
Orwell’s Nightmare for Agents?

Programming Multi-agent Organisations

Nick A.M. Tinnemeier, Mehdi Dastani, and John-Jules Ch. Meyer

Utrecht University, The Netherlands

Abstract. This paper presents a programming language that is de-
signed to implement multi-agent organisations. These organisations are
developed as separate entities regulating the behaviour of individual
agents that interact with the organisation. The focus is on the norma-
tive aspect of organisations that are specified in terms of norms being
enforced by monitoring, regimenting and sanctioning mechanisms.

1 Introduction

One of the greatest challenges in the development of multi-agent systems (MAS)
is to cope with the large complexity that is caused by the interaction between
agents that autonomously pursue their own goals. Using an organisation-centred
approach (as opposed to an agent-centred one) is conceived as a way to decrease
this complexity and make the development of MAS easier to manage [1,2]. In
this approach the organisation is developed as separate entity in terms of or-
ganisational concepts (e.g. roles, groups, and norms). From the organisation
perspective, the internal state of the agents is not observable, only the actions
to be performed in external environments are. That the advantage of using an
organisation-centred approach is widely recognised is displayed by the numer-
ous agent methodologies (e.g. Gaia [3]), models (e.g. OperA [4], Moise+ [5],
E-Institutions [6], AGR [7]) and frameworks (e.g. AMELI [8], S-Moise+ [5])
that adopt (at least some) organisational concepts.

Normative elements constitute an important aspect in developing organisa-
tions. Since no assumptions are made about the inner workings of agents partici-
pating in the organisation, also no assumptions can be made about the behaviour
they will exhibit. Norms provide the agents with some behavioural guideline,
thereby ensuring that the objectives of the organisation are not endangered.
Normative elements thus specify the rules of behaviour (norms) the agents ought
to obey when participating in the organisation. These norms are often specified
by means of concepts like permissions, obligations, and prohibitions.

To fully exploit the results of MAS research in the development of complex
software systems, sophisticated programming languages are needed to put theory
to practice. Such a programming language must satisfy the fundamental require-
ment that it is “reasonably natural for solving problems, at least problems within
its intended application area” [9]. A language is considered reasonably natural if

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 56–71, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 57

we are able to keep the concepts used in analysis and design alive in the imple-
mentation. Without this, the concepts used in specification and design need to
be implemented in an ad-hoc manner, making the implementation a burdensome
task prone to errors, having negative impact on the product’s maintainability.

Although we acknowledge that a multi-agent organisation encompasses more
than the normative element only (see section 2), the focus of this paper is on
the normative element of multi-agent organisations. We aim at operationaliza-
tion of the normative elements based on which we design a programming lan-
guage to implement organisations. In the literature there is related work on
electronic institutions for regulating agents according to certain norms. In par-
ticular, ISLANDER[6] is a formal framework for specifying norms in institutions,
and is used in the AMELI platform[8] for executing electronic institutions based
on rules provided in it. A difference with our work is that ISLANDER/AMELI is
primarily aimed at very concrete norms in the form of procedures, typically in the
form of “ought-to-do’s” on speech acts, while in our approach we are primarily
concerned with more abstract, declarative norms (“ought-to-be’s”, cf. [10,11]).
Another difference is that in contrast to our approach, in ISLANDER/AMELI
norms can never be violated by agents.

Another work that is concerned with the operationalization of multi-agent
systems using organisational concepts is the work of S-Moise+[5]. S-Moise+ is
an organisational middleware, in which also more abstract, declarative norms
are used. In this approach, however, norms merely serve as guidelines of proper
behavior for the agents in the system. It lacks a mechanism to detect whether
an agent has actually fulfilled its obligations, let alone a sanctioning mechanism.
In our approach, however, programming MAS means to program detection and
sanctioning mechanisms since these determine the type of coordination put into
place by the system.

A different approach of regulating the external behavior of individual agents
is that of using coordination artefacts [12]. Just like these artefacts, we propose
to develop an organisation as a separate entity with the goal of coordinating
external agents. In our work, however, coordination is achieved by means of
high-level constructs such as norms, more closely relating to the models in which
MAS are usually designed, and not so much as low-level coordination concepts
such as synchronization of processes coordination artefacts are based on.

Closely related to this work is [13] in which a simplified version of a program-
ming language that is designed to implement norm-based artefacts is proposed,
along with a logic that can be used to specify and verify properties of programs
developed in this language. In this paper the programming language is enriched
with temporal aspects, constructs to refer to actions and roles. A logic to reason
about programs implemented in our language is omitted, however.

Section 2 explains the key concepts of normative MAS and organisations
reasearch that are of importance in this paper. Section 3 presents the syntax
and semantics of our programming language. Section 4 explains how normative
multi-agent organisations can be implemented by this language, and section 5
concludes this paper and hints at some directions for future research.

58 N.A.M. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer

2 Key Concepts of Multi-agent Organisations

Our approach of designing a normative multi-agent programming language is
based on ideas from research in normative systems and research in multi-agent
organisations. Therefore, this section introduces some of the key concepts that
we use from this area.

In general, the organisations which we aim to implement with our program-
ming language consist of the following components. Part of the organisation is the
environment which state can be modified by the external actions of agents that
interact with the organisation. No assumptions are made about the inner workings
of these agents. We assume that the organisation is able to determine the effects of
these external actions. Also part of the organisation is a detectioning mechanism
that normatively assesses the organisation and a sanctioning mechanism imposing
sanctions as a result of this normative assessment. The organisation thus becomes
a Big Brother monitor the agents’ behaviour and imposing sanctions accordingly,
thereby embodying Orwell’s nightmare for agents. It should be emphasised that
in our approach the organisation is a passive entity merely reacting to the actions
that external agents perform within the environment.

To illustrate these components as well as some other concepts that are of
importance in our approach, we use a simple example of a software simulation of
a railway system. In this simulation software agents play the role of passengers
that travel by train. The conditions of using the transport system are captured
as norms. Other examples of applications we are targeting at are, for instance,
a financial administration database, a conference management system, or an
online marketplace.

2.1 The Normative Aspect of Organisations

Norms often find their representation in deontic logic, a logic for reasoning about
ideal and actual behaviour. Many different deontic logics have been developed
introducing operators for permission, obligation and prohibition (see [14] for an
overview). In this work norms are represented as elementary counts-as state-
ments as motivated and developed in [15].

Counts-as statements are used to classify or make a judgment about the or-
ganisation. Herewith, a distinction is made between between brute and norma-
tive/institutional facts as first advanced in [16]. The environment is described
by means of brute facts, e.g. “agent a is in the train without a valid ticket”.
The value judgment of this situation is expressed by means of normative facts,
e.g. a classification as good (desirable), ugly (undesirable, but tolerated) or bad
(extremely undiserable, and not tolerated). For instance, to say that for agent i
it is forbidden to be in the train without a ticket is to say in terms of counts-as
statements that being in the train without a ticket counts as a violation for i:

in train(i) ∧ −ticket(i) ⇒ viol(i) (1)

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 59

Counts-as statements thus label the situation as expressed by brute facts with
normative facts, thereby normatively assessing the organisation.

Deontic notions like prohobition, obligation, and permission can be expressed
as counts-as statements. Intuitively (see [15] for a thorough analysis), the deontic
notion of being prohibited to be in a (brute or normative) state characterised by
p can be modelled in terms of counts-as statements by stating that p counts-as
a violation. If it is permitted to be in a situation in which p holds then being
in a situation in which p holds does not necessarily count as a violation1. An
obligation to be in a (brute or normative) state in which p holds means that
being in a state in which p does not hold necessarily counts as a violation.

To validate the norm described by the counts-as statement as specified by
formula 1 only the current state of the system needs to be judged, because the
act of being in the train without a ticket can be detected at the very moment the
agent is in the train without a ticket. There are also norms, however, which need
a time line to be validated. For instance, in order to validate a norm like: “A
passenger ought to buy a ticket while on the train.”, requires an assessment of the
whole period in which the passenger travels by train. To be able to also express
this kind of norms, which have temporal character, we enrich the language of
counts-as statements with temporal operators.

In order to motivate the agents that participate in the organisation to obey
the rules of behaviour, besides a representation of the norms also a mechanism
is needed for letting the agents abide by the norms. One way of assuring that
the agents comply with the norms is to rule out all the actions that will lead to
a violation state, such that a violation will never happen. This way of carrying
out the norms is referred to as regimentation. The organisation can somehow
prevent an agent from performing an external action that causes a violation. This
presupposes the organisation to have the ability to determine the effect of the
actions that can be performed by the agents. An example of a case in which this
presumption holds is an operating system that can disable certain operations for
users that do not have the right permissions. Note that this presumption does
not imply that the system has control over the internals of the agent, it can
still try to perform the operation, but the result is simply not effectuated by the
operating system.

As alternative to regimentation an enforcement mechanism can be used. En-
forcement is based on the idea of responding after a violation of the norms has
occurred. Following the old Roman saying “ubi lex ibi poena” (where there is
a law, there is a sanction), we also define rules that specify the sanction that
should be imposed as a consequence of this violation. For example, the sanction
belonging to the violation caused by agent i travelling without a ticket is a fine
of 10 credits, written as:

viol(i) ⇒ fined10(i) (2)

1 In [15] also a more strong notion of obligation is defined in which p is permitted iff
p necessarily counts as −viol. In this paper, we use the weak notion, however.

60 N.A.M. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer

These rules are in fact the inversion of the counts-as rules. Instead of stating
which normative terms apply as a consequence of brute facts, sanctioning rules
associate new brute facts with certain normative facts. An enforcement mecha-
nism is especially useful in case the system cannot determine the effects of certain
actions. However, even when the organisation is able to apply regimentation, en-
forcement might still be fruitful, because allowing for violations contributes to
the flexibility and autonomy of the agent’s behaviour [17].

2.2 Other Organisational Aspects

As already mentioned, an organisation consists of more than normative aspects
only. Besides the normative aspects, in [18] three other major organisational
aspects were identified. Functional elements refer to the functioning of the or-
ganisation by stating its main objectives, and how they can be achieved. For in-
stance, by specifying global plans that prescribe the steps that should be taken
to reach the objectives (cf. functional specification of Moise+ [5]). Structural
elements define the specific structure of the organisation that is used to reach
these objectives, and is usually defined by means of the roles that should be
fulfilled along with the relations between these roles, such as power, coordina-
tion, and control (cf. [15]). Dialogical elements deal with the communicative
aspects of the organisation ensuring efficient communication between agents, an
important prerequisite in reaching the organisational objectives. They specify,
for instance, communication protocols (cf. [6]) specifying the possible dialogic
interaction between roles.

Roles form an important concept in all organisational aspects. In [19] a role
is described as ”...a class that defines a normative behavioral repertoire of an
agent.”. In this work we will treat roles as being labels denoting the name of
the roles agents can play within an organisation. Special facts rea(i, ρ) then
model that agent i has enacted a role typified by the label ρ. Moreover, we will
introduce actions for enacting and de-enacting (deact from now on) roles that
allow agents to enact and/or deact roles dynamically. Later on, we will show
that this simple view on roles in combination with the normative aspect of the
organisation allows to already handle some structural aspects of an organisation.

3 A Normative Multi-agent Programming Language

This section presents the relevant parts of the syntax and semantics of a pro-
gramming language that is designed to implement organisations.

3.1 Syntax of Programming Language

Agents that interact with the organisation can perform actions to change the
organisation. In particular, these actions allow agents to change the environment
(brute state of the organisation), to enact and deact roles, and to communicate
with each other. In defining the action language (and in the following), we assume

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 61

a set RoleName with typical element ρ as the set of labels identifying the roles
that agents can play within the organisation, and we assume a set of agents that
will be uniquely identified by i, j, . . .

Definition 1 (actions). Let ρ ∈ RoleName, let ExtAct with typical element
α be the set of external actions, and let ComAct be the set of communicative
actions with typical element γj in which γ is the identifier of the illocutionary
act, and j the identifier of the receiving agent. Then the set of actions Act with
typical element β is defined as:

Act = ExtAct ∪ComAct ∪ {enact(ρ), deact(ρ)}

The state of the organisation is built of brute facts specifying the environment
and normative facts specifying the judgment about the organisation. This same
distinction between brute and normative facts is made for the logical language
for expressing the facts representing the organisation: brute facts are modelled
in the propositional language Lb, whereas normative facts are modelled in the
propositional language Ln. Although a first-order language is much more expres-
sive, in this paper a propositional one is used for the sake of readability.

The special propositions of the form rea(i, ρ) are used to model the fact
that agent i has enacted role ρ. Propositions of the form done(i, β) are used to
denote that agent i has just performed action β. This allows to refer to actions
in expressing the norms. The special proposition viol⊥ is used to mark those
situations that are so undesirable that they are strongly forbidden in the sense
that the system assures that never such a state is reached. These propositions
thus pertain to the norms that are to be regimented.

The normative properties that are used for an assessment of the organisation
are expressed in L, a language of propositional linear time logic (PLTL) (see [20]
for an introduction). Norms can thus have a temporal character. In particular,
the operators X (neXt), G (Globally), F (Eventually), and U (Until) are intro-
duced. Some norms might also refer to normative facts, for instance, a violation
an agent has committed at some moment in the past. Therefore, the language
for expressing the norms can range over both brute and normative facts.

Definition 2 (logical languages). Given the set of atomic propositions P ,
special propositions done(i, β) for all β ∈ Act and all agents i, special proposi-
tions rea(i, ρ) for all ρ ∈ RoleName and all agents i, the language L (norms),
Lb (brute), and Ln (normative) are defined as:

- if p ∈ P then p,−p ∈ Lb

- done(i, β) ∈ Lb

- if q ∈ P then q,−q ∈ Ln

- rea(i, ρ) ∈ Ln

- viol⊥ ∈ Ln

- if φ1, φ2 ∈ (Lb ∪ Ln) then φ1, φ2 ∈ L
- if φ1, φ2 ∈ L then φ1 ∧ φ2,¬φ1 ∈ L
- if ϕ1, ϕ2 ∈ L then Xϕ1,Gϕ1,Fϕ1, ϕ1Uϕ2 ∈ L

62 N.A.M. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer

It is assumed that the brute and normative language are mutually exclusive,
more formally Lb ∩ Ln = ∅.

The performance of external actions by agents changes the state of the envi-
ronment. Brute effects specify how the organisation can advance in its computa-
tion by stating which brute facts are changed after the execution of the external
action, i.e. they determine the brute effect of the action execution. The specific
effect of performing an external action depends on the current state of the envi-
ronment. A brute effect is thus a triple consisting of a pre-condition specifying
when the action can be executed, the action name that is to be executed, and a
post-condition listing the brute facts that hold after execution.

Definition 3 (brute effects). Let ExtAct be the set of external actions and
ComAct be the set of communicative actions an agent can perform. The set of
brute effects Rb is defined in the following manner:

Rb = {(p1, . . . , pk) β (pk+1, . . . , pn) | p1, . . . , pn ∈ Lb and β ∈ (ExtAct)}
Normative rules are used to normatively assess the organisation. Recall that
norms are expressed as elementary counts-as rules associating normative facts
with a certain situation the organisation is in. This situation is described by the
antecedent by means of a temporal formula ranging over brute and normative
facts. The consequent then specifies which normative facts are to be associated
with this situation.

Definition 4 (normative rules). The set of normative rules Rn is defined as
follows:

Rn = {(ϕ1, . . . , ϕn) ⇒ (q1, . . . , qm) | ϕ1, . . . , ϕn ∈ L and q1, . . . , qm ∈ Ln}
It is possible that the system ends up in a less desirable state, for instance,
because some agent violated a norm. Sanctioning rules can then be used to
indicate the punishments that are imposed as consequence of this violation.
This mechanism thus pertains to enforcement of the norms. It should be noted
that the verdicts raised by the normative rules are not necessarily always of an
unfavorable nature. Sanctions can thus either be positive (rewards) or negative
(punishments). Just like normative rules, sanctioning rules have an antecedent
and a consequent, with the antecedent referring to the normative judgment of a
particular state and the consequent being the sanction that should be imposed.

Definition 5 (sanctioning rules). The set of sanction rules Rs is defined as:

Rs = {(q1, . . . , qn) ⇒ (p1, . . . , pm) | q1, . . . , qn ∈ Ln and p1, . . . , pm ∈ Lb}
Note that the antecedent of a sanctioning rule refers to the normative judgment
about a state and can only contain normative facts. The intuitive meaning is
that given a normative judgment of a certain state the consequent states the
sanction in terms of brute facts that are to be imposed on this state.

In the following, for each normative or sanctioning rule r we refer to its con-
dition by cond(r), and to its consequence by cons(r).

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 63

3.2 Semantics of Programming Language

Having defined the syntax for specifying an organisation, next we define the
operational semantics by means of a transition system [21]. Each transition
corresponds to a single computation step describing the transformation of one
configuration (program state) into another. Before defining the notion of or-
ganisational configuration, we first define the notion of organisational state and
history and some necessary functions operating on them.

As explained before, an organisation is characterised by brute facts and nor-
mative facts. An organisational state, describing the state of the organisation at
a certain moment, is therefore defined as a tuple consisting of a set of brute and
a set of normative facts. Seeing that the organisational state evolves due to the
execution of actions by agents, and the application of normative and sanctioning
rules, we define a consistency preserving operator for updating the organisational
state.

Definition 6 (organisational state). Given a consistent set of brute facts
B ⊆ Lb and a consistent set of normative facts N ⊆ Ln, an organisational state
Ω is defined as a tuple 〈B,N〉.

Further let X, the complement of a set of (brute or normative) facts X be the
set {φ | − φ ∈ X} ∪ {−φ | φ ∈ X}, then the functions ⊕b and ⊕n for updating
an organisational state are defined as:

〈B,N〉 ⊕b Xb = 〈Xb ∪ {B \Xb},N〉
〈B,N〉 ⊕n Xn = 〈B, Xn ∪ {N \Xn}〉

The performance of actions by agents changes the organisational state. The
brute effects are used in determining the effects of external action performance.
Not only external actions change the organisational state, however. For example,
when an agent i performs an enact action the agent has enacted a role ρ, which is
being modelled by the normative fact rea(i, ρ). Given an organisational state, an
action and an agent i, we define the effects function effect in order to determine
the new organisational state as a consequence of the performance of the action
by agent i.

Definition 7 (effects function). Given brute effect b = (Φ α Ψ), organisa-
tional states Ω = 〈B,N〉 and Ω′ = 〈B′,N ′〉 such that B′ = B \ {done(i, β) | β ∈
Act} and such that N ′ = {rea(i, ρ) | rea(i, ρ) ∈ N}, functions effect(i, β,Ω)
and effect(i, b, Ω) determine the effect of the performance of β or application of
b (corresponding to performance of α) in organisational state Ω by agent i:

effect(i, b, Ω) = Ω′ ⊕b ({done(i, α)} ∪ Ψ)
effect(i, enact(ρ), Ω) = (Ω′ ⊕b {done(i, enact(ρ))}) ⊕n {rea(i, ρ)}
effect(i, deact(ρ), Ω) = (Ω′ ⊕b {done(i, deact(ρ))}) ⊕n {−rea(i, ρ)}
effect(i, γj , Ω) = Ω′ ⊕b {done(i, γj)}

After the performance of each action, the brute state is updated with the fact
that the agent has performed that action. In particular, the fact done(i, β) is

64 N.A.M. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer

designed to mean that the previous state has been transformed in a new state,
because agent i has just performed action β. Therefore any previous done fact is
removed from B. As we shall see later on, only one agent can perform an action
per computation step, conforming to an interleaved action execution strategy.

In each state the brute facts change as a result of the agents’ actions, leading
to a new state. Normative facts directly depend on the current situation of the
system, i.e. a normative assessment needs to be done for each newly reached
state. Therefore, in determining the effects of an action, all normative facts of
the preceding state (N) are removed in the subsequent state (N ′), such that
this fresh state can be normatively assessed after the brute effects have been
determined. Note that the rea propositions are not removed, because once an
agent has enacted a role it will keep doing so until it performs a deact.

Recall that with the norms of the organisation we cannot only reason about
the present situation, but can also reason about things that happened in the
past. Therefore, we also need to remember the situations that occurred in the
past, and introduce the concept of an organisational history.

Definition 8 (organisational history). An (organisational) history σ is de-
fined as a finite trace Ω0Ω1 · · ·Ωn with Ωi = 〈Bi,Ni〉 being an organisational
state for all i ≤ n. The concatenation operator ◦ on traces is defined in the usual
way. Moreover, given a history σ = Ω0Ω1 · · ·Ωi · · ·Ωn, the suffix of σ from i,
denoted as (σ, i), is defined as the history Ωi · · ·Ωn.

To illustrate the intuitive meaning of a history, consider an organsitational his-
toryΩ0 · · ·Ωn. Then the first stateΩ0 models the initial state of the organisation.
The last state Ωn then models the most recent state that has been reached due
to the performance of an action by some agent. In case a new action is performed
by an agent, a new state Ωn+1 is added, denoting the new organisational his-
tory as consequence of carrying out this action. The whole trace Ω0 · · ·Ωn thus
models the present and the past of the organisation at a certain moment. We
emphasise that we use histories as snapshots pertaining to the execution thus
far, and not so much as possible executions such traces usually pertain to.

The satisfaction relation |= is defined on such organisational histories, making
it slightly different from the standard satisfaction relation for PLTL. Firstly, in
contrast to the traces on which PLTL formulae are evaluated an organisational
history is finite. Secondly, the states a trace is composed of now consist of a
tuple of sets of propositions instead of a single set. Since norms often refer to
the current situation, the macro now is defined to facilitate the notation.

Definition 9 (logical entailment). Let ϕ, ψ ∈ L and let p ∈ Lb and q ∈ Ln.
Also let σ be a history of length n + 1 with Ωi = 〈Bi,Ni〉 for each 0 ≤ i ≤ n.
Then the entailment relation |= w.r.t. trace σ is defined as:
1) (σ, i) |= (−)p iff (−)p ∈ Bi

2) (σ, i) |= (−)q iff (−)q ∈ Ni

3) (σ, i) |= ¬ϕ iff (σ, i) �|= ϕ
4) (σ, i) |= ϕ1 ∧ ϕ2 iff (σ, i) |= ϕ1 and (σ, i) |= ϕ2

5) (σ, i) |= Xϕ iff i < n and (σ, i+ 1) |= ϕ
6) (σ, i) |= ϕ1Uϕ2 iff ∃ j ≥ i. ((σ, j) |= ϕ2 and (∀ i ≤ k < j. (σ, k) |= ϕ1))

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 65

The auxiliary operators F and G are defined in terms of the already existing
operators, such that Fϕ ≡ �Uϕ and Gϕ ≡ ¬F¬ϕ. Further the macro now for
discerning the last state of a trace is defined as: now(ϕ) ≡ F(ϕ ∧ X⊥)

Each organisational state Ω that has just been reached needs to be assessed
by the normative rules, and sanctions need to be imposed accordingly. This is
a matter of adding the consequences of the (normative or sanctioning) rules of
which the premisses is satisfied to Ω. For this purpose, we define the applicability
of rules given a certain history, and the closure of a last state of a history under
a set of rules (being either normative or sanctioning rules). As the premisses of
a normative rule is a temporal formula, it needs to be evaluated on the whole
history Ω is part of. The premisses of sanctioning rules, on the other hand, refers
to the assessment of the most recent state and needs to be evaluated on Ω.

Definition 10 (applicable rules and closure under rules). Given a set of
rules R (either Rn or Rs) and a trace σ = Ω0Ω1 · · ·Ωn−1Ωn, the set of applicable
rules w.r.t. σ is defined as:

Appl(Rn, σ) = {r | r ∈ Rn and (σ, 0) |= cond(r)}
Appl(Rs, σ) = {r | r ∈ Rs and (σ, n) |= cond(r)}

Let ⊕ be either ⊕b or ⊕n and let

ClR0 (σ,Ωn,⊕) = Ωn ⊕ (
⋃

r∈Appl(R,σ) cons(r))

ClRk+1(σ,Ωn,⊕) = Ω′
n ⊕ (

⋃
r∈Appl(R,Ω0Ω1···Ωn−1◦Ω′

n) cons(r))

s.t. Ω′
n = ClRk (σ,Ωn,⊕)

then the closure of Ωn under R is defined as ClRk (σ,Ωn,⊕) for the minimal k
such that ClRk+1(σ,Ωn,⊕) = ClRk (σ,Ωn,⊕).

It should be noted that such a closure only exists under certain conditions for
the set of rules R (see [13] for what these conditions are).

Having defined all the necessary ingredients for defining the transition rules,
we are now able to define the organisational configuration. An organisational
configuration is a tuple composed of a set of agents that act in the organisation
and a history, modelling the situation of the organisation.

Definition 11 (organisational configuration). Let A = {A1, . . . , An} be the
set of agents with each Ai the configuration of individual agent i, and let σ be an
organizational trace. The configuration of an organization is defined as 〈A, σ〉.
Before defining the transition rules specifying how one organisational configura-
tion can evolve into another, we first define possible transitions individual agents
can make, without making any assumptions about their configuration.

Definition 12 (agent transitions). The agent transitions are defined as:

ACTs : Ai
β−→ A′

i SENDs : Ai
γj !−−→ A′

i RECs : Ai
γi?−−→ A′

i

66 N.A.M. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer

Transition ACTs states that an individual agent is capable of performing external
actions, role enactment and deactment. Transition SENDs indicates that agents
can always perform communicative acts, and RECs indicates that the agent can
always receive communicative acts sent by other agents.

The actual effect of individual agents’ actions is determined by the organisa-
tion. The transition rules at the multi-agent level are therefore defined in terms
of the single agent transitions, and define what it means to execute an action in
the organisation. In particular, the transitions rules defined below specify what
happens at the multi-agent level when an agent performs an external action
(EXTm), a deact or an enact (ROLm), and a communicative action (COMm).
For an external action to be executed the pre-condition of the brute effect spec-
ifying the effect should be satisfied by the current state of the organisation.
Moreover, the execution of a communicative action synchronises the sender and
receiver.

The detection and sanctioning mechanism as discussed in section 2 is the same
for all three types of actions. To start with a new state Ω as result of the action
execution is determined by means of the effects function. The new situation of
the organisation is normatively assessed by closing off the former history σ with
Ω appended as last state under the normative rules. State Ω′ is the result of this
assessment. The sanctions that need to be imposed are determined similarly,
that is by closing off Ω′ under the sanctioning rules, resulting in Ω′′. State
Ω′′ thus corresponds to the normatively assessed state with sanctions imposed
accordingly, the organisation would reach after performance of the action.

Whether the action to be performed is tolerated depends on the normative
judgment. That is to say, when Ω′′ entails viol⊥, this means that the organi-
sation would end up in a strongly forbidden situation. In this case the action is
blocked, conforming to regimentation. If this is not the case, the organisation can
advance in its computation; the history is updated with the new agent configura-
tions and newly reached state Ω′′. It should thus be noted that both enforcement
and regimentation are captured in each of these separate transitions.

Definition 13 (multi-agent transitions). Let Rn be the set of normative
rules, Rs the set of sanctioning rules, α ∈ ExtAct, β ∈ {enact(ρ), deact(ρ)},
γj ∈ ComAct, b = (Φ α Ψ) s.t. b ∈ Rb, and let 〈A, σ〉 be a multi-agent system
with σ = Ω0 . . .Ωn. The multi-agent transitions are defined as:

EXTm :

Ai
α−→ A′

i Ωn |= Φ Ω = effect(i, b, Ωn)
Ω′ = ClRn(σ ◦Ω,Ω,⊕n) Ω′′ = ClRs(σ ◦Ω′, Ω′,⊕b)

(σ ◦Ω′′, n+ 1) �|= viol⊥

〈A, σ〉 −→ 〈(A \ {Ai}) ∪ {A′
i}, σ ◦Ω′′〉

ROLm :

Ai
β−→ A′

i Ω = effect(i, β,Ωn)
Ω′ = ClRn(σ ◦Ω,Ω,⊕n) Ω′′ = ClRs(σ ◦Ω′, Ω′,⊕b)

(σ ◦Ω′′, n+ 1) �|= viol⊥

〈A, σ〉 −→ 〈(A \ {Ai}) ∪ {A′
i}, σ ◦Ω′′〉

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 67

COMm :

Ai
γj!−−→ A′

i Aj
γj?−−→ A′

j Ω = effect(i, γj , Ωn)
Ω′ = ClRn(σ ◦Ω,Ω,⊕n) Ω′′ = ClRs(σ ◦Ω′, Ω′,⊕b)

(σ ◦Ω′′, n+ 1) �|= viol⊥

〈A, σ〉 −→ 〈(A \ {Ai, Aj}) ∪ {A′
i, A

′
j}, σ ◦Ω′′〉

Recall that, due to the construction of the effects function (Def. 7) the perfor-
mance of a communicative action, deact and enact does not change the brute
facts of the system except for the addition of the done proposition. Tolerated
execution of an enact or deact leads to the addition or deletion of a rea propo-
sition in the normative facts, such that it is remembered that the agent has or
has not enacted a certain role.

4 Implementing Multi-agent Organisations

In this section we show by example how the normative multi-agent organisation
programming language can be used to implement multi-agent organisations. To
provide a broader view on the intended application area for our language, we do
not limit ourselves to the toy example of the railway system.

In the railway simulation agents can be at the platform (being expressed as
at platform) or in the train (being expressed as in train). If the agent is at
the platform and not in the train, she can enter the train by performing an
embark action, of which the result is that the agent is in the train and not at
the platform anymore. The external actions agents can perform to change the
environment are expressed by brute effects. Consider, for example, the brute
effect of the embark action:

(at platform(i),−in train(i)) embark (−at platform(i), in train(i))

The railway regulations state the rules of behaviour the travellers ought to
follow and are expressed by means of the normative rules. Suppose, for example,
that passengers are obliged to buy a ticket before entering on the platform.
Violating this norm is not considered to be a serious violation and the sanction
is a fine of 10 credits. Being in the train without a ticket, however, is a more
serious violation of which the sanction is a fine of 50 credits. In our approach
these two rules of conduct can be expressed by the normative rules:

now(at platform(i) ∧−ticket(i)) ⇒ violtp(i)

now(in train(i) ∧ −ticket(i)) ⇒ violtt(i)

Recall that now is used to discern the last organisational state of a history. The
above rules thus have the intuitive reading: “currently being at the platform (or
in the train, respectively) without a ticket counts as a violation”. Note the usage
of labels tp (ticket platform) and tt (ticket train) on the violation propositions
to match a violation with the norm that has been violated. They are used to
discriminate from different violations in defining the sanctioning rules:

68 N.A.M. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer

(violtp(i)) ⇒ fined10(i)

(violtt(i)) ⇒ fined50(i)

The norms defined above concern enforcement. To illustrate regimentation,
suppose that the railway system allows passengers to violate the norm of trav-
elling with a ticket only once. In other words, if a passenger has been caught
travelling without a ticket in the past, then travelling without a ticket for the
second time is regimented. This is expressed by means of a normative rule as:

F(violtt(i) ∧ XF(in train(i) ∧ −ticket(i))) ⇒ viol⊥

Transition rule EXTm ensures that the organisation will never end up in this
situation, because all actions that will lead to viol⊥ are blocked. Intuitively,
this can be thought of as placing a gate just in front of the entrance of the train
that will remain closed in case a passenger tries to embark without a ticket for
the second time, making it physically impossible for the agent to enter. Note
that since states that are marked by viol⊥ will never be reached, no sanctions
for viol⊥ need to be defined.

To also show how a more complex norm of a temporal nature can be expressed
in our normative language, suppose that passengers no longer need to buy a ticket
before entering the train, but now should buy their ticket during their train ride.
This norm can be expressed as a normative rule in the following manner:

F(in train(i) ∧−ticket(i)U(−in train(i) ∧ X⊥)) ⇒ violtt(i)

intuitively meaning that agent i is committing an offence when she has not been
in possession of a ticket until she got off the train. Note that due to the usage
of X⊥ this violation is detected at the very moment the agent leaves the train.

Hitherto the focus has been on programming the normative elements of multi-
agent organisations. As already mentioned, an organisation encompasses more
than only normative elements. The rea(i, ρ) propositions were merely used to
denote the fact that agent i has enacted role ρ, and have not played a very
significant part thus far. However, in combination with the normative aspects
already some structural aspects of an organisation can be expressed.

As already mentioned in section 2, norms are often associated with a certain
role. Consider, for example, a conference management system. Usually, for an
agent playing the role of program chair other norms are in effect than for an
agent playing the role of author. Then, in our approach a role somehow becomes
a means of modularising the normative rules. To illustrate, consider the following
normative rule:

now(rea(i, author) ∧ registration closed∧ done(i, register)) ⇒ violreg

expressing that an agent playing the role of author can still register for the con-
ference even if the registration has already been closed. The possible sanction
could then be a higher entrance fee. The antecedent of this normative rule will
only be satisfied if agent i has currently enacted the role of author, and is thus

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 69

only in effect for authors. Note that this normative rule refers to a concrete
action instead of a declarative description of the organisation as was the case in
the norms before. Of course, the inverse of this approach, stating that a certain
norm is applicable for all roles except a certain role could also be taken. To
express, for example, that agents not playing the role of author cannot register
after the registration has been closed, is to write:

now(−rea(i, author) ∧ registration closed∧ done(i, register)) ⇒ viol⊥

At the structural level of an organisation it is often specified which roles are
(in)compatible with each other. If two roles are denoted as incompatible this
means that these two roles cannot be played by one and the same agent. For
example, in the conference management system it might not be allowed for a
reviewer to be an author. In our normative multi-agent programming language
this can be expressed as:

F(rea(i, reviewer) ∧ rea(i, author)) ⇒ viol⊥

5 Conclusion and Future Work

In this paper we have presented the syntax and operational semantics of a
programming language for implementing norm-based multi-agent organisations.
These organisations are then developed as a separate entity apart from the agents
that will interact with the organisation. In particular, the presented program-
ming language allows for the implementation of a multi-agent organisation by
means of norms, being enforced by monitoring, regimenting and sanctioning
mechanisms. More specifically, the programming language allows for the expres-
sion of more abstract, declarative ought-to-be norms and also allows to refer
to concrete actions that have been performed by agents. Although this pro-
gramming language mainly deals with the normative aspect of an organisation,
already some preliminary results were shown of how to deal with the structural
aspect of an organisation.

Our ultimate goal is to design a fully-fledged multi-agent programming lan-
guage based on organisational concepts. The current proposal presented in this
paper primarily deals with the normative aspect of multi-agent organisations.
Future work aims at extending the programming language with constructs to
also support the implementation of the other aspects of multi-agent organisa-
tions as mentioned in section 2. In particular, one of our short-term goals is to
extend the simple view on roles presented in this paper with a view on roles that
better reflects roles as used in multi-agent design methodologies. To what extend
norms can be used to ensure well-formedness of the structural specification of
the organisation as explored in section 4 should also be further investigated.

Another important issue is that in this paper the architecture is a centralised
one. That is to say, the organisation determines the effect agent’s actions have
on the environment. For the sake of scalability, future research should explore
possibilites of decentralising the organisation.

70 N.A.M. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer

Further, we also aim at incorporating more complex forms of enforcement
(e.g., policing agents) and norm types (norms with deadlines, for example). Also
the computational cost of the constructs presented should be investigated.

Acknowledgments

This research was supported by the CoCoMAS project funded through the Dutch
Organization for Scientific Research (NWO). The authors are grateful for the
valuable suggestions, comments, and contributions provided by Davide Grossi.

References

1. Sierra, C., Rodŕıguez-Aguilar, J., Noriega, P., Esteva, M., Arcos, J.L.: Engineering
multi-agent systems as electronic institutions. UPGrade 4 (2004)

2. Zambonelli, F., Jennings, N., Wooldridge, M.: Organisational rules as an abstrac-
tion for the analysis and design of multi-agent systems. IJSEKE 11(3), 303–328
(2001)

3. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the
GAIA methodology. Acm Tosem 12(3), 317–370 (2003)

4. Dignum, V.: A Model for Organizational Interaction: Based on Agents, Founded
in Logic. SIKS Dissertation Series (2003)

5. Hübner, J., Sichman, J., Boissier, O.: Developing organised multi-agent systems
using the Moise+ model: Programming issues at the system and agent levels
(manuscript)

6. Esteva, M., Rodŕıguez-Aguilar, J., Sierra, C., Garcia, P., Arcos, J.: On the formal
specifications of electronic institutions. In: Agent Mediated Electronic Commerce,
The European AgentLink Perspective, pp. 126–147. Springer, London (2001)

7. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organiza-
tional view of multi-agent systems. In: AOSE IV, pp. 214–230 (2004)

8. Esteva, M., Rodŕıguez-Aguilar, J., Rosell, B., Arcos, J.: Ameli: An agent-based
middleware for electronic institutions. In: Kudenko, D., Kazakov, D., Alonso, E.
(eds.) AAMAS 2004. LNCS, vol. 3394. Springer, Heidelberg (2005)

9. Watt, D.A.: Programming Language Design Concepts. John Wiley & Sons, Chich-
ester (2004)

10. Dignum, F.: Abstract norms and electronic institutions. In: Proc. of RASTA 2002,
Bologna, Italy, pp. 93–104 (2002)

11. Aldewereld, H.: Autonomy vs. Conformity - an Institutional Perspective on Norms
and Protocols. PhD Thesis, Universiteit Utrecht (2007)

12. Ricci, A., Viroli, M., Omicini, A.: Give agents their artifacts: the A&A approach
for engineering working environments in MAS. In: Proc. of AAMAS 2007, pp. 1–3.
ACM Press, New York (2007)

13. Dastani, M., Grossi, D., Tinnemeier, N., Meyer, J.J.: A programming language for
normative multi-agent systems (in submission)

14. Meyer, J.J.C., Wieringa, R.J. (eds.): Deontic logic in computer science: normative
system specification. John Wiley & Sons, Inc., New York (1994)

15. Grossi, D.: Designing Invisible Handcuffs. Formal Investigations in Institutions and
Organizations for MAS. PhD thesis, Utrecht University, SIKS (2007)

16. Searle, J.: The Construction of Social Reality. Free Press (1995)

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 71

17. Castelfranchi, C.: Formalizing the informal?: Dynamic social order, bottom-up so-
cial control, and spontaneous normative relations. Journal of Applied Logic 1(1-2),
47–92 (2004)

18. Coutinho, L., Sichman, J., Boissier, O.: Modeling organization in mas: A compar-
ison of models. In: Proc. of SEAS 2005, Uberlândia, Brazil (2005)

19. Odell, J., Parunak, H.V.D., Fleischer, M.: The role of roles in designing effective
agent organizations. In: Software Engineering for Large-Scale Multi-Agent Systems,
Research Issues and Practical Applications, pp. 27–38 (2003)

20. Emerson, E.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, Formal Models and Semantics, Volume B, pp. 995–1072. MIT Press, Cam-
bridge (1990)

21. Plotkin, G.D.: A structural approach to operational semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

	Orwell’s Nightmare for Agents? Programming Multi-agent Organisations
	Introduction
	Key Concepts of Multi-agent Organisations
	The Normative Aspect of Organisations
	Other Organisational Aspects

	A Normative Multi-agent Programming Language
	Syntax of Programming Language
	Semantics of Programming Language

	Implementing Multi-agent Organisations
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

