1‰.Q0Q/�1Q0M.M0PM/�17: (4)

In the case of the spatial lag process model estimated with instrumental vari-
ables (SAR-IV, i.e., the GMM estimator), M D ŒWy, X� (spatially lagged dependent

5 In the case of the lag model, the relationship between W1y and y is usually much clearer.
Hypotheses about how agents or spatial units react to and interact with one another can be guided
by the choice of elements in W1 (e.g., Bao et al. 2004).
6 In many empirical studies, the spatial autoregressive parameter .œ/ is considered a nuisance
parameter, suggesting that the main advantage gained from its estimation is one of efficiency rather
than theoretically informed information. In other studies, some researchers assume that the error
parameter explains “knowledge spillovers” due to unobserved heterogeneity across spatial units
(e.g., Cohen and Paul 2005). In our approach, we assume the former interpretation of the parameter
describing the spatial error process.

7 We multiply the covariance by n=.n� k/ to correct for bias.
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variable, and exogenous variables, respectively), and Q D ŒX, WX, W2X�
(instrumental variables, including the spatially lagged exogenous variables with
higher-order lags, respectively), and P D Q.Q0Q/�1Q0. ‰ is a relational matrix8

that generates weighted averages of the cross-products of residuals based on a non-
parametric kernel density estimatorK.dij =dmax/ that determines cross-product pairs
.i; j / over a certain distance .dmax/ at a decaying rate. The individual elements of
this matrix are (Kelejian and Prucha 2007); kl D P

i

P
j qik qjl K

�
dij

ı
dmax

�
"i"j .

The properties of K.dij =dmax/ are such that the function is bounded and sym-
metric, real and continuous, and must integrate to one (Kelejian and Prucha 2007).
Typical candidate functions include Parzen, Bartlett, Epanechnikov, or bi-square
kernels (Kelejian and Prucha 2007; Anselin and Lozano-Gracia 2007). In our appli-
cation we use the Barlett density function; ŒK.dij =dmax/D .1 � dij =dmax/�.9 Note
that when K.dij =dmax/D 0 for all dij > dmax, and K.dij =dmax/D 1 for dij D 0.

We apply an adaptive kernel function where dmax changes with respect to each
cross-sectional unit. For every observation i , the vector of distances between i
and all other observations are sorted in ascending order. The number of neighbors
surrounding i is identified by a contiguity matrix. This value is used as a cutoff
point to identify dmax, the last distance entry in the truncated vector correspond-
ing to spatial unit i . This mechanism permits K.dij =dmax/ to expand or contract
across cross-sectional units, conditional on the number of neighbors surrounding a
given observation, and thereby re-weighting residual cross-products according to a
localized neighborhood structure. The weight attributed to counties not adjacent to
county i is zero. In this study, the road distance (in miles) between county seats was
used as the distance measure between counties.

2.5 Model Specification

The goal of the model specification search was to (i) determine the appropriateness
of the spatial lag model, and (ii) to determine whether use of the spatial HAC esti-
mator was necessary as indicated by spatial structure in the residuals of (2). Given
these criteria, there were two possible estimation methods (Ordinary Least Squares
or SAR-IV), and two possible covariance structures (a bias-corrected Huber-White
“sandwich” estimator or the spatial HAC covariance matrix), yielding four potential
specifications.

A stepwise procedure was used to determine which combination of estimation
procedures and covariance matrix estimation was appropriate, given evaluation of
the location quotient associated with a medical profession. In the first step, a Wald
test was used to test the hypothesis that change in the location quotient for a given
group in a county was a function of change in surrounding counties (e.g., a test
for the significance of W k�LQ2004

2000 as measured by �). Given the results of this

8 This matrix is also called the “spectral density” matrix in the usual GMM terminology.
9 Experimentation with alternative kernel structures yielded no substantial differences between the
standard errors of the lag model.
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test, (2) was estimated with OLS .�D 0/ or SAR-IV .j�j ¤ 0/. In the second step,
the semivariogram of the residuals from (2) (based on OLS or SAR-IV) was esti-
mated to detect spatial structure in the disturbance terms. Application of the spatial
HAC covariance matrix was determined by visual inspection of each semivari-
ogram. A variety of functional forms could be applied to describe semivariogram
structures, including exponential, spherical, or Gaussian. However, there may be
situations where spatial structure cannot aptly be described using the typical contin-
uous functions. For example, over a certain range a semivariogram might follow an
exponential pattern increasing to a certain range, only to drop and continue in sinu-
soidal fashion. Although nonlinear piecewise algorithms could be applied in such a
situation, they are beyond the scope of this study. Alternatively, visual inspection is
oftentimes enough to determine the presence (or absence) of spatial structure in the
semivariogram. This approach is subjective, but errs on the conservative side since
any visual evidence of structure would suggest use of the spatial HAC estimator.

3 Results and Discussion

The first section presents the model selection diagnostics. Discussion of the relevant
control variables in the models follow. The focus then turns to discussion of the
correlation between in-migrating cohorts from 1995 to 2000 and growth in health
care providers from 2000 to 2004. A discussion of some interesting relationships
pertaining to the spatial heterogeneity of employment growth in certain health care
sectors follows. A brief section on the correlated growth of office-based surgical and
medical specialists concludes the results and discussion section.

3.1 Model Specification Results

Change in the local concentration of both office-based medical specialists and
surgeons were correlated with similar changes in surrounding counties over the
2000–2004 periods (Table 2). The semivariogram of the respective SAR-IV resid-
uals suggests spatial structure in the disturbance terms (Fig. 2). For office-based
medical specialists and surgeons the standard errors of the SAR-IV model were
estimated using the SHAC covariance matrix. Change in the other office-based MDs
over the period was not correlated with change in neighboring counties (Table 2).
For this sub-group, (2) was estimated with OLS. Residual analysis suggested some
degree of spatial error autocorrelation (Fig. 2). In these cases, standard errors were
estimated with the SHAC covariance matrix. Considering MD’s as a group, the
hypothesis that the change in the concentration of these professionals in a given
county was correlated with change in surrounding counties was not tenable. Inspec-
tion of the OLS residual semivariograms for the MD regression suggests little (if
any) spatial structure in the residuals. Therefore, standard errors were estimated
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Table 2 Model specification

Error structurea

Model OLS IV-SAR Spatial lag
significant?

Estimation
method

Covariance
estimationc

1. MD No No No (0.07)b OLS Huber-White
2. RN No No No (0.32) OLS Huber-White
3. Office-based

Med.
Specialists

Yes Yes Yes (2.94) IV-SAR SHACd

4. Office-based
surgical MDs

Yes Yes Yes (3.97) IV-SAR SHAC

5. Other
office-based
specialists

Yes Yes No (1.04) OLS SHAC

aConclusions are drawn from a semivariogram was estimated using the OLS or IV-SAR residuals.
bWald test (in parentheses) is based on the spatial lag coefficient, and is a ¦2(1) variate. Critical
value for 10% (5%) level is 2.71 (3.84).
cAll heteroskedastic-robust covariance matrices were multiplied by n=.n� k/ to correct for bias.
dSpatial HAC

with the usual Huber-White heteroskedastic-robust estimator with the bias correc-
tion factor of n=.n�k/. The same conclusions were drawn for the RN growth model.
The spatial lag autoregressive coefficient was not significantly different from zero,
and spatial structure in the OLS residuals was not evident.

3.2 Important Control Variables

Holding other factors constant, the concentration of office-based medical specialists
increased more rapidly in counties with relatively high median household incomes
(Table 3). Local increases in the concentration of professional RNs were positively
correlated with the per capita number of hospital beds in a county, as expected. But
in counties where the concentration of RNs were high at the beginning of the period,
the 2000–2004 change in the location quotient for this group was lower, suggesting
a crowding-out effect with respect to employment opportunities.

3.3 The Relationship Between In-Migrating Seniors and
Concentration of Medical Professionals Appears Limited

In general, we find little evidence to support the hypothesis that in-migrating
seniors were correlated with local concentration of medical professionals in the
Southeastern US from 2000 to 2004 (Table 3). The main effect of in-migrating 70-
year plus seniors was inversely related to change in the concentration of MD’s.
However, inspection of the interaction term suggests that the association is spatially
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Fig. 2 Semivariograms of residual error structure

heterogeneous. Inflow of migrating 70C seniors becomes positive moving away
from urban centers to more rural locations (Fig. 3). There is also some indication
that counties with relatively older populations (as measured by the percent of the
population above 65 in 1999) experienced increased concentration of medical spe-
cialists, but that the effect is spatially heterogeneous and diminishes moving away
from urban centers to less populated (and more rural) counties (Fig. 3).

The point on the rural-urban continuum at which the effect of in-migrating 70C
seniors was associated with increases in the concentration of MDs was determined
to be 0.46, suggesting that in-migration of this cohort into urban-rural transition
counties and more rural areas correlates with growth of MD professionals. An
urban-rural distinction is evident. Moving closer to urban centers, the effect of
this cohort becomes increasingly negative (Fig. 4). On the other hand, the opposite
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Table 3 Regression results
Variable MDs MD specialists Other specialists Surgical specialists RNs

Wy �0:132� 0:119��

Constant 17:139 �44:413 �40:806 �43:848 �3:597
ln LQ, 2000 �0:302 �0:447 0:177 �0:326 �0:935���

dPOPDENS 16:012 �0:964 �11:844 19:034 �11:276
MEDHHY 11:144 32:352� �21:419 �7:415 �3:389
HBPC �0:144 �0:084 0:017 �0:090 1:201���

HEXP 0:095 �0:086 0:142 0:181 �0:022
HS �0:338 �0:142 0:601 0:463 0:097

PERAG 0:887�� 0:370 0:747 0:480 0:345

PERCON �0:454 �0:931 0:214 0:685 0:994

PERMAN �0:097 �0:091 0:532�� 0:552�� 0:103

UNEMP �0:273 2:021� 0:683 1:242 �0:865
COMM 0:049 0:078 �0:010 0:157�� �0:005
WHT �0:087 0:106 0:039 �0:130 0:039

POPO65 0:919 2:034��� �0:799 0:945 �0:676
IN3054 �0:205 �0:503 0:588 �0:186 0:162

IN5569 0:186 �0:399 �0:437 �0:440 0:671

IN70UP �1:254�� �0:776 1:113 0:775 �0:162
RI �38:379 113:969 93:162 79:551 22:084

RI � ln LQ, 2000 �0:767 �0:187 �1:107��� �0:265 �0:147
RI � dPOPDENS �34:795 0:519 33:240 �39:162 15:644

RI � MEDHHY �28:804� �49:169 57:919 10:731 4:507

RI � HBPC 0:359� 0:311 0:123 0:559 �0:033
RI � HEXP �0:243� 0:195 �0:333 �0:472 0:149

RI � HS 0:778 �0:113 �1:531 �0:816 �0:195
RI � PERAG �2:143�� �1:257 �2:529�� �1:412 �0:778
RI � PERCON 1:040 2:181 �0:059 �1:158 �1:879�

RI � PERMAN 0:125 0:051 �1:636��� �1:125�� �0:217
RI � UNEMP 0:312 �4:644�� �1:781 �2:688 1:696

RI � COMM �0:121 �0:275 �0:016 �0:359 �0:071
RI � WHT 0:175 �0:306 �0:129 0:266 �0:007
RI � POPO65 �1:548 �3:919�� 2:258 �2:197 0:884

RI � IN3054 0:608 0:926 �1:133 0:597 �0:357
RI � IN5569 �0:707 0:897 0:690 0:888 �0:943
RI � IN70UP 2:733�� 1:282 �2:462 �1:366 0:385

Adj. R2 0:48 0:30 0:24 0:27 0:30

�,��,��� significant at the 1%, 5%, and 10% levels

spatial pattern is observed looking at the association between counties with rela-
tively older populations and changes in the concentration of office-based medical
doctors. The urban–rural “switching point” occurred in slightly more remote coun-
ties (0.52), and the effect was opposite of that observed with MD professionals and
in-migration of the 70C cohort (Fig. 4).
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Location quotient for MDs and the % of the population 65+

Location quotient for office-based medical specialists and 70+ in-migrants

Fig. 3 Top panel, shaded counties are those with rurality indices � 0:52; bottom panel, counties
with rurality indices � 0:49. Both are associated with positive change in the professional
concentration of MD’s and the office-based MD sub-group
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Fig. 4 Marginal effects of selected demographic and socio-economic variables on changes in
location quotients measuring different medical professions across a rural–urban continuum

3.4 Spatial Heterogeneity of Other Demographic and Economic
Factors and Concentration of Medical Professionals

Holding other factors constant, several control variables significantly correlated
with changes in the concentration of MD and RN professionals from 2000 to
2004 (Table 3). The percent employed in manufacturing was positively related
with growth in the concentration of office-based surgical and other medical profes-
sionals, but the relationship decreased moving away from urbanized to more rural
regions, eventually becoming negative. This suggests some relationship between
agglomeration due to location economies (as measured by the percent employed
in manufacturing), and employment concentration in these professions from 2000
to 2004. A similar relationship was evident with respect to the percent of work-
ers commuting outside a county. The percent of workers commuting also provides
some indication of agglomeration due to urbanization economies – individuals liv-
ing in one community (or county) and traveling round-trip to work in an adjacent
county, or even farther away. The relationship was positive in more urban areas, but
decreased moving towards more remote rural counties.

The county-level unemployment rate was correlated with growth in the concen-
tration of office-based medical specialists, but the relationship was relatively weak
.P D 0:07/. Employment concentration of MDs increased in counties with relatively
more persons employed in the agricultural sector, but the relationship decreased
moving away from the urban core to more rural counties.
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3.5 Agglomeration and Deglomeration of Office-Based Surgical
and Medical Specialists

There was significant spatial lag autocorrelation (AR) explaining change in the
employment concentration of surgical specialists and medical specialists, but the
relationships were not strong (Table 3). The positive AR coefficient explaining
changes in the concentration of office-based surgeons seems to be consistent with
the notion that professionals providing surgical care are attracted to locations that
might be characterized as regional medical centers. Hospitals are an excellent exam-
ple of an industry that benefits from pecuniary externalities gained by locating in
close proximity to other hospitals, inter alia the business services, logistical support,
coordinating infrastructure, and human capital (in terms of physician networks and
nursing pools). In general, provision of state-of-the art surgical care requires highly
specialized technology and skilled personnel to maintain and operate equipment.
For example, locating in metropolitan statistical areas (the “urban core”) lowers
costs of maintaining expensive apparatus, holding other factors constant, by virtue
of urbanization economies associated with these regions. Such agglomeration forces
are characterized by the relatively small (but significant) lag coefficient associated
with the office-based surgeon concentration equation, and suggests that office-based
surgeons are attracted to areas where the regional density of surgical providers is
relatively high.

A “deglomeration” effect was evident in the equation explaining change in the
concentration of medical specialists from 2000 to 2004, although the relationship
was weak with a significance level of only 7%. The negative pattern of lag autocor-
relation possibly suggests a crowding-out effect of employment opportunities in this
medical profession. That is, competition for patients seeking special medical care
may be stiff. Therefore, individuals in this medical profession can increase their
demand threshold by locating in non-adjacent counties.

4 Conclusions

The objective of this empirical analysis was to determine whether aggregate changes
in the concentration of health care professionals was associated with previous migra-
tion of seniors in the Southeastern United States. Empirical research, anecdotal
information, case studies, and common sense suggest that as the population of a
given town, county, or region ages, demand for health services will increase. In
particular, one would expect that places attractive to migrating seniors would expe-
rience growth in the health care sector, which would in turn increase the number of
individuals working in the profession. This line of reasoning has implications for
local development planners and policymakers with respect to meeting the demands
of not only local citizens, but also newly arriving baby boomers who usually bring
with them different preferences, expectations regarding health care in particular, and
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lifestyle choice in general. Without the necessary infrastructure in place, including
physical and human capital, provision of such amenities will remain a challenge. We
found limited evidence supporting the hypothesis that later-life migrants have influ-
enced employment growth in this sector from 2000 to 2004. In-migration of 70C
seniors from 1995 to 2000 is positively correlated with changes in the concentration
of medical doctors. The relationship is heterogeneous, and strengthens moving away
from urban-core areas. Other control variables appear to be more strongly related to
observed changes.

The results were somewhat surprising, and are not without limitations. We
expected that the in-flow of senior migrants would be positively correlated with
increases in the concentration of medical professionals. And while there may be
other factors that might explain changes in the concentration of medical profes-
sionals over the time period, inclusion of such variables would probably do little to
change the statistical relationship observed between changes in the concentration of
health care professionals and senior in-migration.

One explanation may be that an aggregate, regional perspective may paint a
picture with too broad a stroke. Case-study comparisons focusing on established
retirement communities versus emerging ones may generate different conclusions
about the impact of later-life migrants on growth in the health sector (e.g., Park et al.
2007). Such an approach lends itself to looking at sector changes supplemented by
input-output analysis.

Second, the location quotients used to measure changes in the concentration of
health professionals may be inadequate as a measure of overall growth in demand
for health care services. Other measures might include relative measures of HMO’s,
or raw “physical” measures such as hospital beds or surgical units. The time period
covered in the analysis is also relatively short. A longer series may provide a better
grasp of the dynamics between migrating cohorts and change in the medical sector,
but acquiring such data is expensive.

Third, it is extremely difficult to untangle the effects of general population
change and migration to that of the impact on later-life migrations, given the data
at hand. While we controlled for age cohorts in the analysis, this may not be ade-
quate. Although generally using fewer health services (except for perhaps women
in their child bearing years), younger migrants may out-number older migrants,
thereby potentially nullifying age-related effects. Similarly, out-migration may have
an opposite effect, removing the supply of clients needed by health care workers to
remain in business. Therefore, in some counties the net effect of in-migration may be
countered by out-migration, dampening the net effect of newcomers on the demand
for health care providers. The model used here could be improved by constructing a
ratio of in- to out-migrating persons to control for this effect.

Fourth, future research could focus on rural areas only. While the model did con-
trol for rural–urban differences, it may be reasonable to assume that metropolitan
areas are already well-equipped with medical resources and would therefore be bet-
ter positioned to recruit new staff. On the other hand, it may take rural areas longer
to build up medical staff, especially in places lacking certain natural or physical
amenities.
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Lastly, the regional coverage may have limited the results. Inclusion of more
states in the analysis would introduce more variability into the models, which
would increase the likelihood of identifying statistically meaningful relationships.
But inclusion of more counties into the analysis would do little to alter the results
obtained in our subset of states, which was the main focus of the study.
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Regional Applications



Evolution of the Influence of Geography
on the Location of Production in Spain
(1930–2005)

Coro Chasco Yrigoyen and Ana M. López Garcı́a

1 Introduction

In recent years, there has been a growing interest in the geographic aspects of
development or the question of where economic activities take place. There is an
extensive literature in urban economics, location theory and economic agglomera-
tion. In fact, many economic activities are concentrated geographically and most
people in advanced countries or regions live in densely populated metropolitan
areas. The main issue is how to explain this concentration. Most of the references
assume two approaches, first nature (Sachs 2000) and second nature (Krugman
1993, 1999; Venables 2003), which are also identified as Sachs’ (first nature)
and Krugman’s approach (second nature). Krugman’s New Economic Geography
abstracts from natural conditions. It states that agglomerations can be explained by
second nature alone (i.e. by man-made agglomeration economies due to increas-
ing returns to scale and transportation costs), which arises endogenously in the
economic process.

However, real world agglomeration is possibly caused by both first and second
nature. In this case, it would be interesting to compute the exact influence of both
types of agglomeration advantages on economic distribution across space. In fact,

if first nature is important, existing agglomerations are likely to be very stable since they
are tied to specific places. At the same time, attempts to form new agglomerations at places
without geographic advantages might fail. If, however, first nature does not matter much,
agglomerations are footloose and can emerge and break down at any location lending much
more power to regional policy. (Roos 2005)

In this chapter, our aim is to examine the influence of geographic features on
the location of production in Spain. In other words, we focus on quantifying how
much of the geographic pattern of GDP can be attributed to only exogenous first
nature elements (physical and political geography), how much can be derived from
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endogenous second nature factors (man-made agglomeration economies) and how
much is due to the interaction of both effects. Specifically we disentangle the two
net effects empirically, as well as their mixed effect, for the Spanish case analyzing
their evolution during the twentieth century.

For this purpose, we follow a methodology based on Roos (2005) for Germany.
He proposes to employ an analysis of variance (ANOVA) to infer the unobservable
importance of first nature indirectly in a stepwise procedure. In order to disen-
tangle first and second nature effects empirically, we control for second nature
because every locational endowment will be reinforced and overlaid by second
nature advantages. In a dynamic context, we also estimate how much agglomera-
tion can by explained by both gross and net second nature with the aim of isolating
the importance of first nature alone.

Whereas this method seems quite clear and direct, we demonstrate that results
could be biased if some potential econometric questions are not properly taken
into account; e.g. multicollinearity, relevant missing variables, endogeneity, spatial
autocorrelation and spatial heterogeneity.

In fact, in many countries GDP density is strongly polarized on two subspaces,
core and periphery, displaying spatial heterogeneity. In the particular case of Spain,
the core is located in the coastal plus Madrid provinces and the periphery is con-
stituted by the hinterland. If we consider the Spanish territory as a whole, we find
that at most, 88% of GDP’s spatial variation can be explained by direct and indi-
rect effects of geography during the twentieth century. This result contrasts with
Roos’ findings for Germany (72%) pointing out the main role played by geography
in Spain. After controlling for agglomeration economies and the interaction effect
of first–second nature, the net influence of natural geography is only about 6–7%
nowadays. Nevertheless, some of these results could be significantly biased for the
group of inland provinces, in which only a 70% of agglomeration is explained by
geography, being the mixed effects the most determining almost along the whole
period. For this reason, we propose to take into account spatial effects explicitly in
the models.

2 Theoretical Principles and Background

Since it would be impossible to summarize in any simple way the rich range of
conclusions from the studies related to this matter, next we highlight some of the
most significant for our econometric analysis.

2.1 First Nature

First nature factors are also called “pure geography” (Henderson 1999). They are
natural features such as climate or resource endowments, which are exogenous to
the economy. Since nature endows all places with specific features, one obvious
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explanation to the concentration of population and firms in some regions is that they
must have some natural advantage. On the contrary, sparseness and depopulation is
very often related to absolute endowment disadvantages – lack of natural resources,
bad climate, poor land quality, cold temperatures and propensity to disease – and/or
long distances from the core economic centers, which penalizes either the rel-
ative prices of different goods or the relative profitability of different activities.
Although Venables (1999) states that the degree of geographic determinism should
not be exaggerated, it is clear that the impact of physical geography on development
appears to derive from key relationships between climate and disease, climate and
agricultural productivity, and also between location and technology transfer.

The main question is how much geography still matters for economic develop-
ment. Gallup et al. (1999) find that location and climate have sizable effects on
population density, as well as on income levels and growth rates – or even economic
policy choice – through their effects on transport cost, disease burdens and agri-
cultural productivity, among other channels. In particular, these authors regress the
population density on geography variables such as distances to the coast and water-
ways, several measures of elevation, soil quality, availability of water and climate.
In the international sample used, those factors explain 73% of the observed variabil-
ity of the population density.1 Nevertheless as stated in Roos (2005), this estimation
might grossly exaggerate the importance of first nature due to the large number
of independent variables used, which could lead to multicollinearity. Besides, he
explains that there are other potential missing variables that are crucial in explaining
the uneven distribution of population in the world. This is the case of institutional,
historical, cultural and economic conditions, which are so diverse on the global level
that they threaten the consistency of the geography estimates.

On their side, Ellison and Glaeser (1997) and Kim (1999) think that a substan-
tial portion of the observed geographic concentration of industries is affected by
a wide range of natural advantages. In another paper, Ellison and Glaeser (1999)
found that – apart from interfirm spillovers – geography is an important determinant
of agglomeration, accounting for 50–86% of the observed variability. However, it
can also been criticized that these figures are likely to overstate the importance of
geography because of the broad definition of first nature. In fact they measure first
nature with labor and capital endowments, such as labor costs, labor qualification
and the size of the consumer market. Nevertheless, neither the regional endowments
with mobile factors nor the prices of these factors are really exogenous. On the con-
trary, there might be a reverse causation – simultaneity – running from the presence
of a particular industry in a region to the region’s endowment with labor or capital.
Actually if it is true that human and economic agglomerations can be explained by
an accidental accumulation of favorable natural features, it is also true that house-
holds and firms interact on product and labor markets. If these markets are spatially
segmented we expect economic activity taking place where people live, but at the
same time we also expect people living where economic activity takes place.

1 See other similar applications for Peru (Escobal and Torero 2005) and China (Ravallion 2007).
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Consequently, it seems difficult to isolate the net influence of first nature on
agglomeration since it is tightly joint to other factors belonging to what is called
“second nature.”

2.2 Second Nature

Second nature factors are man-made “agglomeration economies,” i.e. interaction
between economic agents among themselves (rather than the interaction between
agents and nature), as well as knowledge and information spillovers, economies
of intra-industry specialization, labor market economies or economies of scale in
industry-specific public services, product differentiation and market size effects.
Second nature, which is endogeneous to the economy, emphasizes the efficiency
gains from proximity since interactions between economic agents (firms and con-
sumers) are more efficient in densely packed areas than when people are widely
dispersed (Kanbur and Venables 2007). These agglomeration forces can therefore
create virtuous circles of self-reinforcing development in some regions while others
lag behind. In this same direction, Fujita et al. (1999) demonstrate that the increas-
ing returns to scale of some productive activities could be one of the keys to explain
spatial economic inequality.

Venables (1999) shows that second nature represents investment in transport
and communication infrastructure, as well as its maintenance linking coastal to
hinterland regions. In effect, although there is an association – in some places –
among coastal locations, urbanization and growth, it is also true that investment in
transportation and communication infrastructure linking coastal and interior areas
facilitates hinterland development. It is known that access to hinterland resources
is a geographic challenge to be overcome by infrastructure investment. Therefore,
again we find a close connection between first and second nature. On the one hand,
first nature geography constitutes an initial advantage that becomes usually ampli-
fied by second nature agglomeration forces. On the other hand, it is also known that
the adverse effects of geography on economic growth can be overcome by different
factors (Henderson 1999). As Krugman (1993) argues, first nature advantages gen-
erally tend to create second nature advantages through cumulative processes. These
are decisive to explain the concentration of population that has taken place both
during and after the industrialization process.

Even more, the new economic geography follows the new trade theory by show-
ing how second nature effects can lead to a highly differentiated spatial organization
of economic activity, even when the underlying physical geography is undifferen-
tiated (Gallup et al. 1999). Krugman’s theory shows that agglomerations can be
explained by second nature alone (net second nature).

It seems clear that first and second nature have an obvious incidence on agglom-
eration. Nevertheless it is necessary to compute the contribution of each net com-
ponent as well as the first–second nature mixed effect. As stated before, this is the
main aim of this chapter.
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2.3 The Spanish Case

Referring to the particular case of Spain, Dobado (2006) coincides with Venables
and Roos when considering first and second nature as non-contradictory but comple-
mentary, since real-world agglomerations are caused by both forces. In his opinion,
the authentic peculiarity of Spanish regions – when compared to others in Southern
Europe – consists in the existence of a large group of provinces with very low levels
of population and GDP concentration close to another minor group with high den-
sities. This is the so called duality core-periphery that, in the Spanish case is clearly
conditioned by significant geographical – first nature – differences. The “core” is
constituted by Madrid and the coastal provinces, which in general terms, exhibit
low altitude, humid climate and few extension, and concentrate the highest levels
of GDP per area. The “periphery” is located in a depopulated hinterland, with more
extreme temperatures than in the core and an abrupt topography.

Tirado et al. (2003) and Rosés (2003) analyze the role played by scale
economies – second nature – on industrial agglomeration in Spain. They think that
the major industrial concentration around Barcelona at the end of the nineteenth
century was the result of both some initial natural advantages and a cumulative
causation process linked to the increasing role of scale economies in production.
They coincide with Krugman and Livas (1996) in considering that the protectionist
policy – in the first decades of the twentieth century – weakened Barcelona’s role
in favor of capital cities located in geographical centers (Madrid and Saragossa).
Transport costs from these core cities to domestic consumers could be minimized
reinforcing the agglomeration tendencies and avoiding dispersion.

Viladecans (2004) also explains the uneven location of manufacturing activities
in Spain as a result of two types of agglomeration economies, i.e. urbanization and
localization economies. She states that the effect of specialization in one sector on
a geographical area – localization economies – is a determining factor in the loca-
tion of firms belonging to that sector. More precisely, the geographical distribution
of most of the industrial sectors is influenced, to some extent, by the productive
environment.

Ayuda et al. (2005) analyze the combined influence of first and second nature
forces in population concentration as a two-step process. In effect, while geography
can be expected to play a very important role in the Spanish pre-industrial econ-
omy, increasing returns seem to be the driving force of population concentration
in the industrializing period. These authors explain that only those regions with
particularly favorable resources for the location of certain types of industry could
generate their own growth dynamics based on such comparative advantages. They
compute the importance of natural or situational advantages on population density
in the Spanish provinces at five different moments since 1787 to 2000. It covers the
pre-industrial situation, the Spanish industrialization, the development process and
the moments referred to a mature modern economy. The main results underscore
the importance of geographical factors in explaining the distribution of the Spanish
population in the last two centuries. Historically, the highest population densities
have been found in the maritime or non-mountainous provinces, as well as in those
areas with the highest annual rainfall.
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Considering all this, it is clear that geographic considerations should be taken
into account in empirical – and theoretical – studies of cross-country (or region)
economic concentration. It is also evident that the term “geography” should be split
into first and second nature, since it includes not only natural advantages but also
the scale economies or efficiency gains derived from proximity. Moreover, there is
a combined or mixed effect of first–second nature on agglomeration that should be
isolated to quantify to what extent natural endowments and man-made agglomer-
ation economies mutually interacts. We can also conclude that from the concrete
econometric modeling point of view, we must explicitly consider some potential
problems, such as multicollinearity, relevant missing variables, endogeneity and
spatial effects, if we want to reach reliable conclusions.

3 Data and Model

3.1 Data

It is our aim to explain agglomeration from first and second nature elements. Hence,
we must define first what we understand for agglomeration and geography to find
the appropriate indicators. Differently to Rosenthal and Strange (2001), we do not
want to determine the degree of agglomeration but how geography – in general
terms – influences the spatial distribution of production activities. Regarding the
endogenous variable, several measures have been used in the literature. This is the
case of population, which has been applied to evaluate consumption, mainly when
relying on the hypothesis that “firms follow people” (e.g. Graves 1979; Cragg and
Kahn 1997; Knapp et al. 2001, for the US). Others, such as employment or GDP, are
production indicators that would depend on the hypothesis that “people follow jobs”
(e.g. Freeman 2001, in the US; Roos 2005, in Germany). Ciccone and Hall (1996)
and Rappaport and Sachs (2003) decide on using population and employment den-
sities as measures of agglomeration because they think that economic activity takes
place where people live, and vice versa. Dobado (2004) proposes several indicators
in absolute terms (area, GDP, population) or relative to the area (GDP or population
density). In these last cases, agglomeration is conceived as the spatial concentration
of not only production activities but also both workers/citizens.

In order to make better comparisons with Roos’ computations for German
regions, we opt to use the relative GDP density – GDP per km2 – as the endoge-
nous variable. He argues that this variable is more appropriate than population or
employment densities to determine how geography influences the distribution of
economic activity across a territory.2 In this way, Delgado and Sánchez (1998) use

2 However, it must be said that this indicator has important drawbacks. On the one hand, regions
that are specialized in high-value added sectors will automatically display greater GDP values,
while it could not necessarily reflect in the true level of spatial agglomeration of firms and workers.
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the same variable to compute the evolution of income density in Spain. Since area
is constant in each region every time, the evolution of this variable only depends on
the quantity of the generated GDP.

Formally, the endogenous variable is defined as follows:

log .gdi / D log
Yi=AiP
i Yi =Ai

D log
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Yi

ıP
i Yi

�

log
�
Ai

ıP
i Ai

� (1)

where Y is GDP and Ai is the area of region i . The relative GDP density of a region
is its GDP density relative to the average density of all regions or, equivalently, the
ratio of its share of GDP relative to the share of the country’s total area. If log .gdi /
is equal to zero, region i ’s GDP share is equal to its area share. If it is larger (smaller)
than zero, the region has a concentration of economic activity above (below) the
average.

Next, we define some good indicators to measure first and second nature effects.
About first nature, we are interested in those geographical characteristics that are
related to the distribution of economic activity. In general, this is the case of nat-
ural endowment, physical geography, relative location and political geography.
Examples of natural endowment positively related to GDP density are agricul-
ture, minerals, natural resources, good soil and water supply (Gallup et al. 1999;
Rappaport and Sachs 2003). Some of these authors, as well as Rappaport (2000),
Limão and Venables (2001) and Roos (2005), also include certain kind of physical
geography indicators, such as altitude, latitude, distance to the coast and waterways,
lying to the seashore (or being landlocked), navigable rivers and climate. Location is
another geographical feature affecting agglomeration, which has been represented
as relative distance to core – or other – regions or simply by the latitude–longitude
Earth coordinates.

Following Ayuda et al. (2005) and Dobado (2004), we have chosen the annual
rainfall (rainfall) as a good proxy for agricultural potential, due to such dry con-
ditions that are predominant in the Mediterranean regions (see in Table 1 a full
description of the variables). We have also considered some climate variables, such
as temperature (temmin, temaver, temmax, tembel0, overcast) and altitude (altit), as
well as maritime length (maritlim, coast). We expect negative values for extreme
temperatures and high altitudes, but a positive relationship between seashore exten-
sion and GDP density. Besides, we have included longitude and latitude, which
are the X–Y Earth coordinates (xcoo, ycoo). As we will prove further, in Spain at
present, being an Eastern Mediterranean region constitutes a relative advantage than
lying to the Cantabric or the Atlantic seashores. However the North–South direction
seems to be no longer significant in terms of agglomeration.

On the other hand, the level of GDP per km2 in a region like Madrid is possibly overstated because
many workers commute everyday from neighboring Castilian provinces; as a result, the level of
agglomeration in these Castilian provinces would be understated. In addition, it is known that first
and second nature factors have different effects in different industries, as stated in Alonso-Villar
et al. (2004). Using aggregate GDP does not allow analyzing this issue properly.
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Table 1 Variable list for the Spanish provinces

Variable Description Units Font Period

Gd GDP per area Euros/sq. m. FBBVA, FUNCAS 1930–2005
Capit Capital city 0–1 Self elaboration –
Altit Altitude or elevation meters INE –
Temmin Minimum

temperature
Celsius INE 1997–2005a

Temaver Average temperature Celsius INE 1997–2005a

Temmax Maximum
temperature

Celsius INE 1997–2005a

Tembel0 Equal or below zero
Celsius
temperature

# Days INE 1997–2005a

Rainfall Total annual
precipitation

Millimeter INE 1997–2005a

Overcast Overcast # Days INE 1997–2005a

Maritlim Maritime limit 0–1 Self elaboration –
Coast Seashore length Kilometers INE –
Xcoo Longitude

(X-coordinate)
Grades Self elaboration –

Ycoo Latitude
(Y-coordinate)

Grades Self elaboration –

Pop Population People FBBVA, FUNCAS 1930–2005
Prod GDP per employee Euros FBBVA, FUNCAS 1930–2005
aAverage of the period, INE Spanish National Institute for Statistics, FBBVA Foundation of the
Bilbao Vizcaya Argentaria Bank

Political geography has also been highlighted by Mathias (1980), McCallum
(1995) and Roos (2005) who consider that agglomeration is positive or negatively
affected by containing a capital city or being a border region, respectively. In this
case, we have considered a dummy variable to indicate the presence of a capital
city in a region (capit). Similarly to the German regions (Roos 2005), the Spanish
autonomies concentrate a lot of legislative and executive power in their capital cities.
This is why provinces with a capital city should have better access to information
about regional government investment and decision plans (Ades and Glaeser 1995;
Funck 1995; Ayuda et al. 2005).

In order to measure man-made agglomeration economies (second nature) we
have also followed Roos (2005) what allows us to make better comparisons with this
case. He chose total population (pop) and labor productivity (prod) since on aggre-
gate levels both variables can capture many agglomeration economies, i.e. infor-
mational spillovers and labor market economies. Population could be considered
as an indirect measure of agglomeration economies. In effect, as stated in Hender-
son (1988) if agglomeration economies exist in an area, labor productivity should
rise in the level of population (employment). Other indicators, such as population
density (proposed in Gallup et al. 1999), provide not so clear relationship with GDP
density (e.g. some densely/sparsely populated areas are rich whereas others are poor,
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which are the cases of Western Europe/New Zealand and Indonesia/African Sahel,
respectively).

3.2 Model

Three forces operate in forming agglomerations: an unobservable direct effect of
first nature, a first nature effect working through induced agglomeration economies
and a direct effect of second nature, which would exist even without any first nature
forces. In order to get a better knowledge of these effects, Roos (2005) states a
methodology based on analysis of variance (ANOVA). The total variance V of the
dependent variable can be decomposed into four parts:

V D Vu C Vf C Vs C Vfs (2)

where V is the total variance of the dependent variable, Vu is the unexplained vari-
ance, Vf is the variance explained by first nature alone, Vs is the variance explained
by second nature alone and Vfs is the variance explained by a combination of both
forces.

ANOVA is employed to infer the unobservable importance of first nature alone
indirectly, as well as to assess about the relative importance of first and second
nature forces. It is a four-step process that proceeds as follows:

1. Since man-made agglomeration effects (second nature) are usually triggered by
natural advantages (first nature), we must first identify the net from the gross
second nature effect. For this purpose, we regress two gross second nature vari-
ables on first nature. These regressions explain how much of the gross second
nature effects are caused by purely first nature. By mean of the residuals of the
regressions, we filter the net from the gross second nature variables.

2. We estimate how much of GDP per area variance can be explained by gross
.Vs C Vfs/ and net .Vs/ second nature advantages. These calculations can be
derived from the results of two regressions of GDP density on both gross and net
second nature variables.

3. We estimate how much of GDP per area variance can be explained jointly by first
and second nature .Vf C Vs C Vfs/. The total effect of first and second nature
can be obtained from a regression, using first and net second nature variables as
explanatory variables.

4. We calculate the difference between the result in step 3 (total effect of first and
second nature) and step 2 (total effect of second nature), which is the importance
of first nature alone .Vf / on GDP per area.

Next, we will explain the whole process in depth.
Since first and second nature are interrelated, in a first step it is necessary to

disentangle the second nature variables (population and GDP per worker) empiri-
cally. For that purpose, we can regress them on geography and take the residuals O�
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and Oı as variables of net second nature forces:
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where popi and prodi are total population and GDP per worker in region i; fki
is the group of k geography variables, �; � are coefficients and �; ı are the error
terms of the regressions.

While variables smi D flog.popi/; log.prodi/g are “gross” second nature vari-

ables, the residuals of these regressions Osmi D
n

O�i ; Oıi
o

could be taken as geography-

filtered or net second nature forces. The introduction of these sets of variables,
smi; Osmi, as explanatory variables will allow to evaluate the total influence of gross
and net second nature variables on GDP density.

In a second step we can compute the effects of total – both gross and net – second
nature variables on GDP per area. In this fashion, the gross second nature variables
influence is obtained with the estimation of the following equation:
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The resulting determination coefficient indicates this gross effect of second nature:
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�
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V
(5)

Regarding the net effect of second nature on GDP per area, it is derived from the
estimation of the following equation:

log .gdi / D ˛0 C
MX
mD1

�m Osmi C "i (6)

The net effect of second nature on agglomeration can be expressed as:

R2ns D Vs

V
(7)

Therefore, the mixed effect of the interaction between first and second nature on
GDP density can be extracted as follows:

Vfs

V
D R2gs � R2ns (8)

In the third step, we measure the total effect of first and second nature on GDP
per area. We could simply include, in another equation, the gross second nature
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variables as regressors together with a set of first nature indicators. However, this
could bias the estimates of the first nature coefficients since first nature also has an
effect on the second nature variables. In order to adjust the later for the former, we
specify a regression of GDP per area on first and net second nature variables, which
avoids the stochastic regressors problem:

log .gdi / D ˛0 C
KX
kD1

�kfki C
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mD1

�m Osmi C "i (9)

The joint importance of first and second nature is measured by the corresponding
determination coefficient:

R2fCs D Vf C Vfs C Vs

V
(10)

In the fourth step, we derive the net importance of first nature on GDP density from
the results of the previous estimations:

Vf

V
D R2fCs � R2gs (11)

The estimation of (4), (6) and (9) by Ordinary Least Squares (OLS) could lead
to biased results due to the presence of endogeneity on some of the explanatory
variables and/or spatial effects on the residuals. Roos (2005) and Gallup et al. (1999)
only consider the first problem but omit the second.

In effect, on the one hand endogeneity in a regressor can lead to a well-known
simultaneity bias in the OLS estimates. Even in the pure-geography variables there
could be different degrees of exogeneity. Physical geography variables (temperature,
coast, etc.) can be considered as exogeneous since they do no depend on underly-
ing economic forces. However political geography could have more endogeneous
elements; e.g. the location of state capitals, though do not change very often, are pos-
sibly the result of the economic importance of the corresponding city. Moreover, the
second nature variables (population and productivity) are much more endogenous
and simultaneously determined with GDP density.

On the other hand, spatial autocorrelation and/or spatial heterogeneity in the OLS
residuals are also causes of misspecification problems in the regression (see Anselin
1988 for a complete view of this topic). They must be tested and corrected, as will
be shown hereafter.

4 Evolution of the Spatial Distribution of GDP per Area

In this section, we explore the geographic dimension of GDP per area for the
continental Spanish provinces (47 provinces in total). We have excluded those
provinces without geographical connection: the Balearic and Canary Islands and
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the African cities, Ceuta and Melilla.3 In the case of the African cities, they are
administrative regions not comparable in size with the others (population and GDP
densities are extremely high). In order to explore these issues, we need a data set
consistently defined over the century. For that purpose, we have used the GDP,
employment and population series proposed by Alcaide (2003), for 1930 to 2000,
and Alcalde and Alcalde (2007), for 2000 to 2005. The data on area are extracted
from the Spanish Office for Statistics (INE) databank.4

Actually, we have selected five periods: 1930, 1950, 1970, 1990 and 2005, since
they constitute good references for our analysis, corresponding to relevant facts
related to Spanish economic history (Table 2). In effect, in 1930 Spain put an end to
General Primo de Rivera’s dictatorship. The economy enjoyed a prosperous moment
thanks to a large public expenditure. Road and rail networks improved driving force
to the development of industry and employment. At that moment, there were some
industrialized enclaves, especially in the Axis Madrid-North-Barcelona, as well as
other provinces in the Cantabric and Mediterranean Coast (Fig. 1). However, dur-
ing the mid-1930s and 1940s the economic crisis and the Civil War stopped this
process leading to an autarkical regime and recession. In 1950, approximately in
the middle of General Franco’s dictatorship, Spain had experienced a ruralization
process with an increasing participation of agricultural sector. Rationing of food,
commodities and energetic resources expelled the Spanish population from cities to
rural places.

1930

0.25 to 0.6
0.6   to 1.5
1.5   to 5
5   to 8.79

2005

0.1   to 0.25
0.25 to 0.5
0.5   to 2.5
2.5   to 11.1

Fig. 1 Choropleth maps of relative GDP per area (1 D national GDP=km2).
The variables have been classified with a method called “natural breaks,” which allow identifying
breakpoints between classes using Jenks optimization (Jenks and Caspall 1971). This method is
rather complex, but basically it minimizes the sum of the variance within each of the classes,
finding groupings and patterns inherent in the data.

3 In spatial econometric applications, some authors prefer to exclude those Spanish regions without
neighbours (e.g. Márquez and Hewings 2003), since it is politically debatable how to connect them
to the rest of the system.
4 This data are available in the INE webpage: http://www.ine.es
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Table 2 Descriptive Statistics of Relative GDP per area.

Variable Mean Pearson CV Minimum Q1 Median Q3 Maximum

GDP 1930 1:38 1:30 0:26 0:48 0:74 1:37 8:78

GDP 1950 1:42 1:42 0:20 0:48 0:72 1:39 9:03

GDP 1970 1:50 1:66 0:14 0:32 0:54 1:41 10:62

GDP 1990 1:45 1:64 0:10 0:27 0:51 1:40 10:89

GDP 2005 1:44 1:61 0:10 0:26 0:57 1:41 11:01

GDP relative GDP per area (1 D national GDP per km2), CV coefficient of variation, Q1, Q3 first
and third quartiles, 1 D national GDP per km2

During the 1950s and 1960s, the incipient political and economic openness set
the basis for a decisive industrialization and tertiarization process. The Development
Plans produced economic prosperity and liberalization, leading to new economic
poles in Galicia, Castile, Andalusia, Aragón and Extremadura. This processes joint
to a new great exodus from rural zones to industrial and urbanized areas – inland
and abroad – helped to equilibrate the traditional inequality in the distribution of
wealth across the Spanish territory. In 1970, close to the ending of Franco’s regime,
Spain was no more rural but urban.

By the beginning of the 1990s, Spain is one of the democracies belonging to
the Economic European Community. In the late 1980s, a strict plan of economic
stabilization, based on a traumatic industrial restructuring and liberalization cus-
toms, reformed the Spanish economy. The transfer of funds proceeding from the
EEC made possible an ambitious policy of public investments in infrastructures.
Nevertheless, income disparities across the Spanish regions still remained and even
deepened. In 2005, economic development depicted a peculiar structure similar to a
star, with its center in Madrid and the axis in the peripheral areas: the vast Mediter-
ranean metropolitan areas, coastal Andalusia and Seville, coastal Galicia and the
Cantabric regions. In addition, inside this big star, there was a vast rural desert, only
broken by a few urban oases, like Valladolid, Saragossa, Badajoz, Burgos, Álava
and Navarre.

Figure 2 plots the density functions for Spain-log relative GPD per km2. These
density plots may be interpreted as the continuous equivalent of a histogram in
which the number of intervals has been set to infinity and then to the continuum.
From the definition of the data, 0 on the horizontal axis indicates Spanish average
GDP, 2 indicates twice this average, and so on.

This figure shows the evolution of the dependent variable over time from 1930
until 2005. It is an interesting graph in which the distributions are more or less
bimodal with a second mode around two standard deviational units above the mean.
The distributions in 1930 and 1950 are quite similar and non-normally distributed
(the Jarque-Bera normality test rejects log-normality with 95% of confidence, as
shown in Table 3). Both exhibit a main skewed mode just on the mean and a
slight minor mode two standard deviational units above the mean. Nevertheless,
the central mass of the distribution significantly decreased in 1970 to reach the
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-4 -3 -2 -1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1930
1950
1970
1990
2005

Fig. 2 Kernel density estimates of log relative GDP per area

Table 3 Normality and spatial autocorrelation tests of log relative GDP per area

Variable 1930 1950 1970 1990 2005

Jarque Bera normality test 5:95�� 7:42�� 5:08� 3:00 2.56
Moran’s I spatial autocorrelation test 0:20�� 0:17�� 0:19�� 0:18�� 0:18��

��Significant at 5%, �significant at 10%. Inference for Moran’s I test is based on the permutation
approach (999 permutations)

lowest point in the 2005. Log-normality could be accepted, though only at 0.28
level. In the last decades, the main mode moves around one standard deviational
unit below the mean whereas the second mode allocates throughout the second
half of the distribution, particularly around two standard deviational units above
the mean.

That is to say, compared with 1930 and 1950, more regions reported in 1970,
1990 and 2005, GDP either 50% of the Spanish average or almost twice the Spanish
average. Moreover these modes situated below and above the Spanish average may
reflect the existence of two groups of provinces with GDP density converging
toward a lower and higher GDP density levels than the rest of provinces, respec-
tively. The progressive deconcentration of probability mass from 100% can be
interpreted as evidence for slight divergence. As stated before, in 1930 and 1950
Spain was mainly an underdeveloped rural country, only depicted by few economic
poles located in the traditional thriving regions. GDP was more or less uniformly
distributed across the country with these exceptions, which constitute a second mode
around two standard deviations above the mean.
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During the following decades, the strong economic development and profound
social changes deepened this picture leading to a spillover process that princi-
pally benefited other contiguous regions. Economic prosperity caught up the whole
country but not with the same intensity. As shown in Fig. 2, different modes in
2005 suggest dissimilar growth velocities inside a country which is more or less
divided into two subspaces. On the one hand, coastal (and Madrid) thriving regions
constitute a more homogeneous area in terms of economic development, though tra-
ditional enclaves (the Bask Country, Catalonia, Navarre and Madrid) still remain the
leaders (second mode). On the other hand, the hinterland lagging regions are becom-
ing a vast rural wasteland with the exception of some provinces (mainly the region
capitals), which absorbs most of the GDP generated in this subspace (first mode).

This result is similar to others in the literature of Spanish regions and urban areas
(see, e.g. Goerlich et al. 2002; Garrido 2002; Márquez and Hewings 2003; Pulido
and López 2003; Dobado 2006; Mella and Chasco 2006). Nevertheless, it contrasts
somehow with the results shown in Roos for the German regions in 2000, which
show a skewed non-normal distribution with a prominent second mode about 1.5
deviational units above the mean.

As well, during the whole period we can also find some kind of general spatial
trend – spatial autocorrelation – in GDP per area, as shown in Fig. 1: from the inland
(low GDP density) to the coastal provinces (high GDP density), with the exception
of Madrid. In the given period, the GDP per area distributions display a significant
degree of spatial autocorrelation (Table 3): the magnitude of the Moran’s I tests5

are high and significant at p < 0:05, which is above its expected value under the
null hypothesis of no spatial autocorrelation, EŒI� D �0:02 (approximately in all the
cases). Inference is based on the permutation approach (999 permutations), since
not all the series distributes normally (Anselin 1995). Though we should be cautious
because it is a large sample test, this result suggests that the evolution of production
distribution appears to be somewhat clustered in nature. That is, provinces with very
relatively high/low production density levels tend to be located near other provinces
with high/low production density levels more often than would be expected as a
result of purely random factors. If this is the case, then each province should not be
viewed as an independent observation.

Figure 3 provides a more disaggregated view of the nature of spatial autocorrela-
tion for production density by means of a Moran scatterplot (Anselin 1996), which
plots the standardized log-relative production density of a province (LG) against its
spatial lag (also standardized), W LG. A province’s spatial lag is a weighted aver-
age of the productions of its neighboring provinces, with the weights being obtained
from a row-standardized spatial weight matrix (W). The four different quadrants of

5 We have specified the spatial weights matrix, W, such that each element is set equal to 1 if
province j has a common border with i , and 0 otherwise. Similar results have been observed with
other specifications. These include an inverse distance matrix (such that each element wij is set
equal to the inverse of the squared distance between provinces i and j ), and a matrix obtained
from a 200 km distance threshold to define a province’s neighborhood set (as stated in Rey and
Montouri 1999).
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Fig. 3 Moran scatterplot of log relative GDP per area in 2005 (left). Map with the selection of
provinces ever located in Quadrant 1, plus Madrid and Valencia

the scatterplot identify four types of local spatial association between a province
and its neighbors: HH (“High-High”), LL (“Low-Low”), LH (“Low-High”) and HL
(“High-Low”).

In Quadrant 1, the Moran scatterplot represents those high-GDP density provinces
that are surrounded by high-GDP density neighbors, which have been highlighted in
the map. It can be appreciated that they are all mainly located in the Coastal limits
of the country. We have also selected Madrid and Valencia, located in Quadrant 4,
in which we can find the group of high production density provinces surrounded
by low production density neighbors. Quadrants 2 and 4 represent negative spa-
tial dependence, while Quadrants 1 and 3 belong to positive forms of spatial
dependence.

In the map we have selected all the provinces ever located in Quadrant 1 (high-
high association) during the considered periods (1930, 1950, 1970, 1990 and 2005).
We have also included Madrid and Valencia due to the major level of agglomera-
tion effects detected around these regions (OECD 2000; Peeters and Chasco 2006).
Therefore, the Moran scatterplot reveal the presence of spatial heterogeneity in the
form of two clusters of production density in Spain: the coastal provinces, with
the spatial discontinuity of Madrid (higher production density) and the hinterland
(lower production density).

These results agree with the bimodal distributions shown in Fig. 2, which reflect
a situation of two groups of provinces with GDP density levels converging toward
a lower and higher GDP density levels than the rest of provinces, respectively. That
is to say, spatial autocorrelation and spatial heterogeneity are two effects that must
be tested when modeling GDP density since they could lead to biased coefficients if
they are not adequately taken into account.



Influence of Geography on the Location of Production in Spain 423

5 Influence of Geography on the Location of Production

In this section, we apply the ANOVA methodology proposed in Roos (2005) for
German regions in 2000. In our case, we present a dynamic analysis for the last
century testing for not only endogeneity but also spatial effects in the residuals.
As stated before, it is a four-step analysis that proceeds as follows: (1) we filter
gross second nature indicators from first nature interrelations; (2) we estimate how
much of GDP per area variance can be explained by gross .Vs C Vfs/ and net .Vs/
second nature advantages; (3) we estimate how much of GDP per area variance
can be explained jointly by gross first and second nature .Vf C Vs C Vfs/; and (4)
we calculate the difference between the result in step three and two, which is the
importance of first nature alone .Vf /.

5.1 Filtering Gross Second Nature from First Nature Elements

In order to disentangle empirically the second nature variables (population and GDP
per worker) from first nature interactions, we proceed to regress them on geography
and take the residuals as variables of net second nature forces (see (3)). Table 4
presents the results of the final regressions of the second nature variables on first
nature, after elimination of insignificant variables.6

Measured by R2, we can say that, in average during the twentieth century, gross
first nature – itself and interactions with second nature – explains about 54% of the
second nature’s spatial variation, reaching to 60% in the last decade (though this
measure could be overstated due to a certain degree of multicollinarity present in
the productivity equations). The fit of both population and labor productivity equa-
tions are good (even when the capital dummy is excluded) and higher than those
found in Roos’ application for Germany (43% for population and 9% for produc-
tivity). This supports the idea that – contrary to Germany – Spain is a country with
different climatic zones, which there are places more or less favorable to live in.
For an international sample, Gallup et al. (1999) computed in 73% the contribu-
tion of geography to population density. However, as shown before, this estima-
tion might be exaggerated due to the high degree of multicollinearity present in
their model.

In general, the capital dummy has the largest influence on both second nature
variables. Particularly in the population equations, it has an increasing impact7 that

6 We follow a general-to-specific modeling strategy. In a first regression, we include the complete
set of first nature variables. In a step-by-step sequenced process, we exclude the variable with the
lowest t -statistic and estimate the remaining equation again. This procedure is repeated until all
coefficients are significantly different from zero at the 10% level.
7 In semi-logarithmic equations, the dependent variable changes by Œexp.b/ � 1� 	 100% if the
explanatory variable changes from zero to one unit, where b is the explanatory variable coefficient.
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ranges from 51% in 1930 to 116% in 2005. Nevertheless, during the last two decades
this variable looses its power on labor productivity. It is as if capital cities are – in
general – more capable of attracting people at cost to productivity.

We should also highlight the recent influence of the coast dummy. In 2005,
changes from zero to one (non-coastal to coastal) cause a population increase of
65% but a labor productivity decrease of 8%. This apparently contradictory result –
population increase joint to productivity reduction in coastal regions – could be
explained by the existence in most Mediterranean provinces of a predominant less-
productive “sun and beach” tourism activity and certain hand-worker intensive
industries.

Finally, since we find significant relations between second nature and geography,
we can conclude that both forces interact. Therefore, we have filtered the residu-
als of these ten regressions, pi, del, which will be considered as net second nature
forces.

5.2 Second Nature Effects on GDP per Area

In this step, we compute second nature effects on GDP per area with the estimation
of two equations. Firstly, we regress the log-relative GDP per area on population and
labor productivity. The resulting determination coefficient will indicate the second
nature gross effect R2gs D .Vs C Vfs/=V . Secondly, the second nature net effect on
GDP per area is obtained from the estimation of this variable on the residuals, pi, del,
derived from the last estimations, with the help of the corresponding determination
coefficient R2ns D Vs=V .

As stated in Roos (2005), one problem is that the second nature variables are
endogenous and simultaneously determined with GDP. This might lead to the well-
known simultaneity bias in the regressions violating the necessary conditions to
obtain estimates with good properties. The instrumental variables estimation is
the standard approach to overcome the consequences of simultaneity, i.e. bias,
inefficiency and inconsistency on OLS-estimators.

The principle of the IV estimation is based on the existence of a set of instruments
that are strongly correlated to the original endogenous variables but asymptotically
uncorrelated to the error term.

Once these instruments are identified, they are used to construct a proxy for
the explanatory endogenous variables, which consists of their predicted values in
a regression on both the instruments and the exogenous variables. However, it is
very difficult to find such instruments because most socioeconomic variables will
be endogenous as well. In the standard simultaneous equations framework, the
instruments are the “excluded” exogenous variables.

In our case, in order to decide whether we need IV estimation, we have first ana-
lyzed the potential system feedbacks between the dependent variable, log-relative
GDP per area, and the four second nature explanatory variables, i.e. population,
labor productivity and the OLS residuals (pi, del) found in Table 4 estimations. For
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this purpose, we have used the Durbin-Wu-Haussman (DWH) test, which is an “exo-
geneity test” (Anselin 1999) that compares the IV and OLS estimates assuming the
former are consistent. Although consistent, in small samples the IV estimates may
be inferior to OLS in terms of mean squared error. This test reports the confidence
level at which consistency of OLS estimates can be rejected. In fact, it is an F test
with .k�; n � k � k�/ degrees of freedom on the null hypothesis of exogeneity of
a k� subset of the total k explanatory variables, with n as the number of observa-
tions (for technical issues, see Davidson and Mckinnon 1993).8 Since we need to
estimate IV equations to perform this test, we must first decide the set of adequate
instruments for each potential stochastic regressor. As stated above, they should be
correlated to the original endogenous variables but asymptotically uncorrelated to
the error term.

Roos proposes to use mainly time-lagged variables as instruments, since they
are highly correlated with the actual variables but also non-contemporary correlated
with the errors.9 Besides, we have also considered other space and/or time lagged
second nature variables as well as “excluded” first nature explanatory variables. In
all cases, we have selected only those instruments more correlated with the cor-
responding endogenous regressor and less correlated with OLS error terms.10 In
Table 5, we have shown the instruments definitely used in each equation, as well as
the results of the Durbin-Wu-Haussman (DWH) test.

Results show a high degree of simultaneity in some of the second nature regres-
sors with respect to log-relative GDP per area. This is the case of log-population, for
1970 and 1990 equations, and log-labor productivity, for 1950 and 1990 equations.
Regarding net second nature variables, population series (pi) are mainly exogenous,
though productivity variables (del) exhibit clear endogeneity except for 2005. As
a consequence, both (4) and (6) must be estimated by IV for all the periods, with
the exception of 2005, which is the only case of total absence of endogeneity in the
regressors.

In Table 6, we show the estimation results of (4) and (6), in which log-relative
GDP per area is regressed on gross and net second nature variables, respectively.
Being aware of the potential drawback coming from the asymptotic considerations
of all statistical inference for IV estimates (which may not be very reliable for
small data sets), we have computed the so-called asymptotic t-tests as a ratio of
the estimate to its asymptotic standard error.

8 As shown in Anselin (1999), DWH test is consistent with spatially autocorrelated OLS residuals.
9 Non-contemporary dependence between regressors and the error terms lead to asymptotically
unbiased estimators only in absence of temporal autocorrelation. However, in our case it is difficult
to suppose time independence between the error terms what could somewhat affect our results.
10 The goodness of the instruments can be proved with the help of the Sargan test, which contrasts
the null hypothesis that a group of s instruments of q regressors is valid. This is a Chi-2 test with
(s–q) degrees of freedom that rejects the null when at least one of the instruments is correlated with
the error term (Sargan 1964). In our case, we can clearly accept the null with a confidence level of
0.99. All the computations can be obtained upon request from the authors.
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Table 5 Instruments and endogeneity tests in second nature effect regressions

Gross second Instruments DWH Net second Instruments DWH

Log (pop) 1930 pi30, tembel0 3:5� pi 1930 pi50 0.0
1950 lpo30 0.2 1950 pi30 0.1
1970 lpo50 61��� 1970 pi50 13���

1990 lpo70 5:0�� 1990 pi70 0.0
2005 lpo90 0.7 2005 pi90 0.8

Log (prod) 1930 del30, lpr70 0.8 1930 del50, lpr30 12���

1950 lpr30, del50 3:2� 1950 del30, lpr50 16���

1970 lpr50, del70 2.1 del 1970 del50, lpr70, lpr50 3:3��

1990 lpr70 9:1��� 1990 del70, lpr90 5:8��

2005 lpr90, del05, xcoo 1.2 2005 del90, lpr05, lpr90 0.6

Log(pop) log population, Log(prod) log labor productivity, pi residual of the regression of log
population on first nature variables, del: residual of the regression of log labor productivity on first
nature variables, tembel0 # days with temperatures below zero Celsius, xcoo X-coordinate, DWH
Durbin-Wu-Haussman exogeneity test, ���significant at 0.01, ��significant at 0.05, �significant
at 0.1
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Fig. 4 Evolution of the impact of second nature forces on GDP density

As stated in Anselin (1988, p. 244), in the IV estimation approach the residuals
have a zero mean, so than the standard variance decomposition can be obtained
and a determination coefficient can be computed in the usual manner (the ratio
of the variance of the predicted values over the variance of the observed values
for the dependent variable). Consequently, the five regressions on population and
productivity provide a determination coefficient R2gs between 0.69 (year 1950) and
0.82 (year 1990), which is the share of GDP density variance that is explained
by gross second nature effects. The estimation of the other five equations yield
0:27 � R2ns � 0:51, which is the importance of net second nature on GDP den-
sity. Regarding the mixed effect of the interaction between first and second nature
on GDP density .R2fs/, it can be extracted as the difference between R2gs and R2ns
(Equation 8). Figure 4 summarizes the results for the estimations of Table 6.

To some extent, second nature has increased its importance on GDP density in
Spain during the last century, accounting for 0.74 in 1930 to 0.81 in 2005. Roos
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found that only 65% of German GDP density in 2000 was caused by gross sec-
ond nature. He decomposed it into a mixed-indirect effect (29%) and a net-direct
effect (36%). In Spain, net second nature forces reach the maximum effect in 1950
(0.51) and progressively decline to 0.27 in 2005. Pertaining to the interaction effect
of physical geography and agglomeration economies, it registers a growing trend
from 0.29 (1930) to 0.54 (2005), almost doubling – at this moment – Roos’ results
for Germany. This result shows the more and more importance of the interaction
between economic agents and nature as determinants of GDP density. This is clear
in certain economic activities related with tourism, which has been the main engine
of Spanish economy since the 1960s.

The final line of diagnostics in Table 6 reports an asymptotic LM test for spatial
error autocorrelation11 (Anselin 1999). In addition, we have also tested for spa-
tial heterogeneity in the errors, in the form of two subspaces, as detected before
for GDP density distributions (Fig. 3), i.e. higher/lower GDP density provinces
(coast/hinterland, respectively). For this purpose, we use the spatial Chow test pro-
posed by Anselin (1990), in which the null hypothesis states that the coefficients are
the same in all regimes. It is based on an asymptotic Wald statistic, distributed as a
�2 distribution with Œ.m�1/�k� degrees of freedom (m being the number of regimes).
In Table 6, the null hypothesis on the joint equality of coefficients is clearly rejected
by the Chow-Wald test in all the regressions, i.e. their values are sufficiently extreme
for a distribution with three degrees of freedom. Therefore, both spatial effects are
present in the regressions on second nature variables demonstrating the existence of
non-randomness in the error terms. It is known that sometimes, spatial autocorre-
lation in the residuals may be induced by a strong spatial heterogeneity that is not
correctly modeled by spatial dependence specifications (Brunsdon et al. 1999).

Consequently, in order to capture the polarization pattern previously observed in
the distribution of GDP density among the Spanish provinces, we allow cross-region
parameter variation in a spatial regimes model with two subspaces corresponding
to coastal provinces (plus Madrid) and the rest of inland provinces.12 There are
21 provinces included in the higher GDP density group (coast) and 26 provinces
included in the lower GDP density group (hinterland).

As shown in Table 7, spatial instability has important effects on the determination
coefficients. In general terms, they are higher in the coastal subspace than in the
hinterland, mainly for net second nature. In Fig. 5, we have graphed the dynamics
experienced by both groups. Differences in GDP density inside the leading group
are much due to net agglomeration economies, whereas differences in lower GDP
density group depend more on mixed effects (interaction between geography and
man-made agglomerations).

11 This test has been constructed in the same fashion as in Burridge (1980). The spatial weight
matrix is specified as in foot note 7.
12 We have also estimated a groupwise heteroskedastic error model. In general, both GLS and LM
estimations produce signifficant variance coefficients in each subspace, but cannot absorb all the
heteroskedasticity and spatial dependence still present in the residuals.
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Fig. 5 Evolution of the impact of second nature on GDP density in two regimes

On its side, spatial autocorrelation in the residuals disappear in all the equations
(the LM tests are not significant) with the exception of gross second nature in 1970
and 1990. As a result, in most cases, the spatial regimes model controls for the
presence of both spatial effects in second nature equations. This result confirms our
initial hypothesis about the importance of taking into account spatial instability in
GDP density distributions.

The influence of space on GDP density is certainly conspicuous. It leads to the
so-called “two Spains,” which are no longer split along the usual North versus South
partition. In this case, we find a relevant geographical division: on the one hand, the
coastal provinces plus Madrid, in which population and production focuses and on
the other hand, an even more depopulated and sparse hinterland.

5.3 First and Second Nature Joint Effect on GDP per Area

We estimate how much of GDP per area variance can be explained jointly by gross
first and second nature .Vf C Vs C Vfs/. As in (9), we include a set of first nature
indicators together with the net second nature variables (pi, del) as regressors. The
joint importance of first and second nature is then measured by R2fCs D .Vf C
Vfs C Vs/=V .

Thus from the set of the country’s – physical and political – geography vari-
ables (Table 1) we must choose only those that are both related to the distribution
of GDP density and not correlated with net second nature forces. As in Table 3,
we pursue a general-to-specific modeling strategy in a first regression of GDP den-
sity on the complete set of 13 geography variables and the 2 net second nature
variables. This procedure is repeated until all coefficients are all significantly differ-
ent from zero at the 10% level. We find that only eight geographic variables fulfill
the cited requirements in all periods: regional capital, altitude, minimum tempera-
ture, average temperature, # days with below 0 ıC temperature, # days above 25ıC
temperature, total rainfall and X-coordinate.
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The regressions of GDP density on the complete set of ten variables lead to
high multicollinearity which inflates the determination coefficients. To avoid this
problem, we opted for group the seven physical geography variables (excluding
regional capital) with factor analysis.13 The rotated factors can be interpreted as
follows: factor 1 (temp) contains high scores of temperature variables, such as mini-
mum/average temperature (positive), # days with below 0 ıC and altitude (negative).
Factor 2 (dry) is related to dryness, with high scores in total rainfall (negative) and
# days above 25ıC temperature (positive). Regarding factor 3 (east), it is mainly
based on East-West orientation (X-coordinate). The regressions of GDP density on
the two net second nature variables, three geography factors and the regional capital
show much lower multicollinearity number, between 1.94 (1950) and 2.04 (1930),
well below the acceptable limit of 20/30 (Anselin 1995).

Again, we should test for the presence of endogeneity in the second nature vari-
ables since they could be simultaneously determined by GDP density. In this case,
using the instruments shown in Table 5, we find that all second nature variables
obtain significant DWH values except in the period 2005. Thus, we apply IV method
with the exception of in 2005, in which OLS is used (Table 8). As we can see,
the joint contribution of first and second nature to GDP density remains constant
(88–89%) across the twentieth century. That is to say, almost a 90% of the agglomer-
ation pattern has been constantly explained by natural geography and agglomeration
economies together, remaining the other 10% unexplained by these factors.

Once more, though there is no remaining spatial autocorrelation in the error
terms, the spatial Chow test points out the problem of spatial instability in the
coefficients. The estimation of the spatial regimes models illustrates the differences
between the two subspaces. Hence, the joint contribution of total geography is sig-
nificantly lower in the inland provinces, much similar to Roos’ figures for Germany
(72%).

All coefficients have the expected signs. Results show the great importance of
net second nature variables (population and productivity) on GDP density, which
are significant for all the periods and spatial regimes. Among physical geography,
temperature has the largest influence; e.g. in 1930, it increased the relative GDP
density 68% reaching to 112% in 2005.

Regional capital is also a very influential variable and it obtains its main scores
after 1990, from which Spanish regions (“autonomies”) where officially recog-
nized (34% in 1930, 101% in 2005). Similar to the German case, Spain is now a
decentralized state with 17 regions that have a lot of legislative and executive power
concentrated in the regional capital.

The results explain the growing influence of this variable on economic activity.
Geographical orientation has also registered a rising tendency during the last cen-
tury; i.e. Eastern locations are prone to record more GDP density than Western ones.

Regarding the spatial regimes, we find some interesting variations. In the group
of inland provinces, regional capital is – by far – the most important determinant

13 Factors have been extracted using principal components and rotated with Varimax method.
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particularly from 1990, increasing GDP density by about 150%. It is followed
by temperatures, since natural conditions differ considerably across the inland
provinces, while Eastern orientation is not significant at all.

This outcome makes clear the situation of the progressively depopulated inte-
rior of the country. That is to say, location of production in the hinterland depends
mainly on natural and political conditions. In these provinces agglomeration takes
place mainly close to capitals and big cities, where the executive power and ser-
vices concentrate producing employment and welfare. Concerning the coastal (plus
Madrid) subspace, temperatures and dryness are the variables that exert the max-
imum influence on GDP density. In this area, longitude has gained more weight
on GDP density illustrating the present advantage of the long Mediterranean urban
areas with respect to the declining Cantabric-Atlantic axis (Le Gallo and Chasco
2008).

5.4 First Nature Net Effect on GDP per Area

If we calculate the difference between the determination coefficient in Tables 8 and
6 (Table 7 for spatial regimes) we obtain the importance of first nature alone .Vf /
for the whole Spain: Vf

ı
V D R2f Cs�R2gs . In Fig. 6 we show the complete ANOVA
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Fig. 6 Evolution of the variance decomposition of regressions in Table 8
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decomposition for both the whole country and each of the spatial regimes. The total
variation that can be assigned to the net effect of first nature ranks from 14% (in
1930) to 6–7% in 1990 and 2005, respectively. This result is almost coincident with
Roos’ who found a 7.1% for Germany. Nevertheless, it changes a bit when consid-
ering the two spatial regimes. Net first nature has had – in general – more influence
on GDP density in the coastal provinces than in the inland, though they are leveling
in both regimes at present (about 8–10%).

Independently of natural conditions, man-made agglomeration economies play
an important role in the distribution of economic activity across Spanish territory.
Nevertheless, this role is much significant in the coast than in the hinterland. In
effect, since the coastal provinces share similar natural conditions, differences in
GDP density are much due to interactions between economic agents among them-
selves than between agents and nature. In this subspace, first and second nature
exerts basically a net influence. In contrast, the hinterland shows wider dispari-
ties in terms of physical geography – abrupt topography and continental weather –
what confer more weight to mixed first–second nature; i.e. second nature forces are
likely to overlay and to strengthen the forces of first nature. As a general rule, gross
(net and mixed) first nature has increased its influence in Spain with time and it
constitutes a 60% of GDP density distribution at present. However it is truer in the
hinterland than in the group of higher GDP density provinces, in which first nature
global effect has maintained practically stable during the last century in only a 22%
of GDP per area.

Therefore, similar as in Gallup et al. (1999) Spanish economy is likely to
bifurcate on two pathways. The coast plus Madrid metropolitan area experiences
decreasing returns to scale in labor and high rates of population growth whereas the
hinterland experiences more or less the opposite process. The two systems inter-
act through ever-greater pressures on migration from the interior of the country to
Madrid and the coast. This result demonstrates that when analyzing agglomeration
in Spain, this dichotomous reality should not be avoided.

6 Conclusions

In this chapter, we examine the influence of geographic features on the location of
production in Spain. In other words, we quantify how much of the geographic pat-
tern of GDP can be attributed to only exogenous first nature elements (physical and
political geography) and how much can be derived from endogenous second nature
factors (man-made agglomeration economies), in which first nature also operates as
a mixed effect. Specifically we disentangle the contribution of each net component
of geography with the aim of isolating the importance of first nature alone. If first
nature is relevant, existing agglomerations will be very stable and attempts to create
new agglomerations at places without geographic advantages, might possibly fail.
On the contrary, if first nature does not matter much, regional policies could have
more success in creating agglomerations anywhere.
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For this purpose, we follow we follow a methodological approach based on Roos
(2005) for Germany. He proposes to employ an analysis of variance (ANOVA) to
infer the unobservable importance of first nature indirectly in a stepwise procedure.
We also estimate how much of agglomeration can be explained by geography ele-
ments in a dynamic context, analyzing their evolution during the twentieth century.
We demonstrate that results could be biased if some potential econometric ques-
tions are not properly taken into account; e.g. multicollinearity, relevant missing
variables, endogeneity, spatial autocorrelation and spatial heterogeneity. Even so,
this methodology has some important limitations. On the one hand, the definition
of the endogenous variable as aggregated “GDP per area” implies more a concept
of agglomeration of value added rather than the spatial concentration of workers/
citizens. In addition, aggregate GDP does not allow analyzing the dissimilar effects
of geography on different industries. On the other hand, the cited potential econo-
metric problems are not always easy to solve, mainly multicollinearity and endo-
geneity, what could somewhat bias the results.

The main outcome of our study reveals that production is not randomly dis-
tributed across Spanish regions. In an exploratory spatial data analysis we find that
GDP density has been historically bifurcated on two pathways, core and periph-
ery, i.e. the coast plus Madrid metropolitan area and the hinterland, respectively.
Even more, during the twentieth century this polarization has deepened leading to a
new configuration of the so-called “two Spains.” Therefore, we have estimated our
models testing for and considering explicitly these spatial regimes.

Thus considering the Spanish territory as a whole we find that at most, 88% of
GDP’s spatial variation can be explained by direct and indirect effects of geography
during the entire period (1930–2005). These figures remain significantly far from
those found in Roos for Germany (72%), pointing out the major role played by
geography in Spain. After controlling for agglomeration economies and the inter-
action effect of first-second nature, the net influence of natural geography ranks
from 20% (in 1950) to 6–7% nowadays. On the other side, whereas in 1930, we
find a prevalence of net second nature (e.g. transport and communication, accord-
ing to Venables 1999), in the end of the period, second nature agglomeration forces
were amplified by first nature geography. Therefore, there is a close connection
between second and first nature. Krugman (1993) argues that first nature advantages
generally tend to create second nature advantages through cumulative processes.
Nevertheless, at least in the period of analysis and from a global point of view, net
second nature seems to have been the initial advantages that were amplified by first
nature forces. In effect, since the 1960s, the implantation of the model of “sun and
beach” tourism as the main engine for the Spanish economy has benefited those
existing agglomerations with better natural conditions.

However, the influence of geography varies significantly from one spatial regime
to the other. For example, in the group of inland provinces only a 70% of agglomer-
ation (in average, during the whole period) is explained jointly by first and second
nature forces, being the mixed effect quite strong, though with some variations
in time (from 24% in 1950 to 52% in 2005). On its side, among the group of
core provinces (coast plus Madrid), which share quite common physical geography



438 C.C. Yrigoyen and A.M. López Garcı́a

characteristics, net second nature give the highest contribution to agglomeration,
around 70% along the whole period and first plus second effects record a 90% of
total agglomeration. In addition, the start point (year 1930) is very different from
one group to another and the long-term implications are conditioned by this initial
situation. While the coast group maintains the structure of the variance decompo-
sition along time, the inland group has lost an important part of net second effects.
That is to say, “the evolution of the influence of geography on the location of pro-
duction in Spain (1930–2005)” is quite different for these two groups. On one side,
the core-coast group has not relevant changes during the period. On the other side,
the progressive irrelevance of net second forces in the inland group is the cause
of the increasing effects of first-second forces. From a political point of view and
according to Venables (1999), we can conclude that inland provinces would need
more investment in transport and communication infrastructures. In particular, they
are necessary to connect the periphery-inland territories to the core-coastal ones.

In conclusion, independently of the interest of these findings for the Spanish
regional analysis, we recommend taking into account spatial autocorrelation and
heterogeneity explicitly in Roos’ methodology, since the core-periphery pattern is
strongly present in most regions of the world. If they are not properly taken into
account, results could be biased and rich information would be ignored.
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Goerlich F, Mas M, Pérez F (2002) Concentración, convergencia y desigualdad regional en España.

Papeles de Economı́a Española 93:17–36
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Comparative Spatial Dynamics
of Regional Systems

Sergio J. Rey and Xinyue Ye

1 Introduction

Research on the question of regional income convergence has gone through two
phases over the past two decades. The first generation of regional convergence stud-
ies began to appear as growth theorists turned their attention away from international
analyses of country growth patterns having discovered the region as a new unit of
analysis (Barro and Sala-i-Martin 1991). This change in scale had a key advantage of
increasing (in some cases substantially) the number of cross-sectional observations
available for model estimation and hypothesis testing. While the scale of the anal-
ysis shifted, these first generation studies relied on the same underlying theoretical
and empirical frameworks used in the international literature.

In the second phase, the underlying geographical dimensions of the data in con-
vergence studies began to attract attention (Rey and Montouri 1999). This was
reflected in several developments. The first saw the increasing application of the
methods of spatial econometrics and spatial data analysis to regional case stud-
ies. These applications have generated abundant evidence that the spatial effects
of dependence and heterogeneity tend to be the rule rather than the exception in
practice, and as such their consideration should form a crucial component of empir-
ical analysis. Thus the second generation of regional convergence studies is those
characterized by concerns with spatial effects.

Both phases of regional convergence research have yielded an enormous litera-
ture of empirical studies.1 At the same time, the spatially explicit methods applied
in the second phase of this literature have been designed for cross-sectional data
sets while the convergence question itself has both spatial and temporal dimen-
sions. It is not at all clear if these spatial methods require adjustment when applied

1For recent overviews of this literature see Rey and Le Gallo (2008), Rey and Janikas (2006),
Abreu et al. (2005) and Fingleton (2003).
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in a dynamic context. Moreover, despite the richness of this literature, relatively
few studies have compared the rates of convergence and inequality across different
national systems. What few comparative studies that have appeared have focused on
the more advanced economies of Europe and the United States (Boltho 1989). Also,
these comparative studies are clearly first generation in their approach to regional
data as space is largely ignored. Thus, although we are gaining an understanding
of the role of spatial effects in the analysis of inequality and convergence, we cur-
rently do not know if these effects are present in the same way at different stages of
economic development.

This chapter seeks to contribute to the literature by addressing these gaps. We do
so by drawing on some recently development methods of exploratory space–time
data analysis (ESTDA) (Rey 2001; Rey and Janikas 2006; Janikas 2007) to develop
a framework for the comparative analysis of spatial income inequality dynamics
between different economic systems. We apply this framework to a case study
involving the United States and China, two large economies at different stages of
development.

Our exploratory approach is designed to identify interesting patterns in the spa-
tial and temporal dimensions of the regional growth series. This is in response to
the criticisms made of formal growth theories, which rest on restrictive assump-
tions about representative economies and randomness in space that are largely at
odds with the characteristics of regional data (Fingleton 2004). In order to develop
a more spatially explicit growth theory it is first necessary to develop operational
measures that capture the spatial dynamics inherent in regional datasets. We see
the exploratory methods we suggest in what follows as an initial step towards these
ends.

This chapter addresses these issues through the integration of recent advances
in distribution dynamics and spatial pattern analysis. Some novel approaches for
inference are suggested to complement the descriptive approaches in the existing
literature, as well as to provide new bases for comparative analysis. While the
substantive focus of the research is on regional inequality dynamics, the method-
ological issues examined are relevant to the study of a wide class of phenomena that
have spatial and temporal dimensions. These new statistical measurements also cre-
ate opportunities for novel scientific visualization and new research hypothesis. As
such, this project is among the efforts for more powerful analytical methods for spa-
tiotemporal data, which has been viewed as a critical need in research in geography
and regional science (Rigby and Willmott 1998).

In the remainder of the chapter, we first discuss the motivations for this research
from theoretical, methodological and empirical perspectives, which give rise to
comparative spatial dynamics analysis of regional systems. Next, we present a
comparative exploratory space–time analysis of regional income dynamics over
the 1978–1998 period in China and the United States. The chapter closes with a
summary and concluding comments.
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2 Theoretical and Methodological Motivations

With the dramatic improvement in computer technology and the increase in vol-
umes of geographically referenced socioeconomic data, the importance of space
to many socioeconomic processes has been gaining a growing recognition (Egen-
hofer and Golledge 1997; Peuquet 2002; Goodchild and Janelle 2004). At the
same time, the study of economic inequality and convergence continues to attract
enormous attention and it has generated a dynamic academic landscape where geog-
raphy and other social sciences interact (Sassen 1994; Krugman 1999; Gruber and
Gaines 2001). This interest has been reflected in spatial and temporal thinking of
this research domain, that is, analyzing spatial patterns of economic convergence
and the dynamics of geographical inequality (Rey 2004a). However, the literatures
of spatial pattern analysis (form analysis) and time series analysis (process analysis)
are mainly separated.

While geographers have always been custodians of knowledge about form, arguably the
custodians of process have been the substantive sciences of geology, ecology, hydrology,
epidemiology, demography, economics, etc. A concern for process is therefore likely to
change the landscape of GIScience dramatically, requiring much closer interaction with
these sciences. (Goodchild 2006, p. 4)

2.1 Space, Time and Regional Inequality

Longstanding concerns with spatial inequality, its temporal persistence and
causative processes, have generated lasting discussions and fascinating debates
among adherents of the various schools of economic development, such as neoclas-
sical growth theory, endogenous growth theory and new economic geography (Barro
and Sala-i-Martin 1991; Aghion and Howitt 1998; Fujita and Krugman 2004).

There is increasing awareness of the importance space in the empirical analysis of
growth and convergence (Rey and Montouri 1999; Fingleton 2004; Yamamoto 2006)
together with a recognition that the existing growth theories do not fully treat the rich
spatial patterns encountered in empirical work. Recent work in economic geography
has also been criticized for failing to deal with the major problems of development
and inequality, as well as for fuzzy concepts, shaky evidence, and policy irrele-
vance (Hamnett 2003). Hence, Bode and Rey (2006) call for “further research on
integrating space into formal theoretical models of growth and convergence as well
as on developing the next generation of analytical methods needed to implement
those models” as “the preconditions for reliable policy recommendations, one of
the primary goals of economic research.”

Exploratory data analysis (EDA) has evolved from a small sub-field to an impor-
tant part of the methodological domain. Haining and Wise (1997) define EDA as
“to identify data properties for purposes of: pattern detection in data, hypothesis
formulation from data, some aspects of model assessment.” After the incorpora-
tion of spatial properties of data, exploratory spatial data analysis (ESDA) aims are
“detecting spatial patterns in data, formulating hypotheses based on the geography
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of the data, assessing spatial models” (Haining and Wise 1997). ESDA is a power-
ful body of techniques to visualize spatial distributions and detect patterns of spatial
association (Anselin 1993), often revealing complex spatial phenomenon not iden-
tified otherwise (Le Gallo et al. 2003). Hence, the development of new methods of
ESDA has stimulated a number of research efforts (Anselin and Getis 1992; Longley
et al. 2001; Getis et al. 2004; Rey and Anselin 2006).

Both spatial and temporal attributes of data are important, but existing approaches
focus primarily on one of these attributes. For example, researchers have relied on
either spatial analysis or time series methods though regional inequality dynamics
has both temporal and spatial dimensions underlying empirical analysis (Rey 2004a).
It is clear that new methods are needed to truly integrate space and time. Good-
child (2004, 2006) suggests this is a major research priority for the processes that
define the Earth’s dynamics. To consider both dimensions jointly, requires extend-
ing EDA (and exploratory temporal data analysis) for space, and at the same time
incorporating time into ESDA (Rey et al. 2005).

2.2 Distribution Dynamics and Spatial Pattern Analysis

Barro and Sala-i-Martin (1991, 1992) and Sala-i-Martin (1996) discuss two types
of convergence in growth empirics: ¢ and “ convergence. The former reflects the
decline of the dispersion of income across the economic units over time; the lat-
ter indicates the negative partial correlation between the growth rate in income
over time and its initial level. Quah (1993) argues that these two empirical strate-
gies might be misleading because of the arbitrary assumptions about the dynamics
as a whole. Distribution dynamics refer to the difference among the overall shape
characteristics of the regional income distribution and the evolution of these charac-
teristics over time, as well as the amount of internal mixing or rank mobility taking
place within these same distributions. Quah (1996) comments that the distribution
dynamics empirics will lead to new theories on economic growth and convergence.

In response, a number of EDA techniques have been applied to regional income
distributions. Using Markov chain techniques, Quah documents the degree to which
this instability characterizes the data. Markov chains have been applied to study
steady-state trends (Magrini 1999), modality (Quah 1996) and rank mobility (Ham-
mond and Thompson 2002). Stochastic kernels are considered as extensions of the
Markov chain to a continuous field. Bianchi (1997) employs Markov chain approach
in the analysis of modality and the application in the internal mixing is carried out
by Tsionas (2000).

Some recent work points out that the dominant focus in the empirical literature on
shape regularities may be masking some interesting patterns that are internal to those
distributions (Overman and Ioannides 2001; Ioannides and Overman 2004). Based
on a critical review of empirical approaches and methodological advances in spatial
econometrics and spatial statistics, Rey and Janikas (2005) highlight the important
roles of spatial dependence, spatial heterogeneity, and spatial scale in the analy-
sis of regional income distribution dynamics. Rey (2001, 2004b) suggests a series
of spatial empirics for distributional dynamics, such as spatial Markov, regional
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cohesion of rank mobility and spatial decomposition of rank dynamics. To charac-
terize complex map patterns has always been a challenge for spatial analysis (Getis
and Boots 1978; Boots and Getis 1988; Okabe et al. 2000). Geometric indicators and
graphical depiction have been used to summarize spatial patterns, such as Weber’s
Triangle, the Gravity Model, and Central Place Theory, among others (Mu 2004).
Geometric criteria are also applied to identify spatial structure through a spatial
weight matrix (Anselin 1988; Getis and Aldstadt 2004; Aldstadt and Getis 2006).
For instance, Aldstadt and Getis (2006) demonstrate that spatial association varies
in distance/direction and clusters are irregular in shape. We suggest that these find-
ings can be revisited with perspectives from computational geometry where methods
have been developed to meet fast algorithmic requirements for geometric computing
(Mulmuley 1994; O’Rourke, 1994; Chazelle 1995; Eppstein 2005). Recent progress
in statistical shape analysis (Goodall and Mardia 1999) reveals great potential for
studying shape variations at microscale such as human brains (Mardia and Dry-
den 1999) to the Voronoi polygons examination of the central place theory (Dryden
and Mardia 1998). As commented by Goodchild (2006), “. . . GIScience is appli-
cable to varying degrees in any space, . . . such as the three-dimensional space of
the human brain, . . . At the same time, advances made in the study of other spaces
may be suitable sources of cross-fertilization in GIScience. Perhaps the next decade
will see a much greater degree of interaction between GIScience and the sciences of
other spaces, and much more productive collaboration.” While analytical cartogra-
phy and computational geometry can generate in-depth visualization and summary
of location and spatial pattern, they largely ignore dynamic effects.

This chapter hopes to contribute to the cross-fertilization of distribution dynamics
and spatial pattern analysis, through summarizing and comparing the geometry of
various spaces of regional economic growth.

In this regard, several interesting research questions are examined:

1. To what extent is economic growth associated with spatial context, dependence,
or heterogeneity?

2. Are regions with similar economic growth trends clustered?
3. How stable are certain spatial patterns (structures) over time? Are they clustered

over time?

3 Empirical Motivation: Regional Inequality in China
and the United States

Because of their growing importance in the world economic system, China and the
United States have been the center of numerous debates about economic growth
and regional convergence. Despite this rich empirical literature, comparative anal-
ysis of regional inequality dynamics between the two economies remains largely
unexplored, let alone the underlying geographical dimensions of regional growth
processes (Rey and Janikas 2005; Janikas 2007). Moreover, applications of com-
parative analysis between different economic systems are currently lacking an
inferential basis.
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Fig. 1 Per capita incomes in the United States, 1978 and 1998

Regional inequality has generated lasting debates among the convergence, diver-
gence, inverted-U, and Neo-Marxist uneven development schools (Pritchett 1997;
Fujita et al. 1999; Puga 1999; Tsionas 2000; Rey and Janikas 2005). The debate on
the trajectories and mechanisms of regional development has been focused over the
scope and consequences of regional policies and the extent and sources of regional
inequality (Sidaway and Simon 1990; Fan and Casetti 1994; Wei and Ye 2004;
Ye and Wei 2005), which is reflected in numerous empirical studies of specific
nations and continents (Rey and Janikas 2005). However, the findings are mixed
and sometimes conflicting (Ye and Wei 2005).

Many studies have been conducted on the US experience, and most of them con-
clude that regional convergence has been very strong, with two persistent regional
clusters: the Northeast-Mid Atlantic cluster of high income states and Southeast
cluster of low income states (Barro and Sala-i-Martin 1991, 1992; Fan and Casetti
1994; Bernard and Jones 1996; Vohra 1996; Rey and Montouri 1999; Tomljanovich
and Vogelsang 2002; Sommeiller 2007), as shown in Fig. 1.

Since the late 1970s, China has been undergoing economic reforms introduc-
ing market mechanisms and opening its economy to the outside world. The reform
process, however, was spatially uneven and has traditionally emphasized coastal
development (Lyons 1991; Lin 1997; Wei 2000, 2009; Benjamin et al. 2005; Wei
and Ye 2009), as shown in Fig. 2.2 Starting in the mid-1990s, the Chinese govern-
ment began to make more efforts on development of poorer regions and reduction of
spatial inequalities through launching western development strategies and, recently,
providing incentives for developing rural areas. While some maintain that global-
ization and liberalization have brought wealth to transitional countries like China,
others argue that the transition in former socialist countries is characterized by
partial reform, path dependency, and geographical unevenness, and have recorded

2 While China’s official GDP statistics are sometimes regarded as of questionable quality
(Rawski 2001), the NSB (National Statistical Bureau of China) published adjusted GDP data to
deal with both overestimates and underestimates of provincial GDP data for the years before 2004
(Fan and Sun 2008). For a recent discussion justifying using per capita GDP as a valid and reliable
indicator of provincial economic development and well-being in China, see Fan and Sun (2008).
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Fig. 2 Per capita incomes in China, 1978 and 1998

persistent or rising income gaps and spatial inequalities (Wei and Ye 2004; Ye and
Wei 2005).

Not only the presence of spatial dependence presents a challenge to the use
of statistical inference, but the partitioning of the economic units into either a
29-region system (29 land provinces in China) or 48-region system (48 states in
the United States) raises another concern very similar to the modifiable areal unit
problem (MAUP) (Openshaw and Alvanides 1999). Rey (2004a) finds that the
regional inequality decomposition fundamentally changes both quantitatively and
qualitatively when its spatial partition scheme (regionalization scheme) varies. It is
important to check whether the difference among regional systems is sensitive to
both how the observations are partitioned into each system and how they are spa-
tially distributed within each system. However, this issue has been largely neglected
in previous comparative studies.

In the following sections, comparative space–time analysis of regional systems
will be conducted using the case study of China and the United States. The two
datasets are relative per capita income over the 1978–1998 period at the province
(China) and state (the United States) levels. The two data sets are comparable
regarding regional inequality because the states (United States) and provinces
(China) are self-contained and well-functioning units which form the theoretical
structure for spatial interaction models in spatial economy (Fan and Casetti 1994).

4 Comparative Spatial Dynamics

4.1 Inequality and Spatial Dependence

Many inequality measures have been introduced and discussed in the literature.
In regional inequality analysis, a popular measure is Theil’s inequality measure
(Theil 1967). Attention is first directed towards the relationship between regional
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Fig. 3 Convergence and spatial independence in the United States and China

income inequality and spatial dependence over time using the global Theil and
Moran’s I (Fig. 3), which shed light on the debates between competing economic
growth theories and policies in these two distinct economic systems (Rey 2004a).
There is a U shape for regional inequality over time, with spatial clustering trends
in China while there is an obvious inverted U shape for spatial dependence with
relatively stable (or slightly inverted-U shape) regional inequality in the United
States.

In studies of regional income inequality, the decompositional property has been
exploited to investigate the extent to which global Theil is attributable to inequal-
ity between or within different partitions of the observational units. This approach
can provide a deeper understanding of global inequality (Rey 2004a). Two com-
mon regionalization schemes in China are Three Belts or Six Macro Regions
(Fig. 4 ). Three Belts are the eastern, central, and western economic belts while Six
Macro Regions refer to six main geographic regions (North-West, North, North-
East, South-West, Central-South, East). There are four census regions in the United
States: Northeast, Midwest, South, and West. Eight BEA (Bureau of Economic
Analysis) Regions are New England, Mideast, Great Lakes, Plains, Southeast,
Southwest, Rocky Mountain, Far West (Fig. 5).

As revealed by Fig. 6, intra-regional inequality dominates the overall disparity in
China for most of the time regardless of the regionalization system while the dom-
inance status in the United States will generally either be granted to inter-regional
(Eight BEA Regions) or intra-regional inequality (Four Census Regions). The inter-
regional inequality share always grows in China while in the United States case this
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Fig. 4 Regionalization system in China

Fig. 5 Regionalization system in the United States
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Fig. 6 Inter-regional inequality share in China and the United States
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component fluctuates substantially in the same time period. The choice of regional-
ization system matters in both systems. In China, the more aggregate regionalization
scheme (three belts) leads to a larger share of inter-regional inequality while in
the US case intra-regional inequality grows with the scale of the regionalization
scheme. China has witnessed a widening difference of the inter-regional inequality
shares between the two partition schemes over time while the United States has a
narrowing gap. The above studies have illuminated to some extent the spatial struc-
ture underlying the dynamics of regional inequality at various stages of economic
development.

4.2 Distance-Based Local Markov Transition

Local indicators of spatial autocorrelation (LISA) show a disaggregated view at the
nature of spatial dependence (Anselin 1995). We can embed these indicators in a
dynamic context by considering the movement of a given indicator in the scatter
plot over some time interval.

At a given time, t , the coordinate of each unit i ’s LISA is (yi;t, yli;t) with:

yli;t D
nX

jD1
wi;j yj;t

Given this, Di;t;tC1 is economic unit i ’s LISA transition from time t to t C 1,
measured by the segment length of [(yi;t�1, yli;t�1), (yi;t , yli;t /].

In a similar vein to what is done in Markov models of income distributions, we
can discretize the values of the indicators to consider transitions across the classes
of a scatter plot over time. The four classes are High-Low (first quadrat), Low-
High (second quadrat), Low-Low (third quadrat) and High-Low (fourth quadrat).
Besides four types of intraclass transitions, 12 types of inter-class transitions can be
identified based on the four classes.

Because this discretization considers only class transitions it may treat transi-
tions of different magnitudes as equal in constructing the LISA transition probability
matrix. We suggest using a threshold distance to address this issue. We can set the
threshold to be some value such as the average of all the transition distances on the
Moran scatter plot, which is on the conservative side. With this threshold, there are
two inter-class transitions in the left view of Fig. 7 and both of them move from

Fig. 7 Local Moran Markov
transition
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Table 1 Local Moran
transition matrix in China
(ND/D)

HH LH LL HL

HH 82=82 0=0 0=0 0=0

LH 3=2 47=48 1=1 0=0

LL 0=0 1=1 397=397 2=2

HL 1=1 0=0 2=1 44=45

Table 2 Local Moran
transition matrix in the
United States (ND/D)

HH LH LL HL

HH 223=228 9=6 0=0 6=4

LH 6=3 141=146 9=7 0=0

LL 0=0 5=2 356=362 7=4

HL 3=2 0=0 8=6 187=190

Low-High section to Low-Low section on the Moran scatter plot. An inter-class
transition is significant only if its distance is larger than the threshold, otherwise the
transition is treated as an intra-class transition and will be considered to stay in the
original class, as shown on the right view of Fig. 7.

We use these thresholds to construct Tables 1 and 2 which reveal that China
has more significant transitions in local Markov matrix. For instance, the 356/362
located in the LL–LL position of Table 2 indicates that 356 transitions are consid-
ered intra-class movements before the distance (ND) threshold is applied while six
more transitions will be treated as intra-class movements because their lengths are
shorter than the average movement (D). This is contrasted with the case of LH to HH
transitions where six original transitions occur, but three of these involve movements
that are shorter than the threshold distance and are therefore treated as intra-class
movements (LH–LH). We return to the use of the threshold based transitions in a
comparative analysis later in this chapter.

4.3 LISA Time Path

The LISA Time Path Plot takes a continuous view of these transition to illustrate the
pair-wise movement of an economic unit (observation)’s value and its spatial lag
over time (Rey et al. 2005). The path of observation i over time can be written as
[(yi;1, yli;1),(yi;2, yli;2),. . . ,(yi;T , yli;T /]. yi;t is per capita income of province/state
i at time t and yli;t is its spatial lag at time t . This graph is helpful in identifying the
stability levels of local growth across a given structural process on the Moran scatter
plot. Since individual aspects of the contemporaneous process can be dissected by
interval gaps, the length and tortuosity of the time path are summarized for each
economic unit, as follows:
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�i D N 	 PT�1
tD1 d .Li;t ; Li;tC1/PN

iD1
PT�1

tD1 d .Li;t ; Li;tC1/
(1)

where: Li;t is the location of economic unit i on the Moran scatter plot at time t,
which is (yi;t , yli;t ). d.Li;t , Li;tC1/ is the distance (movement) between the loca-
tions of economic unit i at time t and t C 1. N is the number of spatial units. If an
economic unit’s movement over time is longer than the average, �i will be larger
than 1, and vice versa.

�i D
PT�1

tD1 d.Li;t ; Li;tC1/
d .Li;1; Li;T /

(2)

where �i is the economic unit i ’s tortuosity on the Moran scatter plot over time.
A larger�i indicates a more tortuous movement on the graph.

A scalar instability measure of dynamic LISA is:

ƒi D N 	 �iPN
iD1 �i

(3)

where �i is the standard deviation of economic unit i ’s interval segment lengths of
LISA time path.

Figure 8 contrasts the LISA time paths of all the provinces/states in China and
the United States at the same scale. It reveals that China has much more dispersed
spatial dynamics. These patterns can be furthered analyzed in several ways. Tables 3
and 4 report the three suggested indicators to capture the continuous nature of the
LISA time paths for each province and state. They are also mapped on Figs. 11 and
12. The lop left view is the geographical distribution of �i values (length); top right
view is for �i (tortuosity); bottom left view displays ƒi (instability); and the bot-
tom right view is for space–time integration ratio, which will be discussed in the
following section. China’s rich provinces (coastal) tend to be more dynamic (top
left view), more tortuous (top right view) and more stable (bottom left view) while
the Northeast-Mid Atlantic cluster of high income states are more dynamic, less tor-
tuous and more instable reflected by these three types of values compared to the rest

Fig. 8 LISA time path (left: China; right: the United States)
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Table 3 Spatial dynamics in China

Province Length Tourtuosity Instability Spatial Similar ST integration
joins dynamics

AH 0:65 0:83 0:68 6 1 0:17

BJ 2:17 1:91 3:06 2 0 0:0

FJ 1:05 1:23 0:44 3 2 0:67

GS 1:08 0:83 0:79 6 4 0:67

GD 1:18 1:32 0:48 4 1 0:25

GX 0:45 0:48 0:78 4 1 0:25

GZ 0:41 0:43 0:92 4 3 0:75

HEB 0:58 0:65 1:88 7 1 0:14

HL 0:86 1:10 0:58 2 0 0:00

HEN 0:76 0:50 1:89 6 0 0:00

HUB 0:63 0:58 1:84 6 1 0:17

HUN 0:35 0:41 0:67 6 3 0:50

NM 0:91 0:76 0:97 8 5 0:63

JS 1:32 1:41 0:55 4 2 0:50

JX 0:55 0:67 0:51 6 0 0:00

JL 1:12 1:09 1:01 3 2 0:67

NX 1:12 0:97 0:77 3 3 1:00

QH 1:58 1:10 0:57 4 3 0:75

SN 0:81 0:67 1:33 7 4 0:57

SD 0:77 0:75 0:52 4 2 0:50

SH 1:92 2:45 0:84 2 0 0:00

SX 0:86 0:73 1:05 4 2 0:50

SC 0:36 0:46 0:73 8 5 0:63

TJ 1:68 1:79 1:28 2 0 0:00

XJ 0:82 1:04 0:83 3 0 0:00

XZ 2:13 1:67 1:40 4 2 0:20

YN 0:51 0:64 1:22 4 1 0:25

ZJ 1:20 1:48 0:49 5 2 0:40

of their systems. As mentioned above, a longer movement on the Moran scatter plot
suggests a more mobile local spatial dependence over time. A more tortuous path
indicates a more fluctuating local spatial dependence evolution in direction while a
large variance among the segments of LISA time path demonstrates a more fluctuat-
ing local spatial dependence evolution. The maximum and minimum of �i are 2.17
(Beijing) and 0.35 (Hunan) in China, 2.78 (North Dakota) and 0.48 (Alabama) in
the United States. The maximum and minimum of �i are 2.45 (Shanghai) and 0.41
(Hunan) in China, 5.69 (Arkansas) and 0.31 (North Carolina) in the Untied States.
The maximum and minimum of ƒi are 3.06 (Beijing) and 0.44 (Fujian) in China,
3.45 (North Dakota) and 0.34 (Alabama) in the United States.
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Table 4 Spatial dynamics in the United States
State Length Tourtuosity Instability Spatial joins Similar dynamics ST integration

joins dynamics

AL 0:48 0:49 0:34 4 2 0:50

AZ 0:79 0:92 0:67 5 3 0:60

AR 0:73 5:69 0:70 6 2 0:33

CA 0:84 0:39 1:06 3 1 0:33

CO 1:02 0:73 0:73 7 3 0:43

CT 1:48 0:42 1:51 3 3 1:00

DE 1:08 1:12 0:82 3 3 1:00

FL 0:83 0:74 0:74 2 0 0:00

GA 0:63 0:33 0:67 9 4 0:44

ID 1:10 0:58 0:91 12 6 0:50

IL 0:59 0:84 0:57 5 4 0:80

IN 0:63 0:71 0:71 4 4 1:00

IO 1:20 0:73 1:23 6 3 0:50

KA 0:83 1:45 0:80 4 1 0:25

KN 0:57 4:43 0:54 7 3 0:43

LO 1:02 3:17 1:19 3 1 0:33

ME 1:53 0:66 1:28 1 1 1:00

MD 0:84 1:53 0:74 4 3 0:75

MA 1:37 0:40 1:34 5 5 1:00

MI 1:08 0:75 1:03 3 3 1:00

MN 1:43 0:99 1:37 4 0 0:00

MS 0:58 1:10 0:49 4 2 0:50

MO 0:62 1:42 0:53 8 0 0:00

MT 1:71 0:60 1:01 4 3 0:75

NE 1:12 1:18 1:10 6 2 0:33

NV 0:77 0:46 1:16 5 3 0:60

NH 1:54 0:57 1:37 3 3 1:00

NJ 1:03 0:53 1:07 3 3 1:00

NM 0:86 1:05 0:69 5 5 1:00

NY 1:03 0:46 1:03 5 5 1:00

NC 0:64 0:31 0:75 4 4 1:00

ND 2:78 1:21 3:45 3 1 0:33

OH 0:51 0:54 0:63 5 3 0:60

OK 1:16 0:97 1:55 6 4 0:67

OR 0:81 0:50 1:13 4 3 0:75

PA 0:62 1:39 0:45 6 4 0:67

RI 1:42 0:43 1:46 2 2 1:00

SC 0:67 0:35 0:75 2 2 1:00

SD 1:65 1:08 1:89 6 1 0:17

TN 0:60 0:50 0:51 8 6 0:75

TX 1:02 1:64 1:36 4 3 0:75

UT 0:80 0:70 0:61 6 6 1:00

VT 1:15 0:48 1:04 3 3 1:00

VA 0:69 0:63 0:66 5 3 0:60

WA 1:03 0:85 0:90 2 2 1:00

WV 0:64 0:62 0:60 5 2 0:40

WI 0:70 0:82 0:72 4 3 0:75

WY 1:77 0:53 2:10 6 3 0:50
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4.4 Space–Time Covariance Matrix

The spatial dynamics can also be summarized using graph theoretic concepts. More
specifically, the pairwise temporal covariance between economies can be used to
define a network which is then visualized geographically. The covariance structure
of incomes is portrayed as the links between the centroids of each polygon. Various
levels of correlations can be visualized differently to more distinctly identify cross-
sectional relationships. Covariance links can be mapped based on specified criterion
(Rey and Janikas 2006). A network graph identifies the spatial joins displaying sim-
ilar income growth trends with a focal economy (Fig. 9). A spider graph reflects all
the other economic units, which share the similar temporal dynamics with the focal
region (Fig. 10). Two regions are defined to be similar if the correlation of their time
series is above national average. These two graphs show the spatial distribution of
temporal dynamics, which is usually masked by the national growth trend.3

At the macro level there is some evidence that the spatial dynamics are more
integrated in the United States than China (Fig. 9), which is also revealed by Fig. 8.
However, this macro structure can many times mask a great deal of turbulence at the
micro level reflecting movements of individual economies up and down the statis-
tical distribution. Moving from the macro perspective we can check whether there
are particular economies in each system that display interesting dynamics. This is
illustrated in the spider graph in Fig. 10, which focuses on two regions: Zhejiang
Province in China; California in the United States. The spider graph considers
the integration of each focal region (Zhejiang and California) with their respective
national systems and identifies the specific regions with which they share common
dynamics, as reflected in high standardized pairwise temporal correlations. These
are indicated by edges connecting each focal region to the dynamically similar
region. Those similar regions that are also spatially contiguous to the focal region
are indicated by thicker edges.

Fig. 9 Covariance networks in China and the United States (thick segments indicate similar
temporal linkages)

3 The national trends in both system have been removed from the regional data sets here as the
income values are expressed as percentages of the national means for the given year.
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Fig. 10 Spider graphs of Zhejiang province (China) and California (the United States) (the links
indicate similar temporal linkages and the thicker segments highlight spatial joins)

Based on the spider graph, we consider the spatial joins each unit has and ask
whether these joins are linking economies that display similar temporal dynamics
with the focal unit. We take the ratio of the number of spatial joins with strong tem-
poral linkages over the number of total spatial joins of the focal unit, with a value of
1 indicating very strong space–time integration for the focal economy, while a 0 sug-
gests very weak linkages between the focal unit and its spatial lag (Tables 3 and 4).
Table 3 reports that only one province in China (Ningxia) has similar temporal
dynamics with all of its neighbors while five provinces are dissimilar with any of
their neighbors. It can be observed that 16 states in the United States have similar
temporal dynamics with all of their neighbors while only two states are dissimilar
with any of their neighbors (Table 4). All the focal values are mapped on the bottom
right views of Figs. 11 and 12. China has a z-value of 1.533 for the global Moran of
these integration statistics, while for the United States the clustering of these inte-
gration measures is much stronger (z-value of 4.782), which further indicates the
United States has a much more spatially integrated economic system.

4.5 Inferential Issues

Once the new space–time indicators are developed, an extensive set of inferential
approaches are needed to evaluate their sampling distributions for comparative anal-
ysis between two regional systems. The inferential approaches suggested here rely
on random labeling and spatial permutations of the relative values for two maps
(two regional systems) simultaneously. The relative mobility in a Classic (and Local
Moran) Markov transition matrix can be expressed as:

� D 1 �
P

i Pi;i

k
(4)

where Pi;i is the diagonal element of a Markov possibility transition matrix P and
k is the number of total classes. If there are no crossclass transitions, all of the
diagonal elements are 1 and � is 0. The more dramatic the inter-class mobility, the



Comparative Spatial Dynamicsof Regional Systems 457

Fig. 11 Spatial dynamics in China (top left view: the length of LISA time paths (1); top right
view: the tortuosity of LISA time paths (2); bottom left view: the instability of LISA time paths
(3); bottom right view: space–time integration ratio of temporal dynamics)

larger the value of � . The maximum value of � is 1, which means none of the states
(provinces) stays in the same income class over time for Classic Markov and all
of the local economic structures (Low-Low, Low-High, High-High and High-Low)
have changed during the transition period for Local Moran Markov.

The steps of the inferential approach follow:

1. Calculate the difference of relative mobility of Classic (Or Local Moran) Markov
for China (�c/ and the United States (�u/

2. Randomly reassign all the relative per capita incomes to new locations regard-
less of their original systems (For instance, New York State’s relative per capita
income might be reassigned to a province in China while Shanghai’s income
might be assigned to California)4

4 Under the random labeling approach, the null hypothesis is that mobility rates are the same in the
two countries.
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Fig. 12 Spatial dynamics in the United States (top left view: the length of LISA time paths (1);
top right view: the tortuosity of LISA time paths (2); bottom left view: the instability of LISA time
paths (3); bottom right view: space–time integration ratio of temporal dynamics)

3. Calculate � for the two maps and calculate the difference of relative mobilities
between them

4. Repeat steps 2 and 3, M times
5. The actual indicator obtained at step 1 can then be compared against the expected

value to check whether the difference is significant between the two regional
systems

By extending the relative mobility analysis to include an inferential component we
find that both of the relative mobilities of the Classic and Local Moran Markov
transition matrices are relatively small in China and the United States (Table 5).
However, while the Classic Markov reports no statistically significant difference
between China and the United States (the pseudo p value is 0.499), the difference
regarding the local Moran Markov statistic is significant with the pseudo p value
equaling 0.067 after 1,000 permutations. This means that local economic structure
in China is generally more stable than that in the United States. The diagonal values
in Tables 6 and 7 show that China is more stable than the United States in most of
the transition probabilities.

From a spatial perspective, China has relatively pronounced clusters for the
provinces with similar economic growth trends (Fig. 13). Two spatial clusters in
China warrant attention: the poverty trap composed of six inland provinces (lightest
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Table 5 Relative mobility of
classic and local Moran
Markov in China and the
United States

Classic Local Moran

China 0:134 0:017

The United States 0:136 0:055

Table 6 Local Moran
transition probability matrix
in China

HH LH LL HL

HH 1:000 0:000 0:000 0:000

LH 0:059 0:992 0:020 0:000

LL 0:000 0:003 0:993 0:005

HL 0:021 0:000 0:043 0:936

Table 7 Local Moran
transition probability matrix
in the United States

HH LH LL HL

HH 0:937 0:038 0:000 0:025

LH 0:038 0:904 0:058 0:000

LL 0:000 0:014 0:967 0:019

HL 0:015 0:000 0:040 0:944

Fig. 13 Convergence classification in China and the United States

units) and the rich club along the coast (darkest units). The two figures report aver-
age convergence/divergence direction for each province/state. The lightest (gray-
one) unit’s initial income is below the national average and its average shift over
time is to move further down. The gray-two unit’s initial income is below the aver-
age and its average shift is upwards. The gray-three unit’s initial income is around
the average and stays in the same class over time. The gray-four unit’s initial income
is above the average while its average shift is downwards. The darkest (gray-five)
unit’s initial income is above the average and on average it moves up.
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5 Summary

This chapter suggests new exploratory measures to integrate the distributional,
temporal and spatial dimensions of regional economic growth, unfolding the com-
plex spatial patterns of economic inequality evolution. Through linking distribu-
tion/kernel dynamics to geometric summaries of the map/diagram, the exploratory
space–time analysis of geographical dynamics is conducted in a macro-meso-
micro framework. Coupled with this is work on developing inferential methods for
comparative analysis.

From a theoretical perspective, the new space–time measures hold the potential
of generating some novel hypotheses about the nature of space in an economic sys-
tem’s evolution. Comparative analyses will help to narrow the gap between growth
theories and their empirical testing to some extent. This will better our understand-
ing of the role of space among different regional economic systems. From a policy
perspective, the development of spatially explicit indicators will provide policy
makers and urban planners with new tools to design and target poverty eradication
programs by identifying irregular spatial economic performance, which have long
been on the government agendas in various economic systems. The developed meth-
ods are also expected to have implications in areas such as comparative space–time
dynamics of land use evolution, disease diffusion, crime hot spots, socioeconomic
inequalities, among others.

While these new statistics show promise, much more work needs to be done
on their theoretical properties and a number of implementation issues also need
to be further investigated. From a confirmatory perspective, it would be a fruitful
avenue to explore whether the geographical distribution of incomes is a structural
driver in economic growth and convergence. This could be addressed by incor-
porating a graph measure into the economic growth or convergence model. The
regression results can be used to validate the exploratory analysis, and at the same
time exploratory analysis may provide useful indicators for confirmatory analysis.
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Growth and Spatial Dependence in Europe

Wilfried Koch

1 Introduction

The convergence of European regions has been largely discussed in the empiri-
cal literature during the last decade. Two observations are often emphasized. First,
the convergence rate among European regions appears to be very slow (Barro and
Sala-i-Martin 1991, 1995; Armstrong 1995; Sala-i-Martin 1996a,b). Second, the
tools used in the regional science literature show that the geographical distribution
of European per capita GDP is highly clustered and characterized by global and
local autocorrelation (Armstrong 1995; Ertur et al. 2007; López-Bazo et al. 1999;
Le Gallo and Ertur 2003 with a UE15 regional database and Ertur and Koch 2006,
with a UE27 enlarged regional database). Many other studies also provide evidence
of global and local spatial autocorrelation as Rey and Montouri (1999) for US State
data on per capita income throughout the period 1929–1994, Ying (2000) for growth
rates of production in the Chinese provinces since the late 1970s, and Conley and
Ligon (2002). These authors also develop an empirical approach that explicitly
allows for interdependence among countries, and they underline the importance of
cross-country spillovers in explaining growth using an international database.

Other empirical studies also show the importance of geography in the diffusion
of knowledge and R&D: Keller (2002) suggests that the international diffusion of
technology is geographically localized, in the sense that the productivity effects of
R&D decline with the geographic distance between countries. Audretsch and Feld-
man (1996), Jaffe (1989), Acs et al. (1992, 1994), Feldman (1994a,b) and Anselin
et al. (1997) have identified the existence of spatially-mediated knowledge spillovers
of R&D or academic research effects.

In this context, this paper presents the spatially augmented Solow model devel-
oped by Ertur and Koch (2007) that includes technological interdependence among
regions in the structural model in order to take into account this global and local
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spatial autocorrelation and these neighborhood effects on growth and convergence.
Thus, we consider the Solow model (Solow 1956; Swan 1956) with physical capital
externalities as suggested by Romer (1986), Krugman (1991a,b) and Grossman and
Helpman (1991), among others, who have focused on the role that spillovers of eco-
nomic knowledge across agents and firms play in generating increasing returns and
ultimately economic growth. We also add spatial externalities in the model in order
to take into account spatial knowledge spillovers and technological interdependence
between regions.

More specifically, in the next section, we assume that technical progress depends
on the stock of per worker physical capital, which represents the stock of knowledge
as in Romer (1986), in the home region and depends on the stock of knowledge in
the neighboring regions, which spills on the technical progress of the home region
so as the regions are geographically close. This model leads to an equation for
the steady state income level as well as a spatial conditional convergence equa-
tion. Then, we present the database and the spatial weights matrix, which is used
to model spatial connections between all regions in the sample. Next, we estimate
the effects of investment rate, population growth and location on the per worker real
income at steady state using a spatial econometric specification. We also estimate
the magnitude of physical capital externalities at steady state, which is usually not
identified in the literature. Finally, we assess the role played by technological inter-
dependence in growth and convergence processes. To this end, we estimate a spatial
version of the conditional convergence equation which leads to a convergence speed
close to 2% as generally found in the literature. The last section concludes.

2 A Spatially Augmented Neoclassical Growth Model

2.1 Production Function and Spatial Externalities

In this section, we present the Ertur and Koch (2007) model of growth with physical
capital externalities and spatial externalities, which implies technological interde-
pendence in Europe between N regions denoted by i D 1, . . . ,N . Let us consider
an aggregate Cobb-Douglas production function exhibiting constant returns to scale
in labor and reproducible physical capital of the form, in region i at time t :

Yi .t/ D Ai.t/ Ki.t/
˛ Li .t/

1�˛ (1)

with the standards notations: Yi.t/ the output,Ki.t/ the level of reproducible phys-
ical capital, Li .t/ the level of labor and Ai .t/ the aggregate level of technology
defined as:

Ai.t/ D .t/ ki .t/
'

NY
j¤i

Aj .t/
�wij (2)
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The function describing the aggregate level of technology Ai .t/ of any region i
depends on three terms. First, as in the neoclassical growth model, we assume
that a part of technological progress is exogenous and identical to all regions:
.t/ D .0/ e�t where � is its constant growth rate. Second, we assume that
each region’s aggregate level of technology increases with the aggregate level of per
worker physical capital ki .t/ D Ki .t/ =Li .t/ available in that region.1 The param-
eter ', with 0 � ' < 1, describes the strength of home externalities generated
by the physical capital accumulation process. Therefore, we follow the well-known
Arrow (1962) and Romer’s (1986) treatment of knowledge spillover from capital
investment. In addition, in the third term, we assume that there are regional exter-
nalities emanating from knowledge accumulation in the other regions, which spills
over from these neighboring regions j to the considered region i and improves
its production efficiency. The regional technological interdependence implied by
these regional externalities is measured by the parameter � � 0. This parameter is
assumed identical for each region but the net effect of these spatial externalities on
the level of productivity of the firms in a region i depends on the relative spatial
connectivity between this region and its neighbors. We represent the technological
interdependence between a region i and all the regions belonging to its neighbor-
hood by the spatial friction parameters wij , for j D 1, . . . ,N and j ¤ i . These
parameters are non negative, non stochastic and finite; we have 0 � wij � 1 and
wij D 0 if i D j . Moreover, it is assumed that:

XN

j¤i wij D 1

for i D 1, . . . ,N .2 The more a given region i is connected to its neighbors, the
higher wij is and the more region i benefits from spatial externalities.

Resolving (2) for Ai .t/ and replacing the result in the production function (1)
written per worker, we obtain:

yi .t/ D .t/
1

1�� ki .t/
ui i

NY
j¤i

kj .t/
uij (3)

with:

ui i D ˛ C '
�
1C

X1
rD1 �

rw.r/i i

�
and uij D '

X1
rD1 �

rw.r/ij

with w.r/ij the element of the line i and the column j of the matrix W to the power
of r , and yi .t/ D Yi .t/ =Li .t/ the level of per worker output. We note that if there

1 We assume that all knowledge is embodied in per worker physical capital and not in the level of
capital in order to avoid the scale effects (Jones 1995).
2 This hypothesis allows us to assume a relative spatial connectivity between all regions in order
to underline the importance of the geographical neighborhood for economic growth. Moreover, it
allows avoiding spatial scale effects and then explosive growth.
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are no physical capital externalities, that is ' D 0, we have ui i D ˛ and uij D 0,
and then the production function is written as usual. Finally, in order to warrant
local convergence and then avoid explosive or endogenous growth, we suppose that
social returns are decreasing: ˛ C '= .1 � �/ < 1.3

As in the textbook neoclassical growth model, we assume that a constant fraction
of output si is saved and that the labor exogenously grows at the rate ni for a region
i . We also suppose that there is a constant and identical annual rate of depreciation
of physical capital for all regions, denoted by ı. We can derive the expression of the
per worker output at steady state for an economy i :4

ln yi .t/
� D 1

1 � ˛ � '
ln.t/C ˛ C '

1 � ˛ � ' ln si � ˛ C '

1 � ˛ � ' ln .ni C g C ı/

� ˛�

1 � ˛ � '

NX
j¤i

wij ln sj C ˛�

1 � ˛ � '

NX
j¤i

wij ln
�
nj C g C ı

�

C � .1 � ˛/
1 � ˛ � '

NX
j¤i

wij lnyj .t/
� (4)

This spatially augmented neoclassical growth model has the same qualitative pre-
dictions as the textbook Solow growth model5 pertaining to the influence of the own
saving rate and the own population growth rate on the per worker real income at
steady state of a region i . First, the per worker real income at steady state for a
region i depends positively on its own saving rate and negatively on its own popu-
lation growth rate. Second, it can also be shown that the per worker real income for
a region i depends positively on saving rates of neighboring regions and negatively
on their population growth rates.6

2.2 Transitional Dynamics and Local Convergence

This model predicts that per worker income in a given region converges to that
region’s steady state value. Writing the fundamental dynamic equation of Solow
including the production function (3), we obtain:

ki .t/

ki .t/
D si .t/

1
1�� ki .t/

�.1�ui i /
NY
j¤i

kj .t/
uij � .ni C ı/ (5)

3 See Ertur and Koch (2007) for the proof.
4 The balanced rate of growth is g D �=Œ.1� ˛/ .1� �/� '�.
5 Note that when � D 0, we have the model elaborated by Romer (1986) with ˛C' < 1 and when
� D 0 and ' D 0, we have the Solow growth model.
6 In fact, this equation is written in implicit form. When we write this equation in explicit form,
it is possible to evaluate elasticities of the variables. See Ertur and Koch (2007) for more details
about the predictions of this model.
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The main element behind the convergence result in this model is also diminish-
ing returns to reproducible capital. Physical capital externalities and technological
interdependence only slow down the decrease of marginal productivity of phys-
ical capital, therefore the convergence result is still valid under the hypothesis
˛ C '= .1 � �/ < 1, in contrast with endogenous growth models where marginal
productivity of physical capital is constant.

In addition, our model provides quantitative predictions about the speed of con-
vergence to steady state. As in the literature, the transitional dynamics can be
quantified by using a log linearisation of (5) around steady state, for i D 1, . . . ,N :

d ln ki .t/

dt
D � .1 � ui i / .ni C g C ı/ Œln ki .t/ � ln k�

i � (6)

C
NX
j¤i

uij .ni C g C ı/ Œln kj .t/ � ln k�
j �

We obtain a system of differential linear equations. Let us note �i D Œln ki .t/ �
ln k�

i � and �i .t/ D d ln ki .t/ =dt , for i D 1, . . . ,N , we obtain in matrix form:

:
� .t/ D J� .t/ (7)

where:

J D � .1 � ˛/ diag .nC g C ı/C 'diag .nC g C ı/ .I � �W/�1 (8)

is the matrix of the system, with diag .nC g C ı/ the diagonal matrix with the terms
.ni C g C ı/.7 The general solution of the system can be written in the following
matrix form: � .t/ D VDb, where D is the diagonal matrix with the terms eœJ t

where œJ are the eigenvalues of the matrix J, V the matrix of characteristic vectors
associated with the eigenvalues of J and b a vector of constant which we can evalu-
ate with the initial condition. Indeed, since the matrix J is d-stable, its eigenvalues
are negatives and so: � .0/ D Vb, then: b D V�1� .0/. Finally the general solution
can be written in the following form: � .t/ D VDV�1� .0/, or:

ln k .t/ � ln k� D VDV�1Œln k .0/� ln k�� (9)

and subtracting both sides by ln k(0) and rearranging terms:

ln k .t/� ln k .0/ D � �
I � VDV�1� ln k .0/C �

I � VDV�1� ln k� (10)

Replacing ln k� by its expression in matrix form:

ln k� D Œ.1 � ˛/ I � ' .I � �W/�1�Œ.I � �W/�1 C S� (11)

7 See Ertur and Koch (2007) for a proof of local convergence.
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where S is the .N � 1/ vector of logarithms of saving rate divided by the effective
rate of depreciation, we obtain after rearranging terms:

ln k .t/ � ln k .0/ D � �
I � VDV�1� ln k .0/

C '

1� ˛

�
I � VDV�1� .I � �W/�1 ln k .0/

C 1

1� ˛

�
I � VDV�1� .I � �W/�1 C 1

1 � ˛

�
I � VDV�1� S

C '

1� ˛

�
I � VDV�1� .I � �W/�1

�
I � VDV�1��1

Œln k .t/� ln k .0/� (12)

This equation shows that the convergence process of a region i is more complicated
than the usual equation in the literature since it depends not only on usual variables
as initial level of per worker output, the saving rate and the population growth rate,
but also on the same variables in the neighboring regions. It also depends on the rate
of growth of these neighboring regions reflecting global technological interdepen-
dence. However, we can note that if there are no physical capital externalities, that
is ' D 0, this equation reduces to the traditional conditional convergence equation
except for the constant term. Another case is of interest: when we consider the case
of unconditional convergence process, we have ni D n for all i D 1, . . . ,N , and
then the eigenvalues of the matrix J can be rewritten in function of the eigenvalues
of the W matrix denoted by œW . Indeed, we have:

œJ D �
�
1 � ˛ � '

1 � �œW
�
.nC g C ı/ (13)

3 Data and Spatial Weight Matrix

All data are extracted from the Cambridge database. More precisely, we consider
204 European regions belonging to 17 countries over the 1977–2000 period at
NUTS2 level for Belgium (11), Denmark (1), Germany (31), Greece (13), Spain
(16), France (22), Ireland (2), Italy (20), Luxembourg (1), the Netherlands (12),
Austria (9), Portugal (1), Finland (6), Sweden (8), United Kingdom (37), Norway
(7), Switzerland (7). We measure n as the average growth rate of the working-age
population (ages 15–64), per worker real income is measured by the GVA (Gross
Value Added) divided by the number of workers, and finally the saving rate s is
measured as the average share of gross investment in GVA.

The Markov-matrix W, containing the terms wij , corresponds to the so called
spatial weights matrix commonly used in spatial econometrics to model spatial
interdependence between regions or countries (Anselin 1988). More precisely, each
region is connected to a set of neighboring regions by means of a purely spatial
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pattern introduced exogenously in W. The elements wi i on the diagonal are set to
zero whereas the elements wij indicate the way the region i is spatially connected
to the region j . In order to normalize the outside influence upon each region, the
weights matrix is standardized such that the elements of a row sum up to one. For
the variable x, this transformation means that the expression Wx, called the spatial
lag variable, is simply the weighted average of the neighboring observations.

Various matrices are considered in the literature: a simple binary contiguity
matrix, a binary spatial weights matrix with a distance-based critical cut-off, above
which spatial interactions are assumed negligible, more sophisticated generalized
distance-based spatial weights matrices with or without a critical cut-off. The notion
of distance can be quite general and different functional forms based on distance
decay can be used (for example inverse distance, inverse squared distance, nega-
tive exponential etc.). The critical cut-off can be the same for all regions or can
be defined to be specific to each region leading in the latter case, for example, to
k-nearest neighbors weights matrices when the critical cut-off for each region is
determined so that each region has the same number of neighbors.

It is important to stress that the connectivity terms wij should be exogenous to
the model to avoid the identification problems raised by Manski (1993) in social
sciences. This is the reason why we consider pure geographical distance, more pre-
cisely great circle distance between centroid, which is indeed strictly exogenous;
the functional form we consider is simply the k-nearest neighbors weights matrix
W .k/ with the general term defined as follows in standardized form [w .k/ij ]:

w .k/ij D w .k/�ij =
X

w .k/�ij with w .k/�ij D
8
<
:
0 if i D j

1 if dij di .k/
0 if dij > di .k/

(14)

where dij is the great circle distance between regional centroid and di .k/ is a crit-
ical cut-off distance defined for each region i . More precisely, di .k/ is the k-th
order smallest distance between regions i and j so that each region i has exactly k
neighbors. In this analysis, we consider k D 10, 15 and 20.

4 Analysis and Results

4.1 Empirical Model and Spatial Econometric Framework

In this section, we follow Mankiw et al. (1992) in order to evaluate the impact of
saving, population growth and location on real income. Taking (4), we find that the
per worker real income along the balanced growth path, at a given time (t D 0 for
simplicity) is:
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ln

�
Yi

Li

	
D ˇ0 C ˇ1 ln si C ˇ2 ln .ni C g C ı/C 
1

NX
j¤i

wij ln sj

C 
2

NX
j¤i

wij ln
�
nj C g C ı

� C �

NX
j¤i

wij ln

�
Yj

Lj

	
C "i (15)

where 1
1�˛�' ln.0/ D ˇ0 C "i for i D 1, . . . ,N , with ˇ0 a constant and "i

a region-specific shock since the term .0/ reflects not just technology but also
resource endowments, climate, and so on. . . , and then it may differ across regions.
We also suppose that g C ı D 0:05 as used in the literature since Mankiw
et al. (1992) and Romer (1989). We have finally the following theoretical con-
straints between coefficients: ˇ1 D �ˇ2 D .˛ C '/ = .1 � ˛ � '/ and 
1 D �
2 D
.˛ C �/ = .1 � ˛ � '/. Equation (15) is our basic econometric specification in this
section.

In the spatial econometrics literature, this kind of specification, including the
spatial lags of both endogenous and exogenous variables, is referred to as the spatial
Durbin model (see Anselin 1988, 2001), we have in matrix form:

y D Xˇ C WX
 C �Wy C " (16)

where y is the .N � 1/ vector of logarithms of real income per worker, X the
.N � 3/ matrix with the constant term, the vectors of logarithms of investment
rate and the logarithms of physical capital effective rates of depreciation, W the
.N �N/ spatial weights matrix, ˇ0 D Œˇ0; ˇ1; ˇ2�, 
 0 D Œ
1; 
2� and the spatial
autocorrelation coefficient is � D � .1 � ˛/ = .1 � ˛ � '/.8 " is the (N�1) vector
of errors supposed identically and normally distributed so that "�N �

0; �2I
�
.

In the first column of Table 1, we estimate the textbook Solow growth model
using the White heteroskedasticity consistent covariance matrix estimator. The coef-
ficients of saving and population growth have the predicted signs. However, the
coefficients are weakly significant and the effect of saving rate is lower than as
expected. The overidentifying restriction is not rejected and the estimated capital
share is close to 0.2 the lower bound generally admitted for this parameter.

The Solow growth model is however misspecified since it omits variables due to
technological interdependence and physical capital externalities.

Indeed, we can write the spatially augmented Solow growth model in the follow-
ing matrix form:

y D ˛

1 � ˛S C '

1 � ˛
.I � �W/�1 ln k� C .I � �W/�1 " (17)

with S the (N�1) vector of logarithms of investment rate divided by the effective
rate of depreciation. Therefore the error term in the Solow growth model contains

8 In practice, the spatially lagged constant is not included in WX, since there is an identification
problem for row-standardized W (the spatial lag of a constant is the same as the original variable).
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Table 1 OLS and spatial error model (level model)

Model OLS SEM-MLE
W10 W15 W20

Unrestricted regression
Constant 10:256 10:256 10:071 9:678

.0:000/ .0:000/ .0:000/ .0:000/

ln si 0:292 0:262 0:262 0:269

.0:074/ .0:068/ .0:057/ .0:053/

ln.ni C 0:05/ �0:135 �0:077 �0:115 �0:136
.0:566/ .0:666/ .0:522/ .0:448/

� � 0:860 0:902 0:943

.0:000/ .0:000/ .0:000/

Restricted regression
Constant 9:862 9:795 9:715 9:378

.0:000/ .0:000/ .0:000/ .0:000/

ln si – ln .ni C 0:05/ 0:245 0:199 0:215 0:225

.0:101/ .0:121/ .0:083/ .0:069/

� � 0:863 0:898 0:941

.0:000/ .0:000/ .0:000/

Test of restriction 0:237 0:939 0:591 0:473

(Wald/LR/PMP) .0:627/ .0:333/ .0:442/ .0:491/

Implied ˛ 0:197 0:166 0:177 0:184

.0:000/ .0:000/ .0:000/ .0:000/

p-values are in parentheses; p-values for the implied parameters are computed
using the delta method. The White heteroskedasticity consistent covariance
matrix estimator is used for statistical inference in the OLS estimation. LR is
the likelihood ratio test. PMP stands for posterior model probability

omitted information since we can rewrite it:

"Solow D '

1 � ˛ .I � �W/�1 ln k� C .I � �W/�1 " (18)

We also note the presence of spatial autocorrelation in the error term even if there is
no physical capital externalities, and then the presence of technological interactions
between all countries through the inverse spatial transformation .I � �W/�1.

In Table 3, we estimate the spatially augmented Solow growth model with the
maximum likelihood estimation method and the bayesian heteroskedastic MCMC
estimation method.9 Many aspects of the results support the model. First, all the
coefficients have the predicted signs and the spatial autocorrelation coefficient, �, is
highly positively significant. Second, the coefficients of saving rates of the region i
and its neighboring regions j are significant. Third, the joint theoretical restriction
ˇ1 D �ˇ2 and 
2 D �
1 is not rejected. Finally the ˛ implied by the coefficients

9 James LeSage provides a function to estimate this model in his Econometric Toolbox for Matlab
(http://www.spatial-econometrics.com). The regularity conditions of the maximum likelihood esti-
mators are described in Lee (2004) and the bayesian heteroskedastic MCMC estimation method is
developed by LeSage (1997). Endogeneity problem of explanatory variables is an important issue
in this literature and could be taken into account in future research using recent development of
spatial econometrics like Fingleton and Le Gallo (2008).



474 W. Koch

Table 2 OLS and spatial error model (level model)

Model SEM-Bayesian Heter.
W10 W15 W20

Unrestricted regression
Constant 10:399 10:313 10:295

.0:000/ .0:000/ .0:000/

ln si 0:142 0:146 0:147

.0:181/ .0:167/ .0:167/

ln.ni C 0:05/ 0:016 �0:013 �0:017
.0:482/ .0:459/ .0:452/

� 0:780 0:806 0:834

.0:000/ .0:000/ .0:000/

Restricted regression
Constant 10:010 9:986 9:969

.0:000/ .0:000/ .0:000/

ln si – ln.ni C 0:05/ 0:090 0:102 0:109

.0:263/ .0:225/ .0:205/

� 0:780 0:808 0:836

.0:000/ .0:000/ .0:000/

Test of restriction rest:=unrest:
(Wald/LR/PMP) 0:70=0:30 0:61=0:39 0:64=0:36

Implied ˛ 0:082 0:093 0:098

See Table 1 for notes

in the constrained regression is significantly close to one-third as expected. The
coefficient � , representing the strength of spatial externalities, is very strong since
it is higher than 1. This result shows the importance of spatial externalities in the
distribution of income in Europe. In contrast, the ' estimated is negative but non-
significant which indicates that there are not physical capital externalities in the
European regions. This result is consistent with the evidence against the importance
of permanent within-industry knowledge spillovers for growth at the regional and
urban level (see Glaeser et al. 1992, for instance). More specifically, we can test the
absence of physical capital externalities represented by ' since ' D 0 implies in the
specification (15) the following expression:

ln

�
Yi

Li

	
D ˇ0

0 C ˇ0
1 ln si C ˇ0

2 ln .ni C g C ı/C 
 0
1

NX
j¤i

wij ln sj

C
 0
2

NX
j¤i

wij ln
�
nj C g C ı

� C �

NX
j¤i

wij ln

�
Yj

Lj

	
C "i (19)
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Table 3 Spatial Durbin model (level model)

Model SDM-MLE SDM-Bayesian Heter.

W10 W15 W20 W10 W15 W20

Unrestricted regression

Constant 1:628 1:407 0:722 1:469 1:579 1:701

.0:198/ .0:347/ .0:689/ .0:101/ .0:128/ .0:160/

ln si 0:303 0:295 0:307 0:174 0:187 0:202

.0:037/ .0:032/ .0:027/ .0:083/ .0:061/ .0:041/

ln.ni C 0:05/ �0:102 �0:145 �0:178 �0:021 �0:074 �0:124
.0:569/ .0:417/ .0:321/ .0:444/ .0:333/ .0:249/

W ln sj �0:504 �0:645 �0:762 �0:355 �0:534 �0:601
.0:059/ .0:021/ .0:016/ .0:067/ .0:013/ .0:014/

W ln.nj C 0:05/ 0:330 0:502 0:486 0:157 0:415 0:656

.0:409/ .0:298/ .0:404/ .0:334/ .0:175/ .0:111/

� 0:872 0:907 0:943 0:862 0:884 0:916

.0:000/ .0:000/ .0:000/ .0:000/ .0:000/ .0:000/

Common factor test 1:897 3:767 3:941 rest./unrest.

(LR/PMP) .0:387/ .0:152/ .0:139/ 1:00=0:0 1:00=0:0 1:00=0:0

Restricted regression

Constant 1:597 1:430 1:112 1:574 1:595 1:339

.0:001/ .0:002/ .0:006/ .0:000/ .0:000/ .0:000/

ln si – ln.ni C 0:05/ 0:233 0:248 0:264 0:142 0:166 0:192

.0:074/ .0:046/ .0:034/ .0:111/ .0:062/ .0:041/

W .ln si – ln.ni C 0:05// �0:431 �0:598 �0:684 �0:299 �0:512 �0:627
.0:057/ .0:012/ .0:010/ .0:070/ .0:007/ .0:003/

� 0:867 0:903 0:942 0:862 0:883 0:919

.0:000/ .0:000/ .0:000/ .0:000/ .0:000/ .0:000/

Common factor test 1:716 3:735 3:853 rest./unrest.

(LR/PMP) .0:190/ .0:053/ .0:050/ 1:00=0:0 1:00=0:0 1:00=0:0

Test of restriction 1:120 0:623 0:562 rest./unrest.

(LR/PMP) .0:571/ .0:732/ .0:755/ 0:57=0:43 0:55=0:45 0:55=0:45

Implied ˛ 0:332 0:398 0:421 0:257 0:367 0:406

.0:005/ .0:000/ .0:000/

Implied ' �0:143 �0:200 �0:212 �0:133 �0:224 �0:245
.0:115/ .0:016/ .0:010/

Implied � 1:052 1:203 1:286 1:016 1:196 1:298

.0:000/ .0:000/ .0:000/

p-values are in parentheses; p-values for the implied parameters are computed using the delta
method. LR is the likelihood ratio test. PMP stands for posterior model probability

with ˇ0
1 D �ˇ0

2 D ˛= .1 � ˛/, 
 0
2 D �
 0

1 D ˛�= .1� ˛/ hence 
 0
1 C ˇ0

1� D 0 and

 0
2 C ˇ0

2� D 0. Specification (19) is the so-called constrained spatial Durbin model
which is formally equivalent to a spatial error model written in matrix form:

y D Xˇ0 C "Solow and "Solow D �W"Solow C " (20)
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where ˇ0 D Œˇ0
0; ˇ

0
1; ˇ

0
2� and "Solow is the same as above with ' D 0. Hence, we have

the textbook Solow growth model with spatial autocorrelation in the errors terms.
We estimate the spatial error model in the subsequent columns of Tables 1 and 2

using the maximum likelihood estimation method and the bayesian heteroskedas-
tic MCMC estimation method. We note that the coefficients have the predicted
signs and the spatial autocorrelation coefficient in error term, � , is also highly posi-
tively significant. We can test the non-linear restrictions with the common factor test
(Burridge 1981) using the likelihood ratio test and the posterior model probability
(PMP). The LR tests cannot reject the non-linear restrictions and the PMP tests con-
clude in favor of the restricted model against the unrestricted model. This direct test
also supports the absence of physical capital externalities.

Finally, we should note that these regressions based on the methodology pro-
posed by Mankiw et al. (1992) are valid only if the regions are at their steady states
or if deviations from steady state are random. So, as already shown by Jones (1997)
with international data, most of the regions in Europe have probably not reached
their steady-state level. Therefore, in order to study more precisely the distribution
of real income per worker in Europe, we must take into account out-of-steady-state
dynamics with a spatial conditional convergence.

4.2 A Spatial Conditional Convergence Model

The spatial convergence model cannot be estimated directly with (12). In this sec-
tion, we assume, with the results of the previous section, that there are no physical
capital externalities (' D 0). This implies that the matrix J reduces to a diagonal
matrix with the terms –(1� ˛) .nC g C ı/ on its diagonal.10

As a result, the resolution is now identical to the traditional problem in the growth
literature. Indeed, for each region i D 1, . . . ,N , the (6) can be rewritten for the per
worker income:11

d lnyi .t/

dt
D �

1 � �
� .1 � ˛/ .nC g C ı/ Œln yi .t/ � ln y�

i � (21)

The solution for lnyi .t/, subtracting ln yi .0/, the per worker real income at some
initial date, from both sides, is:

10 If the physical capital externalities are different from 0, Ertur and Koch (2007) propose to sim-
plify the system assuming that the gaps of economics with respect to their own steady states are
proportionate. They give a local version of the spatial ˇ-convergence model displayed in this paper.
11 We also suppose that the speed of convergence is identical for all regions as in the traditional
literature about conditional convergence (Barro and Sala-i-Martin 1991, 1992, 1995; Mankiw
et al. 1992). In fact, in the Solow growth model, each speed of convergence depends on each
country because of the population rates of growth ni in its expression. See Durlauf et al. (2001),
Ertur et al. (2006) or Ertur and Koch (2007) for local version of the Solow growth model.
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ln yi .t/ � lnyi .0/ D �
1 � e�œt � �

1 � �

1

œ
� �
1 � e�œt � lnyi .0/ (22)

C �
1 � e�œt � ln y�

i

The model predicts conditional convergence since the growth of per worker real
income is a negative function of the initial level of income per worker, but only after
controlling for the determinants of the steady-state. Rewrite (22) in matrix form:

ln y .t/ � ln y .0/ D �
1 � e�œt � ŒC � ln y .0/C ln y��

where lny(0) is the (N�1) vector of the logarithms of initial level of real income
per worker, ln y� is the (N�1) vector of the logarithms of real income per worker at
steady-state, C is the (N�1) vector of constant. Introducing (4) in matrix form:

ln y� D .I � �W/�1
�

1

1 � ˛C ˛

1 � ˛
S � ˛�

1 � ˛WS
	

where S is the (N�1) vector of logarithms of saving rate divided by the effective
rate of depreciation, premultiplying both sides by the inverse of .I � �W/�1 and
rearranging terms we obtain:

ln y .t/� ln y .0/ D �
1 � e�œt �

�
C C 1

1 � ˛
�

� �
1� e�œt � ln y .0/

C �
�
1 � e�œt � W ln y .0/C ˛

1 � ˛

�
1 � e�œt � S

� ˛�

1 � ˛

�
1 � e�œt � WS C �WŒln y .t/ � ln y .0/� (23)

Finally, dividing by T on both sides, we can rewrite this equation for a region i :

ln yi .t/ � lnyi .0/

T
D ˇ0 C ˇ1 ln yi .0/C ˇ2 ln si C ˇ3 ln .ni C g C ı/

C 
2

NX
j¤i

wij ln sj C 
3

NX
j¤i

wij ln
�
nj C g C ı

�

C 
1

NX
j¤i

wij ln yj .0/C �

NX
j¤i

wij
lnyj .t/ � ln yj .0/

T
C "i

(24)

where:

ˇ0 D �
1 � e�œT � �

�

1 � �

1

œ
C 1

1 � ˛
 .T /

�
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is a constant, and:

ˇ1 D �
�
1 � e�œT �

T
; ˇ2 D �ˇ3 D

�
1 � e�œT �

T

˛

1 � ˛ ; 
1 D
�
1 � e�œT �

T
�;


3 D �
2 D
�
1 � e�œT �

T

˛�

1 � ˛

In matrix form, we have the constrained spatial Durbin model which is estimated
as the model in the previous section. We note that this empirical specification is
very close to empirical studies in the recent growth literature using geographical
data and applying the appropriate spatial econometric tools (see for example Ertur
et al. 2007; Fingleton 1999; Le Gallo et al. 2003). However, the model in this paper
is directly linked to the theoretical model.

In the first column of Table 4, we estimate a model of unconditional conver-
gence. The results show that there is conditional convergence between European
regions since the coefficient on the initial level of per worker income is negative
and strongly significant. Therefore, there is tendency for poor regions to grow faster
on average than rich regions in Europe. Note that this result is different to the tradi-
tional result in the literature about the failure of income convergence in international
cross-countries (De Long 1988; Romer 1987; Mankiw et al. 1992). We estimate
the convergence predictions of the textbook Solow model in the second column
of Table 4. We report regressions of growth rate over the period 1977 to 2000 on
the logarithm of per worker income in 1977, controlling for investment rate and
growth of working-age population. The coefficient on the initial level of per worker
income is also significantly negative; in other words, there is strong evidence of
conditional convergence. The results also support the predicted signs of investment
rate and working-age population growth rate. However, the speed of convergence
associated with both estimations is close to 0.7% far below 2% usually found in the
convergence literature (Barro and Sala-i-Martin 1995 for instance) suggesting that

Table 4 OLS and spatial error model (convergence model)

Model OLS-un. OLS-cond.

Unrestricted regression
Constant 0.085 0.073

(0.000) (0.000)
lny1977 �0:007 �0:007

(0.000) (0.000)
ln si – 0.019

(0.000)
ln.ni C 0:05/ – �0:013

(0.105)
� – –
Implied œ 0.008 0.007

(0.000) (0.000)
p-values are in parentheses; p-values for the implied parame-
ters are computed using the delta method. The White hetero-
skedasticity consistent covariance matrix estimator is used for
statistical inference in the OLS estimation
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Table 5 OLS and spatial error model (convergence model)

Model SEM-MLE SEM-Bayesian Heter.
W10 W15 W20 W10 W15 W20

Unrestricted regression
Constant 0:114 0:115 0:114 0:109 0:109 0:105

.0:000/ .0:000/ .0:000/ .0:000/ .0:000/ .0:000/

lny1977 �0:011 �0:011 �0:011 0:009 �0:009 �0:009
.0:000/ .0:000/ .0:000/ .0:000/ .0:000/ .0:000/

ln si 0:028 0:027 0:025 0:026 0:026 0:023

.0:000/ .0:000/ .0:000/ .0:000/ .0:000/ .0:000/

ln.ni C 0:05/ �0:017 �0:017 �0:016 �0:011 �0:012 �0:011
.0:001/ .0:000/ .0:001/ .0:075/ .0:059/ .0:066/

� 0:668 0:736 0:762 0:589 0:650 0:661

.0:000/ .0:000/ .0:000/ .0:000/ .0:000/ .0:000/

Implied œ 0:012 0:013 0:013 0:010 0:010 0:010

.0:000/ .0:000/ .0:000/

See Table 5 for notes

the process of convergence is indeed very weak. SEM versions of the conditional
convergence model are in Table 5.

The textbook Solow model is misspecified since it omits variables due to regional
technological interdependence. Therefore, as in the previous section, the error terms
of the Solow model contains omitted information and are spatially autocorrelated.
In Table 6, we estimate the spatially augmented Solow model. Many aspects of the
results support this model. First, all the coefficients are significant and have the pre-
dicted signs. The spatial autocorrelation coefficient � is highly positively significant
which shows the importance of the role played by regional technological interde-
pendence on the convergence process. Second, the coefficient on the initial level of
per worker income is significantly negative, so there is strong evidence of condi-
tional convergence after controlling for those variables determining the steady state
according to the spatially augmented Solow model says. Third, the œ implied by the
coefficient on the initial level of income is about 1.4% which is closer to the value
usually found about the speed of convergence in the literature. However, the com-
mon factor test is strongly rejected whatever the test strategy (LR or PMP) or the
spatial weights matrix used. The theoretical non-linear constraints are then rejected
by the data, so we cannot conclude precisely about the assumption of the absence
of physical capital externalities (' D 0). The spatial error model implied by this
hypothesis fits the data well since all the coefficients are significant, have the pre-
dicted signs and the implied œ is about 1.2%, a value less by those implied by the
spatial Durbin model.

5 Conclusion

In this chapter, we considered a neoclassical growth model, which explicitly takes
into account technological interdependence between regions under the form of spa-
tial externalities. The qualitative predictions of this spatially augmented Solow
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Table 6 Spatial Durbin model (convergence model)

Model SDM-MLE SDM-Bayersian Heter.
W10 W15 W20 W10 W15 W20

Unrestricted regression
Constant �0:001 �0:036 �0:048 0:016 �0:014 �0:012

.0:979/ .0:415/ .0:389/ .0:310/ .0:368/ .0:405/

lny1977 �0:012 �0:012 �0:013 �0:010 �0:011 �0:010
.0:000/ .0:000/ .0:000/ .0:000/ .0:000/ .0:000/

ln si 0:031 0:027 0:024 0:032 0:023 0:026

.0:000/ .0:000/ .0:000/ .0:000/ .0:000/ .0:000/

ln.ni C 0:05/ �0:019 �0:018 �0:016 �0:008 �0:008 �0:007
.0:000/ .0:000/ .0:001/ .0:098/ .0:107/ .0:130/

W lny1977 0:010 �0:011 0:012 0:009 0:010 0:010

.0:000/ .0:000/ .0:000/ .0:000/ .0:000/ .0:000/

W ln sj �0:041 �0:041 �0:036 �0:040 �0:041 �0:038
.0:000/ .0:000/ .0:000/ .0:000/ .0:000/ .0:000/

W ln
�
nj C 0:05

�
0:015 0:006 0:002 0:012 0:005 0:007

.0:165/ .0:672/ .0:922/ .0:125/ .0:334/ .0:332/

� 0:447 0:459 0:499 0:500 0:483 0:519

.0:000/ .0:000/ .0:000/ .0:000/ .0:000/ .0:001/

Common factor test 18:665 16:584 10:323 rest./unrest.
(LR/PMP) .0:000/ .0:001/ .0:016/ 0:00=1:00 0:00=1:00 0:00=1:00

Implied œ 0:014 0:014 0:015 0:012 0:012 0:012

.0:000/ .0:000/ .0:000/

p-values are in parentheses; p-values for the implied parameters are computed using the delta
method. LR is the likelihood ratio test. PMP stands for posterior model probability

model provided a better understanding of the important role played by geograph-
ical location and neighborhood effects in the growth and convergence processes. In
addition, the econometric model leads to estimates of structural parameters close
to predicted values. The estimated capital share parameter is close to one-third,
but the physical capital externalities are not significant, so that we can conclude
to absence of Marshallian externalities in European Regions. This result is close to
those found in the literature as Glaeser et al. (1992) for instance. The strong value of
the technological parameter is consistent with the high spatial autocorrelation usu-
ally found in the regional science literature and also shows the important role played
by technological interdependence in the economic growth and income distribution
processes.

Our results are then important to better understand the phenomena of spatial auto-
correlation generally found in the spatial distribution of income and in the regional
economic growth and convergence. Moreover, the empirical consequences show
that the traditional econometric results are misspecified, since they omit spatially
autocorrelated errors and spatially autoregressive variable.



Growth and Spatial Dependence in Europe 481

Acknowledgements I would like to thank Kristian Behrens, Alain Desdoigts, Cem Ertur, Julie
Le Gallo, Diego Legros as well as participants at the Workshop on Spatial Econometrics, Kiel,
Germany, April 2005 and at the 45th European Congress of the Regional Science Association,
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