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Abstract Polyhydroxyalkanoates (PHAs) are energy- and intracellular carbon-storage 
compounds that can be mobilized and used when carbon is a limiting resource. 
Intracellular accumulation of PHA enhances the survival of several bacterial 
species under environmental stress conditions imposed in water and soil, such as UV 
irradiation, salinity, thermal and oxidative stress, desiccation, and osmotic shock. 
The ability to endure these stresses is linked to a cascade of events concomitant 
with PHA degradation and the expression of genes involved in protection against 
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damaging agents. PHA synthesis involves enzymatic and transcriptional regulation, 
where the RpoS central stationary phase regulator sigma factor has been shown to 
be implicated. The energy generated during PHA degradation can also be used to 
drive various important energy-consuming pathways. In addition to its relevance for 
the plastic industry, PHA has important applications for agriculture, as those related 
to the production of reliable commercial inoculants, and in controlled release of 
insecticides when incorporated into degradable PHA granules.

1  Introduction

A wide variety of taxonomically different groups of microorganisms (Bacteria and 
Archaea domains) produce intracellular homopolymers or copolymers containing 
different alkyl groups at the b position, described as polyhydroxyalkanoates (PHAs). 
These polymers are used as energy- and carbon-storage compounds (Anderson and 
Dawes 1990). PHAs are structurally simple macromolecules that accumulate inside 
discrete granules to levels that can be as high as 90% of the cell dry weight. They 
are generally believed to play a role as a sink for carbon and reducing equivalents 
when other nutrient supplies are limiting resources, and when the bacterial popula-
tion is not growing exponentially in batch culture (Senior and Dawes 1973; Williams 
and Peoples 1996; Madison and Huisman 1999). These molecules exhibit material 
features that are similar to those of some common plastics such as polypropylene 
(Williams and Peoples 1996; Madison and Huisman 1999). In this chapter we will 
mainly focus on the ecological significance of PHAs.

Since the identification and characterization of the enzymes involved in PHA 
synthesis, hundreds of genes from a wide range of prokaryotes have been cloned or 
identified as putative PHA biosynthesis genes. Microorganisms use different path-
ways for synthesis of PHA. One of the best studied PHAs is poly[(R)-3-hydroxy-
butyrate] (PHB). Among the enzymes involved in PHB synthesis, b-ketothiolase 
(PhaA) and acetoacetyl-CoA reductase (PhaB) are involved in general lipid metab-
olism. In contrast, a third enzyme, PHA synthase (PhaC), is exclusively involved in 
the biosynthesis of this polymer, being responsible for the polymerization of 
b-hydroxyalkanoyl-CoA monomers into poly(b-hydroxyalkanoate) (Pötter and 
Steinbüchel 2005; Philip et al. 2007). In addition to these enzymes, a noncatalytic 
group of proteins called phasins (PhaPs) are important for granule organization. 
PhaPs have been found associated with the surface of the granules, being involved 
in their stabilization and coalescence, and their absence has a significant effect on 
polymer synthesis (Pötter and Steinbüchel 2005).

The PHA degradation pathway as described in most bacteria studied begins with 
the depolymerization of PHA to d-3-hydroxybutyrate monomers by PHA depoly-
merase (encoded by phaZ). Extracellular and intracellular PHA degradation have 
been described (Jendrossek and Handrick 2002) for utilization of PHAs present in 
the environment or accumulated in PHA granules, respectively (Tanio et al. 1982; 
Saegusa et al. 2001; Jendrossek and Handrick 2002; Pötter and Steinbüchel 2005).
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2  The Role of PHA in Cell Survival Under Stress

PHAs have attracted attention as environmentally friendly polymers owing to their 
biodegradability, thermoplastic properties, and biocompatibility (Philip et al. 2007). 
Consequently, many resources have been invested in the isolation of microorganisms 
capable of synthesizing PHAs with different desirable industrial properties and 
from different sources. The function of PHAs as intracellular carbon-storage com-
pounds has been the subject of most of the research in assigning a role for these 
polymers (Macrae and Wilkinson 1958; Sierra and Gibbons 1962; Hippe 1967; Hippe 
and Schlegel 1967). However, with the identification of new PHA-synthesizing 
microorganisms and the investigation of the role that PHAs play in bacterial fitness, 
it became evident that this polymer is more than just an intracellular carbon-storage 
compound that can be mobilized and used when carbon becomes a limiting 
resource. It is actually known that intracellular accumulation of PHAs enhances the 
survival of several bacteria under environmental stress conditions imposed in water 
and in the soil (Kadouri et al. 2005; Zhao et al. 2007). In other words, PHAs endow 
bacteria that are able to synthesize them with an ecological advantage. The roles 
played by PHAs in bacterial environmental fitness are summarized in Table 1.

Table 1 The role of polyhydroxyalkanoates in bacterial environmental fitness

Features Selected references

Cell survival under stressful low-
nutrient conditions

Tal and Okon (1985), Anderson and Dawes 
(1990), James et al. (1999), Hai et al. (2001)

Cell survival under nutrient limitation 
in water, soil, rhizosphere, and 
phyllosphere

Okon and Itzigsohn (1992), López et al. (1995), Ruiz 
et al. (1999)

Cell survival in inoculant carriers Fallik and Okon (1996), Dobbelaere et al. (2001), 
Kadouri et al. (2003b)

Establishment of inoculum in soil and 
plant surfaces

Kadouri et al. (2002, 2003b)

Energy source and flow for cell 
motility, chemotaxis, aerotaxis, and 
biological nitrogen fixation

Tal and Okon (1985), Cevallos et al. (1996), Willis 
and Walker (1998), Kadouri et al. (2002), 
Vassileva and Ignatov (2002), Trainer and 
Charles (2006), Wang et al. (2007)

Sporulation, cyst formation, and 
germination

Kominek and Halvorson (1965), López et al. (1995), 
Segura et al. (2003), Valappil et al. (2007)

Control of exopolysaccharide 
production

Encarnación et al. (2002), Kadouri et al. (2002, 
2003a, b), Aneja et al. (2004), Wang et al. (2007)

Endurance under environmental 
stress: heat and cold, UV 
irradiation, desiccation, osmotic 
and solvent stress, osmotic shock, 
ethanol, and H

2
O

2

Tal and Okon (1985), Asada et al. (1999), Kadouri 
et al. (2003a, b), Ayub et al. (2004), Arora et al. 
(2006), Villanueva et al. (2007), Zhao et al. (2007), 
Raiger-Iustman and Ruiz (2008), Trautwein et al. 
(2008)

Balanced use of available energy and 
distribution of carbon resources

Dawes (1986), Povolo and Casella (2000), 
Rothermich et al. (2000), Babel et al. (2001), 
Philip et al. (2007)
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Under certain circumstances, free-living bacterial cells with a high content of PHAs 
may survive longer than those that lack PHA or have a low PHA content, either 
because they are protected from adverse factors, or because they can utilize their 
reserve material longer and more efficiently than those bacteria that produce low con-
tents of PHA or lack this ability at all (Dawes and Senior 1973; Matin et al. 1979; 
Kadouri et al. 2002). For example, the PHB-producing bacterium Azospirillum brasi
lense showed increased survival upon starvation in phosphate buffer as compared with 
its non-PHB-producing mutant (phaC minus mutant) (Fig. 1). As in A. brasilense, in 
Sinorhizobium meliloti, other plant-associated bacteria, and in the PHB-accumulating 
Pseudomonas sp. isolated from an Antarctic environment, PHA content was also 
shown to correlate positively with increased survival rates after exposure to adverse 
conditions such as salinity, thermal and oxidative stress, UV irradiation, desicca-
tion, and osmotic pressure (Tal and Okon 1985; Ayub et al. 2004; Arora et al. 2006).

Proteomics-based research coupled with chemical determination of PHA content 
revealed that the denitrifying proteobacterium Aromatoleum aromaticum accumu-
lates PHB during growth in the presence of the pollutant solvents toluene and 
ethylbenzene (Trautwein et al. 2008). The authors suggested that PHB formation 
in this bacterium is not induced by an imbalanced nutrient supply but rather by 
stress due to impaired coupling of alkylbenzene catabolism and denitrification. 
It was proposed that PHB could serve as a sink for reducing equivalents, ensuring 
continuous alkylbenzene degradation, and/or a type of hydrophobic trap for aromatic 
compounds (Trautwein et al. 2008).

Legionella pneumophila also accumulates PHA. The persistence of this bacterium 
in the environment is aided by its ability to adapt to a variety of different ecological 
niches, as intracellular parasites of amebae, as free-living members of complex 
biofilm communities, or as planktonic cells. In this bacterium, PHA accumulation in 
granules supports long-term survival in the culturable state under starvation, and 
accumulated PHA serves as an energy-reserve material to promote persistence of 
legionellae in stressful low-nutrient environments outside the amebic host (James 
et al. 1999).
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Fig. 1 The effect of poly[(R)-3-hydroxybutyrate] (PHB) on survival capability of starved bacteria. 
Cells of Azospirillum brasilense Sp7 (filled triangles) and phaC mutant (filled circles) were grown 
on a medium with a high carbon to nitrogen ratio for 24 h and transferred to phosphate buffer, where 
they were incubated for 12 days. Bacterial density was determined using dilution plating (Reproduced 
from Kadouri et al. 2002, with kind permission from the American Society for Microbiology)
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Evidence has been provided suggesting that spore formation and germination, as 
well as cyst production, may be related to PHA biosynthesis and utilization. In 
Bacillus cereus and in Clostridium botulinum, PHA is accumulated maximally just 
prior to the formation of spores and is degraded during the process of sporulation 
(Valappil et al. 2007). In these cases, PHA may serve as a carbon and energy source 
for sporulation (Kominek and Halvorson 1965; Nakata 1965; Emeruwa and 
Hawirko 1973). López et al. (1995) observed that in a PHA negative mutant of  
B. megaterium, in contrast to the wild type, sporulation occurred immediately after 
exposure to river water, and survival of vegetative cells was clearly compromised, 
suggesting that in an oligotrophic environment cells depleted of an intracellular 
carbon source may be committed to earlier sporulation than normal cells. A heat 
shock was required for germination of PHA negative mutant spores, suggesting that 
PHA or its degradation products are involved in this process (López et al. 1995).

In Azotobacter vinelandii, PHA is utilized as a carbon and energy source during 
encystment (Lin and Sadoff 1968; Segura et al. 2003). Mutations in the phaB and 
phaC genes in A. vinelandii had no impact on encystment or on cyst viability under 
laboratory conditions; however, the possibility that under natural conditions PHA 
metabolism does have such effects cannot be ruled out (Segura et al. 2003).

Most investigations on prokaryotic PHA have been performed on proteobacteria, 
but cyanobacteria (Hein et al. 1998; Asada et al. 1999; Hai et al. 2001) and various 
members of the Archaea domain (Hezayen et al. 2000, 2002; Han et al. 2007; 
Lu et al. 2008) are PHA-producing organisms. Cyanobacteria can accumulate PHA 
(mainly PHB) under photoautotrophic or mixotrophic growth conditions in the 
presence of acetate; however, the relative PHA content is significantly lower than 
in other prokaryotes (Asada et al. 1999). Under conditions of nitrogen and sulfur 
starvation, and during light irradiation and recovery of vegetative growth by addi-
tion of nitrate, cyanobacteria accumulate PHA as storage products of fixed carbon 
(Asada et al. 1999; Hai et al. 2001).

The data gathered in these various studies suggest a complex role for PHA in 
stress alleviation. The PHA granules may offer protection against UV irradiation, 
by protecting DNA from damage, and increase bacterial resistance to oxidative, 
thermal, and osmotic shock, among others.

3  Molecular Evidence Supporting a Role  
for PHA Synthesis in Stress Endurance

The role of PHA in bacterial cell protection using molecular approaches has been 
assessed in several studies. For instance, with the aim of evaluating how bacterial 
inoculants of A. brasilense can be improved in important parameters (e.g., quality, 
longevity, reliability, efficacy), wild-type and mutant strains were challenged for their 
resistance to physical and chemical stresses. The ability of phaC and phaZ mutants of 
A. brasilense to survive, tolerate, or alleviate various stresses, such as UV irradiation, 
heat and osmotic shock, desiccation, and oxidative stress, was significantly impaired 
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as compared with that of the wild type (Kadouri et al. 2002, 2003a, b; Figs. 2, 3). 
In addition, PHA accumulation supported cell multiplication in the absence of an 
exogenous carbon source in A. brasilense (Kadouri et al. 2002), in a similar manner 
as for Cupriavidus necator (formerly Ralstonia eutropha; Handrick et al. 2000). 
Interestingly, PHA was shown to maintain nitrogenase activity and aerotaxis, two 
physiological features that are extremely energy consuming (Tal and Okon 1985).

Aeromonas hydrophila is a heterotrophic bacterium found in warm climates, and in 
fresh, salty, marine, estuarine, chlorinated, and unchlorinated water. In addition, it 
is resistant to refrigeration and cold temperatures. This bacterium produces a 
PHA copolyester consisting of (R)-3-hydroxybutyrate and (R)-3-hydroxyhexanoate 
(PHBHHx; Chen et al. 2001). To understand the relationship between enhanced 
survival ability and PHA accumulation of A. hydrophila, the physiological behaviors 
of a wild type and a phaC mutant were compared. The ability of the phaC mutant 
to survive UV irradiation, heat and cold treatment, ethanol, osmotic pressure, and 
oxidative stress was significantly impaired as compared with that of the wild type. 
Thus, PHBHHx synthesis and accumulation in A. hydrophila is another example 
of positive correlation between resistance to environmental stresses and PHA 
accumulation (Zhao et al. 2007).

Studies done by Ruiz et al. (2004) demonstrated the association between 
PHA depolymerization and stress tolerance in Pseudomonas oleovorans. 

Fig. 2 Effect of heat (a) and UV irradiation (b) on the survival rate of A. brasilense 7030 (filled 
triangles) and of the phaZ mutant (filled circles). The initial number of cells for each experiment 
was 3 × 108. Each value represents the mean and the standard error of three replicates from one 
representative experiment. Each experiment was done three times and yielded similar results 
(Reproduced from Kadouri et al. 2003a, with permission of Springer-Verlag)
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Experiments carried out during early stationary phase cultures (a carbon starvation 
condition that provokes a rapid PHA degradation) of P. oleovorans and its phaZ 
minus mutant showed that the mutant strain was more sensitive to heat and oxida-
tive shocks than the wild type. In P. putida, impaired survival and resistance to 
oxidative stress of an rpoS mutant was shown under conditions inducing PHA 
accumulation (Raiger-Iustman and Ruiz 2008).

Altogether, the above-mentioned studies with different bacteria showed that PHA 
mutants affected in both anabolic and catabolic PHA pathways are affected in their toler-
ance to diverse stress conditions, suggesting that stress endurance can be traced to a 
normal functioning of the PHA cycle, and not exclusively to the presence of the polymer.

4  Regulation of PHA Synthesis

The mechanisms by which PHA favors stress alleviation are not yet fully understood. 
However, it is known that the PHA metabolism is regulated at both enzymatic 
and transcriptional levels, by cofactor inhibition and availability of metabolites, and 
by specific and global transcriptional regulatory factors, respectively (Kessler and 
Witholt 2001).

Fig. 3 Electron micrographs of thin sections of A. brasilense 7030 (a) and the phaZ mutant 
(b), grown for 48 h in high carbon to nitrogen medium, and of A. brasilense 7030 (c) and the phaZ 
mutant (d) following a 72-h starvation period in phosphate buffer. Arrows indicates PHB granules, 
bars, 1 mm. Thirty sections of each strain were examined and showed identical findings 
(Reproduced from Kadouri et al. (2003a), with permission of Springer-Verlag)
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At the enzymatic level, it has been shown that, in PHA-producing bacteria, the 
intracellular levels of acetyl-CoA and free CoA, and both high intracellular level of 
NAD(P)H and high ratio of NAD(P)H/NAD(P) play a central role in the regulation of 
PHA synthesis (Haywood et al. 1988; Lee et al. 1995; Kessler and Witholt 2001).

An early work on C. necator suggested an association between PHA utilization and 
both respiration and oxidative phosphorylation (Hippe and Schlegel 1967). The effector 
guanosine tetraphosphate (ppGpp) was shown to increase messenger RNA transla-
tion of the sigma factor ss encoded by rpoS (Gentry et al. 1993; Brown et al. 2002), 
which is involved in PHA synthesis (see below). In P. oleovorans, it was found that 
the rise in ATP and ppGpp levels was concomitant with PHA degradation (Ruiz et al. 
2001). This phenomenon was only observed in the wild-type strain but not in a PHA 
depolymerase-deficient mutant unable to degrade the polymer (Ruiz et al. 2001).

As stated above, evidence from recent years indicates that the central stationary 
phase regulator RpoS is involved in PHA metabolism. In Escherichia coli, RpoS 
controls the general stress response, inducing the expression of genes involved in 
protection against viability loss in nutrient-poor environments, such as those inducing 
PHA synthesis in several microorganisms. The half-life of RpoS is related to the 
cell nutrient status. The proteolysis of RpoS is mediated by the ClpXP protease. 
During starvation, aberrant misfolded proteins compete for ClpXP, reducing RpoS 
degradation (Ferenci 2007).

The synthesis of PHA and its regulation in A. vinelandi have been recently 
reviewed by Galindo et al. (2007). An extracellular signal is detected by the two-
component global regulatory system formed by the histidine sensor kinase GacS 
and the response regulator GacA, activating rpoS transcription. At the transcriptional 
level, rpoS expression appears to be modulated by the GacSA system and by the 
intracellular levels of ppGpp. During stationary phase, RpoS stimulates the tran-
scription of the phaBAC operon, through the pB2 promoter, and the transcriptional 
activator phaR, though its pR2 promoter. Consequently, PhaR activates the tran-
scription of the phaBAC operon through the pB1 promoter. In contrast, during 
exponential phase there is no PHA production because PhaA activity is inhibited 
by the allosteric control produced by the acetyl-CoA to CoA ratio, and by low levels 
of transcription of phaBAC due to the lack of RpoS.

An enhanced expression of rpoS in A. hydrophila has been linked to the enhanced 
resistance to environmental stress conferred by PHBHHx (Zhao et al. 2007). In  
P. oleovorans, the increase of the intracellular concentration of RpoS during PHA 
depolymerization was related to an enhanced cross-tolerance to different stress agents 
(Ruiz et al. 2004). Interestingly, under PHA accumulation and nonaccumulation condi-
tions, an rpoS mutant of P. putida had similar and lower survival under oxidative stress, 
respectively, as compared with the wild-type strain (Raiger-Iustman and Ruiz 2008).

The relevance of additional sigma factors in regulation of the PHA metabolism 
has to be considered since in P. aeruginosa PAO1, PHA accumulation from 
gluconate was found to require a functional RpoN sigma factor, whereas PHA 
accumulation in cells growing on fatty acids was only reduced in the absence of 
RpoN (Timm and Steinbüchel 1992). In addition, RpoS has not been documented in 
Azospirillum species.
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5  PHA in Soil and in Plant–Microbe Interactions

Soil is a heterogeneous, discontinuous, and structured environment with a high 
diversity of microhabitats in which conditions can change rapidly (Postma et al. 1989). 
Thus, bacteria in soil have to cope with fluctuating – in time and space – biotic and 
abiotic stresses (van Elsas and van Overbeek 1993). One strategy by which bacteria 
can improve their establishment, proliferation, and survival in competitive niches such 
as soil and the rhizosphere is the accumulation and degradation of PHA (Okon and 
Itzigsohn 1992; Kadouri et al. 2005). In general, conditions of suboptimal growth are 
conducive to the production of PHAs (Madison and Huisman 1999).

Supporting data for PHA production in telluric environments were provided by 
Wang and Bakken (1998), who screened 63 soil bacteria for PHA production. They 
concluded that strains capable of producing PHA were not necessarily superior to 
those that lack this ability. Instead, survival ability was strain-specific and depended 
on the growth conditions prior to starvation. In this study, most PHA-producing 
bacteria were found to belong to the pseudomonad, coryneform, and bacillus groups. 
In addition to Pseudomonas and Bacillus, Arshad et al. (2007) reported the isolation 
of soil PHA-producing bacteria belonging to the genera Citrobacter, Enterobacter, 
Klebsiella, and Escherichia, all of them enterobacteria. Among symbiotic bacteria 
and plant growth-promoting rhizobacteria (PGPR), PHA production has been 
reported in members of the genera Rhizobium, Azospirillum, Herbaspirillum, and 
Azotobacter (Itzigsohn et al. 1995; Catalán et al. 2005; Trainer and Charles 2006).

Many PHA-producing Bacillus strains have been isolated from soil (Wang and 
Bakken 1998; Yilmaz et al. 2005; Arshad et al. 2007). In a recent proteomic analy-
sis, Luo et al. (2007) reported that the soil bacterium B. cereus increased its fatty 
acid metabolism when grown in a medium prepared from oak forest soil. This 
increased fatty acid catabolism was reflected in changes in membrane structure and 
accumulation of PHA. In agreement with these findings, PhaR, which is required 
for PhaC activity, was one of the most upregulated proteins (Luo et al. 2007). 
In another study, it was shown that survival rate and the total cell number (including 
vegetative cells and spores) of the soil PHA-accumulating bacterium B. megaterium 
were higher than those of PHA negative mutants (López et al. 1998).

The nature of the carbon compounds found in the soil affects the growth rates of 
microorganisms and their root colonization ability (Chen et al. 1996; Simons et al. 
1996; Jjemba and Alexander 1999). The relationship between PHA metabolism and 
plant root colonization is not obvious. Among PGPR, the free-living, Gram-negative, 
nitrogen-fixing bacteria belonging to the genus Azospirillum are well-established 
models for deciphering traits important for survival, colonization, and effectiveness 
(Okon and Vanderleyden 1997). One such trait appears to be the secretion of plant-
growth-promoting substances (e.g., auxins, gibberellins, and cytokinins) that lead 
to an increase of the root surface area, promoting water and mineral uptake 
(Dobbelaere and Okon 2007; Steenhoudt and Vanderleyden 2000). PHA accumulation 
in A. brasilense is likely an important trait for root colonization of this bacterium 
(Tal and Okon 1985; Tal et al. 1990a). In support of this assumption, it was dem-
onstrated that under certain conditions, including high carbon-to-nitrogen ratio or 
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low-oxygen partial pressure, A. brasilense cells accumulate above 75% of their dry 
weight exclusively as PHB (Nur et al. 1981; Tal and Okon 1985; Paul et al. 1990; 
Tal et al. 1990a, b; Itzigsohn et al. 1995).

Studies carried out with wild-type and phaC mutant strains of A. brasilense, 
under sterile and nonsterile conditions in soil showed that both root colonization 
and plant growth promotion were not affected in the mutant (Kadouri et al. 2002). 
The lack of influence of this mutation on these parameters may stem from the optimal 
plant growth conditions as well as from the relatively high inoculum level used in 
that study. It is still to be assessed whether the impaired stress resistance and physi-
ological changes observed in cells with a disrupted PHA metabolism have negative 
implications in root colonization and plant growth promotion in the field.

Rhizobia are characterized by a free-living stage in the soil and by a symbiotic 
stage in the interaction with leguminous roots. The establishment of the symbiotic 
relationship involves a bidirectional signal exchange between the bacteria and the 
host plant, which leads to the formation of nitrogen-fixing root nodules. Results 
from studies performed to evaluate the relationship between PHA metabolism and 
the efficiency of the rhizobia–legume interaction have been diverse, and it seems that 
they vary not only because of differences between the various bacteria–host systems, 
but also because of differences in the experimental conditions among the studies. 
For instance, single strain inoculation experiments with phaC mutants of S. meliloti 
and Rhizobium leguminosarum bv. viciae on alfalfa and pea plants, respectively, sug-
gested that both symbiotic systems are not affected by PHA formation (Povolo et al. 
1994; Lodwig et al. 2005). On the other hand, the S. meliloti–Medicago truncatula 
system was severely impaired by the lack of PHA formation ability by the bacterium, 
as plants inoculated with the S. meliloti phaC mutant showed lower rates of nitrogen 
fixation, lower numbers of nodules, and reduced shoot dry weight as compared with 
plants inoculated with the wild-type strain (Wang et al. 2007).

In a study done by Willis and Walker (1998), coinoculation experiments of alfalfa 
with wild-type and phaC mutant strains of S. meliloti indicated that the wild-type 
strain outnumbered the PHA mutant by more than 200 times. This result indicates 
that the phaC mutant was less competitive, and that PHA production may provide 
an advantage to the bacterium during root invasion or nodule initiation. Wang et al. 
(2007) assessed the symbiotic efficiency of an S. meliloti double mutant impaired in 
phaP1 and phaP2, which encode the PHA granule-associated phasins that regulate 
PHA synthesis and granule formation. Plants inoculated with this mutant exhibited 
a reduced shoot dry weight compared with those inoculated with the wild type, but 
there was no corresponding reduction in nitrogen-fixation activity. Thus, it appears 
that in the alfalfa–S. meliloti system, PHA production by the bacterium does not play 
a significant role after the establishment of nodules. Moreover, bacterial phasins 
seem to be involved in a metabolic regulatory response and/or to influence assimilation 
of fixed nitrogen rather than nitrogen-fixation activity (Wang et al. 2007).

Interestingly, it has been reported that common bean plants inoculated with a phaC 
mutant of R. etli show an increased nitrogen-fixation capacity and enhanced growth 
in comparison with plants inoculated with the wild-type bacterium (Cevallos et al. 
1996). An important difference between S. meliloti and R. etli is that in the former, 
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bacteroids occupy indeterminate nodules, whereas in the latter, bacteroids occupy 
determinate nodules. Both bacteria produce granules of PHA (in the form of PHB) 
during the initial stage of invasion. However, in S. meliloti the PHB granules disap-
pear during differentiation into the bacteroid state, and bacteroids occupying the 
alfalfa indeterminate nodules do not accumulate PHA after the establishment of the 
symbiosis (Lodwig et al. 2005). It is possible that in the case of S. meliloti, the intra-
cellular PHA supports cell division and growth during root infection and invasion 
(Trainer and Charles 2006). In contrast, bacteroids of determinate nodules, such as 
those induced by R. etli on common bean, accumulate high levels of PHA during 
symbiosis. In this case, PHA could support nitrogen fixation under conditions of 
reduced carbon availability, and PHA accumulation and nitrogen fixation would com-
pete for energy and reductant sources as well as for photosynthates (Cevallos et al. 
1996; Trainer and Charles 2006). The relationship between carbon storage and nitro-
gen fixation is complex. For example, in free-living Bradyrhizobium japonicum, R. 
leguminosarum, and S. meliloti, at the same time as PHA is accumulated, there is 
production of glycogen as an additional storage compound (Lodwig et al. 2005).

Azorhizobium caulinodans, as R. etli, accumulates PHA in both free-living 
and symbiotic stages, but an A. caulinodans phaC mutant was totally devoid of 
nitrogenase activity ex plant, and induced nodules devoid of bacteria (Mandon et al. 
1998). Interestingly, nitrogenase activity of the mutant was partially restored by 
constitutive expression of the nifA gene. Mandon et al. (1998) suggested that 
PHA is required for maintaining the reducing power of the cell, and that nifA 
expression mediates adaptation of nitrogen fixation to the levels of carbon and 
reducing equivalents available in the nodule. Vassileva and Ignatov (2002) 
studied the relationship between PHA formation and nitrogenase activity in the 
Galega orientalis–R. galegae system. They reported high nitrogen-fixation activity 
in parallel to PHA degradation when low concentrations of plant growth promoters 
and polyamine modulators were applied.

In summary, the fact that PHA production is a widespread trait supports the 
assumption that PHA accumulation plays a central role in survival, especially when 
bacteria are faced with starvation. In PHA-producing bacteria, PHA is a major 
determinant for overcoming periods of carbon and energy starvation, and may rep-
resent a basic feature for so-called environmental bacteria. However, the ability to 
produce PHA is apparently not absolute for improved survival ability during stress, 
as PHA was shown to enhance the survival of some, but not all bacteria tested, 
which likely rely on alternative strategies (Wang and Bakken 1998).

6  Relevance of PHA in Microbial Communities

Most microorganisms on Earth are organized into microbial biofilms and microbial 
mat communities. PHA production is very relevant in these kinds of microbial 
organization as these are niches where microbes have to cope with moderate physical 
and chemical stresses, and frequently have to adapt to changing conditions.
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Biofilms are sessile microbial communities embedded within a matrix and attached 
to a solid surface. On one hand, surface-associated multicellular communities are 
generally advantageous over individual planktonic cells, especially in regard to protec-
tion against unfavorable environmental conditions. On the other hand, planktonic 
populations can quickly reach and colonize new niches. The shift between sessile 
and planktonic lifestyles depends upon the integration of many environmental 
cues. Several biofilm-producing bacteria have also been reported to produce PHA. 
For instance, it was recently reported that PHA accumulation in P. aeruginosa biofilms 
occurs in a spatially/temporally regulated way, and that it is in competition with 
alginate biosynthesis, playing an important role in stress tolerance and biofilm forma-
tion (Pham et al. 2004; Campisano et al. 2008).

Mats have been described as large microbial communities composed by a mul-
tilayered sheet of bacteria, archaea, and diatoms, which are characterized by both 
seasonal and diel fluctuations (e.g., flooding and desiccation, diel fluctuations of 
temperature, light, pH, oxygen, sulfide, and nutrients, among others). A culture-
independent strategy for the detection of PHA-producing bacteria from a polluted 
marine microbial mat was adopted by López-Cortés et al. (2008). The authors 
showed a higher PHA-producing microbial diversity in a marine microbial mat 
exposed to environmental stress by organic pollution from a cannery of marine fish 
(nutrient imbalance) as compared with a pristine site. Because PHA synthesis is 
linked to lipid metabolism, PHA producers are more competitive in environments 
with high concentrations of fatty acids such as active sludge and microbial mats. 
Also, Villanueva et al. (2007) suggested that during diel fluctuations, heterotrophic 
microorganisms from phototrophic mats accumulate PHA, using as a precursor the 
excess of carbon that is generated and excreted by photosynthetic microorganisms, 
reflecting that changes in PHA levels depend on the time of day. Interestingly, the 
isolation of PHA-producing strains from mats with potential industrial applications 
has been successful, positioning mats as an excellent source for such microbes 
(Berlanga et al. 2006; Simon-Colin et al. 2008).

7  Utilization of the Energy Obtained  
from PHA for Environmental Cues

In addition to being a source of storage compounds and contributing to stress endur-
ance, PHAs can serve as sources of NADH and ultimately ATP. Under diverse 
environmental conditions, the ability to generate energy from PHAs can be used to 
drive various important energy-consuming pathways, as discussed in the folowing.

7.1  Chemotaxis

Chemotaxis is the ability bacteria have to sense gradients of compounds and 
to drive motility toward the most appropriate niche, and is an important trait in 



51Natural Functions of Bacterial Polyhydroxyalkanoates

plant–microbe interaction. A. brasilense exhibits strong chemotaxis toward different 
attractants such as fructose, malate, and sweet corn seed exudates, and it was shown 
that this chemotaxis is significantly stronger in the wild type than in a phaC mutant 
strain (Kadouri et al. 2003b). It is possible that the reducing power produced during 
PHA degradation energizes the chemotactic process in the environment, where 
sources of reducing power are low. In A. brasilense, PHA oxidation involves a 
specific NADH-dependent dehydrogenase, which competes for tricarboxylic acid 
(TCA) cycle intermediates in the electron transport system (Tal et al. 1990a, b). 
When PHA accumulation is disrupted, more resources are available for the TCA 
cycle, resulting in an increased motility in the phaC mutant as compared with the wild 
type. In contrast, an A. brasilense phaZ mutant was shown to have motility similar 
to that of the wild type (Kadouri et al. 2003a). phaZ encodes a poly(b-hydroxybu-
tyrate) depolymerase; thus, it is likely that, in contrast to the phaC mutant, the phaZ 
mutant is unable to generate excess reducing power (Kadouri et al. 2003a).

The redox state of the rhizosphere is one of the most important parameters for 
maintaining this ecological system. Thus, the energy taxis, driven by PHA catab-
olism, toward metabolizable substrates in plant root exudates may play a major role 
in plant–microbe interactions. On the other hand, rhizobia are positively chemotactic 
toward a variety of amino acids, dicarboxylic acids, sugars, and nodulation-
gene-inducing flavonoids secreted by the roots of their hosts. Rhizobial mutants 
defective in motility or chemotaxis are impaired in their ability to compete for sites 
of nodule initiation in the host root (Caetano-Anollés et al. 1988). If as suggested 
for A. brasilense, PHA catabolism in S. meliloti is also involved in energy supply 
for chemotaxis, it could at least partially explain why the S. meliloti phaC mutant 
strain is less competitive than the wild type (Willis and Walker 1998).

7.2  Exopolysaccharide Production

The roles of exopolysaccharide (EPS) in bacteria are dependent on their natural 
environment. Most of the functions assigned to EPS are related to a protective role: 
the highly hydrated EPS layer with which bacteria are capable of surrounding 
themselves provides a shield against desiccation and predation (Kumar et al. 2007). 
Many bacteria produce and live within a matrix of EPS in their natural environ-
ment, for example, in soil. EPS contributes anchoring cells to different substrates, 
protecting them against phagocytosis, masking antibody recognition, and prevent-
ing lysis by other bacteria (Deaker et al. 2004). EPS also plays an important role in 
plant–bacteria interactions. In rhizobia, EPS is required for success in the different 
stages of the establishment of the nitrogen-fixing symbiosis, including root 
colonization, host recognition, infection thread formation, and nodule invasion. 
In protective roles, EPS is important for evasion of plant immune responses and 
protection from reactive oxygen species (Gonzalez et al. 1996; Cooper 2007). 
In azospirilla, EPS is known to be involved in cell aggregation and in root adhesion 
(Burdman et al. 2000a). Burdman et al. (2000b) and Bahat-Samet et al. (2004) 
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showed that the arabinose content of A. brasilense EPS plays a role in cell aggregation 
and Mora et al. (2008) identified an outer-membrane protein with lectin activity 
that specifically binds to the EPS produced by A. brasilense during aggregation 
conditions. In A. brasilense, several studies support EPS and PHA production as 
well as cell aggregation being interdependent phenomena (Burdman et al. 1998; 
Kadouri et al. 2002, 2003a, b; Aneja et al. 2004; Wang et al. 2007).

In the phaC mutant of A. brasilense, a considerable increase in excreted EPS 
was detected over the wild-type strain when grown under a medium characterized 
by a high carbon-to-nitrogen ratio. In such a mutant, EPS production may act as a 
sink for carbon and reducing equivalents which are diverted from the blocked PHA 
synthesis pathway. The phaC mutant was more aggregative, and exhibited a signifi-
cantly increased ability to adhere to roots relative to the wild type (Kadouri et al. 
2002, 2003b). In contrast, EPS production and cell aggregation capability in the 
wild-type strain were higher than in the phaZ mutant under the same growth condi-
tions (Kadouri et al. 2003a). Burdman et al. (2000a) suggested that, in addition to 
PHB accumulation, cell aggregation could increase survival of Azospirillum cells 
under diverse stress conditions. Cell aggregation as well as a functional PHA 
metabolism may also be important during root colonization where cell aggregation 
is commonly observed (Kadouri et al. 2005).

In contrast to the findings with A. brasilense, in S. meliloti it has been shown 
that the inability to synthesize PHA is strongly associated with reduced production 
of EPS (Aneja et al. 2004; Wang et al. 2007). Interestingly, the phaP1/phaP2 
double mutant of S. meliloti, which as stated above is impaired in PHA production, 
produces more EPS and glycogen than does the wild-type strain (Wang et al. 
2007). In R. etli, an aniA mutant strain exhibited a significant decrease in PHA 
accumulation, and a significant increase in EPS formation (Encarnación et al. 
2002). The aniA gene encodes a transcriptional factor involved in the expression 
of genes that are important in partitioning the carbon flow in the bacterial cell, 
such as the ones stimulated under low-oxygen conditions and channeling of excess 
carbon into PHA and glycogen biosynthesis (Povolo and Casella 2000).

7.3  PHA as a Carbon and Energy Source  
for “Environmental Bacteria”

PHAs have attracted significant industrial interest because they are natural biode-
gradable thermoplastics, and they do not require special environmental conditions to 
be degraded. Beyond this, their biodegradability means that PHAs can be used as 
carbon and energy sources to support bacterial growth in different environments. 
When PHA-accumulating microorganisms cease dividing and undergo lysis, the 
polymer is released to the environment and it turns out to be readily metabolized 
by other microorganisms. PHAs can be degraded by the action of either intracel-
lular or extracellular depolymerases (i-PhaZ and e-PhaZ, respectively) produced by 
PHA-degrading bacteria, algae, and fungi.
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Two types of PHA polymers have been described: (1) native PHA granules con-
taining lipids and proteins that are rapidly hydrolyzed by i-PhaZs and (2) denatured PHA 
granules, which are crystalline and hardly hydrolyzed by i-PhaZs but are efficiently 
degraded by ubiquitous e-PhaZs into water-soluble products (Tokiwa and Calabia 
2004). Several environmental bacteria, algae, and fungi are able to “attack” PHA 
granules and to solubilize the PHA polymer. The polymer is then degraded by 
e-PhaZs, producing oligomers, which in some cases can be further degraded by 
hydrolases into monomers. The breakdown products can be utilized as a carbon and 
energy source by these organisms (Philip et al. 2007).

On the basis of the size of the PHA polymer that can be degraded, e-PhaZs are 
divided into two groups: short-chain-length PHA (SCL-PHA) and medium-chain-
length PHA (MCL-PHA) depolymerases. The majority of PHA-degrading microbes 
produce only one type of e-PhaZ. Only a few bacterial species have been reported 
to produce both kinds of depolymerases, thus being able to degrade both SCL-PHA 
and MCL-PHA (Kim et al. 2007). The rate of PHA degradation is dependent on 
environmental conditions including temperature, pH, moisture, and nutrient supply, 
as well as on properties related the PHA substrate, such as monomer composition, 
crystallinity, additives, and surface area (Philip et al. 2007). Pseudomonas and 
Stenotrophomonas are the predominant MCL-PHA degraders in soil and marine 
environments (Kim et al. 2007). However, also microorganisms from the families 
Pseudonocardiaceae, Micromonosporaceae, Thermomonosporaceae, Streptospo
rangiaceae, and Streptomycetacease have been reported to degrade PHA in the 
environment (Philip et al. 2007).

8  Phylogenetic Aspects of PHA Metabolism and Their 
Relationship with the Environment

Systematic phylogenetic analyses of genes involved in PHA biosynthesis and degra-
dation were recently carried out by Kadouri et al. (2005) and Kalia et al. (2007). 
From 253 sequenced genomes, Kalia et al. (2007) identified 71 and 111 complete 
phaA and phaB sequences, respectively. The PhaA and PhaB phylogenetic trees 
showed 12 and 16 cases of discrepancy, respectively, as compared with 16S ribosomal 
DNA (rDNA) phylogenies. These inconsistencies might be explained by horizontal 
gene transfer (HGT). The presence of the phaC gene was detected in 72 genomes 
belonging to 40 genera from different taxonomical groups such as Actinobacteria, 
Cyanobacteria, Firmicutes, and Proteobacteria (Kalia et al. 2007). Analysis of the 
PhaC phylogenetic tree revealed quite a few significant deviations as compared with 
the 16S rDNA. Similarly, a PhaC phylogenetic tree built with 67 homologous proteins 
from Proteobacteria by Kadouri et al. (2005) showed that the tree was congruent 
with the 16S rDNA data and clustered according to the phylogenetic taxa, suggesting 
the existence of genotypic clusters that correspond to traditional species designa-
tions. In addition, this PhaC tree topology was in agreement with previous analyses 
reported by Steinbüchel and Hein (2001) and Rehm (2003).
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The mechanism and regulation of PHA mobilization is poorly understood, but 
as mentioned, a clear distinction exists between intracellular and extracellular 
PHA degradation by means of PhaZ enzymes (Jendrossek and Handrick 2002). 
Kadouri et al. (2005) analyzed the phylogeny of the i-PhaZ. Most clusters of the 
i-PhaZ phylogenetic tree were highly incongruent with those of the 16S rDNA tree. 
Interestingly, sequencing of the genome of C. necator (formerly R. eutropha) H16 
revealed this bacterium possesses six different PhaZs (Pohlmann et al. 2006), and 
two copies of PhaZ were detected in the genomes of R. metallidurans and 
Burkholderia fungorum (Kadouri et al. 2005). The multiplication of genes encoding 
PHA depolymerases in a genome may reflect the diversity of the PHAs that a given 
microorganism is able to produce and utilize. The incongruence observed in PhaZ 
phylogenetic tress suggests that these genes have likely been subjected to HGT. In 
addition, the multiplication of these genes in some bacterial genomes possibly 
reflects duplication events that lead to parallel evolution of different genes to 
increase the versatility of the organism for PHA utilization. Thus, although the 
process of PHA synthesis seems to be highly conserved, it appears that a variety of 
options for PHA utilization have been laterally acquired and/or developed in parallel 
by several microorganisms.

Kalia et al. (2007) also revealed for the first time the presence of all three PHA 
biosynthesis genes (phaA, phaB, and phaC) in some cyanobacteria and Firmicutes. 
Prior to this, different combinations of phaA, phaB, and/or phaC were partially 
detected among a few members of Archaea, actinobacteria, and cyanobacteria 
(Kalia et al. 2007).

In conclusion, on the basis of the highly frequent appearance of phaCAB clusters 
and the relatively high congruence between PhaA, PhaB, and PhaC phylogenetic 
trees with 16S rDNA trees, it appears that the acquisition of PHA biosynthesis 
genes is an ancient event, at least in Proteobacteria. However, it is becoming 
evident that these genes have been spread among microorganisms by HGT, thus 
leading to the acquisition of the PHA accumulation trait by other groups of bacteria. 
Interestingly, it was recently reported that the pha gene cluster of a Pseudomonas 
isolate from the Antarctic, which produces high amounts of PHB, is located in a 
genomic island within a large genetic element of approximately 32.3 kb (Ayub et al. 
2007). GC content, phylogeny inference, and codon usage analyses showed that in 
this bacterium the phaBCA operon itself has a complex mosaic structure and indi-
cated that the phaB and phaC genes were acquired by HGT, probably derived from 
Burkholderiales (Ayub et al. 2007).

Some natural and anthropogenic activities are dramatically affecting the environ-
ment. As a result, we are witnesses to an increase in the intensity of extreme weather 
events, desertification, reduction of the ozone layer, and acidification of the oceans 
among other phenomena of concern. Supraorganism systems (namely, populations 
of micro- and macroorganisms, organized into trophic chains and capable of biotic 
cycling) have to adapt to the new situations. Considering that PHA accumulation is 
involved in bacterial cell survival and stress endurance, and that PHA genes have 
been subjected to HGT, it is reasonable to hypothesize that PHA accumulation and 
degradation is presently an evolutionarily valuable trait that microcommunities can 
exploit to deal with such environmental changes.
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9  PHA Applications in Agriculture

Bacterial inoculants are commercial formulations for agricultural uses containing 
PGPR that can be applied to the seeds or to the soil during planting. During produc-
tion, transportation, and storage of inoculants, bacteria should respond to (and 
survive) several stress factors, such as acidity, desiccation, chemical pesticides, and 
nonoptimal temperatures (Rebah et al. 2007). In other words, inoculants that have 
the capability to support survival rates of bacterial cells are highly desirable. Thus, 
appropriate materials for carrying microbes must offer special properties, such as 
chemical and physical uniformity, high water holding capacity, and lack of toxicity, 
and they must be environmentally friendly. Commercial inoculants are available as 
solid – in powder from peat or in granular form – or as liquid formulations 
(Stephens and Rask 2000; Rebah et al. 2007).

Many microbial inoculants are based on solid peat formulations owing the pro-
tective properties of this material. Recently, Albareda et al. (2008) evaluated six 
carriers (bagasse, cork compost, attapulgite, sepiolite, perlite, and amorphous silica) 
as alternatives to peat. Cork compost and perlite gave as good results as peat in 
terms of support of B. japonicum and S. meliloti growth, maintaining a long survival 
of inoculated strains, as well as survival on soybean seeds. Most of the research 
done in this field aims at developing new carriers or improving carrier properties 
by adding elements such as nutrients or other synthetic products that can prolong 
survival (López et al. 1998).

The vast amount of information gathered especially on azospirilla and rhizobia 
throughout the years suggests that for an inoculant to be successful, i.e., to provide 
efficient root colonization and/or invasion, not only the type of carrier material is 
important for bacterial survival within the carrier itself, but also the metabolic state 
of the cells, including their capability to use intercellular storage materials such as 
PHB. This knowledge originating from studies showing that although the carriers 
may vary, plant growth promotion effects are more consistent with A. brasilense 
inoculants containing cells with high amount of PHB (Fallik and Okon 1996).  
In support of these studies, field experiments carried out in Mexico with maize and 
wheat revealed that increasing crop yields were obtained using peat inoculants 
prepared with PHB-rich Azospirillum cells (Dobbelaere et al. 2001). Additionally, 
experiments done with an A. brasilense phaC mutant showed that among different 
inoculant carriers (peat, sianic sand, and perlite), peat sustained the highest survival 
rates, whereas the lowest survival rates were observed in perlite. Importantly, 
although variations between carriers were very large, in all carriers the wild-type 
strain survived better than the mutant. It was thus concluded that the production of 
PHA is of critical importance for improving the shelf life, efficiency, and reliability 
of commercial inoculants (Kadouri et al. 2003b).

In other agricultural aspects, it has been shown that relevant agricultural 
substances, such as insecticides, can be incorporated into PHA granules. If spread 
in the environment, PHA-degrading bacteria can slowly degrade the PHA granule, 
leading to controlled release of the insecticide. This pioneer idea was proposed for 
the first time by Holmes (1985) and was recently supported by Philip et al. (2007). 
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However, to date, few studies have been performed on this subject, and despite its 
potential, this PHA application still seems to be far from commercial utilization.

10  Conclusions

PHAs have attracted the attention of many research groups as they are environmen-
tally friendly polymers. It is becoming evident that PHA production is a widespread 
trait among microorganisms, suggesting that, among other strategies, PHA produc-
tion plays a central role in survival under environmental stress conditions, such as 
those imposed in water and soil (Table 1). Despite significant advances in recent 
years, research is needed to understand the molecular mechanisms of regulation of 
both PHA accumulation and degradation, and how these processes enhance bacte-
rial survival and fitness. Advances in this research area in the future could, for 
instance, benefit the industry of bacterial inoculants used for plant protection or 
plant growth promotion, as in these cases the capabilities of the microorganisms to 
establish, survive, and proliferate in the target niche is of utmost importance.
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