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Preface

Fast Software Encryption 2009 was the 16th in a series of workshops on symmet-
ric key cryptography. Starting from 2002, it is sponsored by the International
Association for Cryptologic Research (IACR). FSE 2009 was held in Leuven,
Belgium, after previous venues held in Cambridge, UK (1993, 1996), Leuven,
Belgium (1994, 2002), Haifa, Israel (1997), Paris, France (1998, 2005), Rome,
Italy (1999), New York, USA (2000), Yokohama, Japan (2001), Lund, Sweden
(2003), New Delhi, India (2004), Graz, Austria (2006), Luxembourg, Luxem-
bourg (2007), and Lausanne, Switzerland (2008).

The workshop’s main topic is symmetric key cryptography, including the
design of fast and secure symmetric key primitives, such as block ciphers, stream
ciphers, hash functions, message authentication codes, modes of operation and
iteration, as well as the theoretical foundations of these primitives.

This year, 76 papers were submitted to FSE including a large portion of
papers on hash functions, following the NIST SHA-3 competition, whose work-
shop was held just after FSE in the same location. From the 76 papers, 24 were
accepted for presentation. It is my pleasure to thank all the authors of all sub-
missions for the high-quality research, which is the base for the scientific value
of the workshop. The review process was thorough (each submission received
the attention of at least three reviewers), and at the end, besides the accepted
papers, the Committee decided that the merits of the paper “Blockcipher-Based
Hashing Revisited” entitled the authors to receive the best paper award. I wish
to thank all Committee members and the referees for their hard and dedicated
work.

The workshop also featured two invited talks. The first was given by Shay
Gueron about “Intel’s New AES Instructions for Enhanced Performance and Se-
curity” and the second was given by Matt Robshaw about “Looking Back at the
eSTREAM Project.” Along the presentation of the papers and the invited talks,
the traditional rump session was organized and chaired by Dan J. Bernstein.

I would like to thank Thomas Baignères for the iChair review management
software, which facilitated a smooth and easy review process, and Shai Halevi
for the Web Submission and Review Software for dealing with the proceedings.

A special thanks is due to the organizing team. The COSIC team from
Katholieke Universiteit Leuven, headed by Program Chair Bart Preneel, did
a wonderful job in hosting the workshop. The warm welcome that awaited more
than 200 delegates from all over the world was unblemished. The support given to
the FSE 2009 workshop by the sponsors Katholieke Universiteit Leuven, Price-
WaterhouseCoppers, and Oberthur technologies is also gratefully acknowledged.

May 2009 Orr Dunkelman
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Cube Testers and Key Recovery Attacks
on Reduced-Round MD6 and Trivium

Jean-Philippe Aumasson1,�, Itai Dinur2, Willi Meier1,��, and Adi Shamir2

1 FHNW, Windisch, Switzerland
2 Computer Science Department, The Weizmann Institute, Rehovot, Israel

Abstract. CRYPTO 2008 saw the introduction of the hash function
MD6 and of cube attacks, a type of algebraic attack applicable to crypto-
graphic functions having a low-degree algebraic normal form over GF(2).
This paper applies cube attacks to reduced round MD6, finding the full
128-bit key of a 14-round MD6 with complexity 222 (which takes less
than a minute on a single PC). This is the best key recovery attack an-
nounced so far for MD6. We then introduce a new class of attacks called
cube testers, based on efficient property-testing algorithms, and apply
them to MD6 and to the stream cipher Trivium. Unlike the standard
cube attacks, cube testers detect nonrandom behavior rather than per-
forming key extraction, but they can also attack cryptographic schemes
described by nonrandom polynomials of relatively high degree. Applied
to MD6, cube testers detect nonrandomness over 18 rounds in 217 com-
plexity; applied to a slightly modified version of the MD6 compression
function, they can distinguish 66 rounds from random in 224 complexity.
Cube testers give distinguishers on Trivium reduced to 790 rounds from
random with 230 complexity and detect nonrandomness over 885 rounds
in 227, improving on the original 767-round cube attack.

1 Introduction
1.1 Cube Attacks

Cube attacks [29, 9] are a new type of algebraic cryptanalysis that exploit im-
plicit low-degree equations in cryptographic algorithms. Cube attacks only re-
quire black box access to the target primitive, and were successfully applied
to reduced versions of the stream cipher Trivium [6] in [9]. Roughly speaking,
a cryptographic function is vulnerable to cube attacks if its implicit algebraic
normal form over GF(2) has degree at most d, provided that 2d computations
of the function is feasible. Cube attacks recover a secret key through queries
to a black box polynomial with tweakable public variables (e.g. chosen plaintext
or IV bits), followed by solving a linear system of equations in the secret key
variables. A one time preprocessing phase is required to determine which queries
should be made to the black box during the on-line phase of the attack. Low-
degree implicit equations were previously exploited in [11,27,21,10] to construct
� Supported by the Swiss National Science Foundation, project no. 113329.

�� Supported by GEBERT RÜF STIFTUNG, project no. GRS-069/07.

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 1–22, 2009.
c© International Association for Cryptologic Research 2009



2 J.-P. Aumasson et al.

distinguishers, and in [32, 12, 15] for key recovery. Cube attacks are related to
saturation attacks [17] and to high order differential cryptanalysis [16].

Basics. Let Fn be the set of all functions mapping {0, 1}n to {0, 1}, n > 0,
and let f ∈ Fn. The algebraic normal form (ANF) of f is the polynomial p over
GF(2) in variables x1, . . . , xn such that evaluating p on x ∈ {0, 1}n is equivalent
to computing f(x), and such that it is of the form1

2n−1∑
i=0

ai · xi1
1 xi2

2 · · ·xin−1
n−1 xin

n

for some (a0, . . . , a2n−1) ∈ {0, 1}2n

, and where ij denotes the j-th digit of the
binary encoding of i (and so the sum spans all monomials in x1, . . . , xn). A key
observation regarding cube attacks is that for any function f : {0, 1}n �→ {0, 1},
the sum (XOR) of all entries in the truth table∑

x∈{0,1}n

f(x)

equals the coefficient of the highest degree monomial x1 · · ·xn in the algebraic
normal form (ANF) of f . For example, let n = 4 and f be defined as

f(x1, x2, x3, x4) = x1 + x1x2x3 + x1x2x4 + x3 .

Then summing f(x1, x2, x3, x4) over all 16 distinct inputs makes all monomials
vanish and yields zero, i.e. the coefficient of the monomial x1x2x3x4. Instead,
cube attacks sum over a subset of the inputs; for example summing over the four
possible values of (x1, x2) gives

f(0, 0, x3, x4) + f(0, 1, x3, x4) + f(1, 0, x3, x4) + f(1, 1, x3, x4) = x3 + x4 ,

where (x3 + x4) is the polynomial that multiplies x1x2 in f :

f(x1, x2, x3, x4) = x1 + x1x2(x3 + x4) + x3 .

Generalizing, given an index set I � {1, . . . , n}, any function in Fn can be
represented algebraically under the form

f(x1, . . . , xn) = tI · p(· · · ) + q(x1, . . . , xn)

where tI is the monomial containing all the xi’s with i ∈ I, p is a polynomial
that has no variable in common with tI , and such that no monomial in the
polynomial q contains tI (that is, we factored f by the monomial tI). Summing
f over the cube tI for other variables fixed, one gets∑

I

tI · p(· · · ) + q(x1, . . . , xn) =
∑

I

tI · p(· · · ) = p(· · · ),

1 The ANF of any f ∈ Fn has degree at most n, since xd
i = xi, for xi ∈ GF(2), d > 0.
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that is, the evaluation of p for the chosen fixed variables. Following the termi-
nology of [9], p is called the superpoly of I in f . A cube tI is called a maxterm if
and only if its superpoly p has degree 1 (i.e., is linear but not a constant). The
polynomial f is called the master polynomial.

Given access to a cryptographic function with public and secret variables, the
attacker has to recover the secret key variables. Key recovery is achieved in two
steps, a preprocessing and an online phase, which are described below.

Preprocessing. One first finds sufficiently many maxterms tI of the master
polynomial. For each maxterm, one computes the coefficients of the secret vari-
ables in the symbolic representation of the linear superpoly p. That is, one
reconstructs the ANF of the superpoly of each tI . Reconstruction is achieved
via probabilistic linearity tests [5], to check that a superpoly is linear, and to
identify which variables it contains. The maxterms and superpolys are not key-
dependent, thus they need to be computed only once per master polynomial.

The main challenge of the cube attack is to find maxterms. We propose the
following simple preprocessing heuristic: one randomly chooses a subset I of k
public variables. Thereafter one uses a linearity test to check whether p is linear.
If the subset I is too small, the corresponding superpoly p is likely to be a
nonlinear function in the secret variables, and in this case the attacker adds a
public variable to I and repeats the process. If I is too large, the sum will be a
constant function, and in this case he drops one of the public variables from I
and repeats the process. The correct choice of I is the borderline between these
cases, and if it does not exist the attacker retries with a different initial I.

Online Phase. Once sufficiently many maxterms and the ANF of their super-
polys are found, preprocessing is finished and one performs the online phase.
Now the secret variables are fixed: one evaluates the superpoly’s p by summing
f(x) over all the values of the corresponding maxterm, and gets as a result a lin-
ear combination of the key bits (because the superpolys are linear). The public
variables that are not in the maxterm should be set to a fixed value, and to the
same value as set in the preprocessing phase.

Assuming that the degree of the master polynomial is d, each sum requires
at most 2d−1 evaluations of the derived polynomials (which the attacker obtains
via a chosen plaintext attack). Once enough linear superpolys are found, the key
can be recovered by simple linear algebra techniques.

1.2 MD6

Rivest presented the hash function MD6 [24, 25] as a candidate for NIST’s hash
competition2. MD6 shows originality in both its operation mode—a parametrized
quadtree [7]—and its compression function, which repeats hundreds of times a
simple combination of XOR’s, AND’s and shift operations: the r-round compres-
sion function of MD6 takes as input an array A0, . . . , A88 of 64-bit words, recur-
sively computes A89, . . . , A16r+88, and outputs the 16 words A16r+73, . . . , A16r+88:
2 See http://www.nist.gov/hash-competition
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for i = 89, . . . , 16r + 88
x ← Si ⊕ Ai−17 ⊕ Ai−89 ⊕ (Ai−18 ∧ Ai−21) ⊕ (Ai−31 ∧ Ai−67)
x ← x ⊕ (x � ri)
Ai ← x ⊕ (x 	 �i)

return A16r+73,...,16r+88

A step is one iteration of the above loop, a round is a sequence of 16 steps.
The values Si, ri, and �i are step-dependent constants (see Appendix A). MD6
generates the input words A0, . . . , A88 as follows:

1. A0, . . . , A14 contain constants (fractional part of
√

6; 960 bits)
2. A15, . . . , A22 contain a key (512 bits)
3. A23, A24 contain parameters (key length, root bit, digest size, etc.; 128 bits)
4. A25, . . . , A88 contain the data to be compressed (message block or chain

value; 4096 bits)

The proposed instances of MD6 perform at least 80 rounds (1280 steps) and at
most 168 (2688 steps). Resistance to “standard” differential attacks for collision
finding is proven for up to 12 rounds. The designers of MD6 could break at most
12 rounds with high complexity using SAT-solvers.

The compression function of MD6 can be seen as a device composed of 64 non-
linear feedback shift registers (NFSR’s) and a linear combiner: during a step the
64 NFSR’s are clocked in parallel, then linearly combined. The AND operators
(∧) progressively increase nonlinearity, and the shift operators provide wordwise
diffusion. This representation will make our attacks easier to understand.

1.3 Trivium

The stream cipher Trivium was designed by De Cannière and Preneel [6] and sub-
mitted as a candidate to the eSTREAM project in 2005. Trivium was eventually
chosen as one of the four hardware ciphers in the eSTREAM portofolio3. Re-
duced variants of Trivium underwent several attacks [23,19,20,31,32,10,12,22],
including cube attacks [9].

Trivium takes as input a 80-bit key and a 80-bit IV, and produces a keystream
after 1152 rounds of initialization. Each round corresponds to clocking three feed-
back shift registers, each one having a quadratic feedback polynomial. The best
result on Trivium is a cube attack [9] on a reduced version with 767 initialization
rounds instead of 1152.

1.4 The Contributions of This Paper

First we apply cube attacks to keyed versions of the compression function of
MD6. The MD6 team managed to break up to 12 rounds using a high complex-
ity attack based on SAT solvers. In this paper we show how to break the same
12 round version and recover the full 128-bit key with trivial complexity using

3 See http://www.ecrypt.eu.org/stream/
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Table 1. Summary of the best known attacks on MD6 and Trivium (“
√

” designates
the present paper)

#Rounds Time Attack Authors

MD6

12 hours inversion [25]
14 222 key recovery

√
18 217 nonrandomness

√
66� 224 nonrandomness

√

Trivium

736 233 distinguisher [10]
736� 230 key-recovery [9]
767� 236 key-recovery [9]
772 224 distinguisher

√
785 227 distinguisher

√
790 230 distinguisher

√
842 224 nonrandomness

√
885 227 nonrandomness

√
�: for a modified version where Si = 0.
�: cost excluding precomputation.

a cube attack, even under the assumption that the attacker does not know any-
thing about its design (i.e., assuming that the algorithm had not been published
and treating the function as a black box polynomial). By exploiting the known
internal structure of the function, we can improve the attack and recover the
128-bit key of a 14-round MD6 function in about 222 operations, which take less
than a minute on a single PC. This is the best key recovery attack announced
so far on MD6.

Then we introduce the new notion of cube tester, which combines the cube
attack with efficient property-testers, and can be used to mount distinguishers or
to detect nonrandomness in cryptographic primitives. Cube testers are flexible
attacks that are adaptable to the primitive attacked. Some cube testers don’t
require the function attacked to have a low degree, but just to satisfy some
testable property with significantly higher (or lower) probability than a random
function. To the best of our knowledge, this is one of the first explicit applications
of property-testing to cryptanalysis.

Applying cube testers to MD6, we can detect nonrandomness in reduced ver-
sions with up to 18 rounds in just 217 time. In a variant of MD6 in which all
the step constants Si are zero, we could detect nonrandomness up to 66 rounds
using 224 time. Applied to Trivium, cube testers give distinguishers on up to
790 in time 230, and detect nonrandomness on up to 885 rounds in 227. Table 1
summarizes our results on MD6 and Trivium, comparing them with the previous
attacks .

As Table 1 shows, all our announced complexities are quite low, and presum-
ably much better results can be obtained if we allow a complexity bound of 250
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(which is currently practical on a large network of PC’s) or even 280 (which
may become practical in the future). However, it is very difficult to estimate the
performance of cube attacks on larger versions without actually finding the best
choice of cube variables, and thus our limited experimental resources allowed us
to discover only low complexity attacks. On the other hand, all our announced
attacks are fully tested and verified, whereas other types of algebraic attacks are
often based on the conjectured independence of huge systems of linear equations,
which is impossible to verify in a realistic amount of time.

2 Key Recovery on MD6

2.1 Method

We describe the attack on reduced-round variants of a basic keyed version of the
MD6 compression function. The compression function of the basic MD6 keyed
version we tested uses a key of 128 bits, and outputs 5 words. Initially, we used
the basic cube attack techniques that treat the compression function as a black
box, and were able to efficiently recover the key for up to 12 rounds. We then
used the knowledge of the internal structure of the MD6 compression function
to improve on these results. The main idea of the improved attack is to choose
the public variables in the cube that we sum over so that they do not mix
with the key in the initial mixing rounds. In addition, the public variables that
do not belong to the cube are assigned predefined constant values that limit
the diffusion of the private variables and the cube public variables in the MD6
array for as many rounds as possible. This reduces the degree of the polynomials
describing the output bits as functions in the private variables and the cube
public variables, improving the performance of the cube attack.

The improved attack is based on the observation that in the feedback function,
Ai depends on Ai−17, Ai−89, Ai−18, Ai−31 and Ai−67. However, since Ai−18 is
ANDed with Ai−21, the dependency of Ai on Ai−18 can be eliminated regardless
of its value, by zeroing Ai−21 (assuming the value of Ai−21 can be controlled by
the attacker). Similarly, dependencies on Ai−21, Ai−31 or Ai−67 can be eliminated
by setting the corresponding ANDed word to zero. On the other hand, removing
the linear dependencies of Ai on Ai−17 or Ai−89 is not possible if their value
is unknown (e.g. for private variables), and even if their values are known (e.g.
for public variables), the elimination introduces another dependency, which may
contribute to the diffusion of the cube public variables (for example it is possible
to remove the dependency of Ai on Ai−89 by setting Ai−17 to the same value,
introducing the dependency of Ai−17 on Ai−89).

These observations lead to the conclusion that the attacker can limit the
diffusion of the private variables by removing as many quadratic dependencies
of the array variables on the private variables as possible. The basic MD6 keyed
version that we tested uses a 2-word (128-bit) key, which is initially placed in
A15 and A16. Note that the MD6 mode of operation dedicates a specific part of
the input to the key in words A15, . . . , A22 (512 bits in total).
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Table 2 describes the diffusion of the key into the MD6 compression function
array up to step 189 (the index of the first outputted word is 89).

In contrast to the predefined private variable indexes, the attacker can choose
the indexes of the cube public variables, and improve the complexity of the attack
by choosing such cube public variables that diffuse linearly to the MD6 array
only at the later stages of the mixing process. Quadratic dependencies of an array
word on cube public variables can be eliminated if the attacker can control the
value of the array word that is ANDed with the array word containing the cube
public variables. It is easy to verify that the public variable word that is XORed
back to the MD6 array at the latest stage of the mixing process is A71, which
is XORed in step 160 to A160. Thus, the array word with index 71 and words
with index just under 71, seem to be a good choice for the cube public variables.
Exceptions are A68 and A69 which are mixed with the key in steps 135 and 136
and should be zeroed. We tested several cubes, and the best preprocessing results
were obtained by choosing cube indexes from A65. One of the reason that A65
gives better results than several other words (e.g. A71) is that it is ANDed with
just 2 words before it is XORed again into the array in step 154, whereas A71
is ANDed with 4 words before step 170. This gives the attacker more freedom
to choose the values of the fixed public variables, and limit the diffusion of the
private and cube public variables for more rounds.Table 3 describes the diffusion
of A65 into the MD6 compression function array up to step 185 (the index of the
first outputted word is 89).

2.2 Results

We were able to prevent non-linear mixing of the cube public variables and
the private variables for more than 6 MD6 compression function rounds. This
was made possible by zeroing all the MD6 array words whose indexes are listed
in the third column of Table 2 and Table 3 (ignoring the special ”L” values).
As described in the previous section, we set the values of several of the 63
attacker controlled words, excluding A65 (from which the cube public variables
were chosen), to predefined constants that zero the words specified in the third
column. Public variables whose value does not affect the values of the listed
MD6 array words were set to zero. We were not able to limit the diffusion of the
cube public variables and the private variables as much when all the cube public
variable indexes were chosen from words other than A65.

We describe the cube attack results on the keyed MD6 version. The results
were obtained by running the preprocessing phase of the cube attack with the
special parameters describes above. We found many dense maxterms for 13-
round MD6, with associated cubes of size 5. Each of the maxterms passed at
least 100 linearity tests, thus the maxterm equations are likely to be correct for
most keys. During the online phase, the attacker evaluates the superpolys by
summing over the cubes of size 5. This requires a total of about 212 chosen IVs.
The total complexity of the attack is thus no more than 212.

We were able to find many constant superpolys for 14 rounds of MD6, with
associated cubes of size 7. However, summing on cubes of size 6 gives superpolys
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Table 2. Diffusion of the private variables into the MD6 compression function array in
the initial mixing steps. The third column specifies the MD6 array index of the word
that is ANDed with the key-dependent array word index in the step number specified
by the first column. The output of step i is inserted into Ai. If the key-dependent
array word is diffused linearly, then L is written instead. Note that once a dependency
of an MD6 array word on the private variables can be eliminated, it does not appear
any more as key-dependent (i.e. we assume that this dependency is eliminated by the
attacker).

Step Key-dependent array index ANDed index

104 15 L
105 16 L
121 104 L
122 105 L
122 104 101
123 105 102
125 104 107
126 105 108
135 104 68
136 105 69
138 121 L
139 122 L
139 121 118
140 122 119
142 121 124
143 122 125
152 121 85
153 122 86
155 138 L
156 139 L
156 138 135
157 139 136
159 138 141
160 139 142
169 138 102
170 139 103
171 104 140
172 105 141
172 155 L
173 156 L
173 155 152
174 156 153
176 155 158
177 156 159
186 155 119
187 156 120
187 121 157
188 122 158
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Table 3. Diffusion of A65 into the MD6 compression function array in the initial mixing
rounds (if the key-dependent array word is diffused linearly, then L is written instead)

Step A65-dependent array index Multiplicand index

96 65 29
132 65 101
154 65 L
171 154 L
172 154 151
175 154 157
185 154 118

of high degree in the key bits. In order to further eliminate most (but not all)
high degree terms from the superpolys obtained by summing on cubes of size
6, we added more public variable indexes from words other than A65. The best
results were obtained by choosing the remaining indexes from A32, A33, A49
and A50 (which are directly XORed with key bits in steps 121, 122, 138 and
139). Using this approach, we found many dense maxterms for 14-round MD6,
with associated cubes of size 15. Some of these results are listed in Table 5
(Appendix A), many more linearly independent maxterms can be easily obtained
by choosing other cube indexes from the same words listed in Table 5. During the
online phase, the attacker evaluates the superpolys by summing over the cubes
of size 15. This requires a total of about 222 chosen IVs. The total complexity
of the attack is thus no more than 222. In fact every IV gives many maxterms,
so the required total of chosen IVs is lower than 222, and the total complexity
of the attack is less than 222.

We were able to find many constant superpolys for 15 rounds of MD6, with
associated cubes of size 14. We were not able to find low degree superpolys for 15-
round MD6. However, it seems likely that low degree equation for 15-round MD6
can be obtained using approaches similar to the one we used to recover the key
for 14-round MD6. Hence we believe that cube attacks can efficiently recover the
key for 15-round MD6. Furthermore, we believe that cube key recovery attacks
will remain faster than exhaustive search for 18-19 MD6 rounds.

3 Cube Testers

3.1 Definitions

Recall that Fn denotes the set of all functions mapping {0, 1}n to {0, 1}, n > 0.
For a given n, a random function is a random element of Fn (we have |Fn| =
22n

). In the ANF of a random function, each monomial (and in particular, the
highest degree monomial x1 · · ·xn) appears with probability 1/2, hence a random
function has maximal degree of n with probability 1/2. Similarly, it has degree
(n − 2) or less with probability 1/2n+1. Note that the explicit description of a
random function can be directly expressed as a circuit with, in average, 2n−1
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gates (AND and XOR), or as a string of 2n bits where each bit is the coefficient
of a monomial (encoding the truth table also requires 2n bits, but hides the
algebraic structure).

Informally, a distinguisher for a family F � Fn is a procedure that, given a
function f randomly sampled from F� ∈ {F ,Fn}, efficiently determines which
one of these two families was chosen as F�. A family F is pseudorandom if and
only if there exists no efficient distinguisher for it. In practice, e.g. for hash
functions or ciphers, a family of functions is defined by a k-bit parameter of
the function, randomly chosen and unknown to the adversary, and the function
is considered broken (or, at least, “nonrandom”) if there exists a distinguisher
making significantly less than 2k queries to the function. Note that a distin-
guisher that runs in exponential time in the key may be considered as “efficient”
in practice, e.g. 2k−10.

We would like to stress the terminology difference between a distinguisher and
the more general detection of pseudorandomness, when speaking about crypto-
graphic algorithms; the former denotes a distinguisher (as defined above) where
the parameter of the family of functions is the cipher’s key, and thus can’t be
modified by the adversary through its queries; the latter considers part of the
key as a public input, and assumes as secret an arbitrary subset of the input
(including the input bits that are normally public, like IV bits). The detection
of nonrandomness thus does not necessarily correspond to a realistic scenario.
Note that related-key attacks are captured by neither one of those scenarios.

To distinguish F � Fn from Fn, cube testers partition the set of public
variables {x1, . . . , xn} into two complementary subsets:

– cube variables (CV)
– superpoly variables (SV)

We illustrate these notions with the example from §1.1: recall that, given

f(x1, x2, x3, x4) = x1 + x1x2x3 + x1x2x4 + x3 ,

we considered the cube x1x2 and called (x3 + x4) its superpoly, because

f(x1, x2, x3, x4) = x1 + x1x2(x3 + x4) + x3 .

Here the cube variables (CV) are x1 and x2, and the superpoly variables (SV)
are x3 and x4. Therefore, by setting a value to x3 and x4, e.g. x3 = 0, x4 = 1,
one can compute (x3 + x4) = 1 by summing f(x1, x2, x3, x4) for all possibles
choices of (x1, x2). Note that it is not required for a SV to actually appear in
the superpoly of the maxterm. For example, if f(x1, x2, x3, x4) = x1 + x1x2x3,
then the superpoly of x1x2 is x3, but the SV’s are both x3 and x4.

Remark. When f is, for example, a hash function, not all inputs should be
considered as variables, and not all Boolean components should be considered
as outputs, for the sake of efficiency. For example if f maps 1024 bits to 256 bits,
one may choose 20 CV and 10 SV and set a fixed value to the other inputs. These
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fixed inputs determine the coefficient of each monomial in the ANF with CV and
SV as variables. This is similar to the preprocessing phase of key-recovery cube
attacks, where one has access to all the input variables. Finally, for the sake
of efficiency, one may only evaluate the superpolys for 32 of the 256 Boolean
components of the output.

3.2 Examples

Cube testers distinguish a family of functions from random functions by testing
a property of the superpoly for a specific choice of CV and SV. This section
introduces this idea with simple examples. Consider

f(x1, x2, x3, x4) = x1 + x1x2x3 + x1x2x4 + x3

and suppose we choose CV x3 and x4 and SV x1 and x2, and evaluate the
superpoly of x3x4:

f(x1, x2, 0, 0) + f(x1, x2, 0, 1) + f(x1, x2, 1, 0) + f(x1, x2, 1, 1) = 0 ,

This yields zero for any (x1, x2) ∈ {0, 1}2, i.e. the superpoly of x3x4 is zero,
i.e. none of the monomials x3x4, x1x3x4, x2x3x4, or x1x2x3x4 appears in f . In
comparison, in a random function the superpoly of x3x4 is null with probability
only 1/16, which suggests that f was not chosen at random (indeed, we chose it
particularly sparse, for clarity). Generalizing the idea, one can deterministically
test whether the superpoly of a given maxterm is constant, and return “random
function” if and only if the superpoly is not constant. This is similar to the test
used in [10].

Let f ∈ Fn, n > 4. We present a probabilistic test that detects the presence
of monomials of the form x1x2x3xi . . .xj (e.g. x1x2x3, x1x2x3xn, etc.):

1. choose a random value of (x4, . . . , xn) ∈ {0, 1}n−4

2. sum f(x1, . . . , xn) over all values of (x1, x2, x3), to get∑
(x1,x2,x3)∈{0,1}3

f(x1, . . . , xn) = p(x4, . . . , xn)

where p is a polynomial such that

f(x1, . . . , xn) = x1x2x3 · p(x4, . . . , xn) + q(x1, . . . , xn)

where the polynomial q contains no monomial with x1x2x3 as a factor in its
ANF

3. repeat the two previous steps N times, recording the values of p(x4, . . . , xn)

If f were a random function, it would contain at least one monomial of the
form x1x2x3xi . . . xj with high probability; hence, for a large enough number of
repetitions N , one would record at least one nonzero p(x4, . . . , xn) with high
probability. However, if no monomial of the form x1x2x3xi . . .xj appears in the
ANF, p(x4, . . . , xn) always evaluates to zero.
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3.3 Building on Property Testers

Cube testers combine an efficient property tester on the superpoly, which is
viewed either as a polynomial or as a mapping, with a statistical decision rule.
This section gives a general informal definition of cube testers, starting with
basic definitions. A family tester for a family of functions F takes as input a
function f of same domain D and tests if f is close to F , with respect to a
bound ε on the distance

δ(f,F) = min
g∈F

|{x ∈ D, f(x) �= g(x)}|
|D| .

The tester accepts if δ(f,F) = 0, rejects with high probability if f and F are
not ε-close, and behaves arbitrarily otherwise. Such a test captures the notion of
property-testing, when a property is defined by belonging to a family of functions
P ; a property tester is thus a family tester for a property P .

Suppose one wishes to distinguish a family F � Fn from Fn, i.e., given a
random f ∈ F�, to determine whether F� is F or Fn (for example, in Trivium,
F may be a superpoly with respect to CV and SV in the IV bits, such that
each f ∈ F is computed with a distinct key). Then if F is efficiently testable
(see [26,14]), then one can use directly a family tester for F on f to distinguish
it from a random function.

Cube testers detect nonrandomness by applying property testers to super-
polys: informally, as soon as a superpoly has some “unexpected” property (that
is, is anormally structured) it is identified as nonrandom. Given a testable prop-
erty P � Fn, cube testers run a tester for P on the superpoly function f , and
use a statistical decision rule to return either “random” or “nonrandom”. The
decision rule depends on the probabilities |P|/|Fn| and |P ∩ F|/|F| and on a
margin of error chosen by the attacker. Roughly speaking, a family F will be
distinguishable from Fn using the property P if∣∣∣∣ |P|

|Fn| − |P ∩ F|
|F|

∣∣∣∣
is non-negligible. That is, the tester will determine whether f is significantly
closer to P than a random function. Note that the dichotomy between structure
(e.g. testable properties) and randomness has been studied in [30].

3.4 Examples of Testable Properties

Below, we give examples of efficiently testable properties of the superpoly, which
can be used to build cube testers (see [14] for a general characterization of
efficiently testable properties). We let C be the size of CV, and S be the size of
SV; the complexity is given as the number of evaluations of the tested function
f . Note that each query of the tester to the superpoly requires 2C queries to the
target cryptographic function. The complexity of any property tester is thus,
even in the best case, exponential in the number of CV.
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Balance. A random function is expected to contain as many zeroes as ones in
its truth table. Superpolys that have a strongly unbalanced truth table can thus
be distinguished from random polynomials, by testing whether it evaluates as
often to one as to zero, either deterministically (by evaluating the superpoly for
each possible input), or probabilistically (over some random subset of the SV).
For example, if CV are x1, . . . , xC and SV are xC+1, . . . , xn, the deterministic
balance test is

1. c ← 0
2. for all values of (xC+1, . . . , xn)
3. compute

p(xC+1, . . . , xn) =
∑

(x1,...,xC)

f(x1, . . . , xn) ∈ {0, 1}

4. c ← c + p(xC+1, . . . , xn)
5. return D(c) ∈ {0, 1}

where D is some decision rule. A probabilistic version of the test makes N < 2S

iterations, for random distinct values of (xC+1, . . . , xn). Complexity is respec-
tively 2n and N · 2C .

Constantness. A particular case of balance test considers the “constantness”
property, i.e. whether the superpoly defines a constant function; that is, it detects
either that f has maximal degree strictly less than C (null superpoly), or that f
has maximal degree exactly C (superpoly equals the constant 1), or that f has
degree strictly greater than C (non-constant superpoly). This is equivalent to
the maximal degree monomial test used in [10], used to detect nonrandomness
in 736-round Trivium.

Low Degree. A random superpoly has degree at least (S −1) with high proba-
bility. Cryptographic functions that rely on a low-degree function, however, are
likely to have superpolys of low degree. Because it closely relates to probabilisti-
cally checkable proofs and to error-correcting codes, low-degree testing has been
well studied; the most relevant results to our concerns are the tests for Boolean
functions in [1,28]. The test by Alon et al. [1], for a given degree d, queries the
function at about d · 4d points and always accepts if the ANF of the function
has degree at most k, otherwise it rejects with some bounded error probability.
Note that, contrary to the method of ANF reconstruction (exponential in S), the
complexity of this algorithm is independent of the number of variables. Hence,
cube testers based on this low-degree test have complexity which is independent
of the number of SV’s.

Presence of Linear Variables. This is a particular case of the low-degree test,
for degree d = 1 and a single variable. Indeed, the ANF of a random function
contains a given variable in at least one monomial of degree at least two with
probability close to 1. One can thus test whether a given superpoly variable
appears only linearly in the superpoly, e.g. for x1 using the following test similar
to that introduced in [5]:
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1. pick random (x2, . . . , xS)
2. if p(0, x2, . . . , xS) = p(1, x2, . . . , xS)
3. return nonlinear
4. repeat steps 1 to 3 N times
5. return linear

This test answers correctly with probability about 1 − 2−N , and computes N ·
2C+1 times the function f . If, say, a stream cipher is shown to have an IV bit
linear with respect to a set of CV in the IV, independently of the choice of the
key, then it directly gives a distinguisher.

Presence of Neutral Variables. Dually to the above linearity test, one can
test whether a SV is neutral in the superpoly, that is, whether it appears in at
least one monomial. For example, the following algorithm tests the neutrality of
x1, for N ≤ 2S−1:

1. pick random (x2, . . . , xS)
2. if p(0, x2, . . . , xS) �= p(1, x2, . . . , xS)
3. return not neutral
4. repeat steps 1 to 3 N times
5. return neutral

This test answers correctly with probability about 1 − 2−N and runs in time
N ·2C . For example, if x1, x2, x3 are the CV and x4, x5, x6 the SV, then x6 is neu-
tral with respect to x1x2x3 if the superpoly p(x4, x5, x6) satisfies p(x4, x5, 0) =
p(x4, x5, 1) for all values of (x4, x5). A similar test was implicitly used in [12],
via the computation of a neutrality measure.

Remarks. Except low degree and constantness, the above properties do not
require the superpoly to have a low degree to be tested. For example if the
maxterm x1x2 has the degree-5 superpoly

x3x5x6 + x3x5x6x7x8 + x5x8 + x9 ,

then one can distinguish this superpoly from a random one either by detecting
the linearity of x9 or the neutrality of x4, with a cost independent on the degree.
In comparison, the cube tester suggested in [9] required the degree to be bounded
by d such that 2d is feasible.

Note that the cost of detecting the property during the preprocessing is larger
than the cost of the on-line phase of the attack, given the knowledge of the
property. For example, testing that x1 is a neutral variable requires about N ·2C

queries to the function, but once this property is known, 2C queries are sufficient
to distinguish the function from a random one with high probability.

Finally, note that tests based on the nonrandom distribution of the monomi-
als [11, 27, 21] are not captured by our definition of cube testers, which focus
on high-degree terms. Although, in principle, there exist cases where the former
tests would succeed while cube testers would fail, in practice a weak distribution
of lower-degree monomials rarely comes with a good distribution of high-degree
ones, as results in [10] and of ourselves suggest.
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4 Cube Testers on MD6

We use cube testers to detect nonrandom properties in reduced-round versions
of the MD6 compression function, which maps the 64-bit words A0, . . . , A88
to A16r+73, . . . , A16r+88, with r the number of rounds. From the compression
function f : {0, 1}64×89 �→ {0, 1}64×16, our testers consider families of functions
{fm} where a random fi : {0, 1}64×89−k �→ {0, 1}64×16 has k input bits set to a
random k-bit string. The attacker can thus query fi, for a randomly chosen key
i, on (64 × 89 − k)-bit inputs.

The key observations leading to our improved attacks on MD6 are that:
1. input words appear either linearly (as Ai−89 or Ai−17) or nonlinearly (as

A18, A21, A31, or A67) within a step
2. words A0, . . . , A21 are input once, A22, . . . , A57 are input twice, A58, . . . , A67

are input three times, A68, A69, A70 four times, A71 five times, and A72, . . . ,
A88 six times

3. all input words appear linearly at least once (A0, . . . , A71), and at most twice
(A72, . . . , A88)

4. A57 is the last word input (at step 124, i.e. after 2 rounds plus 3 steps)
5. A71 is the last word input linearly (at step 160, i.e. after 4 rounds plus 7

steps)
6. differences in a word input nonlinearly are “absorbed” if the second operand

is zero (e.g. Ai−18 ∧ Ai−21 = 0 if Ai−18 is zero, for any value of Ai−21)

Based on the above observations, the first attack (A) makes only black-box
queries to the function. The second attack (B) can be seen as a kind of related-
key attack, and is more complex and more powerful. Our best attacks, in terms
of efficiency and number of rounds broken, were obtained by testing the balance
of superpolys.

4.1 Attack A

This attack considers CV, SV, and secret bits in A71: the MSB’s of A71 contain
the CV, the LSB’s contain the 30 secret bits, and the 4 bits “in the middle” are
the SV. The other bits in A71 are set to zero. To minimize the density and the
degree of the ANF, we set Ai = Si for i = 0, . . . , 57 in order to eliminate the
constants Si from the expressions, and set Ai = 0 for i = 58, . . . , 88 in order to
eliminate the quadratic terms by “absorbing” the nonzero A22, . . . , A57 through
AND’s with zero values.

The attack exploits the fact that A71 is the last word input linearly. We set
initial conditions on the message such that modifications in A71 are only effective
at step 160, and so CV and SV are only introduced (linearly) at step 160: in
order to absorb A71 before step 160, one needs A68 = A74 = A35 = A107 = 0,
respectively for steps 89, 92, 102, and 138.

Given the setup above, the attack evaluates the balance of the superpoly for
each of the 1024 output components, in order to identify superpolys that are
constant for a large majority of inputs (SV). These superpolys may be either
constants, or unbalanced nonlinear functions. Results for reduced and modified
MD6 are given in subsequent sections.
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4.2 Attack B

This attack considers CV, SV, and secret bits in A54, at the same positions as
in Attack A. Other input words are set by default to Si for A0, . . . , A47, and to
zero otherwise.

The attack exploits the fact that A54 and A71 are input linearly only once, and
that both directly interact with A143. We set initial conditions on the message
such that CV and SV are only effective at step 232. Here are the details of this
attack:

– step 143: input variables are transfered linearly to A143

– step 160: A143 is input linearly; to cancel it, and thus to avoid the introduc-
tion of the CV and SV in the ANF, one needs A71 = S160 ⊕ A143

– step 92: A71 is input nonlinearly; to cancel it, in order to make A138 inde-
pendent of A143, we need A74 = 0

– step 138: A71 is input nonlinearly; to cancel it, one needs A107 = 0
– step 161: A143 is input nonlinearly; to cancel it, one needs A140 = 0
– step 164: A143 is input nonlinearly; to cancel it, one needs A146 = 0
– step 174: A143 is input nonlinearly; to cancel it, one needs A107 = 0 (as for

step 138)
– step 210: A143 is input nonlinearly; to cancel it, one needs A179 = 0
– step 232: A143 is input linearly, and introduces the CV and SV linearly into

the ANF

To satisfy the above conditions, one has to choose suitable values of A1, A18,
A51, A57, A74. These values are constants that do not depend on the input in
A54.

Given the setup above, the attack evaluates the balance of the superpoly for
each of the 1024 output components, in order to identify superpolys that are
constant for large majority of inputs (SV). Results for reduced and modified
MD6 are given in §4.3.

4.3 Results

In this subsection we report the results we obtained by applying attacks A and
B to reduced versions of MD6, and to a modified version of MD6 that sets all
the constants Si to zero. Recall that by using C CV’s, the complexity of the
attack is about 2C computations of the function. We report results for attacks
using at most 20 CV (i.e. doable in less than a minute on a single PC):

– with attack A, we observed strong imbalance after 15 rounds, using 19 CV.
More precisely, the Boolean components corresponding to the output bits
in A317 and A325 all have (almost) constant superpoly. When all the Si

constants are set to 0, we observed that all the outputs in A1039 and A1047
have (almost) constant superpoly, i.e. we can break 60 rounds of this modified
MD6 version using only 14 CV’s.
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– with attack B, we observed strong imbalance after 18 rounds, using 17 CV’s.
The Boolean components corresponding to the output bits in A368 and A376
all have (almost) constant superpoly. When Si = 0, using 10 CV’s, one finds
that all outputs in A1114 and A1122 have (almost) constant superpoly, i.e. one
breaks 65 rounds. Pushing the attack further, one can detect nonrandomness
after 66 rounds, using 24 CV’s.

The difference of results between the original MD6 and the modified case in which
Si = 0 comes from the fact that a zero Si makes it possible to keep a sparse state
during many rounds, whereas a nonzero Si forces the introduction of nonzero
bits in the early steps, thereby quickly increasing the density of the implicit
polynomials, which indirectly facilitates the creation of high degree monomials.

5 Cube Testers on Trivium

Observations in [9, Tables 1,2,3] suggest nonrandomness properties detectable
in time about 212 after 684 rounds, in time 224 after 747 rounds, and in time 230

after 774 rounds. However, a distinguisher cannot be directly derived because
the SV used are in the key, and thus cannot be chosen by the attacker in an
attack where the key is fixed.

5.1 Setup

We consider families of functions defined by the secret key of the cipher, and
where the IV corresponds to public variables. We first used the 23-variable index
sets identified in [8, Table 2]; even though we have not tested all entries, we
obtained the best results using the IV bits (starting from zero)

{3, 4, 6, 9, 13, 17, 18, 21, 26, 28, 32, 34, 37, 41, 47, 49, 52, 58, 59, 65, 70, 76, 78} .

For this choice of CV, we choose 5 SV, either

– in the IV, at positions 0, 1, 2, 35, 44 (to have a distinguisher), or
– in the key, at positions 0, 1, 2, 3, 4 (to detect nonrandomness)

For experiments with 30 CV, we use another index set discovered in [8]:

{1, 3, 6, 12, 14, 18, 22, 23, 24, 26, 30, 32, 33, 35, 36, 39, 40, 44, 47, 49, 50, 53, 59, 60, 61, 66, 68, 69, 72, 75} .

IV bits that are neither CV nor SV are set to zero, in order to minimize the degree
and the density of the polynomials generated during the first few initialization
steps. Contrary to MD6, we obtain the best results on Trivium by testing the
presence of neutral variables. We look for neutral variables either for a random
key, or for the special case of the zero key, which is significantly weaker with
respect to cube testers.

In addition to the cubes identified in [8, Table 2], we were able to further
improve the results by applying cube testers on carefully chosen cubes, where the
indexes are uniformly spread (the distance between neighbors is at least 2). These
cubes exploit the internal structure of Trivium, where non linear operations are
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only performed on consecutive cells. The best results were obtained using the
cubes below:

{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 33, 36, 39, 42, 45, 48, 51, 60, 63, 66, 69, 72, 75, 79}
{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 79}

{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 79}

5.2 Results

We obtained the following results, by testing the neutrality of the SV in the
superpoly:

– with 23 CV, and SV in the IV, we found a distinguisher on up to 749 rounds
(runtime 223); SV 0, 1, 2, and 3 are neutral after 749 initialization rounds.
Using the zero key, neutral variables are observed after 755 rounds (SV 0, 1
are neutral).

– with 23 CV, and SV in the key, we observed nonrandomness after 758 initial-
ization rounds (SV 1, 2, 3 are neutral). Using the zero key, nonrandomness
was observed after 761 rounds (SV 0 is neutral).

– with 30 CV, and SV in the key, we observed nonrandomness after 772 initial-
ization rounds (SV 0, 2, 4 are neutral). Using the zero key, nonrandomness
was observed after 782 rounds (SV 2, 3, 4 are neutral).

With the the new chosen cubes we obtain the following results:

– with 24 CV, we observe that the resultant superpoly after 772 initialization
rounds is constant, hence we found a distinguisher on up to 772 rounds.
Using the neutrality test, for the zero key, we detected nonrandomness over
up to 842 rounds (the 4 first key bits are neutral).

– with 27 CV, we observe that the resultant superpoly after 785 initialization
rounds is constant, hence we found a distinguisher on up to 785 rounds.
Using the neutrality test, for the zero key, we detected nonrandomness over
up to 885 rounds (bits 0, 3, and 4 of the key are neutral).

– with 30 CV, we observe that the resultant superpoly after 790 initialization
rounds is constant, hence we found a distinguisher for Trivium with up to
790 rounds.

Better results are obtained when the SV’s are in the key, not the IV; this is
because the initialization algorithm of Trivium puts the key and the IV into
two different registers, which make dependency between bits in a same register
stronger than between bits in different registers.

In comparison, [10], testing the constantness of the superpoly, reached 736
rounds with 33 CV. The observations in [8], obtained by testing the linearity of
SV in the key, lead to detectable nonrandomness on 748 rounds with 23 CV, and
on 771 rounds with 30 CV.
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6 Conclusions

We applied cube attacks to the reduced-round MD6 compression function, and
could recover a full 128-bit key on 14-round MD6 with a very practical complex-
ity of 222 evaluations. This outperforms all the attacks obtained by the designers
of MD6.

Then we introduced the notion of cube tester, based on cube attacks and
on property-testers for Boolean functions. Cube testers can be used to mount
distinguishers or to simply detect nonrandomness in cryptographic algorithms.
Cube testers do not require large precomputations, and can even work for high
degree polynomials (provided they have some “unexpected” testable property).

Using cube testers, we detected nonrandomness properties after 18 rounds of
the MD6 compression function (the proposed instances have at least 80 rounds).
Based on observations in [9], we extended the attacks on Trivium a few more
rounds, giving experimentally verified attacks on reduced variants with up to
790 rounds, and detection of nonrandomness on 885 rounds (against 1152 in the
full version, and 771 for the best previous attack).

Our results leave several issues open:

1. So far cube attacks have resulted from empirical observations, so that one
could only assess the existence of feasible attacks. However, if one could
upper-bound the degree of some Boolean component (e.g. of MD6 or Triv-
ium) after a higher number of rounds, then one could predict the existence
of observable nonrandomness (and one may build distinguishers based on
low-degree tests [1]). The problem is closely related to that of bounding the
degree of a nonlinear recursive Boolean sequence which, to the best of our
knowledge, has remained unsolved.

2. Low-degree tests may be used for purposes other than detecting nonrandom-
ness. For example, key-recovery cube attacks may be optimized by exploit-
ing low-degree tests, to discover low-degree superpolys, and then reconstruct
them. Also, low-degree tests for general fields [13] may be applicable to hash
functions based on multivariate systems [4], which remain unbroken over
fields larger than GF(2) [2].

3. Our attacks on MD6 detect nonrandomness of reduced versions of the com-
pression function, and even recover a 128-bit key. It would be interesting to
extend these attacks to a more realistic scenario, e.g. that would be applica-
ble to the MD6 operation mode, and/or to recover larger keys.

4. One may investigate the existence of cube testers on other primitives that are
based on low-degree functions, like RadioGatún, Panama, the stream cipher
MICKEY, and on the SHA-3 submissions ESSENCE [18], and Keccak [3]. We
propose to use cube attacks and cube testers as a benchmark for evaluating
the algebraic strength of primitives based on a low-degree component, and
as a reference for choosing the number of rounds. Our preliminary results on
Grain-128 outperform all previous attacks, but will be reported later since
they are still work in progress.
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A Details on MD6

The word Si is a round-dependent constant: during the first round (i.e., the first
16 steps) Si = 0123456789abcdef, then at each new round it is updated as

Si ← (S0 	 1) ⊕ (S0 � 63) ⊕ (Si−1 ∧ 7311c2812425cfa).

The shift distances ri and �i are step-dependent constants, see Table 4.

Table 4. Distances of the shift operators used in MD6, as function of the step index
within a round

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ri 10 5 13 10 11 12 2 7 14 15 7 13 11 7 6 12
�i 11 24 9 16 15 9 27 15 6 2 29 8 15 5 31 9
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The number of rounds r depends on the digest size: for a d-bit digest, MD6
makes 40 + d/4 rounds.

Table 5. Examples of maxterm equations for 14-round MD6, with respect specified
cube are listed

Maxterm equation Output index

A0
15 + A1

15 + A3
15 + A4

15 + A6
15 + A8

15 + A9
15 + A14

15 + A20
15 + A21

15 O0
0

+A22
15 + A26

15 + A28
15 + A32

15 + A37
15 + A38

15 + A40
15 + A41

15 + A43
15 + A44

15
+A47

15 + A48
15 + A49

15 + A50
15 + A56

15 + A58
15 + A60

15 + A61
15 + A62

15 + A63
15

+A1
16 + A2

16 + A3
16 + A4

16 + A5
16 + A10

16 + A11
16 + A12

15 + A13
16 + A15

16
+A16

16 + A17
16 + A19

16 + A21
16 + A22

16 + A24
16 + A25

16 + A27
16 + A28

16 + A29
16

+A31
16 + A32

16 + A36
16 + A37

16 + A38
16 + A39

16 + A43
16 + A44

16 + A48
16 + A49

16
+A50

16 + A52
16 + A53

16 + A55
16 + A57

16 + A60
16 + A61

16 + A63
16 + A8

16 + 1

A0
15 + A1

15 + A3
15 + A6

15 + A8
15 + A10

15 + A11
15 + A14

15 + A16
15 + A21

15 O1
0

+A22
15 + A27

15 + A28
15 + A32

15 + A34
15 + A35

15 + A36
15 + A37

15 + A44
15 + A45

15
+A48

15 + A50
15 + A54

15 + A55
15 + A57

15 + A58
15 + A59

15 + A60
15 + A63

15 + A0
16

+A2
16 + A5

16 + A6
16 + A7

16 + A9
16 + A10

16 + A11
16 + A13

16 + A16
16 + A17

16
+A18

16 + A19
16 + A20

16 + A21
16 + A23

16 + A30
16 + A35

16 + A36
16 + A39

16 + A42
16

+A43
16 + A44

16 + A47
16 + A48

16 + A49
16 + A50

16 + A51
16 + A53

16 + A59
16 + A61

16
+A50

16 + A51
16 + A53

16 + A59
16 + A61

16 + 1
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Abstract. We describe a state recovery attack on the X-FCSR-256
stream cipher of total complexity at most 257.6. This complexity is achiev-
able by requiring 249.3 output blocks with an amortized calculation effort
of at most 28.3 table lookups per output block using no more than 233

table entries of precomputational storage.
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1 Introduction

A common building block in stream ciphers is the Linear Feedback Shift Register
(LFSR). The bit sequence produced by an LFSR has several cryptographically
interesting properties, such as long period, low autocorrelation and balanced-
ness. LFSRs are inherently linear, so additional building blocks are needed in
order to introduce nonlinearity. A Feedback with Carry Shift Register (FCSR)
is an alternative construction, similar to an LFSR, but with a distinguishing
feature, namely that the update of the register is in itself nonlinear. The idea of
using FCSRs to generate sequences for cryptographic applications was initially
proposed by Klapper and Goresky in [8].

Recently, we have seen several new constructions based on the concept of FC-
SRs. The class of F-FCSRs, Filtered FCSRs, was proposed by Arnault and Berger
in [1]. These constructions were cryptanalyzed in [7], using a weakness in the ini-
tialization function. Also a time/memory tradeoff attack was demonstrated in the
same paper.

Another similar construction targeting hardware environments is F-FCSR-H,
which was submitted to the eSTREAM project [4]. F-FCSR-H was later up-
dated to F-FCSR-H v2 because of a weakness demonstrated in [6]. F-FCSR-H
v2 was one of the four ciphers targeting hardware that were selected for the
final portfolio at the end of the eSTREAM project. Inspired by the success,
Arnault, Berger, Lauradoux and Minier presented a new construction at In-
docrypt 2007, now targeting software implementations. It is named X-FCSR [3].
The main idea was to use two FCSRs instead of one, and to also include an
additional nonlinear extraction function inspired by the Rijndael round func-
tion. Adding this would allow more output bits per register update and thus
increase throughput significantly. Two versions, X-FCSR-256 and X-FCSR-128,

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 23–37, 2009.
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were defined producing 256 and 128 bits per register update, respectively. Ac-
cording to the specification X-FCSR-256 runs at 6.5 cycles/byte and X-FCSR-
128 runs at 8.2 cycles/byte. As this is comparable to the fastest known stream
ciphers, it makes them very interesting in software environments. For the secu-
rity of X-FCSR-256 and X-FCSR-128 we note that there have been no published
attacks faster than exhaustive key search.

In [5] a new property inside the FCSR was discovered, namely that the update
was sometimes temporarily linear for a number of clocks. This resulted in a very
efficient attack on F-FCSR-H v2 and led to its removal from the eSTREAM
portfolio.

In this paper we present a state recovery attack on X-FCSR-256. We use
the observation in [5]. The fact that two registers are used, together with the
extraction function, makes it impossible to immediately use this observation to
break the cipher. However, several additional non-trivial observations will allow
a successful cryptanalysis. The keystream is produced using state variables 16
time instances apart. By considering consecutive output blocks, and assuming
that the update is linear, we are able to partly remove the dependency of several
state variables. A careful analysis of the extraction function then allows us to
treat parts of the state independently and brute force these parts separately,
leading to an efficient state recovery attack. It is shown that the state can be
recovered using 249.3 keystream output blocks and a computational complexity
of 28.3 table lookups per output block. Note that table lookup operations are
much cheaper than testing a single key.

The paper is organized as follows. In Section 2 we give an overview of the
FCSR construction in general and the X-FCSR-256 stream cipher in particular.
In Section 3 we describe the different parts of the attack. Each part of the attack
is described in a separate subsection and in order to simplify the description
we will deliberately base the attack on assumptions and methods that are not
optimal for the cryptanalyst. Then, additional observations and more efficient
algorithms are discussed in Section 4, leading to a more efficient attack. Finally,
some concluding remarks are given in Section 5.

2 Background

This section will review the necessary prerequisites for understanding the de-
tails of the attack. FCSRs are presented separately as they are used as core
components of the X-FCSR-256 stream cipher. The X-FCSR-256 stream cipher
itself is outlined in sufficient detail for understanding the presented attack. For
remaining details, the reader is referred to the specification [3].

2.1 Recalling the FCSR Automaton

An FCSR is a device that computes the binary expansion of a 2-adic number
p/q, where p and q are some integers, with q odd. For simplicity one may assume
that q < 0 < p < |q|. Following the notation from [2], the size n of the FCSR is
the bitlength of |q| less one. In stream ciphers, p usually depends on the secret
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key and the IV, and q is a public parameter. The choice of q induces a number of
FCSR properties, the most important one being that it completely determines
the length of the period T of the keystream.

The FCSR automaton as described in [2] efficiently implements generation
of a 2-adic expansion sequence. It contains two registers, a main register M
and a carries register C. The main register M contains n cells. Let M =
(mn−1, mn−2, . . . , m1, m0) and associate M to the integer M =

∑n−1
i=0 mi · 2i.

Let the binary representation of the positive integer d = (1 + |q|)/2 be given
by d =

∑n−1
i=0 di · 2i. The carries register contains l active cells, l + 1 being the

number of nonzero binary digits di in d. The active carry cells are the ones in
the interval 0 ≤ i ≤ n − 2 for which di = 1, and dn−1 must always be set.

Write the carries register as C = (cn−2, cn−3, . . . , c1, c0) and associate it to
the integer C =

∑n−2
i=0 ci · 2i. Note that l of the bits in C are active and the

remaining ones are set to zero.
Representing the integer p as

∑n−1
i=0 pi · 2i where pi ∈ {0, 1}, the 2-adic ex-

pansion of the number p/q is computed by the automaton given in Figure 1.

pn−1 � pn−2 � � p1 � p0 ��

�
�

�

�dn−1 �
�

�

�dn−2 �
�

�

�dn−3 �
�

�

�d1 �
�

�

�d0

Fig. 1. Automaton computing the 2-adic expansion of p/q

The automaton is referred to as the Galois representation and it is very sim-
ilar to the Galois representation of an LFSR. For all defined variables we also
introduce a time index t, letting M(t) and C(t) denote the content of M and C
at time t, respectively.

The addition with carry operation, denoted � in Figure 1, has a one bit
memory, the carry. It operates on three inputs in total, two external inputs and
the carry bit. It outputs the XOR of the external inputs and sets the new carry
value to one if and only if the integer sum of all three inputs is two or three.

In Figure 2 we specifically illustrate (following [2]) the case q = −347, which
gives us d = 174 = (10101110)binary. The X-FCSR family of stream ciphers uses
two FCSR automatons at the core of their construction. For the purposes of this
paper it is sufficient to recall the FCSR automaton as implemented in Figure 1
and Figure 2.

The FCSR automaton has n bits of memory in the main register and l bits
in the carries register for a total of n + l bits. If (M, C) is our state, then many
states are equivalent in the sense that starting in equivalent states will produce
the same output. As the period is |q| − 1 ≈ 2n, the number of states equivalent
to a given state is in the order of 2l.
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� m7 � m6 �
�

�
�

m5 � m4 �
�

�
�

m3 �
�

�
�

m2 �
�

�
�

m1 � m0 �

c5 c3 c2 c1

d 1

0

0

0

1 0

0

1 1 1 0

0

M(t)

C(t)

Fig. 2. Example of an FCSR

2.2 Brief Summary of X-FCSR-256 Prerequisites

X-FCSR-256 admits a secret key of 128-bit length and a public initialization
vector (IV) of bitlength ranging from 64 to 128 as input. The core of the X-
FCSR stream cipher consists of two 256-bit FCSRs with main registers Y and
Z which are clocked in opposite directions.

Y (t) = (yt+255, . . . , yt+2, yt+1, yt), clocked →
Z(t) = (zt−255, . . . , zt−2, zt−1, zt), clocked ←

X-FCSR combines Y and Z to form a 256-bit block X(t) at each discrete time
instance t according to

X(t) = Y (t) ⊕ Z(t),

where ⊕ denotes bitwise XOR, so that

X(0) = (y255 ⊕ z−255, . . . , y2 ⊕ z−2, y1 ⊕ z−1, y0 ⊕ z0)
X(1) = (y256 ⊕ z−254, . . . , y3 ⊕ z−1, y2 ⊕ z0, y1 ⊕ z1)
X(2) = (y257 ⊕ z−253, . . . , y4 ⊕ z0, y3 ⊕ z1, y2 ⊕ z2)
. . .

Further define

W (t) = round256(X(t)) = mix(sr(sl(X(t))), (1)

where sl, sr and mix mimic the general structure of the AES round function;

sl is an s-box function applied at byte level,
sr is a row-shifting function operating on bytes,
mix is a column mixing function operating on bytes.

The round functions operate on a 256-bit input, as defined in (1). The general
idea behind the round function operations becomes apparent if one considers
how the functions operate on the 256-bit input when it is viewed as a 4 × 8
matrix A at byte level. Let the byte entries of A be denoted ai,j with 0 ≤ i ≤ 3
and 0 ≤ j ≤ 7.
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The first transformation layer consists of an S-box function sl applied at byte
level. The chosen S-box has a number of attractive properties that are described
in [3].

The second operation shifts the rows of A, and sr is identical to the row
shifting operation of Rijndael. sr shifts (i.e., rotates) each row of A to the left
at byte level, shifting the first, second, third and fourth rows 0, 1, 3 and 4 bytes
respectively.

The purpose of the third operation, mix, is to mix the columns of A. This is
also done at byte level according to

mix256

⎛⎜⎜⎝
a0,j

a1,j

a2,j

a3,j

⎞⎟⎟⎠ =

⎛⎜⎜⎝
a3,j ⊕ a0,j ⊕ a1,j

a0,j ⊕ a1,j ⊕ a2,j

a1,j ⊕ a2,j ⊕ a3,j

a2,j ⊕ a3,j ⊕ a0,j

⎞⎟⎟⎠
for every column j of A.

Note that sl, sr and mix are all both invertible and byte oriented. Finally,
the 256 bits of keystream that are output at time t are given by

out(t) = X(t) ⊕ W (t − 16). (2)

This last equation introduces a time delay of 16 time units. The first block of
keystream is produced at t = 0 and the key schedule takes care of defining W (t)
for t < 0.

3 Describing the Attack

3.1 Idea of Attack

A conceptual basis for understanding the attack is obtained by dividing it into
the four parts listed below. Each part has been attributed its own section.

• LFSRization of FCSRs
• Combining Output Blocks
• Analytical Unwinding
• Brute-forcing the State

In Section 3.2 we describe a trick we call “LFSRization of FCSRs”. We explain
how an observation in [5] can be used to allow treating FCSRs as LFSRs. There
is a price to pay for introducing this simplification, of course, but the penalty is
not as severe as one may expect.

We observe that we can combine a number of consecutive output blocks to
effectively remove most of the dependency on X(t) introduced in (2). The LF-
SRization process works in our favor here as it provides a linear relationship
between FCSR variables. Output block combination is explored in Section 3.3.

Once a suitable combination Q of output blocks is defined, state recovery is
the next step. This is done in two parts. In Section 3.4 we explain how to work



28 P. Stankovski, M. Hell, and T. Johansson

with Q analytically to transform its constituent parts into something that will
get us closer to the state representation. As it turns out, we can do quite a bit
here. Finally, having exhausted the analytical options available to us, we bring
in the computational artillery and do the remaining job by brute-force. We find
that the state can be divided into several almost independent parts and perform
exhaustive search on each part separately. This is described in Section 3.5.

3.2 LFSRization of FCSRs

As mentioned above, an observation in [5] provides a way of justifying the validity
in treating FCSRs as LFSRs, and does so at a very reasonable cost. We call
this process LFSRization of FCSRs, or simply LFSRization when there is no
confusion as to what is being treated as an LFSR. There are two parts to the
process, a flush phase and a linearity phase.

The observation is simply that a zero feedback bit causes the contents of the
carry registers to change in a very predictable way. Adopting a statistical view
and assuming independent events is helpful here. Assuming a zero feedback bit,
carry registers containing zeros will not change, they will remain zero. The carry
registers containing ones are a different matter, though. A ’one’ bit will change to
a zero bit with probability 1

2 . In essence this means that one single zero feedback
bit will cut the number of ones in the carry registers roughly in half.

The natural continuation of this observation is that a sufficient amount of
consecutive zero feedback bits will eventually flush the carry registers so that
they contain only zeros. On average, roughly half of the carry registers contain
ones to start with, so an FCSR with N active carry registers requires roughly
lg N

2 + 1 zero feedback bits to flush the ’ones’ away with probability 1
2 . By

expected value we therefore require roughly lg N
2 + 2 zero feedback bits to flush

a register completely. For X-FCSR-256 we have N = 210, indicating that we
need no more than nine zero feedback bits to flush a register.

After the flush phase, a register is ready to act as an LFSR. In order to
take advantage of this state we need to maintain a linearity phase in which we
keep having zero feedback bits fed for a sufficiently long duration of time. As
we will see from upcoming arguments, we will in principle require the linearity
property for two separate sets of six consecutive zero feedback bits, with the two
sets being sixteen time units apart. We will need the FCSRs to act as LFSRs
during this time, so our base requirement consists of two smaller LFSRizations,
each requiring roughly 9 + 6 bits for flush and linearity phase respectively. The
probability of the two smaller LFSRizations occurring in both registers Y and Z
simultaneously is 2−4(9+6) = 2−60. In other words, our particular LFSRization
condition appears once in about 260 output blocks.

A real life deviation from the theoretical flush reasoning was noted in [5]. We
cannot flush the carry register entirely as the last active carry bit will tend to
one instead of zero. As further noted in [5], flushing all but the last carry bit
does not cause a problem in practice. Consider the linearized FCSR in Figure 3,
it produces a maximal number of zero feedback bits for an FCSR of its size.
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Fig. 3. Maximally linearized FCSR

In simulations and analytical work we must compensate for this effect, of
course, but the theoretical reasoning to follow remains valid as we allow ourselves
to treat FCSRs as simple LFSRs. The interested reader is referred to [5] for
details on this part.

Furthermore, assumptions of independence are not entirely realistic. Although
the theoretical reasoning above is included mainly for reasons of completeness,
simulations show that we are not far from the truth, effectively providing some
degree of validation for the theory. Our simulations show that we have 228.7 for
the Y register and 227.5 for Z for a total of at most 256.2 expected output blocks
for LFSRization in X-FCSR as we require it.

Our requirements for the basic attack are as follows. At some specific time
instance t we require the carry registers of X and Y to be completely flushed
except for the last bit. Here we also require the tails of the main registers to
contain the bit sequence 111100 as in Figure 3 to guarantee at least six consec-
utive zero feedback bits. At t + 16 we require this precise set-up to appear once
again. In each set, the first five zero feedback bits are needed to ensure that the
main registers are linear. The last remaining zero feedback bit is used only to
facilitate equation solving in the state recovery part, as it guarantees that the
last carry bit remains set.

To be fair and accurate we will use the simulation values, which puts us at

COSTLFSRization ≤ 256.2

for the basic attack. Later, in Section 4.2, we will see how we can reduce the
requirements to only four consecutive zero feedback bits per set for a complexity
of

COSTLFSRization ≤ 249.3.

3.3 Combining Output Blocks

The principal reason for combining consecutive output blocks is to obtain a set
of data that is easier to analyze and work with, ultimately leading to a less
complicated way to reconstruct the cipher state. Remember that we now treat
the two FCSRs as LFSRs with the properties given in Section 3.2.
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The main observation is that the modest and regular clocking of the two main
registers provides us with the following equality:

X(t) ⊕ [X(t + 1) 	 1] ⊕ [X(t + 1) � 1] ⊕ X(t + 2) = (�, 0, 0, . . . , 0, �) (3)

The shifting operations 	 and � on the left hand side denote shifting of the
corresponding 256-bit block left and right, respectively. From this point onward
we discard bits that fall over the edge of the 256 bit blocks, and we do so without
loss of generality or other such severe penalties. The right hand side is then the
zero vector1, with the possible exception of the first and last bits which are
undetermined (and denoted �). Define

OUT (t) = out(t) ⊕ [out(t + 1) 	 1] ⊕ [out(t + 1) � 1] ⊕ out(t + 2) (4)

in the corresponding way. We have

OUT (t) =
X(t) ⊕ [X(t + 1) 	 1] ⊕ [X(t + 1) � 1] ⊕ X(t + 2) ⊕
W (t − 16) ⊕ [W (t − 15) 	 1] ⊕ [W (t − 15) � 1] ⊕ W (t − 14)
=
(�, 0, 0, . . . , 0, �) ⊕
W (t − 16) ⊕ [W (t − 15) 	 1] ⊕ [W (t − 15) � 1] ⊕ W (t − 14)
≈
W (t − 16) ⊕ [W (t − 15) 	 1] ⊕ [W (t − 15) � 1] ⊕ W (t − 14), (5)

where ≈ denotes bitwise equality except for the first and last bit. This expression
allows us to relate keystream bits to bits inside the generator that are just a few
time instances apart. This will turn out to be very useful when recovering the
state of the FCSRs. In order to further unwind equation (5) we need to take a
closer look at the constituent parts of W , namely the round function operations
sl, sr and mix.

3.4 Analytical Unwinding

Reviewing the round function operations from Section 2.2, recall that all of the
operations are invertible and byte oriented. We can also see that the operations
mix, sr and their inverses are linear over ⊕, such that

mix(A ⊕ B) = mix(A) ⊕ mix(B),
sr(A ⊕ B) = sr(A) ⊕ sr(B).

Obviously, sl does not harbor the linear property. So, in order to unwind (5) as
much as possible, we would now ideally like to apply mix−1 and sr−1 in that
order. Let us begin with focusing on the mix operation.
1 Recall that we ignore the effects of the last carry bit being one instead of zero, as

explained in Section 3.2. The arguments below are valid as long as adjustments are
made accordingly.
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The linearity of mix over ⊕ is the first ingredient we need as it allows us to
apply mix−1 to each of the W terms separately. The shifting does cause us some
problems, however, since

mix−1 (W (t) 	 1) �= mix−1 (W (t)) 	 1.

Therefore mix−1 cannot be applied directly in this way, but realizing that mix−1

is a byte-oriented operation, it is clear that the equality holds if one restricts
comparison to every bit position except the first and last bit of every byte.
This is easy to realize if one considers the origin and destination byte of the
six middlemost bits as mix−1 is applied. One single bit shift does not affect the
destination byte of these bits. Furthermore, the peripheral bits that are shifted
out of their byte position are mapped to another peripheral bit position. We
therefore have

mix−1 (OUT (t)) ∼= sr (sl (X(t − 16)))⊕
[ sr (sl (X(t − 15))) 	 1 ] ⊕
[ sr (sl (X(t − 15))) � 1 ] ⊕
sr (sl (X(t − 14))) ,

where ∼= denotes equality with respect to the six middlemost bits of each byte.
The same arguments apply to sr−1, so we define Q(t) = sr−1

(
mix−1 (OUT (t))

)
to obtain

Q(t) ∼= sl (X(t − 16))⊕ (6)
[ sl (X(t − 15)) 	 1 ] ⊕
[ sl (X(t − 15)) � 1 ] ⊕
sl (X(t − 14)) .

Loosely put, we can essentially bypass the effects of the mix and sr operations
by ignoring the peripheral bits of each byte.

We have combined consecutive keystream blocks out(t) into Q in hope of Q
being easier to analyze than out(t). Since the ultimate goal is to map out(t) to
Y and Z, we don’t have very far to go now. As our expression for Q involves
only X and sl, let’s see how and at what cost we can brute-force Q and solve
for Y and Z.

3.5 Brute-Forcing the State

The brute-forcing part can most easily be understood by focusing on one specific
byte position in Q(t). Given the, say, seventh byte in Q(t), how can we uniquely
reconstruct the relevant parts of Y and Z? Let us first figure out which bits one
needs from Y (t − 16) and Z(t − 16) in order to be able to calculate the given
byte in Q(t). Note that this step is possible only because of the LFSRization
described in Section 3.2.

Have another look at the first part of expression (6): sl (X(t − 16)). Since sl is
an S-box function that operates on bytes, we need to know the full corresponding
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byte from X(t − 16). Those eight bits are derived from eight bits in each of Y
and Z, totaling 16 bits, as shown in the left column of Figure 4 below.

Y (t − 16)

Z(t − 16)

Y (t − 16)

Z(t − 16)

Y (t − 16)

Z(t − 16)

Y (t − 15)

Z(t − 15)

Y (t − 15)

Z(t − 15)

Y (t − 14)

Z(t − 14)

X(t − 16) X(t − 15) X(t − 14)

Q(t)

Fig. 4. Bit usage for one byte in Q(t)

The next parts of (6) involves sl(X(t−15)). The same reasoning applies here,
we need to know the full corresponding byte of X(t − 15) in order to be able to
calculate this S-box value. But, since the main registers act like LFSRs, most of
the bits we need from Y and Z for X(t − 15) have already been employed for
X(t − 16) previously. Since the two main registers are clocked only one step at
each time instance, only two more bits are needed, one from Y and one from Z.
This is illustrated by the middle column of Figure 4 below. We count 18 bits in
Y and Z so far.

In the same vein, two more bits are needed from Y and Z to calculate
sl(X(t − 14)), illustrated in the remaining part of Figure 4. This brings the
total up to 20 bits. All in all, for one byte position in Q(t) we have total bit
usage as shown in Figure 5.

So, 10 bits in Y (t − 16) and 10 bits in Z(t − 16) is what we require to be
able to calculate one specific byte position in Q(t). By restricting our attention
to the six middlemost bits of each byte in Q we accomplish two objectives; we
effectively reduce the number of unknown bits we are dealing with in Y and Z,
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Y (t − 16)

Z(t − 16)

Q(t)

Fig. 5. Bit usage in Q(t)

and we simplify the expression for calculating the byte in Q by safely reducing
the effects of the shifting operation. Specifically, shifting one bit left or right does
not bring neighboring bytes into play.

Focusing on one single byte position gives us six equations, one for each of the
six middlemost bits, and 20 unsolved variables, one for each bit position in Y
and Z. This amounts to an underdetermined system, of course, but we can easily
add more equations by having a look at the same byte position in Q(t +1). The
six middle bits of that byte give us six new equations at the cost of introducing
a few new variables. To see how many, we must perform the analysis for Q(t+1)
corresponding to Figure 4. The total bit usage for one byte position in Q(t + 1)
in terms of bits in Y (t − 16) and Z(t − 16) is given in Figure 6.

Y (t − 16)

Z(t − 16)

Q(t + 1)

Fig. 6. Bit usage in Q(t + 1)

From this we see that the six new equations have the downside of introducing
two new variables. In total we therefore have 12 equations and 22 variables after
including Q(t+1). The system is still underdetermined, so we can add Q(t+2) as
well. This brings us to 18 equations and 24 variables, and so on. Adding Q(t+3)
provides 24 equations for 26 variables, but at this level we will obtain a resulting
system that provides hope of being fully determined as we may also reduce the
number of variables by reusing already determined values as we scan Q byte by
byte from one end to the other to solve for bits in Y and Z. The corresponding



34 P. Stankovski, M. Hell, and T. Johansson

bit usage for our four consecutive Q’s in terms of bits in Y (t−16) and Z(t−16)
is illustrated in Figure 7 below.

Y (t − 16)

Z(t − 16)

Q(i)

Fig. 7. Total bit usage for Q(i), t ≤ i ≤ t + 3

When brute-forcing one byte position in Q we essentially solve for 26 bits. If
we scan Q from left to right, solving the corresponding system for each byte, we
can reuse quite many of these bits. Instead of solving for 26, we need only solve
for 16 as the remaining 10 have already been determined. This is illustrated in
Figure 8. Reusing bits in this way works fine for all byte positions except the
first one. For the first byte position we don’t have any prior solution to lean back
on, but we can use the LFSRization assumption. We have already assumed that
we have ’zero’ feedback bits coming in and these are valid to use when solving
the system. The system for the first byte contains 21 unsolved variables, so the
24 equations do indeed provide a fully determined system.

Y (t − 16)

Z(t − 16)

Q(t)

Fig. 8. Reusing bits when solving for Q(t)

Employing bit reuse, the total cost for the brute-forcing part becomes

COSTbrute−force ≤ 221 + 31 × 216 < 222.

This calculation is a little bit idealized, however, since we in practice do obtain
multiple solutions in some cases. These occur sometimes because the peripheral
bits in the system appear in only one or two of the equations, causing false
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solutions. These are easy to spot, though, as the succeeding equation system
will generally be unsolvable as we attempt to reuse 10 of the bits from the false
solution. And since the false solutions do not appear in abundance, we do not
compensate for this complexity wise.

This concludes the basic attack, in which we have assumed availability of four
separate sets of six consecutive zero feedback bits as described in Section 3.2.

4 Improving the Attack

4.1 Precomputation

We can reduce the workload of the brute-force part almost entirely using pre-
computation. A precomputation table for solving the first byte system would
require 224 entries2 as we have the 24 bits from the four Q’s as input to resolve
21 bits. For succeeding byte positions we may limit the number of Q’s to three,
which provides 18 equations for the 16 unsolved variables. Adding the already
determined 8 bits to the formula, we can see that a table with 218+8 = 226 entries
will suffice. In this context we consider these tables to be of reasonable size.

The total amortized cost for attempting to solve for the entire state is then
given by considering the relative frequencies of table lookups per byte position.
Using table lookups as unit, we have

COSTbrute−force < 1 +
1
8

(
1 +

1
4

+
1
42 + . . .

)
=

7
6

using no more than 227 table entries worth of storage.

4.2 Lowering the Required Keystream

In the basic attack we assumed existence of four separate sets of six consecutive
zero feedback bits, as explained in Section 3.2. Our next improvement is to
reduce the required keystream by loosening the above requirement to only four
consecutive zero feedback bits in each set and increasing the calculation effort
correspondingly.

To shine some light upon some of the details involved in this process, consider
equation (5) once more. The purpose of the second of the two sets of zero feedback
bits is to make way for the X ’s to cancel out properly according to equation (3). A
’one’ feedback bit in the second set prohibits the X ’s from canceling out entirely.
We can cope with this anomaly by compensating for such a non-null aggregate
of the X ’s in equation (5). The important issue is that we are in control of the
resulting changes.

The first set of zero feedback bits govern the composition of the W ’s. With
zero feedback bits all the way we obtain a well defined system when solving
for the first byte position in Q. If the fifth feedback bit is a ’one’ the system
changes somewhat, but it is still as well defined as before. Here, too, we are in
2 The storage is trivially realized using on average at most two 4-byte words per entry.
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control of the resulting changes. Our increase in computational effort consists
of constructing and using the corresponding tables for the resulting systems, so
that we can solve the resulting system regardless of these last bit values.

Without the sixth and last zero feedback bit in each set we would not know if
the last remaining carry bit has ultimately been nullified or not. Our basic attack
assumptions allow us to easily figure out the value of the last carry bit. We may
remove the requirement of the sixth zero feedback bit in each set if we instead
solve all the 16 similar but essentially different resulting variants of the system.
In principle, we can allow creation of 16 new tables, one for each system, for a
total workload increase factor of 16. Therefore, storage requirements increase to
228 table entries for the first byte position systems but remain at at most 226 for
the succeeding byte position systems for a total of 229 table entries. Note that
no specialized tables for the last byte position system are needed because of the
symmetry in the systems for the first and last byte positions.

The corresponding arguments are valid when removing the requirement of
the fifth zero feedback bit. The fifth feedback bit from two of the sets affect the
system of the first byte position for an increase in storage and computation of
a factor of at most 16, again. Storage requirements increase to 232 table entries
for the first byte position systems and remain at at most 226 for succeeding byte
position systems. All in all, we can solve the entire system for all cases using
only

COSTbrute−force < 24+4 × 7
6

< 28.3

table lookups into at most 233 table entries of storage. The interested reader is
referred to [5], in which a similar situation is discussed.

In practice, the COSTLFSRization part tells us how many keystream blocks we
need to analyze before we can find a favorable situation that allows the brute-
force method to go all the way to recovering the state. The COSTbrute−force

part is payed by performing that many calculations for each analyzed keystream
block. To summarize, we have

COST = COSTLFSRization × COSTbrute−force < 249.3+8.3 = 257.6

using no more than 233 table entries worth of precomputational storage.

5 Concluding Remarks

It is clear that the design of the X-FCSR stream cipher family is not sufficiently
secure. Depending on one’s inclination, it is possible to attribute this insufficiency
to the modest clocking of the two FCSRs, the size or number of FCSRs, how
they are combined, the complexity of the round function or some other issue.
All of these factors are parts of the whole, but the key insight, however, is that
it is important not to rely on the non-linear property of FCSRs too heavily. The
LFSRization process shows that it is relatively cheap to linearize FCSRs, the
cost being roughly logarithmic in the size of active carry registers.
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More details on the last improvements and a more in-depth exposé of the
effects of the last carry bit on system solving are available in the full version
of this paper. There we also exploit the symmetry situation of requiring several
consecutive ’one’ feedback bits for an additional reduction in required keystream.

Let us end with a note on applicability to X-FCSR-128. The basic attack
presented here works for X-FCSR-128 as well, but the resulting complexity is
much less impressive. The LFSRization process is identical for both variants of
X-FCSR, as is the analytical unwinding. Enter round functions. The two registers
are 256 bits in size in both cases, but X-FCSR-128 “folds” the contents of the
registers to produce a 128-bit result, implying that more bits are condensed into
one byte position of Q as analyzed in Section 3.5. This affects cost in a negative
way, actually making the attack more expensive for X-FCSR-128. We estimate
that at least twelve consecutive Q’s are needed for a fully determined first byte
system. This leads to a guesstimated expected value of about 274 output blocks
for the attack to come through in the basic setting, each output block requiring
roughly one table lookup into a storage of at most 272 table cells.
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Abstract. This paper studies “colliding keys” of RC4 that create the
same initial state and hence generate the same pseudo-random byte
stream. It is easy to see that RC4 has colliding keys when its key size
is very large, but it was unknown whether such key collisions exist for
shorter key sizes. We present a new state transition sequence of the key
scheduling algorithm for a related key pair of an arbitrary fixed length
that can lead to key collisions and show as an example a 24-byte collid-
ing key pair. We also demonstrate that it is very likely that RC4 has a
colliding key pair even if its key size is less than 20 bytes. This result is
remarkable in that the number of possible initial states of RC4 reaches
256! ≈ 21684 . In addition we present a 20-byte near-colliding key pair
whose 256-byte initial state arrays differ at only two byte positions.

1 Introduction

The RC4 stream cipher is one of the most widely-used real-world cryptosystems.
Since its development in 1980’s, RC4 has been used in various software appli-
cations and standard protocols such as Microsoft Office, Secure Socket Layer
(SSL), Wired Equivalent Privacy (WEP). The architecture of RC4 is extremely
simple and its encryption speed is remarkably fast. It has been suitable for not
only PC applications but also embedding environments.

RC4 accepts a secret key whose length is 1 to 256 bytes, where a typical
key size is 5 bytes (due to an old export regulation), 13 bytes (in the WEP
encryption) or 16 bytes. It consists of two parts; the key scheduling algorithm
(KSA) and the pseudo-random generating algorithm (PRGA). The KSA cre-
ates the 256-byte initial state from the secret key, and the PRGA generates
pseudo-random byte stream from the initial state. Either of the algorithms can
be described unambiguously in only a few lines. Due to this simplicity and wide
applicability, a vast amount of efforts have been made for cryptanalysing RC4
since its specification was made public on Internet in 1994 [1].

As early as one year after the specification of RC4 was publicly available,
it was pointed out by Roos [10] that the initial few bytes of its output stream
are strongly correlated with the key. This observation was later extended in
various ways. Mantin and Shamir [8] mounted a distinguishing attack of RC4
under the “strong distinguisher scenario” that an attacker can obtain many
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short output streams using random and unrelated keys. Paul and Preneel [9]
successfully demonstrated a distinguisher that requires a total of 225 output
bytes (2 bytes/key × 224 keys).

For cryptanalysis of a real-world application using RC4, Fluhrer, Mantin and
Shamir [3] showed an attack of WEP for the first time in 2001. They found
that partial information of the key of RC4 gives non-negligible information of
its output bytes. This fact was efficiently used for mounting a passive attack,
since the initial vector of WEP is packet-variable and embedded in the key of
RC4. It was recently improved by Klein [6], and finally in 2007 Tews, Weinmann
and Pyskin [11] and Vaudenay and Vuagnoux [12] independently demonstrated
a very practical key recovery attack of the 104-bit WEP.

For another attacks, Fluhrer and McGrew [4] presented a distinguishing at-
tack of RC4 using 230.6 output bytes generated by a single key, and Mantin [7]
successfully reduced the output stream size required for the successful attack
down to 226.5 bytes and also showed how to predict output bits. More recently
Biham and Carmeli [2] concentrated on the key scheduling algorithm of RC4
and discussed how to recover a secret key from a given internal state.

This paper studies another type of weakness of the key scheduling algorithm of
RC4; that is, existence of secret keys that create the same initial state and hence
generate the same pseudo-random byte stream, which we call “colliding keys”.
It had been already pointed out by Grosul and Wallach [5] in 2000 that RC4 has
related-key key pairs that generate substantially similar hundred output bytes
when the key size is close to the full 256 bytes. In this paper we explore much
stronger key collisions in a shorter key size.

Since the total number of possible initial states of RC4 reaches 256! ≈ 21684,
RC4 must have colliding keys if its key size exceeds �1684/8� = 210 bytes.
Moreover, due to the birthday paradox, it is not surprising that RC4 has colliding
keys when its key size is �(1684/2)/8� = 105 (or more) bytes. However, it was
unknown whether colliding keys exist in a shorter key size. The contribution of
this paper is to give a positive answer to this problem.

In this paper, we begin by demonstrating a specific example of a colliding
64-byte key pair, whose internal 256-byte state arrays differ at most two byte
positions in any step i (0≤i≤255) of the key scheduling algorithm. Then by
generalizing this example, we show a state transition pattern that is applicable
to a key pair of an arbitrary fixed length and estimate the probability that such
pattern actually takes place for randomly given key pairs with a fixed difference.

We have confirmed that our probability estimation mostly agrees with com-
puter experimental results when the key size is around 32 bytes or more. We
also demonstrate that it is very likely that RC4 has a colliding key pair even
when its key size is much shorter, say 20 bytes, while the minimal key size that
has colliding keys is still an open problem.

We further extend our observation to a near-colliding key pair; that is, a
key pair whose initial states differ at exactly two positions. In the same way as
the key collision case, we show a state transition pattern of a key pair of an
arbitrary length that can lead to a near-collision and analyze the probability
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that the pattern actually takes place. Finally we illustrate our (near-)colliding
key pair search algorithm, which has successfully found a 24-byte colliding key
pair and a 20-byte near-colliding key pair.

2 The RC4 Stream Cipher

RC4 is a stream cipher with a secret key whose length is 1 to 256 bytes. We define
k and K as the target key size in byte and the k-byte secret key, respectively, and
K[0]...K[k-1] denote k key bytes. For arbitrary i, K[i] means K[i mod k].
RC4 consists of the key scheduling algorithm (KSA), which creates the 256-byte
initial state array S[0]...S[255] from the secret key, and the pseudo-random
generating algorithm (PRGA), which generates byte sequence Z[0]...Z[L-1]
of arbitrary length L from the initial state.

This paper discusses colliding key pairs of RC4 that create the same initial
state. Hence only the key scheduling algorithm, described below in the syntax of
C language, is relevant. When necessary, we use notations S1/S2 and j1/j2 for
the state array and the state index for the first and second key K1/K2, respec-
tively. The goal of this paper is to find, or show a strong evidence of existence
of, key pair K1 and K2 such that the corresponding state arrays S1 and S2 are
completely same at the end of the key scheduling algorithm.

We define “the distance of a key pair at step i” as the number of distinct
bytes between S1 and S2 at the bottom (i.e. after the swap) of the i-th iteration
in the state randomization loop. If the distance of key pair K1 and K2 is 0 at
step 255, then they are a colliding key pair. This paper will deal with key pairs
whose distance is at most 2 at any step i (0≤i≤255).

[The Key Scheduling Algorithm of RC4]

/* State Initialization */

for(i=0; i<256; i++){

S[i] = i;

}

/* State Randomization */

j=0; /* Index j */

for(i=0; i<256; i++){

/* Step i */

j = (j + S[i] + K[i % k]) & 0xff;

SWAP(S[i], S[j]);

}

[The Pseudo-Random Generator Algorithm of RC4]

i = 0;

j = 0;

for(n=0; n<L; n++){

i = (i + 1) & 0xff;

j = (j + S[i]) & 0xff;

SWAP(S[i], S[j]);

Z[n] = S[(S[i] + S[j]) & 0xff];

}
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3 An Example: How It Works

In this section we demonstrate a specific example of a colliding key pair and
explain how its collision is created in a step-by-step fashion. In fact, this simple
example contains all tricks that we need for finding colliding key pairs of an
arbitrary length in later sections. The following is a 64-byte key pair, written in
hexadecimal form, which differs at only one byte position, K1[2] �=K2[2]. These
two keys create the same initial state, and hence they are cryptographically
indistinguishable.

K1 = 45 3d 7d 3d c9 45 57 12 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

K2 = 45 3d 7e 3d c9 45 57 12 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Table 1 shows internal values in the state randomization loop for each key,
where “@XX” denotes an address of the state array. For example, at the end of
step i=02 (i.e. after the swap), j1=02, j2=03 and the state arrays differ at exactly
two positions 02 and 03. At these positions, S1[02]=02, S2[02]=03, S1[03]=03
and S2[03]=02.

Table 1. The State Transition Pattern of the 64-byte Key Pair

i K1 K2 j1 j2 differences between S1 and S2

00 45 45 45 45 S1=S2

01 3d 3d 83 83 S1=S2

02 7d 7e 02 03 @02(S1=02 S2=03) @03(S1=03 S2=02)

03 3d 3d 42 42 @02(S1=02 S2=03) @42(S1=03 S2=02)

04-40 @02(S1=02 S2=03) @42(S1=03 S2=02)

41 3d 3d 02 02 @41(S1=02 S2=03) @42(S1=03 S2=02)

42 7d 7e 82 82 @41(S1=02 S2=03) @82(S1=03 S2=02)

43-80 @41(S1=02 S2=03) @82(S1=03 S2=02)

81 3d 3d 41 41 @81(S1=02 S2=03) @82(S1=03 S2=02)

82 7d 7e c1 c1 @81(S1=02 S2=03) @c1(S1=03 S2=02)

83-bf @81(S1=02 S2=03) @c1(S1=03 S2=02)

c0 45 45 81 81 @c0(S1=02 S2=03) @c1(S1=03 S2=02)

c1 3d 3d c1 c0 S1=S2

c2 7d 7e 54 54 S1=S2

c3-ff S1=S2

Now let us take a look at this transition sequence more closely to see why/how
the distance of this key pair remains 0 or 2 at any step.
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Table 2. The State Transition Details of the 64-bit Key Pair

i

00,01 K1[i]=K2[i]. Hence S1=S2 at these steps.
02 K1[i]=K2[i]-1 (1st time). Hence j1=j2-1.

Also since i=j1, S1 and S2 differ at j1=02 and j2=03 only.
(If i�=j1, S1 and S2 differ at three positions.)

03 K1[i]=K2[i] and S1[i]=S2[i]+1. Hence j1=j2 again.
Also since j1=j2=42, S1/S2[i] is swapped with S1/S2[42].
Now S1 and S2 differ at 02 and 42. (Note that K1[42]=K2[42]-1.)

04-40 K1[i]=K2[i]. Hence j1=j2.
Also since j1(=j2)�=02 and j1(=j2)�=42, S1 and S2 differ at 02 and 42.

41 Since j1=j2=02, S1/S2[i] is swapped with S1/S2[02].
Now S1 and S2 differ at 41 and 42.

42 K1[i]=K2[i]-1 (2nd time). Since S1[i]=S2[i]+1, j1=j2.
Also since j1=j2=82, S1/S2[i] is swapped with S1/S2[82].
Now S1 and S2 differ at 41 and 82. (Note that K1[82]=K2[82]-1.)

43-80 K1[i]=K2[i]. Hence j1=j2.
Also since j1(=j2)�=41 and j1(=j2)�=82, S1 and S2 differ at 41 and 82.

81 Since j1=j2=41, S1/S2[i] is swapped with S1/S2[41].
Now S1 and S2 differ at 81 and 82.

82 K1[i]=K2[i]-1 (3nd time). Since S1[i]=S2[i]+1, j1=j2.
Also since j1=j2=c1, S1/S2[i] is swapped with S1/S2[c1].
Now S1 and S2 differ at 81 and c1.
(Note that this time the swapped address is c1, not c2).

83-bf K1[i]=K2[i]. Hence j1=j2.
Also since j1(=j2)�=81 and j1(=j2)�=c1, S1 and S2 differ at 81 and c1.

c0 Since j1=81, S1/S2[i] is swapped with S1/S2[81].
Now S1 and S2 differ at c0 and c1.

c1 Since j1=c1 and j2=c0, the differences between S1/S2 disappear.
Now S1 is the same as S2.

c2 K1[i]=K2[i]-1 (4th time). Since j1=j2+1 at the previous step,
now j1=j2. Hence S1=S2.

c3-ff K1[i]=K2[i]. Hence j1=j2 and S1=S2.

We have K1[i]=K2[i]-1 four times. For i=02, this difference is absorbed at the
next step because it causes j1=j2-1while S1[3]=S2[3]+1. Note that the relation
K1[2]=K2[2]-1 is essential for this example. For i=42 and i=82, j1 remains the
same as j2 because S1[42]=S2[42]+1 and S1[82]=S2[82]+1, respectively.

The last time i=c2 is a bit tricky; at two steps before i=c0, S1 and S2 differ
at c0 and c1. Moreover at i=c1, j1=c0 and j2=c1 and hence the differences of
S1 and S2 disappear at this step. The remaining difference is between j1 and
j2, which is finally cancelled at i=c2 due to the relation K1[c2]=K2[c2]-1.
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4 General Collision Sequence

In this section we extend the sequence shown in the previous section to a key
pair of an arbitrary length and give a general transition pattern that can lead
to the same initial state. We also estimate the probability that the key collision
actually occurs for randomly given key pairs with a fixed difference.

We here consider k-byte key pair K1 and K2 such that K1[i]=K2[i]-1 if i=d
(0≤d<k) and K1[i]=K2[i] otherwise. We also define n as �(256+k-1-d)/k�.
Then K1[i] �=K2[i] takes place exactly n times in the state randomization loop.

Table 3 illustrates details of the state transition pattern for given k and d
with estimated probability, where “-” allows any address (a “don’t-care” value)
and “x” at step i=d+(n-1)k-2 is the value such that S1[x]=d and S2[x]=d+1
at step i=d+(n-1)k-3.

Table 3. The State Transition Pattern of a k-byte Colliding Key Pair

Step Internal State Values Estimated Prob.
(a) i=0...d-1 j1(=j2)�= d, j1(=j2)�=d+1 (254/256)d or

S1=S2 (254/256)d−1

(b) i=d j1=d, j2=d+1 1/256
@d(S1=d S2=d+1)

@d+1(S1=d+1 S2=d)

(c) i=d+1 j1=j2=d+k 1/256
@d(S1=d S2=d+1)

@d+k(S1=d+1 S2=d)

(d) i=d+2...d+k-1 j1(=j2)�=d+k (255/256)k−2

@-(S1=d S2=d+1)

@d+k(S1=d+1 S2=d)

Repeat steps (e) and (f) for m=1...n-3.
(e) i=d+mk j1=j2=d+(m+1)k 1/256

@-(S1=d S2=d+1)

@d+(m+1)k(S1=d+1 S2=d)

(f) i=d+mk+1... j1(=j2)�=d+(m+1)k (255/256)k−2

d+(m+1)k-1 @-(S1=d S2=d+1)

@d+(m+1)k(S1=d+1 S2=d)

(g) i=d+(n-2)k j1=j2=d+(n-1)k-1 1/256
@-(S1=d S2=d+1)

@d+(n-1)k-1(S1=d+1 S2=d)

(h) i=d+(n-2)k+1... j1(=j2)�=d+(n-1)k-1 (255/256)k−4

d+(n-1)k-3 @-(S1=d S2=d+1)

@d+(n-1)k-1(S1=d+1 S2=d)

(i) i=d+(n-1)k-2 j1=j2=x 1/256
@d+(n-1)k-2(S1=d S2=d+1)

@d+(n-1)k-1(S1=d+1 S2=d)

(j) i=d+(n-1)k-1 j1=d+(n-1)k-1, j2=d+(n-1)k-2 1/256
(k) i=d+(n-1)k...255 S1=S2 1
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The probability that event (a) takes place is (254/256)d−1 only if d=k-1, and
(254/256)d otherwise, because K1[0]=K2[0]=0when d=k-1 (also see below). Now
assuming that the state index j is uniformly random at all steps, the probability
that this transition sequence actually takes place for randomly given key pairs
with the fixed difference is

ColProb(k, d) =
{

(254/256)d(255/256)(n−1)(k−2)−2(1/256)n+2 (d �= k − 1)
(254/256)d−1(255/256)(n−1)(k−2)−2(1/256)n+2 (d = k − 1)

.

This probability is actually very close to 1/e(1/256)n+2, which depends on n only.
Of course j’s are not uniformly random in practice, and therefore this probability
estimation is not necessarily correct. However this (very intuitive) assumption
mostly agrees with our computer experimental results when the length of the
key is around 32 bytes or more.

The following is one of the 43-byte colliding key pairs that we found (43 is the
minimal k such that �256/k�=5), and its experimentally observed conditional
probability of each event. These keys differ at the last byte, hence d=42. Note
that successful events (a) and (b) effectively determine one-byte information of
the key. In other words, K[0]...K[d-1] uniquely determines K[d]. Moreover
for meeting events (b) and (c), we must have K1[0]=K2[0]=0, more generally
K1[d+1]=K2[d+1]=k-d-1. We hence do not have to “wait for” events (b) and
(c) in searching for key collisions.

Table 4 shows that our experimental results, where we obtained two 43-byte
colliding key pairs from 241.5 candidate pairs, perfectly agree with our probability
estimation.

Table 4. Experimental Results of Finding 43-byte Colliding Key Pairs

Event Estimated Prob. Measured Prob.
(a) 0.725010=(254/256)41 0.725010 = 2272363208729/3134252384256
(d) 0.851743=(255/256)41 0.851638 = 1935231636873/2272363208729
(e-1) 0.003906=1/256 0.004120 = 7973306038/1935231636873
(f-1) 0.851743=(255/256)41 0.851706 = 6790914484/7973306038
(e-2) 0.003906=1/256 0.003933 = 26707884/6790914484
(f-2) 0.851743=(255/256)41 0.851605 = 22744564/26707884
(g) 0.003906=1/256 0.003891 = 88498/22744564
(h) 0.858437=(255/256)39 0.858336 = 75961/88498
(i) 0.003906=1/256 0.003976 = 302/75961
(j) 0.003906=1/256 0.006623 = 2/302

K1 = 00 6d 41 8b 95 46 07 a4 87 8d 69 d7 bc bc c4 70
4a 3b ed 94 34 50 04 68 4d 4f 2e 30 c1 6e 20 a8
bf 80 b6 ae df ae 43 56 0a 80 e7

K2 = 00 6d 41 8b 95 46 07 a4 87 8d 69 d7 bc bc c4 70
4a 3b ed 94 34 50 04 68 4d 4f 2e 30 c1 6e 20 a8
bf 80 b6 ae df ae 43 56 0a 80 e8
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Also, assuming again that ColProb(k, d) is correct for any k and d, the expected
number of k-byte colliding key pairs out of a total of 28k keys is

ColPairs(k) = 28k ×
k−1∑
d=0

ColProb(k, d).

Table 5 is a list of log2(ColPairs(k)) for k=17...64. This table clearly shows
that key collisions can exist in much shorter key length. On the other hand,
ColProb(k, d) does not always agree with our experimental results when k is
small, say 30 or less, because probabilistic dependency of j’s cannot be ignored
in such range. It seems that more detailed probability analysis is needed for
accurately estimating the density of colliding key pairs in a small key size.

Table 5. List of log2(ColPairs(k)) for k=17...64

k Pairs k Pairs k Pairs k Pairs k Pairs
15 - 25 106.9 35 211.2 45 306.4 55 394.9
16 - 26 120.7 36 219.6 46 314.9 56 403.2
17 2.7 27 130.5 37 232.3 47 323.3 57 411.5
18 18.5 28 139.2 38 242.0 48 331.6 58 419.7
19 34.0 29 153.0 39 250.7 49 339.9 59 427.9
20 48.7 30 162.5 40 259.2 50 348.1 60 436.1
21 58.8 31 171.2 41 267.6 51 356.3 61 444.2
22 73.7 32 179.7 42 275.9 52 368.7 62 452.4
23 83.0 33 193.7 43 287.7 53 377.8 63 460.5
24 97.7 34 202.6 44 297.6 54 386.4 64 468.6

5 Near-Collision Sequence

This section gives another extension of section 2, a near-colliding key pair whose
initial state arrays S1 and S2 differ at exactly two positions. We use the same
notations as in the previous section.

Table 6 shows the details of our state transition pattern that can lead to a
near-collision, which is the same as the collision case except the last part. “-”
allows any address and “x” is any value equal to or less than d+(n-1)k. Note
that if x exceeds d+(n-1)k, the distance between S1 and S2 exceeds two in (h).

The expected probability that this transition pattern actually takes place is

NearColProb(k, d) ={
(254/256)d(255/256)(n−1)(k−2)(1/256)n(d + (n − 1)k + 1)/256 (d �= k − 1)
(254/256)d−1(255/256)(n−1)(k−2)(1/256)n(d + (n − 1)k + 1)/256(d = k − 1)

.

This probability is actually very close to 1/e(1/256)n, which depends on n
only, and hence roughly it holds that NearColProb(k, d) = 216ColProb(k, d).
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Table 6. The State Transition Pattern of a k-byte Near-Colliding Key Pair

Step Internal State Values Approx. Prob.
(a) i=0...d-1 j1(=j2)�=d, j1(=j2)�=d+1 (254/256)d or

S1=S2 (254/256)d−1

(b) i=d j1=d, j2=d+1 1/256
@d(S1=d S2=d+1)

@d+1(S1=d+1 S2=d)

(c) i=d+1 j1=j2=d+k 1/256
@d(S1=d S2=d+1)

@d+k(S1=d+1 S2=d)

(d) i=d+2...d+k-1 j1(=j2)�=d+k (255/256)k−2

@-(S1=d S2=d+1)

@d+k(S1=d+1 S2=d)

Repeat steps (e) and (f) for m=1..n-2 .
(e) i=d+mk j1=j2=d+(m+1)k 1/256

@-(S1=d S2=d+1)

@d+(m+1)k(S1=d+1 S2=d)

(f) i=d+mk+1... j1(=j2)�=d+(m+1)k (255/256)k−2

d+(m+1)k-1 @-(S1=d S2=d+1)

@d+(m+1)k(S1=d+1 S2=d)

(g) i=d+(n-1)k j1=x, j2=x (d+(n-1)k+1)/256
@-(S1=d S2=d+1)

@x(S1=d+1 S2=d)

(h) i=d+(n-1)k+1...255 @-(S1=d S2=d+1) 1
@-(S1=d+1 S2=d)

The following is a 33-byte near-colliding key pair that we found (33 is the minimal
k such that �256/k�=7), and its experimentally observed conditional probability
of each event. These two keys differ at the last byte, hence d=32.

K1 = 00 3d 3f 08 4f cd d8 f1 11 8c 83 80 1e 7f 5b c3
d9 60 e2 c8 22 88 3c bc 56 2c 22 d2 b3 d9 ab d9 41

K2 = 00 3d 3f 08 4f cd d8 f1 11 8c 83 80 1e 7f 5b c3
d9 60 e2 c8 22 88 3c bc 56 2c 22 d2 b3 d9 ab d9 42

Table 7 shows that our experimental results, where we obtained four 33-byte
near-colliding key pairs from 244.2 candidates, mostly agree with our probability
estimation. Now the expected number of k-byte near-colliding key pairs out of
a total of 28k keys is

NearColPairs(k) = 28k ×
k−1∑
d=0

NearColProb(k, d).

Table 8 is a list of log2(NearColPairs(k)) for k=16...64. This table clearly
shows that near-key collisions can also exist in much shorter key length. However,
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Table 7. Experimental Results of Finding 33-byte Near-colliding Key Pairs

Event Estimated Prob. Measured Prob.
(a) 0.784163=(254/256)31 0.784163=15852958662942/20216411062272
(d) 0.885741=(255/256)31 0.885471=14037333620475/15852958662942
(e-1) 0.003906=1/256 0.001946=27312181761/14037333620475
(f-1) 0.885741=(255/256)31 0.885555=24186440984/27312181761
(e-2) 0.003906=1/256 0.003954=95628579/24186440984
(f-2) 0.885741=(255/256)31 0.885499=84679053/95628579
(e-3) 0.003906=1/256 0.003930=332809/84679053
(f-3) 0.885741=(255/256)31 0.886160=885741/332809
(e-4) 0.003906=1/256 0.003774=1113/294922
(f-4) 0.882281=(255/256)31 0.881402=981/1113
(e-5) 0.003906=1/256 0.005097=5/981
(f-5) 0.882281=(255/256)31 0.800000=4/5
(g) 0.902344=231/256 1.000000=4/4

Table 8. List of log2(NearColPairs(k)) for k=16...64

k Pairs k Pairs k Pairs k Pairs k Pairs
15 - 25 122.8 35 227.1 45 322.2 55 410.6
16 2.7 26 136.5 36 235.5 46 330.7 56 418.9
17 18.7 27 146.3 37 248.1 47 339.1 57 427.2
18 34.5 28 155.1 38 257.8 48 347.4 58 435.4
19 49.9 29 168.8 39 266.5 49 355.7 59 443.6
20 64.6 30 178.3 40 275.0 50 363.9 60 451.8
21 74.7 31 187.1 41 283.4 51 372.1 61 460.0
22 89.6 32 195.5 42 291.7 52 384.4 62 468.1
23 98.9 33 209.5 43 303.5 53 393.5 63 476.3
24 113.6 34 218.5 44 313.4 54 402.1 64 484.4

again, more detailed probabilistic analysis is needed for accurately estimating the
density of near-colliding key pairs in a small key size.

6 Faster Collision Search

In previous sections we searched for colliding and near-colliding key pairs in
a very simple fashion, — checking transition patterns step-by-step and if fails,
restarting the search with another random candidate —, whose primary purpose
was to confirm theoretical claims experimentally. In this section we explore a
faster method for finding (near-)colliding key pairs for smaller key sizes.

We here try to find (near-)colliding key pairs by checking distance between
two keys at each step but not checking our transition patters. We now define
MaxColStep(K1,K2) as maximal step i such that distance between K1 and K2
is at most two at all steps up to step i. For a colliding or near-colliding key
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pair, MaxColStep(K1,K2)=255. Also for given key K and 0 ≤x,y<256, we define
a slightly modified key K<x,y> as

K<x,y>[x] = K[x] +y
K<x,y>[x+1] = K[x+1]-y
K<x,y>[i] = K[i] if i is not x or x+1.

It is naturally expected that the given key K and its modified keys K<x,y> are
likely to create similar initial states. Hence when the check fails for K1 and K2,
we can try K1<x,y> and K2<x,y>, which are likely to be a better pair, instead
of rewinding and restarting the search with another random candidate. Which
pair is better (i.e. closer to an actual (near-)collision) can be measured by the
MaxColStep function. These observations lead to the following simple recursive
search algorithm,

Collision Search Algorithm: Generate a random key pair K1 and K2 which
differ at position d by one. Set K1[d+1]=K2[d+1]=k-d-1 (see section 4) and call
Search(K1,K2). Repeat this until a (near-)colliding key pair is found:

Search(K1,K2)
S = MaxColStep(K1,K2)
if S = 255 then stop (found a (near-)collision!) or return (to find more)
MaxS = maxx,y MaxColStep(K1<x,y>,K2<x,y>)
if MaxS ≤ S then return
C = 0
For all x and y, do the following:
if MaxColStep(K1<x,y>,K2<x,y>) = MaxS
call Search(K1<x,y>,K2<x,y>)
C = C + 1
if C = MaxC then return
endif
return

where x runs from 0 to 255 except d and d+1 (for not changing K1[d+1]/K2
[d+1]), and y runs from 1 to 255. This algorithm finds mostly near-colliding key
pairs, but may also find colliding key pairs (if we are lucky enough or patient
enough). In fact, using this algorithm we reached a 24-byte colliding key pair
and a 20-byte near-colliding key pair as follows:

[24-byte Colliding Key Pair]

K1 = 00 42 CE D3 DF DD B6 9D 41 3D BD 3A B1 16 5A 33
ED A2 CD 1F E2 8C 01 76

K2 = 00 42 CE D3 DF DD B6 9D 41 3D BD 3A B1 16 5A 33
ED A2 CD 1F E2 8C 01 77

[20-byte Near Colliding Key Pair]
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K1 = 00 73 2F 6A 01 37 89 C5 15 49 9A 55 98 54 D7 53 4E F6 4F DC

K2 = 00 73 2F 6A 01 37 89 C5 15 49 9A 55 98 54 D7 53 4E F6 4F DD

MaxC is a pre-defined value. In our experiments, the search worked efficiently
when MaxC is around 10, and the maximal depth of recursive calls was less than
20. Obviously this algorithm has a room for improvement. For instance, it can
pick up the same near-colliding key pair twice or more; that is, the search con-
tains some redundancy. Also another evaluation function, instead of MaxColStep,
or another key modification is a possibility. Studying a better collision search
method seems an interesting future topic.

7 Concluding Remarks

This paper explored key collisions of the RC4 stream cipher. We presented a 24-
byte colliding key pair and a 20-byte near-colliding key pair, and demonstrated
that our probabilistic analysis well agrees with experimental results when the
key size is around 32 bytes. It seems now very likely that RC4 has colliding keys
in even smaller key length, say less than 20 bytes.

While tables 5 and 8 suggest an existence of 17-byte colliding key pairs and
16-byte near-colliding key pairs, respectively, further research is needed for more
accurately estimating ColProb(k, d) and NearColProb(k, d) in such small k.
In fact, we have already seen that the observed probability of event (e-1) in
table 7 was much smaller than the expected probability 1/256. This kind of
phenomenons (much larger or smaller than our estimation) frequently appears
when k is small.

It might not be very easy to derive a simple formula of ColProb(k, d) and
NearColProb(k, d) applicable to all k and d. As far as we know, this is the first
paper that went deep into key collisions of RC4. We hope that our observation
will lead to further study of this direction.
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Abstract. The Advanced Encryption Standard (AES) is the Federal
Information Processing Standard for symmetric encryption. It is widely
believed to be secure and efficient, and is therefore broadly accepted as
the standard for both government and industry applications. If fact, al-
most any new protocol requiring symmetric encryption supports AES,
and many existing systems that were originally designed with other sym-
metric encryption algorithms are being converted to AES. Given the pop-
ularity of AES and its expected long term importance, improving AES
performance and security has significant benefits for the PC client and
server platforms. To this end, Intel is introducing a new set of instructions
into the next generation of its processors, starting from 2009. The new
architecture has six instructions: four instructions (AESENC, AESEN-
CLAST, AESDEC, and AESDELAST) facilitate high performance AES
encryption and decryption, and the other two (AESIMC and AESKEY-
GENASSIST) support the AES key expansion. Together, these instruc-
tions provide full hardware support for AES, offering high performance,
enhanced security, and a great deal of software usage flexibility, and are
therefore useful for a wide range of cryptographic applications. The AES
instructions can support AES encryption and decryption with each one
of the standard key lengths (128, 192, and 256 bits), using the stan-
dard block size of 128 bits. They can also be used for all other block
sizes of the general RIJNDAEL cipher. The instructions are well suited
to all common uses of AES, including bulk encryption/decryption using
cipher modes such as ECB, CBC and CTR, data authentication using
CBC-MACs (e.g., CMAC), random number generation using algorithms
such as CTR-DRBG, and authenticated encryption using modes such as
GCM. Beyond improving performance, the AES instructions provide im-
portant security benefits. Since the instructions run in data independent
time and do not use table lookups, they help eliminating the major tim-
ing and cache-based attacks that threaten table-lookup based software
implementations of AES. In addition, these instructions make AES sim-
ple to implement, with reduced code size. This helps reducing the risk
of inadvertent introduction of security flaws, such as difficult-to-detect
side channel leaks. This paper provides an overview of the new AES in-
structions and how they can be used for achieving high performance and
secure AES processing. Some special usage models of this architecture
are also described.
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1 Introduction

The Advanced Encryption Standard (AES), defined in 2001 by NIST [11].
(FIPS197 hereafter), is considered the state of the art in symmetric encryption,
and a crucial ingredient for security and privacy applications. Rising require-
ments for high encryption/decryption bandwidths that have minimal impact
on the user experience, increase the value of a high throughput AES solution
for commodity processors. One example is disk encryption applications, such as
Microsoft’s Vista BitLocker [10], where due to increased volume size and disks
speed, software encryption overhead may become a bottleneck for both the client
and the server platforms.

The security of AES execution is an additional consideration added to the PC
environment due to increased awareness to recent side channel attacks on AES
software that uses lookup tables (e.g., [13]). Mitigation techniques significantly
degrade the resulting performance, therefore making a hardware based AES
solution even more advantageous.

Intel offers a comprehensive hardware solution for AES, introducing six new
instructions to its processors, starting from the processor called “Westmere”.

This paper describes the instructions, how they can be used efficiently and
flexibly, and explains some of the benefits of this particular AES architecture.

2 Intel’s AES Architecture

2.1 Preliminaries and Notations

Hereafter, we use the terminology of FIPS197, which details of all transforma-
tions, flows for encryption/decryption and key expansion that define AES.

We point out some subtlety related to the notation conventions. FIPS197
defines AES in terms of bytes. However, the algorithm is described using a text
convention where hexadecimal strings are written with the low-memory byte on
the left, and the high-memory byte on the right (this convention is analogous to
writing integers in a “Big Endian” convention). This text convention determines
the way in which the test vectors are written, and the description of some of
the transformations. On the other hand, Intel’s Architecture convention is the
opposite: hexadecimal strings are written with the low-memory byte on the right
and the high-memory byte on the left (analogous to writing integers in a “Little
Endian” convention). Of course, store/load processor operations are consistent
with the way that the AES instructions operate (i.e., using these instructions
does not require any byte reversal). For reference, we provide here an example for
all of the eight AES transformations, expressed in the “Little Endian” convention
which is used on Intel’s processors.
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SubBytes(73744765635354655d5b56727b746f5d) =
8f92a04dfbed204d4c39b1402192a84c

MixColumns(627a6f6644b109c82b18330a81c3b3e5) =
7b5b54657374566563746f725d53475d

ShiftRows(7b5b54657374566563746f725d53475d) =
73744765635354655d5b56727b746f5d

InvMixColumns(8dcab9dc035006bc8f57161e00cafd8d) =
5be3eb11928b5eaeeec9cc3bc55f5777

InvShiftRows(7b5b54657374566563746f725d53475d) =
5d7456657b536f65735b47726374545d

InvSubBytes(5d7456657b536f65735b47726374545d) =
8dcab9dc035006bc8f57161e00cafd8d

RotWord(3c4fcf09) = 093c4fcf SubWord(73744765) = 8f92a04d

Fig. 1. The AES transformations expressed in “Little Endian” notation, as used in
Intel’s architecture

2.2 The Six AES Instructions

Intel’s architecture offers six instructions to support AES (see Fig. 2). AESENC,
AESENCLAST, support encryption. AESDEC and AESDECLAST are building
blocks suitable for decryption using the Equivalent Inverse Cipher (see FIPS197
for definition). Each instruction has a register-memory and a register-register
variant. AESIMC and AESKEYGENASSIST support the Key Expansion. AES-
IMC facilitates the conversion of the encryption round keys to a form suitable for
the Equivalent Inverse Cipher. AESKEYGENASSIST uses an immediate byte
as part of the input (used as RCON).

3 Basic Usage of the AES Instructions

This section illustrates the basic usage of the AES instructions, using AES-
128 (ECB mode) as an example. The general paradigm is that for AESENC,
AESENCLAST, AESDEC, AESDECLAST, the inputs xmm1 and xmm2 are
interpreted as xmm1 = State and xmm2 = Round Key. For AESIMC, the
input xmm2 is interpreted as xmm2 = Round Key. Fig. 3 illustrates encryp-
tion/decryption flows. For AESKEYGENASSIST, the input should be inter-
preted as an intermediate step in the Key Expansion procedure, where the
immediate byte is the value of RCON. An example for AES-128 Key Expansion is
illustrated in Fig. 4 (Key Expansion for AES-192 and AES-256 is provided in the
Appendix).

4 Some Design Considerations That Led to the Selection
of the AES Architecture

Introducing a new instruction to Intel’s processors implies long-term legacy com-
mitment. Additionally, silicon area is a precious “real-estate”. This mandates a
great deal of care in the definitions and cost-performance-flexibility tradeoffs.
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AESENC xmm1, xmm2/m128 AESENCLAST xmm1, xmm2/m128
Tmp := xmm1 Tmp := xmm1
RoundKey :=xmm2/m128 RoundKey := xmm2/m128
Tmp := ShiftRows (Tmp) Tmp := ShiftRows (Tmp)
Tmp := SubBytes (Tmp) Tmp := SubBytes (Tmp)
Tmp := MixColumns (Tmp)
xmm1:= Tmp xor RoundKey xmm1:= Tmp xor RoundKey
AESDEC xmm1, xmm2/m128 AESDECLAST xmm1, xmm2/m128
Tmp:=xmm1 Tmp:= xmm1
RoundKey := xmm2/m128 RoundKey := xmm2/m128
Tmp := InvShiftRows (Tmp) Tmp := InvShiftRows (Tmp)
Tmp := InvSubBytes (Tmp) Tmp := InvSubBytes (Tmp)
Tmp := InvMixColumns (Tmp)
xmm1:= Tmp xor RoundKey xmm1:= Tmp xor RoundKey
AESKEYGENASSIST xmm1, xmm2/m128, imm8
Tmp := xmm2/m128
RCON[31–8] := 0; RCON[7–0] := imm8;
X3[31–0] := Tmp[127–96]; X2[31–0] := Tmp[95–64];
X1[31–0] := Tmp[63–32]; X0[31–0] := Tmp[31–0];
xmm1 := [RotWord (SubWord (X3)) XOR RCON, SubWord (X3),

Rotword (SubWord (X1)) XOR RCON, SubWord (X1)]
AESIMC xmm1, xmm2/m128
RoundKey := xmm2/m128;
xmm1 := InvMixColumns (RoundKey)
Examples:
xmm1 = 7b5b54657374566563746f725d53475d
xmm2 = 48692853686179295b477565726f6e5d
AESENC result: a8311c2f9fdba3c58b104b58ded7e595
AESENCLAST result: c7fb881e938c5964177ec42553fdc611
AESDEC result: 138ac342faea2787b58eb95eb730392a
AESDECLAST result: c5a391ef6b317f95d410637b72a593d0

xmm2 = 7b5b54657374566563746f725d53475d
AESIMC result: 627a6f6644b109c82b18330a81c3b3e5

xmm2 = 3c4fcf098815f7aba6d2ae2816157e2b; imm8 = 1
AESKEYGENASSIST result: 01eb848beb848a013424b5e524b5e434

Fig. 2. Functional descriptions (architectural behavior) and examples of the AES in-
structions (note that ShiftRows and SubBytes, InvShiftRows and InvSubBytes com-
mute)

Obviously, the AES architecture must offer an adequate solution for the short
term requirements, but as importantly, it should have the ability to accommo-
date long range requirements that may emerge in the future. Therefore, the
AES architecture needs to address the following considerations: a) Flexibility,
b) Performance, c) Performance scalability, d) Security. We explain how these
properties are achieved by the AES architecture.

4.1 Design for Software Flexibility

Software flexibility implies that the architecture should be able to support all of
the current usage models for AES. Indeed, it is easy to realize that this the case
with the new AES instructions: They are the building blocks that can support
all the AES variants defined by FIPS197, uses of AES in cipher modes such as
CBC or CTR, data authentication using CBC-MACs such as CMAC, random
number generation using algorithms such as CTR-DRBG, and authenticated
encryption using modes such as GCM. As an example, Fig. 5 shows encryption
in CBC mode.



Intel’s New AES Instructions for Enhanced Performance and Security 55

AES-128 encryption Decryption Round Keys AES-128 decryption
pxor xmm1, xmm2 pxor xmm1, xmm12;
AESENC xmm1, xmm3 AESIMC xmm3, xmm3 AESDEC xmm1, xmm11
AESENC xmm1, xmm4 AESIMC xmm4, xmm4 AESDEC xmm1, xmm10
AESENC xmm1, xmm5 AESIMC xmm5, xmm5 AESDEC xmm1, xmm9
AESENC xmm1, xmm6 AESIMC xmm6, xmm6 AESDEC xmm1, xmm8
AESENC xmm1, xmm7 AESIMC xmm7, xmm7 AESDEC xmm1, xmm7
AESENC xmm1, xmm8 AESIMC xmm8, xmm8 AESDEC xmm1, xmm6
AESENC xmm1, xmm9 AESIMC xmm9, xmm9 AESDEC xmm1, xmm5
AESENC xmm1, xmm10 AESIMC xmm10, xmm10 AESDEC xmm1, xmm4
AESENC xmm1, xmm11 AESIMC xmm11, xmm11 AESDEC xmm1, xmm3

AESENCLAST xmm1, xmm12 AESDECLAST xmm1, xmm2

Fig. 3. Left panel: AES-128 encryption. Register xmm1 holds the data to encrypt,
xmm2 is the whitening key, and xmm3–xmm12 hold Round Keys 1–10. The AES flow
starts with a whitening step (XOR with xmm2). Rounds 1–9 are implemented using
AESENC, and round 10 is implemented using AESENCLAST. Middle panel: AESIMC
is used for transforming the round keys for decryption using the Equivalent Inverse
Cipher. Right panel: AES-128 decryption. Register xmm1 holds the data to decrypt.
Registers xmm12-xmm2 hold the decryption round keys and the whitening key.

movdqu xmm1, XMMWORD PTR Key
movdqu XMMWORD PTR Key Sched, xmm1 key expansion 128:
mov rcx, OFFSET Key Schedule+16

pshufd xmm2, xmm2, 0xff
AESKEYGENASSIST xmm2, xmm1, 0x1 vpslldq xmm3, xmm1, 0x4
call key expansion 128 pxor xmm1, xmm3
AESKEYGENASSIST xmm2, xmm1, 0x2 vpslldq xmm3, xmm1, 0x4
call key expansion 128 pxor xmm1, xmm3
AESKEYGENASSIST xmm2, xmm1, 0x4 vpslldq xmm3, xmm1, 0x4
call key expansion 128 pxor xmm1, xmm3
AESKEYGENASSIST xmm2, xmm1, 0x8 pxor xmm1, xmm2
call key expansion 128 movdqu XMMWORD PTR [rcx], xmm1
AESKEYGENASSIST xmm2, xmm1, 0x10 add rcx, 0x10
call key expansion 128 ret
AESKEYGENASSIST xmm2, xmm1, 0x20
call key expansion 128
AESKEYGENASSIST xmm2, xmm1, 0x40
call key expansion 128
AESKEYGENASSIST xmm2, xmm1, 0x80
call key expansion 128
AESKEYGENASSIST xmm2, xmm1, 0x1b
call key expansion 128
AESKEYGENASSIST xmm2, xmm1, 0x36
call key expansion 128

Fig. 4. AES-128 Key Expansion example (the cipher key is stored in the array “Key”
and the generated key expansion is stored in the array “Key Sched”. (see comments in
the Appendix)

Software has the flexibility to pre-expand the keys and re-use them (which
is the typical usage model in bulk encryption) or to expand them on-the-fly. In
addition, when compared with existing software implementations, one can realize
that the AES instructions can help reduce the associated code size. We also point
out here that the AES round instructions remain as useful as they are now, even
if future analysis would change the standard to perform more rounds during
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void AES 128 CBC Encrypt (...) {
int i, j, k;

m128i tmp, feedback;
m128i RKEY [11];

for (k=0; k<11; k++) {
RKEY [k] = mm load si128 ( ( m128i*)&Key Schedule [4*k]);

}
feedback = mm load si128 ( ( m128i*)&IV [0]);
for(i=0; i < NBLOCKS; i++) {

tmp = mm load si128 ( ( m128i*)&PLAINTEXT[i*4]);
tmp = mm xor si128 (tmp,feedback);
tmp = mm xor si128(tmp, RKEY[0]);
for(j=1; j < 10; j++) {

tmp = mm aesenc si128 (tmp, RKEY [j]);
}
tmp = mm aesenclast si128 (tmp, RKEY [10]);
feedback = tmp;
mm store si128 (( m128i*)&CIPHERTEXT[4*i], tmp);

}
}

Fig. 5. Encryption in CBC mode. A C code snippet, using compiler intrinsics, illus-
trates a function that encrypts NBLOCKS data blocks.

encryption/decryption. Furthermore, as long as the Key Expansion procedure is
not fundamentally changed, AESKEYGENASSIST (taking any Round Constant
as an input byte) could be used for generating additional round keys.

4.2 Design for Performance

Performance is a main motivation for introducing the AES instructions. To this
end, the architecture takes advantage of the 128-bit data-path available in the
Intel’s modern processors (compare with the 32-bit instructions proposed in [14],
in a different setup, that does not have such a wide data-path).

The AES architecture is optimized for the common usage model for the PC
platform where the round keys are generated once, stored in registers or in
the cache memory, and then used for multiple data blocks. To this end, the
hardware support for the key expansion is decoupled from the more performance-
critical encryption/decryption acceleration. The four AES rounds instructions
encapsulate the maximal sequence of transformations which is possible without
having micro-architectural branches. To illustrate, consider a possible alternative
instruction such as AESROUND xmm1, xmm2, imm8, where the immediate
byte is a control that selects encryption/decryption and round/last round. Such
architecture would require the implementation to have micro-branching which
could incur some performance loss. To avoid this, four separate instructions are
dedicated to each of the four “flavors” of the AES rounds.

4.3 Design for Performance Scalability

Performance scalability is also achieved by encapsulating the “maximal” pos-
sible flow in the performance-critical instructions, thus leaving room for micro
architectural cost-performance tradeoffs. To illustrate this flexibility, consider the
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AESENC instruction that performs tha sequence of transformation: ShiftRows;
SubBytes; MixColumns; AddRoundKey (=XOR). These could be implemented
by one piece of dedicated hardware, or by means of hardware elements that pro-
cess the data in small granularity combined with some micro-instruction flows.
Thus, it is possible to choose the cost-performance balance across processors and
processors generations, according the performance requirements.

To show the benefit of bundling the maximal flow in one instruction, consider
the following alternative of having two separate instructions, SUBBYTES xmm1,
xmm2, and MIXCOL xmm1, xmm2. With these, the AES encryption round
could be performed by the sequence PSHUFB (for ShiftRows), SUBBYTES,
MIXCOL, PXOR. However, such an architectural approach limits the highest
possible performance of the instruction.

4.4 Design for Security

We briefly explain here how side channel attacks can compromise the security
of AES software implementations, and how the new architecture mitigates this
problem.

Processor cache is a special type of memory that allows faster access compared
to accessing main memory. The processor stores recently read memory areas in
cache, with the speculative anticipation that these areas would be re-accessed
“soon”. In each memory access, the processor first checks if the data is in the
cache (enjoying fast access) and if not, it reads from main memory (or lower
level caches), and stores it in the cache for future usage. To place new data in
the cache, the processor needs to evict less recent data.

Currently, many common efficient software implementations of AES use lookup
tables (e.g., Gladman’s code [4], OpenSSL [12], and Lipmaa [6,7]). The entries in
the table(s), which are read during encryption, depend implicitly on the secret
round key and on the processed data. A “spy process”, which runs at the same
privilege level, can exploit this fact: it runs in parallel to some AES code, fills the
cache lines with its own data, and reads them again after the table was accessed
by the AES code. Depending on the reading latency that the spy experiences (for
its own data, as measured by using the RDTSC instruction), it can discover if the
corresponding cache line was evicted or not, and therefore deduce which part of
the table was accessed by the AES code. Repeatedly collected, and combined with
the appropriate analysis, this information could eventually leak out the secret key
(see e.g., [13,3]).

These side channel threat can be avoided by writing the AES software in a way
that the memory access patterns hide the key dependence (e.g., [13,3]). However,
these mitigation techniques may involve a significant performance penalty. There
are also software implementations of AES that do not use table lookup at all
(e.g., Matsui [8,9], Bernstein and Schwabe [2]).

The AES instructions are designed to mitigate all of the known timing and
cache side channel leakage of sensitive data. Their latency is data-independent,
and since all the computations are performed internally by the hardware, no
lookup tables are required. Therefore, if the AES instructions are used properly,
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the AES encryption/decryption, as well as the key expansion, would have data-
independent timing and would involve only data-independent memory access.
Consequently, the AES instructions allow for easily writing high performance
AES software which is, at the same time, protected against the currently known
side channel threats.

5 Performance Optimizations for Parallel Modes of
Operation

Significant performance optimization for encryption/decryption using the AES
instructions can be achieved by re-ordering the code. This helps taking better
advantage of parallelism in parallel modes of operation such as ECB, CTR, and
CBC-Decrypt (with the CBC-Encrypt serial mode being the exception). This
section explains how it can be done.

The hardware that supports the four AES round instructions is pipelined.
This allows independent AES instructions to be dispatched theoretically every
1–2 CPU clock cycle, if data can be provided sufficiently fast. As a result, the
AES throughput can be significantly enhanced for parallel modes of operation,
if the “order of the loop” is reversed: instead of completing the encryption of
one data block and then continuing to the subsequent block, it is preferable to
write software sequences that compute one AES round on multiple blocks, using
one round key, and only then continue to computing the subsequent round on

; load Round key
mov rdx, OFFSET keyex addr add rdx, 0x10
movdqu xmm0, XMMWORD PTR [rdx] movdqu xmm0, XMMWORD PTR [rdx]

pxor xmm1, xmm0 aesenclast xmm1, xmm0
pxor xmm2, xmm0 aesenclast xmm2, xmm0
pxor xmm3, xmm0 aesenclast xmm3, xmm0
pxor xmm4, xmm0 aesenclast xmm4, xmm0
pxor xmm5, xmm0
pxor xmm6, xmm0 aesenclast xmm5, xmm0
pxor xmm7, xmm0 aesenclast xmm6, xmm0
pxor xmm8, xmm0 aesenclast xmm7, xmm0

aesenclast xmm8, xmm0
mov ecx, 9

main loop: ; storing the encrypted blocks
; load Round key
add rdx, 0x10 movdqu XMMWORD PTR [dest], xmm1
movdqu xmm0, XMMWORD PTR [rdx] movdqu XMMWORD PTR [dest+0x10], xmm2

movdqu XMMWORD PTR [dest+0x20], xmm3
aesenc xmm1, xmm0 movdqu XMMWORD PTR [dest+0x30], xmm4
aesenc xmm2, xmm0 movdqu XMMWORD PTR [dest+0x40], xmm5
aesenc xmm3, xmm0 movdqu XMMWORD PTR [dest+0x50], xmm6
aesenc xmm4, xmm0 movdqu XMMWORD PTR [dest+0x60], xmm7
aesenc xmm5, xmm0 movdqu XMMWORD PTR [dest+0x70], xmm8
aesenc xmm6, xmm0
aesenc xmm7, xmm0
aesenc xmm8, xmm0

loop main loop

Fig. 6. Encrypting multiple data blocks in parallel (ECB mode)
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for multiple blocks (using another round key). For such optimization, one needs
to choose the number of blocks that will be processed in parallel. The optimal
parallelization parameter value depends on the scenario, for example on how
many registers are available, and how many data blocks are to be (typically)
processed. In general, it is useful to process 4–8 blocks in parallel, in order
to achieve high throughput. We provide here two examples: Figure 6 outlines
assembler code for encrypting 8 blocks in parallel, in ECB mode, and Figure 7
gives a C code snippet for decrypting 4 blocks in parallel in CBC mode.

void AES 128 CBC Decrypt C 4 blocks (...) {
m128i RKEY DECRYPT [11];
m128i tmp1, tmp2, tmp3, tmp4, feedback;
m128i z1, z2, z3, z4;

int j, k;
for (k=0; k<11; k++) {

RKEY DECRYPT [10-k] =
mm load si128 ( ( m128i*)&Key Schedule Decrypt [4*k]);

}
feedback = mm load si128 ( ( m128i*)&IV [0]);

z1 = mm load si128 ( ( m128i*)&CIPHERTEXT[0]);
z2 = mm load si128 ( ( m128i*)&CIPHERTEXT[4]);
z3 = mm load si128 ( ( m128i*)&CIPHERTEXT[8]);
z4 = mm load si128 ( ( m128i*)&CIPHERTEXT[12]);

tmp1 = mm xor si128(z1,RKEY DECRYPT[0]);
tmp2 = mm xor si128(z2,RKEY DECRYPT[0]);
tmp3 = mm xor si128(z3,RKEY DECRYPT[0]);
tmp4 = mm xor si128(z4,RKEY DECRYPT[0]);

for(j=1; j <10; j++) {
tmp1 = mm aesdec si128 (tmp1, RKEY DECRYPT [j]);
tmp2 = mm aesdec si128 (tmp2, RKEY DECRYPT [j]);
tmp3 = mm aesdec si128 (tmp3, RKEY DECRYPT [j]);
tmp4 = mm aesdec si128 (tmp4, RKEY DECRYPT [j]);

}
tmp1 = mm aesdeclast si128 (tmp1, RKEY DECRYPT [10]);
tmp2 = mm aesdeclast si128 (tmp2, RKEY DECRYPT [10]);
tmp3 = mm aesdeclast si128 (tmp3, RKEY DECRYPT [10]);
tmp4 = mm aesdeclast si128 (tmp4, RKEY DECRYPT [10]);

tmp4 = mm xor si128(tmp4,z3);
tmp3 = mm xor si128(tmp3,z2);
tmp2 = mm xor si128(tmp2,z1);
tmp1 = mm xor si128(tmp1,feedback);

mm store si128 (( m128i*)&DECRYPTED TEXT[0], tmp1);
mm store si128 (( m128i*)&DECRYPTED TEXT[4], tmp2);
mm store si128 (( m128i*)&DECRYPTED TEXT[8], tmp3);
mm store si128 (( m128i*)&DECRYPTED TEXT[12], tmp4);

}

Fig. 7. Decrypting 4 blocks in parallel, in CBC mode (C code using compiler intrinsics)

5.1 Parallelizing CBC Encryption for Performance

CBC encryption is a serial mode of operation, because encrypting a block re-
quires the encryption result of the previous block. Therefore, CBC encryption
does not allow for hiding the latency of the AES instructions by operating on
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void AES 128 CBC Encrypt Parallel 4 Blocks (...) {

int i, j, k;
m128i tmp, feedback, feedback1, feedback2, feedback3, feedback4;
m128i tmp1, tmp2, tmp3, tmp4;
m128i RKEY [11];

for (k=0; k<11; k++) {
RKEY [k] = mm load si128 ( ( m128i*)&Key Schedule [4*k]);

}

feedback1 = mm load si128 ( ( m128i*)&IV1 [0]);
feedback2 = mm load si128 ( ( m128i*)&IV2 [0]);
feedback3 = mm load si128 ( ( m128i*)&IV3 [0]);
feedback4 = mm load si128 ( ( m128i*)&IV4 [0]);

for(i=0; i < NBLOCKS; i++) {
tmp1 = mm load si128 ( ( m128i*)&PLAINTEXT1[i*4]);
tmp2 = mm load si128 ( ( m128i*)&PLAINTEXT2[i*4]);
tmp3 = mm load si128 ( ( m128i*)&PLAINTEXT3[i*4]);
tmp4 = mm load si128 ( ( m128i*)&PLAINTEXT4[i*4]);

tmp1 = mm xor si128 (tmp1, feedback1);
tmp2 = mm xor si128 (tmp2, feedback2);
tmp3 = mm xor si128 (tmp3, feedback3);
tmp4 = mm xor si128 (tmp4, feedback4);

tmp1 = mm xor si128(tmp1,RKEY[0]);
tmp2 = mm xor si128(tmp2,RKEY[0]);
tmp3 = mm xor si128(tmp3,RKEY[0]);
tmp4 = mm xor si128(tmp4,RKEY[0]);

for(j=1; j <10; j++) {
tmp1 = mm aesenc si128 (tmp1, RKEY [j]);
tmp2 = mm aesenc si128 (tmp2, RKEY [j]);
tmp3 = mm aesenc si128 (tmp3, RKEY [j]);
tmp4 = mm aesenc si128 (tmp4, RKEY [j]);

}
tmp1 = mm aesenclast si128 (tmp1, RKEY [10]);
tmp2 = mm aesenclast si128 (tmp2, RKEY [10]);
tmp3 = mm aesenclast si128 (tmp3, RKEY [10]);
tmp4 = mm aesenclast si128 (tmp4, RKEY [10]);

feedback1 = tmp1;
feedback2 = tmp2;
feedback3 = tmp3;
feedback4 = tmp4;

mm store si128 (( m128i*)&CIPHERTEXT1[4*i], tmp1);
mm store si128 (( m128i*)&CIPHERTEXT2[4*i], tmp2);
mm store si128 (( m128i*)&CIPHERTEXT3[4*i], tmp3);
mm store si128 (( m128i*)&CIPHERTEXT4[4*i], tmp4);

}
}

Fig. 8. CBC encryption for 4 blocks in parallel (C code using compiler intrinsics)

independent blocks as shown above. However, in some cases it is possible to
parallelize CBC encryption if the application needs to operate on multiple inde-
pendent data streams. One possible example can be disk encryption applications
where disk sectors are encrypted independently (not necessarily with the same
key). If the software can encrypt multiple sectors in parallel, the application
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can enjoy the speedup of a parallel mode. Figure 8 gives a C code snippet for
encrypting 4 blocks in parallel, in CBC mode (in this example, using the same
key and different IV’s).

6 More on Software Flexibility and Surprising Usage
Models

6.1 Supporting RIJNDAEL with Block Size Larger Than 128 Bits

Although the main usage model for the AES instructions is AES, which operates
on 128-bit blocks, they can also be used for processing the general RIJNDAEL
cipher that supports any block size which is a multiple of 32 bits, from 128 to 256
bits. Figure 9 gives an example for computing a RIJNDAEL-256 round, using
the new AES instructions.

6.2 Isolating the AES Transformations

Cipher designers may wish to build new cryptographic algorithms using com-
ponents of AES. Such algorithms could benefit from the performance and side
channel protection of the AES instructions if they are designed to use the AES
transformations. In particular, the AES transformations can be a useful building
block for hash functions. For example, the MixColumns transformation provides
rapid diffusion and the AES S-box is a good nonlinear mixer. Manipulations on
large block sizes could be useful for constructing hash functions, with a long
digest size. This concept is already being used in quite a few of the new Secure
Hash Function algorithms that have been recently submitted to the NIST cryp-
tographic hash Algorithm Competition (some of the examples from the First
Round Candidates list include LANE, SHAMATA, SHAvite-3, ECHO, GrØstl,
Lesamnta (512-bit), and Vortex). Some algorithms use the whole AES round as
a building block, some only one AES transformations, and some use variants of
these transformations.

VPBLENDVB xmm3, xmm2, xmm1, xmm5
VPBLENDVB xmm4, xmm1, xmm2, xmm5
PSHUFB xmm3, xmm8
PSHUFB xmm4, xmm8
AESENC xmm3, xmm6
AESENC xmm4, xmm7

Fig. 9. Using the AES instructions for computing a RIJNDAEL round with a 256-bits
block size. Register xmm1 holds the “left” half of RIJNDAEL input state (columns
0–3), xmm2 hold the right half of state (columns 4–7), xmm6 and xmm7 hold the left
half and right half of RIJNDAEL round key, respectively. The output state is written
into registers xmm1 (left half) and xmm2 (right half). Register xmm8 holds a mask
(0x03020d0c0f0e0908b0a050407060100) used for the shuffling step which is necessary
to account for the difference in ShiftRows offsets between the 256 (1,3,4) and 128-
bit (1,2,3) versions of RIJNDAEL. Register xmm5 holds a mask for VPBLENDVB,
selecting bytes 1–3, 6–7, 10–11, and 15 of the RIJNDAEL state from the first source
operand, and all other bytes from the second source operand.
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Therefore, it is important to note that although the AES instructions perform
bundled sequences of AES transformations, each one of these transformations
can be isolated by a proper combination of these instructions, and the use of the
byte shuffling (PSHUFB instruction). This is shown in Figure 10.

6.3 Using the AES Instructions for RAID-6

We show here a surprising usage for the AES instructions for a non cryptographic
application.

A Redundant Array of Independent Disks (RAID) combines a multiple physi-
cal hard disk drives into a logical drive for purposes of reliability, capacity, or per-
formance. A level 6 RAID (RAID-6) system provides a high level of redundancy
allowing recovery from two disk failures. Two syndromes (P and Q) are generated
for the data and stored on hard disk drives in the RAID system. The P syndrome
is generated by computing parity information for the data in a strip. The gener-
ation of the Q syndrome requires Finite Field multiplications in GF (28) defined
by the reduction polynomial x8 +x4 +x3 +x+1 (same as the one used for AES).
Recovering data and/or P and/or Q syndromes requires both GF (28) multipli-
cations and inversions. In a RAID array with n data disks D0, D1, D2, . . . , Dn−1
(for n ≤ 255) P and Q are defined by: P = D0 + D1 + D2 + . . . + Dn−1, and
Q = g0 ·D0 + g1 ·D1 + g2 ·D2 + . . .+ gn−1 ·Dn−1, where g = {02} is a generator
of GF (28), and + and · denote the operations in this field. The computational
bottleneck associated with the RAID-6 system is the cost of computing Q. The
performance of the generation of the Q syndrome may be improved by express-
ing Q in its Horner representation Q = ((. . . Dn−1 . . .) · g +D2) · g +D1) · g +D0.
The difficulty in the related software implementation stems from the fact that
traditional processors have poor performance with Finite Fields computations.
See [1] for a detailed overview.

We now note that the MixColumns transformation is a matrix multiplication
in GF (28), therefore useful for computing the Q syndrome. In order to use

Isolating ShiftRows
PSHUFB xmm0, 0x0b06010c07020d08030e09040f0a0500

Isolating InvShiftRows
PSHUFB xmm0, 0x0306090c0f0205080b0e0104070a0d00

Isolating MixColumns
AESDECLAST xmm0, 0x00000000000000000000000000000000
AESENC xmm0, 0x00000000000000000000000000000000

Isolating InvMixColumns
AESENCLAST xmm0, 0x00000000000000000000000000000000
AESDEC xmm0, 0x00000000000000000000000000000000

Isolating SubBytes
PSHUFB xmm0, 0x0306090c0f0205080b0e0104070a0d00
AESENCLAST xmm0, 0x00000000000000000000000000000000

Isolating InvSubBytes
PSHUFB xmm0, 0x0b06010c07020d08030e09040f0a0500
AESDECLAST xmm0, 0x00000000000000000000000000000000

Fig. 10. Isolating the AES transformations using combinations of AES instructions
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declspec (align(16)) unsigned int zero [4] =
{0x0, 0x0, 0x0, 0x0};

declspec (align(16)) unsigned int mask1 [4] =
{0xff02ff00,0xff06ff04,0xff0aff08, 0xff0eff0c};

declspec (align(16)) unsigned int mask2 [4] =
{0x03ff01ff,0x07ff05ff,0x0bff09ff, 0x0fff0dff};

declspec (align(16)) unsigned int mask3 [4] =
{0x01000302,0x05040706,0x09080b0a, 0x0d0c0f0e};

void RAID6 1 block in parallel (...) {
int ind1;

m128i MASK1, MASK2, MASK3, ZERO;
m128i XMM0, XMM1, XMM2;

MASK3 = mm load si128 (( m128i*)&mask3[0]);
MASK2 = mm load si128 (( m128i*)&mask2[0]);
MASK1 = mm load si128 (( m128i*)&mask1[0]);
ZERO = mm load si128 (( m128i*)&zero [0]);

for (ind1=0; ind1 < NBLOCKS; ind1++) {
XMM0 = mm load si128 (( m128i*)&DATA[4*ind1]);
XMM1 = mm shuffle epi8(XMM0, MASK1);
XMM1 = mm aesdeclast si128 (XMM1, ZERO);
XMM2 = mm shuffle epi8(XMM0, MASK2);
XMM0 = mm shuffle epi8(XMM0, MASK3);
XMM1 = mm aesenc si128(XMM1, ZERO);
XMM2 = mm aesdeclast si128 (XMM2, ZERO);
XMM1 = mm shuffle epi8(XMM1, MASK1);
XMM2 = mm aesenc si128(XMM2, ZERO);
XMM2 = mm shuffle epi8(XMM2, MASK2);
XMM2 = mm xor si128(XMM2, XMM1);
XMM0 = mm xor si128(XMM0, XMM2);

mm store si128 (( m128i*)&RES[4*ind1], XMM0);
}

}

Fig. 11. Using the AES instructions for RAID-6: multiplying 16 bytes by {02}

the AES instructions, the MixColumns transformation needs to be isolated, as
explained above. This transformation operates separately on the 4 columns of
the state. If a column (32 bits) is denoted by the four bytes [d, c, b, a], then
the output [d′, c′, b′, a′] of MixColumns is a′ = ({02} · a) + ({03} · b) + c + d;
b′ = a + ({02} · b) + ({03} · c) + d; c′ = a + b + ({02} · c) + ({03} · d); d′ =
({03} ·a)+ b+ c+({02} ·d) denoted in shorthand by [3a+ b+ c+2d, a+ b+2c+
3d, a + 2b + 3c + d, 2a + 3b + c + d]. If the bytes b, d (odd positions) are set to 0,
then the result of MixColumns becomes [3a+c, a+2c, a+3c, 2a+c], and with the
PSHUFB instruction odd position bytes can be zeroed to yield [0, a+2c, 0, 2a+c].
If this result is XOR-ed with [0, a, 0, c] (a shuffled version of the input), the final
result is [0, 2c, 0, 2a], that is, two of the 4 bytes of the column were multiplied
by {02}. Similar operations can be applied to the even-positioned bytes of the
state. Figure 11 shows a code snippet that uses the AES instructions for RAID-
6 (here, for clarity and brevity the code operates on a single block at a time.
Operating on multiple blocks in parallel, improves the performance as explained
above).
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7 Conclusion

This paper provided some details and insights on Intel’s new AES instructions
which are expected to be widely used for security and privacy, by a wide range
of applications and operating systems.

The AES instructions provide a substantial performance speedup to bulk data
encryption and decryption. Exact performance measurements will be made avail-
able as soon as processors with these instructions are released. However, we can
indicate that when using parallelizable modes of operation (e.g., CBC decryp-
tion, CTR, and CTR-derived modes GCM, XTS), the performance speedup
could exceed an order of magnitude over the current performance of software-
only AES implementations. In scenarios where pipelined operation is impossible,
for example in CBC encryption, operating on a single buffer, the performance
speedup would still be significant, around 2–3 times over software implemen-
tation. Note that AES implementations using the new instructions are inher-
ently protected against the software side channel attacks associated with AES
implementations based on table-lookup.

The paper showed some of the advantages of the AES instructions and how
they can be used flexibly and efficiently.

An important observation that we pointed out was that due to the out-of-order
execution capabilities of modern processors, hardware pipelining, and software
techniques, parallel modes of operation can achieve a much higher throughput
than serial modes. This is one point to consider when selecting modes of opera-
tion in future cryptosystems. For example, AES-GCM may become a favorable
mode for achieving secrecy and authentication. In this context, we also mention
that, together with the AES instructions, another instruction for computing
carry-less (polynomial) multiplications (called PCLMULDQ) is released. This
could give further speedup to AES-GCM (see [5]).
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movdqu xmm1, XMMWORD PTR Key key expansion 192:
movq xmm3, QWORD PTR Key pshufd xmm2, xmm2, 0x55
movdqu XMMWORD PTR Key Sched, xmm1 vpslldq xmm4, xmm1, 0x4
movq QWORD PTR[Key Sched+0x10], xmm3 pxor xmm1, xmm4
mov ecx, OFFSET Key Sched+24 pslldq xmm4, 0x4

AESKEYGENASSIST xmm2, xmm3, 0x1 pxor xmm1, xmm4
call key expansion 192 pslldq xmm4, 0x4
AESKEYGENASSIST xmm2, xmm3, 0x2
call key expansion 192 pxor xmm1, xmm4
AESKEYGENASSIST xmm2, xmm3, 0x4 pxor xmm1, xmm2
call key expansion 192 pshufd xmm2, xmm1, 0xff
AESKEYGENASSIST xmm2, xmm3, 0x8 vpslldq xmm4, xmm3, 0x4
call key expansion 192
AESKEYGENASSIST xmm2, xmm3, 0x10 pxor xmm3, xmm4
call key expansion 192 pxor xmm3, xmm2
AESKEYGENASSIST xmm2, xmm3, 0x20 movdqu XMMWORD PTR [rcx], xmm1
call key expansion 192 add rcx, 0x10
AESKEYGENASSIST xmm2, xmm3, 0x40 movdqu XMMWORD PTR [rcx], xmm3
call key expansion 192 add rcx, 0x8
AESKEYGENASSIST xmm2, xmm3, 0x80 ret
call key expansion 192
jmp END; END:

movdqu xmm1, XMMWORD PTR Key key expansion 256:
movdqu xmm3, XMMWORD PTR Key pshufd xmm2, xmm2, 0xff
movdqu XMMWORD PTR Key Sched, xmm1 vpslldq xmm4, xmm1, 0x4
movdqu XMMWORD PTR[Key Sched+0x10], xmm3 pxor xmm1, xmm4
mov rcx, OFFSET Key Sched+0x20 pslldq xmm4, 0x4

pxor xmm1, xmm4
AESKEYGENASSIST xmm2, xmm3, 0x1 pslldq xmm4, 0x4
call key expansion 256 pxor xmm1, xmm4
AESKEYGENASSIST xmm2, xmm3, 0x2 pxor xmm1, xmm2
call key expansion 256 movdqu XMMWORD PTR [rcx], xmm1
AESKEYGENASSIST xmm2, xmm3, 0x4 add rcx, 0x10
call key expansion 256 cmp rcx,OFFSET Key Schedule+0xf0
AESKEYGENASSIST xmm2, xmm3, 0x8 jz ReachedLastKey
call key expansion 256 AESKEYGENASSIST xmm4, xmm1, 0
AESKEYGENASSIST xmm2, xmm3, 0x10 pshufd xmm2, xmm4, 0xaa
call key expansion 256 vpslldq xmm4, xmm3, 0x4
AESKEYGENASSIST xmm2, xmm3, 0x20 pxor xmm3, xmm4
call key expansion 256 pslldq xmm4, 0x4
AESKEYGENASSIST xmm2, xmm3, 0x40 pxor xmm3, xmm4
call key expansion 256 pslldq xmm4, 0x4
jmp END; pxor xmm3, xmm4

pxor xmm3, xmm2
movdqu XMMWORD PTR [rcx], xmm3
add rcx, 0x10
ReachedLastKey:
ret
END:

Fig. 12. AES-192 and AES-256 key expansion

Remark: There are several ways for expanding the key, using AESKEY-
GENASSIST. These given examples use new Intel AVX instructions
(http://software.intel.com/sites/avx/) with a nondestructive source. For exam-
ple, instead of (A) movdqu xmm3, xmm1; pslldq xmm3, 0x4 we use (B)vpslldq xmm3,
xmm1, 0x4. AVX extensions will be introduced only in the 2010 processors, and
therefore option (B) would not be valid in the 2009 processors that require the form
(A). The changes from form (B) to form (A) are straightforward.
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Abstract. We revisit the rate-1 blockcipher based hash functions as first
studied by Preneel, Govaerts and Vandewalle (Crypto’93) and later ex-
tensively analysed by Black, Rogaway and Shrimpton (Crypto’02). We
analyse a further generalization where any pre- and postprocessing is
considered. This leads to a clearer understanding of the current classifi-
cation of rate-1 blockcipher based schemes as introduced by Preneel et al.
and refined by Black et al. In addition, we also gain insight in chopped,
overloaded and supercharged compression functions. In the latter cate-
gory we propose two compression functions based on a single call to a
blockcipher whose collision resistance exceeds the birthday bound on the
cipher’s blocklength.

1 Introduction

One of the oldest ideas to create a hash function is to base it on a blockci-
pher (e.g.,[11, 12, 14, 15]). Preneel et al. [15] studied the general construction
H(M, V ) = E(K, X) ⊕ U where K, X, U ∈ {0, M, V, M ⊕ V } (or affine offsets
thereof). They concluded that of the 43 = 64 possibilities all but 12 allow colli-
sion attacks on the compression function with a complexity beating the birthday
bound of 2n/2. Later Black et al. [5] showed that in the ideal cipher model these
12 compression functions are indeed collision resistant up to the birthday bound,
an additional 8 constructions were shown secure when properly iterated. Duo and
Li [7] later gave an alternative proof resulting in improved bounds. Unfortunately
neither of these articles provides a deeper understanding of what makes these
12 respectively 8 schemes special to make them secure as compression function
respectively as iterated hash function: what do they have in common that sets
them apart from the other 44 schemes?

We isolate the properties that make Duo and Li’s proof go through in the ideal
cipher model for the collision resistance of rate-1 blockcipher based compression
functions and their iterated hash functions. This sheds new light on what it is
that provides the provable security for these schemes; indeed the classification
by Black et al. can be derived from it. Central to our result is a more general
type of compression function, consisting of the following three simple steps (see
Figure 1):
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1. Prepare key and plaintext: (K, X) ← Cpre(M, V );
2. Make the call: Y ← E(K, X);
3. Output the digest: W ← Cpost(M, V, Y ).

Here E is a blockcipher (where key size k = |K| and blocksize n = |X | = |Y |
may differ) and Cpre and Cpost can be arbitrary functions given their respective
domain and codomain. To avoid complications we will initially assume that input
and output sizes of the compression function match those of the blockcipher, that
is m := |M | = k and s := |V | = |W | = n.

Similar to prior art we consider two types of schemes. Type-I schemes give
rise to collision resistant compression functions whereas Type-II schemes give
rise to compression functions that will turn into collision resistant hash func-
tions when (Merkle-Damg̊ard) iterated. Each type is defined by a set of three
conditions on Cpre and Cpost. Both types share the first two conditions and only
differ in the third. The first condition is bijectivity of Cpre, ensuring that each
query to E (or its inverse) can only be used to evaluate the compression function
for a single input. The second condition is that for all M, V the postprocessing
Cpost(M, V, ·) is bijective. This causes optimal transfer of unpredictabilibity of
encryption answers to the output W . For Type-I schemes, the third condition
is similar in nature to the second, making sure that the unpredictability of de-
cryption answers carries over to the digest W as well. Formally, for all K, Y the
modified postprocessing Cpost(C−pre(K, ·), Y ) should be bijective. For Type-II
schemes, the third condition captures that for each decryption answer the cor-
responding input chaining variable V is highly unpredictable. Formally, for all
K, the function C−pre(K, ·) restricted to its second output V is bijective.

We provide a proof in the ideal cipher model that the probability of finding
a collision in the compression function (for Type-I) respectively in the iterated
hash function (for Type-II) is upper bounded by 1

2q(q − 1)/(2n − q), where q
is the number of queries allowed to the adversary and n is the block size. For
Type-I schemes (everywhere) preimage resistance is upper bounded by q/(2n −
q). We also investigate the ramifications of our general classification for the
classical PGV schemes. We conclude that the Type-I schemes are exactly those
12 identified before by Preneel et al. and later Black et al. Our Type-II schemes
include the 8 schemes identified as Type-II by Black et al., plus an additional 8
schemes that were already known to be Type-I.

The benefits of our generalized framework become even clearer when analysing
three more complex scenarios, when the restrictions on the parameters n, k, s,
and m are being relaxed. Here we achieve the following results:

Chopped Compression Functions. This corresponds to having an output
size s of the compression function smaller than the blocksize n of the un-
derlying blockcipher. A possible example is chopped Davies-Meyer; we show
that, as one might expect, it is optimally collision resistant and preimage
resistant. Note that chopping the output after each encryption frees up n−s
bits extra for message bits if we want to maintain n+k = s+m. In particular
one can achieve compression even for fixed-key (k = 0) blockciphers.
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Overloaded Compression Functions. Here one tries to cram the compres-
sion function by having more input to the compression function than the
blockcipher can handle, i.e., s + m > n + k. Examples are the sponge con-
struction [3, 4] or the (related) compression function of Cubehash [2]. Our
bound on collision resistance of the compression function is worse than if we
would chop the chaining variable (to make space for the message), which is
partially due to an overly loose bound.

Supercharged Compression Functions. The exact opposite of the previous
two cases, since here one attempts to boost collision resistance beyond the
birthday bound on the blocksize by setting s > n. We present a general
framework for the collision resistance of single call compression functions
in the ideal cipher model. In particular, we give a variant of Stam’s con-
struction [18], collision resistant in the ideal cipher model (against adaptive
adversaries). We also give a rate-1/2 compression function with collision re-
sistance up to 23n/4 queries based on a blockcipher with k = n bit keys.

2 Background

For a positive integer n, we write {0, 1}n for the set of all bitstrings of length
n. When X and Y are strings we write X ||Y to mean their concatenation and
X ⊕ Y to mean their bitwise exclusive-or (xor).

For positive integers k and n, we let Block(k, n) denote the set of all block-
ciphers with k-bit key and operating on n-bit blocks. Given that E(K, ·) is a
permutation for all K ∈ {0, 1}k, we write D(K, ·) for its inverse.

Unless otherwise specified, all finite sets are equipped with a uniform distri-
bution for random sampling. We use the convention to write oracles that are
provided to an algorithm as superscripts.

2.1 Compression Functions and Hash Functions

A compression function is a mapping H from {0, 1}m × {0, 1}s to {0, 1}s for
some m, s > 0. A blockcipher-based compression function is a mapping H :
{0, 1}m × {0, 1}s → {0, 1}s given by a program that, given (M, V ), computes
HE(M, V ) via access to an oracle E : {0, 1}k × {0, 1}n → {0, 1}n modeling an
(ideal) blockcipher with k-bit key and operating on n-bit blocks. A single-call
blockcipher-based compression function calls its encryption oracle only once.
Compression of a message block then proceeds as follows: Given an s-bit state
V and m-bit message M , compute output W = HE(M, V ) by

1. Compute (K, X) ← Cpre(M, V ).
2. Set Y ← E(K, X).
3. Output W ← Cpost(M, V, Y ).

as illustrated by Figure 1. We will refer to Cpre : {0, 1}m × {0, 1}s → {0, 1}k ×
{0, 1}n as preprocessing and to Cpost : {0, 1}m × {0, 1}s × {0, 1}n → {0, 1}s as
postprocessing.
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Fig. 1. General form of a m + s-to-s bit compression function based on a single call to
the underlying blockcipher with k-bit key operating on n-bit block

Since a blockcipher is easy to invert (given its key), an adversary trying to find
for instance collisions will also have access to D. To deal with inverse queries in
our security analysis, we introduce the modified postprocessing Caux(K, X, Y ) =
Cpost(C−pre(K, X), Y ). In general, this is a function mapping triplets of strings
to subsets of strings, since the result of C−pre can have varying cardinality. For
simplicity, when Cpre is bijective, we understand Caux to have {0, 1}n as its
codomain.

A hash function is a mapping H from {0, 1}∗ (the set of arbitrary length
bitstrings) to {0, 1}s for some s > 0. A compression function can be made into
a hash function by iterating it. We briefly recall the standard Merkle-Damg̊ard
iteration [6, 13], where we assume that there is already some injective padding
from {0, 1}∗ → ({0, 1}m)∗\∅ in place (note that we disallow the empty message
M = ∅ as output of the injective padding). Given an initial vector V0 ∈ {0, 1}s

define HH : ({0, 1}m)∗ → {0, 1}s as follows for M = (M1, . . . , M�) with � > 0:

1. Set Vi ← HE(Mi, Vi−1) for i = 1, . . . , �.
2. Output HH(M) = V�.

(Bearing this iteration in mind, given a compression function H : {0, 1}m ×
{0, 1}s → {0, 1}s we will refer to the {0, 1}m part of the input as ‘message’ and
the {0, 1}s part as the state or chaining variable.)

Collision Resistance. A collision-finding adversary is an algorithm with ac-
cess to one or more oracles, whose goal it is to find collisions in some specified
compression or hash function. It is standard practice to consider information-
theoretic adversaries only. Currently this seems to provide the only handle to
get any provable results. Information-theoretic adversaries are computationally
unbounded and their complexity is measured only by the number of queries
made to their oracles. Without loss of generality, such adversaries are assumed
not to repeat queries to oracles nor to query an oracle outside of its specified
domain. We also assume that the adversary, before outputting a message, makes
all calls necessary to evaluate the compressing function on that message. This
does not decrease the advantage of the adversary, though it does increase its
query complexity.

Despite the concept of initial vector being somewhat alien to a compression
function on its own, it turns out helpful to consider a preimage to the initial
vector a collision [5].
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Definition 1. Let n, k, m, s > 0 be integer parameters. Let H : {0, 1}m ×{0, 1}s

→ {0, 1}s be a compression function taking oracle E ∈ Block(k, n). The collision-
finding advantage of adversary A is defined to be

Advcoll
H (A) = max

V0∈{0,1}s
Pr
[
E

$← Block(k, n), ((M, V ), (M ′, V ′)) ← AE,D(V0) :

(M, V ) �= (M ′, V ′) and HE(M, V ) ∈ {V0, H
E(M ′, V ′)}] .

Define Advcoll
H (q) as the maximum advantage over all adversaries making at most

q queries in total.

The quantity Advcoll
H (q) denoting collision for the iterated hash function HH

is defined similarly: in this case the advantage of A is the maximum success
probability taken over the choice of possible initial values V0, which is input to
A. It is well known that the iterated hash function H is at least as secure as
the compression function H it is based upon, as far as collision resistance is
concerned [5, Lemma 1].

Theorem 2. Let H be a blockcipher based compression function and let H be
the iterated hash function based on H. Then

Advcoll
H (q) ≤ Advcoll

H (q) .

Preimage Resistance. A preimage-finding adversary is an algorithm with ac-
cess to one or more oracles, whose goal it is to find preimages in some specified
compression function. There exist several definitions depending on the distribu-
tion of the element of which a preimage needs to be found. We opt for every-
where preimage resistance [16], which intuitively states that all points are hard to
invert.

Definition 3. Let n, k, m, s > 0 be integer parameters. Let H : {0, 1}m ×{0, 1}s

→ {0, 1}s be a compression function taking oracle E ∈ Block(k, n). The every-
where preimage-finding advantage of adversary A is defined to be

Advepre
H (A) = max

W∈{0,1}s
Pr
E

(
M ′, V ′) ← AE,D(W ) : W = HE(M ′, V ′)

]
.

Define Advepre
H (q) as the maximum advantage over all adversaries making at most

q queries in total.

The quantity Advepre
H (q) denoting preimage resistance for the iterated hash func-

tion HH is defined similarly (in this case the advantage of A is the maximum
success probability taken over the choice of possible initial values V0, which is in-
put to A). Everywhere preimage resistance is preserved in the (MD-)iteration [1],
so we get:

Theorem 4. Let H be a blockcipher based compression function and let H be
the iterated hash function based on H. Then

Advepre
H (q) ≤ Advepre

H (q) ≤ Advcoll
H (q) .
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3 Classical Rate-1 Blockcipher Based Compression
Functions

In this section we will deal with classical rate-1 blockcipher based compression
functions, where the state size s equals the block length n of the blockcipher and
the message size m matches the keysize k of the blockcipher. This includes the
famous PGV hash functions [15].

Following in the footsteps of Black et al. [5], we consider Type-I and Type-II
compression functions. The former give optimal collision and preimage resistance
in the compression function. The second type gives optimal collision resistance
in the iteration; its preimage resistance can only be proved up to the birthday
bound. One of the important differences with prior art is that we specify in
very broad terms the requirements on Cpre and Cpost. Essentially our primary
concern here is for the proof to go through. In Section 3.3 we will discuss what
our classification of Type-I and Type-II implies for the PGV hash functions.

The proof for Type-I schemes is fairly standard and straightforward. However,
for the Type-II schemes we deviate from the one by Black et al. [5]. In particular,
their proof is based upon colouring a directed graph where the vertices repre-
sent queries with all possible answers and arcs are drawn according to whether
the input to one query is consistent with the output of the former, given the
compression function under consideration. This leads to unwieldy graphs with a
complicated notion of what consitutes a collision.

This counterintuitive use of graphs was fixed by Duo and Li [7] (as well as by
Lucks [10]), who consider a directed graph where vertices correspond to chaining
values and edges are drawn (or coloured) whenever a query has been made that
would allow to move from one chaining value to the next. Moreover, for the
actual bounding of collision resistance Duo and Li dispense with the direction of
the arcs (that thus become edges). Although this seemingly aids the adversary
(certain patterns in the graph will be deemed a success even when the underlying
event on the hash function is not), this simplification leads to a tighter bound for
the Type-II schemes, mainly because there is no longer any need to distinguish
between several cases (whose success probability are subsequently added). Our
proof (of Theorem 9) closely follows that of Duo and Li.

Note that even for Type-I schemes our bound appears a bit tighter than
the one by Black et al., which is due to their simplification based on the the
inequality 2(2n − q) > 2n, at least for q < 2n−1 (and for larger q most of the
bounds become vacuous anyway). We believe the choice between tightness and
simplicity in this case is one mainly of taste; we have opted for the former.

3.1 Type-I: Collision Resistant Compression Functions

Definition 5. A single call blockcipher based compression function HE is called
rate-1 Type-I iff n = s, k = m and the following three hold:

1. The preprocessing Cpre is bijective.
2. For all M, V the postprocessing Cpost(M, V, ·) is bijective.
3. For all K, Y the modified postprocessing Caux(K, ·, Y ) is bijective.
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Theorem 6. Let HE be a rate-1 Type-I compression function (based on a block-
cipher with block size n). Then the advantage of an adversary in finding a colli-
sion in HE after q queries can be upper bounded by

Advcoll
H (q) ≤ 1

2
q(q + 1)/(2n − q) .

Proof. Let V0 ∈ {0, 1}n be given. A collision consists of two pairs (M, V ) and
(M ′, V ′) satisfying HE(M, V ) = {V0, H

E(M ′, V ′)} yet (M, V ) �= (M ′, V ′). We
will maintain a list of triples (M, V, W ) such that W = HE(M, V ) and the
adversary has made the relevant queries to E and/or D. The list is initialized
with (−,−, V0). Since we require the adversary to have made all relevant queries
when outputting a collision, we can upper bound the success probability of the
adversary by bounding the probability of a collision occuring in this list. We show
that any query, be it forward or inverse, will add at most one triple (M, V, W ) to
this list of computable compression functions, moreover the value W is almost
completely out of the adversary’s control.

Consider a forward query (K, X). By bijectivity of Cpre, there is a unique
pair (M, V ) corresponding to this query. Thus, each forward query will add one
triple (M, V, W ) to the adversary’s list of computable values. Since Cpost(M, V, ·)
is bijective for all M, V , the distribution of compression function output W is
closely related to that of blockcipher output Y , which is close to being uniform.
More precisely, suppose that so far t queries to E (and D) have been made
involving key K, resulting in t plaintext-ciphertext pairs (Xi, Yi) with Yi =
E(K, Xi) for i = 1, . . . , t. The answer to a fresh query to E(K, ·) will therefore
be Y ∗ �= Yi, i = 1, . . . , t. Moreover, each of the 2n − t answers is equally likely if
E is an ideal cipher. Each possible answer Y ∗ will combine under Cpost with the
pair (M, V ) consistent with the (K, X) query being made, leading to a possible
compression function outcome W ∗. Because Cpost is bijective when (M, V ) are
fixed, distinct Y ∗ lead to distinct W ∗, so there are 2n − t possible outcomes W ∗,
all equally likely.

Similarly, consider an inverse query (K, Y ). This yields a unique X and hence
by bijectivity of Cpre, there is a unique pair (M, V ) corresponding to this query
once answered. Thus, each inverse query will add one triple (M, V, W ) to the
adversary’s list of computable values. This time bijectivity of Caux(K, ·, Y ) im-
plies that the distribution of W is closely related to the (almost uniform) out-
put distribution of D. Indeed, suppose that so far t queries to E have been
made involving key K, resulting in t plaintext-ciphertext pairs (Xi, Yi) with
Yi = E(K, Xi) for i = 1, . . . , t. The answer to a fresh query to D(K, ·) will
therefore be X∗ �= Xi, i = 1, . . . , t. Moreover, each of the 2n − t answers is
equally likely if E is an ideal cipher. Each possible answer X∗ will combine un-
der C−pre and Cpost with K and Y to a triple (M, V, W ). Because for all K and
Y the mapping from X to W is bijective (by assumption on Caux), distinct X∗

lead to distinct W ∗, so there are 2n − t possible outcomes W ∗, all equally likely.
As a result, after i − 1 queries the list of computable values contains i triples

(M, V, W ). The i’th query will add one triple with W uniform over a set of size
at least 2n−i+1. Thus the probability that the i’th query causes a collision with
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any of these triples is at most i/(2n−i+1). Using a union bound, the probability
of a collision after q queries can then be upper bounded by

∑q
i=1 i/(2n − i+1) ≤

1
2q(q + 1)/(2n − q). ��
Theorem 7. Let HE be a rate-1 Type-I compression function (based on a a
blockcipher with block size n). Then the advantage of an adversary in finding a
preimage in HE after q queries can be upper bounded by

Advepre
H (q) ≤ q/(2n − q) .

Proof. Let A be an adversary that tries to find a preimage for its input σ.
Assume that A asks its oracles E and D a total of q queries.

We recall the proof of Theorem 6, where we show that after i − 1 queries (to
E or D) the list of computable values W = HE(M, V ) contains i − 1 triples
(M, V, W ). The i’th query will add one triple with W uniform over a set of size
at least 2n − i + 1. Thus the probability that the i’th query hits σ is at most
1/(2n − i + 1). Using a union bound, the probability of finding a preimage for σ
after q queries can then be upper bounded by

∑q
i=1 1/(2n − i + 1) ≤ q/(2n − q).

��

3.2 Type-II: Collision Resistance in the Iteration

Definition 8. A single call blockcipher based compression function HE is called
rate-1 Type-II iff n = s, k = m, and the following three hold:

1. The preprocessing Cpre is bijective.
2. For all M, V the postprocessing Cpost(M, V, ·) is bijective.
3. For all K, C−pre(K, ·) restricted to V , its second output, is bijective.

Theorem 9. Let HE be a rate-1 Type-II compression function. If E is an ideal
cipher with block size n, then the advantage of an adversary in finding a collision
in the iterated hash function HH after q queries is upper bounded by

Advcoll
H (q) ≤ 1

2
q(q + 1)/(2n − q) .

Proof. Let V0 ∈ {0, 1}n be H’s initial vector.
We define an undirected graph G = (VG, EG) with vertex set VG = {0, 1}n—

corresponding to all 2n possible chaining values—and initially an empty edge
set EG = ∅. We will dynamically add edges based on the queries to E and D.
In particular, we add an edge (V, W ), labelled by M , if we know a message
M such that W = HE(M, V ) (or V = HE(M, V )) and the relevant query to
either E or D has been made. We claim that to find a collision would require
constructing a ρ-shape containing the initial vector V0. Suppose that H(M) =
H(M′) with M �= M′. Write M = (M1, . . . , M�) and M′ = (M ′

1, . . . , M
′
�′) and

correspondingly V0, . . . , V� respectively V ′
0 , . . . , V ′

�′ for the chaining values of the
iterated hash. Note that V0 = V ′

0 and V� = V ′
�′ . Assume � ≤ �′. Because M �= M′,

there exists a t such that Mi = M ′
i for all 0 ≤ i < t but Mt �= M ′

t (or possibly
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� < t ≤ �′). As a result, the paths (V0, . . . , Vt) and (V ′
0 , . . . , V ′

t ) are identical, but
the edges (Vt, Vt+1) and (V ′

t , V ′
t+1) are distinct, even when V ′

t+1 happens to equal
Vt+1 (in particular, the edges are labelled differently). Since V� = V ′

�′ at some
point the paths need to come together again, completing the ρ-shape. Note that
due to our use of an undirected graph not every ρ-shape will lead to a collision
though.

Since we are dynamically adding edges to the graph, components in the graph
will also grow dynamically. Let T be the set of all nodes that are in a component
containing a cycle or the initial vector V0. The first claim is that after i queries,
the set T has cardinality at most i+1. Indeed, the component containing V0 has
at most i′+1 nodes when i′ edges are used. A cyclic component based on i′ edges
has at most i′ nodes. Thus the initial vector component is the only component
in T that causes the number of nodes larger than the number of edges, by at
most one. Bijectivity of Cpre implies that a query (either forward or inverse) will
add at most one edge to the graph, so after i queries, there are at most i edges
in the entire graph and at most i + 1 nodes in T .

The second claim is that to complete a ρ-shape, either a cycle has to be
completed within the V0-component, or the V0-component needs to be connected
with a cycle. Either way, an edge has to be found of which both nodes are
already part of T . The probability that on the i’th query a collision is found by
a forward query is at most i/(2n − i): bijectivity of Cpost(M, V, ·) ensures that
W is uniformly distributed over a set of size at least 2n − i, so hitting a set of
size i occurs at most with said probability. Similarly, for an inverse query the
probability of finding a collision on the i’th query using an inverse query is at
most i/(2n − i): this time bijectivity of Caux(K, ·, Y ) ensures that V is uniformly
distributed over a set of size at least 2n − i.

We can now wrap up and conclude that the probability of finding a collision
on the i’th query is at most i/(2n − i) and the probability after q queries is at
most

∑q
i=1 i/(2n − i) ≤ 1

2q(q + 1)/(2n − q). ��

3.3 Implications to the PGV Schemes

In this section we investigate how the 64 PGV schemes [15] fit in the general
Type-I and Type-II framework. Recall that for the PGV-style schemes the block-
cipher has key size equal to the block length; the compression function will look
like HE(M, V ) = E(K, X) ⊕ U where K, X, U ∈ {C, M, V, M ⊕ V } and C is
some fixed, publicly known bitstring. These restrictions can also be expressed in
terms of Cpre and Cpost. Our results are in line with the classification of Black
et al. [5] and the tighter bounds by Duo and Li [7].

Let us first set up some notation. As is customary [8] for schemes with linear
processing Cpre and Cpost, we will represent the linear PGV schemes using
matrices. We will use �2

2 to express the way K,X , and U are functions of M
and V : a vector X ∈ �

2
2 corresponds to X = X · (MV ), making a distinction

between the linear map X ∈ �2
2 and the value X ∈ {0, 1}n. We will also write

X = (XM , XV ). We can safely ignore any affine part, so U = (00) can be
thought of to correspond to the aforementioned U ← C. (This is without loss of
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Table 1. The 20 Secure PGV-style schemes, writing EK(X) for E(K, X) and W for
M ⊕ V . Superscripted are the ı-indices from [5, Fig. 1 and 2].(

k
x

)\s (00) (01) (10) (11)(
0 1
1 0

)
insecure insecure EV (M) ⊕ M1 EV (M) ⊕ W 3(

0 1
1 1

)
insecure insecure EV (W ) ⊕ M4 EV (W ) ⊕ W 2(

1 0
0 1

)
EM (V )15 EM (V ) ⊕ V 5 EM (V ) ⊕ M17 EM (V ) ⊕ W 7(

1 0
1 1

)
EM (W )19 EM (W ) ⊕ V 8 EM (W ) ⊕ M20 EM (W ) ⊕ W 6(

1 1
0 1

)
EW (V )16 EW (V ) ⊕ V 10 EW (V ) ⊕ M12 EW (V ) ⊕ W 18(

1 1
1 0

)
EW (M)13 EW (M) ⊕ V 11 EW (M) ⊕ M9 EW (M) ⊕ W 14

generality, since translation by a constant will not affect bijectivity in either of
the criteria used in Definitions 5 and 8.) Since there are 4 elements in �2

2 and
we have to pick 3 (K,X, and U), there are 64 constructions to consider in total,
corresponding to the 64 PGV schemes.

We are now ready to see what the requirements from Definitions 5 and 8 mean
in terms of the vectors K,X and U and hence for the classification and security
of the PGV schemes. The 20 interesting schemes are listed in Table 1, where we
have also included the ı-indices assigned to these schemes by Black et al. [5].
When we write Hı resp. Hı for ı ∈ {1, . . . , 20} we refer to this enumeration.
Proofs are to be found in the full version [19].

Lemma 10. A PGV scheme is Type-I iff
(K
X

)
and

(K
U

)
are both invertible ma-

trices. In particular, H1..12 are Type-I schemes.

The requirements for the Type-II schemes turn out surprisingly simple: indeed
apart from the preprocessing having full rank, the only requirement is that the
key depends on the message. Consequently we end up with 16 Type-II schemes as
opposed to only 8 given by Black et al. The ‘additional’ 8 schemes we identify are
also Type-I, which explains why previously they were not classified as Type-II.
Our results therefore suggest a subdivision of the PGV Type-I schemes, namely
those that are also Type-II (being those with a key depending on the message)
and those that are just Type-I (those whose key equals the chaining variable).
The same subdivision was made by Duo and Li [7] in the context of second
preimage resistance.

Lemma 11. A PGV scheme is Type-II iff
(K
X

)
is an invertible matrix with

KM = 1. In particular, H5..20 are Type-II schemes.

Combining Lemmas 10 and 11 with Theorems 6, 7, and 9 then yields Corollary 12
below. For completeness [5, 15], it is known that the given upper bounds on the
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advantages are tight up to a small constant factor. Moreover, for H13..20 preimage
resistance is worse than desired, namely Advepre

H (q) = Θ(q2/2n) (due to a meet-
in-the-middle attack). The remaining 44 PGV schemes do not offer any collision
resistance in the iteration.

Corollary 12. (Security of the PGV schemes) For H1..12 it holds that Advcoll
H (q)

≤ 1
2q(q + 1)/(2n − q), and Advepre

H (q) ≤ q/(2n − q); for H13..20 it holds that
Advcoll

H (q) ≤ 1
2q(q + 1)/(2n − q).

4 Generalized Single Call Compression Functions

In the previous section we discussed the standard (single call) case where the
input and output sizes of the compression function neatly matched those of the
underlying blockcipher, in particular m = k and s = n. In this section we let go
of these restrictions and consider three more general scenarios.

First we will consider what could be called chopping the output of the com-
pression (or really the scenario where s < n). For instance, the Davies-Meyer
construction is optimally collision and preimage resistant, but what happens if
you chop the output: is the security still optimal given the new output length
(it is). A welcome benefit of chopping the output is that it frees up bits for
the message. More precisely, if s < n then we can have a larger m while
maintaining m + s = n + k. In particular, compression becomes feasible even
for fixed permutations (corresponding to k = 0). In view of the recent avail-
ability of huge size permutations constructions with s < n gain traction; an
example is Grindahl[9]. We will refer to this scenario as compression in
the postprocessing, the corresponding HE ’s are called chopped compression
functions.

Similarly, one might also try to improve efficiency by squeezing in more bits
of input in the compression function than can be input to the primitive (this
corresponds to m + s > n + k). We call this compression in the preprocessing
and speak of overloaded compression functions. Like the previous scenario, this
opens up the possibility of achieving compression based on a single fixed permu-
tation. We suggest a general Type-I compression function and give a bound on
its collision resistance and preimage resistance. Security in the iteration is more
complicated here: we discuss related work and point out some challenging open
problems.

Finally we deal with the problem of getting security beyond the block length
of the blockcipher, that is s > n. Here we say that expansion in the postpro-
cessing gives rise to supercharged compression functions. Promising results were
previously given by Lucks [10] in the iteration and Stam [18] for a compression
function. We develop a general theory and give two concrete examples based on
the latter work.

(Any missing proofs, as well as an expanded treatment of supercharged com-
pression functions, can be found in the full version [19].)
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4.1 Chopping: Compression in the Postprocessing

Let us consider an m + s-to-s bit compression function based on a single call to
a blockcipher with key size k and block size n. In this section we will assume
that m + s = n + k and s < n. What can we say of the collision and preimage
resistance of the compression function resp. iterated hash function, under which
conditions will we achieve optimal security?

If we go through the criteria from the previous section, it is clear we can no
longer satisfy them all. More to the point, whereas the first condition (bijectivity
of the preprocessing) still applies, the postprocessing now becomes a mapping
from n to s bits, which cannot be bijective since s < n. The natural generalization
is to replace being a bijection with being balanced: all elements in the codomain
should have the same number of preimages, namely 2n−s. It turns out that
this fairly simple modification works quite well. Again we have two types: the
first one giving optimal collision and preimage resistance for the compression
function; the second one giving optimal collision resistance in the iteration only
(and guaranteed preimage resistance only up to the collision resistance).

Definition 13. A single call blockcipher based compression function HE is called
chopped single call Type-I iff s < n, m + k = n + s, and the following three hold:

1. The preprocessing Cpre is bijective.
2. For all M ,V the postprocessing Cpost(M, V, ·) is balanced.
3. For all K,Y the modified postprocessing Caux(K, ·, Y ) is balanced.

Definition 14. A single call blockcipher based compression function HE is called
chopped single call Type-II iff s < n, m + k = n + s and the following three hold:

1. The preprocessing Cpre is bijective.
2. For all M ,V the postprocessing Cpost(M, V, ·) is balanced.
3. For all K the inverse preprocessing C−pre(K, ·) when restricted to its V

output is balanced.

Theorem 15. Let HE be a chopped single call Type-I compression function.
Then the advantage of an adversary in finding a collision, resp. a preimage in
HE after q queries can be upper bounded by

Advcoll
H (q) ≤ q(q + 1)/2s, Advepre

H (q) ≤ q/2s−1 .

Theorem 16. Let HE be a chopped single call Type-II compression function.
Then the advantage of an adversary in finding a collision in the iterated hash
function HH after q queries is upper bounded by

Advcoll
H (q) ≤ q(q + 1)/2s .
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4.2 Overloading: Compression in the Preprocessing

Another way to improve efficiency it to keep s = n, but allow m > k. In this case
bijectivity of the preprocessing can no longer be satisfied, which has ramifications
throughout.

Firstly, for a given pair (K, X) it is now the case that C−pre yields a set
of 2m−k pairs (M, V ). Consequently, the modified postprocessing Caux(K, ·, Y )
becomes a function from n-bits to subsets of size (up to) 2m−k of {0, 1}n. Our
requirement on this new type of Caux is a natural generalization of balancedness.

Secondly, although the condition that Cpost(M, V, ·) is bijective is still well-
defined, it is no longer sufficient. For instance, if Cpre(M, V ) = Cpre(M ′, V ′)
for certain values of (M, V ) �= (M ′, V ′) and the bijections Cpost(M, V, ·) and
Cpost(M ′, V ′, ·) are identical, then collisions can very easily be found. To avoid
this problem we explicitly rule out collisions in the output whenever (M, V ) and
(M ′, V ′) already collide during preprocessing (in Cpre).

Definition 17. A single call blockcipher based compression function HE is called
overloaded single call Type-I iff s = n, m ≥ k, and the following four hold:

1. The preprocessing Cpre is balanced.
2. For all (M, V ) �= (M ′, V ′) with Cpre(M, V ) = Cpre(M ′, V ′) and all Y it

holds that Cpost(M, V, Y ) �= Cpost(M ′, V ′, Y ).
3. For all M, V the postprocessing Cpost(M, V, ·) is bijective.
4. For all K, Y the modified postprocessing Caux(K, ·, Y ) is balanced in the sense

that for all V the number of X such that V ∈ Caux(K, X, Y ) equals 2m−k.

Theorem 18. Let HE be an overloaded single call Type-I compression function.
Then the advantage of an adversary in finding a collision, resp. a preimage in
HE after q queries can be upper bounded by

Advcoll
H (q) ≤ q(q + 1)/22k+n−2m, Advepre

H (q) ≤ q/2n+k−m−1 .

Theorem 18 can be reinterpreted by saying that to find collisions roughly
2n/2+k−m queries are required; to find preimages roughly 2n+k−m queries should
suffice. It is interesting to compare the collision resistance thus achieved with
recently conjectured optimal bounds [17, 18]. A straightforward generalization
of Rogaway and Steinberger’s result [17] suggests the best we can achieve is
collision resistance up to 2n/2+k−m queries, neatly corresponding to our con-
struction. However, Stam [18] conjectures collision resistance is feasible up to
2(n+k−m)/2 queries, based on an ideal state size s of n + k − m bits. Using this
state size actually brings us back exactly to compression in the postprocessing as
discussed in the previous section: by reducing s we can increase m while main-
taining n+k = m+ s and Theorem 15 essentially guarantees collision resistance
up to 2(n+k−m)/2 queries. So here is another scenario where reducing the state
size mysteriously seems to boost collision resistance.

But all is not as it seems. An example overloaded single call Type-I compres-
sion function is Davies-Meyer with the m − k superfluous message bits xored
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directly into the output. It is not hard to show that in this case the collision
finding advantage is much smaller than Theorem 18 makes believe:

Advcoll
H (q) ≤ q(q + 1)/2k+n−m .

Iterated Case. For rate-1 and chopped compression functions, looking at the
iteration gave rise to a second class of schemes that had the same collision
resistance in the iteration as the main schemes, but inferior preimage resistance.
For overloaded compression functions, we do not give a classificiation of Type-II
schemes (also in light of our Type-I bounds’ lack of tightness). However, we do
point out that some non-trivial results in this setting were previously achieved for
sponge functions [4], whose collision resistance (in the iteration) holds roughly
up to 2(n−m)/2 queries (k = 0). This matches the collision resistant compression
function of the previous paragraph.

However, recent developments indicate that iteration might boost collision
resistance even further. In particular, the sponge construction has rate α =
m/(n − m) achieving collision resistance up to roughly 2n(1−α)/2 queries. Ro-
gaway and Steinberger [17] have shown that for any rate-α construction after
1.9n2n(1−α) queries collisions are guaranteed. This still leaves a considerable gap.

4.3 Supercharging: Expansion in the Postprocessing

Whereas for chopped and overloaded compression functions we sacrificed security
for the sake of efficiency, in this section we will attempt the exact opposite:
sacrificing efficiency for the sake of security. We do this by extending the state
size, so s > n. Not to complicate things further, we will assume that m+s = n+k
(and let Cpre be bijective). For any fixed pair (M, V ) we have that Cpost maps
{0, 1}n to {0, 1}s. Since n < s this cannot be a bijection, but at best an injection
(similar for Caux). If all these injections have exactly the same range, we are not
using our codomain of 2s values to the full; indeed we might have well been
padding the state with a constant. This leads us to the following formalization.

Definition 19. A single call blockcipher based compression function HE is called
supercharged single call Type-I with overlap γ iff s ≥ n, m + s = n + k and the
following three hold:

1. The preprocessing Cpre is bijective.
2. For all M, V the postprocessing Cpost(M, V, ·) is injective, with effective

range Rpost,(M,V ).
3. For all K, Y the modified postprocessing Caux(K, ·, Y ) is injective, with ef-

fective range Raux,(K,Y ).

Where the overlap γ is defined as:

γ = max
{|RZ ∩ RZ′ | : Z, Z ′ ∈ {post,aux} × {0, 1}k+n, Z �= Z ′} .
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Theorem 20. Let HE be a supercharged single call Type-I compression function
with overlap γ. Then the advantage of an adversary in finding a collision after
q ≤ 2n−1 queries can be upper bounded by

Advcoll
H (q) ≤ qκ/2n−1 + 2m+s+1

(
eγq

(κ − 1)2n−1

)κ−1

for arbitrary positive integer κ > qγ/2n−1.

Corollary 21. Let HE be a supercharged single call Type-I compression func-
tion with overlap γ. Then for q < 2n−1/γ

1
2 the probability of finding a collision

can be upper bounded by

Advcoll
H (q) ≤ 2 max(2eγ

1
2 , m + n + s + 2)q/2n .

In practice this means that we get good security up to q of order 2n/γ
1
2 . Stam [18]

suggests that finding collisions can be expected after 2(n+k−m)/2 queries. Since
n + k = m + s this neatly corresponds to 2s/2, in other words optimal collision
resistant compression functions of this type might actually exist. Note that the
rate is lower than before, arguably m/n. As we show in Lemma 22, the best we
can hope for is γ of order 22n−s, giving collision resistance up to 2s/2 queries.
Whether for all relevant settings of n, s, k, and m there exists a postprocessing
Cpost with overlap γ close to 22n−s is an open problem. Below we give two
examples where it does though, based on an earlier construction [18].

Lemma 22. Let HE be a supercharged single call Type-I compression function
then overlap

γ ≥ 2(22n+m − 2n)
2s+m − 1

(≈ 22n−s+1) .

Example I: A Double-Length Construction. We recall the construction [18]
for a double length compression function based on a single ideal 3n-to-n com-
pression function F . Split the 2n-bit state V in two equally sized parts V1 and
V2. Then given an n-bit message block M , compression proceeds as follows:

1. Compute Y ← F (M, V1, V2).
2. Output (W1, W2) ← (Y, V2Y

2 + V1Y + M).

where the polynomial evaluation is over �2n . Originally only a proof of collision
resistance against non-adaptive adversaries was given, based on random func-
tions instead of random permutations (so in particular an adversary would not
have access to an inversion oracle). We would like to port the scheme to the ideal
cipher model, based on a blockcipher with k = 2n.

1. Set K ← (V1, V2) and X ← M .
2. Compute Y ← E(K, X).
3. Compute W1 ← Y + M and W2 ← MW 2

1 + V1W1 + V2; output (W1, W2).
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Lemma 23. For the compression function above, γ = 3.

Proof. To determine the overlap γ it helps to first write down the effective ranges
Rpost,(M,V ) and Raux,(K,Y ) explicitly. It is easy to see that

Rpost,(M,V1,V2) =
{
(W, MW 2 + V1W + V2)|W ∈ {0, 1}n

}
and with a little bit more effort, using that M = Y +W and (K1, K2) = (V1, V2),

Raux,(K1,K2,Y ) =
{
(W, W 3 + Y W 2 + K1W + K2)|W ∈ {0, 1}n

}
.

As a result, for (W1, W2) to be in the intersection of RZ and RZ′ , we require W1
to be a root of the difference of the two polynomials that define W2 for Z resp. Z ′.
It can be readily verified that Z �= Z ′ implies the relevant two polynomials are
distinct as well, and the resulting difference is a non-zero polynomial of degree
at most three. It will therefore have at most three roots over �2n . ��
Corollary 24. For the compression function above, for q ≤ 2n− 3

2 :

Advcoll
H (q) ≤ (n +

1
2
)q/2n−3 .

Curiously, if we would change the computation of W2 even slightly, for instance
W2 ← V2W

2
1 + V1W1 + M , the impact on the overlap γ is dramatic. Suddenly

Raux,(K1,K2,Y ) = {W, K2W
2 + (K1 + 1)W + Y |W ∈ {0, 1}n} and consequently

Raux,(V1+1,V2,M) = Rpost,(V1,V2,M), so that γ = 2n. As a result, Theorem 20 can
only be used to guarantee collision resistance up to roughly 2n/2 queries.

We note that like the original [18], our double length construction has some
obvious shortcomings (see the full version [19] for more details).

Example II: An Intermediate Construction. We conclude with a con-
struction based on a 3n/2 bit state (split into three parts of n/2 bits each), that
compresses n/2 message bits.

1. X ← (M, V1), K ← (V2, V3);
2. Y ← E(K, X);
3. W1 ← Y1 + M, W2 ← Y2 + V1, and W3 ← MW 3

1 + V1W
2
1 + V2W1 + V3.

Lemma 25. For the compression function above, γ = 22+n/2.

Corollary 26. For the compression function above and all q < 23n/4−2

Advcoll
H (q) ≤ eq/23n/4−3 .
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Abstract. We provide the first proof of security for Tandem-DM, one of
the oldest and most well-known constructions for turning a block cipher
with n-bit block length and 2n-bit key length into a 2n-bit cryptographic
hash function. We prove, that when Tandem-DM is instantiated with
AES-256, block length 128 bits and key length 256 bits, any adversary
that asks less than 2120.4 queries cannot find a collision with success prob-
ability greater than 1/2. We also prove a bound for preimage resistance
of Tandem-DM.

Interestingly, as there is only one practical construction known turn-
ing such an (n, 2n) bit block cipher into a 2n-bit compression function
that has provably birthday-type collision resistance (FSE’06, Hirose),
Tandem-DM is one out of two constructions that has this desirable
feature.

Keywords: Cryptographic hash function, block cipher based, proof of
security, double-block length, ideal cipher model, Tandem-DM.

1 Introduction

A cryptographic hash function is a function which maps an input of arbitrary
length to an output of fixed length. It should satisfy at least collision-, preimage-
and second-preimage resistance and is one of the most important primitives in
cryptography [23].

Block Cipher-Based Hash Functions. Since their initial design by Rivest, MD4-
family hash functions (e.g. MD4, MD5, RIPEMD, SHA-1, SHA2 [26, 27, 29, 30])
have dominated cryptographic practice. But in recent years, a sequence of attacks
on these type of functions [7, 10, 37, 38] has led to a generalized sense of concern
about the MD4-approach. The most natural place to look for an alternative is in
block cipher-based constructions, which in fact predate the MD4-approach [22].
Another reason for the resurgence of interest in block cipher-based hash functions
is due to the rise of size restricted devices such as RFID tags or smart cards: A
hardware designer has to implement only a block cipher in order to obtain an
encryption function as well as a hash function. But since the output length of
most practical encryption functions is far too short for a collision resistant hash
function, e.g. 128-bit for AES, one is mainly interested in sound design principles
for double block length (DBL) hash functions [2]. A DBL hash-function uses a
block cipher with n-bit output as the building block by which it maps possibly
long strings to 2n-bit ones.

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 84–103, 2009.
c© International Association for Cryptologic Research 2009
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Our Contribution. Four ’classical’ DBL hash functions are known: MDC-2,
MDC-4, Abreast-DM and Tandem-DM [3, 4, 20]. At EUROCRYPT’07,
Steinberger [35] proved the first security bound for the hash function MDC-
2: assuming a hash output length of 256 bits, any adversary asking less than
274.9 queries cannot find a collision with probability greater than 1/2.

In this paper, we prove the first security bound for the compression function
Tandem-DM in terms of collision resistance and preimage resistance. We will
give an upper bound for success if an adversary is trying to find a collision. By
assuming a hash output length of 256 bits, any adversary asking less than 2120.4

queries cannot find a collision with probability greater than 1/2. We will also
prove an upper bound for success if an adversary is trying to find a preimage. This
bound is rather weak as it essentially only states, that the success probability of
an adversary asking strictly less than 2n queries is asymptotically negligible.

Beyond providing such a proof of security for Tandem-DM in the first place,
our result even delivers one of the most secure rate 1/2 DBL compression functions
known. The first practical DBL compression function with rate 1/2 (without bit-
fixing and other artificial procedures like employing two different block ciphers)
that has a birthday-type security guarantee was presented at FSE’06 by Hirose
[13]. He essentially states (see Appendix B for more details) that no adversary ask-
ing less than 2124.55 queries, again for 2n = 256, can find a collision with probabil-
ity greater then 1/2. These two compression functions (Hirose’s FSE ’06 proposal
and Tandem-DM) are the only rate 1/2 practical compression functions that are
known to have a birthday-type security guarantee.

Outline. The paper is organized as follows: Section 2 includes formal notations
and definitions as well as a review of related work. In Section 3 we proof that an
adversary asking less than 2120.4 oracle queries has negligible advantage in finding
a collision for the Tandem-DM compression function. A bound for preimage
resistance of Tandem-DM is given in Section 4. In Section 5 we discuss our
results and conclude the paper.

2 Preliminaries

2.1 Iterated DBL Hash Function Based on Block Ciphers

Ideal Cipher Model. An (n, k)-bit block cipher is a keyed family of permutations
consisting of two paired algorithms E : {0, 1}n × {0, 1}k → {0, 1}n and E−1 :
{0, 1}n×{0, 1}k → {0, 1}n both accepting a key of size k bits and an input block
of size n bits. For simplicity, we will call it an (n, k)-block cipher. Let BC(n, k)
be the set of all (n, k)-block ciphers. Now, for any one fixed key K ∈ {0, 1}k,
decryption E−1

K = E−1(·, K) is the inverse function of encryption EK = E(·, K),
so that E−1

K (EK(x)) = x holds for any input X ∈ {0, 1}n.
The security of block cipher based hash functions is usually analyzed in the

ideal cipher model [2, 9, 17]. In this model, the underlying primitive, the block
cipher E, is modeled as a family of random permutations {Ek} whereas the
random permutations are chosen independently for each key K, i.e. formally E
is selected randomly from BC(n, k).
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DBL Compression Functions. Iterated DBL hash functions with two block ci-
pher calls in their compression function are discussed in this article. A hash
function H : {0, 1}∗ → {0, 1}2n can be built by iterating a compression function
F : {0, 1}3n → {0, 1}2n as follows: Split the padded message M into n-bit blocks
M1, . . . , Ml, fix (G0, H0), apply (Gi, Hi) = F (Gi−1, Hi−1, Mi) for i = 1, . . . , l
and finally set H(M) := (Gl, Hl). Let the compression function F be such that

(Gi, Hi) = F (Gi−1, Hi−1, Mi),

where Gi−1, Hi−1, Gi, Hi, Mi ∈ {0, 1}n. We assume that the compression func-
tion F consists of FT , the top row, and FB , the bottom row. We explicitly allow
the results of FT to be fed into the calculation of FB. Each of the component
functions FB and FT performs exactly one call to the block cipher and can be
defined as follows:

Gi = FT (Gi−1, Hi−1, Mi) = E(XT , KT ) ⊕ ZT ,

Hi = FB(Gi, Gi−1, Hi−1, Mi) = E(XB , KB) ⊕ ZB,

where XT , KT , ZT are uniquely determined by Gi−1, Hi−1, Mi and XB, KB, ZB

are uniquely determined by Gi, Gi−1, Hi−1, Mi.
We define the rate r of a block cipher based compression/hash function F by

r =
|Mi|

(number of block cipher calls in F) × n

It is a measure of efficiency for such block cipher based constructions.

2.2 The Tandem-DM Compression Function

The Tandem-DM compression function was proposed by Lai and Massey at
EUROCRYPT’92 [20]. It uses two cascaded Davies-Meyer [2] schemes. The com-
pression function is illustrated in Figure 1 and is formally given in Definition 1.

E

E

Gi−1

Hi−1

Gi

Hi

Mi

Fig. 1. The compression function Tandem-DM F TDM where E is an (n, 2n) block
cipher, the small rectangle inside the cipher rectangle indicates which input is used as
key
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Definition 1. Let FTDM : {0, 1}2n ×{0, 1}n → {0, 1}2n be a compression func-
tion such that (Gi, Hi) = FTDM (Gi−1, Hi−1, Mi) where Gi, Hi, Mi ∈ {0, 1}n.
FTDM is built upon an (n, 2n) block cipher E as follows:

Wi = E(Gi−1, Hi−1|Mi)
Gi = FT (Gi−1, Hi−1, Mi) = Wi ⊕ Gi−1

Hi = FB(Gi−1, Hi−1, Mi) = E(Hi−1, Mi|Wi) ⊕ Hi−1.

2.3 Related Work

Our work is largely motivated by Steinberger [35] in order to provide rigorous
proofs for well-known block cipher based hash functions. As is reviewed in the
following, there are many papers on hash functions composed of block ciphers.

Schemes with non-optimal or unknown collision resistance. The security of SBL
hash functions against several generic attacks is discussed by Preneel et al. in
[28]. They concluded that 12 out of 64 hash functions are secure against the
attacks. However, formal proofs were first given by Black et al. [2] about 10
years later. Their most important result is that 20 hash functions – includ-
ing the 12 mentioned above – are optimally collision resistant. Knudsen et al.
[18] discussed the insecurity of DBL hash functions with rate 1 composed of
(n, n)-block ciphers. Hohl et al. [14] analyzed the security of DBL compression
functions with rate 1 and 1/2. Satoh et al. [33] and Hattoris et al. [11] discussed
DBL hash functions with rate 1 composed of (n, 2n) block ciphers. MDC-2 and
MDC-4 [15, 1, 4] are (n, n)-block cipher based DBL hash functions with rates
1/2 and 1/4, respectively. Steinberger [35] proved that for MDC-2 instantiated
with, e.g., AES-128 no adversary asking less than 274.9 can find a collision with
probability greater than 1/2. Nandi et al. [25] proposed a construction with rate
2/3 but it is not optimally collision resistant. Furthermore, Knudsen and Muller
[19] presented some attacks against it. At EUROCRYPT’08 and CRYPTO’08,
Steinberger [31, 32] proved some security bounds for fixed-key (n, n)-block cipher
based hash functions, i.e. permutation based hash functions, that all have small
rates and low security guarantees. None of these schemes/techniques mentioned
so far are known to have birthday-type collision resistance.

Schemes with Birthday-Type Collision Resistance. Merkle [24] presented three
DBL hash functions composed of DES with rates of at most 0.276. They are op-
timally collision resistant in the ideal cipher model. Lucks [21] gave a rate 1 DBL
construction with birthday-type collision resistance using a (n, 2n) block cipher,
but it involves some multiplications over F128. Hirose [12] presented a class of
DBL hash functions with rate 1/2 which are composed of two different and in-
dependent (n, 2n) block ciphers that have birthday-type collision resistance. At
FSE’06, Hirose [13] presented a rate 1/2 and (n, 2n) block cipher based DBL
hash function that has birthday-type collision resistance. As he stated the proof
only for the hash function, we have given the proof for his compression function
in Appendix B.
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3 Collision Resistance

In this section we will discuss the collision resistance of the compression function
Tandem-DM.

3.1 Defining Security – Collision Resistance of a Compression
Function (Pseudo Collisions)

Insecurity is quantified by the success probability of an optimal resource-bounded
adversary. The resource is the number of backward and forward queries to an
ideal cipher oracle E. For a set S, let z

R← S represent random sampling from
S under the uniform distribution. For a probabilistic algorithm M, let z

R← M
mean that z is an output of M and its distribution is based on the random
choices of M.

An adversary is a computationally unbounded but always-halting collision-
finding algorithm A with access to an oracle E ∈ BC(n, k). We can assume (by
standard arguments) that A is deterministic. The adversary may make a forward
query (K, X)fwd to discover the corresponding value Y = EK(X), or the adver-
sary may make a backward query (K, Y )bwd, so as to learn the corresponding
value X = E−1

K (Y ) for which EK(X) = Y . Either way the result of the query
is stored in a triple (Xi, Ki, Yi) and the query history, denoted Q, is the tuple
(Q1, . . . , Qq) where Qi = (Xi, Ki, Yi) is the result of the i-th query and q is
the total number of queries made by the adversary. The value Xi ⊕ Yi is called
’XOR’-output of the query. Without loss of generality, it is assumed that A asks
at most only once on a triplet of a key Ki, a plaintext Xi and a ciphertext Yi

obtained by a query and the corresponding reply.
The goal of the adversary is to output two different triplets, (G, H, M) and

(G′, H ′, M ′), such that F (G, H, M) = F (G′, H ′, M ′). We impose the reasonable
condition that the adversary must have made all queries necessary to compute
F (G, H, M) and F (G′, H ′, M ′). We will in fact dispense the adversary from
having to output these two triplets, and simply determine whether the adversary
has been successful or not by examining its query history Q. Formally, we say
that Coll(Q) holds if there is such a collision and Q contains all the queries
necessary to compute it.

Definition 2. (Collision resistance of a compression function) Let F
be a block cipher based compression function, F : {0, 1}3n → {0, 1}2n. Fix an
adversary A. Then the advantage of A in finding collisions in F is the real
number

AdvColl

F (A) = Pr[E R← BC(n, k); ((G, H, M), (G′, H ′, M ′)) R← AE,E−1
:

((G, H, M) �= (G′, H ′, M ′)) ∧ F (G, H, M) = F (G′, H ′, M ′)].

For q ≥ 1 we write

AdvColl

F (q) = max
A

{AdvColl

F (A)},
where the maximum is taken over all adversaries that ask at most q oracle
queries, i.e. E and E−1 queries.
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3.2 Security Results

Our discussion will result in a proof for the following upper bound:

Theorem 1. Let F := FTDM be as in Definition 1 and n, q be natural numbers
with q < 2n. Let N ′ = 2n − q and let α be any positive number with eq/N ′ ≤ α
and τ = αN ′/q (and ex being the exponential function). Then

AdvColl

F (q) ≤ q2neqτ(1−ln τ)/N ′
+ 4qα/N ′ + 6q/(N ′)2 + 2q/(N ′)3.

The proof is given on page 96 and is a simple corollary of the discussion and
lemmas below. As this theorem is rather incomprehensible, we will investigate
what this theorem means for AES-256. The bound obtained by this theorem
depends on a parameter α. We do not require any specific value α as any α
(meeting to the conditions mentioned in Theorem 1) leaves us with a correct
bound. For Theorem 1 to give a good bound one must choose a suitable value
for the parameter α. Choosing large values of α reduces the value of the first
term but increases the value of the second term. There seems to be no good
closed form for α as these will change with every q. The meaning of α will be
explained in the proof. We will optimize the parameter α numerically as given
in the following corollary.

Corollary 1. For the compression function Tandem-DM, instantiated e.g. with
AES-2561, any adversary asking less than 2120.4 (backward or forward) oracle
queries cannot find a collision with probability greater than 1/2. In this case, α =
24.0.

3.3 Proof of Theorem 1

Analysis Overview. We will analyze if the queries made by the adversary
contain the means for constructing a collision of the compression function FTDM .
Effectively we look to see whether there exist four queries that form a collision
(see Figure 2).

To upper bound the probability of the adversary obtaining queries than can
be used to construct a collision, we upper bound the probability of the adversary
making a query that can be used as the final query to complete such a collision.
Namely for each i, 1 ≤ i ≤ q, we upper bound the probability that the answer
to the adversary’s i-th query (Ki, Xi)fwd or (Ki, Yi)bwd will allow the adversary
to use the i-th query to complete the collision. In the latter case, we say that
the i-th query is ’successful’ and we give the attack to the adversary.

As the probability depends naturally on the first i − 1 queries, we need to
make sure that the adversary hasn’t already been too lucky with these (or else
the probability of the i-th query being successful would be hard to upper bound).
Concretely, being lucky means, that there exists a large subset of the first i − 1
queries that all have the same XOR output (see below for a formal definition).

1 Formally, we model the AES-256 block cipher as an ideal block cipher.
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Our upper bound thus breaks down into two pieces: an upper bound for the
probability of the adversary getting lucky in one defined specific way and the
probability of the adversary ever making a successful i-th query, conditioned on
the fact that the adversary has not yet become lucky by its (i − 1)-th query.

Analysis Details. Fix numbers n, q and an adversary A asking q queries to
its oracle. We say Coll

TDM if the adversary wins. Note that winning does not
necessarily mean finding a collision as will be explained in the following. We
upper bound Pr[Coll

TDM (Q)] by exhibiting predicates Lucky(Q), Win1(Q),
Win2(Q) and Win3(Q) such that Coll

TDM (Q) ⇒ Lucky(Q) ∨ Win1(Q) ∨
Win2(Q) ∨ Win3(Q) and then by upper bounding separately the probabilities
Pr[Lucky(Q)], Pr[Win1(Q)], Pr[Win2(Q)] and Pr[Win3(Q)]. Then, obviously,
Pr[Coll(Q)] ≤ Pr[Lucky(Q)] + Pr[Win1(Q)] + Pr[Win2(Q)] + Pr[Win3(Q)].
The event Lucky(Q) happens if the adversary is lucky, whereas if the adversary
is not lucky but makes a successful i-th query then one of the other predicates
hold.

To state the predicates, we need one additional definition. Let a(Q) be a
function defined on query sequences of length q as follows:

a(Q) = max
Z∈{0,1}n

|{i : Xi ⊕ Yi = Z}|

is the maximum size of a set of queries in Q whose XOR outputs are all the
same. The event Lucky(Q) is now defined by

Lucky(Q) = a(Q) > α,

where α is the constant from Theorem 1 (it is chosen depending on n and q
by a numerical optimization process). Thus as α is chosen larger Pr[Lucky(Q)]
diminishes. The other events, Win1(Q), Win2(Q) and Win3(Q) are different in
nature from the event Lucky(Q). Simply put, they consider mutually exclusive
configurations on how to find a collision for Tandem-DM (see Figure 2 for an
overview).

Notation. As in Figure 2, the four queries that can be used to form a collision
will be labeled as TL for the query (Xi, Ki, Yi) that is used for the position
top left, BL for bottom left, TR for top right and BR for bottom right. Given

[TL]

[BL]

A1

B1

V

W

L1

R1

S1

[TR]

[BR]

A2

B2

V ′

W ′

L2

R2

S2

Fig. 2. Generic configuration for a collision, i.e. V = V ′ and W = W ′, for the
Tandem-DM compression function
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K ∈ {0, 1}n, we will denote the first a bits as K(0...a−1) ∈ {0, 1}a and the
leftover bits of K as K(a...n) ∈ {0, 1}n−a. Furthermore, we say that two queries,
e.g. BL and BR, are equal, i.e. BL=BR, if and only if there exists an i such that
BL = (Xi, Ki, Yi) ∈ Q and BR = (Xi, Ki, Yi).

We will call the configuration necessary for, e.g., predicate Win1a(Q) simply
1a. Now, take for example just this configuration of predicate Win1a(Q) (i.e.
all four queries are different and a collision is found; this case will be defined
formally in Definition 3). We say, that the four queries Qi, Qj , Qk, Ql ∈ Q fit
configuration 1a if and only if

(i �= j) ∧ (i �= k) ∧ (i �= l) ∧ (j �= k) ∧ (j �= l) ∧ (k �= l)∧
(Xi ⊕ Yi = Xk ⊕ Yk) ∧ (Xj ⊕ Yj = Xl ⊕ Yl)∧
(Ki = Xj |K(0...n/2−1)

j ) ∧ (Kj = K
(n/2...n−1)
i |Yi)∧

(Kk = Xl|K(0...n/2−1)
k ) ∧ (Kl = K

(n/2...n−1)
k |Yk).

We say, that Fit1a(Q) holds if there exist i, j, k, l ∈ {1, 2, . . . , q} such that
queries Qi, Qj, Qk, Ql fit configuration 1a. The other predicates, namely
Fit1b(Q), Fit1c(Q), Fit1d(Q), Fit2a(Q), . . . ,Fit2d(Q),Fit3a(Q), . . . ,
Fit3d(Q), whose configurations are given in Definition 3, are likewise defined.
We also let

Fitj(Q) := Fitja(Q) ∨ . . . ∨ Fitjd(Q) for j = 1, 2, 3.

Definition 3. Fit1(Q): The last query is used only once in position TL. Note
that this is equal to the case where the last query is used only once in position
TR.

Fit1a(Q) all queries used in the collision are pairwise different,
Fit1b(Q) BL = TR and BR is different to TL, BL, TR,
Fit1c(Q) BL = BR and TR is different to TL, BL, BR,
Fit1d(Q) TR = BR and BL is different to TL, TR, BR.

Fit2(Q): The last query is used only once in position BL. Note that this is equal
to the case where the last query is used only once in position BR.

Fit2a(Q) all queries used in the collision are pairwise different,
Fit2b(Q) TL = TR and BR is different to TL, BL, TR,
Fit2c(Q) TL = BR and TR is different to TL, BL, BR,
Fit2d(Q) TR = BR and TL is different to BL, TR, BR.

Fit3(Q): The last query is used twice in a collision.

Fit3a(Q) last query used in TL,BL (TL = BL) and TR �= BR,
Fit3b(Q) last query used in TL,BL (TL = BL) and TR = BR,
Fit3c(Q) last query used in TL,BR (TL = BR) and BL �= TR,
Fit3d(Q) last query used in TL,BR (TL = BR) and BL = TR.
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In Lemma 1 we will show that these configurations cover all possible cases of a
collision. We now define the following predicates:

Win1(Q) = ¬Lucky(Q) ∧ Fit1(Q),
Win2(Q) = ¬(Lucky(Q) ∨ Fit1(Q)) ∧ Fit2(Q),
Win3(Q) = ¬(Lucky(Q) ∨ Fit1(Q) ∨ Fit2(Q)) ∧ Fit3(Q).

Thus Win3(Q), for example, is the predicate which is true if and only if a(Q) ≤ α
(i.e. ¬Lucky(Q)) and Q contains queries that fit configurations 3a, 3b, 3c or 3d
but Q does not contain queries fitting configurations 1a, . . . , 1d, 2a, . . .2d. We
now show, that Coll

TDM (Q) =⇒ Lucky(Q)∨Win1(Q)∨Win2(Q)∨Win3(Q).

Lemma 1

Coll
TDM (Q) =⇒ Lucky(Q) ∨ Win1(Q) ∨ Win2(Q) ∨ Win3(Q).

Proof. If the adversary is not lucky, i.e. ¬Lucky(Q), then

Fit1a(Q) ∨ . . . ∨ Fit3d(Q) =⇒ Win1a(Q) ∨ . . .Win3d(Q)

holds. So it is sufficient to show that Coll
TDM (Q) =⇒ Fit1a(Q) ∨ . . . ∨

Fit3d(Q). Now, say Coll
TDM (Q) and ¬Lucky(Q). Then a collision can be

constructed from the queries Q. That is, our query history Q contains queries
Qi, Qj , Qk, Ql (see Figure 2) such that we have a collision, i.e. V = V ′ and
W = W ′ and TL �= TR. Note that the last condition suffices to ensure a real
collision (a collision from two different inputs).

First assume that the last query is used once in the collision. If it is used in
position TL, then we have to consider the queries BL, TR and BR. If these
three queries are all different (and as the last query is only used once), then
Fit1a(Q). If BL = TR and BR is different, then Fit1b(Q). If BL = BR and
TR is different, then Fit1c(Q). If TR = BR and BL is different, then Fit1d(Q).
If BL = TR = BR, then we have BL = BR and TL = TR and this would not
result in a collision since the inputs to the two compression functions would be
the same. As no cases are left, we are done (for the case that the last query is
used only in position TL).

If the last query is used once in the collision and is used in position BL, then
we have to consider the queries TL, TR and BR. If these three queries are all
different (and as the last query is only used once), then Fit2a(Q). If TL = TR

and BR is different, then Fit2b(Q). If TL = BR and TR is different, then
Fit2c(Q). If TR = BR and TL is different, then Fit2d(Q). If TL = TR = BR,
it follows TL = TR and BL = BR and this would not result in a collision since
the inputs to the two compression functions would be the same. As no cases are
left, we are done.

We now analyze the case when the last query is used twice in the collision.
First, assume that the query is used for the positions TL and BL (TL = BL).
If TR �= BR, then Fit3a(Q), if TR = BR, then Fit3b(Q). Now assume that
the query is employed for the pair TL and BR (TL = BR). Note, that this case



On the Security of Tandem-DM 93

is equal to the case where the query is employed for BL and TR. If BL �= TR,
then Fit3c(Q), if BL = TR, then Fit3d(Q). The other cases, i.e. the last query
is employed either for TL = TR or BL = BR, do not lead to a real collision as
this would imply the same compression function input. As no cases are left, we
are done.

If the last query is used more than twice for the collision we do not get a real
collision as this case would imply either TL = TR or BL = BR and we have
the same input, again, for both compression functions. �

The next step is to upper bound the probability of the predicates Lucky(Q),
Win1(Q), Win2(Q) and Win3(Q).

Lemma 2. Let α be as in Theorem 1. If α > e and τ = N ′α/q, then

Pr[Lucky(Q)] ≤ q2neτν(1−ln τ).

The proof is quite technical and is given in Appendix A.

Lemma 3. Pr[Win1(Q)] ≤ qα/N ′ + 2q/(N ′)2 + q/(N ′)3.

Proof. As Win1(Q) = ¬Lucky(Q) ∧ Fit1(Q), we will upper bound the proba-
bilities of Fit1a(Q), Fit1b(Q), Fit1c(Q) and Fit1d(Q) separately in order to
get an upper bound for Pr[Fit1(Q)] ≤ Fit1a(Q) + . . . + Fit1d(Q). We will use
the notations given in Figure 3.

[TL]

[BL]

Xi

Ki,1

V

W

Ki,2

Yi

S1

[TR]

[BR]

A2

B2

V ′

W ′

L2

R2

S2

Fig. 3. Notations used for Win1(Q)

Let Qi denote the first i queries made by the adversary. The term ’last query’
means the latest query made by the adversary (we examine the adversary’s
queries (Ki, Xi)fwd or (Ki, Yi)bwd one at a time as they come in). The last query
is always given index i. We say the last query is successful if the output Xi or Yi

for the last query is such that a(Qi) < α and such that the adversary can use the
query (Xi, Ki, Yi) to fit the configuration given in Figure 3 using only queries in
Qi (in particular, the last query must be used once in the fitting for that query
to count as successful). The goal is thus to upper bound the adversary’s chance
of ever making a successful last query. The basic setup for upper bounding the
probability of success in a given case is to upper bound the maximum number
of different outputs Yi or Xi (depending on whether the last query is a forward
or a backward query) that would allow the query (Xi, Ki, Yi) to be used to fit
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the configuration, and then divide this number by N ′ = 2n − q (since either Yi

or Xi, depending, is chosen randomly among a set of at least 2n − q different
values). The ratio is then multiplied by q, since the adversary makes q queries
in all, each of which could become a successful last query.

(i) Fit1a(Q): The last query, wlog. (Xi, Ki,1|Ki,2, Yi), is used in position TL.
We do not care whether the last query was a forward or backward query
since the analysis below is the same. All queries are, as claimed, pairwise
different. We give the adversary for free the answer to the forward query
BL, (Ki,1, Ki,2|Yi, S1). Then we have V = Yi ⊕Xi and W = S1 ⊕Ki,1. This
pair of queries is successful if the adversary’s query history Qi−1 contains a
pair (A2, B2|L2, R2), (B2, L2|R2, S2) such that V = Xi ⊕Yi = R2 ⊕A2 = V ′

and W = S1 ⊕ Ki,1 = S2 ⊕ B2 = W ′. There are at most α queries in Qi−1
that can possibly be used for query in TR that all lead to a collision in the
top row, i.e. V = V ′. Therefore we have at most α possibilities for the query
in BR since the query in TR uniquely determines the query BR. Thus, the
last query has a chance of ≤ α/N ′ of succeeding. So the total chance of
making a successful query of this type is ≤ qα/N ′.

(ii) Fit1b(Q): Again, the last query, wlog. (Xi, Ki,1|Ki,2, Yi), is used in position
TL. We give the adversary for free the answer to the forward query BL,
(Ki,1, Ki,2|Yi, S1). By our claim, as BL=TR, we have A2 = Ki,1, B2 =
Ki,2, L2 = Yi and R2 = S1. It follows that for any given query i for TL, we
have at most one query for TR to form a collision V = V ′ (as the query
TL uniquely determines the query BL and the queries BL and TR are
equal) and therefore have at most one query BR in our query history to
form a collision W = W ′. The last query has a chance of ≤ 1/(N ′ · N ′)
of succeeding and so the total chance of making a successful query in the
attack is ≤ q/(N ′)2.

(iii) Fit1c(Q): As this analysis is essentially the same as for Fit1b(Q) we con-
clude with a total chance of success for this type of query of ≤ q/(N ′)2.

(iv) Fit1d(Q): Again, the last query, wlog. (Xi, Ki,1|Ki,2, Yi), is used in position
TL. We give the adversary for free the answer to the forward query BL,
(Ki,1, Ki,2|Yi, S1). Note, that this query is trivially different from the query
in TL as we assume that the last query is only used once in this configuration
(the case in which the two queries, TL and BL, are equal is discussed in
the analysis of Win3(Q)). We have V = Yi ⊕ Xi and W = S1 ⊕ Ki,1.
As by our claim, we assume TR = BR. The pair of queries for TL and
BL is successful if the adversary’s query history Qi−1 contains a query
(A2, B2|L2, R2) such that V = R2 ⊕ A2 = V ′ and W = R2 ⊕ A2 = W ′,
i.e. V = W = V ′ = W ′. Moreover, it follows from B2 = R2 = L2 that
V = W = V ′ = W ′ = 0. As at least three of them are chosen randomly by
the initial query input (wlog. V, W, V ′), the query has a chance of success
in the i-th query ≤ 1/(N ′ · N ′ · N ′) and therefore a total chance of success
≤ q/(N ′)3.

The claim follows by adding up the individual results. �
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Lemma 4. Pr[Win2(Q)] ≤ qα/N ′ + 2q/(N ′)2 + q/(N ′)3.

As the proof and the result is (in principle) identical to the proof of Pr[Win1(Q)]
we omitted the details of the proof.

Lemma 5. Pr[Win3(Q)] ≤ 2qα/N ′ + 2q/(N ′)2.

Proof. The same notations and preliminaries as in the proof of Lemma 3 are
used.

(i) Win3a(Q): The last query, wlog. (Xi, Ki,1|Ki,2, Yi) is used in positions TL

and BL. We do not care whether the last query is a forward or backward
query since the analysis is the same. It follows, that Xi = Ki,1 = Ki,2 = Yi

and therefore V = Xi ⊕ Yi = W = 0. We assume that the adversary is
successful concerning these restraints, i.e. has found a query TL that can
also be used for BL such as Xi = Yi = Ki,1 = Ki,2. (Note, that this
condition is quite hard.) We do have at most α queries in Qi−1 that can
possibly be used for a query in TR and that lead to a collision in the
top row, i.e. 0 = V = V ′. For every such query TR we have at most one
corresponding query in Qi−1 that can be used in position BR. So the last
query has a chance of ≤ α/N ′ of succeeding and so the total chance of
making a successful query of this type during the attack is ≤ qα/N ′.

(ii) Win3b(Q): The last query, wlog. (Xi, Ki,1|Ki,2, Yi) is used in positions TL

and BL. We do not care whether the last query is a forward or backward
query since the analysis is the same. It follows, that Xi = Ki,1 = Ki,2 = Yi

and therefore V = Xi ⊕ Yi = W = 0. We assume again that the adversary
is successful concerning these restraints, i.e. has found a query TL that can
also be used for BL. We do have at most α queries in Qi−1 that can possibly
be used for a query in TR and that lead to a collision in the top row, i.e.
0 = V = V ′. We assume that we can use any such query equally as the
corresponding query for BR. In reality, this gives the adversary with high
probability more power than he will have. Thus, the last query has a chance
of ≤ α/N ′ of succeeding and so the total chance of making a successful
query of this type during the attack is ≤ qα/N ′. As discussed above, this
upper bound is likely to be generous.

(iii) Win3c(Q): The last query, wlog. (Xi, Ki,1|Ki,2, Yi) is used in positions TL

and BR. Note, that this situation is equal to the last query being used in
position BL and TR. We do not care whether the last query is a forward or
backward query. We give the adversary for free the answer to the forward
query BL, (Ki,1, Ki,2|Yi, S1). We also give the adversary for free the answer
to the backward query TR, (A2, Xi|Ki,1, Ki,2). The probability for the i-th
query to be successful is equal to Pr[V = V ′] · Pr[W = W ′], and as W and
V ′ are guaranteed to be chosen independently and randomly the chance of
success is ≤ 1/(N ′)2. The total chance of success is therefore ≤ q/(N ′)2.

(iv) Win3d(Q): The last query, wlog. (Xi, Ki,1|Ki,2, Yi) is used in positions TL

and BR. Note, that this situation is equal to the last query being used in
position BL and TR. We do not care whether the last query is a forward or
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backward query. We give the adversary for free the answer to the forward
query BL, (Ki,1, Ki,2|Yi, S1). (This query is also used for position TR and
it follows (by comparing the input values of query BL that is used for TR

with them of BR) Ki,2|Yi = Xi|Ki,1 and S1 = Ki,2. Comparing the outputs
we get a collision in the top row of the compression functions Pr[V = V ′] =
Pr[EKi,1|Ki,2(Xi) ⊕ Xi = EKi,2|Yi

(Ki,1) ⊕ Ki,1], where Yi = EKi,1|Ki,2 , with
probability ≤ 1/N ′. This is, because the input values Xi, Ki,1, Ki,2 have to
be in such a way that the two inputs to the E oracle are different (if they are
not, we would have no colliding inputs for the two compression functions).
For the bottom row of the compression function we get, similarly, a collision
with probability ≤ 1/N ′. So the total chance for succeeding is in this case
≤ q/(N ′)2 as we have again at most q queries by the adversary. �

We now give the proof for Theorem 1.

Proof. (of Theorem 1)
The proof follows directly with Lemma 1, 2, 3, 4 and Lemma 5. �

4 Preimage Resistance

Although, the main focus is on collision resistance, we are also interested in
the difficulty of inverting the compression function of Tandem-DM. Generally
speaking, second-preimage resistance is a stronger security requirement than
preimage resistance. A preimage may have some information of another preim-
age which produces the same output. However, in the ideal cipher model, for the
compression function Tandem-DM, a second-preimage has no information use-
ful to find another preimage. Thus, only preimage resistance is analyzed. Note,
that there have be various results that discuss attacks on iterated hash func-
tions in terms of pre- and second-preimage, e.g. long-message second-preimage
attacks [6, 16], in such a way that the preimage-resistance level cannot easily be
transferred to an iterated hash function built on it.

The adversary’s goal is to output a preimage (G, H, M) for a given σ, where σ
is taken randomly from the output domain, such as F (G, H, M) = σ. As in the
proof of Theorem 1 we will again dispense the adversary from having to output
such a preimage. We will determine whether the adversary has been successful
or not by examining its query history Q. We say, that PreImg(Q) holds if there
is such a preimage and Q contains all the queries necessary to compute it.

Definition 4. (Inverting random points) Let F be a block cipher based com-
pression function, F : {0, 1}3n → {0, 1}2n. Fix an adversary A that has access
to oracles E, E−1. Then the advantage of A of inverting F is the real number

AdvInv

F (A) = Pr[E R← BC(n, k); σ R← {0, 1}2n :

(G, H, M) R← AE,E−1
(σ) : F (G, H, M) = σ].

Again, for q ≥ 1, we write
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AdvInv

F (q) = max
A

{AdvInv

F (A)}

where the maximum is taken over all adversaries that ask at most q oracle
queries. Note that there has been a discussion on formalizations of preimage
resistance. For details we refer to [2, Section 2, Appendix B].

4.1 Preimage Security

The preimage resistance of the compression function Tandem-DM is given in
the following Theorem.

Theorem 2. Let F := FTDM be as in Definition 1. For every N ′ = 2n − q and
q > 1

AdvInv

F (q) ≤ 2q/(N ′)2.

Proof. Fix σ = (σ1, σ2) ∈ {0, 1}2n where σ1, σ2 ∈ {0, 1}n and an adversary A
asking q queries to its oracles. We upper bound the probability that A finds a
preimage for a given σ by examining the oracle queries as they come in and upper
bound the probability that the last query can be used to create a preimage, i.e.
we upper bound Pr[PreImg(Q)]. Let Qi denote the first i queries made by the
adversary. The term ’last query’ means the latest query made by the adversary
since we examine again the adversary’s queries (Ki, Xi)fwd or (Ki, Xi)bwd one
at a time as they come in. The last query is always given index i.

Case 1: The last query (Xi, Ki, Yi) is used in the top row. Either Xi or Yi was
randomly assigned by the oracle from a set of at least the size N ′. The query
is successful in the top row if Xi ⊕ Yi = σ1 and thus has a chance of success
of ≤ 1/N ′. In Qi there is at most one query Qj that matches for the bottom
row. If there is no such query in Qi we give this query Qj the adversary for
free. This ’bottom’ query is successful if Xj ⊕ Yj = σ2 and therefore has a
chance of success of ≤ 1/N ′. So the total chance of success after q queries is
≤ q/(N ′)2.

Case 2: The last query (Xi, Ki, Yi) is used in the bottom row. The analysis is
essentially the same as in Case 1. The total chance of success is ≤ q/(N ′)2,
too.

As any query can either be used in the top or in the bottom row, the claim
follows.

5 Discussion and Conclusion

In this paper, we have investigated the security of Tandem-DM, a long out-
standing DBL compression function based on an (n, 2n) block cipher. In the
ideal cipher model, we showed that this construction has birthday-type colli-
sion resistance. As there are some generous margins in the proof it is likely, that
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Tandem-DM is even more secure. Our bound for preimage resistance is far from
optimal, but we have not found an attack that would classify this bound as tight.

Somewhat surprisingly, there seems to be only one practical rate 1/2 DBL
compression function that also has a birthday-type security guarantee. It was
presented at FSE’06 by Hirose [13]. Taking into account that it was presented
about 15 years after Tandem-DM, it is clear that there needs still to be a lot
of research done in the field of block cipher based hash functions, e.g. there are
still security proofs missing for the aforementioned Abreast-DM and MDC-4
compression or hash functions.
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A Proof of Lemma 2

Note that this proof is essentially due to Steinberger [34]. We can rephrase the
problem of upper bounding Pr[Lucky(Q)] = Pr[a(Q) > α] as a balls-in-bins
question. Let N = 2n be the number of bins and q be the number of balls to be
thrown. The i-th ball falls into the j-th bin if the XOR output of the i-th query
is equal to the XOR output of the j-th query, i.e. Xi ⊕ Yi = Xj ⊕ Yj . In the
following we will upper bound the probability that some bin contains more than
α balls. As the balls are thrown independent of each other, the i-th ball always
has probability ≤ p = 1/(2n − q) of falling in the j-th bin. This is because the
XOR output of the i-th query is chosen uniformly at random from a set of size
at least 2n − q. If we let B(k) be the probability of having exactly k balls in a
particular bin, say bin 1, then

B(k) ≤ pk

(
q

k

)
.

Let ν = qp, where ν is an upper bound for the expected number of balls in any
bin. By Stirlings approximation [8] (and ex being the exponential function)

n! ≤ √
2πn ·

(n

e

)n

· e1/(12n)

we can upper bound B(k) as follows:

B(k) ≤ pk q!
k!(q − k)!

≤ pk

√
2π

√
q

k(q − k)
· qq

kk(q − k)1−k
· ek · eq−k

eq
· e 1

12 (q−k−(q−k))

≤ k−kνk

(
q

q − k

)
≤ νk · k−k · ek.

http://eprint.iacr.org/2006/294
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Since α = τν we get

B(α) ≤ ντνeτν

(τν)τν
=

eτν

ττν
= eτν(1−ln τ).

As B(α) is a decreasing function of α if (1 − ln τ) < 0, it follows that B(α) is a
decreasing function if α > e. And so we have

Pr[a(Q) > α] ≤ 2n ·
q∑

j=α

B(j)

≤ q2nB(α) ≤ q2neτν(1−ln τ).

This proves our claim. �

B Security of the FSE’06 Proposal by Hirose for a DBL
Compression Function

At FSE’06, Hirose [13] proposed a DBL compression function (Definition 5 and
Figure 4). He proved that when his compression function FHirose is employed
in an iterated hash function H , then no adversary asking less than 2125.7 queries
can have more than a chance of 0.5 in finding a collision for n = 128. As he
has not stated a security result for the compression function we do here for
comparison with Tandem-DM.

B.1 Compression Function

Definition 5. Let FHirose : {0, 1}2n×{0, 1}n → {0, 1}2n be a compression func-
tion such that (Gi, Hi) = FHirose(Gi−1, Hi−1, Mi) where Gi, Hi, Mi ∈ {0, 1}n.
FHirose is built upon a (n, 2n) block cipher E as follows:

Gi = FT (Gi−1, Hi−1, Mi) = E(Gi−1, Hi−1|Mi) ⊕ Gi−1

Hi = FB(Gi−1, Hi−1, Mi) = E(Gi−1 ⊕ C, Hi−1|Mi) ⊕ Gi−1 ⊕ C,

where ′|′ represents concatenation and c ∈ {0, 1}n − {0n} is a constant.

A visualization of this compression function is given in Figure 4.

B.2 Collision Resistance of the Compression Function

As the security proof of Hirose [13, Theorem 4] only states a collision resistance
bound for a hash function built using FHirose, we will give a bound for the
compression function itself. In particular, we will show:

Theorem 3. Let F := FHirose be a compression function as in Defintion 5.
Then,

AdvColl

F (q) ≤ 2q2

(2n − 2q)2
+

2q

2n − 2q
.
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E

E

Gi−1

Hi−1

Gi

Hi

Mi

C

Fig. 4. The compression function F Hirose, E is an (n, 2n) block cipher, the small
rectangle inside the cipher rectangle indicates the position of the key

In numerical terms, it means that no adversary performing less than 2124.55

oracle calls can have more than an even chance, i.e. 0.5, in finding a collision.
Due to the special structure of the compression function, the following

definition is useful for the proof.

Definition 6. A pair of distinct inputs (Gi−1, Hi−1, Mi), (G′
i−1, H

′
i−1, M

′
i) to

FHirose is called a matching pair if (G′
i−1, H

′
i−1, M

′
i) = (Gi−1, Hi−1, Mi ⊕ C.

Otherwise they are called a non-matching pair.

Note, that the proof is essentially due to Hirose [13], but as he stated it only
for the hash function and not for the compression function itself. We will give a
proof here for the compression function.

Proof. Let A be an adversary that asks q queries to oracles E, E−1. Since

Gi = E(Gi−1, Hi−1|Mi) ⊕ Gi−1

depends both on the plaintext and the ciphertext of E and one of them is fixed
by a query and the other is determined by the answer, it follows that Gi is
determined randomly. We give the adversary for free the answer to the query
for Hi. Let (Xi, Ki,1|Ki,2, Yi) and (Xi ⊕ C, Ki,1|Ki,2, Zi) be the triplets of E
obtained by the i-th pair of queries and the corresponding answers.

For any 2 ≤ i ≤ q, let Ci be the event that a colliding pair of non-matching
inputs is found for F with the i-th pair of queries. Namely, it is the event that,
for some i′ < i

F (Xi, K1,i, K2,i) = F (Xi′ , K1,i′ , K2,i′) or F (Xi′ ⊕ C, K1,i′ , K2,i′)

or

F (Xi ⊕ C, K1,i, K2,i) = F (Xi′ , K1,i′ , K2,i′) or F (Xi′ ⊕ C, K1,i′ , K2,i′)

which is equivalent to

(Yi ⊕ Xi, Zi ⊕ Xi ⊕ C) =(Yi′ ⊕ Xi′ , Zi′ ⊕ Xi′ ⊕ C)
or (Zi′ ⊕ Xi′ ⊕ C, Yi′ ⊕ Xi′).
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It follows, that

Pr[Ci] ≤ 2(i − 1)
(2n − (2i − 2))(2n − (2i − 1))

≤ 2q

(2n − 2q)2
.

Let C be the event that a colliding pair of non-matching inputs is found for
FHirose with q (pairs) of queries. Then,

Pr[C] ≤
q∑

i=2

Pr[Ci] ≤
q∑

i=2

2q

(2n − 2q)2
≤ 2q2

(2n − 2q)2
.

Now, let Ĉi be the event that a colliding pair of matching inputs is found for F .
It follows, that

Pr[Ĉi] ≤ 2
(2n − 2q)

.

Let Ĉ be the event that a colliding pair of matching inputs is found for FHirose

with q (pairs) of queries. Then,

Pr[Ĉ] ≤
q∑

i=2

Pr[Ĉi] ≤ 2q

2n − 2q
.

Since AdvColl

F (q) = Pr[C ∨ Ĉ] ≤ Pr[C] + Pr[Ĉ], the claim follows.
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Abstract. MD6 [17] is one of the earliest announced SHA-3 candidates,
presented by Rivest at CRYPTO’08 [16]. Since then, MD6 has received
a fair share of attention and has resisted several initial cryptanalytic
attempts [1,11].

Given the interest in MD6, it is important to formally verify the sound-
ness of its design from a theoretical standpoint. In this paper, we do so
in two ways: once for the MD6 compression function and once for the
MD6 mode of operation. Both proofs are based on the indifferentiability
framework of Maurer et al. [13] (also see [9]).

The first proof demonstrates that the “prepend/map/chop” manner in
which the MD6 compression function is constructed yields a compression
function that is indifferentiable from a fixed-input-length (FIL), fixed-
output-length random oracle.

The second proof demonstrates that the tree-based manner in which
the MD6 mode of operation is defined yields a hash function that is
indifferentiable from a variable-input-length (VIL), fixed-output-length
random oracle.

Both proofs are rather general and apply not only to MD6 but also
to other sufficiently similar hash functions.

These results may be interpreted as saying that the MD6 design has
no structural flaws that make its input/output behavior clearly distin-
guishable from that of a VIL random oracle, even for an adversary who
has access to inner components of the hash function. It follows that,
under plausible assumptions about those inner components, the MD6
hash function may be safely plugged into any application proven secure
assuming a monolithic VIL random oracle.

1 Introduction

In light of recent devastating attacks on existing hash functions, such as MD4
[18,22], MD5 [20], SHA-0 [21,7], and SHA-1 [19], NIST recently announced a
competition for a new hash function standard, to be called SHA-3 [14]. NIST

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 104–121, 2009.
c© International Association for Cryptologic Research 2009



Indifferentiability of Tree-Based Modes of Operation 105

received 64 submissions, one of which is MD6. The current status of the SHA-3
competition can be found on the NIST web site1.

Crutchfield [10] showed that MD6 has many attractive properties required of
a good hash function, such as preservation of collision-resistance, unpredictabil-
ity, preimage-resistance, and pseudorandomness. As observed by Coron et al. [9],
however, the above “traditional” properties of hash functions are often insuffi-
cient for many applications, which require that the hash function behaves “like a
random oracle.” Moreover, the initial NIST announcement for the SHA-3 com-
petition [15] states that the candidate submissions will be judged in part by

“The extent to which the algorithm output is indistinguishable from a
random oracle.”

Thus, it is important to show that the design of the hash function is “consistent”
with the proofs of security in the random oracle (RO) model [3]. Such a notion
of consistency with the random oracle model was recently defined by Coron et
al. [9]; it is called indifferentiability from a random oracle and is based on the
general indifferentiability framework of Maurer et al. [13].

Given the importance of the random oracle model in the design of practi-
cal cryptographic schemes and the increased popularity of the indifferentiability
framework in the analysis of hash functions [9,2,8,12,4], we suggest that it is crit-
ical that the winner of the SHA-3 competition satisfy such an “indifferentiability
from a random oracle” property.

The main result of this paper is a formal proof that the design of MD6, both
at the compression function level and at the mode of operation level, provides
indifferentiability from a random oracle. Thus, the MD6 mode of operation and
compression function have no structural flaws that would allow them to be distin-
guished from (VIL or FIL, respectively) random oracles. It follows, from results
due to Maurer et al. [13], that, given reasonable assumptions about the permu-
tation inside the compression function, the MD6 hash function may be safely
plugged into any higher-level application whose security is proven assuming the
hash function is a VIL random oracle.

These results generalize to other hash functions built on permutation-based
compression functions and tree-based modes of operations, if they are sufficiently
similar to MD6 in structure to meet the conditions of our proofs. We note that
similar results on tree-based hashing have been obtained in independent work
by Bertoni et al. [6].

To explain our results more precisely, we briefly recall the indifferentiability
framework and the high level design of the MD6 hash function.

1.1 Indifferentiability

The notion of indifferentiability was first introduced by Maurer et al. in [13].
Informally, it gives sufficient conditions under which a primitive F can be “safely
replaced” by some construction CG (using an ideal primitive G). The formal
definition is as follows.
1 http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
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Definition 1. A Turing machine C with oracle access to an ideal primitive G is
(t, qF , qS , ε)-indifferentiable from an ideal primitive F if there exists a simulator
S such that, for any distinguisher D, it holds that:∣∣Pr

[
DC,G = 1

]− Pr
[
DF,S = 1

]∣∣ < ε

The simulator S has oracle access to F (but does not see the queries of the
distinguisher D to F ) and runs in time at most t. The distinguisher makes at
most qF queries to C or F and at most qS queries to G or S.

Indifferentiability is a powerful notion; Maurer et al. [13] show that if CG is
indifferentiable from F , then F may be replaced by CG in any cryptosystem,
and the resulting cryptosystem is at least as secure in the G model as in the F
model.

In this paper, F will always be a random oracle — either fixed-input-length,
fixed-output-length or variable-input-length, fixed-output-length. Thus, we will
be showing that a certain construction C is indifferentiable from a random oracle,
meaning that any cryptosystem proven secure in the RO model will still be secure
in the G model, when the hash function is implemented using CG.

1.2 The MD6 Hash Function: High-Level View

The MD6 function consists of the following two high-level steps. First, there
is a compression function which operates on fixed-length inputs. Second, there
is a mode of operation, which uses the compression functions as a black-box
and to evaluate the hash function on arbitrary-length inputs. Naturally, our
indifferentiability results will consist of two parts as well: (a) that the com-
pression function, under some natural assumptions, is indifferentiable from a
fixed-input-length RO, and (b) that, assuming the compression function is a
fixed-input-length RO, the MD6 mode of operation yields a hash function that
is indifferentiable from a variable-input-length RO.

The Compression Function. The MD6 compression function f maps an input
N of length n = 89 words (consisting of 25 words of auxiliary input followed by
64 words of data) to an output of c = 16 words. Thus, the compression function
reduces the length of its data input by a factor of 4. The compression function
f is computed as a series of operations, which we view as the application of a
random permutation π over the set of 89-word strings, followed by a truncation
operation which returns the last 16 words of π(N).

In each call to f in an MD6 computation, the first 15 words of auxiliary input
are a constant Q (a representation of the fractional part of

√
6). Therefore, in

our analysis, we consider the “reduced” compression function fQ, where fQ(x) =
f(Q||x). For the full specification of the MD6 compression function, we refer the
reader to [17].

In Section 3, we prove that fQ is indifferentiable from a random oracle F ,
assuming that the main operation of the compression function is the application
of a fixed public random permutation π.
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The Mode of Operation. The standard MD6 mode of operation is a hierarchical,
tree-based construction to allow for parallelism. However, for devices with limited
storage, the MD6 mode of operation can be iterative. There is an optional level
parameter L which allows a smooth transition between the fully hierarchial mode
of operation and the fully iterative mode of operation. At each node in the
tree, the input to the compression function includes auxiliary information. The
auxiliary information includes a unique identifier U for each node (consisting of
a tree level and index). In addition, there is a bit z which equals 1 in the input to
the root node (the final compression call) and 0 in the input to all other nodes.
For the full specification of the MD6 mode of operation, we refer the reader
to [17].

In Section 4, we prove that the MD6 mode of operation is indifferentiable from
a random oracle F when the compression function fQ is modeled as a random
oracle. In fact, our proof is quite general and applies essentially to any tree-like
construction, as long as the final computation node has a distinguishable input
structure and compression function inputs are uniquely parsable into blocks that
are either raw message bits, metadata, or outputs of the compression function
on “child” nodes.

2 Notation

We first introduce some notation.
Let W = {0, 1}w denote the set of all w = 64-bit words. Let χa(X) denote a

function that returns the last a bits of X .

3 Indifferentiability from Random Oracle of MD6
Compression Function

In this section, we will prove the indifferentiability from a random oracle of
the MD6 compression function construction, under certain assumptions. The
compression function construction involves three steps:

– Prepending a constant value Q to the compression function input.
– Mapping the result by applying a fixed (pseudo)-random permutation π to

it, and
– Chopping (removing) bits off the front of the result, so that what remains

has the desired length as a compression function output.

Our proof applies in general to compression functions constructed in this man-
ner. Our presentation of the proof will use notation shared with the formal
specification of MD6, for convenience.

We view the compression function as based on a fixed public random permu-
tation π(·), i.e., f(N) = χcw(π(N)). (Recall that χcw(·) returns the last cw bits
of its input.) Since the permutation is public, an adversary can compute both π
and π−1 easily. Therefore, we need to consider an adversarial model where the
adversary has these powers.
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Note that in this model the adversary can both invert f and find collisions for
f easily, if we do not do something additional. (This is because the adversary
can take the c-word output C, prepend n − c words of random junk, then apply
π−1 to get a valid pre-image for C. He can do this twice, with different junk
values, to get a collision.) However, MD6 does have an important additional
feature: a valid compression function input must begin with a fixed constant Q.
We now proceed to show that this yields a compression function that behaves
like a random oracle when π is a random permutation.

Recall that W = {0, 1}w denotes the set of all w-bit words and that f takes
n-word inputs. We let fQ(x) = f(Q||x) denotes the “reduced” compression func-
tion that takes (n − q)-word inputs, prepends the fixed prefix Q, and runs f .
To make it explicit that in this section we are modeling f and fQ in terms of a
random permutation π on Wn, we will write

fπ
Q(x) = χcw(π(Q||x)) , (1)

where χcw(y) returns the last cw bits of y, and where x is in Wn−q.
Let the ideal functionality be represented by F : Wn−q → Wc, a random

oracle with same signature as fπ
Q. We will show that fπ

Q is indifferentiable from
F , as stated below.

Theorem 1. If π is a random permutation and Q is arbitrary, the reduced MD6
compression function fπ

Q defined by equation (1) is (t, qF , qS , ε)-indifferentiable
from a random oracle F , for any number of queries qF and qS, for distinguishing
advantage

ε =
(qS + qF )2

2nw
+

qS

2qw
+

qSqF

2(n−c)w , (2)

and for running time of the simulator t = O(qSnw).

Proof. We use the approach of Coron et al. [9], who showed that the indifferen-
tiability framework can be successfully applied to the analysis of hash functions
built from simpler primitives (such as block ciphers or compression functions).
We note that related results have been obtained by Bertoni et al. [5] in their
proof of indifferentiability of “sponge functions.”

In our case, because π is a permutation, the oracle G contains both π and
π−1, and we need to simulate them both. Slightly abusing notation, we will write
S for the simulator of π and S−1 for the simulator of π−1. Thus, we need to
construct simulator programs S and S−1 for π and π−1 such that no distinguisher
D can distinguish (except with negligible probability) between the following two
scenarios:

(A) The distinguisher has oracle access to fπ
Q, to π, and to π−1.

(B) The distinguisher has oracle access to F , S, and S−1.

We define the simulators S, S−1 for π, π−1 as follows:

1. S and S−1 always act consistently with each other and with previous calls,
if possible. If not possible (i.e., there are multiple answers for a given query),
they abort.
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2. To evaluate S(X) where X = Q||x, compute y = F (x), then return R||y
where R is chosen randomly from in Wn−c.

3. To evaluate S(X) where X does not start with Q, return a value R chosen
randomly from Wn.

4. To evaluate S−1(Y ): return a random N in Wn which does not start with
Q (i.e., from Wn\(Q||Wn−q)).

The running time of the simulators is at most t = O(qSnw). Next, we argue the
indifferentiability of our construction. To this end, consider any distinguisher
D making at most qS to queries to S/π and S−1/π−1 and at most qF queries
to F/fπ

Q. To analyze the advantage of this distinguisher, we consider several
games G0, G1, . . . , G7. For each game Gi below, let pi = Pr(D outputs 1 in Gi).
Intuitively, G0 will be the “real” game, G7 will be the “ideal” game, and the
intermediate game will slowly transform these games into each other.

Game G0. This is the interaction of D with fπ
Q, π, π−1.

Game G1. The game is identical to G0 except the permutation π is chosen in a
“lazy” manner. Namely, we introduce a controller Cπ which maintains a table Tπ

consisting of all currently defined values (X, Y ) such that π(X) = Y . Initially,
this table is empty. Then, whenever a value π(X) or π−1(Y ) is needed, Cπ first
checks in Tπ whether the corresponding value is already defined. If yes, it supplies
it consistently. Else, it chooses the corresponding value at random subject to
the “permutation constraint”. Namely, if Tπ = {(Xi, Yi)}, then π(X) is drawn
uniformly from Wn\{Yi} and π−1(Y ) is drawn uniformly from Wn\{Xi}. It is
clear that G1 is simply a syntactic rewriting of G0. Thus, p1 = p0.

Game G2. This game is identical to G1 except the controller Cπ does not
make an effort to respect the permutation constraint above. Instead, it simply
chooses undefined values π(X) and π−1(Y ) completely at random from Wn, but
explicitly aborts the game in case the permutation constraint is not satisfied. It
is clear that |p2 − p1| is at most the probability of such an abort, which, in turn,
is at most (qS + qF )2/2nw.

Game G3. This game is identical to G2 except the controller Cπ does not choose
values starting with Q when answering the new inverse queries π−1(Y ). Namely,
instead of choosing such queries at random from Wn, it chooses them at random
from Wn\(Q||Wn−q). It is easy to see that |p3 − p2| is at most the probability
that Cπ would choose an inverse starting with Q in the game G2, which is at
most qS/2qw.

Game G4. This game is identical to G3 except we modify the controller Cπ

as follows. Notice that there are three possible ways in which Cπ would add an
extra entry to the table Tπ:

1. D makes a query π(X) to π, in which case a new value (X, Y ) might be
added (for random Y ). We call such additions forward.
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2. D makes a query π−1(Y ) to π−1, in which case a new value (X, Y ) is added
(for random X not starting with Q). We call such additions backward.

3. D makes a query fπ
Q(x) = χcw(π(Q||x)), in which case Cπ needs to evaluate

π(Q||x) and add a value (Q||x, Y ) (for random Y ). We call such additions
forced.

We start by making a syntactic change. When a forced addition (Q||x, Y ) to Tπ

is made, Cπ will mark it with a special symbol and will call this entry marked.
Cπ will keep it marked until D asks the usual forward query to π(Q||x), in
which case the entry will become unmarked, just like all the regular forward and
backward additions to Tπ. With this syntactic addition, we can now make a key
semantic change in the behavior of the controller Cπ.

– In game G3, when a backward query π−1(Y ) is made, Cπ scans the entire
table Tπ to see if an entry of the form (X, Y ) is present. In the new game
G4, Cπ will only scan the unmarked entries in Tπ, completely ignoring the
currently marked entries.

We can see that the only way the distinguisher D will notice a difference be-
tween G3 and G4 is if D can produce a backward query π−1(Y ) such that the
current table Tπ contains a marked entry of the form (Q||x, Y ). Let us call this
event E, and let us upper-bound the probability of E. For each forced addition
(Q||x, Y ), the value Y is chosen at random from Wn, and the distinguisher D
only learns the “chopped” value y = χcw(Y ). In other words, D does not see
(n − c)w completely random bits of Y . Thus, for any particular forced addition,
the probability that D ever “guesses” these missing bits is 2−(n−c)w. Since D
gets at most qS attempts, and there are at most qF forced values to guess, we
get that Pr(E) ≤ qSqF /2(n−c)w. Thus, |p4 − p3| ≤ qSqF

2(n−c)w .

Game G5. We introduce a new controller CF , which is simply imitating a ran-
dom function F : Wn−q → Wc. Namely, CF keeps a table TF , initially empty.
When a query x is made, CF checks if there is an entry (x, y) in TF . If so, it
outputs y. Else, it picks y at random from Wc, adds (x, y) to TF , and outputs
y. Now, we modify the behaviors of the controller Cπ for π/π−1 from the game
G4 as follows. In game G4, when a new forward query (Q||x) was made to π,
or a new query x was made to fπ

Q, Cπ chose a random Y from Wn and set
π(Q||x) = Y . In game G5, in either one of these cases, Cπ will send a query x to
the controller CF , get the answer y, and then set Y = R||y, where R is chosen
at random from Wn−c.

We notice that the game G5 is simply a syntactic rewriting of the game G4,
since choosing a random value in Wn is equivalent to concatenating two random
values in Wn−c and Wc. Thus, p5 = p4.

Game G6. Before describing this game, we make the following observations
about the game G5. First, we claim that all the entries of the form (Q||x, Y )
in Tπ, whether marked or unmarked, have come from the explicit interaction
with the controller CF . Indeed, because in game G3 we restricted Cπ to never
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answer a backward query so that the answer starts with Q, all such entries in T
have come either from a forward query π(Q||x), or the fπ

Q-query fπ
Q(x). In either

case, in game G5 the controller Cπ “consulted” CF before making the answer. In
fact, we can say more about the fπ

Q-query fπ
Q(x). The answer to this query was

simply the value y which CF returned to Cπ on input x. Moreover, because of
the rules introduced in game G4, Cπ immediately marked the entry (Q||x, R||y)
which it added to Tπ, and completely ignored this entry when answering the
future backward queries to π−1 (until a query π(Q||x) to π was made).

Thus, we will make the following change in the new game G6. When D asks a
new query fπ

Q(x), the value x no longer goes to Cπ (which would then attempt
to define π(Q||x) by consulting CF ). Instead, this query goes directly to CF ,
and D is given the answer y. In particular, Cπ will no longer need to mark any
of the entries in Tπ, since all the fπ

Q queries are now handled directly by CF .
More precisely, Cπ will only “directly” define the forward queries π(X) and the
backward queries π−1(Y ) (in the same way it did in Game G5), but no longer
define π(Q||x) as a result of D’s call to fπ

Q(x).
We claim that game G6 is, once again, only a syntactic rewriting of game

G5. Indeed, the only change between the two games is that, in game G5, Tπ

will contain some marked entries (Q||x, R||y), which will be ignored anyway in
answering all the inverse queries, while in Game G6 such entries will be simply
absent. There is only one very minor subtlety. In Game G5, if D first asks fπ

Q(x),
and later asks π(Q||x), the latter answer R||y will already be stored in Tπ at the
time of the first question fπ

Q(x). However, it will be marked and ignored until
the second question π(Q||x) is made. In contrast, in Game G6 this answer will
only be stored in Tπ after the second question. However, since in both cases Cπ

would answer by choosing a random R and concatenating it with CF ’s answer y
to x, this minor difference results in the same view for D. To sum up, p6 = p5.

Game G7. This is our “ideal” game where D interacts with S/S−1 and a true
random oracle F . We claim this interaction is identical to the one in Game G6.
Indeed, CF is simply a “lazy” evaluation of the random oracle F . Also, after
all our changes, the controller Cπ in Game G6 is precisely equivalent to our
simulators S and S−1. Thus, p7 = p6.

Collecting all the pieces together, we get that the advantage of D in distin-
guishing Game G0 and Game G7 is at most the claimed value

ε ≤ (qS + qF )2

2nw
+

qS

2qw
+

qSqF

2(n−c)w
��

(In practice, there are other inputs to consider, such as the key input K, the
unique ID U , and the control word V . The above proof applies as given, assuming
that these inputs are available for the distinguisher to control. This is the correct
assumption to make from the viewpoint of the MD6 mode of operation or other
applications using the MD6 compression function.)
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Remark 1. We remark that our indifferentiability proof for the function fπ
Q(x) =

χcw(π(Q||x)) trivially generalizes to any compression function fπ(x) of the form
fπ(x) = hcw(π(gqw(x))), where:

– hcw : Wn → Wc is any regular2 function. For the case of MD6, we use the
“chop function” hcw = χcw.

– gqw : Wn−q → Wn is any injective function which is (a) efficiently invertible
and (b) efficiently verifiable (i.e., one can determine whether or not a point
y ∈ Wn belongs to the range of gqw). For the case of MD6, we use the
“prepend function” gqw(x) = (Q||x), for some constant Q ∈ Wq.

4 Indifferentiability of Tree-Based Modes of Operation

In this section, we prove that any tree-based mode of operation, with certain
properties (defined below), is indifferentiable from a random oracle when the
compression function is a random oracle. (In fact, our result applies to modes
of operation that can be described as straight-line programs, which are more
general than trees.) We then derive the indifferentiability of the MD6 mode of
operation as a consequence of this result.

Consider a compression function φ : Wη → Wc. Let μφ : {0, 1}∗ → {0, 1}d

denote the mode of operation μ applied to φ. We will prove that, if φ is a random
oracle and μ satisfies the required properties, then μφ is indifferentiable from a
random oracle.

4.1 Required Properties of Mode of Operation

To prove indifferentiability of a mode of operation μ, we will require μ to have
the following properties. These are properties of the mode μ itself, independent
of the particular compression function φ.

Unique Parsing. Every compression function input x ∈ Wη that occurs in the
computation of μφ(M) for some M ∈ {0, 1}∗ must be efficiently and uniquely
parsable into a sequence of blocks (not necessarily of the same size), each of
which is a compression function output, raw message bits (from the message
being hashed), or metadata. Note that there may be parsable inputs that do
not actually occur in the computation of μφ(M) for any M .

Parent Predicate. Given the unique parsing property, we define a predicate
parent(x, y, i) which, given oracle access to a compression function φ, takes
two inputs x, y ∈ Wη, and an index i. It outputs true iff φ(y) is equal to
the ith compression function output in the parsing of x. We say that x is a
parent of y, or equivalently, y is a child of x if parent(x, y, i) is true for some
i. We also say that y is the ith child of x if parent(x, y, i) is true. Note that
actual parent-child pairs occurring during the execution of μ may satisfy

2 A function is regular if every value in the range has an equal number of preimages
in the domain.
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additional conditions: for example, x and y may contain consecutive level
numbers. Our definition of parent does not verify these conditions, and thus
may create a parent relationship where none should exist. These conditions
(among others) will be verified by a function ρ defined below.

Leaf Predicate. Given the unique parsing property, we also define a predicate
leaf(x) on compression function inputs x which returns true iff the parsing
of x contains only message bits and metadata but no compression function
outputs. We say that x is a leaf if leaf(x) is true.

Root Predicate. There must be a well-defined, efficiently testable predicate
root(x) such that: for any M ∈ {0, 1}∗, for every non-final compression func-
tion call x in the computation of μφ(M), root(x) is false, and for the final
compression function call y, root(y) is true. For strings x that are neither
non-final nor final compression function calls in the computation of μφ(M)
for any M , root(x) can be either true or false.

Note that this condition implies that the set of strings x ∈ Wη that are
the final compression call for some M must be disjoint from the set of strings
y ∈ Wη that are a non-final compression call for some M .

Straight-Line Program Structure. The mode of operation μ must be a
straight-line program in the following sense. It carries out a sequence of calls
to the compression function, where input to call number i in the sequence
is computed from the message itself, metadata, and outputs of some j calls
numbered i1, i2, . . . , ij < i. This sequence (that is, the exact dependence of
ith call on the previous calls and the message) must be deterministically
computable from M alone, regardless of φ. For every call in the sequence
except the last one, its output value must be used to compute some other
input value. Moreover, for any φ, the output values of calls i1, i2, . . . , ij must
occur in the parsing of the input to the ith call. The last call x in that
sequence must have root(x) = true; for all the others, the root predicate
must be false. Denote by Σ(M) the set of all calls to φ (input and output
pairs) during the computation of μφ(M).

Final Output Processing. It must be the case that μφ(M) = ζ(φ(x)) where
x is the final compression input, where ζ : Wc → {0, 1}d is an efficiently
computable, regular function. The set of all preimages ζ−1(h) of a value h
must be efficiently sampleable given h.

Message Reconstruction. There must be an efficiently computable function
ρ that takes a set Π of compression function calls and returns a message M
if Π = Σ(M), and ⊥ otherwise. Because μ is deterministic, it follows that if
ρ(Π1) = M1 and ρ(Π2) = M2 and Π1 �= Π2, then M1 �= M2.

We let κ(�) denote an upper bound on the running time of ρ on an input set
Π containing at most � compression function calls. We assume that the other
efficiently computable operations defined above (compression function input
parsing, computing ζ(C), sampling from ζ−1(h), and evaluating root(x)) run in
constant time.
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4.2 The Simulator

For the proof of indifferentiability of μ, we will define a polynomial-time simu-
lator S0 for the compression function φ. S0 works as follows.

S0 maintains a set T , initially empty, of pairs (x, C) ∈ Wη ×Wc such that it
has responded with C to a query x.

Upon receiving a compression function query x∗, S0 searches its set T for a
pair (x∗, C∗). If it finds such a pair, S0 returns C∗.

Otherwise, S0 evaluates root(x∗). If false, S0 chooses a fresh random string
C∗ ∈ Wc, inserts (x∗, C∗) into T , and returns C∗.

If true, S0 executes the following “reconstruction procedure” to determine
whether x∗ is the final compression function call in a computation of μφ(M),
all of whose non-final compression function calls have already been seen by S0.
In the reconstruction procedure, S0 will build a set Π , initially empty, of pairs
(x, C) of compression function inputs and outputs.

1. Parse x∗ into an ordered sequence of message bits, metadata, and compres-
sion function outputs. Let j be the number of compression function outputs.

2. For i = 1, . . . , j:
For each pair (x, C) in T , evaluate parent(x∗, x, i). If no pair (x, C) satisfies
parent(x∗, x, i), or if multiple pairs (x, C) satisfy parent(x∗, x, i), quit the
reconstruction procedure; choose a fresh random string C∗ ∈ Wc, insert
(x∗, C∗) into T , and return C∗. If a unique child pair (x, C) is found, add
(x, C) to Π . If leaf(x) is false, execute steps 1 and 2 for x.

If S0 completes the reconstruction procedure (without returning a fresh random
string), S0 now calls ρ(Π). If ρ returns ⊥, S0 chooses a fresh random string
C∗ ∈ Wc, inserts (x∗, C∗) into T , and returns C∗. If ρ returns a message M∗,
S0 calls F on M∗ and samples a string C∗ ∈ Wc randomly from ζ−1(F (M∗)).
S0 inserts (x∗, C∗) into T and returns C∗.

Running Time. Let qt be the total number of compression function queries to the
simulator. To answer each compression function query, the S0 takes O(q2

t +κ(qt))
time. Therefore, the total running time of the simulator is O(q3

t + qt · κ(qt)).

Correctness. In our proof, we will use the following correctness properties of the
simulator.

Property 1: Suppose that there are no collisions on the output of S0 (equiva-
lently, there are no Type 1 events, which we define later). If all of the non-final
compression calls in the computation of μφ(M∗) have been made to S0, then
on the final compression call x∗, S0 will reconstruct M∗ and consult F on M∗.
This property can be easily proven by induction, starting at the final query
and working backward; the straight-line program property ensures that all the
compression function calls in Σ(M∗) will be found, and the assumption of no
collisions ensures that no extra calls will be found.

Property 2: Suppose S0 reconstructs M in response to a query at time τ . Then
all of the compression calls in the computation of the μφ(M) have been made
to S0 by time τ (indeed, otherwise ρ(Π) would not return M , by definition).
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4.3 Games

To prove the indifferentiability of the mode of operation μ, we consider a distin-
guisher D making compression function queries and mode of operation queries.
We define a sequence of games, G0 through G4. Game G0 is the “ideal” game,
where D has oracle access to the random oracle F and the simulator S0. Game G4
is the “real” game, where D has oracle access to μφ and the random oracle φ.

For each game Gi, let pi denote the probability that D outputs 1 in game Gi.
We will argue that the view of the distinguisher cannot differ between consecutive
games with more than negligible probability.

The games are defined as follows.

Game G0. In Game G0, the distinguisher D interacts with the random oracle
F and the polynomial-time simulator S0 defined above.

Game G1. In Game G1, we modify the simulator. At the start of the game,
the new simulator S1 uses its random coins to specify a random oracle OS :
Wη → Wc. The subsequent behavior of S1 is identical to that of S0 except,
whereas S0 generates its random bits in a lazy manner, S1 gets its random bits
from OS . Specifically, wherever S0 answers a query x∗ with a fresh random string
C∗ ∈ Wc, S1 answers with OS(x∗). Similarly, wherever S0 answers a query x∗ by
sampling randomly from ζ−1(F (M∗)), S1 samples randomly from ζ−1(F (M∗))
using OS(x∗) as its source of random bits.

The view of the distinguisher is the same in Game G1 and Game G0, so we
have p1 = p0.

Game G2. In Game G2, we introduce a relay algorithm R0 between D and F .
The relay algorithm R0 has oracle access to F and simply relays D’s mode of
operation queries to F and relays F ’s responses back to D.

The view of the distinguisher is the same in Game G2 and Game G1, so we
have p2 = p1.

Game G3. In Game G3, we modify the relay algorithm. Instead of querying
F , the new relay algorithm R1 computes the mode of operation on its input,
querying S1 on each compression function call.

Game G4. This is the final game. In Game G4, we modify the simulator so that
it no longer consults F . The new simulator S2 always responds to a new query
x∗ with OS(x∗). Thus, in this game D interacts with the mode of operation μOS

and the random oracle OS .

Bad Events. In order to argue that the view of D cannot differ between Game
G2 and Game G3 with more than negligible probability, we first define three
types of “bad events” that can occur in Game G2 or Game G3.

– Type 1: S1 inserts a pair (x2, C) into T when there is already a pair (x1, C)
such that x1 �= x2.
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– Type 2: S1 inserts a pair (x2, C2) into T when there is already a pair (x1, C1)
in T such that x1 is a parent of x2.

– Type 3: D makes a query x2 to S1 such that x2 is a parent of an x1 which
was previously queried by R but never directly by D.

We now prove that if none of these bad events occur in Game G3, then the view
of D is identical in G2 and G3.

Lemma 1. For fixed coins of F , S1, and D, if no bad events occur in Game
G3, then the view of D is identical in Game G2 and Game G3.

Proof. We fix the random coins of F , S1, and D and assume no bad events
occur. We show by induction that D’s observable values (the responses of the
relay algorithm and the simulator) are identical in Games G2 and G3.

Suppose that the observable values have been identical in Games G2 and G3
so far. Consider D’s next query. It is either a mode of operation query or a
compression function query.

Mode of Operation Query. Consider a query M∗ to μφ. In Game G2, R0 always
returns F (M∗). In Game G3, R1 will return F (M∗) if the response of S1 on the
final compression call x∗ is sampled from ζ−1(F (M∗)). There are two cases two
consider.

1. x∗ is a new query to S1. Since R1 has made all of the non-final calls for M∗

before x∗, assuming there are no Type 1 events, by Correctness Property 1
of the simulator, S1 will reconstruct M∗ and return a string sampled from
ζ−1(F (M∗)).

2. x∗ has already been queried to S1 before. Suppose it was first queried at
time τ . Consider x∗’s children in the current computation μφ(x). All of these
children must have also been seen before time τ . Otherwise, a Type 2 event
occurred in Game G3 during one of the calls by R1 after time τ . By induction,
all of R1’s calls in the computation of μφ(x) must have been seen before time
τ . Therefore, assuming there are no Type 1 events, by Correctness Property
1 of the simulator, S1 reconstructed M∗ and returned a string sampled from
ζ−1(F (M )) at time τ .

Therefore, given that the observables have been the same so far, if the next query
is a mode of operation query, the next observable will be the same in games G2
and G3.

Compression Function Query. Consider a query x∗ to φ.
We first make the following observation. Let T2 be the set of queries S1 has

seen so far in Game G2. Let T3 be the set of queries S1 has seen so far in Game
G3. Assuming the observables in the two games have been identical so far, T2
must be a subset of T3. This is because T2 contains only the compression function
queries made by D and T3 contains these queries along with the queries made
by R1 in computing responses to D’s mode of operation queries.
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Now, suppose that x∗ has already previously been queried to S1 in Game G2.
Then S1’s response will be the same in both games, since by assumption it was
the same in both games the first time x∗ was queried.

So suppose that x∗ is a new query in Game G2. If in Game G2, S1 reconstructs
an M∗ and returns an element of ζ−1(F (M∗)) sampled using OS(x∗) for its
random bits, then by Correctness Property 2 of the simulator, all of M∗’s queries
are in T2, and therefore all of M∗’s queries are in T3. Therefore, assuming no
Type 1 events, by Correctness Property 1, S1 must also reconstruct M∗ in Game
G3 and return an element of ζ−1(F (M∗)) sampled using OS(x∗) for its random
bits.

If in Game G2, S1 instead returns OS(x∗), then S1’s answer in Game G3
is the same unless in Game G3 S1 reconstructs an M∗. If S1 reconstructs an
M∗ in Game G3 but not in Game G2, then at least one of the queries used in
the reconstruction must have come from R1. But D made a query for the final
compression function input x∗. Consider all of x∗’s children in G3. All of these
queries must have been asked by D at some time. Otherwise, a Type 3 event
occurred in game G3. By induction, all of the queries for M∗ must have been
asked by D before x∗, but then (assuming no Type 1 events) S1 would have
reconstructed M∗ in Game G2, contradicting the assumption that S1 returns
OS(x∗) in Game G2.

Therefore, given that the observables have been the same so far, if the next
query is a mode of operation query, the next observable will be the same in
games G2 and G3.

Therefore, conditioned on there being no occurrences of bad events in G3, the
view of D is identical in games G2 and G3.

We now bound the probability of bad events in Game G3.

Lemma 2. Suppose D makes qS compression function queries and generates qt

compression function calls from its mode of operation queries and its compression
function queries. Let Pr[Bad] denote the probability that a bad event occurs in
Game G3. Pr[Bad] ≤ (2η/c + 1)q2

t /2cw.

Proof. We first make the observation that on a new query x, S1 always responds
with a fresh random string in Wc. This is because S1 responds with either (a)
OS(x) ∈ Wc or (b) a random sample from ζ−1(F (M)) using OS(x) as its source
of randomness. In case (a), S1’s response is a fresh random string in Wc. In case
(b), S1’s is a fresh random string in Wc as long as S1 has not queried F on M
before. Since a message M has a unique final compression call and x is a new
query, S1 cannot have queried F on M before.

We now consider the three types of bad events.
Type 1 event: A Type 1 event corresponds to a collision between two ran-

dom c-word strings among at most qt compression function queries. We can
bound the probability using the birthday bound over qt random c-word strings:
Pr[Type 1] ≤ q2

t /2cw+1.
Type 2 event: A Type 2 event occurs when S1’s random c-word response C2

to a query x2 equals one of the compression function outputs in the parsing of a
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previous query x1. There at most η/c compression function outputs in the parsing
of any query. So, there are at most qt · η/c compression function outputs for S1
to “guess” and S1 has at most qt guesses. Therefore, Pr[Type 2] ≤ (η/c ·q2

t )/2cw.
Type 3 event: A Type 3 event occurs when D makes a query which is a

parent of a query that R made but D did not. The only output that D sees
from R’s queries is ζ(f(x)) for the final compression call x, but it is not possible
to make a query which is a parent of a final compression call. The probability
of D “guessing” a non-final compression function output that it has not seen is
1/2cw. There are at most (qt − qS) outputs to guess and D has at most qS · η/c
guesses. Therefore, Pr[Type 3] ≤ (η/c · qS(qt − qS))/2cw.

Summing together, we get Pr[Bad] ≤ q2
t /2cw+1 +(η/c ·q2

t )/2cw +(η/c ·qS(qt −
qS))/2cw ≤ (2η/c + 1)q2

t /2cw.

4.4 Indifferentiability Theorem

We now state our theorem of indifferentiability of μ.

Theorem 2. If φ : Wη → Wc is a random oracle, then μφ is (t, qF , qS , ε)-
indifferentiable from a random oracle F : {0, 1}∗ → {0, 1}d, with ε = (2η/c +
1)q2

t /2cw and t = O(q3
t + qt · κ(qt)), for any qF and qS such that the total

number of compression function calls from the mode of operation queries and
the compression function queries of the distinguisher is at most qt.

Proof. Consider a distinguisher D that makes qS compression function queries
and generates qt compression function calls from its mode of operation queries
and its compression function queries.

It can easily be seen that the view of D is the same in Games G0, G1, and
G2, so p2 = p1 = p0.

Combining Lemma 1 and Lemma 2, we have that |p3 − p2| ≤ (2η/c+1)q2
t /2cw.

It is straightforward to see that p4 = p3. To see this, consider a query x∗

(from either D or R1) to S2. If S2 has seen the query x∗ before, S2 repeats the
answer it gave the first time it was queried on x∗. If x∗ is a new query, then
in G4, S2 responds with the fresh random string OS(x∗). As argued previously
in the proof of Lemma 2, S1 always responds to a new query x∗ with a fresh
random string in Wc. Thus, the view of D is unchanged from G3 to G4, and
p4 = p3.

Summing over all the games, the total advantage of D in distinguishing be-
tween G0 and G4 is at most the claimed (2η/c + 1)q2

t /2cw.
This completes the proof of the theorem.

It follows from our indifferentiability theorem that the MD6 mode of operation
MfQ (specified in [17]) is indifferentiable from a random oracle when fQ is a
random oracle. This result is stated below.

Corollary 1. If fQ : Wn−q → Wc is a random oracle, the MD6 mode of op-
eration MfQ is (t, qF , qS , ε)-indifferentiable from a random oracle F : {0, 1}∗ →
{0, 1}d, with ε = 9q2

t /2cw and t = O(q3
t ), for any qF and qS such that the total

number of compression function calls from the mode of operation queries and the
compression function queries of the distinguisher is at most qt.
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Proof. It can easily be seen that the MD6 mode of operation M satisfies the
required properties. In particular, for MD6 ζ is the function χd which returns the
last d bits of its input. The root(x) predicate corresponds to testing whether the
z bit of x is 1. It is straightforward to define a message reconstruction algorithm
ρ for MD6 that runs in time κ(qt) = O(qt).

Remark 2. The distinguishing probability ε and simulator running time t stated
above follow directly from Theorem 2.

However, for MD6 specifically, we can easily get a tighter bound on ε because
each compression function input has a unique node identifier, consisting of a tree
level and index. Therefore, for a given compression function input y, in any other
compression function input x, there is at most one (not η/c = 4) compression
function output that could cause y to be a child of x. Thus, in bounding the
probability of bad events for MD6, we can replace all instances of η/c with 1
and get ε = Pr[Bad] ≤ 2q2

t /2cw.
Similarly, the presence of unique node identifiers in MD6 gives us a tighter

bound on the running time t of the simulator. By maintaining its previously seen
queries in sorted order (sorted by node identifier), the simulator can run in time
O(q2

t ) instead of O(q3
t ).

5 Conclusion

We have shown that the (reduced) compression function χcw(π(Q‖x)) of MD6
is indifferentiable from a fixed-input-length random oracle when π is a random
permutation. We have also shown that any tree-based mode of operation with
certain properties is indifferentiable from a variable-input-length random oracle
when applied to a compression function that is a fixed-input-length random ora-
cle. As a consequence of this result, the MD6 mode of operation is indifferentiable
from a random oracle. Combined, these results imply that the design of MD6
has no stuctural weaknesses, such as “extension attacks”, and that MD6 can
be plugged into any application proven secure assuming a variable-input-length
random oracle to obtain a scheme secure in a (fixed-length) random permutation
model.
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Abstract. In this paper we study the security of the RadioGatún family
of hash functions, and more precisely the collision resistance of this pro-
posal. We show that it is possible to find differential paths with accept-
able probability of success. Then, by using the freedom degrees available
from the incoming message words, we provide a significant improvement
over the best previously known cryptanalysis. As a proof of concept, we
provide a colliding pair of messages for RadioGatún with 2-bit words. We
finally argue that, under some light assumption, our technique is very
likely to provide the first collision attack on RadioGatún.

Keywords: hash functions, RadioGatún, cryptanalysis.

1 Introduction

A cryptographic hash function is a very important tool in cryptography, used in
many applications such as digital signatures, authentication schemes or message
integrity. Informally, a cryptographic hash function H is a function from {0, 1}∗,
the set of all finite length bit strings, to {0, 1}n where n is the fixed size of the
hash value. Moreover, a cryptographic hash function must satisfy the properties
of preimage resistance, 2nd-preimage resistance and collision resistance [27]:

– collision resistance: finding a pair x �= x′ ∈ {0, 1}∗ such that H(x) =
H(x′) should require 2n/2 hash computations.

– 2nd preimage resistance: for a given x ∈ {0, 1}∗, finding a x′ �= x such
that H(x) = H(x′) should require 2n hash computations.

– preimage resistance: for a given y ∈ {0, 1}n, finding a x ∈ {0, 1}∗ such
that H(x) = y should require 2n hash computations.

Generally, hash functions are built upon a compression function and a domain
extension algorithm. A compression function h, usually built from scratch, should
have the same security requirements as a hash function but takes fixed length
inputs instead. Wang et al. [32, 33, 34, 35] recently showed that most standard-
ized compression functions (e.g. MD5 or SHA-1) are not collision resistant. Then,
a domain extension method allows the hash function to handle arbitrary length
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inputs by defining an (often iterative) algorithm using the compression function
as a black box. The pioneering work of Merkle and Damg̊ard [15, 28] provided
to designers an easy way in order to turn collision resistant compression functions
onto collision resistant hash functions. Even if preserving collision resistance, it
has been recently shown that this iterative process presents flaws [16, 19, 20, 21]
and new algorithms [1, 2, 7, 25, 26] with better security properties have been
proposed.

Most hash functions instantiating the Merkle-Damg̊ard construction use a
block-cipher based compression function. Some more recent hash proposals are
based on construction principles which are closely related to stream ciphers.
For example we can cite Grindahl [24] or RadioGatún [4]. The underlying idea
of stream-oriented functions is to first absorb m-bit message blocks into a big
internal state of size c + m using a simple round function, and then squeeze
the hash output words out. As the internal state is larger than the output of
the hash function, the cryptanalytic techniques against the iterative construc-
tions can not be transposed to the case of stream-oriented functions. In 2007,
Bertoni et al. published a new hash construction mode, namely the sponge func-
tions [6]. At Eurocrypt 2008, the same authors [5] published a proof of security
for their construction : when assuming that the internal function F is a ran-
dom permutation or a random transformation, then the sponge construction is
indifferentiable from a random oracle up to 2c/2 operations.

However, even though the same authors designed RadioGatún and defined the
sponge construction, RadioGatún does not completely fulfill the sponge defini-
tion. For evident performance reasons, the internal function F of RadioGatún is
not a very strong permutation and this might lead to correlations between some
input and output words. This threat is avoided by applying blank rounds (rounds
without message incorporation) just after adding the last padded message word.
More recently, some NIST SHA-3 candidates are using permutation-based modes
as well, for example SHABAL [10], or sponge functions, for example Keccak [3].

Regarding the Grindahl family of hash functions, apart from potential slide
attacks [18], it has been shown [23, 29] that it can not be considered as colli-
sion resistant. However, RadioGatún remains yet unharmed by the preliminary
cryptanalysis [22]. The designers of RadioGatún claimed that for an instance
manipulating w-bit words, one can output as much as 19 × w bits and get a
collision resistant hash function. That is, no collision attack should exist which
requires less than 29,5×w hash computations. The designers also stated [4] that
the best collision attack they could find (apart from generic birthday paradox
ones) requires 246×w hash computations. A first cryptanalysis result by Bouil-
laguet and Fouque [8] using algebraic technique showed that one can find colli-
sions for RadioGatúnwith 224,5×w hash computations. Finally, Khovratovich [22]
described an attack using 218×w hash computations and memory, that can find
collisions with the restriction that the IV must chosen by the attacker (semi-
free-start collisions).

Our Contributions. In this paper, we provide an improved cryptanalysis of
RadioGatúnregarding collision search.Namely,using an improved computer-aided
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backtracking search and symmetric differences, we provide a technique that can
find a collision with 211×w hash computations and negligible memory. As a proof
of concept, we also present a colliding pair of messages for the case w = 2. Finally,
we argue that this technique has a good chance to lead to the first collision attack
on RadioGatún (the computation cost for setting up a complete collision attack is
below the ideal bound claimed by the designers, but still unreachable for nowadays
computers).

Outline. The paper is organized as follows. First, in Section 2, we describe
the hash function proposal RadioGatún. Then, in Section 3, we introduce the
concepts of symmetric differences and control words, that will be our two mains
tools in order to cryptanalyze the scheme. In Section 4, we explain our differential
path generation phase and in Section 5 we present our overall collision attack.
Finally, we draw the conclusion in last section.

2 Description of RadioGatún

RadioGatún is a hash function using the design approach and correcting the
problems of Panama [14], StepRightUp [13] or Subterranean [11, 13].

RadioGatún maintains an internal state of 58 words of w bits each, divided in
two parts and simply initialized by imposing the zero value to all the words. The
first part of the state, the mill, is composed of 19 words and the second part,
the belt, can be represented by a matrix of 3 rows and 13 columns of words.
We denote by Mk

i the i-th word of the mill state before application of the k-th
iteration (with 0 ≤ i ≤ 18) and Bk

i,j represents the word located at column i
and row j of the belt state before application of iteration k (with 0 ≤ i ≤ 12
and 0 ≤ j ≤ 2).

The message to hash is first padded and then divided into blocks of 3 words
of w bits each that will update the internal state iteratively. We denote by mk

i

the i-th word of the message block mk (with 0 ≤ i ≤ 2). Namely, for iteration
k, the message block mk is firstly incorporated into the internal state and then
a permutation P is applied on it. The incorporation process at iteration k is
defined by :

Bk
0,0 = Bk

0,0 ⊕ mk
0 Bk

0,1 = Bk
0,1 ⊕ mk

1 Bk
0,2 = Bk

0,2 ⊕ mk
2

Mk
16 = Mk

16 ⊕ mk
0 Mk

17 = Mk
17 ⊕ mk

1 Mk
18 = Mk

18 ⊕ mk
2

where ⊕ denotes the bitwise exclusive or operation.
After having processed all the message blocks, the internal state is finally

updated with Nbr blank rounds (simply the application of the permutation P ,
without incorporating any message block). Eventually, the hash output value is
generated by successively applying P and then outputting Mk

1 and Mk
2 as many

time as required by the hash output size.
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Fig. 1. The permutation P in RadioGatún

Fig. 2. The permutation P in RadioGatún

The permutation P can be divided into four parts. First, the Belt function
is applied, then the MillToBelt function, the Mill function and eventually the
BeltToMill function. This is depicted in Figures 1 and 2.

The Belt function simply consists of a row-wise rotation of the belt part of
the state. That is, for 0 ≤ i ≤ 12 and 0 ≤ j ≤ 2:

B′
i,j = Bi+1 mod 13,j .
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Fig. 3. The Mill function in RadioGatún

The MillToBelt function allows the mill part of the state to influence the belt
one. For 0 ≤ i ≤ 11, we have:

B′
i+1,i mod 3 = Bi+1,i mod 3 ⊕ Mi+1.

The Mill function is the most complex phase of the permutation P and it updates
the mill part of the state (see Figure 3). In the following, all indexes should be
taken modulo 19. First, a nonlinear transformation is applied on all the words.
For 0 ≤ i ≤ 18:

M ′
i = Mi ⊕ Mi+1 ∧ Mi+2

where X denotes the bitwise negation of X and ∧ represents the bitwise and
operation. Then, a diffusion phase inside the words is used. For 0 ≤ i ≤ 18:

M ′
i = M7×i ≫ (i × (i + 1)/2)

where X ≫ (y) denotes the rotation of X on the right over y positions. Then,
a diffusion phase among all the words is applied. For 0 ≤ i ≤ 18:

M ′
i = Mi ⊕ Mi+1 ⊕ Mi+4.

Finally, an asymmetry is created by simply setting M0 = M0 ⊕ 1.
The BeltToMill function allows the belt part of the state to influence the mill

one. For 0 ≤ i ≤ 2, we have :

M ′
i+13 = Mi+13 ⊕ B12,i.

The RadioGatún security claims. Although RadioGatún has some common
features with the sponge functions, the security proof of the sponge construction
does not apply for this proposal. In their original paper [4], the authors claim
that RadioGatún can output as much as 19 words and remain a secure hash
function. Thus, it should not be possible for an attacker to find a collision attack
running in less than 29,5×w hash computations.
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3 Symmetric Differences and Control Words

3.1 Symmetric Differences

The first cryptanalysis tool we will use are symmetric differences. This tech-
nique has first been described in [30]. It was mentioned as a potential threat for
RadioGatún in [4]. More precisely, a symmetric difference is an intra-word exclu-
sive or difference that is part of a stable subspace of all the possible differences
on a w-bit word. For example, in the following we will use the two difference
values 0w and 1w (where the exponentiation by x denotes the concatenation of x
identical strings), namely either a zero difference or either a difference on every
bit of the word.

Considering those symmetric differences will allow us to simplify the overall
scheme. Regarding the intra-word rotations during the Mill function, a 0w or
a 1w difference will obviously remain unmodified. Moreover, the result of an
exclusive or operation between two symmetric differences will naturally be a
symmetric difference itself:

0w ⊕ 0w = 0w 0w ⊕ 1w = 1w 1w ⊕ 0w = 1w 1w ⊕ 1w = 0w

The nonlinear part of the Mill function is more tricky. We can write:

a ∧ b = a ∨ b.

The output of this transformation will remain a symmetric difference with a
certain probability of success, given in Table 1.

Table 1. Differential transitions for symmetric differences during the nonlinear part of
the Mill function of RadioGatún. Δa and Δb denote the difference applied on a and b
respectively, and Δa∨b the difference expected on the output of a∨ b. The last column
gives the corresponding conditions on the values of a and b in order to validate the
differential transition. By a = b (respectively a �= b) we mean that all the bits of a and
b are equal (respectively different), i.e. a ⊕ b = 0w (respectively a ⊕ b = 1w).

Δa Δb Δa∨b Probability Condition

0w 0w 0w 1
0w 1w 0w 2−w a = 1w

0w 1w 1w 2−w a = 0w

1w 0w 0w 2−w b = 0w

1w 0w 1w 2−w b = 1w

1w 1w 0w 2−w a = b

1w 1w 1w 2−w a �= b

Due to the use of symmetric differences, the scheme to analyze can now be
simplified : we can concentrate our efforts on a w = 1 version of RadioGatún,
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for which the intra-word rotations can be discarded. However, when building a
differential path, for each differential transition during the nonlinear part of the
Mill function, we will have to take the corresponding probability from Table 1
in account1. Note that this probability will be the only source of uncertainty in
the differential paths we will consider (all the differential transitions through ex-
clusive or operation always happen with probability equal to 1) and the product
of all probabilities will be the core of the final complexity of the attack.

Also, one can check that the conditions on the Mill function input words
are not necessarily independent. One may have to control differential transitions
for nonlinear subfonctions located on adjacent positions (for example the first
subfunction, involving M0 and M1, and the second, involving M1 and M2). This
has two effects : potential incompatibility or condition compression (concerning
M1 in our example). In the first case, two conditions are located on the same
input word and are contradicting (for example, one would have both M1 = 0w

and M1 = 1w). Thus, the differential path would be impossible to verify and,
obviously, one has to avoid this scenario. For the second case, two conditions
apply on the same input word but are not contradicting. Here, there is a chance
that those conditions are redundant and we only have to account one time for a
probability 2−w. Finally, note that all those aspects have to be handled during
the differential path establishment and not during the search for a valid pair of
messages.

3.2 Control Words

When trying to find a collision attack for a hash function, two major tools are
used : the differential path and the freedom degrees. In the next section, we
will describe how to find good differential paths using symmetric differences. If a
given path has probability of success equal to P , the complexity of a naive attack
would be 1/P operations : if one chooses randomly and non-adaptively 1/P
random message input pairs that are coherent with the differential constraints,
there is a rather good chance that a one of them will follow the differential path
entirely. However, for the same differential path, the complexity of the attack
can be significantly decreased if the attacker chooses its inputs in a clever and
adaptive manner.

In the case of RadioGatún, 3 w-bit message words are incorporated into the
internal state at each round. Those words will naturally diffuse into the whole
internal state, but not immediately. Thus, it is interesting to study how this dif-
fusion behaves. Since the events we want to control through the differential path
are the transitions of the nonlinear part of the Mill function (which depend on
the input words of the Mill function), we will only study the diffusion regarding
the input words of the Mill function.

Table 2 gives the dependencies between the message words incorporated at an
iteration k, and the 19 input words of the Mill function at iteration k, k +1 and
k+2. One can argue that a modification of a message block does not necessarily
impacts the input word marked by a tick in Table 2 because the nonlinear
1 In a dual view, all the conditions derived from Table 1 must be fulfilled.
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Table 2. Dependencies between the message words incorporated at an iteration k, and
the 19 input words of the Mill function of RadioGatún at iteration k, k + 1 and k + 2.
The first table (respectively second and third) gives the dependencies regarding the
message block mk

0 (respectively mk
1 and mk

2). The columns represent the input words
of the Mill function considered and a tick denotes that a dependency exists between
the corresponding input word and message block.

iteration M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18

k �
k+1 � � � � � � � �
k+2 � � � � � � � � � � � � � � � � � � �

iteration M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18

k �
k+1 � � � � � � � �
k+2 � � � � � � � � � � � � � � � � � � �

iteration M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18

k �
k+1 � � � � � � � �
k+2 � � � � � � � � � � � � � � � � � � �

function can sometimes “absorb” the diffusion of the modification. However, we
emphasize that even if we depict here a behavior on average for the sake of
clarity, all those details are taken in account thanks to our computer-aided use
of the control words.

4 An Improved Backtracking Search

Our aim is to find internal collisions, i.e. collisions on the whole internal state
before application of the blank rounds.

In order to build a good differential path using symmetric differences, we
will use a computer-aided meet-in-the-middle approach, similar to the technique
in [29]. More precisely, we will build our differential path DP by connecting
together separate paths DPf and DPb. We emphasize that, in this section, we
only want to build the differential path and not to look for a colliding pair of
messages. DPf will be built in the forward direction starting from an internal
state containing no difference (modeling the fact that we have no difference after
the initialization of the hash function), while DPb will be built in the backward
direction of the hash computation starting from an internal state containing no
difference (modeling the fact that we want a collision at the end of the path).

Starting from an internal state with no difference, for each round the algo-
rithm will go through all the possible difference incorporations of the message
input (remember that we always use symmetric differences, thus we only have
23 = 8 different cases to study) and all the possible symmetric differences tran-
sitions during the Mill function according to Table 1 (the differential transitions
through exclusive or operations are fully deterministic). The algorithm can be
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compared to a search tree in which the depth represents the number of rounds of
RadioGatún considered and each node is a reachable differential internal state.

4.1 Entropy

An exhaustive search in this tree would obviously imply making useless compu-
tations (some parts of the tree provide too costly differential paths anyway). To
avoid this, we always compute an estimation of the cost of finding a message
pair fulfilling the differential paths during the building phase of the tree, from
an initial state to the current leaf in the forward direction, and from the current
leaf to colliding states in the backward direction.

A first idea would be to compute the current cost of DPf and DPb during
the meet-in-the-middle phase. But, as mentioned in Section 3, some words of the
mill only depend on the inserted message block after 1 or 2 rounds. Therefore,
some conditions on the mill value have to be checked 2 rounds earlier, and some
degrees of freedom may have to be used to fulfill conditions two rounds later.
As DPf and DPb are computed round per round, it is difficult to compute
their complexity during the search phase, while having an efficient early-abort
algorithm.

Therefore, we use an ad hoc parameter, denoted Hk and defined as follows.
If ck is the total number of conditions on the mill input words at round k (from
Table 1), we have for a path of length n:{

Hk = max(Hk+1 + ck − 3, 0), ∀k < n

Hn = 0

The idea is to evaluate the number of message pairs required at step k in order
to get 2w×Hk+1

message pairs at step k + 1 of the exhaustive search phase. To
achieve this, one needs to fulfill ck × w bit conditions on the mill input values,
with 3×w degrees of freedom. Therefore, the values of Hk can be viewed as the
relative entropies on the successive values of the internal state during the hash
computation.

The final collision search complexity would be 2w×Hmax , where Hmax is the
maximum value of Hi along the path, if the adversary could choose 3 words of
his choice at each step, and if each output word of the Mill function depended
on all the input words. In the case of RadioGatún, the computation cost is more
complex to evaluate, and this is described in Section 5. The maximum entropy
can be linked to the backtracking cost Cb, as defined in [4]. One has the relation
Cb = Hmax+3. The difference between these two notions is that the backtracking
cost takes in account the randomization of the input message pairs, which has a
cost 23w.

4.2 Differential Path Search Algorithm

The path search algorithm works as follows. Keep in mind that the values of
the entropy along the path are relative values - any constant value can therefore
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be added or subtracted to all the Hi. A zero entropy at step i means that one
expects 20 = 1 message pair to follow the path until step i. To evaluate a path,
we then set the minimal value of the entropy along the path to zero, the cost
being the maximal value of the entropy. Therefore we first compute candidates
for DPf with a modified breadth-first search algorithm, eliminating those for
which the maximum entropy exceeds the minimum entropy by more than 8× w
(because we want to remain much lower than the 9, 5×w bound from the birthday
paradox). The algorithm differs from a traditional breadth-first search as we do
not store all the nodes, but only those with an acceptable entropy :
to increase the probability of linking it to DPb, one only stores the nodes whose
entropy is at least (Hmax − 4)×w. We also store the state value of the previous
node with entropy at least (Hmax − 4) × w, to enable an efficient backtracking
process once the path is found.

We then compute DPb, using a depth-first search among the backwards tran-
sitions of the Mill function, starting from colliding states. We set the initial
entropy to Hn = 0, and we do not search the states for which H > 8 (same
reason as for DPf : we want to remain much lower than the bound from the
birthday paradox). For each node having an entropy at most 4, we try to link it
with a candidate for DPf .

4.3 Complexity of the Path Search Phase

The total amount of possible values for a symmetric differential on the whole
state is 213×3+19 = 258. We use the fact that for RadioGatún, the insertion of
M ⊕M ′ can be seen as the successive insertions of M and M ′ without applying
the round function. Therefore, we can consider setting the words 16, 17, 18 of the
stored mill to 0 by a message insertion before storing it in the forward phase, and
doing the same in the backward phase before comparing it to forward values.
Therefore, the space on which the meet-in-the-middle algorithm has to find a
collision has approximately 255 elements. We chose to store 227 values of DPf ,
and thus we have to compare approximately 228 values for DPb.

5 The Collision Attack

In this section, we depict the final collision attack, and compute its complexity.
Once a differential path is settled, the derived collision attack is classic : we will
use the control words to increase as much as possible the probability of success
of the differential path.

5.1 Description

The input for this attack is a differential path, with a set of sufficient conditions
on the values of the mill to ensure that a pair of messages follow the path. The
adversary searches the colliding pairs in a tree, in which the nodes are messages
following a prefix of the differential path. The leaves are messages following
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the whole differential path. Thanks to an early-abort approach, the adversary
eliminates candidates as soon as they differ from the differential path. Nodes are
associated with message pairs, or equivalently by the first message of a message
pair – the second message is specified by the differential trail. Therefore, they
will be denoted by the message they stand for. The sons of node M are then
messages M ||b, where b is a given message block, and the hash computation of
M ||b fulfills all the conditions.

The adversary then uses a depth-first approach to find at least one node at
depth n, where n is the length of the differential path. It is based on the trail
backtracking technique, described in [4, 29]. To decrease the complexity of the
algorithm, we check the conditions on the words of the mill as soon as they
cannot be modified anymore by a message word inserted later.

From Table 2, we know that the k-th included message block impacts some
words of the mill before the k-th iteration of the Mill function, some other words
before the k + 1-th iteration, and the rest of the mill words before the k + 2-th
iteration. We recall that mk is the k-th inserted block, and we now set that
Mk

j is the value of the j-th mill word after the k-th message insertion. Let also
M̂k

j be the value of the j-th word of the mill after the k-th nonlinear function
computation.

After inserting mk, one can then compute Mk
16, M

k
17, M

k
18, but also Mk+1

j for
j = {1, 2, 4, 5, 7, 8, 9, 12, 13, 15}, and Mk+2

j for j = {0, 3, 6, 10, 11, 14}.
Some other conditions imply differences or non-differences between state words,

Mk
j ⊕Mk

j+1. When writing these variables as functions of the input message words
at step k and k − 1, and of the state variables before message insertion k − 1, one
can notice the following : before the k-th message insertion, one can compute Mk

j ⊕
Mk

j+1, for j = {15, 16, 17, 18}, Mk+2
j ⊕ Mk+2

j+1 for j = {7, 10}, and Mk+1
j ⊕ Mk+1

j+1
for all other possible values of j. Therefore, the adversary has to check conditions
on three consecutive values of the mill on message insertion number k.

The most naive way to do it would consist in choosing mk at random and
hoping the conditions are verified, but one can use the following facts to decrease
the number of messages to check:

– The conditions on words Mk
16, Mk

17 and Mk
18 as well as these on the values

Mk
15 ⊕Mk

16, Mk
16 ⊕Mk

17, Mk
17 ⊕Mk

18 and Mk
18 ⊕Mk

0 at step k can be fulfilled
by xor-ing the adequate message values at message insertion k.

– Using the linearity of all operations except the first one, the adversary can
rewrite the values Mk+1

j as a linear combination of variables M̂k
j , with j =

{0, . . . , 18}. Words M̂k
0 to M̂k

13 do not depend on the last inserted message
value, therefore can be computed before the message insertion.

– A system of equations in variables M̂k
14, . . . , M̂

k
18 remains. These equations

are derived from conditions on round k + 1, by reversing the linear part of
the Mill function. More precisely, these equations define the possible values
of these variables, or of the xor of two of these variables, one of them being
rotated.
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The computation of the sons of a node at depth k work as follows:

1. The adversary checks the consistency of the equations on M̂k
14, . . . , M̂

k
18. If

these equations are not consistent, the adversary does not search the node.
The probability that this system is consistent depends on dimension of the
Kernel of the system and can be computed a priori.

2. The adversary exhausts the possible joint values of M̂k
14, . . . , M̂

k
18, Mk

16, Mk
17

and Mk
18, considering all the conditions on these variables, which can be

expressed bitwise (as the nonlinear part of the Mill function also works
bitwise). The cost of this phase is then linear in w. The mean number of
sons depends on the number of conditions.

3. For each remaining message block, the adversary checks all the other linear
conditions on M̂k

14, . . . , M̂
k
18 and the conditions on the mill values 2 rounds

later.

5.2 Computation of the Cost

We will now explain how to compute the complexity of the collision search
algorithm. The most expensive operation is the search of the sons of nodes. The
total complexity of a given depth level k is the product of the number of nodes
that have to be explored at depth k by the average cost of the search of these
nodes. These parameters are exponential in w, therefore the total cost of the
search can be approximated by the search of the most expensive nodes.

To compute the search cost, we assume that for all considered messages, the
words of the resulting states for which no condition is imposed are indepen-
dent and identically distributed. This is true at depth 0, provided the attacker
initializes the search phase with a long random message prefix. The identical
distribution of the variables can be checked recursively, their independence is an
hypothesis for the attack to work. This assumption is well-known in the field of
hash function cryptanalysis for computing the cost associated to a differential
path (see e.g. [29]).

Let Ak be the number of nodes that have to be reached at depth k, and Ck

the average cost of searching one of these nodes. Let P k be the probability that
a random son of a node at depth k follows the differential path, and Qk the
probability that a given node at depth k has at least one valid son. At depth
k, the average number of explored nodes is related to the average number of
explored nodes at depth k + 1. When only a few nodes are needed, the average
case is not sufficient, and one has to evaluate the cost of finding at least one
valid node of depth k + 1.

One has the following relations, for k ∈ {0, . . . , n − 1}:⎧⎪⎨⎪⎩Ak = max(
Ak+1

23wP k
,

1
Qk

)

An = 1

Let Kk be the dimension of the Kernel of the linear system that has to be solved
at depth k, and P̂ k the probability that the bitwise system of equations on the
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values of the mill before and after the nonlinear function has solutions. P̂ k can
be computed exhaustively a priori for each value of k. A random node at depth
k has at least one valid son if the two following conditions happen :

– The bitwise conditions at depth k and k + 1 can be fulfilled,
– The remaining freedom degrees can be used to fulfill all the remaining con-

ditions.

The first item takes in account the fact that some conditions might not depend
on all the freedom degrees. Therefore, we have :

Qk = min(2−Kk

P̂ k, 23w−Nk
COND),

where Nk
COND is the total number of conditions that has to be checked on the

k-th message insertion. We also have P k = 2−Nk
COND , because each condition is

supposed to be fulfilled with probability half in the average case, which is true
provided the free words - i.e. without conditions fixing their values, or linking it
to another word - are i.i.d. .

Searching a node works as follows : one solves the bitwise system of equations
on the values of M16, M17, M18, M̂14, . . . , M̂18. The set of message blocks that
fulfill this equations system then has to be searched exhaustively to fulfill the
other conditions, and to generate nodes at depth k + 1. Ck is then the cost of
this exhaustive search, and can be computed as the average number of message
blocks that fulfill the system of equations. Therefore, we have Ck = 23wP̂ k.

For each node at depth k, the attacker can first check the consistency of the
conditions on the mill words at steps k and k+1, which allows him not to search
inconsistent nodes. Therefore, we have the following overall complexity:

T = O(max
k

(
CkAk

2Kk ))

The best path we found has complexity about 211×w, which is above the security
claimed by the designers of RadioGatún[4], it is given in Appendix. As a proof of
concept, we also provide in Appendix an example of a colliding pair of messages
following our differential path for RadioGatún with w = 2. One can check that
the observed complexity confirms the estimated one.

5.3 Breaking the Birthday Bound

Finding a final collision attack for RadioGatún with a computation complexity
of 211w required us to own a computer with a big amount of RAM for a few
hours of computation. Yet, the memory and computation cost of the differen-
tial path search phase is determined by the Hmax chosen by the attacker. We
conducted tests that tend to show that the search tree is big enough in order
to find a collision attack with an overall complexity lower than the birthday
bound claimed by the designers2. The problem here is that the memory
2 Note also that the size of the search tree can be increased by considering more

complex symmetric differences, such as 0w , 1w, 01w/2 and 10w/2.
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and computation cost of the differential path search will be too big for
nowadays computers, but much lower than the birthday bound. This
explains why we are now incapable of providing a fully described collision at-
tack for RadioGatún. However, we conjecture that applying our techniques with
more memory and computation resources naturally leads to a collision attack
for RadioGatún, breaking the ideal birthday bound.

6 Conclusion

In this paper, we presented an improved cryptanalysis of RadioGatún regarding
collision search. Our attack can find collisions with a computation cost of about
211w and negligible memory, which is by far the best known attack on this
proposal.

We also gave arguments that shows that RadioGatún might not be a collision
resistant hash function. We conjecture that applying our differential path search
technique with more constraints will lead to collision attacks on RadioGatún.
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Appendix A: Collision for RadioGatún[2]

To generate a collision for RadioGatún[2], we use a 143-block differential path
of cost 211w.

We give here a collision for the 2-bit version of RadioGatún. One can easily
check that it follows the differential path given above. We write the message
words using values between 0 and 3, which stand for the possible values of 2-bit
words. The differential path, and some statistics about the collision search, can
be found in the longer version of this paper [17].

To ensure that one has enough starting points, we used a 5-block common
prefix.

The two colliding messages are :

M0 = 330 000 000 000 000 113 311 012 012 112 300 202

020 302 233 030 030 000 223 222 220 111 000 010

031 001 033 020 000 000 222 103 110 312 231 321

102 012 322 023 323 232 001 023 032 220 130 103

203 003 200 232 023 011 222 222 133 110 211 031

232 122 033 122 021 202 302 003 120 003 300 203

133 021 302 311 101 031 200 003 013 231 032 312

002 202 131 331 122 201 333 301 032 230 031 220

012 130 312 100 020 322 222 220 201 012 000 201

200 010 230 130 310 330 201 103 130 210 102 001

200 321 112 110 232 223 010 301 213 000 133 123

323 222 331 132 103 021 012 330 201 100 203 321

013 332 020 000



138 T. Fuhr and T. Peyrin

M1 = 330 000 000 000 000 113 311 312 022 122 030 202

020 332 103 303 303 003 113 222 120 121 030 020

031 001 303 313 000 330 222 103 110 312 202 321

201 011 022 010 313 202 031 023 032 120 130 103

200 303 233 232 013 321 111 211 203 123 121 031

132 112 300 122 011 202 032 003 210 300 300 100

203 311 302 012 101 002 100 303 013 231 302 322

032 131 102 001 211 232 300 301 302 230 301 120

011 103 022 200 013 022 212 113 131 311 003 131

200 010 230 200 020 000 231 103 100 113 132 031

233 321 112 220 232 220 010 332 223 300 100 123

013 122 302 131 200 311 012 300 202 230 133 321

013 331 023 003

The common value of the internal state is then :

belt[0] = (0, 0, 2, 1, 2, 0, 3, 0, 2, 1, 1, 1, 3),
belt[1] = (3, 1, 0, 2, 3, 2, 2, 3, 1, 2, 3, 0, 2),
belt[2] = (2, 3, 3, 2, 2, 2, 1, 1, 1, 3, 2, 0, 3),

mill = (2, 0, 2, 2, 1, 0, 1, 0, 3, 1, 3, 3, 2, 2, 3, 3, 0, 3, 3)
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Abstract. This paper shows new preimage attacks on reduced Tiger
and SHA-2. Indesteege and Preneel presented a preimage attack on Tiger
reduced to 13 rounds (out of 24) with a complexity of 2128.5. Our new
preimage attack finds a one-block preimage of Tiger reduced to 16 rounds
with a complexity of 2161. The proposed attack is based on meet-in-the-
middle attacks. It seems difficult to find “independent words” of Tiger
at first glance, since its key schedule function is much more compli-
cated than that of MD4 or MD5. However, we developed techniques to
find independent words efficiently by controlling its internal variables.
Surprisingly, the similar techniques can be applied to SHA-2 including
both SHA-256 and SHA-512. We present a one-block preimage attack
on SHA-256 and SHA-512 reduced to 24 (out of 64 and 80) steps with a
complexity of 2240 and 2480, respectively. To the best of our knowledge,
our attack is the best known preimage attack on reduced-round Tiger
and our preimage attack on reduced-step SHA-512 is the first result. Fur-
thermore, our preimage attacks can also be extended to second preimage
attacks directly, because our attacks can obtain random preimages from
an arbitrary IV and an arbitrary target.

Keywords: hash function, preimage attack, second preimage attack,
meet-in-the-middle, Tiger, SHA-256, SHA-512.

1 Introduction

Cryptographic hash functions play an important role in the modern cryptology.
Many cryptographic protocols require a secure hash function which holds several
security properties such as classical ones: collision resistance, preimage resistance
and second preimage resistance. However, a lot of hash functions have been
broken by collision attacks including the attacks on MD4 [3], MD5 [11] and SHA-
1 [12]. These hash functions are considered to be broken in theory, but in practice
many applications still use these hash functions because they do not require
collision resistance. However, (second) preimage attacks are critical for many
applications including integrity checks and encrypted password systems. Thus
analyzing the security of the hash function with respect to (second) preimage
resistance is important, even if the hash function is already broken by a collision
attack. However, the preimage resistance of hash functions has not been studied
well.
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Table 1. Summary of our results

Target Attack Attacked steps Complexity
(first or second preimage) (rounds)

Tiger (full 24 rounds) first [4] 13 2128.5

first (this paper) 16 2161

second [4] 13 2127.5

second (this paper) 16 2160

SHA-256 (full 64 steps) first [10] 36 2249

first (this paper) 24 2240

second (this paper) 24 2240

SHA-512 (full 80 steps) first (this paper) 24 2480

second (this paper) 24 2480

Tiger is a dedicated hash function producing a 192-bit hash value designed
by Anderson and Biham in 1996 [2]. As a cryptanalysis of Tiger, at FSE 2006,
Kelsey and Lucks proposed a collision attack on 17-round Tiger with a com-
plexity of 249 [5], where full-version Tiger has 24 rounds. They also proposed a
pseudo-near collision attack on 20-round Tiger with a complexity of 248. This
attack was improved by Mendel et al. at INDOCRYPT 2006 [8]. They proposed
a collision attack on 19-round Tiger with a complexity of 262, and a pseudo-near
collision attack on 22-round Tiger with a complexity of 244. Later, they proposed
a pseudo-near-collision attack of full-round (24-round) Tiger with a complexity
of 244, and a pseudo-collision (free-start-collision) attack on 23-round Tiger [9].
The above results are collision attacks and there is few evaluations of preim-
age resistance of Tiger. Indesteege and Preneel presented preimage attacks on
reduced-round Tiger [4]. Their attack found a preimage of Tiger reduced to 13
rounds with a complexity of 2128.5.

In this paper, we introduce a preimage attack on reduced-round Tiger. The
proposed attack is based on meet-in-the-middle attacks [1]. In this attack, we
need to find independent words (“neutral words”) in the first place. However, the
techniques used for finding independent words of MD4 or MD5 cannot be applied
to Tiger directly, since its key schedule function is much more complicated than
that of MD4 or MD5. To overcome this problem, we developed new techniques to
find independent words of Tiger efficiently by adjusting the internal variables. As
a result, the proposed attack finds a preimage of Tiger reduced to 16 (out of 24)
rounds with a complexity of about 2161. Surprisingly, our new approach can be
applied to SHA-2 including both SHA-256 and SHA-512. We present a preimage
attack on SHA-256 and SHA-512 reduced to 24 (out of 64 and 80) steps with a
complexity of about 2240 and 2480, respectively. As far as we know, our attack
is the best known preimage attack on reduced-round Tiger and our preimage
attack on reduced-step SHA-512 is the first result. Furthermore, we show that
our preimage attacks can also be extended to second preimage attacks directly
and all of our attacks can obtain one-block preimages, because our preimage
attacks can obtain random preimages from an arbitrary IV and an arbitrary
target. These results are summarized in Table 1.
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This paper is organized as follows. Brief descriptions of Tiger, SHA-2 and
the meet-in-the-middle approach are given in Section 2. A preimage attack on
reduced-round Tiger and its extensions are shown in Section 3. In Section 4, we
present a preimage attack on reduced-step SHA-2. Finally, we present conclu-
sions in Section 5.

2 Preliminaries

2.1 Description of Tiger

Tiger is an iterated hash function that compresses an arbitrary length message
into a 192-bit hash value. An input message value is divided into 512-bit message
blocks (M (0), M (1), ..., M (t−1)) by the padding process as well as the MD family.
The compression function of Tiger shown in Fig. 1 generates a 192-bit output
chaining value H(i+1) from a 512-bit message block M (i) and a 192-bit input
chaining value H(i) where chaining values consist of three 64-bit variables, A

(i)
j ,

B
(i)
j and C

(i)
j . The initial chaining value H(0) = (A(0)

0 , B
(0)
0 , C

(0)
0 ) is as follows:

A
(0)
0 = 0x0123456789ABCDEF,

B
(0)
0 = 0xFEDCBA9876543210,

C
(0)
0 = 0xF096A5B4C3B2E187.

In the compression function, a 512-bit message block M (i) is divided into eight 64-
bit words (X0, X1, ..., X7). The compression function consists of three pass func-
tions and between each of them there is a key schedule function. Since each pass
function has eight round functions, the compression function consists of 24 round
functions. The pass function is used for updating chaining values, and the key
schedule function is used for updating message values. After the third pass func-
tion, the following feedforward process is executed to give outputs of the compres-
sion function with input chaining values and outputs of the third pass function,

A′
24 = A0 ⊕ A24, B′

24 = B0 − B24, C′
24 = C0 + C24,

where Ai, Bi and Ci denote the i-th round chaining values, respectively, and
A′

24, B
′
24 and C′

24 are outputs of the compression function.
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In each round of the pass function, chaining values Ai, Bi and Ci are updated
by a message word Xi as follows:

Bi+1 = Ci ⊕ Xi, (1)
Ci+1 = Ai − even(Bi+1), (2)
Ai+1 = (Bi + odd(Bi+1)) × mul, (3)

where mul is the constant value ∈ {5, 7, 9} which is different in each pass func-
tion. The nonlinear functions even and odd are expressed as follows:

even(W ) = T1[w0] ⊕ T2[w2] ⊕ T3[w4] ⊕ T4[w6], (4)
odd(W ) = T4[w1] ⊕ T3[w3] ⊕ T2[w5] ⊕ T1[w7], (5)

where 64-bit value W is split into eight bytes {w7, w6, ..., w0} with w7 is the
most significant byte and T1, ..., T4 are the S-boxes: {0, 1}8 → {0, 1}64. Figure 2
shows the round function of Tiger.
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64 64 64
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Fig. 2. Tiger round function
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Fig. 3. Key schedule function

The key schedule function (KSF ) updates message values. In the first pass
function, eight message words X0, ..., X7, which are identical to input message
blocks of the compression function, are used for updating chaining values. Re-
maining two pass functions use sixteen message words which are generated by
applying KSF :

(X8, ..., X15) = KSF (X0, ..., X7), (6)
(X16, ..., X23) = KSF (X8, ..., X15). (7)

The function KSF which updates the inputs X0, ..., X7 in two steps, is shown
in Table 2. The first step shown in the left table generates internal variables
Y0, ..., Y7 from inputs X0, ..., X7, and the second step shown in the right table
calculates outputs X8, ..., X15 from internal variables Y0, .., Y7, where const1 is
0xA5A5A5A5A5A5A5A5 and const2 is 0x0123456789ABCDEF. By using the same
function, X16, ..., X23 are also derived from X8, ..., X15. Figure 3 shows the key
schedule function of Tiger.
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Table 2. Algorithm of the key schedule function KSF

Y0 = X0 − (X7 ⊕ const1), (8)

Y1 = X1 ⊕ Y0, (9)

Y2 = X2 + Y1, (10)

Y3 = X3 − (Y2 ⊕ (Y1 
 19)), (11)

Y4 = X4 ⊕ Y3, (12)

Y5 = X5 + Y4, (13)

Y6 = X6 − (Y5 ⊕ (Y4 � 23)), (14)

Y7 = X7 ⊕ Y6. (15)

X8 = Y0 + Y7, (16)

X9 = Y1 − (X8 ⊕ (Y7 
 19)), (17)

X10 = Y2 ⊕ X9, (18)

X11 = Y3 + X10, (19)

X12 = Y4 − (X11 ⊕ (X10 � 23)), (20)

X13 = Y5 ⊕ X12, (21)

X14 = Y6 + X13, (22)

X15 = Y7 − (X14 ⊕ const2). (23)

2.2 Description of SHA-256

We only show the structure of SHA-256, since SHA-512 is structurally very
similar to SHA-256 except for the number of steps, word size and rotation values.
The compression function of SHA-256 consists of a message expansion function
and a state update function. The message expansion function expands 512-bit
message block into 64 32-bit message words W0, ..., W63 as follows:

Wi =
{

Mi (0 ≤ i < 16),
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 (16 ≤ i < 64),

where the functions σ0(X) and σ1(X) are given by

σ0(X) = (X ≫ 7) ⊕ (X ≫ 18) ⊕ (X � 3),
σ1(X) = (X ≫ 17) ⊕ (X ≫ 19) ⊕ (X � 10).

The state update function updates eight 32-bit chaining values, A, B, ..., G, H in
64 steps as follows:

T1 = Hi + Σ1(Ei) + Ch(Ei, Fi, Gi) + Ki + Wi, (24)
T2 = Σ0(Ai) + Maj(Ai, Bi, Ci), (25)

Ai+1 = T1 + T2, (26)
Bi+1 = Ai, (27)
Ci+1 = Bi, (28)
Di+1 = Ci, (29)
Ei+1 = Di + T1, (30)
Fi+1 = Ei, (31)
Gi+1 = Fi, (32)
Hi+1 = Gi, (33)
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where Ki is a step constant and the function Ch, Maj, Σ0 and Σ1 are given as
follows:

Ch(X, Y, Z) = XY ⊕ XZ,

Maj(X, Y, Z) = XY ⊕ Y Z ⊕ XZ,

Σ0(X) = (X ≫ 2) ⊕ (X ≫ 13) ⊕ (X ≫ 22),
Σ1(X) = (X ≫ 6) ⊕ (X ≫ 11) ⊕ (X ≫ 25).

After 64 step, a feedfoward process is executed with initial state variable by
using word-wise addition modulo 232.

2.3 Meet-in-the-Middle Approach for Preimage Attack

We assume that a compression function F consists of a key scheduling function
(KSF ) and a round/step function as shown in Fig. 4. The function F has two
inputs, an n-bit chaining variable H and an m-bit message M , and outputs
an n-bit chaining variable G. The function KSF expands the message M , and
provides them into the round/step function.

We consider a problem that given H and G, find a message M satisfying
G = F (H, M). This problem corresponds to the preimage attack on the com-
pression function with a fixed input chaining variable. In this model, a feedfor-
ward function does not affect the attack complexity, since the targets H and G
are arbitrary values. If we obtain a preimage from arbitrary values of H and G,
we can also compute a preimage from H and H ⊕ G instead of G.

In the meet-in-the-middle preimage attack, we first divide the round function
into two parts: the forward process (FP ) and the backward process (BP ) so
that each process can compute an �-bit meet point S independently. We also
need independent words X and Y in KSF to compute S independently. The
meet point S can be determined from FP and BP independently such that
S = FP (H, X) and S = BP (G, Y ).

If there are such two processes FP and BP , and independent words X and Y ,
we can obtain a message M satisfying S with a complexity of 2�/2 F evaluations,
assuming that FP and BP are random ones, and the computation cost of BP is al-
most same as that of inverting function of BP . Since remaining internal state value
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Round / Step Function

KSF
(Key Scheduling Function)

H G

M

X Y

F
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n
l l
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Fig. 4. Meet-in-the-middle approach
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T is (n − �) bits, the desired M can be obtained with a complexity of 2n−�/2(=
2n−�+�/2). Therefore, if FP and BP up to the meet point S can be calculated inde-
pendently, a preimage attack can succeed with a complexity of 2n−�/2. This type
of preimage attacks on MD4 and MD5 was presented by Aoki and Sasaki [1].

In general, it is difficult to find such independent words in a complicated KSF .
We developed new techniques to construct independent transforms in KSF by
controlling internal variabes to obtain independent words.

3 Preimage Attack on Reduced-Round Tiger

In this section, we propose a preimage attack on 16-round Tiger with a com-
plexity of 2161. This variant shown in Fig. 5 consists of two pass functions and
one key schedule function. First, we show properties of Tiger which are used for
applying the meet-in-the-middle attack. Next, we show how to apply the meet-
in-the-middle attack to Tiger, and then introduce the algorithm of our attack.
Finally, we evaluate the required complexity and memory of our attack.
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Fig. 5. Reduced-round Tiger (2-pass = 16-round)

3.1 Properties of Tiger

We show five properties of Tiger, which enable us to apply the meet-in-the-
middle attack.

Property 1: The pass function is easily invertible.

Property 1 can be obtained from the design of the round function. From Eq. (1)
to Eq. (3), Ai, Bi, and Ci can be determined from Ai+1, Bi+1, Ci+1 and Xi. The
computation cost is almost same as the cost of calculating Ai+1, Bi+1 and Ci+1
from Ai, Bi, Ci and Xi. Since the round function is invertible, we can construct
the inverse pass function.

Property 2: In the inverse pass function, the particular message words are
independent of particular state value.

The detail of the Property 2 is that once Xi, Ai+3 Bi+3 and Ci+3 are fixed,
then Ci, Bi+1, Ai+2 and Bi+2 can be determined from Eq. (1) to Eq. (3) inde-
pendently of Xi+1 and Xi+2. Thus the property 2 implies that Xi+1 and Xi+2
are independent of Ci in the inverse pass function.
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Property 3: In the round function, Ci+1 is independent of odd bytes of Xi.

The property 3 can be obtained from the property of the non-linear function
even.

Property 4: The key schedule function KSF is easily invertible.

The property 4 implies that we can build the inverse key schedule function
KSF−1. Moreover, the computation cost of KSF−1 is almost the same as that
of KSF .

Property 5: In the inverse key schedule function KSF−1, if input values are
chosen appropriately, there are two independent transforms.

The property 5 is one of the most important properties for our attack. In the
next section, we show this in detail.

3.2 How to Obtain Two Independent Transforms in the KSF −1

Since any input word of KSF−1 affects all output words of KSF−1, it appears
that there is no independent transform in the KSF−1 at first glance.

However, we analyzed the relation among the inputs and the outputs of
KSF−1 deeply, and then found a technique to construct two independent trans-
forms in the KSF−1 by choosing inputs carefully and controlling internal vari-
ables. Specifically, we can show that a change of input word X8 only affects
output words X0, X1, X2 and X3, and also modifications of X13, X14 and X15
only affect X5 and X6 if these input words are chosen properly. We present the
relation among inputs, outputs and internal variables of KSF−1 and then show
how to build independent transforms in the KSF−1.

As shown in Fig. 6, changes of inputs X13, X14 and X15 only propagate in-
ternal variables Y0, Y1, Y5, Y6 and Y7. If internal variables Y6 and Y7 are fixed

X0 X1 X2 X3 X4 X5 X6 X7

Y0 Y1 Y2 Y3 Y4
Y5 Y6 Y7

X8 X9 X10 X11 X12 X13 X14 X15

absorb

<<19
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const2

<<19

>>23
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Fig. 6. Relation among inputs and outputs of KSF−1
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even when X13, X14 and X15 are changed, it can be considered that an internal
variable Y0, Y1 and an output X7 are independent of changes of X13, X14 and
X15. From Eq. (22) and (23), Y6 and Y7 can be fixed to arbitrary values by
choosing X13, X14 and X15 satisfying the following formulae:

X14 = Y6 + X13, (34)
X15 = Y7 − (X14 ⊕ const2). (35)

Therefore modifications of inputs X13, X14 and X15 only propagate X5 and X6
by selecting these input values appropriately. In addition, a modification of X8
only affects X0, ..., X3.

As a result, we obtain two independent transforms in KSF−1 by choosing
X13, X14 and X15 properly, since in this case a change of X8 only affects X0, ...,
X3, and changes of X13, X14 and X15 only propagate X5 and X6.

3.3 Applying Meet-in-the-Middle Attack to Reduced-Round Tiger

We show the method for applying the meet-in-the-middle attack to Tiger by
using above five properties. We define the meet point as 64-bit C6, the process
1 as rounds 1 to 6, and the process 2 as rounds 7 to 16.

In the process 2, intermediate values A9, B9 and C9 can be calculated from
A16, B16, C16 and message words X9 to X15, since Tiger without the feedforward
function is easily invertible. From the property 2, C6 can be determined from
A8, B8 and X6. It is also observed that A8 and B8 are independent of X8, because
these values are calculated from A9, B9 and C9. From the property 5, X8 does
not affect X6. Therefore, C6, the output of the process 2, can be determined
from X6, X9 to X15, A16, B16 and C16.

In the process 1, the output C6 can be calculated from X0 to X5, A0, B0 and
C0. If some changes of the message words used in each process do not affect the
message words used in the other process, C6 can be determined independently
in each process.

The message words X0 to X4 are independent of changes of X6 and X13
to X15, if X9 to X12 are fixed and X13 to X15 are calculated as illustrated in
the section 3.2. Although changes of X13, X14 and X15 propagate X5, from the
property 3, C6 in the process 1 is not affected by changes of odd bytes of X5.
Therefore, if even bytes of X5 are fixed, C6 in the process 1 can be determined
independently from a change of X5.

We show that the even bytes of X5 can be fixed by choosing X11, X12 and
X13 properly. From Eq. (21), Y5 is identical to X13 when X12 equals zero, and
from Eq. (13), X5 is identical to Y5 when Y4 equals zero. Thus X5 is identical to
X13 when both X12 and Y4 are zero. Consequently, if the even bytes of X13 are
fixed, and X12 and Y4 equal zero, the even bytes of X5 can be fixed. Y4 can be
fixed to zero by choosing X11 as X11 ← X10 � 23. Therefore, if the following
conditions are satisfied, C6 in the process 1 can be independent of changes of
X13, X14 and X15.
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Fig. 7. Meet-in-the-middle attack on 16-round Tiger

– X9 and X10 are fixed arbitrarily,
– X11 = X10 � 23, X12 = 0,
– X13, X14 and X15 are chosen properly.

By choosing inputs of the inverse pass function satisfying the above conditions,
we can execute the process 1 and the process 2 independently. Specifically, if only
X13, X14 and X15 are treated as variables in the process 2, then the process 2
can be executed independently from the process 1. Similarly, if only X8 is treated
as a variable in the process 1, then the process 1 is independent of the process
2, as long as X8 to X15 satisfy the above conditions. These results are shown in
Fig. 7.

3.4 (Second) Preimage Attack on 16-Round Tiger Compression
Function

We present the whole algorithm of the (second) preimage attack on the com-
pression function of Tiger reduced to 16 rounds. The attack consists of three
phases: preparation, first and second phase.

The preparation phase sets Xi(i ∈ {4, 7, 9, 10, 11, 12}), Yi(i ∈ {2, 3, 4, 6, 7})
and even bytes of X13 as follows:

Preparation

1: Let A′
16, B

′
16 and C′

16 be given targets. Choose A0, B0 and C0 arbitrarily, and
set A16, B16 and C16 as follows:

A16 ← A0 ⊕ A′
16, B16 ← B0 − B′

16, C16 ← C′
16 − C0.
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2: Choose X9, X10, Y6, Y7 and even bytes of X13 arbitrarily, set X12 and Y4 to
zero, and set X7, X11, Y2, Y3 and X4 as follows:

X7 ← Y6⊕Y7, X11 ← X10 � 23, Y2 ← X9⊕X10, Y3 ← X11−X10, X4 ← Y3.

The first phase makes a table of (C6, odd bytes of X13) pairs in the process 2 as
follows:

First Phase

1: Choose odd bytes of X13 randomly.
2: Set X5, X6, X14 and X15 as follows:

X5 ← X13,X6 ← Y6+X13,X14 ← Y6+X13,X15 ← Y7−((Y6+X13)⊕const2).

3: Compute C6 from A16, B16, C16, X6 and X9 to X15.
4: Place a pair (C6, odd bytes of X13) into a table.
5: If all 232 possibilities of odd bytes of X13 have been checked, terminate this

phase. Otherwise, set another value, which has not been set yet, to odd bytes
of X13 and return to the step 2.

The second phase finds the desired message values X0 to X15 in the process 1
by using the table as follows:

Second Phase

1: Choose X8 randomly.
2: Set Y0, Y1, X0, X1, X2 and X3 as follows:

Y0 ← X8 − X7,

Y1 ← X9 + (X8 ⊕ (Y7 	 19)),
X0 ← Y0 + (X7 ⊕ const1),
X1 ← Y0 ⊕ Y1,

X2 ← Y2 − Y1,

X3 ← Y3 + (Y2 ⊕ (Y1 	 19)).

3: Compute C6 from X0 to X4, even bytes of X5, A0, B0 and C0.
4: Check whether this C6 is in the table generated in the first phase. If C6 is in

the table, the corresponding X0 to X7 are a preimage for the compression
function of the target A′

16, B
′
16, C

′
16 and successfully terminates the attack.

Otherwise, set another value, which has not been set yet, to X8 and return
to the step 2.

By repeating the second phase about 232 times for different choices of X8,
we expect to obtain a matched C6. The complexity of the above algorithm is
232(= 232 · 6

16 +232 · 10
16 ) compression function evaluations, and success probability

is about 2−128. By executing the above algorithm 2128 times with different fixed
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values, we can obtain a preimage of the compression function. In the prepara-
tion phase, A0, B0, C0, X9, X10, Y6, Y7 and even bytes of X13 can be chosen
arbitrarily. In other words, this attack can use these values as free words. These
free words are enough for searching 2128 space. Accordingly, the complexity of
the preimage attack on the compression function is 2160(= 232 · 2128). Also, this
algorithm requires 232 96-bit or 235.6 bytes memory.

3.5 One-Block (Second) Preimage Attack on 16-Round Tiger

The preimage attack on the compression function can be extended to the one-
block preimage attack on 16-round Tiger hash function. For extending the attack,
A0, B0, C0 are fixed to the IV words, the padding word X7 is fixed to 447
encoded in 64-bit string, and the remaining 224 bits are used as free bits in the
preparation phase. Although our attack cannot deal with another padding word
X6, the attack still works when the least significant bit of X6 equals one.

Hence, the success probability of the attack on the hash function is half of that
of the attack on the compression function. The total complexity of the one-block
preimage attack on 16-round Tiger hash function is 2161 compression function
computations.

This preimage attack can also be extended to the one-block second preimage
attack directly. Our second preimage attack obtains a one-block preimage with
the complexity of 2161. Moreover, the complexity of our second preimage attack
can be reduced by using the technique given in [4]. In this case, the second
preimage attack obtains the preimage which consists of at least two message
blocks with a complexity of 2160.

4 Preimage Attack on Reduced-Round SHA-2

We apply our techniques to SHA-2 including both SHA-256 and SHA-512 in
straightforward and present a preimage attack on SHA-2 reduced to 24 (out
of 64 and 80, respectively) steps. We first check the properties of SHA-2, then
introduce the algorithm of the preimage attack on 24-step SHA-2.

4.1 Properties of 24-Step SHA-2

We first check whether SHA-2 has similar properties of Tiger. The pass function
of Tiger corresponds to the 16-step state update function of SHA-2, and the key
schedule function of Tiger corresponds to the 16-step message expansion function
of SHA-2. Since the state update function and the message expansion function
of SHA-2 are easily invertible, the compression function of SHA-2 without the
feedforward function is also invertible.

In the inverse state update function, A18, B18, ..., H18 are determined from
A24, B24, ..., H24 and W18 to W23, and A11 only depends on A18, ..., H18. Thus
A11 is independent of W11 to W17 when A18, ..., H18 and W18 to W23 are fixed.
It corresponds to the property 2 of Tiger.

Then we check whether there are independent transforms in the inverse mes-
sage expansion function of SHA-2. It corresponds to the property 5 of Tiger. For
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W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15

W16 W17 W18 W19 W20 W21 W22 W23

Fig. 8. Message expansion function of 24-step SHA-2

the 24-step SHA-2, 16 message words W0 to W15 used in the first 16 steps are
identical to input message blocks of the compression function, and 8 message
words W16 to W23 used in the remaining eight steps are derived from W0 to W15
by the message expansion function shown in Fig. 8. Table 3 shows the relation
among message words in the message expansion function. For example, W16 is
determined from W14, W9, W1 and W0. By using these relation and techniques
introduced in previous sections, we can configure two independent transforms in
the message expansion function of SHA-2.

We show that, in the inverse message expansion function of 24-step SHA-2, i)
a change of W17 only affects W0, W1, W3 and W11, and ii) W19, W21 and W23 only
affect W12 by using the message modification techniques. In Tab. 3, asterisked
values are variables of i), and underlined values are variables of ii).

First, we consider the influence of W23. Though W23 affects W7, W8, W16
and W21, this influence can be absorbed by modifying W21 → W19 → W12.
Consequently, we obtain a result that W19, W21 and W23 only affect W12 by
choosing these values properly, since W12 does not affect any other values in the
inverse message expansion function.

Similarly, we consider the influence of W17 in the inverse message expansion
function. W17 affects W1, W2, W10 and W15. This influence can be absorbed by
modifying W1 → W0. W17 is also used for generating W19. In order to cancel
this influence, W3 → W11 are also modified. As a result, we obtain a result that
W17 only affects W0, W1, W3 and W11 by choosing these values appropriately.

Table 3. Relation among message values W16 to W23

computed value values for computing
W16 W14, W9, W1∗, W0∗
W17∗ W15, W10, W2, W1∗
W18 W16, W11∗, W3∗, W2

W19 W17∗, W12, W4, W3∗
W20 W18, W13, W5, W4

W21 W19, W14, W6, W5

W22 W20, W15, W7, W6

W23 W21, W16, W8, W7
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Fig. 9. Meet-in-the-middle attack on 24-step SHA-2

4.2 (Second) Preimage Attack on 24-Step SHA-256 Compression
Function

As shown in Fig. 9, we define the meet point as 32-bit A11, the process 1 as
steps 1 to 11, and the process 2 as steps 12 to 24. In the process 1, A11 can be
derived from A0, ..., H0 and W0 to W10. Similarly, in the process 2, A11 can be
determined from A24, ..., H24 and W18 to W23. Since the process 1 and process
2 are independent of each other for A11 by using the above properties of SHA-2,
we apply the meet-in-the-middle attack to SHA-2 as follows:

Preparation

1: Let A′
24, ..., H

′
24 be given targets. Choose A0, ..., H0 arbitrarily, and compute

A24, ..., H24 by the feedforward function.
2: Choose 32-bit value CON and Wi(i ∈ {2, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 18})

arbitrarily, and then calculate W20 and W22.

First Phase

1: Choose W23 randomly.
2: Determine W21, W19 and W12 as follows1:

W21 ← σ−1
1 (W23 − W16 − σ0(W8) − W7),

W19 ← σ−1
1 (W21 − W14 − σ0(W6) − W5),

W12 ← W19 − CON.

1 The method how to calculate σ−1
1 is illustrated in the appendix.
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3: Compute A11 from A24, ..., H24 and W18 to W23.
4: Place a pair (A11, W23) into a table.
5: If 216 pairs of (A11, W23) have been listed in the table, terminate this algo-

rithm. Otherwise, set another value, which has not been set yet, to W23 and
return to the step 2.

Second Phase

1: Choose W17 randomly.
2: Determine W0, W1, W3 and W11 as follows:

W1 ← W17 − σ1(W15) − W10 − σ0(W2),
W0 ← W16 − σ1(W14) − W9 − σ0(W1),
W3 ← CON− σ1(W17) − σ0(W4),

W11 ← W18 − σ1(W16) − σ0(W3) − W2.

3: Compute A11 from A0, ..., H0 and W0 to W10.
4: Check whether this A11 is in the table generated in the first phase. If A11 is

in the table, the corresponding W0 to W23 is a preimage of the compression
function of the target A′

24, ..., H
′
24 and successfully terminates the attack.

Otherwise, set another value, which has not been set yet, to W17 and return
to the step 2.

By repeating the second phase about 216 times for different W17, we expect to
obtain a matched A11. The complexity of the preimage attack on the compression
function is 2240(= 2256−32/2) compression function evaluations. The required
memory is 216 64-bit or 219 bytes. In this attack, the words A0, ..., H0, CON and
Wi(i ∈ {2, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 18}) can be used as free words. The
total free words are 22 words or 704 bits.

4.3 One-Block (Second) Preimage Attack on 24-Step SHA-2 Hash
Function

The preimage attack on the compression function can be extended to the (sec-
ond) preimage attack on the hash function directly, since our preimage attack
can obtain random preimages from an arbitrary IV and an arbitrary target,
and can deal with the padding words W14 and W15. Thus the complexities of
the preimage attack and the second preimage attack on 24-step SHA-256 are
2240. Furthermore, this attack can also be extended to the (second) preimage
attack on 24-step SHA-512. The complexities of the (second) preimage attack
on 24-step SHA-512 are 2480(= 2512−64/2).

5 Conclusion

In this paper, we have shown preimage attacks on reduced-round Tiger, reduced-
step SHA-256 and reduced-step SHA-512. The proposed attacks are based on
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meet-in-the-middle attack. We developed new techniques to find “independent
words” of the compression functions. In the attack on reduced-round Tiger,
we found the “independent transforms” in the message schedule function by
adjusting the internal variables, then we presented there are independent words
in the compression function of Tiger. In the attack on reduced-round SHA-2,
we found the “independent transforms” in the message expansion function by
modifying the messages, then we showed that there are independent words in
the compression function of SHA-2.

Our preimage attack can find a preimage of 16-step Tiger, 24-step SHA-256
and 24-step SHA-512 with a complexity of 2161, 2240 and 2480, respectively.
These preimage attacks can be extended to second preimage attacks with the
almost same complexities. Moreover, our (second) preimage attacks can find a
one-block preimage, since it can obtain random preimages from an arbitrary IV
an arbitrary target, and can also deal with the padding words.

Acknowledgments. The authors thank to the anonymous referees for their
valuable comments.
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Appendix A

Here, we show how to calculate the inverse function σ−1
1 . Let (x31, ..., x0) and

(y31, ..., y0) be outputs and inputs of σ−1
1 respectively, where xi, yi ∈ {0, 1}, and

x31 and y31 are the most significant bit. The inverse function σ−1
1 is calculated

as follows:

(x31, x30, ..., x0)t = Mσ−1
1

· (y31, y30, ..., y0)t,

where

Mσ−1
1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0
1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 1
0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1
1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0
0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0
0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 0
1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0
0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1
0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0
0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1
0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 0
1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1
0 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1
1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 1
0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0
1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1
1 1 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0
1 1 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 0
1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0
1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1
1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 0 0
0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 0
1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1
1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1
1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 1
0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1
1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0
1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



Cryptanalysis of the LAKE Hash Family

Alex Biryukov1, Praveen Gauravaram3, Jian Guo2, Dmitry Khovratovich1,
San Ling2, Krystian Matusiewicz3, Ivica Nikolić1, Josef Pieprzyk4,
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Abstract. We analyse the security of the cryptographic hash function
LAKE-256 proposed at FSE 2008 by Aumasson, Meier and Phan. By
exploiting non-injectivity of some of the building primitives of LAKE,
we show three different collision and near-collision attacks on the com-
pression function. The first attack uses differences in the chaining values
and the block counter and finds collisions with complexity 233. The sec-
ond attack utilizes differences in the chaining values and salt and yields
collisions with complexity 242. The final attack uses differences only in
the chaining values to yield near-collisions with complexity 299. All our
attacks are independent of the number of rounds in the compression func-
tion. We illustrate the first two attacks by showing examples of collisions
and near-collisions.

1 Introduction

The recent cryptanalytical results on the cryptographic hash functions following
the attacks on MD5 and SHA-1 by Wang et al. [17,16,15] have seriously under-
mined the confidence in many currently deployed hash functions. Around the
same time, new generic attacks such as multicollision attack [7], long message
second preimage attack [9] and herding attack [8], exposed some undesirable
properties and weaknesses in the Merkle-Damg̊ard (MD) construction [12,5].
These developments have renewed the interest in the design of hash functions.
Subsequent announcement by NIST of the SHA-3 hash function competition,
aiming at augmenting the FIPS 180-2 [13] standard with a new cryptographic
hash function, has further stimulated the interest in the design and analysis of
hash functions.

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 156–179, 2009.
c© International Association for Cryptologic Research 2009
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The hash function family LAKE [1], presented at FSE 2008, is one of the
new designs. It follows the design principles of the HAIFA framework [2,3] – a
strengthened alternative to the MD construction.

As the additional inputs to the compression function, LAKE uses a ran-
dom value (also called salt) and an index value, which counts the number of
bits/blocks in the input message processed so far.

The first analysis of LAKE, presented by Mendel and Schläffer [11], has shown
collisions for 4 out of 8 rounds. The complexity of their attack is 2109. The
main observation used in the attack is the non-injectivity of one of the in-
ternal functions. This property allows to introduce difference in the message
words, which is canceled immediately, when the difference goes through the
non-injective function.

Our contributions. Our attacks focus on finding collisions for the compression
function of LAKE. Let f(H, M, S, t) be a compression function of a HAIFA hash
function using chaining values H , message block M , salt S and the block index t.
We present the following three types of collision attacks. The first attack uses dif-
ferences in the chaining values H and block index t, so we are looking for collisions
of form f(H, M, S, t) = f(H ′, M, S, t′). We call it a (H, t)-type attack. The com-
plexity of this attack is 233 compression calls. The second attack deals with the
differences injected in the chaining values and salt S, we call it a (H, S)-attack.
We present how to find near-collisions of the compression function with the com-
plexity 230 of compression calls and extend it to full collisions with the complexity
242. The final attack, called a H-type attack, uses only differences in the chaining
values and finds near-collisions for the compression function with the complexity
299. The success of our collision attacks relies on solving the systems of equations
that originate from the differential conditions imposed by the attacks. We present
some efficient methods to solve these systems of equations.

Our attacks demonstrate that increasing the number of rounds of LAKE does
not increase its security as they all aim at canceling the differences within the
first ProcessMessage function of the compression function.

2 Description of LAKE

In this section, we provide a brief description of the LAKE compression function,
skipping details that are not relevant to our attacks. See [1] for details.

Basic functions – LAKE uses two functions f and g defined as follows

f(a, b, c, d) = (a + (b ∨ C0)) + ((c + (a ∧ C1)) ≫ 7)+
((b + (c ⊕ d)) ≫ 13) ,

g(a, b, c, d) = ((a + b) ≫ 1) ⊕ (c + d) ,

where each variable is a 32-bit word and C0, C1 are constants.
The compression function of LAKE has three components: SaltState,

ProcessMessage and FeedForward. The functionality of these components are



158 A. Biryukov et al.

Input: H = H0‖ . . . ‖H7, S = S0‖ . . . ‖S3, t = t0‖t1
Output: F = F0‖ . . . ‖F15

for i = 0, . . . , 7 do
Fi = Hi;

end
F8 = g(H0, S0 ⊕ t0, C8, 0);
F9 = g(H1, S1 ⊕ t1, C9, 0);
for i = 10, . . . , 15 do

Fi = g(Hi, Si, Ci, 0);
end

Algorithm 1. LAKE’s SaltState

Input: F = F0‖ . . . ‖F15, M = M0‖ . . . ‖M15, σ
Output: W = W0‖ . . . ‖W15

for i = 0, . . . , 15 do
Li = f(Li−1, Fi, Mσ(i), Ci);

end
W0 = g(L15, L0, F0, L1);
L0 = W0;
for i = 1, . . . , 15 do

Wi = g(Wi−1, Li, Fi, Li+1);
end

Algorithm 2. LAKE’s ProcessMessage

Input: W = W0‖ . . . ‖W15, H = H0‖ . . . ‖H7, S = S0‖ . . . ‖S3, t = t0‖t1
Output: H = H0‖ . . . ‖H7

H0 = f(W0, W8, S0 ⊕ t0, H0);
H1 = f(W1, W9, S1 ⊕ t1, H1);
for i = 2, . . . , 7 do

Hi = f(Wi, Wi+8, Si, Hi);
end

Algorithm 3. LAKE’s FeedForward

Input: H = H0‖ . . . ‖H7, M = M0‖ . . . ‖M15, S = S0‖ . . . ‖S3, t = t0‖t1
Output: H = H0‖ . . . ‖H7

F = SaltState(H,S, t);
for i = 0, . . . , r − 1 do

F = ProcessMessage(F, M, σi);
end
H = FeedForward(F, H,S, t);

Algorithm 4. LAKE’s CompressionFunction

described in Algorithms 1, 2 and 3, respectively. The whole compression func-
tion of LAKE is presented as Algorithm 4. Our attacks do not depend on the
constants Ci for i = 0, . . . , 15 and hence we do not provide their actual values
here.
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3 Properties and Observations

We first present some properties of the f function used in our analysis.

Observation 1. Function f(x, y, z, t) is non-injective with respect to the first
three arguments x, y, z.

For example, for x there exist two different values x and x′ such that f(x, y, z, t)
= f(x′, y, z, t) for some y, z, t. The same property holds for y and z. This obser-
vation was mentioned by Lucks at FSE’08. Mendel and Schläffer independently
found and used this property to successfully attack four out of eight rounds of
LAKE-256. Non-injectivity of the function f can be used to cancel a difference
in one of the first three arguments of f , when the rest of the arguments are fixed.

The following observation of the rotation on the modular addition allows us
to simplify the analysis of f .

Lemma 1 ([6]). (a + b) ≫ k = (a ≫ k) + (b ≫ k) + α − β · 2n−k, where
α = 1[aR

k + bR
k ≥ 2k] and β = 1[aL

k + bL
k + α ≥ 2n−k].

Using Lemma (1), the function f can be written as

f(a, b, c, d) = a + b ∨ C0 + (c ≫ 7) + ((a ∧ C1) ≫ 7) + (b ≫ 13)

+ ((c ⊕ d) ≫ 13) + α1 + α2 − β1 · 225 − β2 · 219, (1)

where

α1 = 1[cL
7 + (a ∧ C1)L

7 ≥ 27], β1 = 1[cR
7 + (a ∧ C1)R

7 + α1 ≥ 225],

α2 = 1[bL
13 + (c ⊕ d)L

13 ≥ 213], β2 = 1[bR
13 + (c ⊕ d)R

13 + α2 ≥ 219].

Note that α2 and β2 are independent of a. Consider now the difference of the
outputs of f induced by the difference in the variable a, i.e.

Δf = f(a′, b, c, d) − f(a, b, c, d)
= [a′ + (a′ ∧ C1) + α′

1 − β′
1 · 225] − [a + (a ∧ C1) + α1 − β1 · 225]

= a′ + ((a′ ∧ C1) ≫ 7) − [a + ((a ∧ C1) ≫ 7)] + (α′
1 − α1) − (β′

1 − β1) · 225

= fa(a′) − fa(a) + (α′
1 − α1) − (β′

1 − β1) · 225,

where fa(a) def= a + ((a ∧ C1) ≫ 7).
A detailed analysis (cf. Lemma 5) shows that given random a, a′ and c, P (α1 =

α′
1, β1 = β′

1) = 4
9 , so with the probability 4

9 , a collision for fa is also a collision of
f when the input difference is in a only. Let us call this a carry effect. However,
if we have control over the variable c, we can adjust the values of α1, α

′
1, β1, β

′
1

and always satisfy this condition. From here we can see that (a + b) ≫ k is not
a good mixing function when modular differences are concerned.

This reasoning can be repeated for differences in the variable b and similarly
for differences in a pair of the variables c, d. It is easy to see that also for those
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cases, with a high probability, collisions in f happen when the following functions
collide

fb(b)
def= b ∨ C0 + (b ≫ 13) ,

fcd(c, d) def= (c ≫ 7) + ((c ⊕ d) ≫ 13) .

So, when we follow differences in one or two variables only, we can consider those
variables without the side effects from other variables. We summarize the above
observations below.

Observation 2. Collisions or output differences of f for input differences in
one variable can be made independent from the values of other variables.

We denote the set of solutions for fa and fb with respect to input pairs and
modular differences as

Sfa
def= {(x, x′)|fa(x) = fa(x′)} , SA

fa
def= {x − x′|fa(x) = fa(x′)} ,

Sfb
def= {(x, x′)|fb(x) = fb(x′)} , SA

fb
def= {x − x′|fb(x) = fb(x′)} .

Choose the odd elements from SA
fb and define them to be SA

fbodd
. Note that we

can easily precompute all the above solution sets using 232 evaluations of the
appropriate functions and 232 words of memory (or some more computations
with proportionally less memory).

4 (H, t)-Type Attack

First, let us try to attack only the middle part of the compression function, i.e.
ProcessMessage function. It consists of 8 rounds (10 rounds for LAKE-512). In
every round, first all of the 16 internal variables are updated by the function f ,
and then all of them are updated by the function g.

Our differential trail is as follows:

1. Introduce a carefully chosen difference in F0.
2. After the first application of the function f from all Li, only L0 has a non-

zero difference.
3. After the first application of the function g none of Wi have any difference.

Let us show that this differential is possible. First let us prove that Step 2 is
achievable. Considering that Li = f(Li−1, Fi, Mσ(i), Ci), we get that in Li a
difference can be introduced only through Li−1 and Fi (message words do not
have differences, Ci are simply constants). Note that in the first round σ(i) is
defined as the identity permutation hence we can write Mi instead of Mσ(i).

For ΔL0 we require a non-zero difference

ΔL0 = f(F15, F
′
0, M0, C0) − f(F15, F0, M0, C0) �= 0. (2)
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For ΔL1 we require the zero difference

ΔL1 = f(L
′
0, F1, M1, C1) − f(L0, F1, M1, C1) = 0. (3)

From Observation 1, it follows that it is possible to get zero for ΔL1. For all
the other ΔLi, i = 2..15 we require the zero difference. This is trivially fulfilled
because there are no inputs with difference. Now, let us consider Step 3. Note
that Wi = g(Wi−1, Li, Fi, Li+1), so we can introduce a difference in Wi by any
of Wi−1, Li, Fi and Li+1.

For ΔW0, we require the zero difference, so we get

ΔW0 = g(L15, L
′
0, F

′
0, L1) − g(L15, L0, F0, L1) = 0. (4)

Note that there are differences in two variables, L0 and F0, hence the above
equation can be solved. For the indexes i = 1, . . . , 14, we obtain

ΔWi = g(Wi−1, Li, Fi, Li+1) − g(Wi−1, Li, Fi, Li+1) = 0. (5)

All the above equations hold as there are no differences in any of the arguments.
For W15, we have

ΔW15 = g(W14, L15, F15, W0) − g(W14, L15, F15, W0) = 0.

Notice that the last argument is not L0 but rather W0 because there are no
temporal variables that store the previous values of Li (see ProcessMessage).
This non-symmetry in the ProcessMessage, which updates L registers stops the
flow of the difference from L0 to W15.

So, after only one round, we can obtain an internal state with all-zero differ-
ences in the variables. Then the following rounds can not introduce any difference
because there are no differences in the internal state variables or in the message
words. So, if we are able to solve the equations that we have got then the attack
is applicable to any number of rounds, i.e. increasing the number of rounds in
the ProcessMessage function does not improve the security of LAKE.

Let us take a closer look at our equations. Equation (2) can be written as

ΔL0 = f(F15, F
′
0, M0, C0) − f(F15, F0, M0, C0) =

= (F
′
0 ∨ C0) − (F0 ∨ C0) + [F

′
0 + (M0 ⊕ C0)] ≫ 13 − [F0 + (M0 ⊕ C0)] ≫ 13.

Hereafter we will use that (A + B) ≫ r = (A ≫ r) + (B ≫ r) with the prob-
ability 1

4 (see [6]). The same holds when rotation to the left is used. Therefore,
the above equation can be rewritten as

ΔL0 = (F
′
0 ∨ C0) − (F0 ∨ C0) + F

′
0 ≫ 13 − F0 ≫ 13. (6)

Equation (3) can be written as

ΔL1 =f(L
′
0, F1, M1, C1) − f(L0, F1, M1, C1) =

=L
′
0 − L0 + [M1 + (L

′
0 ∧ C1)] ≫ 7 − [M1 + (L0 ∧ C1)] ≫ 7 =

=L
′
0 − L0 + (L

′
0 ∧ C1) ≫ 7 − (L0 ∧ C1) ≫ 7 = 0.



162 A. Biryukov et al.

Equation (4) can be written as

ΔW0 =g(L15, L
′
0, F

′
0, L1) − g(L15, L0, F0, L1) =

=[(L15 + L
′
0) ≫ 1] ⊕ (F

′
0 + L1) − [(L15 + L0) ≫ 1] ⊕ (F0 + L1) = 0.

Let us try to extend the collision attack on the ProcessMessage function to
the full compression function. First, let us deal with the initialization (function
SaltState).

From the initialization of LAKE, it can be seen that the variables H0 through
H7 are copied into F0 through F7. The variable F8 depends on H0 and t0.
Similarly, F9 depends on H1 and t1. The rest of the variables do not depend
on either t0 or t1. Since we need a difference in F0 (for the previous attack on
ProcessMessage function), we will introduce difference in H0. Further, we can
follow our previous attack on the ProcessMessage block and get collisions after
the ProcessMessage function. The only difficulty is how to deal with F8 since it
does depend on H0, which now has a non-zero difference. As a way out, we use
the block index t0. By introducing a difference in t0 we can cancel the difference
from H0 in F8. So we get the following equation

ΔF8 = g(H
′
0, S0 ⊕ t

′
0, C0, 0) − g(H0, S0 ⊕ t0, C0, 0) =

= ((H
′
0 + (S0 ⊕ t

′
0)) ≫ 1 ⊕ C0) − ((H0 + (S0 ⊕ t0)) ≫ 1 ⊕ C0) = 0.

Let t̃
′
0 = t

′
0 ⊕ S0 and t̃0 = t0 ⊕ S0. Then, the above equation gets the following

form
ΔF8 = H

′
0 − H0 + t̃

′
0 − t̃0 = 0.

Now, let us deal with the last building block of the compression function, the
FeedForward function. Note that we have differences in H0 and t0 only. If we take
a glance at the FeedForward procedure, we can see that H0 and t0 can be found
in the same equation, and only there, which defines the new value for H0. Since
we require the zero difference in all of the output variables, we get the following
equation

ΔH0 = f(F0, F8, H
′
0, S0 ⊕ t

′
0) − f(F0, F8, H0, S0 ⊕ t0) =

= t̃
′
0 ≫ 7 − t̃0 ≫ 7 + (t̃′0 ⊕ H

′
0) ≫ 13 − (t̃0 ⊕ H0) ≫ 13 = 0.

This concludes our attack. We have shown that if we introduce a difference
in the chaining value H0 and the block index t0 only, it is possible to reduce
the problem of finding collisions for the compression function of LAKE to the
problem of solving a system of equations.

4.1 Solving Equation Systems

To find a collision for the full compression function of LAKE, we have to solve
the equations that were mentioned in the previous sections. As a result, we get
the following system equations (note that H0 = F0)
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L
′
0 − L0 + (L

′
0 ∧ C1) ≫ 7 − (L0 ∧ C1) ≫ 7 = 0; (7)

L
′
0 − L0 = (H

′
0 ∨ C0) − (H0 ∨ C0) + H

′
0 ≫ 13 − H0 ≫ 13; (8)

[(L15 + L
′
0) ≫ 1] ⊕ (H

′
0 + L1) − [(L15 + L0) ≫ 1] ⊕ (H0 + L1) = 0; (9)

H
′
0 − H0 + t̃

′
0 − t̃0 = 0; (10)

t̃
′
0 ≫ 7 − t̃0 ≫ 7 + (t̃′0 ⊕ H

′
0) ≫ 13 − (t̃0 ⊕ H0) ≫ 13 = 0. (11)

Let us analyze Equation (7). By fixing L
′
0 − L0 = R and rotating to the left by

7 bits, this equation can be rewritten as

(X + A) ∧ C = X ∧ C + B, (12)

where X = L0, A = R, B = (−R) 	 7, C = C1. Now, let us analyze Equation
(8). Again, let us fix L

′
0 −L0 = R and H

′
0 −H0 = D. Then Equation(8) gets the

following form

(X + A) ∨ C = X ∨ C + B, (13)

where X = H0, A = D, B = R − (D ≫ 13), C = C0. In Equation (9), if we
regroup the components, we obtain

[(L15 + L
′
0) ⊕ (L15 + L0)] ≫ 1 = (H

′
0 + L1) ⊕ (H0 + L1).

Then, the above equation is of the following form

((X + A) ⊕ X) ≫ 1 = (Y + B) ⊕ Y, (14)

where X = L15 + L0, A = L
′
0 − L0, Y = L1 + H0, B = H

′
0 − H0.

Now, let us analyze Equations (10) and (11). Let us fix H
′
0 − H0 = D. Note

that from Equation (10), we have t̃
′
0 − t̃0 = −D. If we rotate everything by 13

bits to the left in Equation (11), we get

(−D) 	 6 + (t̃′0 ⊕ H
′
0) − (t̃0 ⊕ H0) = 0; (15)

t̃0 = [(t̃′0 ⊕ H
′
0) − D 	 6] ⊕ H0. (16)

If we substitute t̃0 in Equation (10) by the above expression, then we have

D + t̃
′
0 − [(t̃′0 ⊕ H

′
0) − D 	 6] ⊕ H0 = 0; (17)

t̃
′
0 = [(t̃′0 ⊕ H

′
0) − D 	 6] ⊕ H0 − D. (18)

If we XOR the value of H
′
0 to the both sides, we get

t̃
′
0 ⊕ H

′
0 = ([(t̃′0 ⊕ H

′
0) − D 	 6] ⊕ H0 − D) ⊕ H

′
0. (19)
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Let us denote t̃
′
0 ⊕ H

′
0 = X . Then we can write

X = [(X − D 	 6) ⊕ H0 − D] ⊕ H
′
0; (20)

X ⊕ H
′
0 = (X − D 	 6) ⊕ H0 − D. (21)

Finally, we get an equation of the following form

(X ⊕ K1) + A = (X + B) ⊕ K2, (22)

where K1 = H
′
0, A = R, B = −R 	 6, K2 = H0.

Lemma 2. There exist efficient algorithms Al1,Al2,Al3,Al4 for finding solu-
tions for equations of type (12),(13),(14),(22).

The description of these algorithms can be found in Appendix B.
Now, we can present our algorithm for finding solutions for the system of

equations. With Al1 we find a difference R (and values for L0, L
′
0) such that

Equation (7) holds. Actually, for the same difference R many distinct solutions
(L0, L

′
0) exist (experiments show that when Equation (7) is solvable, then there

are around 25 solutions). Next, we pass as an input to Al2 the difference R and
we find a difference D (and values for H0, H

′
0) such that Equation (8) holds.

Again for a fixed R and D, many pairs (H0, H
′
0) exist. We verified experimen-

tally that for a random R and a “good” D, there are around 210 solutions.
Using Algorithm Al3, we check if we can find solutions for Equation (9), i.e.
we try to find L1 and L15. Note that the input of Al3 is the previously found
sequence (L0, L

′
0, H0, H

′
0). If Al3 can not find a solution, then we get another

pair (H0, H
′
0) (or generate first a new difference D and then generate another

210 pairs (H0, H
′
0)). If Al3 finds a solution to (9), then we use Algorithm Al4

and try to find solutions for Equations (10) and (11), where the input to Al4
is already found as the pair (H0, H

′
0). If Al4 can not find a solution, then we

can take a different pair (H0, H
′
0) (or generate first a new difference D and then

generate (H0, H
′
0)) and then apply first Al3 and then Al4.

4.2 Complexity of the Attack

Let us try to find the complexity of the algorithm. Note that when analyz-
ing the initial equations, we have used the assumption that (A + B) ≫ r =
(A ≫ r) + (B ≫ r), which holds with the probability 1

4 (see [6]). In total, we
used this assumption 5 times. In the equation for ΔF0, we can control the exact
value of M1, so in total, we have used the assumption 4 times. Therefore, the
probability that a solution of the system is a solution for the initial equations
is 2−8. This means that we have to generate 28 solutions for the system. Let us
find the cost for a single solution.

The average complexity for both Al1 and Al2 is 21 steps. We confirmed ex-
perimentally that, for a random difference R, there exists a solution for Equation
(7) with the probability 2−27. So this takes 227 · 21 = 228 steps using Al1 and it
finds 25 solutions for Equation (7). Similarly, for a random difference D, there is
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a solution for Equation (8) with the probability 2−27. Therefore, this consumes
227 ·21 = 228 steps and finds 210 pairs (H0, H0) for Equation (8). The probability
that a pair is a good pair for Equation (9) is 2−1 and that it is a good pair for
Equations (10) and (11) is 2−12 (as explained in Appendix B). Thus, we need
21 · 212 = 213 pairs, which we can be generated in 228 · 23 = 231 steps. Since
we need 28 solutions, the total complexity is 239. Note that this complexity es-
timate (a step) is measured by the number of calls to the algorithms that solve
our specific equations. If we assume that a call to the algorithms is four times
less efficient than the call to the functions f or g (which on average seems to
be true), and consider the fact that the compression function makes a total of
around 28 calls to the functions f or g, then we get that the total complexity of
the collision search is around 233 compression function calls.

Note that when a solution for the system exists, then this still does not mean
that we have a collision. This is partially because we cannot control some of
the values directly. Indeed, we can control directly only H0, H

′
0, t0, t

′
0. The rest

of the variables, i.e. L0, L
′
0, L1, L15, we can control through the message words

Mi or with the input variables Hi, where i > 0. Since we pass these values as
arguments for the non-injective function f , we may experience situation when
we cannot get the exact value that we need. Yet, with an overwhelming prob-
ability, we can find the exact values. Let us suppose that we have a solution
(H0, H

′
0, L0, L

′
0, L1, L15, t0, t

′
0) for the system of equations. First, we find a mes-

sage word M0 such that f(F15, H0, M0, C0) = L0. Notice that F15 can be pre-
viously fixed by choosing some value for H7. Then, f(F15, H

′
0, M0, C0) = L

′
0.

We choose M1 such that [M1 + (L
′
0 ∧ C1)] ≫ 7 − [M1 + (L0 ∧ C1)] ≫ 7 =

(L
′
0 ∧ C1) ≫ 7 − (L0 ∧ C1) ≫ 7. This way the probability that the previous

identity holds becomes 1. Then we find H1 such that f(L0, H1, M1, C1) = L1.
At last, we find M15 such that f(L14, F15, M15, C15) = L15. If such M15 does
not exist, then we can change the value of L14 by changing M14 and then try to
find M15.

5 (H, S)-Type Attack

The starting idea for this attack is to inject differences in the input chaining
variable H and the salt S and then cancel them within the first iteration of
ProcessMessage. Consequently, no difference appears throughout the compression
function until the FeedForward step. If the differences in the chaining and salt
variables are selected properly, we can hope they cancel each other, so we get no
difference at the output of the compression function.

5.1 Finding High-Level Differentials

To find a suitable differential for the attack, an approach similar to the one
employed to analyse FORK-256 [10, Section 6] can be used. We model each of
the registers a, b, c, d, as a single binary value δa, δb, δc, δd that denotes whether
there is a difference in the register or not. Moreover, we assume that we are able
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to make any two differences cancel each other to obtain a model that can be
expressed in terms of arithmetics over F2. We model the differential behavior of
function g simply as δg(δa, δb, δc, δd) = δa⊕δb⊕δc⊕δd, where δa, δb, δc, δd ∈ F2,
as this description seems to be functionally closest to the original. For example,
it is impossible to get collisions for g when only one variable has differences and
such a model ensures that we always have two differences to cancel each other
if we need no output difference of g. When deciding how to model f(a, b, c, d),
we have more options. First, note that when looking for collisions, there are
no differences in message words and the last parameter of f is a constant, so
we need to deal with differences in only two input variables a and b. Since we
can find collisions for f when differences are only in a single variable (either a
or b), we can model f not only as δf(δa, δb) = δa ⊕ δb but more generally as
δf(δa, δb) = γ0(δa) ⊕ γ1(δb), where γ0, γ1 ∈ F2 are fixed parameters. Let us call
the pair (γ0, γ1) a γ-configuration of δf and denote it by δf[γ0,γ1], As an example,
δf[1,0] corresponds to δf(δa, δb) = δa, which means that whenever a difference
appears in register b, we need to use the properties of f to find collisions in
the coordinate b. For functions f appearing in FeedForward, we use the model
δf = δa ⊕ δb ⊕ δc ⊕ δd.

With these assumptions, it is easy to see that such a model of the whole
compression function is linear over F2 and finding the set of input differences (in
chaining variables H0, . . . , H7 and salt registers S0, . . . , S3) is just a matter of
finding the kernel of a linear map. Since we want to find only simple differentials,
we are interested in those that use as few registers as possible. To find them,
we can think of all possible states of the linear model as a set of codewords of
a linear code over F2. That way, finding differentials affecting only few registers
corresponds to finding low-weight codewords. So instead of an enumeration of
all 212 possible states of of H0, . . . , H7, S0, . . . , S3 for each γ-configuration of f
functions, this can be done more efficiently by using tools like MAGMA [4].

We implemented this method in MAGMA and performed such a search for
all possible γ-configurations of the 16 functions f appearing in the first Pro-
cessMessage. We used the following search criteria: (a) as few active f functions
as possible; (b) as few active g functions as possible; (c) non-zero differences ap-
pear only in the first few steps using function g as it is harder to adjust the values
for later steps due to lack of variables we control; (d) we prefer γ-configurations
[1, 0] and [0, 1] over [1, 1] because it seems easier to deal with differences in one
register than in two registers simultaneously.

The optimal differential for this set of criteria contains differences in regis-
ters H0, H1, H4, H5, S0, S1 with the following γ-configurations of the first seven f
functions in ProcessMessage: [0, 1], [1, 1], [0, 1], [·, ·], [0, 1], [1, 1], [0, 1] (Note a sim-
pler configuration (H0, H4, S0) is not possible here). Unfortunately, the system
of constraints resulting from that differential has no solutions, so we introduced
a small modification of it, adding differences in registers H2, H6, S2, ref. Fig-
ure 1. After introducing these additional differences, we gain more freedom at
the expense of dealing with more active functions and we can find solutions for
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SaltState

input: H0, . . . , H7, S0, . . . , S3, t0, t1

ΔF0 ← ΔH0

ΔF1 ← ΔH1

ΔF2 ← ΔH2

F3 ← H3

ΔF4 ← ΔH4

ΔF5 ← ΔH5

ΔF6 ← ΔH6

F7 ← H7

F8 ← g(ΔH0,ΔS0 ⊕ t0, C8, 0) {s1}
F9 ← g(ΔH1,ΔS1 ⊕ t1, C9, 0) {s2}
F10 ← g(ΔH2,ΔS2, C10, 0) {s3}
F11 ← g(H3, S3, C11, 0)
F12 ← g(ΔH4,ΔS0, C12, 0) {s4}
F13 ← g(ΔH5,ΔS1, C13, 0) {s5}
F14 ← g(ΔH6,ΔS2, C14, 0) {s6}
F15 ← g(H7, S3, C15, 0)
output: F0, . . . , F15

FeedForward

input: R0, . . . , R15, H0, . . . , H7,
S0, . . . , S3, t0, t1

H0 ← f(R0, R8,ΔS0⊕t0,ΔH0) {f1}

H1 ← f(R1, R9,ΔS1⊕t1,ΔH1) {f2}

H2 ← f(R2, R10,ΔS2,ΔH2) {f3}
H3 ← f(R3, R11, S3, H3)
H4 ← f(R4, R12,ΔS0,ΔH4) {f4}
H5 ← f(R5, R13,ΔS1,ΔH5) {f5}
H6 ← f(R6, R14,ΔS2,ΔH6) {f6}
H7 ← f(R7, R15, S3, H7)
output: H0, . . . , H7

ProcessMessage

input: F0, . . . , F15, M0, . . . , M15, σ
L0 ← f(F15,ΔF0, Mσ(0), C0) {p1}
ΔL1 ← f(L0,ΔF1, Mσ(1), C1) {p2}
ΔL2 ← f(ΔL1,ΔF2, Mσ(2), C2) {p3}
L3 ← f(ΔL2, F3, Mσ(3), C3) {p4}
L4 ← f(L3,ΔF4, Mσ(4), C4) {p5}
ΔL5 ← f(L4,ΔF5, Mσ(5), C5) {p6}
ΔL6 ← f(ΔL5,ΔF6, Mσ(6), C6) {p7}
L7 ← f(ΔL6, F7, Mσ(7), C7) {p8}
L8 ← f(L7, F8, Mσ(8), C8)
...
L15 ← f(L14, F15, Mσ(15), C15)

W0 ← g(L15, L0,ΔF0,ΔL1) {p9}
W1 ← g(W0, ΔL1,ΔF1, ΔL2) {p10}
W2 ← g(W1, ΔL2,ΔF2, L3) {p11}
W3 ← g(W2, L3, F3, L4)
W4 ← g(W3, L4, ΔF4,ΔL5) {p12}
W5 ← g(W4, ΔL5,ΔF5, ΔL6) {p13}
W6 ← g(W5, ΔL6,ΔF6, L7) {p14}
W7 ← g(W6, L7, F7, L8)
...
W15 ← g(W14, L15, F15, W0)
output: W0, . . . , W15

Fig. 1. High-level differential used to look for (H,S)-type collisions

the system of constraints. The labels for all constraints are defined by Figure 1,
we will refer to them throughout the text.

The process of finding the actual pair of inputs following the differential can be
split into two phases. The first one is to solve the constraints from ProcessMessage
to get the required F s (same as Hs used in SaltState). Then, in the second
phase, we look at the SaltState to find appropriate salts to have constraints in
FeedForward satisfied. We can do this because the output from ProcessMessage
has only a small effect on the solutions for FeedForward.
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5.2 Solving the ProcessMessage

An important feature of our differentials in ProcessMessage is that it can be sep-
arated into two disjoint groups, i.e. (F0, F1, F2, L1, L2) and (F4, F5, F6, L5, L6).
Differentials for these two groups have exactly the same structure. Thanks to
that, if we can find values for the differences in the first group, we can reuse
them for the second group by making corresponding registers in the second
group equal to the ones from the first group. Following Observation 2 we can
safely say that the second group also follows the differential path with a high
probability. Algorithm 5 gives the details of solving the constrains in the first
group of ProcessMessage.

1: Randomly pick (L2, L
′
2) ∈ Sfa

2: repeat
3: Randomly pick F1, compute F ′

1 = −1 − ΔL2 − F1

4: until fb(F1) − fb(F ′
1) ∈ SA

fbodd

5: repeat
6: Randomly pick L1, F2

7: Compute L′
1 = fb(F ′

1) − fb(F1) + L1

8: Compute F ′
2 so that fb(F ′

2) = ΔL2 + fa(L1) − fa(L′
1) + fb(F2)

9: until p11 is fulfilled
10: Pick (F0, F

′
0) ∈ Sfb so that ΔF0 + ΔL1 = 0

Algorithm 5. Find solutions for the first group of differences of
ProcessMessage

Correctness. We show that after the execution of Algorithm 5, it indeed finds
values conforming to the differential. In other words, we show that constraints
p1 − p4 and p9 − p11 hold. Referring to Algorithm 5:

Line 1: (L2, L
′
2) is chosen in such a way that p4 is satisfied.

Line 3: F ′
1 is computed in such a way that (F1 + L2) ⊕ (F ′

1 + L′
2) = −1

Line 4: ΔL1 = Δfb(F1) is odd together with (F1 + L2) ⊕ (F ′
1 + L′

2) = −1.
This implies that p10 could hold, which will be discussed later in Lemma 3.
The fact that ΔL1 ∈ SA

fbodd
makes it possible that p1 and p9 hold.

Line 7: L′
1 is computed in such a way that p2 holds.

Line 8: F ′
2 is computed in such a way that p3 holds.

Line 9: after exiting the loop p11 holds.
Line 10: (F0, F

′
0) is chosen in such a way that p1, p9 hold.

Probability and Complexity Analysis. Let us consider the probability for
exiting the loops in Algorithm 5. We require fa(F1) − fa(F ′

1) ∈ SA
fbodd

and the
constraint p11 to hold. The size of the set SA

fbodd
is around 211. By assuming that

fa(F1)−fa(F ′
1) is random, the probability to have it in SA

fbodd
is 2−21. This needs

to be done only once. Now we show that the constraint p11 is satisfied with the
probability 2−24. We have sufficiently many choices, i.e. 264, for (L1, F2) to have



Cryptanalysis of the LAKE Hash Family 169

p11 satisfied. The constraint p11 requires that [(W1 + L2) ≫ 1] ⊕ (F2 + L3) =
[(W1 +L′

2]) ≫ 1]⊕ (F ′
2 +L3), which is equivalent to [(W1 +L2)⊕ (W1 +L′

2)] ≫
1 = (F2+L3)⊕(F ′

2+L3), where W1, L2, L
′
2, F2, F

′
2 are given from previous steps.

We have choices for L3 by choosing an appropriate Mσ(3). The problem could
be rephrased as follows: given random A and D, what is the probability to have
at least one x such that x ⊕ (x + D) = A?

To answer this question, let us note first that x⊕y = (1, . . . , 1) iff x+y = −1.
This is clear as y = x and always (x⊕x)+1 = 0. Now we can show the following
result.

Lemma 3. For any odd integer d, there exist exactly two x such that x⊕(x+d) =
(1, . . . , 1). They are given by x = (−1 − d)/2 and x = (−1 − d)/2 + 2n−1.

Proof. x ⊕ (x + d) = −1 implies that x + x + d = −1 + k2n for an integer k, so
x = −1−d+k2n

2 . Only when d is odd, x = −1−d
2 +k2n−1 an integer and a solution

exists. As we are working in modulo 2n, k = 0, 1 are the only solutions. �

Following the lemma, given an odd ΔL1 and (F1 +L2)⊕ (F ′
1 +L′

2) = −1, we can
always find two W0 such that (W0+L1)⊕(W0+L′

1) = −1, then p10 follows. Such
W0 could be found by choosing an appropriate L15, which could be adjusted by
choosing Mσ(15) (if such Mσ(15) does not exist, although the chance is low, we
can adjust L14 by choosing Mσ(14)).

Coming back to the original question, consider A as “0”s and blocks of “1”s.
Following the lemma above, for Ai = 0, we need Di = 0 (except “0” as MSB
followed by a “1”); for a block of “1”s, say Ak = Ak+1 = · · · = Ak+l = 1, the
condition that needs to be imposed on D is Dk = 1. By counting the number of
“0”s and the number of blocks of “1”s, we can get number of conditions needed.
For an n-bit A, the number is 3n

4 on average (cf. Appendix Lemma 4).
For LAKE-256, it is 24, so the probability for p11 to hold is 2−24. We will need

to find an appropriate L3 so that p11 holds. Note that we have control over L3 by
choosing the appropriate Mσ(3). For each differential path found, we need to find
message words fulfilling the path. The probability to find a correct message is
1− 1

e for the first path by assuming fc is random (because for a random function
from n bits to n bits, the probability that a point from the range has a preimage
is 1− 1

e ), and 4
9 for the second path because of the carry effect. For example, given

L0, F15, F0, C0, the probability to have Mσ(0) so that L0 = f(F15, F0, Mσ(0), C0)
is 1 − 1

e . The same Mσ(0) satisfies L′
0 = f(F ′

15, F
′
0, Mσ(0), C0) (note for this case

F ′
15 = F15 and L0 = L′

0) with the probability 4
9 . So for each message word, the

probability for it to fulfill the differential path is 2−2. We have such restrictions
on Mσ(0) − Mσ(2), Mσ(4) − Mσ(6) (we don’t have such restriction on Mσ(3) and
Mσ(7) because we still have control over F3 and F7), so overall complexity for
solving ProcessMessage is 5 · 236 in terms of calls to fa or fb. The compression
function of LAKE-256 calls functions f and g 136 times each and fa, fb contain
less than half of the operations used in f . So the complexity for this part of the
attack is 230 in terms of the number of calls to the compression function.
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Solving the second group of ProcessMessage. After we are done with the
first group, we can have the second group of differential path for free by assigning
Fi+4 = Fi, F ′

i+4 = F ′
i for i = 0, 1, 2 and Li+4 = Li, L

′
i+4 = L′

i for i = 1, 2. In
this way, we can have the constrains p5 − p8 and p12 automatically satisfied.
Similarly, for the constraints p13 and p14, we will need appropriate W4 and L7.
We have control over W4 by choosing F3 and L4 (note we need to keep L3 stable
to have p11 satisfied, this can be achieved by choosing appropriate Mσ(3)). We
also have control over L7 by choosing Mσ(7). That way we can force the difference
to vanish within the first ProcessMessage. Table 2 in Appendix shows an example
of a set of solutions.

5.3 Near Collisions

In this section we explain how to get a near collision directly from collisions
of ProcessMessage. Refer to SaltState and FeedForward in Fig. 1. Note that the
function g(a, b, c, d) with differences at positions (a, b) means Δa+Δb = 0, then
constraints (s1 − s6) in SaltState can be simplified to

s1 : ΔH0 + ΔS0 = 0; (23)
s2 : ΔH1 + ΔS1 = 0; (24)
s3 : ΔH2 + ΔS2 = 0. (25)

Note that Hi+4 = Hi, H
′
i+4 = H ′

i for i = 0, 1, 2 as required by ProcessMessage,
Let t0 = t1 = 0, then conditions s4−s6 follow s1−s3. Conditions in FeedForward
could be simplified to

f1 : fcd(S0, H0) = fcd(S′
0, H

′
0), (26)

f2 : fcd(S1, H1) = fcd(S′
1, H

′
1), (27)

f3 : fcd(S2, H2) = fcd(S′
2, H

′
2) (28)

and f4 − f6 follow f1 − f3. This set of constraints can be grouped into three
independent sets (si, fi) for i = 0, 1, 2 each one of the same type, i.e. ΔH+ΔS =
0 and fcd(S, H) = fcd(S′, H ′).

To find near collisions, we proceed as follows. First we choose those Si with
S′

i = Si − ΔHi so that the Hamming weight of fcd(S′
i, H

′
i) − fcd(Si, Hi) is small

for i = 0, 1, 2. Thanks to that, only small differences are expected in the final
output of the compression function, due to the fact that inputs from a, b of
the function f have only carry effect to the final difference of f when inputs
differ in c, d only. We choose values of Si without going through the compression
function, so the number of rounds of the compression function does not affect our
algorithm. Further, the complexity for finding values of Si is much smaller than
that of ProcessMessage, so it does not increase the 230 complexity. Experiments
show that, based on the collision in ProcessMessage, we can have near collisions
with a very little additional effort. Table 3 in Appendix shows a sample result
with 16-bit of differences out of 256 bits of the output.



Cryptanalysis of the LAKE Hash Family 171

5.4 Extending the Attack to Full Collisions

It is clear that finding full collisions is equivalent to solving Equations (26)-(28).
The complexity to solve a single equation is around 212 (as done for solving
Equations (10) and (11)). Looking at Algorithm 5, (s1, f1) can be checked when
F1 and F ′

1 are chosen, so it does not affect the overall complexity. The pair
(s0, f0) can be checked immediately after (L1, L

′
1) is given as show in Line 7

of Algorithm 5. Similarly, (s2, f2) can be checked after (F2, F
′
2) is chosen in

Line 8. So the overall complexity for our algorithm to get a collision for the full
compression function is 254.

5.5 Reducing the Complexity

In this subsection, we show a better way (rather than randomly) to choose
(L2, L

′
2) so that the probability for the constraint p11 to hold increases, which

reduces the complexity for collision finding to 242.
Note the constraint p11 is as follows. Given W1, L2, L

′
2, what is the probability

to have L3 and (F2, F
′
2) so that ((W1 + L2) ⊕ (W1 + L′

2)) ≫ 1 = (F2+L3)⊕(F ′
2+

L3). We calculate the probability by counting the number of 0s and block of 1s in
((W1 + L2)⊕(W1 + L′

2)) ≫ 1 (let’s denote it as α = #(((W1+L2)⊕(W1+L′
2))

≫ 1)). Now we show that the number α can be reduced within the first loop of the
algorithm, i.e. given only (L2, L

′
2) and (F1, F

′
1), we are able to get α and hence, by

repeating the loop sufficiently many times, we can reduce α to a number smaller
than 24 (we don’t fix it here, but will give it later).

Note that to find α, we still need W1 besides (L2, L
′
2). Now we show W1 can be

computed from (L2, L
′
2) and (F1, F

′
1) only. W1

def= ((W0 +L1) ≫ 1)⊕ (F1 +L2),
where we restrict (W0 +L1)⊕ (W0 +L′

1) = −1. Denote S = (W0 +L1), then the
equation can be derived to S ⊕ (S +ΔL1) = −1, where ΔL1

def= fb(F ′
1)− fb(F1).

So let’s make 2y more effort in the first loop so that α is reduced by y. The
probability for the first loop to exit becomes 2−33−y and for the second loop, the
probability becomes 2−60+y. Choosing the optimal value y = 13 (y must be an
integer), the probabilities are 2−46 and 2−47, respectively. Hence this gives final
complexity 242 for collision searching.

6 (H)-Type Attack

Let us introduce difference only in the chaining value H0. Hence, this difference
after the SaltState procedure, will produce differences in F0 and F8. In the first
application of the ProcessMessage procedure the following differential is used:

1. Let F0 has some specially chosen difference. Also, F8 has some difference
that depends on the difference in F0.

2. After the first application of the function f only L0, L1, . . . , L8 have non-zero
differences

3. After the first application of the function g all Wi have zero differences
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Again, we should prove that this differential is possible. Basically, we should
check only for the updates with non-zero input differences and zero output dif-
ference (other updates hold trivially). Hence, we should prove that we can get the
zero difference in L9 and Wi, i = 0, . . . , 8. Since f is non-injective, it is possible
to get the zero difference in L9. For W0, . . . , W8 is also possible to get zero dif-
ferences because their updating functions g always have at least two arguments
with differences. Therefore, this differential is valid.

Now, let us write the system of equations that we require. Note that Li−L
′
i =

δi, i = 0, . . . , 8. The system is as follows

f (F15, L0, M0, C0) = L0, f(F15, L
′
0, M0, C0) = L′

0, (29)
f (L0, F1, M1, C1) = L1, f(L′

0, F1, M1, C1) = L′
1, (30)

f (Li−1, Fi, Mi, Ci) = Li, f(L′
i−1, Fi, Mi, Ci) = L′

i, i = 2, . . . , 6, (31)
f (L7, L8, M8, C9) = L8, f(L7, L

′
8, M8, C9) = L′

8, (32)
f (L8, F9, M9, C9) = L9, f(L′

8, F9, M9, C9) = L9, (33)
g (L15, L0, F0, L1) = W0, g(L15, L

′
0, F

′
0, L

′
1) = W0, (34)

g (Wi−1, Li, Fi, Li+1) = Wi, g(Wi−1, L
′
i, Fi, L

′
i+1) = Wi, i = 1, . . . , 7, (35)

g (W7, L8, L8, L9) = g(W7, L
′
8, L

′
8, L9). (36)

Let us focus on Equation (35). It can be rewritten as

(Wi−1 + Li) ≫ 1 ⊕ (Fi + Li+1) = (Wi−1 + L
′
i) ≫ 1 ⊕ (Fi + L

′
i+1) (= Wi).

Similarly as in the previous attacks, we get the following equation

((X + A) ⊕ X) ≫ 1 = (Y + B) ⊕ Y, (37)

where X = Wi−1 + L
′
i, A = Li − L

′
i, Y = Fi + L

′
i+1, B = Li+1 − L

′
i+1. In Al3 of

Appendix B, we have explained how to split this equation into two equations,
((X + A) ⊕ X) = −1,(Y + B) ⊕ Y =-1, and solve them separately. The solution
X = A � 1, Y = B � 1 exists when LSB of A and B are 1. Hence, for Wi−1
and Fi we get

Wi−1 = (Li − L
′
i) � 1 − L

′
i = δi � 1 − L

′
i, (38)

Fi = (Li+1 − L
′
i+1) � 1 − L

′
i+1 = δi+1 � 1 − L

′
i+1. (39)

If we put these values in the equation for Wi we obtain

Wi = (Wi−1 + L
′
i) ≫ 1 ⊕ (Fi + L

′
i+1) = δi � 1 ≫ 1 ⊕ δi+1 � 1. (40)

This means that we can split equations of the type (35) into two equations and
solve them separately. Also, from (38) and (39) we get that Wi = Fi.

Now let us explain how to get two pairs that satisfy the whole differential.
First, by choosing randomly L0, L

′
0, F15, M0, F1, and M1, we produce a solution

for Equations (29),(30), (34) and (35). Actually, we need to satisfy only Equa-
tion (35), i.e. W0 = (L1 − L

′
1) � 1 − L

′
1 = δ1 � 1 − L

′
1, because the values of
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Lj
0, L

j
1, j = 1, 2 can be any, and finding a solution for (34) is trivial. Then, by

taking some M2 and F2 we produces Lj
2 = f(Lj

1, F2, M2, C2), j = 1, 2. Having
the values of δ1 and δ2, we can find the new value of F1

F1 = W1 = δ1 � 1 ≫ 1 ⊕ δ2 � 1.

Since we have changed the value of F1, then the values of L1 and L
′
1 might change.

Therefore, we find another value of M1 such that the old values of L1, L
′
1 stay the

same. Note, that is is not always possible. Yet, with the probability 2−2 this value
can be found. As a result, we have fixed the values of M1, F1, L2, and L

′
2. Using

the same technique, we can fix the values of M2, . . . , M6, F2, F6, L
j
3, L

j
7, j = 1, 2

such that (35) would hold for i = 2, . . . , 6. In short, the following is done. Let the
values of Wi−1, Mi, Fi, Li, and L

′
i be fixed. First we generate any Li+1 and L

′
i+1.

Then we find the value of Fi from (39). Then, we change the value of Mi. This
way, the values of Li, L

′
i stay the same, but now Wi+1, L

j
i , Mi, Fi, L

j
i+1, j = 1, 2

satisfy (35).
Now let us fix the right L8, L

′
8 such that

f(L8, F9, M9, C9) = f(L
′
8, F9, M9, C9). (41)

We try different M8, S0 (notice that the values of F8, F
′
8 depend on F0, F

′
0, and

S0), and create different pairs (L8, L
′
8). If this pair satisfies (41) and (38) then

we change M7 and F7 as described previously. Finally, we change M9 and F9
so that (36) will hold. First, we find the good value of L9 from the equation
L9 = Δ2 � 1 − L

′
8 and than change M9 and F9 to achieve this value. As a

result, we have fixed all the values such that all equations hold.
After the ProcessMessage procedure, there are no differences in any of the state

variables. The FeedForward procedure, which produces the new chaining value,
depends on the initial chaining value, the internal state variables, the salt, and
the block index. Since there is a difference only in the initial chaining value (only
in H0), it means that there has to be a difference in the new chaining variable H0
(and only there). If we repeat the attack on ProcessMessage with different input
difference Δ1, we can produce a near collision with a low Hamming difference.
If, in the truncated digest LAKE-224, the first 32 bits were truncated instead of
the last 32 bits, we could find a real collisions for the compression function of
LAKE-224.

Now, let us estimate the complexity of our attack. For finding good random
L0, L

′
0, F15, M0, F1, and M1 that satisfies the first set of equations we have to

try 232 different values. For successfully fixing the correct Fi, Mi, i = 1, . . . , 7,
we have to start with (22)7 = 214 different δ1. For finding a good pair (L8, L

′
8)

that satisfies (41) and (38) we have to try 227 ·232 = 259 different M8, S8. Hence,
the total attack complexity is around 2105 computations. If we apply the same
reasoning for computing the complexity in the number of compression function
calls as it was done in the two previous attacks, we will get that the near collision
algorithm requires around 299 calls to the compression function of LAKE-256.
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7 Conclusions

We presented three different collision attacks on the compression function of
LAKE-256. All of them make use of some weaknesses of the functions used to
build the compression function. The first two of them facilitate the additional
variables of salt and block counter required by the HAIFA compression functions.
Due to a weak mixing of those variables, we were able to better control diffusion
of differences.

All our attacks cancel the injected differences within the first ProcessMessage
and later only in the final FeedForward again and therefore are independent of
the number of rounds.

The SHA-3 first round candidate BLAKE, a successor of LAKE, uses a dif-
ferent ProcessMessage function. Hence, our attacks do not apply to BLAKE. We
believe that the efficient methods to solve the systems of equations and to find
high level differentials presented in this paper may be useful to analyse other
dedicated designs based on modular additions, rotations and XORs and con-
stitute a nice illustration of how very small structural weaknesses can lead to
attacks on complete designs.
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A Collision Examples

Table 1. (H, t)-colliding pair for the compression function of LAKE

h0 63809228 6cc286da 00000000 00000000 00000000 00000000 00000000 00000540
h
′
0 ba3f5d77 6cc286da 00000000 00000000 00000000 00000000 00000000 00000540

M 55e07658 00000009 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000002 5c41ab0e

F0 0265e384 00000000
F1 aba71835 00000000
S 00000000 00000000 00000000 00000000
H 79725351 e61a903f 730aace9 756be78a b679b09d de58951b f5162345 14113165

http://magma.maths.usyd.edu.au/
http://theory.csail.mit.edu/~yiqun/shanote.pdf
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Table 2. Example of a pair of chaining values F , F ′ and a message block M that yield
a collision in ProcessMessage

F 1E802CB8 799491C5 1FE58A14 07069BED 1E802CB8 799491C5 1FE58A14 74B26C5B
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

F ′ C0030007 B767CE5E 30485AE7 07069BED C0030007 B767CE5E 30485AE7 74B26C5B
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

M 683E64F1 9B0FC4D9 0E36999A A9423F09 27C2895E 1B76972D BEF24B1C 78F25F25
00000000 00000000 00000000 00000000 00000000 00000000 657C34F5 3A992294

L D0F3077A 31A06494 395A0001 10E105FC 82026885 31A06494 395A0001 10E105FC
ECF7389A 2F4D466F 9FFC71E1 54BAFAE6 FCDDBCDB E635FFB7 5D302719 CD102144

L′ D0F3077A 901D9145 95A99FDB 10E105FC 82026885 901D9145 95A99FDB 10E105FC
ECF7389A 2F4D466F 9FFC71E1 54BAFAE6 FCDDBCDB E635FFB7 5D302719 CD102144

L⊕ 00000000 A1BDF5D1 ACF39FDA 00000000 00000000 A1BDF5D1 ACF39FDA 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

W 1F210513 1A8E2515 1932829B 1C00C039 1F210513 1A8E2515 1932829B F4A060BE
5F868AC3 D8959978 E8F3FF4A E20AC1C3 8941C0F8 EA8BC74E 6ECDD677 82CFFECE

W ′ 1F210513 1A8E2515 1932829B 1C00C039 1F210513 1A8E2515 1932829B F4A060BE
5F868AC3 D8959978 E8F3FF4A E20AC1C3 8941C0F8 EA8BC74E 6ECDD677 82CFFECE

Table 3. Example of a pair of chaining values F , F ′, salts S, S′ and a message block
M that yield near collision in CompressionFunction with 16 bits differences out of 256
bits output. Hs are final output.

F 7B2000C4 23E79FBD 73D102C3 88E0E02B 7B2000C4 23E79FBD 73D102C3 00000000

F ′ 801FF801 18C0005E 846FD480 88E0E02B 801FF801 18C0005E 846FD480 00000000

S 00010081 23043423 03C5B03E D44CFD2C

S′ FB010944 2E2BD382 F326DE81 D44CFD2C

M 00000012 64B31375 CFA0A77E 8F7BE61F 1E30C9D3 6A9FB0DA 290E506E 3AAE159C
00000000 00000000 00000000 00000000 00000000 00000000 00000000 1B89AA75

H 261B50AA 3873E2BE BDD7EC4D 7CE4BFF8 007BB4D4 869473FF 833D9EFA 9DABEDDA

H′ 361150AA 387BE23E FDD6E84D 7CE4BFF8 1071B4D4 869C737F C33C9AFA 9DABEDDA

H⊕ 100A0000 00080080 40010400 00000000 100A0000 00080080 40010400 00000000

B Lemmas and Proofs

Lemma 4. Given random x of length n, then the average number of “0”s and
block of “1”s, excluding the case “0” as MSB followed by “1”, is 3n

4 .

Proof. Denote Cn as the sum of the counts for “0”s and blocks of “1”s for all x
of length n, denote such x as xn. Similarly we define Pn as the sum of the counts
for all x of length n with MSB “0” (let’s denote such x as x0

n); and Qn for the
sum of the counts for all x of length n with MSB “1” (denote such x as xn). It
is clearly that

Cn = Pn + Qn (42)

Note that there are 2n−1 many x with length n− 1, half of them with MSB “0”,
which contribute to Pn−1 and the other half with MSB “1”, which contribute
to Qn−1. Now we construct xn of length n from xn−1 of length n − 1 in the
following way:

– Append “0” with each xn−1, this “0” contribute to Cn once for each xn−1
and there are 2n−2 many such xn−1.
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– Append “1” with each xn−1, this “1” does not contribute to Cn

– Append “0” with each x0
n−1, this contributes 2n−2 to Cn

– Append “1” with each x0
n−1, this contributes 2n−2 to Cn

So overall we have Cn = Pn−1 + Pn−1 + 2n−2 + Qn−1 + 2n−2 + Qn−1 + 2n−2 =
3 · 2n−2 + 2Cn−1. Note C1 = 2, solving the recursion, we get Cn = 3n+1

4 · 2n.
Exclude the exceptional case, we have final result 3n

4 on average.

Lemma 5. Given random a, a′, x ∈ Z2n and k ∈ [0, n), α
def= 1[aL

k + xL
k ≥

2k], α′ def= 1[a′L
k + xL

k ≥ 2k], β def= 1[aR
k + xR

k + α ≥ 2n−k], β′ def= 1[a′R
k + xR

k + α ≥
2n−k] as defined in Lemma 1, then P (α = α′, β = β′) = 4

9 .

Proof. Consider α and α′ first, P (α = α′ = 1) = P (aL
k +xL

k ≥ 2k, a′L
k +xL

k ≥ 2k).
This is equal to P (xL

k ≥ (2k − min{aL
k , a′L

k })) what in turns can be rewritten as
P (aL

k ≥ a′L
k )P (xL

k ≥ 2k −a′L
k )+P (a′L

k > aL
k )P (xL

k ≥ 2k −aL
k ) = 1

2 · 1
3 + 1

2 · 1
3 = 1

3 .
Similarly we can prove P (α = α′ = 0) = 1

3 , so P (α = α′) = 2
3 . Note the

definitions of β and β′ contain α and α′, but α, α′ ∈ {0, 1}, which is generally
much smaller than 2n−k, so the effect of α to β is negligible. We can roughly say
P (β = β′) = 2

3 . So P (α = α′, β = β′) = P (α = α′)P (β = β′) = 4
9 .

Lemma 6. There exist an algorithm (Al1) for finding all the solutions for the
equation of the form (X ∧C)+A = (X +B)∧C. The complexity of Al1 depends
only on the constant C.

Lemma 7. There exist an algorithm (Al2) for finding all the solutions for the
equation of the form (X ∨C)+A = (X +B)∨C. The complexity of Al2 depends
only on the constant C.

Proof. The proofs for the two facts are very similar with some minor changes,
so we will prove only Lemma 6.

Let X = x31 . . . x1x0, A = a31 . . .a1a0, B = b31 . . . b1b0, C = c31 . . . c1c0. Then
for each i we have:

(xi ∧ ci) ⊕ ai ⊕ Fi = (xi ⊕ bi ⊕ ri) ∧ ci, (43)

where Fi = m(xi−1 ∧ ci−1, ai−1, Fi−1) is the carry at the (i − 1)th position of
(X ∧ C + A), ri = m(xi−1, bi−1, ri−1) is the carry at the (i − 1)th position of
X + B, and m(x, y, z) = xy ⊕ xz ⊕ yz.

Equation (43), simplifies to ai ⊕ Fi = 0 when ci = 0 and when ci = 1 we get
ai ⊕ Fi = bi ⊕ ri.

Let us assume that we have found the values for Fi and ri for some i. We find
the smallest j > 0 such that ci+j = 0. Then from the fact that ai ⊕ Fi = 0 and
the definition of Fi we get:

ai+j =Fi+j = m(xi+j−1, ai+j−1, Fi+j−1) =
=m(xi+j−1, ai+j−1, m(xi+j−2, ai+j−2, Fi+j−2)) = . . .

=m(xi+j−1, ai+j−1, m(xi+j−2, ai+j−2, m(. . . , m(xi, ai, Fi)) . . .))
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In the above equation, only xi, xi+1, . . .xi+j−1 are unknown. So we can try all
the possibilities, which are 2j , and find all the solutions. Let us denote by X̃ the
set of all solutions.

Now, let us find the smallest l > 0 such that ci+j+l = 1. Notice that we can
easily find Fi+j+1 if considering ci+j+F0 = 0 for F0 ∈ (0, l) and using ai⊕Fi = 0:

Fi+j+1 =m(0, ai+j , Fi+j) = m(0, ai+j , ai+j) = ai+j

Fi+j+2 =m(0, ai+j+1, Fi+j+1) = m(0, Fi+j+1, Fi+j+1) = m(0, ai+j , ai+j) = ai+j

. . .

Fi+j+l =m(0, ai+j+l−1, Fi+j+l−1) = ai+j

From the relationship ai ⊕ Fi = bi ⊕ ri and definition of ri we get:

ai+j+l ⊕ Fi+j+l ⊕ bi+j+l = ri+j+l = m(xi+j+l−1, bi+j+l−1, ri+j+l−1) =
=m(xi+j+l−1, bi+j+l−1, m(xi+j+l−2 , bi+j+l−2, ri+j+l−2)) = . . .

=m(xi+j+l−1, bi+j+l−1, m(. . . , m(xi, bi, ri) . . .))

In the above equation, only xi, xi+1, . . . , xi+j+l−1 are unknown. So we check all
the possibilities by taking (xi, xi+1, . . . , xi+j−1) from the set X̃ and the rest of
the variables take all the possible values. If the equation has a solution, then
this means we have fixed another Fi+j+l, ri+j+l, and we can continue searching
using the same algorithm.

The complexity of the algorithms is 2q, where q is size of the longest consec-
utive sequence of ones followed by consecutive zero sequence (in the case above
q = j + l) in the constant C. Taking into consideration the value of the constant
C1 used in the compression function of LAKE-256, we get that complexity of
our algorithm for this special case is 28. Yet, the average complexity can be de-
creased additionally if first the necessary conditions are checked. For example,
if we have two consecutive zeros in the constant C1 at positions i and i + 1 then
it has to hold ai+1 = ai. If we check for all zeros, then only with probability of
2−10 a constant A can pass this sieve. Therefore, the math expectancy of the
complexity for a random A is less than 21. Note that when ∨ function is used
instead of ∧, than 0 and 1 change place. Therefore, our algorithm has a com-
plexity of 26 when C0 is used as a constant. Yet, same as for ∧, early break-up
strategies significantly decrease these complexities for the case when solution
does not exist. Again, the average complexity is less than 21. ��
Lemma 8. There exist an algorithm (Al3) for finding a solution for the follow-
ing equation: ((X + A) ⊕ X) � 1 = (Y + B) ⊕ Y .

Proof. Instead of finding a solution w.r.t. X and Y we split the equation into a
system

(X + A) ⊕ X = −1, (Y + B) ⊕ Y = −1 . (44)

We can do this because the value of −1 is invariant of any rotation. We may
loose some solutions, but further we will prove that if such a solution exist then
our algorithm will find it with probability 2−2.
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We will analyze only left equation of (44); the second one can be solved anal-
ogously. Let X = x31 . . .x0, A = a31 . . . a0. Then for ith bit we get: (xi ⊕ ai ⊕
ci) ⊕ xi = 1, where ci is the carry at (i − 1) position of X + A, i.e. ci =
m(xi−1, ai−1, ci−1). Obviously, this equation can be rewritten as ai = ci ⊕1. For
the (i+1)th bit we get ai+1 = ci+1⊕1 = m(xi, ai, ci)⊕1 = m(xi, ai, ai⊕1)⊕1 =
xiai ⊕xi(ai ⊕1)⊕ai(ai ⊕1)⊕1 = xi ⊕1. So, we can easily find the value of xi for
each i. When i = 31, x31 can be arbitrary. For the case when i = 0, considering
that c0 = 0, from ai = ci ⊕ 1 we get a0 = 1. Therefore, if a0 = 1 then (44) is
solvable in constant time. The solutions are X = A � 1 + i232, i = 0, 1. Finally,
for the whole system, we have that solution exist if a0 = b0 = 1, which means
with probability 2−2. ��
Lemma 9. There exists an algorithm (Al4) for finding all the solutions for
equations of the type (X ⊕ C) + A = (X + B) ⊕ K.

Proof. We base our algorithm fully on the results of [14]. There, Paul and Preneel
show, in particular, how to solve equations of the form: (x+ y)⊕ ((x⊕α)+ (y ⊕
β)) = γ. Let us XOR to the both sides of the initial equation the expression
A ⊕ B ⊕ C and denote K̃ = K ⊕ A ⊕ B ⊕ C. Then, the equation gets the
following form: ((X ⊕C)+A)⊕A⊕B ⊕C = (X +B)⊕ K̃. For the (i+1)th bit
position, we have k̃i+1 = si+1 ⊕Fi+1, where si is the carry at the ith position of
(X ⊕C)+A, and Fi is the carry at ith position of X +B. From the definition of
si we get si+1 = (xi ⊕ ci)ai ⊕ (xi ⊕ ci)si ⊕ aisi = (xi ⊕ ci)ai ⊕ (xi ⊕ ci ⊕ ai)si =
(xi ⊕ ci)ai ⊕ (xi ⊕ ci ⊕ ai)(k̃i ⊕ Fi).

From the definition of Fi we get Fi+1 = xibi ⊕ xiFi ⊕ biFi. This means that
k̃i+1 can be computed from xi,ai,bi,ci,Fi, and k̃i. Further, we apply the algorithm
demonstrated in [14]. The only difference is that for each bit position we have
only two unknowns xi and Fi, whereas in [14] have three unknowns. Yet, this
difference is not crucial, and the algorithm can be applied.

Our experimental results (Monte-Carlo with 232 trials), show that the proba-
bility that a solution exists, when A, B, C and K are randomly chosen is around
2−12. ��
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Abstract. Improved interpolation attack and new integral attack are
proposed in this paper, and they can be applied to block ciphers using
round functions with low algebraic degree. In the new attacks, we can
determine not only the degree of the polynomial, but also coefficients of
some special terms. Thus instead of guessing the round keys one by one,
we can get the round keys by solving some algebraic equations over finite
field. The new methods are applied to PURE block cipher successfully.
The improved interpolation attacks can recover the first round key of
8-round PURE in less than a second; r-round PURE with r ≤ 21 is
breakable with about 3r−2 chosen plaintexts and the time complexity is
3r−2 encryptions; 22-round PURE is breakable with both data and time
complexities being about 3 × 320. The new integral attacks can break
PURE with rounds up to 21 with 232 encryptions and 22-round with
3 × 232 encryptions. This means that PURE with up to 22 rounds is
breakable on a personal computer.

Keywords: block cipher, Feistel cipher, interpolation attack, integral
attack.

1 Introduction

For some ciphers, the round function can be described either by a low degree
polynomial or by a quotient of two low degree polynomials over finite field with
characteristic 2. These ciphers are breakable by using the interpolation attack,
which was first introduced by Jakobsen and Knudsen at FSE’97[2]. This attack
was generalized by K. Aoki at SAC’99[3], which is called the linear sum at-
tack, and a method was presented that can efficiently evaluate the security of
byte-oriented ciphers against interpolation attack. In [4], the authors pointed
some mistakes in [2], and introduced a new method, root finding interpolation
attack, to efficiently find all the equivalent keys of the cipher, and this attack
can decrease the complexity of interpolation attack dramatically. To apply the
interpolation attack, a finite field should be constructed first, in [5], the effect
of the choice of the irreducible polynomial used to construct the finite field was
studied and an explicit relation between the Lagrange interpolation formula and
the Galois Field Fourier Transform was presented.

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 180–192, 2009.
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Interpolation attack can be applied to some ciphers which have provable se-
curities against differential and linear cryptanalysis[15,16]. For example, in [2], a
provable secure block cipher PURE was introduced, however, it can be broken by
using interpolation attack. Later, interpolation attack was successfully applied to
some simplified version of SNAKE[17,18]. However, the complexity of interpola-
tion attack on 6-round PURE is 236, and it will increase when the round of the
cipher becomes 7,8 and so on. In another word, it is not a real-world attack.

Integral cryptanalysis[7,8] considers the propagation of sums of (many) val-
ues. Thus it can be seen as a dual to differential cryptanalysis which considers
the propagation of sums of only two values. It was first proposed in [6] but under
a different name, that is square attack. A number of these ideas have been ex-
ploited, such as square attack[19,20], saturation attack[9], multiset attack[12,10],
and higher order differential attack[11,13]. Integrals have a number of interest-
ing features. They are especially well-suited to analysis of ciphers with primar-
ily bijective components. Moreover, they exploit the simultaneous relationship
between many encryptions, in contrast to differential cryptanalysis where one
considers only pairs of encryptions. Consequently, integrals apply to a number
of ciphers not vulnerable to differential and linear cryptanalysis. These features
have made integrals an increasingly popular tool in recent cryptanalysis work.

Integral attacks are well-known to be effective against byte-oriented block
ciphers. In [14], the authors outlined how to launch integral attacks against bit-
based block ciphers. The new type of integral attack traces the propagation of
the plaintext structure at bit-level by incorporating bit-pattern based notations.
The new integral attack is applied to Noekeon, Serpent and Present reduced up
to 5, 6 and 7 rounds, respectively.

In this paper, by using an algebraic method, an improved interpolation attack
and a new integral attack are proposed. The complexity of interpolation attack
can be decreased dramatically which leads to a real-world attack against PURE
with up to 22 rounds. There are two improvements in this paper. The first one
is an improvement of the original interpolation attack. Instead of guessing the
last round key one by one, we find some algebraic equations that can efficiently
find the round key. Another one is an extended integral cryptanalysis and it
is somewhat like the square attack. In a square attack, value of

∑
x f(x) is

computed. And in our attack, value of
∑

x xif(x) for some integer i is computed
and this value can be either a constant or strongly related with only a few round-
keys. Thus instead of guessing the last round key one by one, we can get the
round keys by solving some algebraic equation fC(K) = 0 over finite field, where
C is an arbitrarily chosen constant.

The paper is organized as follows: Feistel Structure and basic attacks are
presented in section 2. In section 3, we introduce the basic mathematical foun-
dations that can efficiently improve the attacks. And the improved interpolation
attack is presented in section 4. Then, in section 5, new integral cryptanalysis
is presented. Results of attack against PURE are given in section 6. Section 7
makes the conclusion of this paper.
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2 Feistel Structure and Basic Attacks

2.1 Feistel Structure

A Feistel network consists of r rounds, each of which is defined as follows. Denote
by (L, R) the 2n-bit input, set α0 = L and β0 = R, let (αi−1, βi−1) be the input
to the ith round, (αi, βi) and ki be the output and the round key of the ith
round, respectively. Then (αi, βi) = Round(αi−1, βi−1) is defined as:{

αi = βi−1,

βi = f(βi−1, ki) ⊕ αi−1,

where f is the round function and in this paper, we always assume that f(βi−1,
ki) = f(βi−1 ⊕ ki). See Fig.1. After iterating Round r times, the ciphertext
(CL, CR) is defined as (βr, αr).

f
ik

1 1i i

i i

Fig. 1. Feistel Structure

2.2 Interpolation Attack on Block Ciphers

Let F be a field. Given 2t elements x1, . . . , xt, y1, . . . , yt ∈ F , where the xis are
distinct. According to Lagrange interpolation formula,

f(x) =
t∑

i=1

yi

∏
1≤j≤t,j �=i

x − xj

xi − xj

is the only polynomial over F with degree at most t− 1 such that f(xi) = yi for
i = 1, . . . , t.

In an interpolation attack to an r-round Feistel cipher, we construct polyno-
mials by using pairs of plaintexts and ciphertexts. The attacker first computes
the degree of the output of (r − 1)-th round, say N . Then he chooses N + 2
plaintexts Pi and encrypts them, denote by Ci the corresponding ciphertexts.
By guessing the last round key k∗, the attacker partially decrypts Ci one round
back and gets Di. Now, he uses (Pi, Di) for 1 ≤ i ≤ N + 1 and applies the
Lagrange interpolation formula to get the only polynomial h(x) with degree at
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most N such that h(Pi) = Di(1 ≤ i ≤ N + 1). If h(PN+2) = DN+2, then put k∗

as a candidate of the right key, otherwise, k∗ is rejected. This process is repeated
until the k∗ is uniquely determined.

Assume k∗ is an n-bit word, then the complexity of the interpolation attack
is at least (N + 2)× 2n, since to get the ciphertexts, it needs N + 2 encryptions
and 2n partially decryptions for each ciphertext.

2.3 Integral Cryptanalysis

Let (G, +) be a finite group and S be a subgroup of G. An integral over S is
defined as the sum of all elements in S. That is,∫

S =
∑
v∈S

v,

where the summation is defined in terms of the group operation for G.
In an integral attack, one tries to predict the values in the integral after a

certain number of rounds. To be more exact, assume the input is x, and part
or all of the output is c(x), by computing

∑
x∈S c(x), where S always denotes

the finite field F2t for some integer t, one can distinguish the cipher from a
random permutation. For example, in square attack, one adopts

∑
x∈S c(x) = 0

to efficiently find the round keys of a given cipher. But, if
∑

x∈S c(x) = 0, and let
h(x) be a nonlinear transformation, can we predict the value of

∑
x∈S h(c(x))?

It seems that this is a difficult question if we cannot analyze h carefully.
Besides, most of the known integrals have the following form∫

(S, c) =
∑
x∈S

c(x),

where x denotes the plaintext and c is the map from plaintext to ciphertext.
However, in this paper, a new integral∫

(S, c, i) =
∑
x∈S

xic(x)

for some integer i is proposed. This definition will facilitate our discussions in
cryptanalysis.

3 Mathematical Foundation

3.1 Notations

The following notations will be used in this paper:

m : degree of the round function
r : rounds of the cipher

2n : size of the plaintext/ciphertext
r0 : �logm (2n − 1)� + 1, the largest integer ≤ logm (2n − 1) + 1

deg(f): degree of a polynomial f

To simplify the discussion, let the leading coefficient of f(x) be 1:
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f(x) = xm ⊕
m−1∑
i=0

aix
i ∈ F2n [x].

If m = 1 or m = 2, f(x) is an affine function, thus we always assume m ≥ 3.

3.2 Algebraic Analysis of Outputs of Feistel Cipher

By interpolation, an encryption algorithm can be seen as a polynomial function
with the plaintext/ciphertext as its input/output. Thus, properties of this poly-
nomial can be studied in order to get the information of the keys. If the round
function has a low algebraic degree, then, the degree and some coefficients of
special terms of the polynomial function between plaintexts and ciphertexts can
be computed exactly.

Proposition 1. Let P = (C, x) be the input to an r-round Feistel cipher, where
C ∈ F2n is a constant, (αt, βt) = (αt(x), βt(x)) be the output of the t-th round,
if 1 ≤ t ≤ r − 1 and mt−1 ≤ 2n − 1, then{

deg αt = mt−1,

deg βt = mt,

where m is the degree of the round function. Furthermore, the leading coefficients
of both αt(x) and βt(x) are 1.

Proof. We can prove this proposition by induction.
If the input to the cipher is of the form (α0, β0) = (C, x) where C is a constant,

then after the first round, (α1, β1) = (x, C ⊕ f(x ⊕ k1)). Therefore deg α1 = 1,
deg β1 = deg f = m.

Assume deg αt = mt−1, deg βt = mt, then

(αt+1, βt+1) = (βt, αt ⊕ f(βt ⊕ kt)),

thus deg αt+1 = deg βt = mt, deg βt+1 = deg βt × deg f = mt+1. �

According to Proposition 1, (αt, βt) can be written in the following form:

(αt, βt) =
(
xmt−1 ⊕ gt−1(x), xmt ⊕ gt(x)

)
, (1)

where gi(x) is a polynomial with degree < mi.
Proposition 1 determines the degree and leading coefficients of αt(x) and

βt(x). Now let’s compute the coefficient of the term xmt−1 in βt, or equivalently,
the leading coefficient of gt(x). This coefficient plays a very important role in the
improvement of our new attacks. By induction, the following Proposition holds:

Proposition 2. Assume gt(x) =
∑mt−1

i=0 vix
i ∈ F2n [x] is a polynomial defined

as in (1), m ≡ 1 mod 2 and t ≤ r0 − 2, then

vmt−1 = k1 ⊕ am−1.
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Proof. By computation, when t = 1:

xm ⊕ g1(x) = C ⊕ f(x ⊕ k1)
= (x ⊕ k1)m ⊕ am−1(x ⊕ k1)m−1 · · ·
= xm ⊕ (k1 ⊕ am−1)xm−1 ⊕ · · ·

Thus it is true for t = 1.
Assume vmt−1 = k1 ⊕ am−1, then

xmt+1 ⊕ gt+1(x) = αt(x) ⊕ f(βt ⊕ kt)

= xmt−1 ⊕ gt−1(x) ⊕ f(xmt ⊕ gt(x) ⊕ kt)

= (xmt ⊕ gt(x) ⊕ kt)m ⊕ am−1(xmt ⊕ gt ⊕ kt)m−1 ⊕ · · ·
= (xmt ⊕ vmt−1xmt−1 ⊕ · · · )m ⊕ · · ·
= xmt+1 ⊕ (m × vmt−1)xmt+1−1 ⊕ · · ·

Thus vmt+1−1 = m × vmt−1 = k1 ⊕ am−1, which ends our proof. �

4 Improved Interpolation Attack on Feistel Ciphers

4.1 Basic Properties of the Output of A Feistel Cipher

According to Proposition 1 and 2, we can determine not only the degree of the
polynomial, but also coefficients of some special terms.

Theorem 1. For an r-round 2n-bit Feistel cipher, let the algebraic degree of
the round function be an odd integer m, r0 = �logm (2n − 1)� + 1 and r ≤ r0. If
the input to the cipher is of the form P = (C, x) where C ∈ F2n is a constant,
then the right half of the ciphertext is of the form CR(x) = xmr−1 ⊕ (k1 ⊕
am−1)xmr−1−1⊕q(x) where q(x) ∈ F2n [x] is a polynomial with degree < mr−1−1.

Similar with Theorem 1, we can get the explicit expression of the output of an
(r0 + 1)-round Feistel cipher:

Theorem 2. Let r0 = �logm (2n − 1)� + 1 and r = r0 + 1, then for an r-
round 2n-bit Feistel cipher with the algebraic degree of round function being
an odd integer m, if the input to the cipher is of the form P = (x, C) where
C ∈ F2n is a constant, then the right half of the ciphertext is of the form CR(x) =
xmr−2⊕(f(k1⊕C)⊕k2⊕am−1)xmr−2−1⊕p(x) where p(x) ∈ F2n [x] is a polynomial
with degree < mr−2 − 1.

The above two Theorems have already been used in the original interpolation
attack on PURE , however, we use them in a different manner.

To improve the interpolation attack on Feistel ciphers with low algebraic de-
gree, we always assume that the degree of the round function is an odd integer,
that is m ≡ 1 mod 2.
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4.2 Improved Attack

In an interpolation attack, the attacker needs to guess the last round key, thus
the complexity of the attack is at least (N+2)×2n. In our improved interpolation
attack, we can compute the first round key k1 by only using the plaintexts and
corresponding ciphertexts.

Feistel cipher with r round can be broken by the following attack:

Algorithm 1: Attack on Block Ciphers with r ≤ r0(I)

Step 1: Encrypt P = (C, x) for mr−1 + 1 different x ∈ F2n where C ∈ F2n is
a constant. The corresponding ciphertexts are (CL(x), CR(x));

Step 2: Compute g(x) = axmr−1 ⊕ sxmr−1−1 ⊕ · · · ∈ F2n [x] by interpolation
such that g(x) = CR(x). According to Theorem 1, k1 = s ⊕ am−1.

Algorithm 1 needs mr−1 +1 encryptions, and to compute the interpolation poly-
nomial, it needs 2 × (mr−1 + 1) word-memories to store (Pi, Ci). It is infeasible
to mount a real-world attack when mr−1 is too large that a computer cannot
store so many plaintexts/ciphertexts.

Algorithm 2 finds the first and second round keys by solving some algebraic
equations over finite field instead of guessing the keys one by one.

Algorithm 2: Attack on Block Ciphers with r ≤ r0 + 1(I)

Step 1: Encrypt P (1) = (x, C1) for mr−2 +1 different x ∈ F2n where C1 ∈ F2n

is a constant. The corresponding ciphertexts are (C(1)
L (x), C(1)

R (x));
Step 2: Compute g(x) = axmr−2 ⊕ s1x

mr−2−1 ⊕ · · · ∈ F2n [x] by interpolation
such that g(x) = C

(1)
R (x); thus s1 = f(k1 ⊕ C1) ⊕ k2 ⊕ am−1;

Step 3: Choose another two constants C2 and C3, repeat Step 1 and Step 2,
then we get s2 = f(k1 ⊕ C2) ⊕ k2 ⊕ am−1, s3 = f(k1 ⊕ C3) ⊕ k2 ⊕ am−1;

Step 4: By finding the common roots of the following equations, we get k1
and k2. ⎧⎪⎨⎪⎩

s1 = f(k1 ⊕ C1) ⊕ k2 ⊕ am−1

s2 = f(k1 ⊕ C2) ⊕ k2 ⊕ am−1

s3 = f(k1 ⊕ C3) ⊕ k2 ⊕ am−1

(2)

To find the solution of (2), set hij(k1) = f(k1 ⊕Ci)⊕f(k1 ⊕Cj)⊕si ⊕sj for 1 ≤
i < j ≤ 3. Compute d(k1) = gcd(h12(k1), h13(k1), h23(k1)), the greatest common
divisor of h12(k1), h13(k1) and h23(k1), with great probability, d(k1) = k1 ⊕ K∗

where K∗ is a constant in F2n . Thus k1 = K∗, therefore, k2 = s1 ⊕ f(k1 ⊕C1)⊕
am−1.

Comparing with the original interpolation attack, Algorithms 1 and 2 do
not need to guess the key candidates. Thus the complexity of these attacks are
mr−1+1 for Algorithm 1 and 3×mr−2+3 for Algorithm 2, number of plaintexts
to be encrypted.
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5 New Integral Cryptanalysis of Block Ciphers

For 2n pairs (xi, yi) ∈ F2
2n where xis are distinct, to find the polynomial f(x)

of degree ≤ 2n − 1 such that yi = f(xi), we can use the Lagrange interpolation
formula. However, there is another way to compute f(x).

Theorem 3. [1] Let f(x) =
∑2n−1

i=0 aix
i ∈ F2n [x] be a polynomial with degree

at most 2n − 1, then

ai =

⎧⎪⎨⎪⎩
∑

x∈F2n
x2n−1−if(x) if i �= 0 mod 2n − 1,

f(0) if i = 0,∑
x∈F2n

f(x) if i = 2n − 1.

If mr−1 or mr−2 is too large that the computer can not store mr−1 + 1 or
mr−2 + 1 pairs of plaintext and ciphertext, we can use the following methods.
The two new methods below need almost no memories to compute the round
keys of a Feistel cipher. However, they need more plaintexts/ciphertexts.

Algorithm 3: Attack on Block Ciphers with r ≤ r0(II)

Step 1: Encrypt P (1) = (C, x) for all x ∈ F2n where C ∈ F2n is a constant.
The corresponding ciphertexts are (CL(x), CR(x));

Step 2: Compute s =
∑

x∈F2n
x2n−mr−1

CR(x), thus k1 = s ⊕ am−1.

Algorithm 4: Attack on Block Ciphers with r ≤ r0 + 1(II)

Step 1: Encrypt P (1) = (x, C1) for all x ∈ F2n where C1 ∈ F2n is a constant.
The corresponding ciphertexts are (C(1)

L (x), C(1)
R (x));

Step 2: Compute s1 =
∑

x∈F2n
x2n−mr−2

C
(1)
R (x);

Step 3: Choose another two constants C2, C3 ∈ F2n , repeat step 1 and step 2,
and compute s2 =

∑
x∈F2n

x2n−mr−2
C

(2)
R (x), s3 =

∑
x∈F2n

x2n−mr−2
C

(3)
R (x);

Step 4: Find the solution of⎧⎪⎨⎪⎩
s1 = f(k1 ⊕ C1) ⊕ k2 ⊕ am−1,

s2 = f(k1 ⊕ C2) ⊕ k2 ⊕ am−1,

s3 = f(k1 ⊕ C3) ⊕ k2 ⊕ am−1.

Comparing Algorithms 3 and 4 with the original interpolation attack, there are
some merits of the improved attacks:

(1) There is no need to store plaintexts and corresponding ciphertexts while
these data should be stored in the original interpolation attack[2] as well as
Algorithms 1 and 2;

(2) There is no need to guess the key candidates. Thus the complexity of these
attacks are 2n and 3 × 2n respectively, number of plaintexts to be encrypted.

When applying square attack, one adopts
∑

x y(x) = 0. However, in the above
attack, we analysis the cipher by computing

∑
x xiy(x) for some integer i. Thus

square attack can be seen as a special case of the new integral attack introduced
above.
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NOTE 1: In Algorithm 1, for (xi, yi) = (xi, CR(xi)), 1 ≤ i ≤ mr−1 + 1, by
using the Lagrange interpolation formula and computing the coefficient s of the
second highest term, we get:

s =
∑

1≤i≤mr−1+1

yi

∑
1≤j≤mr−1+1,j �=i

xj∏
1≤j≤mr−1+1,j �=i

(xi − xj)
. (3)

Instead of interpolation, k1 can be computed by (3), and this can be seen as
another extension of integrals.

6 Results of Attack on PURE
PURE is a Feistel cipher with 2n = 64 and f(x) = x3 ∈ F232 [x]. Though it has
a provable security against differential and linear cryptanalysis, it is breakable
by interpolation attack with up to 32 rounds in [2]. However, it is very difficult
to mount a real-world attack by the method presented in [2].

6.1 Improved Attacks on PURE
If r ≤ 21, there are two cases in consideration:

1) If 3r−1 is too large, it is impossible to store so many data, thus by
Theorem 1, the following equation holds:∑

x∈F2n

x232−3r−1
CR(x) = k1. (4)

So, k1 can be recovered with both data and time complexities being 232 re-
spectively by using Algorithm 3. We implemented 15-round attack by using
Algorithm 3, and the round key was recovered in less than 31 hours.

2) If 3r−1 is not too large, then the data an interpolation needs is not too large.
For this case, we use Algorithm 1 by interpolation, it only needs 3r−1 + 1 plain-
texts to recover k1, with some more memories to store plaintexts/ciphertexts.
We implemented 10-round attack by using Algorithm 1, and the round key was
recovered in less than 5 minutes.

If r = 22, PURE is breakable with 3× 232 encryptions by using Theorem 2, and
3 × 3r−2 + 3 by using Theorem 1:

Step 1. Encrypt P = (PL, PR
1 ) where PL ∈ F232 takes all values of F232

and PR
1 ∈ F232 is a constant;

Step 2. For the corresponding ciphertexts C = (CL, CR), compute
s1 =

∑
P L(PL)2

32−3r−2
CR;

Step 3. For PR
2 and PR

3 , do step 1 and step 2, then compute the
corresponding s2 and s3.

Step 4. Solve the following equations to get k1 and k2:
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s1 = (PR

1 ⊕ k1)3 ⊕ k2

s2 = (PR
2 ⊕ k1)3 ⊕ k2

s3 = (PR
3 ⊕ k1)3 ⊕ k2

(5)

and the solution is⎧⎪⎨⎪⎩k1 =
s1
(
PR

2 ⊕ PR
3
)⊕ s2

(
PR

3 ⊕ PR
1
)⊕ s3

(
PR

1 ⊕ PR
2
)(

PR
1 ⊕ PR

2

) (
PR

2 ⊕ PR
3

) (
PR

3 ⊕ PR
1

) ⊕ (PR
1 ⊕ PR

2 ⊕ PR
3 )

k2 = s1 ⊕ (PR
1 ⊕ k1)3

6.2 Experimental Results

Table 1 shows the results of the attack on reduced-round PURE , these results
are computed by using the algebraic software Magma.

Table 1. Experimental Results of Attack on Reduced-round PURE

Round Algorithm Data Memory Time CPU

8 1 37 + 1 37 + 1 3.5 seconds Pentium(R)4,3.06GHz
8 2 36 + 1 36 + 1 1 second Pentium(R)4,3.06GHz
10 1 38 + 1 38 + 1 4.5 minutes Pentium(R)4,3.06GHz
10 2 39 + 1 39 + 1 1.5 minutes Pentium(R)4,3.06GHz
15 3 232 neglectable 31 hours Pentium(R)4,3.06GHz
22 4 3 × 232 neglectable 148 hours Pentium(R)4,3.06GHz

7 Conclusion

Both interpolation and integral attacks are improved in this paper. If the cipher
can be described as a low degree polynomial, the new attacks can decrease the
complexity of the original interpolation attack dramatically, which sometimes
leads to a real-world attack. For example, 20-round PURE is not breakable on
a personal computer if one uses the original method introduced in [2], while our
method can do so. There are some interesting problems, for example, the square
attack can be seen as a special case of this attack, since

∑
x y is a special case

of
∑

x xiy. So can we use similar method to analyze AES? Another question
is, how to extend this attack to the case of rational polynomials, that is, if the
cipher can be described as g1(x)/g2(x), how to apply this attack?
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Abstract. In this paper we propose a new cryptanalytic method against
block ciphers, which combines both algebraic and statistical techniques.
More specifically, we show how to use algebraic relations arising from
differential characteristics to speed up and improve key-recovery differ-
ential attacks against block ciphers. To illustrate the new technique, we
apply algebraic techniques to mount differential attacks against round
reduced variants of Present-128.

1 Introduction

The two most established cryptanalytic methods against block ciphers are linear
cryptanalysis [22] and differential cryptanalysis [3]. These attacks are statistical
in nature, in which the attacker attempts to construct probabilistic patterns
through as many rounds of the cipher as possible, in order to distinguish the
cipher from a random permutation, and ultimately recover the key. Due to their
very nature, these attacks require a very large number of plaintext–ciphertext
pairs, ensuring that (usually) they rapidly become impractical. In fact, most
modern ciphers have been designed with these attacks in mind, and therefore do
not generally have their security affected by them.

A new development in block cipher cryptanalysis are the so-called algebraic
attacks [14,23,9]. In contrast to linear and differential cryptanalysis, algebraic
attacks attempt to exploit the algebraic structure of the cipher. In its most
common form, the attacker expresses the encryption transformation as a large
set of multivariate polynomial equations, and subsequently attempts to solve the
system to recover information about the encryption key.

The proposal of algebraic attacks against block ciphers has been the source
of much speculation; while a well-established technique against some stream
ciphers constructions [13], the viability of algebraic attacks against block ciphers
remains subject to debate. On one hand these attack techniques promise to allow
the cryptanalyst to recover secret key bits given only one or very few plaintext–
ciphertext pairs. On the other hand, the runtime of algebraic attacks against
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block ciphers is not well understood, and it is so far not clear whether algebraic
attacks can break any proposed block cipher faster than other techniques.

A promising approach however is to combine both statistical and algebraic
techniques in block cipher cryptanalysis. In fact, many proposed algebraic ap-
proaches already involve statistical components. For instance, the equation sys-
tems usually considered for the AES [9,23], use the inversion equation xy = 1 for
the S-Box. While this equation only holds with probability p = 255/256, it may
well offer some advantages when compared with the correct equation x254 = y
representing the S-Box (which due to its very high degree, is usually considered
impractical). Further recent examples include key bit guesses [11], the use of
SAT-solvers [1] and the Raddum-Semaev algorithm [24] for solving polynomial
equations. In this paper we propose a new attack technique that combines results
from algebraic and differential cryptanalysis.

The paper is structured as follows. First, we briefly describe differential and
algebraic cryptanalysis and give the basic idea of the attack in Section 2. We
then describe the block cipher Present in Section 3 and existing attacks against
a reduced round version of Present (Section 3.1). In Section 4 we describe
the application of our new attack technique against reduced round versions of
Present. We present a brief discussion of the attack and possible extensions in
Section 5.

2 Overview of the New Attack Technique

Since our approach combines differential and algebraic cryptanalysis, we briefly
describe both techniques below.

2.1 Differential Cryptanalysis

Differential cryptanalysis was formally introduced by Eli Biham and Adi Shamir
at Crypto’90 [4], and has since been successfully used to attack a wide range
of block ciphers. In its basic form, the attack can be used to distinguish a
n-bit block cipher from a random permutation. By considering the distribu-
tion of output differences for the non-linear components of the cipher (e.g.
the S-Box), the attacker may be able to construct differential characteristics
P

′ ⊕ P
′′

= ΔP → ΔCN = C
′
N ⊕ C

′′
N for a number of rounds N that are valid

with probability p. If p � 2−n, then by querying the cipher with a large number
of plaintext pairs with prescribed difference ΔP , the attacker may be able to
distinguish the cipher by counting the number of pairs with the output difference
predicted by the characteristic. A pair for which the characteristic holds is called
a right pair.

By modifying the attack, one can use it to recover key information. Instead of
characteristics for the full N -round cipher, the attacker considers characteristics
valid for r rounds only (r = N − R, with R > 0). If such characteristics exist
with non-negligible probability the attacker can guess some key bits of the last
rounds, partially decrypt the known ciphertexts, and verify if the result matches
the one predicted by the characteristic. Candidate (last round) keys are counted,
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and as random noise is expected for wrong key guesses, eventually a peak may
be observed in the candidate key counters, pointing to the correct round key1.

Note that due to its statistical nature, differential cryptanalysis requires a
very large number of plaintext–ciphertext pairs (for instance, approximately 247

chosen plaintext pairs are required to break DES [5]). Many extensions and
variants of differential cryptanalysis exist, such as the Boomerang attack [26]
and truncated and higher-order differentials [21]. The technique is however very
well understood, and most modern ciphers are designed to resist to differential
cryptanalysis. This is often achieved by carefully selecting the cipher’s non-linear
operations and diffusion layer to make sure that if such differential characteristics
exist, then r 	 N which ensures that backward key guessing is impractical. The
AES is a prime example of this approach [15].

2.2 Algebraic Cryptanalysis

Algebraic cryptanalysis against block ciphers is an attack technique that has re-
cently received much attention, particularly after it was proposed in [14] against
the AES and Serpent block ciphers. In its basic form, the attacker attempts to
express the cipher as a set of low degree (often quadratic) equations, and then
solve the resulting system. As these systems are usually very sparse, overde-
fined, and structured, it is conjectured that they may be solved much faster than
generic non-linear equation systems. Several algorithms have been used and/or
proposed to solve these systems including the Buchberger algorithm, XL and
variants [12,29,14] , the F4 and F5 algorithm [17,18], and the Raddum-Semaev
algorithm [24]. Another approach is to convert these equations to Boolean ex-
pressions in Conjunctive Normal Form (CNF) and use off-the-shelf SAT-solvers
[2]. However, these methods have had so far limited success in targeting modern
block ciphers, and no public modern block cipher, with practical relevance, has
been successfully attacked using algebraic cryptanalysis faster than with other
techniques.

2.3 Algebraic Techniques in Differential Cryptanalysis

A first idea in extending algebraic cryptanalysis is to use more plaintext–cipher-
text pairs to construct the equation system. Given two equation systems F ′

and F ′′ for two plaintext–ciphertext pairs (P ′, C′) and (P ′′, C′′) under the same
encryption key K, we can combine these equation systems to form a system F =
F ′∪F ′′. Note that while F ′ and F ′′ share the key and key schedule variables, they
do not share most of the state variables. Thus the cryptanalyst gathers almost
twice as many equations, involving however many new variables. Experimental
evidence indicates that this technique may often help in solving a system of
equations at least up to a certain number of rounds [19]. The second step is
to consider probabilistic relations that may arise from differential cryptanalysis,
giving rise to what we call Attack-A.
1 In some variants, as described in [5], no candidate key counters are required; see

Section 5 for a brief discussion of this attack.
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Attack-A. For the sake of simplicity, we assume the cipher is an Substitution-
Permutation-Network (SP-network), which iterates layers of non-linear trans-
formations (e.g. S-Box operations) and affine transformations. Now consider a
differential characteristic Δ = (δ0, δ1, . . . , δr) for a number of rounds, where
δi−1 → δi is a one-round difference arising from round i and valid with prob-
ability pi. If we assume statistical independence of one-round differences, the
characteristic Δ is valid with probability p =

∏
pi. Each one-round difference

gives rise to equations relating the input and output pairs for active S-Boxes.
Let X ′

i,j and X ′′
i,j denote the j-th bit of the input to the S-Box layer in round

i for the systems F ′ and F ′′, respectively. Similarly, let Y ′
i,j and Y ′′

i,j denote the
corresponding output bits. Then we have that the expressions

X ′
i,j + X ′′

i,j = ΔXi,j → ΔYi,j = Y ′
i,j + Y ′′

i,j ,

where ΔXi,j , ΔYi,j are known values predicted by the characteristic, are valid
with some non-negligible probability q for bits of active S-Boxes. Similarly, for
non-active S-Boxes (that are not involved in the characteristic Δ and therefore
have input/output difference zero), we have the relations

X ′
i,j + X ′′

i,j = 0 = Y ′
i,j + Y ′′

i,j

also valid with a non-negligible probability.
If we consider the equation system F = F ′∪F ′′, we can combine F and all such

linear relations arising from the characteristic Δ. This gives rise to an equation
system F which holds with probability p. If we attempt to solve such a system
for approximately 1/p pairs of plaintext–ciphertext, we expect at least one non-
empty solution, which should yield the encryption key. For a full algebraic key
recover we expect the system F to be easier to solve than the original system
F ′ (or F ′′), because many linear constrains were added without adding any new
variables. However, we do not know a priori how difficult it will be to solve the
system approximately 1/p times. This system F may be used however to recover
some key information, leading to an attack we call Attack-B.

Attack-B. Now, assume that we have an SP-network, a differential character-
istic Δ = (δ0, δ1, . . . , δr) valid for r rounds with probability p, and (P ′, P ′′) a
right pair for Δ (so that δ0 = P ′ ⊕ P ′′ and δr holds for the output of round r).
For simplicity, let us assume that only one S-Box is active in round 1, with input
X ′

1,j and X ′′
1,j (restricted to this S-Box) for the plaintext P ′ and P ′′ respectively,

and that there is a key addition immediately before the S-Box operation, that is

S(P ′
j ⊕ K0,j) = S(X ′

1,j) = Y ′
1,j and S(P ′′

j ⊕ K0,j) = S(X ′′
1,j) = Y ′′

1,j .

The S-Box operation S can be described by a (vectorial) Boolean function, ex-
pressing each bit of the output Y ′

1,j as a polynomial function (over F2) on the
input bits of X ′

1,j and K0,j . If (P ′, P ′′) is a right pair, then the polynomial equa-
tions arising from the relation ΔY1,j = Y ′

1,j ⊕Y ′′
1,j = S(P ′

j ⊕K0,j)⊕S(P ′′
j ⊕K0,j)

give us a very simple equation system to solve, with only the key variables
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K0,j as unknowns (and which do not vanish identically because we are consid-
ering nonzero differences, cf. Section 5). Consequently, if we had an effective
distinguisher to determine whether ΔY1,j holds, we could learn some bits of
information about the round keys involved in the first round active S-Boxes.

Experimentally, we found that, for some ciphers and up to a number of rounds,
Attack-A can be used as such a distinguisher. More specifically, we noticed that
finding a contradiction (i.e. the Gröbner basis equal to {1}) was much faster than
computing the full solution of the system if the system was consistent (that is,
when we have a right pair). Thus, rather than fully solving the systems to even-
tually recover the secret key as suggested in Attack-A, the Attack-B proceeds by
measuring the time t it maximally takes to find that the system is inconsistent2,
and assume we have a right pair with good probability if this time t elapsed
without a contradiction. More specifically, we expect ΔY1,j to hold with good
probability. One needs to be able to experimentally estimate the time t, but for
some ciphers this appears to be an efficient form of attack.

An alternative form of Attack-B is to recover key bits from the last round.
Assume that the time t passed for a pair (P ′,P ′′), i.e. that we probably found a
right pair. Now, if we guess and fix some subkey bits in the last rounds, we can
check whether the time t still passes without a contradiction. If this happens, we
assume that we guessed correctly. However, for this approach to work we need
to guess enough subkey bits to detect a contradiction quickly. An obvious choice
is to guess all subkey bits involved in the last round, which effectively removes
one round from the system.

Attack-C. Experimental evidence with Present (cf. Section 4) indicates that
Attack-B in fact only relies on the differential δ0 → δr rather than the charac-
teristic Δ when finding contradictions in the systems. The runtimes for finding
contradictions for N = 17 and differential characteristic of length r = 14 did not
differ significantly from the runtimes for the same task with N = 4 and r = 1
(cf. Appendix C). This indicates that the computational difficulty is mostly de-
termined by the difference R = N − r, the number of “free” rounds. We thus
define a new attack (Attack-C ) where we remove the equations for rounds ≤ r.

This significantly reduces the number of equations and variables. After these
equations are removed we are left with R rounds for each plaintext–ciphertext
pair to consider; these are related by the output difference predicted by the
differential. As a result, the algebraic computation is essentially equivalent to
solving a related cipher of 2R − 1 rounds (from C′ to C′′ via the predicted
difference δr) using an algebraic meet-in-the-middle attack [9]. This “cipher”
has a symmetric key schedule and only 2R − 1 rounds rather than 2R since the
S-Box applications after the difference δr are directly connected and lack a key
addition and diffusion layer application between them. Thus we can consider
these two S-Box applications as one S-Box application of S-Boxes Si defined
by the known difference δr: Si(xi,...,i+s) = S(S−1(xi,...,i+s) + δr,(i,...,i+s)) for
i ∈ {0, s, . . . , n} and s the size of the S-Box.
2 Other features of the calculation — like the size of the intermediate matrices created

by F4 — may also be used instead of the time t.
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Again, we attempt to solve the system and wait for a fixed time t to find
a contradiction in the system. If no contradiction is found, we assume that
the differential δ0 → δr holds with good probability. Note that we cannot be
certain about the output difference of the first round active S-Boxes. However,
the attack can be adapted such that we can still recover key bits, for instance
by considering multiple suggested right pairs. A second option is to attempt to
solve the resulting smaller system, to recover the encryption key. Alternatively,
we can execute the guess-and-verify step described above.

To study the viability of these attacks, we describe experiments with reduced-
round versions of the block cipher Present.

3 The Block Cipher PRESENT

Present [6] was proposed by Bogdanov et al. at CHES 2007 as an ultra-
lightweight block cipher, enabling a very compact implementation in hardware,
and therefore particularly suitable for RFIDs and similar devices. There are two
variants of Present: one with 80-bit keys and one with a 128-bit keys, de-
noted as Present-80 and Present-128 respectively. In our experiments, we
consider reduced round variants of both ciphers denoted as Present-Ks-N ,
where Ks ∈ {80, 128} represents the key size in bits and 1 ≤ N ≤ 31 represents
the number of rounds.

Present is an SP-network with a blocksize of 64 bits and both versions have
31 rounds. Each round of the cipher has three layers of operations: keyAddLayer,
sBoxLayer and pLayer. The operation keyAddLayer is a simple subkey addi-
tion to the current state, while the sBoxLayer operation consists of 16 parallel
applications of a 4-bit S-Box. The operation pLayer is a permutation of wires.

In both versions, these three operations are repeated N = 31 times. On the
final round, an extra subkey addition is performed. The subkeys are derived from
the user-provided key in the key schedule, which by design is also quite simple
and efficient involving a cyclic right shift, one ore two 4-bit S-Box applications
(depending on the key size) and the addition of a round constant. We note that
the difference between the 80-bit and 128-bit variants is only the key schedule.
In particular, both variants have the same number of rounds (i.e. N = 31). The
cipher designers explicitly describe in [6] the threat model considered when de-
signing the cipher, and acknowledge that the security margin may be somewhat
tight. Although they do not recommend immediate deployment of the cipher
(especially the 128-bit version), they strongly encourage the analysis of both
versions.

3.1 Differential Cryptanalysis of 16 Rounds of PRESENT

In the original proposal [6], the designers of Present show that both linear
and differential cryptanalysis are infeasible against the cipher. In [27,28] M.
Wang provides 24 explicit differential characteristics for 14 rounds. These hold
with probability 2−62 and are within the theoretical bounds provided by the
Present designers. Wang’s attack is reported to require 264 memory accesses
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to cryptanalyse 16 rounds of Present-80. We use his characteristics (see Ap-
pendix B for an example of one of these characteristics) to mount our attack.
Furthermore, we also make use of the filter function presented in [27], which we
briefly describe below.

Consider for example the differential characteristic provided in Appendix B.
It ends with the difference δ = 1001 = 9 as input for the two active S-Boxes of
round 15. According to the difference distribution table of the Present S-Box,
the possible output differences are 2, 4, 6, 8, C and E. This means that the least
significant bit is always zero and the weight of the output difference (with the
two active S-Box) is at most 6. It then follows from pLayer that at most six S-
Boxes are active in round 16. Thus we can discard any pair for which the outputs
of round 16 have non-zero difference in the positions arising from the output of
S-Boxes other than the active ones. There are ten inactive 4-bit S-Boxes, and
we expect a pair to pass this test with probability 2−40.

Furthermore, it also follows from pLayer that the active S-Boxes in round 16
(which are at most six, as described above) will have input difference 1 and thus
all possible output differences are 3, 7, 9, D (and 0, in case the S-Box is inactive).
Thus we can discard any pair not satisfying these output differences for these S-
Boxes. We expect a pair to pass this test with probability 16

5
−6 = 2−10.07. Overall

we expect pairs to path both tests with probability 2−50.07. We expect to be
able to construct a similar filter function for all the 24 differential characteristics
presented in [28].

4 Experimental Results

To mount the attacks, we generate systems of equations F as in Section 2 for pairs
of encryptions with prescribed difference as described in Section 3.1, by adding
linear equations for the differentials predicted by the 14-round characteristic
given in the Appendix. For Present this is equivalent to adding 128 linear
equations per round of the form ΔXi,j = X ′

i,j + X ′′
i,j and ΔYi,j = Y ′

i,j + Y ′′
i,j

where ΔXi,j and ΔYi,j are the values predicted by the characteristic (these are
zero for non-active S-Boxes).

To perform the algebraic part of the attack, we use either Gröbner basis al-
gorithms or a SAT-solver: the Singular 3-0-4-4 [20] routine groebner with the
monomial odering degrevlex, the PolyBoRi 0.5rc6 [8] routine groebner basis
with the option faugere=True and the monomial ordering dp asc, or Min-
iSat 2.0 beta [16]. We note the maximal time t these routines take to detect
a contradiction in our experiments for a given differential length of r, and as-
sume we have a pair satisfying the characteristic (or differential, in Attack-C )
with good probability if this time t elapsed without a contradiction. We note
that this assumption might be too optimistic in some cases. While the attack
seems to perform well enough for a small number of rounds we cannot be cer-
tain that the lack of a contradiction after the time t indeed indicates a right
pair. However, with t large enough (and enough computational resources) we
are guaranteed to always identify the right pair.
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We performed experiments for Attack-B and Attack-C. Runtimes for Attack-B
and Attack-C are given in Appendix C and D respectively. We note that Attack-
C requires about 1GB of RAM to be carried out. The times were obtained
on a 1.8Ghz Opteron with 64GB RAM. The attack was implemented in the
mathematics software Sage [25].

If a characteristic Δ is valid with probability p, then after approximately 1/p
attempts we expect to find a right pair and can thus set up our smaller systems
for each first round active S-Box. These equations are given in Appendix A.
After substitution of P ′

i , P
′′
i , ΔYi and elimination of the variables X ′

i, X
′′
i in the

system in Appendix A, we get an equation system with four equations in the
four key variables. If we compute the reduced Gröbner basis for this system we
recover two relations of the form Ki + Kj(+1) = 0 for two key bits Ki,Kj per
S-Box, i.e. we recover 2 bits of information per first round active S-Box3.

In order to study the behaviour of the attack, we ran simulations with small
numbers of rounds to verify that the attack indeed behaves as expected. For
instance, when using a 3R Attack-C against Present-80-6 and Present-80-7
we found right pairs with the expected number of trials. However, we saw false
positives, i.e. the attack suggested wrong information. Yet, a majority vote on a
small number of runs (e.g., 3) always recovered the correct information. We are
of course aware that it is in general difficult to reason from small scale examples
to bigger instances.

4.1 PRESENT-80-16

To compare with the results of [27], we can apply Attack-C against reduced round
versions of Present-80. Using this approach and under the assumption above we
expect to learn 4 bits of information about the key for Present-80-16 in about
262−50.07 · 6 seconds to perform the consistency checks using about 262 chosen
plaintext–ciphertext pairs, where 6 seconds represents the highest runtime to find
a contradiction we have encountered in our experiments when using PolyBoRi.
Even if there are instances that take longer to check, we assume that this is a
safe margin because the majority should be shorter runtimes. This time gives a
complexity of about 262 ciphertext difference checks and about 211.93·6·1.8·109 ≈
246 CPU cycles to find a right pair on the given 1.8 Ghz Opteron CPU. We
assume that a single encryption costs at least two CPU cycles per round – one
for the S-Box lookup and one for the key addition – such that a brute force search
would require approximately 16 · 2 · 280 = 285 CPU cycles and two plaintext–
ciphertext pairs due to the small blocksize.

In [28], 24 different 14-round differentials were presented, involving the 0th,
1st, 2nd, 12th, 13th and 14th S-Boxes in the first round, each having either
7 or 15 as plaintext difference restricted to one active S-Box. From these we
expect to recover 18 bits of key information by repeating the attack for those S-
Box configurations. We cannot recover 24 bits because we learn some redundant
information. However, we can use this redundancy to verify the information
3 This is as expected, since the probability of the differential used in the first round

S-Box is 2−2; see Lemma 1.
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recovered so far. We can then guess the remaining 80 − 18 = 62 bits, and the
complete attack has a complexity of about 6 · 262 filter function applications,
about 6·246 CPU cycles for the consistency checks and 262

Present applications
to guess the remaining key bits4. (Alternatively, we may add the 18 learned linear
key bit equations to any equation system for the related cipher and attempt to
solve this system.) The attack in [27] on the other hand requires 264 memory
accesses. While this is a different metric — memory access — from the one we
have to use in this case — CPU cycles — we can see that our approach has
roughly the same time complexity, since the 262 filter function applications cost
at least 262 memory accesses. However, our attack seems to have a slightly better
data complexity because overall six right pairs are sufficient. When applying
the attack against Present-128-16, we obtain a similar complexity. We note
however that for Present-Ks-16, we can also make use of backward key guessing
to recover more key bits. Because we assume to have distinguished a right pair
already we expect the signal to noise ratio to be quite high and thus expect
relatively few wrong suggestions for candidate keys.

4.2 PRESENT-128-17

Note that we cannot use the filter function for 17 rounds, thus the attack
against Present-80-17 gives worse performance when compared to exhaustive
key search. However, it may still be applied against Present-128-17. Indeed,
we expect to learn 4 bits of information for Present-128-17 in about 262 · 18
seconds using about 262 chosen plaintext–ciphertext pairs. This time is equiva-
lent to about 262 · 18 · 1.8 · 109 ≈ 297 CPU cycles. If this approach is repeated
6 times for the different active S-Boxes in the Present differentials, we expect
to learn 18 bits of information about the key. We can then guess the remaining
128 − 18 = 110 bits and thus have a complexity in the order of 2110 for the
attack.

A better strategy is as follows. We identify one right pair using 262 · 18 · 1.8 ·
109 ≈ 297 CPU cycles. Then, we guess 64 subkey bits of the last round and fix the
appropriate variables in the equation system for the consistency check. Finally,
we attempt to solve this system again, which is equivalent to the algebraic part of
the 2R attack. We repeat this guess-and-verify step until the right configuration
is found, i.e. the system is not inconsistent. This strategy has a complexity of
297 CPU cycles for identifying the right pair and 264 · 6 · 1.8 · 109 ≈ 298 CPU
cycles to recover 64 subkey bits. Finally, we can either guess the remaining bits
or repeat the guess-and-verify step for 1R to recover another 64 subkey bits.

4.3 PRESENT-128-18

We can also attack Present-128-18 using Attack-C as follows. First note that
the limiting factor for the attack on Present-128-18 is that we run out of
4 Note that the attack can be improved by managing the plaintext–ciphertext pairs

more intelligently and by using the fact that we can abort a Present trial encryption
if it does not match the known differential.
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plaintext–ciphertext pairs due to the small blocksize. On the other hand, we
have not yet reached the time complexity of 2128 for 128-bit keysizes. One way
to make use of this fact is to again consider the input difference for round 15
and iterate over all possible output differences. As discussed in Section 3.1, we
have six possible output differences and two active S-Boxes in round 15, which
result in 36 possible output differences in total. We expect to learn 4 bits of
information about the key for Present-128-18 in about 36 · 262 · 18 seconds
using about 262 chosen plaintext–ciphertext pairs. This time is equivalent to
about 36 ·262 ·18 ·1.8 ·109 ≈ 2102 CPU cycles. Again, we can iterate this process
six times to learn 18 bits of information about the key and guess the remaining
information with a complexity of approximately 2110

Present applications.
However, this strategy might lead to false positives for each guessed output

difference. To address this we need to run the brute-force attack for the remaining
110 bits for each possible candidate. Thus the overall complexity of the attack
is in the order of 36 · 2110

Present applications. The final brute-force run will
require for 2-3 plaintext-ciphertext pairs due to the large key size compared
to the blocksize. This hardly affects the time complexity since only candidates
passing the first plaintext-ciphertext pair need to be tested against a second and
potentially third pair and these candidates are few compared to 2110.

The best approach appears to be the guess-and-verify step from the 3R attack,
which results in an overall complexity of about 36·1.8·109(262 ·18+264 ·6) ≈ 2103

CPU cycles.
Note that we were unable to reliably detect contradictions directly if R =

N − r ≥ 4 within 24 hours (compared to 18 seconds for R = 3).

4.4 PRESENT-128-19

Similarly, we can use the filter function to mount an attack against Present-
128-19 by iterating our attack 264−50.07 = 213.93 times (instead of 36) for all
possible output differences of round 16. The overall complexity of this attack is
about 213.97 · 1.8 · 109 · (18 · 262 + 6 · 264) ≈ 2113 CPU cycles.

5 Discussion of the Attack

While the attack has many similarities with conventional differential cryptanaly-
sis, such as the requirement of a high probability differential Δ valid for r rounds
and the use of filter functions to reduce the workload, there are however some
noteworthy differences. First, Attack-C requires fewer plaintext–ciphertext pairs
for a given differential characteristic to learn information about the key than con-
ventional differential cryptanalysis, because the attacker does not need to wait
for a peak in the partial key counter. Instead one right pair is sufficient. Second,
one flavour of the attack recovers more key bits if many S-Boxes are active in
the first round. This follows from its reliance on those S-Boxes to recover key
information. Also note that while a high probability differential characteristic
is required, the attack recovers more bits per S-Box if the differences for the
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active S-Box in the first round are of low probability. This is a consequence of
the simple Lemma below:

Lemma 1. Given a differential Δ with a first round active S-Box with a differ-
ence that is true with probability 2−b, then Attack-B and Attack-C can recover
b bits of information about the key from this S-Box.

Finally, key-recovery differential cryptanalysis is usually considered infeasible if
the differential Δ is valid for r rounds, and r is much less than the full number of
rounds N , since backward key guessing for N−r rounds may become impractical.
In that case the Attack-C proposed here could possibly still allow the successful
cryptanalysis of the cipher. However, this depends on the algebraic structure of
the cipher, as it may be the case that the time required for the consistency check
is such that the overall complexity remains below the one required for exhaustive
key search.

We note that Attack-C shares many properties with the differential crypt-
analysis of the full 16-round DES [5]. Both attacks are capable of detecting a
right pair without maintaining a candidate key counter array. Also, both attacks
use active S-Boxes of the outer rounds to recover bits of information about the
key once such a right pair is found. In fact, one could argue that Attack-C is a
generalised algebraic representation of the technique presented in [5]. From this
technique Attack-C inherits some interesting properties: first, the attack can be
carried out fully in parallel because no data structures such as a candidate key
array need to be shared between the nodes. Also, we allow the encryption keys
to change during the data collection phase because exactly one right pair is suf-
ficient to learn some key information. However, if we try to learn further key
bits by repeating the attack with other characteristics we require the encryption
key not to change. We note however that while the attack in [5] seems to be
very specific to the target cipher DES, Attack-C can in principle be applied to
any block cipher. Another way of looking at Attack-C is to realise that it is in
fact is a quite expensive but thorough filter function: we invest more work in the
management of the outer rounds using algebraic techniques.

In the particular case of Present-80-N , our attack seems to offer only
marginal advantage when compared with the differential attack presented in [27]:
it should require slightly less data to distinguish a right pair and similar overall
complexity. On the other hand, for Present-128-N this attack seems to perform
better than the one in [27]. As in this case the limiting factor is the data and not
the time complexity of the attack, i.e. we run out of plaintext–ciphertext pairs
before running out of computation time, the attack has more flexibility.

The use of Gröbner bases techniques to find contradictions in propositional sys-
tems is a well known idea [10]. In the context of cryptanalysis, it is also a natural
idea to try to detect contradictions to attack a cipher. However, in probabilistic
approaches used in algebraic attacks, usually key bits are guessed. This is an intu-
itive idea because polynomial systems tend to be easier to solve the more overde-
fined they are and because the whole system essentially depends on the key. Thus
guessing key bits is a natural choice. However this simplification seems to bring
few benefits to the attacker, and more sophisticated probabilistic approaches seem
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so far to have been ignored. The method proposed in this paper can thus highlight
the advantages of combining conventional (statistical) cryptanalysis and algebraic
cryptanalysis. By considering differential cryptanalysis we showed how to con-
struct an equation system for a structurally weaker and shorter related “cipher”
which can then be studied independently. To attack this “cipher” algebraic at-
tacks seem to be the natural choice since very few ”plaintext–ciphertext” pairs are
available but the “cipher” has few rounds (i.e. 2R − 1). However, other
techniques might also be considered.

Future research might also investigate the use of other well established (statis-
tical) cryptanalysis techniques in combination with algebraic cryptanalysis such
as linear cryptanalysis (defining a version of Attack-A in this case is straight-
forward), higher order and truncated differentials, the Boomerang attack or
impossible differentials.

We note that this attack may also offer a high degree of flexibility for im-
provements. For example, the development of more efficient algorithms for solv-
ing systems of equations (or good algebraic representation of ciphers that may
result in more efficient solving) would obviously improve the attacks proposed.
For instance, by switching from Singular to PolyBoRi for Attack-B, we were
able to make the consistency check up to 60 times faster5. As an illustration of
the forementioned flexibility, if for instance an attacker could make use of an
optimised method to find contradictions in t 	 2128−62 = 266 CPU cycles for
Present-128-20, this would allow the successful cryptanalysis of a version of
Present with 6 more rounds than the best known differential, which is con-
sidered “a situation without precedent” by the cipher designers [6]. This task is
equivalent to mount a meet-in-the-middle attack against an 11 round Present-
like cipher with a symmetric key schedule. Unfortunately with the available
computer resources, we are not able to verify whether this is currently feasible.

Finally, as our results depend on experimental data and the set of data we
evaluated is rather small due to the time consuming nature of our experiments,
we make our claims verifiable by providing the source code of the attack online
http://bitbucket.org/malb/algebraic_attacks/src/tip/present.py.

6 Conclusion

We propose a new cryptanalytic technique combining differential cryptanalysis
and algebraic techniques. We show that in some circumstances this technique
can be effectively used to attack block ciphers, and in general may offer some
advantages when compared to differential cryptanalysis. As an illustration, we
applied it against reduced versions of Present-80 and Present-128. While this
paper has no implications for the security of either Present-80 or Present-128,
it was shown that the proposed techniques can improve upon existing differential
cryptanalytic methods using the same difference characteristics. Also, we pointed
out promising research directions for the field of algebraic attacks.

5 We did not see any further speed improvement by using e.g. Magma 2.14 [7].

http://bitbucket.org/malb/algebraic_attacks/src/tip/present.py
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tions with Boolean polynomials. In: Electronic Proceedings of MEGA 2007 (2007),
http://www.ricam.oeaw.ac.at/mega2007/electronic/26.pdf

9. Cid, C., Murphy, S., Robshaw, M.: Algebraic Aspects of the Advanced Encryption
Standard. Springer, Heidelberg (2006)

10. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to
find proofs of unsatisfiability. In: Proceedings of the 28th ACM Symposium on
Theory of Computing, pp. 174–183 (1996),
http://www.cse.yorku.ca/~jeff/research/proof_systems/grobner.ps

11. Courtois, N.T., Bard, G.V.: Algebraic Cryptanalysis of the Data Encryption Stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007); IACR ePrint Archive, Report 2006/402,
http://eprint.iacr.org/2006/402

6 Purchased under National Science Foundation Grant No. 0555776 and National Sci-
ence Foundation Grant No. DMS-0821725.

http://eprint.iacr.org/2007/024
http://www.crypto.rub.de/imperia/md/content/texte/publications/
conferences/present_ches2007.pdf
http://www.ricam.oeaw.ac.at/mega2007/electronic/26.pdf
http://www.cse.yorku.ca/~jeff/research/proof_systems/grobner.ps
http://eprint.iacr.org/2006/402


206 M. Albrecht and C. Cid

12. Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

13. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

14. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. IACR ePrint Archive, Report 2002/044 (2002),
http://eprint.iacr.org/2002/044

15. Daemen, J., Rijmen, V.: The design of Rijndael: AES - the Advanced Encryption
Standard. Springer, Heidelberg (2002)
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A Small Key Bit Recovery System
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where ΔYi are the known difference values predicted by the characteristic.

B 14-Round Differential Characteristic for PRESENT

Rounds Differences Pr Rounds Difference Pr
I x2 = 7,x14 = 7 1

R1 S x2 = 1,x14 = 1 2−4 R8 S x8 = 9,x10 = 9 2−4

R1 P x0 = 4,x3 = 4 1 R8 P x2 = 5,x14 = 5 1
R2 S x0 = 5,x3 = 5 2−4 R9 S x2 = 1,x14 = 1 2−6

R2 P x0 = 9,x8 = 9 1 R9 P x0 = 4,x3 = 4 1
R3 S x0 = 4,x8 = 4 2−4 R10 S x0 = 5,x3 = 5 2−4

R3 P x8 = 1,x10 = 1 1 R10 P x0 = 9,x8 = 9 1
R4 S x8 = 9,x10 = 9 2−4 R11 S x0 = 4, x8 = 4 2−4

R4 P x2 = 5,x14 = 5 1 R11 P x8 = 1, x10 = 4 1
R5 S x2 = 1,x14 = 1 2−6 R12 S x8 = 9, x10 = 9 2−4

R5 P x0 = 4,x3 = 4 1 R12 P x2 = 5, x14 = 5 1
R6 S x0 = 5,x3 = 5 2−4 R13 S x2 = 1, x14 = 1 2−6

R6 P x0 = 9,x8 = 9 1 R13 P x0 = 4, x3 = 4 1
R7 S x0 = 4,x8 = 4 2−4 R14 S x0 = 5, x3 = 5 2−4

R7 P x8 = 1,x10 = 1 1 R14 P x0 = 9, x8 = 9 1
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C Times in Seconds for Attack-B

N Ks r p #trials Singular #trials PolyBoRi

4 80 4 2−16 20 11.92 − 12.16 50 0.72 − 0.81
4 80 3 2−12 10 106.55 − 118.15 50 6.18 − 7.10
4 80 2 2−8 10 119.24 − 128.49 50 5.94 − 13.30
4 80 1 2−4 10 137.84 − 144.37 50 11.83 − 33.47
8 80 5 2−22 0 N/A 50 18.45 − 63.21
10 80 8 2−34 0 N/A 20 21.73 − 38.96
10 80 7 2−30 0 N/A 10 39.27 − 241.17
10 80 6 2−26 0 N/A 20 56.30− > 4 hours
16 80 14 2−62 0 N/A 20 43.42 − 64.11
16 128 14 2−62 0 N/A 20 45.59 − 65.03
16 80 13 2−58 0 N/A 20 80.35 − 262.73
16 128 13 2−58 0 N/A 20 81.06 − 320.53
16 80 12 2−52 0 N/A 5 > 4 hours
17 80 14 2−62 10 12, 317.49 − 13, 201.99 20 55.51 − 221.77
17 128 14 2−62 10 12, 031.97 − 13, 631.52 20 94.19 − 172.46
17 80 13 2−58 0 N/A 5 > 4 hours
17 128 13 2−58 0 N/A 5 > 4 hours

D Times in Seconds for Attack-C

N Ks r p #trials Singular #trials PolyBoRi #trials MiniSat2

4 80 4 2−16 10 0.07 − 0.09 50 0.05 − 0.06 0 N/A
4 80 3 2−12 10 6.69 − 6.79 50 0.88 − 1.00 50 0.14 − 0.18
4 80 2 2−8 10 28.68 − 29.04 50 2.16 − 5.07 50 0.32 − 0.82
4 80 1 2−4 10 70.95 − 76.08 50 8.10 − 18.30 50 1.21 - 286.40
16 80 14 2−62 10 123.82 − 132.47 50 2.38 − 5.99 0 N/A
16 128 14 2−62 0 N/A 50 2.38 − 5.15 0 N/A
16 80 13 2−58 10 301.70 − 319.90 50 8.69 − 19.36 0 N/A
16 128 13 2−58 0 N/A 50 9.58 − 18.64 0 N/A
16 80 12 2−52 0 N/A 5 > 4 hours 0 N/A
17 80 14 2−62 10 318.53 − 341.84 50 9.03 − 16.93 50 0.70 − 58.96
17 128 14 2−62 0 N/A 50 8.36 − 17.53 50 0.52 − 8.87
17 80 13 2−58 0 N/A 5 > 4 hours 5 > 4 hours
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Abstract. Matsui’s one-dimensional Alg. 2 can be used for recovering
bits of the last round key of a block cipher. In this paper a truly mul-
tidimensional extension of Alg. 2 based on established statistical theory
is presented. Two possible methods, an optimal method based on the
log-likelihood ratio and a χ2-based goodness-of-fit test are compared in
theory and by practical experiments on reduced round Serpent. The the-
ory of advantage by Selçuk is generalised in multiple dimensions and the
advantages and data, time and memory complexities for both methods
are derived.

1 Introduction

Linear cryptanalysis was introduced by Matsui in [1]. The method uses a one-
dimensio- nal linear relation for recovering information about the secret key
of a block cipher. Matsui presented two algorithms, Algorithm 1 (Alg. 1) and
Algorithm 2 (Alg. 2). While Alg.1 extracts one bit of information about the
secret key, Alg. 2 ranks several candidates for a part of the last round key of
a block cipher according to a test statistic such that the right key should be
ranked highest. Using the recovered last round key, it is then possible to extract
one bit of information about the other round keys.

Since then researchers have been puzzled by the question how the linear crypt-
analysis method could be enhanced by making use of multiple linear approxi-
mations simultaneously. In [2] Kaliski and Robshaw used several linear relations
involving the same key bits in an attempt to reduce the data complexities of
Matsui’s algorithms. Multiple linear relations were also used by Biryukov, et al.,
[3] for extracting several bits of information about the key in an Alg. 1 type
attack. This basic attack was also extended to an Alg. 2 type attack. However,
both [2] and [3] depend on theoretical assumptions about the statistical prop-
erties of the one-dimensional linear relations that may not hold in the general
case as was shown in [4].

The statistical linear distinguisher presented by Baignères, et al., in [5] does
not suffer from this limitation. It has also another advantage over the previous
approaches [2] and [3]: it is based on a well established statistical theory of log-
likelihood ratio, LLR, see also [6]. In [7] it was further shown how to distinguish
one known probability distribution from a set of other distributions.

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 209–227, 2009.
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The purpose of this paper is to present two new multidimensional extensions
of Matsui’s Alg. 2 including an effective ranking method for the key candidates
based on Selçuk’s concept of advantage [8]. First a straightforward solution for
Alg. 2 based on goodness-of-fit test using χ2-statistic will be presented. We
will then discuss a χ2-based version of Alg. 1 [9] and show that the method
of Biryukov, et al., is related to a combination of the χ2-based Alg. 1 and
Alg. 2. We will then present a method based on LLR which actually combines
Alg. 1 and Alg. 2 and outperforms the χ2-based method in theory and practice.
In the practical experiments the data, memory and time complexity for achieved
advantage is determined and compared with the values given by the theoretical
statistical models developed in this paper.

The structure of this paper is as follows: In Sect. 2 the basic statistical theory
and notation is given. The advantage and the generalisation of Selçuk’s theory is
presented in Sect. 3. The multidimensional Alg. 2 is described in Sect. 4 and the
different methods based on the two test statistics are described in Sect. 5 and
Sect. 6. The time, memory and data complexities of both methods are examined
in Sect. 7. The experimental results are given in Sect. 8. Finally, Sect. 9 draws
conclusions.

2 Boolean Function and Probability Distribution

We will denote the space of n-dimensional binary vectors by Vn. A function
f : Vn → V1 is called a Boolean function. A function f : Vn → Vm with f =
(f1, . . . , fm), where fi are Boolean functions is called a vector Boolean function
of dimension m. A linear Boolean function from Vn to Vm is represented by an
m×n binary matrix U . The m rows of U are denoted by u1, . . . , um, where each
ui is a binary vector of length n.

The correlation between a Boolean function and zero is

c(f) = c(f, 0) = 2−n (#{ξ ∈ Vn | f(ξ) = 0} − #{ξ ∈ Vn | f(ξ) �= 0})
and it is also called the correlation of f.

We say that the vector p = (p0, . . . , pM ) is a probability distribution (p.d.)
of random variable (r.v.) X and denote X ∼ p, if Pr(X = η) = pη, for all
η = 0, . . . , M . We will denote the uniform p.d. by θ. Let f : Vn → Vm and
X ∼ θ. We call the p.d. p of the r.v. Y = f(X) the p.d. of f .

Let us study some general properties of p.d.’s. Let p = (p0, . . . , pM ) and
q = (q0, . . . , qM ) be some p.d.’s of r.v.’s taking on values in a set with M + 1
elements. The Kullback-Leibler distance between p and q is defined as follows:

Definition 1. The relative entropy or Kullback-Leibler distance between p and
q is

D(p || q) =
M∑

η=0

pη log
pη

qη
, (1)

with the conventions 0 log 0/b = 0, b �= 0 and b log b/0 = ∞.
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The following property usually holds for p.d.’s related to any real ciphers, so it
will be frequently used throughout this work:

Property 1. We say that distribution p is close to q if |pη − qη| 	 qη, for all
η = 0, 1, . . . , M .

If p is close to q then we can approximate the Kullback-Leibler-distance between
p and q by its Taylor series. We call the first term of the series the capacity of
p and q and it is defined as follows:

Definition 2. The capacity between two p.d.’s p and q is defined by

C(p, q) =
M∑

η=0

(pη − qη)2

qη
. (2)

If q is the uniform distribution, then C(p, q) will be denoted by C(p) and called
the capacity of p.

The normed normal distribution with mean 0 and variance 1 is denoted by
N (0, 1). Its probability density function (p.d.f.) is

φ(x) =
1√
2π

e−x2/2 (3)

and the cumulative distribution function (c.d.f.) is

Φ(x) =
∫ x

−∞
φ(t) dt . (4)

The normal distribution with mean μ and variance σ2 is denoted by N (μ, σ2)
and its p.d.f. and c.d.f. are φμ,σ2 and Φμ,σ2 , respectively.

The χ2
M -distribution with M degrees of freedom has mean M and variance

2M . The non-central χ2
M (λ)-distribution with M degrees of freedom has mean

λ + M and variance 2(M + 2λ). If M > 30, we may approximate χ2
M (λ) ∼

N (λ + M, 2(M + 2λ)) [10].
Let X1, . . . , Xn be a sequence independent and identically distributed (i.i.d.)

random variables where either Xi ∼ p, for all i = 1, . . . , N (corresponding to null
hypothesis H0) or Xi ∼ q �= p, for all i = 1, . . . , N (corresponding to alternate
hypothesis H1) and let x̂1, . . . , x̂N be the empirical data. The hypothesis testing
problem is then to determine whether to accept or reject H0. The Neyman-
Pearson lemma [11] states that an optimal statistic for solving this problem, or
distinguishing between p and q, is the log-likelihood ratio defined by

LLR(q̂, p, q) =
M∑

η=0

Nq̂η log
pη

qη
, (5)

where q̂ = (q̂0, . . . , q̂M ) is the empirical p.d. calculated from the data x̂1, . . . , x̂N

by

q̂η =
1
N

#{i = 1, . . . , N | x̂i = η}.



212 M. Hermelin, J.Y. Cho, and K. Nyberg

The distinguisher accepts H0, that is, outputs p (respectively rejects H0 or out-
puts q) if LLR(q̂, p, q) ≥ γ (< γ) where γ is the threshold that depends on the
level and the power of the test. If the power and the level of the test are equal
(as is often the case) then γ = 0.

The proof for the following result can be found in [11], see also [5].

Proposition 1. The LLR-statistic calculated from i.i.d. empirical data x̂i, i =
1, . . . , N using (5) is asymptotically normal with mean and variance Nμ0 and
Nσ2

0 (Nμ1 and Nσ2
1 , resp.) if the data is drawn from p (q, resp.). The means

and variances are given by

μ0 = D(p || q) μ1 = −D(q || p)

σ2
0 =

M∑
η=0

pη log2 pη

qη
− μ2

0 σ2
1 =

M∑
η=0

qη log2 pη

qη
− μ2

1.
(6)

Moreover, if p is close to q, we have

μ0 ≈ −μ1 ≈ 1
2
C(p, q) σ2

0 ≈ σ2
1 ≈ C(p, q). (7)

3 Advantage in Key Ranking

In a key recovery attack one is given a set of key candidates, and the problem is to
determine which key is the right one. Usually the keys are searched from the set
Vn of all 2n strings of n bits. The algorithm consists of four phases, the counting
phase, analysis phase, sorting phase and searching phase [12]. In the counting
phase one collects data from the cipher, for example, plaintext-ciphertext pairs.
In the analysis phase a real-valued statistic T is used in calculating a rank (or
“mark” [12]) T (κ) for all candidates κ ∈ Vn.

In the sorting phase the candidates κ are sorted, i.e., ranked, according to
the statistic T . Optimally, the right key, denoted by κ0, should be at the top of
the list. If this is not the case, then one must also run through a search phase,
testing the keys in the list until κ0 is found. The goal of this paper is to find a
statistic T (κ) that is easy to compute and that is also reliable and efficient in
finding the right key.

The time complexity of the search phase, given amount N of data, was mea-
sured using a special purpose quantity “gain” in [3]. A similar but more generally
applicable concept of “advantage” was introduced by Selçuk in [8], where it was
defined as follows:

Definition 3. We say that a key recovery attack for an n-bit key achieves an
advantage of a bits over exhaustive search, if the correct key is ranked among the
top r = 2n−a out of all 2n key candidates.

Statistical tests for key recovery attacks are based on the Wrong-key Hypothesis
[13]. We state it as follows:
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Assumption 1 (Wrong-key Hypothesis). There are two p.d.’s q and q′, q �=
q′ such that for the right key κ0, the data is drawn from q and for a wrong key
κ �= κ0 the data is drawn from q′ �= q.

A real-valued statistic T is computed from q and q′, where one of these p.d.’s
may be unknown, and the purpose of a statistic T is to distinguish between q
and q′. We use DR to denote the p.d. such that T (κ0) ∼ DR. We will assume
DR = N (μR, σ2

R), with parameters μR and σR, as this will be the case with
all statistics in this paper. Then μR and σR are determined with the help of
linear cryptanalysis. We denote by DW the p.d. known based on the Wrong-key
Hypothesis such that T (κ) ∼ DW for all κ �= κ0. The p.d.f. and c.d.f. of DW are
denoted by fW and FW , respectively.

Ranking the keys κ according to T means rearranging the 2n r.v.’s T (κ), κ ∈
Vn, in decreasing order of magnitude. Writing the ordered r.v.’s as T0 ≥ T1 ≥
· · · ≥ TM , we call Ti the ith order statistic. Let us fix the advantage a such that
the right key should be among the r = 2n−a highest ranking keys. Hence, the
right key should be at least as high as the rth wrong key corresponding to Tr.
By Theorem 1. in [8] we get that the r.v. Tr is distributed as

Tr ∼ N (μa, σ2
a), where

μa = F−1
W (1 − 2−a) and σa ≈ 2−(n+a)/2

fW (μa)
.

(8)

If we now define the success probability PS of having κ0 among the r highest
ranking keys we have

PS = Pr(T (κ0) − Tr > 0) = Φ

(
μR − μa√
σ2

R + σ2
a

)
, (9)

since T (κ0) − Tr ∼ N (μR − μa, σ2
R + σ2

a).
As the data complexity N depends on the parameters μR − μa and σ2

R + σ2
a,

we can solve N from (9) as a function of a and vice versa. Hence, (9) describes
the trade-off between the data complexity N and the complexity of the search
phase.

In a block cipher, the unknown key is divided into a number of round keys
not necessarily disjoint or independent. In [3], the keys of the last round (or first
and last round) were called the outer keys and the rest of the round keys were
called inner keys. The unknown key κ may consist of outer keys, the parity bits
of inner keys or both. Traditionally, in Matsui’s Alg. 1 key parity bit(s) of the
inner keys are searched, whereas in Alg. 2. the main goal is to determine parts
of the outer keys.

4 Algorithm 2

4.1 Multidimensional Linear Approximation

Let us study a block cipher with t rounds. Let x ∈ Vn be the plaintext, y ∈ Vn

the ciphertext, K ∈ Vν the fixed round key data (the inner key) used in all but
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the last round and z = f−1
t (y, k), k ∈ Vl, the input to the last round function

ft, obtained from y by decrypting with the last round key data k (outer key).
Let m ≤ n be an integer. Using m-dimensional linear cryptanalysis one can
determine an approximation p of the p.d. of the Boolean function

x �→ Ux + Wz + V K, (10)

which defines an m-dimensional linear approximation, where U and W are m×n
matrices and V is an m×ν matrix. A way of obtaining p from the one-dimensional
correlations was presented in [4]. The linear mapping V divides the inner key
space to 2m equivalence classes g = V K ∈ Vm. Let the right last round key be
denoted by k0. Denote M = 2m − 1 from now on.

In the counting phase we draw N data pairs (x̂i, ŷi), i = 1, . . . , N. In the
analysis phase, for each last round key k, we first calculate ẑk

i = f−1
t (ŷi, k), i =

1, . . . , N. Then, for each k, we calculate the empirical p.d. q̂k = (q̂k
0 , . . . , q̂k

M ),
where

q̂k
η =

1
N

#{i = 1, . . . , N |Ux̂i + Wẑk
i = η}. (11)

If we use the wrong key k �= k0 to decrypt ŷi, i = 1, . . . , N , it means we es-
sentially encrypt over one more round and the resulting data will be more uni-
formly distributed. This heuristics is behind the original Wrong-key Randomi-
sation Hypothesis [14], which in our case means that the data Ux̂i + Wẑk

i , i =
1, . . . , N, k �= k0 is drawn i.i.d. from the uniform distribution.

When decrypting with the correct key k0 the data Ux̂i + Wẑk0
i + g, i =

1, . . . , N , where g is an unknown inner key class, is drawn i.i.d. from p. This
means that the data Ux̂i + Wẑk0

i , i = 1, . . . , N is drawn i.i.d. from a fixed
permutation of p denoted by pg. These permuted p.d.’s have the property that
pg

η⊕h = pg⊕h
η , for all g, η, h ∈ Vm, and consequently

D(pg || θ) = D(p || θ) and C(p) = C(pg) for all g ∈ Vm. (12)

Moreover, D(p || ph) = D(pg || ph⊕g), for all h, g ∈ Vm, from which it follows that

min
g′ �=g

D(pg || pg′
) = min

h �=0
D(p || ph), (13)

which is a constant value for all g ∈ Vm. We will denote this value by Dmin(p)
and assume in the sequel that Dmin(p) �= 0 without restriction: We can unite
the key classes for which the Kullback-Leibler distance is zero. Then we just
have m′ < 2m key classes whose Kullback-Leibler distance from each other is
non-zero. The corresponding minimum capacity minh �=0 C(p, ph) is denoted by
Cmin(p).

4.2 Key Ranking in One-Dimensional Alg. 2

Key ranking and advantage in the one-dimensional case, m = 1, of Alg. 2 was
studied in [8]. We will present it here briefly for completeness. Let c > 0 be
the correlation of (10) (the calculations are similar if c < 0) and let ĉk be the
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empirical correlation calculated from the data. The statistic used in ranking
the keys is then s(k) = |ĉk|. The r.v. ĉk0 is binomially distributed with mean
μR = c and variance σ2

R = (1 − c2)/N ≈ 1/N . The wrong key r.v.’s ĉk, k �= k0,
are binomially distributed with mean μW = 0 (following Assumption 1) and
variance σ2

W = σ2
R. Since N is large, we can approximate s(k0) ∼ N (μR, σ2

R) and
s(k) ∼ FN (μW , σ2

W ), where FN is the folded normal distribution, see Appendix
A in [8]. Now we can proceed as in [8]. We get that, with given success probability
PS and advantage a, the data complexity is

N =
(Φ−1(PS) + Φ−1(1 − 2−a−1))2

c2 . (14)

4.3 Different Scenarios in Multiple Dimensions

When considering generalisation of Alg.2 to the case, where multiple linear ap-
proximations are used, different approaches are possible. In a previous work by
Biryukov, et al., [3], a number of selected one-dimensional linear approximations
with high bias are taken into account simultaneously under the assumption that
they are statistically independent. As we will show later in Sect. 5.3, the statis-
tic used in [3] is essentially a goodness-of-fit test based on least squares and
searches simultaneously the key parts k0 and g0 which give the best fit with the
theoretically estimated correlations.

The approaches taken in [5] for linear distinguishing and later in [4] for Alg.
1 do not need assumptions about independence of the linear approximations as
they are based on the p.d. of the multidimensional linear approximation (10).
When using the multidimensional p.d., basically two different standard statistical
methods can be used:

– Goodness-of-fit (usually based on χ2-statistic) and
– Distinguishing of an unknown p.d. from a given set of p.d.’s (usually based

on LLR-statistic)

The goodness-of-fit approach is a straightforward generalisation of one-
dimensional Alg. 2. It can be used in searching for κ = k. It measures whether
the data is drawn from the uniform (wrong) distribution, or not, by measuring
the deviation from the uniform distribution. It ranks highest the key candidate
whose empirical distribution is farthest away from the uniform distribution. The
statistic does not depend on the inner key class g. Information about p.d. p is
required only for measuring the strength of the test. We will study this method
in Sect. 5.1. After the right round key k is found, one can use the data derived
in Alg. 2 in any form of Alg. 1 for finding the inner key class g. In this manner,
the χ2-approach allows separating between Alg. 1 and Alg. 2.

The LLR-method uses the information about the p.d. related to the inner key
class also in Alg. 2. In this sense, it is similar to the method of [3], where the
Alg. 1 and Alg. 2 were combined together for finding both the outer and inner
round keys. As we noted in Sect. 2, the LLR-statistic is the optimal distinguisher
between two known p.d.’s. If we knew the right inner key class g0, we could simply
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use the empirical p.d.’s q̂k for distinguishing pg0 and the uniform distribution
and then choose the k for which this distinguisher is strongest [5]. In practice,
the correct inner key class g0 is unknown when running Alg. 2 for finding the
last round key.

Our approach is the following. In [7] it was described how one can use LLR
to distinguish one known p.d. from a set of p.d.’s. We will use this distinguisher
for distinguishing θ from the given set pg, g ∈ Vm. In the setting of Alg. 2, we
can expect that for the right k0, it should be possible to clearly conclude that
the data (x̂i, ŷi), i = 1, . . . , N, yields data (x̂i, ẑ

k0
i ), i = 1, . . . , N, which follows

a p.d. pg, for some g ∈ Vm, rather than the uniform distribution. On the other
hand, for the wrong k �= k0, the data follows the uniform distribution, rather
than any pg, g ∈ Vm.

To distinguish k0 from the wrong key candidates we determine, for each round
key candidate k, the inner key class g, for which the LLR-statistic is the largest
with the given data. The right key k0 is expected to have g0 such that the LLR-
statistic with this pair (k0, g0) is larger than for any other pair (k, g) �= (k0, g0).
In this manner, we also recover g0 in addition to k0. The LLR-method is studied
in Sect. 6.

5 The χ2-Method

This method separates the Alg. 1. and Alg. 2 such that the latter does not need
any information of p. Both methods are interpreted as goodness-of-fit problems,
for which the natural choice of ranking statistic is χ2. We will show how to find
the last round key k with Alg. 2 first.

5.1 Algorithm 2 with χ2

Given empirical p.d. q̂k, we can calculate the χ2-statistic from the data as

S(k) = 2mN

M∑
η=0

(q̂k
η − 2−m)2, (15)

where M = 2m − 1 is the number of degrees of freedom. The statistic can
be interpreted as the l2-distance between the empirical p.d. and the uniform
distribution. By Assumption 1, the right round key should produce data that is
farthest away from the uniform distribution and we will choose the round key k
for which the statistic (15) is largest. Obviously, if m = 1, we get the statistic
(ĉk)2.

According to [15] the r.v. S(k0) is distributed approximately as

S(k0) ∼ χ2
M (NC(pg0 )) = χ2

M (NC(p)), (16)

because of the symmetry property (12). Hence, we may approximate the distribu-
tion by a normal distribution with μR = M +NC(p) and σ2

R = 2(M +2NC(p)).
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The parameters do not depend on g0 or k0. For the wrong keys k �= k0, we obtain
by [15] that

S(k) ∼ χ2
M (0) = χ2

M , (17)

so that μW = M and σ2
W = 2M . The mean and variance in (8) are μa =

σW b + M =
√

2Mb + M and σ2
a = 2−(l+a)/2σ2

W /φ(b) 	 σ2
0 . Now we can solve

N from (9) and get that the data complexity is proportional to

Nχ2 =
β(M, b, PS)

C(p)
, b = Φ−1(1 − 2−a), (18)

where β(M, b, PS) is a parameter that depends on M, b and PS . Assuming large
b, that is, large advantage a and large PS , we can approximate β by

β = 2
√

Mb + 4Φ−2(2PS − 1). (19)

Note that the normal approximation of the wrong-key distribution is valid only
when m > 5, that is, when the approximation of χ2-distribution by a normal
distribution is valid. It is not possible to perform the theoretical calculations for
small m as the χ2-distribution does not have a simple asymptotic form in that
case and we cannot determine fW and FW in (8). Since our χ2-statistic reduces
to the square of s(k) that was used by Selçuk, the theoretical distributions differ
from our calculations and we get a slightly different formula for the advantage.
Despite this difference, the methods are equivalent for m = 1.

Keeping the capacity constant, it seems that the data complexity increases
exponentially as 2m/2 as the dimension m of the linear approximation increases
and is sufficiently large. Hence, in order to strengthen the attack, the capacity
should increase faster than 2m/2 when the m is increased. This is a very strong
condition and it suggests that in applications, only approximations with small m
should be used with χ2-attack. The experimental results for different m presented
in Sect. 8 as well as the theoretical curves depicted in Fig. 5(a) suggest that
increasing m in the χ2-method does not necessarily mean improved performance
for Alg. 2.

Since 2−a = Φ(−b) ≈ 1/
√

2πe−b2/2, we can solve a from (18) as a function of
N and we have proved the following theorem that can be used in describing the
relationship between the data complexity and the search phase:

Theorem 1. Suppose the cipher satisfies Assumption 1 where q′ = θ and the
p.d.’s pg, g ∈ Vm and θ are close to each other. Then the advantage of the
χ2-method using statistic (15) is given by

aχ2 =
(NC(p) − 4ϕ)2

4M
, ϕ = Φ−2(2PS − 1), M = 2m − 1, (20)

where PS (> 0.5) is the probability of success, N is the amount of data used in
the attack and C(p) and m (≥ 5) are the capacity and the dimension of the linear
approximation (10), respectively.
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While (20) and (18) depend on the theoretical distribution p, the actual χ2-
statistic (15) is independent of p. Hence, we do not need to know p accurately
to realise the attack, we only need to find an approximation (10) that deviates
as much as possible from the uniform distribution. On the other hand, if we use
time and effort for computing an approximation of the theoretical p.d. and if we
may assume that the approximation is accurate, we would also like to exploit
this knowledge for finding the right inner key class with Alg. 1. As noted in [9],
there are several ways to realising a multidimensional Alg. 1. Next we discuss
Alg. 1 as a χ2-based goodness-of-fit problem.

5.2 Algorithm 1 with χ2

Suppose that we have obtained an empirical distribution q̂ of data that can be
used for determining the inner key class g0 using Alg. 1. For example, we have
successfully run Alg. 2 and found the correct last round key k0 and set q̂ = q̂k0 .

One approach is to consider Alg. 1 as a goodness-of-fit problem, where one
determines, for each g, whether the empirical p.d. q̂ follows pg or not. The χ2-
based ranking statistic is then

SAlg1(g) = N

M∑
η=0

(q̂k0
η − pg

η)2

pg
η

, (21)

which should be small for g0 and large for the wrong inner key classes g �= g0.
In [9] it is shown that the data complexity of finding g0 with given success
probability PS is

NAlg 1,χ2 =
4m − 4γS + 2

√
2M(m − γS)

Cmin(p)
, (22)

where γS = ln(
√

2π ln P−1
S ).

5.3 Combined Method and Discussion

The sums of squares of correlations used in [3] are closely related to the sums
of squares (15) and (21). Indeed, we could define a combined χ2-statistic B by
considering the sum of the statistics from (15) and (21) and setting

B(k, g) =
∑
k′ �=k

S(k) + SAlg 1(k, g), (23)

where SAlg 1(k, g) is the statistic (21) calculated from the empirical p.d. q̂k, k ∈
Vl. If we approximate the denominators in (21) by 2−m and scaling by 2mN we
obtain from B(k, g) the statistic

B′(k, g) =
∑
k′ �=k

||q̂k′ − θ||22 + ||q̂k − pg||22. (24)

This statistic is closely related to the one used in [3].
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∑
k′ �=k

||ĉk′ ||22 + ||ĉk − cg||22. (25)

Indeed, if in (25) all correlation vectors ĉk and cg contain correlations from
all linear approximations then (25) becomes the same as 2mB′(k, g) as can be
seen using Parseval’s theorem. Initially, in the theoretical derivation of (25) only
linearly and statistically independent approximations were included in the cor-
relation vectors. However, in Sect. 3.4 of [3] it was proposed to take into account
all linear approximations with strong correlations when forming the statistic
(25) in practice. In practical experiments by Collard, et al. [16] this heuristic
enhancement was demonstrated to improve the results. In this paper, we have
shown how to remove the assumption about independence of the linear approx-
imations and that all linear approximations that have sufficient contribution to
the capacity (cf. discussion in Sect. 5.1) can and should be included.

Other possibilities for combining Alg. 1 and Alg. 2 based on χ2 or its variants
are also possible, with different weights on the terms of the sum in (24), for
instance. However, the mathematically more straightforward way is to use the
pure χ2-method defined by (15) and (21), as its statistical behaviour is well-
known. An even more efficient method can be developed based on LLR as will
be shown next.

6 The LLR-Method

This method is also based on the same heuristic as the Wrong-key Hypothesis:
For k �= k0, the distribution of the data should look uniform and for k0 it should
look like pg0 , for some g0. Hence, for each k, the problem is to distinguish the
uniform distribution from the discrete and known set pg, g ∈ Vm. Let us use
the notation L(k, g) = LLR(q̂k, pg, θ). We propose to use the following ranking
statistic

L(k) = max
g∈Vm

L(k, g). (26)

Now k0 should be the key for which this maximum over g’s is the largest and
ideally, the maximum should be achieved when g = g0. While the symmetry
property (12) allows one to develop statistical theory without knowing g0, in
practice one must search through Vl for k0 and Vm for g0 even if we are only
interested in determining k0.

We assume that the p.d.’s pg and θ are all close to each other. Using Theorem
1 and property (12) we can state Assumption 1 as follows: For the right pair k0
and g0

L(k0, g0) ∼ N (NμR, Nσ2
R), where μR =

1
2
C(p) and σ2

R = C(p), (27)

and for k �= k0 and any g ∈ Vm

L(k, g) ∼ N (NμW , Nσ2
W ), where μW = −1

2
C(p) and σ2

W = C(p). (28)
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Hence, μR, σ2
R, μW and σ2

W do not depend on g ∈ Vm. For fixed k �= k0, the
r.v.’s L(k, g) for k �= k0 are identically normally distributed with mean μW and
variance σ2

W . We will assume that they are statistically independent to sim-
plify calculations. In particular, the assumption about statistical independence
of L(k, g) for different g does not mean that the linear approximations should
be statistically independent. The statistic itself does not depend on this as-
sumption1. Moreover, the theoretical results obtained this way are a little more
pessimistic that those obtained by empirical tests, as shown in Sect. 8. Hence,
these calculations give a theoretical model that can be used in describing how
the method behaves especially compared to other methods. Assuming that for
each k �= k0, the r.v.’s L(k, g)’s are independent, we obtain that the c.d.f. of
their maximum is given by [17]

FW (x) = ΦNμW ,Nσ2
W

(x)M+1 (29)

and p.d.f. is
fw(x) = (M + 1)ΦNμW ,Nσ2

W
(x)MφμW ,σ2

W
(x). (30)

Let us fix the advantage a such that r = 2l−a. The mean μa of the rth wrong
key statistic Lr can now be calculated from (8) to be

μa = NμW +
√

NσW b = −1/2NC(p) +
√

NC(p)b,

b = Φ−1( M+1
√

1 − 2−a),
(31)

and the variance is

σ2
a =

2−l−aσ2
W

(M + 1)2(1 − 2−a)2(1−1/(M+1))φ2(b)
	 σ2

0 . (32)

Let
P1 = Pr(L(k0, g0) > max

g �=g0
L(k0, g)) (33)

be the the probability that given k0, we choose g0, i.e., the probability of success
of Alg. 1. Let

P2 = Pr(L(k0) > Lr) (34)

be the probability that we rank k0, paired with any g ∈ Vm, among the r highest
ranking keys. Finally, let

P12 = Pr(L(k0) > Lr |L(k0, g0) > max
g �=g0

L(k0, g)) (35)

be the probability that we rank k0 among the r highest ranking keys provided
that we pair g0 with k0. Then

P2 = P12P1 + Pr(L(k0) > Lr |L(k0) = LLR(k0, p
g, θ), g �= g0)(1 − P1)

≥ P12P1.
(36)

1 See for example [17] for calculating the c.d.f. of the maximum of dependent and
identically distributed r.v.’s, when M ≥ 100. The theoretical predictions calculated
that way are slightly more pessimistic than the ones obtained in Theorem 2.
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If we pair k0 with g �= g0 then L(k0) ≥ L(k0, g0) for a fixed empirical p.d. q̂k0 , so
that k0 gets ranked higher than by using the correct g0. Hence, assuming that k0
gets paired with g0 only decreases P2 so the corresponding estimate of the data
complexity gets larger. Let N1, N2 and N12 be the data complexities needed to
achieve success probabilities P1, P2 and P12, respectively.

We can calculate P12 using (27), (28) and (9) to obtain

P12 = Φ(
μR − μW − σwb

σR
) = Φ(

√
N12C(p) − b), b = Φ−1( M+1

√
1 − 2−a). (37)

Hence, the data complexity is proportional to

N12 =
(
Φ−1(P12) + b

)2
/C(p), (38)

which can be used in approximating an upper bound for N2. We can approximate
Φ(b) = M+1

√
1 − 2−a ≈ 1 − 2−m−a such that a ≈ b2/2 − m and we can solve the

advantage a as a function of N12 ≈ N2 from (38). We get the following theorem:

Theorem 2. Suppose the cipher satisfies Assumption 1 where q′ = θ and the
p.d.’s pg, g ∈ Vm and θ are close to each other. Then the advantage of the
LLR-method for finding the last round key k0 is given by

aLLR = (
√

NC(p) − Φ−1(P12))2/2 − m ≈ NC(p) − m. (39)

Here N is the amount of data used in the attack, P12 (> 0.5) is the probability
of success and C(p) and m are the capacity and the dimensions of the linear
approximation (10), respectively.

Theorem 2 now gives the trade-off between the search phase and the data com-
plexity of the algorithm. With fixed N and capacity C(p), the advantage de-
creases linearly with m whereas in (20) the logarithm of advantage decreases
linearly with m. For fixed m and p, the advantage of the LLR-method seems to
be larger than the advantage of the χ2-method. The experimental comparison
of the methods is presented Sect. 8

In [4] it is shown that the data complexity of Alg. 1 for finding the right inner
key class g0 is proportional to

N1 =
16m ln 2 − 16P ′

1

C(p)
, (40)

where P ′
1 = ln(

√
2π ln P−1

1 ). If we want to be certain that we have paired the
right inner key class g0 with k0, the data complexity is given by

NLLR = max(N1, N2) ∝ m

C(p)
. (41)

The data complexity N1 is an overestimate for the actual data complexity of
Alg. 1 [9] so in practice, N2 dominates.
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7 Algorithms and Complexities

For comparing the two methods, LLR and χ2, we are interested in the complexi-
ties of the first two phases of the Alg. 2 since the sorting and searching phase do
not depend on the chosen statistic. The counting phase is done on-line and all
the other phases can be done off-line. However, we have not followed this division
[12] in our implementation, as we do part of the analysis phase on-line. We will
divide the algorithm in two phases as follows: In the on-line phase, depicted in
Fig. 1, we calculate the empirical p.d.’s for the round key candidates. The marks
S(k) for the χ2-method and L(k) for the LLR-method are then assigned to the
keys in the off-line phase. The off-line phases for χ2-method and LLR-method
are depicted in Fig. 2 and Fig. 4, respectively. After the keys k are each given
the mark, they can be ranked according to the mark. If we wish to recover g0
with χ2-method, we also need to store, in addition to the marks, the empiri-
cal p.d.’s qk. Given qk0 , one can use the multidimensional Alg. 1 described in
Fig. 3 for finding g0 off-line. The version of Alg. 1 is based on LLR. Obviously,
one could use some other method, e.g. use the χ2-based ranking statistic (21),
which gives similar results in practice even if the LLR-based method is more
powerful in theory [9].

initialise 2l × 2m counters F (k, η), k = 0, . . . , 2l − 1, η = 0, . . . , M ;
for i = 1, . . . , N do

for candidates k = 0, . . . , 2l − 1 do

decrypt the ciphertext partially: ẑk
i = f−1(ŷi, k);

for j = 1, . . . , m do

calculate bit ηj = uj · x̂i ⊕ wj · ẑk
i ;

end

increment counter F (k, η) = #{i |Ux̂i + Wẑk
i = η}, where η is the

vector (η1, . . . , ηm) interpreted as an integer;
end

end

Fig. 1. On-line phase of Matsui’s Alg. 2 in multiple dimensions

Input: table F (k, η), k = 0, . . . , 2l − 1, η = 0, . . . , M ;
for k = 0, . . . , 2l − 1 do

compute S(k) =
∑M

η=0(F (k, η)/N − 2−m)2;
if wish to recover g0 then

store (S(k), F (k, 0), . . . , F (k, M));
else

store S(k);
end

end

Fig. 2. Off-line phase of Alg. 2 using χ2-method
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Table 1. Data, time and memory complexities of the χ2- and LLR-method

On-line Off-line
χ2 for k0 χ2 for k0, g0 LLR χ2 for k0 χ2 for k0, g0 LLR

Data Nχ2 Nχ2 NLLR – – –
Time Nχ22lm Nχ22lm NLLR2lm 2l+m 2l+m 2l+m

Memory 2l+m 2l+m 2l+m 2l 2m max(2l, 2m) 2m max(2l, 2m)

Input: counter values F (k0, 0), . . . , F (k0, M);
compute the theoretical distribution of m-dimensional approximations for each
value of 2m inner key classes and store them in a 2m × 2m table
P (g, η), g = 0, . . . , M, η = 0, . . . , M ;
for inner key classes g = 0, . . . , M do

calculate G(g) =
∑M

η=0 F (k0, η) log P (g, η);
end
Output: g0 such that maxg∈Vm G(g) = G(g0)

Fig. 3. Matsui’s Alg. 1 in multiple dimensions (using LLR)

Input: table F (k, η), k = 0, . . . , 2l − 1, η = 0, . . . , M ;
compute the theoretical distribution of m-dimensional approximations for each
value of 2m inner key classes and store them in a 2m × 2m table
P (g, η), g = 0, . . . , M, η = 0, . . . , M ;
for k = 0, . . . , 2l − 1 do

for g = 0, . . . , M do
L(k, g) = LLR(q̂k, pg, θ), where q̂k

η = F (k, η)/N ;
end
store L(k) = maxg∈Vm L(k, g);

end

Fig. 4. Off-line phase of Alg. 2 using LLR-method

The data, time and memory complexities for on-line and off-line phase for both
methods are shown in Table 1. Given success probability PS and advantage a,
the data complexity Nχ2 is given by (18). If we want to recover g0 also, then
theoretically, data complexity N1 given by (40) is needed to successfully run
Alg. 1 given in Fig. 3. As noted in [9], the theoretical value N1 is an overestimate
and the total data complexity in practice is probably dominated by the data
complexity Nχ2 of ranking k0 high enough. Nevertheless, the data complexity of
the LLR-method is smaller than the χ2-method.

Otherwise, the complexities for the LLR-method are mostly the same as for
χ2-method provided that m is not much larger than l which is usually the case.
Thus, we recommend using the LLR-method rather than χ2-method unless there
is great uncertainty about the validity of the approximative p.d p of the linear
relation (10).
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In some situations it may also be advantageous to combine the different meth-
ods. For example, one may want to first find, say, r best round keys by χ2, such
that the data complexity Nχ2 is given by (18), where the advantage is a = l − r.
Then one can proceed by applying the LLR-method to the remaining r keys,
thus reducing the size of the round key space to be less than 2l. Other simi-
lar variants are possible. Their usefulness depends on the cipher that is being
studied.

8 Experiments

The purpose of the experiments was to test the accuracy of the derived statistical
models and to demonstrate the better performance of the LLR-based method
in practice. Similarly as in previous experiment on multiple linear cryptanalysis,
see [16] and [3], the Serpent block cipher was used as a test-bed. The structure
of Serpent is described, for example, in [18]. We have searched for a 12-bit part
of the fifth round key based on m linear approximations with different m. Each
experiment was performed for 16 different keys.

We calculated the capacities for the approximation (10) over 4-round Serpent
for different m. Practical experiments were used in confirming that Cmin(p) ≈
C(p) and especially Cmin(p) �= 0. We also saw that |pg

η − pg′
η | < 1

150pg
η, for all

g, g′ and η ∈ Vm. Hence, pg’s can be considered to be close to each other and θ.
The theoretical advantage of the χ2-method predicted in (20) has been plotted

as a function of data complexity in Fig. 5(a). The figure shows that increasing
m larger than 4, the attack is weakened. This suggests using m = 4 base ap-
proximations in the χ2-attack. Since we should have m at least 5 for the normal
approximation of χ2

M to hold, the theoretical calculations do not necessarily hold
for small m. However, the experiments, presented in Fig. 5(b), seem to confirm
the theory for m = 1 and m = 4, too. The most efficient attack is obtained by
using m = 4 equations. Increasing m (and hence, the time and memory com-
plexities of the attack, see Table 1) actually weakens the attack. The optimal
choice of m depends on the cipher. However, the theoretical calculations suggest
that using m ≥ 5 is usually not advantageous.

The reason is the χ2-squared statistic itself: it only measures if the data follows
a certain distribution, the uniform distribution in this case. The more approx-
imations we use, the larger the distributions become and the more uncertainty
we have about the “fitting” of the data. Small errors in experiments generate
large errors in χ2 as the fluctuations from the relative frequency 2−m become
more significant.

The theoretical advantage of the LLR-method (39) is plotted against the data
complexity in Fig. 5(c) for different m. The empirical advantages for several
different m are shown in Fig. 5(d). Unlike for χ2 we see that the method can be
strengthened by increasing m, until the increase in the capacity C(p) becomes
negligible compared to increase in m. For 4-round Serpent, this happens when
m ≈ 12.

Experimental results presented in Figures 5(d) and 5(b) confirm the theoreti-
cal prediction that the LLR-method is more powerful than the χ2-method. Also
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(a) Theoretical advantage for χ2-method
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(b) Empirical advantage for χ2-method
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(c) Theoretical advantage for LLR-method
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(d) Empirical advantage for LLR-method
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(e) Empirical and theoretical advantage for
χ2 for m = 1 and m = 4
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LLR for m = 1 and m = 12

Fig. 5. Theoretical and empirical advantages for χ2- and LLR-method for different m
and PS = P12 = 0.95
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the theoretical and empirical curves seem to agree nicely. For example, the full
advantage of 12 bits with m = 7 achieved at log N = 27.5 for LLR whereas
χ2-method needs about log N = 28. Moreover, the LLR can be strengthened by
increasing m. For m = 12, the empirical logarithmic data complexity is about
26.5.

9 Conclusions

There are several approaches of realising Matsui’s Alg. 2 using multiple linear
approximations. In this paper, methods based on two standard statistics, LLR
and χ2, were studied. Selçuk’s theory of advantage describing the trade-off be-
tween data complexity and search phase was extended to multiple dimensions.
The advantages of the two methods in key ranking were then determined. A
description of the multidimensional Alg. 2 for both methods was given so that
their performance measured in time, memory and data could be compared.

The χ2-statistic, based on the classic goodness-of-fit test, was observed to
perform poorly for large dimensions m of linear approximation, whereas the
LLR-statistic, an optimal statistic for testing two known hypotheses, was shown
to improve with the dimension m of the linear approximation much further. In
particular, the advantage of using multiple linear approximations instead of just
one is significant and of real practical importance if LLR-statistic is used in
Alg. 2. In general, it was shown that the LLR-method is usually more advan-
tageous compared to the χ2-method. As long as there is no significant error,
stemming from the linear hull-effect, for example, in determining the approxi-
mate p.d. of the multidimensional linear approximation, we recommend to use
the LLR-method proposed in this paper rather than the χ2-method.
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Abstract. We present preimage attacks on the SHA-3 candidates Boole,
EnRUPT, Edon-R, and Sarmal, which are found to be vulnerable against
a meet-in-the-middle attack. The idea is to invert (or partially invert)
the compression function and to exploit its non-randomness. To launch
an attack on a large internal state we manipulate the message blocks to
be injected in order to fix some part of the internal state and to reduce
the complexity of the attack. To lower the memory complexity of the
attack we use the memoryless meet-in-the-middle approach proposed by
Morita-Ohta-Miyaguchi.

1 Introduction

Recent attacks on widely used hash functions standards [2,16] drew much at-
tention to the hash function design not only from cryptographers, but also from
the institutions responsible for the standardization. After several workshops and
discussions had been held, NIST started the so-called SHA-3 competition [7],
which called for new designs by the end of October 2008.

Since most attacks on hash functions have been differential-based collision
attacks, the majority of the designs we investigated so far claimed to be resistant
to differential cryptanalysis while to the resistance against other attacks were
given less attention. The subject of this paper is meet-in-the-middle attacks and
their application to preimage search.

A meet-in-the-middle attack on a cryptographic primitive is applicable if the
execution can be expressed as a sequence of transformations all of which have
at least one input that is independent of the other transformations. Providing
the invertibility of the last transformation, the full execution can be divided into
independent parts, which are connected using the birthday paradox.

One of the first such attack was the attack on Double-DES [3]. Double-DES,
being composed of two consecutive iterations of single DES with different keys,
was found to be vulnerable to the following meet-in-the-middle attack: given a
pair (plaintext, ciphertext) one can find a Double-DES key (a pair of single DES
keys), which is valid for this pair, with complexity of about 232 encryptions. A
full attack on Double-DES, which gives the real key, is based on this approach
as well and it is faster than the brute-force.

Meet-in-the-middle attacks on hash functions based on the Merkle-Damg̊ard
construction are hard to apply since the compression function is usually assumed

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 228–245, 2009.
c© International Association for Cryptologic Research 2009
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to be non-invertible. The alternative sponge construction [1] allows invertible
transformations, but requires the internal state to be large so that the meet-in-
the-middle approach can not be applied.

Surprisingly, several SHA-3 proposals are vulnerable to this type of attack. In
this paper we describe meet-in-the-middle based preimage attacks on Boole, En-
RUPT, Edon-R, and Sarmal. Two ideas are common for all the attacks. First, all
the functions have invertible (or partially invertible) transformations, which al-
lows us to execute the meet-in-the-middle. Secondly, we reduce the intermediate
state space exploiting the non-random behavior of the round transformations.

This paper is composed as follows. First, we describe the meet-in-the-middle
preimage attack in general and remind how it can be maintained with little
memory. Then we show how preimages for Boole, EnRUPT, Edon-R, and Sarmal
can be found. We also discuss possible computation-memory tradeoffs.

2 Meet-in-the-Middle Attacks on Hash Functions

Hash functions with invertible compression functions become susceptible to preim-
age attacks if the size of the internal state is too small. Preimages can be obtained
by performing a meet-in-the-middle attack on the compression function. In this
section we will describe this generic scenario in more details.

Let F : D → D and G : D → D be two random permutations and H = G ◦F
the composition of these permutations. In our setting, the function H is the
hash function, F is defined as the compression function with a fixed IV and G
is the inverse of the compression function for a fixed target value. Furthermore,
we define auxilliary functions π1,2 : D × D → D that map tuples to their first,
respectively second component.

Assume we want to perform a meet-in-the-middle attack on h. The standard
technique is to compute two sets

S1 = {(F (x), x) : x ∈R D} and S2 =
{(

G−1(y), y
)

: y ∈R D
}

such that |S1|·|S2| = |D|. Either sorting these two sets in their first component or
computing them in such a way that they are already ordered in this component
allows us to easily find colliding values

π1 ((F (x), x)) = π1
(
(G−1(y), y)

)
by comparing the elements of the two sets in linear time. Each collision gives us
a pair (x, y) such that H(x) = y. How to balance the size of the sets S1 and S2
depends on the relative cost of the function G−1 compared to an evaluation of
the function F . It may for instance be that G is easily invertible, meaning an
evaluation of G−1 costs about the same number of operations as an evaluation
of the function F . In this case we choose the sets S1 and S2 to be of equal size⌈√|D|

⌉
. However, if the evaluation of G−1 is k times more expensive than the

evaluation of F , we should choose the set |S1| to be of size
√

k · |D| and S2 of
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size
√

k−1 · |D| to obtain a minimum number of overall operations. The memory
complexity of this naive approach is non-neglible however: We need to store a
total of 2·

(√|D|(√k +
√

k−1
)

elements of the domain D to carry it out. Storing
both sets is not really necessary: Only the smaller should be stored, the values
of the larger can be computed on the fly and compared against the elements of
the smaller set.

In some cases the memory requirement can be completely eliminated by a tech-
nique based on Floyd cycle finding first described in an article by Morita, Ohta
and Miyaguchi [6]. Although several works on hash functions refer to memoryless
variants of meet-in-the-middle attacks [10,5], all of them cite either one or both
papers by Quisquater and Delescaille on collision search for DES [12,11]. These
two papers however do not directly deal with meet-in-the-middle attacks, but
describe the technique of using distinguished points for collision search. Oorschot
and Wiener describe the same technique for memoryless meet-in-the-middle later
in [14].

2.1 Eliminating the Memory Requirement

Assume we are given another function r : D → {0, 1} which maps elements of
the domain D to a single bit in a random fashion. Using this switching function
we can define a step function s that evaluates x either to F (x) or to G(x),
depending on the value of x:

s : D → D, x �→
{

F (x) if r(x) = 0
G(x) if r(x) = 1

This function s can then be used in a Floyd cycle finding algorithm: We start
from a random value x ∈ D and use just two elements a = s(x) and b = s2(x).
In each step we then update a by applying s to it and b by applying s2 to
it. Upon finding a cycle, we must check whether we really have found a pair
F (x) = G−1(y) or whether we have found a cycle in F or in G. If the output of
r is equidistributed, for each cycle we find Pr(F (x) = G−1(y)) = 0.5. In case of
encountering a cycle in F or G we restart the algorithm with another random
element x ∈ D.

Significant problems can arise if the output of r is not equidistributed, for
instance if G is very costly to compute relative to F and we want to simulate
the case of |S1| = k · |S2| with k large.

For the hash functions that we attack we define two functions F and G that
are used in the memoryless approach. The F function is used for the forward
direction and the G function is used for the backward one. The switching function
r is defined as the parity of x.

2.2 Reduced State Principle

The meet-in-the-middle (MITM) attack needs a collision in the intermediate
state. However, the state may be so large that a straightforward application of
the MITM approach would require more than 2n computations for a n-bit hash
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digest. Thus the generic principle we use further is to generate intermediate
states only from a smaller subspace (where some bits are fixed to zero) thus
reducing the birthday dimension and the complexity of the attack.

The generic framework is defined as follows. A hash function with an n-bit
digest has an internal state of size k bits. We manage to get intermediate states
with t bits fixed to 0. Then to get a MITM connection we need to get two states
that collide in (k−t) bits so that the birthday space D has size 2k−t. This implies
that we must get two sets S1 and S2 such that |S1| · |S2| = 2k−t. The exact ratio
between S1 and S2 is defined by the complexity of inverting the compression
(round) function.

For the memoryless version of the MITM attack, we need to tweak the attack
slightly such that we can define the functions F and G. Each of the functions
is a composition of two functions, first projecting the birthday space into the
state space, the second mapping the state space into the birthday space again
(fixing some bits to zero). In other words, let F = f ◦ μ and G = g ◦ ν. When
memoryless meet-in-the-middle is possible in our attacks we will define these
functions accordingly.

3 Boole

Boole is a family of hash functions [13] based on a stream design. Internally, Boole
has a large state σt = (Rt[0], Rt[1], . . . , Rt[15]) of 16 words plus 3 additional word
accumulators denoted by lt, xt, and rt (t is the time). The words are 64 bits each.
Hashing a message in Boole is done in three phases: 1)Input phase, where the
whole message is processed word by word, and for each input word the state and
the accumulators are updated, 2)mixing phase, where only the state is updated
depending on the values of the accumulators, 3)output phase, where the output
is produced.

The update of the state, referred to as a cycle, is defined as:

Rt+1[i] ← Rt[i + 1], for i = 1 . . . 14
Rt+1[15] ← f1(Rt[12] ⊕ Rt[13]) ⊕ (Rt[0] ≪ 1)
Rt+1[0] ← Rt+1[0] ⊕ f2(Rt+1[2] ⊕ Rt+1[15]),

where f1 and f2 are some non-linear functions, intended to simulate random
functions.

Let wt be a message word. The update of the accumulators is defined as:

temp ← f1(lt) ⊕ wt

lt+1 ← temp ≪ 1
xt+1 ← xt ⊕ wt

rt+1 ← (rt ⊕ temp) ≫ 1

The whole message is absorbed in the input phase. Sequentially, for each message
word wt the following is done:



232 D. Khovratovich, I. Nikolić, and R.-P. Weinmann

1. update the accumulators
2. Rt[3] ← Rt[3] ⊕ lt+1
3. Rt[13] ← Rt[13] ⊕ rt+1
4. update the state (cycle)

The mixing phase is invertible and its description is irrelevant in our attack.
Each iteration of the output phase produces one output word. One iteration

is defined as:

1. cycle
2. Output the word v = R[0] ⊕ R[8] ⊕ R[12]

For example, the output for Boole-256 is produced in 8 iterations.
Let us present two observations about the invertibility of the update functions

of the state and the accumulators.
Observation 1. The state update (cycle) is an invertible function. If a new

state σt+1 is given, then the state σt that produced σt+1 in a single cycle can be
found from the following equations:

Rt[0] = (Rt+1[15] ⊕ f1(Rt+1[11] ⊕ Rt+1[12])) ≫ 1
Rt[1] = Rt+1[0] ⊕ f2(Rt+1[2] ⊕ Rt+1[15])
Rt[i] = Rt+1[i − 1], i = 2, . . . 15

Observation 2. The update of the accumulators can be inverted with proba-
bility 1−1/e. If the values of the new accumulators lt+1, xt+1, rt+1 and the input
message word wt are fixed, the values of the previous accumulators lt, xt, rt are
determined as:

lt = f−1
1 ((lt+1 ≫ 1) ⊕ wt)

xt = xt+1 ⊕ wt

rt = rt+1 ≪ 1 ⊕ f1(lt ⊕ wt)

Moreover, if the values of lt, lt+1 (or rt, rt+1) are fixed, the value of the message
word wt can be found uniquelly:

wt = (lt + 1 ≫ 1) ⊕ f1(lt)
( wt = (rt+1 ≪ 1) ⊕ rt ⊕ f1(lt))

In order to invert the function f1 we will use a look-up table (x, f1(x)) with
all 264 values for x, sorted by the second entry. Then, a inversion of f1(x) is
equivalent to a look-up in this table.

3.1 Preimage Attack on Boole-384 and Boole-512

The intermediate state of Boole has 16 state words and 3 accumulators, hence
19 words in total. Further, we will show how to fix the values of the state words
R[3], . . . , R[12] (10 words in total) to zero in forward and backward directions.
This will mean that k = 19 · 64 = 1216 and t = 10 · 64 = 640, and the birthday
space D has only 9 words (576 bits). We will also define f(x) and g(x) for the
memoryless MITM attack.
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Defining μ - fixing R[3], R[4], . . . , R[12] forwards. From the description
of the input phase it follows that:

R10[3] = R9[4] = . . . = R1[12] = R0[13] ⊕ r1

Note that the value of r1 can be controlled with w0 (Observation 2). Hence, if
we take r1 = R0[13], we will get R10[3] = 0. Similarly, for R10[4] we have:

R10[4] = R9[5] = . . . = R2[12] = R1[13] ⊕ r2

We can change the value of r2 with w1 such that R1[13] ⊕ r2 = 0 holds.
Then R10[4] = 0. The same technique can be applied for fixing the values of
R10[5], . . . , R10[12].

Note that we can not fix the values of more than these 10 words. When we
control the value of rt with the input word wt−1, it means that we also change
the value of lt (which is added to Rt[3]). Since we can not control the value of
both accumulators with a single message word, and both of them are xor-ed into
the registers R[3] and R[13], it means that we can not control the values of more
than 10 words.

Defining f(y) for the memoryless MITM attack. The birthday space D
has 9 words. Let y = y1||y2|| . . . ||y9, then f(y) can be defined as compression
of the input words yi with 1 ≤ i ≤ 9 in the first 9 cycles. Thus when fixing
R[3], . . . , R[12] in forward direction, we first compress y, and then we start with
our technique for fixing these words to zero (function μ).

Defining ν - fixing R[3], R[4], . . . , R[12] backwards. Our backwards strat-
egy is the following: first we invert the output and the mixing phase and ob-
tain one valid intermediate state. Then, by changing the input words, we fix
R[3], R[4], . . . , R[12].

First, let us deal with the inversion of the output phase. In each cycle of this
phase one output word is produced. Hence, the digest is produced in 8 cycles1.
The output word vt is defined as vt = Rt[0]⊕Rt[8]⊕Rt[12]. Let H∗ = (h0, . . . , h7)
be the target hash value. We have to construct a state σt = (Rt[0], . . . , Rt[15])
such that h0 = vt, h1 = vt+1, . . . , h7 = vt+7. First, we put any values in
Rt[0], Rt[9], Rt[10], . . . , Rt[15]. The rest of the words are undefined. Then, we
find Rt[8] from the equation Rt[8] = Rt[0] ⊕ Rt[12] ⊕ h0. Obviously we get that
vt = h0. After the cycle update we obtain a new state σt+1. Then, we determine
the value of Rt[1] from the equation Rt[1] = Rt+1[0] = Rt+1[8] ⊕ Rt+1[12] ⊕ h1,
and therefore h1 = vt+1. The values for Rt[2], . . . , Rt[7] are determined simi-
larly. This way we can define the rest of the words in the state σt, which in the
7 sequential cycle updates produces the target hash value.

Let us fix the accumulators to any values. Then, inverting the mixing phase
is trivial because the length of the preimage, as shown further, is known and the
values of the accumulators are also known.
1 In Boole-384, the output is produced in 6 cycles.
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Now that we have inverted the output and mixing phase, we have the freedom
of choosing the input message words. The technique for fixing is rather similar
to the one used for fixing this set in forward direction. But in the backward
direction, we control the values of the lt accumulators (rather then the values of
rt as in the forward direction) with the input words wt (Observation 2). From
the description of the input phase we get:

R10[12] = R11[11] = . . . = R18[4] = R19[3] ⊕ l20

Therefore if we take l20 = R19[3] we will get R10[12] = 0. Similarly, for R10[11]
we have:

R10[11] = R11[10] = . . . = R17[4] = R18[3] ⊕ l19

If we take l19 = R18[3] we obtain R10[11] = 0. The same technique can be used
to fix the variables R10[10], . . . , R10[3].

One may argue that for controlling the values of the lt registers when going
backwards we have to pay an additional cost because f1 is not always invert-
ible. But we have to keep in mind that there are values for which f1 has many
inversions. Hence, if we start with a set of N different values, we can expect to
find N different inversions for these values and thus we do not have to repeat
the inversion.

Defining g(y) for the memoryless MITM attack. The function g(y), where
y = y1||y2|| . . . ||y9, is defined as 9 consecutive backward rounds of the input
phase with inputs yi. The starting state of these 9 rounds is the state obtained
after the inversion of the output and mixing phases (as described above). Note
that after the application of the function g(y) a new state is obtained. Then,
to this state, we apply our technique for fixing R[3], . . . , R[12] in 10 backwards
rounds (function ν).

3.2 Complexity of the Attack

The preimage that we obtained has a length of at least 9 + 9 + 10 + 10 = 38
words. The memoryless MITM attack requires about 2

9·64
2 = 2288 computations2

and 264 memory (for inverting f1).

4 Edon-R

The hash family Edon-R [4] uses the well known Merkle-Damg̊ard design prin-
ciple. The intermediate hash value is rather large, two times the digest length3.
For an n-bit digest the chaining value Hi of Edon-R is composed of two block
of n bits each, i.e. Hi = (H1

i , H2
i ). The message input Mi for the compression

2 One computation is equivalent to one round of the input phase or one round of the
mixing phase.

3 Edon-224 and Edon-384 have 512 and 1024 bits chaining values, respectively.
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function is also composed of two blocks, i.e. Mi = (M1
i , M2

i ). Let Edon be the
compression function. Then the new chaining value is produced as follows:

Hi+1 = (H1
i+1, H

2
i+1) = Edon(M1

i , M2
i , H1

i , H2
i )

The hash value of a message is the value of second block of the last chaining
value.

Internally, the state of Edon-R has two n-bit blocks, A and B. The compres-
sion function of Edon-R consists of eight updates, each being an application of
the quasigroup operation Q(x, y)4, to one of these blocks. With Ai and Bi we
will denote the values of these blocks after the i-th update in the compression
function (please refer to Fig. 1). Hence, each input pair (Hi, Mi) generates in-
ternal state blocks (A1, B1), (A2, B2), . . . , (A8, B8). The new chaining value (the
output of the compression function) Hi+1 is the value of the blocks (A8, B8).

A1

B1

A2

B2

A3

B3

A4

B4

A5

B5

A6

B6

A7

B7

Q

Q

Q

Q

Q

Q

Q

M1M2

A8

B8Q

H2 H1

Input message

Input chain value

Output
chain value

Fig. 1. Outline of the Edon-R compression function

Let us present a simple observation that is used in the attack.
Observation. The quasigroup operation Q(x, y) of Edon-R is easily invert-

ible, i.e. if A and C (B and C) are fixed then one can easily find B (C) such
that Q(A, B) = C.

4.1 Preimage Attack on Edon-R-n

The internal state of Edon-R-n (the chaining value H = H1||H2) has 2n bits.
We will show how to fix H1 = 0. Then the preimage attack can be mounted
using the MITM approach (Section 2), where k = 2n and t = n. The backward
step is time-consuming so we will use the memory MITM attack.
4 The exact definition of the quasigroup operation can be found in [4].
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Fixing H1 in forward direction. We need only one message block to get
the desired Hnew

1 = 0. Both initial value blocks are fixed as well. We claim that
for each M1 we can find M2 such that this message input and the initial value
blocks will produced a zero value in Hnew

1 .
Indeed, let M1 be set to some random value. Then we obtain the value of A6

since A7 = Hnew
1 = 0 and the function Q is invertible. We consecutively obtain

the values of A5, A4, A3, A2, and A1 (keep in mind that the initial chaining value
is fixed). Given A1 and M1, we derive M2 by inverting the first application of
Q. Finally we obtain all B’s and thus a pair (Hnew

1 = 0, Hnew
2 ).

Fixing H1 in backward direction. We need only one step (one message
block) to get a pair of the form (0, H2) from a given hash value H = Hnew

2 .
First, we set M1 to some predefined value m. Then we assign to A8 some ran-

dom value and consecutively obtain the values of the following internal variables
(in this order): A7, B7, B6, A6 (using M1), A5, B5, B4, A4, A3, B3. We repeat
this step 2k times for different values of A8 and store 2k different pairs (A3, B3).

Now we set M2 to some random value5 and obtain the values of A1, A2, and
B2 using the value of M1. If we repeat this step 2n−k+s times then we will find 2s

different values of B2 that coincide with some values of B3 from the stored set.
For each of these values we define H2 such that Q(A2, H2) = A3. The complexity
requirements for this part are: 2n−k+s computations6, where s − k < 65, and
2s + 2k memory.

These 2s pairs can be obtained using the memoryless MITM as well, where
the MITM space is the value of B2. Because of the message padding we should
take any n−65 bits of B2 so that the input and the output of the MITM function
F and G would have the same size. The (n − 65)-bit input to the function F is
padded with the message padding, and the input to the function G is padded,
for example, with zeros. Then, if a (n − 65)-bit collision between F and G is
obtained, the probability that they coincide in the rest of the 65 bits is 2−65.
Hence, for constructing 2s pseudo preimages with the memoryless MITM, one
needs 2s · 2 n−65

2 +65 = 2
n
2 +s+32.5.

4.2 Complexity of the Attack

Starting from the initial value, we generate 2n−s different chaining values with
H1 = 0. Note that we do not store these values. Then, with high probability, we
can expect that one of these values will be in the set of the 2s pseudo preimages
generated in the backward direction. Under the condition s − k < 65 the total
complexity of the attack when memory is used in the backward step is 2n−s +
2n−k+s computations and 2s + 2k memory. If only negligible memory in the
backward step is used the computational complexity is 2n−s + 2

n
2 +s+32.5 at the

same time needing 2s memory.
5 The value is not truly random: 65 bits of the last message block are reserved for

padding.
6 Here and below, one computation is not more than one compression function call.
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5 EnRUPT

The family of hash functions EnRUPT [9] is a member of a set of cryptographic
primitives first presented at SASC 2008 [8].

The pseudocode of 512-bit version of EnRUPT, called ı̈rRUPT-512, is pre-
sented below. For details we refer the interested reader to [9].

Algorithm 1. ı̈rRUPT-512
Require: p0, . . . , pn { message blocks}

(d0, d1, r) ← (0, 0, 0)
(x0, . . . , x47) ← (0, . . . , 0)
for i = 0 to n do

(d0, d1, r, (x0, . . . , x47)) ← ı̈r8(pi, d0, d1, r, (x0, . . . , x47)) {squeezing}
end for
(d0, d1, r, (x0, . . . , x47)) ← ı̈r8(512, d0, d1, r, (x0, . . . , x47))
for i = 0 to 199 do

(d0, d1, r, (x0, . . . , x47)) ← ı̈r8(0, d0, d1, r, (x0, . . . , x47)) {blank rounds}
end for
for i = 0 to 7 do

(d0, d1, r, (x0, . . . , x47)) ← ı̈r8(0, d0, d1, r, (x0, . . . , x47))
zi ← d1 {output}

end for
return (z0, . . . , z7)

Algorithm 2. ı̈r8
Require: p, d0, d1, r, (x0, . . . , x47)

for k = 0 to 7 do
t ← (9 · ((2 · x(r⊕1) mod 48 ⊕ x(r+4 mod 48) ⊕ dr&1 ⊕ r) ≫ 16)
x(r+2) mod 48 ← x(r+2) mod 48 ⊕ t
dr&1 ← dr&1 ⊕ t ⊕ xr mod 48

r ← r + 1
d1 ← d1 ⊕ p

end for
return (d0, d1, r, x0, . . . , (x0, . . . , x47))

In the pseudo-code all indices are taken modulo 16, all multiplications are
performed modulo 264, ≫ stands for cyclic rotation to the right, and ⊕ denotes
XOR. Now let us define and explain some points that are further used in the
attack on ı̈rRUPT-512.

Equation invertibility. The accumulators di are updated by a non-invertible
function, which can be expressed as x ⊕ g(x ⊕ y) (see pseudo-code). Given the
output of the function and the value of x a solution does not always exist. How-
ever, if we assume that the output and y are independent then the probability
that the function can be inverted can be estimated by 1−1/e. We did statistical
tests that support this estimate.
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Furthermore, while there is no solution for some input there are two (or more)
solutions for other inputs (one solution on average). Thus when we perform
backtracking we actually do not lose in quantity of solutions.

Look-up tables. We use look-up tables in order to find a solution for the equations
arising from the round functions. All the tables used below refer to functions that
have space of arguments smaller than the complexity of the attack, e.g., when we
try to solve an equation f(x⊕C) = x (where C is one of 264 possible constants)
we use 264 precomputed tables that contain values of f(x ⊕ C) ⊕ x for all C
and x.

Solving a system of equations is more complicated. Below we solve systems of
form ⎧⎪⎨⎪⎩

x = f(x, y, z, C1);
y = g(x, y, z, C2);
z = h(x, y, z, C3),

where Ci are constants. We precompute for all possible x, y, z, Ci (2384 tuples)
the sums x ⊕ f(x, y, z, C1), y ⊕ g(x, y, z, C2), and z ⊕ h(x, y, z, C3) and then sort
them so that it is easy to find a solution (or many) given Ci.

We also estimate that the time needed to find a solution is given by the
complexity of the binary search which is negligible compared to the table size.

Inverting the updates in ı̈r8(pi). The compression function of ı̈rRUPT-512 con-
sists of the update of the state words x0, x1, . . . , x15, and the update of the
accumulators d0 and d1. Inverting the update of the state words x0, x1, . . . , x15
is trivial:

xold
r+2 = xnew

r+2 ⊕ f.

The accumulator d0 (similar formula holds for d1) is updated by the following
scheme:

dnew
0 = f(xr⊕1, xr+4, d

old
0 , r) ⊕ dold

0 ⊕ xr

Instead of solving this equation for dold
0 , we simply use a table look-up (see

above). Since the arguments of f are xored, we solve an equation of form f(x ⊕
C1) ⊕ x = C2. We spend (264)2 = 2128 memory and effort to build this table for
all x and C1.

5.1 Preimage Attack on ı̈rRUPT-512

The preimage attack is mounted using the MITM approach (Section 2). The
internal state of ı̈rRUPT-512 has 18 words, hence 1152 bits. We will show how
to fix x3 and x11 in forward and backward directions. Also, since EnRUPT does
not have a message schedule and just adds the message block, we can reduce
the birthday space D for an additional one word. Hence, the parameters for
MITM are k = 1152 and t = 192. Getting states in both directions in not time-
consuming. Therefore we will define the functions f(x) and g(x) and launch a
memoryless MITM attack.
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Defining μ - fixing x3 and x11 in forward direction. We will fix the values
of these two words in two consecutive application of the compression function.
We will fix the value of x3 to zero by changing the previous input message word
p0. In the following compression function iteration this value is not changed. In
this iteration, we fix the value of x11 by setting the value of p1.

From the definition of x3 (notice that x3 is updated second in the iteration
but does not depend on x2 and d0, which has been updated before) we have:

xnew
3 = 9[(2x0 ⊕ x7 ⊕ d1) ≫ 16] ⊕ xold

3

We want to fix the value of x3 to zero. Hence we require:

0 = 9[(2x0 ⊕ x7 ⊕ d1) ≫ 16] ⊕ xold
3

In this equation the value of d1 can be chosen freely. Simply, in the previous
iteration of the compression function, the message word p, which is added to d1
(dnew

1 = dold
1 ⊕ p) can be changed without affecting the values of the state words

and d0.
Therefore, by using a predefined table for this equation, we can find the nec-

essary value of d1 so that the equation holds. To build this table we spend
(264)4 = 2256 memory and computations. Notice that after the value of x3 is
fixed then, in iteration that follows, this value is not changed. In this iteration,
we fix the value of x11 using exactly the same method. Hence, in two sequential
rounds, we can fix the value of exactly two state words: x3 and x11.

Defining f(y) for the memoryless MITM attack. The birthday space
D has 15 words. We denote y = y1||y2|| . . . ||y15. Then f(y) can be defined as
compression of the input words yi, i = 1, . . . , 15 in the first 15 applications of
the compression function. Thus when fixing x3 and x11 in forward direction, we
first compress y, and then we start with our technique for fixing these two words
to zero.

Defining ν - fixing x3 and x11 in backward direction. When going back-
wards we have to take into account two things: 1)the output hash value is pro-
duced in 8 iterations, and 2)the input message words in the last 17 iterations
are fixed. Let us first address 1). When the hash value is given (as in a preimage
attack), it is still hard to reconstruct the whole state of ı̈rRUPT-512. This is
made more difficult by outputting only a small chunk of the state (the value of
d1) in each of the 8 final iterations (and not at once). So, not only we have to
guess the value of the rest of the state, but we have to guess it so that in the
following iterations the required values of d1 will be output. Yet, this is possible
to overcome.

Let the hash value be H = (dt
1, d

t+1
1 , . . . , dt+7

1 ). Consider a state where d1 = dt
1

and all of the other words of the state are left undefined. Then, we take 2448

different values for the rest of the state and iterate forward for 7 rounds, while
producing an output word at each round. With overwhelming probability, one
of these outputs will coincide with (dt+1

1 , . . . , dt+7
1 ). After we find the state that
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produces the required output, we go backwards through the blank iterations
and the message length iteration. In total there are 17 iterations which is 136
rounds. The accumulators are updated non-bijectively. Therefore one may argue
that the cost of inverting the accumulators through these rounds should be
(1 − 1/e)136. Yet, if in some cases solution for the accumulator doesn’t exist in
other cases there is more then one solution. Hence, if we start with two internal
states, we can pass these iterations with a cost of two times hashing in forward
direction.

Now after we have passed the output, blank rounds and message length itera-
tions, and obtained one state, we can fix x3 and x11 in two backward applications
of the compression function. The following lemma holds:

Lemma 1. Given a state S = (xnew
0 , . . . , xnew

15 , dnew
0 , dnew

1 ) one can build a state
S′ = (x0, . . . , x15, d0, d1) and a message p such that x3 = 0 and ir8(S′, pi) = S.

The proof is given in Appendix. The same proposition can be applied to x11.
Since the compression function in one application changes either x3 or x11, then
in two consecutive backward applications of the compression function we can fix
the values of these two words.

Defining g(y) for the memoryless MITM attack. The function g(y), where
y = y1||y2|| . . . ||y15, is defined as 15 consecutive backward rounds of the input
phase with inputs yi. The starting state of these 9 rounds is the state obtained
after the inversion of the output, blank rounds and message length iterations (as
described above).

5.2 Complexity of the Attack

We spend at most 2384 computations to build the pre-computation tables so it is
not a bottleneck. To compose a valid state after the blank rounds that gives the
desired hash we need about 2448 trials. We also pass the blank rounds for free
since the absence of solutions for some states is compensated by many of them
for other ones. Thus the most computations-consuming part is the memoryless
MITM attack. It requires 2

960
2 = 2480 computations. The memory requirement

is determined by the precomputed tables, hence it is 2384.

6 Sarmal

Sarmal-n [15] is a hash family based on the HAIFA design. After the standard
padding procedure, the padded message is divided into blocks of 1024 bits each,
i.e. M = M1||M2|| . . . ||Mk, |Mi| = 1024, i = 1, . . . , k. Each block is processed by
the compression functions. HAIFA design implies that the compression function
f has four input arguments: the previous chain value hi−1, the message block Mi,
the salt s, and the block index ti. Hence, hi is defined as hi = f(hi−1, Mi, s, ti).
The final chaining value hk is the hash value of the whole message M . For Sarmal-
n the chaining value hi has 512 bits. Let us denote the left and the right half of
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hi as Li and Ri respectively, i.e. hi = Li||Ri. The salt s has 256 bits (similarly let
s = s1||s2), and the block index ti has 64 bits. Then, the compression function
of Sarmal-n can be defined as:

f(hi−1, Mi, s, ti) = μ(Li−1||sl||c1||ti, Mi) ⊕ ν(Ri−1||sr||c2||ti, Mi) ⊕ hi−1, (1)

where μ and ν are functions that output 512 bit values, and c1, c2 are some
constants. The exact definition of these functions is irrelevant for our attack.

6.1 Preimage Attack on Sarmal-512

We will show how to invert the compression function of Sarmal-512. Note that
the intermediate chaining value of Sarmal has 512 bits. Then the preimage attack
can be launched using the MITM approach (Section 2), where k = 512 and t = 0.
The inversion of the compression function is time-consuming so we will use the
memory MITM attack.

Going forward from the IV. Since we do not fix anything (t = 0), going
forward from the IV is trivial. We simply generate a number of intermediate
chaining values, by taking different random messages as an input for the first
compression function.

Going backward from the target hash value. Let us explain how the
compression function can be inverted.

From (1) we get:

f ( hi−1, Mi, s, ti) =
= μ (Li−1||sl||c1||ti, Mi) ⊕ ν(Ri−1||sr||c2||ti, Mi) ⊕ hi−1 =
= μ (Li−1||sl||c1||ti, Mi) ⊕ ν(Ri−1||sr||c2||ti, Mi) ⊕ Li−1||Ri−1 =
= μ (Li−1||sl||c1||ti, Mi) ⊕ ν(Ri−1||sr||c2||ti, Mi) ⊕ Li−1||0 ⊕ 0||Ri−1 =
= (μ (Li−1||sl||c1||ti, Mi) ⊕ Li−1||0) ⊕ (ν(Ri−1||sr||c2||ti, Mi) ⊕ 0||Ri−1)

Let us fix the values of Mi, s, and ti. Then, we can introduce the functions
F (Li−1) = μ(Li−1||sl||c1||ti) ⊕ Li−1||0, and G(Ri−1) = ν(Ri−1||sr||c2||ti) ⊕
0||Ri−1. Let H∗ be the target hash value. Then we get the equation:

F (L) ⊕ G(R) = H∗

If we generate 2256 different values for F (L) and the same amount for G(R),
then, by the birthday paradox, with high probability we can expect to get at
least one pair (F (Ll), G(Rm) that will satisfy the above equation and therefore
obtain that h = Ll||Rm is a preimage of H∗.

A memoryless version of this pseudo-preimage attack can be obtained by
introducing the function F̃ (L) = F (L) ⊕ H∗, and launching the memoryless
MITM attack on F̃ and G. This would require 2256 computations and negligible
memory.
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Table 1. Complexity of the preimage attacks described in this paper

Computations Memory
Boole-384/512 2288 264

Edon-R-n 2n−s + 2n−k+s 2s + 2k

2n−s + 2
n
2 +s+32.5 2s

EnRUPT-512 2480 2384

Sarmal-512 2512−s + 2256+s 2s

6.2 Complexity of the Attack

Since the backward direction, i.e. inverting the compression function, is time
consuming we will use the memory version of MITM attack. Going backwards
from the target hash value we create a set S2 of 2s different chaining values. To
create this set we need 2256 · 2s = 2256+s computations. Then, starting from the
initial value, we generate 2512−s different chaining values. Note, we do not store
these values, we store only the smaller set S2. Then, with a high probability, we
can expect that these two sets coincide. The total complexity of the attack is
2512−s + 2256+s computations and 2s memory.

7 Conclusions

We have presented meet-in-the-middle attacks on four SHA-3 candidates. These
attacks became possible because we managed to invert (or partially invert) the
compression functions and to reduce the birthday space so that collisions in this
space can be found faster than 2n and give a preimage.

We have also applied, when it was possible, the memoryless version of the
MITM attack and thus significantly reduced the memory requirements for the at-
tacks. For these cases we provided estimates on the computation-memory trade-
offs.

The complexity of our attacks on the hash functions are summarized in the
following table.
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to obtain the previous state (xnew
0 , xnew

1 , xold
2 , xold

3 , . . . , xnew
15 , dold

0 , dold
1 ) where

xold
3 = 0. From the description of ı̈rRUPT-512 we get:

xnew
2 = f(xnew

1 , xold
6 , d0

0, r) ⊕ xold
2 (2)

xnew
3 = f(xnew

0 , xold
7 , d1

1, r + 1)︸ ︷︷ ︸
f3

⊕xold
3 , d3

1 = f3 ⊕ d1
1 ⊕ xnew

1 (3)

xnew
4 = f(xnew

3 , xold
8 , d2

0, r + 2) ⊕ xold
4 (4)

xnew
5 = f(xnew

2 , xold
9 , d3

1, r + 3)︸ ︷︷ ︸
f5

⊕xold
5 , d5

1 = f5 ⊕ d3
1 ⊕ xnew

3 (5)

xnew
6 = f(xnew

5 , xnew
10 , d4

0, r + 4) ⊕ xold
6 (6)

xnew
7 = f(xnew

4 , xnew
11 , d5

1, r + 5)︸ ︷︷ ︸
f7

⊕xold
7 , d7

1 = f7 ⊕ d5
1 ⊕ xnew

5 (7)

xnew
8 = f(xnew

7 , xnew
12 , d6

0, r + 6) ⊕ xold
8 (8)

xnew
9 = f(xnew

6 , xnew
13 , d7

1, r + 7)︸ ︷︷ ︸
f9

⊕xold
9 , dnew

1 = f9 ⊕ d7
1 ⊕ xnew

7 ⊕ p (9)

With di
1 we denote the value of the accumulator d1 used in the update of the

state word xi. We need to fix xold
3 to zero. Hence, from (3), we get the equation:

xnew
3 =f3 = f(xnew

0 , xold
7 , d1

1, r + 1) =

=9 · ((2xnew
0 ⊕ r ⊕ (xold

7 ⊕ d1
1)) ≫ 16).

In the upper equation we can denote by X = xold
7 ⊕ d1

1. Since, all the other
variables are already known, a table can be built for this equation, and solution
for X can be found. Let C1 = X = xold

7 ⊕d1
1. If we express the value of xold

7 from
(7) then we get the following equation:

xnew
7 ⊕ f7 ⊕ d1

1 = C1. (10)

Further, from (3), (5), (7), and (9), this equation can be rewritten as:

xnew
7 ⊕ f7 ⊕ f3 ⊕ f5 ⊕ f7 ⊕ f9 ⊕ xnew

1 ⊕ xnew
3 ⊕ xnew

5 ⊕ xnew
7 ⊕ p = C1.

Since, xnew
1 , xnew

3 , xnew
5 , xnew

7 , and f3 are all constant (the value of f3 is equal to
xnew

3 ), the upper equation can be rewritten as:

f5 + f9 + p = K, (11)

where K = xnew
3 ⊕xnew

5 ⊕ f3 ⊕C1. So given the values of f5 and f9 from (11) we
can easily find the value for the message word p such that xold

3 = 0 holds. Let
us try to find the values of f5 and f9.

The value of f5 (from (5)) depends, in particular, on xold
9 and d3

1. From (9)
we get that xold

9 = f9 ⊕ xnew
9 . From (3) and (10) we get:

d3
1 = f3 ⊕ xnew

1 ⊕ d1
1 = f3 ⊕ xnew

1 ⊕ xnew
7 ⊕ f7 ⊕ C1. (12)
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Therefore, for the value of f5 we get:

f5 = 9 · ((2xnew
2 ⊕ (r + 3) ⊕ xold

9 ⊕ d3
1) ≫ 16) =

= 9 · ((K1 ⊕ f7 ⊕ f9) ≫ 16), (13)

where K1 = 2xnew
2 ⊕ (r + 3) ⊕ xnew

9 ⊕ f3 ⊕ xnew
1 ⊕ xnew

7 ⊕ C1.
Similarly, for f7 from (7), we can see that depends on d5

1. For this variable,
from (12) and (5), we get:

d5
1 = f5 ⊕ xnew

3 ⊕ d3
1 = f5 ⊕ xnew

3 ⊕ f3 ⊕ xnew
1 ⊕ xnew

7 ⊕ f7 ⊕ C1. (14)

Hence, for f7 we get:

f7 = 9 · ((2xnew
4 ⊕ (r + 5) ⊕ xnew

11 ⊕ d5
1) ≫ 16) =

= 9 · ((K2 ⊕ f5 ⊕ f7) ≫ 16), (15)

where K2 = 2xnew
4 ⊕ (r + 5) ⊕ xnew

11 ⊕ xnew
3 ⊕ f3 ⊕ xnew

1 ⊕ xnew
7 .

Finally, for f9 from (7)), we get that it depends on d7
1. From (14) and (7), for

the value of d7
1 we get the following:

d7
1 = f7 ⊕ xnew

5 ⊕ d5
1 =

= f7 ⊕ xnew
5 ⊕ f5 ⊕ xnew

3 ⊕ f3 ⊕ xnew
1 ⊕ xnew

7 ⊕ f7 ⊕ C1 =
= xnew

5 ⊕ f5 ⊕ xnew
3 ⊕ f3 ⊕ xnew

1 ⊕ xnew
7 ⊕ C1.

For the value of f9 we get:

f9 = 9 · ((2xnew
6 ⊕ (r + 7) ⊕ xnew

13 ⊕ d7
1) ≫ 16) = 9 · ((K3 ⊕ f5) ≫ 16), (16)

where K3 = 2xnew
6 ⊕ (r + 7) ⊕ xnew

13 ⊕ xnew
5 ⊕ xnew

3 ⊕ f3 ⊕ xnew
1 ⊕ xnew

7 ⊕ C1.
As a result, we get a system of three equations ((13),(15), and (16)) with three

unknowns f5, f7, and f9:⎧⎪⎨⎪⎩
f5 = 9 · ((K1 ⊕ f7 ⊕ f9) ≫ 16);
f7 = 9 · ((K2 ⊕ f5 ⊕ f7) ≫ 16);
f9 = 9 · ((K3 ⊕ f5) ≫ 16).

We can build a table that solves this system. There are six columns in the table:
three unknowns and three constants: K1, K2, and K3.

After we find the exact values of f5 and f9 we can easily compute the value
of p from (11).
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Abstract. The EnRUPT hash functions were proposed by O’Neil, Nohl
and Henzen [5] as candidates for the SHA-3 competition, organised by
NIST [4]. The proposal contains seven concrete hash functions, each
having a different digest length.

We present a practical collision attack on each of these seven EnRUPT
variants. The time complexity of our attack varies from 236 to 240 round
computations, depending on the EnRUPT variant, and the memory re-
quirements are negligible. We demonstrate that our attack is practical
by giving an actual collision example for EnRUPT-256.
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1 Introduction

Cryptographic hash functions are important cryptographic primitives that are
employed in a vast number of applications, such as digital signatures and com-
mitment schemes. They are expected to possess several security properties, one of
which is collision resistance. Informally, collision resistance means that it should
be hard to find two distinct messages m �= m′ that hash to the same value, i.e.,
h(m) = h(m′).

Many popular hash functions, such as MD5, SHA-1 and SHA-2 share a com-
mon design principle. The recent advances in the cryptanalysis of these hash
functions have raised serious concerns regarding their long-term security. This
motivates the design of new hash functions, based on different design strategies.
The National Institute of Standards and Technology (NIST) has decided to hold
a public competition, the SHA-3 competition, to develop a new cryptographic
hash function standard [4].

The EnRUPT hash functions were proposed by O’Neil, Nohl and Henzen [5]
as candidates in this SHA-3 competition. The proposal contains seven concrete
EnRUPT variants, each having a different digest length.

In this paper, we analyse EnRUPT and show that none of the proposed
EnRUPT variants is collision resistant. We present a practical collision attack
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requiring only 236 to 240 EnRUPT round computations, depending on the En-
RUPT variant. This is significantly less than the approximately 2n/2 hash com-
putations required for a generic collision attack on an n-bit hash function based
on the birthday paradox.

The structure of this paper is as follows. A short description of EnRUPT is
given in Sect. 2. Section 3 introduces the basic strategy we use to find collisions
for EnRUPT, which is based on the work on SHA by Chabaud and Joux [2] and
Rijmen and Oswald [9]. Sections 4, 5 and 6 apply this basic attack strategy to
EnRUPT, step by step. Our results, including an example collision for EnRUPT-
256, are presented in Sect. 7. Finally, Sect. 8 concludes.

2 Description of EnRUPT

In this section, we give a short description of the seven EnRUPT variants that
were proposed as SHA-3 candidates [5]. All share the same structure and use the
same round function. The only differences lie in the parameters used. Table 1
gives the values of these parameters for each EnRUPT variant.

2.1 The EnRUPT Hash Functions

The structure shared by all EnRUPT hash functions can be split into four phases:
preprocessing, message processing, finalisation and output. Figure 1 contains a
description of the EnRUPT hash functions in pseudocode.

In the preprocessing phase (lines 2–4) the input message is padded to be a
multiple of w bits, where w is the word size. Depending on the EnRUPT variant,
the word size w is 32 or 64 bits, see Table 1. The padded message is then split
into an integer number of w-bit words mi.

The internal state of EnRUPT consists of several w-bit words: H state words
xi, P ‘delta accumulators’ di, and a round counter r. All of these are initialised
to zero. The parameter P is equal to 2 for all seven EnRUPT variants. The value
of H depends on the digest length, as indicated in Table 1.

Table 1. EnRUPT Parameters

EnRUPT digest word parallelisation security number of
variant length size level parameter state words

h w P s H

EnRUPT-128 128 bits 32 bits 2 4 8
EnRUPT-160 160 bits 32 bits 2 4 10
EnRUPT-192 192 bits 32 bits 2 4 12
EnRUPT-224 224 bits 64 bits 2 4 8
EnRUPT-256 256 bits 64 bits 2 4 8
EnRUPT-384 384 bits 64 bits 2 4 12
EnRUPT-512 512 bits 64 bits 2 4 16



248 S. Indesteege and B. Preneel

1: function EnRUPT (M)
2: /* Preprocessing */
3: m0, · · · , mt ← M || 1 || 0w−(|M|+1 mod w) s.t. ∀i, 0 ≤ i ≤ t : |mi| = w
4: d0, · · · , dP−1, x0, · · · , xH−1, r ← 0, · · · , 0
5: /* Message processing */
6: for i = 0 to n do
7: 〈d, x, r〉 ← round(〈d, x, r〉 , mi)
8: end for
9: /* Finalisation */

10: 〈d, x, r〉 ← round(〈d, x, r〉 , uintw(|M |))
11: for i = 1 to H do
12: 〈d, x, r〉 ← round(〈d, x, r〉 , 0)
13: end for
14: /* Output */
15: for i = 0 to h/w − 1 do
16: 〈d, x, r〉 ← round(〈d, x, r〉 , 0)
17: oi ← d0

18: end for
19: return o0 || · · · || oh/w−1

20: end function

Fig. 1. The EnRUPT Hash Function

Then, in the message processing phase (lines 5–8), the round function is called
once for each w-bit padded message word mi. Each call to the round function
updates the internal state 〈d, x, r〉. A detailed description of the EnRUPT round
function is given in the next section, Sect. 2.2.

After all message words have been processed, a finalisation is performed
(lines 9–13). The EnRUPT round function is called once with the length of the
(unpadded) message, represented as a w-bit unsigned integer. Then, H blank
rounds, i.e., calls to the round function with a zero message word input, are
performed.

Finally, in the output phase (lines 14–18), the message digest is generated
one w-bit word at a time. The EnRUPT round function is called h/w times and,
after each call, the content of the ‘delta accumulator’ d0 is output.

2.2 The EnRUPT Round Function

The EnRUPT round function is based entirely on a number of simple operations
on words of w bits, such as bit shifts, bit rotations, exclusive OR and addition
modulo 2w. Figure 2 gives a description of the EnRUPT round function in pseu-
docode. The round function consists of s · P identical steps, where s and P are
parameters of the hash function. As indicated in Table 1, s = 4 and P = 2 for all
seven proposed EnRUPT variants. Thus, the EnRUPT round function consists
of eight steps.

In each step, several words of the state are selected (lines 4–7) and combined
into an intermediate value f (lines 9–10). Note that line 10 could equally be



Practical Collisions for EnRUPT 249

1: function round (〈d, x, r〉 , m)
2: for i = 0 to s · P − 1 do /* An iteration of this loop is a “step” */
3: /* Compute indices */
4: α ← r + (i + 1 mod P ) mod H
5: β ← r + i + 2P mod H
6: γ ← r + i + P mod H
7: ξ ← r + i mod H
8: /* Compute intermediate f */
9: e ← ((xα 	 1) ⊕ xβ ⊕ di mod P ⊕ uintw(r + i)) ≫ w/4

10: f ← (e 	 3) � e /* Multiplication with 9 modulo 2w */
11: /* Update state */
12: xγ ← xγ ⊕ f
13: di mod P ← di mod P ⊕ xξ ⊕ f
14: end for
15: r ← r + s · P
16: dP−1 ← dP−1 ⊕ m /* Message word injection */
17: return 〈d, x, r〉
18: end function

Fig. 2. The EnRUPT Round Function

described as a multiplication with 9 modulo 2w. The intermediate value f is
then used to update one state word, xγ , and one ‘delta accumulator’, di mod P

(lines 12–13).
After all steps have been performed, the round counter is incremented by

the number of steps that were carried out, i.e., s · P (line 15). Finally, the
input message word m is injected into one word of the internal state, the ‘delta
accumulator’ dP−1 (line 16).

3 Basic Attack Strategy

This section gives an overview of the linearisation method for finding collision
differential characteristics for a hash function, which we use to attack EnRUPT
in this work. This method was introduced by Chabaud and Joux [2], who applied
it to SHA-0 and simplified variants thereof. Later, it was extended further and
applied to SHA-1 by Rijmen and Oswald [9].

A Linear Hash Function. Consider a hypothetical hash function that consists
only of linear operations over GF(2). When the input messages are restricted
to a certain length, each output bit can be written as an affine function of the
input bits. The difference in each output bit is given by a linear function of the
differences in the input bits, as the constants (if any) cancel. A message difference
that leads to a collision can be found by equating the output differences to zero,
and solving the resulting system of linear equations over GF(2), for instance
using Gauss elimination. Any pair of messages with this difference will result in
a collision.
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Linearising a Nonlinear Hash Function. Actual cryptographic hash functions
contain (also) nonlinear components, so this method no longer applies. However,
we may still be able to approximate the nonlinear components by linear ones and
construct a linear approximation of the entire hash function. For our purpose,
a good linear approximation λ(x) of a nonlinear function γ(x) is such that its
differential behaviour is close to that of γ(x). More formally, the equation

γ(x ⊕ Δ) ⊕ γ(x) = λ(x ⊕ Δ) ⊕ λ(x) = λ(Δ) (1)

should hold for a relatively large fraction of values x. For instance, an addition
modulo 2w could be approximated by a simple XOR operation, i.e., ignoring the
carries.

Finding Collisions. A differential characteristic consists of a message difference
and a list of the differences in all (relevant) intermediate values. For the linear
approximation, it is easy to find a differential characteristic that leads to a
collision with probability one. But for the actual hash function, this probability
will be (much) lower.

If the differential behaviour of all the nonlinear components corresponds to
that of the linear approximations they were replaced with, i.e., if (1) holds si-
multaneously for each nonlinear component, we say that the differential charac-
teristic is followed. In this case, the message pair under consideration will not
only collide for the linearised hash function, but also for the original, nonlinear
hash function. Such a message pair is called a conforming message pair.

Hence, a procedure for finding a collision for the nonlinear hash function
could be to find a differential characteristic leading to collisions for a linearised
variant of the hash function. Then, a message pair conforming to the differential
characteristic is searched. In order to lower the complexity of the attack, it
is important to maximise the probability that the differential characteristic is
followed, i.e., we need to find a good differential characteristic.

4 Linearising EnRUPT

We now apply this general strategy to EnRUPT. Recall the description of the
EnRUPT round function in Fig. 2. Note that only the modular addition in line 10
is not linear over GF(2). Indeed, the computation of the indices in lines 4–7 and
the update of the round counter in line 15 do not depend on the message being
hashed and can thus be precomputed. The same holds for the inclusion of the
round counter in line 9, i.e., this can be seen as an XOR with a constant. The
other operations are all linear over GF(2).

Replacing the modular addition in line 10 with an XOR operation yields a
linearised round function, which we refer to as the EnRUPT-L round function.
The EnRUPT-L hash function, i.e., the hash function built on this linearised
round function, also consists solely of GF(2)-linear components.
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5 The Collision Search

During the collision search phase, many collisions for EnRUPT-L are constructed,
and a collision for EnRUPT is searched among them. Since only the modular ad-
ditions (line 10 of Fig. 2) were approximated by XOR, these are the only places
where the propagation of differences could differ between EnRUPT-L and En-
RUPT. Instead of checking for a collision at the output, we can immediately check
if the difference at the output of each modular addition, i.e., the difference Δf in
the intermediate value f , still matches the differential characteristic.

5.1 An Observation on EnRUPT

We now make an important observation on the structure of the EnRUPT hash
function. It is possible to find a conforming message pair for a given differential
characteristic one round at a time.

Consider the message word mi, which is injected into the ‘delta accumulator’
dP−1 at the end of round i. In the first (P − 1) steps of the next round, dP−1
is not used, so mi can not influence the behaviour of the modular additions in
these steps. Starting from the P -th step of round (i + 1), however, mi does have
an influence.

We can search for a value for mi such that the differential characteristic is
followed up to and including the first (P − 1) steps of round (i + 2). Starting
with the P -th step of round (i+2), the next message word, mi+1 also influences
the modular additions. Thus, we can keep mi fixed, and use the new freedom
available in mi+1 to ensure the differential characteristic is also followed for the
next s · P steps.

This drastically reduces the expected number of trials required to find a colli-
sion. Let pi denote the probability that the differential characteristic is followed
in a block of s ·P consecutive steps, starting at the P -th step of a round. Because
we can construct a conforming message pair one word at a time, the expected
number of trials is

∑
i 1/pi rather than

∏
i 1/pi. In other words, the complexities

associated with each block of s · P steps should be added together, rather than
multiplied. This possibility was ignored in the security analysis of EnRUPT [5],
leading to the wrong conclusion that attacks based on linearisation do not apply.

5.2 Accelerating the Collision Search

An simple optimisation can be made to the collision search, which will allow us to
ignore the probability associated with one step in each round. This optimisation
is analogous to Wang’s ‘single message modification’, which was first introduced
in the context of MD5 [11].

Consider the P -th step of a round. In this step, the ‘delta accumulator’ dP−1,
to which a new message word m was XORed at the end of the previous round,
is used for the first time. More precisely, it is used in line 9 of Fig. 2 to compute
the intermediate value e. Note however that these computations can be inverted.
We can choose the value of e, and compute backwards to find what the message
word m should be to arrive at this value of e.
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The values of e which ensure that the difference propagation of the modular
addition in line 10 of Fig. 2 corresponds to that of its linear approximation can
be efficiently enumerated. Thus, rather than randomly picking values for m, we
can efficiently sample good values for e in this step, and compute backwards to
find the corresponding m. This ensures that the first modular addition affected
by a message word m will always exhibit the desired propagation of differences.
Thus, the P -th step of every round can be ignored in the estimation of the
complexity of the attack.

6 Finding Good Differential Characteristics

The key to lowering the attack complexity is to find a good differential charac-
teristic, i.e., a characteristic which is likely to be followed for the nonlinear hash
function. A general approach to this problem, based on finding low weight code-
words in a linear code, was proposed by Rijmen and Oswald [9] and extended
by Pramstaller et al. in [8]. In this section, we show how to apply this approach
to EnRUPT.

6.1 Coding Theory

As observed by Rijmen and Oswald [9], all of the differential characteristics
leading to a collision for the linearised hash function can be seen as the codewords
of a linear code.

Consider the EnRUPT-L hash function with a h-bit output length, and the
message input restricted to messages of t message words. Since it is linear over
GF(2), it is possible to express the difference in the output as a linear function
of the difference in the input message m:

[Δo]1×h = [Δm]1×tw · [O]tw×h . (2)

As the modular additions, or rather the multiplications with 9, in the EnRUPT
round function are approximated, we are also interested in the differences that
enter each of these operations. For EnRUPT restricted to t message blocks,
there are t · s · P such operations in total. Hence, we can combine the input
differences to these operations in a 1× tsPw bit vector Δe. Again, for the linear
approximation, Δe is simply a linear function of the message difference Δm:

[Δe]1×tsPw = [Δm]1×tw · [E]tw×tsPw . (3)

Putting this together results in a linear code described by the following generator
matrix

G =
[
Itw×tw Etw×tsPw Otw×h

]
. (4)

Each codeword contains a message difference, the input differences to all approx-
imated modular additions, and finally the output difference.

Thus, each codeword is in fact a differential characteristic for EnRUPT-L,
and all differential characteristics for EnRUPT-L are codewords of this code. To
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restrict ourselves to collision differentials, i.e., differential characteristicss ending
in a zero output difference, we can use Gauss elimination to force the h rightmost
columns of the generator matrix G to zero.

It is well known that the differential behaviour of modular addition can be
approximated by that of XOR when the Hamming weight of the input difference,
ignoring the most significant bit, is small [2,3,8,9]. As the input differences to the
modular additions are part of the codewords, we will attempt to find a codeword
with a low Hamming weight in this part of the codeword.

6.2 Low Weight Codewords

To find low weight codewords, we used a simple and straightforward algorithm
that is based on the assumption that a codeword of very low weight exists in
the code. For our purposes, this is a reasonable assumption, as only a very
low weight codeword will lead to an attack faster than a generic attack. The
algorithm is related to the algorithm of Canteaut and Chabaud [1] and the al-
gorithm used to find low weight codewords for linearised SHA-1 by Pramstaller
et al. [8].

Let G be the generator matrix of the linear code as in (4). We randomly
select a set I of (appropriate) columns of the generator matrix G and force
them to zero using Gauss elimination, until only d rows remain, where d is
a parameter of the algorithm. Then, the remaining space of 2d codewords is
searched exhaustively. This procedure is repeated until a codeword of sufficiently
low weight is encountered. By replacing only the ‘oldest’ column(s) in I, instead
of restarting from the beginning every time, the algorithm can be implemented
efficiently in practice.

If a codeword of very low weight exists in the code, it is likely that all of
the columns in the randomly constructed set I will coincide with zeroes in the
codeword, which implies that the codeword will be found in the exhaustive search
phase. In the case of the codes originating from the seven linearised EnRUPT
variants we consider, this algorithm finds a codeword of very low weight in a
matter of minutes on a PC. Repeated runs of the algorithm always find the
same codewords, so it is reasonable to assume that these are indeed the best
codewords we can find.

6.3 Estimating the Attack Complexity

Actually, the weight of a codeword is only a heuristic for the attack complexity
resulting from the corresponding differential. Codewords with a lower weight are
expected to result in a lower attack complexity, but we can easily enhance our
algorithm to optimise the actual attack complexity, rather than just a crude
heuristic.

The Differential Probability. The probability that a differential characteristic is
followed, is determined by the differences that are input to each of the multipli-
cations with 9 (line 10 in Fig. 2) that were approximated using XOR operations.
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Denote by DP×9(Δ) the probability that the propagation of differences through
this nonlinear operation coincides with that of its linear approximation:

DP×9(Δ) = Pr
x

[
(x × 9) ⊕ ((x ⊕ Δ) × 9) = Δ ⊕ (Δ 	 3)

]
. (5)

The differential probability of modular addition was studied by Lipmaa and
Moriai [3]. Applying their results to this situation, and taking into account that
the three least significant bits of (x 	 3) are always zero, we find the following
estimate for DP×9(Δ):

DP×9(Δ) ≈ 2
−wt

((
Δ∨(Δ�3)

)
∧0111···111000b

)
. (6)

Even though this estimate ignores the dependency between x and (x 	 3), this
confirms the intuition that a difference Δ with a low Hamming weight (ignoring
the most significant bit and the three least significant bits) results in a large
probability DP×9(Δ). We used this as a heuristic to find a good differential
characteristic: we want to minimise the Hamming weight of the relevant parts of
the differences that are input to the modular additions. In other words, we want
to find a low weight codeword of the aforementioned linear code, where only the
bits that impact DP×9(Δ) are counted.

Exact Computation of the Differential Probability. Computing the exact value of
DP×9(Δ) for any given difference Δ can be done by counting all the values x for
which the differences propagation is as predicted by the linear approximation.
This can be done efficiently as the modular addition can be represented com-
pactly as a trellis, where each path through the trellis corresponds to a ‘good’
value of x. Using a slight variant of the Viterbi algorithm [10], the number of
paths in the trellis can be counted efficiently. While this is very useful for evalu-
ating the attack complexity, it lacks the clear intuition we can gather from (6).

Computing the Attack Complexity. Let pr,i be the differential probability asso-
ciated with the modular addition in step i of round r of the differential char-
acteristic. Recall the observation made in Sect. 5.1, i.e., finding a conforming
message pair can be done one round at a time, or rather one message word at a
time, as this does not coincide precisely with the round boundaries. Taking this
into account, the complexity of finding the j-th word of a conforming message
pair can thus be computed as

Cj =

(
sP−1∏

i=P−1

1
pj+1,i

)(
P−2∏
i=0

1
pj+2,i

)
. (7)

Due to the acceleration technique presented in Sect. 5.2, we are guaranteed that
the differential behaviour of the modular addition in step P −1 of each round will
be as desired. Thus, we can set pP−1 = 1. With the default EnRUPT parameters
(P = 2 and s = 4, see Table 1), this then becomes

Cj =
1

pj+1,2
· 1
pj+1,3

· 1
pj+1,4

· 1
pj+1,5

· 1
pj+1,6

· 1
pj+1,7

· 1
pj+2,0

. (8)
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Finally, as was explained in Sect. 5.1, note that each message word can be found
independent of the previous ones, due to the newly available degrees of freedom in
each message word. Hence, the overall attack complexity can simply be computed
as the sum of these round complexities:

Ctot =
t∑

j=0

Cj . (9)

Note that, given a differential characteristic, it is easy to compute the associated
attack complexity. Hence, when searching for a good differential characteristic
using the algorithm described in Sect. 6.2, we can use the actual attack com-
plexity instead of the weight of the codeword. The algorithm still implicitly uses
the weight of a codeword as a heuristic, but now attempts to optimise the actual
attack complexity directly.

7 Results and Discussion

We constructed differential characteristics for each of the seven EnRUPT vari-
ants in the EnRUPT SHA-3 proposal [5]. Table 2 lists the attack complexity
and the length of the best characteristic we found for each variant. Recall that
we fixed the length of the characteristic a priori. Note however that nothing
prevents our search algorithm from proposing a shorter characteristic, padded
with rounds without any difference, which we also observed in practice. We ex-
perimented with (much) longer maximum characteristic lengths, but found no
better long characteristics.

The time complexities vary from 236 to 240 round computations, depending on
the EnRUPT variant, which is remarkable. It means that the collision resistance
in absolute terms of each of these EnRUPT variants is more or less the same,
regardless of the digest length. Relative to the expected collision resistance of
approximately 2n/2 for an n-bit hash function, however, the (relative) collision

Table 2. Summary of our attacks. Only the best attack is listed for each EnRUPT
variant

EnRUPT estimated length of
variant time complexity collision differential

[EnRUPT rounds] [message words]
EnRUPT-128 236.04 6
EnRUPT-160 237.78 7
EnRUPT-192 238.33 8
EnRUPT-224 237.02 6
EnRUPT-256 237.02 6
EnRUPT-384 239.63 8
EnRUPT-512 238.46 10
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Table 3. Our Differential Characteristic for EnRUPT-256

Round Step Δe → Δf DP×9 totals

inject message word difference Δm−1 = 0000000008000000x

0 0 0000000000000000x → 0000000000000000x 2−0.00 2−0.00

1 0000000000000800x → 0000000000004800x �

2 9000000000000000x → 1000000000000000x 2−0.85

3 4800000000000800x → 0800000000004800x 2−3.70

4 9000000000000000x → 1000000000000000x 2−0.85

5 4800280000000800x → 0801680000004800x 2−7.28

6 90000002d0000000x → 1000001450000000x 2−6.43

7 0000280168000800x → 0001680a28004800x 2−11.02

inject message word difference Δm0 = 0000002280000000x

1 0 90000002d0000000x → 1000001450000000x 2−6.43 2−36.56

1 0000280168000000x → 0001680a28000000x �

2 90000002d0000000x → 1000001450000000x 2−6.43

3 4800280000000000x → 0801680000000000x 2−5.43

4 90000002d0000000x → 1000001450000000x 2−6.43

5 0000080000000000x → 0000480000000000x 2−1.85

6 9000000240000000x → 1000001040000000x 2−3.70

7 4800080120000000x → 0800480820000000x 2−6.54

inject message word difference Δm1 = 0000002288000000x

2 0 9000000240000000x → 1000001040000000x 2−3.70 2−34.08

1 0000080048000000x → 0000480208000000x �

2 9000000240000000x → 1000001040000000x 2−3.70

3 4800080168000000x → 0800480a28000000x 2−9.28

4 9000000240000000x → 1000001040000000x 2−3.70

5 0000200000000000x → 0001200000000000x 2−1.85

6 9000000000000000x → 1000000000000000x 2−0.85

7 4800200000000000x → 0801200000000000x 2−3.70

inject message word difference Δm2 = 0000000208000000x

3 0 9000000000000000x → 1000000000000000x 2−0.85 2−23.91

1 0000280120000000x → 0001680820000000x �

2 9000000090000000x → 1000000410000000x 2−3.70

3 4800280168000000x → 0801680a28000000x 2−11.02

4 9000000090000000x → 1000000410000000x 2−3.70

5 0000080048000000x → 0000480208000000x 2−4.70

6 9000000090000000x → 1000000410000000x 2−3.70

7 4800080000000000x → 0800480000000000x 2−3.70

inject message word difference Δm3 = 0000000200000000x

4 0 9000000090000000x → 1000000410000000x 2−3.70 2−34.19

1 0000080000000800x → 0000480000004800x �

2 0000000000000000x → 0000000000000000x 2−0.00

3 0000080000000800x → 0000480000004800x 2−3.70

4 0000000000000000x → 0000000000000000x 2−0.00

5 4800080048000800x → 0800480208004800x 2−8.39

6 0000000000000000x → 0000000000000000x 2−0.00

7 4800080048000800x → 0800480208004800x 2−8.39

inject message word difference Δm4 = 0000000200000000x

5 0 0000000000000000x → 0000000000000000x 2−0.00 2−20.49

1 0000000000000000x → 0000000000000000x �

...
... →

...
...

7 0000000000000000x → 0000000000000000x 2−0.00 2−0.00
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resistance of EnRUPT is much lower for the variants with a longer digest length
than for those with a shorter digest length.

As an example, Table 3 lists our differential characteristic for EnRUPT-256
with an associated attack complexity of 237 EnRUPT round computations. Each
line in the table corresponds to one step of the EnRUPT round function. The
difference in the input (Δe) and the output (Δf) of the modular addition in
that step is indicated. Also, the message word differences are shown at the end
of each round. The table also includes the differential probabilities of each step,
which were used to compute the attack complexity. A star (‘�’) indicates that
the differential probability can be ignored in that step because of the technique
presented in Sect. 5.2. The product of the step probabilities is given for eight
consecutive steps. Note that these do not coincide with the rounds, as was dis-
cussed in Sect. 6.3. A collision example for EnRUPT-256, obtained using this
characteristic, is given in Table 4.

Table 4. A Collision Example for EnRUPT-256

M 13x c8x 4bx 45x 62x 70x 17x 6ex

04x f9x 31x 7ex c3x 6cx e7x d3x

e1x 21x 78x 6ax 34x 74x 11x 19x

7fx 64x a3x c9x 40x 07x 75x 76x

a1x 4fx 90x 86x fdx c7x 33x 4ax

41x 3ax 76x 91x 96x 06x 2cx a1x.
M ′ 13x c8x 4bx 45x 6ax 70x 17x 6ex

04x f9x 31x 5cx 43x 6cx e7x d3x

e1x 21x 78x 48x bcx 74x 11x 19x

7fx 64x a3x cbx 48x 07x 75x 76x

a1x 4fx 90x 84x fdx c7x 33x 4ax

41x 3ax 76x 93x 96x 06x 2cx a1x.
EnRUPT-256(M) = bdx 67x 51x 7cx a6x c0x 41x 20x

EnRUPT-256(M ′) = 82x e0x 3bx 74x 5fx fcx 4ax 64x

e9x f0x 92x c2x 58x c3x 98x b8x

44x 9ax fex cbx 7fx c8x 6fx 72x.

Discussion. In response to these collision attacks, the designers of EnRUPT
proposed to double the s parameter to 8, or to increase it even further to be
equal to the H-parameter, see Table 1 [6,7]. As a consequence of this, the number
of steps between two message word injections is at least doubled. Experiments
with these EnRUPT variants indicate that this tweak seems to be effective at
stopping the attacks described in this paper. For EnRUPT-256 with s = 6, we
were still able to find a differential with an associated attack complexity of about
2110 EnRUPT rounds, which is still below the birthday bound. For higher values
of the s parameter, all the differential characteristics we could find would result
in attack complexities that are far beyond than the birthday bound, and thus
should not be considered to be real attacks.
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Note that the failure of this heuristic attack method for s = 8 or s = H does
not preclude the possibility of attacks based on linearisation. Our experiments
only show that it is unlikely that the particular attack method used in this work
can be applied directly to EnRUPT with s ≥ 8.

8 Conclusion

We presented collision attacks on all seven variants of the EnRUPT hash func-
tion [5] that were proposed as candidates to the NIST SHA-3 competition [4].
The attacks require negligible memory and have time complexities ranging from
236 to 240 EnRUPT round computations, depending on the EnRUPT variant.
The practicality of the attacks has been demonstrated with an example collision
for EnRUPT-256.
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Abstract. In this work, we propose the rebound attack, a new tool for
the cryptanalysis of hash functions. The idea of the rebound attack is
to use the available degrees of freedom in a collision attack to efficiently
bypass the low probability parts of a differential trail. The rebound at-
tack consists of an inbound phase with a match-in-the-middle part to
exploit the available degrees of freedom, and a subsequent probabilistic
outbound phase. Especially on AES based hash functions, the rebound
attack leads to new attacks for a surprisingly high number of rounds.

We use the rebound attack to construct collisions for 4.5 rounds of the
512-bit hash function Whirlpool with a complexity of 2120 compression
function evaluations and negligible memory requirements. The attack can
be extended to a near-collision on 7.5 rounds of the compression function
of Whirlpool and 8.5 rounds of the similar hash function Maelstrom. Ad-
ditionally, we apply the rebound attack to the SHA-3 submission Grøstl,
which leads to an attack on 6 rounds of the Grøstl-256 compression func-
tion with a complexity of 2120 and memory requirements of about 264.

Keywords: Whirlpool, Grøstl, Maelstrom, hash function, collision
attack, near-collision.

1 Introduction

In the last few years the cryptanalysis of hash functions has become an important
topic within the cryptographic community. Especially the attacks and tools for
the MD4 family of hash functions (e.g. MD5, SHA-1) have reduced the security
provided by these commonly used hash functions [2, 3,4,24,26,27]. Most of the
existing cryptanalytic work has been published for this particular line of hash
function design. In the NIST SHA-3 competition [19], whose aim is to find an
alternative hash function to SHA-2, many new hash function designs have been
proposed. This is the most recent and most prominent case showing that it is
very important to have tools available to analyze other design variants as well.
Our work contributes to this toolbox.

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 260–276, 2009.
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1.1 Preview of Results

Our main result is the introduction of a technique for hash function cryptanal-
ysis, which we call the rebound attack. We apply it to both block cipher based
and permutation based constructions. In the rebound attack, we consider the
internal cipher of a hash or compression function as three sub-ciphers. Let E
be a block cipher, then E = Efw ◦ Ein ◦ Ebw. Alternatively, for a permutation
based construction, we decompose a permutation P into three sub-permutations
P = Pfw ◦ Pin ◦ Pbw.

Fig. 1. A schematic view of the rebound attack. The attack consists of an inbound and
two outbound phases.

The rebound attack can be described by two phases (see Fig. 1):

– Inbound phase: Is a meet-in-the-middle phase in Ein (or Pin), which is
aided by the degrees of freedom that are available to a hash function crypt-
analyst. We term the combination of meet-in-the-middle technique and ex-
ploitation of degrees of freedom leading to very efficient matches match-in-
the-middle approach.

– Outbound phase: In this second phase, we use truncated differentials in
both forward- and backward direction through Efw and Ebw (or Pfw and
Pbw) to obtain desired collisions or near-collisions. If the truncated differ-
entials have a low probability in Efw and Ebw, we can repeat the inbound
phase to obtained more starting points for the outbound phase.

We apply the rebound attack on several concrete hash functions where the ap-
plication on Whirlpool is probably the most relevant. Whirlpool is the only hash
function standardized by ISO/IEC 10118-3:2003 (since 2000) that does not fol-
low the MD4 design strategy. Furthermore, Whirlpool has been evaluated and
approved by NESSIE [20]. Whirlpool is commonly considered to be a conser-
vative block-cipher based design with an extremely conservative key schedule.
The employed wide-trail design strategy [5] makes the application of differential
and linear attacks seemingly impossible. No cryptanalytic results on the hash
function Whirlpool have been published since its proposal 8 years ago.

Offsprings of Whirlpool are Maelstrom and to some extent several SHA-3
candidates, including Grøstl. The results of the attack on these hash functions
are summarized in Table 1. For the types of attacks, we adopt the notation
of [15].
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Table 1. Summary of results of the attacks on reduced hash functions Whirlpool,
Grøstl-256 and Maelstrom. The full versions have 10 rounds each. All attacks, except
the attacks on Grøstl-256, have negligible memory requirements.

hash rounds computational memory type sectionfunction complexity requirements

Whirlpool
4.5 2120 216 collision 3
5.5 2120 216 semi-free-start collision 3
7.5 2128 216 semi-free-start near-collision 3

Grøstl-256 6 2120 264 semi-free-start collision 4

Maelstrom 6.5 2120 216 free-start collision A
8.5 2128 216 free-start near-collision A

1.2 Related Work

The rebound attack can be seen to have ancestors from various lines of research,
often related to block ciphers:

– Firstly, differential cryptanalysis of block cipher based hash functions. Rij-
men and Preneel [23] describe collision attacks on 15 out of 16 rounds on
hash functions using DES. For the case of Whirlpool, there is an observation
on the internal block cipher W by Knudsen [13]. Khovratovich et al. [11]
studied collision search for AES-based hash functions.

– Secondly, inside-out techniques. As an application of second order differential
attacks, inside-out techniques in block-cipher cryptanalysis were pioneered
by Wagner in the Boomerang attack [25].

– Thirdly, truncated differentials. In the applications of the rebound technique,
we used truncated differentials in the outbound parts. Knudsen [12] proposed
truncated differentials as a tool in block cipher cryptanalysis, which recently
have been applied to the hash function proposal Grindahl [14] by Peyrin [21].

1.3 Outline of the Paper

In the following section, we start with a description of the attacked hash func-
tions. For the sake of presentation and concreteness, we immediately apply the
rebound attack to the hash function Whirlpool in Sect. 3. In Sect. 4, we apply
the rebound attack on Grøstl. The application of the attack to Maelstrom is
postponed to App. A. We conclude in Sect. 5.

2 Description of the Hash Functions

In this section we give a short description of the hash functions to be analyzed
in the remainder of this paper. We describe the hash function Whirlpool first,
and continue with the description of the hash function Grøstl.
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2.1 The Whirlpool Hash Function

Whirlpool is a cryptographic hash function designed by Barreto and Rijmen
in 2000 [1]. It is an iterative hash function that processes 512-bit input mes-
sage blocks with compression functions and produces a 512-bit hash value. The
Whirlpool compression function basically consists of two parts: the key schedule
and the state update transformation. The underlying block cipher W operates
in the Miyaguchi-Preneel mode [17] as shown in Fig. 2. A detailed description
of the hash function is given in [1].

Fig. 2. A schematic view of the Whirlpool compression function. The block cipher W
is used in Miyaguchi-Preneel mode.

The 512-bit block cipher W uses a 512-bit key and is similar to the Advanced
Encryption Standard (AES) [18]. Both the state update transformation and the
key schedule of W update an 8 × 8 state S of 64 bytes in 10 rounds each. The
round transformations are very similar to the AES round transformations and
are briefly described here:

– the non-linear layer SubBytes (SB) applies an S-Box to each byte of the state
independently

– the cyclical permutation ShiftColumns (SC) rotates the bytes of column j
downwards by j positions

– the linear diffusion layer MixRows (MR) multiplies the state by a constant
matrix

– the key addition AddRoundKey (AK) adds the round key and/or the round
constants cr (AC) of the key schedule

In each round, the state is updated by round transformation ri as follows:

ri ≡ AK ◦ MR ◦ SC ◦ SB.
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In the remainder of this paper, we will use the outline of Fig. 3 for one round.
We denote the resulting state of round transformation ri by Si and the interme-
diate states after SubBytes by S′

i, after ShiftColums by S′′
i and after MixRows

by S′′′
i . The initial state prior to the first round is denoted by S0.

Fig. 3. One round ri of the Whirlpool compression function with 8×8 states Si−1, S′
i,

S′′
i , S′′′

i , Si and round key input Ki

After the last round of the state update transformation, the initial value or
previous chaining value Ht−1 = S0, the message block Mt, and the output value
of the last round S10 are XORed, resulting in the final output of the Whirlpool
compression function, Ht = Ht−1 ⊕ Mt ⊕ S10.

2.2 The Grøstl Hash Function

Grøstl was proposed by Gauravaram et al. as a candidate for the SHA-3 com-
petition [9], initiated by the National Institute of Standards and Technology
(NIST). Grøstl is an iterated hash function with a compression function built
from two distinct permutations (see Fig. 4). Grøstl is a wide-pipe design with
proofs for the collision and preimage resistance of the compression function [8].

Fig. 4. The compression function of Grøstl. P and Q are 2n-bit permutations for an
n-bit hash value.
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The two permutations P and Q are constructed using the wide trail design
strategy and borrow components from the AES. The design of the two permu-
tations is very similar to the block cipher W used in Whirlpool instantiated
with a fixed key input. Both permutations update an 8 × 8 state of 64 bytes in
10 rounds each. The round transformations are very similar to the AES round
transformations and are briefly described here:

– AddRoundConstant (AC) adds different one-byte round constants to the
8 × 8 states of P and Q

– the non-linear layer SubBytes (SB) applies the AES S-Box to each byte of
the state independently

– the cyclical permutation ShiftBytes (ShB) rotates the bytes of row j left by
j positions

– the linear diffusion layer MixBytes (MB) multiplies the state by a constant
matrix

In each round, the state is updated by round transformation ri as follows:

ri ≡ MB ◦ ShB ◦ SB ◦ AC

3 Rebound Attack on Whirlpool

In this section, we present details of the rebound attacks applied to the hash
function Whirlpool. First, we will give an overview of the attack strategy which
is the basis for the attacks on 4.5, 5.5 and 7.5 rounds. The main idea of the
attacks is to use a 4-round differential trail [6], which has the following sequence
of active S-boxes: 1 → 8 → 64 → 8 → 1. Note that the differential probability in
each round is proportional to the number of active S-boxes. Using the Rebound
Attack we can cover the most expensive middle part using an efficient match-
in-the-middle approach (inbound phase). In the outbound phase, the trail is
extended and the two ends of the trail are linked using the feed-forward of the
hash function.

3.1 Attack Overview

The core of the attack is a 4 round trail of the form 1 → 8 → 64 → 8 → 1. This
trail has the minimum number of active S-boxes and has the best differential
probability according to the wide trail design strategy. In the rebound attack,
we first split the block cipher W into three sub-ciphers W = Efw ◦ Ein ◦ Ebw ,
such that most expensive part of the differential trail is covered by the efficient
inbound phase Ein. Then, the outbound phase (Efw , Ebw) has a relatively low
probability and can be fulfilled in a probabilistic way:

Ebw = SC ◦ SB ◦ AK ◦ MR ◦ SC ◦ SB

Ein = MR ◦ SC ◦ SB ◦ AK ◦ MR

Efw = AK ◦ MR ◦ SC ◦ SB ◦ AK

The two phases of the rebound attack consists of basically four steps:



266 F. Mendel et al.

– Inbound phase
Step 1: start with 8-byte truncated differences at the MixRows layer of

round r2 and r3, and propagate forward and backward to the S-box
layer of round r3.

Step 2: connect the input and output of the S-boxes of round r3 to form
the three middle states 8 → 64 → 8 of the trail.

– Outbound phase
Step 3: extend the trail both forward and backward to give the trail 1 →

8 → 64 → 8 → 1 through MixRows in a probabilistic way.
Step 4: link the beginning and the end of the trail using the feed-forward

of the hash function.

If the differences in the first and last step are identical, they cancel each other
through the feed-forward. The result is a collision of the round-reduced com-
pression function of Whirlpool. See Fig. 5 for an overview of the attack.

Fig. 5. A schematic view of the attack on 4 rounds of Whirlpool with round key inputs
and feed-forward. Black state bytes are active.

3.2 Collision Attack for 4.5 Rounds

The collision attack on 4.5 rounds of Whirlpool is the starting point for all
subsequent attacks. If the differences in the message words are the same as in
the output of the state update transformation, the differences cancel each other
through the feed-forward. In other words, we will construct a fixed-point (in
terms of differences) for the block cipher in the state update. The outline of the
attack is shown in Fig. 5 and the sequence of truncated differences has the form:

1 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 1 r4.5−−→ 1

In the following, we analyze the 4 steps of the attack in detail.

Precomputation. In the match-in-the-middle part (Step 2) we need to find a
differential match for the SubBytes layer. In a precomputation step, we compute
a 256 × 256 lookup table for each S-box differential (input/output XOR differ-
ence table). Note that only about 1/2 of all S-box differentials exist. For each
possible S-box differential, there are at least two (different) values such that the
differential holds. A detailed description of the distribution of S-box differentials
is given in App. B.
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Step 1. We start the attack by choosing a random difference with 8 active
bytes of state S′′

2 prior to the MixRows layer of round r2. Note that all active
bytes have to be in the diagonal of state S′′

2 (see Fig. 5). Then, the differences
propagate forward to a full active state at the input of the next SubBytes layer
(state S2) with a probability of 1. Next, we start with another difference and
8 active bytes in state S′′′

3 after the MixRows transformation of round r3 and
propagate backwards. Again, the diagonal shape ensures that we get a full active
state at the output of SubBytes of round r3.

Step 2. In Step 2, the match-in-the-middle step, we look for a matching in-
put/output difference of the SubBytes layer of round r3 using the precomputed
S-box differential table. Since we can find a match with a probability of 1/2 for
each byte, we can find a differential for the whole active SubBytes layer with a
probability of about 2−64. Hence, after repeating Step 1 of the attack about 264

times, we expect to find a SubBytes differential for the whole state. Since we get
at least two state values for each S-box match, we get about 264 starting points
for the outbound phase. Note that these 264 starting points can be constructed
with a total complexity of about 264. In other words, the average computational
cost of each match-in-the-middle step is essentially the respective computation
of the round transformations.

Step 3. In the outbound phase, we further extend the differential path backward
and forward. By propagating the matching differences and state values through
the next SubBytes layer, we get a truncated differential in 8 active bytes for
each direction. Next, the truncated differentials need to follow a specific active
byte pattern. In the case of the 4 round Whirlpool attack, the truncated dif-
ferentials need to propagate from 8 to one active byte through the MixRows
transformation, both in the backward and forward direction.

The propagation of truncated differentials through the MixRows transforma-
tion is modelled in a probabilistic way. The transition from 8 active bytes to
one active byte through the MixRows transformation has a probability of about
2−56 (see App. C). Note that we require a specific position of the single active
byte to find a match in the feed-forward (Step 4). Since we need to fulfill one
8 → 1 transitions in the backward and forward direction, the probability of the
outbound phase is 2−2·56 = 2−112. In other words, we have to repeat the inbound
phase about 2112 times to generate 2112 starting points for the outbound phase
of the attack.

Step 4. To construct a collision at the output of this 4 round compression
function, the exact value of the input and output difference has to match. Since
only one byte is active, this can be fulfilled with a probability of 2−8. Hence, the
complexity to find a collision for 4 rounds of Whirlpool is 2112+8 = 2120. Note
that we can add half of a round (SB,SC) at the end for free, since we are only
interested in the number of active bytes. Remember that we can construct up to
2128 starting points in the inbound phase of the attack, hence we have enough
degrees of freedom for the attack. Note that the values of the key schedule are not
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influenced. Hence, the attack works with the standard IV and we can construct
collisions for 4.5 rounds of the hash function of Whirlpool.

3.3 Semi-Free-Start Collision Attack for 5.5 Rounds

We can extend the collision attack on 4.5 rounds to a semi-free-start collision
attack on 5.5 rounds of Whirlpool. The idea is to add another full active state
in the middle of the trail. We use the additional degrees of freedom of the key
schedule to fulfill the difference propagation through two full active S-box trans-
formations. Note that the outbound part of the attack stays the same and the
new sequence of active S-boxes is:

1 r1−→ 8 r2−→ 64 r3−→ 64 r4−→ 8 r5−→ 1 r5 5−−→ 1

Fig. 6. In the attack on 5.5 rounds we first choose random values of the state S′
4 to

propagate backwards (Step 2a) and then, use the degrees of freedom from the key
schedule to solve the difference propagation of the S-box in round r3 (Step 2b).

Step 1. Figure 6 shows the inbound part of the attack in detail. Again, we can
choose from up to 264 initial differences with 8 active bytes at state S′′

2 and S′′′
4

each, and linearly propagate forward to S2 and backward to S′
4 until we hit the

first S-box layer. Then, we need to find a matching SubBytes differential of two
consecutive S-box layers in the match-in-the-middle phase.

Step 2. To pass the S-box of round r4 in the backward direction, we choose one
of 2512 possible values for state S′

4. This also determines the input values and
differences of the SubBytes layer (state S3). Then, we propagate the difference
further back to state S′

3, which is the output of the S-box in round r3. The 512
degrees of freedom of the key schedule input K3 between the two S-boxes allow
us to still assign arbitrary values to the state S′

3. Hence, the correct difference
propagation of the S-box in round r3 can be fulfilled by using these additional
degrees of freedom to choose the state S′

3 as well. The complexity of the attack
does not change and is determined by the 2120 trials of the outbound phase.

The outbound phase (Step 3 and Step 4) of the 5.5 round attack is equivalent
to the 4.5 round case. However, we cannot choose the round keys, and hence the
chaining values, anymore since they are determined by the difference propagation
of the S-box of round r3. Therefore, this 5.5 round attack is only a semi-free-start
collision attack on the hash function of Whirlpool.
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3.4 Semi-Free-Start Near-Collision Attack for 7.5 Rounds

The collision attack on 5.5 rounds can be further extended by adding one round
at the beginning and one round and at the end of the trail (see Fig. 7). The
result is a semi-free-start near-collision attack on 7.5 rounds of the hash function
Whirlpool with the following number of active S-boxes:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 64 r5−→ 8 r6−→ 1 r7−→ 8 r7.5−−→ 8

Since the inbound phase (Step 1 and Step 2) is identical to the attack on 5.5
rounds, we only discuss the outbound phase (Step 3 and Step 4) here.

Fig. 7. In the attack on 7.5 rounds we extend the trail by one more round at the
beginning and 1.5 rounds at the end to get a semi-free-start near-collision of Whirlpool

Step 3. The 1-byte difference at the beginning and end of the 4 round trail
will always result in 8 active bytes after one MixRows transformation. Hence,
we can go backward one round and forward 1.5 rounds with no additional costs.
We add a half round at the end to get a similar pattern of 8 active S-boxes due
to the ShiftColumns transformation. Note that we cannot get an exact match of
active S-boxes and get therefore only a semi-free-start near-collision.

Step 4. Using the feed-forward, the position of two active S-boxes match and
cancel each other with a probability of 2−16. Hence, the total complexity of
our semi-free-start near-collision is about 2112+16 = 2128. Note that the generic
(birthday) complexity of a near-collision on 52 bytes is 2

52·8
2 = 2208.

4 Rebound Attack on Grøstl

In this section, we extend the attack on Whirlpool to the SHA-3 proposal Grøstl.
Although the hash function is built from similar components as Whirlpool, the
attack does not apply equally well. The available degrees of freedom of the
second permutation cannot be used in the attack on the first permutation as in
Whirlpool. Note that we can still apply the attack on 4.5 rounds of Whirlpool to
the compression function of Grøstl-256 and get the same complexity of about
2120.
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4.1 Semi-Free-Start Collision for 5 Rounds

We can improve the Rebound Attack on Grøstl-256 by using differences in the
second permutation as well. In the attack on 5 rounds, we use the following
differential trail for both permutations:

8 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 8 r5−→ 64

By using an equivalent differential trail in the second permutation one can find
a collision for the compression function of Grøstl-256 reduced to 5 rounds with
a complexity of 264, see Fig. 8.

Fig. 8. Attack on Grøstl-256 reduced to 5 rounds using two equivalent trails in both
permutations P and Q

For each permutation, we can find 264 inputs following this differential with a
complexity of about 264 and negligible memory requirements, see Sect. 3. Hence,
the differential trail holds with probability 1 on average in both P and Q. In order
to get a semi-free-start collision of Grøstl-256 reduced to 5 rounds, we require
that the differences at the output of round 5 are equal. Since the MixBytes
transformation is linear it is sufficient that the differences before MixBytes in
round 5 are equal. Furthermore, to prevent that the feed-forward destroys the
collision again, we do not allow any differences in H . Hence, all differences are
due to differences in the message M and we require these differences at the input
of round 1 to be equal as well.

For the attack to work, differences in 16 bytes need to be equal. A straight-
forward implementing of the attack would result in a complexity of about 2128.
However, the complexity can be significantly reduced by applying a meet-in-
the-middle attack. In detail, by generating 264 differential trails for P and 264

differential trails for Q we expect to find a matching input and output. This
results in a semi-free-start collision for Grøstl-256 reduced to 5 rounds. The
attack has a total complexity of about 264 evaluations of P and Q and memory
requirement of 264. Note that the memory requirements of the attack can be sig-
nificantly reduced by memory less variants of the meet-in-the-middle attack [22].
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4.2 Semi-Free-Start Collision for 6 Rounds

The attack can be extended to 6 rounds using an extended differential trail for
P and Q, see Fig. 9. For this attack, we use a trail with the following sequence
of active bytes:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 8 r5−→ 8 r6−→ 64

Note that this trail holds with a probability of 2−56 on average. Hence, we can
find a collision for the compression function of Grøstl-256 reduced to 6 rounds
with a complexity of about 256+64 = 2120, and memory requirements of 264 to
match the beginning and end of each trail. In contrast to the attack on 5 rounds,
we do not see how the connection of the two permutations can be implemented
in a memory-less way.

Fig. 9. Attack on Grøstl-256 reduced to 6 rounds using two equivalent trails in both
permutations P and Q

Note that we could add a half round (ShB,MB) in the beginning of Grøstl-
256, similar to the end of the trail. However, we only consider variants by re-
ducing rounds at the end of the compression function. Trying to attack more
rounds of the Grøstl-256 compression function quickly does not leave enough
degrees of freedom to succeed, or results in a computational complexity above
2128, which is above the security claims of the designers.

5 Conclusion and Open Problems

In this paper, we propose a new tool for the toolbox of hash function crypt-
analysts: The rebound attack. We have successfully attacked 7.5 rounds of the
Whirlpool compression function, 6 rounds of the Grøstl-256 compression
function, and 8.5 rounds of the Maelstrom compression function (App. A).

The idea in these attacks is to use the available degrees of freedom in a collision
attack to efficiently bypass the devastating effects of the wide-trail design strat-
egy on differential-style attacks for a feasible number of rounds. More degrees
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of freedom (like the increased key-size in the Maelstrom block cipher) makes
equation solving (and hence the match-in-the-middle step) easier and allows to
cover even more rounds.

Most AES-based SHA-3 candidates are natural candidates for applications of
the rebound attack. To this end, we can refer to preliminary results which break
Twister-512 [16]1.

The idea seems applicable to a wider range of hash function constructions. For
the outbound part of the rebound attack we used truncated differentials in all
our examples. However, the rebound technique does not constrain the property
used in the outbound part. It would be interesting to see if other non-random
properties (e.g., correlations or algebraic relations) could also be used with the
rebound attack.
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A Rebound Attack on Maelstrom

In this section, we apply the attack of Whirlpool to Maelstrom.

A.1 Description of the Hash Function

Maelstrom [7] is a hash function very similar to Whirlpool. It has a simpler key
schedule, works on 1024-bit message blocks and uses the Davies-Meyer mode
instead of Miyaguchi-Preneel. The internal block cipher of Maelstrom works
on 512-bit blocks with a 1024-bit key schedule. The additional 512 degrees of
freedom in the key schedule can be used to attack one more round (up to 8.5
rounds) of the compression function of Maelstrom.

A.2 Attack on 8.5 Rounds

Since Maelstrom uses the Davies-Meyer mode, we can only get a free-start col-
lision for the hash function. However, the additional degrees of freedom of the
key schedule allow us to add another round in the inbound part. The sequence
of active S-boxes for the 8.5 round attack on Maelstrom is then:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 64 r5−→ 64 r6−→ 8 r7−→ 1 r8−→ 8 r8.5−−→ 8 (1)

The extension is essentially the same as for the 7.5 round attack on Whirlpool.
We add another state with 64 active bytes in the middle of the trail. This
means, that we now have to fulfill the difference propagation of three S-box
layers with 64 active bytes each. Same as in Sect. 3.3, we can fulfill one S-box
propagation using the 512 degrees of freedom of the state itself. Since the sec-
ond S-box difference propagation uses only 512 degrees of freedom from the
key schedule, there are another 512 degrees of freedom left to fulfill the dif-
ference propagation of the third S-box. The complexity of the attack does not
change and is 2128 for the 512-bit hash function Maelstrom. Furthermore, the
semi-free-start collision attack on 5.5 rounds of Whirlpool can be extended to
a 6.5 rounds free-start collision attack of Maelstrom with the same complexity
of 2120.

Fig. 10. In the attack on Maelstrom we use the additional degrees of freedom of the
key schedule to pass three S-box layers (Step 2a,2b,2c)
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B Probability and Conditions of S-Box Differentials

In this section we analyze differentials of the Whirlpool and AES S-boxes in
detail. For a fixed differential (Δa, Δb) with Δa = x ⊕ y and Δb = S(x) ⊕
S(y), we get the probability P (Δb = S(Δa)) ∼ 1/2. This can be verified by
enumerating through all 256 × 256 input/output pairs (x, y) and (S(x), S(y)).
Table 2 gives a distribution of possible S-box differentials for the Whirlpool and
AES S-boxes [10]. Note that for each possible S-box differential, we get at least
the two symmetric values (x, y) and (y, x). In the case of Whirlpool, we get
for a small fraction of differentials even 8 possible pairs. This corresponds to the
maximum probability distribution of the Whirlpool S-box, which is 8·2−8 = 2−5.

Table 2. The number of differentials and possible pairs (x, y) for the Whirlpool and
AES S-boxes. The first row shows the number of impossible differentials and the last
row corresponds to the zero differential.

# (x, y) Whirlpool AES
0 39655 33150
2 20018 32130
4 5043 255
6 740 -
8 79 -

256 1 1

C Propagation of Truncated Differentials in MixRows
and MixBytes

Since the MixRows operation is a linear transformation, standard differences
propagate through MixRows in a deterministic way. The propagation only de-
pends on the values of the differences and is independent of the actual value of
the state. In case of truncated differences only the position, but not the value of
the difference is determined. Therefore, the propagation of truncated differences
through MixRows can only be modelled in a probabilistic way. Note that the
MixBytes operation of Grøstl has the same properties as MixRows.

The MDS property of the MixRows transformation ensures that the sum of the
number of active input and output bytes is at least 9. Hence, a non-zero truncated
difference with one active byte will propagate to a truncated difference with 8
active bytes with a probability of 1. On the other hand, a truncated difference
with 8 active bytes can result in a truncated difference with one to 8 active bytes
after MixRows. However, the probability of a 8 → 1 transition with predefined
positions is only 2−7·8 = 2−56 since we require 7 out of 8 truncated differences to
be zero. Table 3 is similar to the table of [21] and shows the probabilities for all
81 cases with a fixed position of truncated differences. Note that the probability
of any x → 8 transition (1 −∑7

i=1 P (x → i) ∼ 2−0.0017) is approximated by 1
in this paper. Note that the probability only depends on the direction of the
propagation of truncated differences.
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Table 3. Approximate probabilities for the propagation of truncated differences
through MixRows with predefined positions. Di denotes the number of active bytes
at the input and Do the number of active bytes at the output of MixRows. Probabili-
ties are base 2 logarithms.

Do \ Di 0 1 2 3 4 5 6 7 8

0 0 × × × × × × × ×
1 × × × × × × × × −56
2 × × × × × × × −48 −48
3 × × × × × × −40 −40 −40
4 × × × × × −32 −32 −32 −32
5 × × × × −24 −24 −24 −24 −24
6 × × × −16 −16 −16 −16 −16 −16
7 × × −8 −8 −8 −8 −8 −8 −8
8 × 0 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017
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Abstract. Since almost two decades, the block cipher IDEA has resisted
an exceptional number of cryptanalysis attempts. At the time of writ-
ing, the best published attack works against 6 out of the 8.5 rounds (in
the non-related-key attacks model), employs almost the whole codebook,
and improves the complexity of an exhaustive key search by a factor of
only two. In a parallel way, Lipmaa demonstrated that IDEA can benefit
from SIMD (Single Instruction, Multiple Data) instructions on high-end
CPUs, resulting in very fast implementations. The aim of this paper is
two-fold: first, we describe a parallel, time-constant implementation of
eight instances of IDEA able to encrypt in counter mode at a speed of
5.42 cycles/byte on an Intel Core2 processor. This is comparable to the
fastest stream ciphers and notably faster than the best known implemen-
tations of most block ciphers on the same processor. Second, we propose
the design of a new block cipher, named WIDEA, leveraging on IDEA’s
outstanding security-performance ratio. We furthermore propose a new
key-schedule algorithm in replacement of completely linear IDEA’s one,
and we show that it is possible to build a compression function able to
process data at a speed of 5.98 cycles/byte. A significant property of
WIDEA is that it closely follows the security rationales defined by Lai
and Massey in 1990, hence inheriting all the cryptanalysis done the past
15 years in a very natural way.

Keywords: IDEA block cipher, WIDEA compression function, Intel
Core2 CPU, wordslice implementation.

1 Introduction

Finding the proper balance between security and speed has always been a non-
trivial challenge for designers of block ciphers and hash functions. One possibility
consists in using low-footprint arithmetical operations, like simple Boolean oper-
ators (usually AND, OR or XOR), table lookups or modular additions, to build
a rather fast round function. Since the strength of such round function is usu-
ally low in cryptographic terms, one is forced to iterate it a sufficient number
of times to get a proper security level. Another approach consists in using more
complicated arithmetical operations, like multiplications, for instance. The in-
herent larger cryptographic strength of such operations naturally comes with a
slower speed.

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 277–295, 2009.
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AES [15,37] is maybe one of the most elegant balance between efficiency and
security for a 128-bit block size. By using quite strong diffusion and confusion
elements in a design having a high internal parallelism, Daemen and Rijmen have
obtained a very fast cipher while keeping a reasonable security margin. However,
as a matter of fact, it is interesting to note that several designs of hash functions
submitted to the NIST SHA3 competition (e.g., Skein [19] and MD6 [41]) have
deliberately chosen to use much simpler operations to build a “light” round and
to iterate this round function a large number of times. This approach is preferred
by some designers because it allows low-footprint hardware implementations as
well as an easier cryptanalysis.

The IDEA block cipher [27, 26] was designed in the beginning of the 90’s
with the following philosophy in mind: mix three different and algebraically
incompatible operations. As a result, a rather strong round function is iterated no
more than 8 times to build a cipher with an outstanding security record: almost
20 years after its design, no faster attack than an exhaustive key search is known
against its full flavor, despite a very intense cryptanalysis activity resulting in
more than a dozen of academic papers discussing its security. However, as of
today, IDEA has more been known for its security than for its speed, even if some
fast implementations have been proposed by Lipmaa [29], exploiting the Intel
MMX instruction set. Furthermore, it is well-known that the implementation of
the so-called IDEA multiplication is rather delicate and, if not done properly, is
prone to timing attacks [23].

Related Work. How to increase the block size of IDEA has been studied
by Nakahara and co-authors: they proposed the MESH ciphers [36], which are
ciphers relying on the same operations than in IDEA, but having block sizes of
up to 128 bits as well as a stronger key-schedule algorithm. Other variants of
MESH ciphers, targeting 8-bit microcontrollers, were described in [32], always
exploiting the same philosophy but this times with operations working on 8-bit
variables.

Our Contributions. Attacking the common belief that IDEA is rather a slow
cipher, we show that, by properly exploiting modern instruction sets, it is one
of the fastest block ciphers available on the market on the x86 and x86-64
architectures, beating AES by a large margin, and resulting in a formidable
security-speed ratio supported by almost 20 years of unsuccessful cryptanalysis.
In this paper, we revisit the IDEA philosophy (iterating only a modest number
of times a relatively strong round function) at the light of the latest multimedia
instruction sets SSE, SSE2 and SSE3 which are available today in virtually every
PC. Our contributions are double fold: first, we exhibit a so-called wordslice im-
plementation of eight parallel instances of IDEA able to encrypt in counter mode
at a speed of 5.42 clock cycles per byte, according to the eSTREAM benchmark-
ing framework, on an Intel Core21 CPU. Our implementation is notably more
than 30% faster than the fastest known implementation of AES [22], measured

1 Precisely, the CPU belongs to family 6, model 23, stepping 6.
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at 7.81 cycles/byte on the same CPU, while it is able to handle as few as 64
bytes of data, compared to the 128 bytes of the implementation of Käsper and
Schwabe. For the sake of completeness, we note that the fastest standard (i.e.,
non-bitslice) implementation of AES has been recently reported to encrypt at
a rate of 10.57 cycles/byte on an Intel Core2 CPU [2]. Additionally, our imple-
mentation does not suffer from cache attacks [1, 39], is completely branch-free,
and is therefore time-constant.

Our second contribution is the design of a new block cipher family named
WIDEA. It relies on n parallel instances of IDEA mixed using a high-quality
diffusion element. We discuss the rationales behind our design, its security and
concretely specify the WIDEA-8 instance that operates on 512-bit data blocks.
By applying the Davies-Meyer mode of operation, we turn WIDEA-8 into a
compression function capable of processing data at 5.98 cycles/byte on the same
Intel Core2 CPU.

2 The IDEA Block Cipher

In this section, we first recall the specifications of IDEA and we discuss the
available literature dedicated to its security.

2.1 Overview of the Cipher

The IDEA block cipher handles 64-bit blocks of data under a 128-bit key. It
consists of 8 identical rounds (Fig. 1 illustrates one round), each parametered by
a 96-bit subkey, followed by a final key-whitening layer, often named half round.
The r-th round transforms a 64-bit data input interpreted as a vector of four
16-bit words (X(r)

0 , X
(r)
1 , X

(r)
2 , X

(r)
3 ) to an output vector (Y (r)

0 , Y
(r)
1 , Y

(r)
2 , Y

(r)
3 )

having a similar shape. This process is keyed by six 16-bit subkeys denoted
Z

(r)
j with 0 ≤ j ≤ 5 derived from the 128-bit master key according to a rather

simple, bit-selecting (and therefore completely linear) key-schedule (see Fig. 2).
The strength of IDEA is certainly due to an elegant design approach which
consists in mixing three algebraically incompatible group operations: the ad-
dition over GF(216), denoted ⊕, the addition over Z216 , denoted �, and the
multiplication over Z∗

216+1, denoted �, where 0 represents the value 216. Round
r is defined by the following operations: one first computes two intermediate
values

α(r) =
(
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0 � Z
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(
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These two values form the input of the multiplication-addition box (MA-box)
which results in

δ(r) =
((

α(r) � Z
(r)
4

)
� β(r)

)
� Z

(r)
5 and γ(r) =

(
α(r) � Z

(r)
4

)
� δ(r).
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Fig. 1. Round r of IDEA

The output of i-th round is then obtained through
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After the 8-th round, a final key-whitening layer is applied:

Y
(9)
0 = X
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0 , Y
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1 , Y
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2 = X
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2 and Y
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3 .

2.2 Cryptanalysis of IDEA

Designed to offer resistance to differential cryptanalysis [10], the IDEA block
cipher has been subject to a very intense scrutiny by the cryptologic community
since its publication in 1990. This is probably due to the fact that, at the time of
writing, the best attack ever designed against IDEA in a classical scenario is able
to break only 6 out of the 8.5 rounds at a 2126.8 computational cost: breaking
the full version of IDEA might be considered by certain cryptanalysts as a kind
of “Holy Grail”. We now make a review of the available literature dedicated to
the cryptanalysis of IDEA.
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Round i Z
(i)
1 Z

(i)
2 Z

(i)
3 Z

(i)
4 Z

(i)
5 Z

(i)
6

1 Z[0...15] Z[16...31] Z[32...47] Z[48...63] Z[64...79] Z[80...95]

2 Z[96...111] Z[112...127] Z[25...40] Z[41...56] Z[57...72] Z[73...88]

3 Z[89...104] Z[105...120] Z[121...8] Z[9...24] Z[50...65] Z[66...81]

4 Z[82...97] Z[98...113] Z[114...1] Z[2...17] Z[18...33] Z[34...49]

5 Z[75...90] Z[91...106] Z[107...122] Z[123...10] Z[11...26] Z[27...42]

6 Z[43...58] Z[59...74] Z[100...115] Z[116...3] Z[4...19] Z[20...35]

7 Z[36...51] Z[52...67] Z[68...83] Z[84...99] Z[125...12] Z[13...28]

8 Z[29...44] Z[45...60] Z[61...76] Z[77...92] Z[93...108] Z[109...124]

9 Z[22...37] Z[38...53] Z[54...69] Z[70...85]

Fig. 2. Complete key-schedule of IDEA. Z[0..15] denotes the bits 0 to 15 (inclusive) of
Z, Z[117..4] means the bits 117-127 and 0-4 of Z, and the leftmost bit of Z has the
index 0

Classical Attacks. Differential cryptanalysis [10] has been one of the first
technique to be tried against IDEA by Meier [31] to break up to 2.5 rounds faster
than an exhaustive search. Borst et al. [12] were able to break using a differential-
linear attack and 3.5 rounds using truncated differentials. Biham et al. [5] used
impossible differentials to break 4.5 rounds. Another approach to break IDEA,
based on integral attacks, has been proposed by Nakahara et al. [33] against 2.5
rounds. The approach has first been pushed to 4 rounds by Demirci [17], and
then to 5 rounds by Demirci et al. [18] in combination with meet-in-the-middle
techniques. Inspired by a work of Nakahara et al. [35], Junod [21] presented
several efficient attacks mixing the Biryukov-Demirci relation and square attacks
against up to 3.5 rounds. More recently, Biham et al. [7] described a linear attack
on 5-round IDEA improving the complexity of [18]. The same authors presented
the first attack against 6 rounds in [8] employing almost the whole codebook
and having a computational complexity of 2126.8 operations.

In the related-key setting, an attack against 6.5 rounds was proposed by Bi-
ham et al. in [6], 7.5 rounds were reached by the same authors in [8] and recently,
an attack working against 4r-round IDEA for any r has been described in [9].

Side-Channel Attacks. A few attacks exploiting side-channel information po-
tentially leaked by implementations of IDEA have been published so far. A
practical timing attack against key-dependent implementations of the IDEA
multiplication has been described by Kelsey et al. [23]. Lemke et al. [28] have
discussed the application of DPA-oriented techniques to attack implementations
of IDEA on an 8-bit microcontroller, while Clavier et al. [14] have considered
fault attacks. Protection methods have also been studied in [38].

Simplified IDEA Variants. Some authors have also attacked simplified ver-
sions of IDEA. For instance, Borisov et al. [11] have replaced all the � operations
by ⊕ ones, except for the two in the output transformation. The authors showed
that for one key out of 216, there exists a multiplicative differential characteristic
over eight rounds that holds with probability 2−32. Raddum [40] considered at



282 P. Junod and M. Macchetti

the light of differential cryptanalysis another version, called IDEA-X/2, where
only half of the �’s in one round are changed to ⊕ operations, namely the �’s
where Z

(r)
2 and Z

(r)
3 are inserted, while the MA-structure is left unchanged.

3 A Wordslice IDEA Implementation

Given the fact that IDEA does not contain S-boxes and it uses only 16-bit arith-
metical operations, it is particularly suited to be optimized on those processor
architectures that include SIMD multimedia extensions; nowadays practically ev-
ery PC is built around the x86-64 architecture, which supports these features via
the SSEx instruction sets. Moreover, this trend is also significantly showing up
in the context of embedded systems, see for instance the ARC VRaptorTM mul-
ticore architecture, the ARM NEONTM technology and the new Intel AtomTM

and VIA NanoTM processors.
Previous work [29] by Lipmaa has shown that a 4.35× increase in speed is

achievable on Pentium processors that support the MMX instruction set. We
now push the approach further, showing that IDEA can be very conveniently
implemented on all those processors that implement the SSE2 instruction set,
leading to encryption speed records; we also show that the multiplication modulo
216 + 1 can easily be implemented in a time-constant way, thanks to the SSE2
packed-word comparison instructions. We think that our results wipe away two
common misconceptions about the IDEA block cipher, once and for all: that it is
slow and difficult to secure against timing attacks [23]. On the contrary, we show
that IDEA is probably one of the fastest block cipher on current microprocessor
architectures, and it is completely immune to both timing attacks and cache
attacks [1, 39].

The SSE2 instruction set defines 144 instructions that operate on 128-bit
words; the SSE2 integer arithmetic instructions operate on packed data, i.e.
each 128-bit operand is seen as a vector of 8, 16, 32 or 64-bit words. Since IDEA
is natively operating on 16-bit variables, it is clearly possible to write SSE2 code
that carries out eight IDEA encryptions in parallel; we call this implementation
wordslice, as bitslice implementations [3, 30] would similarly work at bit level
on 128 IDEA encryptions in parallel. The main advantage of wordslice imple-
mentations over bitslice is that to reach significant speedups it is not necessary
to operate on huge amount of data, and that the orthogonalization process is
straightforward.

Since the multiplication is clearly the most complex operation in the IDEA
cipher, and the most critical regarding timing analysis, it deserves special care.
The piece of code of Fig. 3, written using SSE2 intrinsics, is an implementation of
the wordslice IDEA multiplication; it contains 11 pseudo-instructions, requires
a space of four 128-bit registers and performs eight IDEA multiplications in par-
allel. It leverages on the unsigned multiplication instruction _mm_mulhi_epu16 ,
whose functionality is not available in the MMX instruction set, and the compar-
ison instruction _mm_cmpeq_epi16, which essentially allows it to be branch-free
(and thus time-constant).
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1 t = _mm_add_epi16 (a, b); /* t = (a + b) & 0xFFFF; */

2 c = _mm_mullo_epi16 (a, b); /* c = (a * b) & 0xFFFF; */

3 a = _mm_mulhi_epu16 (a, b); /* a = (a * b) >> 16; */

4 b = _mm_subs_epu16 (c, a); /* b = (c - a); */

/* if (b & 0x80000000) b = 0; */

5 b = _mm_cmpeq_epi16 (b, XMM_0); /* if (b == 0) b = 0xFFFF; */

/* else b = 0; */

6 b = _mm_srli_epi16 (b, 15); /* b = b >> 15; */

7 c = _mm_sub_epi16 (c, a); /* c = (c - a) & 0xFFFF; */

8 a = _mm_cmpeq_epi16 (c, XMM_0); /* if (c == 0) a = 0xFFFF; */

/* else a = 0; */

9 c = _mm_add_epi16 (c, b); /* c = (c + b) & 0xFFFF; */

10 t = _mm_and_si128 (t, a); /* t = t & a; */

11 c = _mm_sub_epi16 (c, t); /* c = (c - t) & 0xFFFF; */

Fig. 3. Eight parallel IDEA multiplications using the SSE2 instruction set

The two operands are initially contained in the a and b variables. The t and
c variables are used as temporary storage and c contains the final result (the
initial values of a and b are not preserved through the computation); XMM_0
is the 128-bit zero string. The algorithm takes inspiration from known effi-
cient implementations [29,4], but eliminates any need of comparison or branch
point. The main idea behind it is that the two values that would be returned
whether a · b = 0 or not are calculated in parallel; the final choice is deter-
mined by the value of a mask, the value of a at line 8, which is also derived
from the input data. The algorithm also uses the fact that the upper and the
lower 16 bits of a · b are equal if and only if at least one of the operands is
0; this property was never observed before and can be easily checked with an
exhaustive simulation. For the sake of clarity, a line-equivalent (but obviously
inefficient) C implementation that performs one IDEA multiplication using un-
signed integer 32-bit variables is also given. The rest of the wordslice IDEA
algorithm can be implemented with packed unsigned 16-bit additions and 128-
bit XORs; this part is quite straightforward to derive and will not be shown
here.

After having written a complete implementation based on the SSE2 instruc-
tion set, we have proceeded to the performance tests to assess the speed level
of this code. It is surely interesting to test the encryption speed in ECB mode,
with pre-calculated round keys, as this gives an indication of the raw speed that
can be reached. However, by running the word-slice IDEA in counter mode one
can also obtain a quite efficient stream cipher. We have thus implemented some
simple routines to realize a branch-free SSE2 implementation of the counter
mode of operation, and obtained a stream cipher with 48-bit IV and 128-bit
key.

Both codes have been compiled with the Intel compiler; speed has been
measured by executing the function a high number of times and taking the
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average time spent by the processor. We have also integrated our code in the
eSTREAM [13] benchmarking framework and found that the figures differ by
no more than 1% with regards to the ones we obtained. The result is that plain
ECB encryption runs on an Intel Core2 processor at 5.55 cycles per byte, while
counter mode keystream generation runs at 5.42 cycles2 per byte.

We think that the reached level of security vs. speed trade-off justifies addi-
tional research effort; the IDEA cipher appears as an extremely good building
block to realize other cryptographic primitives that may be used to implement
authenticated encryption and hash functions. As a first step, we proceed in the
next Section with the definition of the WIDEA block cipher family.

4 The WIDEA Block Cipher Family

In this section, we first describe the rationales behind the WIDEA cipher family
design, then we make short, preliminary cryptanalysis of our proposal, followed
by a discussion on implementation issues and performance results.

4.1 Design Rationale

We now show how a computational skeleton composed of n IDEA instances
computed in parallel can be transformed in a natural and efficient way into a
(n · 64)-bit block cipher. Basically, we need to define a minimal modification
that provides diffusion over the new block size; the term minimal bears several
meanings here:

– The modification must require minimal computational overhead.
– The modification must alter the skeleton in the least noticeable way, in

particular it must not affect the achieved degree of parallelism and it must
be elegant.

– The modification must follow and enforce all original IDEA design criteria.

The first problem is to define the way in which we provide full diffusion within
one round; MDS matrices over GF(2n) are regarded as an optimal and efficient
way to solve the problem [42], and have been extensively used in well-known
constructions [16, 15]: since the IDEA structure naturally operates on 16-bit
words, we choose MDS matrices over GF(216) as our diffusion primitive. A second
problem is to identify the location in the IDEA round function to insert the
diffusion block. The MA-box is an interesting place for two main reasons: it is
already used to provide diffusion in the IDEA round function and it does not
contain XOR operations. There are four arcs connecting the four operations
inside the IDEA MA-box, but only a diffusion block inserted into the right arc

2 It is noteworthy that a code with more instructions takes less time to execute. This
fact is most likely due to micro-architectural optimizations automatically performed
by the compiler. In other words, putting less stress on the pipeline sometimes allows
a better scheduling of the micro-operations.
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z5,0
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Fig. 4. The first round of WIDEA-n

would guarantee that full diffusion is still achieved. We therefore modify the n-
way IDEA structure as shown in Fig. 4. The third dimension is used to represent
the fact that n instances of IDEA can independently be computed and are tied
together by the application of the MDS matrix.

The IDEA design criteria are effectively enforced; more specifically:

1. Full diffusion in the new block cipher is still obtained in one round, i.e. every
round output bit depends on all n · 64 input bits.

2. Every operation is still preceeded and followed by operations defined over
algebraically incompatible groups.

3. No dependence on arbitrary constants is introduced, the only choices being
limited to the irreducible polynomial that defines the algebraic structure of
GF(216) and the coefficients of the n×n MDS matrix that can be chosen in
order to minimize the number of operations.

We call the new core of the round function MAD-box (standing for Multiply-Add-
Diffuse) and we refer to the global (n ·64)-bit construction as WIDEA (the name
providing enough hints for a ”wide” block IDEA cipher); the particular members
of the family obtained by fixing the value of n are identified as WIDEA-n.
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Compared with AES-like constructions operating on wide blocks (such as the
W block cipher instanced in the Whirlpool hash function [20]), the WIDEA
structure needs only one eighth of total MDS applications, thus keeping the
computational cost of diffusion quite small. Variants with n = 4 (256-bit) and
n = 8 (512-bit) block sizes are easily defined for instance by taking the same MDS
matrices used in the AES and in the W ciphers, but defined over GF(216). These
ciphers are very useful, as they can be used to build compression functions for
256-bit and 512-bit hash functions (this scenario also justifies the huge key sizes);
as a reference, a complete specification of WIDEA-8 is given in the Appendix.

As we believe the new structure is not deviating substantially from IDEA, we
think that it is not possible to exploit the bigger block size to mount attacks
based on incomplete diffusion (such as integral attacks [24]) against more rounds
than in IDEA, due to the fact that full diffusion is again obtained after one round.
For this reason we keep the number of rounds of WIDEA at 8.5.

Instead, we focus our improvement effort on the key-schedule algorithm, which
is significantly changed in order to remove the problem of weak keys and to render
attacks that exploit the controllability of the key input more difficult. This is
a valid scenario for related-key attacks and in case the block cipher is used to
build a compression function (and a hash function). As in IDEA, we keep the
key size equal to (2n · 64)-bit (twice the block size), accepting the fact that not
all key material can be used to key each round. However, to compensate for this
we define a new key scheduling algorithm based on a non-linear feedback shift
register, similarly to what is done in the MESH block ciphers [36]; we introduce
non-linearity, diffusion and diversification in the WIDEA key scheduling, but
always in a way to preserve the n-way parallelism already achieved in the cipher
round function.

We denote with Zi, 0 ≤ i ≤ 51, the subkeys that are used in the 8.5 rounds of
WIDEA-n; note that due to the n-way parallelism each subkey has a size of n ·16
bits (thus each subkey Zi can be split into the n slices zi,0 . . . zi,n). Moreover,
denoting with Ki, 0 ≤ i ≤ 7, the 8 words that represent the WIDEA master key,
the new key scheduling algorithm is defined by the following equations:

Zi = Ki 0 ≤ i ≤ 7

Zi = ((((Zi−1 ⊕ Zi−8)
16
� Zi−5)

16
≪ 5) ≪ 24)⊕ C i

8−1 8 ≤ i ≤ 51, 8 | i

Zi = ((((Zi−1 ⊕ Zi−8)
16
� Zi−5)

16
≪ 5) ≪ 24) 8 ≤ i ≤ 51, 8 � i

The symbols and the notation are explained more formally in the Appendix.
Rotation by 5 bit positions is independently carried out on each 16-bit slice of Zi,
as suggested by the superscript; rotation by 24 bit positions (3 byte positions) is
instead carried out globally on each n · 16 bits word. The values of the constants
C0 ÷ C5, that are injected every 8 iterations, should vary with the particular
instance of the cipher.

The key scheduling is designed in a way such that it can be computed using
a shift register of eight n · 16-bit words and the same 16-bit arithmetical and
logical operations used in the round function; the two rotation operations have
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been chosen as a practical and simple way to mix information between the n slices
of the key schedule algorithm. Note that the byte level rotation is completely
transparent in the context of 8-bit implementations. One could also think of
fixing n = 1, basically obtaining IDEA with a strengthened key schedule, or
n = 2 obtaining a cipher operating on the same block and key sizes as AES.

4.2 Preliminary Security Analysis

The fact that WIDEA is heavily based on the IDEA construction implies that
all related cryptanalytic results may apply in a quite natural way, and therefore
should be taken into consideration. We start this brief discussion by pointing out
that considerable effort has been spent to strengthen the key-schedule part, as
indicated above. Non-linearity is added by mixing XORs with integer addition,
and different constants are injected every 8 iterations; thanks to this, it is very
difficult to exploit repetitive patterns in the subkeys, or to find long sequences of
subkeys characterized by low Hamming weight. We have verified with software
simulations that thanks to the diffusion provided by the bit-level and byte-level
rotations, coupled with integer additions, every bit of key material used starting
from round 4 (non-linearly) depends on all the 1024 bits of the master key. For
these reasons we expect that no weak keys can be found for WIDEA, and that
the related-key attacks against IDEA cannot be transposed to WIDEA.

Regarding the classical attack scenarios, one may question if attacks can be
based on the fact that the round function of WIDEA-n is based on n parallel
instances of IDEA. Actually, the effect of the MDS diffusion matrix is to keep
at 8 the number of full diffusions applied in the encryption process; to make a
comparison, the AES block cipher applies a total of 5 to 7 full diffusions, de-
pending on the key size. Recent proposals of big and efficient block ciphers, such
as Threefish [19], are also quite conservatively designed to implement 7 or 8 full
diffusions, depending on the digest size. Due to this property we do not expect
that integral attacks, differential or linear attacks constitute a bigger threat for
WIDEA than for IDEA. Obviously, independent cryptanalysis is needed to verify
our claims, and we encourage further research in this direction.

4.3 WIDEA-8 Implementation Results

WIDEA-8 is certainly the most interesting member of the cipher family, since
it can efficiently be computed using the XMM registers available in the x86-64
architecture3. The coding of WIDEA naturally takes advantage of the optimiza-
tions discussed in §3; the same code is used to perform the wordslice IDEA
multiplications. Concerning the MDS matrix multiplication, we show how to
perform a wordslice GF(216) multiplication times 2 (this is equivalent to the

3 We note that in the future it may be possible to implement efficiently a WIDEA-16
instance, as Intel is planning to introduce in future micro-architectures the YMM
registers, characterized by a size of 256 bits (however, only floating point instructions
are planned so far for such operand size).
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AES xtime operation [37]). We use the _mm_cmpeq_epi16 instruction to gener-
ate a polynomial mask to be XORed to the left-shifted input basing on the value
of the MSB of each 16-bit slice of the input. The code using SSE intrinsics is
given in Fig. 5; it contains 5 pseudo instructions.

1 b = _mm_and_si128 (a, XMM_0x8000);

2 a = _mm_slli_epi16 (a, 1);

3 b = _mm_cmpeq_epi16 (b, XMM_0x8000);

4 b = _mm_and_si128 (b, XMM_POLY);

5 a = _mm_xor_si128 (a, b);

Fig. 5. The wordslice Xtime operation

The initial and final values are stored in a, while b is used as temporary
storage; XMM_0x8000 is a vector of eight 16-bit words with only the MSB set
to 1 and XMM_POLY contains eight instances of the polynomial reduction mask.
This xtime operation is used to compute the MDS matrix multiplication; the
total number of xtime operations is determined by the maximum degree of the
elements in the MDS matrix (this is equal to three for WIDEA-8). We also
exploit the fact that the MDS matrix is circulant to optimize the number of
computational steps; since this technique is highly dependent on the entries of
the MDS matrix, it will not be discussed here.

Regarding the key-schedule algorithm, the operations are quite elementary
and do not deserve special mention. The Intel SSE2 instruction set can be used
to implement it easily using a bank of 9 XMM registers (8 to store the state
of the non-linear feedback shift register plus one for temporary storage); if the
SSE3 instruction set is supported by the target processor, which is the case of
all Core2 CPUs, the _mm_shuffle_epi8 byte shuffling instruction can be used
in place of shift instructions to implement the byte-level rotation.

The WIDEA-8 cipher has been implemented by hand in Intel assembly lan-
guage; this is done to exploit as much as possible the bank of XMM registers, as
their number is increased from 8 to 16 when the code is executed in 64-bit mode. In
this case it is possible to compute the key scheduling algorithm on-the-fly during
encryption. Quite amazingly, in only one point in the code the space provided by
the XMM register bank is not sufficient, and we need to save a variable in the cache
memory; thus our optimized WIDEA code is almost completely acting solely on
the processor register bank, and in a completely time-constant way.

Having on-the-fly key-scheduling is important because we want to test the
speed of WIDEA-8 in the cases when it is used to build a compression function
using the Davies-Meyer construction. From our experiments, we have determined
that such compression function is able to process data at the speed of 5.98 cycles
per byte on a Intel Core2 processor. We anticipate that such cryptographic
primitive can be used to define hash functions characterized by an outstanding
security vs. speed trade-off; we do not offer the definition of a full hash function
here, but we consider this as a very promising future work which will also benefit
from the insights about hash modes of operation obtained during the SHA-3
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Hash Function Speed (cycles per byte)
EDON-R 512 2.29
WIDEA-8 5.98
CubeHash8/32 6.03
Skein-512 6.10
Shabal-512 8.03
LUX 9.50
Keccak 10.00
BLAKE-64 10.00
Cheetah 13.60
Aurora 26.90
Grostl 30.45
ECHO-SP 35.70
SHAvite-3 38.20
Lesamnta 51.20
MD6 52.64
ECHO 53.50
Vortex 56.05
FUGUE 75.50

Fig. 6. Speed comparison of WIDEA used as a Davies-Meyer construction in
the Merkle-Damgard mode and some SHA-3 candidates on the Intel Core2 CPU
in 64-bit mode

competition. Anyway, speed comparison between some SHA3 candidates and
our compression function used in a straightforward Merkle-Damgard mode is
provided4 in Table 6. The expiration of the patent protecting IDEA in a near
future, and the fact that no intellectual property was applied for WIDEA, might
also increase the interest in our work 5.
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Appendix: Specification of WIDEA-8

Notation. WIDEA-8 is a block cipher having block size of 512 bits and fixed
key size of 1024 bits, which is heavily based on the IDEA cipher. In the following
we will indicate 128-bit words with capital letters and 16-bit words with lower-
case letters. The input, state and output of the cipher can be seen as an array of
four 128-bit words, where each 128-bit word can in turn be seen as an array of
eight 16-bit words. Thus, each 16-bit word is indexed by two numbers: the index
of the 128-bit word that contains it, followed by the index of its position in the
128-bit word (128-bit words are indexed by only one number). We adopt here a
big-endian ordering, so that the index of the most significant part of a variable
is equal to 0 and the index of its least significant part is the largest one. Thus,
indicating with X the 512-bit input of the cipher, we have X = X0‖X1‖X2‖X3
and X0 = x0,0‖x0,1‖x0,2‖x0,3‖x0,4‖x0,5‖x0,6‖x0,7. Different arithmetic and logic
operations are used in WIDEA-8. The IDEA multiplication of two 16-bit words
(multiplication over Z∗

216+1 where the zero 16-bit string represents the number
216) is denoted with “�”; addition over Z216 is denoted with “�”. Each 16-bit
word can also be seen as an element of the finite field GF(216) defined with the
following irreducible polynomial P (x) = x16 + x5 + x3 + x2 + 1. Addition over
GF(216), as well as bitwise logical XOR, is denoted with “⊕” while multiplica-
tion over the same field is denoted with “·”; logical left rotation of n positions
is denoted with “≪ n”. The same operators may be applied in a vectorial way
over the 128-bit variables, i.e. each 16-bit slice of the operand(s) undergoes the
transformations above; in this case we place the superscript “16” over the oper-
ator symbol, to distinguish the operation from the one carried out over the full
128 bits.

The Key-Schedule. The WIDEA-8 key Z has size equal to 1024 bits and can
be seen as an array of eight 128-bit words Z = Z0‖Z1‖Z2‖Z3‖Z4‖Z5‖Z6‖Z7.
This array is filled with key material starting from the most significant positions
and proceeding toward the least significant ones. Once the key has been set,
the subkeys can be generated. WIDEA-8, similarly to IDEA, uses a total of 52
128-bit subkeys; the first 8 are taken directly from the key, starting naturally

http://ehash.iaik.tugraz.at/wiki/The_eHash_Main_Page
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from Z0. The additional 44 128-bit subkeys Zi with 8 ≤ i ≤ 51 are generated
using the following equations:

Zi = ((((Zi−1 ⊕ Zi−8)
16
� Zi−5)

16
≪ 5) ≪ 24)⊕ C i

8−1 8 ≤ i ≤ 51, 8 | i

Zi = ((((Zi−1 ⊕ Zi−8)
16
� Zi−5)

16
≪ 5) ≪ 24) 8 ≤ i ≤ 51, 8 � i

In practice, the same recurrence relation is used for each iteration, and a different
constant is added whenever the subkey index is a multiple of 8. The six 128-bit
constants are given below, in hexadecimal format:

C0 = 1dea‖0000‖0000‖0000‖0000‖0000‖0000‖0000
C1 = 3825‖0000‖0000‖0000‖0000‖0000‖0000‖0000
C2 = 1dd7‖0000‖0000‖0000‖0000‖0000‖0000‖0000
C3 = 3ea4‖0000‖0000‖0000‖0000‖0000‖0000‖0000
C4 = e57a‖0000‖0000‖0000‖0000‖0000‖0000‖0000
C5 = f7ba‖0000‖0000‖0000‖0000‖0000‖0000‖0000

Encryption. WIDEA-8 encryption consists in 8 full rounds followed by one
half round; every round uses some subkeys calculated using the key scheduling
algorithm specified above. We add an apex to each variable to indicate the
round number, starting from 1; thus δ

(i)
0,0 is the value of δ0,0 in the i-th round.

The input of the i-th round is denoted as X(i) = X
(i)
0 ‖X(i)

1 ‖X(i)
2 ‖X(i)

3 and the
output Y(i) = X(i+1) is calculated, for a full round, as follows. First, the inputs
of the MAD-box are calculated as:

A(i) =
(

X
(i)
0

16
� Z6(i−1)

)
⊕
(

X
(i)
2

16
� Z6(i−1)+2

)
B(i) =

(
X

(i)
1

16
� Z6(i−1)+1

)
⊕
(

X
(i)
3

16
� Z6(i−1)+3

)
Then, the MAD-box calculation is carried out, resulting in:

Δ(i) = MDS
((

A(i) 16
� Z6(i−1)+4

)
16
� B(i)

)
16
� Z6(i−1)+5

Γ (i) =
(

A(i) 16
� Z6(i−1)+4

)
16
� Δ(i)

The MDS operation is a left-multiplication over GF(216) of a 128-bit string with
a fixed matrix, its elements defined over GF(216), and is defined as follows:

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0
y1
y2
y3
y4
y5
y6
y7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 4 1 8 5 2 9
9 1 1 4 1 8 5 2
2 9 1 1 4 1 8 5
5 2 9 1 1 4 1 8
8 5 2 9 1 1 4 1
1 8 5 2 9 1 1 4
4 1 8 5 2 9 1 1
1 4 1 8 5 2 9 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0
x1
x2
x3
x4
x5
x6
x7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= MDS(X)



294 P. Junod and M. Macchetti

Thus, we could equivalently write a set of equations looking as this:

y0 = x0 ⊕ x1 ⊕ 4 · x2 ⊕ x3 ⊕ 8 · x4 ⊕ 5 · x5 ⊕ 2 · x6 ⊕ 9 · x7

The output of the round is finally obtained combining the outputs of the MAD-
box Δ and Γ with A and B as follows:

Y
(i)
0 =

(
X

(i)
0

16
� Z6(i−1)

)
⊕Δ(i) Y

(i)
1 =

(
X

(i)
2

16
� Z6(i−1)+2

)
⊕Δ(i)

Y
(i)
2 =

(
X

(i)
1

16
� Z6(i−1)+1

)
⊕ Γ (i) Y

(i)
3 =

(
X

(i)
3

16
� Z6(i−1)+3

)
⊕ Γ (i)

On the other hand, a half round contains less operations and is defined as follows:

Y
(i)
0 = X

(i)
0

16
� Z6(i−1) Y

(i)
1 = X

(i)
2

16
� Z6(i−1)+1

Y
(i)
2 = X

(i)
1

16
� Z6(i−1)+2 Y

(i)
3 = X

(i)
3

16
� Z6(i−1)+3

Decryption. WIDEA-8 decryption also consists in 8 full rounds followed by one
half round; every round uses some subkeys calculated using the key scheduling
algorithm specified above. The definitions of the full and half rounds for decryp-
tion is the same as that given above for encryption; the only difference is that the
subkeys (previously inverted with respect to the proper law group) must be used
in the inverse order. Note that the WIDEA key schedule algorithm is designed
to be easily invertible, thus one may also apply on-the-fly inverse key scheduling
for decryption, where the master key contains the last 8 subkeys derived for
encryption.

Test vectors

PLAINTEXT

0000 0011 0022 0033 0044 0055 0066 0077
0088 0099 00aa 00bb 00cc 00dd 00ee 00ff
ff00 ee00 dd00 cc00 bb00 aa00 9900 8800
7700 6600 5500 4400 3300 2200 1100 0000

KEY

0000 0001 0002 0003 0004 0005 0006 0007
0008 0009 000a 000b 000c 000d 000e 000f
0000 0010 0020 0030 0040 0050 0060 0070
0080 0090 00a0 00b0 00c0 00d0 00e0 00f0
0000 0100 0200 0300 0400 0500 0600 0700
0800 0900 0a00 0b00 0c00 0d00 0e00 0f00
0000 1000 2000 3000 4000 5000 6000 7000
8000 9000 a000 b000 c000 d000 e000 f000
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CIPHERTEXT

c28c 1bcf b923 65f9 d8a0 2d77 417c 3da8
f6ed 06ba 961e 3948 4162 ccaa a62a da5b
d6f2 b750 ecfb 22ce 71a3 3380 c8ef aa90
1424 67da 51fd 1d38 0978 cccc c99a 5f5a
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Abstract. MULTI2 is the block cipher used in the ISDB standard for
scrambling digital multimedia content. MULTI2 is used in Japan to se-
cure multimedia broadcasting, including recent applications like HDTV
and mobile TV. It is the only cipher specified in the 2007 Japanese ARIB
standard for conditional access systems. This paper presents a theoretical
break of MULTI2 (not relevant in practice), with shortcut key recovery
attacks for any number of rounds. We also describe equivalent keys and
linear attacks on reduced versions with up 20 rounds (out of 32), improv-
ing on the previous 12-round attack by Matsui and Yamagishi. Practical
attacks are presented on up to 16 rounds.

Keywords: ISDB, ARIB, MULTI2, block cipher, linear cryptanalysis,
conditional access.

1 Introduction

MULTI2 is a block cipher developed by Hitachi in 1988 for general-purpose
applications, but which has mainly been used for securing multimedia content. It
was registered in ISO/IEC 99791 [8] in 1994, and is patented in the U.S. [13,14]
and in Japan [7]. MULTI2 is the only cipher specified in the 2007 Japanese
standard ARIB for conditional access systems [2]. ARIB is the basic standard of
the recent ISDB (for Integrated Services Digital Broadcasting), Japan’s standard
for digital television and digital radio (see http://www.dibeg.org/)

Since 1995, MULTI2 is the cipher used by satellite and terrestrial broadcasters
in Japan [16,18] for protecting audio and video streams, including HDTV, mobile
and interactive TV. In 2006, Brazil adopted ISDB as a standard for digital-TV,
and several other countries are progressively switching to ISDB (Chile, Ecuador,
� Supported by the Swiss National Science Foundation, project no. 113329.
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mission through the ICT Programme under contract ICT-2007-216646 ECRYPT II.
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1 The ISO/IEC 9979, under which cryptographic algorithms were registered, was with-
drawn on Feb. 2006 because of its redundancy with the ISO/IEC 18033 standard.

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 296–307, 2009.
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Peru, Philippines and Venezuela). But for the moment only Japan uses the
conditional access features of ISDB, thus MULTI2 is only used in Japan.

MULTI2 has a Feistel structure and encrypts 64-bit blocks using a 256-
bit “system key” and a 64-bit “data key”. The ISO register recommends at
least 32 rounds. A previous work by Matsui and Yamagishi [11] reports attacks
on a reduced version of MULTI2 with 12 rounds. Another work by Aoki and
Kurokawa [1] reports an analysis of the round mappings of MULTI2, with re-
sults independently rediscovered in the present work.

Contribution. This paper presents new cryptanalytic results on MULTI2, in-
cluding the description of large sets of equivalent keys, a guess-and-determine
attack for any number of rounds, a linear attack on 20 rounds, and a related-
key slide attack (see Table 1 for complexities). Despite no practical threat to
conditional access systems, our results raise concerns on the intrinsic security of
MULTI2.

Table 1. Summary of our attacks on MULTI2 (Data is given in known plaintexts)

#Rounds Time Data Memory Attack

4 216.4 216.4 — linear distinguisher�

8 227.8 227.8 — linear distinguisher�

12 239.2 239.2 — linear distinguisher�

16 250.6 250.6 — linear distinguisher�

20 293.4 239.2 239.2 linear key-recovery
r 2185.4 3 231 guess-and-determine key-recovery
r ≡ 0 mod 8 2128/r 233 233 related-key slide key-recovery
�: time complexity is # of parity computations instead of # of encryptions.

2 Description of MULTI2

MULTI2 (Multi-Media Encryption Algorithm 2) is a Feistel block cipher that
operates on 64-bit blocks, parametrized by a 64-bit data key and a 256-bit system
key. Encryption depends only on a 256-bit key derived from the data and system
keys. This encryption key is divided into eight subkeys. MULTI2 uses four key-
dependent round functions π1, π2, π3, and π4, repeated in this order. The ISO
register entry recommends at least 32 rounds, which is the number of rounds
used in the ISDB standard. We denote MULTI2’s keys as follows, parsing them
into 32-bit words (see Fig. 1):

• d = (d1, d2) is the 64-bit data key
• s = (s1, s2, s3, s4, s5, s6, s7, s8) is the 256-bit system key
• k = (k1, k2, k3, k4, k5, k6, k7, k8) is the 256-bit encryption key

MULTI2 uses no S-boxes, but only a combination of XOR (⊕), modulo 232

addition (+) and subtraction (−), left rotation (≪) and logical OR (∨). Below
we denote L (resp. R) the left (resp. right) half of the encrypted data, and ki a
32-bit encryption subkey:
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Fig. 1. Key schedule (left) and encryption (right) in MULTI2: the encryption key k is
derived from the system key s and the data key d. Only k is used during the encryption.
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• π1 is the identity mapping: π1(L) = L. It is the only surjective and key
independent round transformation.

• π2 maps 64 bits to 32 bits, and returns

π2(R, ki) = (x ≪ 4)⊕ x (1)

where x = ((R + ki) ≪ 1) + R + ki − 1. From the definition (1) it follows
that π2(R, ki) = π2(ki, R), for any ki, R ∈ {0, 1}32. Moreover, π2 can be
expressed as a function of a single value, R + ki. Due to the feed forward in
(1), π2 can not be surjective. The range of π2 contains exactly 265 016 655≈
228 elements (only 6.2% of {0, 1}32, against 63% expected for a random
function [12, §2.1.6]). Moreover, the set of 32 bit values output by π2 is
always the same. This follows from the observation that for fixed R if 0 ≤
ki ≤ 232− 1, then 0 ≤ R + ki ≤ 232− 1 and the same holds if ki is fixed and
0 ≤ R ≤ 232 − 1.

• π3 maps 96 bits to 32 bits, and returns

π3(L, ki, kj) = (x ≪ 16)⊕ (x ∨ L) (2)

where
x =

((
(y ≪ 8)⊕ y + kj

)
≪ 1

)
−
(
(y ≪ 8)⊕ y + kj

)
where y = ((L+ki) ≪ 2)+L+ki +1. The range of π3 spans approximately
230.8 values, that is, 43% of {0, 1}32, for a fixed encryption key. The fraction
of the range covered by π3 is not the same for every ki, kj ∈ {0, 1}32, because
π3(L, ki, kj) 
= π3(L, kj , ki).

• π4 maps 64 bits to 32 bits, and returns

π4(R, ki) =
(
(R + ki) ≪ 2

)
+ R + ki + 1. (3)

From the definition of 3, it follows that π4(R, ki) = π4(ki, R) for any ki, R ∈
{0, 1}32. The range of π4 contains exactly 1 717 986 919 ≈ 230.7 elements
(i.e., 40.6% of {0, 1}32). The reasoning is the same as for π2.

An additional property is the fact that these πj functions do not commute, that
is, πi ◦ πj 
= πj ◦ πi, for i 
= j, where ◦ is functional composition. Thus, the πj

mapping cannot be purposefully clustered or permuted in the cipher framework
to ease cryptanalysis.

Encryption. Given subkeys k1, . . . , k8 and a plaintext (L0, R0), MULTI2 com-
putes the first eight rounds as follows (see Fig. 1):

1. R1 ← R0 ⊕ π1(L0)
2. L1 ← L0; L2 ← L1 ⊕ π2(R1, k1)
3. R2 ← R1; R3 ← R2 ⊕ π3(L2, k2, k3)
4. L3 ← L2; L4 ← L3 ⊕ π4(R3, k4)
5. R4 ← R3; R5 ← R4 ⊕ π1(L4)
6. L5 ← L4; L6 ← L5 ⊕ π2(R5, k5)
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7. R6 ← R5; R7 ← R6 ⊕ π3(L6, k6, k7)
8. L7 ← L6; L8 ← L7 ⊕ π4(R7, k8)
9. R8 ← R7

This sequence is repeated (with suitably incremented subscripts) until the de-
sired number of rounds r, and the ciphertext (Lr, Rr) is returned. The subkeys
k1, . . . , k8 are reused for each sequence π1, . . . , π4, π1, . . . , π4.

Key Schedule. The key schedule of MULTI2 “encrypts” a data key (d1, d2)
(as plaintext) through nine rounds, using the system key s1, . . . , s8. The round
subkeys k1, . . . , k8 are extracted as follows (see Fig. 1):

• k1 ← d1 ⊕ π2(d1 ⊕ d2, s1)
• k2 ← d1 ⊕ d2 ⊕ π3(k1, s2, s3)
• k3 ← k1 ⊕ π4(k2, s4)
• k4 ← k2 ⊕ k3

• k5 ← k3 ⊕ π2(k4, s5)
• k6 ← k4 ⊕ π3(k5, s6, s7)
• k7 ← k5 ⊕ π4(k6, s8)
• k8 ← k6 ⊕ k7

MULTI2 in ISDB. In ISDB, MULTI2 is mainly used via the B-CAS card [6] for
copy control to ensure that only valid subscribers are using the service. MULTI2
encrypts transport stream packets in CBC or OFB mode. The same system key
is used for all conditional-access applications, and another system key is used
for other applications (DTV, satellite, etc.). The 64-bit data key is refreshed
every second, sent by the broadcaster and encrypted with another block cipher.
Therefore only the data key is really secret, since the system key can be obtained
from the receivers. Details can be found in the ARIB B25 standard [2].

3 Equivalent Keys

The key schedule of MULTI2 maps a (256 + 64)-bit data-and-system key to a
256-bit encryption key (see Fig. 1). This means 64 bits of redundancy (leading to
264 collisions). Further, the 256-bit encryption key k = (k1, . . . , k8) has entropy
at most 192 bits, because the key schedule sets k4 = k3 ⊕ k2 and k8 = k7 ⊕ k6.
Hence, the knowledge of two subkeys in (k2, k3, k4) is sufficient to compute the
third. The key schedule thus induces a loss of at least 128 bits of entropy, from
the 320-bit (s, d) key. Therefore, the average size of equivalence key classes is
2128.

Large sets of colliding pairs (s, d) can be found as follows: given (s, d), one
just has to find s′1 such that π2(d1⊕ d2, s

′
1) = π2(d1⊕ d2, s1); or s′2, s′3 such that

π3(k1, s2, s3) = π3(k1, s
′
2, s

′
3); or s′4 such that π4(k2, s

′
4) = π4(k2, s4); or s′5 such

that π2(k4, s5) = π2(k4, s
′
5); or s′6, s′7 such that π3(k5, s6, s7) = π3(k5, s

′
6, s

′
7); or

s′8 such that π4(k6, s8) = π4(k6, s
′
8). Each of these conditions are independent.
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The result is a (series of) equivalent keys (s′, d) that lead to the same encryption
key as the pair (s, d).

However, there exist no equivalent keys with the same system key and distinct
data keys. This is because the key schedule uses the data key as plaintext, hence
the encryption key is trivially invertible (see Fig. 1).

Note that [8] suggests to use MULTI2 as building block for constructing hash
functions. If the construction is not carefully chosen, however, equivalent keys
in MULTI2 could lead to simple collisions. For example, in Davies-Meyer mode
the compression function would return Em(h)⊕ h, with h a chaining value and
m a message block; since equivalent keys are easy to find, it is easy as well to
find two (or more) distinct message block that produce the same encryption key,
and thus that give multicollisions.

4 Guess-and-Determine Attack

We describe a known-plaintext attack that recovers the 256-bit encryption key in
about 2185.4 r-round encryptions. The attack works for any number r of rounds,
and uses only three known plaintexts/ciphertext pairs.

We recall the loss of key entropy due to redundancy in the key schedule of
MULTI2 described in Sect. 3.

One recovers k1, . . . , k8 using a guess-and-determine strategy, exploiting the
non-surjectivity of the round functions π2 and π4 (see key schedule in Fig. 1):

1. guess k1 and k2 (264 choices)
2. guess π4(k2, s4) (230.7 choices), and deduce k3 = k1 ⊕ π4(k2, s4)
3. set k4 = k2 ⊕ k3
4. guess π2(k4, s5) (228 choices), and deduce k5 = k3 ⊕ π2(k4, s5)
5. guess π3(k5, s6, s7) (232 choices), and deduce k6 = k4 ⊕ π3(k5, s6, s7)
6. guess π4(k6, s8) (230.7 choices), and deduce k7 = k5 ⊕ π4(k6, s8)
7. set k8 = k6 ⊕ k7

A guess of k1, . . . , k8 is verified using three known-plaintext/ciphertext pairs
(each pair gives a 64-bit condition). The total cost is about 2185.4 r-round en-
cryptions and 231 32-bit words of memory. Note that the non-surjectivity of
π3(k5, s6, s7) cannot be exploited here, because the range depends on the system
subkeys, which are unknown.

Once the encryption key k is found, one can recover all equivalent 256-bit
system keys s and 64-bit data keys d as follows: starting from the end of the key
schedule (Fig. 1), one iteratively searches for a valid s8 (232 π4-computations),
then a valid pair (s6, s7) (264 π3-computations), and so on (the complexities add
up) until recovering s4. For computing (s2, s3) we need the value of d1 ⊕ d2.
The cost for this case is 232+32+32 = 296 π3-computations. For s1 we need the
separate values of d1 and d2. Since we already computed d1 ⊕ d2, the cost is
232+32 = 264 π2-computations. The final complexity is dominated by 296 π3-
computations to recover all candidates pairs (s, d). The cost of computing one
of the pairs (s, d) is dominated by 233 π3-computations.
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5 Linear Attacks

The non-surjectivity of the round functions π2, π3, π4 motivates the study of
linear relations [10] for particular bitmasks. Usually, one looks for nonzero input
and output bitmasks for individual cipher components, with high bias. But for
MULTI2, we look for linear relations of the form 0 πi→ Γ , 2 ≤ i ≤ 4, Γ 
= 0.
Because of 4-round repetition of πi mappings in MULTI2, and to optimize the
search, we looked only for iterative linear relations that cover all four consecutive
πi round mappings.
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Fig. 2. Four-round iterative linear trails

In Fig. 2(a), only π2 and π4 are active, that is, effectively participate in the
linear relation (linear trails are depicted by thick lines). In Fig. 2(b), π2 and
π3 are active, but for π3 the linear approximation has the form Γ

π3→ Γ , where
Γ 
= 0. Alternative iterative linear relations are depicted in Fig. 3. In Fig. 3(a),
there is one instance of π2 and π4, and two instances of π3 active along the linear
relation. Fig. 3(b) is just Fig. 3(a) slided by four rounds.

We consider each round function as operating over 32-bit data (for a fixed,
unknown key). Instead of deriving the bias for a given output bitmask, we have
searched for promising bitmasks (with high bias), by exhaustive search over the
inputs for each round function. From the linear relations listed above, the one in
Fig. 2(a) is the most promising, since it involves only two active round functions
for every four rounds: π2 and π4. This is an indication that the left half of the
MULTI2 encryption/decryption framework is weaker than the right half.

Our search (over random keys) started with masks of low Hamming weight.
The use of rotation suggests that masks with short repeating patterns tend to
show higher biases, which our experiments confirmed: the 32-bit mask

Γ = AAAAAAAAx
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Fig. 3. Eight-round iterative linear trails

presented the highest bias: 2−1 for π2, and 2−6.7 for π4 (Fig. 2(a)). The overall
bias is p′ = 2−6.7, using the piling-up lemma [10]. This bitmask was indepen-
dently discovered by Aoki and Kurokawa in [1].

Comparatively, for Fig. 2(b), the best mask we have found is Γ = 88888888x,
with bias 2−1 for π2, and 2−8.6 for π3. The overall bias for four rounds is 2−8.6.

Using Fig. 2(a), one can distinguish 4-round MULTI2 from a random per-
mutation using 8 × (p′)−2 = 216.4 known plaintexts (KP), for a high success
rate attack; the memory complexity is negligible and the attack effort is es-
sentially 216.4 parity computations. For eight rounds, the attack complexity is
8 × (2 × (p′)2)−2 = 8 × (2−12.4)−2 = 227.8 KP and equivalent parity compu-
tations; for twelve rounds, the data complexity becomes 8 × (22 × (p′)3)−2 =
8 × (2−18.1)−2 = 239.2 KP; for sixteen rounds, 8 × (2−23.8)−2 = 250.6 KP. For
further rounds, more plaintexts than the codebook are required.

For key-recovery attacks on twenty rounds, we use the 12-round linear relation
described in the previous paragraph. Notice that across 20-round MULTI2, the
same sequence of four subkeys, k1, . . . , k4 repeats at the first and at the last four
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rounds. Thus, we place the 12-round relation in the middle of 20-round MULTI2
and guess consecutively k1, k2 (cost 232 for each of them), then k3 (cost 230.7),
and finally k4 (free). Time complexity is thus about 294.7 +294.7 = 295.7 4-round
decryptions, that is, 1/5 · 295.7 ≈ 293.4 20-round encryptions. Storage of 239.2

ciphertexts is necessary.

6 Related-Key Slide Attack

We present key-recovery known-plaintext related-key slide attacks [3,4,5]. These
attacks exploit the partial similarity of 4-round sequences, and works for any
version of MULTI2 whose number of rounds is a multiple of eight.

Let F1...4 stand for 4-round encryption involving π1, . . . , π4 with subkeys
k1, . . . , k4. Similarly, let F5...8 stand for 4-round encryption involving π1, . . . , π4
with subkeys k5, . . . , k8; F ′

1...4 stand for π1, . . . , π4 with subkeys k′
1, . . . , k

′
4, and

F ′
5...8 stand for π1, . . . , π4 with subkeys k′

5, . . . , k
′
8.

Given an unknown key pair (s, d), we consider a related-key pair (s′, d′) that
gives k′ such that

k′
1 = k5 k′

2 = k6 k′
3 = k7 k′

4 = k8

k′
5 = k1 k′

6 = k2 k′
7 = k3 k′

8 = k4 (4)

Thus, F ′
1...4 ≡ F5...8 and F ′

5...8 ≡ F1...4.
For Eq. (4) to hold, it is necessary that the related key (s′, d′) satisfies

d′1 = k3 d′1 ⊕ d′2 = k4

s′1 = s5 s′2 = s6 s′3 = s7 s′4 = s8

s′5 = s1 s′6 = s2 s′7 = s3 s′8 = s4.

The conditions k′
1 = k5 and k′

2 = k6 require

k3 ⊕ π2(k4, s5) = d′1 ⊕ π2(d′1 ⊕ d′2, s
′
1)

k4 ⊕ π3(k5, s6, s7) = d′1 ⊕ d′2 ⊕ π3(k′
1, s

′
2, s

′
3).

A slid pair gives P ′ = F1···4(P ), which implies C′ = F ′
5···8(C) = F1···4(C), as

shown below.

P
F1···4→ X

F5...8→ . . .
F5···8→ C

P ′ F ′
1...4→ . . .

F ′
1···4→ Y

F ′
5···8→ C′

That is, one get two 64-bit conditions since both the plaintext and ciphertext slid
pairs are keyed by the same subkeys. Thus one slid pair is sufficient to identify
k1, . . . , k4. The attack goes as follows:

1. collect 232 distinct (Pi, Ci) pairs, i = 1, . . . , 232 encrypted with k
2. collect 232 distinct (P ′

i , C
′
i) pairs, i = 1, . . . , 232 encrypted with k′

3. for each (i, j) ∈ {1, . . . , 232}2
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4. find the value of k1, . . . , k4 that satisfy P ′
j = F1···4(Pi) and C′

j = F1···4(Ci)
5. search exhaustively k5, . . . , k8 (there are 296 choices, exploiting the non-

surjectivity of π2 and π4)

We cannot filter the wrong slid pairs, so we try all possible 264 pairs (Pi, Pj). But
each potential slid pairs provides 128-bit condition, because both the plaintext
and ciphertext pairs are keyed by the same unknown subkeys. Thus, we can filter
the wrong subkeys at once.

To recover k1, . . . , k4 we use the potential slid pair (P ′
j , Pi). Guess k1 (232

choices). Then, guess k2 (232 choices), and find the k3 that yields the (known)
output of π3. Deduce k4, as k2 ⊕ k3 and finally, test whether the current choice
of k1, . . . , k4 is consistent with the second potential slid pair (C′

j , Ci).
Finding k3 from k2, the input of π3, and its output one has to solve an equation

of the form (x ≪ 16)⊕ (x ∨ L) = b, then an equation (t ≪ 1)− t = x, where
x and t are the unknowns. The first can be solved bit per bit, by iteratively
storing the solutions for each pair (xi, xi+16). There are 16 such pairs, and for
each pair there are at most two solutions. Hence in the worst case there will
be 216 solutions. The effort up to this point is roughly 232+32 = 264 π2 and
π3-computations.

In total, up to this point, there are 232+32+16 = 280 possible values for
(k1, k2, k3, k4). The value of k4 = k2⊕k3 can be further checked using the (Pi, P

′
j)

pair. Let Pi = (PL, PR) and P ′
j = (P ′

L, P ′
R). Then, P ′

L ⊕PL ⊕ π2(PR ⊕PL, k1) =
π4(P ′

R, k4), which is a condition on 26.7 bits, since the output of π2 and π4
intersect in 226.7 distinct values. Thus, we expect only 280/226.7 = 253.3 tuples
(k1, k2, k3, k4) to survive. Using (Ci, C

′
j), a 64-bit condition, reduces the number

of wrong key candidates to 253.3/264 < 1.
The final attack complexity is thus about 264 × 264 1-round computations,

or
(
2128/r

)
r-round computations to recover k1, . . . , k4. Further, to recover k5,

. . ., k8, we run a similar procedure, but over r − 8 rounds (after decrypting
the top and bottom four rounds). The complexity is 296 (r − 8)-round com-
putations. Normalizing the complexity figures, the overall attack complexity is
dominated by

(
2128/r

)
r-round computations. The memory complexity is 233

plaintext/ciphertext pairs.

7 Conclusions

We showed that the 320-bit key of MULTI2 can be recovered in about 2185

trials instead of 2320 ideally, for any number of rounds, and using only three
plaintext/ciphertext pairs. This weakness is due to the loss of entropy induced
by the key schedule and the non-surjective round functions. We also described
a linear (key-recovery) attack on up to 20 rounds, and a related-key slide attack
in
(
2128/r

)
r-round computations for any number r of rounds that is a multiple

of eight (thus including the recommended 32 rounds).
Although our results do not represent any practical threat when the 32-round

recommendation is followed, they show that the security of MULTI2 is not as
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high as expected, and raise concerns on its long-term reliability. A practical break
of MULTI2 would have dramatic consequences: millions of receivers would have
to be replaced, a new technology and new standards would have to be designed
and implemented.

Finally, note that the Common Scrambling Algorithm (CSA), used in Europe
through the digital-TV standard DVB2 also underwent some (non-practical)
attacks [15,17]. For comparison, the American standard ATSC uses Triple-DES
in CBC mode3.
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Tweakable Block Cipher
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Abstract. This paper studies how to build a 2n-bit block cipher which
is hard to distinguish from a truly random permutation against attacks
with q ≈ 2n/2 queries, i.e., birthday attacks. Unlike previous approaches
using pseudorandom functions, we present a simple and efficient proposal
using a tweakable block cipher as an internal module. Our proposal is
provably secure against birthday attacks, if underlying tweakable block
cipher is also secure against birthday attacks. We also study how to build
such tweakable block ciphers from ordinary block ciphers, which may be
of independent interest.

Keywords: Block Cipher Mode, Birthday Bound, Tweakable Block
Cipher.

1 Introduction

A double-block-length cipher (DBLC), i.e. a 2n-bit block cipher made from n-bit
block components, has been one of the main research topics in the symmetric
cryptography. In particular, a seminal work of Luby and Rackoff [17] proved
that a 4-round Feistel permutation is computationally hard to distinguish from
a truly random permutation if each round function is an n-bit pseudorandom
function [11]. The proof of [17] is valid for chosen-ciphertext attacks (CCAs) us-
ing q � 2n/2 queries, and is called a proof of O(2n/2)-security. As 2n/2 is related
to the birthday paradox for n-bit variables, it is also called the security up to the
birthday bound (for n). Then, building a DBLC having beyond-birthday-bound
security, i.e., O(2ω+n/2)-security for some ω > 0, is an interesting research topic
from theoretical and practical aspects. In particular, such a DBLC can improve
the security of any block cipher mode that has O(2n/2)-security with an n-bit
block cipher1. However, achieving O(2ω+n/2)-security is generally difficult, even
for a small ω. We have very few known DBLC proposals having this property.
All of them were based on Feistel permutations using pseudorandom functions
[22][18][20]. Although these studies indicated the great potential of Feistel per-
mutation, we wondered if using Feistel was the only solution.

In this paper, we demonstrate how this problem can be solved using a
tweakable block cipher, defined by Liskov et al.[16]. In particular, we present
1 For some specific applications, such as stateful encryption and stateful authentica-

tion, block cipher modes with beyond-birthday-bound security are known [15][5].

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 308–326, 2009.
c© International Association for Cryptologic Research 2009
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how to build a DBLC based on a tweakable block cipher Ẽ with n-bit block and
m-bit tweak for any 1 ≤ m ≤ n, and prove O(2(n+m)/2)-security against CCAs.
One significant fact is that it is optimally efficient, as it requires only two Ê calls
(independently of m) and some universal hash functions. Thus, assuming very
fast universal hash functions (e.g., [25]), our DBLC will have almost the same
throughput as that of a tweakable block cipher. This means that, the task of
building a secure 2n-bit block cipher can be efficiently reduced to that of build-
ing a secure n-bit block tweakable block cipher. We think this is an interesting
application of tweakable block cipher, that has not been mentioned before. As
a by-product, we provide some variants such as a pseudorandom function with
2n-bit input and n-bit output. All variants are optimally efficient in the sense
defined above.

We have to emphasize that the birthday bound here is with respect to n,
and not to n + m. The security of our scheme is still up to the birthday bound
of input length of the cryptographic primitive (as with Yasuda [28]). Although
this makes the problem much easier in general, our result is still non-trivial and
highly optimized as a solution to beyond-birthday-bound security for n.

As our DBLC requires a tweakable block cipher with beyond-birthday-bound
security, we also discuss how to realize it. Specifically, we focus on construc-
tions using n-bit block ciphers. Although known constructions [16][24] are only
O(2n/2)-secure, we provide a simple solution using tweak-dependent key changes
with a concrete security proof. Unfortunately, this scheme is only the first step:
it can be very slow and has some severe theoretical limitations, thus is far from
being perfect. Building a better scheme remains an interesting future direction
of research.

2 Preliminaries

2.1 Basic Notations

A random variable will be written in capital letters and its sampled value will
be written in the corresponding small letters. Let Σn denote {0, 1}n. The bit
length of a binary sequence x is denoted by |x|, and x[i,j] denotes a subsequence
of x from i-th to j-th bit, for 1 ≤ i < j ≤ |x|. A uniform random function (URF)
with n-bit input and �-bit output, denoted by Rn,�, is a random variable uni-
formly distributed over {f : Σn → Σ�}. Similarly, a random variable uniformly
distributed over all n-bit permutations is an n-bit block uniform random permu-
tation (URP) and is denoted by Pn. If FK : X → Y is a keyed function, then FK

is a random variable (not necessarily uniformly) distributed over {f : X → Y}.
If FK is a keyed permutation, F−1

K will denote its inversion. We will omit K and
write F : X → Y, when K is clear from the context.

A tweakable block cipher [16] is a keyed permutation with auxiliary input
called tweak. Formally, a ciphertext of a tweakable blockcipher, Ẽ : M×T →M,
is C = Ẽ(M, T ), where M ∈ M is a plaintext and T ∈ T is the tweak. The
encryption, Ẽ, must be a keyed permutation over M for every T ∈ T , and the
decryption is defined as Ẽ−1(C, T ) = M with Ẽ−1 : M×T →M. If Ẽ has n-bit
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block and m-bit tweak, we say it is an (n, m)-bit tweakable cipher. An (n, m)-bit
tweakable URP is the set of 2m independent URPs (i.e., an n-bit URP is used
for each m-bit tweak) and is denoted by P̃n,m. We write P̃n if m is clear from
the context.

2.2 Security Notion

Consider the game in which we want to distinguish two keyed functions, G
and G′, using a black-box access to them. We define classes of attacks: chosen-
plaintext attack (CPA), and chosen-ciphertext attack (CCA), and their tweaked
versions, i.e., a tweak and a plaintext (or ciphertext) can be arbitrarily chosen.
Here, (tweaked) CCA can be defined when G and G′ are (tweakable) permu-
tations. Let atk ∈ {cpa, cca, c̃pa, c̃ca}, where c̃pa (c̃ca) denotes tweaked CPA
(CCA). The maximum advantage of adversary using atk in distinguishing G and
G′ is:

AdvatkG,G′(θ)
def= max

D:θ−atk

∣∣Pr[DG = 1]− Pr[DG′
= 1]

∣∣, (1)

where DG = 1 denotes that D’s guess is 1, which indicates G or G′. The pa-
rameter θ denotes the attack resource, such as the number of queries, q, and
time complexity [11], τ . If θ does not contain τ , the adversary has no computa-
tional restriction. The maximum is taken for all atk-adversaries having θ. For
G : Σn → Σm, we have

AdvprfG (θ) def= AdvcpaG,Rn,m
(θ), AdvsprpG (θ) def= AdvccaG,Pn

(θ), AdvprpG (θ) def= AdvcpaG,Pn
(θ),

where the last two equations are defined if G is an n-bit permutation, Moreover,
if G is an (n, m)-bit tweakable cipher, we define

Advs̃prpG (θ) def= Advc̃ca
G,P̃n,m

(θ), and Advp̃rpG (θ) def= Advc̃pa
G,P̃n,m

(θ).

If AdvprfG (θ) is negligibly small for all practical θ (the definition of “practical
θ” depends on users.), G is a pseudorandom function (PRF)[11]. If G is in-
vertible, it is also called a pseudorandom permutation (PRP). In addition, if
AdvsprpG (θ) is negligibly small, G is a strong pseudorandom permutation (SPRP).
If G is a tweakable cipher, tweakable SPRP and PRP are similarly defined using
Advs̃prpG (θ) and Advp̃rpG (θ). Generally, we say G is secure if Advs̃prpG (θ) is negligibly
small.

CCA-CPA conversion. In our security proof, it is convenient to use a conver-
sion from a cca-advantage into a cpa-advantage. For this purpose, we introduce
a subclass of cpa called cpa′, which is as follows. First, for any keyed permu-
tation G over M, let 〈G〉 : M × Σ → M be the equivalent representation
of G, where 〈G〉(x, 0) = G(x) and 〈G〉(x, 1) = G−1(x). This expression also
holds true for tweakable permutations, i.e., for any tweakable permutation G̃
with message space M and tweak space T , 〈G̃〉 is an equivalent keyed function
: M×T ×Σ →M. The LSB of a query to 〈G〉 is called a operation indicator.
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Consider F : M × Σ → M and a cpa-adversary D interacting with F . Let
Xi = (Mi, Wi) ∈ M × Σ be the i-th query of D and let Yi ∈ M be the i-th
answer. For any D, we assume Mi 
= Mj always holds when Wi = Wj with
i < j. Moreover, if Yi 
= Mj holds whenever Wi 
= Wj holds with i < j, D is said
to follow the invertibility condition. A cpa-adversary following the invertibility
condition is called a cpa′-adversary. If F corresponds to 〈G〉 for a keyed permu-
tation G, violating the invertibility condition is clearly pointless, as outputs are
predictable. Thus any cca-adversary avoiding useless queries for G can be sim-
ulated by a cpa′-adversary interacting with 〈G〉. In other words, for any keyed
permutations, E and G, we have

AdvccaE,G(q, τ) = Advcpa〈E〉,〈G〉(q, τ) = Advcpa
′

〈E〉,〈G〉(q, τ). (2)

In general, cpa′ is weaker than cpa when at least one of two target func-
tions is not invertible. Note that, following the invertibility condition does not
exclude all collisions that can not be happened for permutations. For exam-
ple, if a cpa′-adversary is interacting with F = 〈G〉 for some keyed permu-
tation G, Mi 
= Yj holds true for all i < j with Wi 
= Wj (in addition to
Yi 
= Mj , which is guaranteed from the invertibility condition). However Mi = Yj

can happen when (e.g.) F is a URF, as Yj is uniform and independent of Xi

for all i < j.

2.3 Maurer’s Methodology

Our security proof will be based on a methodology developed by Maurer [19].
Here, we briefly describe it. See Maurer [19] for a more detailed description.
Consider a binary random variable Ai as a (non-deterministic) function of i in-
put/output pairs (and internal variables) of a keyed function. We denote the
event Ai = 1 by ai, and denote Ai = 0 by ai. We assume ai is monotone; i.e., ai

never occurs if ai−1 occurs. For instance, ai is monotone if it indicates that all
i outputs are distinct. An infinite sequence A = a0a1 . . . is called a monotone
event sequence (MES). Here, a0 is some tautological event (i.e. A0 = 1 with prob-
ability 1). Note that A∧B = (a0∧b0)(a1∧b1) . . . is an MES if A = a0a1 . . . and
B = b0b1 . . . are both MESs. For any sequence of random variables, X1, X2, . . . ,
let X i denote (X1, . . . , Xi). Let MESs A and B be defined for two keyed func-
tions, F : X → Y and G : X → Y, respectively. Let Xi ∈ X and Yi ∈ Y
be the i-th input and output. Let PF be the probability space defined by F .
For example, PF

Yi|XiY i−1(yi, x
i, yi−1) means Pr[Yi = yi|X i = xi, Y i−1 = yi−1]

where Yj = F (Xj) for j ≥ 1. If PF
Yi|XiY i−1(yi, x

i, yi−1) = PG
Yi|XiY i−1(yi, x

i, yi−1)
for all possible (xi, yi−1), then we write PF

Yi|XiY i−1 = PG
Yi|XiY i−1 and denote

it by F ≡ G. Here, note that the definitions of X and Y, and the set of
possible (xi, yi−1) may depend on the target attack class. Inequalities such as
PF

Yi|XiY i−1 ≤ PG
Yi|XiY i−1 are similarly defined.
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Definition 1. We write FA ≡ GB if PF
Yiai|XiY i−1ai−1

= PG
Yibi|XiY i−1bi−1

holds2

for all i ≥ 1. Moreover, we write F |A ≡ G|B if PF
Yi|XiY i−1ai

= PG
Yi|XiY i−1bi

holds for all i ≥ 1.

Definition 2. For MES A defined for F , νatk(F, aq) denotes3 the maximal prob-
ability of aq for any atk-adversary using q queries (and infinite computational
power) that interacts with F .

The equivalences defined by Definition 1 are crucial to information-theoretic
security proofs. For example, the following theorem holds true.

Theorem 1. (Theorem 1 (i) of [19]) If FA ≡ GB or F |A ≡ G holds for an
attack class atk, then AdvatkF,G(q) ≤ νatk(F, aq).

We will use some of Maurer’s results including Theorem 1 to make simple and
intuitive proofs . For completeness, these results are cited in Appendix A.

3 Previous Constructions of DBLC

There are many O(2n/2)-secure DBLC proposals. Luby and Rackoff proved that
the 4-round random Feistel cipher (denoted by ψ4) is O(2n/2)-secure. Here, “ran-
dom” means that each round function is an independent n-bit block PRFs. Later,
Naor and Reingold [22] proved that the first and last round functions of ψ4 need
not necessarily be pseudorandom, but only required to be ε-almost XOR uniform
(ε-AXU) for sufficiently small ε. Here, if H is a keyed function being ε-AXU, we
have Pr[H(x)⊕H(x′) = δ] ≤ ε for any x 
= x and δ. The result of [22] stimulated
many related works, e.g., [23][13][26], to name a few. Above all, what inspired
us was another proposal of Naor and Reingold [22], which is so-called NR mode.
Basically it is an mn-bit block cipher for arbitrarily large m, using n-bit block
cipher, E. When m = 2, NR mode encrypts a plaintext M ∈ Σ2n as:

C = G−1
2 ◦ ECB[E] ◦G1(M), (3)

where ECB[E] is the 2n-bit permutation from ECB mode of E. G1 and G2
are keyed permutations called pairwise independent permutations [22]. That is,
Pr[Gi(x) = y, Gi(x′) = y′] = 1/(2n · (2n − 1)) for any x 
= x′ and y 
= y′, where
probability is defined by the distribution of Gi’s key for i = 1, 2.

Compared to the vast amount of O(2n/2)-secure proposals, we have very few
schemes achieving better security. A scheme of Aiello and Venkatesan [1] has
some beyond-birthday-bound security but not invertible. A proposal of [22] was
based on unbalanced Feistel round, where each round function has inputs longer
than n-bit. The O(2n/2)-security of ψ6 was proved by Patarin [18] and another
proof of ψr for r → ∞ was given by Maurer and Pietrzak [20], though we omit
the details here.
2 As ai denotes Ai = 1, this equality means P F

YiAi|XiY i−1Ai−1
(yi, 1, xi, yi−1, 1)

equals to P G
YiBi|XiY i−1Bi−1

(yi, 1, xi, yi−1, 1) for all (xi, yi−1) such that both

P F
Ai−1XiY i−1(1, xi, yi−1) and P G

Bi−1XiY i−1(1, xi, yi−1) are positive.
3 The original definition does not contain atk; this is for readability.
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4 Building a DBLC with Beyond-Birthday-Bound
Security

4.1 Extending Naor-Reingold Approach

Our goal is to build a O(2ω+n/2)-secure DBLC, i.e., an 2n-bit keyed permutation
which is hard to be distinguished from P2n against any practical CCA using q �
2ω+n/2 queries for some ω > 0 (a large ω indicates a strong security). Our initial
question is if we can adopt a Mix-Encrypt-Mix structure4 similar to Eq. (3). In
the following, we provide a novel solution using tweakable block ciphers. The
scheme has Mix-Encrypt-Mix structure similar to NR mode, thus we call our
scheme Extended Naor-Reingold (ENR)5. It has a parameter m ∈ {1, . . . , n},
and we will prove O(2(n+m)/2)-security.

For convenience, for any random variable X , we abbreviate X[1,m] to X̂ (i.e.,
X̂ is the first m-bit of X). If |X | = m, we have X̂ = X . Let Ẽ be an (n, m)-bit
tweakable cipher, and let ẼL and ẼR denote two independently-keyed instances
of Ẽ. ENR consists of ẼL, ẼR, and a 2n-bit keyed permutation, G. For plaintext
(Ml, Mr) ∈ Σn × Σn and ciphertext (Cl, Cr) ∈ Σn × Σn, the encryption and
decryption of ENR are defined as Fig. 1.

Algorithm 4.1: ENR[G, Ẽ](Ml, Mr)

(S, T ) ← G(Ml, Mr)
U ← ẼL(S, T̂ ), V ← ẼR(T, Û)
(Cl, Cr) ← G−1

rev(U, V )
return ((Cl, Cr))

Algorithm 4.2: ENR[G, Ẽ]−1(Cl, Cr)

(U, V ) ← Grev(Cl, Cr)
T ← Ẽ−1

R (V, Û), S ← Ẽ−1
L (U, T̂ )

(Ml, Mr) ← G−1(S, T )
return ((Ml, Mr))

Fig. 1. Encryption (left) and decryption (right) procedures of ENR

Here, Grev denotes the mirrored image of G, i.e., Grev(x) = rev(G(rev(x)))
with rev(x1, . . . , x2n) = (x2n, . . . , x1). We assume Grev and G use the same key.
Basically, we can prove the security of ENR for a more general setting where the
second mixing layer is not restricted to Grev. We here focus on the use of Grev

because it allows us to reuse the key and implementation of G.

4.2 Security Proof of ENR

To prove the security of ENR[G, Ẽ], we first introduce a condition for G.

4 Naor and Reingold’s unbalanced Feistel cipher is based on Mix-Encrypt-Mix struc-
ture and achieves O(2ω+n/2)-security. However, as it uses PRFs with input longer
than n-bit, it is not comparable to ours. Moreover, an important difference is that
the number of round of their scheme is depending on the security parameter (for
higher security more rounds are needed), while that of ours is constant.

5 If our scheme is realized with non-tweakable permutation (by setting m = 0), it will
be very close to NR mode.
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Definition 3. Let G be a 2n-bit keyed permutation. Let m ∈ {1, . . . , n} be a
parameter. If G is (ε, γ, ρ)-almost uniform ((ε, γ, ρ)-AU), we have

Pr[G(x)[1,n+m] = G(x′)[1,n+m]] ≤ ε, and
Pr[G(x)[n+1,2n] = G(x′)[n+1,2n]] ≤ γ, and

Pr[G(x)[n+1,n+m] = G(x′)[n+1,n+m]] ≤ ρ, for any distinct x, x′ ∈ Σ2n.

A 2n-bit pairwise independent permutation is (2−(n+m), 2−n, 2−m)-AU. Even a
more efficient construction is possible by using Feistel permutation (see Corol-
laries 1 and 2). The security proof of general ENR is as follows.

Theorem 2. If G is (ε, γ, ρ)-AU for m ∈ {1, . . . , n} and Ẽ is an (n, m)-bit
tweakable cipher, we have

Advsprp
ENR[G,Ẽ]

(q, τ)

≤ 2Advs̃prp
Ẽ

(q, τ + O(q)) + q2
(

3ε +
2γ

2m
+

ρ

2n
+ max

{ γ

2m
,

ρ

2n

}
+

1
2n+m

)
.

We also provide two instantiations of ENR with Feistel-based implementations
of G.

Corollary 1. Let m = n and ψ[H ] be a balanced 2n-bit (left-to-right, see the
left of Fig. 2) Feistel using a round function H : Σn → Σn. H is defined as
H(x) = K ·x, where multiplication is defined over GF(2n) and key K is uniformly
random over GF(2n). Then we have

Advsprp
ENR[ψ[H],Ẽ]

(q, τ) ≤ 2Advs̃prp
Ẽ

(q, τ + O(q)) +
5q2

22n
.

Proof. When m = n, every 2n-bit keyed permutation is (0, γ, ρ)-AU for some
γ = ρ. The probability of ψ[H ](x)[n+1,...,2n] = ψ[H ](x′)[n+1,...,2n] is at most γ for
any x 
= x′, if H is γ-AXU. Here, our H is 2−n-AXU, thus ψ[H ] is (0, 2−n, 2−n)-
AU. Combining this fact and Theorem 2 proves the corollary.

Corollary 2. Let m < n, and K1, K2, and K3 be independent and uniform
over GF(2n) (represented as n-bit values). We define H1 : Σn → Σn as H1(x) =
K1 · x, and define H2 : Σn−m → Σn+m as H2(x) = (K2 · x́‖K3 · x́)[1,...,n+m],
where x́ = x‖0m. Then,

Advsprp
ENR[ψ[H1,H2],Ẽ]

(q, τ) ≤ 2Advs̃prp
Ẽ

(q, τ + O(q)) + q2
(

8
2n+m

+
2

22n

)
,

where ψ[H1, H2] is a 2-round Feistel permutation with i-th round function Hi

(the first round is balanced and the second is unbalanced, see the right of Fig. 2).

Proof. We show that ψ[H1, H2] is (ε, γ, ρ)-AU with ε = 2−(n+m), γ = 2−n, and
ρ = 2−n + 2−m. The proofs for ε and γ are easy, as H2 is 2−(n+m)-AXU and H1
is 2−n-AXU. To prove ρ, let E1 denote the collision event on ψ[H1](x)[1,...,n] and
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let E2 denote the collision event on ψ[H1, H2](x)[n+1,...,n+m]. Here, ρ is obtained
by bounding Pr(E2) for any two distinct inputs to ψ[H1, H2], which is as follows.

Pr(E2) = Pr(E1)·Pr(E2|E1)+Pr(E1)·Pr(E2|E1) ≤ Pr(E1)+Pr(E2|E1) ≤ 2−n+2−m,

where the last inequality follows from that H1 is 2−n-AXU and H2(x)[n+1,...,n+m]

is 2−m-AXU. Combining this observation and Theorem 2, the proof is completed.

Fig. 2. Encryption of ENR. Left: the case m = n. Right: the case m < n.

4.3 Proof of Theorem 2

Setup. Let us abbreviate ENR[G, P̃n,m] to ENR∗, where G is (ε, γ, ρ)-AU. We
only present the information-theoretic part, that is, the indistinguishability of
ENR∗ from P2n against any computationally unbounded cca-adversary. The
computational part is easy from the standard technique (see e.g., [2]). For con-
venience, we introduce some notations. For any F : M×Σ →M with a set M,
F [i] : M→M is defined as F [i](x) = F (x, i) for i ∈ Σ. For F : Σ2n×Σ → Σ2n,
we define GF : Σ2n ×Σ → Σ2n as

GF (x, 0) = G−1
rev ◦ F [0] ◦G(x), and GF (x, 1) = G−1 ◦ F [1] ◦Grev(x). (4)

Then, DR : Σ2n ×Σ → Σ2n is defined as

DR((xl, xr), 0) =(U, RR(xr, Û , 0)), where U = RL(xl, x̂r, 0),

DR((xl, xr), 1) =(RR(xl, T̂ , 1), T ), where T = RL(xr , x̂l, 1), (5)
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using two independent URFs, RL, RR : Σn × Σm × Σ → Σn. Let P̃L and P̃R

denote two independent instances of P̃n,m. Using them, we also define DP :
Σ2n × Σ → Σ2n in the same way as DR but RR and RL are substituted with
〈P̃R〉 and 〈P̃L〉, respectively. Here, note that GDP is equivalent to 〈ENR∗〉.

The proof outline is as follows. We analyze cpa′-advantage between GDP and
〈P2n〉, which corresponds to what we want from Eq. (2). Then, using the triangle
inequality, we move as GDP ⇒ GDR ⇒ R2n+1,2n ⇒ 〈P2n〉, that is, we evaluate
the maximum cpa′-advantages for the game with GDP and GDR (Game 1), and
the game with GDR and R2n+1,2n (Game 2), and the game with R2n+1,2n and
〈P2n〉 (Game 3). Formally, we have

AdvsprpENR∗(q) = AdvccaENR∗,P2n
(q) = Advcpa

′

〈ENR∗〉,〈P2n〉 = Advcpa
′

GDP,〈P2n〉 (6)

≤ Advcpa
′

GDP,GDR(q) + Advcpa
′

GDR,R2n+1,2n
(q) + Advcpa

′

R2n+1,2n,〈P2n〉(q). (7)

Analysis of Game 3. By extending the well-known PRP-PRF switching lemma
(e.g., Lemma 1 of [4]), we easily get

Advcpa
′

R2n+1,2n,〈P2n〉(q) ≤
(

q

2

)
· 1
22n

. (8)

Analysis of Game 2. We first observe that

GR2n+1,2n ≡ R2n+1,2n, and thus Advcpa
′

GDR,R2n+1,2n
(q) = Advcpa

′

GDR,GR2n+1,2n
(q), (9)

since pre- and post-processing added by G are permutations. We consider an
adversary, D, accessing to F which is DR or R2n+1,2n. For each time period
i = 1, . . . , q, D can choose whether F [0] or F [1] is queried. This information is
denoted by Wi ∈ Σ, and if Wi = 0, the input to F [0] is denoted by (SEi, TEi) ∈
Σn ×Σn (if Wi = 1, (SEi, TEi) is undefined), and the corresponding output is
denoted by (UEi, V Ei) ∈ Σn ×Σn. Similarly, if Wi = 1, the input to F [1] and
the output from F [1] are denoted by (UDi, V Di) and (SDi, TDi), respectively
(see Fig. 3). These notations will also be used for adversaries accessing to GF .
We define an MES E = e0e1 . . . , where eq denotes the event that

(SEi, T̂Ei) 
= (SEj , T̂Ej) and (ÛEi, TEi) 
= (ÛEj , V Ej), and (10)

(UDi, T̂Di) 
= (UDj, T̂Dj) and (ÛDi, V Di) 
= (ÛDj , V Dj), (11)

holds for all possible i 
= j, i, j ∈ {1, . . . , q}, e.g., Eq. (10) for i 
= j with Wi =
Wj = 0. Then, we obtain the following equivalence. Its proof is in Appendix B.

DRE ≡ RE
2n+1,2n. (12)

From Eq. (12) and Lemma 2, we have

GDRE ≡ GRE
2n+1,2n. (13)

Using Eqs. (9) and (13) and Theorem 1, we obtain

Advcpa
′

GDR,R2n+1,2n
(q) = Advcpa

′

GDR,GR2n+1,2n
(q) ≤ νcpa′(GR2n+1,2n, eq). (14)
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We leave the analysis of the last term of Eq. (14) for now.

Analysis of Game 1. We consider the indistinguishability between 〈P̃n,m〉 and
Rn+m+1,n. We first focus on the input/output collision for the same tweak value.
More precisely, let (Xi, Ti, Wi) ∈ Σn ×Σm ×Σ denote the i-th input to 〈P̃n,m〉
or Rn+m+1,n, and let Yi ∈ Σn be the i-th output. For b ∈ Σ and t ∈ Σm, let
X t

b = {Xi : i ∈ {1, . . . , q}, Ti = t, Wi = b} and Yt
b = {Yi : i ∈ {1, . . . , q}, Ti =

t, Wi = b}. Then, aq denotes the event that

[X t
0 ∩ Yt

1 = ∅] ∧ [X t
1 ∩ Yt

0 = ∅] for all t ∈ Σm.

The corresponding MES, A = a0a1 . . . , is called the generalized collision-freeness
(GCF). Then, we have

〈P̃n,m〉A∧C ≡ RA
n+m+1,n, for some MES C. (15)

The proof of Eq.(15) is written in Appendix C. As mentioned, if we substitute
RL and RR with 〈P̃L〉 and 〈P̃R〉, we will obtain DP. Thus, from Eq. (15), we get

DPAL∧CL∧AR∧CR ≡ DRAL∧AR, and GDPAL∧CL∧AR∧CR ≡ GDRAL∧AR, (16)

where AL = al0al1 . . . denotes the GCF for 〈P̃L〉 or RL, and AR = ar0ar1 . . .

denotes the GCF for 〈P̃R〉 or RR, and CL and CR are some MESs (implied by
Eq. (15)). The second equivalence follows from Lemma 2. Thus, using Theorem
1 we obtain

Advcpa
′

GDP,GDR(q) ≤ νcpa′(GDR, alq ∧ arq). (17)

For DR and R2n+1,2n, the occurrence of alq∧arq can be completely determined by
the q inputs and outputs. From this fact and Lemma 5, we can adjoin AL∧AR
to the both sides of Eq. (12) and obtain

DRE∧AL∧AR ≡ RE∧AL∧AR
2n+1,2n . (18)

Moreover, it is easy to see that E ∧ AL ∧ AR ≡ AL ∧ AR holds for DR and
R2n+1,2n. Combining this observation, Eq. (18), and Lemmas 2 and 3, we have

GDRAL∧AR ≡ GRAL∧AR
2n+1,2n, and

Advcpa
′

GDP,GDR(q) ≤ νcpa′(GDR, alq ∧ arq) = νcpa′(GR2n+1,2n, alq ∧ arq). (19)

Collision Probability analysis. Combining Eqs. (7), (8), (14), and (19), and
Lemma 4, we have

AdvsprpENR∗(q) ≤
(

q

2

)
1

22n
+

∑
ev=eq,alq,arq

νcpa′(GR2n+1,2n, ev). (20)

We need to bound νcpa′ terms of Eq. (20). First, the maximum probabilities of alq
and arq (under GR2n+1,2n) are the same because of the symmetry from Eq. (4)
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Fig. 3. GDR function

and that Grev is a mirrored image of G. Thus we only need to evaluate the
maximum probabilities of alq and eq.

As shown by Eqs. (10) and (11), eq consists of collision events such as

type[e1] : (SEi, T̂Ei) = (SEj , T̂Ej), type[e2] : (ÛEi, TEi) = (ÛEj , TEj)

type[e3] : (ÛDi, V Di) = (ÛDj , V Dj), type[e4] : (UDi, T̂Di) = (UDj , T̂Dj)

for all possible i 
= j, i, j ∈ {1, . . . , q}. Moreover, alq consists of collision events
such as

type[a1] : (SEi, T̂Ei) = (SEj , T̂Ej), type[a2] : (UEi, T̂Ei) = (UEj , T̂Ej)

type[a3] : (UDi, T̂Di) = (UDj , T̂Dj), type[a4] : (SDi, T̂Di) = (SDj , T̂Dj)

type[a5] : (SEi, T̂Ei) = (SDj , T̂Dj), type[a6] : (UEi, T̂Ei) = (UDj , T̂Dj).

Note that type[a1] and type[a3] are the same as type[e1] and type[e4], re-
spectively. Let Pr[x] be the maximum probability of type[x]-collision for x ∈
{e1, . . . , e4,a1, . . . ,a6} under GR2n+1,2n, where the maximum is taken for all
q-cpa′ (possibly adaptive) adversaries and for all i, j ∈ {1, . . . , q} with i 
= j.
Using the union bound and the symmetry of GR2n+1,2n[0] and GR2n+1,2n[1], the
R.H.S. of Eq. (20) is at most(

q

2

)⎛⎝ 1
22n

+
∑

i=1,...4

Pr[ei] + 2
∑

j=1,...6

Pr[aj]

⎞⎠ . (21)

From Eq. (9), the adversary’s choice must be independent of (the key of) G and
Grev. With this fact, each collision probability of Eq. (21) can be easily bounded
for any cpa′-adversary if G is (ε, γ, ρ)-AU6. The full description of our analysis
6 Note that if G is (ε, γ, ρ)-AU, the mirrored image of Grev is also (ε, γ, ρ)-AU.
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is rather long7, thus we here describe some typical examples. Other collision
probabilities can be analyzed in a similar way. Let XEi and Y Ei be the i-th
2n-bit input and output of GR2n+1,2n with Wi = 0 (they are undefined for i
satisfying Wi = 1). Similarly, XDi and Y Di denote the i-th input and output
with Wi = 1.

– type[e1]. Here, a collision means G(XEi)[1,...,n+m] = G(XEj)[1,...,n+m] for
XEi 
= XEj. Moreover, XEi and XEj are independent of G’s key. Thus we
have Pr[e1] ≤ ε as G is assumed to be (ε, γ, ρ)-AU.

– type[e2]. Without loss of generality, we assume i < j. The probability of
TEi = TEj is at most γ, as G is (ε, γ, ρ)-AU. Since G is invertible, the
inputs to R2n+1,2n[0] are always distinct. This implies that ÛEj is indepen-
dent of previous variables (including ÛEi, TEi and TEj) and uniform, even
conditioned by the event TEi = TEj . Thus we get

Pr[e2] = max
i�=j

Pr[ÛEi = ÛEj |TEi = TEj] · Pr[TEi = TEj] ≤ 2−mγ. (22)

– type[a5]. When i < j, (SDj, T̂Dj) is uniform and independent of (SEi, T̂Ei),
thus collision probability is exactly 2−(n+m). When j < i, XEi 
= Y Dj must
hold as we consider cpa′-adversary (i.e., XEi = Y Dj for j < i means an
intentional invertibility check). Hence

Pr[(SEi, T̂Ei) = (SDj , T̂Dj)]
= Pr[G(XEi)[1,...,n+m] = G(Y Dj)[1,...,n+m]] ≤ ε. (23)

Thus we have Pr[a5] ≤ max{2−(n+m), ε}. Here, ε ≥ 2−(n+m) as it is the
collision probability over (n + m) bits.

In summary, we obtain all maximum collision probabilities:

Pr[e1] ≤ ε, Pr[e2] ≤ 2−mγ, Pr[e3] ≤ ε, Pr[e4] ≤ 2−mγ,

Pr[a1] ≤ ε, Pr[a2] ≤ 2−nρ, Pr[a3] ≤ 2−mγ,

Pr[a4] ≤ 2−(n+m), Pr[a5] ≤ ε, Pr[a6] ≤ max{2−mγ, 2−nρ}. (24)

Combining Eqs. (24) and (21) proves the theorem.

4.4 PRP and PRF Versions of ENR

Although our primary target is a DBLC secure against CCA, a slight simplifica-
tion of our proposal yields a CPA-secure variant of ENR. It saves some operations
from the original ENR at the cost of a weaker attack class.

Definition 4. The simplified ENR (sENR) is defined as ENR with Grev being
omitted (or, substituted with the identity function).
7 This is mainly because we have to think of the cases when the adversary’s choice is

adaptive, even though it is independent of G.
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Corollary 3. Let G be (ε, γ, ρ)-AU. Then, the cpa-security of sENR[G, Ẽ] is:

Advprp
sENR[G,Ẽ]

(q, τ) ≤ 2Advp̃rp
Ẽ

(q, τ + O(q)) + q2
(

ε +
γ

2m
+

ρ

2n+1 +
1

2n+m

)
.

The proof is similar to that of Theorem 2, thus is omitted here. The reason why
Grev can be omitted is that, we do not have to consider some bad events (e.g., the
collision of (ÛD, V D)) that have to be avoided by Grev when decryption query
is possible. Moreover, by truncating the rightmost n-bit output, we obtain a
PRF : Σ2n → Σn which is O(2(n+m)/2)-secure for any m = 1, . . . , n (the proof
is trivial from Corollary 3). We emphasize that ENR, and the simplified ENR,
and its truncated-output version are optimally efficient, for they need exactly c
calls of Ẽ when the output is cn bits, for c = 1, 2.

5 A Simple Construction of Tweakable Block Cipher
with Beyond-Birthday-Bound Security

Our proposal requires a tweakable block cipher with beyond-birthday-bound se-
curity. Then, one may naturally ask how to realize it. A straightforward approach
is building from scratch, e.g., Mercy [9] and HPC [8]. Recent studies [10][21]
demonstrated that adding a tweak to some internal variables of a (generalized)
Feistel cipher could yield a secure tweakable block cipher. This technique, called
direct tweaking, may well be applied to a concrete tweakable cipher using (e.g.)
S-box and linear diffusion. Another approach, which we focus on, is building
from ordinary block ciphers. There are several schemes [16][24] that turn an
n-bit block cipher into an (n, n)-bit tweakable cipher. However, they only have
O(2n/2)-security8. Building a tweakable block cipher with better security has
been considered as rather difficult (Liskov et al. mentioned it as an open prob-
lem [16]).

Our solution is simple and intuitive: changing keys depending on tweaks. This
idea was possibly in mind of [16]. However, to our knowledge it has not been
seriously investigated9. Although our scheme is simple, its security proof needs
some cares. Throughout this section, we occasionally write EK instead of E, if
we need to specify the key we use.

Definition 5. For EK : Σn → Σn with key K ∈ K and FMK : Σm → K
with key MK ∈ K′, Tweak-dependent Rekeying (TDR) is an (n, m)-bit tweakable
cipher, where its encryption is TDR[E, F ](x, t) = EFMK(t)(x), and decryption is
TDR[E, F ]−1(y, t) = E−1

FMK(t)(y). Here, the key of TDR[E, F ] is F ’s key, MK.

8 In [10], tweakable ciphers having “security against exponential attacks” are proposed.
They correspond to (2n, m)-bit tweakable ciphers with O(2n)-security, thus their
security is up to the birthday bound of the block size.

9 Liskov et al., said that a change of a tweak should be faster than a change of a key.
This requirement is certainly desirable, however not mandatory one.
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Theorem 3. Advs̃prpTDR[E,F ](q, τ) ≤ AdvprfF (η, τ + O(q)) + ηAdvsprpE (q, τ + O(q)),

where η
def= min{q, 2m}.

Proof. Let R : Σm → K be the URF. We have

Advs̃prpTDR[E,F ](q, τ) ≤ Advc̃caTDR[E,F ],TDR[E,R](q, τ) + Advs̃prpTDR[E,R](q, τ). (25)

The first term of R.H.S. for Eq. (25) is clearly at most AdvprfF (η, τ +O(q)), as we
can evaluate F or R on at most η points. For the second term, the adversary can
produce at most η instances of E, and their keys are independent and uniform
(as keys are generated from URF). For each sampled key, the adversary can
query at most q times10. Thus, the second term is at most ηAdvsprpE (q, τ + O(q))
from the triangle inequality.

At first glance, TDR seems to provide a desirable security, since it simulates the
tweakable URP in an intuitive way. However, this is not always the case. For
example, when K = Σn and m = n, a simple attack using about 2n/2 queries can
easily distinguish TDR from P̃n,n: we first query a fixed plaintext with many
distinct tweaks, and if a ciphertext collision is found for tweak t and t′, then
query a new plaintext with tweaks t and t′ and see if the new ciphertexts collide
again11.

Nevertheless, this scheme can have beyond-birthday-bound security if tweak
length is not longer than the half of block length:

Corollary 4. Let EK be an n-bit block cipher with key K ∈ Σn. For m < n/2,
let E� : Σm → Σn be defined as E�(x) = E(x‖0n−m). Then Advs̃prpTDR[E,E�](q, τ)
is at most (η + 1)AdvsprpE (q, τ + O(q)) + η2/2n+1, where η = min{q, 2m}.
Here, TDR[E, E�] is secure if 2−(n−2m) is sufficiently small and E is computa-
tionally secure, where “secure” means cca-advantage being much smaller than
2−m. Unfortunately, Corollary 4 does not tell us how large q is admissible by
itself, since the first term of the bound would not be negligible if q is large.
Nonetheless, as the first term is at least ητ + O(q)/2n ≈ q/2n−m when q ≥ 2m

(achieved by the exhaustive key search, see [3]), we expect that TDR[E, E�] is
computationally secure against attacks with q � 2n−m queries, if E is sufficiently
secure.

Practically, the big problem of TDR is the frequent key scheduling of E, as it
may be much slower than encryption. Still, the negative impact on speed could
be alleviated when on-the-fly key scheduling is possible.

Combining ENR and TDR. A combination of ENR and TDR provides a
DBLC using an n-bit block cipher E. Let us consider combining the schemes
10 A more elaborate analysis can significantly improve the second term of the bound.

However, it requires some additional parameters to describe the adversary’s strategy
and thus the result would look rather complicated. We here make it simple.

11 This does not contradict with Theorem 3: the second term of the bound is at least
η(τ + O(q))/|K|, which is about q2/2n when |K| = 2n, as pointed out by Bellare et
al. [3].
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from Corollaries 2 and 4. The resulting DBLC needs 4 calls of E and two key
schedulings of E. By assuming AdvsprpE (q, τ) ≈ q/2n, the security bound of this
DBLC is about 2q/2n−m + 8q2/2(n+m)/2 + 2q2/22n + 1/2n−2m. Then the choice
m ≈ n/3 achieves the security against q � 22n/3 queries for fixed n, which is the
best possible for this combination. For example, if we use AES (i.e., n = 128)
and set m = 42, the combined scheme’s security is about 83.5-bit, assuming
AES’s security. Compared to the previous DBLCs having 64-bit security, the
gain is not that large, but non-negligible. Of course, the security and efficiency
of the resulting ENR would be greatly improved by using a better AES-based
tweakable block cipher.

6 Conclusion

We described the extended Naor-Reingold (ENR), which converts an n-bit block
tweakable block cipher into a 2n-bit block cipher. ENR has the beyond-birthday-
bound security (for n) if underlying tweakable block cipher does, and has almost
the same throughput as that of the tweakable block cipher. Hence, we have shown
that a good (i.e., fast and secure) tweakable cipher implies a good double-block-
length cipher. We also described a way to convert an n-bit block cipher into
tweakable one and achieves beyond-birthday-bound security based on the com-
putational indistinguishability of the underlying block cipher. Unfortunately, this
scheme has both theoretical and practical drawbacks due to its frequent rekey-
ing. Thus, finding an efficient scheme without rekeying would be an important
open problem.

Future Directions. It would be interesting to extend ENR to mn-bit block
cipher for m > 2 and make ENR tweakable, keeping beyond-birthday-bound
security for n. Both problems can be basically solved by using ENR as a mod-
ule of some known block cipher modes (e.g., CMC mode [12]) as they have
O(2n)-security with 2n-bit pseudorandom permutation. However, more efficient
constructions may well be possible.

Acknowledgments

We would like to thank Thomas Ristenpart, Tetsu Iwata, and the anonymous
referees for very helpful comments and suggestions. We also thank Debra L.
Cook for suggesting references.

References

1. Aiello, W., Venkatesan, R.: Foiling Birthday Attacks in Length-Doubling Transfor-
mations - Benes: A Non-Reversible Alternative to Feistel. In: Maurer, U.M. (ed.)
EUROCRYPT 1996. LNCS, vol. 1070, pp. 307–320. Springer, Heidelberg (1996)

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of
Symmetric Encryption. In: Proceedings of the 38th Annual Symposium on Foun-
dations of Computer Science, FOCS 1997, pp. 394–403 (1997)



Beyond-Birthday-Bound Security Based on Tweakable Block Cipher 323

3. Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff Backwards: Increasing Secu-
rity by Making Block Ciphers Non-invertible. In: Nyberg, K. (ed.) EUROCRYPT
1998. LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg (1998)

4. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

5. Bernstein, D.J.: Stronger Security Bounds for Wegman-Carter-Shoup Authenti-
cators. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 164–180.
Springer, Heidelberg (2005)

6. Bertoni, G., Breveglieri, L., Fragneto, P., Macchetti, M., Marchesin, S.: Efficient
Software Implementation of AES on 32-Bit Platforms. In: Kaliski Jr., B.S., Koç,
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A Lemmas from Maurer’s Methodology

We describe some lemmas developed by Maurer [19] that we used in this paper.
We assume that F and G are two random functions with the same input/output
size; we define MESs A = a0a1 . . . and B = b0b1 . . . for F and G. The i-th input
and output are denoted by Xi and Yi for F (or G), respectively.

Lemma 1. (Lemma 1 (iv) of [19]) If F |A ≡ G|B and
PF

ai|XiY i−1ai−1
≤ PG

bi|XiY i−1bi−1
holds for i ≥ 1, then there exists an MES C

defined for G such that FA ≡ GB∧C.

Lemma 2. (Lemma 4 (ii) of [19]) Let F be the function of F and G (i.e., F[F ]
is a function that internally invokes F , possibly multiple times, to process its
inputs). Here, F can be probabilistic, and if so, we assume F is independent of
F or G. If FA ≡ GB holds, F[F ]A

′ ≡ F[G]B
′

also holds, where a′
i denotes an

event that A-event is satisfied for the time period i. For example, if F[F ] always
invoke F c times for any input, then a′

i = aci. B′ is defined in the same way.

Lemma 3. (Lemma 6 (ii) of [19]) If FA ≡ GB holds for the attack class atk,
then νatk(F, aq) = νatk(G, bq) holds.

Lemma 4. (Lemma 6 (iii) of [19]) νatk(F, aq ∧ bq) ≤ νatk(F, aq) + νatk(F, bq).

Lemma 5. (An extension of Lemma 2 (ii) of [19]) If FA ≡ GB, then FA∧C ≡
GB∧C holds for any MES C defined on the inputs and/or outputs.

http://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf
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B Proof of Equation (12)

We focus on the indistinguishability between DR[0] and R2n,2n. Let dist(X i, Y j)
denote an event that there is no collision among {X1, . . . , Xi, Y1, . . . , Yj}. Let
i-th input (to DR[0] or R2n,2n) be Xi

def= (SEi, TEi) ∈ Σn×Σn, and i-th output
be Yi

def= (UEi, V Ei) ∈ Σn × Σn. We define events ilq
def= dist(SEq, T̂Eq) and

irq
def= dist(ÛEq, TEq) and the corresponding MESs, IL and IR. For DR[0], let

us analyze the conditional probability of Ŷq (which equals to ÛEq), given Xq =
xq, Y q−1 = yq−1 and ilq∧irq. Note that the inputs to RL[0] are distinct from ilq,
which means Ŷ q are independent and uniform. However, if tei = tej for some
i 
= j, uei 
= uej must hold from irq. Thus, Ŷq is uniform over Ŷc = {0, 1}m \ Ŷ ,
where Ŷ def= {uei : tei = teq, i = 1, . . . , q − 1}. The remaining (2n−m) bits of Yq

are uniform over Σ2n−m from ilq and irq. For R2n,2n, the set Ŷ can be defined
in the same way and Yq (given Xq = xq, Y q−1 = yq−1 and ilq ∧ irq) is clearly
uniformly distributed over Ŷc ×Σ2n−m. Thus we have

P
DR[0]
Yq |XqY q−1ilqirq

= P
R2n,2n

Yq|XqY q−1ilqirq
. (26)

Next, we see that

P
DR[0]
ilqirq|XqY q−1ilq−1irq−1

(xq, yq−1) =

{
0 if ilq is contradicted by xq,
|Ŷc|
2m otherwise.

(27)

holds true, as ilq is a function of xq and the conditional probability of irq given
Xq = xq, Y q−1 = yq−1, and ilq ∧ bq−1 is the probability of Ŷq 
∈ Ŷ, where Ŷq is
uniform given ilq. Therefore, the conditional probability of irq is |Ŷc|/2m when
xq satisfies ilq. The same analysis also holds for R2n,2n. Thus we have

P
DR[0]
ilqirq|XqY q−1ilq−1irq−1

= P
R2n,2n

ilqirq|XqY q−1ilq−1irq−1
(28)

From Eqs. (26) and (28),

DR[0]IL∧IR ≡ RIL∧IR
2n,2n , and DR[1]IL

′∧IR′ ≡ RIL′∧IR′
2n,2n (29)

is obtained. The latter equivalence is derived by symmetry, where IL′ and IR′

are defined by il′q
def= dist(UDq, T̂Dq) and ir′q

def= dist(ÛDq, V Dq) (here, i-th
input is Xi = (UDi, V Di) and output is Yi = (SDi, TDi)). From Eq. (29) and
the independence of DR[0] and DR[1], the proof is completed.

C Proof of Equation (15)

We abbreviate Rn+m+1,n and P̃n,m to R and P, respectively. From the definition
of GCF event aq, it is easy to derive

〈P̃〉|A ≡ R|A. (30)
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Next, we have

P
〈P̃〉
aq |XqY q−1aq−1

(xq , yq−1) = 1, and PR
aq |XqY q−1aq−1

(xq , yq−1) = 1− θ

2n
, (31)

for any xq consistent with aq (given xq−1 and yq−1), since 〈P̃〉’s output always
keeps GCF, while R’s output is uniform and thus has a chance to violate GCF.
From Eq. (31), we get PR

aq |XqY q−1aq−1
≤ P

〈P̃〉
aq|XqY q−1aq−1

. The proof is completed
by combining this inequality, and Eq. (30), and Lemma 1.
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Abstract. Enhanced Target Collision Resistance (eTCR) property for
a hash function was put forth by Halevi and Krawczyk in Crypto 2006,
in conjunction with the randomized hashing mode that is used to re-
alize such a hash function family. eTCR is a strengthened variant of
the well-known TCR (or UOWHF) property for a hash function family
(i.e. a dedicated-key hash function). The contributions of this paper are
twofold. First, we compare the new eTCR property with the well-known
collision resistance (CR) property, where both properties are considered
for a dedicated-key hash function. We show there is a separation between
the two notions, that is in general, eTCR property cannot be claimed to
be weaker (or stronger) than CR property for any arbitrary dedicated-key
hash function. Second, we consider the problem of eTCR property pre-
serving domain extension. We study several domain extension methods
for this purpose, including (Plain, Strengthened, and Prefix-free) Merkle-
Damg̊ard, Randomized Hashing (considered in dedicated-key hash set-
ting), Shoup, Enveloped Shoup, XOR Linear Hash (XLH), and Linear
Hash (LH) methods. Interestingly, we show that the only eTCR preserv-
ing method is a nested variant of LH which has a drawback of having
high key expansion factor. Therefore, it is interesting to design a new
and efficient eTCR preserving domain extension in the standard model.

Keywords: Hash Functions, CR, TCR, eTCR, Domain Extension.

1 Introduction

Cryptographic hash functions are widely used in many cryptographic schemes,
most importantly as building blocks for digital signature schemes and message
authentication codes (MACs). Their application in signature schemes follow-
ing hash-and-sign paradigm, like DSA, requires the collision resistance (CR)
property. Contini and Yin [5] showed that breaking the CR property of a hash
function can also endanger security of the MAC schemes, which are based on
the hash function, such as HMAC. Despite being a very essential and widely-
desirable security property of a hash function, CR has been shown to be a very
� The full version of this paper is available from [18].

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 327–344, 2009.
c© International Association for Cryptologic Research 2009



328 M.R. Reyhanitabar, W. Susilo, and Y. Mu

strong and demanding property for hash functions from theoretical viewpoint
[22, 4, 17] as well as being a practically endangered property by the recent ad-
vances in cryptanalysis of widely-used standard hash functions like MD5 and
SHA-1 [25, 24]. In response to these observations in regard to the strong CR
property for hash functions and its implication on the security of many applica-
tions, recently several ways out of this uneasy situation have been proposed.

The first approach is to avoid relying on the CR property in the design of
new applications and instead, just base the security on other weaker than CR
properties like Target Collision Resistance (“Ask less of a hash function and it
is less likely to disappoint! ” [4]). This is an attractive and wise methodology in
the design of new applications using hash functions, but unfortunately it might
be of limited use to secure an already implemented and in-use application, if
the required modifications are significant and hence prohibitive (and not cost
effective) in practice.

The second approach is to design new hash functions to replace current en-
dangered hash function standards like SHA-1. For achieving this goal, NIST has
started a public competition for selecting a new secure hash standard SHA-3 to
replace the current SHA-1 standard [15]. It is hoped that new hash standard will
be able to resist against all known cryptanalysis methods, especially powerful
statistical methods like differential cryptanalysis which have been successfully
used to attack MD5, SHA-1 and other hash functions [25, 24, 23].

Another methodology has also recently been considered as an intermedi-
ate step between the aforementioned two approaches in [10, 9]. This approach
aims at providing a “safety net” by fixing the current complete reliance on en-
dangered CR property without having to change the internals of an already
implemented hash function like SHA-1 and instead, just by using the hash func-
tion in some black-box modes of operation. Based on this idea, Randomized
Hashing mode was proposed in [10] and announced by NIST as Draft SP 800-
106 [16]. In a nutshell, Randomized Hashing construction converts a keyless
hash function H (e.g. SHA-1) to a dedicated-key hash function H̃ defined as
H̃K(M) = H(K||(M1 ⊕ K)|| · · · ||(ML ⊕ K)), where H is an iterated Merkle-
Damg̊ard hash function based on a compression function h. (M1|| · · · ||ML is the
padded message after applying strengthening padding.) Note that Randomized
Hashing keys the entire iterated hash function H at once, by using it as a black-
box function and just preprocessing the input message M with the key K (i.e.
the random salt).

Although the main motivation for the design of a randomized hashing mode
in [10] was to free reliance on collision resistance assumption on the underlying
hash function (by making off-line attacks ineffective by using a random key), in
parallel to this aim, a new security property was also introduced and defined for
hash functions, namely enhanced Target Collision Resistance (eTCR) property.
Having H̃ as the first example of a construction for eTCR hash functions in
hand, we also note that an eTCR hash function is an interesting and useful
new primitive. In [10], the security of the specific example function H̃ in eTCR
sense is based on some new assumptions (called c-SPR and e-SPR) about keyless
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compression function h. However, this example function H̃, may be threatened as
a result of future cryptanalysis results, but the notion of eTCR hashing will still
remain useful independently from this specific function. By using an eTCR hash
function family {HK} in a hash-and-sign digital signature scheme, one does not
need to sign the key K used for the hashing. It is only required to sign HK(M)
and the key K is sent in public to the verifier as part of the signed message [10].
This is an improvement compared to using a TCR (UOWHF) hash function
family where one needs to sign HK(M)||K [4].

Our Contributions
Our aim in this paper is to investigate the eTCR hashing as a new and inter-
esting notion. Following the previous background on the CR notion, the first
natural question that arises is whether eTCR is weaker than CR in general. It is
known that both CR and eTCR imply TCR property (i.e. are stronger notions
than TCR) [14, 20, 10], but the relation between CR and eTCR has not been
considered yet. As our first contribution in this paper, we compare the eTCR
property with the CR property, where both properties are considered formally
for a dedicated-key hash function. We show that there is a separation between
eTCR and CR notions, that is in general, eTCR property cannot be claimed to
be weaker (or stronger) than CR property for any arbitrary dedicated-key hash
function. Although our separation result does not rule out the possibility of de-
signing specific dedicated-key hash functions in which eTCR might be easier to
achieve compared to CR, it emphasizes the point that any such a construction
should explicitly show that this is indeed the case.

As our second contribution, we consider the problem of eTCR preserving do-
main extension. Assuming that one has been able to design a dedicated-key
compression function which possesses eTCR property, the next step will be how
to extend its domain to obtain a full-fledged hash function which also provably
possesses eTCR property and is capable of hashing any variable length mes-
sage. In the case of CR property the seminal works of Merkle [12] and Damg̊ard
[7] show that Merkle-Damg̊ard (MD) iteration with strengthening (length in-
dicating) padding is a CR preserving domain extender. Analysis and design of
(multi-)property preserving domain extenders for hash function has been re-
cently attracted new attention in several works considering several different se-
curity properties, such as [4, 3, 2, 1]. We investigate eight domain extension
transforms for this purpose; namely Plain MD [12, 7], Strengthened MD [12, 7],
Prefix-free MD [6, 11], Randomized Hashing [10] (considered in dedicated-key
hash setting), Shoup [21], Enveloped Shoup [2], XOR Linear Hash (XLH) [4],
and a variant of Linear Hash (LH) [4] methods. Interestingly, we show that the
only eTCR preserving method among these methods is a nested variant of LH
(defined based on a variant proposed in [4]) which has the drawback of hav-
ing high key expansion factor. The overview of constructions and the properties
they preserve are shown in Table 1. The symbol “�” means that the notion
is provably preserved by the construction; “×” means that it is not preserved.
Underlined entries related to eTCR property are the results shown in this paper.
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Table 1. Overview of constructions and the properties they preserve

Scheme CR TCR eTCR
Plain MD × [12, 7] × [4] ×
Strengthened MD �[12, 7] × [4] ×
Prefix-free MD × [2] × [2] ×
Randomized Hashing �[1] × [1] ×
Shoup �[21] �[21] ×
Enveloped Shoup �[2] �[2] ×
XOR Linear Hash (XLH) �[1] �[4] ×
Nested Linear Hash (LH) �[4] �[4] �

2 Preliminaries

2.1 Notations

If A is a probabilistic algorithm then by y
$← A(x1, · · · , xn) it is meant that y is

a random variable which is defined from the experiment of running A with inputs
x1, · · · , xn and assigning the output to y. To show that an algorithm A is run
without any input (i.e. when the input is an empty string) we use the notation

y
$← A(). By time complexity of an algorithm we mean the running time, relative

to some fixed model of computation (e.g. RAM) plus the size of the description of

the algorithm using some fixed encoding method. If X is a finite set, by x
$← X it

is meant that x is chosen from X uniformly at random. Let x||y denote the string
obtained from concatenating string y to string x. Let 1m and 0m, respectively,
denote a string of m consecutive 1 and 0 bits. For a binary string M , let M1...n

denote the first n bits of M , |M | denote its length in bits and |M |b � �|M |/b�
denote its length in b-bit blocks. For a positive integer m, let 〈m〉b denotes binary
representation of m by a string of length exactly b bits. If S is a finite set we denote
size of S by |S|. The set of all binary strings of length n bits (for some positive
integer n) is denoted as {0, 1}n, the set of all binary strings whose lengths are
variable but upper-bounded by N is denoted by {0, 1}≤N and the set of all binary
strings of arbitrary length is denoted by {0, 1}∗.

2.2 Two Settings for Hash Functions

In a formal study of cryptographic hash functions and their security notions,
two different but related settings can be considered. The first setting is the tra-
ditional keyless hash function setting where a hash function refers to a single
function H (e.g. H=SHA-1) that maps variable length messages to fixed length
output hash value. In the second setting, by a hash function it is meant a family
of hash functions H : K ×M → {0, 1}n, also called a dedicated-key hash func-
tion [2], which is indexed by a key space K. A key K ∈ K acts as an index to
select a specific member function from the family and often the key argument
is denoted as a subscript, that is HK(M) = H(K, M), for all M ∈ M. In a
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formal treatment of hash functions and the study of relationships between dif-
ferent security properties, one should clarify the target setting, namely whether
keyless or dedicated-key setting is considered. This is worth emphasizing as some
security properties like TCR and eTCR are inherently defined and make sense
for a dedicated-key hash function [20, 10]. Regarding CR property there is a
well-known foundational dilemma, namely CR can only be formally defined for
a dedicated-key hash function, but it has also been used widely as a security as-
sumption in the case of keyless hash functions like SHA-1. We will briefly review
this formalization issue for CR in Subsection 2.3 and for a detailed discussion
we refer to [19].

2.3 Definition of Security Notions: CR, TCR and eTCR

In this section, we recall three security notions directly relevant to our discussions
in the rest of the paper; namely, CR, TCR, and eTCR, where these properties are
formally defined for a dedicated-key hash function. We also recall the well-known
definitional dilemma regarding CR assumption for a keyless hash function.

A dedicated-key hash function H : K ×M→ {0, 1}n is called (t, ε)-x secure,
where x ∈ {CR, TCR, eTCR} if the advantage of any adversary, having time
complexity at most t, is less than ε, where the advantage of an adversary A, de-
noted by Advx

H(A), is defined as the probability that a specific winning condition
is satisfied by A upon finishing the game (experiment) defining the property x.
The probability is taken over all randomness used in the defining game as well as
that of the adversary itself. The advantage functions for an adversary A against
the CR, TCR and eTCR properties of the hash function H are defined as fol-
lows, where in the case of TCR and eTCR, adversary is denoted by a two-stage
algorithm A = (A1, A2):

AdvCR
H (A) = Pr

{
K

$← K; (M, M ′) $← A(K) : M 
= M ′ ∧ HK(M) = HK(M ′)
}

AdvTCR
H (A) = Pr

⎧⎪⎨⎪⎩
(M, State) $← A1();

K
$← K; : M 
= M ′ ∧ HK(M) = HK(M ′)

M ′ $← A2(K, State);

⎫⎪⎬⎪⎭
AdveTCR

H (A) = Pr

⎧⎪⎨⎪⎩
(M, State) $← A1(); (K, M) 
= (K ′, M ′)

K
$← K; : ∧

(K ′, M ′) $← A2(K, State); HK(M) = HK′(M ′)

⎫⎪⎬⎪⎭
CR for a Keyless Hash Function. Collision resistance as a security property
cannot be formally defined for a keyless hash function H : M → {0, 1}n. In-
formally, one would say that it is “infeasible” to find two distinct messages M
and M ′ such that H(M) = H(M ′). But it is easy to see that if |M| > 2n (i.e.
if the function is compressing) then there are many colliding pairs and hence,
trivially there exists an efficient program that can always output a colliding
pair M and M ′, namely a simple one with M and M ′ included in its code. That
is, infeasibility cannot be formalized by an statement like “there exists no effi-
cient adversary with non-negligible advantage” as clearly there are many such
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adversaries as mentioned before. The point is that no human being knows such
a program [19], but the latter concept cannot be formalized mathematically.
Therefore, in the context of keyless hash functions, CR can only be treated as
a strong assumption to be used in a constructive security reduction following
human-ignorance framework of [19]. We will call such a CR assumption about
a keyless hash function as keyless-CR assumption to distinguish it from for-
mally definable CR notion for a dedicated-key hash function. We note that as a
result of recent collision finding attacks, it is shown that keyless-CR assumption
is completely invalid for MD5 [25] and theoretically endangered assumption for
SHA-1 [24].

3 eTCR Property vs. CR Property

In this Section, we show that there is a separation between CR and eTCR,
that is none of these two properties can be claimed to be weaker or stronger
than the other in general in dedicated-key hash function setting. We emphasize
that we consider relation between CR and eTCR as formally defined properties
for a dedicated-key hash function following the methodology of [20]. The CR
property considered in this section should not be mixed with the strong keyless-
CR assumption for a keyless hash function.

3.1 CR � eTCR

We want to show that the CR property does not imply the eTCR property.
That is, eTCR as a security notion for a dedicated-key hash function is not
weaker than the CR property. This is done by showing as a counterexample, a
dedicated-key hash function which is secure in CR sense but completely insecure
in eTCR sense.

Lemma 1 (CR does not imply eTCR). Assume that there exists a dedicated-
key hash function H : {0, 1}k×{0, 1}m → {0, 1}n which is (t, ε)−CR. Select (and
fix) an arbitrary message M∗ ∈ {0, 1}m and an arbitrary key K∗ ∈ {0, 1}k (e.g.
M∗ = 1m and K∗ = 1k). The dedicated-key hash function G : {0, 1}k×{0, 1}m →
{0, 1}n shown in this lemma is (t′, ε′)−CR, where t′ = t−cTH and ε′ = ε+2−k,
but it is completely insecure in eTCR sense. TH denotes the time for one com-
putation of H and c is a small constant.

GK(M) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M∗

1···n if M = M∗ ∨ K = K∗ (1)

HK(M∗) if M 
= M∗ ∧ K 
= K∗ ∧ HK(M) = M∗
1···n (2)

HK(M) otherwise (3)

The proof is valid for any arbitrary selection of parameters M∗ ∈ {0, 1}m and
K∗ ∈ {0, 1}k, and hence, this construction actually shows 2m+k such counterex-
ample functions, which are CR but not eTCR.
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Proof. Let’s first demonstrate that G as a dedicated-key hash function is not
secure in eTCR sense. This can be easily shown by the following simple adversary
A = (A1, A2) playing eTCR game against G. In the first stage of eTCR attack,
A1 outputs the target message as M = M∗. In the second stage of the attack,
A2, after receiving the first randomly selected key K (where K

$← {0, 1}k),
outputs a different message M ′ 
= M∗ and selects the second key as K ′ = K∗.
It can be seen easily that the adversary A = (A1, A2) wins the eTCR game, as
M ′ 
= M∗ implies that (M∗, K) 
= (M ′, K∗) and by the construction of G we
have GK(M∗) = GK∗(M ′) = M∗

1···n; that is both of the conditions for winning
eTCR game are satisfied. Therefore, the hash function family G is completely
insecure in eTCR sense.

To complete the proof, we need to show that the hash function family G
inherits the CR property of H . This is done by reducing CR security of G to that
of H . Let A be an adversary that can win CR game against G with probability
ε′ using time complexity t′. We construct an adversary B against CR property
of H with success probability of at least ε = ε′−2−k (≈ ε′, for large k) and time
t = t′ + cTH as stated in the lemma. The construction of B and the complete
analysis can be found in the full version of this paper in [18]. ��

3.2 eTCR � CR

We want to demonstrate that the eTCR property does not imply the CR prop-
erty. That is, the CR property as a security notion for a dedicated-key hash
function is not a weaker than the eTCR property. This is done by showing as
a counterexample, a dedicated-key hash function which is secure in eTCR sense
but completely insecure in CR sense.

Lemma 2 (eTCR does not imply CR). Assume that there exists a dedicated-
key hash function H : {0, 1}k × {0, 1}m → {0, 1}n, where m > k ≥ n, which is
(t, ε)− eTCR. The dedicated-key hash function G : {0, 1}k × {0, 1}m → {0, 1}n

shown in this lemma is (t′, ε′) − eTCR, where t′ = t − c, ε′ = ε + 2−k+1, but it
is completely insecure in CR sense. (c is a small constant.)

GK(M) =
{

HK(0m−k||K) if M = 1m−k||K
HK(M) otherwise

Proof. We firstly demonstrate that G as a dedicated-key hash function is not
secure in CR sense. This can be easily shown by the following simple adversary
A that plays CR game against G. On receiving the key K, the adversary A
outputs two different messages as M = 1m−k||K and M ′ = 0m−k||K and wins
the CR game as we have GK(1m−k||K) = HK(0m−k||K) = GK(0m−k||K).

It remains to show that that G indeed is an eTCR secure hash function
family. Let A = (A1, A2) be an adversary which wins the eTCR game against
G with probability ε′ and using time complexity t′. We construct an adversary
B = (B1, B2) which uses A as a subroutine and wins eTCR game against H
with success probability of at least ε = ε′ − 2−k+1(≈ ε′, for large k) and having
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time complexity t = t′ + c where small constant c can be determined from the
description of algorithm B. The description of the algorithm B and the complete
analysis can be found in the full version of this paper in [18]. ��

3.3 The Case for Randomized Hashing

Randomized Hashing method is a simple method to obtain a dedicated-key hash
function H̃ : K × M → {0, 1}n from an iterated (keyless) hash function H as
H̃(K, M) � H

(
K||(M1⊕K)|| · · · ||(ML⊕K)

)
, where K = {0, 1}b and H itself is

constructed by iterating a keyless compression function h : {0, 1}n+b → {0, 1}n

and using a fixed initial chaining value IV. The analysis in [10] reduces the
security of H̃ in eTCR sense to some assumptions, called c-SPR and e-SPR,
on the keyless compression function h which are weaker than the keyless-CR
assumption on h.

Here, we are interested in a somewhat different question, namely whether
(formally definable) CR for this specific design of dedicated-key hash function
H̃ implies that it is eTCR or not. Interestingly, we can gather a strong evidence
that CR for H̃ implies that it is also eTCR, by the following argument. First,
from the construction of H̃ it can be seen that CR for H̃ implies keyless-CR for
a hash function H∗ which is identical to the H except that its initial chaining
value is a random and known value IV ∗ = h(IV ||K) instead of the prefixed IV
(Note that K is selected at random and is provided to the adversary at the start
of CR game). This is easily proved, as any adversary that can find collisions for
H∗ (i.e. breaks it in keyless-CR sense) can be used to construct an adversary
that can break H̃ in CR sense. Second, from recent cryptanalysis methods which
use differential attacks to find collisions [25, 24], we have a strong evidence that
finding collisions for H∗ under known IV ∗ would not be harder than finding
collisions for H under IV , for a practical hash function like MD5 or SHA-1.
That is, we argue that if H∗ is keyless-CR then H is also keyless-CR. Finally,
we note that keyless-CR assumption on H in turn implies that H̃ is eTCR as
follows. Consider a successful eTCR attack against H̃ where on finishing the
attack we will have (K, M) 
= (K ′, M ′) and H̃(K, M) = H̃(K ′, M ′), where M =
M1|| · · · ||ML and M ′ = M ′

1|| · · · ||M ′
L. Referring to the construction of H̃ this is

translated to H
(
K||(M1 ⊕K)|| · · · ||(ML ⊕K)

)
= H

(
K||(M ′

1 ⊕K)|| · · · ||(M ′
L ⊕

K)
)

and from (K, M) 
= (K ′, M ′) we have that
(
K||(M1⊕K)|| · · · ||(ML⊕K)

)

=(

K||(M ′
1⊕K)|| · · · ||(M ′

L⊕K)
)
. Hence, we have found a collision for H and this

contradicts the assumption that H is keyless-CR. Therefore, for the case of the
specific dedicated-key hash function H̃ obtained via Randomized Hashing mode,
it can be argued that CR implies eTCR.

4 Domain Extension and eTCR Property Preservation

In this section we investigate the eTCR preserving capability of eight domain
extension transforms, namely Plain MD [12, 7], Strengthened MD [12, 7], Prefix-
free MD [6, 11], Randomized Hashing [10], Shoup [21], Enveloped Shoup [2], XOR
Linear Hash (XLH)[4], and Linear Hash (LH) [4] methods.
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Assume that we have a compression function h : {0, 1}k×{0, 1}n+b → {0, 1}n

that can only hash messages of fixed length (n + b) bits. A domain extension
transform can use this compression function (as a black-box) to construct a
hash function H : K ×M→ {0, 1}n, where the message space M can be either
{0, 1}∗ or {0, 1}<2m

, for some positive integer m (e.g. m = 64). The key space K
is determined by the construction of a domain extender. Clearly log2(|K|) ≥ k,
as H involves at least one invocation of h. The difference between log2(|K|) (i.e.
the key length of H) and k (i.e. the key length of h) is called the ‘key expansion’
of domain extension transform and is a measure of its efficiency: the less key
expansion is, the more efficient the domain extension transform will be.

A domain extension transform comprises of two functions: an injective
padding function Pad and an iteration function fI . First, the padding func-
tion Pad : M → DI is applied to an input message M ∈ M to convert it
to the padded message Pad(M) in a domain DI . Then, the iteration function
fI : K×DI → {0, 1}n uses the compression function h as many times as required,
and outputs the final hash value. The full-fledged hash function H is obtained
by combining the two functions.

The padding functions used in the eight domain extension transforms that we
consider in this paper are defined as follows:

– Plain: pad : {0, 1}∗ → ⋃
L≥1 {0, 1}Lb, where pad(M) = M ||10p and p is the

minimum number of 0’s required to make the length of pad(M) a multiple
of block length.

– Strengthening: pads : {0, 1}<2m → ⋃
L≥1 {0, 1}Lb, where pads(M) =

M ||10p|| 〈|M |〉m and p is the minimum number of 0’s required to make the
length of pads(M) a multiple of block length.

– Prefix-free: padPF : {0, 1}∗ → ⋃
L≥1 {0, 1}Lb, where padPF transforms

the input message space {0, 1}∗ to a prefix-free message space,i.e.padPF (M)
is not a prefix of padPF (M ′) for any two distinct messages M and M ′. An
example of a Prefix-free padding function, which we consider in this paper,
is as follows. Append 10p to the message where p is the minimum number of
0’s required to make the length of the resulted message a multiple of b − 1
bits. Parse the resulted message into blocks of b − 1 bits and prepend a ‘0’
to all blocks but the final block where a ‘1’ must be prepended.

– Strengthened Chain Shift: padCSs : {0, 1}<2m → ⋃
L≥1 {0, 1}Lb+b−n,

where padCSs(M) = M ||10r|| 〈|M |〉m ||0p, and parameters p and r are de-
fined in two ways depending on the block length b. If b ≥ n + m then p = 0,
otherwise p = b−n. Then r is the minimum number of 0’s required to make
the padded message a member of {0, 1}Lb+b−n, for some positive integer L.

The iteration functions for MD, Randomized Hashing, Shoup, Enveloped Shoup,
XLH and LH are shown in Fig. 1.

4.1 Merkle-Damg̊ard Does Not Preserve eTCR

MD iteration function as shown in Fig. 1 can be used together with Plain
(pad), Strengthening(pads), or Prefix-free(padPF ) padding function to construct
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MDh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k

Algorithm MDh
IV (K, M):

C0 = IV
for i = 1 to L do

Ci = hK(Ci−1||Mi)
return CL

IV hh h

M3 MLM1 M2

C2 C3 CL−1 CLC1 h

K KK K

IV hh h

M3 MLM1 M2

CLh

K3 KLK1 K2

IV hh h

M2 MLM1

CL+1h

K KK K

K′
K′K′

K′

LHh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}Lk

Algorithm LHh
IV (K1||K2|| · · · ||KL, M):

C0 = IV
for i = 1 to L do

Ci = hKi
(Ci−1||Mi)

return CL

XLHh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k+Ln

Algorithm XLHh
IV (K||K0||K1|| · · · ||KL−1, M):

C0 = IV
for i = 1 to L do

Ci = hK((Ci−1 ⊕Ki−1)||Mi)
return CL

Shh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k+tn

t = �log2(L)� , ν(i) = max {x : 2x|i}

Algorithm Shh
IV (K||K0||K1|| · · · ||Kt−1, M):

C0 = IV
for i = 1 to L do

Ci = hK((Ci−1 ⊕Kν(i))||Mi)
return CL

RHh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k+b

Algorithm RHh
IV (K||K ′, M):

C0 = IV
C1 = hK(C0||K ′)
for i = 2 to L + 1 do

Ci = hK(Ci−1||(Mi−1 ⊕K ′))
return CL+1

EShh
IV1,IV2

: K × {0, 1}(L−1)b+b−n → {0, 1}n, where K = {0, 1}k+tn

t = �log2(L− 1)�+ 1, ν(i) = max {x : 2x|i}

Algorithm EShh
IV1,IV2

(K||K0||K1|| · · · ||Kt−1, M):
C0 = IV1; Kμ = Kt−1

for i = 1 to L− 1 do
Ci = hK((Ci−1 ⊕Kν(i))||Mi)

return hK((IV2 ⊕K0)||(CL−1 ⊕Kμ)||ML)

IV hh h

M3 MLM1 M2

CLh

K K2K K K0K1K0 KKv(L)

IV hh h

M3 MLM1 M2

CLh

K K3K K K2K1K0 KKL−1

IV1 h h

M1 M2

K KK1K0

h

ML−1

K KμKν(L−1)

b − n

ML

CLh

KK0

IV2

Fig. 1. Iteration functions used in domain extension transforms: Merkle-Damg̊ard
(MD), Randomized Hashing (RH), Shoup (Sh), Enveloped Shoup (ESh), XLH and
LH. The iteration functions are ordered top-down based on their efficiency in terms of
key expansion, MD iteration does not expand the key length of underlying compression
function and is the most efficient transform and LH is the least efficient transform.

a domain extension transform, which is called Plain MD, Strengthened MD,
or Prefix-free MD, respectively. In this section we show that none of these
three domain extension transforms can be used as an eTCR preserving domain
extender.
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Theorem 1 (Negative Result). Plain MD, Strengthened MD, and Prefix-free
MD do not preserve eTCR.

Proof. We borrow the construction of the following counterexample from [4]
where it was used in the context of TCR property. Assume that there is a
dedicated-key compression function g : {0, 1}k × {0, 1}n+b → {0, 1}n with b > k
which is (t, ε)-eTCR secure. Set b = k + b′ where b′ > 0 by the assumption that
b > k. Consider the following dedicated-key compression function h : {0, 1}k ×
{0, 1}(n+k)+b′ → {0, 1}n+k:

h(K, X ||Y ||Z) = hK(X ||Y ||Z) =
{

gK(X ||Y ||Z)||K if K 
= Y
1n+k if K = Y

where K ∈ {0, 1}k
, X ∈ {0, 1}n

, Y ∈ {0, 1}k
, Z ∈ {0, 1}b′ (n + k is chaining

variable length and b′ is block length for h).
To complete the proof, we first show in Lemma 3 that hK inherits the eTCR

property from gK . Note that this cannot be directly inferred from the proof in
[4] that hK inherits the weaker notion TCR from gK . Then, we show a sim-
ple attack in each case to show that the hash function obtained via either of
Plain, Strengthened, or Prefix-free MD transform by extending domain of hK is
completely insecure in eTCR sense.

Lemma 3. The dedicated-key compression function h is (t′, ε′)-eTCR secure,
where ε′ = ε + 2−k+1 ≈ ε and t′ = t− c, for a small constant c.

Proof. Let A = (A1, A2) be an adversary which wins the eTCR game against
hK with probability ε′ and using time complexity t′. We construct an adversary
B = (B1, B2) which uses A as a subroutine and wins eTCR game against gK

with success probability of at least ε = ε′−2−k+1(≈ ε′, for large k) and spending
time complexity t = t′ + c where small constant c can be determined from the
description of algorithm B. Algorithm B is as follows:

Algorithm B1() Algorithm B2(K1, M1, State)

(M1 = X1||Y1||Z1, State) $← A1(); Parse M1 as M1 = X1||Y1||Z1

return (M1, State); if
[
K1 = Y1

∨
K1 = 1k

]
return ‘Fail’;

(M2=X2||Y2||Z2, K2) $←A2(K1, M1, State);
return (M2, K2);

At the first stage of eTCR attack, B1 just merely runs A1 and returns whatever
it returns as the first message (i.e. M1 = X1||Y1||Z1) and any possible state
information to be passed to the second stage algorithm. At the second stage of
the attack, let Bad be the event that [K1 = Y1

∨
K1 = 1k]. If Bad happens

then algorithm B2 (and hence B) will fail in eTCR attack; otherwise (i.e. if Bad
happens) we show that B will be successful in eTCR attack against g whenever
A succeeds in eTCR attack against h.

Assume that the event Bad happens; that is, [K1 
= Y1
∧

K1 
= 1k]. We claim
that in this case if A succeeds then B also succeeds. Referring to the construction
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of (counterexample) compression function h in this lemma, it can be seen that if
A succeeds, i.e., whenever (M1, K1) 
= (M2, K2)

∧
hK1(M1) = hK2(M2), it must

be the case that gK1(M1)||K1 = gK2(M2)||K2 which implies that gK1(M1) =
gK2(M2) (and also K1 = K2). That is, (M1, K1) and (M2, K2) are also valid a
colliding pair for the eTCR attack against g. (Remember that M1 = X1||Y1||Z1
and M2 = X2||Y2||Z2.)

Now note that Pr[Bad] ≤ Pr[K1 = Y1] + Pr[K1 = 1k] = 2−k + 2−k = 2−k+1,
as K1 is selected uniformly at random just after the message M1 is fixed in the
eTCR game. Therefore, we have ε = Pr[B succeeds] = Pr[A succeeds ∧Bad] ≥
Pr[A succeeds]− Pr[Bad] ≥ ε′ − 2−k+1.

To complete the proof of Theorem 1, we need to show that MD transforms cannot
preserve eTCR while extending the domain of this specific compression function
hK . For this part, the same attacks that used in [4, 2] against TCR property
also work for our purpose here as clearly breaking TCR implies breaking its
strengthened variant eTCR. The eTCR attacks are as follows:

The Case of Plain MD and Strengthened MD:
Let’s denote the Plain MD and Strengthened MD domain extension transforms,
respectively, by pMD and sMD. The following adversary A = (A1, A2) can
break the hash function obtained using either of pMD or sMD transforms, in
the eTCR sense. A1 outputs M1 = 0b′ ||0b′ and A2, on receiving the first key K,
outputs a different message as M2 = 1b′ ||0b′ together with the same key K as the
second key. Considering that the initial value IV = IV1||IV2 ∈ {0, 1}n+k is fixed
before adversary starts the attack game and K is chosen at random afterward in
the second stage of the game, we have Pr [K = IV2] = 2−k. If K 
= IV2 which is
the case with probability 1− 2−k then adversary becomes successful as we have:

MDh
IV (K, 0b′ ||0b′)=hK(hK(IV1||IV2||0b′)||0b′) = hK(gK(IV1||IV2||0b′)||K||0b′)

= 1n+k

MDh
IV (K, 1b′ ||0b′)=hK(hK(IV1||IV2||1b′)||0b′) = hK(gK(IV1||IV2||1b′)||K||0b′)

= 1n+k

pMD :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
MDh

IV (K, pad(0b′ ||0b′)) = hK(MDh
IV (K, 0b′ ||0b′)||10b′−1)

= hK(1n+k||10b′−1)

MDh
IV (K, pad(1b′ ||0b′)) = hK(MDh

IV (K, 1b′ ||0b′)||10b′−1)
= hK(1n+k||10b′−1)

sMD :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
MDh

IV (K, pads(0b′ ||0b′)) = hK(MDh
IV (K, 0b′ ||0b′)||10b′−m−1|| 〈2b′〉m)

= hK(1n+k||10b′−m−1|| 〈2b′〉m)

MDh
IV (K, pads(1b′ ||0b′)) = hK(MDh

IV (K, 1b′ ||0b′)||10b′−m−1|| 〈2b′〉m)
= hK(1n+k||10b′−m−1|| 〈2b′〉m)
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The Case of Prefix-free MD: Denote Prefix-free MD domain extension trans-
form by preMD. The full-fledged hash function H : {0, 1}k ×M → {0, 1}n+k

will be defined as H(K, M) = preMDh
IV (K, M) = MDh

IV (K, padPF (M)).
Note that we have M = {0, 1}∗ due to the application of padPF function.
The following adversary A = (A1, A2) which is used for TCR attack against
Prefix-free MD in [2], can also break H in eTCR sense, as clearly any TCR at-
tacker against H is an eTCR attacker as well. Here, we provide the description
of the attack for eTCR, for completeness. A1 outputs M1 = 0b′−1||0b′−2 and A2
on receiving the first key K outputs a different message as M2 = 1b′−1||0b′−2

together with the same key K as the second key. Considering that the initial
value IV = IV1||IV2 ∈ {0, 1}n+k is fixed before the adversary starts the attack
game and K is chosen at random afterward, we have Pr [K = IV2] = 2−k. If
K 
= IV2 which is the case with probability 1− 2−k then the adversary becomes
successful as we have:

MDh
IV (K, padPF (0b′−1||0b′−2)) = MDh

IV (K, 0b′ ||10b′−21)
= hK(hK(IV1||IV2||0b′)||10b′−21)
= hK(gK(IV1||IV2||0b′)||K||10b′−21)
= 1n+k

MDh
IV (K, padPF (1b′−1||0b′−2)) = MDh

IV (K, 01b′−1||10b′−21)
= hK(hK(IV1||IV2||01b′−1)||10b′−21)
= hK(gK(IV1||IV2||01b′−1)||K||10b′−21)
= 1n+k

4.2 Randomized Hashing Does Not Preserve eTCR

Our aim in this section is to show that Randomized Hashing (RH) construction,
if considered as a domain extension for a dedicated-key compression function,
does not preserve eTCR property. Note that (this dedicated-key variant of) RH
method as shown in Fig. 1 expands the key length of the underlying compression
function by only a constant additive factor of b bits, that is log2(|K|) = k + b.
This characteristic, i.e. a small and message-length-independent key expansion
could have been considered a stunning advantage from efficiency viewpoint, if
RH had been able to preserve eTCR. Nevertheless, unfortunately we shall show
that randomized hashing does not preserve eTCR.

Following the specification of the original scheme for Randomized Hashing in
[10], we assume that the padding function is the strengthening padding pads.
The full-fledged hash function H : {0, 1}k ×M → {0, 1}n+k will be defined as
H(K||K ′, M) = RHh

IV (K||K ′, pads(M)). Note that we have M = {0, 1}<2m

due to the application of pads function.

Theorem 2 (Negative Result). The Randomized Hashing transform does not
preserve eTCR.

Proof. We use the same counterexample as used in the proof of Theorem 1 to
show that Randomized Hashing transform does not preserve eTCR property.
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As we have previously shown in Lemma 3 that the constructed hK inherits
the eTCR property of gK , it just remains to show that RHh

IV cannot extend
the domain of hK while preserving its eTCR property. Consider an adversary
A = (A1, A2) that plays the eTCR game against the hash function H , obtained
via Randomized Hashing, as follows. A1 outputs a one-block long target message
M1 = 0b′ (note that for the counterexample compression function hK , b′ is the
block length and n + k is the chaining variable length). A2 on getting the first
key K||K ′ for H (in the second stage of eTCR attack), outputs the second
message as M2 = 1b′ and puts the second key the same as the first key. As
M2 
= M1, we just need to show that these two messages collide under the same
key, i.e. K||K ′. Considering that the initial value IV = IV1||IV2 ∈ {0, 1}n+k

for RHh
IV is (selected and) fixed before the adversary starts the attack game

and K||K ′ is chosen at random latter in the second stage of the game, we have
Pr [K = IV2] = 2−k. If K 
= IV2 (which is the case with probability 1 − 2−k)
then the adversary A = (A1, A2) becomes successful as we have:

RHh
IV (K||K ′, pads(0b′)) = RHh

IV (K||K ′, 0b′ ||10b′−1−m 〈b′〉m)
= hK

(
hK

(
hK(IV1||IV2||K ′)||(K ′ ⊕ 0b′)

)
||(K ′ ⊕ 10b′−1−m 〈b′〉m)

)
= hK

(
hK

(
gK(IV1||IV2||K ′)||K||(K ′ ⊕ 0b′)

)
||(K ′ ⊕ 10b′−1−m 〈b′〉m)

)
= hK(1n+k||(K ′ ⊕ 10b′−1−m 〈b′〉m))

RHh
IV (K||K ′, pads(1b′)) = RHh

IV (K||K ′, 1b′ ||10b′−1−m 〈b′〉m)
= hK

(
hK

(
hK(IV1||IV2||K ′)||(K ′ ⊕ 1b′)

)
||(K ′ ⊕ 10b′−1−m 〈b′〉m)

)
= hK

(
hK

(
gK(IV1||IV2||K ′)||K||(K ′ ⊕ 1b′)

)
||(K ′ ⊕ 10b′−1−m 〈b′〉m)

)
= hK(1n+k||(K ′ ⊕ 10b′−1−m 〈b′〉m)) ��

4.3 Shoup, Enveloped Shoup and XLH Do Not Preserve eTCR

In previous subsections, we have shown that neither MD nor RH are eTCR pre-
serving transforms. The next three most efficient candidates from key expansion
viewpoint that we consider are Shoup (Sh), Enveloped Shoup (ESh) and XLH
transforms.

Theorem 3 (Negative Results). Sh, ESh, and XLH transforms do not
preserve eTCR.

Proof. The proof is quite simple but the results are stronger than previous coun-
terexample based proofs, as here the negative results hold for any arbitrary
compression function (irrespective of how secure the compression function h is),
and not only for some specific counterexamples. That is, these XOR masking
based domain extension transforms are structurally insecure in eTCR sense. In-
tuitively, the inability if these domain extenders to preserve eTCR is due to
the fact that they use XOR operation to add the key to the internal state
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(i.e. chaining variable), and hence an eTCR adversary will be able to cancel
internal differences by taking advantage of its ability to select the value of the
second key in the second stage of eTCR attack. (We note that this is also the
case for the XTH scheme of [4].)

For the formal proof, we provide the following simple eTCR attack against
Shoup construction. The attacks for the cases of ESh and XLH are quite similar
and can be found in the full version of this paper in [18].

Consider the hash function obtained via Shoup domain extension transform,
i.e. pads padding function followed by Shh

IV iteration method. The following
simple adversary A = (A1, A2) can break it in the eTCR sense. At the first
stage of the eTCR attack, A1 outputs a two-block message M = M1||M2
as the target message which after applying pads will become a three-block
message M1||M2||(10b−1−m 〈2b〉m) to be input to the three-round Shh

IV iter-
ation. In the second stage of eTCR game, A2, after receiving the first key as
K||K0||K1||K0 from the challenger, chooses the second two-block message as
M ′ = M ′

1||M2 which after padding becomes M ′
1||M2||(10b−1−m 〈2b〉m). A2 also

puts the second key as K||K0||K ′
1||K0, where the value of K ′

1 is computed as
K ′

1 = K1⊕hK

(
(IV ⊕K0)||M1

)
⊕hK

(
(IV ⊕K0)||M ′

1
)
. It is easy to see (referring

to Fig. 1) that this value for K ′ cancel the introduced difference in chaining
variable which was created due to the different message blocks M1 and M ′

1.
So, (K||K0||K1, M) and (K||K0||K ′

1, M
′) constitute a colliding pair for H in

eTCR sense. (Note that the key sequence used for iteration function Shh
IV is

K||K0||K1||K0 because padded message pads(M) has an extra third block con-
taining the length information.) ��

4.4 LH Transform and Its Nested Variant

Up to know we have shown that neither of MD, RH, Sh, or XLH transforms can
preserve eTCR property. Henceforth, we have lost all efficient methods from key
expansion viewpoint and now we have reached to the same starting-point (and
the least efficient) transform for TCR preserving scenario as in [4], i.e. the LH
method whose key expansion is linear in the message length. We now consider
whether at least (but hopefully not the last) this LH transform or its variants can
be used for eTCR preserving domain extension or not. Fortunately, we gather
a positive answer for this. The proof for this positive result is a straightforward
extension of the methodology used in [4] for the case of TCR, but with some
necessary adaptations required for considering eTCR attack scenario where ad-
versary has more power in second stage by getting to choose a different key as
well as a different message. Firstly, in Theorem 4 we show that if the compression
function h is eTCR secure then the hash function LHh

IV will be secure against a
restricted class of eTCR adversaries which only find equal-length colliding pairs.
Let’s denote this equal-length eTCR notion by eTCR∗. Secondly, it is shown in
Theorem 5 that a nested variant of LH can be made eTCR secure, i.e. against
any arbitrary adversary. The proofs for these two theorems can be found in the
full version of this paper in [18].
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Assume that the input messages have length a multiple of block length and the
maximum length in blocks is some positive integer N , i.e. |M | ≤ Nb where b is
the length of one block in bits. This restriction of message space to a domain with
messages of variable but multiple-block length can be easily removed by using
any proper injective padding function like plain padding function pad. LHh

IV

iteration function can be used to define a hash function as H(K1|| · · · ||KN , M) �
LHh

IV (K1|| · · · ||Km, M), where m is the length of M in blocks.

Theorem 4 (Positive Result: eTCR∗). Assume that the compression func-
tion h : {0, 1}k × {0, 1}n+b → {0, 1}n is (t, ε)-eTCR. Then the hash function
H : {0, 1}Nk × {0, 1}≤Nb → {0, 1}n obtained using LHh

IV iteration of h, will be
(t′, ε′)-eTCR∗, where ε′ = Nε, t′ = t − Θ(N)

(
Th + n + b + k

)
, where Th is the

time for one computation of the compression function h.

Theorem 5 (From eTCR∗ to eTCR). Assume that H1 : {0, 1}k1 ×M →
{0, 1}n is (t1, ε1)-eTCR∗ hash function and h : {0, 1}k2 × {0, 1}n+b → {0, 1}n

is (t2, ε2)-eTCR compression function, where b ≥ �log2(|M |)�, for any M ∈
M. Then the composition function H : {0, 1}k1+k2 ×M → {0, 1}n, defined as
H(K1||K2, M) = h(K2, H1(K1, M)|| 〈|M |〉b), will be (t, ε)-eTCR; where ε =
ε1 + 2ε2, and t = min {t1 − k2, t2 − k1 − 2TH1 − 2b}.

Nested Linear Hash: Let H1 be the equal-length eTCR hash function ob-
tained via LH transform as stated in Theorem 4. From Theorem 5 we can obtain
a variant of LH which is eTCR secure. This variant which we call it Nested LH is
obtained by the composition of H1 with an eTCR compression function h, that
is, LH nested by this final application of the compression function in the way
stated in Theorem 5 (i.e. final block is just 〈|M |〉b). Theorem 5 and Theorem 4
show that this Nested LH will be eTCR if the compression function is eTCR. Al-
ternatively, this Nested LH construction can be seen as obtained using a variant
of strengthening padding followed by LH iteration on the compression function
h. This variant of strengthening padding, which can be called full-final-block
strengthening, acts as follows. On input a message M , append the message by
10r to make its length a multiple of block length and then append another full
block which only contains the representation of length of M in an exactly b-bit
string, i.e. 〈|M |〉b.

5 Conclusion

The introduction of the eTCR property by Halevi and Krawczyk [10] has been
proven to be very useful to enrich the notions of hash functions, in particular
with its application to construct the Randomized Hashing mode which has been
announced by NIST as Draft SP 800-106. Nonetheless, the relationships between
eTCR with the existing properties of hash functions need to be further studied. In
this paper, we showed that there is a separation between the new eTCR property
with the well-known collision resistance (CR) property, where both properties
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are considered for a dedicated-key hash function. Furthermore, when considering
the problem of eTCR property preserving domain extension, we found that the
only eTCR preserving method is a nested variant of LH which has a drawback
of having high key expansion factor. Therefore, it is interesting to design a new
eTCR preserving domain extension in the standard model, which is efficient. We
left this as an open problem in this paper.
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Abstract. Message Authentication Codes (MACs) are core algorithms
deployed in virtually every security protocol in common usage. In these
protocols, the integrity and authenticity of messages rely entirely on the
security of the MAC; we examine cases in which this security is lost.

In this paper, we examine the notion of “reforgeability” for MACs,
and motivate its utility in the context of {power, bandwidth, CPU}-
constrained computing environments. We first give a definition for this
new notion, then examine some of the most widely-used and well-known
MACs under our definition in a variety of adversarial settings, finding
in nearly all cases a failure to meet the new notion. We examine sim-
ple counter-measures to increase resistance to reforgeabiliy, using state
and truncating the tag length, but find that both are not simultaneously
applicable to modern MACs. In response, we give a tight security re-
duction for a new MAC, WMAC, which we argue is the “best fit” for
resource-limited devices.

Keywords: Message Authentication Codes, Birthday Attacks, Provable
Security.

1 Introduction

Message Authentication Codes. Message authentication codes (MACs) are
the most efficient algorithms to guarantee message authenticity and integrity in
the symmetric-key setting, and as such are used in nearly all security protocols.
They work like this: if Alice wishes to send a message M to Bob, she processes
M with an algorithm MAC using her shared key K and possibly some state or
random bits we denote with s. This produces a short string Tag and she then
sends (M, s, Tag) to Bob. Bob runs a verification algorithm VF with key K on
the received tuple and VF outputs either ACCEPT or REJECT. The goal is that
Bob should virtually never see ACCEPT unless (M, s, Tag) was truly generated
by Alice; that is, an imposter should not be able to impersonate Alice and forge
valid tuples.

There are a large number of MACs in the literature. Most have a proof of se-
curity where security is expressed as a bound on the probability that an attacker
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will succeed in producing a forgery after making q queries to an oracle that pro-
duces MAC tags on messages of his choice. The bound usually contains a term
q2/2t where q is the total number of tags generated under a given key and t is
the tag length in bits. This quadratic term typically comes from the probability
that two identical tags were generated by the scheme for two different messages;
this event is typically called a “collision” and once it occurs the analysis of the
scheme’s security no longer holds. The well-known birthday phenomenon is re-
sponsible for the quadratic term: if we generate q random uniform t-bit strings
independently, the expected value of q when the first collision occurs is about√

π2t−1 = Θ(2t/2).

Reforgeability. The following is a natural question: if a forgery is observed
or constructed by an adversary, what are the consequences? One possibility is
that this forgery does not lead to any additional advantage for the adversary:
a second forgery requires nearly as much effort to obtain as the first one did.
We might imagine using a random function f : Σ∗ → {0, 1}t as a stateless
MAC. Here, knowing a forgery amounts to knowing distinct M1, M2 ∈ Σ∗ with
f(M1) = f(M2). However it is obvious this leads to no further advantage for the
adversary: the value of f at points M1 and M2 are independent of the values
of f on all remaining unqueried points.

Practical MAC schemes, however, usually do not come close to truly random
functions, even when implemented as pseudorandom functions (PRFs). Instead
they typically contain structure that allows the adversary to use the obtained
collision to infer information about the inner state of the algorithm. This invari-
ably leads to further forgeries with a minimum of computation.

Applications. One might reasonably ask why we care about reforgeability.
After all, aren’t MACs designed so that the first forgery is extremely improbable?
They are, in most cases, and for many scenarios this is the correct approach,
but there are several settings where we might want to think about reforgeability
nonetheless:

– In sensor nodes, where radio power is far more costly than computing power,
short tag-length MACs might be employed to reduce the overhead of sending
tags.

– Streaming video applications might use a low-security MAC with the idea
that forging one frame would hardly be noticeable to the viewer; our concern
would be that the attacker would be unable to efficiently forge arbitrarily
many frames, thereby taking over the video transmission.

– VOIP is another setting where reforgeability is arguably more appropriate
than current MAC security models. In this setting, a forged packet probably
only corresponds to a fraction of a second of sound and is relatively harmless.

In all cases, if parameters are chosen correctly so that an attacker’s best
strategy is to guess tags, the overwhelming number of incorrect guesses can be
used to inform users in situations where a forged packet could potentially have
serious consequences.
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MAC scheme Expected queries Succumbs to Succumbs to Message
for j forgeries padding attack other attack freedom

CBC MAC C1 + j
√

m − 2
EMAC C1 + j

√ √
m − 2

XCBC C1 + j
√ √

m − 2
PMAC C1 + j

√
1

ANSI retail MAC C1 + j
√ √

m − 2
HMAC

∑
i Ci/2i + j

√
m − 1

Fig. 1. Summary of Results. The upper table lists each well-known MAC scheme we
examined, along with its resistance to reforgeability attacks. Here n is the output length
(in bits) of each scheme, and m is the length (in n-bit blocks) of the queries to the MAC
oracle; the i-th collision among the tags is denoted by event Ci. For most schemes, the
first forgery is made after the first collision among the tags, and each subsequent forgery
requires only one further MAC query. With a general birthday attack, the first collision
is expected at around 2n/2 MAC queries, although the exact number for each scheme
can differ somewhat. The last column gives the number of freely-chosen message blocks
in the forgery.

Main Results. In this paper we conduct a systematic study of reforgeability,
treated first in the literature by McGrew and Fluhrer [23].We first give a defini-
tion of reforgeability, both in the stateless and stateful settings. We then examine
a variety of well-known MAC schemes and assess their resistance to reforgeability
attacks. We find that for all stateless schemes and many stateful schemes there
exists an attack that enables efficient generation of forgeries given knowledge of
an existing collision in tags. In some cases this involves fairly constrained mod-
ification of just the final block of some fixed message; in other cases we obtain
the MAC key and have free rein. For each stateful scheme where we could not
find an attack, we then turned our attentions to another related problem: nonce
misuse. That is, if nonces are reused with the same key, can we forge multiple
times? The answer is an emphatic “yes.” For many of these MACs only a single
protocol error is required to break the security; querying to the birthday bound
is unnecessary.

Figure 1 and Figure 2 give a synopsis of our findings. In most cases, our attack
is based on finding collisions and this in turn leads to a substantial number
of subsequent forgeries; the degree to which each scheme breaks is noted in
the table. For some Wegman-Carter-Shoup (WCS) [7, 27] MACs, the attack
is more severe: nonce misuse yields the universal hash family instance almost
immediately.

After an earlier draft of this paper appeared on eprint, many of the attacks
in Figure 1 and Figure 2 were subsequently improved in [18] by Handschuh and
Preneel. In light of this, we include no attacks within this version of the paper.
For attack details we refer the interested reader to the full version of this paper
[8] and the other literature on this subject [10, 18, 23, 24].

These attacks were sufficient to make us wonder if there exists an efficient and
practical MAC scheme resistant to reforgeability attacks. A natural first try is
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UHF in FH mode Expected queries Reveals key Queries for
for j forgeries key recovery

hash127/Poly1305 C1 + log m + j
√

C1 + log m
VMAC C1 + 2j
Square Hash C1 + 2j

√
mC1

Topelitz Hash C1 + 2j
Bucket Hash C1 + 2j
MMH/NMH C1 + 2j

UHF in WCS mode Expected queries Repeated Reveals key Queries for
with nonce misuse for j forgeries nonce key recovery
hash127/Poly1305 2 + log m + j 1

√
2 + log m

VMAC C1 + 2j C1 + j
Square Hash 3m + j m

√
3m

Topelitz Hash 2j + 2 1
Bucket Hash 2j + 2 1
MMH/NMH 2m + j m

√
2m

Fig. 2. Results for Carter-Wegman MACs. The top table lists 6 well-known universal
hash families, each made into a MAC via the FH construction [11, 29] where the hash
family is composed with a pseudorandom function to produce the MAC tag. These
similarly succumb to reforgeability attacks after a collision in the output tags, with
hash127/Poly1305 and Square-Hash surrendering their key in the process. The last
column gives the expected number of queries for key recovery, where possible. The
bottom table considers the same hash families in the Wegman-Carter-Shoup (WCS)
[7, 27] paradigm (the most prominent MAC paradigm for ε-AU hash families), but
where nonces are misused and repeated. With many families, only one repeated nonce
query is enough to render the MAC totally insecure. Others reveal the key with a few
more queries using the same nonce. See [18] for further attacks on these and other hash
families in a similar setting.

to add state, in the form of a nonce inserted in a natural manner, to the schemes
above. We show, however, that this approach can be insufficient or insecure
when subtly misused. Another approach would be to use a stateless MAC such
as HMAC, and truncate the output so a collision in tags does not expose some
exploitable internal information. However, this is also somewhat unsatisfactory
because all the fastest MACs are stateful WCS-style MACs where trucation
severely reduces the security.

We therefore devised a new (stateful) scheme, WMAC, that allows nonce reuse
and where for most parameter sizes guessing the tag is the best reforgeability
strategy. The scheme is described fully in Section 3 but briefly it works as follows.

Let H be some ε−AU hash family H = {h : D → {0, 1}l}, and R a set of
functions R = Rand(l+b, n). Let ρ

$←R and h
$←H; the shared key is (ρ, h). Let

〈cnt〉b denote the encoding of cnt using b bits. To MAC a message (M, cnt), the
signer first ensures that cnt < 2b − 1 and if so sends (cnt, ρ(〈cnt〉b ‖ h(M))). To
verify a received message M with tag (i, Tag), the verifier computes ρ(〈i〉b‖h(M))
and ensures it equals Tag.
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Why WMAC? There are essentially four parameters which much be balanced
when choosing a suitable MAC: speed, security, tag length, and deployment
feasibility. WCS MACs provide excellent performance on the first two items, but
require long tags and absolutely non-repeatable nonces (which also increases the
tag length), a potential deployment problem where the state might have to be
consistent across several machines. Stateless MACs, whose tags may be truncated
without degrading security and therefore tend to do well on the last two items,
lag behind on the first two.

WMAC can be seen as a compromise between the two sets of MACs. It has
the speed of the fastest WCS MACs but the tag length may be truncated ap-
propriately and nonces may be reused. A fixed nonce may be used for all queries
if desired, effectively yielding the FH [11, 29] scheme as a special case. At the
other extreme end, nonces are never repeated and WMAC retains a high degree
of security comparable to the WCS setting. For most real-world applications
that may already have implicit nonces (via the underlying networking protocol,
eg) and that could use the added security benefits from nonces but do not want
to enforce nonce uniqueness, WMAC is the best solution.

As an example, consider the following concrete WMAC instantiation. Let
ε ≤ 2−82, b = 8, and our PRF will be AES truncated to 24 bits. Then after
232 signing queries and 224 verification queries, one forgery is expected (from
guessing the output of the PRF). The hash family can be a variant of the VHASH
used in VMAC-128, so that the speed of the family is comparable to VMAC-
128.1 Moreover, the total tag length, including the nonce is only 32 bits. There
is no efficient MAC which, using 32 bits for both the tag and nonce, can safely
MAC as many messages with so few expected forgeries. (Note that the nonce
greatly helps the security in this case; without it an expected 64 forgeries would
be possible.)

We stress that although WMAC offers good tradeoffs for resource-constrained
environments where some forgeries may be acceptable, it is still susceptible to
attacks that exploit some bad event that occurs during operation, usually related
to the value of ε for the ε-almost universal hash family used. To be clear, the
attacks from [18] still apply and indeed come within a constant factor of matching
the bound given in our security reduction.2

Related Work. David McGrew and Scott Fluhrer have also done some work
[23] on a similar subject, produced concurrently with our work but published
earlier. They examine MACs with regard to multiple forgeries, although they
view the subject from a different angle. They show that for HMAC, CBC MAC,
and GMAC from the Galois Counter Mode (GCM) of operation for blockciphers

1 Dan Bernstein has recently proposed [5] an almost-universal hash family which
should be as fast or faster than VMAC-64, but which uses a much smaller key
than VMAC. Bernstein’s hash would use fewer multiplications and additions than
VMAC-128, although those operations are done in some field F , not modulo 2n.

2 Our bound also highlights interesting behavior with a verification query-only attack
when the length of the tag is much smaller than lg(ε−1). This case is also matched
by essentially the attacks from [18].
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[21], reforgeability is possible. However, they examine reforgeability in terms of
the number of expected forgeries (parameterized by the number of queries) for
each scheme, which is dependent on the precise security bounds for the respective
MACs. Although our focus is somewhat different, our work complements their
paper by showing their techniques and bounds apply to all major MACs.

Handschuh and Preneel investigated attacks on ε-almost universal hash fami-
lies used in Wegman-Carter-Shoup mode MACs, and found new classes of attacks
[18]. Their attacks improve on ours in several ways, probably the most significant
of which is that they do not require misuse of nonce values to work.

Outline of the Paper. In the next section we cover the basic notation and
security models used. After that, we jump right in to the discussion of WMAC
and its security reduction, our main contribution, deferring the attacks that
motivated its construction to the full version [8].

2 Preliminaries

Let {0, 1}n denote the set of all binary strings of length n. For an alphabet Σ, let
Σ∗ denote the set of all strings with elements from Σ. Let Σ+ = Σ∗−{ε} where
ε denotes the empty string. For strings s, t, let s‖ t denote the concatenation of s

and t. For set S, let s
$← S denote the act of selecting a member s of S according

to a probability distribution on S. Unless noted otherwise, the distribution is
uniform. For a binary string s let |s| denote the length of s. For a string s where
|s| is a multiple of n, let |s|n denote |s|/n. Unless otherwise noted, given binary
strings s, t such that |s| = |t|, let s⊕ t denote the bitwise XOR of s and t. For
a string M such that |M | is a multiple of n, |M |n = m, then we will use the
notation M = M1 ‖ M2 ‖ . . . ‖ Mm such that |M1| = |M2| = . . . = |Mm|. Let
Rand(l, L) = {f | f : {0, 1}l → {0, 1}L} denote the set of all functions from
{0, 1}l to {0, 1}L.

Universal Hash Families. Universal hash families are used frequently in the
cryptographic literature. We now define several notions needed later.

Definition 1. (Carter and Wegman [11]) Fix a domain D and range R. A finite
multiset of hash functions H = {h : D → R} is said to be Universal if for every
x, y ∈ D with x 
= y, Prh∈H[h(x) = h(y)] = 1/|R|.

Definition 2. Let ε ∈ R+ and fix a domain D and range R. A finite multiset
of hash functions H = {h : D → R} is said to be ε-Almost Universal (ε-AU)
if for every x, y ∈ D with x 
= y, Prh∈H[h(x) = h(y)] ≤ ε.

Definition 3. (Krawczyk [20], Stinson [28]) Let ε ∈ R+ and fix a domain D
and range R ⊆ {0, 1}r for some r ∈ Z+. A finite multiset of hash functions
H = {h : D → R} is said to be ε-Almost XOR Universal (ε-AXU) if for
every x, y ∈ D and z ∈ R with x 
= y, Prh∈H[h(x)⊕ h(y) = z] ≤ ε.
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Throughout the paper we assume that a given value of ε for an ε-AU or ε-AXU
family includes a parameter related to the length of the messages. If we speak
of a fixed value for ε, then we implicitly specify an upper bound on this length.

Message Authentication. Formally, a stateless message authentication code
is a pair of algorithms, (MAC, VF), where MAC is a ‘MACing’ algorithm that,
upon input of key K ∈ K for some key space K, and a message M ∈ D for some
domain D, computes a τ -bit tag Tag; we denote this by Tag = MACK(M).
Algorithm VF is the ‘verification’ algorithm such that on input K ∈ K, M ∈
D, and Tag ∈ {0, 1}τ , outputs a bit. We interpret 1 as meaning the verifier
accepts and 0 as meaning it rejects. This computation is denoted VFK(M, Tag).
Algorithm MAC can be probabilistic, but VF typically is not. A restriction is
that if MACK(M) = Tag, then VFK(M, Tag) must output 1. If MACK(M) =
MACK(M ′) for some K, M , M ′, we say that messages M and M ′ collide under
that key.

The common notion for MAC security is resistance to adaptive chosen message
attack [3]. This notion states, informally, that an adversary forges if he can
produce a new message along with a valid tag after making some number of
queries to a MACing oracle. Because we are interested in multiple forgeries, we
now extend this definition in a natural way.

Definition 4 (MAC Security—j Forgeries). Let Π = (MAC, VF) be a mes-
sage authentication code, and let A be an adversary. We consider the following
experiment:

Experiment Exmtjuf -cma
Π (A, j)

K
$←K

Run AMACK(·),VFK(·,·)

If A made j distinct verification queries (Mi, Tagi), 1 ≤ i ≤ j, such that
— VFK(Mi, Tagi) = 1 for each i from 1 to j
— A did not, prior to making verification query (Mi, Tagi), query its
MACK oracle at Mi

Then return 1 else return 0

The juf-cma advantage of A in making j forgeries is defined as

Advjuf -cma
Π (A, j) = Pr

[
Exmtjuf -cma

Π (A, j) = 1
]
.

For any qs, qv, μs, μv, Time ≥ 0 we overload the above notation and define

Advjuf -cma
Π (t, qs, μs, qv, μv, j) = max

A
{Advjuf -cma

Π (A, j)}

where the maximum is over all adversaries A that have time-complexity at most
Time, make at most qs MAC-oracle queries, the sum of those lengths is at most
μs, and make at most qv verification queries where the sum of the lengths of
these messages is at most μv.
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The special case where j = 1 corresponds to the regular definition of MAC
security. If, for a given MAC, Advjuf -cma

Π (t, qs, μs, qv, μv, j) ≤ ε, then we say
that MAC is (j, ε)-secure. For the case j = 1, the scheme is simply ε-secure.

It is worth noting that the adversary is allowed to adaptively query VFK and is
not penalized for queries that return 0. All that is required is for j distinct queries
to VFK return 1, subject to the restriction these queries were not previously
made to the MACing oracle.

Stateful MACs. We will also examine stateful MACs that require an extra
parameter or nonce value. Our model will let the adversary control the nonce,
but limit the number of MAC queries per nonce. Setting this limit above 1 will
simulate a protocol error where nonces are re-used in computing tags.

A stateful message authentication code is a pair of algorithms, (MAC, VF),
where MAC is an algorithm that, upon input of key K ∈ K for some key space K,
a message M ∈ D for some domain D, and a state value S from some prescribed
set of states S, computes a τ -bit tag Tag; we denote this by Tag = MACK(M, S).
Algorithm VF is the verification algorithm such that on inputs K ∈ K, M ∈ D,
Tag ∈ {0, 1}τ , and S ∈ S, VF outputs a bit, with 1 representing accept and 0
representing reject. This computation is denoted VFK(M, S, Tag). A restriction
on VF is that if MACK(M, S) = Tag, then VFK(M, S, Tag) must output 1.

As discussed later, all our attacks on stateless MACs work by examining
the event of a collision in tag values, by virtue of the birthday phenomenon
or otherwise. With stateful MACs an adversary may see collisions in tags, but
the state mitigates, and in most cases neutralizes, any potentially damaging
information leaked in such an event. With that in mind, we will consider two
different security models with regard to stateful MACs. In one, we treat stateful
MACs as intended: nonces are not repeated among queries, but repeated nonces
may be used with verification queries. Many MACs we examine have security
proofs in this model, so it is not surprising that they perform well, even with
short tags. Others don’t, and we provide the analysis.

We also provide analysis for a plausible and interesting protocol error: that
in which nonces are reused. This can happen in several reasonable scenarios:
1) the nonce is a 16- or 32-bit variable, and overflow occurs unnoticed, and 2)
the same key is used across multiple virtualized environments. This latter case
may happen when MACs in differing virtualized environments are keyed with
the same entropy pools, or one environment is cloned from another.

These protocol misuses are captured formally by allowing an adversary a
maximum of α queries per nonce between the two oracles. For most MACs we
examine, α need only be 2 for successful reforgery attacks.

Definition 5 (Stateful MAC Security—j Forgeries). Let Π = (MAC, VF)
be a stateful message authentication code, and let A be an adversary. We consider
the following experiment:

Experiment Exmtjsuf -cma
Π (A, j, α)

K
$←K
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Run AMACK(·),VFK(·,·)

If A made j distinct verification queries (Mi, si, Tagi), 1 ≤ i ≤ j, such
that
— VFK(Mi, si, Tagi) = 1 for each i from 1 to j
— A did not, prior to making verification query (Mi, si, Tagi), query its
MAC oracle with (Mi, si)
— A did not make more than α queries to MACK with the same nonce.
Then return 1 else return 0

The jsuf-cma advantage of A in making j forgeries is defined as

Advjsuf -cma
Π (A) = Pr

[
Exmtjsuf -cma

Π (A, j, α) = 1
]
.

For any qs, qv, μs, μv, Time, j, α ≥ 0 we let

Advjsuf -cma
Π (t, qs, μs, qv, μv, j, α) = max

A
{Advjsuf -cma

Π (A, j, α)}

where the maximum is over all adversaries A that have time-complexity at most
Time, make at most qs MACing queries, the sum of those lengths is at most
μs, where no more than α queries were made per nonce, and make at most qv

verification queries where the sum of the lengths of the messages involved is at
most μv.

If, for a given MAC, Advjsuf -cma
Π (t, qs, μs, qv, μv, j, α) ≤ ε, then we say that

MAC is (j, ε)-secure. For the case j = 1, the scheme is simply ε-secure.

3 A Fast, Stateful MAC with Short Tags

For some stateful MACs we found no attack, and others are accompanied by a
proof of security. Similarly, tag truncation is a simple technique which may be
used to ensure that security is retained well after one starts seeing collisions in
tags. Perhaps we should be satisfied and consider our search for reforgeability-
resistant MACs complete. However, both of these techniques have drawbacks for
the applications in mind which require very short tags. Namely, the nonce value
must be transmitted with each query, and tag truncation may not be used on
the fastest MACs without seriously degrading security.3

It is with these thoughts in mind, and with newfound knowledge of the perils
associated with nonce misuse in WCS MACs, that we designed WMAC. WMAC
boasts speed comparable to VMAC/Poly1305, can use much shorter tags, and
is the first MAC we know of to use repeating nonces, a side effect of which is
shorter tags.

3 Truncating the tag of VMAC or Poly1305-AES by t bits also effectively grows ε for
the ε-AU family by a multiplicative factor of 2t. If these MACs were to be revised
into FH mode, truncation would be possible, but without nonces they succumb to
attacks covered in this paper, and with nonces ε needs to be unacceptably reduced
to make room for the nonce input.
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WMAC. Let H = {h : D → R} be a family of ε-AU hash functions and let
F : K × T ×R→ {0, 1}n be a PRF. We define

WMAC[H, F ]th,FK
(x) = FK(t, h(x)),

where t ∈ T , h
$←H, K

$←K, and x ∈ D. Informally, once keyed with the
selection of K ∈ K and AU hash instance h, WMAC accepts a message x and
nonce t as inputs and returns FK(t, h(x)) as the tag.

Nonces in WMAC. WMAC’s nonce use can be considered as “flexible” in the
sense that the security analysis is done for different uses. To model this, we are
mainly interested in an adversary of somewhat limited capability, that is, an
adversary which can make at most α signing queries for each nonce t ∈ T . The
adversary’s verification queries per nonce are not similarly bounded. We call
such an adversary α-limited, and define Advjsuf -cma

Π (q, t, α) be the maximum
of Advjsuf -cma

Π (A) over every α-limited adversary A which makes at most q =
qs + qv oracle queries (qs to the signing oracle and qv to the verification oracle)
and halts within time Time. We say that Π is secure as an α-limited MAC, if
Advjsuf -cma

Π (q, t, α) is negligibly small for any reasonably large q and Time.
As an example, the FH and FCH [11, 29] modes of operation are special cases

of WMAC where α is set to qs and 1, respectively.

Theorem 1. For any α-limited adversary A of WMAC which makes at most
q = qs + qv queries in time Time, there exists an adversary B of F such that

Advjsuf -cma
WMAC (A) ≤ Advprf

F (B) +
ε(α− 1)qs

2
+

ε

2n−1

(
q2
v + qvqs + max{2n, q

1
2 2

n
2 +3}qv

)
+ δ(j, n, qv).

and where B makes at most q queries, using time proportional to Time + Hash(q),
where Hash(1) is the time to compute h(M) for some message M ∈ D and h

$←H.
The term δ(j, n, qv) is defined as

|S|∑
k=j

∑
X∈Sk

[
Πx′∈S:x′ /∈X

(
1− qv,x′

2n

)
Πx∈X

(qv,x

2n

)]
where S is the set of distinct message-tag pairs seen in all verification queries,
Sk is the set of k-tuples in S, and for an element x ∈ S, qv,x is the number of
verification queries made for that element.

Discussion of the Bound and Expected Number of Forgeries. Mc-
Grew and Fluhrer discuss the expected number of forgeries for GMAC (a WCS
MAC)[21], CBC MAC, and HMAC in terms of ε, n, and q. Our specific attacks
complement their analysis by showing their methods apply to all major stateful
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and stateless MACs. Essentially, they show that for stateless MACs, the ex-
pected number of forgeries is cq32−n +O(q42−2n), where n is output size of the
blockcipher or hash function and c is a constant. For WCS MACs, they show
the expected number of forgeries is cq2ε +O(q3ε2).

We believe this sort of analysis should supplant the current definition of MAC
security for the simple reason that it more accurately quantifies the risks for
MACing q messages over the lifetime of one key and, in the case of our bound
in particular, makes the bound more easily understood. Rather than giving the
traditional security bound and suggesting the number of queries be “well below”
a certain value (2n/2, usually), producing a specific expected number of forgeries
is much superior.

And in this spirit, we give a formula for the expected number of forgeries for
WMAC, which also helps to understand the rather obtuse bound in theorem
1. For a given MAC scheme Π = (MAC, VF), let E(ForgeΠ , qs, qv) denote the
expected number of forgeries when qs queries are allowed to the MAC oracle and
qv queries are allowed to the VF oracle.

Following [23], we will assume WMAC uses an ideal random function as the
PRF. Unless qv is unreasonably large, the expected number of forgeries is over-
whelmingly influenced by the chance that an adversary sets bad to true during
one of the qs queries to the MAC oracle. If this occurs, we give the adversary
qv forgeries. There is a small chance bad is set to true in the verification phase
and to simplify the analysis we admit qv forgeries in this case as well. Thus, we
bound the expected number of forgeries as qv times the probability that bad
is set to true. Finally, we must consider the expected number of forgeries when
the adversary merely guesses the correct outputs of the ideal random function,
which is qv2−n. Thus,

E(ForgeWMAC, q) ≤ εqvqs(α− 1)
2

+
qvε

2n−1

(
q2
v + qvqs + 2n/2+3qv

√
q
)

+ qv2−n.

It is this formula which is used to give figures in the example from section 1.
Note that when q = qs = qv, letting α take on values in {1, q} gives bounds
similar to those from [23].

Proof. Without loss of generality, we may assume that A doesn’t ask the same
signing query twice, and that A makes all signing queries before making any
verification queries.4 Our adversary B has access to an oracle Q(t, x). We con-
struct B, which runs A as a subroutine, by directly simulating the oracles A

expects. That is, in the startup phase, B randomly selects h
$←H. It then runs

A, responding to A’s signing query (t, M) by querying its oracle at (t, h(M))
and returning the answer to A. Similarly, B responds to a verification query
(t, M, Tag) by querying its oracle at (t, h(M)) and returning 1 if the answer is
equal to Tag, 0 otherwise. After A has completed all queries, B outputs the same
bit as A.
4 This condition is not required by our security reduction— an adversary may make

queries in any order she wishes — but for ease of notation we adopt it.
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Procedure Initialize

0 V ← ∅, h
$← H, ρ

$← Rand(T × R, {0, 1}n),
InitializeMap(Map,T × D,T × R), InitializeMap(Mapo,T × D,T × R)

Procedure MAC(t, x)
1 v ← h(x)

2 If (t, v) ∈ V then { bad ← true, (t, v) $← T × R \ V }
3 V ← V ∪ (t, v)
4 return ρ(t, v)

Procedure VF(t, x, Tag)
5 If Map[(t, x)] = ⊥ then {
6 v ← h(x), Map[(t, x)] ← (t, v)

7 If (t, v) ∈ V then { Mapo[(t, x)] ← (t, v), Map[(t, x)] $← T × R \ V , (t, v) ← Map[(t, x)] }
8 V ← V ∪ (t, v)

}
9 If Mapo[(t, x)] �= ⊥ then {
10 If Tag = ρ(Mapo[(t, x)]) or Tag = ρ(Map[(t, x)]) then { bad ← true }

}
11 return Tag = ρ(Map[(t, x)])

Fig. 3. Game G0 and Game G1

Consider the games G0 and G1 in figure 3, where Game G1 includes the
boxed statement. The function InitializeMap takes as arguments a map name,
a domain, and a range, and initializes a map with the input name where every
map lookup returns ⊥.

Clearly, AG0 corresponds to the experiment where A is given access to the
signing oracle ρ(t, h(x)) and verification oracle ρ(t, h(x)) = Tag, and AG1 cor-
responds to the experiment where the tags for A’s queries (either signing or
verification), are choosen as uniform random outputs. Because A doesn’t ask
the same signing query twice and by the way we constructed B, this is precisely
the answers A will get when the signing oracle is a uniform random function
and the verification oracle behaves similarly. Finally, when B’s oracle is FK , B
simulates the oracle A expects exactly. Therefore,

Advprf
F (B) = Pr

[
1 ← AWMACK,h

]
− Pr

[
1 ← AG0

]
= Pr

[
1 ← AWMACK,h

]
− Pr

[
1 ← AG1

]
+ Pr

[
1 ← AG1

]
− Pr

[
1 ← AG0

]
≥ Pr

[
1 ← AWMACK,h

]
− Pr

[
1 ← AG1

]
− Pr

[
AG1 sets bad

]
= Advjsuf -cma

WMAC (A) − Pr
[
1 ← AG1

]
− Pr

[
AG1 sets bad

]
,

since G0 and G1 are identical-until-bad games.
The term δ(j, n, qv) represents the probability of A’s success when presented

with the oracle of game G1. In this case, a verification query (ti, xi, τi) with a
new message-nonce pair (ti, xi) ‘succeeds’ iff ρ(ti, h(xi)) = τi, and this happens
with probability 2−n. Similarly, for � verification queries made with (ti, xi) as
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the message-tag pair, the total success probability is �/2n. By summing over all
possibilities for correct and incorrect guesses, we have that

|S|∑
k=j

∑
X∈Sk

[
Πx′∈S:x′ /∈X

(
1− qv,x′

2n

)
Πx∈X

(qv,x

2n

)]
.

(A much more intuitive grasp of this term can be obtained by considering its
expected value, qv2−n. This can be seen by the fact that the expected number
of forgeries for any one message tag pair x ∈ S is qv,x2−n; the value follows by
linearity of expectation of independent events and the fact that qv =

∑
x∈S qv,x.)

Procedure Initialize

0 V ← ∅, h
$← H, ρ

$← Rand(T × R, {0, 1}n), InitializeMap(Map, T × D,T × R),
InitializeMap(Mapo,T × D,T × R), InitializeMap(O,T × R, {0, 1}n)

Procedure Q(t, x)
1 v ← h(x)

2 If (t, v) ∈ V then { bad ← true, (t, v) $← T × R \ V }
3 V ← V ∪ (t, v), O[(t, v)] $← {0, 1}n

4 return O[(t, v)]
Procedure VF(t, x, Tag)

5 If Map[(t, x)] = ⊥ then {
6 v ← h(x), Map[(t, x)] ← (t, v)

7 If (t, v) ∈ V then { Mapo[(t, x)] ← (t, v), Map[(t, x)] $← T × R \ V , (t, v) ← Map[(t, x)] }
8 V ← V ∪ (t, v), O[(t, v)] $← {0, 1}n

}
9 If Mapo[(t, x)] �= ⊥ then {
10 If Tag = O[Mapo[(t, x)]] or Tag = O[Map[(t, x)]] then { bad ← true }

}
11 return Tag = O[Map[(t, x)]]

Fig. 4. Game G2

Now we must bound the probability that bad is set to true, but first we
go through some output distribution-preserving game transitions to make the
analysis easier. The difference between Game G1 and Game G2 is that in G2,
MAC(t, x) returns a uniform random value τ from {0, 1}n and VF(t, x, Tag)
chooses its outputs in line 8 from uniform random values from {0, 1}n. But
in Game G1, ρ(t, v) is computed for all distinct (t, v) in line 4 and in line 11
ρ(Map[(t, x)]) is computed for all distinct values of Map[(t, x)] when distinct
(t, x) values are used. Therefore the two games are identical. In Game G3, we
clean things up by removing the unnecessary ρ, and removing the statement
(t, v) $←T ×R \ V . This is possible because this occurs after bad ← true.

In Game G4, we first generate all the random answers to the queries of A,
and on ith signing query, save the query and just return the ith random answer.
The verification queries are handled similarly by using the saved values. We can
check whether we should set bad at the finalization step, using the saved query
values. Clearly, all games G2, G3, and G4 preserve the probability that bad gets
set. Therefore,

Advjsuf -cma
WMAC (A) ≤ Advprf

F (B) + Pr[AG4 sets bad] + δ(j, n, qv).
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Procedure Initialize

0 V ← ∅, O ← ∅, h
$← H, InitializeMap(Map, T × D,T × R),

InitializeMap(Mapo,T × D,T × R), InitializeMap(O,T × R, {0, 1}n)
Procedure Q(t, x)

1 v ← h(x)
2 If (t, v) ∈ V then { bad ← true }
3 V ← V ∪ (t, v), O[(t, v)] $← {0, 1}n

4 return O[(t, v)]
Procedure VF(t, x, Tag)

5 If Map[(t, x)] = ⊥ then {
6 v ← h(x), Map[(t, x)] ← (t, v)

7 If (t, v) ∈ V then { Mapo[(t, x)] ← (t, v), Map[(t, x)] $← T × R \ V , (t, v) ← Map[(t, x)] }
8 V ← V ∪ (t, v), O[(t, v)] $← {0, 1}n

}
9 If Mapo[(t, x)] �= ⊥ then {
10 If Tag = O[Mapo[(t, x)]] or Tag = O[Map[(t, x)]] then { bad ← true }

}
11 return Tag = O[Map[(t, x)]]

Fig. 5. Game G3

Procedure Initialize

0 h
$← H, (τ1, . . . , τqs+#qv ) $← ({0, 1}n)qs+#qv , i ← 0,

InitializeMap(O,T × R, {0, 1}n)
Procedure Q(t, x)

1 i ← i + 1, ti ← t, xi ← x, O[(t, x)] ← τi

2 return τi

Procedure VF(t, x, Tag)
3 If O[(t, x)] = ⊥ then {
4 i ← i + 1, ti ← t, xi ← x, O[(t, x)] ← τi, Tagi ← Tag

}
5 return τi = Tagi

Procedure Finalize
6 If (ti, h(xi)) = (tj , h(xj)) for some i < j ≤ qs, then { bad ← true }
7 If (ti, h(xi)) = (tj , h(xj)) for some i < j, qs < j then {
8 If O[(ti, xi)] = Tagj or O[(tj , xj)] = Tagj then { bad ← true }

}

Fig. 6. Game G4

We will use the fact that

Pr[AG4 sets bad] ≤ Pr[AG4 sets bad in line 6] + Pr[AG4 sets bad in line 8].

It is easy to analyze the probability Pr[AG4 sets bad in line 6]; In Game G4,
the adversary A gets no information about h at all, and the random variables ti
and xi are independent from h. Let’s enumerate all the elements of T as T1, . . . ,
T|T |, and let qs,i be the number of signing queries (t, x) such that t = Ti. Then,

Pr[AG4 sets bad in line 6] ≤
|T |∑
i=1

ε · qs,i(qs,i − 1)
2

≤
|T |∑
i=1

ε · qs,i(α− 1)
2

=
ε(α− 1)

2

|T |∑
i=1

qs,i =
ε(α− 1)qs

2
.
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We must also bound the probability Pr[AG4 sets bad in line 8]. The adversary
A still learns no information about h, but we must account for an optimal tag
guessing strategy with respect to bad being set to true. We first focus on the
case where A does not guess multiple tags for a message-nonce pair and then
handle the general case. For each value k ∈ T let Sk be the set of indices i such
that 1 ≤ i ≤ qs and ti = k. Similarly, let Vk be the set of indices i such that
qs < i ≤ qs + qv and ti = k. Let g be the number of correctly guessed tags
during the verification phase. Let Xk = {xi : i ∈ Sk ∨ (i ∈ Vk ∧ Tagi = τi)}
and let Xτ

k = {τi : xi ∈ Xk}. (Note that
∑

k∈T |Xk| = qs + g.) For any value
τ ∈ {0, 1}n, let Gk(τ) = {xi : τi ∈ Xτ

k , τ = τi}. Let Ck = max{|Gk(τ)| : τ ∈ Xτ
k }

and C = max{Ck} and let Eb be the the event that AG4 sets bad in line 8. Then,

Pr[Eb] ≤
∑
k∈T

∑
i∈Vk

(
max
τ∈Xτ

k

Pr [h(xi) = h(x) : x ∈ Gk(τ )] (1)

+ Pr [h(xi) = h(x) : x ∈ Xk}] · Pr[Tagi = τi] (2)

+
∑

j∈Vk,j<i

Pr[h(xj) = h(xi)] · Pr
[
Tagj = τj ∨ Tagj = τi

] )
(3)

≤
∑
k∈T

∑
i∈Vk

⎛⎝εCk + ε|Xk|2−n +
∑

j∈Vk,j<i

ε2−n+1

⎞⎠ (4)

≤ ε
∑
k∈T

|Vk|−1∑
j=0

(Ck + (α + g)2−n + j2−n+1) (5)

≤ ε
∑
k∈T

(
|Vk|(C + (α + g)2−n) + 2−n+1

(
|Vk|
2

))
(6)

≤ ε

(
qv(C + (α + g)2−n) + 2−n+1

∑
k∈T

(
|Vk|
2

))
(7)

≤ ε

(
qv(C + (α + g)2−n) + 2−n+1

(
qv

2

))
(8)

On a verification query (tj , xj , Tagj) we consider two cases where the conditional
on line 7 is met: i ≤ qs and qs < i. Also, on line 8, there are two events that
may set bad to true: A’s guess may be correct for the unmodified output τi, or
it may be a correct guess for the modified output τj . Suppose bad is set to true
on line 8, then we distinguish these four events:

– E1,j : i ≤ qs and A’s guess was correct for the unmodified output.
– E2,j : i ≤ qs and A’s guess was correct for the modified output.
– E3,j : qs < i and A’s guess was correct for the unmodified output.
– E4,j : qs < i and A’s guess was correct for the modified output.

Then Pr[AG4 sets bad in line 8] on the j-th query is

Pr[E1,j ∨ E2,j ∨ E3,j ∨ E4,j ] ≤ Pr[E1,j ] + Pr[E2,j ] + Pr[E3,j ] + Pr[E4,j ].
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Lines (1) and (2) of the set of the equations denote Pr[E1,j ] and Pr[E2,j ], respec-
tively, and line (3) contains Pr[E3,j ∨ E4,j ]. The justification for line (1) is that
an adversary’s best strategy when i ≤ qs is to guess the most frequently occuring
tag returned during the signing phase (or a tag that is known by being guessed
correctly during the verification phase). In lines (2) and (3) the adversary must
try to guess an independent uniform random sample from 2n values once the
conditional is met. Line (4) upper bounds the probabilities for these events to
occur, lines (5-7) simplify the equation, and the last inequality is justified by the
fact that the quantity is maximized by making all verification queries with the
same nonce.

Finally, with a simple argument we cover the case where during the verifica-
tion phase multiple tags are guessed for a particular message-nonce pair. Since
A learns nothing about h during the game, A has no way of learning which of
its queries caused the conditional on line 7 to be true and gains no advantage
from this approach. Indeed, the optimal strategy is to only make one verifica-
tion query per message-nonce pair, so that the odds of line 8 being reached are
increased with each query by forcing more values to be re-mapped as in line 7
of game G3.

The full version contains a bound for C for values of interest. In particular,
C ≤ max{1, qs+g

2n + 15
√

qs+g
2n/2 } and the expected value of g is qv2−n. Putting it

together, we have

Pr[AG4 sets bad] ≤ ε(α− 1)qs

2
+ ε

(
qv(C + (α + g)2−n) + 2−n+1

(
qv

2

))
≤ ε(α− 1)qs

2
+ ε

(
q2
v

2n
+ 2qvC

)
≤ ε(α− 1)qs

2
+ ε

(
q2
v

2n
+

qvqs

2n−1 +
q2
v

22n−1 +
15qv

√
q

2n/2

)
≤ ε(α− 1)qs

2
+

ε

2n−1

(
q2
v + qvqs + 2n/2+3qv

√
q
)

.

4 Conclusions

We have shown that for most MACs, forging multiple times is not much harder
than forging once. We then find that two natural ways of improving resis-
tance to reforgeability are, unfortunately, mutally exclusive when applied to
common MACs. WMAC, which aims to reconcile these two methods with a
modern Carter-Wegman-Shoup MAC, is introduced and the security bounds
given match the best known attacks [18]. WMAC provides parameter choices
that yield constructions with varying security, speed, tag length, and use of
state. For this flexibility, the inputs to WMAC are longer than other Wegman-
Carter style MAC constructions and therefore messages take slightly longer to
process.
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Abstract. This paper presents a new distinguisher which can be ap-
plied to secret-prefix MACs with the message length prepended to the
message before hashing. The new distinguisher makes use of a special
truncated differential path with high probability to distinguish an inner
near-collision in the first round. Once the inner near-collision is detected,
we can recognize an instantiated MAC from a MAC with a random func-
tion. The complexity for distinguishing the MAC with 43-step reduced
SHA-1 is 2124.5 queries. For the MAC with 61-step SHA-1, the complex-
ity is 2154.5 queries. The success probability is 0.70 for both.

Keywords: MAC, secret prefix method, distinguishing attack, SHA-1.

1 Introduction

Message Authentication Code (MAC) algorithms play an important role in in-
ternet security protocols (SSL/TLS, SSH, IPsec) and the financial sector for
debit and credit transaction. A MAC algorithm is a hash function with a secret
key K as the secondary input, which guarantees data integrity and authentic-
ity. The secret prefix method is a MAC construction which prepends a secret K
to the message before the hashing operation, which is the basic design unit for
HMAC/NMAC [1]. One suggestion to guarantee a secure secret prefix MAC is
to prepend the message length to the message before hashing [13]. Recent work
[2,3,15,16,17,19] discovered devastating collision attacks on hash functions from
the MDx family. Such attacks have undermined the confidence in the most pop-
ular hash functions such as MD5 and SHA-1, and promoted the reevaluation of
the actual security of the MAC algorithms based on them [4,6,8,11,12,14,18].

There are two kinds of distinguishing attacks on MACs, and they are respec-
tively called distinguishing-R and distinguishing-H attacks [8]. Distinguishing-R
attack means distinguishing a MAC from a random function, and distinguishing-
H attack detects an instantiated MAC (by an underlying hash function or block

� Supported by the National Natural Science Foundation of China (NSFC Grant No.
60525201 and No.90604036) and 973 Project (No.2007CB807902).

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 363–374, 2009.
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cipher) from a MAC with a random function. Preneel and van Oorschot [10]
introduced a general distinguishing-R attack on all iterated MACs using the
birthday paradox, which requires about 2n/2 messages and works with a success
rate 0.63, where n is the length of the hash output. Their attack can immediately
be converted into a general forgery attack. For the distinguishing-H attack, its
ideal complexity should be exhaustive search cost.

This paper focuses on the distinguishing-H attack that checks which crypto-
graphic hash function is embedded in a MAC. For simplicity, we call it distin-
guishing attack.

Kim et al. [8] described two kinds of distinguishers for the HMAC structure,
which are differential and rectangle distinguishers. For the differential distin-
guisher, it needs a collision differential path with probability higher than 2−n,
and the rectangle distinguisher needs a near-collision differential with probabil-
ity higher than 2−n/2. For MD4, because it is easy to find a differential path
with high probability [15,20], there are some successful cryptanalytic results on
MACs based on MD4 [4,6,14]. For HMAC/NMAC-MD5, there is only one avail-
able differential path that is called dBB pseudo-collision path [5]. Because the
dBB pseudo-collision consists of two different IVs and the same message, so all
the attacks [4,6,11,14] are in the related-key setting. For HMAC/NMAC-SHA-
0, there exists a partial key-recovery attack [4]. For HMAC-SHA-1, Kim et al.
proposed a distinguishing attack on 43-step HMAC-SHA-1 with data complexity
2154.9, which was improved by Rechberger and Rijmen [12]. The improved attack
detected 50-step HMAC-SHA-1 with data complexity 2153.5. The paper [12] also
proposed a related-key distinguishing attack on 62-step (17-78) HMAC-SHA-
1 and a full key-recovery attack on 34-step NMAC-SHA-1 in the related-key
setting.

All the above attacks make use of collision or near-collision differential paths
for the underlying compression function with probability higher than 2−n. For
MD5 and SHA-1, there are too many sufficient conditions in the collision or
near-collision differential paths, which imply a complexity more than 2n. Because
most conditions focus on the first round, it is hard to analyze the MACs with
MD5/SHA-1 for more steps without related keys. In this paper, we only consider
the MACs with reduced SHA-1 starting from the first step.

One recent work [18] presented a new distinguishing attack on HMAC/NMAC-
MD5 and MD5-MAC without related keys. Their distinguisher detects an inner
near-collision in the first iteration. This motivates us to explore a similar attack
on MACs based on SHA-1. For the MAC with SHA-1, the situation is more
complex, because SHA-1 dose not have a differential path with high probability.
If we do not consider the first round, the probability of the existing differential
paths for the last three rounds is high. How to avoid the differential path in the
first round, and completely explore the probability advantage in the last three
rounds? We neglect the exact path in the first round, replace it with an inner
near-collision, and explore the new techniques to detect the inner near-collision
by a birthday attack. Our new distinguishing attack is applicable to secret-prefix
MACs with the length prepended before hashing, which is denoted as LPMAC.
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For LPMAC based on 43-step SHA-1, the complexity is 2124.5 queries, and for
LPMAC with 61-step SHA-1, the complexity is 2154.5.

This paper is organized as follows: Section 2 gives brief descriptions of LPMAC
and SHA-1. In Section 3, we present the new distinguisher which is available
to LPMAC structure, and describe the details of the distinguishing attack on
LPMAC with 61-step SHA-1 in Section 4. Finally, we conclude the paper in
Section 5.

2 Backgrounds and Definitions

In this section, we define the notations used in this paper, and give brief descrip-
tions of the LPMAC and SHA-1.

2.1 Notations

H : a hash function
H : a hash function without padding and length appending
n : the length of the hash output
b : the length of one message block

IV : the initial chaining value
x‖y : the concatenation of the two bitstrings x and y
xi,j : the j-th bit of xi, where xi is a 32-bit word, j = 1, . . . , 32, and

32 is the most significant bit
+,− : addition and subtration modular 232

Δ−x : modular difference x−x′, where x and x′ are two 32-bit words
∧,¬,∨,⊕ : bitwise AND, NOT, OR and exclusive OR

≪ s : left-rotation operation by s-bit

2.2 MAC Using Secret Prefix Method

The secret prefix method is to append a message M to a secret key K before the
hashing operation:

Secret-Prefix-MACK(M) = H(K‖M),

where H is an unkeyed hash function. This method was proposed in the 1980s,
and suggested for MD4 independently in [7,13]. The original secret prefix MAC
is insecure: given a message and its MAC, an attacker can easily append another
message to the message and update the MAC accordingly, as the given MAC
value can be taken as the initial chaining value for the appended message [10].

Prefixing the message length to the message before hashing is one suggestion
to avoid the above attack [13]. However, our new distinguisher specifically works
for this kind of MAC, which we call LPMAC. We provide that K‖#length‖pad
is a full block, and this kind of MAC corresponds to a hash function H with a
secret IV (K ′), which is denoted as:

LPMACK(M) = H(K‖#length‖pad‖M) = HK′(M).

In the rest of this paper, LPMAC refers to a MAC with the new form HK′(M).
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2.3 Brief Description of SHA-1

The hash function SHA-1 was issued by NIST in 1995 as a Federal Informa-
tion Processing Standard [9]. It follows the Merkle-Damg̊ard iterative construc-
tion, takes a message M with the bit-length less than 264, and produces a
160-bit digest. The compression function takes a 160-bit chaining value hi =
(a0, b0, c0, d0, e0) and a 512-bit message block M i as inputs, and produces an-
other 160-bit chaining value hi+1, where h0 is the initial value IV , and M =
M0‖ · · · ‖M t−1. By iterating all the message blocks M i, we obtain the final 160-
bit value ht which is the hash value.

Each 512-bit block M i is divided into sixteen 32-bit words, which is denoted
as (m0, m1, . . . , m15). The message words are expanded to eighty 32-bit words
w0, . . . , w79:

wj =
{

mj , if j = 0, . . . , 15,
(wj−3 ⊕ wj−8 ⊕ wj−14 ⊕ wj−16) ≪ 1, if j = 16, . . . , 79.

The compression function consists of 4 rounds, and each round includes 20 steps.
The details for the compression function are the following:

– Input: w0, . . . , w79 and hi = (a0, b0, c0, d0, e0), where hi is a 160-bit chaining
value .

– Step update: For j = 1, . . . , 80,

aj = (aj−1 ≪ 5) + fj(bj−1, cj−1, dj−1) + ej−1 + wj−1 + kj ,

bj = aj−1, cj = bj−1 ≪ 30, dj = cj−1, ej = dj−1,

where the Boolean function fj and constant kj are described in Table 1.
– Output: hi+1 = (a0 + a80, b0 + b80, c0 + c80, d0 + d80, e0 + e80).

Table 1. Boolean Functions and Constants Involved in SHA-1

round steps fj kj

1 1-20 IF : (x ∧ y) ∨ (¬x ∧ z) 0x5a827999
2 21-40 XOR : x ⊕ y ⊕ z 0x6ed6eba1
3 41-60 MAJ : (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) 0x8fabbcdc
4 61-80 XOR : x ⊕ y ⊕ z 0xca62c1d6

3 New Distinguisher on LPMAC Structure

This section introduces a new distinguisher of the LPMAC structure. It is based
on a near-collision differential path with two message blocks.

3.1 Recent Attack on HMAC/NMAC-MD5 and MD5-MAC [18]

We first recall the distinguishing attack on HMAC/NMAC-MD5 and MD5-MAC
presented in [18]. This distinguisher utilizes the dBB pseudo-collision path of
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MD5 [5], where the hash values collide with probability 2−46 when the IV dif-
ference satisfies the dBB-condition, i.e.,

IV ⊕ IV ′ = (0x80000000, 0x80000000, 0x80000000, 0x80000000),
MSB(B0) = MSB(C0) = MSB(D0),

where (A0, B0, C0, D0) = IV , and MSB means the most significant bit. To dis-
card the related-key setting, and give a real distinguishing attack, the adver-
sary firstly collects many one-block messages to guarantee enough pairs which
produce a difference with the dBB-condition. Then append a fixed one-block
message to the collected messages, query their MACs, and try to find out a
dBB-collision. The main idea of the distinguishing attack is summarized as
follows:

To maintain the appearance of a dBB-collision under the dBB-condition, i. e.,
the dBB pseudo-collision happens in the second iteration, the adversary selects a
structure S composed of 289 one-block messages P . Then a fixed 447-bit message
M is appended to each P ∈ S. Query the MACs with all P‖M , and find all
collision pairs (P‖M, P ′‖M) by birthday attack. A dBB -collision is detected as
follows.

– If (P‖M, P ′‖M) collides, append another M ′ to (P, P ′), and query two
MACs for the new pair (P‖M ′, P ′‖M ′). If two MACs are the same, we
conclude that (P, P ′) is an internal collision.

– If (P, P ′) dosnot collide, append 247 differentM ′ to (P, P ′), query their MACs,
and search whether there is a collision. If a collision is found, (H(P ), H(P ′))
must satisfy the dBB-condition, and (P‖M, P ′‖M) is a dBB-collision.

– Otherwise, (H(P ), H(P ′)) are random values.

Once a dBB-collision is detected, it is concluded that the MAC is a MAC
based on MD5, otherwise, based on a random function.

3.2 Description of the New Distinguisher

Our attack is motivated by the above idea, which is to distinguish an instantiated
LPMAC from a random function by detecting the target inner near-collision.
However, our distinguisher is a totally different one. All the previous attacks
detect the collision (or near-collision) generated by a full iteration of the hash
function [4,6,8,11,12,14,18], but our attack is trying to distinguish an inner near-
collision occurring in the first round, and there is no published techniques to
detect such a near-collision till now.

For SHA-1 reduced to 61 steps, we consider a differential path with two mes-
sage blocks, and assume that P‖M0‖M1 and P ′‖M ′

0||M ′
1 are a message pair,

which produces a target differential path. Here, P and P ′ are one-block mes-
sages, M0 and M ′

0 are 448-bit (14 words) truncated messages of the second block,
and M1 and M ′

1 are the corresponding 64-bit messages left. Denote the output
of the first iteration HK(P ) as hP , HK(P ′) as h′

P , and suppose the intermediate
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chaining variables (ai, · · · , ei) of the second block as chi, and (a′
i, · · · , e′i) as ch′

i.
It is clear that hP + ch61 and h′

P + ch′
61 are hash values of the message pair.

We select a target differential path, such that the first iteration can be any
differential path, and the second includes a near-collision differential path. To
make the truncated differential path of the last 47 steps with high probability,
we choose the same disturbance vector as [16], which produces the near-collision
differential path for the second iteration (See Table 2). We divide the second
differential path into two parts, the first part consists of the previous 14 steps
which involves most conditions, and the second part is the last 47 steps with
only 34 conditions. We neglect the special differential path in previous 14 steps,
and only consider its output difference, which can be regarded as an inner near-
collision. We select the specific difference �ch14 = ch14 ⊕ ch′

14 as

(0x00000000, 0x00000000, 0x80000000, 0x20000002, 0x00000040).

The choice of �ch14 is to cancel the message word differences �w14 and �w15.
The sufficient conditions for the cancelation are as follows:

a10,9 = w14,7 + 1,
a11,4 = w15,2 + 1, a11,32 = w14,30,
a13,2 = 1, a13,30 = 0, a13,32 = 1, a13,4 = w14,2 + w16,2 + 1,
a14,4 = w14,2 + w16,2, a14,32 = 0.

The core of our attack is to explore some mathematical properties that can be
used to distinguish the inner near-collision in the 14th step. For the LPMAC,
there are two obstacles to do this:

1. In the first iteration, the output difference Δ−HP = HP −H ′
P is unknown,

which conceals the difference of the near-collision Δ−HP + Δ−ch61. Hence,
the birthday attack can not be applied directly to the second iteration like
the distinguishing attacks on MACs based on MD5.

2. How to choose messages, and fulfill the birthday attack to detect the inner
near-collision?

We explore the following mathematical properties of the differential path to
surpass the above two obstacles:

– If the inner near-collision occurs, replace (M1, M
′
1) with another (M1, M ′

1),
then (P‖M0‖M1, P ′‖M ′

0‖M ′
1) follows the differential path with probability

2−34.
– If two pairs (P‖M0‖M1, P

′‖M ′
0‖M ′

1) and (P‖M0‖N1, P
′‖M ′

0‖N ′
1) result in

the near-collision differential path, i. e.,

HK(P‖M0‖M1)−HK(P ′‖M ′
0‖M ′

1) = HK(P‖M0‖N1)−HK(P ′‖M ′
0‖N ′

1)
= Δ−HP + Δ−ch61 = δ, (1)

then we have (See Fig. 1.)

Hk(P‖M0‖M1)−HK(P‖M0‖N1)=HK(P ′‖M ′
0‖M ′

1)−HK(P ′‖M ′
0‖N ′

1)=δ′.
(2)
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Table 2. A Differential Path for Steps 1∼61 on SHA-1

step disturb. XOR difference of the input to step i

i vector Δwi−1 Δai Δbi Δci Δdi Δei
conditions

1 80000001 2, 7, 31, 32 - - - - - -
2 2 5, 6 - - - - - -
3 3 2, 7, 30, 31, 32 - - - - - -
4 2 6, 7, 30 - - - - - -
5 80000002 1, 7, 30, 31, 32 - - - - - -
6 2 5, 7, 30 - - - - - -
7 80000003 1, 7, 31, 32 - - - - - -
8 0 2, 5, 6, 7, 30, 31, 32 - - - - - -
9 80000000 1, 2, 30, 32 - - - - - -
10 2 2, 5, 31, 32 9 - - - - -
11 80000001 1, 7, 30, 31 4, 32 9 - - - -
12 0 2, 5, 6, 31, 32 2 4,32 7 - - -
13 0 1, 30 2 2, 30 7 - -
14 2 2, 31, 32 32 2, 30 7 a13,2 = 1, a13,30 = 0, a13,32 = 1

a11,4 = w15,2 + 1, a11,32 = w14,30, a10,9 = w14,7 + 1

15 2 2, 7, 30, 31, 32 2 32 2,30 a15,2 = w14,2, a14,32 = 1
16 0 2, 7, 30, 31 2 32 a14,4 = w14,2 + w16,2, a13,4 = w14,2 + w16,2 + 1
17 0 2, 32 32 a16,32 = 0
18 0 32 a17,32 = 1
19 0 32
20 0 32
21 2 2 2 a21,2 = w20,2
22 0 7 2 a20,4 = a19,4 + w20,2 + w23,7 + 1
23 2 2 32 a23,2 = w23,7 + 1
24 0 7,32 2 32 a22,4 = a21,4 + w23,7 + w25,7
25 2 32 2 32 32 a25,2 = w25,7 + 1
26 0 7 2 32 a24,4 = a23,4 + w25,7 + w26,1
27 3 1, 32 1 32 32 a27,1 = w26,1 + 1
28 0 6, 7 1 32 a26,3 = a25,3 + w26,1 + w28,1 + 1
29 0 1, 2, 32 31 32 a28,31 = a26,1 + w26,1 + w29,31
30 2 2,31 2 31 a30,2 = w29,2, a29,31 = a28,1 + w26,1 + w30,31 + 1
31 0 7,31, 32 2 31 a29,4 = a28,4 + w29,2 + w31,2 + 1
32 0 2, 31, 32 32
33 0 32 32
34 0 32 32
35 2 2,32 2 a35,2 = w34,2
36 0 7 2 a34,4 = a33,4 + w34,2 + w36,2 + 1
37 0 2 32
38 0 32 32
39 0 32 32
40 0 32
41 2 2 2 a41,2 = w40,2
42 0 7 2 a40,4 = a39,4 + 1
43 2 2 32 a43,2 = w41,2, a42,32 = a40,2 + 1
44 0 7, 32 2 32 a42,4 = a41,4 + 1, a43,32 = a42,2 + 1
45 0 2,32 32 32 a44,32 = a42,2 + 1
46 0 32 a45,32 = a44,2 + 1
47 0 32 32
48 0 32
· · · 0
54 0
55 4 3 3 a55,3 = w54,3
56 0 8 3 a54,5 = a53,5 + 1
57 0 3 1 a56,1 = a54,3 + 1
58 8 1, 4 4 1 a57,1 = a56,3 + 1, a58,4 = w57,4
59 4 1, 3, 9 3 4 1 a57,6 = a56,6 + 1, a59,3 = w58,3
60 0 1, 4, 8 3 2 a59,2 = a57,4 + w57,4 + w60,2 + 1,

a58,5 = a57,5 + w58,3 + w60,3 + 1
61 10 2, 3, 5 5 1 2

We utilize the equation (2) to construct a distinguisher for LPMAC with
61-step SHA-1.
• Firstly, collect enough messages P‖M0‖M1, P‖M0‖N1, P ′‖M ′

0 ‖M ′
1,

P ′‖M ′
0 ‖N ′

1 and their MACs. Compute two structures, one structure
is

S1 = {(HK(P‖M0‖M1)−HK(P‖M0‖N1)},
and the other is

S2 = {HK(P ′‖M ′
0‖M ′

1)−HK(P ′‖M ′
0‖N ′

1)}.
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• Secondly, apply the birthday attack to the structures S1 and S2, and
search all the collisions such that

HK(P‖M0‖M1)−HK(P‖M0‖N1)=HK(P ′‖M ′
0‖M ′

1)−HK(P ′‖M ′
0‖N ′

1).

• Finally, for each collision, detect whether the corresponding pair (P‖M0‖
M1, P ′‖M ′

0‖M ′
1) satisfies the differential path in Table 2.

More details about the distinguisher are described in the following section.
It is noted that, it is hard to fulfill the birthday attack directly to search
the solution to equation (1), but easy to get the solution to equation (2) by
birthday attack.

K

P ′

M0 M0

P

M ′
0M ′

0

M ′
1M1

N1 N ′
1

δ′δ′
δ

δ

Fig. 1. The Distinguishing Attack on LPMAC

The distinguisher is applicable to LPMACs with other hash functions, such
as LPMAC with reduced SHA-2.

4 New Distinguishing Attack on LPMAC Based on
61-Step SHA-1

In this section, we describe the new distinguishing attack in detail. We assume
that the LPMAC algorithm is either LPMAC with 61-step SHA-1 or LPMAC
with a random function.

Before we introduce the new attack, we need to make clear that how many
chosen messages are needed to guarantee an inner near-collision. The total suffi-
cient conditions for the near-collision is 169, where 160 conditions are from the
difference �ch14, and 9 conditions (See Subsection 3.2) are deduced from the
cancelation of�w14 and �w15. So, we need 2169/2 = 284.5 messages to guarantee
such an inner near-collision happen.

Select fourmessagesM0‖M1,M0‖N1,M ′
0‖M ′

1 andM ′
0‖N ′

1 such thatΔ(M0‖M1)
= (M0‖M1) ⊕ (M ′

0‖M ′
1) and Δ(M0‖N1) = (M0‖N1) ⊕ (M ′

0‖N ′
1) are consistent
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with the target message difference in Table 2, and M0‖M1, M0‖N1 satisfy the suf-
ficient conditions in Table 3.

The distinguishing attack implements the following four steps:

Table 3. Conditions on Messages

w14,31 = w14,30 + 1, w15,7 = w14,2 + 1, w15,30 = w14,30, w15,31 = w15,30 + 1,

w21,7 = w20,2 + 1, w27,6 = w26,1 + 1, w27,7 = w26,1, w28,2 = w28,1 + 1,

w30,7 = w29,2 + 1, w31,31 = w26,1 + 1, w35,7 = w34,2 + 1, w41,7 = w40,2 + 1,

w43,7 = w40,2 + 1, w44,2 = w40,2 + 1, w55,8 = w54,3 + 1, w56,3 = w54,3 + 1,

w57,1 = w54,3 + 1, w58,1 = w54,3 + 1, w58,9 = w57,4 + 1, w59,1 = w54,3 + 1,

w59,4 = w57,4 + 1, w59,8 = w58,3 + 1

1. Randomly choose a structure S, which consists of 284.5 different one-block
messages.

2. For all P ∈ S, query the MACs with P‖M0‖M1, P‖M ′
0‖M ′

1, P‖M0‖N1
and P‖M ′

0‖N ′
1, respectively, and compute the following two structures of

differences

S1 = {LPMAC(P‖M0‖M1)− LPMAC(P‖M0‖N1) | P ∈ S},
S2 = {LPMAC(P‖M ′

0‖M ′
1)− LPMAC(P‖M ′

0‖N ′
1) | P ∈ S}.

Search all the collisions between two structures by a birthday attack.
3. For each collision, compute LPMAC(P‖M0‖M1)−LPMAC(P ′‖M ′

0 ‖M ′
1),

and denote it as δ. Then for the message pair (P‖M0, P ′‖M ′
0), we choose

234 different message pairs (M1, M ′
1) such that M0‖M1 satisfies the message

sufficient conditions for the near-collision path in Table 3. Query the MACs
for (P‖M0‖M1, P ′‖M ′

0‖M ′
1). Check whether the difference LPMAC(P‖M0

‖M1)− LPMAC (P ′‖M ′
0‖M ′

1) is equivalent to δ.

– If a pair (P‖M0 ‖M1, P
′‖M ′

0‖M ′
1) that matches the difference δ is

searched, we conclude that the LPMAC is based on 61-step SHA-1, and
stop the algorithm.

– Else, go to step 4.

4. Repeat steps 1-3. If the number of structures exceeds 268, we conclude that
the LPMAC is constructed from a random function.

Complexity
Summing up the above attack, we choose 4 · 268 · (284.5 + 234) ≈ 2154.5 messages
in total. Since we can use the birthday attack to search collisions in step 2, a
table with size of 284.5 needs to be built. We need about 268 · 284.5 = 2152.5 table
lookups and 2154.5 queries.

Success Rate
From the above process, the success rate of our attack can be divided into two
parts :
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– If the LPMAC is constructed from 61-step SHA-1, once a second collision
in step 3 is detected, the attack succeeds. The probability is computed as
follows:
• There are 169 conditions to guarantee the inner near-collision in the step

14, and 34 conditions to follow the differential path in the last steps 15-
61. According to the birthday paradox and Taylor series expansion, for
268 · 2169 = 2237 pairs among the structures S1 and S2, there exists an
inner near-collision with probability

1− (1− 1
2237 )2

237 ≈ 1− e−1 ≈ 0.63.

• If the first collision is captured in step 2, the second collision in step 3
is searched with probability

1− (1 − 1
234 )2

34 ≈ 1− e−1 ≈ 0.63.

Hence, when the LPMAC is based on 61-step SHA-1, the distinguishing
attack successes with probability

0.63 · 0.63 ≈ 0.40

.
– If the LPMAC is from a random function, the attack succeeds when the

second collision doesn’t exist. For the 268 structures, there are 2237/2160 =
277 expected collisions in total, so the success probability is about:

((1 − 1
2160 )2

34
)2

77 ≈ 1.

Therefore, the success rate of the whole attack is about

1
2
× 0.40 +

1
2
× 1 = 0.70.

Note that the success probability can be increased by repeating this attack sev-
eral times, doubling the size of the structure S or the number of different pairs
(M1, M ′

1).
Table 4 illustrates the comparison of our distinguishing attacks on LPMAC-

SHA-1 with other attacks on HMAC-SHA-1.

Table 4. Comparison Between the Distinguishing Attacks on MACs with SHA-1

MAC steps data
Kim et al. [8] HMAC 43 2154.9

Rechberger et al. [12] HMAC 50 2153.5

43 2124.5

This paper LPMAC 50 2136.5

61 2154.5
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5 Conclusions

A new distinguisher is introduced to recognize the secret-prefix MAC which
prepends the message length before hashing. The new distinguisher utilizes a
near-collision differential path instead of a collision path, and detects an inner
near-collision in the first round. The core of the attack is to capture the math-
ematical characters of a near-collision differential path which can be utilized to
fulfill a birthday attack. Our attack is applicable to some other LPMACs such
as LPMAC with reduced SHA-2.

Acknowledgements. We would like to thank Christian Rechberger and three
reviewers for their very helpful comments on the paper.
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Abstract. The CBC-MAC or cipher block chaining message authentica-
tion code, is a well-known method to generate message authentication
codes. Unfortunately, it is not forgery-secure over an arbitrary domain.
There are several secure variants of CBC-MAC, among which OMAC is a
widely-used candidate. To authenticate an s-block message, OMAC costs
(s+1) block cipher encryptions (one of these is a zero block encryption),
and only one block cipher key is used. In this paper, we propose two
secure and efficient variants of CBC-MAC: namely, GCBC1 and GCBC2.
Our constructions cost only s block cipher encryptions to authenticate
an s-block message, for all s ≥ 2. Moreover, GCBC2 needs only one block
cipher encryption for almost all single block messages, and for all other
single block messages, it costs two block cipher encryptions. We have
also defined a class of generalized CBC-MAC constructions, and proved
a sufficient condition for prf-security. In particular, we have provided
an unified prf-security analysis of CBC-type constructions, e.g., XCBC,
TMAC and our proposals GCBC1 and GCBC2.

Keywords: CBC-MAC, OMAC, padding rule, prf-security.

1 Introduction

In cryptography, a common trend is to design fast and secure algorithms. In this
paper, we propose two fast and secure block cipher-based message authentication
codes. A message authentication code, or MAC, is useful in those applications
where data integrity and authenticity are essential. In terms of security, we
want a MAC to be a pseudorandom function, or prf, which means that it is
computationally indistinguishable from an ideal random function. Prf-security
is a strong security notion, and it also guarantees that the MAC is unforgeable.
In this paper, we use the words “secure” and “prf-secure” synonymously. Several
secure and fast authentication algorithms are already known. We first broadly
classify them into three main categories, based on their underlying building
blocks.
Hash-Mac: These are based on hash functions. HMAC [1] is a widely used
candidate in this class that has been standardized by the National Institute
of Standards and Technology (NIST). The other efficient, popular candidates
include the cascaded-PRF [2], sandwich-MAC [21], and KMDP [14].

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 375–393, 2009.
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Universal Hash based Mac: These MACs use universal hash functions and
small domain pseudorandom functions. In software, these are very fast for long
messages [11,19]. These generally require field multiplications, key expansions,
and invocations of a smaller domain pseudorandom function which may be over-
head for short messages. Some popular examples of universal hash based au-
thentications are UMAC [8] and poly1305 MAC [7]. In [17], a 4-round version of
AES [12] is used to obtain a universal hash function that eventually produces
a very fast MAC computation for long messages (close to two times faster than
OMAC). But, this is also slower than OMAC, due to the overhead required for
processing short messages.
Block Cipher based Mac: In this paper, we study this category in more
detail. These MACs are usually based on several invocations of a block cipher,
either in a feedback mode (cipher block chaining or CBC-MAC) or in a par-
allel mode (e.g., PMAC [9] or XOR-MAC [3]). A block cipher is a permutation
eK : {0, 1}n → {0, 1}n, for each key K chosen from the key space {0, 1}k, where
n (the block size) and k (the key size) are positive integers. We fix these param-
eters throughout the paper. Intuitively, a block cipher is called pseudorandom
permutation or prp-secure if the keyed block cipher family is computationally
indistinguishable from an ideal random permutation. CBC-MAC (cipher block
chaining message authentication [4]) is the first construction in this category.
Given a message M = (m1‖ · · · ‖m�) ∈ ({0, 1}n)�, the CBC-MAC of the message
M based on eK is computed as follows:

CBC-MACK(M) = eK(eK(· · · eK(m1)⊕m2 · · · )⊕m�).

However, CBC-MAC is not secure for variable length messages due to the length
extension attack. Many different modifications of it have been proposed so far,
among which OMAC [15] or one-key CBC-MAC1 is efficient (requires one extra
zero block encryption compared to CBC-MAC computation), as well as requiring
only one key. Another simple modification, called XCBC-MAC [10] or XCBC, is
faster in software, but it needs three keys, which may not be suitable in many
applications. These keys may be derived from one key at the cost of few block
cipher invocations, which causes slower performance for short messages. The
TMAC requires only two keys and it is as efficient as CBC-MAC. If the output
of zero block encryption of OMAC is stored as a key (to save one block cipher
encryption) then eventually, OMAC and TMAC look almost identical.

1.1 Our Proposals GCBC1 and GCBC2

Let M = (m1‖ · · · ‖m�) ∈ ({0, 1}n)� with � ≥ 2. The GCBC1-MAC of the message
M based on eK is computed as follows:

GCBC1K(M) = eK

(
eK(· · · eK(eK(m1)⊕m2) · · ·

)�1 ⊕m�

)
.

For all other messages M , we pad 10d (for smallest choice of d) to make
sure that the message size is multiple of n and has at least two blocks. Let
1 It is also known as CMAC [13] as recommended by the NIST.
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M ′ = (m1‖ · · · ‖m�) ∈ ({0, 1}n)�, � ≥ 2, be the padded message. In this case we
compute the tag as follows,

GCBC1K(M) = eK

(
eK(· · · eK(eK(m1)⊕m2) · · ·

)�2 ⊕m�

)
.

In other words, we apply one or two left shifts to the last intermediate chaining
value2 of CBC-MAC before xor-ing the last message block of the padded message.
This small tweak eventually helps to avoid length extension attack. Moreover we
prove that it is prf-secure (see Section 5). Handling the last intermediate input
in two different manners depending on the size of the last message block, is very
common in MACs and it is used, e.g., in XCBC, OMAC, TMAC, etc.

Fig. 1. GCBC1, Generalized CBC, which uses a left shift variation operation, an un-
derlying iterative function eK (block cipher) and a simple padding rule

Theorem (Security Bound of GCBC1)

Advprf
GCBC1(q, σ) ≤ 5(σ + q)(σ + q − 1)

2n−4 + Advprp
e (σ).

Our second construction, called GCBC2, authenticates almost all single block
messages by using one block cipher encryption. It considers several cases, de-
pending on the message size. For, x ∈ {0, 1}n, define x = x, and if |x| ≤ n − 1
then define x = x10n−1−|x|. We define δ = 2 if the message size is multiple of n
otherwise, we set δ = 1.

1. Let |M | ≤ n− 4, then GCBC2K(M) = eK(M).

2. Let n− 3 ≤ |M | ≤ n, then write M = m1 := m′
1m

′′
1 where |m′

1| = n− 3 and
|m′′

1 | ≤ 3. We define

GCBC2K(M) = eK(eK(m′
1‖011)⊕m′′

1).

2 Note that for a single block padded message, the last intermediate chaining value
is nothing but the message block and so, left shift operations on it is a predictable
operation. So we can not prevent length extension attack for a single block padded
message. Hence, we need to make sure that padded message has at least two blocks.
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Fig. 2. GCBC2 for more than one message block. Let M = m1‖m2‖ · · · ‖ms, m1 =
m′

1‖m′′
1 , |m′′

1 | = 3. We denote m∗
1 = m1 if m′′

1 = 000, o.w., m∗
1 = m1. The nonnegative

integer r, 0 ≤ r ≤ 4, denotes the amounts of left shift applied to the output of the first
encryption (the value of r can be determined in the definition of GCBC2).

3. Let M = m1‖m2, m1 = m′
1m

′′
1 , |m′

1| = n − 3, |m′′
1 | = 3 and |m2| ≤ n. We

define

GCBC2K(M) =

{
eK(eK(m1)�δ+1 ⊕m2) if m′′

1 
= 000
eK(eK(m′

1‖100)�δ−1 ⊕m2) if m′′
1 = 000

4. Let M = m′
1m

′′
1‖m2‖m3‖ · · · ‖ms where |m′

1| = n− 3, |m′′
1 | = 3 and |m2| =

· · · = ms−1 = n, |ms| ≤ n. We define

GCBC2K(M) = eK

((
eK(· · · eK(eK( eK(m′

1‖m′′
1 )�4 ⊕ m2) ⊕ m3) · · · )

)�δ ⊕ ms) if m′′
1 �= 000

= eK

((
eK(· · · eK(eK( eK(m′

1‖100)
�5 ⊕ m2) ⊕ m3) · · · )

)�δ ⊕ ms) if m′′
1 = 000

Theorem (Security Bound of GCBC2, see Section 5)

Advprf
GCBC2(q, σ) ≤ 33(σ + q)(σ + q − 1)

2n
+ Advprp

e (σ).

OMAC vs Our MACs: For all messages having block sizes at least two, both
GCBC1 and GCBC2 have similar performance to CBC-MAC, whereas OMAC costs
one extra zero block encryption. Zero block encryption can be computed off line,
in which case we have to store the output as a key and hence it has similar
performance to TMAC (which has two-key and similar to CBC performance). For
single block messages (of size less than or equal to n), both OMAC and GCBC1
need two block cipher encryptions (in case of OMAC, one of the encryption is
zero block encryption). The GCBC2 costs exactly one block cipher encryption
like CBC-MAC for almost all single block messages (except the messages of size in
between n− 3 and n, and in which case it costs two encryptions). Thus, GCBC2
is a good choice whenever the short messages are authenticated frequently. In
some applications, we might know before hand that message sizes are at least
(n + 1)-bits. In these applications, GCBC1 would be a good choice due to its
simplicity and performance (same as CBC-MAC, but secure for arbitrary length
messages). In table 1, a comparison of software performances are given.
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Table 1. It provides a performance comparison of known CBC-type MACs along with
our proposals. The software speed is computed (in the platform Intel(R) Pentium(R) 4
CPU 3.60 GHz, 1GB RAM) with AES-128 as the underlying block cipher. Here, # BC
denotes the number of invocations of the block cipher e : {0, 1}k × {0, 1}n → {0, 1}n

that is used to authenticate an s-block message. Time is computed by taking the
average over several executions.

Name of microsec microsec microsec # BC for Total
MAC (1-15 bytes) (16 bytes) (17 - 32 bytes) s-block Keysize

XCBC [10] 43.7 43.7 78.46 s k + 2n

TMAC [16] 43.98 44.05 78.80 s k + n

OMAC [15] 78.72 78.80 113.80 s + 1 k

GCBC1 77.9 77.92 77.95 s k

GCBC2 43.58 78.26 78.37 s k

A generalized CBC-MAC: In this paper, we have also provided a general
class of CBC-type constructions, called gcbc, which includes almost all popularly
known CBC-type constructions, e.g., XCBC, TMAC, OMAC, and our proposals.
We have also given a sufficient condition for prf-secure gcbc constructions and
we have shown that almost all known constructions such as XCBC, TMAC, and
our proposals satisfy the sufficient condition. So, we have provided that, how an
unified way of security analysis of CBC-type MACs can be provided.

Organization of the Paper. We first provide basic definitions, and notations
in Section 2. In Section 3, we propose a generalized CBC-type message authenti-
cation algorithms and also show that most of the CBC-type constructions belong
to the class. The security analysis has been made by using decorrelation tech-
nique. The detailed security analysis of the generalized CBC-type constructions
is given in Section 4. Finally, in Section 5, we specify two fast and secure con-
structions, called GCBC1 and GCBC2, from the generalized class.

2 Preliminaries

2.1 Definitions and Notations

Given any set S, S+ = ∪∞
i=1S

i, and S∗ = ∪∞
i=0S

i = S+ ∪ {λ}, where λ is the
empty string. For example, {0, 1}+ is the set of all non-empty finite bit-sequences.
Let |x| = i for any x ∈ {0, 1}i. Any X ∈ S+ can be written as X = (x1, · · · , xi)
for some i ≥ 1 and x1, · · · , xi ∈ S. A tuple Y = (y1, · · · , yj) ∈ S∗ is a prefix
of X if j ≤ i and y1 = x1, · · · , yj = xj . Trivially, λ is a prefix of any X , and
is called a trivial prefix. Any other prefixes are called non-trivial prefixes. Let
x = x1x2 · · ·xn ∈ {0, 1}n, xi ∈ {0, 1}. Then for any two integers i ≤ j, the
set {i, i + 1, · · · , j} is denoted as [i..j], and xixi+1 · · ·xj is denoted as x[i..j]
whenever 1 ≤ i ≤ j ≤ n. If i > j, x[i..j] is nothing but λ. Let x[i] represent the
ith bit of x. The notation x�t (or x�t) is denoted for t-bit left shift (or right
shift, respectively) of an n-bit string x. The set {0, 1}n is sometimes identified



380 M. Nandi

as GF(2n) by fixing a primitive polynomial zn +c1z
n−1 + · · ·+cn−1z+cn, where

ci ∈ {0, 1}. Let 0n = 0 (the additive identity), 0n−11 = 1 (the multiplicative
identity) and α = 0n−210 ∈ GF(2n) (known as a primitive element). For any
element x ∈ {0, 1}n, the field multiplication with α is denoted as α ·x, and it can
be computed as x�1 if x[1] = 0; otherwise, it is x�1 ⊕ c, where c = c1c2 · · · cn.
We use x

∗← S to mean that x is chosen uniformly from the set S, and it is
independently chosen from all other previously described distributions.

Definition 1. (Ideal Random Function and Ideal Random Permutation)
ρ is said to be an ideal random function from M to {0, 1}n if, for any distinct
m1, · · · , mq ∈ M, (ρ(m1), · · · , ρ(mq)) is uniformly distributed over ({0, 1}n)q

for any q > 0. In other words, for any q elements y1, · · · , yq ∈ {0, 1}n,

Pr[ρ(m1) = y1, · · · , ρ(mq) = yq] =
1

2nq
.

Similarly, τ is said to be an ideal random permutation on {0, 1}n if, for any
distinct x1, · · · , xq ∈ {0, 1}n and distinct y1, · · · , yq ∈ {0, 1}n,

Pr[τ(m1) = y1, · · · , τ(mq) = yq] =
1

2n(2n − 1) · · · (2n − q + 1)
.

When M is a finite set, there is an alternative way to view an ideal random
function. Let Func(M, {0, 1}n) denote the set of all functions from M to {0, 1}n.
The set of all functions from {0, 1}n to {0, 1}n is denoted as Func(n, n). An ideal
random function from M to {0, 1}n is defined as a function chosen at random
(uniformly) from Func(M, {0, 1}n) (this is not possible when M is an infinite
set). This definition is an equivalent to the previous definition, as one can show
that

Pr[ρ(m1) = y1, · · · , ρ(mq) = yq : ρ
∗← Func(M, {0, 1}n)] =

1
2nq

for any distinct m1, · · · , mq ∈ M, and any y1, · · · , yq ∈ {0, 1}n. We some-
times write an ideal random function as a keyed function family randρ, where
randρ(x) = ρ(x) and ρ ∈ Func(M, {0, 1}n). A block cipher is a function e :
{0, 1}k × {0, 1}n → {0, 1}n, such that for any key K ∈ {0, 1}k, eK := e(K, ·) is
a permutation on {0, 1}n. In this paper, we fix n, and any element x ∈ {0, 1}i

is called a block if 1 ≤ i ≤ n. A block is called complete if i = n, otherwise,
it is called incomplete. For any x ∈ {0, 1}∗, we denote � |x|n � as ||x|| (called the
number of blocks of x). Let A be an oracle adversary. We say A is a q-adversary
if it makes at most q queries, and we say it is a (q, σ)-adversary if it makes at
most q queries, and the total number of blocks in all queries is at most σ. For
simplicity, we assume that a q-adversary makes exactly q queries, as there is no
loss when making some extra dummy queries. We say q is the number of input
queries, whereas σ as the number of block-queries.

Definition 2. (Pseudorandom Function) Let FK′ be a keyed function family,
where K ′ ∈ K′ and FK′ : M → {0, 1}n for a message space M. For any
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probabilistic oracle adversary A, we define the prf-advantage of it over the
function family F as

Advprf
F (A) = |Pr[AFK′ = 1 : K ′ ∗← K′]− Pr[Aρ = 1]|,

where ρ is an ideal random function from M to {0, 1}n, and the probabilities are
computed over the internal randomness of A, the uniform distribution of K ′ and
randomness of the output behavior of ρ. When M = {0, 1}n, we can equivalently
compute the prf-advantage as

Advprf
F (A) = |Pr[AFK′ = 1 : K ′ ∗← K]− Pr[Arandρ = 1 : ρ

∗← Func(n, n)]|.

The prf-advantage of F is defined as Advprf
F (q, σ) = maxA Advprf

F (A), where
the maximum is taken over all (q, σ)-adversaries A. When M = {0, 1}n, we have
σ = q and hence, we also write Advprf

F (σ). We say that a function family F is
a (q, σ, ε)-prf (or (σ, ε)-prf, for the case that M = {0, 1}n) if Advprf

F (q, σ) ≤ ε.

Definition 3. (Pseudorandom Permutation) The prp-advantage of an oracle
adversary A over a block cipher e : {0, 1}k × {0, 1}n → {0, 1}n is computed as

Advprp
e (A) = |Pr[Ae(K,·) = 1 : K

∗← {0, 1}k]− Pr[Aτ = 1]|,

where the probabilities are computed over internal randomness of A, uniform
distribution of K and randomness of the ideal random permutation τ on {0, 1}n.
The prp-advantage of the block cipher e is defined as Advprp

e (q) = maxA Advprp
e

(A), where the maximum is taken over all q-adversaries A.

Lemma 1. (Switching Lemma) For any function family F = (FK)K∈K, FK :
{0, 1}n → {0, 1}n, we have

Advprf
F (σ) ≤ Advprp

F (σ) +
σ(σ − 1)

2n+1 .

The proof of the switching lemma can be found in [6], for example.

3 Generalized CBC-MAC Class

3.1 Building Blocks

Every MAC for a message space M has two main components, namely a ran-
domized key-generation algorithm and a tag-generation algorithm which may be
deterministic or probabilistic. The key-generation algorithm returns a key (K, L)
at random from it’s key space K × {0, 1}�. In this paper, we consider determin-
istic tag-generation algorithms which consist of three main building blocks as
described below.
Padding Rule. A padding rule pad : M→ ([0..t]×{0, 1}n)+ which ensures that
the padded message is in a desired form. The non-negative integer t is said to
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be the variation number. Given a message m, the padded message pad(m) = X
will be written as ((δ1, x1), · · · , (δs, xs)) for some positive integer s, xi ∈ {0, 1}n

and δi ∈ [0..t], where 1 ≤ i ≤ s. We denote the set of all possible δ1 values as

Δpad = {δ1 : ∃m ∈ M, pad(m) = ((δ1, x1), · · · )}.

The role of the xi’s is similar to that of CBC message block, whereas
the δi values are used to tweak the intermediate outputs of the block
cipher by using a variation operation (for example, applying δi amounts of
left shift, etc.). A padding rule pad is said to be prefix-free if, for any m 
= m′,
pad(m) is not a prefix of pad(m′).
Iterative Function. An underlying iterative function f : {0, 1}n → {0, 1}n

which is determined via a key K ∈ K. A block cipher eK or an ideal random
function randρ for ρ

∗← Func(n, n) (note, randρ(x) = ρ(x)) are different examples
of iterative functions.
Variation Operation. A t-variate variation operation is a function h : [0..t]×
{0, 1}n → {0, 1}n, such that h(0, x) = x. These operations are defined to be
very efficient functions. The variation operation may use a key L (called the
auxiliary key) and the underlying iterative function f as a subroutine. Thus, the
variation operation may be determined by the key K of f . In this case, we say
the operation is a secret variation operation. If the operation does not use f and
any auxiliary key L, then h is a publicly computable function, and we say that it
is a public variation operation. A simple example of a t-variate public variation
operation is

h(i, x) = x�i for all 0 ≤ i ≤ t, x ∈ {0, 1}n.

It is called a type-I secret variation operation if it only depends on the auxiliary
key and not on the underlying iterative function f . All other secret variation
operations are called type-II. In this paper, we consider public or type-I secret
variation operations when we study the security analysis of the generalized CBC
constructions. But, we also see some secure constructions, such as OMAC or
CMAC, that use type-II secret variation operations.

3.2 Definition of a Generalized CBC-MAC

We define a class of generalized CBC message authentication algorithms (de-
noted as Cgcbc). Any authentication algorithm from this class for a message space
M has two main functionalities, namely a randomized key-generation algorithm
(or Key-Gen) with a key space K × {0, 1}� and a deterministic tag-generation
algorithm gcbcf,h,pad (defined below). Thus, we need to specify the key space
K×{0, 1}�, a message space M, the underlying iterative operation f , a t-variate
variation operation h and a padding rule with variation number t. The only
randomness of the generalized CBC comes from the key (K, L) ∈ K × {0, 1}�

and hence, we denote the authentication algorithm as gcbcK,L whenever all the
above are clear from the context.

1. Key-Gen : (K, L) ∗← K × {0, 1}�, where K × {0, 1}� is the key space.
Key-generation is parameterized by the key space only.
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Fig. 3. Generalized CBC which uses variation operation h, an underlying iterative
function eK (block cipher) and a padding rule pad

2. gcbcf,h,pad: The tag-generation algorithm for a message space M uses three
subroutines viz.,
– a padding rule pad : M → ([0..t] × {0, 1}n)+, with a variation number

t ≥ 0,
– a t-variate variation operation (public or secret) h : [0..t] × {0, 1}n →
{0, 1}n, and

– an underlying iterative function f : {0, 1}n → {0, 1}n.
These subroutines, except for the padding rule pad, are specified by the
key (K, L) (the output of Key-Gen), where K is the key for the underlying
iterative function f , and L is the auxiliary key that is used for the secret
variation operation h. For the public variation operation, � = 0. For any
message m, we define gcbcf,h,pad(m) = vs, where vs is computed as follows
(also described in Algorithm 1 and illustrated in Figure 3):

v0 = 0n, ui = h(δi, vi−1)⊕ xi, vi = f(ui), 1 ≤ i ≤ s (1)

where pad(m) = ((δ1, x1), · · · , (δs, xs)), δi ∈ [0..t], xi ∈ {0, 1}n.

Remark 1. Usually, x1, · · · , xs in Algorithm 1 are all different message blocks
and δ1, · · · , δs correspond to tweaking of chaining values. If δi = 0 then there is
no change in the ith intermediate input (same as CBC chaining for intermediate
inputs). For non-zero values of δi, we might do left shift operations on intermedi-
ate chaining value before xor-ing with the message block. The variation function
h(δ, ·) corresponds to these tweaking operations.

Remark 2. An efficiency of the tag-generation algorithm gcbcf,h,pad depends on
the number of invocations of f , as the underlying iterative function is the most
costly operation (we also desire a strong security notion from it, such as it
being a pseudorandom function). Note that the number of invocations of f is
at least s, and it may be more if we use the type-II secret variation operation.
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To keep it small, we should carefully design a padding rule so that the value of
s is as small as possible. The padding rule and the variation operations (except
the computation of f , which may be used in h) are usually very cheap and
hence, we mostly focus on the number of invocations of f when we compare the
performance of different constructions.

Algorithm 1. Generalized Cipher Block Chaining Message Authentication
Require:

key. K‖L ∈ K×{0, 1}�. \\ an output of the key generation algorithm Key-Gen,
\\ which is used in the functions f and h

function. f : {0, 1}n → {0, 1}n,
h : [0..t] × {0, 1}n → {0, 1}n,
pad : M → ([0..t] × {0, 1}n)+ \\M = {0, 1}∗.

input. m ∈ M.

1: X = pad(m)
2: divide X as ((δ1, m1) · · · (δs, xs)) where xi ∈ {0, 1}n, δi ∈ [0..t], 1 ≤ i ≤ s
3: v0 = 0n

4: for j = 1 to s do
5: uj = h(δj , vj−1) ⊕ xj

6: vj = f(uj)
7: end for
8: return vs

3.3 Known CBC-Type MACs Are Generalized CBC-MAC

This class is indeed a generalized class, as it contains almost all CBC-type au-
thentication algorithms. We describe more precisely how XCBC, TMAC and
OMAC belong to the class. A common choice of the underlying iterative func-
tion is a block cipher eK , K ∈ K = {0, 1}k, and a common choice of padding
rule pad is described below. Given a message m = m1‖ · · · ‖ms−1‖ms with
m1, · · · , ms−1 ∈ {0, 1}n, ms ∈ {0, 1}r, and 1 ≤ r ≤ n, the padding rule (with
variation number as two) is defined as

pad(m) = (0, m1), · · · , (0, ms−1), (δ, ms),

where δ = 1 if r < n; otherwise, we set δ = 2. Also,

ms =
{

ms‖10n−1−|x| if |ms| < n
ms if |ms| = n

The value of � and the 2-variate variation operations h are described below
for each construction. Recall that the key generation algorithm returns a key
(K, L) ∗← {0, 1}k × {0, 1}�.

XCBC: Let � = 2n, and write L = L1‖L2, where L1, L2 ∈ {0, 1}n. Define
h(i, x) = x⊕ Li ∀x ∈ {0, 1}n, i = 1, 2.
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TMAC: Let � = n, and define h(i, x) = x⊕ (L · αi−1) ∀x ∈ {0, 1}n, for i = 1, 2,
where α is a primitive element and α0 = 1 (multiplicative identity).

OMAC: Let � = 0, and define h(0, x) = x and h(i, x) = x ⊕ (eK(0) · αi) ∀x ∈
{0, 1}n, i = 1, 2.

Remark 3. OMAC is an example where the variation operation is a type-II se-
cret. In the case of the other two examples, the variation operations are type-I
secret variation operations. In the next section, we propose two different padding
rules and two public variation operations. The use of public variation operations
helps to keep the key size as low as possible. We also see that these public vari-
ation operations are efficiently computable. We should be careful in the security
analysis when we choose a public variation operation, since the security analysis
is not straightforward.

4 Security Analysis

4.1 Decorrelation Technique

Vaudeney’s Decorrelation Theorem (Lemma 22 of [20]3) is used in the security
analysis. Based on our notations, we state the following version of the Decorre-
lation Theorem.

Theorem 1. (Decorrelation Theorem)
Let q and σ be two fixed integers, and let FK′ : M → {0, 1}n be a family of
functions indexed by key K ′ that is chosen uniformly from the key space K′.
Suppose that the following holds for a positive real number ε;

Pr[FK′(x1) = y1, · · · , FK′(xq) = yq : K
∗← K] ≥ 2−nq(1 − ε) for any

(y1, · · · , yq) ∈ ({0, 1}n)q and distinct m1, · · · , mq ∈ M,
∑q

i=1 ‖mi‖ ≤ σ.

Then for any distinguisher A which asks q queries with σ blocks present in all
queries, Advprf

F (A) ≤ ε.

What does the Decorrelation Theorem mean? The above condition means
that the output behavior of the function family is very close to that of an ideal
random function for any choices of distinct inputs (note, 2−nq = Pr[ρ(x1) =
y1, · · · , ρ(xq) = yq]). Thus, the prf-advantage of a (q, σ)-adversary should be
small, independent of how the adversary works. Note that the adversary (at
the end of the query-responses) has a set of inputs and outputs, and he has
to distinguish the function family from an ideal random function based on the
query-responses. However, the values of ε can depend on q and σ.

3 It was mentioned in [20] that the decorrelation theorem was freely adapted from
Patarin’s coefficient H-techniques [18].
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4.2 Security Analysis of Generalized CBC Algorithm

A variation operation can be public or secret. A variation operation is said to
be allowed if either it is public, or it is a type-I secret (which does not use the
underlying iterative as a subroutine and only uses an auxiliary key).

Definition 4. Let Δ be a subset of [0..t] and ε be a nonnegative real number.
An allowed t-variate variation operation h : [0..t] × {0, 1}n → {0, 1}n is said to
be a (ε, Δ)-xor weak universal operation if, for any 0 ≤ δ 
= δ′ ≤ t, c ∈ {0, 1}n,
and for all auxiliary key L0 ∈ {0, 1}�, the following conditions are satisfied.

W1: Pr[hL0(i, R) = c : R
∗← {0, 1}n] ≤ ε, for any 0 ≤ i ≤ t,

W2: Pr[hL(δ, 0n)⊕ hL(δ′, 0n) = c : L
∗← {0, 1}�] ≤ ε whenever δ, δ′ ∈ Δ

W3: Pr[hL(δ, R)⊕ hL(δ′, R) = c : (R, L) ∗← {0, 1}n × {0, 1}�] ≤ ε.

Note that when Δ is a singleton set, then the condition W2 is vacuously true. We
provide a sufficient condition for prf-secure of generalized CBC constructions.

A sufficient condition for prf-secure gcbc

1. Let pad be a prefix-free padding rule with a variation number t ≥ 0, h be a
(ε, Δpad)-xor weak universal, allowed variation operation, and

2. the underlying iterative function family (fK)K∈K is (σ, μ)-prf.

The generalized CBC, based on the above such building blocks, is (q, σ, ε′)-prf,
where ε′ = σ′(σ′−1)ε+μ and where σ′ denotes the total number of blocks in all
queries after padding. (which have been queried by an adversary)4. As we are
going to apply decorrelation theorem, we want to show the following probability
for distinct m1, · · · , mq ∈ M and distinct y1, · · · , yq ∈ {0, 1}n,

p = Prρ,L[gcbcρ,L(m1) = y1, · · · , gcbcρ,L(mq) = yq] ≥
1− σ′(σ′−1)ε

2

2nq
(2)

where the probability is computed over (ρ, L) ∗← Func(n, n) × {0, 1}�. Then by
applying decorrelation theorem and switching lemma, we know that gcbcK,L

is (q, σ, ε′)-prf-secure. Now, it remains to show the above equation. We first
introduce some notations as given below.
Notations. Let pad(mi) = Xi = ((δi,1, xi,1) · · · , (δi,�i , xi,si)), where xi,1, · · · ,
xi,si ∈ {0, 1}n and δi,1, · · · , δi,si ∈ [0..t]. Let Xi,j = ((δi,1, xi,1) · · · , (δi,j , xi,j))
for 0 ≤ j ≤ si, where Xi,0 = λ for any i. For each 1 ≤ i ≤ q, we have the
following sequences of ui’s and vi’s values.

vi-sequence : 0n (δi,1,xi,1)→ vi,1
(δi,2,xi,2)→ vi,2 · · ·

(δi,si
,xi,si

)→ vi,si

ui-sequence : λ
(δi,1,xi,1)→ ui,1

(δi,2,xi,2)→ ui,2 · · ·
(δi,si

,xi,si
)→ ui,si

4 Later, we propose two padding rules where the number of block can only increase
by at most one for each message and hence, σ′ ≤ σ + q.
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Note that all these variables ui,j , vi,j are random variables, whereas δi,j , xi,j are
fixed constants. Moreover, ui,j = hL(δi,j , vi,j−1) ⊕ xi,j and randρ(ui,j) = vi,j .
Thus, ui,j corresponds to the ith input of randρ while computing gcbcρ,L(mi)
and vi,j is its corresponding output. The most common approach is to recognize
all trivial collisions of inputs (which are because of the fact that some parts of
two messages are identical). Then we try to prove that any other input collision
has low probability (in other we would provide an upper bound on all other
input collisions). Next, we would define admissible tuples which correspond to
all intermediate inputs and outputs which do not have any non-trivial collisions.

Lemma 2. If Xi,j = Xi′,j′ then ui,j = ui′,j′ and vi,j = vi′,j′ with probability 1.

Definition 5. Let L0 ∈ {0, 1}�, Vi,j ∈ {0, 1}n, 1 ≤ i ≤ q, 1 ≤ j ≤ si for some
fixed integers s1, · · · , sq and q. We say that a tuple (L0, Vi,j)i,j is admissible if

- Vi,j = Vi′,j′ whenever Xi,j = Xi′,j′ ,
- Vi,0 = 0n, Vi,si = yi for all 1 ≤ i ≤ q and
- hL0(δi,j , Vi,j−1)⊕ xi,j 
= hL0(δi′,j′ , Vi′,j′−1)⊕ xi′,j′ for all i, j, i′, j′ such that

Xi,j 
= Xi′,j′ .

Let σ1 be the maximum number of all pairs (i, j) with distinct Xi,j ’s. More
precisely, σ1 = |{X : X = Xi,j for some i, j}|. Clearly, σ1 ≤ σ′ =

∑q
i=1 ||Xi||.

Lemma 3. Given any admissible tuple (L0, Vi,j)i,j, Pr[L = L0, vi,j = Vi,j ] =
1

2n(σ1+q) × 1
2� .

Proof. Given any such admissible tuple, ui,j = ui′,j′ if and only if Xi,j = Xi′,j′

and all ui,j = Ui,j = hL0(δi,j , Vi,j−1)⊕ xi,j values are fixed. Thus,

Pr[L = L0, vi,j = Vi,j ] = Pr[L = L0, ρ(Ui,j) = Vi,j for all i, j]
= Pr[ρ(Ui,j) = Vi,j for all i, j]× Pr[L = L0]

=
1

2n(σ1+q) ×
1
2�

.

Lemma 4. The number of admissible tuples is at least 2nσ1+�(1− εσ1(σ1−1)
2 ).

Proof. We have 2nσ1+� tuples (L0, (Vi,j)i,j) such that Vi,0 = 0n, Vi,si = yi for
all 1 ≤ i ≤ q and Vi,j = Vi′,j′ whenever Xi,j = Xi′,j′ . Now we need to find
an estimate of the number of tuples among these such that hL0(δi,j , Vi,j−1) ⊕
xi,j 
= hL0(δi′,j′ , Vi′,j′−1) ⊕ xi′,j′ for all i, j, i′, j′ such that Xi,j 
= Xi′,j′ . To
do so, we count the complement. Suppose that for some i, j, i′, j′ with Xi,j 
=
Xi′,j′ , hL0(δi,j , Vi,j−1) ⊕ xi,j = hL0(δi′,j′ , Vi′,j′−1) ⊕ xi′,j′ . The number of such
tuples is at most 2nσ1+�−1, since h is a weakly (ε, Δpad1

)-xor universal variation
operation. The total number of possible values of i, j, i′, j′ such that Xi,j 
= Xi′,j′

is
(
σ1
2

)
. Subtracting all such non-admissible tuples, we see that there are at least

2nσ1+�(1− εσ1(σ1−1)
2 ) admissible tuples.

Combining the above two lemmas, we can prove the following theorem.
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Theorem 2. Let h be a weakly (ε, Δpad)-xor universal operation and pad be a
prefix-free padding rule. Suppose that the underlying iterative function is an ideal
random function (randρ)ρ∈Func(n,n), and we denote the corresponding generalized
CBC authentication algorithm as gcbcρ,L. Let σ′ be the largest number of blocks
after padding q messages having at most σ blocks in total. Then for any distinct
m1, · · · , mq ∈M (message space), and any y1, · · · , yq ∈ {0, 1}n,

Prρ,L[gcbcρ,L(m1) = y1, · · · , gcbcρ,L(mq) = yq] ≥
1− σ′(σ′−1)ε

2

2nq
.

Theorem 3. Based on all notations defined so far, we have,

Advprf
gcbc(q, σ) ≤ σ′(σ′ − 1)ε

2
+ Advprf

f (σ′)

≤ σ′(σ′ − 1)
2

(ε +
1
2n

) + Advprp
f (σ′)

Theorem 4. The variation operations defined in XCBC and TMAC are weakly
( 1
2n , Δpad)-xor universal operations and σ′ = σ. So,

1. Advprf
XCBC(q, σ) ≤ σ(σ−1)

2n + Advprp
f (σ).

2. Advprf
TMAC(q, σ) ≤ σ(σ−1)

2n + Advprp
f (σ).

5 Two New Efficient Generalized CBC-MAC: GCBC1 and
GCBC2

In this section, we propose two secure, generalized CBC constructions, namely
GCBC1 and GCBC2 both have message space {0, 1}∗.

5.1 GCBC1

We first define a padding rule pad1 : {0, 1}>n → ([0..2]×{0, 1}n)+. For any m =
m1 · · ·ms−1ms ∈ {0, 1}>n, where m1, · · · , ms−1 ∈ {0, 1}n and ms ∈ {0, 1}r,
1 ≤ r ≤ n, we define the padded message as

pad1(m) = ((0, m1), · · · , (0, ms−1), (δ, ms)),

where δ = 1 if r < n; otherwise, δ = 2. We extend the definition of the padding
rule to the message space {0, 1}∗ as follows. Let m1 ∈ {0, 1}r, define

pad1(m1) =

{
((0, m1), (1,0)) if r < n

((0, m1), (1, 10n−1)) if r = n.

Thus, s-block messages have s-block padded messages for all s ≥ 2, and one-
block messages have two-block padded messages. It is also easy to observe that
Δpad1

= {0}. Moreover, the padding rule is prefix-free.
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Algorithm 2. GCBC1
Require:

key. K
∗← {0, 1}k. \\ block cipher key

function. eK : {0, 1}n → {0, 1}n. \\ block cipher
input. m ∈ {0, 1}∗.

1: divide m as (m1, · · · , ms−1, ms)
where m1, · · · , ms−1 ∈ {0, 1}n, ms ∈ {0, 1}r , 1 ≤ r ≤ n.

2: if s = 1 and r = n then
3: m2 = 10n−1, s = 2, r = n − 1.
4: else if s = 1 then
5: m1 = m1, m2 = 0, s = 2.
6: end if
7: v0 = 0
8: for j = 1 to s − 1 do
9: uj = vj−1 ⊕ xj

10: vj = eK(uj)
11: end for
12: if r < n then
13: us = v�1

s−1 ⊕ xs

14: else
15: us = v�2

s−1 ⊕ xs

16: end if
17: vs = eK(us)
18: return vs

Proposition 1. The padding rule pad1 over the message space {0, 1}∗ is a
prefix-free padding rule.

Proof. Suppose m = m1 · · ·ms−1ms and m′ = m′
1 · · ·m′

s′−1m
′
s′ where s ≤ s′,

pad1(m) is a prefix of pad1(m′) and m1, m
′
1, · · · , ms−1, m

′
s′−1 ∈ {0, 1}n, ms ∈

{0, 1}r, m′
s′ ∈ {0, 1}r′

, 1 ≤ r, r′ ≤ n.
Case s ≥ 2: pad1(m) = ((0, m1), · · · , (0, ms−1), (δ, ms)) is a prefix of pad1(m′)

= ((0, m′
1),· · · , (0, m′

s′−1), (δ′, m′
s′)). Since δ, δ′ 
= 0, s′ = s and δ = δ′. Moreover,

m′
1 = m1, · · · , ms−1 = m′

s−1, ms = m′
s. Now, ms = m′

s and δ = δ′ implies that
ms = m′

s. Thus m = m′.
Case s = 1, s′ ≥ 2: pad1(m) = ((0, x1), (1, x2)) where pad1(m

′) = ((0, m′
1),

· · · , (0, m′
s′−1), (δ′, m′

s′). By comparing δ values of the second pair, we can see
that s′ = 2, r′ < n and m′

2 = x2. But x2 is either 0 or 10n−1 which can’t be
m′

2 for any m′
2 ∈ {0, 1}r′

, 1 ≤ r′ < n. So this case does not arise.
Case s = 1, s′ = 1: Obviously, if pad1(m1) is a prefix of pad1(m

′
1), then they

should be equal. But, it is easy to see that they can be equal only when m1 = m′
1

and hence, m = m′.

Now we define a simple public variation operation ls, which has two variations.
For any x ∈ {0, 1}n and 0 ≤ δ ≤ 2, ls(δ, x) = x�δ.
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Proposition 2. The operation ls with 2 variations is a public and weakly 1
2n−2 -

xor universal for Δ = Δpad1
= {0}. The same operation ls with 5 variations is a

public and weakly 1
2n−5 -xor universal for Δ = Δpad1

= {0}.
Proof. By definition, ls(0, x) = x. It is easy to see that x�i = c has at most
4 solutions of x for any i ≤ 2 and any constant c ∈ {0, 1}n. So, condition W1
holds. The condition W2 trivially holds, since Δ = {0}. To see the condition
W3, we first prove that the number of solutions of x ⊕ x�1 = c is exactly one
for any constant c ∈ {0, 1}n. In fact, the solution is x[n] = c[n], x[n − 1] =
c[n − 1] ⊕ c[n − 1], · · · , x[1] = c[1] ⊕ · · · ⊕ c[n]. Similarly, one can see that the
number of solutions of x for the equation x ⊕ x�2 = c is exactly one. Now
we want to find the number of solutions of the equation x�1 ⊕ x�2 = c. Let
y = x�1

. We have exactly one solution of y and hence, there are exactly two
solutions of x. Combining all these observations, we can see that condition W3 is
true. Thus, ls is a weakly 1

2n−2 -xor universal. The case for 5 variation operation
can be proved similarly.

We define the tag-generation algorithm of GCBC1 as the generalized CBC algo-
rithm (see Figure 1) gcbce,ls,pad1 with a message space of {0, 1}∗ and the padding
rule pad1 (see Algorithm 2).

Theorem 5. (Security Bound of GCBC1)

Advprf
GCBC1(q, σ) ≤ 5(σ+q)(σ+q−1)

2n + Advprp
e (σ + q)

Proof. We apply the result of the above two propositions to the generalized
CBC security bound (see Theorem 3 where sigma′ ≤ σ + q).

5.2 GCBC2

We first define a padding rule pad2 for the message space {0, 1}∗ with variation
number 5. Let m = m1 · · ·ms−1ms ∈ {0, 1}∗, where m1, · · · , ms−1 ∈ {0, 1}n and
ms ∈ {0, 1}r, 0 ≤ r ≤ n (r = 0 only when we have an empty message m). Let us
denote δ = 1 if r < n; otherwise, δ = 2. If |m| ≥ n−3 then denote m1 = m′

1‖m′′
1 ,

where m′
1 ∈ {0, 1}n−3 and m′′

1 ∈ {0, 1}∗. Define pad2(m) to depend on s.

Case s = 1, pad2(m1) =

{
((0, m′

1‖011), (0, m′′
1)) if r ≥ n− 3

(0, m1) if r ≤ n− 4

Case s = 2, pad2(m1, m2) =

{
((0, m1), (δ + 1, m2)) if m′′

1 
= 000
((0, m′

1‖100), (δ − 1, m2)) if m′′
1 = 000

For all other cases, i.e., s ≥ 3,

pad2(m) =

{
((0, m′

1), (5, m2), (0, m3), · · · , (0, ms−1), (δ, ms)) if m′′
1 = 000

((0, m1), (4, m2), (0, m3), · · · , (0, ms−1), (δ, ms)) if m′′
1 
= 000

Note, Δpad2
= {0} and it increases one block only when the message size is in

between n− 3 and n. All other messages and their padded messages have same
number of blocks. Now we prove that it is a prefix-free padding rule.
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Proposition 3. pad2 is prefix-free padding rule over the message space {0, 1}∗.
Proof. Suppose that m = m1 · · ·ms−1ms and m′ = m′

1 · · ·m′
s′−1m

′
s′ where s ≤

s′, pad2(m) is a prefix of pad2(m′) and m1, m
′
1, · · · , ms−1, m

′
s′−1 ∈ {0, 1}n, ms ∈

{0, 1}r, m′
s′ ∈ {0, 1}r′

, 1 ≤ r, r′ ≤ n. Let pad2(m) = ((0, x1), (δ, x2), · · · ) if s ≥ 2;
otherwise, pad2(m)=(0, x1). Similarly we denote pad2(m′)=((0, x′

1), (δ
′, x′

2), · · · )
if s ≥ 2; otherwise, pad2(m′) = (0, x′

1). When s = 1, s′ must be 1; otherwise,
for any s′ ≥ 2, we always have (x1, δ) 
= (x′

1, δ
′). It is also easy to see that if

s = s′ = 1, then m = m′. Let s ≥ 2. By comparing the values of δ and δ′ we
must have s = s′ = 2 or s, s′ ≥ 3. From the definition of pad2, one can check
that m = m′.

We define the tag-generation algorithm of GCBC2 as the generalized CBC algo-
rithm (see Figure 2) gcbce,ls,pad2 with a message space of {0, 1}∗ and the padding
rule pad2 (see Algorithm 1 for generalized CBC tag generation algorithm or see
a complete description of GCBC in introduction). The proof of the following
theorem is immediate from Theorem 3 (sigma′ ≤ σ + q).

Theorem 6. (Security Bound of GCBC2)

Advprf
GCBC2(q, σ) ≤ 33(σ + q)(σ + q − 1)

2n
+ Advprp

e (σ + q).

Remark 4. Our bound is of the form σ2/2n, whereas in [5], it had been shown
that CBC-MAC is prf-secure for prefix-free messages with the security bound
of the form �q2/2n, where � denotes the number of blocks of the longest query
among all q queries. Note that GCBC1 can be viewed as a CBC-MAC, where the
last message block is modified by the last intermediate chain value. Because of
this modification, it seems hard to obtain prefix queries. If it is so, then we can
apply the result from [5] to obtain a bound of the form �q2/2n for GCBC1. This
would be our future research work and we leave this as an open problem.

An Efficient Variation Operation. One can choose an efficient, different
public variation operation h = tr for a generalized CBC MAC algorithm, which
is defined as follows. Let n′ be a divisor of n and x = x1 · · ·xn′ , where xi ∈
{0, 1}w. The actual value of w can depend on the underlying block cipher and
when using AES, we choose w = 8. Define, tr(0, x1 · · ·xn′) = (x1, · · · , xn′),
tr(1, x1 · · ·xn′) = tr(x1 · · ·xn′) := x2 · · ·xn′x�1

1 and inductively define for i ≥ 2,

tr(i, x1 · · ·xn′) = tr(i− 1, tr(1, (x1 · · ·xn′)) = tr(i− 1, x2 · · ·xn′x�1
1 ).

In particular, we have tr(2, x1 · · ·xn′) := x3 · · ·xn′x�1
1 x�1

2 and tr(3, x1 · · ·xn′)
:= x4 · · ·xn′x�1

1 x�1
2 x�1

3 and so on. This would be very efficient in software
when we use a w-bit processor. In case of GCBC2 with the above defined vari-
ation operation, it needs at most three 8-bit shift operations. Note, an 8-bit
implementation of a single shift on 128 bits needs 16 shift operations. For exam-
ple, if we use AES, then a single shift on 128 bits (it is partitioned into 16 bytes)
requires 16 shift operations and several bitwise-and and bitwise-or operations.
The proof is very similar to that of proposition 2 and hence we omit it.
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Proposition 4. The operation tr with 5 variations is a public and weakly 1
2n−5 -

xor universal for Δ = Δpad2
= {0}.

6 Conclusion

In this paper, many popular CBC-type message authentication algorithms are
viewed in a unified way. In particular, a wide class of authentication algorithms
called generalized CBC algorithms is introduced. This class contains almost all
known CBC-type secure authentication algorithms. Moreover, we have proposed
two secure constructions GCBC1 and GCBC2 from this class which are optimum
in key size and the number of block cipher invocations. These constructions may
have significant performance compared to OMAC for short messages. We also
characterize the prf-secure generalized CBC constructions. We hope the idea
of generalizing CBC constructions can also help us to generalize other similar
constructions for different security goals.
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Abstract. We propose the HBS (Hash Block Stealing) mode of op-
eration. This is the first single-key mode that provably achieves the
goal of providing deterministic authenticated encryption. The authenti-
cation part of HBS utilizes a newly-developed, vector-input polynomial
hash function. The encryption part uses a blockcipher-based, counter-like
mode. These two parts are combined in such a way as the numbers of
finite-field multiplications and blockcipher calls are minimized. Specif-
ically, for a header of h blocks and a message of m blocks, the HBS
algorithm requires just h + m + 2 multiplications in the finite field and
m + 2 calls to the blockcipher. Although the HBS algorithm is fairly
simple, its security proof is rather complicated.

Keywords: Universal hash function, counter mode, SIV, security proof.

1 Introduction

The goals for blockcipher modes of operation are twofold. One is to establish
authenticity, or data integrity. The other is to preserve privacy, or data confi-
dentiality. These two goals are realized by the mechanism of authenticated en-
cryption, or AE for short. An AE mode establishes authenticity and preserves
privacy concurrently by producing a ciphertext into which both the tag and the
encrypted message are embedded.

A crucial aspect of an AE mode is that its security is based on the use of
either a randomized salt or a state-dependent value, which has been formalized
as nonce-based AE [13,14,15]. In fact, many of the modern AE modes, including
CCM [19], GCM [9] and OCB [13], are all nonce-based.

The nonce, however, needs to be handled with great care, because the misuse
of nonce (i.e., repeating the same value) would generally lead to the complete
collapse of systems based on these AE modes. This is due to the fact that the
security designs have no concern in what happens when the nonce assumption
becomes no longer true.

The problem of nonce misuse has been settled by the introduction of deter-
ministic authenticated encryption [16], or DAE for short. A DAE mode provides
a deterministic, stateless algorithm that produces a ciphertext from the pair

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 394–415, 2009.
c© International Association for Cryptologic Research 2009



HBS: A Single-Key Mode of Operation 395

of a header and a message. A DAE mode can be used also as a conventional
nonce-based AE mode by embedding a nonce value into the header. The virtue
of a DAE mode is that it still ensures a certain level of security (i.e., all that
an adversary can do is to detect a repetition of the same header-message pair)
even when the DAE mode is not combined with a nonce element. Hence DAE is
more robust than nonce-based AE.

The work [16] also proposes a concrete DAE mode of operation called SIV.
The SIV mode is a blockcipher-based scheme, utilizing a vector-input version of
the CMAC algorithm [5,11] for its authentication part and the CTR (counter)
mode for its encryption part. The SIV mode requires two independent keys for
the underlying blockcipher, one being for the CMAC algorithm and another for
the CTR mode.

The purpose of the current paper is to improve usability and performance
over SIV. For this, we present a new DAE mode of operation called HBS (which
stands for Hash Block Stealing), which has the following features.

1. The HBS mode requires just one key. It uses the same key for authentication
and for encryption.

2. For authentication, the HBS mode adopts a vector-input polynomial-based
universal hash function (rather than the blockcipher-based CMAC).

3. For encryption, the HBS mode uses a CTR-like scheme using a blockcipher,
which operates differently from an ordinary CTR mode.

4. The numbers of finite-field multiplications (in hashing) and blockcipher calls
are minimized.

5. We provide the HBS mode with concrete proofs of security.

In general, reducing keying material without compromising security reduces the
cost of sharing, saving, and updating the secret key. Also, changing from a
blockcipher-based MAC to polynomial-based universal hashing increases effi-
ciency on many platforms [3,17], as in changing from CCM [19], which uses a
CBC-MAC, to GCM [9], which employs polynomial-based hashing.

It turns out that meeting the above objectives is demanding. We introduce
the notion of a vector-input ε-almost XOR universal hash function and develop
a new polynomial-based hashing that meets our requirements. We also devise
a somewhat odd way of incrementation in a CTR mode, which is necessary for
the security of the scheme and is non-trivially binded with the new polynomial
hash function. As a result, the security proofs become rather involved.

2 Preliminaries

Notation. If x is a finite string, then |x| denotes its length in bits. If x and y
are two equal-length strings, then x ⊕ y denotes the XOR of x and y. If x and
y are finite strings, then x‖y denotes their concatenation. Given finite strings
x0, x1, . . . , xm−1, we use the notation x0‖x1‖ · · · ‖xm−1 and the vector notation
(x0, x1, . . . , xm−1) interchangeably. For a positive integer n, {0, 1}n is the set
of all n-bit strings, and ({0, 1}n)+ is the set of all strings whose lengths are
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positive multiples of n bits. Whenever we write X = (X [0], X [1], . . . , X [m−1]) ∈
({0, 1}n)+, we implicitly assume that m ≥ 1 is an integer and |X [i]| = n for 0 ≤
i ≤ m−1. {0, 1}∗ is the set of all finite strings (including the empty string), and
for a positive integer �, ({0, 1}∗)� is the set of all vectors (x0, x1, . . . , x�−1), where
xi ∈ {0, 1}∗ for 0 ≤ i ≤ �− 1. For positive integers n and j such that n ≤ 2j − 1,
〈j〉n is the big-endian n-bit binary representation of j. For a finite string x and
a positive integer n such that |x| ≥ n, msb(n, x) is the most significant n bits of
x. For a positive integer n, 0n is the n-times repetition of 0’s.

We write N for the set of non-negative integers. Given a real number x, the
symbol �x� denotes the smallest integer greater than or equal to x. If X is a
finite set, then #X is the cardinality of X , and we let x

R← X denote the process
of selecting an element from X uniformly at random and assigning it to x.

The Finite Field of 2n Elements. We regard the set {0, 1}n as the finite
field of 2n elements (relative to some irreducible polynomial). For x, y ∈ {0, 1}n,
the symbol x ·y denotes the product of x and y. We write x2 = x ·x, x3 = x ·x ·x,
and so on. The ⊕ operation corresponds with the addition in the field.

Blockciphers and SPRP Adversaries. A blockcipher is a function E : K ×
{0, 1}n → {0, 1}n such that for any K ∈ K, E(K, ·) = EK(·) is a permutation on
{0, 1}n (i.e., a permutation family). The positive integer n is the block length,
and an n-bit string is called a block. If K = {0, 1}k, then k is the key length.

The SPRP notion for blockciphers was introduced in [6] and later made con-
crete in [1]. Let Perm(n) denote the set of all permutations on {0, 1}n. This set
can be regarded as a blockcipher by assigning a unique string (a key) to each
permutation. We say that P is a random permutation if P

R← Perm(n). An
adversary is a probabilistic algorithm (a program) with access to one or more
oracles. An SPRP-adversary A has access to two oracles and returns a bit. The
two oracles are either the encryption oracle EK(·) and the decryption oracle
E−1

K (·), or a random permutation oracle P (·) and its inverse oracle P−1(·). We
define the advantage Advsprp

E (A) as∣∣∣Pr(K R← K : AEK(·),E−1
K (·) = 1)− Pr(P R← Perm(n) : AP (·),P−1(·) = 1)

∣∣∣ .
For an adversary A, A’s running time is denoted by time(A). The running time
is its actual running time (relative to some fixed RAM model of computation)
and its description size (relative to some standard encoding of algorithms). The
details of the big-O notation in a running-time reference depend on the RAM
model and the choice of encoding.

3 Specification of HBS

3.1 A Vector-Input Universal Hash Function F

In this section, we define a new vector-input universal hash function F . Let n be
a fixed block length, e.g., n = 128. Before defining F , we first define a polynomial
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universal hash function f : {0, 1}n × ({0, 1}n)+ → {0, 1}n. Let L ∈ {0, 1}n be a
key for f and X = (X [0], X [1], . . . , X [m− 1]) ∈ ({0, 1}n)+ be an input. Define

fL(X) = Lm ⊕ Lm−1 ·X [0]⊕ Lm−2 ·X [1]⊕ · · · ⊕X [m− 1].

Note that we need (m− 1) multiplications to compute fL(X).
Now we define the vector-input hash function F . It internally uses a padding

function pad(·) : {0, 1}∗ → ({0, 1}n)+, which takes x ∈ {0, 1}∗ and outputs

pad(x) =
{

x if x ∈ ({0, 1}n)+,
x‖10i otherwise,

where i is the smallest non-negative integer such that the total length of x‖10i

in bits becomes a positive multiple of n. F also takes a vector dimension � as a
parameter, and we write F (�) for F with a parameter �. F (�) takes L ∈ {0, 1}n

as a key and X = (x0, x1, . . . , x�−1) ∈ ({0, 1}∗)� as its input. For 0 ≤ i ≤ �− 1,
let Xi = pad(xi) and zi = fL(Xi). Define F (�) : {0, 1}n× ({0, 1}∗)� → {0, 1}n as

F
(�)
L (X ) = F

(�)
L (x0, x1, . . . , x�−1)

= L · z�
0 · 〈c0〉n ⊕ L2 · z�

1 · 〈c1〉n ⊕ · · · ⊕ L� · z�
�−1 · 〈c�−1〉n, (1)

where, for 0 ≤ i ≤ �− 1, we set zi = fL(pad(xi)) and

ci =
{

1 if xi 
∈ ({0, 1}n)+,
2 otherwise.

The degree of F
(�)
L (X ) as a polynomial in L is μ(X ), which is defined as follows.

For X = (x0, . . . , x�−1) ∈ ({0, 1}∗)�, define μ : ({0, 1}∗)� →N as

μ(X ) = max
0≤i≤�−1

{i + 1 + �mi},

where mi = �|xi|/n� for 0 ≤ i ≤ �−1. The value mi is the length of xi in blocks,
where a partial block counts for one block. Note that each zi is a polynomial in
L of degree mi.

We remark that the multiplication by the constant 〈2〉n can be implemented
efficiently. For example, for n = 128 we can choose x128 + x7 + x2 + x+ 1, which
is one of the irreducible polynomials having the minimum number of non-zero
coefficients. Then, for x ∈ {0, 1}128, we can compute the product x · 〈2〉128 as
x · 〈2〉128 = x · 012610 = x � 1 if msb(1, x) = 0, or as x · 〈2〉128 = x · 012610 =
(x � 1)⊕ 012010000111 otherwise, where x � 1 is the left shift of x by one bit
(The first bit of x disappears and a zero comes into the last bit). See [13] for
details.

3.2 Vector-Input ε-Almost XOR Universal Hash Function

We next define the notion of a vector-input ε-almost XOR universal (VI-ε-AXU
for short) hash function. This plays an important role in our security analysis.
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Algorithm HBS.EncK(H,M) Algorithm CTR.EncK(S, M)
100 L ← EK(0n) 300 for i ← 0 to �|M |/n� − 1 do

101 S ← F
(2)
L (H,M) 301 Ri ← EK(S ⊕ 〈i + 1〉n)

102 C ← CTR.EncK(S, M) 302 R ← (R0, R1, . . . , R�|M|/n�−1)
103 T ← EK(S) 303 C ← M ⊕ msb(|M |, R)
104 return (T, C) 304 return C

Algorithm HBS.DecK(H, (T, C)) Algorithm CTR.DecK(S, C)
200 L ← EK(0n) 400 for i ← 0 to �|C|/n� − 1 do
201 S ← E−1

K (T ) 401 Ri ← EK(S ⊕ 〈i + 1〉n)
202 M ← CTR.DecK(S, C) 402 R ← (R0, R1, . . . , R�|C|/n�−1)
203 S′ ← F

(2)
L (H,M) 403 M ← C ⊕ msb(|C|, R)

204 if S �= S′ then return ⊥ 404 return M
205 else return M

Fig. 1. Definition of the encryption algorithm HBS.Enc (left top) and the decryp-
tion algorithm HBS.Dec (left bottom). CTR.Enc (right top) is used in HBS.Enc, and
CTR.Dec (right bottom) is used in HBS.Dec.

Definition 1 (VI-ε-AXU Hash Function). Let � be an integer and F (�) :
{0, 1}n × ({0, 1}∗)� → {0, 1}n be a vector-input function keyed by L ∈ {0, 1}n.
F (�) is said to be VI-ε-AXU if, for any two distinct inputs X , X̂ ∈ ({0, 1}∗)� and
for any Y ∈ {0, 1}n,

Pr(L R← {0, 1}n : F
(�)
L (X )⊕ F

(�)
L (X̂ ) = Y ) ≤ ε.

We show that the polynomial hash function F (�) defined in Sect. 3.1 is VI-ε-AXU
for a small ε. A proof is given in Appendix A.

Theorem 1. Let � be an integer and F (�) : {0, 1}n × ({0, 1}∗)� → {0, 1}n be
the polynomial hash function defined in Sect. 3.1, keyed by L ∈ {0, 1}n. Let
X = (x0, . . . , x�−1), X̂ = (x̂0, . . . , x̂�−1) ∈ ({0, 1}∗)� be any two distinct inputs to
F (�). Then for any Y ∈ {0, 1}n,

Pr(L R← {0, 1}n : F
(�)
L (X ) ⊕ F

(�)
L (X̂ ) = Y ) ≤ max{μ(X ), μ(X̂ )}

2n
.

3.3 HBS: Hash Block Stealing

We present our HBS, Hash Block Stealing. It takes a blockcipher E as a param-
eter and uses F (�) defined in Sect. 3.1 with � = 2.

Fix a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n. HBS consists of two al-
gorithms, the encryption algorithm (HBS.Enc) and the decryption algorithm
(HBS.Dec). These algorithms are defined in Fig. 1. See Fig. 2 for a picture illus-
trating HBS.Enc (See also Fig. 3 for F

(2)
L (H, M)).

The encryption algorithm HBS.Enc takes a key K ∈ {0, 1}k, a header H ∈
{0, 1}∗, and a plaintext M ∈ {0, 1}∗ to return a ciphertext (T, C) ∈ {0, 1}n ×
{0, 1}∗, where |C| = |M |. We write (T, C) ← HBS.EncK(H, M). The decryption
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H M

F
(2)
L

S

EK

T

EK

M [0]

S 1 n

C[0]

EK

M [1]

S 2 n

C[1]

EK EK

msb

S m nS m − 1 n

M [m − 1]

C[m − 1]

M [m − 2]

C[m − 2]

Fig. 2. Illustration of the encryption algorithm (T, C) ← HBS.EncK(H,M). In the
figure, M = (M [0], M [1], . . . , M [m − 1]), where |M [0]| = · · · = |M [m − 2]| = n and
|M [m−1]| ≤ n. L = EK(0n), and the output of “msb” is the most significant |M [m−1]|
bits of EK(S ⊕ 〈m〉n).

algorithm takes K, H , and (T, C) as its inputs to return the corresponding plain-
text M or a special symbol ⊥. The symbol ⊥ indicates that the given inputs are
invalid. We write M ← HBS.DecK(H, (T, C)). We have HBS.DecK(H, (T, C)) =
⊥ when the decryption process fails.

HBS.Enc and HBS.Dec call subroutines CTR.Enc and CTR.Dec, respectively,
which are the encryption and the decryption of the CTR mode using S as its
initial counter value. By specification we restrict the message length to 2n/2 − 1
blocks, as the security of the HBS mode becomes vacuous beyond this point. This
restriction allows us to write 〈i〉n = 0n/2‖〈i〉n/2 for an integer 0 ≤ i ≤ 2n/2 − 1
(We assume that the block length n is an even integer), which implies that the
incrementation of the counter in CTR.Enc and CTR.Dec can be done by adding
1 modulo 2n/2 rather than modulo 2n.

F
(2)
L (H, M) can be implemented using h+m multiplications and two squaring

operations, as in Fig. 3. See also Fig. 4 for pseudocode. In the figures, we let
	|H |/n
 = h and 	|M |/n
 = m, so that pad(H) = (H̄ [0], . . . , H̄ [h − 1]) and

H̄[0] H̄[1] H̄ [2] H̄ [h − 1]

M̄ [0] M̄ [1] M̄ [2] M̄ [m − 1]

c0 n

c1 n

SQ

LL L L L L

LL L L L L

SQ

S

Fig. 3. Illustration of F
(2)
L (H, M). In the figure, pad(H) = (H̄ [0], . . . , H̄[h − 1]) and

pad(M) = (M̄ [0], . . . , M̄ [m − 1]). L = EK(0n), “SQ” outputs the square of its input,
“�” is the multiplication, and c0, c1 ∈ {1, 2} are constants.
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Function F
(2)
L (H, M)

100 zH ← L ⊕ H̄ [0]
101 for i = 1 to h − 1 do
102 zH ← L · zH ⊕ H̄[i]
103 zM ← L ⊕ M̄ [0]
104 for i = 1 to m − 1 do
105 zM ← L · zM ⊕ M̄ [i]
106 return L · z2

H · 〈c0〉n ⊕ (L · zM )2 · 〈c1〉n

Fig. 4. Implementation example of F
(2)
L (H,M), where pad(H) = (H̄ [0], . . . , H̄ [h− 1])

and pad(M) = (M̄ [0], . . . , M̄ [m−1]). zH and zM are n-bit variables, and c0, c1 ∈ {1, 2}.

pad(M) = (M̄ [0], . . . , M̄ [m− 1]). Also, let c0 = 1 if H 
∈ ({0, 1}n)+ and c0 = 2
otherwise, and c1 = 1 if M 
∈ ({0, 1}n)+ and c1 = 2 otherwise. Then F

(2)
L (H, M)

can be written as

L ·
(
fL(H̄ [0], . . . , H̄ [h− 1])

)2 · 〈c0〉n ⊕ L2 ·
(
fL(M̄ [0], . . . , M̄ [m− 1])

)2 · 〈c1〉n
= L ·

(
Lh ⊕ Lh−1 · H̄[0]⊕ Lh−2 · H̄ [1]⊕ · · · ⊕ H̄ [h− 1]

)2 · 〈c0〉n
⊕
(
Lm+1 ⊕ Lm · M̄ [0]⊕ Lm−1 · M̄ [1]⊕ · · · ⊕ L · M̄ [m− 1]

)2 · 〈c1〉n.

Recall that the multiplication by 〈2〉n can be implemented using a left shift and
a conditional XOR, which is a small overhead compared to the multiplication
by L.

Lastly, we make a remark about handling a message with no header. For such
a message, simply ignore the computation of zH and define the value (L · zM )2 ·
〈c1〉n as the output of the hash function F

(2)
L (·, M). Note that this should be

differentiated from the case H = ε (the null string), where pad(H) = 10n−1.

4 Security Analysis of HBS

HBS is a mode of operation for deterministic authenticated encryption. Before
presenting our security results, we define the security of the mode. Our security
definition follows the one given by Rogaway and Shrimpton in [16].

4.1 Security Definition

Let E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher. For notational simplicity, we
write EK(·, ·) for HBS.EncK(·, ·), and DK(·, ·) for HBS.DecK(·, ·). Let HBS[E] =
(HBS.EncK , HBS.DecK) = (EK ,DK) be defined as in Sect. 3.3.

An adversary A is given access to either a pair of EK(·, ·) andDK(·, ·) oracles or
a pair of R(·, ·) and ⊥(·, ·) oracles. On query (H, M) ∈ ({0, 1}∗)2, EK(·, ·) returns
(C, T ) ← EK(H, M), and the random-bits oracle R(·, ·) returns a random string
of n + |M | bits. On query (H, (T, C)) ∈ {0, 1}∗ × ({0, 1}n × {0, 1}∗), DK(·, ·)
returns ⊥ or M ← DK(H, (T, C)), and the ⊥(·, ·) oracle returns ⊥ on every
input. Queries can be made adaptively, and A’s goal is to distinguish between
these pairs.
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Definition 2. The DAE-advantage Advdae
HBS[E](A) of an adversary A in break-

ing HBS[E] = (EK ,DK) is defined as

Advdae
HBS[E](A) =

∣∣∣Pr(AEK(·,·),DK(·,·) = 1)− Pr(AR(·,·),⊥(·,·) = 1)
∣∣∣ .

In what follows, the first oracle refers to EK(·, ·) or R(·, ·), and the second oracle
refers to DK(·, ·) or ⊥(·, ·). We make the following assumptions about A.

– A does not make a query (H, M) to its first oracle if the second oracle has
returned M in response to some previous query (H, (T, C)).

– A does not make a query (H, (T, C)) to its second oracle if the first oracle
has returned (T, C) in response to some previous query (H, M).

– A does not repeat a query.

The last assumption is without loss of generality, and the first two assumptions
are to prevent trivial wins.

We also consider the security of HBS in terms of privacy. An adversary B is
given access to either EK(·, ·) or R(·, ·), and B’s goal is to distinguish between
these oracles.

Definition 3. The PRIV-advantage Advpriv
HBS[E](B) of an adversary B in break-

ing the privacy of HBS[E] = (EK ,DK) is defined as

Advpriv
HBS[E](B) =

∣∣∣Pr(BEK(·,·) = 1)− Pr(BR(·,·) = 1)
∣∣∣ .

We deal with HBS[Perm(n)] = (EP ,DP ), where a random permutation P
R←

Perm(n) is used as the underlying blockcipher. That is, HBS[Perm(n)] is defined
by replacing EK and E−1

K in Fig. 1 by P and P−1, respectively.

4.2 Security Theorem

Consider the DAE-advantage of an adversary A attacking HBS[Perm(n)]. We
assume A makes a total of at most q queries. For 0 ≤ i ≤ q−1, A makes a query
of the form (Hi, Mi) to the first oracle, or (Hi, (Ti, Ci)) to the second oracle.
We assume that �|Hi|/n� ≤ hmax, �|Mi|/n� ≤ mmax, and �|Ci|/n� ≤ mmax for
some hmax, mmax ≥ 1. That is, hmax is the maximum length of Hi, and mmax is
the maximum length of Mi and Ci in blocks. The following theorem is our main
result on the security of our HBS mode. It shows that HBS provides standard
birthday-bound security.

Theorem 2. Let A be an adversary described as above. Then

Advdae
HBS[Perm(n)](A) ≤ 19q2(1 + hmax + 2mmax)2

2n
.

Given Theorem 2, it is standard to pass to its complexity-theoretic bound, by
replacing P

R← Perm(n) with EK (and hence P−1 with E−1
K ).
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Lemma 1. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher, and A be an
adversary attacking HBS[E]. Then there exists A′ attacking E such that

Advdae
HBS[E](A) ≤ Advsprp

E (A′) +
19q2(1 + hmax + 2mmax)2

2n
,

where A′ makes at most 1 + q(1 + mmax) queries, and time(A′) = time(A) +
O(nq(hmax + mmax)).

The proof of Lemma 1 is standard and omitted (For example, see [1]). Now we
turn to Theorem 2. The proof is based on the following lemma.

Lemma 2. Let A be an adversary as in Theorem 2. Then there exists an ad-
versary B such that

Advdae
HBS[Perm(n)](A) ≤ 2Advpriv

HBS[Perm(n)](B) +
11q2(1 + hmax + 2mmax)2

2n
+

q

2n
,

where B makes at most q queries, and it is subject to the same restriction as A
on the length of its queries.

We give a proof sketch of Lemma 2, leaving a complete proof in Appendix B.
We see that Advdae

HBS[Perm(n)](A) is at most p0 + p1, where we define p0 and p1
as {

p0 =
∣∣Pr
(
AEP (·,·),⊥(·,·) = 1

)
− Pr

(
AR(·,·),⊥(·,·) = 1

)∣∣ ,
p1 =

∣∣Pr
(
AEP (·,·),DP (·,·) = 1

)
− Pr

(
AEP (·,·),⊥(·,·) = 1

)∣∣ .
We can view A in p0 as attacking the privacy of HBS[Perm(n)], as the second
oracle always returns ⊥. So there exists B such that p0 ≤ Advpriv

HBS[Perm(n)](B).
To derive the upper bound on p1, we observe that the oracles are identical

unless the DP (·, ·) oracle returns something other than ⊥. We thus have

p1 ≤ Pr(AEP (·,·),DP (·,·) forges),

where AEP (·,·),DP (·,·) forges if A makes a query ((H, M), T ) to its second oracle
such that DP ((H, M), T )) 
= ⊥. To derive the upper bound on the forgery prob-
ability, we introduce an oracle VP (·, ·) that takes ((H, M), T ) as its input and
returns T if P (F (2)

L (H, M)) = T or returns ⊥ otherwise. We can show that

Pr(AEP (·,·),DP (·,·) forges) ≤ Pr(AEP (·,·),VP (·,·) forges)+
11q2(1 + hmax + 2mmax)2

2n

and Pr(AEP (·,·),VP (·,·) forges) ≤ Advpriv
HBS[Perm(n)](B) + q/2n. The proof for the

first claim is rather complicated but the second one follows from the standard
argument that distinguishing is easier than forging, and Lemma 2 follows.

Now to prove Theorem 2, it suffices to bound Advpriv
HBS[Perm(n)](B). Recall

that B is an adversary attacking the privacy of HBS[Perm(n)], where B makes
a query of the form (Hi, Mi) for 0 ≤ i ≤ q − 1. We assume that Hi is at most
hmax blocks, and Mi is at most mmax blocks. We have the following result.



HBS: A Single-Key Mode of Operation 403

Lemma 3. Let B be an adversary as described above. Then

Advpriv
HBS[Perm(n)](B) ≤ 3q2(1 + hmax + 2mmax)2

2n
+

(1 + q + qmmax)2

2n+1 .

Let us explain the intuitive reasoning behind the bound, leaving a complete proof
in Appendix C. Suppose B makes q queries (H0, M0), . . . , (Hq−1, Mq−1), where
Mi is mi blocks. Let Si = F

(2)
L (Hi, Mi), which corresponds to the initial counter

value, and we consider the set Si = {Si, Si ⊕ 〈1〉n, Si ⊕ 〈2〉n, . . . , Si ⊕ 〈mi〉n}.
Each element in Si is the input value to P at the i-th query. Notice that we
never have a collision within Si, but we may have 0n ∈ Si, or Si ∩ Sj 
= ∅. Both
events may be useful for B to mount an distinguishing attack. Now for the first
event, we know that F

(2)
L (Hi, Mi) is a non-zero polynomial in L, and hence, for

0 ≤ s ≤ mi, the probability that F
(2)
L (Hi, Mi) = 〈s〉n is small. For the second

event to occur, we need

F
(2)
L (Hi, Mi)⊕ 〈s〉n = F

(2)
L (Hj , Mj)⊕ 〈t〉n,

where 0 ≤ s ≤ mi and 0 ≤ t ≤ mj . Theorem 1 ensures that the equality
holds with only a small probability. It turns out that during the attack, with
a high probability, we have 0n 
∈ Si for 0 ≤ i ≤ q − 1, and Si ∩ Sj = ∅ for
0 ≤ i < j ≤ q − 1. Under this assumption, what B learns is the output values
of P for distinct input values, and hence B cannot distinguish it from a truly
random string.

Given Lemma 2 and Lemma 3, we find the proof of Theorem 2 straightforward,
as we have

Advdae
HBS[Perm(n)](A) ≤ 2Advpriv

HBS[Perm(n)](B) +
11q2(1 + hmax + 2mmax)2

2n
+

q

2n

≤ 6q2(1 + hmax + 2mmax)2

2n
+

(1 + q + qmmax)2

2n

+
11q2(1 + hmax + 2mmax)2

2n
+

q

2n

≤ 19q2(1 + hmax + 2mmax)2

2n
,

where the first inequality follows from Lemma 2, the next one from Lemma 3,
and the last one from easy simplification.

5 Rationale of fL and F
(�)
L and Comparison with SIV

Rationale of fL and F
(�)
L . We adopt fL(X [0], . . . , X [m− 1]) = Lm ⊕ Lm−1 ·

X [0]⊕Lm−2 ·X [1]⊕ · · ·⊕X [m− 1] as the polynomial hash in HBS, rather than
the usual gL(X [0], . . . , X [m − 1]) = Lm−1 · X [0] ⊕ Lm−2 · X [1] ⊕ · · · ⊕ X [m −
1] as in [18,9]. The choice of fL enables us to handle variable-length inputs
without increasing the number of multiplications. We note that the degree of
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our polynomial fL is higher than that of gL. However, the difference is only one,
and the decrease in the security bound due to the increase in the degree should
be negligible in practice.

F
(�)
L is designed to handle an �-dimensional vector efficiently. For an input

(x0, . . . , x�−1) ∈ ({0, 1}∗)�, we need just �|x0|/n� + · · · + �|x0|/n� + � multipli-
cations. We may need additional � shifts and XOR’s depending on the length of
each component, but the cost for these operations is fairly low. Moreover, F

(2)
L

allows us to reuse zH or zM in Fig. 4 if H or M stays fixed, and the same is true
for F

(�)
L with � ≥ 3.

In contrast, the polynomial hash in GCM was designed to accept only two-
dimensional vectors (H, M), and the lengths of H and M were encoded into a
block as 〈|H |〉n/2‖〈|M |〉n/2. One could handle, say, three-dimensional vectors by
encoding the lengths into a block, but such an approach would severely limit the
maximum length of each component, which is solved in our hash function F

(�)
L .

A drawback of F
(�)
L , as compared to the vectorized CMAC [16], is that the

(maximum) dimension � needs to be fixed in advance. In order to lift this re-
striction, we can start with the hash function F

(2)
L for two-dimensional vectors

and then “increase” the dimension by utilizing the values
√

L, 4
√

L, 8
√

L, . . .,
upon receiving 3-, 4-, 5-, . . ., dimensional vectors. Although we can efficiently
compute the square root

√
L of an element L ∈ GF (2n), we admit that this

solution results in rather complicated algorithms.
As with the polynomial hash in GCM [9], L = 0n is a weak key for F

(�)
L [4].

We may let L ← msb(n−1, EK(0n))‖1 to avoid the problem at the cost of slight
decrease in the security bound. But since L = 0n only occurs with a probability
1/2n, we do not adopt this approach. The birthday attack on GCM described
in [4] can be made also on our HBS mode. Therefore, as with GCM, one needs
to update the secret key well before processing 2n/2 blocks.

Comparison with SIV. HBS basically follows the design of SIV [16], but
there are important differences. HBS works with a single key, and SIV [16] uses
two separate keys, one for encryption and the other for MAC. SIV works as
follows. First, let IV ← CMAC∗

K1
(H, M) and C ← CTR.EncK2(IV , M). Then

the output is (IV , C), where CMAC∗ is constructed from CMAC [5,11] to handle
a vector input (H, M).

In Table 1, we make a brief comparison between SIV and HBS. HBS re-
duces the keying material and replaces �|M |/n�+ �|H |/n� blockcipher calls by
�|M |/n�+�|H |/n�+2 multiplications at the cost of a stronger assumption about
the blockcipher. The SPRP assumption is needed as we “steal” the result of hash
computation (hash block) and use it as the initial counter value. However, we
argue that this does not seem to make a substantial difference in practice, be-
cause many of the modern blockciphers, such as AES, seem to satisfy the strong
property of SPRP. Rather, we admit that it may be disadvantageous of HBS to
require the inverse cipher. This is especially true for blockciphers of asymmetric
encryption/decryption design, such as AES.



HBS: A Single-Key Mode of Operation 405

Table 1. Comparison between SIV and HBS

SIV HBS
Keying material two blockcipher keys single blockcipher key
Number of blockcipher calls 2�|M |/n� + �|H |/n� + 2 �|M |/n� + 2
Number of multiplications 0 �|M |/n� + �|H |/n� + 2
Assumption about blockcipher PRP SPRP
Security bound O(σ2/2n) O(q2(hmax + mmax)2/2n)

We note that, out of 2�|M |/n�+�|H |/n�+2 blockcipher calls in SIV, two calls
can be done during idle time (without H or M). Similarly, out of �|M |/n�+ 2
blockcipher calls in HBS, one blockcipher call (for L = EK(0n)) does not need H
or M . We also note that there is a subtle difference in the security bounds. In SIV,
the bound is O(σ2/2n), while in HBS, the bound is O(q2(hmax + mmax)2/2n),
where σ is the total block length of H and M . It remains open if our analysis of
HBS can be improved to give an O(σ2/2n) security bound.

6 Further Discussion: Beyond the Birthday Bound

HBS delivers fine performance and provides security up to the birthday bound. It
might be beneficial to come up with a DAE construction whose security is beyond
the birthday bound. Such a construction would most likely be less efficient than
HBS but might be desirable for some cases, as explained below.

Recall that DAE demands that the message space be of high entropy. An
important example is the key wrap [10], since a key space obviously has high
entropy. Although a key length is usually very short and a query complexity
exceeding the birthday bound is hard to imagine in such a scenario, the highest
security possible is desired for key-wrap applications. Therefore, highly secure
constructions stand as suitable candidates for such systems, even if their perfor-
mance is relatively modest.

We could give a beyond-the-birthday-bound construction as follows. First con-
struct a 2n-to-2n-bit blockcipher E′ : {0, 1}2n → {0, 1}2n, which has a certain
key space, from a blockcipher EK : {0, 1}n → {0, 1}n with K ∈ {0, 1}k via the
sum construction [7] and the Feistel network of six rounds [12]. Then construct
the HBS mode with the block size of 2n bits, using E′ as its underlying block-
cipher. This construction ensures security beyond the 2n/2 bound but has the
following three problems.

1. It is inefficient and impractical. One call to E′ requires twelve calls to E.
2. It requires more than one key. The key space of E′ is large.
3. It produces a long ciphertext. The tag size is 2n-bit rather than n-bit.

The last point might be contrasted with the double-pipe hash [8], which has 2n-
bit intermediate values but outputs n-bit hash values. It remains open to provide
a beyond-the-birthday-bound construction which resolves these problems.
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A Proof of Theorem 1

We have 2n possible values of L ∈ {0, 1}n. We show that

#{L | F (�)
L (X )⊕ F

(�)
L (X̂ ) = Y } ≤ max{μ(X ), μ(X̂ )}.

It suffices to show that F
(�)
L (X ) ⊕ F

(�)
L (X̂ ) = Y is a non-trivial equation in

L of degree at most max{μ(X ), μ(X̂ )}. Let xi = (xi[0], . . . , xi[mi − 1]), Xi =
pad(xi) = (Xi[0], . . . , Xi[mi−1]), zi = fL(Xi). Also, let ci = 1 if xi 
∈ ({0, 1}n)+,
and ci = 2 if xi ∈ ({0, 1}n)+. We use x̂i, X̂i, ẑi and ĉi in the same way.

Observe that, from (1), F
(�)
L (X )⊕ F

(�)
L (X̂ ) can be written as

F
(�)
L (X ) ⊕ F

(�)
L (X̂ ) =

⊕
0≤i≤�−1

Li+1 · (z�
i · 〈ci〉n ⊕ ẑ�

i · 〈ĉi〉n). (2)

We show (2) is a non-zero, non-constant polynomial in the following three cases.

Case 1: |Xi| 
= |X̂i| for some 0 ≤ i ≤ �− 1,
Case 2: |Xi| = |X̂i| for all 0 ≤ i ≤ �−1, but Xi[j] 
= X̂i[j] for some 0 ≤ i ≤ �−1

and 0 ≤ j ≤ mi − 1, and
Case 3: |Xi| = |X̂i| for all 0 ≤ i ≤ �− 1, and Xi[j] = X̂i[j] for all 0 ≤ i ≤ �− 1

and 0 ≤ j ≤ mi − 1.

For the first case, if mi > m̂i, then (z�
i · 〈ci〉n ⊕ ẑ�

i · 〈ĉi〉n) is a polynomial in
L of degree �mi. To see this, we note that the polynomial is equivalent to(

Lmi ⊕ Lmi−1 ·Xi[0]⊕ Lmi−2 ·Xi[1]⊕ · · · ⊕Xi[mi − 1]
)� · 〈ci〉n

⊕
(
Lm̂i ⊕ Lm̂i−1 · X̂i[0]⊕ Lm̂i−2 · X̂i[1]⊕ · · · ⊕ X̂i[m̂i − 1]

)� · 〈ĉi〉n
(3)

and therefore the coefficient of L�mi is 〈ci〉n 
= 0n. This implies F
(�)
L (X ) ⊕

F
(�)
L (X̂ ) = Y is a non-trivial equation of degree at most max{μ(X ), μ(X̂ )}.

Similarly, if mi < m̂i, then (z�
i · 〈ci〉n ⊕ ẑ�

i · 〈ĉi〉n) is a polynomial in L of degree
�m̂i, and therefore F

(�)
L (X )⊕ F

(�)
L (X̂ ) = Y is a non-trivial equation.

For the second case, consider i and j such that 0 ≤ i ≤ �− 1, 0 ≤ j ≤ mi − 1,
and Xi[j] 
= X̂i[j]. Now (z�

i · 〈ci〉n⊕ ẑ�
i · 〈ĉi〉n) can be written as (3), and since we

have mi = m̂i, a simplification shows that the coefficient of L�mi is 〈ci〉n⊕〈ĉi〉n,
and the coefficient of L�(mi−j−1) is (Xi[j])� ·〈ci〉n⊕(X̂i[j])� ·〈ĉi〉n. If 〈ci〉n 
= 〈ĉi〉n,
then the coefficient of L�mi is non-zero. Otherwise the coefficient of L�(mi−j−1)

is non-zero since

(Xi[j])� · 〈ci〉n ⊕ (X̂i[j])� · 〈ĉi〉n = (Xi[j]⊕ X̂i[j])� · 〈ci〉n,

and the right hand side is zero if and only if Xi[j] = X̂i[j].
Finally, we consider the third case. In this case, we claim that we must have

xi ∈ ({0, 1}n)+ and x̂i 
∈ ({0, 1}n)+ (or xi 
∈ ({0, 1}n)+ and x̂i 
∈ ({0, 1}n)+) for
some 0 ≤ i ≤ �−1. Indeed, if xi, x̂i ∈ ({0, 1}n)+ holds for all 0 ≤ i ≤ �−1, then we
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have xi = x̂i for all 0 ≤ i ≤ �−1, since Xi = pad(xi) = xi and X̂i = pad(x̂i) = x̂i.
This contradicts the condition X 
= X̂ . Similarly, if xi, x̂i 
∈ ({0, 1}n)+ holds for
all 0 ≤ i ≤ � − 1, then again it contradicts the fact X 
= X̂ . Now without
loss of generality, we may assume that xi ∈ ({0, 1}n)+ and x̂i 
∈ ({0, 1}n)+ for
some 0 ≤ i ≤ � − 1, which implies 〈ci〉n 
= 〈ĉi〉n. Then (z�

i · 〈ci〉n ⊕ ẑ�
i · 〈ĉi〉n)

can be written as (3), and since we have mi = m̂i, the coefficient of L�mi is
〈ci〉n ⊕ 〈ĉi〉n 
= 0n. ��

B Proof of Lemma 2

Let p0 and p1 be as defined in Sect. 4.2. We have already shown that p0 ≤
Advpriv

HBS[Perm(n)](B) and p1 ≤ Pr(AEP (·,·),DP (·,·) forges). In the rest of this section
we evaluate the last probability.

We introduce two oraclesOP (·, ·) and VP (·, ·). TheOP (·, ·) oracle takes(T, s) ∈
{0, 1}n × N (s < 2n) as its input and returns P (P−1(T ) ⊕ 〈s〉n). The VP (·, ·)
oracle takes ((H, M), T ) as its input and returns T if P

(
F

(2)
L (H, M)

)
= T or

returns ⊥ otherwise. We observe that the DP (·, ·) oracle can be perfectly simu-
lated by using these two oracles OP (·, ·) and VP (·, ·). Therefore, there exists an
adversary A1 such that

Pr
(
AEP (·,·),DP (·,·) forges

)
≤ Pr

(
A

EP (·,·),OP (·,·),VP (·,·)
1 forges

)
.

We use the following system of notation. Consider all queries to the EP (·, ·) oracle.
Also consider those queries to the VP (·, ·) oracle which make the oracle return T
(i.e., forgery). Enumerate these queries, in the order of being made, as (H1, M1),
(H2, M2), . . . and set Si = F

(2)
L (Hi, Mi). Define sets Si = {Si, Si ⊕ 〈1〉n, Si ⊕

〈2〉n, . . . , Si ⊕ 〈mi〉n}. Define vectors Yi as follows. In the case of EP (·, ·)-query,
define Yi =

(
P (Si), P (Si⊕〈1〉n), . . . , P (Si⊕〈mi〉n)

)
so that Yi[j] = P (Si⊕〈j〉n).

In the case of VP (·, ·)-query, define Yi =
(
P (Si)

)
(A 1-dimensional vector). With

abuse of notation we identify Yi with the set {Yi[0], . . . , Yi[mi]}.
Consider all queries to the OP (·, ·) oracle. Let (T1, s1), (T2, s2), . . . be these

queries and Y1, Y2, . . . the values returned by the oracle so that we have Yi =
OP (Ti, si). We classify the queries to the OP (·, ·) oracle into three categories:
root queries, chain queries, and extension queries.

Root. We say that (Ti, si) is a root query if Ti 
= Tj, Ti 
= Yj for all j < i and
Ti 
∈ Yk for each previous k-th query to the EP (·, ·) / VP (·, ·) oracle.

Chain. We say that (Ti, si) is a chain query if there exists a j < i such that
the j-th query (Tj, sj) was a root query and either Ti = Tj or Ti = Yj .
Recursively, we call (Ti, si) a chain query also if there exists a j < i such
that the j-th query (Tj , sj) was a chain query and Ti = Yj .

Extension. We say that (Ti, si) is an extension query if there exists some previ-
ous k-th query to the EP (·, ·) / VP (·, ·) oracle such that Ti ∈ Yk. Recursively,
we call (Ti, si) an extension query also if there exists a j < i such that the
j-the query (Tj , sj) was an extension query and Ti = Yj .
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Note that some of the chain/extension queries to the OP (·, ·) oracle, even
if the query itself is new, may be trivial in the sense that the adversary A1
already knows the to-be-returned value. For example, if P (T ⊕ 〈s1〉n) = Y1 and
P (T ⊕ 〈s2〉n) = Y2, then we know that Y2 = OP (Y1, 〈s1〉n ⊕ 〈s2〉n) (The second
argument is treated as an integer). Whenever possible, we implicitly exclude
these trivial queries from our consideration.

Now we are ready to introduce a modified oracle OP,P̃ (·, ·) for A1, where

P̃
R← Perm(n) is a random permutation independent of P . The oracle is defined

in the style of lazy sampling for P̃ . The oracle keeps a record of domain points
S̃1, S̃2, . . . and that of range points Ỹ1, Ỹ2, . . . in a linked way. For this, the oracle
needs to observe the vectors Yi output by the EP (·, ·) / VP (·, ·) oracle. Let (T, s)
be the current query made to the OP,P̃ (·, ·) oracle.

1. If (T, s) is a trivial query, then the oracle simply returns the expected value.
2. If (T, s) is a root query, the oracle adds the point T to the set of range points
{Ỹ1, Ỹ2, . . .}. Then the oracle picks S̃

R← {0, 1}n \
(
{0n} ∪

⋃
i{S̃i}

)
, where

i runs over already-defined domain points. The oracle updates the record
{S̃1, S̃2, . . .} by adding the new domain point S̃ (The oracle establishes a
link P̃ (S̃) = T ). If s = 0, then the oracle returns T . If s ≥ 1, then the oracle
checks if S̃ ⊕ 〈s〉n ∈ {Ỹ1, Ỹ2, . . .}. If so, then the oracle returns P̃ (S̃ ⊕ 〈s〉n).
If not, then the oracle adds the point S̃ ⊕ 〈s〉n to the set of domain points,
picks Ỹ

R← {0, 1}n \
(⋃

i Yi ∪
⋃

j{Ỹj}
)
, adds Ỹ to the set of range points and

returns Ỹ .
3. If (T, s) is a chain query, then it means that S̃ = P̃−1(T ) is in the set
{S̃1, S̃2, . . .} but S̃ ⊕ 〈s〉n is not. So the oracle adds the point to the set
{S̃1, S̃2, . . .}, picks Ỹ

R← {0, 1}n \
(⋃

i Yi ∪
⋃

j{Ỹj}
)

and adds Ỹ to the set of
range points. This establishes a link P̃ (S̃ ⊕ 〈s〉n) = Ỹ , and the value Ỹ is
returned.

4. Finally, if (T, s) is an extension query, then it means that the oracle has
located a vector Yi and an integer t such that T = OP,P̃ (Yi[0], t). The task
is to return a value corresponding to OP,P̃ (Yi[0], 〈t〉n ⊕ 〈s〉n). For this, the

oracle picks Ỹ
R← {0, 1}n \

(⋃
i Yi ∪

⋃
j{Ỹj}

)
, adds Ỹ to the set of range

points and returns Ỹ . Note that no domain point is selected; no domain
point is linked to the range point Ỹ . However, the range point Ỹ is linked
to the vector Yi through the “distance” 〈t〉n ⊕ 〈s〉n.

We want to evaluate the quantity

p2 =
∣∣∣Pr
(
A

EP (·,·),OP (·,·),VP (·,·)
1 forges

)
− Pr

(
A

EP (·,·),OP,P̃ (·,·),VP (·,·)
1 forges

)∣∣∣. (4)

It turns out that the evaluation of p2 requires a fair amount of work. So we defer
the treatment of p2 until we finish evaluating the second forgery probability
in (4). Observe that there exists an adversary A2 such that

Pr
(
A

EP (·,·),OP,P̃ (·,·),VP (·,·)
1 forges

)
≤ Pr

(
A

EP (·,·),VP (·,·)
2 forges

)
,
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because the adversary A2 can perfectly simulate the OP,P̃ (·, ·) oracle by observ-
ing the vectors Yi and performing lazy sampling for P̃ .

We apply the standard argument that distinguishing is easier than forging.
Namely, there exists an adversary B such that

Pr(AEP (·,·),VP (·,·)
2 forges) ≤ Advpriv

HBS[Perm(n)](B) +
q

2n
.

The adversary B simulates the two oracles for A2 by using its own oracle and
outputs 1 as soon as A2 forges. If B’s oracle is EP (·, ·), the simulation is perfect
and hence Pr

(
BEP (·,·) = 1

)
= Pr

(
A

EP (·,·),VP (·,·)
2 forges

)
. If B’s oracle is R(·, ·),

then each time A2 makes a query to the second oracle, the probability of forgery
is 1/2n (prior to the execution of the game) and so Pr

(
BR(·,·) = 1

)
≤ q/2n.

Now we come back to the evaluation of p2. Consider those queries to the
VP (·, ·) oracle for which the oracle returns ⊥. Enumerate these queries, in the
order of being made, as ((H1, M1), T1), ((H2, M2), T2), . . .. Set Ui = F

(2)
L (Hi, Mi)

and Zi = P (Ui).
For S ∈ {0, 1}n, define N (S) =

⋃
s1,...,sq

{S ⊕ 〈s1〉n ⊕ · · · ⊕ 〈sq〉n}, where
each si runs over 0 ≤ si ≤ mmax. This set is not so large, as we have N (S) ⊂
{S, S⊕〈1〉n, . . . , S⊕〈2mmax〉n}. Put S∗

i = N (Si), S̃∗
i = N (S̃i) and U∗

i = N (Ui).
We consider the following bad events in the latter game in (4). (i) S∗

i $ 0n or
U∗

i $ 0n for some i. (ii) S∗
i ∩ S∗

j 
= ∅, U∗
i ∩ U∗

j 
= ∅ or S∗
i ∩ U∗

j 
= ∅ for some i and
j such that (Hi, Mi) 
= (Hj , Mj). (iii) S∗

i ∩ S̃∗
j 
= ∅ or U∗

i ∩ S̃∗
j 
= ∅ for some i and

j. (iv) S̃∗
i $ 0n for some i. (v) Yi $ Ỹj for some i and j. (vi) Zi = Ỹj for some i

and j. (vii) L = Ỹi for some i.
We argue that the two games in (4) (referred to as the first and the second

games) proceed exactly the same as long as none of (i)–(vii) bad events occurs.
This means that we have

p2 ≤ Pr
(
A

EP (·,·),OP,P̃ (·,·),VP (·,·)
1 causes one of (i)–(vii)

)
.

To see this, it is helpful to consider the permutation P as lazily sampled. We
check this one by one.

1. Consider a query (say the i-th query) either to the EP (·, ·) oracle or to the
VP (·, ·) oracle (returning 1). Thanks to (i), (ii) and (iii), it is guaranteed that
the set Si consists of entirely fresh domain points for P (unless a query with
(Hi, Mi) has been made to the VP (·, ·) oracle returning ⊥). This results in
lazy sampling of points for Yi. In the first game, these points are sampled
from {0, 1}n \

(
{L}∪

⋃
j Yj ∪

⋃
j{Ỹj}∪

⋃
j{Zj}

)
, where j runs over already-

defined points. In the second game, the points are sampled from {0, 1}n \(
{L}∪

⋃
j Yj ∪

⋃
j{Zj}

)
. The two distributions remain the same due to (v).

2. Consider a root query (T, s) to the OP (·, ·) or OP,P̃ (·, ·) oracle. Note that
(vii) eliminates the possibility T = L. In the first game, a domain point S is
sampled for P−1(T ) from {0, 1}n \

(
{0n}∪

⋃
i Si ∪

⋃
i{S̃i} ∪

⋃
i{Ui}

)
. In the

second game, a domain point S is sampled (for P̃−1(T )) from {0, 1}n\
(
{0n}∪
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i{S̃i}

)
. These are the same distribution due to (iii). In both the games,

the shifted domain point S ⊕ 〈s〉n is not fresh under the same condition
that there exists some i such that S ⊕ 〈s〉n = S̃i. This is due to (iii) and
(iv). If it is fresh, then in the first game a range point Ỹ is sampled from
{0, 1}n \

(
{L} ∪

⋃
i Yi ∪

⋃
i{Ỹi} ∪

⋃
i{Zi}

)
, whereas in the second game a

range point Ỹ is sampled from {0, 1}n\
(⋃

i Yi∪
⋃

i{Ỹi}
)
. These are the same

owing to (vi) and (vii).
3. Consider a chain query to the OP (·, ·) or OP,P̃ (·, ·) oracle. Thanks to (i), (ii)

and (iii), the query results in a fresh domain point P−1(T )⊕〈s〉n in the first
game and P̃−1(T )⊕〈s〉n in the second. In the first game, the corresponding
range point is sampled from {0, 1}n \

(
{L} ∪

⋃
i Yi ∪

⋃
i{Ỹi} ∪

⋃
i{Zi}

)
. In

the second game, the range point is sampled from {0, 1}n\
(⋃

i Yi∪
⋃

i{Ỹi}
)
.

These two yield the same distribution because of (vi) and (vii).
4. Consider an extension query (T, s) to the OP (·, ·) orOP,P̃ (·, ·) oracle. Thanks

to (i), (ii) and (iii), the query results in a fresh domain point P−1(T )⊕〈s〉n.
In the first game, the corresponding range point is sampled from {0, 1}n \(
{L} ∪

⋃
i Yi ∪

⋃
i{Ỹi} ∪

⋃
i{Zi}

)
. In the second game, the range point is

sampled from {0, 1}n \
(⋃

i Yi∪
⋃

i{Ỹi}
)
. These two sampling processes yield

the same distribution due to (vi) and (vii).
5. Consider a query (say the i-th query) to the VP (·, ·) oracle returning ⊥. If a

query with (Hi, Mi) has been made to one of the oracles, then no sampling
is performed. Otherwise, owing to (i), (ii) and (iii), the point Ui is a fresh
domain point. This results in lazy sampling of Zi. In the first game, Zi is
sampled from {0, 1}n\

(
{L}∪

⋃
j Yj∪

⋃
j{Ỹj}∪

⋃
j{Zj}

)
. In the second game,

it is sampled from {0, 1}n \
(
{L}∪

⋃
j Yj ∪

⋃
j{Zj}

)
. These two distributions

remain the same because of (vi).

Now we replace P with a random function R
R← Func(n) (The set of all functions

on {0, 1}n). This is possible because the inverse cipher P−1 never appears in the
definitions of the three oracles. By the PRP/PRF switching lemma [2], we get∣∣∣Pr

(
A

EP (·,·),OP,P̃ (·,·),VP (·,·)
1 causes one of (i)–(vii)

)
− Pr

(
A

ER(·,·),OR,P̃ (·,·),VR(·,·)
1 causes one of (i)–(vii)

)∣∣∣ ≤ (1 + q + qmmax)2

2n+1 .

We introduce a modified oracle E•
R(·, ·). This oracle behaves just like the ER(·, ·)

oracle, computing the values for Si using L = R(0n), except that at the end of
query process, even if a bad event has occurred, the oracle returns a random
string, which defines the value of Yi (unless a query with (Hi, Mi) has been
made to one of the oracles, in which case those already-defined values are used).
The V•

R(·, ·) oracle is defined similarly. That is, unless a query with (Hi, Mi) has
been already made, the oracle computes the value Si / Ui using L = R(0n) and,
regardless of a bad event, picks a random point in {0, 1}n. If this point happens
to be the same as T , then the oracle returns T . Otherwise, the random point
is set to Zi, and the oracle returns ⊥. The modified oracles are identical to the
original ones until a bad event occurs, so we have
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Pr
(
A

ER(·,·),OR,P̃ (·,·),VR(·,·)
1 causes one of (i)–(vii)

)
= Pr

(
A

E•
R(·,·),OR,P̃ (·,·),V•

R(·,·)
1 causes one of (i)–(vii)

)
.

Now observe that the values returned by the three oracles are independent of
the value L = R(0n). So we are ready to evaluate the probabilities of (i)–(vii).
Without loss of generality we assume that the bad events are disjoint. This can
be done by defining a bad event to occur prior to any other bad event. So, for
example, when we say “the event (i) occurs,” we implicitly mean that no other
bad event has occurred.

An event of type (i) occurs upon a query (Hi, Mi), made to the E•
R(·, ·) oracle

or to V•
R(·, ·), which satisfies an equation F

(2)
L (Hi, Mi) = 〈s〉n for some 0 ≤ s ≤

2mmax. Here, we have 1 ≤ i ≤ q, and the degree of the equation is at most
2(1 + hmax + mmax). Therefore, we have

Pr
(
A

E•
R(·,·),OR,P̃ (·,·),V•

R(·,·)
1 causes (i)

)
≤ 2q(1 + 2mmax)(1 + hmax + mmax)

2n
.

Event (ii) corresponds to queries (Hi, Mi) and (Hj , Mj) (1 ≤ i < j ≤ q), made
to the E•

R(·, ·) oracle or to V•
R(·, ·), which satisfy an equation F

(2)
L (Hi, Mi) ⊕

F
(2)
L (Hj , Mj) = 〈s〉n with 0 ≤ s ≤ 2mmax. We have

Pr
(
A

E•
R(·,·),OR,P̃ (·,·),V•

R(·,·)
1 causes (ii)

)
≤ q2(1 + 2mmax)(1 + hmax + mmax)

2n
.

Event (iii) corresponds to a query (Hi, Mi) and a root query (Tj , sj) (either
one may be made before the other) such that F

(2)
L (Hi, Mi) = S̃j ⊕ 〈s〉n with

0 ≤ s ≤ 2mmax. Note that A1 makes at most q-many root queries (rather than
q(1 + mmax)-many). So we have

Pr
(
A

E•
R(·,·),OR,P̃ (·,·),V•

R(·,·)
1 causes (iii)

)
≤ 2q2(1 + 2mmax)(1 + hmax + mmax)

2n
.

An event of type (iv) occurs upon a root query (Ti, si) satisfying S̃j = 〈s〉n for
some 0 ≤ s ≤ 2mmax. The sampling is performed from the space {0, 1}n \ {0n}
for at most q-many distinct points, so we have

Pr
(
A

E•
R(·,·),OR,P̃ (·,·),V•

R(·,·)
1 causes (iv)

)
≤ 1 + 2mmax − 1 + 1

2n
=

1 + 2mmax

2n
.

An event of type (v) occurs upon a new query (Hi, Mi) to the E•
R(·, ·) oracle

or to the V•
R(·, ·) oracle returning T . Such an query causes random sampling

of the vector Yi. The values Ỹ1, Ỹ2, . . . consist of root points selected by A1
plus additional “semi-random” points. The number of random sampling for the
vectors Yi is at most q(1 + mmax), and the size of {Ỹ1, Ỹ2, . . .} is at most q(1 +
mmax). So we obtain

Pr
(
A

E•
P (·,·),OP,P̃ (·,·),V•

P (·,·)
1 causes (v)

)
≤ q2(1 + mmax)2

2n
.
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For event (vi), there are three cases. The first case is upon the sampling of Zi.
This case can be treated similarly to event (v), and the probability is at most
q ·q(1+mmax)/2n = q2(1+mmax)/2n. The second case is upon a root query (T, s)
such that T = Zi for some i. The values Z1, Z2, . . . are simply random points,
the number of which is at most q. There are at most q-many root queries, so
the probability is at most q2/2n. The third case is upon the sampling of a range
point Ỹj . Note that such a sampling is performed for at most q(1+mmax) times.
So the probability is at most q2(1+mmax)/2n. Overall, the probability for event
(vi) is at most

q2(1 + mmax)
2n

+
q2

2n
+

q2(1 + mmax)
2n

≤ 2q2(1 + 2mmax)
2n

.

For event (vii), observe that the number of points Ỹ1, Ỹ2, . . . is at most q(1 +
mmax). So we simply have

Pr
(
A

E•
P (·,·),OP,P̃ (·,·),V•

P (·,·)
1 causes (vii)

)
≤ q(1 + mmax)

2n
.

Finally we sum up the terms. This yields

p2 ≤ (1 + 2 + 1 + 2 + 1 + 1 + 2 + 1)
q2(1 + hmax + 2mmax)2

2n

=
11q2(1 + hmax + 2mmax)2

2n
.

��

C Proof of Lemma 3

We consider the encryption algorithm ER(·, ·) of “HBS[Func(n)],” where Func(n)
is the set of all functions over {0, 1}n, and a random function R

R← Func(n) is
used as the underlying blockcipher (Obviously the decryption algorithm cannot
be defined). We see that

Advpriv
HBS[Perm(n)](B) ≤ Advpriv

“HBS[Func(n)]”(B) +
(1 + q + qmmax)2

2n+1 (5)

from the PRP/PRF switching lemma [2]. We then use the following lemma to
prove Lemma 3.

Lemma 4. Let h0, . . . , hq−1, m0, . . . , mq−1 be integers such that hi ≤ hmax
and mi ≤ mmax for 0 ≤ i ≤ q − 1. Also, let H0, . . . , Hq−1, M0, . . . , Mq−1,
T0, . . . , Tq−1, and C0, . . . , Cq−1 be bit strings that satisfy the following condi-
tions for 0 ≤ i ≤ q − 1. Hi ∈ ({0, 1}n)hi , Mi ∈ ({0, 1}n)mi , Ti ∈ {0, 1}n,
and Ci ∈ ({0, 1}n)mi . Furthermore, assume (Hi, Mi) 
= (Hj , Mj) holds for
0 ≤ i < j ≤ q − 1. Then we have

p3

p4
≥ 1− 3q2(1 + hmax + 2mmax)2

2n
, (6)
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where we define p3 and p4 as p3
def= Pr(ER(Hi, Mi) = (Ti, Ci) for 0 ≤ i ≤ q − 1)

and p4
def= Pr(R(Hi, Mi) = (Ti, Ci) for 0 ≤ i ≤ q − 1).

Proof. The proof is based on a counting argument. We count the number of
functions R ∈ Func(n) that satisfy ER(Hi, Mi) = (Ti, Ci) for 0 ≤ i ≤ q − 1.
We first count the number of L = R(0n) and then count the rest. Let Si =
F

(2)
L (Hi, Mi). Si corresponds to the initial counter value. Consider the set Si =
{Si, Si ⊕ 〈1〉n, Si ⊕ 〈2〉n, . . . , Si ⊕ 〈mi〉n}. Now we claim that the number of
L ∈ {0, 1}n such that

{0n} ∩ Si = ∅ for 0 ≤ i ≤ q − 1 and Si ∩ Sj = ∅ for 0 ≤ i < j ≤ q − 1 (7)

is at least 2n−2q(1+mmax)(1+hmax+mmax)−q2(1+2mmax)(1+hmax+mmax).
Fix 0 ≤ i ≤ q−1 and 0 ≤ s ≤ mi. Consider the equation F

(2)
L (Hi, Mi) = 〈s〉n.

As we have seen in Sect. 3.1, F
(2)
L (Hi, Mi) is a non-zero polynomial in L of degree

μ(Hi, Mi) = max{1 + 2hi, 2 + 2mi}. We therefore have #{L | F
(2)
L (Hi, Mi) =

〈s〉n} ≤ max{1 + 2hi, 2 + 2mi} ≤ 2(1 + hmax + mmax), which implies

#{L | {0n} ∩ Si 
= ∅ for some 0 ≤ i ≤ q − 1} ≤ 2q(1+ mmax)(1 + hmax + mmax).

Next, fix 0 ≤ i < j ≤ q − 1 and consider the equation F
(2)
L (Hi, Mi) ⊕ 〈s〉n =

F
(2)
L (Hj , Mj) ⊕ 〈t〉n, where 0 ≤ s ≤ mi and 0 ≤ t ≤ mj . Theorem 1 implies

that this equation has at most max{μ(Hi, Mi), μ(Hj , Mj)} = max{1 + 2hi, 2 +
2mi, 1 + 2hj, 2 + 2mj} solutions. Observe that the equation is equivalent to
F

(2)
L (Hi, Mi) ⊕ F

(2)
L (Hj , Mj) = 〈s〉n ⊕ 〈t〉n, and the right hand side takes at

most (1 + mi + mj) values (rather than (1 + mi)(1 + mj) values). We thus have

#{L | Si ∩ Sj 
= ∅} ≤ (1 + mi + mj)max{1 + 2hi, 2 + 2mi, 1 + 2hj, 2 + 2mj}
≤ 2(1 + 2mmax)(1 + hmax + mmax),

which implies #{L | Si ∩ Sj 
= ∅ for some 0 ≤ i < j ≤ q − 1} is at most

q2(1 + 2mmax)(1 + hmax + mmax).

Once we fix any L that satisfies (7), the inputs to R, {0n} ∪ S0 ∪ · · · ∪ Sq−1, are
all distinct. Therefore, the left hand side of (6) is at least

2n − 2q(1 + mmax)(1 + hmax + mmax)− q2(1 + 2mmax)(1 + hmax + mmax)
2n

,

which is at least 1− (3q2(1 + hmax + 2mmax)2)/2n. ��

Proof (of Lemma 3). Without loss of generality, we assume that B makes exactly
q oracle queries. Also, since B is computationally unbounded, we assume that B
is deterministic. Now we can regard B as a function fB : ({0, 1}n)q(1+mmax) →
{0, 1}. To see this, let Y ∈ ({0, 1}n)q(1+mmax) be an arbitrary bit string of
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q(1 + mmax) blocks. The first query, (H0, M0), is determined by B. If we re-
turn the first n + |M0| bits of Y , then the next query, (H1, M1), is deter-
mined. Similarly, if we return the next n + |M1| bits of Y , then the next
query, (H2, M2), is determined. By continuing the procedure, the output of
B, either 0 or 1, is determined. Therefore, the output of B and the value
of q queries, (H0, M0), . . . , (Hq−1, Mq−1), are all determined by fixing Y . Let

vone = {Y | fB(Y ) = 1}, and PR
def= Pr(BR(·,·) = 1). Then we have

PR =
∑

Y ∈vone

p4. (8)

On the other hand, let PHBS
def= Pr(AER(·,·) = 1) and observe

PHBS =
∑

Y ∈vone

p3 ≥
(

1− 3q2(1 + hmax + 2mmax)2

2n

) ∑
Y ∈vone

p4,

where the last inequality follows from Lemma 4. Then PHBS is at least(
1− 3q2(1 + hmax + 2mmax)2

2n

)
PR ≥ PR − 3q2(1 + hmax + 2mmax)2

2n

from (8). Now, we have PHBS ≥ PR − (3q2(1 + hmax + 2mmax)2)/2n, and by
applying the same argument to 1 − PHBS and 1 − PR, we have 1 − PHBS ≥
1−PR− (3q2(1 + hmax + 2mmax)2)/2n. Finally, from (5), we obtain the claimed
bound. ��
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