
PRESAGE: A Programming Environment for

the Simulation of Agent Societies

Brendan Neville and Jeremy Pitt

Intelligent Systems & Networks Group
Dept. of Electrical and Electronic Engineering

Imperial College London
London, SW7 2BT, UK

brendan.neville@imperial.ac.uk, j.pitt@imperial.ac.uk

Abstract. The paradigm of agent societies has proved particularly ap-
posite for modelling multi-agent systems for networked applications, in
particular when the network is open, dynamic and decentralised. In this
paper, we describe a software environment which can be used for sim-
ulation and animation of these models, allowing a system designer to
investigate the complex social behaviour of components, the evolution of
network structures, and the adaptation of conventional rules. Effectively,
the environment serves as a rapid prototyping tool for agent societies,
where the focus of interest is long-term, global system behaviour as much
as the verification of specific properties.

1 Introduction

Networked computers and multi-agent systems (MAS) are commonly used as a
platform for a new range of applications in for example manufacturing, health,
transport, commerce, entertainment, education, and social interaction. Features
of these applications include the dynamic network infrastructure, heterogeneous
components, unpredicted events, sub-ideal operation (failure to comply to spec-
ifications), incomplete and inconsistent information, absence of centralised con-
trol, and so on. Techniques from autonomic computing [1] and adaptive systems
[2] have proved useful in addressing some of these features; for others the idea of
an agent society has been proposed (e.g. [3,4]) which has emphasised the need
for conventional rules and social relationships between components.

There still remains though a requirement for system designers and software
engineers to retain some understanding of the application under development,
and especially of complex systems where random events, erratic behaviour, and
self-modification can render the system opaque to mathematical analysis. In the
past, rapid prototyping has proved to be an extremely effective tool in helping
to understand large-scale MAS, for example in abstracting away from details in
order to verify that certain desirable properties hold. However, in autonomic,
large-scale MAS, there is an additional requirement not just to verify proper-
ties, but also to observe the global outcomes that are the consequence of social
interactions and a myriad of independent, local decisions and actions.

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 88–103, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

PRESAGE: A Programming Environment for the Simulation of Agent 89

In this paper, we propose a rapid prototyping tool whose emphasis is on the
simulation of agent societies and the social relationships between agents, allowing
the designer to study social behaviour of components, the evolution of network
structures, and the adaptation of conventional rules. In this sense, it occupies a
space distinct from powerful application development environments, like JADE
[5]; agent based modelling and simulation tools [6,7] where the primary purpose is
to model and explain the behaviour of non-artificial agents; and other rapid pro-
totyping environments for MAS (e.g. [8,9]) whose principal function is, as stated
above, to verify system-wide properties. We illustrate the use of the environment
in examining three systems for trust, recommendations, and resource allocation.

The rest of this paper is structured as follows, section 2 provides a set of non-
functional requirements and a brief overview of how a user develops and runs a
test-bed using the platform. The platform architecture including the underlying
simulation model and core modules are discussed in section 3. In section 4 we
describe in detail the agent model and agent communication language. Following
this section 5 summarises the research which has been carried out using the
platform. Finally in 6 and 7 we summarize existing work, conclude and set out
our future objectives for the platform.

2 An Overview

To satisfy the functional requirement of developing a rapid prototyping and an-
imation environment for agent societies we have paid particular attention to
developing a highly customisable and extensible simulation architecture. How-
ever, in order to support the designers goals of observing social behaviour, long
term global performance and adaptation we also specifically identify a set of
non-functional requirements, namely:

– abstraction: the system allows the designer to tailor the degree of abstraction
in their models. In particular, the primary objects of study, the agents and
the network, can be as simple or complex as necessary. For example, the
agents can range from reactive stubs to fully-fledged BDI agents;

– flexibility: the platform provides many options for parametrisation and re-
configuration. This supports systematic experimentation as the platform can
be configured to run with the independent variables set over a range of values,
and the measures of interest (dependent variables) collected for each run;

– extensibility: the platform is provided with a pre-programmed set of libraries,
but the designer may extend the functionality using scriptable methods and
component plug-ins;

– interaction: particular emphasis is given to simplifying the front-end to ‘pro-
gram’ an experiment, to visualise the animation as it is running, data logging,
and access to external applications, such as Gnuplot, for graphical represen-
tation of data;

– scalability: the architecture of the system has been designed to support both
single-processor and distributed animation, allowing simulation to feature
societies comprising many hundreds of agents.

90 B. Neville and J. Pitt

In developing a prototype the experimenter can create their agent participant
types through optional use of the supplied abstract class; to ensure compatibility
with the simulation calls and provide core functionality like message handling
etc. They can then choose from one of the pre-defined network and physical
environment modules or extend the basic Network and PhysicalWorld classes to
suit their purpose. Finally they may add functionality to the platform in the
form of scriptable methods and plugins.

A basic input-output overview of our simulation platform is illustrated by
Fig. 1. The experimenter configures each simulation run via input-files; these
files serve four main purposes, parametrising the general simulation variables,
configuring the simulated agents (participants), scripting events and initialising
the required plug-ins.

Once the platform has initialised as specified it enters the simulation thread
and loops for the required number of iterations. During this time the user can
view the progress of the simulation via visualiser plug-ins, record data using data
archiver plug-ins, execute methods and launch extra plug-ins during runtime.

At the end of the simulation, the platform can be scripted to organise and
archive results and input-files. It can also call external applications for example
Gnuplot to create publication ready graphs.

AGENT SPECIFICATION:
Participant class type

Name, Roles
Class specific variables

.....
SCRIPTS AND PLUG-INS:

Pre-Execution Methods
Method Script

Post-Execution Methods
Plug-in List

.....

SIMULATION PARAMETERS:
Random Seed

Iterations
Physical World Class

Network Class
TCP/IP address

….. Simulator

SIMULATION RESULTS:
Utility

Profit, Price, Revenue
Network Load, etc

.....

Fig. 1. Input-Output Overview of the Simulation Platform

3 Platform Architecture

The PRESAGE architecture is illustrated as a software stack (Fig. 2) depict-
ing the base simulation module, the interfaces and abstract classes, simulation
managers, and the platforms connectivity to external processes. Above this we
have given some examples of how the user could utilise the classes and modules
e.g. an auction scenario operating over a unstructured P2P network without a
physical world. In the following sections we address each of the modules in more
detail.

PRESAGE: A Programming Environment for the Simulation of Agent 91

PRESAGE

External ConnectionsManagersInterfaces & Abstract Classes

Event
Script

Manager

Plugin
Manager

TCP/IP
Comms

MySQL
ConnectionParticipant

Bu
ye

r
Se

lle
r

A
uc

tio
ne

er

Network

U
ns

tr
uc

tu
re

d
P2

P
M

A
N

ET
H

yb
ri

d
P2

P

Physical
World

Ti
le

 W
or

ld
Br

ow
ni

an
 M

ot
io

n
W

or
ld

N
o

Ph
ys

ic
al

 W
or

ld

A
ct

iv
at

e/
D

ea
ct

iv
at

e
Pa

rt
ic

ip
an

ts
C

ha
ng

e
Pa

rt
ic

ip
an

t A
ttr

ib
ut

es
C

au
se

 P
hy

si
ca

l W
or

ld
 E

ve
nt

s

Lo
g

D
at

a
Re

al
-ti

m
e

G
ra

ph
s

M
on

ito
r N

et
w

or
k

St
ru

ct
ur

e

Ex
te

rn
al

 A
ge

nt
s

A
dd

iti
on

al
 S

im
ul

at
or

s
RM

I

Ex
pe

ri
m

en
ta

l D
at

a
St

or
ag

e
Pa

rt
ic

ip
an

t D
at

a
St

ru
ct

ur
es

Re
la

tio
na

l Q
ue

ri
es

Example Instantiations of
Base Classes

Example Scriptable
Methods and Plugins

Example Connectivity

Simulation LoopInitialisation unctionsCoref
Fig. 2. Representation of the Architecture of the platform

3.1 The Base Simulation Module

The role of the base simulation module is to perform parameter initialisation,
manage simulation execution, and provide generic functions to higher level mod-
ules and classes. PRESAGE takes a multi-agent discrete time-driven approach.
In this simulation execution model each loop of the simulation control thread
equates to a simulation time slice. For every time slice the state of the network
and physical world is updated, scripted events execute, plugins perform their
duties and the agent participants are given a turn to perform physical and com-
municative actions. By handling the agent process execution as a centralised
time-driven model we ensure pseudo-concurrent execution of agent actions thus
affording the advantages of Multi-agent based simulation (MABS) outlined in
[10], and providing the user and agent a centralised notion of time. Concurrency
is enforced by queuing actions until the end of each time slice.

We have developed a time-driven as opposed to an event-driven model of
execution because:

– While event-driven models are generally seen as more computationally ef-
ficient than time-driven models due the former’ ability to overlook periods
of inactivity, such efficiency is absent in the case of simulating agents, since
they react to changing conditions and are therefore required to constantly
sense their environment.

92 B. Neville and J. Pitt

– The complexity of programming discrete-event models increases rapidly with
the complexity and heterogeneity of the agents and the number of event
types. Whereas in a time-driven model the agents may become more com-
plex, however, the interface between the agent and the simulation model
does not.

– In event-driven models, the simulator determines in advance the next event
based on the current state of the world and steps directly to it (without
animating the states of the world in-between). This is inappropriate for our
simulation execution model as we require it to be indifferent to participant
architecture and facilitate probabilistic behaviour (for Monte Carlo experi-
ments), pro-activity and adaptability.

3.2 Managers

This section introduces the three simulation managers which afford control over
the simulation execution, plugins and the execution of extraneous events. The
simplest of these is the Control Panel. This primarily lets the user run/pause
and step through the simulation. In addition to providing progress information
and allowing the user to prematurely end a simulation whist still executing post
processing, archiving and tidying up of the databases and connections.

The Event Script Manager (ESM) uses the Java reflection API to fa-
cilitate runtime execution of Java methods. This allows the user to script the
execution of a method at a certain time point with specific variables independent
of the platforms compile time behaviour. This script initially takes the form of
an input file, but events can be added through the GUI during runtime. Methods
can also be scripted for execution before or after the simulation run such that
the user can use them for initialisation or post processing. Given the generic na-
ture of scripting method execution there are a vast array of possible uses, these
include, triggering events in the simulated physical world, adapting the network
topology, altering parameters and timing each agent’s entrance or exit from the
simulation.

The Plugin Manager (PM) allows the user to launch plugin modules from
input files or a GUI during runtime; the key difference between plugins and
methods being that plugins persist between simulation cycles meaning that they
are repeatedly executed, have memory between simulation cycles and can in-
clude a user interface. As a result they form the basis of the many possible data
archiving and visualisation tools. The PM, like the ESM auto-detects available
plugins and allows the user to launch and remove them during runtime. A plugin
can be created by simply using the plugin interface. The power of the plugin
architecture is illustrated by two key plugins, the DataArchiver and the Visu-
aliser.
DataArchiver : One key feature of any simulation platform is the ability to log
experimental data. A basic DataArchiver plugin class is provided in the platform
API that can create results logs in the form of spreadsheets. The specific nature of
the data and its layout in the output-file is defined by the user as it is scenario
dependant. This is relatively easy process of instantiating the DataArchiver’s

PRESAGE: A Programming Environment for the Simulation of Agent 93

abstract method getDataRow() to return a row of data in the form of an array.
In each simulation cycle the plugin will then get the required data and archive
it in a comma separated file.
Visualisation Plugins: We provide a small group of plugins specifically designed
to enable the user to create realtime visualisations of experimental data. At this
time we have created three basic forms: line graphs, radial plots and network
visualisation. While it is our intention to extend this library further in the future,
the user can, of course, create their own as needed.

3.3 External Connections

The platform supports many types of external connection. In this section, we
review three, TCP/IP connections, MySQL, and access to other external appli-
cations.

TCP/IP Communication consists of a client/server pair for communicat-
ing with external processes such as situated agents, remote servers and network-
ing the platform to additional simulators.

The MySQL connection is managed by the platform for providing short-cut
methods to perform queries and updates, in addition to managing the java-sql
connection (jdbc). This enables users to store large volumes of simulation data
including event logs for post-processing. The participants can also use SQL to:
store beliefs, form temporary data structures from more than one table, perform
mathematical functions on large datasets or quickly and efficiently search and
organise a large amount of information.

External Process Invocation is handled by a number of convenience meth-
ods allowing the execution of system commands and external applications from
within the platform. These can either be called by user defined code in the net-
work, physical world, participant, or plugin classes; or by a scripted event. This
is particularly useful for launching agent processes outside the simulation, calling
on Gnuplot or a spreadsheet application to post-process simulation results.

3.4 Environmental Interfaces and Abstract Classes

Agent systems operate in a number of physical and network environments from
fully connected static networks without the need to model a physical world to
vehicular adhoc networks (VANETS). The individual properties of these envi-
ronments pose unique challenges to the agent system developer, therefore it is
essential that agent simulation platforms support the custom specification of
these environments. In order to achieve this the PRESAGE platform contains
two abstract classes namely the Network Simulation Module and a Physical
World Simulation Module.
Network Simulation Module: The network module’s core function is to facil-
itate the exchange of messages between connected peers and to simulate dynamic
connectivity between the participants. Network modules are simple to create by
extending the basic abstract class to determine the required behaviour. The

94 B. Neville and J. Pitt

Fig. 3. Plugin creates a realtime animation of the changing positions of the agents in
the simulated physical world and the effect this has on the topology of the physical
and logical networks

following network types have been created: static fully/partially connected, un-
structured P2P, hybrid P2P and mobile adhoc networks.
Physical World Simulation Module: The platform supports the inclusion
of a simulated spatial environment for the agents. Like the simulated network,
the physical world is an interface class which allows for custom specification
by the experimenter. The basic interface supports the addition and removal of
participants from the world and facilitates the sensing and effecting of their
environment. It is up to the user to define the valid actions and their effect on
the state of the world, in addition to any rules of the environment not determined
by agent behaviour.

An example of using the physical world and network interfaces is an instance of
a wireless mobile adhoc network (MANET) simulation. In our configuration the
agents can move in a two dimensional environment and can sense the relative
position of nearby peers. The world itself bounces agents when they interact
with its boundaries causing the agents to move in a Brownian motion. The
spatial data of the world is used by the network module to calculate the physical
connections of the network based on relative distances between peers and their
wireless transmission ranges. The physical network topology can then be used
to infer the logical connectivity of the participants. A realtime visualisation of
the physical world and the resultant network is provided by a plugin shown in
Fig. 3.

4 Agents, Participants and Communication

The principal component of the platform is its collection of agents, whose in-
teraction with one another and their environment is our primarily interest. In
theory it would be ideal for the platform not to constrain the design of the agents

PRESAGE: A Programming Environment for the Simulation of Agent 95

Table 1. Required methods and variables for a simulation participant

Variables

public String gUID globally unique identifier: defined
from input file

public Queue inbox to allow the network module to en-
queue messages to the agent

Methods

public boolean isRole(String role); returns true if role is one of the par-
ticipants roles.

public void execute(); called by the simulation thread
upon a participants turn.

public void onActivation(); called by the platform when the
agent becomes active in the simu-
lation.

public void onDeActivation(); called by the platform when the
agent is removed from the simula-
tion.

in any way. However in order to interact with the base simulation model and
ensure the interoperability of participants a degree of homogeneity is required.
Table 1 lists these prerequisites. Externally the agent must have a globally unique
identifier (GUID), defined roles and communicate via a common agent commu-
nication interface (as defined in the following section). However, internally the
requirements simply facilitate the interaction with the simulation platform, for
instance activation/deactivation of the agent and calling the agent to take it’s
turn via a public methods e.g. execute(). The user may also customise the
simulation thread to allow them to interleave the execution of agents, this is
achieved by replacing the execute() method with a series of sub-methods. This
is the approach used in the example applications in section 5. Within these con-
straints the user is free to develop their own agent architecture be it reactive,
deliberative, BDI or otherwise. As such the platform is neutral with respect to
the agents’ internal architectures.

4.1 The Participant Class

It is expected that the majority of users of the platform will be primarily
interested in the interaction between agents and the evolution of behaviour
within a simulated agent society. As such we have developed a root agent class
Participant from which researchers can derive heterogeneous agents for partic-
ipation in their simulations. Figure 4 shows how one might derive the necessary
classes for an online auction scenario in a Virtual Organization and instantiate
an heterogeneous population from them. Notice that the class hierarchy allows
us to define more or less sophisticated agent strategies: from the simple buyer,
socio-cognitive buyer, and onto machine learning or game theoretic buyers. The
participant class handles as much of the agent’s internal operation as possible

96 B. Neville and J. Pitt

Participant

Participants.csv

Seller Buyer

AuctioneerMalicious
Seller

Honest
Seller

Java Class
Hierarchy

Simple
Buyer

Socio-Cognitve
Buyer

Agent
Population

Input
Parameters

Fig. 4. Using Java OOP, Participant class and input files to define a heterogeneous
agent population

(without sacrificing scenario flexibility). Its architecture is a combination of de-
liberative and probabilistic models, this has proved sufficiently complex for our
experiments in emergent behaviour.

To create the individual participants The derived classes must then be launched
and parametrised via an input-file. Each row of the file launches and specifies an
individual agent’s parameters. The core inputs the user must specify for each agent
include, among other things, the Java class that includes the agents reasoning and
communication protocols which extend our generic participant class, the agents
globally unique identifier, the initial roles to be assigned to the agent. In addition
the user can provide scenario specific parameters for example in our trust and e-
commerce scenario the participants input file also defines what trust model each
agent will adopt, its economic constraints/preferences and its character type e.g.
its inclination towards and strategy for illegal, unethical and antisocial behaviour.

4.2 Agent Communication

The simulation platform aims to put minimal restriction on the internal charac-
teristics of the participating agents. However, in order for the agents to commu-
nicate effectively some a priori knowledge as to the mechanisms and semantics
of communication are required. Following, Pitt and Mamdani [11] who argue
for the use of a protocol based semantics in the external specification of agent
interaction specifically between agents with behavioural and architectural het-
erogeneity. Within the participant class we provide the necessary mechanisms
for handling protocol based communication between the agents. In fact all the
mechanisms from message sending and parsing to maintaining the state of cur-
rent interactions is built in; effectively reducing the users work load to defining
the protocol and the reasoning of the agents at each stage of that protocol.

PRESAGE: A Programming Environment for the Simulation of Agent 97

In this section we discuss the defined agent communication interface which
permits and facilitates the exchange of information between peers. The interface
consists of a higher and lower level component pair: the agent communication
language (ACL) and the mechanism for transmitting messages. Message trans-
mission is achieved by calling the

sendMessage(Message, InetAddress)

method of the Network module. The Network module will either send the mes-
sage via TCP/IP sockets or enqueue the message to the recipient’s inbox queue;
depending on whether the recipient is internal or external to the platform. We
define our ACL in terms of three components: The message syntax, the mech-
anisms maintaining the state of a communicative context (a conversation) and
the external semantics of the protocols. The following three subsections discuss
the way that messages, conversations and protocols are represented, in order to
give the user an understanding of how to implement a protocol and associated
agent behaviour within our framework.

Message Syntax. In order for agents to parse and interpret information ex-
changed between them there must be an agreed upon message syntax. In our
ACL a message takes the form of a seven-place term (see below) where the
terms R and S denote the intended recipient and the sender respectively; these
are instantiated with the agents GUID values. Element C defines the type of
communicative act (i.e query or purchase) being performed. P determines the
protocol (i.e. CNP or Hello) under which the communicative act is being issued.
CKs and CKr are the conversation keys (ConvKey) of the sender and recipient
respectively; these are used by the agents to recognise the ongoing context in
which a message should be interpreted (Pitt and Mamdani [11]). When an agent
initiates a conversation they create a conversation object and a instantiate it
with a locally unique conversation key. This key is then sent with all subsequent
messages. When an agent receives a message without an instantiated CKr it sig-
nals that this is the first message of a new conversation; the recipient will then
create a new conversation and instantiate its key before processing the message.
The format of the message contents is determined by the message performative
C and the protocol P being followed.

message (R, S, C, P, CKr, CKs, Content) ;

message (Agent0056, Agent0022, introduction, hello,
(.), (4.0), contents(Agent0022, 〈consumer, 127.0.0.1 : 9436〉));

Conversations. As an agent executes an interaction protocol with a peer it
must maintain local information about the context of that interaction. The
agents achieve this by creating a conversation object for every multi-stage in-
teraction initiated. A conversation object has the following structure:

conversation(CKm, CKt, tID, P, S, T o, Beliefs) ;

98 B. Neville and J. Pitt

CKm and CKt are the agents ConvKey and its peer’s respectively. These
ConvKeys are used to link incoming messages to an ongoing conversation and
to instantiate the ConvKey fields of any replies. The fields tID and P identify
whom the conversation is with and which protocol they are following. The state
of the conversation S identifies at which point of the protocol (and therefore
which section of the agents reasoning) the next message or timeout should refer
to. To is the time at which the conversation is internally called, this can happen
for a number of reasons: it could be used to end a period of open bidding in an
auction protocol or simply to call a conversation to resend a message or tidy up if
a peer has failed to respond. Finally the beliefs field is a set of temporary beliefs
which the agent wishes to directly associate with a conversation, for instance the
current highest bid in an auction.

It is necessary that the participant are able to carry out multiple conversa-
tions at any given time; the set of active conversation objects are stored in the
conversations KB. Periodically the agent checks to see if any of the conversations
have timed out or have completed. If the state of a conversation is completed
then the conversation is removed from the KB. However if the conversation has
timed out: the code associated with the protocol is passed the conversation.
When we refer to the code associated with a conversation, we are referring to
the user defined method that defines the agents behaviour at each stage of the
protocol as describe in the next section.

Protocols and User Defined Semantics. The Participant class uses the Java
reflection API in order to provide a user extensible protocol library. To add a
protocol to the agent the user simply creates two methods:

protected void protocol name(Message msg)

protected void protocol name(Message msg, ConvKey convkey)

The first method is called on receipt of any message claiming to conform
to the protocol. This method performs a number of checks before calling the
second method; for instance if the message is part of an ongoing conversation
and if that conversation actually exists; or if the message is intended to start
a new conversation in which case it will create a new conversation object. The
second method is called in three situations: agent receiving a message (via the
first method), a conversation timeout in which case the message is null and
finally as a result of a child conversation returning. It is in the second method
that the user codes the relevant agent behaviours for each stage of the protocol.

This handling of messages and conversations is added to the Participant class
for the convenience of users whom do not require a specific agent architecture.
With more advanced applications users can override built in conversation and
messaging functions allowing messages to instead be passed over to code written
in languages supported by the Java Native Interface including among others
Prolog, C++ and Smalltalk.

PRESAGE: A Programming Environment for the Simulation of Agent 99

5 Sample Applications

In this section we summarise three agent systems which we have prototyped and
simulated within the PRESAGE platform.

5.1 Social Networks and Recommendation

In this scenario the prototype system under investigation is a P2P recommen-
dation network. Whereby differing peer preferences gives rise to states of in-
consistent union and the distributed architecture results in peers maintaining
local, subjective and incomplete recommendation sets. The aim is for agents
to base their purchase decisions on the recommendations of peers with similar
preference. To do this in a traditional centralised collaborative filtering system,
a server models the degree of similarity between all the peers based complete
knowledge of their opinions and then uses this data to infer a desirability score
for each agent to untried content pairing. Within a distributed environment this
approach would cause significant computational scalability and network load-
ing issues. We are using PRESAGE to simulate an agent society whereby peers
model one another based on only the locally available recommendations. By us-
ing these peer models to self-organise their network connections the agents can
exploit the localised and incomplete nature of the network to pre-filter recom-
mendations thus increasing the utility of the incoming recommendations without
being required to compute models for every peer, discovering all the available
products or replicating their beliefs across the system.

5.2 Open Distributed Agent Mediated Marketplace

In this study we investigated the behaviour of an agent mediated marketplace
which was intrinsically unmoderated, dynamic, and which could not guaran-
tee that its participants would behave honestly, ethically and competently. The
agents were adapted by integrating a framework for socio-cognitive reasoning
(trust, recommendation and reputation) into the individual agents economic de-
cision making. The results of our simulations show that the integration of social
behaviour into the trading agent architecture can not only act as an effective
mechanism for discouraging norm-violation, but also minimise the detrimental
economic inefficiencies resulting from the protective measures. Details of this
work can be found in [12,13].

5.3 Adaptation of Voting Rules

In previous work with agent-based mobile ad-hoc networks, vehicular networks,
and virtual organizations a common scenario is for the collective use of a lim-
ited common resource. In this application of the platform, we have defined a
multi-agent system which is highly volatile, in the sense that agents can be (un-
predictably) ‘present’ or ‘absent’ in any time slice. The agents that are present
have to vote on the distribution of resources. The problems are, firstly, to decide

100 B. Neville and J. Pitt

on an ‘equitable’ distribution of resources without depleting it (i.e. the ‘tragedy
of the commons’); and secondly, to adapt the voting rules in one time slice to
(try to) ensure a ‘safe’ allocation in the next one. Presage is proving useful here
because, given the range of different possible characteristics and complex func-
tionality of the agents, it is straightforward to generate and configure a large and
diverse population mix. The time-driven execution model supports the time slice
allocation of resources, and the visualisation allows us to follow, at run-time, the
key dependent variables as they change: network structure, voting rules, agent
‘satisfaction’, and resource allocation. Details can be found in [14].

6 Related Work

Rapid prototyping and animation of agent societies in a logical form has been
effectively used in order to demonstrate and verify properties of agent societies.
In [8] Vasconcelos et al present an approach to rapid prototyping multi-agent
systems through the definition of a global interaction protocol. The global pro-
tocol defines the types and order of interaction between the components is used
to automatically generate a set of agents which are simulated to check for de-
sirable properties in the protocol. CaseLP [9] is a logic-based prototyping en-
vironment for specifying and verifying complex distributed applications it also
provides tools for specifying certain network properties when developing proto-
types of distributed systems e.g. reliability or latency of connections. We argue
that these approaches provide a complimentary perspective to the one offered
by PRESAGE where we are primarily interested in the global long run outcomes
and dynamic behaviour of the system. PRESAGE can however produce a nar-
rative (a sequence of actions) of its simulation of the society, this combined with
a description of the social states can be used to invoke tools such as the Society
Visualiser[3] to check system or protocol properties.

Muli-agent Based Simulation (MABS)[10] is a micro-level approach to sim-
ulation of complex systems. Whereby the behaviour of system components or
individuals are modelled as agents. A number of MABS tools exist [15] includ-
ing Swarm1[6], Repast 2 and MASON [7] and are widely used for Agent Based
Social Simulation (ABSS)[16,17,18]. In contrast to MABS the PRESAGE plat-
form is intended as a multi-agent based simulator for agent societies; as opposed
to MABS where generally the focus is upon modelling a non-agent system as
a system of agents. Hence our requirement for supporting heterogeneous agent
architectures and simulating properties of communication networks. ABSS uses
MABS techniques to model human interactions within a multi-agent system,
generally with relatively simple behaviours (on an individual agent basis) that
when simulated their interactions lead to complex global behaviour. These re-
sults are subsequently used to understand and elaborate social theories. Our
social agent experiments [12,13] cross-fertilise with the theories and formalisa-
tions of the ABSS field and the wider social sciences. However our interest lies
1 www.swarm.org
2 http://repast.sourceforge.net/

PRESAGE: A Programming Environment for the Simulation of Agent 101

in using this knowledge to solve problems related to open agent societies which
diverges from their use to further understand human society.

Multi-agent system development tools (for an evaluation see [19]) such as
AgentBuilder3 and JADE support analysis, design, development and deploy-
ment of multi-agent applications. More specifically, JADE4 [5,20,21] is a robust
middleware for developing FIPA5 compliant agent applications. The JADE agent
framework provides the developer with an API for message syntax and parsing
and a set of standard interaction protocols thus simplifying the process of de-
veloping interoperable agents. There also exists a deployment tool [22] which
supports the configuration and deployment of JADE agent based applications.

We view PRESAGE prototyping as a step before frameworks like JADE or
AgentBuilder; providing a platform for investigating system wide performance,
emergent behaviour, optimising interaction protocols and algorithms. We are
currently working on supporting a deployment path for our test-bed participants:
currently users are able to wrap the simulation participants in a class that allows
them to function independently of the simulation platform.

One element of our future work is a thorough analytic comparison of
PRESAGE functionality with respect to other Multi-agent programming tools
such as MABS, JADE, AgentBulider, etc. Based on criteria such as, for example
the type of agent, the type of society, its intended use, its intended users and
so on.

7 Summary and Conclusions

Given the complex and dynamic nature of agent societies including self-
governance, evolving norms and emergent behaviour, the process of developing
systems which robustly exhibit desirable system wide behaviours under con-
ditions which cannot be guaranteed; can be time-consuming and complex. In
this paper we have described our approach to rapid prototyping and testing
agent societies. PRESAGE affords the user centralised global monitoring and
simulation control, is flexible and extensible through the use of abstract classes,
event-scripting and plugins; supports heterogeneous agent architectures and the
simulation of an agent system’s underlying dynamic network architecture.

We have given examples of our platform being utilised to prototype and test
open distributed agent systems featuring proactive behaviour, lack of centralised
control, heterogeneity and adaptability. Further more our institution is currently
utilising the PRESAGE platform to investigate application of game theory, al-
ternative dispute resolution, opinion formation and norm emergence in agent
societies.

Through this experience we intend to fully document and refine the frame-
work before contributing it to the wider community. We designed and built the
platforms’s functional architecture to support the non-functional specification
3 www.agentbuilder.com
4 http://jade.tilab.com
5 www.fipa.org

102 B. Neville and J. Pitt

presented in section 2, however, as this is an ongoing development we have yet
to implement these requirements in full. Future work includes tools for auto-
mated exploration of the parameter space, greater variety of predefined agent
architectures and extended support for deployment on multi-core and cluster
computing.

Acknowledgments

This work has been undertaken in the context of the EU-funded ALIS6

project(IST 027968). We are also grateful for the useful comments of the anony-
mous referees.

References

1. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

2. DeLoach, S., Oyenan, W., Matson, E.: A capabilities-based model for adaptive
organizations. Autonomous Agents and Multi-Agent Systems 16(1), 13–56 (2008)

3. Artikis, A., Pitt, J., Sergot, M.: Animated specifications of computational societies.
In: Castelfranchi, C., Johnson, L. (eds.) Proc. of the First International Conference
on Autonomous Agents and Multi-Agent Systems, pp. 1053–1062. ACM Press, New
York (2002)

4. Sierra, C., Rodŕıguez-Aguilar, J., Noriega, P., Esteva, M., Arcos, J.: Engineering
multi-agent systems as electronic institutions. European Journal for the Informatics
Professional V(4), 33–39 (2004)

5. Bellifemine, F., Poggi, A., Rimassa, G.: Jade - a fipa-compliant agent framework.
In: Proceedings of PAAM 1999, pp. 97–108 (April 1999)

6. Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The swarm simulation system,
a toolkit for building multi-agent simulations (1996)

7. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multiagent
simulation environment. simulation 81(7), 517–527 (2005)

8. Vasconcelos, W., Robertson, D., Sierra, C., Esteva, M., Sabater, J., Wooldridge,
M.: Rapid prototyping of large multi-agent systems through logic programming.
Annals of Mathematics and Artificial Intelligence 41(2-4), 135–169 (2004)

9. Martelli, M., Mascardi, V., Zini, F.: A logic programming framework for compo-
nentbased software prototyping (1999)

10. Davidsson, P.: Multi agent based simulation: Beyond social simulation. In: Moss, S.,
Davidsson, P. (eds.) MABS 2000. LNCS, vol. 1979, pp. 97–107. Springer, Heidelberg
(2001)

11. Pitt, J., Mamdani, A.: A protocol-based semantics for an agent communication
language. In: Proceedings 16th International Joint Conference on Artificial Intelli-
gence IJCAI 1999, pp. 485–491. Morgan-Kaufmann, San Francisco (1999)

12. Neville, B., Pitt, J.: A computational framework for social agents in agent mediated
e-commerce. In: Omicini, A., Petta, P., Pitt, J. (eds.) Engineering Societies in the
Agents World IV. Springer, Heidelberg (2004)

6 www.alisproject.eu

PRESAGE: A Programming Environment for the Simulation of Agent 103

13. Neville, B., Pitt, J.: A simulation study of social agents in agent mediated e-
commerce. In: Proceedings of the Seventh International Workshop on Trust in
Agent Societies (2004)

14. Carr, H., Pitt, J.: Adaptation of voting rules in agent societies. In: Proceedings
AAMAS Workshop on Organised Adaptation in Multi-Agent Systems (OAMAS)
(2008)

15. Gilbert, N., Bankes, S.: Platforms and methods for agent-based modeling. Proc. of
the National Academy of Sciences of the United States of America 99(10), 7197–
7198 (2002)

16. Conte, R., Edmonds, B., Moss, S., Sawyer, R.K.: Sociology and social theory in
agent based social simulation: A symposium. Comput. Math. Organ. Theory 7(3),
183–205 (2001)

17. Conte, R.: Agent-based modeling for understanding social intelligence. Proceedings
of the National Academy of Sciences of the United States of America 99(10), 7189–
7190 (2002)

18. Davidsson, P.: Agent based social simulation: A computer science view. J. Artificial
Societies and Social Simulation 5(1) (2002)

19. Ricordel, P.M., Demazeau, Y.: From analysis to deployment: A multi-agent plat-
form survey. In: Omicini, A., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2000.
LNCS, vol. 1972, pp. 93–105. Springer, Heidelberg (2000)

20. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with jade.
In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS, vol. 1986, pp. 89–
103. Springer, Heidelberg (2001)

21. Bellifemine, F., Rimassa, G.: Developing multi-agent systems with a fipa-compliant
agent framework. Softw. Pract. Exper. 31(2), 103–128 (2001)

22. Braubach, L., Pokahr, A., Bade, D., Krempels, K.-H., Lamersdorf, W.: Deployment
of distributed multi-agent systems. In: Gleizes, M.-P., Omicini, A., Zambonelli, F.
(eds.) ESAW 2004. LNCS, vol. 3451, pp. 261–276. Springer, Heidelberg (2005)

	PRESAGE: A Programming Environment for the Simulation of Agent Societies
	Introduction
	An Overview
	Platform Architecture
	The Base Simulation Module
	Managers
	External Connections
	Environmental Interfaces and Abstract Classes

	Agents, Participants and Communication
	The Participant Class
	Agent Communication

	Sample Applications
	Social Networks and Recommendation
	Open Distributed Agent Mediated Marketplace
	Adaptation of Voting Rules

	Related Work
	Summary and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

