

Lecture Notes in Artificial Intelligence 5442
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Koen V. Hindriks Alexander Pokahr
Sebastian Sardina (Eds.)

Programming
Multi-Agent Systems

6th International Workshop, ProMAS 2008
Estoril, Portugal, May 13, 2008
Revised Invited and Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Koen V. Hindriks
EEMCS, Delft University of Technology
Delft, The Netherlands
E-mail: k.v.hindriks@tudelft.nl

Alexander Pokahr
Distributed Systems and Information Systems
University of Hamburg
Hamburg, Germany
E-mail: pokahr@informatik.uni-hamburg.de

Sebastian Sardina
School of Computer Science and Information Technology
RMIT University
Melbourne, Australia
E-mail: sebastian.sardina@rmit.edu.au

Library of Congress Control Number: Applied for

CR Subject Classification (1998): I.2.11, I.2, C.2.4, D.2, F.3, D.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-03277-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03277-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12626137 06/3180 5 4 3 2 1 0

Preface

These are the proceedings of the International Workshop on Programming Multi-
Agent Systems (ProMAS 2008), the sixth of a series of workshops that is aimed
at discussing and providing an overview of current state-of-the-art technology
for programming multi-agent systems.

The aim of the ProMAS workshop series is to promote research on program-
ming technologies and tools that can effectively contribute to the development
and deployment of multi-agent systems. In particular, the workshop promotes
the discussion and exchange of ideas concerning the techniques, concepts, re-
quirements, and principles that are important for establishing multi-agent pro-
gramming platforms that are useful in practice and have a theoretically sound
basis. Topics addressed include but are not limited to the theory and appli-
cations of agent programming languages, the verification and analysis of agent
systems, as well as the implementation of social structure in agent-based systems
(e.g., roles within organizations, coordination and communication in multi-agent
systems).

In its previous editions, ProMAS constituted an invaluable occasion bringing
together leading researchers from both academia and industry to discuss issues
on the design of programming languages and tools for multi-agent systems. We
were very pleased to be able to again present a range of high-quality papers
at ProMAS 2008. After five successful editions of the ProMAS workshop series,
which took place during AAMAS 2003 (Melbourne, Australia), AAMAS 2004
(New York, USA), AAMAS 2005 (Utrecht, The Netherlands), AAMAS 2006
(Hakodate, Japan), and AAMAS 2007 (Honolulu, Hawai’i), the sixth edition
took place on May 13 in Estoril, Portugal, in conjunction with AAMAS 2008,
the main international conference on autonomous agents and MAS. ProMAS
2008 received 27 submissions. These were reviewed by members of the Program
Committee, and 12 papers were accepted for presentation.

At the workshop, in addition to the regular papers that were presented, Dana
Nau (University of Maryland) gave an invited talk about planning and multi-
agent systems. There are many interesting links between planning and agent
programming languages for multi-agent systems. We believe that the agent pro-
gramming community can learn from the progress made in the planning commu-
nity, and, vice versa, may have potential to contribute to relatively new topics
addressed in the planning community such as real-time and multi-agent plan-
ning. For this reason, we are also happy that Dana Nau provided an invited
paper for this ProMAS proceedings-volume.

In his paper, Nau throws some light on how to cope with the intrinsic com-
plexity that an automated planner would face in the context of multi-agent set-
tings. Now that the field of automated planning has recently experienced tremen-
dous progress and planners are able to deal with complex and reasonably sized

VI Preface

problems, enhancing agent systems with explicit planning capabilities becomes
appealing. However, planning in multi-agent settings is much more complex than
the classical planning setting: “the actions of the other agents can induce a com-
binatorial explosion in the number of contingencies that the planner will need
to consider, making both the search space and the solution size exponentially
larger.” Nau describes three promising approaches to tackle such complexity,
namely, state abstraction, explicit use of procedural domain information, and
adequate frameworks for interleaving planning and execution. Although inter-
esting work has already been done, both in the agent and planning communities,
we believe integrating planning into multi-agent frameworks is an open challenge
that will receive increasing research attention in the upcoming years.

As at previous editions, the themes addressed in the accepted papers included
in this Volume range from technical topics related to, for example, security issues
to conceptual issues related to, for instance, incorporating norms in multi-agent
systems. More specifically, new contributions are included related to extensions
and innovations of agent programming languages, contributions related to so-
cial dimensions of multi-agent systems, and contributions related to tools and
environments in which agents operate.

Agent Programming Languages

The paper by Hindriks et al. presents an extension of the agent-programming
language Goal with a utility-based lookahead planning capability. The idea is
that quantitative heuristics added to a Goal agent program may be used to
prune some of the options for action derived by the qualitative action selection
mechanism of such an agent. The paper thus allows for a mechanism to optimize
agent behavior based on costs and rewards that may be associated with an
agent’s actions.

The paper by Dennis and Fisher introduces an agent infrastructure layer
(AIL) that supports multiple, heterogeneous agent frameworks. AIL is a Java
toolkit to support the implementation of a variety of agent programming lan-
guages including Gwendolen, SAAPL, and Goal by implementing a set of tran-
sition rules that support these languages. AIL is proposed as a step toward
formal verification of heterogeneous multi-agent systems that consist of agents
written in a variety of agent languages.

The paper by Tinnemeier et al. introduces organizations and norms as an ex-
tension of agent programming. The programming language proposed is designed
to implement multi-agent organizations. Various normative aspects of organiza-
tions including monitoring of behavior, regimenting behavior, and sanctioning
are discussed.

The paper by Novak discusses the agent-programming language Jazzyk as
a means for programming agents that use heterogeneous knowledge representa-
tions in order to achieve their objectives. The basic idea is that different tasks
require different knowledge representation techniques and a principled approach
is needed to allow for this. The semantics based on behavioral state machines is
discussed as well as an implementation of an interpreter for Jazzyk.

Preface VII

Multi-Agent Systems Frameworks

The paper by Neville and Pitt describes a programming and simulation envi-
ronment for prototyping and testing societies of agents, called PRESAGE. The
Java-based environment is designed to allow developers to investigate proper-
ties that emerge from long-term, global system behavior. The idea then is to use
the PRESAGE platform for prototyping to investigate system-wide performance
and emergent behaviors before frameworks such as JADE or AgentBuilder are
used to implement the multi-agent system.

The work by Gaud et al. presents JANUS, a platform that allows the de-
velopment of holonic multi-agent systems. Thus, the idea behind the platform
is the modeling of multi-agent systems as recursive entities. JANUS deals with
an explicit representation of roles and organizations as first-class entities, and
provides a direct implementation of part of the CRIO metamodel. The paper
provides a complete description of the platform and describes an example of a
market-like community.

The paper by Magarinop et al. proposes a complete computerized process of
the Delphi protocol by which expert humans/agents can come to an agreement
using iterative question–answer sessions. A model of the Delphi process using
the INGENIAS methodology is first developed; the resulting INGENIAS model
is a high-level, domain-independent description of the goals and tasks involved
in the Delphi method. The paper then goes on to implement and evaluate the
approach by providing the details for one domain-specific instance, showing an
improvement over the Delphi process without the use of the INGENIAS model.

Agent Environments and Tools

The paper by Acay et al. argues that a suitable modeling of the environment
would help agents to learn, understand, and adapt to it at run time. To that end,
the paper explores the relation between the agent reasoning and the availability
of tools and artifacts populating the agent’s situated environment. The authors
coined the term extrospection to refer to the act of an agent reasoning about the
tools that become available at run time.

Bade et al. deal with how information about potentially highly dynamic envi-
ronments can be collected and made available to interested agents in an efficient
and effective way across multiple agent platforms. In this respect an abstract
model of an infrastructure for resource-aware agents is proposed that allows
providing generic as well as application-dependent information channels which
agents can use. The authors present an implementation of the infrastructure
and argue that exchangeable discovery and distribution protocols as well as
exchangeable query and representation languages simplify the development of
agent applications based on reusable components.

The work of Serrano et al. focusses on the analysis of an implemented multi-
agent system based on message exchanges recorded during actual execution runs.
Concretely, the authors use aspect-oriented programming to obtain information
about sent and received messages from arbitrary running agent platforms. More-
over an algorithm for achieving a logical ordering of messages sent across agents

VIII Preface

running on distributed hosts is presented. The approach is implemented in a
generic tool for debugging and testing of distributed multi-agent-based software
systems.

The paper of Erdene-Ochir et al. is also about multi-agent tools and presents
Toolipse, an integrated development environment (IDE) for building applications
based on the JIAC agent platform. Interestingly, JIAC and its corresponding
tools have originally been developed as closed, commercial software and have only
recently been released to the public. This means that, although the presented
IDE is a more recent development, it is based on many years of experience in
building multi-agent systems for real industrial applications.

In the paper of Such et al. it is argued that security features are an important
aspect of agent platforms, but that such features also usually tend to degrade
performance. Therefore an evaluation of different security protocols has been
made and a new secure platform design is proposed based on the Kerberos secu-
rity protocol and on Linux access control mechanisms. The design is realized in
the Magentix platform, which the authors evaluate with respect to performance.

Agent Contest

This volume also includes short papers related to the Agent Contest 2008
(http://cig.in.tu-clausthal.de/agentcontest2008/). The Agent Contest has been
organized since 2006 in conjunction with ProMAS. This year’s contest was or-
ganized by Tristan M. Behrens, Jürgen Dix, and Peter Novák from Clausthal
University of Technology, Germany and Mehdi Dastani from Utrecht University,
The Netherlands. The challenge for the participants was driving herds of cows
into a corral by designing and implementing strategies for controlling cowboy
agents. This scenario puts much more emphasis on the coordination between
agents than in previous years. The actual contest took place in May 2008. Like
last year, the winner of this year’s contest was the JIAC team from the Tech-
nische Universität Berlin, Germany. Six of the participant teams of the Agent
Contest 2008 contributed a short paper that briefly describes the design and
implementation of the multi-agent system developed by the team.

As for previous editions, we hope that the work described in these proceedings
will contribute to the overall goal of stimulating the uptake of agent programming
languages and the creation of industrial-strength programming languages and
software tools that facilitate the development of multi-agent systems.

December 2008 Koen Hindriks
Alexander Pokahr
Sebastian Sardina

Organization

The ProMAS 2008 workshop was held on May 13 2008, in Estoril, Portugal. The
workshop was part of the AAMAS 2008 Workshop Program.

Organizing Committee

Koen V. Hindriks Delft University of Technology, The Netherlands
Alexander Pokahr University of Hamburg, Germany
Sebastian Sardina RMIT University, Australia

Steering Committee

Rafael H. Bordini University of Durham, UK
Mehdi Dastani Utrecht University, The Netherlands
Jürgen Dix Clausthal University of Technology, Germany
Amal El Fallah Seghrouchni University of Paris VI, France

Program Committee

Matteo Baldoni Università degli Studi di Torino, Italy
Juan A. Botia Blaya Universidad de Murcia, Spain
Lars Braubach University of Hamburg, Germany
Jean-Pierre Briot University of Paris 6, France
Keith Clark Imperial College, UK
Rem Collier University College Dublin, Ireland
Yves Demazeau Institut IMAG - Grenoble, France
Frank Dignum Utrecht University, The Netherlands
Michael Fisher University of Liverpool, UK
Jorge Gómez-Sanz Universidad Complutense Madrid, Spain
Vladimir Gorodetsky Russian Academy of Sciences, Russia
Dominic Greenwood Whitestein Technologies, Switzerland
Benjamin Hirsch TU-Berlin, Germany
Shinichi Honiden NII, Tokyo, Japan
Jomi Hübner Universidade Regional de Blumenau, Brazil
Michael Huhns University of South Carolina, USA
Yves Lespérance York University, Canada
João Leite Universidade Nova de Lisboa, Portugal
John-Jules Meyer Utrecht University, The Netherlands
Jörg Müller Clausthal University of Technology, Germany
David Morley SRI, USA
Oliver Obst CSIRO, Australia
Andrea Omicini University of Bologna, Italy
Agostino Poggi Università degli Studi di Parma, Italy

X Organization

Alessandro Ricci DEIS, Università di Bologna, Italy
Birna van Riemsdijk Ludwig-Maximilians-Universität, Germany
Ralph Rönnquist Intendico, Australia
Ichiro Satoh NII, Kyoto, Japan
Kostas Stathis City University London, UK
Paolo Torroni University of Bologna, Italy
Tran Cao Son New Mexico State University, USA
Gerhard Weiß Software Competence Center Hagenberg, Austria
Michael Winikoff RMIT University, Melbourne, Australia
Wayne Wobke University of New South Wales, Australia

Additional Referees

Cristina Baroglio
Joris Deguet
Roberto Ghizzioli

Jean-Daniel Kant
Shakil Khan
Guillaume Piolle

Table of Contents

Planning for Interactions among Autonomous Agents 1
Tsz-Chiu Au, Ugur Kuter, and Dana Nau

Agent Programming Languages

Exploring Heuristic Action Selection in Agent Programming 24
Koen V. Hindriks, Catholijn M. Jonker, and Wouter Pasman

Programming Verifiable Heterogeneous Agent Systems 40
Louise A. Dennis and Michael Fisher

Orwell’s Nightmare for Agents? Programming Multi-agent
Organisations . 56

Nick A.M. Tinnemeier, Mehdi Dastani, and John-Jules Ch. Meyer

Jazzyk: A Programming Language for Hybrid Agents with
Heterogeneous Knowledge Representations . 72

Peter Novák

Multi-agent Systems Frameworks

PRESAGE: A Programming Environment for the Simulation of Agent
Societies . 88

Brendan Neville and Jeremy Pitt

An Organisational Platform for Holonic and Multiagent Systems 104
Nicolas Gaud, Stéphane Galland, Vincent Hilaire, and
Abderrafiâa Koukam

A Complete-Computerised Delphi Process with a Multi-Agent
System . 120

Iván Garćıa-Magariño, Jorge J. Gómez-Sanz, and
José R. Pérez-Agüera

Agent Environments and Tools

How Situated Is Your Agent? A Cognitive Perspective 136
Daghan L. Acay, Liz Sonenberg, Alessandro Ricci, and
Philippe Pasquier

An Awareness Model for Agents in Heterogeneous Environments 152
Dirk Bade, Lars Braubach, Alexander Pokahr, and
Winfried Lamersdorf

XII Table of Contents

Infrastructure for Forensic Analysis of Multi-Agent Systems 168
Emilio Serrano and Juan A. Botia

Toolipse: An IDE for Development of JIAC Applications 184
Erdene-Ochir Tuguldur, Axel Hessler, Benjamin Hirsch, and
Sahin Albayrak

Kerberos-Based Secure Multiagent Platform . 197
Jose M. Such, Juan M. Alberola, Ana Garcia-Fornes,
Agustin Espinosa, and Vicent Botti

Agent Contest

Agent Contest Competition: 4th Edition . 211
Tristan M. Behrens, Mehdi Dastani, Jürgen Dix, and Peter Novák

AC08 System Description . 223
Jacek Szklarski

Herding Agents - JIAC TNG in Multi-Agent Programming Contest
2008 . 228

Axel Hessler, Jan Keiser, Tobias Küster, Marcel Patzlaff,
Alexander Thiele, and Erdene-Ochir Tuguldur

On Herding Artificial Cows: Using Jadex to Coordinate Cowboy
Agents . 233

Gregor Balthasar, Jan Sudeikat, and Wolfgang Renz

Using Jason and Moise
+ to Develop a Team of Cowboys 238

Jomi F. Hübner, Rafael H. Bordini, and Gauthier Picard

Dublin Bogtrotters: Agent Herders . 243
Mauro Dragone, David Lillis, Conor Muldoon, Richard Tynan,
Rem W. Collier, and Gregory M.P. O’Hare

SHABaN Multi-agent Team to Herd Cows . 248
Adel T. Rahmani, Alireza Saberi, Mehdi Mohammadi,
Amin Nikanjam, Ehsan Adeli Mosabbeb, and Monireh Abdoos

Author Index . 253

Planning for Interactions among Autonomous
Agents

Tsz-Chiu Au, Ugur Kuter, and Dana Nau

University of Maryland, College Park, MD 20742, USA

Abstract. AI planning research has traditionally focused on offline pl-
anning for static single-agent environments. In environments where an
agent needs to plan its interactions with other autonomous agents, plan-
ning is much more complicated, because the actions of the other agents
can induce a combinatorial explosion in the number of contingencies that
the planner will need to consider. This paper discusses several ways to
alleviate the combinatorial explosion, and illustrates their use in several
different kinds of multi-agent planning domains.

1 Introduction

AI planning research has traditionally focused on offline planning for static
single-agent environments. In environments where an agent needs to plan its
interactions with other autonomous agents, planning is much more complex
computationally: the actions of the other agents can induce a combinatorial
explosion in the number of contingencies that the planner will need to consider,
making both the search space and the solution size exponentially larger.

This paper discusses several techniques for reducing the computational com-
plexity of planning interactions with other agents. These include:

– Partitioning states into equivalence classes, so that planning can be done
over these equivalence classes rather than the individual states. In some
cases this can greatly reduce both the size of the search space and the size
of the solution.

– Pruning unpromising parts of the search space, to avoid searching them. This
can reduce complexity by reducing how much of the search space is actually
searched.

– Online planning, i.e., interleaving planning and execution. This can enable
the planner to avoid planning for contingencies that do not arise during plan
execution.

Each of these techniques has strengths and drawbacks. To illustrate these,
the paper includes case-studies of two different multi-agent planning domains:
the Hunter-and-Prey domain, and a noisy version of the Iterated Prisoner’s
Dilemma.

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 1–23, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 T.-C. Au, U. Kuter, and D. Nau

2 Background

This section very briefly describes some relevant concepts from AI planning. For
a much more detailed description, see [1].

2.1 AI Planning in General

Figure 1 shows a conceptual model of AI planning. The three components include
(1) the planner, (2) the plan-execution agent, and (3) the world Σ in which the
plans are to be executed.

Fig. 1. Conceptual model of AI planning

The planner’s input includes descriptions of Σ, the initial state(s) that Σ
might be in before the plan-execution agent performs any actions, and the desired
objectives (e.g., to reach a set of states that satisfies a given goal condition, or
to perform a specified task, or a set of states that the world should be kept in
or kept out of, or a partially ordered set of states that we might want the world
to go through). If the planning is being done online (i.e., if planning and plan
execution are going on at the same time), the planner’s input will also include
feedback about the current execution status of the plan or policy.

The planner’s output consists of either a plan (a linear sequence of actions for
the agent to perform) or a policy (a set of state-action pairs with at most one
action for each state).

2.2 Classical Planning

Historically, most AI planning research has focused on classical planning prob-
lems. A classical planning problem is one that satisfies a very restrictive set of
assumptions:

Planning for Interactions among Autonomous Agents 3

1. State-transition model. The world is a finite state-transition system, i.e.,
a triple Σ = (S, A, γ), where S is a finite set of states, A is a finite set of
actions, γ : S × A → 2S is a state-transition function. If γ(s, a) �= ∅ then we
say that a is applicable to s or executable in s.

2. Full observability. Σ’s current state is always completely knowable.
3. Determinism. For every s and a, |γ(s, a)| ≤ 1. In other words, if a is

applicable to s, then there is exactly one possible outcome, namely the state
in γ(s, a). Furthermore, there is exactly one initial state s0 that will be Σ’s
current state before plan-execution begins.

4. Single agency. The plan-execution agent is the only agent capable of mak-
ing any changes in the world. If it were not for this agent’s actions, the world
would be static.

5. Achievement goals and sequential plans. The planner’s objective is to
produce a plan (i.e., a linearly ordered finite sequence of actions) that puts
Σ into any one of some finite set of states Sg.

6. Implicit time. Actions have no duration; they are instantaneous state tran-
sitions.

7. Offline planning. The planner produces a complete plan for the given initial
and goal states prior to any execution of its plan by the plan-execution agent.

In multi-agent systems, Assumption 4 does not hold, and several of the other
assumptions may not necessarily hold. Sections 3 and 4 describe two gener-
alizations of classical planning that can be used to represent certain kinds of
multi-agent planning problems.

2.3 Classical Representation

A classical planning problem is conventionally represented as a triple P =
(O, s0, g), where:

– s0 and g, the initial state and goal condition, are sets of ground atoms in
some first-order language L.

– O is a set of planning operators, each of which represents a class of actions
that the plan-execution agent may perform. An operator is conventionally
represented as a triple

o = (head(o), precond(o), effects(o)),

where precond(o) is a collection of literals called preconditions, effects(o) is
a collection of literals called effects, and head(o) is a syntactic expression
of the form name(x1, . . . , xn), where name is a symbol called o’s name,
and x1, . . . , xn are all of the variables that appear anywhere in precond(o)
or effects(o). We will let effects+(o) be the set of all non-negated atoms in
effects(o), and effects−(o) be the set of all atoms whose negations are in
effects(o).

A state is any set s of ground atoms of L. An atom l is true in s if l ∈ s; otherwise
l is false in s. The set of goal states is Sg = {s : s is a state and g is true in s}.

4 T.-C. Au, U. Kuter, and D. Nau

An action is any ground instance of a planning operator. An action a is
applicable to a state s if a’s preconditions are true in s, i.e., if l ∈ s for every
positive literal l ∈ precond(a) and l �∈ s for every negated literal ¬l ∈ precond(a).
If a is applicable to s, then the result of applying it is the state γ(s, a) produced
by removing from s all negated atoms in effects(a), and adding all non-negated
atoms in effects(a). Formally,

γ(s, a) = (s − effects−(a)) ∪ effects+(a).

A plan is a linear sequence of actions π = 〈a1, . . . , an〉. The plan π is executable in
a state s0 if there is a sequence of states 〈s0, s1, . . . , sn〉 such that for i = 1, . . . , n,
si = γ(si−1, a2). In this case we say that 〈s0, s1, . . . , sn〉 is π’s execution trace
from s0, and we define γ(s0, π) = sn. If sn satisfies the goal g, then we say that
π is a solution for the planning problem P = (O, s0, g).

3 Nondeterministic Planning Problems and Multi-agency

A nondeterministic planning problem is one in which Assumption 3 does not
hold. Each action may have more than one possible state-transition; and instead
of a single initial state s0, there is a set S0 of possible initial states.

The classical representation scheme can be extended to model nondetermin-
istic planning problems, by redefining a nondeterministic operator to be a tuple

o = (head(o), precond(o), effects1(o), effects2(o), . . . , effectsn(o)),

where each effectsi(o) is a set of literals. If a is a ground instance of o and
precond(a) is true in a state s, then the result of executing a in s may be any of
the states in the following set:

γ(s, a) = {(s − effects−1 (a)) ∪ effects+1 (a),

(s − effects−2 (a)) ∪ effects+2 (a),
. . . ,

(s − effects−n (a)) ∪ effects+n (a)}.

A nondeterministic planning problem can be represented as a triple P =
(O, S0, g), where O is a set of nondeterministic planning operators, S0 is the set
of initial states, and g is the goal condition.

3.1 Representing Other Agents’ Actions

Multi-agent planning problems can sometimes be translated into nondetermin-
istic single-agent planning problems by modifying the plan-execution agent’s
actions to incorporate the effects of the other agents’ possible responses to those
actions. For example, suppose an agent α is going down a hallway and runs into
another agent β going in the opposite direction. Suppose that to get past them,
α moves to its right. Then β may either move right (in which case the agents
can pass each other) or left (in which case neither agent can pass). As shown in

Planning for Interactions among Autonomous Agents 5

Hallway

moves

right

moves

left

Hallway

Hallway

s0

s1

s2

moves

right

move-right

Fig. 2. Two possible outcomes of moving to the right in a hallway

Figure 2, β’s two possible actions can be modeled as nondeterministic outcomes
of α’s move-right action.

3.2 Policies and Execution Structures

Most nondeterministic planning problems violate not only Assumption 3 but
also Assumption 5, for if an action a can lead to more than one possible state,
then we will need a way to provide conditional execution of subsequent actions
depending on what state a takes us to. Hence for nondeterministic planning
problems, solutions are typically defined to be policies rather than plans. A
policy is a set π of state-action pairs such that for each state there is at most
one action. In other words, π is a partial function from S into A.

Given a policy π, the execution structure Σπ is a graph of all possible execution
traces of π in the system Σ. For example, the policy

π0 = {(s0, move-right), (s1, pass), (s2, wait)}

has the execution structure depicted in Figure 3.

3.3 Solutions

Recall that in a classical planning problem, the execution of a plan π in a state
s always terminates at a single state γ(s, π), and π is a solution to the planning
problem if γ(s, π) is a goal state. In nondeterministic planning problems, the
execution of a policy π in a state s may terminate at any of several different
states or might not terminate at all. Hence we can define several different kinds
of solutions to nondeterministic planning problems, depending on which of the
executions terminate at goal states [2]:

– Weak solutions. π is a weak solution for P if for every state s ∈ S0 there
is at least one execution trace of π that takes us to a goal state, i.e., if for
every s ∈ S0, there is at least one path in Σπ from s to a state in Sg. For
example, if the set of possible initial states in Figure 3 is S0 = {s0} and if

6 T.-C. Au, U. Kuter, and D. Nau

s
0

s
1

s
2

s
3

wait

pass

move-right

Fig. 3. Execution structure for the policy π0 = {(s0, move-right), (s1, pass), (s2, wait)}

α’s goal is to get to the state s3 in the hallway, then the policy π0 given
earlier is a weak solution, because there exists an execution trace of π0 that
produces s3. The same is true for the policy

π1 = {(s0, move-right), (s1, pass)}.

– Strong solutions. π is a strong solution for P if every execution trace of
π produces a goal state, i.e., every leaf node of Σπ is in Sg. For example,
consider a modified version of the hallway problem in which β will always
move to the right in the state s2. In this version of the hallway problem, the
execution structure for π0 is not the one shown in Figure 3, but instead is
the one shown in Figure 4. Hence π0 is a strong solution.

– Strong-cyclic solutions. π is a strong-cyclic solution for P if every fair
execution trace of π takes us to a goal state. A fair execution trace is one
such that for every cycle C in which there is an action having more than
one outcome, the execution trace will traverse C at most finitely many times
before exiting C.

wait

s
0

s
1

s
2

s
3

pass

move-right

Fig. 4. π0’s execution structure if β always moves to the right in s2

Planning for Interactions among Autonomous Agents 7

The concept of a fair execution trace can be understood intuitively as follows.
Even though we are not attaching probabilities to the outcomes of an action,
we would not normally say that a state s′ is a possible outcome of executing
a in s unless there is a nonzero probability that a will take us to s′. For
example, in Figure 3, the wait action has two possible outcomes s1 and s2,
so it is fair to assume that both of these outcomes have nonzero probability of
occurring. Consequently, if C is a cycle in Σπ (e.g., the wait action’s outcome
s2) and if one or more of the actions in C has another possible outcome (e.g.,
the wait action’s outcome s1), then the probability of remaining in C forever
is 0, so any execution trace that remains in C forever is unfair.

3.4 Partitioning States into Equivalence Classes

To illustrate how combinatorial explosion can occur in multi-agent planning,
we now consider a multi-agent planning domain called the Robot Navigation
domain [3,4,2]. In this problem domain, a robot is supposed to move around a
building such as the one shown in Figure 5, picking up packages and delivering
them to their destinations. There is another agent in the building, a “kid,” who
is running around and opening and closing doors. The kid can move much faster
than the robot, hence the kid may open or close each of the n doors in between
each of the robot’s actions.1

Fig. 5. A state in a Robot Navigation problem

If the building contains n doors and we model the kid’s actions as nondeter-
ministic outcomes of the robot’s actions, then each of the robot’s actions has 2n

possible outcomes: one for each possible combination of open and closed doors.
If we represent each of an action’s 2n outcomes explicitly, then for every policy
π and every state-action pair (s, a) ∈ π, the execution structure Σπ will have 2n

1 Equivalently, one could assume that there are n kids, each of whom is playing with
a different door.

8 T.-C. Au, U. Kuter, and D. Nau

successor states. In general, a solution policy will have exponential size and will
take doubly exponential time to generate. This is not very good!

In the Robot Navigation domain, the size of the search space can be reduced
by constructing policies over sets of states rather than individual states. For
example, if the robot is in room room1 and wants to go into the hallway, then it
matters whether door door1 is open but it does not matter whether any of the
other n − 1 doors is open or closed. To go through door1, we only need to plan
for two sets of states: the set S of all states in the robot is in room1 and door1
is open, (in which case the robot should move through the door), and the set of
states S′ in which the robot is in room1 and door1 is closed (in which case the
robot should try to open the door).

More generally, we will want to represent π not as a set of pairs

π = {(s1, a1), . . . , (sn, an)},

where s1, . . . , sn are distinct states, but instead as a set of pairs

π = {(S1, a1), . . . , (Sk, ak)},

where {S1, . . . , Sk} is a partition of {s1, . . . , sn}. We’ll call this a partition-based
representation of π.

To represent a set of states, we can use a boolean formula that is satisfied by
every state in the set. For example, suppose open1 is the proposition that door1
is open, and in1 is the proposition that the robot is in room1. Then we can use
the boolean expression open1 ∧ in1 to represent the set of all states in which
door1 is open and the robot is in room1.

The MBP planner [5,2] uses a representation of the kind described above.2

In the Robot Navigation Domain, this representation enables MBP to avoid
the exponential explosion described above: MBP can solve Robot Navigation
problems very quickly [5,2].

3.5 When the States Are Not Equivalent

MBP’s state-representation scheme works well only when the state space can be
divided into a relatively small number of equivalence classes. One illustration
of this limitation occurs in the Hunter-and-Prey domain [7]. In this planning
domain, the world is an n × n grid (where n ≥ 2) in which an agent α called the
hunter that is trying to catch one or more agents β1, . . . , βk called prey.

The hunter has five possible actions: move-north, move-south, move-east, or
move-west, and catch. Each of the first four actions has the effect of moving
the hunter in the stated direction, and is applicable if the hunter can move
that direction without going outside the grid. The catch action has the effect of
catching a prey, and is applicable only when the hunter and the prey are in the
same location. For example, Figure 6(a) shows a situation in which the hunter
has three applicable actions: move-north, move-west, and move-south.
2 More specifically, the boolean formulas are represented as Binary Decision Diagrams

(BDDs) [6].

Planning for Interactions among Autonomous Agents 9

Each prey has also five actions: a stay-still action which keeps the prey in
the same square it was already in, and move-north, move-south, move-east, and
move-west actions. These actions are similar to the hunter’s actions described
above, but with an additional restriction: at most one prey occupy a square at
any one time, so it is not possible for two or more prey to perform movements
that put them into the same square.

s

Fig. 6. A Hunter-and-Prey problem with two prey on a 3 × 3 grid. H represents the
hunter’s location, and P1 and P2 represent the locations of the two prey. In the state
s shown at left, there are three possible moves for P1 and four for P2, hence twelve
possible states that may be produced if the hunter moves west.

We can represent the possible actions of the prey as nondeterministic outcomes
of the hunter’s actions; Figure 6 gives an example. If there are m prey, any one
of the hunter’s actions may have up to 5k outcomes; the exact number depends
on the locations of the prey. A state’s total number of predecessors or successors
can be even larger.

On one hand, MBP can handle increases in grid size quite easily if there is
just one prey (see Figure 7). This is because MBP can classify the locations of
the hunter and prey into a small number of sets (e.g., in the set of all locations
where the prey’s x coordinate is 5 and the hunter’s x coordinate is below 5, MBP
might plan for the hunter to move East).

On the other hand, MBP’s running time increases dramatically if we increase
the number of prey (Figure 8). What causes MBP problems is the restriction
that no two prey can be at the same place at the same time. This restriction
means that unlike the doors’ open/closed status in Robot Navigation problems,
the prey’s locations in Hunter-and-Prey problems are not independent of each
other. When reasoning about the set of states in which prey pi is in square (x, y),
MBP cannot ignore the locations of the other prey because pi’s presence at (x, y)
means that the other m − 1 prey must be in squares other than (x, y). MBP’s

10 T.-C. Au, U. Kuter, and D. Nau

Fig. 7. Running time for MBP, ND-SHOP2, and Yoyo in Hunter-and-Prey problems
with one prey and varying grid size

running time grows because there are many different states in which this can
happen and MBP cannot represent them as a small number of sets of states.

3.6 Maintaining Focus on the Current Task

Another way of avoiding combinatorial explosion is to focus on one task t at
a time, ignoring all actions except for those relevant for performing t. In the
Hunter-and-Prey problem with a large number of prey, this means focusing on
one prey at a time, and ignoring all of the other prey until this one has been
caught.

In order to maintain focus on a particular task, we need a way to specify what
the tasks are, and what actions are relevant to each task. One way to accom-
plish this is to use Hierarchical Task Network (HTN) planning [8,9,10]. In HTN
planning, the objective of a planning problem is not expressed as a goal to be
achieved, but instead as a task to be performed. Tasks are represented as syn-
tactic entities that look like logical atoms, but their semantics is different: they
represent activities (e.g., actions or collections of actions) rather than conditions
on states of the world.

In HTN planning, the description of a planning domain includes not only
the planning operators for the domain but also a collection of HTN methods,
which are prescriptions for how to carry out various tasks by performing collec-
tions of subtasks. Planning is done by applying methods to tasks to decompose
them into smaller and smaller subtasks, until primitive tasks are reached that

Planning for Interactions among Autonomous Agents 11

Fig. 8. Running time for MBP, ND-SHOP2, and Yoyo in Hunter-and-Prey problems
with varying numbers of prey on a 4 × 4 grid

correspond directly to actions. If the actions are executable, the resulting plan
is (by definition) a solution to the planning problem.3

ND-SHOP2 [13] is an HTN planning algorithm for nondeterministic domains.
To solve Hunter-and-Prey problems with k prey, we can run ND-SHOP2 using
methods that say basically the following:

– Method for the task catch-all-uncaught-prey

if there are no uncaught prey, do nothing.
else

do subtask chase(βi) for an arbitrarily selected uncaught prey βi

do subtask catch-all-uncaught-prey

– Method for the task chase(βi)

if βi is at the hunter’s location, do action catch(βi)
else if βi is to the north

do action move-north, subtask chase(βi)
else if βi is to the south

do action move-south, subtask chase(βi)

3 The status of HTN planning is somewhat controversial in the AI planning re-
search community [11,12]. AI planning theorists have a preference for “domain-
independent” planning, in which the planner is given no specific knowledge about
a domain other than the definitions of the planning operators for that domain. In
contrast, HTN planning is quite popular among people who do practical applications
of AI planning, because they want to be able to use the knowledge they have about
the problems they are trying to solve, and HTN methods provide a way to encode
such knowledge.

12 T.-C. Au, U. Kuter, and D. Nau

else if βi is to the east
do action move-east, subtask chase(βi)

else if βi is to the west
do action move-west, subtask chase(βi)

Note that the method for catch-all-uncaught-prey recursively invokes itself when-
ever any uncaught prey remain. This tells the hunter to keep chasing prey until
all of them have been caught. Similarly, to tell the hunter to keep chasing βi

until βi has been caught, the method for the task chase(βi) recursively invokes
chase(βi) except in the case where the hunter catches βi.

As shown in Figure 8, ND-SHOP2 runs much faster than MBP on problems
where there are multiple prey and a small grid size. On the other hand, since
ND-SHOP2 does not have MBP’s ability to classify states into a small number
of sets, it has difficulty dealing with large grid sizes, as shown in Figure 7.

3.7 Combining Focusing with Reasoning about Equivalent States

To plan for a large number of prey on a large grid, we would like to combine
MBP’s ability to reason about sets of states with ND-SHOP2’s ability to focus
on individual tasks. There is a planner called Yoyo that does this. The details
are complicated and we will not describe them here, but the basic idea is as
follows: Yoyo does ND-SHOP2’s HTN decomposition, but instead of doing it
over individual states, Yoyo does it over sets of states represented as BDDs.
As shown in Figures 7 and 8, Yoyo outperforms both MBP and ND-SHOP2 on
Hunter-and-Prey problems; and it also has been shown to outperform MBP and
ND-SHOP2 in several other problem domains [14,15].

3.8 Interleaving Planning and Acting

One of the biggest sources of difficulty in solving the Robot Navigation and
Hunter-and-Prey problems is that we were trying to solve them offline, i.e., to
generate the entire policy before executing it. The problems with exponential
blowup in the size of the policy occurred because of the need to deal with all of
the possible contingencies.

One of the reasons why AI planning research has traditionally focused on
offline planning is that many planning problems contain unsolvable states, i.e,
states from which it is impossible to reach any of the goal states. In such planning
problems, it is important for the plan executor to avoid executing actions that
will take it to unsolvable states. One way to avoid such actions is to generate an
entire solution plan before the plan executor starts executing.

Neither the Robot Navigation and Hunter-and-Prey domains contain unsolv-
able states, hence they can be solved via online planning, in which the plan
executor executes each action as soon as the planner generates it. In these two
domains, online planning is much easier to do than offline planning, because the
planner only needs to plan for one of the possible outcomes of each action, namely
the outcome that the plan executor encounters when executing the action.

Planning for Interactions among Autonomous Agents 13

As an example, here is a simple online-planning algorithm for solving Hunter-
and-Prey problems:

while there are no uncaught prey do
if there is a prey βi in the same location as the hunter

then execute catch(βi)
else select a prey βi arbitrarily, and move toward it

It is easy to prove that if the actions of the prey satisfy the fairness assumption
discussed in Section 3.3, then the above algorithm is guaranteed to eventually
catch all of the prey. In the Hunter-Prey domain, the fairness assumption means
that if we keep coming back to the same state sufficiently many times, the prey
will eventually do something different.

One could accomplish much the same thing by using a real-time search algo-
rithm such as RTA* (real-time A*) [16,7]. Furthermore, one could take almost
any forward-search planner for deterministic planning problems (e.g., FastFor-
ward [17], TLPlan [18], or SHOP2 [19]), and modify it so that action selection
is replaced with action execution: rather than appending an action to its plan
and inferring the next state, the planner would immediately execute the action
and observe the state directly.

The idea of modifying a classical planner to interleave planning and execution
is somewhat similar to A-SHOP [20], but A-SHOP did not interleave planning
and execution in the way that we are discussing here. Its objective was to gener-
ate a plan, not to execute it; and its interactions with other agents were purely
for information-gathering. On the other hand, the idea has more in common
with agent systems based on the BDI model [21], such as PRS [22], AgentSpeak
[23], or RAP [24]. A recent system, CanPlan [25,26], explicitly combines BDI
reasoning with HTN planning.

4 Using Predictive Agent Models

One of limitation of the translation scheme in Section 3.1 is that the model of
the other agents is trivial: it tells what actions the other agents might perform in
different situations, but provides no way to help us predict how likely the agent
will be to perform these actions. For good decision-making, it can sometimes be
quite important to have such predictions.

As an example, consider the game of roshambo (rock-paper-scissors). The
Nash equilibrium strategy for this game is to choose randomly among rock,
paper, and scissors, with a probability of 1/3 for each choice; and the expected
utility of this strategy is 0 regardless of what strategy the opponent uses. But
in a series of international competitions among computer agents that played
roshambo, some of the programs did much better than the equilibrium strategy
[27,28,29]. They did so by building predictive models of the opponent’s likely
moves, and using these models to aid in choosing their own moves.

Another example is the game of kriegspiel [30,31]. This game is an imperfect-
information version of chess, and its strategies are much more complicated than

14 T.-C. Au, U. Kuter, and D. Nau

the strategies for roshambo—in fact, the game was used during the 19th century
by several European countries as a training exercise for their military officers.
It has been shown experimentally [32] that better play can be obtained by an
opponent model that assumes the opponent will make moves at random, in-
stead of using the minimax opponent model that is conventionally used in chess
programs.

If β is an agent, we will define a predictive model of β to be a function β̂ such
that for each state s, β̂(s) is a probability distribution over the set of actions that
β can perform in s. β̂ need not necessarily be an accurate predictor of β’s moves
(although an accurate model is obviously preferable to an inaccurate one).

If we are playing a game G with β and we have a predictive model β̂, then
we can use β̂ to translate the game into a Markov Decision Process (MDP).
Sections 4.1 and 4.2 give quick summaries of what an MDP planning problem
is and how the translation process works, Section 4.3 discusses how to partition
states into equivalence classes, and Section 4.4 gives a case study on a game
called the Noisy Iterated Prisoner’s Dilemma (Noisy IPD).

4.1 MDP Planning Problems

A Markov Decision Process (MDP) planning problem is like a nondeterministic
planning problem, but with the following changes:

– For state s ∈ S0, there is a probability P (s) that the initial state is s.
– If the set of possible outcomes for action a in state s is γ(s, a) = {s1, . . . , sj},

then each of them has a probability P (s, a, si), with
∑j

i=1 P (s, a, si) = 1.
– For each action a there is a numeric cost c(a) ∈ R.
– For each state s there is a a numeric reward r(s) ∈ R.
– There is a numeric discount factor δ, with 0 < δ ≤ 1.4
– In most formulations of MDPs there is no explicit “goal states,” but the

same effect can be accomplished by giving these states a high reward and
making them terminal states (i.e., states with no applicable actions) [33].

Given a policy π and an execution trace T = 〈s0, s1, . . .〉, we can compute T ’s
probability by multiplying the probabilities of the actions’ outcomes:

P (T |π) = P (s0)P (s0, π(s0), s1), P (s1, π(s1), s2),

The utility of the execution trace is the cumulative discounted difference between
the rewards and costs:

U(T) =
∑

i

δir(si) −
∑

i

δic(π(si)).

The objective is to find a policy π having the highest expected utility

E(π) =
∑
T

P (T |π)U(T).

4 In the MDP literature, the the discount factor is usually represented as γ, but that
conflicts with our use of γ to represent the state-transition function.

Planning for Interactions among Autonomous Agents 15

Section 3.1 discussed how to extend the classical planning representation to
represent nondeterministic planning problems. A similar approach can be used
to represent MDPs, by including in the action representation the action’s cost
and the state-transition probabilities.

4.2 Translating Games into MDPs

Suppose two agents α and β are playing a game G, and let β̂ be a predictive
model for β’s actions. Then we can use this model to translate G into an MDP
planning problem M(G, β̂). The translation is similar to the one described in
Section 3.1, with the following additions:

– Each state in the game is a state in the MDP.
– As before, we represent β’s possible actions as nondeterministic outcomes

of α’s actions—but this time we use β̂ to compute probabilities for each
of the outcomes. For example, suppose that in Figure 2, β̂ says there is
a probability of 3/4 that β will move right and a probability of 1/4 that
β will move left. Then we would assign P (s0, move-right, s1) = 3/4 and
P (s0, move-right, s2) = 1/4.

– We can obtain the actions’ costs and the states’ rewards directly from the
definition of the game. For example, in chess the cost of each action would
be 0, the reward associated with each nonterminal state would be 0, and the
reward associated with each terminal state would be 1, −1, or 0, depending
on whether the state is a win, loss, or draw.

4.3 Partitioning States into Equivalence Classes

Section 3.4 discussed how to decrease the size of the search space in a nondeter-
ministic planning problem, by partitioning the set of states {s1, . . . , sn} into a
set of equivalence classes {S1, . . . , Sk} such that for each equivalence class Si, the
plan-execution agent will do the same action ai at every state in Si. Something
similar can sometimes be done in MDPs, if an additional requirement can be
met: every state in Si must have the same expected utility.

As an example, consider the Iterated Prisoner’s Dilemma (IPD). This is a
well-known non-zero-sum game in which two players play n iterations (for some
n) of the Prisoner’s Dilemma, a non-zero-sum game having the payoff matrix
shown in Table 1.

Table 1. Payoff matrix for the Prisoner’s Dilemma. Each matrix entry (u1, u2) gives
the payoffs for agents α and β, respectively.

β’s move:
Cooperate Defect

Cooperate (3,3) (0,5)
α’s move: Defect (5,0) (1,1)

16 T.-C. Au, U. Kuter, and D. Nau

In the Prisoner’s Dilemma, the dominant strategy for each agent is to defect;
and in the Iterated Prisoner’s Dilemma, the Nash equilibrium is for both agents
to defect in every iteration. But the iterations give each agent the opportunity to
“punish” the other agent for previous defections, thus providing an incentive for
cooperation [34,35]. Consequently, there are empirical results (e.g., [35]) show-
ing that several non-equilibrium strategies do better in general then the Nash
equilibrium strategy. The best-known of these is Tit For Tat (TFT), a strategy
that works as follows:

– On the first iteration, cooperate.
– On the i’th iteration (for i > 1), make the move that the other agent made

on the i − 1’th iteration.

Suppose our predictive model β̂ is the following approximation of TFT:

– On the first iteration, cooperate with probability 0.9.
– On the i’th iteration (for i > 1), with probability 0.9 make the same move

that α made on the i − 1’th iteration.

In the IPD, each history (i.e., each sequence of interactions among the two
players) is a different state, hence after i iterations we may be within any of 4i

different states. But since β̂(s) depends solely on what happened at the previous
iteration, we can partition the states at iteration i into four equivalence classes
such that β̂ is invariant over each equivalence class:

– Si,C,C = {all states in which the pair of actions at iteration i was (C, C)};
– Si,C,D = {all states in which the pair of actions at iteration i was (C, D)};
– Si,D,C = {all states in which the pair of actions at iteration i was (D, C)};
– Si,D,D = {all states in which the pair of actions at iteration i was (D, D)}.

This gives us the MDP shown in Figure 9, in which each state (i, a1, a2) corre-
sponds to the equivalence class Si,a1,a2 .

The two main problems are (1) how to obtain an appropriate predictive model,
and (2) how to use the MDP to plan our moves. As a case study, we now discuss
these problems in the context of a program called DBS [36,37] that plays a game
called the Noisy IPD.

4.4 The Noisy Iterated Prisoner’s Dilemma

The Noisy IPD is a variant of the IPD in which there is a small probability,
called the noise level, that accidents will occur. In other words, the noise level is
the probability of executing “cooperate” when “defect” was the intended move,
or vice versa.

Accidents can cause difficulty in cooperating with others in real life, and the
same is true in the Noisy IPD. Strategies that do quite well in the ordinary
(non-noisy) IPD may do quite badly in the Noisy IPD [38,39,40,41,42,43]. For
example, if both α and β use TFT, then one accidental defection may cause a
long series of defections by both agents as each of them retaliates for the other’s
defections.

Planning for Interactions among Autonomous Agents 17

(2,C,C)

(2,C,D)

(2,D,C)

(2,D,D)

0.9

0.1

0.9

0.1

C

D

(1,C,C)

(1,C,D)

(1,D,C)

(1,D,D)

0.9

0.1

0.9

0.1

C

0.9

0.1

0.9
0.1

C

D

0.9
0.1

0.9

0.1

C

D

• • •

• • •

• • •

• • •

D
0.1

0.9

0.1

C

D

start

0.9

Fig. 9. An MDP in which each state is a set of equivalent game states

One way to deal with noise is to be more forgiving in the face of apparent
misbehavior. For example, a strategy called Tit For Two Tats, which defects
only when the other agent has defected twice in a row, can usually avoid the
mutual-retaliation problem described above. One problem with such a strategy is
that other agents can take advantage of it by occasionally defecting on purpose,
without being punished for doing so.

Another way to deal with noise is to use a predictive model of other agent’s
behavior to filter out the noise, as discussed later in this section.

Modeling the other Agent’s Behavior. As the game proceeds, DBS uses
its observations of β’s behavior to build a predictive model β̂ that will give
probabilistic predictions of β’s future behavior. DBS’s predictive model is a set
of rules of the form

β̂ = {C1(s) → P1, C2(s) → P2, . . . , Cm(s) → Pm},

where C1(s), . . . , Cm(s) are mutually exclusive conditions (i.e., at most one of
them is true in s), and Pi is the predicted probability that β will cooperate in a
state that satisfies Ci(s).

In principle, {C1(s), . . . , Cn(s)} may be any set of mutually exclusive condi-
tions, but which conditions should we use? If the conditions are too simple, then
they will be incapable of accurately representing β’s behavior, but if a condition
Ci(s) is too complicated, then it may be infeasible to learn an accurate value for
Pi. DBS uses the following set of four very simple conditions:

18 T.-C. Au, U. Kuter, and D. Nau

– C1(s) is true if both agents cooperated on the previous iteration;
– C2(s) is true if α cooperated and β defected on the previous iteration;
– C3(s) is true if α defected and β cooperated on the previous iteration;
– C4(s) is true if both agents defected on the previous iteration.

One way to compute Pi is as follows (this is not exactly how DBS does it, but is
an approximation). Let 0 < t < 1 be a constant called the threshold, and k > 0
be an integer constant called the window size. Let Si be the set of all states in
the last k iterations that satisfy Ci(s), Qi be the set of all states in Si in which
β cooperated, and ri = |Qi|/|Si|. Then we can set

Pi =

⎧⎨
⎩

0, if 0 ≤ ri ≤ t,
ri, if t < ri < 1 − t,
1, if 1 − t ≤ ri ≤ 1.

Here are some of the reasons for computing Pi in the manner specified above:

– The conditions C1, C2, C3, C4 are inadequate to represent most IPD strate-
gies over the entire course of a game, but they can often do well at repre-
senting the recent behavior of an IPD strategy. Hence we only compute Pi

over the last k iterations rather than the entire history of the game.
– Clarity of behavior is an important ingredient of long-term cooperation,

hence most successful IPD agents exhibit behavior that is at least partly
deterministic, and we would like to model this. In the ordinary IPD, if β
always cooperates when Ci is satisfied, then the ratio ri = 1 will model this
deterministic behavior. But consider the Noisy IPD with a noise level of, say,
10%. If β always cooperates when Ci is satisfied, then noise will transform
10% of these into defections. Hence ri = 0.9 on average, which fails to model
β’s deterministic behavior. Hence in cases where ri is close to 0 or close to 1,
we’ll want to hypothesize that β is actually behaving deterministically. The
threshold t accomplishes this.

DBS computes its Pi values in a manner that is similar but not identical to the
one described above. The main difference is that instead of using the ratio ri,
DBS uses a weighted ratio in which recent iterations are weighted more heavily
than less recent iterations. For details, see [36].

Filtering Noise. In cases where β̂ predicts deterministic behavior (i.e., it pre-
dicts the probability of cooperation to be either 0 or 1), DBS can use this de-
terministic prediction to detect anomalies that may be due either to noise or a
genuine change in the other agent’s behavior. If a move is different from a de-
terministic prediction, this inconsistency triggers an evidence collection process
that will monitor the persistence of the inconsistency in the next few iterations
of the game. The purpose of the evidence-collection process is to try to decide
whether the violation is due to noise or to a change in the other player’s policy.

Until the evidence-collection process finishes, DBS assumes that the other
player’s behavior is the behavior predicted by β̂, rather than the behavior that

Planning for Interactions among Autonomous Agents 19

was actually observed. Once the evidence collection process has finished, DBS
decides whether to believe that the other player’s behavior has changed, and
updates β̂ accordingly.

Planning DBS’s Moves. Since the MDP in Figure 9 is infinite, DBS cannot
generate the entire MDP. Instead, DBS plans its moves by generating and solving
a truncated version of the MDP that ends at an arbitrary cutoff depth d (DBS
uses d = 60). It is easy to compute an optimal policy π for the truncated MDP,
using dynamic programming.

In an ordinary offline-planning problem, once the planner had found π, the
plan executor would simply run π to completion. But this approach would not
work well for DBS, because the predictive model β̂ is only an approximation.
By generating π, DBS may be able to make a good move for DBS in the current
state, but we cannot be sure whether π will specify good moves in all of the
subsequent states. Hence, instead of running π to completion, DBS executes
only the first action of π, and recomputes π at every turn. Since the size of the
MDP is polynomial in d, this does not require very much computation.

Performance. The 20th Anniversary Iterated Prisoner’s Dilemma Competition
[44] was actually a set of four competitions, each for a different version of the
IPD. One of the categories was the Noisy IPD, which consisted of five runs of
200 iterations each, with a noise level of 0.1. 165 agents participated. Nine of
them were different versions of DBS. As shown in Table 2, seven of these were
among the top ten. Only two programs that did better: BWIN and IMM01.

BWIN and IMM01 both used the master-and-slaves strategy, which worked
as follows: Each participant in the competition was allowed to submit up to 20
agents, and some of the participants submitted a group of 20 agents that could
recognize each other by exchanging a pre-arranged sequence of Cooperate and
Defect moves. Once the agents recognized each other, they worked together as a
team in which 19 “slave” agents fed points to a single “master” program: every
time a slave played with its master, the master would defect and the slave would
cooperate, so that the master gained 5 points and the slave got nothing. Every

Table 2. Scores of the top 10 programs, averaged over the five runs

Rank Program Avg. score
1 BWIN 433.8
2 IMM01 414.1
3 DBSz 408.0
4 DBSy 408.0
5 DBSpl 407.5
6 DBSx 406.6
7 DBSf 402.0
8 DBStft 401.8
9 DBSd 400.9
10 lowESTFT classic 397.2

20 T.-C. Au, U. Kuter, and D. Nau

time a slave played with a program not on its team, the slave would defect, to
minimize the number of points gained by that program. BWIN and IMM01 were
the “master” agents in two different master-and-slave teams.

DBS, in contrast, did not use a master-slave strategy, nor did it conspire with
other agents in any other way. Despite this, DBS remained competitive with the
masters in the master-and-slaves teams, and performed much better than the
average score of a master and all of its slaves. A more extensive analysis [45]
shows that if the size of each master-and-slaves team had been limited to less
than 10, DBSz would have placed first.

5 Discussion and Conclusions

In general, planning gets very complicated when there are other autonomous
agents to deal with. In order to accomplish this, it is essential to have a way to
reduce the size of the search space. A variety of techniques have been developed in
the AI planning literature for reducing search-space size in single-agent planning
problems, and this paper has discussed how to utilize these techniques in multi-
agent planning problems by translating the multi-agent planning problems into
equivalent single-agent planning problems. In particular, we discussed two cases:
one in which we wanted to achieve a given set of goals regardless of what the other
agents might do, and one in which we wanted to maximize a utility function.

When the objective was to achieve a given set of goals regardless of the other
agents’ actions, the only model we needed of the other agents was what actions
they were capable of performing in each state of the world. In this case, the
approach was to model the other agents’ actions as nondeterministic outcomes
of the plan-execution agent’s actions, and solve the problem offline in order to
produce a policy for the plan-execution agent to use.

When the objective was to maximize a utility function, it mattered a great
deal how likely or unlikely the other agent’s actions might be. Hence, the ap-
proach in this case was to translate the multi-agent problem into an MDP in
which the other agents’ actions were represented as probabilistic outcomes of
the plan-execution agent’s actions. The probabilities of the outcomes were taken
from a predictive model that was built by observing the other agent’s behav-
ior. This predictive model required updating as the game progressed; hence it
was necessary to do the planning online: at each move of the game, the planner
constructed a new MDP based on the updated model, and solved this MDP to
decide what move the plan-execution agent should make next.

In both cases, an important technique for making the problem feasible to solve
was to partition states into equivalence classes. In the nondeterministic planning
problems in Section 3.4, the equivalence classes were based on what action we
wanted to do in each state. In the MDP planning problems in Section 4.2, the
equivalence classes were based not only on the action to be performed but also
on the state’s expected utility.

In Section 3.6 we used HTN methods to achieve additional reduction in the
size of the search space by pruning unpromising paths. This approach was not

Planning for Interactions among Autonomous Agents 21

used in Section 4.2, because the simple structure of a repeated game like the
IPD does not lend itself to this approach. However, HTN methods have been
used successfully to prune parts of the search space in more complicated games,
such as bridge [46].

Although the state-aggregation and HTN pruning techniques were quite suc-
cessful in the cases discussed in this paper, they each have limitations that may
cause difficulty in more complex problem domains. Here are two examples:

– Section 3.5 showed that there are relatively simple classes of problems in
which state aggregation does not work well. In Section 3.8 we pointed out
that the problem becomes much easier to solve if the planning is done online
rather than offline—and we believe one promising avenue for further work is
to develop techniques for deciding when to do the planning offline and when
to do it online.

– Our opponent-modeling technique for the Noisy IPD is a relatively simple
one, and more complex games require more sophisticated opponent models.
We believe that the development of techniques for generating good opponent
models will be a very important task.

Acknowledgments. This work has been supported in part by AFOSR grants
FA95500510298, FA95500610405, and FA95500610295, DARPA’s Transfer Lear-
ning and Integrated Learning programs, and NSF grant IIS0412812. The opin-
ions in this paper are those of the authors and do not necessarily reflect the
opinions of the funders.

References

1. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann, San Francisco (2004)

2. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic
planning via symbolic model checking. Artificial Intelligence 147(1-2), 35–84 (2003)

3. Pistore, M., Bettin, R., Traverso, P.: Symbolic techniques for planning with ex-
tended goals in non-deterministic domains. In: Proceedings of the European Con-
ference on Planning (ECP) (2001)

4. Pistore, M., Traverso, P.: Planning as model checking for extended goals in non-
deterministic domains. In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), Seattle, USA, pp. 479–484. Morgan Kaufmann, San
Francisco (2001)

5. Bertoli, P., Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: MBP: a model based
planner. In: Proceeding of ICAI 2001 workshop on Planning under Uncertainty
and Incomplete Information, Seattle, USA, pp. 93–97 (August 2001)

6. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys 24(3), 293–318 (1992)

7. Koenig, S., Simmons, R.G.: Real-time search in non-deterministic domains. In:
IJCAI 1995 (1995)

8. Tate, A.: Project planning using a hierarchic non-linear planner. Technical Re-
port 25, Department of Artificial Intelligence, University of Edinburgh (1976)

22 T.-C. Au, U. Kuter, and D. Nau

9. Sacerdoti, E.: A Structure for Plans and Behavior. American Elsevier, Amsterdam
(1977)

10. Erol, K., Hendler, J., Nau, D.S.: Complexity results for hierarchical task-network
planning. Annals of Mathematics and Artificial Intelligence 18, 69–93 (1996)

11. Kambhampati, S.: Are we comparing Dana and Fahiem or SHOP and
TLPlan? a critique of the knowledge-based planning track at ICP (2003),
http://rakaposhi.eas.asu.edu/kbplan.pdf

12. Nau, D.: Current trends in automated planning. AI Magazine 28(4), 43–58 (2007)
13. Kuter, U., Nau, D.: Forward-chaining planning in nondeterministic domains. In:

Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 513–
518 (July 2004)

14. Kuter, U., Nau, D., Pistore, M., Traverso, P.: A hierarchical task-network planner
based on symbolic model checking. In: Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS), pp. 300–309 (June 2005)

15. Kuter, U., Nau, D., Pistore, M., Traverso, P.: Task decomposition on abstract
states, for planning under nondeterminism. Artificial Intelligence (to appear, 2008)

16. Korf, R.: Real-time heuristic search. Artificial Intelligence 42(2–3), 189–211 (1990)
17. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through

heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)
18. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowl-

edge for planning. Artificial Intelligence 116(1-2), 123–191 (2000)
19. Nau, D.S., Muñoz-Avila, H., Cao, Y., Lotem, A., Mitchell, S.: Total-order plan-

ning with partially ordered subtasks. In: Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), Seattle (August 2001)

20. Dix, J., Muñoz-Avila, H., Nau, D.S., Zhang, L.: IMPACTing SHOP: Planning in
a multi-agent environment. In: Sadri, F., Satoh, K. (eds.) Proc. Second Workshop
on Computational Logic and Multi-Agent Systems (CLIMA), London, Imperial
College, pp. 30–42 (July 2000)

21. Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press
(1987)

22. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proceedings
of the National Conference on Artificial Intelligence (AAAI), pp. 677–682 (1987);
reprinted in [47], pp. 729–734

23. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: van Hoe, R. (ed.) Seventh European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, Eindhoven, The Netherlands (1996)

24. Firby, R.J.: Adaptive execution in complex dynamic worlds. PhD thesis 672, Yale
University (1989)

25. Sardiña, S., de Silva, L., Padgham, L.: Hierarchical planning in BDI agent program-
ming languages: A formal approach. In: AAMAS, Hakodate, Japan, pp. 1001–1008
(May 2006)

26. Sardiña, S., Padgham, L.: Goals in the context of BDI plan failure and planning.
In: AAMAS, Honolulu, HI, pp. 16–24 (May 2007)

27. Billings, D.: The first international RoShamBo programming competition. ICGA
Journal 23(1), 42–50 (2000)

28. Billings, D.: Thoughts on RoShamBo. ICGA Journal 23(1), 3–8 (2000)
29. Billings, D.: The second international roshambo programming competition (2001),

http://www.cs.ualberta.ca/~darse/rsbpc.html

30. Li, D.: Kriegspiel: Chess Under Uncertainty. Premier (1994)
31. Li, D.: Chess Detective: Kriegspiel Strategies, Endgames and Problems. Premier

(1995)

http://rakaposhi.eas.asu.edu/kbplan.pdf
http://www.cs.ualberta.ca/~darse/rsbpc.html

Planning for Interactions among Autonomous Agents 23

32. Parker, A., Nau, D., Subrahmanian, V.: Overconfidence or paranoia? search in
imperfect-information games. In: Proceedings of the National Conference on Arti-
ficial Intelligence (AAAI) (July 2006)

33. Boutilier, C., Dean, T.L., Hanks, S.: Decision-theoretic planning: Structural as-
sumptions and computational leverage. Journal of Artificial Intelligence Re-
search 11, 1–94 (1999)

34. Aumann, R.: Acceptable points in general cooperative n-person games. In: Luce,
R.D., Tucker, A.W. (eds.) Contributions to the Theory of Games, vol. 4. Princeton
University Press, Princeton (1959)

35. Axelrod, R.: The Evolution of Cooperation. Basic Books (1984)
36. Au, T.C., Nau, D.: Accident or intention: That is the question (in the iterated

prisoner’s dilemma). In: International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS) (2006)

37. Au, T.C., Nau, D.: Is it accidental or intentional? a symbolic approach to the
noisy iterated prisoner’s dilemma. In: Kendall, G., Yao, X., Chong, S.Y. (eds.) The
Iterated Prisoners Dilemma: 20 Years On, pp. 231–262. World Scientific, Singapore
(2007)

38. Axelrod, R., Dion, D.: The further evolution of cooperation. Science 242(4884),
1385–1390 (1988)

39. Bendor, J.: In good times and bad: Reciprocity in an uncertain world. American
Journal of Politicial Science 31(3), 531–558 (1987)

40. Bendor, J., Kramer, R.M., Stout, S.: When in doubt.. cooperation in a noisy pris-
oner’s dilemma. The Jour. of Conflict Resolution 35(4), 691–719 (1991)

41. Molander, P.: The optimal level of generosity in a selfish, uncertain environment.
The Journal of Conflict Resolution 29(4), 611–618 (1985)

42. Mueller, U.: Optimal retaliation for optimal cooperation. The Journal of Conflict
Resolution 31(4), 692–724 (1987)

43. Nowak, M., Sigmund, K.: The evolution of stochastic strategies in the prisoner’s
dilemma. Acta Applicandae Mathematicae 20, 247–265 (1990)

44. Kendall, G., Yao, X., Chong, S.Y.: The Iterated Prisoner’s Dilemma: 20 Years On.
World Scientific, Singapore (2007)

45. Au, T.C., Nau, D.: An analysis of derived belief strategy’s performance in the 2005
iterated prisoner’s dilemma competition. Technical Report CSTR-4756/UMIACS-
TR-2005-59, University of Maryland, College Park (2005)

46. Smith, S.J.J., Nau, D.S., Throop, T.: A planning approach to declarer play in
contract bridge. Computational Intelligence 12(1), 106–130 (1996)

47. Allen, J.F., Hendler, J., Tate, A. (eds.): Readings in Planning. Morgan Kaufmann,
San Francisco (1990)

Exploring Heuristic Action Selection
in Agent Programming

Koen V. Hindriks, Catholijn M. Jonker, and Wouter Pasman

EEMCS, Delft University of Technology, Delft, The Netherlands
{k.v.hindriks,c.m.jonker,w.pasman}@tudelft.nl

Abstract. Rational agents programmed in agent programming lan-
guages derive their choice of action from their beliefs and goals. One of the
main benefits of such programming languages is that they facilitate a high-
level and conceptually elegant specification of agent behaviour. Qualita-
tive concepts alone, however, are not sufficient to specify that this
behaviour is also nearly optimal, a quality typically also associated with
rational agents. Optimality in this context refers to the costs and rewards
associated with action execution. It thus would be useful to extend agent
programming languages with primitives that allow the specification of
near-optimal behaviour. The idea is that quantitative heuristics added to
an agent program prune some of the options generated by the qualita-
tive action selection mechanism. In this paper, we explore the expressivity
needed to specify such behaviour in the Blocks World domain. The pro-
gramming constructs that we introduce allow for a high-level specification
of such heuristics due to the fact that these can be defined by (re)using the
qualitative notions of the basic agent programming language again. We il-
lustrate the use of these constructs by extending a Goal Blocks World
agent with various strategies to optimize its behaviour.

1 Introduction

In this paper, we use the well-known Blocks World domain [1] to explore and
present evidence for the usefulness of adding expressive programming constructs
that allow the specification of utility-based heuristic strategies for action selec-
tion to the agent programming language Goal [2]. By means of various examples
we illustrate that the new constructs introduced allow for an elegant specifica-
tion of such strategies. Additionally, we present some experimental results that
demonstrate the usefulness of the programming constructs introduced and con-
firm and slightly extend earlier results available in the literature [1,3,4].

Our objectives are twofold: (i) The first objective is to extend Goal with
programming constructs to define a heuristic or utility-based decision capability
as an additional action selection mechanism. Such constructs allow the optimiza-
tion of agent behaviour as well as reduce the amount of nondeterminism present
in an agent program. (ii) The second objective is to assess the usefulness of the
mechanism by comparing the behaviour of a Goal agent which does not use the
mechanism with various instantiations of Goal agents that do use it.

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 24–39, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Exploring Heuristic Action Selection in Agent Programming 25

Although some related work on adding quantitative heuristics based on e.g.
resource costs or other decision-theoretic extensions has been done, see e.g. [5,6],
as far as we know little research has been done on programming constructs
for specifying heuristic action selection in the area of agent programming. [5]
allows for defining such decision-theoretic capabilities by means of arbitrary
programming languages instead of introducing primitives that reuse the basic
concepts of a rational agent programming language as we propose. Moreover,
the work extending Golog with decision-theoretic capabilities in e.g. [7] relies on
the situation calculus and cannot straightforwardly be incorporated into rational
agents that derive their choice of action from their beliefs and goals.

The paper is organized as follows. In Section 2 the Blocks World is briefly
introduced and a Goal agent is presented that is able to effectively deal with
Blocks World problems. In Section 3 some issues to improve the behaviour of this
agent are discussed and a general framework for adding (utility-based) heuristics
to an agent programming language is outlined. In Section 4 various heuristics for
the Blocks World are presented and it is shown how these can be implemented
using the primitives introduced. Section 5 concludes the paper.

2 Designing a Goal Agent for the Blocks World

In this Section, we design a Goal agent that is able to effectively solve Blocks
World problems. The Blocks World has been labelled the “Hello World” example
for planning [1]. One reason why it is still being used is that it is computationally
hard and moreover has some similarities with other, more realistic domains,
e.g., it is related to freight operations [1]. Another reason why this domain is
still interesting is that it is relatively simple and can be analyzed in detail to
gain an understanding of the capabilities needed to deal with it effectively [1,3].
Since, historically, agent programming languages were motivated in part by ideas
from reactive planning (see in particular [8,9]), it is interesting to start with this
domain for analyzing whether the right features for fine-grained control of action
needed to generate near-optimal behaviour are present in agent programming
languages.

The Blocks World consist of a finite number of blocks of equal size that are
stacked into towers on a table of unlimited size. Each block has a unique name
a, b, c, ... representing the fact that different blocks cannot be used interchange-
ably (which would be the case if only the colour of blocks would be relevant).
Some basic axioms of the Blocks World are that no block is on more than one
block, no more than one block is on a given block, and every block is either on
the table or on another block (see e.g. axiom 4 and 5 in [10], which provides
a complete axiomatization of the Blocks World). More realistic versions of this
domain have been investigated (e.g., limited table size, varying sizes of blocks;
cf. [4]). However, as argued in [1] the elementary Blocks World domain can sup-
port systematic experiments and, at least as important for our purposes, allows
features relevant to various kinds of reasoning to be abstracted and studied. The
Blocks World domain in particular allows for a precise study of various heuristics

26 K.V. Hindriks, C.M. Jonker, and W. Pasman

to ensure that an agent’s choice of action generates near-optimal behaviour. Ar-
tificial domains such as the Blocks World moreover are hard for general purpose
AI systems (e.g. planners), and it is only to be expected that this also holds
for programming languages to build rational agents which provide abstract se-
mantic primitives derived from common sense to do so [11]. In this paper some
of these difficulties will be explored and discussed. In addition, Blocks World
problems allow us to illustrate that programming languages for rational agents
provide the expressiveness to construct elegant agent programs that solve such
problems, though admittedly the domain is too simple to be convincing by itself.

Fig. 1. Example Blocks World problem taken from [1]

The Blocks World planning problem is to transform an initial configuration
of towers into a goal configuration, by means of moving one block on the top of
a tower onto another tower or to the table; see Figure 1 for an example problem.
A block on top of a tower, i.e. without any block on top of it, is said to be
clear. By definition, there is always room to move a clear block onto the table
and therefore the table is also said to be clear. The positioning of towers on the
table is irrelevant in a Blocks World problem. The main task of an agent in this
domain thus is to restack the blocks on the table according to its given goals. The
main choice such an agent faces is which action (moving a block) to select. The
performance of a Blocks World agent can be measured by means of the number
of moves it needs to turn an initial state or configuration into a goal state. An
agent performs optimally if it is not possible to improve on the number of moves
it uses to reach a goal state. The problem of finding a minimal number of moves
to a goal state is also called the optimal Blocks World planning problem. This
problem is NP-hard [4], an indication that the problem is not trivial.1

Several basic insights help simplify the solving of a Blocks World problem. A
block is said to be in position if the block in the current state is on top of a block
or on the table and should be so according to the goal state, and all blocks (if any)
below it are also in position; a block that is not in position is said to be misplaced.
1 It is not within the scope of this paper to discuss the complexity of various proposed

Blocks World heuristics for near-optimal planning; see [1,4] on this topic.

Exploring Heuristic Action Selection in Agent Programming 27

In Figure 1 all blocks except block c and g are misplaced. Only misplaced blocks
have to be moved in order to solve a problem. A move of block X onto another
block or onto the table is called constructive if in the resulting state block X is
in position. In the elementary Blocks World with unlimited table size moving a
block onto another block should only be done if the move is constructive, i.e., it
moves the block in position. A constructive move always decreases the number
of misplaced blocks. If in a state no constructive move can be made, we say that
the state is in a deadlock (see [1] for a detailed explanation). A block is said
to be a self-deadlock if it is misplaced and above another block which it is also
above in the goal state; for example, block a is a self-deadlock in Figure 1. The
concept of self-deadlocks, also called singleton deadlocks, is important because
on average nearly 40% of the blocks are self-deadlocks [1].

Representing Knowledge and Goals. In the remainder of this paper, we will use
Prolog notation to define and specify knowledge and goals. The basic facts and
goals to be achieved in the Blocks World can be expressed by means of the
predicate on(X,Y). on(X,Y) denotes that a block X is on Y, where Y may refer to
either another block or the table. We use a predicate block(X) to denote that X

is a block. The predicate clear(table) is used to denote that the table is clear,
i.e. it is always possible to move blocks onto the table. Using the on predicate it
is possible to formally define a Blocks World planning problem as a pair 〈I, G〉
where I denotes the initial state and G denotes the goal state. A state is defined
as a set of facts of the form on(X,Y) that is consistent with the basic axioms of
the Blocks World. A state is complete if for each block X it contains exactly one
fact of the form on(X,Y); from now on, we only consider complete states.

In the agent program, all blocks are enumerated to make it clear how many
blocks there are. The predicate above(X,Y) expresses that block X is above
block Y and predicate tower([X|T]) expresses that the list of blocks [X|T] is a
tower grounded on the table. We do not require that block X is clear, so e.g.,
tower([b,c]) holds in the initial state of Figure 1. The Prolog definitions of these
concepts are given in the beliefs section in Table 1, which is called the belief
base of the agent. The initial state of Figure 1 is represented in the agent’s belief
base, which is updated after every action that is performed.

In the goals section in Table 1, called the goal base, the goal state of Figure
1 is represented. (The clauses for above(X,Y) and tower(T) are repeated in the
goal base. In the current version of Goal, repetition of such clauses is necessary
when they are needed in derivations that use the goal base.) One important
difference between the belief and goal base is that individual goals need to be
represented as a single conjunction instead of several clauses since it represents
a single goal. The reason for the distinction is that a goal upon completion, i.e.,
when it is completely achieved, is removed from the goal base. Achieved goals
are removed to satisfy the rationality constraint that an agent does not have any
goals it believes to be achieved; the fact that this only happens when the goal
has been completely achieved implements a blind commitment strategy.

28 K.V. Hindriks, C.M. Jonker, and W. Pasman

Table 1. Goal Agent Program for Solving the Blocks World Problem of Figure 1

1 :main stackBuilder
2 { % This agent solves the Blocks World problem of Figure 1.
3 :beliefs{
4 block(a), block(b), block(c), block(d), block(e), block(f), block(g).
5 on(a,b), on(b,c), on(c,table), on(d,e), on(e,table), on(f,g), on(g,table).
6 clear(table).
7 clear(X) :- block(X), not(on(Y,X)).
8 above(X,Y) :- on(X,Y), block(Y).
9 above(X,Y) :- on(X,Z), above(Z,Y).

10 tower([X]) :- on(X,table).
11 tower([X,Y|T]) :- on(X,Y), tower([Y|T]).
12 }
13 :goals{
14 block(a), block(b), block(c), block(d), block(e), block(f), block(g),
15 on(a,e), on(e,b), on(b,table), on(f,d), on(d,c), on(c,table), on(g,table),
16 above(X,Y) :- (on(X,Y), block(Y)),
17 above(X,Y) :- (on(X,Z), above(Z,Y)),
18 tower([X]) :- (on(X,table)),
19 tower([X,Y|S]) :- (on(X,Y), tower([Y|S])).
20 }
21 :program{
22 if bel(tower([Y|T])), a-goal(tower([X,Y|T])) then move(X,Y).
23 if a-goal(tower([X|T])) then move(X,table).
24 }
25 :action-spec{
26 move(X,Y) {
27 :pre{ clear(X), clear(Y), on(X,Z) }
28 :post{ not(on(X,Z)), on(X,Y) }
29 }
30 }
31 }

Actions. Actions of a Goal agent are specified in the action-spec section by
means of a STRIPS-like specification of a precondition and add/delete lists, see
e.g., Table 1. Add/delete lists are specified here as a single list of literals, where a
positive literal denotes an add and a negative literal denotes a delete. Note that
the precondition in Table 1 allows moving a block X on top of another block Y

even if block X initially already is on top of Y. Such redundant actions, however,
are never generated given the action rules in the program section; therefore it
is unnecessary to add conditions preventing such moves to the precondition. For
the same reason, it is not necessary to add the precondition not(X=Y).

Goal agent design. The basic parts of a Goal agent have now been speci-
fied. The belief and goal base together are called the mental state of the agent,
typically denoted by m = 〈Σ, Γ 〉. A mental state needs to satisfy some basic ra-
tionality constraints: (i) beliefs need to be consistent, (ii) individual goals need
to be consistent, and (iii) individual goals in the goal base are not believed to be
the case. Actions are executed in Goal by checking whether the preconditions
of an action follow from the agent’s beliefs and, if so, by updating the beliefs in
line with the action’s postcondition after executing it. In addition, if as a result
of action execution a goal in the goal base has been completely achieved, then
this goal is removed from the goal base.

Exploring Heuristic Action Selection in Agent Programming 29

The program section specifies the strategy for action selection by means of so-
called action rules. These rules consist of a mental state condition and an action
and specify which actions an agent may consider for execution. The mental state
condition determines which actions may be executed. In order to express such
conditions a belief operator bel(...) and a goal operator goal(...) are available,
which can be combined using conjunction , and prefixed with negation not.
For example, bel(block(a)) expresses that the agent believes that a is a block
whereas bel(on(a,b)), goal(on(a,e)) expresses that the agent believes it has
not yet achieved its goal on(a,e) (since it believes a to be on top of b).

The semantics of the belief operator bel(ϕ) is that ϕ follows from the belief
base (i.e. Σ |= ϕ where |= denotes the classical first order consequence opera-
tor; since we use Prolog, additionally the Closed World Assumption is used in
practice). The semantics of the goal operator goal(ϕ) is slightly different from
that of the belief operator; goal(ϕ) holds if ϕ follows from some goal in the
goal base (i.e. ∃γ ∈ Γ : γ |= ϕ).2 It is useful and necessary to have access
to the belief base as well as the goal base of an agent. For example, without
either of these operators it is not possible to specify that a block is in posi-
tion, i.e. that its current position is in correspondence with its positions in the
goal state. Using both operators, we can express that block X is in position by
means of bel(tower([X|T])), goal(tower([X|T])) for some tower T. We call such
a (sub)goal a goal achieved and introduce the new operator goal-a(...) as an
abbreviation to denote this fact, i.e.,

goal-a(ϕ)
df
= bel(ϕ), goal(ϕ)

The notion of an achievement goal, i.e., a goal not yet believed to be achieved,
can also be defined using the belief and goal operator (cf. [12]). We introduce
the new operator a-goal(...) to denote such goals as an abbreviation for:

a-goal(ϕ)
df
= bel(not(ϕ)), goal(ϕ)

Using the achievement goal operator we can represent the fact that block
X is not in position in the initial state by a-goal(tower([X|T])) for T a tower.
a-goal(tower([X|T])) means that in the goal state block X must be on top of
the tower T but in the current state the agent does not believe that this is al-
ready the case; a-goal(tower([X|T])) thus expresses that X is misplaced. This
is an important concept in defining any strategy since only misplaced blocks
should be moved to solve a Blocks World problem. The definition of a self-
deadlocked block also requires the inspection of both the belief as well as the
goal base. The concept of a self-deadlock can be quite naturally defined by
a-goal(tower([X|T])), goal-a(above(X,Y)) where the first conjunct expresses
that X is misplaced and the second conjunct expresses that X is above some

2 This is different from definitions of the goal operator in previous work [2] where the
goal operator was used to denote achievement goals, which additionally require that
the agent does not believe ϕ. We need the more basic goal operator however to
express that a block is in position.

30 K.V. Hindriks, C.M. Jonker, and W. Pasman

block Y in both the current state as well as in the goal state. This concept is just
as important for solving Blocks World problems since any self-deadlocked block
needs to be moved at least twice to reach the goal state. Moving such a block to
the table thus will be a necessary move in every plan.

The two action rules in the program section of Table 1 implements a simple
strategy for a Blocks World agent. As explained, an action rule consists of a
mental state condition ϕ and an action a. If the condition ϕ holds, the action
a is said to be enabled. The first rule generates constructive move options the
agent can choose from. The second rule allows a move of block X to the table if
it is misplaced. The condition of this rule is weaker than the first implying that
whenever the first rule is applicable the second is applicable as well, meaning
that the actions of these rules are enabled. Then the agent arbitrarily chooses an
enabled action. Note that this agent will never move a block that is in position.

Summarizing, a Goal agent program consists of four sections: a belief base
consisting of the agent’s beliefs, a goal base with the agent’s goals, a program
section defining the agent’s action selection strategy, and an action specification
section with STRIPS-like action specifications. The Goal Blocks World agent
contains a specification of the initial state of the Blocks World problem in its
belief base, a specification of the goal state in its goal base, a specification of the
move action in its action specification section, and two action rules that define
its strategy for performing either a constructive move in case such a move brings
a block in position, or a move to the table if a block is misplaced.

3 Heuristic Action Selection in Agent Programming

Research in planning has shown that in order to plan effectively and be able to
generate near-optimal plans for the Blocks World it must be possible to specify
various domain-dependent heuristics [11]. The specification of these heuristics in
domain-independent planning systems requires the right concepts to express and
implement them. If agent programming languages are to match these capabili-
ties, programming constructs with similar expressive power need to be available
to program rational agents that use heuristics to improve performance. We argue
that in programming languages for rational agents such programming constructs
would be most useful if they allow for the specification of such heuristics in terms
of the core concepts of beliefs and goals present in these languages.

In this Section we introduce a generic extension of the Goal agent program-
ming language that can be incorporated into other agent languages based on
concepts of belief and goal, and add a capability for specifying heuristic se-
lection strategies by means of utility functions. We first briefly introduce the
basic concepts needed and discuss the semantics of the extension of Goal with
a utility-based action selection mechanism. Then we introduce a programming
construct for specifying utility values. In Section 4 we show that the program-
ming constructs we introduce allow for an elegant specification of behaviour that
shows improved performance compared with a Goal agent that does not make
use of the utility-based selection mechanism.

Exploring Heuristic Action Selection in Agent Programming 31

3.1 Associating Utility Values with Action Execution

The idea is to associate a quantitative number with the execution of an action a
in a state m, i.e., to associate a real valued number U(m, a, m′) with executing
a in state m resulting in a new state m′. A number associated with an action
in this way can be perceived of in two different ways. One perspective, the more
principled view on what this number represents, is to suggest that the number
is a utility value that represents how much value is to be gained from executing
the action. It is standard to further decompose such a utility value into two
components, a cost component that is associated with taking an action in the
starting state and a reward component that associates a reward with getting
to the resulting state (cf. [13]). Alternatively, such a number can be perceived
of as a heuristic that only provides an estimation of e.g. the costs of executing
an action. Since these different views do not conflict, and in practice it is very
intuitive to use concepts such as costs and rewards, in the remainder we will
freely use either terminology.

Formally, a utility function can be introduced which is defined in terms of
costs and rewards by: U(m, a, m′) = R(m′)−C(m, a). Here, the reward function
R should be thought of as representing the utility of being in state m′. For
example, an agent gains more utility for getting to a state with more blocks in
position than to a state with less blocks in position. Likewise, the cost function C
represents the costs associated with the resources spent. However, a cost function
can also be used to indicate that performing an action is a good thing.

3.2 Semantics

Agent programming languages in general, and Goal in particular, quite nat-
urally lead to writing programs that are underspecified (i.e. such programs do
not determine a unique action to perform next and thus may underspecify the
actual behaviour of an agent).3 The operational semantics of these languages
leaves room for various alternatives as to how to implement the action selection
mechanism of an agent. One of the benefits of underspecification is that it facil-
itates and simplifies the design and programming of an agent, but it may also
give rise to suboptimal behaviour (due to ad hoc suboptimal choices). The basic
idea now is to introduce another, utility-based mechanism for action selection
on top of the qualitative selection mechanism already present in Goal that can
be used to further limit the number of choices.

Ideally an agent optimizes the sum of all utility gains over an entire execution
run. The set of such runs of an agent with which we would like to associate
utility values is given by the qualitative action selection mechanism. A run can
3 The language Goal does not have constructs to specify complex plans such as se-

quential composition that could be used to further reduce the choices left open by
an agent at any particular moment. The action rules in a Goal program thus nat-
urally lead to more underspecification than is typical of other agent programming
languages. The only construct available in Goal to reduce this type of underspeci-
fication is the module-construct, see [14].

32 K.V. Hindriks, C.M. Jonker, and W. Pasman

be formally specified as an infinite sequence of computation steps. Very briefly,
a computation step written as m

a−→ m′ denotes that action a can be performed
in state m (i.e. action a is enabled: the precondition of a holds in state m and the
condition of the corresponding action rule for a also holds) and results in state
m′. A run r then can be defined as an infinite sequence m0, a0, m1, a1, m2, . . .
such that mi

ai−→ mi+1 (for details, we refer the interested reader to [2]). The
set of all such runs is denoted by RA for agent program A.

The main idea is to associate a utility value with each possible run of an
agent and to actually execute that run which maximizes utility. In this setup,
an agent first (pre)selects possible actions which it may execute in each state
using its action selection mechanism based on qualitative action rules. In other
words, action rules define the search space in which the agent needs to find
an optimal run. The benefit is that this search space typically is significantly
reduced compared to the search space induced by the set of all enabled actions
in a state, i.e. actions whose preconditions hold.

Given a utility function U it is easy to extend this function to a run. We
use mr

i to denote the ith mental state in run r and similarly ar
i denotes the ith

action in run r. A utility value can be associated with a run r then as follows:

Uδ(r) =
∞∑

i=0
δi · U(mr

i , a
r
i , m

r
i+1)

where δ is a discount factor in the range 〈0, 1], intuitively accounting for the fact
that utility realized now is more valuable than utility in the future. The meaning
of a Goal agent A that uses the utility-based action selection mechanism on
top of the qualitative one then can be defined as the set of runs r that maximize
the associated utility U(r), i.e., the meaning of a utility-based Goal agent is
defined by:

UA = max
U(r)

{r | r ∈ RA}

The semantics of a utility-based Goal agent as defined above requires infinite
look-ahead. That is, to select an action in any state requires the agent to compute
the utility of all possible runs before performing that action to ensure utility is
maximized over the complete computation. Computationally, such a requirement
is not feasible and, therefore, we associate a finite horizon h with the computation
of a utility. In case h = 0, the agent does not perform any look ahead at all.
For h > 0, an agent would require a lookahead facility before taking action, of
depth h. Formally, this finite horizon constraint can be defined on an arbitrary
computation r at time point i by:

U(r, i, h) =
i+h−1∑

j=i

δj−i · U(mr
j , a

r
j , m

r
j+1)

Here, U(r, i, h) denotes the (discounted) utility associated with the actions per-
formed from time point i to i + h. Using this definition, the meaning Uh

A of a
utility-based Goal agent with a finite horizon h is defined by Uh

A = σh
A(∞),

where σh
A is defined by the following inductive definition:

Exploring Heuristic Action Selection in Agent Programming 33

σh
A(−1) = RA,

σh
A(i) = max

U(r,i,h)
{r | r ∈ σh

A(i − 1)} if i ≥ 0.

σh
A(∞) =

∞⋂
i=0

σh
A(i).

The operator σh
A(i) for i ∈ N selects those runs that have highest utility over

the next h steps from time point i on, where the runs inspected are those runs
that have survived the same selection using a horizon h at earlier time points
j < i. At time point i = 0 the latter set coincides with the set of all possible
runs RA of agent A. An inductive definition is needed here to reflect the fact
that an agent performs a look-ahead again after each step it performs. The limit
σh

A(∞) defines the new meaning of a Goal agent that uses a look-ahead h to
filter runs.

The following proposition partly justifies the definition of σ.

Proposition 1

RA = U0
A (1)

UA = σ∞
A (0) (2)

UA ⊇ U∞
A , i.e., max

U(r)
{r | r ∈ RA} ⊇ σ∞

A (∞) (3)

The first item of Proposition 1, RA = U0
A, expresses that the utility-based seman-

tics with a horizon h = 0, i.e. no look-ahead, coincides with that of the original
semantics that does not take utility into account. The second item UA = σ∞

A (0)
shows that infinite look-ahead can be defined by means of the σ-operator; simply
do infinite look-ahead at time point 0. It is easy to see that U∞

A ⊆ UA, since
U∞

A ⊆ σ∞
A (0). The fact that UA is not the same as U∞

A = σ∞
A (∞) is due to the

fact that σh
A defines a step by step process and evaluates maximum continua-

tions in each state and does not just once evaluate a global property of a run.
Proposition 1 thus shows that in the limit case the semantics defined by the
σ-operator approximates that of UA. The advantage of the σh

A-operator over the
infinite-lookahead UA is that for finite horizons h it can implemented. Finally,
we do not necessarily have that Uh

A ⊆ UA for a finite h, since σh
A may select

runs that have high utility on initial prefixes of length h of the run but over
the complete run do worse than other runs with low utility on initial prefixes of
length h.

3.3 Specifying Quantitative Utility Values

In order to incorporate the assignment of quantitative values to transitions of a
Goal program, such programs are extended with a new utility section and the
following notation is introduced for representating utility:

value(<initial-state-cond>, <action-descr>, <successor-state-cond>) = <utility-expr>

The initial-state-cond as well as the successor-state-cond refer to arbitrary
mental state conditions, i.e., conditions that are combinations of goal(...) and

34 K.V. Hindriks, C.M. Jonker, and W. Pasman

bel(...) operators. In addition, the constant true - which holds in any mental
state - may be used here as well. The action-descr part refers to any action
description that is allowed in Goal, e.g., in the Blocks World move(X,Y). Vari-
ables are allowed in both mental state conditions used to characterize the initial
or resulting state, as well as in the action description. The same holds for the
utility-expr part, which denotes a numerical expression which may involve basic
arithmetic operators such as addition and multiplication. The action description
part may also be filled with a special don’t care label any.

In the utility section of a Goal program, multiple lines of value statements
are allowed that apply to the same transition. In case multiple value statements
apply to the same transition the multiple values assigned to that transition are
added together by taking the sum of the values. As a simple example, the state-
ments value(true,move(X,table),true)=1 and value(bel(on(X,Y)),any,true)=2

are both applicable to a transition that starts in a state where bel(on(a,b))

holds and in which action move(a,table) is taken, and therefore the values 1 and
2 need to be added to give a total value of 3. Using the value construct we can
define various useful abbreviations for reward and cost components as follows:

cost(<initial-state-cond>, <action>)
df
= -1·value(<initial-state-cond>, <action>, true)

reward(<successor-state-cond>)
df
= value(true, any, <successor-state-cond>)

Note that according to these definitions both costs and rewards are conditional
on the beliefs as well as the goals of an agent.

For practical reasons, it is useful to introduce a case statement to define a com-
plex value function based on case distinctions. Inside a case statement conditional
expressions of the form <state-cond>:cost(<action-descr>)=<utility-expr> and
<state-cond>:reward=<utility-expr> are allowed. By using a case-statement,
costs and/or rewards are assigned to a transition using the first case that applies,
i.e., that value is returned associated with the first condition <state-cond> that
holds (assuming, of course that an action description, if present, matches as well).
Various examples of the use of this statement are provided below.

In the extension of Goal quantative values are assigned only to actions that
an agent has preselected given its current goals. This reflects the fact that qual-
itative goals have priority over any quantitative preferences. That is, the first
priority of a Goal agent is to achieve its qualitative goals, whereas its second
priority then becomes to do this such that utility is maximized.

4 Heuristic Action Selection in the Blocks World

As explained above, the Goal Blocks World agent never moves a block that is in
position. The agent will only move a misplaced block to the table or move a block
onto another block. Note that the agent will only move a block X onto another
block Y if this move puts X in position, and such a move thus is constructive. Also
note that if a block can be moved onto another block the second action rule of
the agent also allows to move this block to the table. In almost all Blocks World
states multiple actions are feasible and in line with the semantics of Goal an

Exploring Heuristic Action Selection in Agent Programming 35

action then is selected randomly. The semantics thus allows for various strategies
of action selection and does not enforce any of these strategies.

A number of alternative heuristics or strategies have been proposed in the lit-
erature [1,3,4]. We explore several of these to illustrate the use of utility values
to guide the action selection mechanism of an agent. One of the most straight-
forward strategies for solving a Blocks World problem is to first unstack all
(misplaced) blocks and then to move all blocks in position. This strategy has
been called the Unstack-Stack (US) strategy [1]. It is clear that this strategy is
compatible with the Goal agent program presented in Table 1. Note that this
strategy will only worsen the behaviour of the agent by never making a con-
structive move during the unstack phase even if such moves are available. We
have implemented and experimented with it mainly for reasons of comparison.
The following code needs to be added to the utility section:

case{
bel(Y=table): cost(move(X,Y)) = 1. % unstack has priority
true: cost(move(X,Y)) = 2. % otherwise

}
USG Heuristic

A first idea to improve the behaviour of the agent is to give priority to con-
structive moves over other moves. The reason that this may improve behaviour
is simple: the move has to be made anyway, brings the current state closer
to the goal state, and may make it possible to perform another constructive
move next. Using the cost construct to assign costs to actions we have to
make sure that a constructive move always has an associated cost less than
that for other types of moves. Since as we noted above, any block that sat-
isfies bel(tower([X|T])), a-goal(tower([X,Y|T])) can be constructively moved,
the cost function can be defined as follows:

case{
bel(tower([Y|T]), a-goal(tower([X,Y|T])): cost(move(X,Y)) = 1. % a constructive move
true: cost(move(X,Y)) = 2. % otherwise

}
GN1G Heuristic

A second heuristic to get closer to near-optimal behaviour is to prefer moving
a block that is self-deadlocked over moving other blocks when no constructive
move is available. As explained above, a self-deadlocked block is a misplaced
block above a block it has to be above in the goal state as well. As a result, such a
block has to be moved twice (once to the table, and once in position) and it makes
sense to do this first when no constructive move is available.4 The addition of this
heuristic to the program requires the more complex conceptual condition that
defines a self-deadlock identified above. Here we can slightly simplify, however,
because costs of an action are only computed if the action is enabled, i.e. the
corresponding action rule condition is satisfied. This means that a block X in an
enabled action move(X,Y) is misplaced and we do not need to repeat it; the part
4 It does not make any difference whether a constructive or self-deadlocked move is

made first; we follow [3,1,4] in preferring to make a constructive move here.

36 K.V. Hindriks, C.M. Jonker, and W. Pasman

of the definition still required then is goal-a(above(X,Z)). For the same reason
we also do not need to check whether the block to be moved is clear.

case{
bel(tower([Y|T]), a-goal(tower([X,Y|T])): cost(move(X,Y)) = 1. % a constructive move
goal-a(above(X,Z)): cost(move(X,Y)) = 2. % X is a self-deadlock
true: cost(move(X,Y)) = 3. % otherwise

}
SDG Heuristic

Although the heuristic costs associated with move actions above is quite nat-
ural, not quite the same behaviour but similar performance could have been
achieved quite elegantly also by using the reward function instead of the cost
function by making use of the counting operator #.

reward(true) = #T^goal-a(tower([X|T])-#T^Y^[a-goal(tower([X|T])),goal-a(above(X,Y))]

The first term in the utility expression #T^goal-a(tower([X|T])) counts the
number of blocks in position in a state, whereas the second term

#T^Y^[a-goal(tower([X|T])),goal-a(above(X,Y))]

counts the number of self-deadlocks in a state. Also note the use of the abstrac-
tion operators T^ and Y^ which, as in Prolog, existentially quantify variables T
(∃T) and Y (∃Y) to ensure that we do not count variation over these variables. In
the Blocks World domain the abstraction over T is not strictly necessary since in
any state a block can be present at most in one tower, but the abstraction over Y
is required since a block may be above multiple other blocks in both the belief as
well as goal state. Rewards increase by either increasing the number of blocks in
position or by decreasing the number of self-deadlocks in a state. The heuristic
values associated by the reward function with performing a constructive move
or breaking a self-deadlock are identical. This is different from the cost function
introduced earlier which always prefers to perform a constructive move first if
possible. As noted above, however, since a self-deadlock has to be moved twice
in any optimal plan anyway this preference does not result in behaviour that is
closer to optimal behaviour.

A third heuristic is adapted from a proposal in [3], and focuses on those cases
where neither a constructive nor any self-deadlock move can be made. In that
case some block has to be moved to the table, and we pick the block on the
tower that has the lowest number of blocks that are neither in position nor self-
deadlocked. This number is called the deficiency of the tower and is added as an
additional third case to the previous cost function defined above.

case{
bel(tower([Y|T]), a-goal(tower([X,Y|T])): cost(move(X,Y))=1. % a constructive move
goal-a(above(X,Z)): cost(move(X,Y))=2. % X is a self-deadlock
bel(tower([X|T]),length([X|T],H),last(T,B)), goal-a(on(B,table)): % compute deficiency

cost(move(X,Y)) = H-#[bel(member(Y,T)), goal-a(tower[Y|U]))]
-#Z^[bel(member(Y,T)), a-goal(tower([Y|U])), goal-a(above(Y,Z))].

true: cost(move(X,Y)) = #bel(block(X))+1. % otherwise.
}

DSG Heuristic

Exploring Heuristic Action Selection in Agent Programming 37

Results. Although our main aim has been to introduce expressive programming
primitives for defining (utility-based) heuristics, it is interesting to briefly discuss
the results of running the heuristics discussed. The various heuristics defined
above were implemented in our prototype Goal implementation. This prototype
is implemented in Java and SWI-prolog. The default goal behaviour (RSG),
which selects one of the applicable actions at random instead of picking the one
that has maximum utility, was also measured.

To generate random start and end states in the blocks world, the BWSTATES
algorithm of [1,15] was used, whereas the BWOPT algorithm of [1,15] was used
to determine the optimal plan length. To run the experiments, 100 problems
were generated, each consisting of a random start and end state, for worlds of
size 10 up to 120 blocks with step size 10. Each problem was solved using the
various utility heuristics. The agents used a horizon of 1. The performance is
then computed as the number of steps it took to solve that problem divided by
the optimal plan length.

Figure 4 shows the average performance as a function of the number of blocks.
The standard deviations on the performance are all in the order of 0.04 and have
been left out to improve readability of the Figure. The dashed lines show the
results that were found by Slaney [1], the labels ending with G refer to heuristics
defined in Goal.

GN1

US

GN2

USG

RSG

GN1G

SDG

20 40 60 80 100 120
1.00

1.05

1.10

1.15

1.20

number of blocks

pe
rf
or
m
an
ce

DSG

Fig. 2. Performance results

Given the relatively large standard deviations on our measurements, the USG
and GN1G heuristics match Slaney’s results for the US and GN1 heuristics. The
various utility functions USG, GN1G, SDG and DSG were claimed to be a set of
incremental improvements on the basic heuristic USG, which is confirmed by the
performance results. At 120 blocks and with respect to the optimal performance
of 1.0, the GN1G performs twice as good as USG, and the SDG and DSG
adds another 37% to the performance of GN1G. The standard goal RSG also
performs as expected: better than the USG algorithm but worse than GN1G as
it still can do non-constructive moves when a constructive move is possible. The
DSG heuristic is only a marginal improvement over the SDG heuristic. Even

38 K.V. Hindriks, C.M. Jonker, and W. Pasman

though the improvement is small, our results confirm the claim in [3] that the
deficiency heuristic optimizes performance and adds some new evidence that this
improvement is consistent at least for worlds of up to size 120 blocks.

5 Conclusion

We have introduced new programming constructs that add expressiveness to the
Goal programming language and allows to specify utility-based heuristics using
high-level concepts such as beliefs and goals. The construct can be added to any
programming language that is based on these agent concepts. Thus, high-level
agent programming concepts are combined naturally with a utility-based action
selection capability.

Similar ideas have been proposed in [5,7]. [7] discusses an extension of Golog
with a decision-theoretic component called DTGolog. Since Golog is an extension
of the situation calculus there are many differences between our work and that
of [7]; one of the more important ones is that heuristics in the programming
language Goal can be defined using the concepts of belief and goal, which gives
additional expressive power not present in [7]. [5] extends the AgentSpeak(L)
language with a decision-theoretic capability but allows the use of arbitrary
programming languages to do so instead of adding a new programming construct
to the language itself. Finally, it would be interesting to compare our work with
the specification of heuristics in planners such as TLPlan [11]. TLPlan allows
for specifying heuristics using temporal logic to guide search for planning from
scratch. The extension of Goal in contrast assumes this search space has been
predefined by means of action rules, which may be further pruned by means of
the utility-based action selection capability introduced in this paper. It remains
for future work to compare the expressiveness of both approaches.

Several example heuristics and related results were presented which show that
the addition of a construct to specify quantitative heuristics for action selection
may significantly improve performance which cannot be achieved as elegantly
without it or not at all.

The action selection mechanism based on quantitative heuristics we intro-
duced in this paper assumes a look-ahead mechanism that is not always applica-
ble in dynamic environments. As argued in [16], however, it is useful to combine
look-ahead or planning with action execution. By combining the concept of a
module introduced in [14] and the look-ahead action selection mechanism dis-
cussed here we can achieve a similar “local” planning mechanism in Goal that
is performed within the context of such a module. We leave discussion of this
combination for future work.

The extension of Goal proposed here does not allow the use of probabilis-
tic concepts which are available in decision-theoretic approaches. Future work
could be to include these as well, but a proper integration of probabilistic con-
cepts into Goal would require an extension of the basic language as well to
be able to execute actions with probabilistic effects. Another interesting idea is

Exploring Heuristic Action Selection in Agent Programming 39

to allow agents to learn the priorities they should associate with actions. For
example, reinforcement learning techniques could be deployed within Goal to
learn optimal policies.

References

1. Slaney, J., Thiébaux, S.: Blocks World revisited. Artificial Intelligence 125, 119–153
(2001)

2. de Boer, F., Hindriks, K., van der Hoek, W., Meyer, J.J.: A Verification Framework
for Agent Programming with Declarative Goals. Journal of Applied Logic 5(2),
277–302 (2007)

3. Romero, A.G., Alquézar, R.: To block or not to block? In: Lemâıtre, C., Reyes,
C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS, vol. 3315, pp. 134–143.
Springer, Heidelberg (2004)

4. Gupta, N., Nau, D.S.: On the Complexity of Blocks-World Planning. Artificial
Intelligence 56(2-3), 223–254 (1992)

5. Bordini, R., Bazzan, A., Jannone, R., Basso, D., Vicari, R., Lesser, V.: AgentS-
peak(XL): Efficient Intention Selection in BDI agents via Decision-Theoretic Task
Scheduling. In: Proc. of the 1st Int. Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2002), pp. 1294–1302 (2002)

6. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and avoiding interference
between goals in intelligent agents. In: Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI 2003) (2003)

7. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-Theoretic, High-
level Agent Programming in the Situation Calculus. In: Proc. of the 17th National
Conference on Artificial Intelligence (AAAI 2000), pp. 355–362 (2000)

8. Ingrand, F., Georgeff, M., Rao, A.: An architecture for real-time reasoning and
system control. IEEE Expert 7(6) (1992)

9. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

10. Cook, S., Liu, Y.: A Complete Axiomatization for Blocks World. Journal of Logic
and Computation 13(4), 581–594 (2002)

11. Bacchus, F., Kabanza, F.: Using Temporal Logics to Express Search Control
Knowledge for Planning. Artificial Intelligence 116(1-2), 123–191 (2000)

12. Cohen, P.R., Levesque, H.J.: Intention Is Choice with Commitment. Artificial In-
telligence 42, 213–261 (1990)

13. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assump-
tions and computational leverage. Journal of AI Research 11, 1–94 (1999)

14. Hindriks, K.: Modules as policy-based intentions: Modular agent programming in
goal. In: Dastani, M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.)
ProMAS 2007. LNCS, vol. 4908, pp. 156–171. Springer, Heidelberg (2008)

15. http://users.rsise.anu.edu.au/~jks/bwstates.html (January 2008)
16. de Giacomo, G., Levesque, H.J.: An incremental interpreter for high-level programs

with sensing. Technical report, Department of Computer Science, University of
Toronto (1998)

http://users.rsise.anu.edu.au/~jks/bwstates.html

Programming Verifiable Heterogeneous Agent Systems�

Louise A. Dennis�� and Michael Fisher

Department of Computer Science, University of Liverpool, Liverpool, United Kingdom
L.A.Dennis@liverpool.ac.uk

Abstract. Our overall aim is to provide a verification framework for practical
multi-agent systems. To achieve practicality, we must be able to describe and
implement heterogeneous multi-agent systems. To achieve verifiability, we must
define semantics appropriately for use in formal verification. In this paper, we
tackle the problem of implementing heterogeneous multi-agent systems in a se-
mantically clear, and appropriate, way.

1 Introduction

The construction of multi-agent systems has become relatively straightforward as more
high-level agent programming frameworks have become available [8, 28, 6, 1]. Quite
sophisticated systems have been developed and, in some cases, deployed. However,
there still remain a number of problems, particularly regarding the flexibility and reli-
ability of multi-agent systems. The particular aspect of flexibility we are interested in
here concerns systems of heterogeneous agents. Thus, while we might construct a multi-
agent system in one language, a more realistic scenario is that a practical multi-agent
system will comprise agents implemented in a number of distinct languages. Several
approaches already exist supporting heterogeneous agents, e.g:

– communication at a common level can be achieved if the agents are based on ex-
tensions of standard languages such as Java or Java Agent Services [19], or
comprise standard distribution mechanisms such as CORBA [20] or .COM [27];

– if all agents are implemented within a common underlying framework [1, 17], then
this provides a layer through which communication and ontologies can be handled;

– if the heterogeneous agents are embedded in an appropriate wrapper that handles
communication and coordination, such as that utilised within the IMPACT frame-
work [25, 13], then effective heterogeneous multi-agent systems can be built; and

– if all agents subscribe to a general interaction protocol, for example the FIPA [15]
speech act approach, communicative aspects are taken care of within the protocol.

We are also interested in developing systems whose reliability and trustworthiness can
be (automatically) assessed. Specifically, we aim to apply formal verification techniques
to agents [4], by developing model checking [7, 18] techniques. For some of the above,
formal analysis has been carried out; for others, no definitive formal semantics is avail-
able. However, those systems where formal analysis has been considered, notably IM-
PACT [25] and FIPA-ACL [21, 22], have only considered interaction aspects of agents,

� Supported by EPSRC grant EP/D052548.
�� Corresponding author.

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 40–55, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Programming Verifiable Heterogeneous Agent Systems 41

not their full internal behaviour. This can cause problems if the mental states of the
agents are inconsistent, even if the communication aspects are homogenised [26].

In our work, we have aimed to develop techniques for analysing implemented multi-
agent systems. Beginning with model-checking techniques for AgentSpeak [5], we
are extending these now to other languages such as 3APL [8] and SAAPL [29]. Until
now we have only considered systems of agents implemented using the same language,
i.e. homogeneous multi-agent systems. Our overall aim within this paper is to describe
our approach for handling heterogeneous multi-agent systems. Thus, we aim to show:
(1) how our Agent Infrastructure Layer (AIL) [12] provides an effective, high-level,
basis for implementing operational semantics for BDI-like programming languages;
(2) how the AIL supports heterogeneous agent computation, and to provide an example
of this — the example is a simplified Contract Net [24] and the system comprises three
agents, each implemented in a different language1; and (3) how formal verification can
be carried out, using the agent verification system under development [10, 3].

2 The AIL

The AIL [12, 10] is a toolkit of Java classes designed to support the implementation
of BDI programming languages and the model checking of programs implemented in
these languages. Our previous approaches to model checking agent programs showed
that encoding agent concepts, such as goals and beliefs, into the state machine of the
model checker was a complex and time-consuming task. It was also necessary to adapt
the property specification language of a model checker to express properties in these
terms; the natural terminology for reasoning about an agent-based program. Our ap-
proach is to encode the relevant concepts from the AIL into the model checker just
once and then allow multiple languages to benefit from the encoding by utilising the
AIL classes in their implementation. The AIL therefore consists of data structures for
representing agents, beliefs, plans, etc., which can be adapted to the operational seman-
tics of individual languages. A language implemented in the AIL sub-classes the AIL’s
agent class and then specifies a reasoning cycle. The reasoning cycle consists of a tran-
sition system which defines a number of stages and specifies the changes to the agent
structure that occur as it passes from one stage to the next. The AIL agent data structure
contains a place holder for the current stage of the reasoning cycle which is instantiated
in interpreted agents. To aid the implementation of interpreters the AIL also contains an
operational semantics package (OSRules) containing sample transition rules.

In [12], the AIL is described as a customisable language with its own operational se-
mantics and reasoning cycle. This proved too inflexible to accommodate the language
features found in implementations of the major agent programming languages. In par-
ticular, the reasoning cycle became an obstacle. Hence our current implementation of
the AIL is a collection of data structures. The AIL’s most complex data structure is that
representing an intention. BDI languages use intentions to store the intended means
for achieving goals – this is generally represented as some form of deed stack (a deed
may be an action, a belief update or the commitment to a goal). Intention structures in
BDI languages may also maintain information about the (sub-)goal they are intended

1 GOAL [9], SAAPL [29] and Gwendolen [11], a BDI language developed by the first author.

42 L.A. Dennis and M. Fisher

to achieve or the event that triggered them. In the AIL, we aggregate this information.
Most importantly for the discussion here an intention becomes a stack of pairs of an
event and a deed, Individual pairs associate a deed with the event that has caused the
deed to be placed on the intention. New events are associated with an empty deed, ε.

The AIL’s basic plan data structure associates some matching information, a guard
and a deed stack. The AIL includes operations for using plans to modify intentions.
In these the plan is “matched” to the intention; the plan’s guard is checked; and the
plan’s body (a deed stack) is added to the deed stack of the intention. Since some BDI
languages trigger plans by matching the prefix of the deed stack and some by matching
a trigger event, the AIL plan matching information contains both a trigger event (which
must match the top event of the intention) and a deed stack prefix (which must match
the prefix of the intention’s deed stack). The matched prefix is replaced by the plan’s
body. By way of example, consider the following AIL plan for cleaning rooms.

trigger prefix guard body
+!aclean() ε dirty(Room) +!aGoto(Room)

+!aVacuum(Room)

We use the syntax +!ag to indicate the commitment to an achievement goal. The AIL
allows several different goal types. In this paper we will be interested in achievement
(or declarative) goals representing a belief the agent desires to have; and perform goals
(syntax +!pg), which need not lead to a belief. The following shows the operation of
the AIL’s default planning operation on an intention, given the plan above.

trigger deed

+!a clean() ε
→

trigger deed

+!aclean() +!aGoto(Room)
+!aclean() +!aVacuum(Room)

The plan’s trigger matched the top event of this intention and its prefix matched the
deed stack prefix. We assume the guard was believed. The top row of the intention
(matching the prefix) was removed and replaced with two rows representing the body
of the plan. The AIL can also handle reactive plans which become applicable whenever
the guard is satisfied, but do not match a specific intention. We have omitted discussion
of unification as handling unifiers obscures the presentation.

The AIL provides an environment interface which it expects systems implemented
using it to satisfy. An environment, ξ, is expected to implement the following: do(a)
executes the action, a. It is assumed that this handles any external effects of an agent’s
actions. newpercepts(ag) returns any new perceptions from the environment since the
agent (ag) last checked and oldpercepts(ag) returns a list of things that can no longer
be perceived. getmessages(ag) returns a list of messages. When one of these interface
functions is called we write it, for instance, as ξ.do(a).

3 The AIL as an Environment for Heterogeneous Agents

The AIL view of the world is shown in Fig. 1. The AIL is implemented in Java and,
in turn, a variety of languages can be implemented in the AIL. The AIL comes with
interfaces and default classes for composing multi-agent systems, these classes handle
agents at the level of the underlying AIL data structures and so can be used with agents

Programming Verifiable Heterogeneous Agent Systems 43

Semantics

JAVA

AIL Toolkit

Operational Operational
SAAPL GOAL

SemanticsSemantics

Gwendolen GOALSAAPL
Agent Agent Agent

Operational
Gwendolen

Fig. 1. Architecture of Heterogeneous Multi-Agent System

in any language that builds upon those structures. This makes it straightforward to build
a heterogeneous multi-agent system using the AIL once the implementations of the tar-
get semantics are in place. In the subsequent sections, we will describe the three agent
languages we use, namely: Gwendolen (Section 4); SAAPL (Section 5); and GOAL
(Section 6). Our aim was to use not only the AIL data structures but as many of the pre-
written AIL transition rules as possible in order to assess their breadth and utility. We
also provide code fragments, both to give the reader some concrete syntax, and to intro-
duce our heterogeneous scenario. Thus, we will code agents in each of these languages
to take part in a Contract Net scenario [24], a well-known, and widely used, model
of coordination in distributed problem-solvers. Essentially, a particular agent (the man-
ager) broadcasts tasks (goals) to be achieved, and then agents capable of achieving these
tasks bid for the contract. In real scenarios, the bidding, allocation and sub-contracting
are all complex. However, we consider a very simple version: the manager does not
broadcast to all the agents in the system at once but instead contacts them in turn; there
is no bidding process nor sub-contracting; agents volunteer for a task if, and only if,
they can perform it; and the manager simply accepts the first proposal it receives.

4 Gwendolen

Gwendolen [11] is based on the language presented in [12] now abstracted away from
the AIL. Gwendolen uses the AIL’s planning mechanisms “off the shelf” with both
achievement and perform goals, event triggered, reactive and prefix matching plans. In
this paper we only look at plans which match the prefix ε and so omit that from our plan
presentation. We therefore represent Gwendolen’s version of the plan

trigger +!aclean()
prefix [ε]
guard dirty(Room)
body +!aGoto(Room)

+!aVacuum(Room)

as +!aclean() : dirty(Room) <-

+!aGoto(Room); +!aV acuum(Room)

Throughout this paper, we will use ‘;’ to indicate concatenation of deeds on a stack
and ↑a m to indicate the sending of a message m to agent a and ↓a m to indicate the
receipt of a message m from an agent a (as in [29]). Gwendolen has two negation

44 L.A. Dennis and M. Fisher

symbols which can be used in plan guards. ¬gu succeeds if the agent believes ¬gu
(strong negation), ∼ gu success if the agent does not believe gu (weak negation).

Contract Net Code. The code for our Contract Net written in Gwendolen is as follows:

+!ag : cando(g) <- a +!ag ′ : cando(g ′) <- a′

+!ag : ¬cando(g) <- +!pcfp(g) +!ag ′ : ¬cando(g ′) <- +!pcfp(g ′)

These are four basic plans for achieving the goals g and g ′ either by performing an
action or committing to performing a “call for proposals”. Our Contract Net protocol
assumes a message semantics consisting of a performative and a ground formula. The
perform performative expects the agent to perform an action and the tell performative
expects the receiving agent to update its belief base. So, Gwendolen has a plan for
asking an agent to respond to a request to perform a goal, together with a number of
plans for how to perform a ‘respond’ action and how to act if an agent has a proposal
or is awarded a contract. ag(A) is the belief that A is the name of another agent and
name(N) is the belief that N is the agent’s own name.

+!pcfp(T) : ag(A) ∧ name(N)∧ ∼↑A (perform, respond(T ,N)) <-

↑A (perform, respond(T ,N)); wait

+!pcfp(T) : proposal(T, A) <- wait

+!prespond(T, A) : cando(T) ∧ name(N) <- ↑A (tell, proposal(T ,N))

+!prespond(T, A) : ¬cando(T) ∧ name(N) <- ↑A (tell, sorry(T ,N))

+proposal(T, A) : � <- ↑A (tell, award(T))
+award(T) : � <- +!aT

5 SAAPL

SAAPL (Simple Abstract Agent Programming Language) [29] is an abstraction of lan-
guages such as Jason [6], 3APL [8], and CAN [30]. In [29] SAAPL is used to drive
the discussion of commitment machines. We ignore this issue and focus instead on
SAAPL’s semantics as a simple, yet typical, language. The semantics of SAAPL [29],
are shown in Fig. 2 where Q is the environment (a message queue), N the agent’s name,
B the belief base, Γ the intentions, Π the plan base, and Δ the applicable plans.

SAAPL implemented with AIL. SAAPL’s semantics has three stages: Basic (which
acts on a single intention); Agent which acts on a set of intentions; and MAS which acts
on a set of Agents. SAAPL’s semantics handles transitions between stages by treating
a transition in one stage as a precondition to a rule for the next (e.g., rule (8) in Fig. 2),
while the AIL expects a “chaining” style where an agent’s reasoning cycle decides when
to change stage. We include the current stage as part of the agent data structure.

Let us consider the Basic stage first. Although our agent data structure contains all
the intentions, it also distinguishes a “current intention” so in the Basic stage we work

Programming Verifiable Heterogeneous Agent Systems 45

〈Q, N, B, +b〉 Basic−−−−→〈Q, N, B ∪ {b}, ε〉 (1)

〈Q,N, B,−b〉 Basic−−−−→〈Q,N, B\{b}, ε〉 (2)

Δ = {Piθ | (ti : ci ← Pi) ∈ Π ∧ tiθ = e ∧ B |= ciθ}
〈Q,N, B, e〉 Basic−−−−→〈Q,N, B,SO(Δ)〉 (3)

〈Q, N, B, P1〉 Basic−−−−→〈Q′, N, B′, P ′〉
〈Q, N, B, P1; P2〉 Basic−−−−→〈Q, N, B, P1; P2〉

(4)

〈Q, N, B, ε; P 〉 Basic−−−−→〈Q,N, B, P 〉 (5)

〈Q, N, B, ↑NB m〉 Basic−−−−→〈Q + N : NB : m, N, B, ε〉 (6)

Q = NA : N : m + Q′

〈Q,N, B, Γ 〉 Agent−−−−−→〈Q′, N, B, Γ ∪ {↓NA m}〉 (7)

P = SI(Γ) 〈Q,N, B, P 〉 Basic−−−−→〈Q′, N, B′, P ′〉
〈Q,N, B, Γ 〉 Agent−−−−−→〈Q′, N, B′, (Γ\{P}) ∪ {P ′}〉 (8)

P = SI(Γ) P = ε

〈Q,N, B, Γ 〉 Agent−−−−−→〈Q′, N, B′, Γ\{P}〉 (9)

〈N, B, Γ 〉 = SA(As) 〈Q, N, B, Γ 〉 Agent−−−−−→〈Q′, N, B′, Γ ′〉
〈Q, As〉 MAS−−−−→〈Q′, (As ∪ {〈N, B′, Γ ′〉})\{〈N, B,Γ 〉}〉 (10)

Fig. 2. Operational Semantics for SAAPL

on this intention. SAAPL’s intentions are stacks of belief modifications, send message
actions or events, while the AIL has a more complex structure of events and deeds.
In general we will be interested in the AIL’s deed stack. Only when planning will we
be interested in the AIL’s event stack. We will look at rule (1) in detail. We discov-
ered, while performing this case study, that many of the operational rules in OSRules
were over complex and still specialised towards what is now the Gwendolen language.
In particular they contained pre-conditions and effects that were unnecessary in many
cases. As a case in point, there is a belief addition rule in OSRules which, excluding
unifiers and irrelevant parts of the Agent data structure, was:

consistent(B ∪ {b})
< ag , (E, +b); i , I ,B , ? >→< ag , i , [(+b, ε)];I ,B ∪ {b}, ? >

(11)

In this transition rule, and in all others in the paper, we will include in the agent data-
structure < . . . > only those parts affected by the rule. Throughout this paper we will
use ‘;’ to indicate concatenation of the rows in our intention data structure so (E, +b); i
is the intention whose top row has event, E and deed, +b. ‘?’ indicates the placeholder
for the stage of the agent’s reasoning cycle. We replaced (11) with

consistent(B ∪ {b})
< ag , (E, +b); i , I ,B , ? >→< ag , i , I ,B ∪ {b}, ? >

(12)

46 L.A. Dennis and M. Fisher

which does not now issue a new intention (+b, ε). consistent defaults to � in the AIL,
but can be over-ridden in language implementations. We keep the default and again that
pre-condition is trivial. Changing the presentation of the rule to use SAAPL syntax (B
for belief base, P the current intention, Γ the intentions, N agent name) gives:

< N, (E, +b); P, Γ,B , Basic >→< N, P, Γ,B ∪ {b}, Agent >
(13)

which is in most respects identical to (1) and (4), then returning to the Agent stage as
specified by (8). The AIL’s default “drop belief” rule (combining (2) and (4)) becomes:

< N, (E, −b); P, Γ,B , Basic >→< N, P, Γ,B\{b′}, Agent >
(14)

We now look at plan selection; rule (3). This rule combines two operations that are
separated in OSRules. Firstly a set, Δ, of applicable plans is determined and then
one of these is selected SO(Δ) using a selection function. Since we had two rules to
represent this we introduced a new stage BasicPlanning to chain them together:

Δ = {(ti, Pi) | ti : ci ← Pi ∈ Π ∧ (tiθ = e) ∧ B |= ciθ} Δ �= ∅
< N, [], (e, ε); P, B, Basic >→< N, Δ, (e, ε); P, B, BasicPlanning >

(15)

SO(Δ, i) = (e, Pi)
< N, (e, ε); P, Δ, BasicPlanning >→< N, (e, Pi); P, [], Agent >

(16)

(e, Pi); P is a shorthand for adding a row (e, pi) to the intention P for each deed, pi ∈
Pi. SAAPL has a mechanism for posting events, e. These are placed on the intention
stack and picked up immediately for planning. In the AIL data structures they get placed
on the deed stack and need to be moved to the event stack before planning can take
place. This step requires us to introduce a new rule from OSRules into SAAPL:

< N, (E, +!pg); P, Agent >→< N, (+!pg, ε); P, Agent >
(17)

The SAAPL semantics requires the use of a new distinguished symbol ‘ε’ to represent
a “done” update. Since we have integrated (4) into our rules for individual steps we no
longer need this marker nor (5) to handle it.

We now look at sending messages. SAAPL assumes a message queue, while AIL
assumes a more adhoc arrangement where an agent can access all its messages at once.
Therefore we implemented two new rules for (6) and (7):

ξ.enqueue(N : NB : m)
< N, ξ, ↑NB m; P, B, Basic >→< N, ξ, P, B ∪ {↑NB m}Agent >

(18)

NA : N : m = ξ.dequeue
< N, Γ, Agent >→< N, (↓NA m, ε); Γ, Agent >

(19)

ξ is the agent environment. The SAAPL implementation therefore specifies two oper-
ations (enqueue and dequeue) that any environment in which it runs must implement.
We treat the receipt of a new message as the acquisition of a belief that the message has

Programming Verifiable Heterogeneous Agent Systems 47

been received (so in the AIL this is modelled as a belief change event). Rules (8) and (9)
handle the selection of intentions. Although we are not using the SAAPL “do nothing”
symbol we can have empty intentions all of whose deeds have been performed. There
were “select intention” rules within the AIL but, again, were simplified.

P = SI(Γ ∪ {Po}) ¬empty(P)
< N, Po, Γ, Agent >→< N, P, Γ\{P} ∪ {Po}, Basic >

(20)

SI is a function for selecting intentions. Since AIL’s default rules expect a separate
distinguished current intention the equivalent of Γ in rules (8) and (9) is Γ ∪Po in AIL,
where Po is the “old” current intention. This is not a complete representation of (8) we
have to assume the correct operation of the Basic stage to complete the rule.

P = SI(Γ ∪ {Po}) empty(P)
< N, Po, Γ, Agent >→< N, null, Γ\{P} ∪ {Po}, Agent} >

(21)

We also introduced a rule that put an agent’s thread to sleep should its intention set Γ
become empty (as opposed to letting it continuously run, checking for an applicable
rule). Rule (10) implicitly assumes a single threaded environment. In a multi-threaded
Java implementation it seemed sensible not to implement this rule in the semantics but
allow the Java scheduling algorithm to handle interleaving of agent execution.

Since we were interested in an example which required agents to perform actions
beyond simply sending messages, we also introduced one further rule from OSRules:

a �=↑NA m ξ.do(a)
< N, ξ, (E, a); P, Basic >→< N, ξ, P, Agent >

(22)

Recall that do is an interface requirement for all environments that support the AIL.
It is assumed that an environment for SAAPL would fulfil the basic AIL requirements
(implementing do etc.) as well as those specific to SAAPL (enqueue and dequeue).

Faithfulness of the Implementation. Any claim to have implemented the operational
semantics of a language is faced with correctness issues involved in transferring a tran-
sition system to, in this case, a set of Java classes. Verifying implementations is a
complex undertaking. Such a verification effort would be a significant task and falls
outside the scope of this work. However, that aside, it is also the case that we have not
directly implemented the transition system presented in [29] but the one shown above
and so the question arises “Are these two transition systems equivalent”? In fact they are
not. For instance we have included a new rule for action execution and have interleaved
agent execution. But nevertheless it would clearly be desirable to produce a theorem
demonstrating the extent to which the two transition systems match and so providing
a clear idea of the extent to which we can claim to have implemented SAAPL with
the AIL. We have offered above an informal discussion of the relationship between the
semantics but leave a proper (formal) proof to ongoing work [14]. We anticipate that
the production of such a proof will refine the implementation of SAAPL in the AIL.

Contract Net Code. The contract net code in SAAPL is similar to that for Gwendolen.
The major difference is the inability to trigger plans by general belief updates. We create

48 L.A. Dennis and M. Fisher

a special “react” event, r, used to trigger reactions to messages. The react event is posted
when tell messages are received (see section 7).

g : cando(g) ← a g ′ : cando(g ′) ← a′

g : ¬cando(g) ← cfp(g) g ′ : ¬cando(g ′) ← cfp(g ′)

cfp(T) : ag(A) ∧ name(N)∧ ∼↑A (perform, respond(T ,N))

← ↑A (perform, respond(T ,N)); wait

respond(T, A) : cando(T) ∧ name(N) ← ↑A (tell, proposal(T ,N))

respond(T, A) : ¬cando(T) ∧ name(N) ← ↑A (tell, sorry(T ,N))

r : proposal(P ,Ag) ← ↑Ag (tell, award(P)) r : award(T) ← T

6 GOAL

GOAL [9] is a BDI language introduced by de Boer et. al to illustrate the use of purely
declarative goals in agent programming. It is clearly a BDI language but is quite differ-
ent in style to many other agent languages. In particular it does not use the concepts of
event or intention explicitly in its semantics. An agent is defined by its mental state: two
sets of formulas Σ for the agent’s beliefs and Γ for the agent’s goals. In this sense, it is
closer in style to the original AOP proposal [23] or to MetateM [16]. GOAL assumes
an underlying logic on its formula language, L, with an entailment relation |=C and
defines entailment for mental states as in Definition 1 below. An agent’s behaviour is
governed by its capabilities and conditional actions. Capabilities are associated with a
partial function T : Bcap × ℘(L) → ℘(L). T operates on the belief base Σ to alter it.
Capabilities may be enabled or not for an agent in a particular configuration. If the ca-
pability is not enabled then T is undefined. T is used by the mental state transformation
function M to alter the agent state as in Definition 2.

Definition 1. Let 〈Σ, Γ 〉 be a mental state:
– 〈Σ, Γ 〉 |=M Bφ iff Σ |=C φ, 〈Σ, Γ 〉 |=M Gψ iff ψ ∈ Γ
– 〈Σ, Γ 〉 |=M ¬φ iff 〈Σ, Γ 〉 �|=M φ,
– 〈Σ, Γ 〉 |=M φ1 ∧ φ2 iff 〈Σ, Γ 〉 |=M φ1 and 〈Σ, Γ 〉 |=M φ2.

Definition 2. Let 〈Σ, Γ 〉 be a mental state, and T be a partial function that associates
belief updates with agent capabilities. Then the partial function M is defined by:

M(a, 〈Σ, Γ 〉) =

⎧⎪⎪⎨
⎪⎪⎩

〈T (a, Σ),
Γ\{ψ ∈ Γ | T (a, Σ) |=C ψ}〉

if T (a, Σ)
is defined,

is undefined for a ∈ Bcap
if T (a, Σ)

is undefined

(23)

M(drop(φ), 〈Σ, Γ 〉) = 〈Σ, Γ\{ψ ∈ Γ | ψ |=C φ}〉 (24)

M(adopt(φ), 〈Σ, Γ 〉) =

⎧⎪⎪⎨
⎪⎪⎩

〈Σ,
Γ ∪ {φ′ | Σ �|=M φ′, |=C φ → φ′}〉

if �|=C ¬φ and
Σ �|=C φ

is undefined
if Σ |=C ¬φ or

|=C ¬φ

(25)

Programming Verifiable Heterogeneous Agent Systems 49

Lastly, conditional actions and a commitment strategy provide a mechanism for select-
ing which capability to apply next.

Definition 3. Let 〈Σ, Γ 〉 be a mental state with b = φ � do(a) ∈ Π . Then, as a rule,
we have: If

– the mental condition φ holds in 〈Σ, Γ 〉, i.e. 〈Σ, Γ 〉 |=M φ, and
– a is enabled in 〈Σ, Γ 〉 i.e., M(a, 〈Σ, Γ 〉) is defined.

then 〈Σ, Γ 〉 b−→M(a, 〈Σ, Γ 〉) is a possible computation step. The relation −→ is the
smallest relation closed under this rule.

The commitment strategy determines how conditional actions are selected when several
apply and is not specified directly by the GOAL semantics.

GOAL implemented with AIL. To model GOAL’s mental states we treated the AIL
belief base as the GOAL belief base, Σ. AIL already had an operation to extract the
“goals” of a agent – interpreted as the set of AIL achieve goals appearing in the event
stacks of intentions. GOAL’s goal set, Γ , became the AIL’s goal set.

Implementation of |=M was simple. The formulas B(φ) etc. are equivalent to the
AIL’s guard formulas and the AIL logical consequence relation, |=, is allowed to in-
spect not just AIL’s belief base but also its intentions, mailboxes, plans2 and goals. The
AIL interpreted G(φ) as φ ∈ Γ as required by GOAL. Therefore the AIL’s |= rela-
tion was equivalent to GOAL’s |=M except that the current implementation of |=, in
the AIL, only allows for unification with the belief base. This therefore limits reason-
ing about GOAL mental states. (We intend to build in Prolog style reasoning in the
future.)

Next we turn to capabilities. Inherent in the description of a capability is the idea
that the agent performs an action associated with the capability. Also inherent in the
description and in the semantics of mental state transformers is the idea that all the belief
updates associated with a capability are performed before the agent does anything else
(like planning a different intention). The AIL’s pre-existing transition rules only allowed
for one belief update at a time. There was nothing to prevent us from writing a new rule
that would perform all the tasks in T (a, Σ) at once, but since we were interested in re-
using the AIL’s pre-existing rules where possible we assigned a reasoning cycle stage,
Capability, for performing all the updates required by T (a, Σ). We treat capabilities
as perform goals because they function as steps/sub-goals an agent should perform
yet they are not declarative. The AIL requires the execution of actions to be triggered
explicitly so we decided to treat T (a, Σ) as a function on the belief base paired with an
optional action. We write this as T (a, Σ) = do(a) + f(Σ) and represent it in the AIL
as a plan, where the range of f is a deed stack of belief updates. The enabledness of a
capability is governed by the plan guard. When T is executed it first performs the action
(if appropriate) and then modifies the belief base. Lastly, it removes any achieved goals.
This breaks down the execution of T into several transition rules. First we modify the
deed stack of the intention in accordance with T

2 This allows us to model communication performatives such as Jason’s askHow.

50 L.A. Dennis and M. Fisher

Δ = {< a, a′; f ′(Σ) >| a ∈ Bcap ∧ enabled(a) ∧ T (a, Σ) = do(a′) + f ′(Σ)}
Splan(Δ) =< a, a; f(Σ) >

< ag , (a, ε); i , I , Main >→< ag , (a, a; f(Σ)); i ′, I \{i ′} ∪ {i}, Capability >
(26)

where Splan is an application specific function for selecting a plan from a set. This was a
new rule but made use of pre-existing AIL operations, particularly the built-in functions
for matching plans to intentions. After applying this rule the system is in the Capability
stage which ensures that all the changes associated with T take place before the agent
does anything else. We used four pre-existing transitions to handle most of T , three of
which (13), (14) and (22) we have already shown leaving us only to provide a special
case for when the action to be performed involves sending a message:

ξ.do(↑ag′
m)

< ag , (E, ↑ag′
m); i ,Out , Capability >→< ag , i ,Out ∪ {↑ag′

m}, Capability >
(27)

Note here how ↑ag′
m is added to the agent’s outbox, Out . This functions as part of the

belief base, from now on the agent will believe it has sent the message.
Only deeds associated with a capability have a perform goal as their event. Since a

capability can not invoke another capability there will never be two consecutive capa-
bilities on the event stack of an intention. So we trigger the end of capability processing
by detecting the event is no longer a perform goal. At this point we need to remove any
goals already achieved.

e �= a G = {g ∈ Γ | B |= g} i ′ = map(λg. drop(g, (e, d); i), G)
I ′ = {i | i = map(λg. drop(g, i ′)) ∧ i ′ ∈ I }

< ag , (e, d); i , I , Capability >→< ag , i ′, I ′, Perception >
(28)

Just as our implementation of |= does not include anything equivalent to Prolog
style reasoning, this rule also avoids dropping goals which follow from goals already
achieved. drop is a built in AIL operation on intentions which removes a goal from
the event stack and all subgoals subsequently placed there. GOAL had no semantics
for perception or message handling which we needed for our example scenario. We as-
sumed that these should directly update an agent’s belief base. We therefore introduced
two new stages to control these with simple new rules (which again are now a part of
OSRules) using AIL’s environment interface:

B1 = ξ.newPercepts(ag) B2 = ξ.oldPercepts(ag)
< ag , ξ, Σ, Perception >→< ag , ξ, Σ\{B2} ∪ {B1}, Messages >

(29)

M = ξ.getMessages(ag) B′ = {↓A m | m ∈ M}
< ag , ξ, Σ, Messages >→< ag , ξ, Σ ∪ B′, Main >

(30)

We now need to deal with the selection and application of conditional actions and ca-
pabilities, and the mental state transformers for adopt and drop.

GOAL has no concept of multiple intentions (using multiple goals instead) however
AIL has these goals distributed among intentions. Part of the process of planning with a
conditional action must therefore include selecting the appropriate intention. We chose

Programming Verifiable Heterogeneous Agent Systems 51

to first find all the plans that were applicable, no matter which intention, and then chose
one of those plans, implicitly choosing (or creating) a new intention in the process.
Naturally we chose to represent GOAL’s conditional actions as AIL plans. We had a
choice here as the AIL can have plans which are not triggered by an event but it was
more natural within the AIL to use event triggers. We decided therefore that where a
condition of a conditional action referred to a goal this would be treated as the event
trigger for the plan. We created two new rules for reactive plans and triggered plans:

Δ = {ap | ap = φ � do(a) ∧ ag |= φ} Splan(Δ) = φ′ � do(a′) G(φ′′) �∈ φ′

< ag , i , I , Main >→< ag , (+φ′, a), i ∪ I , Goal} >
(31)

We use the absence of any goals in the plan’s mental condition (G(φ′′) �∈ φ′) to tell that
this is a reactive plan. This rule starts a new intention when a reactive plan applies.

Δ = {ap | ap = φ � do(a) ∧ ag |= φ} Splan(Δ) = φ′ � do(a′) G(φ′′) ∈ φ′

(adopt(φ′), ε); i ′ ∈ {I ∪ i}
< ag , i , I , Main >→< ag , (φ′′, a′); i ′, I \{i ′} ∪ {i}, Goal} >

(32)
For triggered plans we modify the intention that triggered the plan. We overrode the
AIL’s default Splan function to prevent continuous firing of reactive rules once they
became applicable. This was done by keeping track of how many times a conditional
action had been used and, where there was a choice, opting for ones less frequently
applied. We also needed to amend Splan to distinguish between plans representing ca-
pabilities and plans representing conditional actions and to ensure that the correct type
of plan was used with the correct transition rule.

We have added a new Goal stage because the AIL needs to shift goals between deeds
and events. We need rules for both perform and achieve goals. The rule for perform
goals was a GOAL equivalent of (17). Similar rules were used to move adopt deeds
and drop deeds to the event stack. Once back to the Main stage, we either plan with a
capability, if that is now the event (as above), or handle the adopt (moving an achieve
goal to the event stack, above) or drop event:

i ′ = drop(φ, i) I ′ = {i ′1 | i1 ∈ I ∧ i ′1 = drop(φ, i1)}
< ag , (drop(φ), ε); i , I , Main >→< ag , i ′, I ′, Main >

(33)

We also added a rule to the language to sleep the agent when it had nothing to do.

Faithfulness of the Implementation. We have implemented GOAL with a commitment
strategy based on planning recent goals (i.e., those goals at the top of an intention’s
event stack). Our semantics for drop are different because AIL’s ‘drop’ function re-
moves subgoals (which may not be explicitly represented as deducible from the dropped
goal) – in retrospect an easy way to avoid this would have been to arrange for adopt
deeds to start new intentions rather than being stacked as sub-goals on existing inten-
tions. We would like to re-implement the example in this fashion before attempting a
correctness proof of the equivalence of the two semantics.

Contract Net Code. We needed to split our plans for the contract net between capabili-
ties and conditional actions. The requirement that all goals be declarative has caused the
introduction of capabilities whose purpose is to add the belief that a goal is achieved.

52 L.A. Dennis and M. Fisher

Conditional Actions:

G(g) ∧ B(cando(g)) � g G(g) ∧ ¬B(cando(g)) � adopt(cfp(g)
G(g ′) ∧ B(cando(g ′)) � g ′ G(g ′) ∧ ¬B(cando(g ′)) � adopt(cfp(g ′)

G(cfp(T)) ∧ B(ag(A)) ∧ B(name(N)) ∧ ¬B(sendp(A, respond(T, N)))�
do(adopt(sendp(A, respond(T, N))))

G(cfp(T)) ∧ B(ag(A)) ∧ B(name(N)) ∧ B(sendp(A, respond(T, N)))�
do(cfp_done(T))

B(respond(T, A)) ∧ ¬B(cando(T)) ∧ B(name(N)) � do(sendt(A, sorry(T, N)))
B(respond(T, A)) ∧ B(name(N)) � sendt(A, proposal(T, N)

B(respond(T, A)) ∧ B(sendt(A, sorry(T, N))) � believe(respond(T, A))
B(proposal(P, Ag)) � sendt(Ag, award(P))
B(award(T) ∧ ¬T � adopt(T)

Capabilities:

T (g, Σ) = do(a) + Σ T (g ′, Σ) = do(a′) + Σ

T (cfp_done(T), Σ) = Σ ∪ (cfp(T)) T (cfp_done(T), Σ) = Σ ∪ (cfp(T))

T (sendp(A, G), Σ) = do(↑A (perform,G)) + Σ ∪ sendp(A, G)

T (sendt(A, G), Σ) = do(↑A (tell,G)) + Σ ∪ sendt(A, G)

7 Execution and Verification of the Contract Net Scenario

The Environment. For the Gwendolen and GOAL agents we were able to use the
default environment for the AIL, but for SAAPL we needed to implement a message
queue on top of this. This involved sub-classing the default environment and imple-
menting enqueue and dequeue. We also needed to define do for sending messages
(already present in the AIL’s default environment) and the actions a, a′ and wait. For
wait we simply slept the agent for a short time. a and a′ introduce new perceptions g
and g ′ into the environment which agents would subsequently detect.

Communication Semantics. Our Contract Net assumed an agreed communication se-
mantics between the agents. In this semantics messages were paired with a performative
(either perform or tell). The semantics of tell was simple: on receiving a tell message
an agent was to update its belief base with the body of the message. The semantics of
perform was more complex, especially since GOAL did not have perform goals. Its
semantics was simply that the agent should commit to that goal (irrespective of whether

Programming Verifiable Heterogeneous Agent Systems 53

it was a perform or achieve goal). In the AIL the semantics of communication is sup-
posed to be determined by plans triggered by the receipt (or, where applicable, sending)
of messages. This gave us the following additional plans in our environment.

Gwendolen Code
+↓Ag (perform,G) : � <- +!pG +↓Ag (tell,B) : � <- + B

SAAPL Code
↓Ag (perform,G) : � ← G ↓Ag (tell,B) : � ← +B : r

GOAL Code
B(↓Ag (perform,G)) ∧ ¬B(G) � adopt(G)

B(↓Ag (tell,B)) ∧ ¬B(B) � believe(B)
T (believe(B), Σ) = Σ ∪ {B}

Execution. Fig. 3 shows the message sequence (running from top to bottom) for a
typical run of our scenario. The Gwendolen agent acts as the manager and GOAL and
SAAPL agents bid for contracts. We show the more important goals and beliefs as they
are added to, and removed from (represented by striking through) the agents’ structure.
The Gwendolen agent has two goals g and g′. It sends a message to the SAAPL agent
with the content respond(g′). This becomes a goal of the SAAPL agent who responds
with sorry(g′) which at some point later becomes a belief of the Gwendolen agent.
Interaction with the environment (actions a and a′) and perception are shown by arrows
terminating or originating outside of an agent.

Verification. The AIL toolkit comes equipped with an LTL based property specification
language. This language has some special predicates for agent-specific properties. We
used this language to specify the property♦(B(ag1, g) ∧ B(ag1, g

′)) where B(ag, φ)
means φ is in the belief base of the agent with name ag and ♦ means “at some point
in the future”. ag1 was the name of the coordinating Gwendolen agent in the Contract
Net execution described above. So the property states that that eventually the Gwen-
dolen agent will eventually believe both its goals, g and g′, have been achieved in any

Goals Beliefs

sorry(g’)
respond(g)
proposal(g)

award(g)

g

award(g’)

g’
a’

g’

Goals Beliefs

SAAPL Agent Gwendolen Agent GOAL Agent

Goals Beliefs
g. g’respond(g’)

respond(g’)

respond(g)
sorry(ag2, g’)
proposal(ag2, g’)award(g)

r
g g respond(g’) respond(g’)

proposal(g’)
respond(g’) respond(g’)respond(g)
respond(g)sorry(g)
respond(g) respond(g)proposal(ag3, g)

sorry(ag3, g)g award(g’)
g’

g’g’g’

a

g’

Fig. 3. Typical Execution of the Contract Net Scenario

54 L.A. Dennis and M. Fisher

possible execution of the program. We successfully verified that the Contract Net we
had implemented satisfied this property using the AIL based model checking tools [3].

8 Conclusions

One of clearest conclusions we drew from our work was that the AIL data structures
are sufficiently expressive to represent the concepts in (at least) the languages we had
chosen. However our package of pre-existing transition rules was not well designed.
This was not perhaps surprising since the transitions in this package were originally
intended for a catch-all language. Fortunately, from a model checking perspective, the
data structures are the crucial element needed for reasoning about an agent and we have
been able to model check simple programs in our three languages even though the AIL
classes are not yet optimised for the model checker. The transition rules were provided
as a convenience, and in the hope that some might prove amenable for optimisation.
However, it became clear, that the transition rule package needed to be redesigned to
provide simple rules with better options for customisation. Yet, even with the burden of
more customisation of the transition rules than we had originally anticipated we were
able to implement interpreters for SAAPL and GOAL with relative ease. The SAAPL
interpreter took about a week to implement and debug while the GOAL interpreter took
about two weeks. Once correctly implemented it was simple to incorporate and run a
heterogeneous multi-agent system. This, together with the (designed) ability to imple-
ment languages such as 3APL and AgentSpeak [12] confirms that the AIL provides a
suitable level for implementing most BDI programming language semantics,

In the immediate future we intend to revisit the AIL implementation, and rework
the OSRules in the light of this work. We also intend to improve the model checking
aspects of the framework and to address larger, more complex languages, in particular
the Jason implementation of AgentSpeak and 3APL and provide full AIL based imple-
mentations of these.

References

1. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing MultiAgent Systems with JADE
(2007)

2. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent Program-
ming: Languages, Platforms and Applications. Springer, Heidelberg (2005)

3. Bordini, R.H., Dennis, L.A., Farwer, B., Fisher, M.: Automated Verification of Multi-Agent
Programs. In: Proc. 23rd Int. Conf. Automated Software Engineering (2008)

4. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Model Checking Rational Agents.
IEEE Intelligent Systems 19(5), 46–52 (2004)

5. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying Multi-Agent Programs by
Model Checking. J. Autonomous Agents & Multi-Agent Systems 12(2), 239–256 (2006)

6. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in
AgentSpeak Using Jason. Wiley, Chichester (2007)

7. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
8. Dastani, M., van Riemsdijk, M.B., Meyer, J.-J.C.: Programming Multi-Agent Systems in

3APL. In: Bordini, et al. (eds.) [2], ch. 2, pp. 39–67

Programming Verifiable Heterogeneous Agent Systems 55

9. de Boer, F.S., Hindriks, K.V., van der Hoek, W., Meyer, J.-J.C.: A Verification Framework
for Agent Programming with Declarative Goals. J. Applied Logic 5(2), 277–302 (2007)

10. Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M.: A Flexible Framework for Verifying
Agent Programs. In: Proc. Int. Conf. Autonomous Agents & Multiagent Systems. ACM,
New York (2008) (Short paper)

11. Dennis, L.A.: Gwendolen: A BDI Language for Verifiable Agents In Logic and the Simula-
tion of Interaction and Reasoning. AISB Convention, University of Aberdeen (2008)

12. Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M., Wooldridge, M.: A Common Semantic
Basis for BDI Languages. In: Proc. 7th Int. Workshop on Programming Multiagent Systems
(2007)

13. Dix, J., Zhang, Y.: IMPACT: A Multi-Agent Framework with Declarative Semantics. In:
Bordini, et al. (eds.) [2], ch. 3, pp. 69–94

14. Farwer, B., Dennis, L.A.: Translating into an Intermediate Agent Layer: A prototype in
Maude. In: Proc. Concurrency, Specification, & Programming (2007)

15. FIPA: Foundation for Intelligent Physical Agents, http://www.fipa.org
16. Fisher, M.: METATEM: The Story so Far. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah

Seghrouchni, A. (eds.) ProMAS 2005. LNCS (LNAI), vol. 3862, pp. 3–22. Springer, Heidel-
berg (2006)

17. Gungui, I., Mascardi, V.: Integrating tuProlog into DCaseLP to Engineer Heterogeneous
Agent Systems. In: Proc. Italian Conf. Computational Logic, Univ. Parma (2004)

18. Holzmann, G.J.: The Spin Model Checker. Addison-Wesley, Reading (2003)
19. Java Agent Services, http://www.java-agent.org
20. OMG: Object Management Group, http://www.omg.org
21. Paurobally, S., Cunningham, J., Jennings, N.: Verifying the Contract Net Protocol: A Case

Study in Interaction Protocol and Agent Communication Language Semantics. In: Proc. 2nd
Int. Workshop on Logic and Communication in Multi-Agent Systems (2004)

22. Paurobally, S., Cunningham, J., Jennings, N.R.: A Formal Framework for Agent Interaction
Semantics. In: Proc. 4th Int. Conf. Autonomous Agents & Multiagent Systems, pp. 91–98
(2005)

23. Shoham, Y.: Agent-Oriented Programming. Artificial Intelligence 60(1), 51–92 (1993)
24. Smith, R.G., Davis, R.: Frameworks for Cooperation in Distributed Problem Solving. IEEE

Trans. Systems, Man, & Cybernetics 11(1) (1980)
25. Subrahmanian, V.S., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Ozcan, F., Ross, R.: Heteroge-

neous Agent Systems: Theory and Implementation. MIT Press, Cambridge (2000)
26. Suguri, H., Kodama, E., Miyazaki, M.: Assuring Interoperability in Heterogeneous, Au-

tonomous and Decentralized Multi-Agent Systems. In: Proc. 6th Int. Symp. Autonomous
Decentralized Systems, pp. 17–24. IEEE, Los Alamitos (2003)

27. Tan, X., Wang, S.: Implementation of Multi-Agent System Based on CORBA and COM. In:
Proc. 6th Int. Conf. Computer Supported Coop. Work in Design, pp. 299–302 (2001)

28. Winikoff, M.: JACKTM Intelligent Agents. In: Bordini, et al. (eds.) [2], ch. 7, pp. 175–193
29. Winikoff, M.: Implementing Commitment-Based Interactions. In: Proc. 6th Int. Conf. Au-

tonomous Agents & Multiagent Systems, pp. 1–8. ACM, New York (2007)
30. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and Procedural Goals

in Intelligent Agent Systems. In: Proc. Int. Conf. Principles of Knowledge Representation &
Reasoning (2002)

Orwell’s Nightmare for Agents?
Programming Multi-agent Organisations

Nick A.M. Tinnemeier, Mehdi Dastani, and John-Jules Ch. Meyer

Utrecht University, The Netherlands

Abstract. This paper presents a programming language that is de-
signed to implement multi-agent organisations. These organisations are
developed as separate entities regulating the behaviour of individual
agents that interact with the organisation. The focus is on the norma-
tive aspect of organisations that are specified in terms of norms being
enforced by monitoring, regimenting and sanctioning mechanisms.

1 Introduction

One of the greatest challenges in the development of multi-agent systems (MAS)
is to cope with the large complexity that is caused by the interaction between
agents that autonomously pursue their own goals. Using an organisation-centred
approach (as opposed to an agent-centred one) is conceived as a way to decrease
this complexity and make the development of MAS easier to manage [1,2]. In
this approach the organisation is developed as separate entity in terms of or-
ganisational concepts (e.g. roles, groups, and norms). From the organisation
perspective, the internal state of the agents is not observable, only the actions
to be performed in external environments are. That the advantage of using an
organisation-centred approach is widely recognised is displayed by the numer-
ous agent methodologies (e.g. Gaia [3]), models (e.g. OperA [4], Moise+ [5],
E-Institutions [6], AGR [7]) and frameworks (e.g. AMELI [8], S-Moise+ [5])
that adopt (at least some) organisational concepts.

Normative elements constitute an important aspect in developing organisa-
tions. Since no assumptions are made about the inner workings of agents partici-
pating in the organisation, also no assumptions can be made about the behaviour
they will exhibit. Norms provide the agents with some behavioural guideline,
thereby ensuring that the objectives of the organisation are not endangered.
Normative elements thus specify the rules of behaviour (norms) the agents ought
to obey when participating in the organisation. These norms are often specified
by means of concepts like permissions, obligations, and prohibitions.

To fully exploit the results of MAS research in the development of complex
software systems, sophisticated programming languages are needed to put theory
to practice. Such a programming language must satisfy the fundamental require-
ment that it is “reasonably natural for solving problems, at least problems within
its intended application area” [9]. A language is considered reasonably natural if

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 56–71, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 57

we are able to keep the concepts used in analysis and design alive in the imple-
mentation. Without this, the concepts used in specification and design need to
be implemented in an ad-hoc manner, making the implementation a burdensome
task prone to errors, having negative impact on the product’s maintainability.

Although we acknowledge that a multi-agent organisation encompasses more
than the normative element only (see section 2), the focus of this paper is on
the normative element of multi-agent organisations. We aim at operationaliza-
tion of the normative elements based on which we design a programming lan-
guage to implement organisations. In the literature there is related work on
electronic institutions for regulating agents according to certain norms. In par-
ticular, ISLANDER[6] is a formal framework for specifying norms in institutions,
and is used in the AMELI platform[8] for executing electronic institutions based
on rules provided in it. A difference with our work is that ISLANDER/AMELI is
primarily aimed at very concrete norms in the form of procedures, typically in the
form of “ought-to-do’s” on speech acts, while in our approach we are primarily
concerned with more abstract, declarative norms (“ought-to-be’s”, cf. [10,11]).
Another difference is that in contrast to our approach, in ISLANDER/AMELI
norms can never be violated by agents.

Another work that is concerned with the operationalization of multi-agent
systems using organisational concepts is the work of S-Moise+[5]. S-Moise+ is
an organisational middleware, in which also more abstract, declarative norms
are used. In this approach, however, norms merely serve as guidelines of proper
behavior for the agents in the system. It lacks a mechanism to detect whether
an agent has actually fulfilled its obligations, let alone a sanctioning mechanism.
In our approach, however, programming MAS means to program detection and
sanctioning mechanisms since these determine the type of coordination put into
place by the system.

A different approach of regulating the external behavior of individual agents
is that of using coordination artefacts [12]. Just like these artefacts, we propose
to develop an organisation as a separate entity with the goal of coordinating
external agents. In our work, however, coordination is achieved by means of
high-level constructs such as norms, more closely relating to the models in which
MAS are usually designed, and not so much as low-level coordination concepts
such as synchronization of processes coordination artefacts are based on.

Closely related to this work is [13] in which a simplified version of a program-
ming language that is designed to implement norm-based artefacts is proposed,
along with a logic that can be used to specify and verify properties of programs
developed in this language. In this paper the programming language is enriched
with temporal aspects, constructs to refer to actions and roles. A logic to reason
about programs implemented in our language is omitted, however.

Section 2 explains the key concepts of normative MAS and organisations
reasearch that are of importance in this paper. Section 3 presents the syntax
and semantics of our programming language. Section 4 explains how normative
multi-agent organisations can be implemented by this language, and section 5
concludes this paper and hints at some directions for future research.

58 N.A.M. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer

2 Key Concepts of Multi-agent Organisations

Our approach of designing a normative multi-agent programming language is
based on ideas from research in normative systems and research in multi-agent
organisations. Therefore, this section introduces some of the key concepts that
we use from this area.

In general, the organisations which we aim to implement with our program-
ming language consist of the following components. Part of the organisation is the
environment which state can be modified by the external actions of agents that
interact with the organisation. No assumptions are made about the inner workings
of these agents. We assume that the organisation is able to determine the effects of
these external actions. Also part of the organisation is a detectioning mechanism
that normatively assesses the organisation and a sanctioning mechanism imposing
sanctions as a result of this normative assessment. The organisation thus becomes
a Big Brother monitor the agents’ behaviour and imposing sanctions accordingly,
thereby embodying Orwell’s nightmare for agents. It should be emphasised that
in our approach the organisation is a passive entity merely reacting to the actions
that external agents perform within the environment.

To illustrate these components as well as some other concepts that are of
importance in our approach, we use a simple example of a software simulation of
a railway system. In this simulation software agents play the role of passengers
that travel by train. The conditions of using the transport system are captured
as norms. Other examples of applications we are targeting at are, for instance,
a financial administration database, a conference management system, or an
online marketplace.

2.1 The Normative Aspect of Organisations

Norms often find their representation in deontic logic, a logic for reasoning about
ideal and actual behaviour. Many different deontic logics have been developed
introducing operators for permission, obligation and prohibition (see [14] for an
overview). In this work norms are represented as elementary counts-as state-
ments as motivated and developed in [15].

Counts-as statements are used to classify or make a judgment about the or-
ganisation. Herewith, a distinction is made between between brute and norma-
tive/institutional facts as first advanced in [16]. The environment is described
by means of brute facts, e.g. “agent a is in the train without a valid ticket”.
The value judgment of this situation is expressed by means of normative facts,
e.g. a classification as good (desirable), ugly (undesirable, but tolerated) or bad
(extremely undiserable, and not tolerated). For instance, to say that for agent i
it is forbidden to be in the train without a ticket is to say in terms of counts-as
statements that being in the train without a ticket counts as a violation for i:

in train(i) ∧ −ticket(i) ⇒ viol(i) (1)

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 59

Counts-as statements thus label the situation as expressed by brute facts with
normative facts, thereby normatively assessing the organisation.

Deontic notions like prohobition, obligation, and permission can be expressed
as counts-as statements. Intuitively (see [15] for a thorough analysis), the deontic
notion of being prohibited to be in a (brute or normative) state characterised by
p can be modelled in terms of counts-as statements by stating that p counts-as
a violation. If it is permitted to be in a situation in which p holds then being
in a situation in which p holds does not necessarily count as a violation1. An
obligation to be in a (brute or normative) state in which p holds means that
being in a state in which p does not hold necessarily counts as a violation.

To validate the norm described by the counts-as statement as specified by
formula 1 only the current state of the system needs to be judged, because the
act of being in the train without a ticket can be detected at the very moment the
agent is in the train without a ticket. There are also norms, however, which need
a time line to be validated. For instance, in order to validate a norm like: “A
passenger ought to buy a ticket while on the train.”, requires an assessment of the
whole period in which the passenger travels by train. To be able to also express
this kind of norms, which have temporal character, we enrich the language of
counts-as statements with temporal operators.

In order to motivate the agents that participate in the organisation to obey
the rules of behaviour, besides a representation of the norms also a mechanism
is needed for letting the agents abide by the norms. One way of assuring that
the agents comply with the norms is to rule out all the actions that will lead to
a violation state, such that a violation will never happen. This way of carrying
out the norms is referred to as regimentation. The organisation can somehow
prevent an agent from performing an external action that causes a violation. This
presupposes the organisation to have the ability to determine the effect of the
actions that can be performed by the agents. An example of a case in which this
presumption holds is an operating system that can disable certain operations for
users that do not have the right permissions. Note that this presumption does
not imply that the system has control over the internals of the agent, it can
still try to perform the operation, but the result is simply not effectuated by the
operating system.

As alternative to regimentation an enforcement mechanism can be used. En-
forcement is based on the idea of responding after a violation of the norms has
occurred. Following the old Roman saying “ubi lex ibi poena” (where there is
a law, there is a sanction), we also define rules that specify the sanction that
should be imposed as a consequence of this violation. For example, the sanction
belonging to the violation caused by agent i travelling without a ticket is a fine
of 10 credits, written as:

viol(i) ⇒ fined10(i) (2)

1 In [15] also a more strong notion of obligation is defined in which p is permitted iff
p necessarily counts as −viol. In this paper, we use the weak notion, however.

60 N.A.M. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer

These rules are in fact the inversion of the counts-as rules. Instead of stating
which normative terms apply as a consequence of brute facts, sanctioning rules
associate new brute facts with certain normative facts. An enforcement mecha-
nism is especially useful in case the system cannot determine the effects of certain
actions. However, even when the organisation is able to apply regimentation, en-
forcement might still be fruitful, because allowing for violations contributes to
the flexibility and autonomy of the agent’s behaviour [17].

2.2 Other Organisational Aspects

As already mentioned, an organisation consists of more than normative aspects
only. Besides the normative aspects, in [18] three other major organisational
aspects were identified. Functional elements refer to the functioning of the or-
ganisation by stating its main objectives, and how they can be achieved. For in-
stance, by specifying global plans that prescribe the steps that should be taken
to reach the objectives (cf. functional specification of Moise+ [5]). Structural
elements define the specific structure of the organisation that is used to reach
these objectives, and is usually defined by means of the roles that should be
fulfilled along with the relations between these roles, such as power, coordina-
tion, and control (cf. [15]). Dialogical elements deal with the communicative
aspects of the organisation ensuring efficient communication between agents, an
important prerequisite in reaching the organisational objectives. They specify,
for instance, communication protocols (cf. [6]) specifying the possible dialogic
interaction between roles.

Roles form an important concept in all organisational aspects. In [19] a role
is described as ”...a class that defines a normative behavioral repertoire of an
agent.”. In this work we will treat roles as being labels denoting the name of
the roles agents can play within an organisation. Special facts rea(i, ρ) then
model that agent i has enacted a role typified by the label ρ. Moreover, we will
introduce actions for enacting and de-enacting (deact from now on) roles that
allow agents to enact and/or deact roles dynamically. Later on, we will show
that this simple view on roles in combination with the normative aspect of the
organisation allows to already handle some structural aspects of an organisation.

3 A Normative Multi-agent Programming Language

This section presents the relevant parts of the syntax and semantics of a pro-
gramming language that is designed to implement organisations.

3.1 Syntax of Programming Language

Agents that interact with the organisation can perform actions to change the
organisation. In particular, these actions allow agents to change the environment
(brute state of the organisation), to enact and deact roles, and to communicate
with each other. In defining the action language (and in the following), we assume

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 61

a set RoleName with typical element ρ as the set of labels identifying the roles
that agents can play within the organisation, and we assume a set of agents that
will be uniquely identified by i, j, . . .

Definition 1 (actions). Let ρ ∈ RoleName, let ExtAct with typical element
α be the set of external actions, and let ComAct be the set of communicative
actions with typical element γj in which γ is the identifier of the illocutionary
act, and j the identifier of the receiving agent. Then the set of actions Act with
typical element β is defined as:

Act = ExtAct ∪ ComAct ∪ {enact(ρ), deact(ρ)}

The state of the organisation is built of brute facts specifying the environment
and normative facts specifying the judgment about the organisation. This same
distinction between brute and normative facts is made for the logical language
for expressing the facts representing the organisation: brute facts are modelled
in the propositional language Lb, whereas normative facts are modelled in the
propositional language Ln. Although a first-order language is much more expres-
sive, in this paper a propositional one is used for the sake of readability.

The special propositions of the form rea(i, ρ) are used to model the fact
that agent i has enacted role ρ. Propositions of the form done(i, β) are used to
denote that agent i has just performed action β. This allows to refer to actions
in expressing the norms. The special proposition viol⊥ is used to mark those
situations that are so undesirable that they are strongly forbidden in the sense
that the system assures that never such a state is reached. These propositions
thus pertain to the norms that are to be regimented.

The normative properties that are used for an assessment of the organisation
are expressed in L, a language of propositional linear time logic (PLTL) (see [20]
for an introduction). Norms can thus have a temporal character. In particular,
the operators X (neXt), G (Globally), F (Eventually), and U (Until) are intro-
duced. Some norms might also refer to normative facts, for instance, a violation
an agent has committed at some moment in the past. Therefore, the language
for expressing the norms can range over both brute and normative facts.

Definition 2 (logical languages). Given the set of atomic propositions P ,
special propositions done(i, β) for all β ∈ Act and all agents i, special proposi-
tions rea(i, ρ) for all ρ ∈ RoleName and all agents i, the language L (norms),
Lb (brute), and Ln (normative) are defined as:

- if p ∈ P then p, −p ∈ Lb

- done(i, β) ∈ Lb

- if q ∈ P then q, −q ∈ Ln

- rea(i, ρ) ∈ Ln

- viol⊥ ∈ Ln

- if φ1, φ2 ∈ (Lb ∪ Ln) then φ1, φ2 ∈ L
- if φ1, φ2 ∈ L then φ1 ∧ φ2, ¬φ1 ∈ L
- if ϕ1, ϕ2 ∈ L then Xϕ1, Gϕ1, Fϕ1, ϕ1Uϕ2 ∈ L

62 N.A.M. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer

It is assumed that the brute and normative language are mutually exclusive,
more formally Lb ∩ Ln = ∅.

The performance of external actions by agents changes the state of the envi-
ronment. Brute effects specify how the organisation can advance in its computa-
tion by stating which brute facts are changed after the execution of the external
action, i.e. they determine the brute effect of the action execution. The specific
effect of performing an external action depends on the current state of the envi-
ronment. A brute effect is thus a triple consisting of a pre-condition specifying
when the action can be executed, the action name that is to be executed, and a
post-condition listing the brute facts that hold after execution.

Definition 3 (brute effects). Let ExtAct be the set of external actions and
ComAct be the set of communicative actions an agent can perform. The set of
brute effects Rb is defined in the following manner:

Rb = {(p1, . . . , pk) β (pk+1, . . . , pn) | p1, . . . , pn ∈ Lb and β ∈ (ExtAct)}

Normative rules are used to normatively assess the organisation. Recall that
norms are expressed as elementary counts-as rules associating normative facts
with a certain situation the organisation is in. This situation is described by the
antecedent by means of a temporal formula ranging over brute and normative
facts. The consequent then specifies which normative facts are to be associated
with this situation.

Definition 4 (normative rules). The set of normative rules Rn is defined as
follows:

Rn = {(ϕ1, . . . , ϕn) ⇒ (q1, . . . , qm) | ϕ1, . . . , ϕn ∈ L and q1, . . . , qm ∈ Ln}

It is possible that the system ends up in a less desirable state, for instance,
because some agent violated a norm. Sanctioning rules can then be used to
indicate the punishments that are imposed as consequence of this violation.
This mechanism thus pertains to enforcement of the norms. It should be noted
that the verdicts raised by the normative rules are not necessarily always of an
unfavorable nature. Sanctions can thus either be positive (rewards) or negative
(punishments). Just like normative rules, sanctioning rules have an antecedent
and a consequent, with the antecedent referring to the normative judgment of a
particular state and the consequent being the sanction that should be imposed.

Definition 5 (sanctioning rules). The set of sanction rules Rs is defined as:

Rs = {(q1, . . . , qn) ⇒ (p1, . . . , pm) | q1, . . . , qn ∈ Ln and p1, . . . , pm ∈ Lb}

Note that the antecedent of a sanctioning rule refers to the normative judgment
about a state and can only contain normative facts. The intuitive meaning is
that given a normative judgment of a certain state the consequent states the
sanction in terms of brute facts that are to be imposed on this state.

In the following, for each normative or sanctioning rule r we refer to its con-
dition by cond(r), and to its consequence by cons(r).

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 63

3.2 Semantics of Programming Language

Having defined the syntax for specifying an organisation, next we define the
operational semantics by means of a transition system [21]. Each transition
corresponds to a single computation step describing the transformation of one
configuration (program state) into another. Before defining the notion of or-
ganisational configuration, we first define the notion of organisational state and
history and some necessary functions operating on them.

As explained before, an organisation is characterised by brute facts and nor-
mative facts. An organisational state, describing the state of the organisation at
a certain moment, is therefore defined as a tuple consisting of a set of brute and
a set of normative facts. Seeing that the organisational state evolves due to the
execution of actions by agents, and the application of normative and sanctioning
rules, we define a consistency preserving operator for updating the organisational
state.

Definition 6 (organisational state). Given a consistent set of brute facts
B ⊆ Lb and a consistent set of normative facts N ⊆ Ln, an organisational state
Ω is defined as a tuple 〈B, N〉.

Further let X, the complement of a set of (brute or normative) facts X be the
set {φ | − φ ∈ X} ∪ {−φ | φ ∈ X}, then the functions ⊕b and ⊕n for updating
an organisational state are defined as:

〈B, N〉 ⊕b Xb = 〈Xb ∪ {B \ Xb}, N〉
〈B, N〉 ⊕n Xn = 〈B, Xn ∪ {N \ Xn}〉

The performance of actions by agents changes the organisational state. The
brute effects are used in determining the effects of external action performance.
Not only external actions change the organisational state, however. For example,
when an agent i performs an enact action the agent has enacted a role ρ, which is
being modelled by the normative fact rea(i, ρ). Given an organisational state, an
action and an agent i, we define the effects function effect in order to determine
the new organisational state as a consequence of the performance of the action
by agent i.

Definition 7 (effects function). Given brute effect b = (Φ α Ψ), organisa-
tional states Ω = 〈B, N〉 and Ω′ = 〈B′, N ′〉 such that B′ = B \ {done(i, β) | β ∈
Act} and such that N ′ = {rea(i, ρ) | rea(i, ρ) ∈ N}, functions effect(i, β, Ω)
and effect(i, b, Ω) determine the effect of the performance of β or application of
b (corresponding to performance of α) in organisational state Ω by agent i:

effect(i, b, Ω) = Ω′ ⊕b ({done(i, α)} ∪ Ψ)
effect(i, enact(ρ), Ω) = (Ω′ ⊕b {done(i, enact(ρ))}) ⊕n {rea(i, ρ)}
effect(i, deact(ρ), Ω) = (Ω′ ⊕b {done(i, deact(ρ))}) ⊕n {−rea(i, ρ)}
effect(i, γj , Ω) = Ω′ ⊕b {done(i, γj)}

After the performance of each action, the brute state is updated with the fact
that the agent has performed that action. In particular, the fact done(i, β) is

64 N.A.M. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer

designed to mean that the previous state has been transformed in a new state,
because agent i has just performed action β. Therefore any previous done fact is
removed from B. As we shall see later on, only one agent can perform an action
per computation step, conforming to an interleaved action execution strategy.

In each state the brute facts change as a result of the agents’ actions, leading
to a new state. Normative facts directly depend on the current situation of the
system, i.e. a normative assessment needs to be done for each newly reached
state. Therefore, in determining the effects of an action, all normative facts of
the preceding state (N) are removed in the subsequent state (N ′), such that
this fresh state can be normatively assessed after the brute effects have been
determined. Note that the rea propositions are not removed, because once an
agent has enacted a role it will keep doing so until it performs a deact.

Recall that with the norms of the organisation we cannot only reason about
the present situation, but can also reason about things that happened in the
past. Therefore, we also need to remember the situations that occurred in the
past, and introduce the concept of an organisational history.

Definition 8 (organisational history). An (organisational) history σ is de-
fined as a finite trace Ω0Ω1 · · · Ωn with Ωi = 〈Bi, Ni〉 being an organisational
state for all i ≤ n. The concatenation operator ◦ on traces is defined in the usual
way. Moreover, given a history σ = Ω0Ω1 · · ·Ωi · · ·Ωn, the suffix of σ from i,
denoted as (σ, i), is defined as the history Ωi · · · Ωn.

To illustrate the intuitive meaning of a history, consider an organsitational his-
tory Ω0 · · · Ωn. Then the first state Ω0 models the initial state of the organisation.
The last state Ωn then models the most recent state that has been reached due
to the performance of an action by some agent. In case a new action is performed
by an agent, a new state Ωn+1 is added, denoting the new organisational his-
tory as consequence of carrying out this action. The whole trace Ω0 · · · Ωn thus
models the present and the past of the organisation at a certain moment. We
emphasise that we use histories as snapshots pertaining to the execution thus
far, and not so much as possible executions such traces usually pertain to.

The satisfaction relation |= is defined on such organisational histories, making
it slightly different from the standard satisfaction relation for PLTL. Firstly, in
contrast to the traces on which PLTL formulae are evaluated an organisational
history is finite. Secondly, the states a trace is composed of now consist of a
tuple of sets of propositions instead of a single set. Since norms often refer to
the current situation, the macro now is defined to facilitate the notation.

Definition 9 (logical entailment). Let ϕ, ψ ∈ L and let p ∈ Lb and q ∈ Ln.
Also let σ be a history of length n + 1 with Ωi = 〈Bi, Ni〉 for each 0 ≤ i ≤ n.
Then the entailment relation |= w.r.t. trace σ is defined as:
1) (σ, i) |= (−)p iff (−)p ∈ Bi

2) (σ, i) |= (−)q iff (−)q ∈ Ni

3) (σ, i) |= ¬ϕ iff (σ, i) �|= ϕ
4) (σ, i) |= ϕ1 ∧ ϕ2 iff (σ, i) |= ϕ1 and (σ, i) |= ϕ2
5) (σ, i) |= Xϕ iff i < n and (σ, i + 1) |= ϕ
6) (σ, i) |= ϕ1Uϕ2 iff ∃ j ≥ i. ((σ, j) |= ϕ2 and (∀ i ≤ k < j. (σ, k) |= ϕ1))

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 65

The auxiliary operators F and G are defined in terms of the already existing
operators, such that Fϕ ≡ �Uϕ and Gϕ ≡ ¬F¬ϕ. Further the macro now for
discerning the last state of a trace is defined as: now(ϕ) ≡ F(ϕ ∧ X⊥)

Each organisational state Ω that has just been reached needs to be assessed
by the normative rules, and sanctions need to be imposed accordingly. This is
a matter of adding the consequences of the (normative or sanctioning) rules of
which the premisses is satisfied to Ω. For this purpose, we define the applicability
of rules given a certain history, and the closure of a last state of a history under
a set of rules (being either normative or sanctioning rules). As the premisses of
a normative rule is a temporal formula, it needs to be evaluated on the whole
history Ω is part of. The premisses of sanctioning rules, on the other hand, refers
to the assessment of the most recent state and needs to be evaluated on Ω.

Definition 10 (applicable rules and closure under rules). Given a set of
rules R (either Rn or Rs) and a trace σ = Ω0Ω1 · · · Ωn−1Ωn, the set of applicable
rules w.r.t. σ is defined as:

Appl(Rn, σ) = {r | r ∈ Rn and (σ, 0) |= cond(r)}
Appl(Rs, σ) = {r | r ∈ Rs and (σ, n) |= cond(r)}

Let ⊕ be either ⊕b or ⊕n and let

ClR0 (σ, Ωn, ⊕) = Ωn ⊕ (
⋃

r∈Appl(R,σ) cons(r))

ClRk+1(σ, Ωn, ⊕) = Ω′
n ⊕ (

⋃
r∈Appl(R,Ω0Ω1···Ωn−1◦Ω′

n) cons(r))

s.t. Ω′
n = ClRk (σ, Ωn, ⊕)

then the closure of Ωn under R is defined as ClRk (σ, Ωn, ⊕) for the minimal k
such that ClRk+1(σ, Ωn, ⊕) = ClRk (σ, Ωn, ⊕).

It should be noted that such a closure only exists under certain conditions for
the set of rules R (see [13] for what these conditions are).

Having defined all the necessary ingredients for defining the transition rules,
we are now able to define the organisational configuration. An organisational
configuration is a tuple composed of a set of agents that act in the organisation
and a history, modelling the situation of the organisation.

Definition 11 (organisational configuration). Let A = {A1, . . . , An} be the
set of agents with each Ai the configuration of individual agent i, and let σ be an
organizational trace. The configuration of an organization is defined as 〈A, σ〉.

Before defining the transition rules specifying how one organisational configura-
tion can evolve into another, we first define possible transitions individual agents
can make, without making any assumptions about their configuration.

Definition 12 (agent transitions). The agent transitions are defined as:

ACTs : Ai
β−→ A′

i SENDs : Ai
γj !−−→ A′

i RECs : Ai
γi?−−→ A′

i

66 N.A.M. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer

Transition ACTs states that an individual agent is capable of performing external
actions, role enactment and deactment. Transition SENDs indicates that agents
can always perform communicative acts, and RECs indicates that the agent can
always receive communicative acts sent by other agents.

The actual effect of individual agents’ actions is determined by the organisa-
tion. The transition rules at the multi-agent level are therefore defined in terms
of the single agent transitions, and define what it means to execute an action in
the organisation. In particular, the transitions rules defined below specify what
happens at the multi-agent level when an agent performs an external action
(EXTm), a deact or an enact (ROLm), and a communicative action (COMm).
For an external action to be executed the pre-condition of the brute effect spec-
ifying the effect should be satisfied by the current state of the organisation.
Moreover, the execution of a communicative action synchronises the sender and
receiver.

The detection and sanctioning mechanism as discussed in section 2 is the same
for all three types of actions. To start with a new state Ω as result of the action
execution is determined by means of the effects function. The new situation of
the organisation is normatively assessed by closing off the former history σ with
Ω appended as last state under the normative rules. State Ω′ is the result of this
assessment. The sanctions that need to be imposed are determined similarly,
that is by closing off Ω′ under the sanctioning rules, resulting in Ω′′. State
Ω′′ thus corresponds to the normatively assessed state with sanctions imposed
accordingly, the organisation would reach after performance of the action.

Whether the action to be performed is tolerated depends on the normative
judgment. That is to say, when Ω′′ entails viol⊥, this means that the organi-
sation would end up in a strongly forbidden situation. In this case the action is
blocked, conforming to regimentation. If this is not the case, the organisation can
advance in its computation; the history is updated with the new agent configura-
tions and newly reached state Ω′′. It should thus be noted that both enforcement
and regimentation are captured in each of these separate transitions.

Definition 13 (multi-agent transitions). Let Rn be the set of normative
rules, Rs the set of sanctioning rules, α ∈ ExtAct, β ∈ {enact(ρ), deact(ρ)},
γj ∈ ComAct, b = (Φ α Ψ) s.t. b ∈ Rb, and let 〈A, σ〉 be a multi-agent system
with σ = Ω0 . . .Ωn. The multi-agent transitions are defined as:

EXTm :

Ai
α−→ A′

i Ωn |= Φ Ω = effect(i, b, Ωn)
Ω′ = ClRn(σ ◦ Ω, Ω, ⊕n) Ω′′ = ClRs(σ ◦ Ω′, Ω′, ⊕b)

(σ ◦ Ω′′, n + 1) �|= viol⊥

〈A, σ〉 −→ 〈(A \ {Ai}) ∪ {A′
i}, σ ◦ Ω′′〉

ROLm :

Ai
β−→ A′

i Ω = effect(i, β, Ωn)
Ω′ = ClRn(σ ◦ Ω, Ω, ⊕n) Ω′′ = ClRs(σ ◦ Ω′, Ω′, ⊕b)

(σ ◦ Ω′′, n + 1) �|= viol⊥

〈A, σ〉 −→ 〈(A \ {Ai}) ∪ {A′
i}, σ ◦ Ω′′〉

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 67

COMm :

Ai
γj!−−→ A′

i Aj
γj?−−→ A′

j Ω = effect(i, γj , Ωn)
Ω′ = ClRn(σ ◦ Ω, Ω, ⊕n) Ω′′ = ClRs(σ ◦ Ω′, Ω′, ⊕b)

(σ ◦ Ω′′, n + 1) �|= viol⊥

〈A, σ〉 −→ 〈(A \ {Ai, Aj}) ∪ {A′
i, A

′
j}, σ ◦ Ω′′〉

Recall that, due to the construction of the effects function (Def. 7) the perfor-
mance of a communicative action, deact and enact does not change the brute
facts of the system except for the addition of the done proposition. Tolerated
execution of an enact or deact leads to the addition or deletion of a rea propo-
sition in the normative facts, such that it is remembered that the agent has or
has not enacted a certain role.

4 Implementing Multi-agent Organisations

In this section we show by example how the normative multi-agent organisation
programming language can be used to implement multi-agent organisations. To
provide a broader view on the intended application area for our language, we do
not limit ourselves to the toy example of the railway system.

In the railway simulation agents can be at the platform (being expressed as
at platform) or in the train (being expressed as in train). If the agent is at
the platform and not in the train, she can enter the train by performing an
embark action, of which the result is that the agent is in the train and not at
the platform anymore. The external actions agents can perform to change the
environment are expressed by brute effects. Consider, for example, the brute
effect of the embark action:

(at platform(i), −in train(i)) embark (−at platform(i), in train(i))

The railway regulations state the rules of behaviour the travellers ought to
follow and are expressed by means of the normative rules. Suppose, for example,
that passengers are obliged to buy a ticket before entering on the platform.
Violating this norm is not considered to be a serious violation and the sanction
is a fine of 10 credits. Being in the train without a ticket, however, is a more
serious violation of which the sanction is a fine of 50 credits. In our approach
these two rules of conduct can be expressed by the normative rules:

now(at platform(i) ∧ −ticket(i)) ⇒ violtp(i)

now(in train(i) ∧ −ticket(i)) ⇒ violtt(i)

Recall that now is used to discern the last organisational state of a history. The
above rules thus have the intuitive reading: “currently being at the platform (or
in the train, respectively) without a ticket counts as a violation”. Note the usage
of labels tp (ticket platform) and tt (ticket train) on the violation propositions
to match a violation with the norm that has been violated. They are used to
discriminate from different violations in defining the sanctioning rules:

68 N.A.M. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer

(violtp(i)) ⇒ fined10(i)

(violtt(i)) ⇒ fined50(i)

The norms defined above concern enforcement. To illustrate regimentation,
suppose that the railway system allows passengers to violate the norm of trav-
elling with a ticket only once. In other words, if a passenger has been caught
travelling without a ticket in the past, then travelling without a ticket for the
second time is regimented. This is expressed by means of a normative rule as:

F(violtt(i) ∧ XF(in train(i) ∧ −ticket(i))) ⇒ viol⊥

Transition rule EXTm ensures that the organisation will never end up in this
situation, because all actions that will lead to viol⊥ are blocked. Intuitively,
this can be thought of as placing a gate just in front of the entrance of the train
that will remain closed in case a passenger tries to embark without a ticket for
the second time, making it physically impossible for the agent to enter. Note
that since states that are marked by viol⊥ will never be reached, no sanctions
for viol⊥ need to be defined.

To also show how a more complex norm of a temporal nature can be expressed
in our normative language, suppose that passengers no longer need to buy a ticket
before entering the train, but now should buy their ticket during their train ride.
This norm can be expressed as a normative rule in the following manner:

F(in train(i) ∧ −ticket(i)U(−in train(i) ∧ X⊥)) ⇒ violtt(i)

intuitively meaning that agent i is committing an offence when she has not been
in possession of a ticket until she got off the train. Note that due to the usage
of X⊥ this violation is detected at the very moment the agent leaves the train.

Hitherto the focus has been on programming the normative elements of multi-
agent organisations. As already mentioned, an organisation encompasses more
than only normative elements. The rea(i, ρ) propositions were merely used to
denote the fact that agent i has enacted role ρ, and have not played a very
significant part thus far. However, in combination with the normative aspects
already some structural aspects of an organisation can be expressed.

As already mentioned in section 2, norms are often associated with a certain
role. Consider, for example, a conference management system. Usually, for an
agent playing the role of program chair other norms are in effect than for an
agent playing the role of author. Then, in our approach a role somehow becomes
a means of modularising the normative rules. To illustrate, consider the following
normative rule:

now(rea(i, author) ∧ registration closed∧ done(i, register)) ⇒ violreg

expressing that an agent playing the role of author can still register for the con-
ference even if the registration has already been closed. The possible sanction
could then be a higher entrance fee. The antecedent of this normative rule will
only be satisfied if agent i has currently enacted the role of author, and is thus

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 69

only in effect for authors. Note that this normative rule refers to a concrete
action instead of a declarative description of the organisation as was the case in
the norms before. Of course, the inverse of this approach, stating that a certain
norm is applicable for all roles except a certain role could also be taken. To
express, for example, that agents not playing the role of author cannot register
after the registration has been closed, is to write:

now(−rea(i, author) ∧ registration closed∧ done(i, register)) ⇒ viol⊥

At the structural level of an organisation it is often specified which roles are
(in)compatible with each other. If two roles are denoted as incompatible this
means that these two roles cannot be played by one and the same agent. For
example, in the conference management system it might not be allowed for a
reviewer to be an author. In our normative multi-agent programming language
this can be expressed as:

F(rea(i, reviewer) ∧ rea(i, author)) ⇒ viol⊥

5 Conclusion and Future Work

In this paper we have presented the syntax and operational semantics of a
programming language for implementing norm-based multi-agent organisations.
These organisations are then developed as a separate entity apart from the agents
that will interact with the organisation. In particular, the presented program-
ming language allows for the implementation of a multi-agent organisation by
means of norms, being enforced by monitoring, regimenting and sanctioning
mechanisms. More specifically, the programming language allows for the expres-
sion of more abstract, declarative ought-to-be norms and also allows to refer
to concrete actions that have been performed by agents. Although this pro-
gramming language mainly deals with the normative aspect of an organisation,
already some preliminary results were shown of how to deal with the structural
aspect of an organisation.

Our ultimate goal is to design a fully-fledged multi-agent programming lan-
guage based on organisational concepts. The current proposal presented in this
paper primarily deals with the normative aspect of multi-agent organisations.
Future work aims at extending the programming language with constructs to
also support the implementation of the other aspects of multi-agent organisa-
tions as mentioned in section 2. In particular, one of our short-term goals is to
extend the simple view on roles presented in this paper with a view on roles that
better reflects roles as used in multi-agent design methodologies. To what extend
norms can be used to ensure well-formedness of the structural specification of
the organisation as explored in section 4 should also be further investigated.

Another important issue is that in this paper the architecture is a centralised
one. That is to say, the organisation determines the effect agent’s actions have
on the environment. For the sake of scalability, future research should explore
possibilites of decentralising the organisation.

70 N.A.M. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer

Further, we also aim at incorporating more complex forms of enforcement
(e.g., policing agents) and norm types (norms with deadlines, for example). Also
the computational cost of the constructs presented should be investigated.

Acknowledgments

This research was supported by the CoCoMAS project funded through the Dutch
Organization for Scientific Research (NWO). The authors are grateful for the
valuable suggestions, comments, and contributions provided by Davide Grossi.

References

1. Sierra, C., Rodŕıguez-Aguilar, J., Noriega, P., Esteva, M., Arcos, J.L.: Engineering
multi-agent systems as electronic institutions. UPGrade 4 (2004)

2. Zambonelli, F., Jennings, N., Wooldridge, M.: Organisational rules as an abstrac-
tion for the analysis and design of multi-agent systems. IJSEKE 11(3), 303–328
(2001)

3. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the
GAIA methodology. Acm Tosem 12(3), 317–370 (2003)

4. Dignum, V.: A Model for Organizational Interaction: Based on Agents, Founded
in Logic. SIKS Dissertation Series (2003)

5. Hübner, J., Sichman, J., Boissier, O.: Developing organised multi-agent systems
using the Moise+ model: Programming issues at the system and agent levels
(manuscript)

6. Esteva, M., Rodŕıguez-Aguilar, J., Sierra, C., Garcia, P., Arcos, J.: On the formal
specifications of electronic institutions. In: Agent Mediated Electronic Commerce,
The European AgentLink Perspective, pp. 126–147. Springer, London (2001)

7. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organiza-
tional view of multi-agent systems. In: AOSE IV, pp. 214–230 (2004)

8. Esteva, M., Rodŕıguez-Aguilar, J., Rosell, B., Arcos, J.: Ameli: An agent-based
middleware for electronic institutions. In: Kudenko, D., Kazakov, D., Alonso, E.
(eds.) AAMAS 2004. LNCS, vol. 3394. Springer, Heidelberg (2005)

9. Watt, D.A.: Programming Language Design Concepts. John Wiley & Sons, Chich-
ester (2004)

10. Dignum, F.: Abstract norms and electronic institutions. In: Proc. of RASTA 2002,
Bologna, Italy, pp. 93–104 (2002)

11. Aldewereld, H.: Autonomy vs. Conformity - an Institutional Perspective on Norms
and Protocols. PhD Thesis, Universiteit Utrecht (2007)

12. Ricci, A., Viroli, M., Omicini, A.: Give agents their artifacts: the A&A approach
for engineering working environments in MAS. In: Proc. of AAMAS 2007, pp. 1–3.
ACM Press, New York (2007)

13. Dastani, M., Grossi, D., Tinnemeier, N., Meyer, J.J.: A programming language for
normative multi-agent systems (in submission)

14. Meyer, J.J.C., Wieringa, R.J. (eds.): Deontic logic in computer science: normative
system specification. John Wiley & Sons, Inc., New York (1994)

15. Grossi, D.: Designing Invisible Handcuffs. Formal Investigations in Institutions and
Organizations for MAS. PhD thesis, Utrecht University, SIKS (2007)

16. Searle, J.: The Construction of Social Reality. Free Press (1995)

Orwell’s Nightmare for Agents? Programming Multi-agent Organisations 71

17. Castelfranchi, C.: Formalizing the informal?: Dynamic social order, bottom-up so-
cial control, and spontaneous normative relations. Journal of Applied Logic 1(1-2),
47–92 (2004)

18. Coutinho, L., Sichman, J., Boissier, O.: Modeling organization in mas: A compar-
ison of models. In: Proc. of SEAS 2005, Uberlândia, Brazil (2005)

19. Odell, J., Parunak, H.V.D., Fleischer, M.: The role of roles in designing effective
agent organizations. In: Software Engineering for Large-Scale Multi-Agent Systems,
Research Issues and Practical Applications, pp. 27–38 (2003)

20. Emerson, E.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, Formal Models and Semantics, Volume B, pp. 995–1072. MIT Press, Cam-
bridge (1990)

21. Plotkin, G.D.: A structural approach to operational semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

Jazzyk: A Programming Language for Hybrid
Agents with Heterogeneous Knowledge

Representations

Peter Novák

Department of Informatics
Clausthal University of Technology

Julius-Albert-Str. 4, D-38678 Clausthal-Zellerfeld, Germany
peter.novak@tu-clausthal.de

Abstract. Different knowledge representation tasks require different
knowledge representation techniques. Agent designers should therefore
be able to easily exploit benefits of various knowledge representation
technologies in a single agent system.

I describe here a modular agent programming language Jazzyk based
on the programming framework of Behavioural State Machines (BSM).
BSM framework, and thus also Jazzyk, draws a strict distinction between
a knowledge representational and a behavioural level of an agent program.
It supports a high degree of modularity w.r.t. employed KR technologies,
and at the same time provides a clear and concise semantics.

1 Motivation

No single knowledge representation (KR) technology offers a range of capabil-
ities and features required for different application domains and environments
agents operate in. For instance, purely declarative KR technologies offer a great
power for reasoning about relationships between static aspects of an environ-
ment, like e.g. properties of objects. However, they are not suitable for repre-
sentation of topological, arithmetical, or geographical information. Similarly, a
relational database is appropriate for representation of large amounts of search-
able tuples, but it does not cope well with representing exceptions and default
reasoning. Hence, an important pragmatic requirement on a general purpose
AOP framework is an ability to integrate heterogeneous KR technologies within
a single agent system. An agent programming framework should not commit
to a single KR technology. The choice of an appropriate KR approach should
be left to an agent designer and the framework should be modular enough to
accommodate a large range of KR techniques, while at the same time providing
flexible means to encode agent’s behaviours.

I recently proposed a framework of Behavioural State Machines (BSM) [13,12],
a general purpose computational model based on the Gurevich’s Abstract State
Machines [4], adapted to the context of agent oriented programming. The BSM
framework is a culmination of our previous efforts ([14] and [15]) to propose a solid

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 72–87, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

peter.novak@tu-clausthal.de

Jazzyk: A Programming Language for Hybrid Agents 73

theoretical basis for a lightweight, yet highly modular agent programming lan-
guage. It treats heterogeneous knowledge bases of an agents on a par, i.e. does not
prefer one over another thus allowing programmers to exploit strengths of various
KR approaches in an agent system.

The main purpose of this paper is to describe Jazzyk (Section 3), a program-
ming language based on the theoretical framework of Behavioural State Machines
(Section 2), together with details of its implemented interpreter. Development
of the BSM framework is an application driven research, therefore I furthermore
provide a sketch of Jazzbot (Section 4), a case study demo application imple-
mented in Jazzyk. The paper concludes with a discussion of Jazzyk (Section 5),
related work and future development of this line of research (Section 6).

2 Behavioural State Machines

Before introducing the details of Jazzyk, first I briefly introduce its theoretical
basis: the framework of Behavioural State Machines (BSM). Behavioural State
Machine computational model is heavily inspired by the Gurevich’s Abstract
State Machines [4] framework.

The underlying abstraction is that of a transition system, similar to that used
in most logic based state-of-the-art BDI agent programming languages AgentS-
peak(L)/Jason, 3APL, or GOAL [2,6]. States are agent’s mental states, i.e. col-
lections of agent’s partial knowledge bases, or KR modules. The state of the
environment is treated as a KR module as well. Transitions between the agent’s
mental states are induced by mental state transformers (atomic updates of men-
tal states). An agent system semantics is, in operational terms, a set of all enabled
paths within the transition system, the agent can traverse during its lifetime.
To facilitate modularity and program decomposition, BSM provides also a func-
tional view on an agent program, specifying a set of enabled transitions an agent
can execute in a given situation.

Behavioural State Machines draw a strict distinction between the knowledge
representational layer of an agent and its behavioural layer. To exploit strengths
of various KR technologies, the KR layer is kept abstract and open, so that it
is possible to plug-in different heterogeneous KR modules as agent’s knowledge
bases. The main focus of BSM computational model is the highest level of control
of an agent: its behaviours.

I introduced BSM framework in [12] and [13], therefore some technical details
are omitted here and I mainly focus on a description of the most fundamen-
tal issues. Moreover, the Subsection 2.2 introduces a reformulated version of
the original BSM semantics equivalent to the one originally published in [12]
and [13].

2.1 Syntax

A BSM agent consists of a set of partial knowledge bases handled by so called
KR modules. A KR module is supposed to store agent’s knowledge e.g. about

74 P. Novák

its environment, itself, or other agents, or to handle its internal mental attitudes
relevant to keep track of its goals, intentions, obligations, etc. However, because
of the openness of the BSM architecture, no specific structure of an agent is
prescribed and thus the overall number and ascribed purpose of particular KR
modules is kept abstract. The formal definitions capture only their fundamental
characteristics.

A KR module has to provide a language of query and update formulae and two
sets of interfaces: query operators for querying the knowledge base and update
operators to modify it.

Definition 1. (KR module) A knowledge representation module M = (S, L,
Q, U) is characterized by

– a set of states S,
– a knowledge representation language L, defined over some domains D1, . . . , Dn

(with n ≥ 0) and variables over these domains. L ⊆ L denotes a fragment of
L including only ground formulae, i.e. such that do not include variables,

– a set of query operators Q. A query operator |=∈ Q is a mapping |=: S×L →
{�, ⊥},

– a set of update operators U . An update operator ⊕ ∈ U is a mapping ⊕ :
S × L → S.

KR languages are compatible on a shared domain D, when they both include vari-
ables over D and their sets of query and update operators are mutually disjoint.
KR modules with compatible KR languages are compatible as well.

From the definition we have, that a KR language not including variables is
compatible with any other KR language.

Each query and update operator has an associated identifier. For simplicity,
these are not included in the definition, however I use them throughout the
text. When used as an identifier in a syntactic expression, I use informal prefix
notation (e.g. |= ϕ, or ⊕ϕ), while when used as a semantic operator, formally
correct infix notation is used (e.g. σ |= ϕ, or σ ⊕ ϕ). Additionally, when the
evaluation of a query formula ϕ by a query operator |= on a state σ results in
�, i.e. (σ |= ϕ) = �, we simply write σ |= ϕ, otherwise when (σ |= ϕ) = ⊥, we
use notation σ �|= ϕ.

Query formulae are the syntactical means to retrieve information from KR
modules:

Definition 2. (query) Let M1, . . . , Mn be a set of compatible KR modules.
Query formulae are inductively defined:

– if ϕ ∈ Li, and |=∈ Ui corresponding to some Mi, then |= ϕ is a query
formula,

– if φ1, φ2 are query formulae, so are φ1 ∧ φ2, φ1 ∨ φ2 and ¬φ1.

The informal semantics is straightforward: if a ground language expression ϕ ∈ L
is evaluated to true by a corresponding query operator |= w.r.t. a state of the

Jazzyk: A Programming Language for Hybrid Agents 75

corresponding KR module, then |= ϕ is true in the agent’s mental state as well.
Note, that non-ground formulae have to be first ground before their evaluation
(Subsection 2.2).

Subsequently, I define mental state transformer, the principal syntactic con-
struction of BSM framework.

Definition 3. (mental state transformer) Let M1, . . . , Mn be a set of com-
patible KR modules. Mental state transformer expression (mst) is inductively
defined:

1. skip is a mst (primitive),
2. if ⊕ ∈ Ui and ψ ∈ Li corresponding to some Mi, then ⊕ψ is a mst (primi-

tive),
3. if φ is a query expression, and τ is a mst, then φ −→ τ is a mst as well

(conditional),
4. if τ and τ ′ are mst’s, then τ |τ ′ and τ ◦τ ′ are mst’s too (choice and sequence).

An update expression is a primitive mst. The other three (conditional, sequence
and non-deterministic choice) are compound mst’s. Informally, a primitive mst
is encoding a transition between two mental states, i.e. a primitive behaviour.
Possibly labeled compound mst’s introduce modularity and code re-use to the
BSM framework. A standalone mental state transformer is also called an agent
program over a set of KR modules M1, . . . , Mn.

A mental state transformer encodes an agent behaviour. I take a radical be-
haviourist viewpoint, i.e. also internal transitions are considered a behaviour. As
the main task of an agent is to perform a behaviour, naturally an agent program
is fully characterized by a single mst (agent program) and a set of associated
KR modules used in it. Behavioural State Machine A = (M1, . . . , Mn, P), i.e.
a collection of compatible agent KR modules and an associated agent program,
completely characterizes an agent system A.

2.2 Semantics

The underlying semantics of BSM is that of a transition system over agent’s
mental states.

Definition 4. (state) Let A be a BSM over KR modules M1, . . . , Mn. A state
of A is a tuple σ = 〈σ1, . . . , σn〉 of KR module states σi ∈ Si, corresponding to
M1, . . . , Mn respectively. S denotes the space of all states over A.

σ1, . . . , σn are partial states of σ. A state can be modified by applying primitive
updates on it and query formulae can be evaluated against it. Query formulae
cannot change the actual agent’s mental state.

According to the Definition 1, to evaluate a formula in a state by query and
update operators, the formula must be ground. Transformation of non-ground
formulae to ground ones is provided by means of variable substitution. A variable
substitution is a mapping θ : L → L replacing every occurrence of a variable

76 P. Novák

in a KR language formula by a value from the corresponding domain. Variable
substitution of a compound query formula is defined by usual means of nested
substitution. Note however, that a variable can be substituted in sub-formulae
of a compound formula only when languages of the corresponding sub-formulae
share the domain of the variable in question. A variable substitution θ is ground
w.r.t. φ, when the instantiation φθ is a ground formula.

Informally, a primitive ground formula is said to be true in a given BSM
state w.r.t. a query operator, iff an execution of that operator on the state and
the formula yields �. The evaluation of compound query formulae inductively
follows usual evaluation of nested logical formulae.

Notions of an update and update set are the bearers of the semantics of mental
state transformers. An update of a mental state σ is a tuple (⊕, ψ), where ⊕ is
an update operator and ψ is a ground update formula corresponding to some
KR module. The syntactical notation of a sequence of mst’s ◦ corresponds to
a sequence of updates, or update sets, denoted by the semantic sequence oper-
ator •. Provided ρ1 and ρ2 are updates, also a sequence ρ1 • ρ2 is an update.
Additionally, there is a special no-operation update skip corresponding to the
primitive mst skip.

A simple update corresponds to semantics of a primitive mst. Sequence of
updates corresponds to a sequence of primitive mst’s and is a compound update
itself. An update set is a set of updates and corresponds to a mst encoding a
non-deterministic choice.

Given an update, or an update set, its application on a state of a BSM is
straightforward. Formally:

Definition 5. (applying an update) The result of applying an update ρ =
(⊕, ψ) on a state σ = 〈σ1, . . . , σn〉 of a BSM A over KR modules M1, . . . , Mn

is a new state σ′ = σ
⊕

ρ, such that σ′ = 〈σ1, . . . , σ
′
i, . . . , σn〉, where σ′

i = σi ⊕ψ,
and both ⊕ ∈ Ui and ψ ∈ Li correspond to some Mi of A. Applying the empty
update skip on the state σ does not change the state, i.e. σ

⊕
skip = σ.

Inductively, the result of applying a sequence of updates ρ1 • ρ2 is a new state
σ′′ = σ′ ⊕ ρ2, where σ′ = σ

⊕
ρ1.

The meaning of a mental state transformer in state σ, formally defined by the
yields predicate below, is the update set it yields in that mental state.

Definition 6 (yields calculus). A mental state transformer τ yields an up-
date ρ in a state σ under a variable substitution θ, iff yields(τ, σ, θ, ρ) is derivable
in the following calculus:

�
yields(skip,σ,θ,skip)

�
yields(ψ,σ,θ,(,ψθ)) (primitive)

yields(τ,σ,θ,ρ), σ|=φθ
yields(φ−→τ,σ,θ,ρ)

yields(τ,σ,θ,ρ), σ �|=φθ
yields(φ−→τ,σ,θ,skip) (conditional)

yields(τ1,σ,θ,ρ1), yields(τ2,σ,θ,ρ2)
yields(τ1|τ2,σ,θ,ρ1), yields(τ1|τ2,σ,θ,ρ2)

(choice)

yields(τ1,σ,θ,ρ1), yields(τ2,σ
⊕

ρ1,θ,ρ2)
yields(τ1◦τ2,σ,θ,ρ1•ρ2) (sequence)

Jazzyk: A Programming Language for Hybrid Agents 77

We say that τ yields an update set ν in a state σ under a substitution θ iff
ν = {ρ|yields(τ, σ, θ, ρ)}.

The mst skip yields the update skip. Provided a variable substitution θ, simi-
larly, a primitive update mst �ψ yields the corresponding update (�, ψθ). In the
case the condition of a conditional mst φ −→ τ is satisfied in the current mental
state, the calculus yields one of the updates corresponding to the right hand side
mst τ , otherwise the no-operation skip update is yielded. A non-deterministic
choice mst yields an update corresponding to either of its members and finally
a sequential mst yields a sequence of updates corresponding to the first mst of
the sequence and an update yielded by the second member of the sequence in a
state resulting from application of the first update to the current mental state.

In the Definition 6 we assume that the variable substitution θ is ground w.r.t.
all the formulae occurring in the considered mst τ .

The calculus defining the yields predicate provides a functional view on a mst
and it is the primary means of compositional modularity in BSM. Mental state
transformers encode functions yielding update sets over states of a BSM. The
collection of all the updates yielded w.r.t. the Definition 6 comprises an update
set of an agent program τ in the current mental state σ.

Finally, the operational semantics of an agent is defined in terms of all possible
computation runs induced by a corresponding Behavioural State Machine.

Definition 7. (BSM semantics) A BSM A = (M1, . . . , Mn, P) can make
a step from state σ to a state σ′ (induces a transition σ → σ′), if there exists
a ground variable substitution θ, s.t. the agent program P yields a non-empty
update set ν in σ under θ and σ′ = σ

⊕
ρ, where ρ ∈ ν is an update.

A possibly infinite sequence of states σ1, . . . , σi, . . . is a run of BSM A, iff for
each i ≥ 1, A induces a transition σi → σi+1.

The semantics of an agent system characterized by a BSM A, is a set of all
runs of A.

Even though the introduced semantics of Behavioural State Machines speaks
in operational terms of sequences of mental states, an agent can reach dur-
ing its lifetime, the style of programming induced by the formalism of mental
state transformers is rather declarative. Primitive query and update formulae
are treated as black-box expressions by the introduced BSM formalism. On this
high level of control, they rather encode what and when should be executed,
while the issue of how is left to the underlying KR module. I.e., agent’s delib-
eration abilities reside in its KR modules, while its behaviours are encoded as a
BSM.

Figure 1 lists a pseudocode of the abstract interpreter cycle straightforwardly
following from the introduced BSM semantics. In a single deliberation cycle 1)
the agent program interpreter computes the update set ν corresponding to the
agent program P according to the Definition 6, 2) non-deterministically chooses
an update ρ from ν, and finally 3) updates the current mental state by applying
the update ρ to it. Under in the yield(. . .), we denote a substitution of the set
of all the free variables used in the encoding of the agent program P .

78 P. Novák

Algorithm 1. Abstract BSM interpreter
input: agent program P , initial mental state state σ0

σ = σ0

loop
compute ν = {ρ|yields(P , σ, , ρ)}
if ν �= ∅ then

non-deterministically choose ρ ∈ ν
σ = σ ⊕ ρ

end if
end loop

Additionally, the non-deterministic choice of the abstract BSM interpreter
fulfils the weak fairness condition, similar to that in [11], for all the induced
runs.

Condition 1 (weak fairness condition). A computation run is weakly fair
if it is not the case that an update is always yielded from some point in time on
but is never selected for execution.

The BSM framework assumes that the mental state of an agent, including its en-
vironment, changes only between the single executions of the deliberation cycle.
Therefore in order to implement agile agents which act in their environments
reasonably quickly w.r.t. the speed of change of the environment, the query
and update operators should be computable procedures invocations of which
shouldn’t take too long w.r.t. the application domain.

3 Jazzyk, the Language and Interpreter

In order to practically test the BSM approach to programming agent systems,
I designed and implemented a programming language Jazzyk and an interpreter
for it. Jazzyk closely follows the BSM framework, i.e. 1) the syntax allows for
one to one encoding of mental state transformers in the language and 2) the
interpreter closely follows the BSM semantics with only minor discrepancies
aimed at making the interpreting of programs more efficient. The syntax and the
precise Jazzyk interpreter semantics, as well as all deviations from the formal
semantics are discussed in this section. Finally I also briefly sketch technical
details of the Jazzyk interpreter implementation.

3.1 Syntax

Figure 1 lists the EBNF of Jazzyk, which straightforwardly follows from the
syntax of BSM introduced in Subsection 2.

According to the BSM syntax, a Jazzyk program is a mental state transformer.
However to allow for such programs, few technical issues have to be handled
as well. The KR modules have to be declared and subsequently bound to the

Jazzyk: A Programming Language for Hybrid Agents 79

program ::= (statement)*

statement ::= module_decl | module_notify | mst

module_decl ::= ‘declare’ ‘module’ <moduleId> ‘as’ <KRModuleType>

module_notify ::= ‘notify’ <moduleId> on

(‘initialize’ | ‘finalize’ | ‘cycle’) formula

mst ::= ‘nop’ | ‘exit’ | ‘{’ mst ‘}’ |

update | conditional | sequence | choice

sequence ::= mst ‘,’ mst

choice ::= mst ‘;’ mst

conditional ::= ‘when’ query_expr ‘then’ mst [‘else’ mst]

query_expr ::= query ‘and’ query | query ‘or’ query |

not ‘query’ | ‘(’ query ‘)’

query ::= ‘true’ | ‘false’ |

<operatorId> <moduleId> [variables] formula

update ::= <operatorId> <moduleId> [variables] formula

formula ::= ‘[{’ <arbitrary string> ‘}]’

variables ::= ‘(’ (<identifier> ‘,’)* <identifier> ‘)’ | ‘(’ ‘)’

Fig. 1. Jazzyk EBNF

corresponding plug-ins implementing their functionality in a KR language of
choice. Before a first update operation is invoked on a KR module, it should be
initialized by some initial state. This state is encoded as a corresponding KR
language formula, i.e. code block. Similarly, when a module is being shut down,
it might be necessary to perform a cleanup of the knowledge base handled by
the module. In order to allow for a KR module initialization and shut-down
(finalization), so called notifications KR modules are introduces. They take a
form of a statement declaring a formula/code block to be executed when the
KR module is loaded (i.e. before the program interpretation) and when it is
being unloaded (i.e. after either a call of special purpose mst ‘exit’, after an
error during program interpretation, or after the last deliberation cycle was
performed). Additionally, as a purely technical feature, also a notification after
each deliberation cycle is provided. It should serve to strictly technical purposes
like e.g. possible cleaning of a query cache, in the case a KR module implements
such an optimization technique.

The core of Jazzyk syntax are rules of conditional nested mst’s of the form
query −→ mst . These are translated in Jazzyk as “when <query> then <mst>”.
Mst’s can be joined using a sequence ‘,’ and choice ‘;’ operators corresponding
to BSM operators ◦ and | respectively. The operator precedence can be managed
using braces ‘{’, ‘}’, resulting in an easily readable nested code blocks syntax.
The query formulae are a straightforward translation of BSM query syntax.

Each KR module provides a set of named query and update operators, iden-
tifiers of which are used in primitive query and update expressions. To allow

80 P. Novák

the interpreter to distinguish between arbitrary strings and variable identifiers
in primitive query and update expressions, Jazzyk allows optional explicit dec-
laration of a list of variables used in them.

A standalone update expression is a shortcut for a BSM rule of the type
� → <update>. An obvious syntactic sugar of “when-then-else” conditional
mst is introduced as well. Moreover, the syntax accepted by the Jazzyk inter-
preter includes a powerful macro language enabling support for higher level code
structures, like e.g. named mst’s with optional arguments. Such extended fea-
tures will be discussed below in Subsection 3.3. Right hand side of Figure 2
provides short example of a Jazzyk program implementing a part of the Jazzbot
agent described later in Section 4.

3.2 Interpreter

The semantics of the Jazzyk interpreter closely follows the BSM semantics shown
in Algorithm 1 with only few deviations: 1) query expressions are evaluated
sequentially from left to right, 2) the KR modules are responsible to provide
a single ground variable substitution for declared free variables of a true query
expression, 3) before performing an update, all the variables provided to it have
to be instantiated. Additionally, query operator invocations are not supposed to
change the agent’s mental state, however this is not possible to ensure technically
on the level of the Jazzyk interpreter implementation.

The above listed simplifications of the original BSM semantics were intro-
duced in order to make the process of agent program interpretation more efficient
and more transparent to the programmer. The most important deviation from
the original BSM semantics is the treatment of variable substitutions. In order
to make evaluation of mst queries straightforward and efficient, a KR module
is required to provide only a single variable valuation for a provided primitive
query formula, if such exists. In the case of more possible valuations of such a
non-ground query formula, the KR module is free to pick a suitable one1.

3.3 Extended Features and the Interpreter Implementation

Jazzyk interpreter was designed to provide a lightweight modular agent oriented
programming language. Except for the vertical modularity, i.e. modularity in
terms of possibility to use, re-use, or replace heterogeneous KR languages to
handle agent’s underlying knowledge bases, Jazzyk implementation support a
horizontal modularity in terms of modularity of the source code. For a robust
programming language it is desirable to provide syntactical means to manip-
ulate large pieces of code easily. Composition of larger programs from smaller
components is a vital means for avoiding getting lost in the so called “spaghetti
code”.

1 As far as the precise mechanism is well documented by the KR language plug-in
developer.

Jazzyk: A Programming Language for Hybrid Agents 81

Agent program before preprocessing with
M4 syntax:

declare module brain as ASP
declare module goals as ASP
declare module body as Nexuiz

notify goals on initialize [{
stay healthy. find box.

}]

define(‘perceive’, ‘
when sense body($3) [{$1}]
then add brain($3) [{$2}]

’)

perceive(‘sonar wall’, ‘inFrontOfWall’) ;
when believes goals [{stay healthy}] then {

...
perceive(‘body health X’, ‘health(X)’, ‘X’)

}

Resulting pure Jazzyk program after
macro expansion:

declare module brain as ASP
declare module goals as ASP
declare module body as Nexuiz

notify goals on initialize [{
stay healthy. find box.

}]

when sense body() [{sonar wall}]
then add brain() [{inFrontOfWall}]
;
when believes goals [{stay healthy}]
then {

...
when sense body(X) [{body health X}]
then add brain(X) [{health(X)}]

}

Fig. 2. Example of macro preprocessing. Program is a part of Jazzbot agent.

To support this horizontal modularity, Jazzyk interpreter integrates GNU
M42, a powerful macro preprocessor. Before a Jazzyk program is fed to the
interpretation cycle (Algorithm 1), its source code is fed to GNU M4 preprocessor
to expand and interpret all the M4 specific syntactic constructs. This way, the
language of Jazzyk programs is extended by the full M4 language syntax.

In terms of source code modularity, by integration of GNU M4 macro prepro-
cessor into the Jazzyk interpreter, it gains several important features almost “for
free”: definition of macros and their expansion in the source code, possibility of
a limited recursive macro expansion, conditional macro expansion, possibility to
create code templates, handling file inclusion in a proper operating system path
settings dependent way, limited facility for handling strings, etc.

The Figure 2 provides an example of a macro expansion mechanism. A re-
usable mst perceive is defined and subsequently used in different contexts of an
agent program.

To simplify debugging of agent programs, Jazzyk interpreter implements a full-
featured error reporting following the GNU C++ Compiler3 error and warning
reporting format, what allows an easier integration of the interpreter with IDE
frameworks, or programmers’ editors like e.g. Eclipse, Emacs, or Vim.

Technically, Jazzyk interpreter is implemented in C++ as a standalone com-
mand line tool. The KR modules are shared dynamically loaded libraries in-
stalled as standalone packages on a host operating system. When a KR module
is loaded, the Jazzyk interpreter forks a separate process to host it. The communi-
cation between the Jazzyk interpreter and a set of the KR module sub-processes
is facilitated by an OS specific shared memory subsystem. This allows loading

2 http://www.gnu.org/software/m4/
3 http://gcc.gnu.org/

http://www.gnu.org/software/m4/
http://gcc.gnu.org/

82 P. Novák

Fig. 3. Jazzyk interpreter scheme

multiple instances of the same KR module implemented in a portable way. The
Figure 3 depicts the technical architecture of the Jazzyk interpreter.

The Jazzyk interpreter was implemented in a portable way, so it can be com-
piled, installed or relatively easily ported to most POSIX compliant operating
systems. As of now, the interpreter was ported to Linux and Windows/Cygwin
platforms. The Jazzyk interpreter was published under the open-source GNU
GPL v2 license and is hosted at http://jazzyk.sourceforge.net/. To sup-
port implementation of 3rd party KR modules, I also published a KR module
software development kit including template of a trivial KR module together
with all compile/package/deploy scripts.

4 Jazzbot: Demo Application

To demonstrate the applicability of Jazzyk language and its interpreter and
to further drive this line of research, we implemented Jazzbot, a virtual agent
embodied in a simulated 3D environment of a first-person shooter computer
game Nexuiz 4.

Jazzbot is a goal-driven agent. It features four KR modules representing belief
base, goal base, and an interface to its virtual body in a Nexuiz environment
respectively. While the goal base consists of a single KB realized as an ASP logic
program, the belief base is composed of two modules: ASP logic programming
one and a Ruby module. The interface to the environment is facilitated by a
Nexuiz game client module.

4.1 Answer Set Programming

Answer Set Programming module [8] provides the bot with non-monotonic rea-
soning capabilities. It is realized by a Jazzyk module which integrates an ASP
solver Smodels [20] with accompanying logic program grounding tool lparse [19].
Hence the syntax and the semantics of logic programs the module handles, i.e.
query/update formulae, is that accepted by lparse and Smodels. Query formulae
query the answer sets (stable models) of the actual logic program in the knowl-
edge base using two query operations: skeptic and optimistic. While the skeptic
query requires a query formula to be true in all the models of the knowledge
base, the optimistic one requires only existence of at least one answer set sat-
isfying the given query formula. The ASP KR module implements only a naive
LP update mechanism based on updating facts.
4 http://www.alientrap.org/nexuiz

http://jazzyk.sourceforge.net/
http://www.alientrap.org/nexuiz

Jazzyk: A Programming Language for Hybrid Agents 83

Fig. 4. Scheme of Jazzbot

4.2 Ruby

For representation of topological knowledge about the environment we chose
an interpreted object-oriented programming language Ruby5. The Ruby module
features a simple query/update interface allowing evaluation of arbitrary Ruby
expressions. The functionality of the Ruby KR module resembles an interactive
mode of the Ruby interpreter in which a user enters an arbitrary programming
language expression on the command line and the interactive interpreter executes
it and returns its value. The query/update formulae variables are bound to Ruby
global name-space variables.

4.3 Nexuiz

The environment, Jazzbot operates in, is provided by a remote Nexuiz server.
Nexuiz is an open-source 3D first-person shooter computer game based on the
Quake DarkPlaces6 engine. The Nexuiz KR module [10] implements a client
functionality and facilitates the bot’s interaction with the game server. Jazzbot
can exploit several virtual sensors: gps, sonar, eye, compass, surface sensor and
health status sensor, as well as effectors of its virtual body allowing it to move,
jump, turn, use an item, attack, or utter a plain text message.

Jazzbot is a client-side bot. That means, that in order to faithfully mimic the
human player style environment for the bot, the sensory interface is designed
so, that it provides only a (strict) subset of the information of that a human
game player can access. For instance, Jazzbot can only check the scene in front
5 http://www.ruby-lang.org/
6 http://icculus.org/twilight/darkplaces/

http://www.ruby-lang.org/
http://icculus.org/twilight/darkplaces/

84 P. Novák

of it using the directional sonar sensor. The rendering of a whole scene also
is inaccessible to it, so only a single object can be seen at a time. Similarly
to a human player, Jazzbot can reach only to the local information about its
environment and information about objects which it cannot see, or are located
behind the walls of the space it stands in, are inaccessible to it.

Jazzbot ’s behaviours are implemented as a Jazzyk program. Jazzbot can fulfill
e.g. search and deliver tasks in the simulated environment, it avoids obstacles
and walls. Figure 4 depicts the architecture of Jazzbot and features a Jazzyk
code chunk implementing a simple behaviour of picking up an object by mere
walk through it and then keeping notice about it in its ASP belief base. Note
that all the three used KR modules are compatible with each other, since they
share the domain of character strings. Hence all the variables used in Jazzbot ’s
programs are meant to be character string variables.

5 Discussion

In my view, an agent programming language is a glue for assembling agent’s
behaviours. Furthermore, it should facilitate an efficient use of its knowledge
bases and interface(s) to the environment.

However, a programming language is a software engineering tool, in the first
place. Even though its primary utilization is to provide expressive means for
behaviour encoding, at the same time it has to fulfill requirements on modern
programming languages. Programs have to be easily readable and understand-
able and the language semantics should be transparent to a programmer, i.e. as
clear and simple as possible.

The BSM framework, and in turn Jazzyk, its implementation, is an attempt
to satisfy these requirements in a working system obeying design principles of
simplicity, modularity and semantic transparency.

1. BSM in the core allow implementation of agent programs in a form of simple
non-deterministic reactive behaviours. Their precedence and relations can be
steered by nesting of behaviours (mst’s) and their combinations by operators
of non-deterministic choice and chaining,

2. Jazzyk itself is a lightweight language. To support modularity and further
extensibility, it exploits a power of a macro preprocessor allowing imple-
mentation of code templates and higher level syntactic constructs like e.g.
general purpose perception or goal handlers (as sketched in the Figure 2),

3. finally, the proposed simple semantics of BSM stems from that of Gurevich’s
Abstract State Machines (ASM) framework, formerly known as Evolving
Algebras. This relationship allows further transfer of ASM extensions and
modeling tools, like logic for ASM to the BSM framework.

It can be argued that Jazzyk is oversimplified and does not follow the popular
tradition of BDI [18] architectures. We already addressed these issues in [14].
There we showed how a BDI agent architecture can be implemented in a modular
way in a framework close to BSM with an advantage, that an agent system

Jazzyk: A Programming Language for Hybrid Agents 85

designer has a freedom to implement a model of rationality suitable for the
agent application instead of fixing it in the programming framework.

The syntactical structure of BSM closely resembles the one we introduced in
[15]. BSM framework is indeed an evolution of our previous work. However the
semantics of the language introduced in [15] was not simple enough and did not
allow a straightforward implementation of a transparent language interpreter.
Moreover, the concept of mental state transformer was still quite complex what
led to problems with implementation of source code modularity in the language.

Our research project follows the spirit of [9], where Laird and van Lent argue
that approaches for programming intelligent agents should be tested in realistic
and sophisticated environments of modern computer games. To provide a sub-
stance to claims about practicality and applicability of Jazzyk, similarly to [21],
we put Jazzyk to a test in such a challenging environment and we developed
Jazzbot, a functional demonstration of a non-trivial virtual agent. We report on
the details of the methodology of programming the Jazzbot ’s behaviour and our
experience with it more extensively in [16]. Because of Jazzyk ’s modularity in
terms of employed KR technologies, agent applications, such as Jazzbot, can be
used as a test-bed for investigating applications of various KR technologies in
the domain of agent systems.

6 Related Work and Conclusion

The landscape of agent programming frameworks is thriving (see e.g. a survey [1],
or [2]). Most of the state-of-the-art frameworks like 3APL [5], Jason [3], GOAL
[6] and other provide a clear semantics of a resulting agent system. However, for
representation of agent’s beliefs, they usually provide a fixed, logic based knowl-
edge representation technique (often Prolog). Following the BDI tradition, from
the relation of agent’s beliefs and goals stems a subsequent need to implement
also the goal base using a related logic based KR technology. Unlike the BSM
framework, which was designed with the motivation to allow a liberal combi-
nation of heterogeneous KR technologies in a single agent system, they do not
allow a straightforward employment of e.g. an object-oriented KR approach (like
Ruby in the case of Jazzbot) in one of an agent’s knowledge bases.

Recently in [7], we showed that GOAL does not strictly commit to a single
logic-based KR technology, such as e.g. Prolog. However, a question remains
how difficult would it be to use heterogeneous KR technologies with GOAL as
it is done in the BSM framework. Because of the model of rationality GOAL
uses (blind commitment), there must be a close relationship between the KR
languages of belief and goal bases. BSM do not require such a relationship to
exist, it is rather a task of a programmer to encode such a relationship whenever
necessary. Macro perceive in the Figure 2 provides such an example: it relates
a perception to its projection in the agent’s belief base.

In [17], authors describe Qsmodels architecture based Quake bots imple-
mented in plain ASP/Smodels. Qsmodels bots use planning as the primary ap-
proach to implementation of behaviours. I rather take a position that logic-based

86 P. Novák

techniques are better suited for modeling static aspects of an environment, rather
than for steering agents’ behaviours. Unlike Qsmodels planning bot, Jazzbot is
a rather reactive agent with a strong support for deliberative features.

The main contributions of this paper are a detailed description of the pro-
gramming language Jazzyk together with its interpreter and a rough overview of
the functionality of Jazzbot, a case study demonstrating applicability of Jazzyk
language. The Jazzbot project is a driver for my future work. In this context I
will focus on development of techniques for programming agents based on the
template of Jazzbot, so that I can better understand a methodology for program-
ming such systems. The aim is to design at least a fragmentary formal higher
level specification language based on a flavor of modal logic, which would al-
low a straightforward translation (compilation) into raw Jazzyk programs. On
a technical side, to complement the current family of Jazzyk KR modules, we
plan to implement a Prolog module based on SWI Prolog7 and a Scheme module
based on GNU Guile8. We are also working on a module allowing inter-agent
communication via an established MAS platform middleware.

Acknowledgments

I am grateful to Koen Hindriks for his support, constructive criticism and con-
siderable contribution to simplification of the BSM semantics. Bernd Fuhrmann
contributed to the development of the Jazzyk interpreter and Michael Köster
with David Mainzer implemented the KR modules for the Jazzbot project.

References

1. Bordini, R.H., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J.J.,
Leite, J., O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming languages
and platforms for multi-agent systems. Informatica 30, 33–44 (2006)

2. Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Program-
ming Languages, Platforms and Applications. Multiagent Systems, Artificial So-
cieties, and Simulated Organizations, vol. 15. Kluwer Academic Publishers, Dor-
drecht (2005)

3. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the Golden Fleece of Agent-
Oriented Programming. In: Multiagent Systems, Artificial Societies, and Simulated
Organizations [2], ch. 1, vol. 15, pp. 3–37 (2005)

4. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

5. Dastani, M., van Riemsdijk, M.B., Meyer, J.-J. (eds.): Programming Multi-Agent
Systems in 3APL. In: Multiagent Systems, Artificial Societies, and Simulated Or-
ganizations [2], ch. 2, vol. 15, pp. 39–68 (2005)

6. de Boer, F.S., Hindriks, K.V., van der Hoek, W., Meyer, J.-J.C.: A verification
framework for agent programming with declarative goals. J. Applied Logic 5(2),
277–302 (2007)

7 http://www.swi-prolog.org/
8 http://www.gnu.org/software/guile/

http://www.swi-prolog.org/
http://www.gnu.org/software/guile/

Jazzyk: A Programming Language for Hybrid Agents 87

7. Hindriks, K., Novák, P.: Compiling GOAL Agent Programs into Jazzyk Be-
havioural State Machines. In: Bergmann, R., Lindemann, G., Kirn, S., Pěchouček,
M. (eds.) MATES 2008. LNCS, vol. 5244. Springer, Heidelberg (2008)

8. Köster, M.: Implementierung eines autonomen Agenten in einer simulierten 3D-
Umgebung - Wissensrepräsentation. Master’s thesis (2008)

9. Laird, J.E., van Lent, M.: Human-level AI’s killer application: Interactive computer
games. AI Magazine 22(2), 15–26 (2001)

10. Mainzer, D.: Implementierung eines autonomen Agenten in einer simulierten 3D-
Umgebung - Interaktion mit der Umwelt. Master’s thesis (2008)

11. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems.
Springer, New York (1992)

12. Novák, P.: An open agent architecture: Fundamentals. Technical Report IfI-07-10,
Department of Informatics, Clausthal University of Technology (November 2007)

13. Novák, P.: Behavioural State Machines: programming modular agents. In: AAAI
2008 Spring Symposium: Architectures for Intelligent Theory-Based Agents, AITA
2008, March 26-28 (2008)

14. Novák, P., Dix, J.: Modular BDI architecture. In: Nakashima, H., Wellman, M.P.,
Weiss, G., Stone, P. (eds.) AAMAS, pp. 1009–1015. ACM, New York (2006)

15. Novák, P., Dix, J.: Adding structure to agent programming languages. In: Dastani,
M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS,
vol. 4908, pp. 140–155. Springer, Heidelberg (2008)

16. Novák, P., Köster, M.: Designing goal-oriented reactive behaviours. In: Proceed-
ings of the 6th International Cognitive Robotics Workshop, CogRob 2008, Patras,
Greece, July 21-22 (2008)

17. Padovani, L., Provetti, A.: Qsmodels: ASP planning in interactive gaming environ-
ment. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 689–692.
Springer, Heidelberg (2004)

18. Rao, A.S., Georgeff, M.P.: An Abstract Architecture for Rational Agents. In: KR,
pp. 439–449 (1992)

19. Syrjänen, T.: Implementation of local grounding for logic programs with stable
model semantics. Technical Report B18, Digital Systems Laboratory, Helsinki Uni-
versity of Technology (October 1998)

20. Syrjänen, T., Niemelä, I.: The Smodels System. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS, vol. 2173, pp. 434–438. Springer,
Heidelberg (2001)

21. van Lent, M., Laird, J.E., Buckman, J., Hartford, J., Houchard, S., Steinkraus, K.,
Tedrake, R.: Intelligent agents in computer games. In: AAAI/IAAI, pp. 929–930
(1999)

PRESAGE: A Programming Environment for
the Simulation of Agent Societies

Brendan Neville and Jeremy Pitt

Intelligent Systems & Networks Group
Dept. of Electrical and Electronic Engineering

Imperial College London
London, SW7 2BT, UK

brendan.neville@imperial.ac.uk, j.pitt@imperial.ac.uk

Abstract. The paradigm of agent societies has proved particularly ap-
posite for modelling multi-agent systems for networked applications, in
particular when the network is open, dynamic and decentralised. In this
paper, we describe a software environment which can be used for sim-
ulation and animation of these models, allowing a system designer to
investigate the complex social behaviour of components, the evolution of
network structures, and the adaptation of conventional rules. Effectively,
the environment serves as a rapid prototyping tool for agent societies,
where the focus of interest is long-term, global system behaviour as much
as the verification of specific properties.

1 Introduction

Networked computers and multi-agent systems (MAS) are commonly used as a
platform for a new range of applications in for example manufacturing, health,
transport, commerce, entertainment, education, and social interaction. Features
of these applications include the dynamic network infrastructure, heterogeneous
components, unpredicted events, sub-ideal operation (failure to comply to spec-
ifications), incomplete and inconsistent information, absence of centralised con-
trol, and so on. Techniques from autonomic computing [1] and adaptive systems
[2] have proved useful in addressing some of these features; for others the idea of
an agent society has been proposed (e.g. [3,4]) which has emphasised the need
for conventional rules and social relationships between components.

There still remains though a requirement for system designers and software
engineers to retain some understanding of the application under development,
and especially of complex systems where random events, erratic behaviour, and
self-modification can render the system opaque to mathematical analysis. In the
past, rapid prototyping has proved to be an extremely effective tool in helping
to understand large-scale MAS, for example in abstracting away from details in
order to verify that certain desirable properties hold. However, in autonomic,
large-scale MAS, there is an additional requirement not just to verify proper-
ties, but also to observe the global outcomes that are the consequence of social
interactions and a myriad of independent, local decisions and actions.

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 88–103, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

PRESAGE: A Programming Environment for the Simulation of Agent 89

In this paper, we propose a rapid prototyping tool whose emphasis is on the
simulation of agent societies and the social relationships between agents, allowing
the designer to study social behaviour of components, the evolution of network
structures, and the adaptation of conventional rules. In this sense, it occupies a
space distinct from powerful application development environments, like JADE
[5]; agent based modelling and simulation tools [6,7] where the primary purpose is
to model and explain the behaviour of non-artificial agents; and other rapid pro-
totyping environments for MAS (e.g. [8,9]) whose principal function is, as stated
above, to verify system-wide properties. We illustrate the use of the environment
in examining three systems for trust, recommendations, and resource allocation.

The rest of this paper is structured as follows, section 2 provides a set of non-
functional requirements and a brief overview of how a user develops and runs a
test-bed using the platform. The platform architecture including the underlying
simulation model and core modules are discussed in section 3. In section 4 we
describe in detail the agent model and agent communication language. Following
this section 5 summarises the research which has been carried out using the
platform. Finally in 6 and 7 we summarize existing work, conclude and set out
our future objectives for the platform.

2 An Overview

To satisfy the functional requirement of developing a rapid prototyping and an-
imation environment for agent societies we have paid particular attention to
developing a highly customisable and extensible simulation architecture. How-
ever, in order to support the designers goals of observing social behaviour, long
term global performance and adaptation we also specifically identify a set of
non-functional requirements, namely:

– abstraction: the system allows the designer to tailor the degree of abstraction
in their models. In particular, the primary objects of study, the agents and
the network, can be as simple or complex as necessary. For example, the
agents can range from reactive stubs to fully-fledged BDI agents;

– flexibility: the platform provides many options for parametrisation and re-
configuration. This supports systematic experimentation as the platform can
be configured to run with the independent variables set over a range of values,
and the measures of interest (dependent variables) collected for each run;

– extensibility: the platform is provided with a pre-programmed set of libraries,
but the designer may extend the functionality using scriptable methods and
component plug-ins;

– interaction: particular emphasis is given to simplifying the front-end to ‘pro-
gram’ an experiment, to visualise the animation as it is running, data logging,
and access to external applications, such as Gnuplot, for graphical represen-
tation of data;

– scalability: the architecture of the system has been designed to support both
single-processor and distributed animation, allowing simulation to feature
societies comprising many hundreds of agents.

90 B. Neville and J. Pitt

In developing a prototype the experimenter can create their agent participant
types through optional use of the supplied abstract class; to ensure compatibility
with the simulation calls and provide core functionality like message handling
etc. They can then choose from one of the pre-defined network and physical
environment modules or extend the basic Network and PhysicalWorld classes to
suit their purpose. Finally they may add functionality to the platform in the
form of scriptable methods and plugins.

A basic input-output overview of our simulation platform is illustrated by
Fig. 1. The experimenter configures each simulation run via input-files; these
files serve four main purposes, parametrising the general simulation variables,
configuring the simulated agents (participants), scripting events and initialising
the required plug-ins.

Once the platform has initialised as specified it enters the simulation thread
and loops for the required number of iterations. During this time the user can
view the progress of the simulation via visualiser plug-ins, record data using data
archiver plug-ins, execute methods and launch extra plug-ins during runtime.

At the end of the simulation, the platform can be scripted to organise and
archive results and input-files. It can also call external applications for example
Gnuplot to create publication ready graphs.

AGENT SPECIFICATION:
Participant class type

Name, Roles
Class specific variables

.....
SCRIPTS AND PLUG-INS:

Pre-Execution Methods
Method Script

Post-Execution Methods
Plug-in List

.....

SIMULATION PARAMETERS:
Random Seed

Iterations
Physical World Class

Network Class
TCP/IP address

….. Simulator

SIMULATION RESULTS:
Utility

Profit, Price, Revenue
Network Load, etc

.....

Fig. 1. Input-Output Overview of the Simulation Platform

3 Platform Architecture

The PRESAGE architecture is illustrated as a software stack (Fig. 2) depict-
ing the base simulation module, the interfaces and abstract classes, simulation
managers, and the platforms connectivity to external processes. Above this we
have given some examples of how the user could utilise the classes and modules
e.g. an auction scenario operating over a unstructured P2P network without a
physical world. In the following sections we address each of the modules in more
detail.

PRESAGE: A Programming Environment for the Simulation of Agent 91

PRESAGE

External ConnectionsManagersInterfaces & Abstract Classes

Event
Script

Manager

Plugin
Manager

TCP/IP
Comms

MySQL
ConnectionParticipant

Bu
ye

r
Se

lle
r

A
uc

tio
ne

er

Network

U
ns

tr
uc

tu
re

d
P2

P
M

A
N

ET
H

yb
ri

d
P2

P

Physical
World

Ti
le

 W
or

ld
Br

ow
ni

an
 M

ot
io

n
W

or
ld

N
o

Ph
ys

ic
al

 W
or

ld

A
ct

iv
at

e/
D

ea
ct

iv
at

e
Pa

rt
ic

ip
an

ts
C

ha
ng

e
Pa

rt
ic

ip
an

t A
ttr

ib
ut

es
C

au
se

 P
hy

si
ca

l W
or

ld
 E

ve
nt

s

Lo
g

D
at

a
Re

al
-ti

m
e

G
ra

ph
s

M
on

ito
r N

et
w

or
k

St
ru

ct
ur

e

Ex
te

rn
al

 A
ge

nt
s

A
dd

iti
on

al
 S

im
ul

at
or

s
RM

I

Ex
pe

ri
m

en
ta

l D
at

a
St

or
ag

e
Pa

rt
ic

ip
an

t D
at

a
St

ru
ct

ur
es

Re
la

tio
na

l Q
ue

ri
es

Example Instantiations of
Base Classes

Example Scriptable
Methods and Plugins

Example Connectivity

Simulation LoopInitialisation unctionsCoref
Fig. 2. Representation of the Architecture of the platform

3.1 The Base Simulation Module

The role of the base simulation module is to perform parameter initialisation,
manage simulation execution, and provide generic functions to higher level mod-
ules and classes. PRESAGE takes a multi-agent discrete time-driven approach.
In this simulation execution model each loop of the simulation control thread
equates to a simulation time slice. For every time slice the state of the network
and physical world is updated, scripted events execute, plugins perform their
duties and the agent participants are given a turn to perform physical and com-
municative actions. By handling the agent process execution as a centralised
time-driven model we ensure pseudo-concurrent execution of agent actions thus
affording the advantages of Multi-agent based simulation (MABS) outlined in
[10], and providing the user and agent a centralised notion of time. Concurrency
is enforced by queuing actions until the end of each time slice.

We have developed a time-driven as opposed to an event-driven model of
execution because:

– While event-driven models are generally seen as more computationally ef-
ficient than time-driven models due the former’ ability to overlook periods
of inactivity, such efficiency is absent in the case of simulating agents, since
they react to changing conditions and are therefore required to constantly
sense their environment.

92 B. Neville and J. Pitt

– The complexity of programming discrete-event models increases rapidly with
the complexity and heterogeneity of the agents and the number of event
types. Whereas in a time-driven model the agents may become more com-
plex, however, the interface between the agent and the simulation model
does not.

– In event-driven models, the simulator determines in advance the next event
based on the current state of the world and steps directly to it (without
animating the states of the world in-between). This is inappropriate for our
simulation execution model as we require it to be indifferent to participant
architecture and facilitate probabilistic behaviour (for Monte Carlo experi-
ments), pro-activity and adaptability.

3.2 Managers

This section introduces the three simulation managers which afford control over
the simulation execution, plugins and the execution of extraneous events. The
simplest of these is the Control Panel. This primarily lets the user run/pause
and step through the simulation. In addition to providing progress information
and allowing the user to prematurely end a simulation whist still executing post
processing, archiving and tidying up of the databases and connections.

The Event Script Manager (ESM) uses the Java reflection API to fa-
cilitate runtime execution of Java methods. This allows the user to script the
execution of a method at a certain time point with specific variables independent
of the platforms compile time behaviour. This script initially takes the form of
an input file, but events can be added through the GUI during runtime. Methods
can also be scripted for execution before or after the simulation run such that
the user can use them for initialisation or post processing. Given the generic na-
ture of scripting method execution there are a vast array of possible uses, these
include, triggering events in the simulated physical world, adapting the network
topology, altering parameters and timing each agent’s entrance or exit from the
simulation.

The Plugin Manager (PM) allows the user to launch plugin modules from
input files or a GUI during runtime; the key difference between plugins and
methods being that plugins persist between simulation cycles meaning that they
are repeatedly executed, have memory between simulation cycles and can in-
clude a user interface. As a result they form the basis of the many possible data
archiving and visualisation tools. The PM, like the ESM auto-detects available
plugins and allows the user to launch and remove them during runtime. A plugin
can be created by simply using the plugin interface. The power of the plugin
architecture is illustrated by two key plugins, the DataArchiver and the Visu-
aliser.
DataArchiver : One key feature of any simulation platform is the ability to log
experimental data. A basic DataArchiver plugin class is provided in the platform
API that can create results logs in the form of spreadsheets. The specific nature of
the data and its layout in the output-file is defined by the user as it is scenario
dependant. This is relatively easy process of instantiating the DataArchiver’s

PRESAGE: A Programming Environment for the Simulation of Agent 93

abstract method getDataRow() to return a row of data in the form of an array.
In each simulation cycle the plugin will then get the required data and archive
it in a comma separated file.
Visualisation Plugins: We provide a small group of plugins specifically designed
to enable the user to create realtime visualisations of experimental data. At this
time we have created three basic forms: line graphs, radial plots and network
visualisation. While it is our intention to extend this library further in the future,
the user can, of course, create their own as needed.

3.3 External Connections

The platform supports many types of external connection. In this section, we
review three, TCP/IP connections, MySQL, and access to other external appli-
cations.

TCP/IP Communication consists of a client/server pair for communicat-
ing with external processes such as situated agents, remote servers and network-
ing the platform to additional simulators.

The MySQL connection is managed by the platform for providing short-cut
methods to perform queries and updates, in addition to managing the java-sql
connection (jdbc). This enables users to store large volumes of simulation data
including event logs for post-processing. The participants can also use SQL to:
store beliefs, form temporary data structures from more than one table, perform
mathematical functions on large datasets or quickly and efficiently search and
organise a large amount of information.

External Process Invocation is handled by a number of convenience meth-
ods allowing the execution of system commands and external applications from
within the platform. These can either be called by user defined code in the net-
work, physical world, participant, or plugin classes; or by a scripted event. This
is particularly useful for launching agent processes outside the simulation, calling
on Gnuplot or a spreadsheet application to post-process simulation results.

3.4 Environmental Interfaces and Abstract Classes

Agent systems operate in a number of physical and network environments from
fully connected static networks without the need to model a physical world to
vehicular adhoc networks (VANETS). The individual properties of these envi-
ronments pose unique challenges to the agent system developer, therefore it is
essential that agent simulation platforms support the custom specification of
these environments. In order to achieve this the PRESAGE platform contains
two abstract classes namely the Network Simulation Module and a Physical
World Simulation Module.
Network Simulation Module: The network module’s core function is to facil-
itate the exchange of messages between connected peers and to simulate dynamic
connectivity between the participants. Network modules are simple to create by
extending the basic abstract class to determine the required behaviour. The

94 B. Neville and J. Pitt

Fig. 3. Plugin creates a realtime animation of the changing positions of the agents in
the simulated physical world and the effect this has on the topology of the physical
and logical networks

following network types have been created: static fully/partially connected, un-
structured P2P, hybrid P2P and mobile adhoc networks.
Physical World Simulation Module: The platform supports the inclusion
of a simulated spatial environment for the agents. Like the simulated network,
the physical world is an interface class which allows for custom specification
by the experimenter. The basic interface supports the addition and removal of
participants from the world and facilitates the sensing and effecting of their
environment. It is up to the user to define the valid actions and their effect on
the state of the world, in addition to any rules of the environment not determined
by agent behaviour.

An example of using the physical world and network interfaces is an instance of
a wireless mobile adhoc network (MANET) simulation. In our configuration the
agents can move in a two dimensional environment and can sense the relative
position of nearby peers. The world itself bounces agents when they interact
with its boundaries causing the agents to move in a Brownian motion. The
spatial data of the world is used by the network module to calculate the physical
connections of the network based on relative distances between peers and their
wireless transmission ranges. The physical network topology can then be used
to infer the logical connectivity of the participants. A realtime visualisation of
the physical world and the resultant network is provided by a plugin shown in
Fig. 3.

4 Agents, Participants and Communication

The principal component of the platform is its collection of agents, whose in-
teraction with one another and their environment is our primarily interest. In
theory it would be ideal for the platform not to constrain the design of the agents

PRESAGE: A Programming Environment for the Simulation of Agent 95

Table 1. Required methods and variables for a simulation participant

Variables

public String gUID globally unique identifier: defined
from input file

public Queue inbox to allow the network module to en-
queue messages to the agent

Methods

public boolean isRole(String role); returns true if role is one of the par-
ticipants roles.

public void execute(); called by the simulation thread
upon a participants turn.

public void onActivation(); called by the platform when the
agent becomes active in the simu-
lation.

public void onDeActivation(); called by the platform when the
agent is removed from the simula-
tion.

in any way. However in order to interact with the base simulation model and
ensure the interoperability of participants a degree of homogeneity is required.
Table 1 lists these prerequisites. Externally the agent must have a globally unique
identifier (GUID), defined roles and communicate via a common agent commu-
nication interface (as defined in the following section). However, internally the
requirements simply facilitate the interaction with the simulation platform, for
instance activation/deactivation of the agent and calling the agent to take it’s
turn via a public methods e.g. execute(). The user may also customise the
simulation thread to allow them to interleave the execution of agents, this is
achieved by replacing the execute() method with a series of sub-methods. This
is the approach used in the example applications in section 5. Within these con-
straints the user is free to develop their own agent architecture be it reactive,
deliberative, BDI or otherwise. As such the platform is neutral with respect to
the agents’ internal architectures.

4.1 The Participant Class

It is expected that the majority of users of the platform will be primarily
interested in the interaction between agents and the evolution of behaviour
within a simulated agent society. As such we have developed a root agent class
Participant from which researchers can derive heterogeneous agents for partic-
ipation in their simulations. Figure 4 shows how one might derive the necessary
classes for an online auction scenario in a Virtual Organization and instantiate
an heterogeneous population from them. Notice that the class hierarchy allows
us to define more or less sophisticated agent strategies: from the simple buyer,
socio-cognitive buyer, and onto machine learning or game theoretic buyers. The
participant class handles as much of the agent’s internal operation as possible

96 B. Neville and J. Pitt

Participant

Participants.csv

Seller Buyer

AuctioneerMalicious
Seller

Honest
Seller

Java Class
Hierarchy

Simple
Buyer

Socio-Cognitve
Buyer

Agent
Population

Input
Parameters

Fig. 4. Using Java OOP, Participant class and input files to define a heterogeneous
agent population

(without sacrificing scenario flexibility). Its architecture is a combination of de-
liberative and probabilistic models, this has proved sufficiently complex for our
experiments in emergent behaviour.

To create the individual participants The derived classes must then be launched
and parametrised via an input-file. Each row of the file launches and specifies an
individual agent’s parameters. The core inputs the user must specify for each agent
include, among other things, the Java class that includes the agents reasoning and
communication protocols which extend our generic participant class, the agents
globally unique identifier, the initial roles to be assigned to the agent. In addition
the user can provide scenario specific parameters for example in our trust and e-
commerce scenario the participants input file also defines what trust model each
agent will adopt, its economic constraints/preferences and its character type e.g.
its inclination towards and strategy for illegal, unethical and antisocial behaviour.

4.2 Agent Communication

The simulation platform aims to put minimal restriction on the internal charac-
teristics of the participating agents. However, in order for the agents to commu-
nicate effectively some a priori knowledge as to the mechanisms and semantics
of communication are required. Following, Pitt and Mamdani [11] who argue
for the use of a protocol based semantics in the external specification of agent
interaction specifically between agents with behavioural and architectural het-
erogeneity. Within the participant class we provide the necessary mechanisms
for handling protocol based communication between the agents. In fact all the
mechanisms from message sending and parsing to maintaining the state of cur-
rent interactions is built in; effectively reducing the users work load to defining
the protocol and the reasoning of the agents at each stage of that protocol.

PRESAGE: A Programming Environment for the Simulation of Agent 97

In this section we discuss the defined agent communication interface which
permits and facilitates the exchange of information between peers. The interface
consists of a higher and lower level component pair: the agent communication
language (ACL) and the mechanism for transmitting messages. Message trans-
mission is achieved by calling the

sendMessage(Message, InetAddress)

method of the Network module. The Network module will either send the mes-
sage via TCP/IP sockets or enqueue the message to the recipient’s inbox queue;
depending on whether the recipient is internal or external to the platform. We
define our ACL in terms of three components: The message syntax, the mech-
anisms maintaining the state of a communicative context (a conversation) and
the external semantics of the protocols. The following three subsections discuss
the way that messages, conversations and protocols are represented, in order to
give the user an understanding of how to implement a protocol and associated
agent behaviour within our framework.

Message Syntax. In order for agents to parse and interpret information ex-
changed between them there must be an agreed upon message syntax. In our
ACL a message takes the form of a seven-place term (see below) where the
terms R and S denote the intended recipient and the sender respectively; these
are instantiated with the agents GUID values. Element C defines the type of
communicative act (i.e query or purchase) being performed. P determines the
protocol (i.e. CNP or Hello) under which the communicative act is being issued.
CKs and CKr are the conversation keys (ConvKey) of the sender and recipient
respectively; these are used by the agents to recognise the ongoing context in
which a message should be interpreted (Pitt and Mamdani [11]). When an agent
initiates a conversation they create a conversation object and a instantiate it
with a locally unique conversation key. This key is then sent with all subsequent
messages. When an agent receives a message without an instantiated CKr it sig-
nals that this is the first message of a new conversation; the recipient will then
create a new conversation and instantiate its key before processing the message.
The format of the message contents is determined by the message performative
C and the protocol P being followed.

message (R, S, C, P, CKr, CKs, Content) ;

message (Agent0056, Agent0022, introduction, hello,
(.), (4.0), contents(Agent0022, 〈consumer, 127.0.0.1 : 9436〉));

Conversations. As an agent executes an interaction protocol with a peer it
must maintain local information about the context of that interaction. The
agents achieve this by creating a conversation object for every multi-stage in-
teraction initiated. A conversation object has the following structure:

conversation (CKm, CKt, tID, P, S, T o, Beliefs) ;

98 B. Neville and J. Pitt

CKm and CKt are the agents ConvKey and its peer’s respectively. These
ConvKeys are used to link incoming messages to an ongoing conversation and
to instantiate the ConvKey fields of any replies. The fields tID and P identify
whom the conversation is with and which protocol they are following. The state
of the conversation S identifies at which point of the protocol (and therefore
which section of the agents reasoning) the next message or timeout should refer
to. To is the time at which the conversation is internally called, this can happen
for a number of reasons: it could be used to end a period of open bidding in an
auction protocol or simply to call a conversation to resend a message or tidy up if
a peer has failed to respond. Finally the beliefs field is a set of temporary beliefs
which the agent wishes to directly associate with a conversation, for instance the
current highest bid in an auction.

It is necessary that the participant are able to carry out multiple conversa-
tions at any given time; the set of active conversation objects are stored in the
conversations KB. Periodically the agent checks to see if any of the conversations
have timed out or have completed. If the state of a conversation is completed
then the conversation is removed from the KB. However if the conversation has
timed out: the code associated with the protocol is passed the conversation.
When we refer to the code associated with a conversation, we are referring to
the user defined method that defines the agents behaviour at each stage of the
protocol as describe in the next section.

Protocols and User Defined Semantics. The Participant class uses the Java
reflection API in order to provide a user extensible protocol library. To add a
protocol to the agent the user simply creates two methods:

protected void protocol name(Message msg)

protected void protocol name(Message msg, ConvKey convkey)

The first method is called on receipt of any message claiming to conform
to the protocol. This method performs a number of checks before calling the
second method; for instance if the message is part of an ongoing conversation
and if that conversation actually exists; or if the message is intended to start
a new conversation in which case it will create a new conversation object. The
second method is called in three situations: agent receiving a message (via the
first method), a conversation timeout in which case the message is null and
finally as a result of a child conversation returning. It is in the second method
that the user codes the relevant agent behaviours for each stage of the protocol.

This handling of messages and conversations is added to the Participant class
for the convenience of users whom do not require a specific agent architecture.
With more advanced applications users can override built in conversation and
messaging functions allowing messages to instead be passed over to code written
in languages supported by the Java Native Interface including among others
Prolog, C++ and Smalltalk.

PRESAGE: A Programming Environment for the Simulation of Agent 99

5 Sample Applications

In this section we summarise three agent systems which we have prototyped and
simulated within the PRESAGE platform.

5.1 Social Networks and Recommendation

In this scenario the prototype system under investigation is a P2P recommen-
dation network. Whereby differing peer preferences gives rise to states of in-
consistent union and the distributed architecture results in peers maintaining
local, subjective and incomplete recommendation sets. The aim is for agents
to base their purchase decisions on the recommendations of peers with similar
preference. To do this in a traditional centralised collaborative filtering system,
a server models the degree of similarity between all the peers based complete
knowledge of their opinions and then uses this data to infer a desirability score
for each agent to untried content pairing. Within a distributed environment this
approach would cause significant computational scalability and network load-
ing issues. We are using PRESAGE to simulate an agent society whereby peers
model one another based on only the locally available recommendations. By us-
ing these peer models to self-organise their network connections the agents can
exploit the localised and incomplete nature of the network to pre-filter recom-
mendations thus increasing the utility of the incoming recommendations without
being required to compute models for every peer, discovering all the available
products or replicating their beliefs across the system.

5.2 Open Distributed Agent Mediated Marketplace

In this study we investigated the behaviour of an agent mediated marketplace
which was intrinsically unmoderated, dynamic, and which could not guaran-
tee that its participants would behave honestly, ethically and competently. The
agents were adapted by integrating a framework for socio-cognitive reasoning
(trust, recommendation and reputation) into the individual agents economic de-
cision making. The results of our simulations show that the integration of social
behaviour into the trading agent architecture can not only act as an effective
mechanism for discouraging norm-violation, but also minimise the detrimental
economic inefficiencies resulting from the protective measures. Details of this
work can be found in [12,13].

5.3 Adaptation of Voting Rules

In previous work with agent-based mobile ad-hoc networks, vehicular networks,
and virtual organizations a common scenario is for the collective use of a lim-
ited common resource. In this application of the platform, we have defined a
multi-agent system which is highly volatile, in the sense that agents can be (un-
predictably) ‘present’ or ‘absent’ in any time slice. The agents that are present
have to vote on the distribution of resources. The problems are, firstly, to decide

100 B. Neville and J. Pitt

on an ‘equitable’ distribution of resources without depleting it (i.e. the ‘tragedy
of the commons’); and secondly, to adapt the voting rules in one time slice to
(try to) ensure a ‘safe’ allocation in the next one. Presage is proving useful here
because, given the range of different possible characteristics and complex func-
tionality of the agents, it is straightforward to generate and configure a large and
diverse population mix. The time-driven execution model supports the time slice
allocation of resources, and the visualisation allows us to follow, at run-time, the
key dependent variables as they change: network structure, voting rules, agent
‘satisfaction’, and resource allocation. Details can be found in [14].

6 Related Work

Rapid prototyping and animation of agent societies in a logical form has been
effectively used in order to demonstrate and verify properties of agent societies.
In [8] Vasconcelos et al present an approach to rapid prototyping multi-agent
systems through the definition of a global interaction protocol. The global pro-
tocol defines the types and order of interaction between the components is used
to automatically generate a set of agents which are simulated to check for de-
sirable properties in the protocol. CaseLP [9] is a logic-based prototyping en-
vironment for specifying and verifying complex distributed applications it also
provides tools for specifying certain network properties when developing proto-
types of distributed systems e.g. reliability or latency of connections. We argue
that these approaches provide a complimentary perspective to the one offered
by PRESAGE where we are primarily interested in the global long run outcomes
and dynamic behaviour of the system. PRESAGE can however produce a nar-
rative (a sequence of actions) of its simulation of the society, this combined with
a description of the social states can be used to invoke tools such as the Society
Visualiser[3] to check system or protocol properties.

Muli-agent Based Simulation (MABS)[10] is a micro-level approach to sim-
ulation of complex systems. Whereby the behaviour of system components or
individuals are modelled as agents. A number of MABS tools exist [15] includ-
ing Swarm1[6], Repast 2 and MASON [7] and are widely used for Agent Based
Social Simulation (ABSS)[16,17,18]. In contrast to MABS the PRESAGE plat-
form is intended as a multi-agent based simulator for agent societies; as opposed
to MABS where generally the focus is upon modelling a non-agent system as
a system of agents. Hence our requirement for supporting heterogeneous agent
architectures and simulating properties of communication networks. ABSS uses
MABS techniques to model human interactions within a multi-agent system,
generally with relatively simple behaviours (on an individual agent basis) that
when simulated their interactions lead to complex global behaviour. These re-
sults are subsequently used to understand and elaborate social theories. Our
social agent experiments [12,13] cross-fertilise with the theories and formalisa-
tions of the ABSS field and the wider social sciences. However our interest lies
1 www.swarm.org
2 http://repast.sourceforge.net/

PRESAGE: A Programming Environment for the Simulation of Agent 101

in using this knowledge to solve problems related to open agent societies which
diverges from their use to further understand human society.

Multi-agent system development tools (for an evaluation see [19]) such as
AgentBuilder3 and JADE support analysis, design, development and deploy-
ment of multi-agent applications. More specifically, JADE4 [5,20,21] is a robust
middleware for developing FIPA5 compliant agent applications. The JADE agent
framework provides the developer with an API for message syntax and parsing
and a set of standard interaction protocols thus simplifying the process of de-
veloping interoperable agents. There also exists a deployment tool [22] which
supports the configuration and deployment of JADE agent based applications.

We view PRESAGE prototyping as a step before frameworks like JADE or
AgentBuilder; providing a platform for investigating system wide performance,
emergent behaviour, optimising interaction protocols and algorithms. We are
currently working on supporting a deployment path for our test-bed participants:
currently users are able to wrap the simulation participants in a class that allows
them to function independently of the simulation platform.

One element of our future work is a thorough analytic comparison of
PRESAGE functionality with respect to other Multi-agent programming tools
such as MABS, JADE, AgentBulider, etc. Based on criteria such as, for example
the type of agent, the type of society, its intended use, its intended users and
so on.

7 Summary and Conclusions

Given the complex and dynamic nature of agent societies including self-
governance, evolving norms and emergent behaviour, the process of developing
systems which robustly exhibit desirable system wide behaviours under con-
ditions which cannot be guaranteed; can be time-consuming and complex. In
this paper we have described our approach to rapid prototyping and testing
agent societies. PRESAGE affords the user centralised global monitoring and
simulation control, is flexible and extensible through the use of abstract classes,
event-scripting and plugins; supports heterogeneous agent architectures and the
simulation of an agent system’s underlying dynamic network architecture.

We have given examples of our platform being utilised to prototype and test
open distributed agent systems featuring proactive behaviour, lack of centralised
control, heterogeneity and adaptability. Further more our institution is currently
utilising the PRESAGE platform to investigate application of game theory, al-
ternative dispute resolution, opinion formation and norm emergence in agent
societies.

Through this experience we intend to fully document and refine the frame-
work before contributing it to the wider community. We designed and built the
platforms’s functional architecture to support the non-functional specification
3 www.agentbuilder.com
4 http://jade.tilab.com
5 www.fipa.org

102 B. Neville and J. Pitt

presented in section 2, however, as this is an ongoing development we have yet
to implement these requirements in full. Future work includes tools for auto-
mated exploration of the parameter space, greater variety of predefined agent
architectures and extended support for deployment on multi-core and cluster
computing.

Acknowledgments

This work has been undertaken in the context of the EU-funded ALIS6

project(IST 027968). We are also grateful for the useful comments of the anony-
mous referees.

References

1. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

2. DeLoach, S., Oyenan, W., Matson, E.: A capabilities-based model for adaptive
organizations. Autonomous Agents and Multi-Agent Systems 16(1), 13–56 (2008)

3. Artikis, A., Pitt, J., Sergot, M.: Animated specifications of computational societies.
In: Castelfranchi, C., Johnson, L. (eds.) Proc. of the First International Conference
on Autonomous Agents and Multi-Agent Systems, pp. 1053–1062. ACM Press, New
York (2002)

4. Sierra, C., Rodŕıguez-Aguilar, J., Noriega, P., Esteva, M., Arcos, J.: Engineering
multi-agent systems as electronic institutions. European Journal for the Informatics
Professional V(4), 33–39 (2004)

5. Bellifemine, F., Poggi, A., Rimassa, G.: Jade - a fipa-compliant agent framework.
In: Proceedings of PAAM 1999, pp. 97–108 (April 1999)

6. Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The swarm simulation system,
a toolkit for building multi-agent simulations (1996)

7. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multiagent
simulation environment. simulation 81(7), 517–527 (2005)

8. Vasconcelos, W., Robertson, D., Sierra, C., Esteva, M., Sabater, J., Wooldridge,
M.: Rapid prototyping of large multi-agent systems through logic programming.
Annals of Mathematics and Artificial Intelligence 41(2-4), 135–169 (2004)

9. Martelli, M., Mascardi, V., Zini, F.: A logic programming framework for compo-
nentbased software prototyping (1999)

10. Davidsson, P.: Multi agent based simulation: Beyond social simulation. In: Moss, S.,
Davidsson, P. (eds.) MABS 2000. LNCS, vol. 1979, pp. 97–107. Springer, Heidelberg
(2001)

11. Pitt, J., Mamdani, A.: A protocol-based semantics for an agent communication
language. In: Proceedings 16th International Joint Conference on Artificial Intelli-
gence IJCAI 1999, pp. 485–491. Morgan-Kaufmann, San Francisco (1999)

12. Neville, B., Pitt, J.: A computational framework for social agents in agent mediated
e-commerce. In: Omicini, A., Petta, P., Pitt, J. (eds.) Engineering Societies in the
Agents World IV. Springer, Heidelberg (2004)

6 www.alisproject.eu

PRESAGE: A Programming Environment for the Simulation of Agent 103

13. Neville, B., Pitt, J.: A simulation study of social agents in agent mediated e-
commerce. In: Proceedings of the Seventh International Workshop on Trust in
Agent Societies (2004)

14. Carr, H., Pitt, J.: Adaptation of voting rules in agent societies. In: Proceedings
AAMAS Workshop on Organised Adaptation in Multi-Agent Systems (OAMAS)
(2008)

15. Gilbert, N., Bankes, S.: Platforms and methods for agent-based modeling. Proc. of
the National Academy of Sciences of the United States of America 99(10), 7197–
7198 (2002)

16. Conte, R., Edmonds, B., Moss, S., Sawyer, R.K.: Sociology and social theory in
agent based social simulation: A symposium. Comput. Math. Organ. Theory 7(3),
183–205 (2001)

17. Conte, R.: Agent-based modeling for understanding social intelligence. Proceedings
of the National Academy of Sciences of the United States of America 99(10), 7189–
7190 (2002)

18. Davidsson, P.: Agent based social simulation: A computer science view. J. Artificial
Societies and Social Simulation 5(1) (2002)

19. Ricordel, P.M., Demazeau, Y.: From analysis to deployment: A multi-agent plat-
form survey. In: Omicini, A., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2000.
LNCS, vol. 1972, pp. 93–105. Springer, Heidelberg (2000)

20. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with jade.
In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS, vol. 1986, pp. 89–
103. Springer, Heidelberg (2001)

21. Bellifemine, F., Rimassa, G.: Developing multi-agent systems with a fipa-compliant
agent framework. Softw. Pract. Exper. 31(2), 103–128 (2001)

22. Braubach, L., Pokahr, A., Bade, D., Krempels, K.-H., Lamersdorf, W.: Deployment
of distributed multi-agent systems. In: Gleizes, M.-P., Omicini, A., Zambonelli, F.
(eds.) ESAW 2004. LNCS, vol. 3451, pp. 261–276. Springer, Heidelberg (2005)

An Organisational Platform for Holonic and
Multiagent Systems

Nicolas Gaud, Stéphane Galland, Vincent Hilaire, and Abderrafiâa Koukam

Multiagent Systems Group,
System and Transport Laboratory

University of Technology of Belfort Montbéliard
90010 Belfort cedex, France

{nicolas.gaud,stephane.galland,

vincent.hilaire,abder.koukam}@utbm.fr

http://set.utbm.fr

Abstract. janus is a new multiagent platform that was specifically de-
signed to deal with the implementation and deployment of holonic and
multiagent systems. It is based on an organisational approach and its
key focus is that it supports the implementation of the concepts of role
and organisation as first-class entities. This consideration has a signifi-
cant impact on agent implementation and allows an agent to easily and
dynamically change its behaviour. The platform also natively manages
the concept of holon to facilitate the deployment of holonic multiagent
systems and thus contributes to fill the gap between conception and
implementation phases in this domain. This article draws a complete
description of janus and its main characteristics. A small example of a
market-like community is also provided with the associated code review
to illustrate the impact of a full organisational approach in terms of code
modularity and reusability.

Keywords: Agent Oriented Software Engineering, Holonic Modelling,
Multiagent systems implementation and deployment, Holonic multiagent
systems.

1 Introduction

Dastani and Gomez-Sanz [1] consider that agent-oriented applications will only
be taken up by industry if the gap between multiagent systems specification and
design on the one hand and multiagent systems implementation on the other
hand is bridged. Our approach consists in filling the gap between design and im-
plementation metamodels, and thus facilitate the transformation between them.
Filling that gap requires a platform, whose metamodel offers an implementation
as straight as possible of the concepts used for the design of the solution.

This article deals with the last steps of the software development process,
dedicated to the implementation and deployment of Multi-Agent Systems and
Holonic Multi-Agent Systems applications (MAS and HMAS from now on). It
introduces the janus platform, that is specifically designed to deal with MAS

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 104–119, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://set.utbm.fr

An Organisational Platform for Holonic and Multiagent Systems 105

and HMAS. The metamodel of this platform corresponds to a fragment of the
crio metamodel [2,3,4] that aims at providing a full set of abstractions to model
MAS and HMAS under an organisational perspective. crio adopts the system
development approach defined in the Model Driven Architecture (MDA) [5] and
the elements of this metamodel are organised in three different domains. (i) The
Problem domain (CIM1) deals with the user’s problem in terms of requirements,
organisations, roles and ontologies. (ii) The Agency domain (PIM2) addresses the
holonic solution to the problem described in the previous domain. (iii) Finally,
the Solution Domain (PSM3) describes the structure of the code solution in
the chosen implementation platform. This last domain thus corresponds to the
Platform Specific Model, and it is dependant of the janus platform presented
in this paper.

Holonic multiagent systems are based on self-similar and recursive entities,
called Holons. In Multiagent systems, the vision of holons is closer to the one
that MAS researchers have of Recursive or Composed agents. An holon is thus
a self-similar structure composed of holons as sub-structures and the hierarchi-
cal structure composed of holons is called an holarchy. An holon can be seen,
depending on the level of observation, either as an autonomous ”atomic” entity
or as an organisation of holons (this is often called the Janus effect). Using a
holonic perspective, the designer can model a system with entities of different
granularities. He can recursively model sub-components of a bigger system until
he achieves a stage where the requested tasks are manageable by atomic easy-
to-implement entities. Implementing holonic models requires a platform able of
managing the concept of nested hierarchy, but most MAS platforms consider
agents as atomic entities. It is therefore difficult to implement the concept of
holon, and provide an operational representation of models combining several
levels of abstraction, using such platforms.

In the crio metamodel, organisations are considered as independent mod-
elling units and blueprints easily reusable in various applications. The key point
of this modular definition of organisations is based on the concepts of role and
capacity [6]. In order to easily implement models based on crio requires a plat-
form whose metamodel considers the role as a first-class entity, independent of
the agent. On this aspects, the Madkit4 platform [7] and its extension moca [8]
have come to our attention, as they both manage the concept of role. However,
Madkit does not consider the role as a first-class entity. Indeed, the behaviour
associated with the role is directly implemented in the agent who plays it. Roles
are strongly linked to agents architecture. This approach harms organisations
reusability and modularity. moca considers roles as first-class entities, but sets
strict constraints on their implementation. For example, an agent may not play
several times the same role. These two platforms do not provide concepts to eas-
ily implement MAS designed with an organisational approach. Moreover, neither

1 Computation Independent Model, first level of model in MDA.
2 Platform Independent Model, second level of model in MDA.
3 Platform Specific Model, third level of model in MDA.
4 http://www.madkit.org/

http://www.madkit.org/

106 N. Gaud et al.

of them manage the concept of holon. janus was specifically designed to deal
with the holonic and organisational aspects. Its goal is to provide a full set of
facilities for launching, displaying, developing and monitoring holons, roles and
organisations. The heart of the implementation of its organisational model was
inspired by the approaches adopted in the crio metamodel, Madkit and moca

platforms. And it also integrates all the concepts necessary for an easy imple-
mentation of holonic multiagent systems.

This paper is organised as follows. Section 2 describes the metamodel of the
janus platform, then its general architecture is presented in section 3. Section 4
details the key characteristics of this platform, and especially the implementation
of the communication between roles modelled as first-class entities. This section
also outlines the key points behind the implementation of the concept of holon.
The implementation of a market-like community is described in section 5, to
emphasize the advantage of considering a role as a first-class entity. Finally
section 6 provides some conclusion statements.

2 Metamodel of the Janus Platform

This section is dedicated to the presentation of the metamodel of the janus

platform. Its main concepts are described in the uml diagram, presented in
figure 1.

Fig. 1. uml diagram of a part of the metamodel of the janus platform

janus was designed to facilitate the transition between design and implemen-
tation phase. It thus provides a direct implementation of the five key concepts
used in the design phase : organisation, group, role, holon and capacity.

The organisation is implemented as a first-class entity (a class in the object-
oriented sense), which includes a set of roles classes. An organisation can be

An Organisational Platform for Holonic and Multiagent Systems 107

instantiated in the form of groups. Each group contains a set of instances of
different classes of roles associated with the organisation which it implements.
The number of authorized instances for each role is specified in the organisation.
A role is local to a group, and provides holons playing the role the means to
communicate with other group members. One of the most interesting aspects of
janus covers the implementation of roles as first class entity. A role is seen as
a full-fledged class, and the roles are implemented independently of the entities
that play them. Such an implementation facilitates the reuse of organisations in
other solutions, but also allows a wide dynamic for roles.

An agent is represented by an atomic holon (a non-composed one). Janus
defines two main types of holon: HeavyHolon and LightHolon. A HeavyHolon
has its own execution resource (one thread per holon), and can therefore op-
erate independently. The LightHolon is associated with synchronous execution
mechanisms and it is very useful to develop multiagent-based simulations (an
approach similar to the synchronous engine of Madkit5). This architecture fits
into a synchronization model, which defines the various execution policies of the
system and holons in charge of their implementation. A holon can play simulta-
neously multiple roles in several groups. It can dynamically access to new roles
and leave ones that are no longer in use. When an holon accesses a role, he
obtains an instance of the class of this role that it stores in its roles container.
Respectively, when it leaves a role, the corresponding instance is removed. The
size of a holon, in terms of code, is always minimal because it only contains the
instances of the roles he plays at a given moment. To access or leave a role, a
holon must meet the access and liberation conditions of the role and those of
the corresponding group. This mechanism provides many advantages in terms
of security, since holons have access to the behaviour of a role (and thus get the
corresponding executable code) only if it fulfills these conditions. Each instance
of an organisation (or groups) can have specific access and liberation rights. The
access and leave conditions of roles are in contrast defined at the organisation
level, and cannot be changed at runtime. To model composition relationships
between holons, an organisational approach is also adopted. A composed holon
is called super-holon. A super-holon do not directly maintain references on its
members, it is composed of a set of groups where its members play various roles
and contribute to the fulfillment of the goals assigned to their super-holon(s).
The approach used to model a super-holon is detailed in section 4.2.

The notion of capacity enables the representation of holon competences. Each
holon has, since its creation, a set of basic skills, including the ability to play
roles (and therefore communicate), to obtain information on existing organi-
sations and groups within the platform, create other holons, and obtain new
capacities. The capacity concept is an interface between the holon and the roles
it plays. The role requires some capacities to define its behaviour, which can
then be invoked in one of the tasks that make up the behaviour of the role. The
set of capacities required by a role are specified in the role access conditions. A
capacity can be implemented in various ways, and each of these implementation

5 See http://www.madkit.net/site/madkit/doc/devguide/synchronous.html

http://www.madkit.net/site/madkit/doc/devguide/synchronous.html

108 N. Gaud et al.

is modelled by the notion of Capacity Implementation. This concept is the op-
erational representation of the concept of service defined in the Agency domain.
Currently janus does not implement a matchmaking procedure for capacities.
This aspect is under development, and our approach is inspired by the works of
[9,10].

In addition to these concepts, Janus provides a range of tools to facilitate the
work of the developer. The various features offered by Janus will be described
in the next section.

3 Kernel and General Architecture of Janus

The architecture of the janus platform is shown in Figure 2. Janus is developed
in Java 1.5. The heart of the platform is embodied by its kernel, which provides
the implementation of the organisational model and of the concept of holon. The
kernel was then extended to integrate simulation module and holons in charge
of the operation of the platform and its integration with the applications.

The various features provided by the janus kernel are described below:

– The Organizational Management System manages organisations and
their instantiations in the form of groups. It also provides mechanisms for the

Fig. 2. General Architecture of the janus platform

An Organisational Platform for Holonic and Multiagent Systems 109

dynamic acquisition, instantiation and liberation of roles, as well as mecha-
nisms for the dynamic acquisition and execution of capacities. Organizational
aspects are managed at the lowest level in the platform so that everything
holon, including the platform ones, have access to this functionality. This
module is linked to the kernel holon in charge of maintaining this informa-
tion with other remote kernels (through the Communication Channel).

– Holon Management System : The kernel also provides all the tools nec-
essary for the holon life cycle management: identify, launch, stop, etc. Each
type of holon (HeavyHolon and LightHolon) natively provides a set of ex-
ecution policies for its roles, as well as various policies for the messages
management.

– The Communication Channel control the exchange of messages within
the platform and also with remote kernels (inside the kernel federation).
Considering a role as a first-class entity affects this aspect of the platform.
Communication Management within janus will be detailed in the section
4.1.

– The Identification Management System provides all the necessary me-
chanisms for assigning a unique address (GUID) to all elements of the model
which need it. Thus, the holons, groups, and roles have a unique address
within a kernel federation.

– Directories/Repositories maintains a directory all the groups (GroupAd-
dress �→ Group), organisations (Class<? extends Organization> �→ Organization)
and holons (HolonAddress �→ Holon) defined in the kernel. A capacity direc-
tory associating existing capacities and their available implementations is
under development.

– Holon Scheduling and Observation Management System: janus pro-
vides two basic policies for holons scheduling: a concurrent execution model
and a synchronous engine inspired by the Madkit one. This module also pro-
vides instrumentation based on probes allowing a role to observe another
role. Unlike Madkit which manages the observation rights at the agent-level
(agent who implements or not the interface ReferencableAgent), janus man-
ages it at the role-level. It allows a more refined management of the observa-
tion rights. A holon may permit observation of one of its roles and prohibit
it for the others.

– Logging System: All applications based on janus have access to a log-
ging system integrated to the platform, which facilitates the debugging pro-
cess. Logs may be directly displayed or stored in a file. This system may be
changed and integrated into existing systems. The current implementation of
this feature is based on log4j 6 provided by the Apache Software Foundation.

As Madkit, janus exploits its own model in the design of the platform, and
all services are managed by holons. The kernel is thus linked to a KernelHolon,
which contains all the local organisations responsible for managing the platform,
and represents its kernel in the federation distributed over the network. A ker-
nel federation is an organisation in charge of managing the various exchanges
6 More detail at the following address: http://logging.apache.org/log4j/docs/index.html

http://logging.apache.org/log4j/docs/index.html

110 N. Gaud et al.

between kernels and spreading information about the organisational model such
as the creation of a new organisation or a new group, migration of a holon, etc.

The architecture of janus respects the overall FIPA reference architecture7.
Only ACL8 related features are not yet fully implemented. To compensate for
this gap, it is foreseen in short term to integrate the relevant part of JADE to
ensure a full compatibility of janus with the FIPA standard.

4 Main Characteristics of Janus

This section is devoted to the presentation of the main characteristics of the
janus platform. Issues related to the implementation of the concept of holon
and communication mechanisms between roles are specifically focused.

4.1 Communication

To communicate, holons must belong to a common group and play a role in this
group. If a group is distributed among several kernels, an instance of this group
exists in each kernel, and all the instances have the same name.

Communication in janus is based on the roles. Messages are delivered to
agents according to their roles. This mode of interaction allows the implementa-
tion of communications between an emitter and several receivers (one-to-many
communication [11]). The address of the receiver agents is dynamically discov-
ered according to the roles they play. When several agents play the same role
within the same group, a mode of communication based on role and agents iden-
tifier may also be used to distinguish which role player will receive the message.
Although the explicit agent identifier is known, messages always require a recip-
ient role to be handled. This kind of interaction allows the implementation of
communication between two identified agents (one-to-one communication).

Each holon owns a personal mailbox for sending and receiving messages. A
holon may simultaneously play multiple roles and dynamically acquire new ones.
The role is the way for a holon to interact in the particular interaction context
represented by the group. Roles constitute the basis of all interactions. Each
role thus has its own mailbox (cf. figure 3) and the mailbox of a holon is just
the arrangement of all the mailboxes of its roles. A holon can therefore receive
messages only through its roles.

4.2 Implementation of the Concept of Holon

In addition to its role model, one of the main contributions of janus is embodied
in the native management of the concept of holon. Two main aspects have to
be distinguished to implement a holon with janus : (i) The first aspect deals
with the implementation of a non-composed holons and the conception of a

7 FIPA Abstract Architecture: http://fipa.org/specs/fipa00001/SC00001L.html
8 Agent-Communication-Language.

http://fipa.org/specs/fipa00001/SC00001L.html

An Organisational Platform for Holonic and Multiagent Systems 111

general holon architecture able to integrate the capacities owned by the role
and the roles he’s currently playing. This architecture have to provide means to
manage roles and capacities life cycle and dynamically acquire new ones. (ii) The
second aspect concerns the manner of implementing a composed holon to ensure
communication between a super-holon and its members, located at two different
levels of abstraction. Both aspects will be detailed in the following subsections.

Atomic Holon Architecture. An atomic holon is primarily a roles and capac-
ities container. The roles container provides the necessary means for the roles of
a holon to interact in the internal interaction context of a holon. The local mech-
anism of interaction inside a holon is called influence and it is implemented using
an event-based communication. Each role can register itself to inform its holon
that it wishes to receive all the influences of a given type. Figure 3 describes
the architecture of an atomic holon in janus. Section 5 will detail a concrete
example of the influence mechanism.

Fig. 3. Architecture of an atomic holon in janus

The capacity container stores all the capacities owned by the holon and all the
available implementations for each of them. It also ensures their execution when
a role invokes a capacity. Two main types of capacities execution are available in
janus: synchronous or asynchronous. In the first mode, the capacity is directly
executed when it is invoked by the role. The execution of the capacity tem-
porarily interrupts the execution of the current role that is waiting for capacity
termination. In the second mode, the execution of the role is not interrupted,
the capacity is executed after the current role, after all the roles of holon or in
parallel. The corresponding role is then informed of the outcome. This last mode
is particularly interesting when the capacity is realized by a service provided by
the members of a super-holon. It avoids blocking the execution of the super-
holon while its members perform a given task, the holon can thus continue the
execution of its other roles.

Composed Holon Implementation. Two overlapping aspects have to be
distinguished in composed holons: (i) the first is directly related to the holonic

112 N. Gaud et al.

nature of the entity (a holon, called super-holon, is composed of other holons,
called sub-holons or members) and deals with the government and the adminis-
tration of a super-holon. This aspect is common to every holon and thus called
the holonic aspect. (ii) The second aspect is related to the problem to solve and
the work to be done. It depends on the application or application domain. It is
therefore called the production aspect. A composed holon (super-holon) thus
contains at least a single instance of a holonic organisation to precise how mem-
bers organise and manage the super-holon and a set (at least one) of production
organisations describing how members interact and coordinate their actions to
fulfill the super-holon tasks and objectives.

The holonic organisation is the basis of the holon government and it repre-
sents a moderated group (see [12]) in terms of roles (called holonic roles) and
their interactions. In a moderated group, a subset of the members will represent
all the sub-holons in the outside world. This management structure was adopted
due the wide range of configurations it allows. Four holonic roles are defined
to describe the status of a member inside a super-holon: (i) Head, decision
maker: it represents a privileged status conferring a certain level of authority.
(ii) Representative, interface of the holon: it is an externally visible part of a
super-holon, it is an interface between the outside world (same level or upper
level) and the other holon members. It may represent other members in taking
decisions or accomplishing tasks (i.e. recruiting members, translating informa-
tion, etc). The Representative role can be played by more than one member at
the same time. (iii) Part: Classical members. Normally in charge of doing tasks
affected by head, a Part can also have an administrative duty, and it may be
employed in the decision making process. It depends on the configuration chosen
for modelling the super-holon. The Part role represents members belonging to
only one super-holon. (iv) Multi-Part: extension of Part. This role is played by
sub-holons belonging to more than one super-holon.

To manage a super-holon, members have to be able to communicate with their
super-holon, located at a higher level of abstraction. One of the main problems in
implementing this inter-level communication comes from the fact that in janus

and considering the role as first-class entity, two holons can communicate only if
they belong to a common group. This rule implies that a super-holon must share
at least one group with its members to enable the transfer of information between
two adjacent levels of abstraction. Several alternatives may be considered to
implement the notion of super-holon. Our study is limited to the following three
alternatives:

1. The first alternative is to appoint one member to represent the rest of the
community to the upper level. This approach is described in figure 4. The
holon H3 plays the representative role and represents the community at level
n + 1.

Members playing the representative role appear as the most suitable to
perform this role of representation. But in a super-holon, several members
may play this role, which means that one of the representatives in particular

An Organisational Platform for Holonic and Multiagent Systems 113

Fig. 4. One way to implement the structure of a composed holon

is identified (or elected). The community can be represented at the upper
level by only one member. While this approach appears to be the simplest,
it introduces a hierarchical distinction between representative members who
may be elected, and therefore it is not completely consistent with the defini-
tion provided for the representative role in the CRIO metamodel. Moreover,
this approach raises two other problems. First, from an abstract point of
view, a super-holon is a separate entity distinct from its members. The fact
that one of the members represent the community at the upper level means
that it may play roles defined by organisations at a higher level of abstrac-
tion. Thus, the holon H3 plays both the role X at the level n+1, and various
roles in the production groups at level n. To be consistent, the super-holon
must be clearly distinguished from its members. Playing roles at the different
levels of abstraction could create interference problems or conflicts between
these roles.

In addition, the representative role is not exclusive of other holonic roles.
Thus, it can be played by a holon who also plays the Multipart role. Such an
holon would then be shared between two holons of level n, and may represent
them at the level n+1. The problems of confusion and conflict between levels
of abstraction would be very important. This approach is the simplest, but
it is not optimal.

2. To clearly distinguish the different levels of abstraction and to avoid possi-
ble interference between roles defined at different levels, another approach is
possible. The latter is depicted in figure 5(a). In this approach, the super-
holon is clearly distinguished from its members. A new entity is created at
level n+1. A new group g0 is introduced at the level n to make the interface
between the various members’ representatives and the super-holon. Indeed, a
super-holon must be clearly separated from its members and can only com-
municate with their representatives. A new role is so introduced: the role
Super, to enable the super-holon to communicate with the representatives
of its members in the group g0. This approach is the most consistent with

114 N. Gaud et al.

Fig. 5. Theoretical model (a) and concrete structure (b) of a composed holon in janus

the crio metamodel, but requires the creation of an additional group in all
composed holons, and the implantation of a holon becomes more complex.

3. In order to keep the benefits of the previous alternative, while avoiding the
additional costs due to the creation of a new group, a third approach based
on a compromise between the two previous ones, has been adopted. The
implementation of the holonic organisation adopted in Janus is based on this
alternative and it is presented in figure 5(b). In this approach, the group g0,
previously described, is merged with the holonic group. This group is indeed
present in all composed holons. A new role is introduced in the holonic
organisation, the role Super, to represent the upper level and thus allow the
transfer of information between the super-holon and representatives of its
members. This approach offers the best compromise between compatibility
with the crio metamodel and implementation performances.

5 A Market Organisation Example

To clarify the implementation of roles as first-class entity, role dynamics and role
communication, a short example of a market-like community designed using the
CRIO metamodel and implemented with the janus platform is presented. It is
a classical case study, already used to illustrate the AALAADIN metamodel and
the Madkit platform [13].

All organisations, groups, roles and holons required to implement this example
are shown in Figure 6. This example is applied to the domestic travel market. A
customer, modelled by the Client role, who wishes to obtain the best available
travel offer, either in terms of price or in terms of travel time, makes its proposal
and sends it to the CBroker. This latter will forward the information to the
PBroker role, who broadcasts it to the various available Providers. Depending
on the criterion chosen by the customer (time or price), the PBroker determines
the best proposal and inform the Client. Client and the best Provider then
create an instance of the contracting organisation to finalize the order and make

An Organisational Platform for Holonic and Multiagent Systems 115

Fig. 6. The organisations and groups of a market-like community in Janus

the payment. Specifically, the proposed example may implemented using three
kinds of holons : Client (Holon 1), Provider (Holons 3, 4 and 5), Broker (Holon
2), three organisations : Purchase, Providing, Contracting, and six roles. Each
organisation is stored in its own java package containing its java class and those
of its roles. The source code of the Purchase organisation is provided below:

1 public class PurchaseOrganization extends Organization {
2 private static Organization instance=new PurchaseOrganization();
3 //Each organisation is a singleton inheriting from Organization class.
4 protected PurchaseOrganization(){
5 super();
6 //Add classes of roles that are defined on this organisation
7 addRole(Client.class);
8 addRole(CBroker.class);
9 }

10 public static Organization getInstance() { return instance; }
11 }

Each kind of holon is also defined in its own class. The source code of the
Holon 2 playing the CBroker and PBroker roles, is described below:

1 public class BrokerHolon extends HeavyHolon {
2 @Override
3 public void live() {
4 //static holon capacities initialization : adding those required by the PBroker role
5 addCapacity(FindLowestCostProposalCapacity.class, new

FindLowestCostProposalCapacityImpl(this));
6 addCapacity(FindShortestTimeProposalCapacity.class, new

FindShortestTimeProposalCapacityImpl(this));
7

8 GroupAddress clientGA = getOrCreateGroup(PurchaseOrganization.getInstance());
9 //Request the CBroker role

116 N. Gaud et al.

10 if(requestRole(CBroker.class,clientGA)){ println("role CBroker assigned"); }
11

12 GroupAddress providerGA = getOrCreateGroup(ProvidingOrganization.getInstance());
13 //Request the PBroker role
14 if(requestRole(PBroker.class,providerGA)){ println("role PBroker assigned"); }
15

16 //Simplest role scheduling
17 while(true) { for (Role role : getRoles()) role.behavior(); }
18 }
19 }

In the remainder of this section, the implementation of the PBroker role is de-
tailed. In the proposed implementation, the PBroker role requires two capacities
to defined its behaviour : FindShortestTimeProposalCapacity and FindLowest-
CostProposalCapacity. These capacities are used to determine the best proposal
among those offered by the various providers. This determination is done ac-
cording the criterion chosen by the customer. If the choice criterion is the overall
travel time, the FindShortestTimeProposalCapacity capacity will be used, if the
criterion is the cost, it will the FindLowestCostProposalCapacity capacity.

In addition, the PBroker role is dependent on the CBroker role. This lat-
ter enable the transfer of information between the Purchase and Providing or-
ganisations. To access to the PBroker role, a holon have to prior possess the
CBroker role. These constraints of capacity and dependencies between roles
are implemented using special types of access conditions for obtaining a role

1 public class PBroker extends AbstractRole {
2 // ...Attributes of the role ...
3 private int current = 1; // the current state
4 public PBroker() {
5 super();
6 //Definition of the dependencies of role
7 List<Class<? extends Role>> requiredRoles = new LinkedList<Class<? extends Role>>();
8 requiredRoles.add(CBroker.class);
9 SatisfyRoleDependenciesCondition roleCondi = new SatisfyRoleDependenciesCondition(

requiredRoles);
10 //Definition of the capacities required by the role
11 List<Class<? extends Capacity>> requiredCapacities = new LinkedList<Class<? extends

Capacity>>();
12 requiredCapacities.add(FindShortestTimeProposalCapacity.class);
13 requiredCapacities.add(FindLowestCostProposalCapacity.class);
14 HasAllRequiredCapacitiesCondition capCondi = new HasAllRequiredCapacitiesCondition(

requiredCapacities);
15 //Addition of role access conditions
16 addObtainCondition(capCondi);
17 addObtainCondition(roleCondi);
18 }
19 //The core of the behavior of the role.
20 public void behavior() {
21 current = Run();
22 }
23 //This methods correspond to the translation in java code of the statechart describing
24 //the behavior of the role. This statechart was defined during the design phase
25 private int Run() {
26 switch (current) {
27 //The role register itself to signify that it want to receive a particular type of

An Organisational Platform for Holonic and Multiagent Systems 117

28 //influence, in this case those from the role CBroker
29 case 1 : registerForRoleInfluence(TravelRequestInfluence.class);
30 return 2;
31 //Waiting for the arrival of the influence from the CBroker role
32 case 2 : influence = (TravelRequestInfluence)getNextInfluence();
33 if (influence != null) return 3;
34 return 2;
35 // ...
36 //Get the next message in the mailbox associated to the role
37 case 5 :m = getNextMessage();
38 //...
39 List input = new ArrayList();
40 input.add(proposalList);
41

42 if (requestType == TravelRequestType.LowestCost) {
43 selected = FindLowestCostProposalCapacity.class;
44 //Synchronous Execution of the FindLowestCostProposalCapacity capacity
45 callAndExecuteCapacity(selected, id, input);
46 } else if (requestType == TravelRequestType.ShostestTime) {
47 selected = FindShortestTimeProposalCapacity.class;
48 //Synchronous Execution of the FindShortestTimeProposalCapacity capacity
49 callAndExecuteCapacity(selected, id, input);
50 } else println("Error in Request Type");
51 return 7;
52 //Awaiting the result of the execution of the capacity
53 case 7 :if (isResultAvailable(selected, id)) {
54 output = getResult(selected, id);
55 return 8;
56 }
57 return 7;
58 //Selecting the best offer and inform the selected provider
59 case 8 :Best = (Proposal)output.get(0);
60 BestProvider = proposals.get(Best);
61 sendMessage(BestProvider, Provider.class, new StringMessage("Proposal Accepted"));
62 return 9;
63

64 case 9 :m = getNextMessage();
65 if ((m != null) && (m instanceof TransfertMessage)) {
66 return 10;
67 }
68 return 9;
69 //The role emits an influence and informs all the roles that are listening to
70 //this kind of influence (i.e. CBroker)
71 case 10 : influenceHolon(new TransfertInfluence(((TransfertMessage)m).getGroupAddress

()));
72 println("PBroker Finish");
73 return 2;//Return in the waiting state
74 default : return 1;
75 }
76 }
77 }

(ObtainConditions). Consider now the source code of the PBroker role in order
to clarify these different aspects.

Figure 7 provides a part of the uml sequence diagram describing mechanisms
associated to the creation of a group and the access to a role in this group.
The Broker Holon (Holon 2) requests the address of a group implementing the
Purchase organisation. In this example, no instance already exists, a new one
is thus created, and its address is returned to the holon. Then the holon re-
quests for access to this group and to the PBroker role in this group. The group
and role access conditions are verified. In this case, the holon fulfills all required

118 N. Gaud et al.

Fig. 7. uml sequence diagram of an access request to a role in a given group

conditions, it thus obtains an instance of the PBroker role that is added to its
role container.

6 Conclusion

In this article, we have introduced the Janus platform dedicated to the imple-
mentation and deployment of MAS and HMAS. In janus, the notion of or-
ganisation is considered as a true Java module in its own right. The native
management of the concept of capacity allows to implement a role, without
making any assumption on the architecture of holons playing it, and thus pro-
motes the reuse of organisations in various applications. However, this approach
should be relativized, because it requires the definition of a significant num-
ber of classes, even for small applications (one class for each organisation, role,
holon or agent architecture). So Janus aims primarily at developing large appli-
cations where modularity is essential. This aspect confirms the need to associate
janus with a CASE tool to automatically generate significant portions of code,
thus simplifying the intervention of a programmer. This CASE tool is currently
under development in our Lab. In addition janus, providing a direct implemen-
tation of the four concepts at the base of CRIO (capacity, role, organisation
and holon), contributes to reduce the gap between design and implementation
phases. This platform is part of a larger effort aiming at providing a complete
software tools suite for the development of complex applications in an industrial
context.

An Organisational Platform for Holonic and Multiagent Systems 119

References

1. Dastani, M., Gomez-Sanz, J.J.: Programming multi-agent systems (promas), a re-
port of the technical forum meeting (April 2005),
http://people.cs.uu.nl/mehdi/tfg/ljubljanafiles/report.pdf

2. Rodriguez, S., Hilaire, V., Koukam, A.: Fomal specification of holonic multi-agent
system framework. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra,
J. (eds.) ICCS 2005. LNCS, vol. 3516, pp. 719–726. Springer, Heidelberg (2005)

3. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: A Holonic
Metamodel for Agent-Oriented Analysis and Design. In: Mař́ık, V., Vyatkin, V.,
Colombo, A.W. (eds.) HoloMAS 2007. LNCS, vol. 4659, pp. 237–246. Springer,
Heidelberg (2007)

4. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: A Metamodel
and Implementation platform for Holonic Multi-Agent Systems. In: The fifth Eu-
ropean Workshop on Multi-Agent Systems (EUMAS 2007), Hammamet, Tunisia
(December 2007)

5. Object Management Group (OMG): MDA Guide, v1.0.1, OMG/2003-06-01 (June
2003)

6. Rodriguez, S., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: An analysis and
design concept for self-organization in holonic multi-agent systems. In: Brueckner,
S.A., Hassas, S., Jelasity, M., Yamins, D. (eds.) ESOA 2006. LNCS, vol. 4335, pp.
15–27. Springer, Heidelberg (2007)

7. Gutknecht, O., Ferber, J.: Madkit: a generic multi-agent platform. In: The 4th In-
ternational Conference on Autonomous Agents (AGENTS 2000), Barcelona, Spain,
pp. 78–79. ACM Press, New York (2000)

8. Amiguet, M., Müller, J.P., Baez-Barranco, J.A., Nagy, A.: The MOCA Platform,
Simulating the Dynamics of Social Networks. In: Sichman, J.S., Bousquet, F.,
Davidsson, P. (eds.) MABS 2002. LNCS, vol. 2581, pp. 70–88. Springer, Heidelberg
(2003)

9. Sycara, K., Klusch, M., Widoff, S., Lu, J.: Dynamic service matchmaking among
agents in open information environments. SIGMOD Record (ACM Special Interests
Group on Management of Data) 28(1), 47–53 (1999)

10. Sycara, K., Lu, J., Klusch, M., Widoff, S.: Matchmaking among heterogeneous
agents on the internet. In: Proceedings of the 1999 AAAI Spring Symposium on
Intelligent Agents in Cyberspace (March 1999)

11. Gouaich, A., Michel, F., Guiraud, Y.: MIC*: a deployment environment for au-
tonomous agents. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS
2004. LNCS (LNAI), vol. 3374, pp. 109–126. Springer, Heidelberg (2005)

12. Gerber, C., Siekmann, J.H., Vierke, G.: Holonic Multi-Agent Systems. Technical
Report DFKI-RR-99-03, Deutsches Forschungszentrum für Künztliche Inteligenz -
GmbH, Postfach 20 80, 67608 Kaiserslautern, FRG (May 1999)

13. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organiza-
tions in multi-agent systems. In: Demazeau, Y., Durfee, E., Jennings, N.R. (eds.)
Third International Conference on Multi-Agent Systems (ICMAS), Paris, France,
july 1998, pp. 128–135 (1998)

http://people.cs.uu.nl/mehdi/tfg/ljubljanafiles/report.pdf

A Complete-Computerised Delphi Process with
a Multi-Agent System

Iván Garćıa-Magariño, Jorge J. Gómez-Sanz, and José R. Pérez-Agüera

D. Software Engineering and Artificial Intelligence
Facultad de Informática

Universidad Complutense de Madrid, Spain
ivan gmg@fdi.ucm.es, jjgomez@sip.ucm.es, jose.aguera@fdi.ucm.es

Abstract. Looking for alternative ways of coordinating agents, this pa-
per explores the adaptation of the Delphi protocol to agent systems. The
Delphi protocol can be applied when a community of experts is required
to deliver a consensual answer. In these cases, consensus stands for reach-
ing an agreement among the experts about what the answer should be.
This consensus reaching problem has been already considered in the lit-
erature, though its automatisation remains as a challenge. Intuitively,
the experts should dialogue, interchange ideas, and change their mind
as the discussion progresses. This paper presents a computerisation of
discussion among expert agents and shows how they can be drawn to-
wards a conclusion discussion by means of the Delphi process. The proof
of concept is made with a document relevance evaluation problem where
a community of experts decide whether a document is relevant or not. In
conclusion, this paper makes an important contribution to people using
Delphi processes, because the presented system is the first complete-
computerised Delphi process. With respect to multi-agent systems, it
has the potential to solve coordination in an original way, different from
everything that has been done before.

Keywords: agent oriented software engineering, multi-agent systems,
development.

1 Introduction

In multi-agent systems (MAS), the agents coordinate to achieve results. Fre-
quently, the agents follow a rigid interaction protocol. Therefore, there are ne-
gotiations, e.g. an auction, or call for proposals, e.g. contract-net protocol, to
cite two approaches. Nevertheless, the very essence of agents is missing when
using these protocols. If one expected a group of humans to get organized in
order to solve an issue, most probably, one would imagine them discuss among
themselves first and agree in a solution. As humans, we know that discussions
are not tied to a specific schema, and that despite efforts, usually they require
strong moderators establishing the talk order and topics.

Towards this intuitive vision of a coordination, this paper addresses the prob-
lem with an approach of social sciences, the Delphi protocol. A Delphi survey

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 120–135, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Complete-Computerised Delphi Process with a Multi-Agent System 121

is a procedure for structuring a group communication process so that the pro-
cess is effective in allowing a group of individuals, as a whole, to deal with a
complex problem [18]. From the uses this procedure has, this paper focuses on
the consensus agreement capabilities it brings. Reaching consensus implies there
are experts providing an opinion about a concrete issue and the possibility of a
disagreement among those experts. Each expert is supposed to follow different
criteria and use different sources of knowledge. In this context, an external client
needs to obtain a consensual opinion about an issue. This implies reaching an
agreement among experts.

The goal of this paper is to provide a fully computerised Delphi process. The
computerisation of this Delphi process is rather challenging. Literature tells Del-
phi has been executed mainly by humans and sometimes with some computer
assistance [34].The main obstacle is adapting the Delphi essence, which is very
fuzzy, to the context of agents. Unfortunately, Delphi is very dependent on the
domain and only generic guidelines about what is required can be found. Nev-
ertheless, this paper will propose a set of elements a Delphi protocol should
incorporate and what observable differences can be appreciated when using this
protocol.

The Delphi integration is tested first in a document relevance evaluation do-
main. The problem consists in deciding if a concrete document is relevant or not
in a concrete context. To answer the question, there are several expert agents
designed to rate documents according to different criteria. Despite this circum-
stance, the paper will show how a dialogue among these agents can be established
and an agreed answer obtained.

The scenario has been constructed with the INGENIAS [10] methodology.
INGENIAS provides a comprehensive notation as well as a set of tools supporting
modelling and implementation of specifications.

The paper is structured as follows. Firstly, Section 2 presents the Delphi
method. Section 3 mentions several works related to the consensus in MAS and
Section 4 briefly introduces INGENIAS and its tool support. Then, the imple-
mentation of Delphi with INGENIAS appears in Section 5. Some reflections on
how questionaires are elaborated and processed appear in Section 6. The evalu-
ation of the results obtained so far is discussed in Section 7. Finally, Section 8
mentions the conclusions.

2 Delphi Method

This method dates back to the fifties. It was created by the RAND corporation
in Santa Monica, California. The method is made of structured surveys. It plans
several rounds of questionaries which are sent to the different involved experts.
The results collected can be included partially in a new round of questionaires,
but respecting the anonymity of the participants.

This method was created initially for foresight studies, i.e., long-term deci-
sions that guide the policy of a country or a company. Besides forecasting, there
are many contexts where the Delphi Method can be applied, like reaching a

122 I. Garćıa-Magariño, J.J. Gómez-Sanz, and J.R. Pérez-Agüera

consensus in a community of experts [6]. The scenario considers several experts
discussing about a concrete topic. By using the Delphi method, individual ex-
perts are forced to look at the reasons of other experts. This extra information
can force experts to reconsider their opinions and reach agreements.

An important part of the Delphi method consists in defining different ques-
tionaires which are to be filled in by the different experts. These questionnaires
intend to re-orient the initial problem. The re-orientation can be elaborated ac-
cording to the different answers supplied by experts. Therefore, each questionaire
will include pieces of the answers already developed. By the intervention of the
questionaire elaborator, it is assumed that the process converges in a single al-
ternative. This mediator role is usually played by a human, though it could be
replaced by a computer. This leads to the the Delphi Conference, i.e., a computer
based Delphi method [34].

The Delphi Process in general is not rigid and its structure depends on the
situation. Looking for guidelines, this paper follows the steps and guidelines
stated in [5].

The Delphi approach has been applied for several areas for different uses.For
instance, Roth [31] used the Delphi approach for acquiring knowledge from mul-
tiple experts. Recently; Bryant [4] applied the Delphi method for estimating the
risk factors of the terrestrial chemical spill; Hayes [13] did a Delphi study of
the future of marketing of the higher education; Mir’o[21] applied the delphi
method to reach consensus among professionals with interest in chronic pain
among children and adolescents.

The automatisation of Delphi is considered first as a set of computers and
software assisting human experts in the process. In this line, literature mentions
DEMOS[19], which is an on-line discussion system based on Delphi, and Turoff
[34], who presents a Delphi method with computer assistance.

In 2002, Holsapple [14] provided a framework based on Delphi methodology.
Within this framework the processors (human and/or computer-based) manip-
ulates knowledge resources. This framework is descriptive, but considers and
encourages the possibility of computer-based processors integrated in a delphi
organisation.

3 Reaching Consensus in MAS

The problem of reaching consensus in Multi-Agent Systems is not radically new.
Negotiation, for instance, can be seen as a decision-making problem where two
or more parties try to find a consensus [30]. So far, approaches to this kind imply
complex theories, like game theory. The solution addressed in this paper is not
at the same level, since Delphi is applied mostly to humans and requires less
formal methods.

The interactive consistence[25] property approach is similar to this paper.
The interactive consistence ensures a faulty processor can produce a correct
value based on the values supplied by other non-faulty processors. This problem
is later presented as the Byzantine Generals problem [16]. These results are

A Complete-Computerised Delphi Process with a Multi-Agent System 123

more related to the approach presented here, but not exactly the same. An
expert providing a different opinion from another expert could be considered as
a faulty component. Nevertheless, Delphi is not discarding opinions from faulty
experts, because it would not be the first time a single expert is right and all
the rest are wrong. Besides, all experts, potentially, can change their mind and
provide different answers to the initial question, as it will be shown later on.

Another related work is from Hannebauer [12]. In this work, disagreement
between different problem solving methods is solved by means of choosing the
most frequent answer. In this paper, the approach is different in the sense that
opinion from experts may be interpreted in different ways as their answers to
the questionaires are collected. In fact, experts are allowed to change their mind
when more information arrives.

The diversity of answers can be handled as well by using results from trust and
reputation models [32]. The difference between these approaches can be found
in the final goal of trust and reputation models: the interest in finding only one
provider of the service which can be trusted enough. With Delphi, the problem
is not finding one trusted service provider, but finding ways in which all service
providers can be accounted.

4 INGENIAS and IDK

INGENIAS methodology for the development of multi-agent systems was pre-
sented first in Pavon [23]. Its main feature is the coverage of the whole develop-
ment cycle, from analysis to implementation, and its tool support, known as the
INGENIAS Development Kit (IDK).

The main tool is the IDK specification editor, which allows the developer to
define the MAS. This editor works as host for plugins. From those plugins, the
main ones are those dedicated to code generation. Though there are several plug-
ins for different platforms, the most relevant is the INGENIAS Agent Framework
code generator. This plugin produces code for the JADE Platform [3]. This code
generator has been introduced previously in the literature in [9] [8].

Therefore the IDK provides a way to develop multi-agent systems following the
principles of Model-Driven Development [24]. The user defines the specification
with the IDK Editor. This specification represents the model, on which the multi-
agent system development is based. This approach provides a robust and quick
technique for developing multi-agent systems.

As a matter of fact, INGENIAS methodology and IDK have been applied
successfully in several areas. For instance, Gascuena [7] used INGENIAS for
surveillance. Soto[33] presents how to model an knowledge management system
with INGENIAS. Finally, a mobile tourist guide [22] was developed using IN-
GENIAS.

All these facts makes INGENIAS and IDK suitable for the current task, i.e.,
model and execute a Delphi method among several agents. For the understanding
of the remaining of the paper, Figure 1 contains the most relevant INGENIAS
notation.

124 I. Garćıa-Magariño, J.J. Gómez-Sanz, and J.R. Pérez-Agüera

Fig. 1. The Most Relevant INGENIAS Notation

5 Representing the Delphi Method with INGENIAS
Notation

According to the guidelines from [5], there should be rounds of questionnaires and
a connection between them. To model them, the delphi specification starts with
the definition of these two concerns. There are two main roles: expert role, which
fills in questionaires, and monitor roles, responsible of elaborating questionaires
and analysing the answers. There is an additional role, the client, which is the
one requesting the Delphi. There can be several monitors, at least 1, and several
experts, at least 2, in a Delphi process.

Figure 2 captures the Delphi functionality applied to the document evaluation
problem. The evaluationUC use case represents a client requesting a service for
document evaluation by means of a Delphi survey. The service is provided by
an agent playing the monitor role. To discover goals, the current version of
the IDK permits to associate goals to identified use cases. Therfore, when the
evaluationUC use case is performed, the ObtainDocEvG goal is achieved. This
goal represents a future state in the system where a document has been evaluated
following a Delphi process. The second use case, delphiUC, encapsulates the
access to the questionaire filling in service offered by an agent playing the expert
role. The monitor asks an expert to fill in a form, following the spirit of a Delphi
process. The results are gathered and analysed by the monitor who will decide
to go again into another round or finishing at the current moment. Like previous
use case, this one intends to achieve a concrete goal, the AnswerQuestG goal.
This goal represents the state of the system reached when an expert has filled in
the supplied questionaire and a monitor has analysed the answer.

Fig. 2. Main use cases considered in the development of the Delphi process

A Complete-Computerised Delphi Process with a Multi-Agent System 125

Fig. 3. MAS organisation providing the document relevance evaluation

Now, according to the methodology, the developer must define ways in which
those goals are achieved. Some goals require the involvement of a group of agents,
like the ObtainDocEvG goal, others the involvement of a few. To satisfy the first
goal, ObtainDocEvG, an organisation is created, the Delphi Provider organisa-
tion. This organisation (see Figure 3) is structured into two groups, the experts
and the monitors. In the experts group, there will be agents able to play the
expert role. In this case, agents ExpertAgent1 and ExpertAgent2 are responsible
of answering the different questionaires delivered by monitors. For the sake of
initial experiments, two expert agents are enough, though it is scalable to many
more, provided they can implement the expert role.

The organisation is able to provide a service by means of the monitor role.
The service is implemented as a workflow named Delphi Survey. Following again
Delphi instructions, the method requires at least two rounds of questionaires. The
interaction among individuals in the workflow is controlled by two interactions,
AskingEval and DelphiCoop, whose corresponding protocol appears in Figure 6.
The first one encapsulates the interaction between the client and monitor roles to
request the evaluation service. The second contains the questionaire elaboration,
deliver, and answer gathering activities.

The workflow itself gathers the tasks shown in Figure 4. This workflow is
relevant since no Delphi formal definition has been made, yet, according to our
research. Therefore, this definition is also relevant. The workflow presented in
Figure 4 starts with a client requesting the service with the task chooseDoctT.
This task is supposed to provide the document to be evaluated by a Delphi
provider organisation. The document is received by the monitor and a cus-
tomised questionaire is elaborated with task InitQuestT. The questionaire is
answered by experts by means of a task AnsweQuestT. The answer is processed
by the monitor with a task ProcessAnswerT. As a result of this task, another
round can be derived or not. If a new round occurs, the task CreateOtherQuestT
should be executed. This would force another elaboration of questionaires and
a new answer deliver by experts. If no more rounds occur, then the monitor
delivers the result to the client, which processes the evaluation with task Resul-
tObtainedT.

126 I. Garćıa-Magariño, J.J. Gómez-Sanz, and J.R. Pérez-Agüera

Fig. 4. Overview of the workflow used to implement the Delphi process

Some of these tasks have the responsibility of launching interactions. This
is the case of ChooseDocT, InitQuestT, and CreateOtherQuestT. The first task
creates an interaction of type AskingEval, while the second and third ones create
an interaction of type DelphiCoop. As it will be seen later in Figure 6, the
interaction complements the workflow definition by telling what information is
passed to each agent and what tasks are expected to be triggered as a result of
that information transfer.

A questionaire is represented with a FrameFact type, the QuestToBeAn-
sweredFF entity (see figure 5). This entity has a slot containing the questionaire
in form of a string. Readers can assume the questionaire is codified as a string
and passed as a slot inside of a QuestToBeAnsweredFF. This QuestToBeAn-
sweredFF is consumed in figure 5 by two different tasks, AnswerQuestExpr1T
and AnswerQuestExpr2T, belonging to two different experts of the organisa-
tion, the ExpertAgent1 and the ExpertAgent2. As a result, the tasks produce a
QuestReplyFF entity with the answer of each expert. Similar to QuestToBeAn-
sweredFF, QuestReplyFF contains the questionaire in form of a string.

The specification problem requires incorporating different ways of answering
questionaires depending on the experts and still keeps the protocol generic. This
is achieved by redefining the content of some tasks.

To perform these tasks, it is necessary the assistance of three pieces of external
software, represented in the Figure 5 with LogGUI, ExpertUtils1, and ExpertU-
tils2. The first acts as a general log to show debug information. The second
provides the fill in questionnaire functionality for ExpertAgent1. The third does
the same for ExpertAgent2. These tasks are not included in the workflow from
Figure 4 because they are domain specific, i.e., developed ad-hoc to capture
concrete means of filling in a questionaire. These tasks would take as input the
output of task AnswerQuestT, which does belong to the workflow, and would
provide outputs for the next tasks in the workflow.

A Complete-Computerised Delphi Process with a Multi-Agent System 127

Fig. 5. Tasks representing the answering procedures of individual experts

The protocol for sending questionnaires and receiving answers is presented
in Figure 6. The protocol interleaves entities of type InteractionUnit with task
entities. Each interaction unit type entity represents a communication between a
Monitor and an Expert role. It has associated an speech act and the information
to be transmitted. For instance, the DistQuest interaction unit transmits the
questionnaire. When the entity is transferred, the expert role is expected to
execute several task until the expert creates a reply for the questionnaire.

In this paper, it is assumed this extra processing is provided by tasks associated
to external software components, which implement the expert criteria. Once re-
ceived the answer from the expert, the agent playing the monitor role either finds
a consensus or decides to initiate another round of questionnaires. The first case
implies engaging into a Agree interaction unit and sending the result of the con-
sensus. In the second case, the CreateOtherQuestT task creates another instance
of the interaction following the protocol from Figure 6. Also, it informs the expert
that there was not an agreement by a NotAgree interaction unit.

Therefore, there can be several rounds of queries to the different experts.
The dialogue among experts is not a direct one, since it happens as a result
of the elaboration of the second round of questionaires. According to the Del-
phi method, the dialogue happens because each new round of questionaires in-
corporates results from the answers of all experts in the last round. Therefore,

128 I. Garćıa-Magariño, J.J. Gómez-Sanz, and J.R. Pérez-Agüera

Fig. 6. Protocol for passing a questionaire and receiving the answer

a each expert has the opportunity to reconsider its decision according to the new
information.

Unfortunately, the elaboration, replies and analysis of questionaires are do-
main specific. The adaptation of this part to other domains is left for future
work. Except this part, this description is generic enough to fit into most ap-
plications of Delphi. The problem specific part is considered in more detail into
the following section.

6 Domain Specific Delphi Aspects

In the Delphi processes, some domain specific aspects are necessary. For this
reason, the presented research needs to select, at the beginning, a specific domain
for the experimentations. The presented work selects the domain of document
relevance. The computerisation of Delphi processes with other specific domains
is left for future work

The customisation of the Delphi process requires determining what the ques-
tionaires are, how they are constructed, and how they are answered. Due to the
document relevance evaluation nature, the customisation requires some insight
into information extraction and information retrieval. This section explains how
this customisation takes place, explaining how questionaires are built for the
first round and subsequent ones.

The questionaires questions considers the most important sentences contained
in the document to be evaluated. Experts answers to each question are created
with the relevance of the sentence in the opinion of the expert. The opinion of

A Complete-Computerised Delphi Process with a Multi-Agent System 129

the expert is modelled with a set of documents. This knowledge of each expert
is denoted as expert profile

To simulate the human information exchange between experts, i.e. the dialog
among individuals, defined in Delphi process, like expert’s comments, we propose
a pseudo-relevance feedback method where each expert agent try to append
comments, modeled like query expansion terms, extracted from his profile to
each entry of the questionaire to show the knowledge of the domain contained
is his domain profile.

The delphi process is used before for the document relevance domain. For
instance, Green[11] uses the Delphi method to evaluate web sites. However, that
work needs human beings for the evaluation of documents. The best contribu-
tion of this paper is the following. The presented system is the first complete-
computerised delphi process.

6.1 First Questionaire Generation

To generate the first questionaire, it is necessary to transform the input docu-
ment in a list of queries corresponding to the questions of the questionaire.

For the elaboration of questionnaires, firstly the sentences are extracted from
from the original documents. Then, the TF-ISF (Term Frequency - Inverse Sen-
tence Frequency) [17] algorithm is applied. This algorithm selects the most infor-
mative phrases from the document. TF-ISF is defined by the following equations.

ISF (t) =
1

s ∈ t
(1)

where s ∈ t is the number of sentences containing the term t.

TF − ISF (s) =
∑
t∈s

tf ∗ log ISFt (2)

where tf is the frequency of the term t in the document.
The TF-ISF method gives a higher score to keywords appearing in fewer sen-

tences. Therefore, the most important sentences will be the ones which contain
more quantity of higher scored keywords.

6.2 Relevance Assessments

To compute the relevance for each question of the questionaire, the presented
system uses a similarity function that is able to compare these questions with
the documents retrieved from the expert profile.

A relevance value is assigned to each question of the questionaire and a global
relevance value is computed for the whole questionaire. This global relevance
is computed using the mean average value of our similarity function for the
questions contained in the questionaire. The referee use this global value in each
round to know if the consensus has been reached.

130 I. Garćıa-Magariño, J.J. Gómez-Sanz, and J.R. Pérez-Agüera

For this task, the presented system uses the default similarity measure imple-
mented in Lucene1 that is co-related with the cosine in the Vector Space Model
[2], i.e., for a collection D, document d and query q containing terms ti :

sim(q, d) =
∑
t∈q

tft,q ∗ idft

normq
∗ tft,d ∗ idft

normd
∗ coordq,d ∗ weightt (3)

where

tft,x =
√

freq(t, X) (4)

idft = 1 + log
|D|

freq(t, D)
(5)

normd =
√

|d| (6)

coordq,d =
|q ∩ d|

|q| (7)

normq =
√∑

t∈q

tft,q ∗ idf t
2 (8)

tft,x represent the non-linear frequency of the terms in the query or in the
documents; idf is the Inverse Document Frequency of the terms in the collection;
normd and normq are measures to normalise the document and query length.
Finally, coordq,d is a score factor based on how many of the query terms are
found in the specified document. Typically, a document that contains most of
the query’s terms will receive a higher score than another document with fewer
query terms.

6.3 Next Questionaires Generation

Building the questionaires for the next rounds is necessary to take in account the
comments generated by the experts in the first round. For this task, the questions
with highest relevance are increased with the words/comments proposed by each
expert agent. This method is very similar to query expansion process using pseudo-
relevance feedback [2] to extract the terms candidates to become comments.

One of the main approaches to query expansion is based on studying the
difference of term distribution between the whole collection and the subsets of
documents that can be relevant for the query or, in our case, for the question
of the questionaire. It is expected that terms with little informative content
have a similar distribution in any document of the collection corresponding in
this work to the expert agent profile. On the contrary, terms closely related to
those of the question of the questionaire are expected to be more frequent in the
1 http://lucene.apache.org/

A Complete-Computerised Delphi Process with a Multi-Agent System 131

top ranked set of documents than in other subsets of documents existing in the
expert profile. All the documents are retrieved from the expert profile with the
original question.

The query expansion method used for comments generation is defined by two
steps. The first step is devoted to extract a candidate terms list to expand the
questions contained in the questionaire received by the expert agent from the
referee. These candidate terms are extracted from the top ranked documents
returned by the first-pass retrieval on the expert profile, which are represented
by a inverted index of relevant documents.

After extracting the terms from the n first documents returned, Divergence
From Randomness (DFR)[1] can be used to rank the candidates. The DFR term
weighting model infers the informativeness of a term by the divergence between
its distribution in the top-ranked documents and a random distribution. The
most effective DFR term weighting model is the Bo1 model that uses the Bose-
Einstein statistics[27,20]:

w(t) = tfx ∗ log2
1 + Pn

Pn
+ log2(1 + Pn) (9)

where Pn is given by F
N ; F is the frequency of the term in the expert profile, and

N is the number of documents in the expert profile; tfx is the frequency of the
query term in the n top-ranked documents retrieved from the expert profile.

In the second step we need to re-weight the candidate terms to append
them to questions. To carry out this task we have used the well-know Rocchio
algorithm[29]:

qtw =
qtf

qtfmax
+ β ∗ w(t)

wmax(t)
(10)

where qtw is the weight of the candidate term in the question; qtf is the frequency
of term in the question; qtfmax is the term with highest frequency in the question;
β is a parameter; w(t) is the value assigned by Bose-Einstein statistics; wmax(t)
is the highest value assigned by Bose-Einstein statistics.

For each round the system carries out a new expansion on the questions
contained in the questionaires.

7 Evaluation of the Delphi Method

The evaluation of the system implementing Delphi follows the guidelines es-
tablished for the evaluation of an information retrieval system. This evaluation
requires, first, determining a test document collection. These collections are usu-
ally processed by humans before hand determining, for concrete queries, which
documents should be retrieved from the collection.

Once prepared the collection of documents, the system is tested by asking
if a document is relevant or not. The relevance is measured with the Delphi
method, i.e., asking the system, and without the method, i.e., applying a TF-IDF
technique directly to the document. This way, it is checked whether the Delphi
method implemented with agents really improves a stand alone technique.

132 I. Garćıa-Magariño, J.J. Gómez-Sanz, and J.R. Pérez-Agüera

7.1 Preparing the Experiment

Document collections from information retrieval discipline establish, for a given
document, which other documents are really related to and which are not. This
paper uses the collection provided by CLEF (Cross-Language Evaluation Forum)
[26] for the Spanish language. The name of the collection used in this paper is
EFE94. It was constructed by the international news agency EFE from all the
news received during 1994. The size of the collection is 215.738 documents. The
collection includes a set of topics and relevance assessments produced by humans.

Each expert profile is made of 5452 relevant documents extracted from the
relevance assessments of the collection. The train set is divided between the dif-
ferent experts also without overlapping between them. The document test set is
made of 104 documents from the relevance assessments of the test collection, 54
relevant and 50 non-relevant. There is no overlapping among the documents of
the training set and the documents used for the expert profiles. In our experi-
ments the documents contained in the test set must be judged by Delphi agent
system to know their relevance using the consensus among expert agents.

7.2 Evaluation Results

The system constructed so far determines if a document is relevant, which is
an aspect studied by information retrieval discipline. Therefore, it makes sense
to measure its efficacy with information retrieval techniques. Commonly, the
evaluation of an information retrieval technique requires talking about Precision,
Recall and F1[28]. Precision is defined as the ratio of good assessments (relevant
and non-relevant) selected to total number of assessments. Recall is defined as
the ratio of relevant documents selected to total number of relevant documents
available. F1 combines precision and recall into a single number. Increasing both
precision and recall is the best result. However, only increasing one of them is
the most common. In this evaluation, both precission and recall increase.

The results from our experiments are presented in the following table

Only TF-IDF TF-IDF with DELPHI
Precision 0.86 0.92(+6.5%)
Recall 0.84 0.96(+12.5%)
F1 0.84 0.93(+9.6%)

The improvement is significant in every concern. Nevertheless, alternative
measurements were applied to verify the result, concretely with the ROC [15]
method:

HitRate =
tp

tp + fn
(11)

FalseAlarmRate =
fp

fp + tn
(12)

A Complete-Computerised Delphi Process with a Multi-Agent System 133

where the number of true positives, denoted tp, are the number of positive ex-
amples correctly identified as such. The number of false positives, denoted fp,
are the number of negatives that are miss-classified as positive. The definitions
for true negatives tn and false negatives fn are analogous. According to this,
our experiment results are presented in the following table.

Without DELPHI DELPHI
Hit Rate 0.84 0.96(+12.5%)
False Alarm Rate 0.12 0.12(=)

Again, it can be observed the use of Delphi method achieved an improvement
of the performance, greater than the one achieved without cooperation among
agents. On the other hand, a very good general performance is obtained, because
our system is capable to detect on average, 9 out of every 10 relevant documents.

8 Conclusions and Future Work

This paper presents a Multi-agent based Delphi process for the document rel-
evance domain. This system is the first complete-computerised process of the
Delphi method.

Furthermore, the Delphi Method is a technique that promises a new way of
dealing with the coordination of agents.

A complicate part of this method consists in determining which questions
should appear in the questionaire and a proper method of elaborating, as well as
analysing, answers. This part is domain specific. For the presented experimenta-
tions, the document relevance domain is selected. Nevertheless, there are already
some reusable content, like the MAS specification and a part of the MAS im-
plementation. The domain-specific part is encapsulated in certain Task entities
and certain external components.

The presented system can be adapted to other specific domains. This adap-
tation is left for future work.

Acknowledgements

This work has been supported by the project Methods and tools for agent-based
modelling supported by Spanish Council for Science and Technology with grant
TIN2005-08501-C03-01, andby the grant forResearchGroup 910494by theRegion
of Madrid (Comunidad de Madrid) and the Universidad Complutense Madrid.

References

1. Amati, G., Rijsbergen, C.J.V.: Probabilistic models of information retrieval based
on measuring the divergence from randomness. ACM Trans. Inf. Syst. 20(4), 357–
389 (2002)

2. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press
/ Addison-Wesley (1999)

134 I. Garćıa-Magariño, J.J. Gómez-Sanz, and J.R. Pérez-Agüera

3. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a
FIPA-compliant agent framework. Software-Practice and Experience 31(2), 103–
128 (2001)

4. Bryant, D.L., Abkowitz, M.D.: Estimation of terrestrial chemical spill risk factors
using a modified delphi approach. Journal of Environmental Management 85, 112–
120 (2007)

5. Cuhls, K.: Delphi method. Technical report, Fraunhofer Institute for Systems and
Innovation Research (2003)

6. Dalkey, N., Helmer, O.: An Experimental Application of the Delphi Method to the
Use of Experts. Management Science 9(3), 458–467 (1963)

7. Gascuena, J., Fernandez-Caballero, A.: The INGENIAS Methodology for Advanced
Surveillance Systems Modelling. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007.
LNCS, vol. 4528, pp. 541–550. Springer, Heidelberg (2007)

8. Gómez-Sanz, J., Fuentes, R., Pavón, J.: Enabling Rapid Prototyping using De-
coupling of Code Skeletons and Code generation Process. Infocomp. Journal of
Computer Science, 26–34 (2006)

9. Gómez-Sanz, J., Pavón, J.: Defining coordination in multi-agent systems within
an agent oriented software engineering methodology. In: Proceedings of the 2006
ACM symposium on Applied computing, pp. 424–428 (2006)

10. Gomez-Sanz, J.J., Fuentes, R., Pavon, J.: The INGENIAS Methodology and Tools.
In: Agent-oriented Methodologies, pp. 236–276. Idea Group Publishing (2005)

11. Green, J.W.: Delphi method in web site selection: Using the experts. The Reference
Librarian 33(69-70), 299–310 (2001)

12. Hannebauer, M.: Multi-phase consensus communication in collaborative problem
solving. In: Proceedings of the Third Workshop on Communication-based Systems,
pp. 131–146. Kluwer, Dordrecht (2000)

13. Hayes, T.: Delphi study of the future of marketing of higher education. Journal of
Business Research 60, 927–931 (2007)

14. Holsapple, C., Joshi, K.: Knowledge manipulation activities: results of a delphi
study. Information and Management 39, 477–490 (2002)

15. Konstan, J.: Introduction to recommender systems: Algorithms and Evaluation.
ACM Transactions on Information Systems (TOIS) 22(1), 1–4 (2004)

16. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)

17. Larocca Neto, J., Santos, A.D., Kaestner, C.A.A., Freitas, A.A.: Document cluster-
ing and text summarization. In: Proceedings of the 4th International Conference
on Practical Applications of Knowledge Discovery and Data Mining, London, pp.
41–55 (2000)

18. Linstone, H., Turoff, M.: The Delphi Method: Techniques and Applications.
Addison-Wesley Pub. Co., Advanced Book Program (1975)

19. Luehrs, R., Pavón, J., Schneider, M.: DEMOS Tools for Online Discussion and
Decision Making. In: Cueva Lovelle, J.M., Rodŕıguez, B.M.G., Gayo, J.E.L., del
Pueto Paule Ruiz, M., Aguilar, L.J. (eds.) ICWE 2003. LNCS, vol. 2722, pp. 525–
528. Springer, Heidelberg (2003)

20. Macdonald, C., He, B., Plachouras, V., Ounis, I.: University of Glasgow at TREC
2005: Experiments in Terabyte and Enterprise Tracks with Terrier. In: Proceed-
dings of the 14th Text REtrieval Conference (TREC 2005) (2005)

21. Mir, J., Huguet, A., Nieto, R.: Predictive factors of chronic pediatric pain and
disability: A delphi poll. The Journal of Pain 8(10), 774–792 (2007)

A Complete-Computerised Delphi Process with a Multi-Agent System 135

22. Pavón, J., Corchado, J., Gómez-Sanz, J., Ossa, L.: Mobile Tourist Guide Services
with Software Agents. In: Karmouch, A., Korba, L., Madeira, E.R.M. (eds.) MATA
2004. LNCS, vol. 3284, pp. 322–330. Springer, Heidelberg (2004)

23. Pavón, J., Gómez-Sanz, J.: Agent Oriented Software Engineering with INGENIAS.
Multi-Agent Systems and Applications III 2691, 394–403 (2003)

24. Pavón, J., Gómez-Sanz, J., Fuentes, R.: Model Driven Development of Multi-Agent
Systems. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066,
pp. 284–298. Springer, Heidelberg (2006)

25. Pease, M., Shostak, R., Lamport, L.: Reaching Agreement in the Presence of Faults.
Journal of the ACM (JACM) 27(2), 228–234 (1980)

26. Peters, C., Braschler, M.: European research letter: Cross-language system evalu-
ation: The clef campaigns. JASIST 52(12), 1067–1072 (2001)

27. Plachouras, V., He, B., Ounis, I.: University of Glasgow at TREC2004: Experi-
ments in Web, Robust and Terabyte tracks with Terrier. In: Proceeddings of the
13th Text REtrieval Conference (TREC 2004) (2004)

28. Rennie, J.: Derivation of the F-Measure. In other words 1, 4
29. Rocchio, J.J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The

SMART retrieval system, pp. 313–323. Prentice Hall, Englewood Cliffs (1971)
30. Rosenschein, J., Zlotkin, G.: Rules of Encounter: Designing Conventions for Auto-

mated Negotiation Among Computers. MIT Press, Cambridge (1994)
31. Roth, R.: A Delphi approach to acquiring knowledge from single and multiple

experts. In: Proceedings of the 1990 ACM SIGBDP conference on Trends and
directions in expert systems, pp. 301–324 (1990)

32. Sabater, J., Sierra, C.: Reputation and social network analysis in multi-agent sys-
tems. In: Proceedings of the first international joint conference on Autonomous
agents and multiagent systems: part 1, pp. 475–482 (2002)

33. Soto, J.P., Vizcano, A., Portillo, J., Piattini, M.: Modelling a Knowledge Manage-
ment System Architecture with INGENIAS Methodology. In: Proceedings of the
15th International Conference on Computing (2006)

34. Turoff, M., Hiltz, S.: Computer Based Delphi Processes. In: Gazing into the Oracle.
The Delphi Method and its Application to Social Policy and Public Health, pp.
56–85. Jessica Kingsley Publishers, London (1996)

How Situated Is Your Agent?
A Cognitive Perspective

Daghan L. Acay1, Liz Sonenberg1, Alessandro Ricci2, and Philippe Pasquier3

1 DIS, The University of Melbourne 111 Barry Street Victoria 3010, Australia
lacay@pgrad.unimelb.edu.au,

l.sonenberg@unimelb.edu.au
2 DEIS, U. Bologna in Cesena Via Venezia, 52 Cesena (FC), Italy

a.ricci@unibo.it
3 SIAT, Simon Fraser University, 102 Ave. Surrey, British Columbia, Canada

pasquier@sfu.ca

Abstract. Software agents are situated in an environment with which
they interact reactively or in a goal-directed fashion. Generally, such
environments do not assume a structure, hence are deemed to be unpre-
dictable. Recent approaches adopt an environment model where artifacts
form the building blocks. Artifacts represent functional components that
an agent can exploit for reaching its goals. It has been argued that soft-
ware agents can improve/amend their capabilities at run time through
the use of (new) artifacts as possible means. We argue that such a run
time adaptation by the agents can be realized by creating an appropriate
relationship between agent reasoning and the functionality of the arti-
facts. We have coined the term extrospection to refer to the act of an
agent reasoning about the tools. In this paper, we first identify the fea-
tures of extrospection, then, we extend the belief, desire, intention (BDI)
agent deliberation cycle to encompass extrospection.

1 Introduction

Although, there is a growing body of work in the agent literature that highlights
the importance of the environment for agent systems [1], the relation between the
agent and the environment at the cognitive level has not been well established.
For example, an agent designer, in general, is responsible for constructing an
internal environment model that may be consulted during deliberation. Such
an internal model reflects an agent designer’s anticipation about objects and
available actions in the environment, in contrast to the actual environment as
the agent experiences at run time. Thus, the cognitive awareness of the agent
about the environment does not drive from the actual interaction but is limited
to the agent designer’s intuition at design time.

As the scale of Multi-Agent Systems (MASs) increases, the above approach to
agent design leads to two problems. First, when the agent and the environment
it acts in are developed by different designers, e.g. in the context of web services,

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 136–151, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

How Situated Is Your Agent? A Cognitive Perspective 137

the designer of an agent can not capture all the possible service combinations (i.e.
environment). Second, even if the agent designer presumes a subset of services
and constructs an internal model accordingly, the overall agent environment
interaction is still prone to failures. The reason is that inconsistency between the
internal model and the actual environment may arise over time. For example,
some services included in the agent’s internal model may become unavailable
(off-line) or be inconsistent (due to the service (up/down)grade).

So agents should learn, understand and adapt to, their environments at run
time. In this paper, we argue that the adaptation could be more tractable if agent
environments are engineered in some manner. Ricci et. al. [2], in their agent
and artifact framework (A&A), suggested ‘artifact’ as a possible abstraction
to model non-agent entities in the environment. Although they suggested an
‘artifact manual’ for autonomous discovery and use of artifacts at run-time,
they considered it as future work.

Previously, a possible way of representing artifact manuals using description
logic has been exploredand a formal language for writing artifact manuals, called
OWL-T [3] was introduced. In the context of this paper, we will call the combi-
nation of an artifact and the associated manual a ‘tool1.’ The aim in this paper
is to explore the relation between agent reasoning and tool specification so that
agents can modify their behavior at run time, based on tool availability. In our
case, the behavior modification is realized by agents flexibly substituting tools
as means for their goals.

The ‘cognitive situatedness’ mentioned in the title reflects our idea that agents
should adapt to the environment by discovering and using tools as alternative
means at run-time. Real-time discovery, selection, and use of tools is referred
to as extrospection, a term that we have coined to emphasize the externally
influenced nature of reasoning. The term extrospective agent refers to agents
endowed with this capability.

It is fair to interpret extrospection as another way to capture adaptation (i.e.
learning and planning) and introducing a new term may seem hardly justifiable.
On the other hand, the reader should bear in mind that extrospection approaches
the adaptation problem from an environment design perspective instead of an
agent design perspective. That is, our use of the term has implications for engi-
neering an agent environment such that the adaptation is tractable. Thus, the
fundamental questions for extrospection are: how can we engineer the agent envi-
ronment? what are the implications of environment engineering to the reasoning
cycle (i.e. query, learn, deliberate, plan, execute)? etc. For that, we believe a new
term is helpful.

Expected benefits of using tools for MAS development include: (i) agents can
complete the design by discovering and opportunistically using tools at run time
(in Sec. 5), (ii) the reuse of components will be enhanced (implicitly argued
throughout the paper), and (iii) domain independent meta-level reasoning can
be built into the agents (in Sec. 6).

1 One reason is that the term artifact has a computational emphasis whereas, tool has
emphasize on reasoning.

138 D.L. Acay et al.

2 Background: Philosophical Underpinnings

The A&A framework introduces artifacts as first class entities along with agents
for developing a MAS. Similar to the A&A framework, our work on extrospective
agents is inspired by the psychological theory called Activity Theory (AT) [4].
It is emphasized in AT that humans have the potential to change their environ-
ments. In other words, humans no longer live in natural habitats but populate
them with tools to make the environment more suitable for their practices. Thus,
their speed, power, and intelligence are enhanced beyond their innate nature
through the proper use of tools.

Another important claim of AT is that tools represent the scrutinization of
the experiences of those who have encountered and solved a particular problem
in the past [4]. The solutions manifest themselves in (i) the physical properties
of the tool (e.g. shape, size, etc.) and (ii) the knowledge of the functionality and
the use of tools. The availability of tools influences the agent’s behavior through
its physical characteristics, e.g. body posture, approaching angle. Moreover, tool
availability can modify the choice of action after the knowledge of the tool use is
acquired, e.g. in the existence of a table, putting a hot cup on the table instead
of dropping the cup.

In that sense, our work is complementary to the A&A framework where a
computational model for artifacts has been introduced, as we introduce a com-
putational model for the cognition of tool use. The A&A framework and the
extrospective agent together aim to benefit from the claims of the AT in the
context of the MAS development and execution.

3 An Example: Production Cell

The problem we are addressing is the run time adaptation of agents to differ-
ent environments. Firstly, the agent designer does not need anticipate possible
actions in the environment. Thus, the agent needs to discover what it can do in
the environment. Secondly, actions in the environment may not be fixed due to
changes (e.g. some services may go off line, new services can be introduced, or
present services may be updated). Thus, we have chosen an example that reflects
these points and rather simple in nature.

The example of production cell is taken from Meneguzzi et. al. [5] where a
variety of component types with different production demands are produced.
An agent with the knowledge of the production demands of the components is
designed to work in different production cells. That is, the agent should discover
and use production units (i.e. adapt) in the production cell it is situated. More-
over, the agent should be responsive to the changes such as failure, removal,
addition, or upgrade. The task of the agent is to schedule components to the
existing units.

An instance of the production cell with six devices (a Feed Belt, a Deposit
Belt, four Processing Units) and a Crane that can freely move the components
over the devices in the cell is considered here. Components that need to be

How Situated Is Your Agent? A Cognitive Perspective 139

processed enter the production cell through the Feed Belt. After a component is
processed, it is removed from the cell through the Deposit Belt. Each Processing
Unit can perform a set of operations and can accommodate a single component
at a time. The type of a component determines the necessary operations that
should be executed on the component.

Meneguzzi et. al. [5] have modeled the overall production unit as a single
agent with propositional planning capability. Besides, we assume two distinctive
entities, e.g. tools, and an agent. The tools such as the Feed Belt, the Deposit
Belt, and Processing Units form the environment for the agent. Yet, the Crane
is conceived as an agent with the capability of moving the components over the
tools.

For future reference we give following details. The Process Unit 1 procUnit1
can drill a component whereas the procUnit2 can both drill and paint. Similarly,
the procUnit3 can cut and the procUnit4 can polish a component. Moreover,
there are three types of components that may come to the production cell. The
first type type1 requires drilling and the type2 requires painting and drilling.
The third type type3 requires both cutting and polishing.

4 Extrospection Framework

The two important aspects of the extrospection framework are the agents and
the tools in the environment. In addition, we introduce a third layer where the
functionality of tools is symbolically represented as ‘artifact manuals’ [2]. Next
we will detail each layer.

4.1 The Artifact Layer

We adopt the A&A meta-model [2], where the notion of artifact is used to model
non-autonomous state-ful entities, specifically designed by MAS environment
engineers to encapsulate some kind of function2, and to be instantiated and
used dynamically by agents to support their activities.

The functionality of an artifact is structured in terms of operations, whose
execution can be triggered by agents through the artifact’s usage interface which
in turn is composed of controls. Agents can trigger and control the operation
execution through controls with the necessary input parameters. Besides the
controls, the usage interface might also contain a set of observable properties ; the
properties whose dynamic values can be observed by agents without necessarily
interacting with (or operating upon) the artifact.

The execution of an operation may result in changing the artifact’s inner (i.e.,
non-observable) state. The operation execution can be conceived as a process,
combining the execution of possibly multiple atomic guarded operation steps.
Operation steps are guarded by asserting preconditions for execution. In order to
avoid interferences, the usage interface is disabled during the (atomic) execution

2 The term function is used here as in the design theory, a synonym of functionality.

140 D.L. Acay et al.

of a single operation step. The operations execute asynchronously to the activity
of the agent. The information flow from artifacts to agents is modeled in the form
of observable signals that are perceived by agents.

As a principle of composition, artifacts can be linked to enable the artifact–
artifact interaction. This is realized through the link interfaces, e.g. using a
remote control with a TV. The artifact topology is handled by the notion of
workspace. Agents can use and observe only the artifacts belonging to their
workspace. Workspaces provide basic default tools (artifacts) that agents can
use to dynamically discover the artifacts currently available in the workspace
(registry tools), to instantiate dynamically new artifacts (factory tools), to man-
age organization and security issues (organization tools), and so on.” The ar-
tifacts of different workspaces – possibly on different network nodes– can be
linked through the link interfaces discussed above. Agents can join and work
simultaneously on multiple workspaces.

Analogously to the artifacts in the human case, in A&A each artifact is
equipped with a “manual” describing: the artifact’s function (i.e., its intended
purpose), the artifact’s usage interface (i.e., the observable “shape” of the arti-
fact), and artifact’s operating instructions (i.e., the correct use of the artifact).
The manual is meant to be inspected and used at run time by agents, for reason-
ing about how to select and use artifacts. In this paper, the manual is described
using the concept layer and discussed in Sec. 4.2.

Considering the A&A framework, we introduce some assumptions that are
necessary to limit the reasoning about tools.

Assumption 1 (A1). All operations supported by a tool are atomic and do not
support concurrency.

A1 simplifies the tool use for metalevel reasoning, as does A2.

Assumption 2 (A2). Operation generates a finished event when execution
completes.

A3 emphasizes the asynchronous execution of tools and adds a temporal con-
straint.

Assumption 3 (A3). Operations takes certain amount of time independent of
agent activities.

Finally, we assume that each tool may have more than one functionality. For
each functionality there is one and only one operating instruction.

Assumption 4 (A4). A tool may have multiple functionality. Each function-
ality is realized through a single operating instruction.

We may apply these assumptions to the production cell example. The procUnit2
conforms A4 by having two functionalities. A functionality can be realized by
following the respective operating instruction. When the procUnit2 is drilling a
component, it is assumed to be busy (A1, A3). Yet, the agent may concentrate
on other activities during drilling (A3). The agent will be informed – regardless
of working on another activity– when drilling completes (A2).

How Situated Is Your Agent? A Cognitive Perspective 141

In addition to the above assumptions, the production demand of a component
may incorporate multiple tools. For example, a component of type3 may requires
both the procUnit3 and the procUnit4. Thus, the use of tools requires two sorts
of scheduling/planning tasks.

The first type of planning is employed for realizing the precondition/guards of
the operations of a single tool. For example, the extrospective agent (Crane for
this example) needs to plan to acquire the knowledge regarding the preconditions
for drilling, e.g. holeCoord(X,Y). Only after this information is available to the
agent, the startDrill operation can be invoked over the tool. The second is
necessary for orchestrating the use of multiple tools within a single intention.
For example, the crane agent is responsible for planning to move components
from one machine to another using its moving capability.

4.2 The Concept Layer

The concept layer symbolically describes the functionality and the operating
instructions of the artifact (i.e. artifact manual). Through the concept layer,
agents can incorporate tools’ use knowledge into their deliberation cycle. The
language OWL-T [3] is used for this purpose. T stands for (T)ool and OWL for
the variant of description logic, Web Ontology Language (OWL) [6].

Artifact manual written by OWL-T can be compared – but can not be
reduced– to API documentation for software objects. An API documentation
conveys the functionality of the implemented objects to a human programmer.
However, such documents are not useful for the software agents since they are
written in natural language. Besides, the OWL-T is a formal language targeting
the software agents. Analogous to an API documentation, if the concept layer is
not supplied by the environment designer, it does not hamper the artifact oper-
ation given that the agent knows the existence of the tool and the corresponding
operating instructions (i.e. internal model supplied by the agent designer). The
OWL-T is merely useful for run time discovery. That is why we introduce the
concept layer as a separate layer.

Here, we will concentrate on the three most relevant aspects that are captured
by the OWL-T. The detailed account for the OWL-T has been given by Acay
et. al. [3]. Firstly, the OWL-T aims to relate the goals of an agent and the
functionality of a tool. For example, the functionality of the procesUnit1 can
be defined as drill(C)3. Then, an agent, which has a component of type1, can
associate procesUnit1 as a possible means to process the component.

Secondly, the OWL-T captures the operations and the associated precondi-
tions. For example, an operation of procesUnit1, e.g. startDrill with the
associated precondition drillSize(X) is captured using OWL-T. OWL-T also
identifies the link between the precondition of an operation and the beliefs of
the agent. That is, the OWL-T enforces the agent to have a belief of the form
drillSize(X) before executing an operation.

3 As convention we use upper case letters for the variables in terms and lower case
letters for the constants.

142 D.L. Acay et al.

Finally, the OWL-T captures the operating instructions of tool for a partic-
ular functionality (see A4). We define an operating instruction as a sequence of
operations that should be followed to realize the tool functionality. For example,
procesUnit1 may require the agent to enter the coordinates of the hole via the
operation enterCoor(X,Y) by a number pad. In this respect, enterCoor(X,Y)
should precede startDrill.

The concept layer is updated when there is a change in the artifact layer e.g.,
new artifact is included, existing artifact is updated, etc. However, concept layer
update will not be covered here due to space limitations. The following sections
elaborate on the extrospective agent under the assumption that the artifact layer
and the concept layer are synchronous.

5 The Extrospective Agent Mind

The extrospective agent architecture depicted in Fig. 1 is based on the Jason
BDI agent architecture by Bordini and Hübner [7]. Similar to the BDI agent, the
extrospective agent has beliefs about the state of the environment. The beliefs are
updated through sensing. The extrospective agent also has a set of goals. Each
goal defines a desired state of the environment that the agent wants to reach.
Finally, the agent acts in the environment through its effectors. Generally, in
BDI agent literature, agents are employed with a library of plans. The plans are
partial recipes that guide the agent through means-ends analysis [8].

The architectural additions leading to the extrospective agent aim to support:
(i) querying the concept layer to discover tools, (ii) selecting which tool to use,
(iii) planning for orchestration and operation enabling, and (iv) focus manage-
ment during the tool use. For the details of data repositories in Fig. 1 such as
the belief base, the events, the plan library, and the intention we refer the reader
to [7]. Here, we will concentrate on the extensions.

When an agent enters an environment, it should discover the tools. Run time
discovery is done via a query mechanism. Query mechanism can be thought as

Extrospective Agent

BUF

Belief
Base

Tool
Base

Perception Plan
Library

Events SE
Events

Selected
Events

Unify
Event

Unify
Context Relevant Plans

SOApplicable
Plans

Intention
Intended
Means

SI

Execute
Intention

Unsatisfied
Preconditions

Action

Selected
Intentions

Function

Module

Legend:

Function

Module

Legend:

Fig. 1. The extrospective agent architecture

How Situated Is Your Agent? A Cognitive Perspective 143

a goal directed perception since, the agent queries the environment based on its
goals. If there is a match between agent’s goal and the tool in the environment,
special percepts4 are sent to the agent. Different query strategies are discussed
in Sec. 5.1.

The first addition is the data repository called the tool base (TB). Logically,
the concept layer resides in the environment and TB resides in the agent. The
TB stores the knowledge about a particular tool that the agent has discovered
before. The TB is also different form plan library (PL). TB is populated pro-
actively at the run time by special percepts whereas PL is developed by the
agent designer at the design time and static. The existence of the TB increases
the potential success of the agent in novel and dynamic environments.

The TB is also distinguished from the PL for its support for planning. Plan-
ning for realizing the context condition [7] of a plan originating from the PL may
seem similar to the planning for realizing the preconditions of each operation of
the plan originating from the TB. Yet, planning for the context condition re-
quires even more anticipation (extended internal model) by the agent designer,
e.g. cost of an action, time taken, etc. Planning for the context also has a larger
search space [5], hence may not be viable for resource bounded agents. The TB
overcomes the first difficulty by mirroring the concept layer that is supplied
by the environment designer. Such information is also valuable for pruning the
search space for planning using the operating instructions. The related work
incorporating planning to the BDI agents is considered in Sec. 7.

The other two extensions to the Jason model are the arrows between (i)
the belief update function (BUF) and the TB and (ii) the intention execution
function and the intention module. The former arrow represents the process
that parses the special percepts into the TB. The latter arrow corresponds to
the planning for precondition satisfaction.

5.1 Abstract Interpreter

The overall abstract interpreter5 of the extrospection agent is given in Table 1.
The basic structure for decision making is a loop, in which the agent continu-
ously:

– observes the world and updates its beliefs,
– deliberates on which ends to achieve,
– uses means-ends reasoning to find the applicable plans from the tool base or

internal plan library, queries the concept layer if necessary,
– acts until the entire plan is consumed

The extrospective agent program starts with the initialization of the the agent’s
goals and beliefs. Beginning of every reasoning cycle starts updating the belief
set, buf (B,ρ), the event set, buf (ρ), similar to AgentSpeak agents [7]. In addition,

4 Percepts that are related to tool information are distinguished from other percepts.
5 This section relies on the AgentSpeak(L) terminology given in Rao [9].

144 D.L. Acay et al.

the tool base is the update by processing the set of special percepts6 received
from the environment, buf (TB,ρ).

After the BUF is done, the options function options(G,E) will generate new
goals by taking the unsatisfied goals left from the previous execution cycle and
the new events generated either by percepts (external goals) or by the intention
stack (internal goals). The resulting goal set G7 represents the ends that the
agent wants to achieve.

Unify event function (UEF) unifyEvent(Se(G),PL,TB) takes the current goal
set, the TB, and the PL and matches the available means with the goals (i.e.
ends) of the agent. The UEF returns the selected goal-means pairs as relevant
plans Pr. If Pr is empty then the agent automatically queries the environment
to discover tools. To avoid infinite loop, the agent should not already believe
that there is no tool available (¬Bel(noTool(G))). In the latter case, the goal
and the related intention is dropped. Because the agent is sure that, neither the
available tools in the environment nor the plans in the agent’s PL can accomplish
the goal.

It is important to note that, querying the concept layer only if the agent
could not find any means in its TB or PL corresponds to just one strategy. We
employed this strategy in Table 1. A more general approach may include different
query strategies. For example, the agent may (i) query before every means-ends
reasoning or (ii) query at every percept update. Although, the time required for
processing the percepts increases, the former strategy is beneficial for finding
the most effective tool as means and the latter is beneficial for synchronizing the
TB with the concept layer to decrease the chance of misinformed means-ends
reasoning due to out of date TB.

The query strategy becomes important in the context of dynamic environ-
ments. As it has been mentioned in Sec. 3, the agent may need to adapt to the
changes such as Process Unit upgrades and failures. In such situations, the con-
cept layer is updated accordingly to reflect such changes. The synchronization
of the TB with the concept layer is then a question of selecting the appropriate
query strategy based on the characteristics of the environment, e.g. the rate of
change in the tool composition. At this stage, we will not consider those situa-
tions and stay faithful to the query after failure strategy.

If the agent can find a relevant plan – either from the TB or from the PL– it
tries to find an applicable plan through unify context function (UCF) unifyCon-
text(Pr,B). The UCF filters the relevant plans by finding those whose context is
satisfied by the beliefs of the agent. Again, if the applicable plan set π is empty
then the agent drops the goal as mentioned above.

The option selection function SO(π) selects the plan to be executed πim. The
selected plan is pushed to the intention set by pushIntention(G,πim) function.

6 At the initial state there are no percepts regarding the tools since, they are only
available after a query.

7 Strictly speaking, both the achieve goals and the test goal are events [7]. Here, we
are interested in the achieve goals.

How Situated Is Your Agent? A Cognitive Perspective 145

Table 1. The abstract interpreter for the extrospective agent

B ← B0
G ← G0
WHILE true

WHILE not empty(ρset)%get percepts ρset from the environment
%get next percept ρ from ρset

B ← buf(B,ρ)
E ← buf(ρ)
T ← buf(TB,ρ)

END WHILE
G ← options(G,E)
Pr ← unifyEvent(SE(G),PL,TB) %unifies plan,goal,tool
IF Pr = Ø THEN

IF not ¬Bel(noTool(G))
query(G)

ELSE
dropGoal(G)

END IF
CONTINUE

END IF
%At this point we have relevant plan(s)

π ← unifyContext(Pr,B) %unifies plan, belief
IF empty(π)

dropGoal(G)
CONTINUE

ELSE
%At this point we have applicable plan(s)

πim = SO(π)
END IF
I = pushIntention(G,πim)
πi = SI(I)
WHILE ¬ endOfPlan(πi)

IF πi ∈ PL
α = head(πi)
IF action(α)

execute(α)
ELSE IF goal(α)

updateEvents(α)
END IF

ELSE IF πi ∈ TB
α = head(πi)
WHILE not empty(preList(α))

p = next(preList(α))
IF checkPre(p,B)

unify(p,B,πi)
ELSE

πi = [p|πi] % update intention
END IF

END WHILE
α = head(πi)
IF action(α) % check the updated intention

execute(α)
ELSE IF goal(α)

updateEvents(α)
END IF

END IF
πi ←tail(πi)
πi = SI(I)

END WHILE
END WHILE

146 D.L. Acay et al.

Since the execution of agent and the artifact is asynchronous, the intention
selection function SI(I) is responsible for suspending and resume the currently
active intention. The details of the option selection function and the intention
selection functions are given in Sec. 6.

The only branching after the intention selection is based on the origin of the
plan. If the plan came from the PL then the standard execution of the Jason
agent continues until all the steps of the plan are executed. The plans from
the TB can be executed, if the preconditions for each operation unify with the
agents beliefs. Otherwise, the agent should plan to satisfy before executing it (see
Sec. 4.2). The difference between the precondition and the context condition is
that the first one applies to each operation in an operating instruction, but the
later applies to the whole plan and is checked once during unifyContext. Thus,
agent consumes internal plans blindly whereas executes the operations of tool
cautiously [10].

The planning for precondition is achieved by updating the intention stack by
pushing the preconditions as goals before the invocation of the operation πi =
[p|πi]. The goals force the agent to restart the overall deliberation cycle. So, the
agent finds new plans and generates new intentions to act until the preconditions
of the operation are believed (the preconditions hold in the agent’s belief set).

6 Metalevel Reasoning

Metalevel reasoning is concerned with the event focus SE , the plan preference
SO, and the intention prioritization SI . Constructing those functions, hence met-
alevel reasoning, is domain dependent and heavily relies on the knowledge of the
domain expert [7]. In this section, we propose a domain independent metalevel
reasoning rules based on the assumptions introduced in Sec. 4.1.

6.1 Option Selection

The first rule handles the situations where the agent has relevant plans available
both from the PL and the TB. A strategy for SO is to select the plan originating
from the PL. The reason is that plans originating from the PL are assumed
to be applicable without further deliberation in the environment since they are
anticipated by the agent designer. For the rest, the agent should do the discovery
and planing at run time which is more time consuming. The syntax for the rule
uses �� to indicate that the plan is supported by the tool, ⊃ is used as implication,
and appPlan(Goal) returns applicable plans.

Rule 1 (OS1). π1 = appP lan(ϕ)∧π2 = appP lan(ϕ)∧π1 ∈ PL∧π2 �� T ∧T ∈
TB ⊃ INT (π1)

The Rule 1 states that if there are two applicable plans for goal ϕ then the agent
intends the one which originates from the PL.

The second rule is suggested to capture the preferences of environment de-
signer for the tool use. For example, the environment designer may want agents

How Situated Is Your Agent? A Cognitive Perspective 147

to use the procUnit2 for drilling. Such preference is conveyed by the utility func-
tion given by agent designer and used by the agents will while choosing between
functionally equivalent tools.

Rule 2 (OS2). if π1 = appP lan(ϕ) ∧ π2 = appP lan(ϕ) ∧ π1 �� T1 ∧ π2 �� T2
and T1 � T2 ⊃ INT (π1)

where � is an ordering relation of the form T1 � T2 := f(T1, ϕ) > f(T2, ϕ)
and f : T × G → R

Rule 2 states that if there is a utility function f that orders the tool preference
for a goal then the agent will use higher rated tool.

Finally, the third rule is a heuristic form of Rule 2 and handles the situations
where there are two functionally equivalent tools and no selection function. In
those situations, SO selects more specific tool. By the more specific tool, we mean
a tool with less functionality. For example, if the agent needs to drill a hole, it
prefers the procUnit1 over the procUnit2. If one compares Rule 2 to Rule 3,
he/she observes that the behavior of the agent differs, though, the behavior due
to Rule 3 may be sub optimal.

Rule 3 (OS3). π1 = appP lan(ϕ)∧π2 = appP lan(ϕ)∧π3 = appP lan(ψ)∧π1 ��
T1 ∧ π2 �� T2 ∧ π3 �� T2 ⊃ INT (π1)

The Rule 3 states that if tool T1 is a more specific tool than T2 then the agent
intends to use the tool T1.

In future, we intend to incorporate a computational notion for affordance [11]
by extending the Rule 2. For example, a tool such as a chair can afford for sitting
to get rest, stepping on for elevation, or to stack things for organization. The
evaluation function may rank various affordances to guide the agent actions, e.g.
suggesting sitting.

6.2 Intention Handling

Intentions are used for balancing deliberation and action in resource bounded
agents. The intention commitment strategies have been focus of attention [10,12].
However, previous strategies consider only dropping the intention when some
conditions hold [10]. In many situations, such a strategy may not be feasible
because it wastes the time used for deliberation. In the worst case, some ac-
tions cannot be reversed. Thus dropping an intention has adverse side effects. In
some cases, suspending an intention is a better strategy. By suspending an in-
tention, the agent also saves time from future deliberation. This section explores
conditions for suspending and resuming intentions based on the assumptions
introduced in Sec. 4.1.

The three rules with the increasing level of reactiveness to the events are
named as (i) blind use, (ii) dedicated use, and (iii) lazy use. An agent that
adopts the blind use strategy would not pay attention to new events until it

148 D.L. Acay et al.

reaches its current goal. That is, if two goals need to use the same tool, e.g. drill,
then the agent suspends one of the goals until it believes that it reaches the first
goal.

The logic language we have used to formalize the intention handling is first
order multi-modal logic with modalities ♦ (eventually), � (always), © (next),⋃

(until) defined in Rao and Georgeff [10]. The notation INTT is used to denote
the intention to use a tool with the superscript INTS

T denotes the suspended
intention and the operator ‖ denotes concurrent intentions. An intention is said
to be suspended if it is in the intention set but not pursued and two intentions
are said to be concurrent if both appear in the intention set. So the blind use
can be given as follows;

Rule 4 (IS1). (INTT (ϕ) ‖ INTT (ψ)) ⊃ (INTT (ϕ) ‖ ©INT S
T (ψ)

⋃
Bel(ϕ) ∧

©INTT (ψ))

The Rule 4 states that if the agent intends to use a tool T for goal ϕ and for
goal ψ then it suspends the second intention (due to A1) in the next step until it
believes that the goal ϕ is reached and resumes the intention for goal ψ as soon
as ϕ. For example, an agent in the production cell would ignore all the incoming
components until it finishes the current component. The Rule 4 can be used for
the situations where the component arrival is scarce and finishing a component
is more important than processing more components.

The second rule is called dedicated use and allows the agent to suspend its
current intention until the tool completes the operation (due to A3). That is,
the agent starts the operation and suspends the intention that the operation
belongs and handles other events. Meanwhile, the agent is still focused on the
state of the tool. When the agent receives the notification from the environment
regarding the operation completion (due to A2), the agent resumes its previous
intention. The next rule identifies the behavior for dedicated use.

Rule 5 (IS2). INTT (ϕ) ⊃ (©INT S
T (ϕ)

⋃
Bel(ϕ) ∧ Bel(done(o)) ∧ INTT (ϕ))

The rule 5 states that the agent suspends the intention to reach ϕ in the next step
until it believes ϕ is reached and operation o is finished done(o) when it resumes
the intention INTT (ϕ). For example, an agent in the production cell may set one
of the Processing Units for drilling a component. The difference between the Rule
4 and the Rule 5 is that the agent is not idle during the operation execution. It
will suspend the intention for the component and waits for other components to
arrive. The dedicated use rule balances the deliberation and action but may lead
to delays in processing times. For example, assume a component of type2 comes
while a component of type1 was being painted then the agent will dedicate the
procUnit1 to the second component. Thus, drilling the first component will be
delayed. The dedicated use rule is suitable for situations where intentions are
not time critical and can be suspended indefinitely.

Finally the third rule, called the lazy use, favors the event handling to the in-
tention completion. In fact, the agent will not resume an intention until another

How Situated Is Your Agent? A Cognitive Perspective 149

goal needs one of the tools that the suspended intention is holding. The formal-
ization of the lazy use is composed of two rules for suspending and resuming the
intentions.

Rule 6 (IS3). (i) INTT (ϕ) ⊃ (©INT S
T (ϕ)

⋃
Bel(ϕ))

(ii)(INT S
T (ϕ) ‖ ♦INTT (ψ)) ⊃ (©INTT (ϕ) ‖ INT S

T (ψ)
⋃

Bel(ϕ)∧INT S
T (ϕ))

The Rule 6(i) states that the agent suspends the intention to reach ϕ as soon as
it starts it. The Rule 6(ii) tells how this intention is resumed when eventually
another goal ψ appears in the intention set that requires the use of the tool that
the suspended intention holds. For example, the agent in the production cell may
leave a component over the drilling unit until another component needs to be
drilled. Thus, the agent ignores the unfinished component until it needs the tool
for another component. Doing so, the agent will have more time for deliberation
and event handling. The lazy use rule is suitable for the situations where the
intentions are less important then the events.

7 Related Work

Planning for BDI agents has recently been considered by several researchers.
Walczak et. al. [13] have described a planning approach using utility functions.
They have introduced the formal planning problem based on domain object
models. Meneguzzi et. al. [5] concentrate on the deliberation cycle for agents and
include a planning component, Graphplan, before intention selection. Sardina et.
al. [14] concentrate on the similarities between hierarchical task network (HTN)
planning [15] and the BDI approach, and also identify a formal operational
semantics for their work.

All the planning problem formalizations above – including our formalization
of operations – are similar to the STRIPS [16] notation. Further similarities with
Walczak et. al. [13] are the use of a utility function and partial plans as heuristics
for planning. Their utility function corresponds to our option selection Rule 2.
Their partial plan heuristic corresponds to our operating instructions of tools.

The two major differences between our work and the previous planning re-
search are the source of the information necessary for planning and the type
of planning. First, in our case, the information regarding the planning prob-
lem, e.g. operations, is retrieved from the environment, whereas before it was
considered within the agent model. In previous approaches, the agent’s internal
world model needs to be modified every time the environment changes, whereas
in our approach the concept layer that belongs to the environment allows the
extrospective agent to adopt its behavior at run time.

Second, planners such as HTN planners return a complete plan from the
initial state to the goal state. Thus, the agent is conservative and does not ini-
tiate any action unless the planning problem is fully solved. Such look-a-head
planning is useful when the success of the plan should be guaranteed before ac-
tion commences. On the other hand, BDI planners adopt a plan-when-needed
approach where planning is only triggered when a sub-goal is encountered in

150 D.L. Acay et al.

the plan description. Such planning does not return complete plans, hence can-
not estimate the future success. Thus, the agent is opportunistic and acts even
though it can not predict possible future failures. If the agent environment is
changing faster than the planning time then plan-when-needed will perform bet-
ter than look-a-head planning [14]. Our planning approach is more conservative
than plan-when-needed since it checks the preconditions of an operation before
attempting it. Yet, our work is more optimistic then HTN planners, since it does
not wait until a full plan is found but only assures that the current step can be
executed.

In the planning sense, the work by Hübner et. al. [17] is more similar to our
approach. Instead of augmenting the BDI cycle with a look-a-head planner, they
use BDI programming patterns to turn the BDI planner into a declarative plan
engine similar to the approach explained in Sec. 5.1. They define programming
patterns for error recovery and retry condition purely based on the Jason pro-
gramming language.

Apart from planning, we also like to remind the reader of the intention han-
dling mechanism in Rao and Georgeff [10] and Cohen and Levesque [12]. As
mentioned above, both works consider conditions for dropping an intention. In
our case, we have introduced an intention suspension mechanism, as we rely on
the tool assumption that guarantees the operation completion event.

8 Conclusion

In this paper, we have argued that agent adaptation can benefit from (i) engi-
neering the agent environment, and (ii) designing agents with the capability to
reason about the functionality of artifacts as alternate means for achieving their
goals.

Drawing from Activity Theory [4], we have identified tools as the basic build-
ing blocks of such a design perspective. We have concentrated on the BDI agent
framework as a particular agent architecture and elaborated some extensions
suited to developing extrospective agents. The extensions concentrate on: (i)
querying the environment to discover tools; (ii) selecting which tool to use; (iii)
planning for orchestration and operation enabling; and (iv) intention manage-
ment during tool use.

Possible future work includes: a formal theory for tool use; the formalization
of the tool concept; and how agents can reason about tools. Selecting a tool is
one aspect that we have considered in this paper. A question we have not yet
addressed is whether an agent can use one tool as a substitute for another. We
believe that consulting situated theories of mind in psychology such as ecological
psychology, distributed cognition, and activity theory will be useful in developing
our ideas further.

Other future work is to consider practical extensions. It will be useful to com-
bine the A&A platform with an extrospective agent architecture to provide a full
MAS development environment. The new framework should then be evaluated
in more complex domains, such as web service management.

How Situated Is Your Agent? A Cognitive Perspective 151

References

1. Weyns, D., Omicini, A., Odell, J.: Environment as a first-class abstraction in multi-
agent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30 (2007)

2. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: An infrastructure for engineering com-
putational environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.)
3rd International Workshop Environments for Multi-Agent Systems, Hakodate,
Japan, pp. 102–119 (2006)

3. Acay, D.L., Pasquier, P., Sonenberg, L.: Extrospection: Agents reasoning about the
environment. In: 3rd International Conference Intelligent Environments (2007)

4. Leont’ev, A.N.: Activity, consciousness and personality. Prentice-Hall, Englewood
Cliffs (1978)

5. Meneguzzi, F.R., Zorzo, A.F., Mòra, M.D.C., Luck, M.: Incorporating planning
into BDI agents. Scalable computing: Practice andexperience 8 (2007)

6. Knublauch, H., Horridge, M., Musen, M., Rector, A., Stevens, R., Drummond, N.,
Lord, P., Noy, N.F., Seidenberg, J., Wang, H.: The Protégé OWL experience. In:
4th International Conference Semantic Web, Galway, Ireland (2005)

7. Bordini, R.H., Hübner, J.F.: BDI agent programming in AgentSpeak using Ja-
son. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS, vol. 3900, pp. 143–164.
Springer, Heidelberg (2006)

8. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons,
Chichester (2002)

9. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: van Hoe, R. (ed.) 7th European Workshop Modelling Autonomous Agents in a
Multi-Agent World, Eindhoven, The Netherlands (1996)

10. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In:
2nd International Conference Principles of Knowledge Representation and Reason-
ing (1991)

11. Gibson, J.J.: The ecological approach to visual perception. Houghton Mifflin (1979)
12. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intel-

ligence 42(2-3), 213–261 (1990)
13. Walczak, A., Braubach, L., Pokahr, A., Lamersdorf, W.: Augmenting BDI agents

with deliberative planning techniques. In: Bordini, R.H., Dastani, M., Dix, J.,
El Fallah Seghrouchni, A. (eds.) ProMAS 2006. LNCS, vol. 4411, pp. 113–127.
Springer, Heidelberg (2007)

14. Sardina, S., de Silva, L., Padgham, L.: Hierarchical planning in BDI agent pro-
gramming languages: A formal approach. In: 5th International Joint Conference
Autonomous Agents and Multiagent Systems, New York, NY, USA, pp. 1001–1008
(2006)

15. Erol, K., Hendler, J., Nau, D.S.: Semantics for hierarchical task-network planning.
Technical report, Univ. of Maryland Institute for Advanced Computer Studies
Report No. UMIACS-TR-94-31, College Park, MD, USA (1994)

16. Nilsson, N.J., Fikes, R.E.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3-4), 189–208 (1971)

17. Hübner, J.F., Bordini, R.H., Wooldridge, M.: Programming declarative goals using
plan patterns. In: Declarative Agent Languages and Technologies IV, pp. 123–140.
Springer, Heidelberg (2006)

An Awareness Model for Agents
in Heterogeneous Environments

Dirk Bade, Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

University of Hamburg, Department of Informatics
Distributed Systems and Information Systems Group

{bade,braubach,pokahr,lamersd}@informatik.uni-hamburg.de

Abstract. One of the constituting characteristics of software agents is
their ability to sense the environment. The reception and processing of per-
cepts is a key element for the agent’s internal reasoning process and essen-
tial for interacting with other entities in the environment. But sensing the
environment is often seen as an abstract concept which is practically more
or less reduced to the simple processing of some domain-specific message
content. In order to be generally applicable among different multi-agent
applications a common model of an environment incorporating an exten-
sible set of entities, distribution protocols, and representation- as well as
query languages needs to be established. Therefore, we propose a generic,
extensible and adaptable model for resource-aware agents. It is organized
into different information channels to help directing the focus of interest
to specific aspects of the environment. Several discovery- and distribu-
tion protocols as well as different representation- and query languages may
be used to satisfy the requirements of dynamic environments. The whole
model is realized with a dedicated service agent on each platform, which
local as well as remote agents can query for environmental information.
This way, repeatedly and redundantly integrating these features into every
agent application can be avoided and agent developers only have to deal
with a simple protocol-API to access the information. Due to our highly
flexible and adaptable model, we can face the heterogeneity of multi-agent
applications operating in infrastructure- as well as mobile ad-hoc networks.

1 Introduction

Agent definitions often cover the notion of an agent’s environment defining an
agent as an entity, which is capable of perceiving its environment through sen-
sors and acting upon this environment through effectors [24,14,10]. In order to
be of any use for an agent or agent application, there has to be a common under-
standing of what constitutes an environment, how the entities are represented
and how the agents can share their knowledge of the environment with each
other. Although these aspects may seem natural and trivial for a model, in most
of todays agent platforms the environment is only modeled implicitly or even
not at all [31].

In order to access some resource, an agent needs to know about its existence,
its address and the interaction protocol to use. These details are often hardwired

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 152–167, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Awareness Model for Agents in Heterogeneous Environments 153

into the agent’s code and hence not adaptable to changes in the environment.
In order to deal with dynamic environments, most agent platforms (e.g. FIPA
compliant platforms) thus offer yellow-page services (e.g. a directory facilitator,
DF [9]), so an agent can lookup appropriate resources at runtime. Drawbacks of
this solution are: 1) resources like databases, documents or hardware components
cannot be directly registered with existing DFs. They need some kind of service
wrapper offered by an agent and 2) in case a required resource cannot be found,
an agent has to search for other yellow-page services by itself.

Therefore, this paper proposes a generic, adaptable and flexible model of the
environment with extensible knowledge distribution protocols and representa-
tions. This model aims to be used in heterogeneous systems, where on the one
hand different kinds of entities need to be considered and on the other hand the
usage of computational resources (e.g. computing power, network bandwidth, re-
liability) needs to be adapted to the current execution environment and context.
For this reason the presented model may be used in real world agent applications
and is appropriate for agents residing on powerful computers in infrastructure
networks as well as agents executed on mobile devices in ad-hoc networks.

The rest of the paper is structured as follows: Section 2 introduces the notion
of environment and our presented environment model. In sections 3 and 4 dif-
ferent ways of representing and distributing information are addressed. Section
5 introduces our prototypical implementation. The related work part in section
6 highlights other environmental models as well as research efforts in the field of
perception, adaptation and ad-hoc networks. Finally, the paper concludes with
a subsumption of our proposed solution and our prospect of future work.

2 Environment Model

The environment of an entity is its surrounding, which has an implicit or explicit
influence on the entity. It defines the properties and conditions under which an
entity exists and provides the processes and principals that govern and support
the exchange of information [21]. On the one hand, the environment can be seen
as the execution environment of an agent, consisting of the execution engine,
the agent platform, the message transport system, etc. On the other hand the
environment relates to all entities external to the agent platform like the agent’s
communication partners, a database to work with, a sensor (e.g. measuring the
temperature) or documents that are processed by the agent. In contrast to the
execution environment, this external view is called the logical or application
environment of an agent [17,18]. There are also a number of other environmental
models that are directed at different aspects of an environment like real world
entities or the social links between agents for example [21], but these are not
further discussed in this paper.

2.1 Entities and Events

The basis of an environmental model are entities and events. An entity is an
abstraction of either an agent, an object or in general a (social) communication

154 D. Bade et al.

partner [21] and may have several descriptive attributes and a unique identifier to
refer to. In [23] a further distinction between goal-oriented (agents) and function-
oriented entities (boundary-, resource- and coordination artifacts) is made. While
agents are autonomous and social acting entities running on a single node within
a distributed system, artifacts offer some kind of function or service, may span
over multiple nodes and can be combined to complex artifacts.

Besides the entities we also have to specify, which kind of environmental events
may be of interest to an agent. Because a model normally does not represent a
static but a dynamic (or in case of e.g. mobile devices and ad-hoc networks highly
dynamic) environment, it is not sufficient to know which entities are present, but
additionally to be informed once their state changes and whether new entities are
available or existing ones disappeared. Such events can be categorized according
to their originator into three different classes [18]:

Environment-originating. This type of event is caused by the autonomous
process [21] of the environment, which reflects some kind of external inter-
vention, e.g. the user shutting down an agent platform.

Entity-originating. If an entity carries out some action, that leads to an inter-
nal state change in some other entity, this state change is said to be entity-
originating. E.g. the sending and receiving of a message may set an agent
into a busy-state, which possibly needs to be announced to other agents.

Self-originating. To this class belongs every event that is not externally
caused, e.g. an agent finishing some calculations or the awakening after a
timeout.

We are not only concerned about entities but as well about events, because in-
formation in a logical environment - in contrast to a natural environment - does
not spread automatically throughout the environment. The information that a
light switch is turned on for example, is automatically sensed by every real-world
entity nearby that is equipped with appropriate sensors (similar to a broadcast).
In a logical environment this information has to be explicitly exchanged (unicas-
ted) between the entities by distributing messages containing the new state of
the switch artifact. Broadcasts are often not applicable in such an environment,
since its scope is restricted to administratively bounded subnets.

In order to model entities as well as entity-related events, we specified a set of
requirements that have to be met by an environment model in order to achieve
the ability of environmental awareness. These requirements will be introduced
in the following.

2.2 Model Requirements

One of the key characteristics of agents is their ability to react to changes in
their environment and thereby adapt themselves to the current context. For this
reason, agents are often deployed in dynamic environments. In order to provide
an appropriate model of the agent’s surrounding we derived a set of requirements
on the basis of such environments’ characteristics. These requirements are as
follows:

An Awareness Model for Agents in Heterogeneous Environments 155

Awareness. Sensing the environment is a continuous process. But as stated
above, changes in a logical environment are effectuated by certain events.
Our proposed model should therefore be able to detect as well as to proclaim
such events.

Heterogeneity. The need to deal with heterogeneity relates to two different
aspects. On the one hand, we face a multitude of different entities in the
environment that somehow have to be represented in the model. On the
other hand the model should be used in different infrastructure settings and
hence be applicable to servers and mobile devices as well as to infrastructure-
and ad-hoc networks.

Adaptivity. Supporting the deployment of the model in different infrastruc-
tures and dynamic environments also requires to adapt the model to specific
conditions. These conditions may affect the way events are processed and
proclaimed in the environment. This requirement depends on the ability to
be extensible.

Extensibility. It should be possible to extend the model in multiple ways.
Firstly, the types of entities represented in the model are to be left open,
because the model should be usable in a wide range of applications. Secondly,
different ways of how to represent an entity should be supported in order
to meet the needs of different applications. And thirdly, the way events are
proclaimed by the model should be extensible as the infrastructure may
require specific forms of information distribution.

Standards. The model should adhere to existing standards for representing and
distributing knowledge in order to seamlessly integrate information coming
from different sources.

Usability. Having a model which meets all the above stated requirements, but
which can be used neither by a developer nor by any user due to its complex-
ity is inappropriate for open systems. Therefore, the interfaces of the model
should be kept simple to allow for easy querying and extending.

In order to meet these requirements, we propose a layered architecture for the
environment model, which is presented in the following.

2.3 Architecture

We identified three layers, that focus different aspects of the model: 1) information,
2) representation and 3) distribution. The architecture is depicted in figure 1. First
of all, one needs to reason about the types of entities (e.g. remote agent platforms,
agents, services or some specific hardwarepossibly needed for execution), that may
be of interest for an agent as well as events, that may occur in an environment, such
as (dis)appearing of entities or changes in the state of an entity. Sensors are respon-
sible for gathering information about such events. These aspects are addressed on
the upper layer of the architecture. To allow directing the focus of interest to spe-
cific kinds of entities, this layer should be organized in a way that combines similar
types of entities and events (cf. section 2.4).

156 D. Bade et al.

The middle layer provides different possibilities to represent an entity. Nor-
mally, information about entities is internally stored in a programming language-
specific unit (e.g. an object or a structure). In order to distribute this information
within a network, these units have to be serializable. But additionally, one might
want to query specific fragments of information or use some kind of logic to de-
rive implicit knowledge from explicit information. Therefore, these units have to
be transformed into some other representation. For this purpose, different rep-
resentation and query languages, transformation services as well as the support
for ontologies are situated in this layer (cf. section 3).

Fig. 1. Architecture of the environment model

The lower layer provides support for different distribution mechanisms. Ex-
changing knowledge among the agents in the environment is done by using
adequate protocols that actively distribute the information. To allow for het-
erogeneity and the adaptation of the distribution mechanisms to the current
context, multiple protocols as well as a generic interface to integrate new pro-
tocols are to be provided (cf. section 4). We distinguish protocols for the use in
infrastructure networks on the one hand, and protocols especially designed for
mobile ad-hoc networks on the other hand.

Before the distribution and representation of information are subsequently
addressed, the organization of the upper layer shall be presented in the following.
According to the requirements, this layer should manage the entity information
in a way that is intuitive to understand for users, easy to extend for developers
and simple to query for other agents.

2.4 Information Organization

In order to direct the perception on particular aspects, the information contained
in the model is structured in a way, that an agent can choose among different
topics. As a metaphor for structuring these kinds of information we used the
notion of channels. The concept of channels (cf. Microsoft’s Active Channel [19])
is intuitive for users and suits the needs of our environment model. A channel
can be thought of as a FIFO-pipe. Channel news are fed into the pipe at one
end, interested entities receive the updates in chronological order at the other
end and may further distribute the news on their behalf. An entity claims its

An Awareness Model for Agents in Heterogeneous Environments 157

interest by subscribing for a specific channel and hence only receives the desired
kind of information, possibly further restricted by using a language-dependent
query and a set of constraints.

In order to integrate more topics (e.g. types of entities) into this model, a
developer simply has to provide some channel-specific classes and register them
with the environment agent. Other agents get to know about these channels
when introducing themselves to the environment agent for the first time or by
subsequent updates of channels the agent already subscribed for.

2.5 Example

To illustrate the usage of the environmental model and the proposed mechanisms
to integrate different distribution and representation methods, an example is
presented in the following.

Image Search. Imagine an agent, whose task is to search for images given some
keywords and constraints. For this task prior knowledge (provided by the user
or developer) of one or more image databases is normally required. This may be
acceptable for static environments, where the agent has permanent access to a
database in its local network or the Internet. But in a dynamic environment the
addresses have to be acquired during runtime using some discovery mechanism.
But this requires additional effort by the developer, as she has to write the code
for accessing different discovery services on her own. Using an environmental
model provided by the local agent platform, the agent only has to query the
model. It is the task of the model to gather environment information from dif-
ferent sources and present it to the agent on request. If the agent is executed
on a mobile device, the model may restrict the ways of gathering information to
save transmission costs or even delay the request until an appropriate and low
priced Internet access is available.

3 Representing Information

In order to distribute information about the state of the environment and its
entities, the agents have to use specific protocols to spread the information. This
implies, that the information is represented in a format, which can be serial-
ized and understood by the communicating parties. Most exchange protocols
use very simple and proprietary languages to describe entities and their state.
Others in contrast apply expressive and standardized languages. But not only
the representation is important, but also the ability to query and filter specific
information. For example, an agent could only be interested in document arti-
facts, the existence of other artifacts does not concern the agent and should not
be revealed to it. In [7] general insufficiencies and problems of commonly used
exchange protocols are described:

Lack of Rich Representations. Commonly used languages lack rich repre-
sentations in order to describe a multitude of different entities and to be
able to derive implicit knowledge from the explicit descriptions.

158 D. Bade et al.

Insufficient Constraint Support. In order to reduce the results of a query in
some way, the usage of constraints should be supported. Often this feature
is not part of a protocol’s language.

Vague Matching. Most protocols try to match a query against the knowledge
base only on a syntactical level, e.g. using string equality. Fuzzy matching
or including semantical information would often lead to better results.

Scarce Ontology Support. Ontologies could be used to get to a common
agreement on terms and statements. When using different exchange pro-
tocols in an interaction the usage of ontologies is all the more important as
they can help to transform one representation into another.

A simple string-based approach is easy to implement and not very resource
demanding, but it suffers from the above mentioned insufficiencies and problems.
But since we do not want to restrict the usage of any representation language, our
model is generic in a way, that commonly used languages are directly supported
and new languages can easily be integrated. To make sure, that two communi-
cating parties understand each other, even if they share no common language,
we nevertheless propose a simple, proprietary string-based language as the least
common denominator.

In order to support different content languages independent of the used dis-
tribution protocol, some kind of content transformation from one language into
another has to be done. For example, an agent may request information about
some service using an RDF query language (e.g. RDQL [26]), but the results
should be returned as a list of simple strings, so that they can be further pro-
cessed easily. The environment agent therefore has to convert the model into an
RDF representation, execute the query and flatten the results to simple strings
in order to wrap them in a response message. Such transformation services are
an optional part of our model, since this can be a complex task. The usage
of ontologies may ease this transformation, but additionally also supports the
understanding and interpretation of exchanged knowledge.

4 Distributing Information

A lot of research has been carried out in the field of information distribution
and a broad variety of protocols have been specified for this purpose (e.g. Jini
[27], UPnP [29], JXTA [28]). These protocols more or less try to find answers to
the following questions: 1) how does a newly available entity announces its pres-
ence in case it does not know about any other entities? 2) What happens if an
entity disappears without explicitly announcing its withdrawal? and 3) How to
efficiently distribute information between peers in a way that is scalable, adapt-
able, reliable and secure? Because our requirements also take the heterogeneity
of the infrastructure into account, we raise one more question: How to deal with
all the existing protocols and standards for infrastructure and mobile ad-hoc
networks (MANETs) ?

Instead of inventing one more proprietary protocol that suits our needs, the
proposed solution adopts existing protocols, that are already in use. Depending

An Awareness Model for Agents in Heterogeneous Environments 159

on the context the protocol that best fits the current requirements is chosen.
In case the agent platform is running on a resource constrained device (e.g. a
smartphone) the model additionally has to take care which protocol to choose in
order to reduce the amount of used resources (e.g. network throughput, processor
cycles, memory) to a minimum.

A protocol serves two different purposes: 1) a protocol may be used to initially
find remote entities, e.g. other environment agents to share knowledge with and
2) to distribute knowledge. For example, when an agent is newly created and has
the task to find a specific service (e.g. an image database) the developer normally
has to tell the agent beforehand how to find such an artifact. In our approach the
agent delegates this task to the environment model which in turn may choose
among several different protocols in order to find the resource by itself. E.g. it
may try to find the artifact directly by sending a multicast, it may use specific
protocols to query a registry about an available service or it may contact other
agents in order to get some help. Precondition for the latter choice is some
kind of address book containing other contacts. When a platform is started, the
agent first tries to find a set of initial contacts, i.e. environment agents running
on remote platforms, with which it henceforth exchanges information about the
environment and any new events. This way, the agent successively also learns
about other available contacts and a network of information providers is spanned.

Fig. 2. Contacting remote environment agents

Figure 2 illustrates the architecture and the process of finding contacts in a
simplified manner. In a first step a newly available agent platform respectively
the newly created environment agent A initially tries to find other contacts (in-
teraction 1). Once a contact has been found the agents may mutually subscribe
to information channels and exchange information (interaction 2). From now on-
wards these two agents inform each other once an event occurs, which impacts
one of the channels the agents subscribed for. In parallel, the newly created
environment agent may register itself with some kind of directory (e.g. a Jini
lookup service, a JXTA peergroup, a directory facilitator, etc.), so that other
agents registered with or querying the directory become aware of the new agent

160 D. Bade et al.

(interaction I). This way, agent C receives the contact details of agent A by the
directory service (interaction II), contacts the agent and exchanges environment
information (interaction III). As part of the environment information, address
details of agent C are forwarded to agent B, which in turn sends a message to
agent C to introduce itself. This way, a virtual network is spanned.

4.1 Protocol Requirements

We specified a set of requirements with which we compared different protocols
and created some metric in order to infer a proposal for a best-suit protocol in
a given context. These requirements were derived from our environment model
requirements and aim at the general characteristics of discovery protocols:

Decentralized Operability. This requirement focuses on the overall architec-
ture of a protocol. In general we distinguish between client/server- and peer-
to-peer protocols. Especially for unreliable MANETs a peer-to-peer approach
is vitally important, because of the absence of a single-point-of-failure. But
also scalability and the locality of information have to be taken into account.

Interoperability. This point comprises two different aspects. Due to hetero-
geneity, protocols and their implementation respectively should be inter-
platform as well as inter-protocol operable. Platform-interoperability is
achieved either by being available for different operating systems or by be-
ing interpreted by a virtual machine. Protocol-interoperability means that
a protocol either uses a standardized representation format or that proxies
or bridges are available to bridge the syntactic gap between two or more
protocols.

Awareness Support. The term awareness needs to be distinguished from the
terms lookup and discovery. While the latter ones describe a single action,
awareness refers to a continuous process, where state changes are pushed to
interested entities rather than actively pulled periodically [16]. When pushing
state changes the receiver is instantly informed about the new state and any
inconsistencies between the actual state of the environment and the state of
the model may be corrected early.

Lease Mechanisms. Such mechanisms are used in order to prevent a system
from finally being blocked by outdated information. Without employing lease
mechanisms withdrawing entities would have to explicitly deregister upon
leaving the system. Since a withdrawal might not necessarily be intended
(e.g. unexpected connection aborts) one cannot rely on proper deregistra-
tions and hence some kind of lease should be supported. This feature is
especially important for highly dynamic environments (e.g. MANETs).

Resource Demands. Considering a highly dynamic environment as well as
resource constrained devices, protocols should only require a minimum of
messages being exchanged and computational resources being used. This
requirement also comprises the need for being scalable.

Scope. Some protocols rely on multicast-messaging, specific routing-protocols
or e.g. DHCP-server for configuration settings, and are therefore restricted to

An Awareness Model for Agents in Heterogeneous Environments 161

being used within local subnets. Other protocols are technology-dependent
in a way, that also restricts their application to locally or administratively
bounded networks (e.g. Bluetooth SDP). In order to be used in an Internet-
scale distributed system, a protocol should therefore support standard
Internet-protocols. Optionally limiting the scope may be desired in order
to restrict traffic to a reasonable amount.

Representation/Filtering. Information about entities must be represented in
a serializable format in order to be distributed in a network. Several stan-
dards exist for this purpose, starting from flattened string representations
to expressive logical descriptions. But information must not only be repre-
sented, but a protocol must also be able to filter information beforehand in
order not to cause too much unnecessary traffic and resource exhaustion.

With these requirements we evaluated some of the most promising proto-
cols for infrastructure as well as mobile ad-hoc networks [1]. Table 1 gives an
overview of our results (restricted to infrastructure protocols). A similar evalu-
ation of protocols to be used in MANETs (e.g. Bluetooth SDP [4], Konark [11],
DEAPspace [20], Card [12], Scalable Service Discovery for MANET [25], etc.)
has also been done. But most protocols are specifically designed to be used in
MANETs with certain characteristics and it is therefore difficult to compare
these protocols with each other. The results of our evaluation show that all of
the protocols have their advantages and disadvantages in certain areas, which
corroborates our approach of adaptively choosing an appropriate protocol at
runtime depending on the context.

Table 1. Evaluation of distribution protocols for infrastructure networks[1]

Decentralized
Operability

Inter-
operability

Awareness
Support

Lease-
Mechanism

Resource-
demands

Scope Represent./
Filtering

Jini O O + ++ - O O
SLP O + - - + O - +
UPnP + + + - - - - +
Salutation ++ O O - - O O +
JXTA ++ ++ - - + O ++ +

- - very bad, - bad, O sufficient, + good, ++ very good

5 Prototypical Implementation

In order to prove that our approach is realizable, we implemented a prototypical
component for the Jadex BDI Agent System [5]. The component is responsible
for creating and updating the model of the environment as well as to make the
information available to any local or remote agents. The component itself (called
resource facilitator, RF) is realized on the application level as a service agent,
running on the agent platform1 (comparable to the FIPA directory facilitator
1 Currently only the Jadex standalone platform as well as Jadex’ adapters for JADE

[2] and DIET [15] are supported.

162 D. Bade et al.

for example). This way, only one instance of the environment model needs to be
managed on every platform.

In a first step we chose the objects, contained in the model, to be the set of
possibly interesting entities, that an agent might want to be aware of. These are
specific for every device and are categorized as follows:

Hardware. The hardware resources of the device, like e.g. processor, memory,
network interfaces, screen, storage and their corresponding attributes like
capacity or current workload.

Software. Besides the hardware, the software infrastructure of a device may
also be of interest. Therefore, the model contains a set of properties of the
agent platform, the virtual machine and the operating system.

Location. If possible, a device also offers some location information. This may
be in the form of a descriptive statement (for the user), a network address,
GPS coordinates, etc. and may be used for example, to choose a nearby
resource among a multitude of offered resources.

Services. If an agent offers a service, this is normally registered with a local
or remote directory facilitator (DF). Other agents looking for this service
have to know the address of the DF in order to get the contact details of the
provider. Information about services as part of the environmental model is
automatically distributed within the environment and is available for every
interested party without the need to know the directory where the service
has initially been registered.

Agents. As agents often want to communicate with other agents in order to
cooperate, they would benefit of information about possible communication
partners. This way an agent could dynamically find counterparts without
the need for the user providing contact details.

Heartbeat. A heartbeat can be thought of as an abstract entity and is therefore
included in the environment model as an alternative to lease mechanisms
(further described below).

As stated earlier we use a channel abstraction to query and distribute the
information. The left-hand side of figure 3 depicts the organization of the model.
Information coming from several local information providers is fed into the ap-
propriate channels. Each channel internally processes the information indepen-
dently for every subscriber. Processing incorporates the execution of queries, the
application of constraints (e.g. limiting the result set) and the transformation
into a desired representation language.

Noteworthy is the above mentioned heartbeat channel offered by every RF.
Using this channel one can force a remote RF to periodically sent a heartbeat (as
long as no other message is sent). This way, one can make sure that the whole
agent platform is still running. Combined with other channel subscriptions the
integrity of nearly every entity residing on a remote platform can be monitored.
For example, to make sure a remotely offered service is available, one can sub-
scribe to the heartbeat channel and the service channel. When no heartbeat is
received, the platform is supposed to be unreachable and hence the service. In
case the platform is still running, but not the service, the RF would have posted

An Awareness Model for Agents in Heterogeneous Environments 163

Fig. 3. Organization of the model into channels

the information through the services channel. As a consequence the heartbeat
circumvents the need for lease-times for entity information. Information about
unreachable devices and their resources respectively is subject for the model’s
internal garbage collection.

In the given example (figure 3) an agent subscribed for the agents-channel in
order to get to know about any other agents in the environment. The subscription
request contains an RDQL-query focusing only on the name and address of other
agents as well as a set of constraints to further straighten the results and finally
an ordered list of supported representation languages in one of which the result
shall be transformed.

When a platform is started, the RF initially collects information about the
local resources by evaluating attributes provided by the user or the virtual ma-
chine and by asking the local directory facilitator and the local agent manage-
ment system. In order to gather information about the external environment and
its entities the RF has to query remote RFs and subscribe to specific channels.
For this purpose, we designed a simple subscription protocol and multiple meth-
ods for initially finding remote RFs (e.g. by multicast, by other contacts and by
protocol specific first-contact mechanisms, e.g. by joining dedicated JXTA peer-
groups or by requesting a Jini lookup service). Additionally, each RF maintains a
list of formerly known contacts which also might be contacted. The subscription
protocol is a two-way protocol, allowing RFs to introduce each other. During
the initiation phase the RFs exchange device information as well as information
about offered channels, distribution protocols and supported content languages.

Additionally, we designed a generic interface for distribution protocols. In or-
der to exchange and query channel information an adapter needs to be written
for every supported protocol. Such an adapter takes the information to be dis-
tributed as well as several attributes like update events, update intervals and
addressees as input and sends the information on demand or at specific points
in time to each subscriber.

In order to deal with the different content languages additional subcom-
ponents are needed. Such a component takes the information stored in the

164 D. Bade et al.

environment model and transforms it into an appropriate representation. This
way, Java objects are mapped into an RDF or OWL syntax, for example, which
is afterwards handled by a protocol specific message wrapper. Additionally, the
RF supports query languages in order to further reduce the information that is
sent via a specific channel. For example, one might only be interested in agents,
whose names have a predefined prefix or devices, which have powerful processors
or a broadband Internet connection.

In a last step, we parameterized all the mechanisms in order to gain adaptation
during runtime. For example, when the throughput of the network connection
decreases, model updates could be made more infrequently and low-bandwidth
protocols could be used instead of the highly demanding ones. Further on, lan-
guage specific information merger are supported, which may be used to merge
delayed channel updates (e.g. no update is sent when a newly created agent is
immediately terminated). In addition we implemented a message pool, storing
channel updates for each addressee so that these can be merged before they are
finally sent as a single message.

The RF-component as well as several subcomponents have already been im-
plemented. The implementation is compatible with the J2SE v1.3 and the J2ME
Personal Profile v1.0 and may therefore also be executed on mobile devices.

6 Related Work

A lot of research has already been carried out in the areas affecting this work.
Agents and their environment for example have been investigated by numerous
researchers. Russel and Norvig [24] as well as Ferber [8] discuss a number of key
properties for classifying environments. Furthermore, Odell [21] distinguishes be-
tween the physical- and the communication environment, lists required principles
and processes and also considers spatial and temporal aspects. A survey of the
state-of-the-art environment models can be found in [30], where additionally the
aspect of mobility and associated place and region abstractions are taken into
account. Unfortunately, none of these authors aim at a practical design of their
proposals and concentrate on the conceptual level. Another prominent model
are the artifact and coordination context abstractions by Ricci and Omicini [22].
Their approach has some similarities with ours, but concentrates on the ex-
ploitation of artifacts supporting the coordination of agents, while we focus on
the infrastructural support for exchanging artifact representations in general.

Mertens et al. [17] address the adaptation in a multi agent system for exam-
ple, but in contrast to our approach the environment adapts itself to the applica-
tions’ needs, which is practically impossible in the open distributed systems we
address. A need for adaptation in dynamic environments is also backed by Chen
and Kotz [6], who state that context-aware applications will be more effective and
adaptive to users’ needs. For the application of agents in mobile ad-hoc networks
standardization proposals have been published by FIPA [3] and Lawrence [13] in
2002. Unfortunately, work on this topic seems to have been discontinued by FIPA.

The reason for designing a new model instead of adapting one of the existing
approaches is twofold. Firstly, most of the research has been done at a conceptual

An Awareness Model for Agents in Heterogeneous Environments 165

level and is not suitable for a concrete design or implementation. Secondly, the
few existing environment models that agent platforms offer, are targeted either at
specific application domains or infrastructures and are therefore not applicable in
heterogeneous environments. Additionally none of the models found in literature
addresses the organization of the model and the distribution of the knowledge
among the agents as well as representation and query languages for information.

7 Conclusion and Future Work

This paper introduced an environment model for multi-agent systems, which
provides agents with an impression of accessible entities in their logical sur-
rounding. The entities may be other agents or some kind of functional artifact.
We opposed no restrictions on the types of entities, whose representations are
contained in the model. Although we suggested a common basis of entities (hard-
ware, software, agents and services) to be included, the model is easily extensible
to integrate other types of entities (e.g. documents, real-world entities, etc.) as
well. In order to focus specific aspects when sensing the environment, the model
is organized in different information channels, which an agent can subscribe to.
The information is then distributed actively between the agents in the environ-
ment by adaptively choosing one or more distribution protocols. The choice is
up to the environment agent, responsible for managing the model, and depends
on the context, which is made up by the user’s preferences and the supporting
hardware infrastructure. Freedom of choice also holds for the kind of representa-
tion used for describing entities. A generic interface allows for using description
languages ranging from simple string-based languages to complex logics.

Due to the flexibility of the proposed model it is suited to be used in hetero-
geneous environments, where on the one hand different types of entities need to
be represented and on the other hand various execution platforms, ranging from
resource constrained mobile devices to fully equipped servers need to be consid-
ered. Because the model relies on different distribution protocols and represen-
tation languages to choose from, it can adapt itself to changing environmental
conditions and thus deal with the dynamics of an environment at runtime.

Our prospect of future work is directed at multiple improvements. One aspect
is the integration of privacy policies making it possible to restrict the access
to certain information. Another aspect aims at different roles for environmental
agents. Most existing peer-to-peer networks are backed by some kind of su-
pernodes, which process more traffic than others in order to unburden resource
constraint nodes in the periphery. We are adopting this approach to enhance
scalability by introducing a contact-based overlay network in which some agents
have a more global view on the environment than others.

Our current research efforts point at the question, of what to do with an envi-
ronment model. One very promising research field are mobile agents, since these
depend on sensing the environment and choosing appropriate execution platforms.
An environment model could provide better arguments for migrating on some
device than a user may possibly do, especially in dynamic environments. In the

166 D. Bade et al.

prospect of mobile computing, ubiquitous computing and ambient intelligence,
this could be a very promising field of research.

References

1. Bade, D.: Kontextabhaengige und eigenverantwortliche migration von software-
agenten in heterogenen umgebungen. Master’s thesis, Uni Hamburg (2007)

2. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. John Wiley & Sons, Chichester (2007)

3. Berger, M., Watzke, M.: Agents in ad hoc environments. Technical report, FIPA,
FIPA00068 (December 2002)

4. Bluetooth. Bluetooth specification v.1.1. (February 2001), www.bluetooth.com
5. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A BDI-Agent System Combining

Middleware and Reasoning. Whitestein Series in Software Agent Technologies, pp.
143–167. Birkhäuser Verlag (2005)

6. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Tech-
nical Report TR2000-381, Dartmouth College, Hanover, NH, USA (2000)

7. Chen, H., Joshi, A., Finin, T.: Intelligent agents meet jini in the aether. Cluster
Computing 4(4), 343–354 (2001)

8. Ferber, J.: Multiagentensysteme - Eine Einführung in die Verteilte Künstliche In-
telligenz. Addison-Wesley, Reading (2001)

9. FIPA. Fipa abstract architecture specification (December 2002)
10. Hayes-Roth, B.: An architecture for adaptive intelligent systems. Artificial Intelli-

gence 72(1-2), 329–365 (1995)
11. Helal, S., Desai, N., Verma, V., Lee, C.: Konark - a service discovery and delivery

protocol for ad-hoc networks. In: WCNC 2003, vol. 3, pp. 2107–2113. IEEE, Los
Alamitos (2003)

12. Helmy, A., Garg, S., Nahata, N., Pamu, P.: Card:a contact-based architecture for
resource discovery in wireless ad hoc networks. Mob. Netw. Appl. (1-2) (2005)

13. Lawrence, J.: Leap into ad-hoc networks. In: Proc. of the Ubiquitous Computing
Workshop, Bologna, Italy, Media Lab Europe (2002)

14. Maes, P.: Artificial life meets entertainment. Commun. ACM 38(11), 108–114
(1995)

15. Marrow, P., Koubarakis, M., van Lengen, R.: Agents in decentralised information
ecosystems: The diet approach. In: Proccedings of the Symposium on Information
Agents for E-Commerce, AISB Convention, York, UK (March 2001)

16. McGrath, R.E.: Discovery and its discontents: Discovery protocols for ubiquitous
computing. Technical report, University of Illinois, Department of Computer Sci-
ence, Champaign, IL, USA (2000)

17. Mertens, K., Holvoet, T., Berbers, Y.: Adaptation in a distributed environment.
Environments for Multiagent Systems, 49–59 (2004)

18. Mertens, K., Holvoet, T., Berbers, Y.: A case for adaptation of the distributed
environment layout in multiagent applications. In: SELMAS 2005, pp. 1–8. ACM
Press, New York (2005)

19. Microsoft. Introduction to active channel technology, http://msdn.microsoft.com
20. Nidd, M.: Service discovery in deapspace. IEEE Pers. Comm. 8(4), 39–45 (2001)
21. Odell, J., Parunak, H.V.D., Fleischer, M., Brueckner, S.: Modeling agents and their

environment. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS,
vol. 2585, pp. 16–31. Springer, Heidelberg (2003)

www.bluetooth.com
http://msdn.microsoft.com

An Awareness Model for Agents in Heterogeneous Environments 167

22. Omicini, A., Ricci, A., Viroli, M.: Coordination artifacts as first-class abstractions
for mas engineering: State of the research. In: Software Engineering for Multi-Agent
Systems IV, pp. 71–90 (2005)

23. Ricci, A., Viroli, M., Omicini, A.: Programming mas with artifacts. In: Bordini,
R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2005. LNCS,
vol. 3862, pp. 206–221. Springer, Heidelberg (2006)

24. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Prentice-Hall, Englewood Cliffs (2003)

25. Sailhan, F., Issarny, V.: Scalable service discovery for manet. In: PERCOM 2005:
Proc. of the 3.IEEE Int. Conf. on Perv. Comp. and Comm., pp. 235–244. IEEE
Computer Society, Washington (2005)

26. Seaborne, A.: Rdql - a query language for rdf. (January 2004),
http://www.w3.org/Submission/RDQL/

27. Sun. Jini architecture spec. v. 2.1. Technical report, Sun Micro., Inc. (December
2001)

28. Sun. Jxta v2.0 protocols specification (2007), https://jxta-spec.dev.java.net/
29. UPnP. Universal plug and play device architecture version 1.0.1. (December 2003),

http://www.upnp.org

30. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for
multiagent systems. In: E4MsAS (2004)

31. Weyns, D., Vizzari, G., Holvoet, T.: Environments for situated multi-agent systems:
Beyond infrastructure. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.)
E4MAS 2005. LNCS, vol. 3830, pp. 1–17. Springer, Heidelberg (2006)

http://www.w3.org/Submission/RDQL/
https://jxta-spec.dev.java.net/
http://www.upnp.org

Infrastructure for Forensic Analysis of
Multi-Agent Systems�

Emilio Serrano and Juan A. Botia

Universidad de Murcia, Murcia, Spain
emilioserra@um.es, juanbot@um.es

Abstract. The contribution of this paper is an intent to state the basis
for forensic analysis of multi-agent system (MAS) runs. It proposes a gen-
eral approach for open source agents platforms. It consists on techniques
to store, order and represent messages based on conventional observation
of the events in a distributed system, particularized for the case of MAS
in which agents can be distributed across a number of machines or even
be mobile.

Keywords: Forensic analysis, debugging multi-agent systems.

1 Introduction

The effort made in the context of this work is focused on preparing the necessary
infrastructure to perform testing activities within the process of multi-agent sys-
tem (MAS) software development. Software testing [19] is in charge of assessing
the validation of a software. Testing is about detecting errors in code and debug-
ging is in charge of locating and fixing the errors. Hence, testing MAS software is
about performing tests in agents, groups of agents or involving the whole MAS
with the purpose of finding anomalies in the behavior of agents.

In this paper, we define a general approach to provide forensic analysis of
runs in MAS developments. Forensic or post mortem analysis is usually found
as a term, in the context of software projects management [2,21] but also on
distributed systems analysis [8] and security [22]. We reuse it here to study the
correctness of a MAS software. Thus, post mortem analysis of a MAS software is
the task in charge of studying the results of a software test with the purpose of
finding anomalies or undesired behavior which appeared in the execution. Notice
that it is possible that, for complex systems as a MAS, wrong behavior is not
detected if the software analyzed has enough complexity or the analysis is not
powerful enough to do it.

� This research work is supported by the Spanish Ministry of Education and Science
in the scope of the Research Project TIN-2005-08501-C03-02 and by the Project
“Análisis, Estudio y Desarrollo de Sistemas Inteligentes y Servicios Telemáticos”
through the Fundación Séneca within the Program “Generación del Conocimiento
Cient́ıfico de Excelencia”.

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 168–183, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Infrastructure for Forensic Analysis of Multi-Agent Systems 169

We will address here how to built a framework for any agent based platform
which possibilities forensic analysis related tasks. This is the first step to pro-
vide a general framework for MAS testing and validation. However, this paper
will not cover aspects related with testing or validation. It will cover only de-
tails related to providing the necessary infrastructure for forensic analysis. In
order to do that, we need the necessary means to capture and represent what
happened in MAS runs generated by software tests. Like in any other conven-
tional distributed system, observable events are the only source of information
we have to compound the global picture (i.e. a snapshot from now on) for MAS
too. Here, we have messages among the most important events we can perceive
and use to create snapshots. Moreover, like in other distributed systems, we will
arrange them by using logical clocks [13]. The phases of this task are (1) includ-
ing logical clocks inside messages, (2) to capture messages and log them for a
posteriori analysis, (3) select an interesting set of messages from the whole set,
(4) order them and (5) analyze them. The design of these phases for MAS is a
delicate task. This is due to the fact that agent based software is continuously
evolving. Thus, to achieve genericity (i.e. methods or techniques which are valid
for a number of different agent platforms) is not trivial and needs specific tech-
nologies. Besides, ordering messages in any agents platform, considering that we
could even have mobile agents is a complex issue.

In this paper, we introduce a generic approach for capturing, ordering and
representing messages exchanged among agents in a run, i.e. the necessary el-
ements to do a post mortem analysis. This approach does not depend on a
specific agent platform. The main requirement we have is that source code must
be available for slight modifications. This modifications are a consequence of the
method we use: aspect oriented programming. Of course, the proposal also has
some limitations that will be showed.

The rest of the paper is organized as follows. We will put this research in its
context in section 2. Section 3 includes the techniques proposed. This techniques
are illustrated with the example in section 4. To finish the paper, we offer the
conclusions and the works we are developing now in section 5.

2 Related Work

There is little work on postmortem analysis on distributed systems (or multi-
agent systems) when it is applied to system development [10]. However, we can
find a number of works on trace based analysis applied in the field of intrusion
detection. For example, the work in [12] shows an approach that targets intrusion
detection in computer networks and models intrusion patterns using Colored
Petri-Nets. The approach is very interesting, but it still lacks an implementation
that shows its efficiency. Another work is that which appears in [7]. In this,
flow graphs are used to represent potential communication activity among the
processes of a distributed system. Properties, meanwhile, are represented using
quantified regular expressions (QRE). This approach requires deep knowledge
of tiny details in the processes of the tested system. Finally, a similar approach

170 E. Serrano and J.A. Botia

is that used in the GrIDS tool [22]. This system is capable of detecting large
scale intrusion attacks on network systems. The most interesting part is that it
builds activity graphs of the executions of the various processes in the system
by monitoring them individually. After this, graphs are analyzed using some
reference rules to diagnose an intrusion. We follow the same approach: capturing,
ordering, representing events and detecting wrong behavior. We focus on MAS
software instead.

Papers [3] and [25] present different approaches to visualize the collected
traces from the activity of a distributed system. The works [9] and [11] de-
scribe an approach, centered on the concept of lattice, to perform trace checking
in distributed systems. Following this approach, a lattice is built, based on the
monitored events and the relations between them, to represent the system under
test. The lattice is then used in a model-checker to verify the behavior of the
system against a desired property. In [15], a method of specifying abstraction
hierarchies to define level-wise views of a distributed message-based system is
outlined. This method utilizes event-pattern mappings and complex events to
represent a system’s behavior.

We have detected some shortcomings in the visual representation of events
captured in conventional distributed systems that we will try to solve here. For
example, the software of [14] uses sequence diagrams to represent messages.
We will argue in this paper that these diagrams are inadequate in some cases
and offer an alternative. Another example software [6] uses space time diagrams
which need totally ordered events. In MAS, we have no global time reference,
thus we can not order messages by using a total order. We propose here how to
deal with this limitation.

With respect to methods available for representing partial orders, discrete
mathematics provides mechanisms for obtaining simplified visions of a relation-
ship of order, i.e. the so called Hasse diagrams [20]. The algorithm to generate a
Hasse diagram is not affordable when the number of events is high. In our case,
we might generate a high number of messages. We will try to alleviate this with
our proposal.

There is some previous work on capturing, ordering and representing mes-
sages exchanged in MAS software [24]. This work covers aspects related with
capturing, ordering and representing messages exchanged in a MAS. However,
when capturing and ordering, the approach does not offer any generic approach.
Mobile agents are not considered there as we do in this approach. With respect
to visual representation of messages, they define and use causality diagrams. But
they rely on the existence of previously defined interaction protocols as it is as-
sumed that the platform is FIPA compliant. We offer an approach for any agent
platform (with some requirements), i.e. any agent communication language.

3 Global Snapshots Generation of MAS Tests

In this section we introduce how Aspect Oriented Programming can be used to
capture message sending and receiving events in MAS software tests. Once this

Infrastructure for Forensic Analysis of Multi-Agent Systems 171

is explained, we present how logical clocks can be used to obtain a partial order
of messages collected from MAS tests.

3.1 Generic Collection of Messages in an Agents Platform

Aspect oriented programming (AOP) is intend on isolating different aspects
of applications in order to treat them separately and in a modular manner.
Thanks to this approach, we get more adaptive, understandable and reusable
developments. Though AspectJ is the most popular framework for programming
with aspects in the Java programming language, we also have available others
like AspectC, AspectC++, AspectC#, etc) for C, C++ and C# respectively.
Hence, the following discussion, although it is done with the Java language, it
is also applicable to the other languages mentioned. Hence, we can apply the
approach to virtually any agent platform with modifiable and compilable source
code.

Let us suppose that, without loss of generality, in the source code of the plat-
form we have a class called Agent. Let us suppose also that there is a class
which represents ACL messages, ACLMessage and that the agent sends and re-
ceives messages through send() and receive() methods (i.e. just like Jade
does). Notice that this is only a convention used to properly explain the ap-
proach. Analogous structures can be found in many platforms. We see messages
collection as an aspect. Hence, locating the parts of the code where messages are
sent and received is critical. Both locations of source code are called Jointpoints
in the AOP terminology. A jointpoint is a location of source code in which we
need to connect an aspect (e.g. a method call, an exception or modifying the
value of a variable). Once we have this, we need to define Pointcuts. A pointcut
in AOP terminology defines which aspects will be applied to each jointpoint. Let
us go directly to the following example:

pointcut callSend(Agent ag,ACLMessage msg):
this(ag) && execution(* send(..)) && args(msg);

pointcut callReceive(Agent ag):
this(ag) && execution(ACLMessage receive(..));

whose first line states that whenever an Agent calls send() method with an
ACLMessage object as argument, the method callSend() will be called. At the
second line, the explanation is analogous. Notice that, due to the use of powerful
regular expressions, we can define pointcuts for any situation and platform. Once
pointcuts are defined, we need now to specify the functionality for each, this is
what is called an advice. Its structure would be like this

before (Agent ag,ACLMessage msg): callSend(ag,msg){
mySniffingCode...}

after (Agent ag) returning (ACLMessage msg): callReceive(ag){
mySniffingCode...}

in which we define an advice just before sending and just after receiving a mes-
sage. Before sending the message we can define all which is related to processing

172 E. Serrano and J.A. Botia

logical clocks of sending and receiving events. After receiving a message we post-
process clocks and store the message.

Of course, the proposal exposed has weaknesses. For example it is necessary
to have an aspect oriented language associated with the language of the plat-
form. Therefore the proposal depends on the developers of that aspect oriented
language and it depends on the success of this paradigm. Another inconvenience
is that the proposal need the source code of the platform. And therefore, the
proposal depends on the developers of that platform.

Disadvantages included, the proposal outlined here gives us a significant de-
gree of genericy (it isn’t a total genericy, obviously) to make a forensic analysis
for the debugging of a MAS.

3.2 Message Storing and Ordering

In this section, we will explain the advices we have just mentioned above. The
first thing we need to start working on is a centralized storage mechanism that all
agents can access. For this, we propose the use of a relational data base (RDB)
server (e.g. we have used mySql and Hypersonic) as a central storage mechanism.
There are at least two reasons which support this recommendation. In the one
hand, a MAS might be actually distributed (i.e. it could be executed through a
number of machines). JDBC is actually an option for distributed access to almost
any RDB available. In the other hand, a RDB is a powerful tool for querying
data. This functionality is very convenient, as the reader will understand soon
(please see section 3.3).

It is important, at this point, to consider what to store in the RDB. It must
be noticed that in the process of capturing and ordering messages, there is no
possibility of having global variables (e.g. to provide global identifiers for agents
of messages) if they are not stored in the DB. Notice that no state information
can be included inside an advice. Hence, if an agent moves from a machine to
another, no global variable can be manipulated with success inside the advice.
For example, we can not use logical clocks with success if they are not stored in
a central server before the agent moves.

Now, we need to order messages as they are collected from the MAS run. As
it is explained in [13] by Lamport, we can use logical clocks to order events in a
distributed system. When we have a number of processes in a distributed system
(i.e. agents in this case), we can use a counter of events for each process and
event (i.e. message).

We will assign a logical clock for each captured message. In fact the original
logical clocks [13] aren’t going to be used, an extension of them is used: the
vector clocks [16]. These vectors are an array of integers (each integer in the
array refers to an agent in the MAS). For a pair of such arrays, we can define
order operations. More formally, for each pair of vector clocks V1 and V2, we
define two simple operations, partial order

V1 ≤ V2 iff ∀i : V1[i] ≤ V2[i] with 1 ≤ i ≤ n,

Infrastructure for Forensic Analysis of Multi-Agent Systems 173

and strict order

V1 < V2 iff V1 ≤ V2 ∧ ∃i : V1[i] < V2[i] with 1 ≤ i ≤ n

Given two events e1 and e2, whose logical clocks are Ve1 and Ve2 respectively,
then we say that e1 occurs before e2 iff Ve1 < Ve2 .

And now we introduce the preprocessing that must be executed by agents
before sending messages. Anytime an agent ai sends a message m, it will execute
the following actions:

1. It will increment i-th position of its logical clock lcai by one, obtaining lc′ai
.

2. Assign lc′ai
to m.

3. Store lc′ai
as the last logical clock stored for ai.

Let us denote this procedure with addClock.
And now a postprocessing that must be executed by agents anytime they

receive a message. When ai receives a message m from agent aj , it will perform
this actions:

1. It will obtain obtain lcaj from m
2. It will increment i-th position of its logical clock lcai by one, obtaining lc′ai

.
3. Then lc′′ai

← max(lc′ai
, lcaj)∀j with 1 ≤ j ≤ n, being n the number of agents

in the system
4. Store lc′′ai

.

Let us denote this procedure with updateClock.
After all messages are stored, they have to be ordered by using the clocks

and the appropriated algorithm (please see section 3.4). Thus, we need to assign
global identifiers to messages. In this work, we rely on the DB to generate them
when they are stored. An illustrative example of how to store messages into a
relation can be found in table 1. It corresponds to a contract net conversation.

Now, we can complete advices defined above with addClock, updateClock
and storeMessage.

before (Agent ag,ACLMessage msg): callSend(ag,msg){
addClock(ag,msg)

Table 1. Stored messages example

Message Id Clock Sender Receiver Performative
84 85,29,23,30 cliente pValenttino cfp
85 86,29,23,30 cliente pDavinci cfp
86 87,29,23,30 cliente pAntonio cfp
87 87,31,23,30 pAntonio cliente propose
88 85,29,26,30 pValenttino cliente propose
89 86,29,23,33 pDavinci cliente propose
90 91,31,26,33 cliente pAntonio reject
91 92,31,26,33 cliente pValenttino accept
92 93,31,26,33 cliente pDavinci reject
93 92,31,28,33 pValenttino cliente inform

174 E. Serrano and J.A. Botia

}
after (Agent ag) returning (ACLMessage msg): callReceive(ag){
updateClock(ag,msg)

}

To include logical clocks in messages implies a reduction of performance of
the MAS (especially when there are many agents and the clocks are very large).
Likewise, the agents must send a copy of the messages received to the database.
However, the reduction isn’t dramatic because the agent does not have to wait
for data from the server (except the first moment of its execution in a container).
Moreover, in pathological large systems, database could be a bottleneck. Then,
there won’t be problem in distributing the database on multiple servers because
the order of the messages is not the order for insertion (logical clocks give the
order). In this case, when an agent begins its implementation in a container, it
must ask all servers which is its maximum clock stored.

Other disadvantage of the proposal is that it is necessary to specify the maxi-
mum number of agents in the system (to set a logical clock size). In principle this
should not be too restrictive because this proposal consider making a forensic
analysis of a MAS that we would have developed (and we would want to debug),
and the developer should know this number approximately.

In principle, this is all that we need, roughly speaking, to introduce logical
clock management on a Java based agent platform, by using aspects and a RDB.
We will illustrate how this works with an example. Let us suppose that we
have two agents a1 and a2. Agent a1 stays in a container (or the corresponding
execution environment of the agent platform) and a2, after a while, moves from
one container to another. Events and messages exchanged appear in figure 1.
Initially, a1 is located at container 1 and a2 at container 2. First events which
come out from the RDB are labeled with 1 and 2. They correspond to the
generation of logical clocks for two agents which start running (i.e. a1 and a2).
At point three, a1 sends a request message, let it be denoted with m, to a2.
Hence, the logical clock of m is (1, 0), the same for the internal logical clock of
a1. The same goes for point 4 when a2 sends a request to a1. At point 5, a2
receives the first message from a1. Now, the new logical clock is (1, 2) and a copy
of it is sent to the RDB. At point 6, a1 receives the first message sent from a2
with clock (0, 1). The new clock is (2, 1). Again, a copy is sent to the RDB. At
points 7 and 8, agent a2 moves to container 3. Before moving, it sends its clock
(1, 2) to the RDB. Once it arrives to the new environment, asks the RDB for
its clock and position within it and recovers both. The rest of the figure can be
analysed analogously.

3.3 Selection of Subsets of Messages

We have to be prepared for working with a large-scale MAS, in which there it can
be an enormous amount of messages to be exchanged, thus stored. For this, we
need selection mechanisms to select the appropriate subset of messages. Think,
for example, in the MAS we use in section 4, there is an agent which is in charge

Infrastructure for Forensic Analysis of Multi-Agent Systems 175

Fig. 1. MAS test with 2 agents

of presenting a graphical view of the rest of the MAS. Hence, its communication
activity with the rest might be irrelevant in some post mortem analysis.

We will introduce here two simple filters we apply and that can easily be
implemented in a RDB with SQL. Let A be the set of all agents in a run and
M the set of messages exchanged. We will define sender(m) as a function which
obtains the sender of m ∈ M , and receiver(m) for the receiver.

The first filter we use, considers only a subset of messages Ac ⊆ A as an
argument. We represent it as

Mc ← {m ∈ M : sender(m) ∈ Ac ∨ (∃a ∈ Ac : a ∈ receivers(m))},

i.e., we consider only messages sent and/or received by agents in Ac.
In other cases, the developer will need to do a progressive analysis, i.e. an anal-

ysis which starts focusing in one or a couple of agents and then, gradually, more
agents are incorporated. Incorporation criteria can be adding those agents which
are reachable through others in the agents hierarchy induced by communication
links. For example, let a1, a2, and a3 be agents. There are acquitances defined,
such that a1 only interacts with a2, and a2 only interacts with a3. Therefore,
if there is interest in studying the behavior of a1, a progressive analysis would
begin by firstly studying messages exchanged between a1 and a2. Then, it would
expand to study those exchanged by a1 and a2 together with those exchanged
by a2 and a3. The second filter performs this task.

The second filter works by considering a number of agents, let us denote it
with Ac ⊆ A again, and a depth, d ∈ {1, 2, . . .}. For this, we recursiverly define
the procedure

grow(Ac, 0) = Ac

grow(Ac, n) = grow(Ac, n − 1) ∪ As ∪ Ar,

where As ⊆ A is the set of agents which send messages to agents in Ac, and
Ar ⊆ A is the set of agents which receive messages from agents in Ac. After we
grow Ac, we have

Mc ← {m ∈ M : sender(m) ∈ Ac ∧ (∃a ∈ Ac : a ∈ receivers(m))}

176 E. Serrano and J.A. Botia

3.4 Message Order Induced by Logical Clocks

By using logical clocks to order elements in M , we induce a binary partial order
relation in (M × M). In particular, we are interested in an irreflexive partial
order (also called strict partial order). Remind from section 3.2 that V1 ≤ V2
iif V1 ≤ V2 iff ∀i : V1[i] ≤ V2[i] with 1 ≤ i ≤ n. As an explanation of why
we are interested in the irreflexive partial order, please have a look at the graph
represented on the left in figure 2. We see that V1 ≤ V2. In the other hand, V2
and V3 are not related by ≤. Notice that this graph is cyclic as the relation ≤
is reflexive. Actually, we are interested in a strict partial order, i.e. for a pair of
clocks V1 and V2,

V1 < V2 iff V1 ≤ V2 ∧ ∃i : V1[i] < V2[i] with 1 ≤ i ≤ n (1)

as it is more precise for our purposes.

V1 = 0, 0
V2 = 1, 0
V3 = 0, 1
V4 = 1, 1

Fig. 2. Four clocks at the left, a simple partial order (centre) and irreflexive partial
order (right part)

Now, we will present an algorithm to generate, from a set M of messages
with their corresponding logical clocks, we denote with lc(m) the logical clock
of m, a graph which represents the partial order represented by the clocks. This
new graph, let it be dented with PO = (V, E) has a set of nodes V and edges
E. Each v ∈ V will have an identifier, id and a content (i.e. clocks and other
needed information). We denote with id(m) the identifier of message m and with
content(m) the content of m. We will define successors(v), as generating the
set

{v2 ∈ V : ∃e = (v, v2) ∈ E},

and we use it to obtain successors of any v ∈ V in PO. We also use a func-
tion called add(L, v, v′) which adds a new edge from v to v′ and introduces it
into the list of edges L (if it hasn’t already been inserted). Another function
update(L, L′, v, v′) invokes and add(L, v, v′) and adds v′ to the list of nodes L′

(if it hasn’t already been inserted). The last one is remove(L, v, v′) which re-
moves the edge from v to v′ of L. We will also introduce initially a node r whose
logical clock is such that lc(r) ≤ lc(m) ∀m ∈ M .

Infrastructure for Forensic Analysis of Multi-Agent Systems 177

The algorithm appears in figure 3. It takes as an input a list of nodes in
V and a partial order for the set. It generates the set of edges, E so we have
PO = (V, E) at the end. With this algorithm we can create acyclic graphs
representing any strict partial order. Different strict partial orders available will
vary on the definition and initialization of V .

Of course, the sort messages by logical time is going to have a cost on com-
putation time bigger than if a lineal order is considered. However, we must keep
in mind that a forensic analysis needs to sort messages only once. In addition,

1 edges ← ∅ // l i s t o f edges
2 nodes ← r // l i s t o f added nodes
3 for each v ∈ V { // f o r each ve r t e x to i n s e r t
4 for each va ∈ nodes such that v < va {
5 /∗ f o r each ve r t e x va a l ready inser ted , wi th v < va

∗/
6 succ ← sucessors(va)
7 i f succ = ∅
8 update(edges,nodes, va, v) // there aren ’ t successors

, edge va−>v
9 else{// there are succ e s so r s
10 insertedOrWait ← false
11 /∗ insertedOrWait t rue i s t ha t v has been

i n s e r t ed or we have to wai t f o r the next
va l ue o f va∗/

12 for each vs ∈ succ {
13 i f vs < v { // then vs < v < va , edges

va− > v− > vs

14 update(edges,nodes, va, v)
15 insertedOrWait ← true //v has been

i n s e r t ed
16 remove (edges , va ,vs)
17 add(edges , v ,vs)
18 }// end i f
19 else i f v < vs insertedOrWait ← true
20 /∗v w i l l be i n s e r t ed when va=vs or l a t e r ,

wai t ∗/
21 }//end foreach
22 /∗ i f insertedOrWait i s f a l s e , then every

successor i sn ’ t comparable wi th v , edge
va− > v∗/

23 i f (not insertedOrWait) update(edges,nodes, va, v)
24 }//end e l s e
25 }//end foreach
26 }//end foreach
27 E← edges

Fig. 3. Algorithm to create a partial order graph

178 E. Serrano and J.A. Botia

the algorithm is also valid to sort the messages when they occur on the fly. For
this task, machines can work asides.

As an example, please remind conversation represented in table 1, and consider
now the order obtained by using clocks in figure 4. In this graph, we can see
how the client generates three cfp labeled messages. They are actually ordered
(i.e. messages 84, 85 y 86). Notice that propose messages are not sortable (i.e.
messages 87, 88 y 89), although they are effectively later to the cfp messages. In
the other hand, propose messages are sent before first reject-proposal (i.e.
message 90)

Fig. 4. A fipa-contract-net conversation graph with an irreflexive partial order between
sent and received events (3D view on left, 2D view on right)

3.5 Valid Orders for Classic Representations

The usual way to represent a conversation is by using a sequence diagram al-
though there are other representations like these proposed by El Fallah et al.
[17] and Dooley graphs [23], to put some examples. We would like to emphasize
that sequence diagrams are not valid for descriptive representations because they
assume that all messages are comparable (i.e. there exists a total order relation-
ship between the set of messages in a run). As we know, this is not possible in
a distributed system. And a MAS is a distributed system.

Anyhow, if we still need to represent sequence diagrams by using the frame-
work we are proposing, we should be able to create a totally ordered set of
messages from a strict partial ordered graph, MPO = (V, E). This total order
is classically called topological sorting. With the M of MPO we mean that V

Infrastructure for Forensic Analysis of Multi-Agent Systems 179

is compound by messages. Until now, it was compound by sent and received
events. This is tricky as for any partial order, there are a number of total orders
we might create, and we have to take into account that only one of them corre-
sponds to what actually happened. Moreover, we do not know (actually we can
not know) which one is that one that actually happened.

More formally, if we have a MPO = (V, E), then we pursue to have a
V MPO = v1, v2..., vn, such that V = {v1, v2...vn} and v1 < v2... < vn. To ob-
tain that, the only thing that can not happen is that for any v1, v2 ∈ V , if by
following the MPO we have that v1 < v2, them we have that in the V MPO we
have v2 < v1. In order to achieve that, for each v ∈ V appearing at the V MPO,
all its predecessors appear before. Simply, we create a list of nodes in which, for
each v in that list, all v′ < v appears before in the list. It must be pointed out
that (1) there is a loss of information as we generate a total order which could
not correspond to what exactly happened but still be useful for post mortem
analysis, and (2) there are a number of valid total orders. For example, remind
figure 4 (right part) where we have message identifiers appearing in the strict
partial order. From this graph, we can obtain the following valid total orders

– 84, 85, 88, 86, 89, 87, 90... (making a breadth-first search and taking into
account the restriction).

– 84, 85, 86, 87, 89, 88, 90...(making a depth-first search and taking into ac-
count the restriction).

– 84, 85, 88, 86, 87, 89, 90...(other)

which would correspond to three different sequence diagrams.

4 Fire Example

In this section, we will see an example of use for the framework we propose. In
this system, we represent a three floors lab in which workers (possibly hundreds
of them) can freely move. The implementation is done for the Jade platform and
each floor is represented by a Jade container. Hence, when a worker moves from
floor to floor, it actually moves from a container to another. Each container is
simulated by a different java virtual machine. Notice also that all the forensic
analysis used in this example is available in ACLAnalyser.

Besides agents representing workers (i.e. user agents executed in PDAs), there
are two special agents which communicate with user agents. The first one is
the monitor, in charge of maintaining an approximate view of the system by
receiving notifications of changes in location, from user agents. The second one
is the coordinator. In case of fire, it will coordinate the evacuation process. It will
choose a concrete worker as a hero in charge of picking up the fire extinguisher
and use it. After finishing extinguishing the fire, it will notify the coordinator.
During this process, the coordination will order agents located in floors above
the fire to wait. For others located in floors above the fire, they will receive the
order to get out.

The fipa-request protocol is used to notify location by user agents as ini-
tiators and monitor as participant. We have three user agents worker1 (at the

180 E. Serrano and J.A. Botia

Fig. 5. Order Messages Graph

second floor), worker2 (at the first floor) and worker3 (at the third floor). Fire
is produced in the second floor. Hence, worker2 must get out and worker1 will
be the hero.

In figure 5 we see the order graph for messages exchanged among workers and
the coordination. Communication with the monitor is not considered. We have
filter the set of all messages M by using the second method of filtering where
d = 0 and Ac = {worker1, worker2, worker3, coordinator}.

4.1 A Post Mortem Analysis

Capturing messages from the MAS allows a post mortem study of the system.
In fact, in this example, there is apparently nothing wrong. We will see that by
looking at messages ordering we will detect some mistakes in the design.

In the graph presented above, we see how the coordinator sends successive
messages to worker1, worker3 y worker2 (with ids 273, 274, and 275 respec-
tively). They are for ordering to get out, to wait and to pick up the fire extin-
guisher respectively.

Thus, we see that the coordinator is asking a worker to get out before receiving
the notification of fire extinguished. It could be possible that the designated hero
does not respond. In this case, other possibilities should be considered (e.g. other
agents should be aware of this). Thanks to this graph, we discover this subtle
mistake.

But, if we do not take into account concrete message semantics, is it still the
graph useful and informative? The answer is yes. If it occurs that a node v is not

Infrastructure for Forensic Analysis of Multi-Agent Systems 181

reachable from other node v′, this means that they are not related. For example,
as we do not have a path between nodes 312 and 321 and vice versa, there is
no relation between them. We can confirm this by looking at the meaning of
messages

– 312: fire is already extinguished
– 321: worker2 (located in a floor below the fire) is already gone.

Effectively, by looking at the corresponding logical clocks,

– 312, r1=69,58,75,294,10
– 321, r2=66,58,81,297,10

we can neither say that r1 < r2, nor r2 < r1. By using a sequence diagram to
represent the example, we should represent one before the other. In this case,
it is very different to notice that the worker is gone before or after the fire is
extinguished when we study the system behavior.

5 Conclusions and Future Work

We have shown a solid framework to capture, order and represent messages ex-
changed in a run of a MAS software. This is the first phase to debugging, valida-
tion and verification of MAS software: a post mortem analysis. More specifically,
we have shown a combination of logical clocks theory with aspect oriented pro-
gramming for the capture and the order, which is accomplished by an algorithm
proposed in the paper. All these features are implemented in ACLAnalyser1.

One of our future work is implement this framework in multiple platforms as
Jadex, 2APL and Jason. We also intend to enhance the elements that are caught
and their use to exploit the particularities of MAS compared to distributed
systems.

We pursue to improve the expressibility of the order graph. At the end, any
debugging tool used in the context of testing will be based in ordered messages
represented by an order graph. Thus, such a graph own all information we need.
However, we need to work in the usability of the graph to detect patterns of
agents and group of agents in it.

One of the ways to improve expressibility would be to group nodes belonging
to the same conversation into other kind of nodes and, again, order such new
nodes. In this manner, we would have a graph of conversations, a more abstract
view.

Another necessary future work is the design of a mechanism to generate
causality diagrams starting from the order graph. They are a powerful tool for
error diagnosis. We have already work in this topic [24]. However, in these pre-
vious works we rely on the existence of patterns for conversations (i.e. formal
descriptions of conversations). In this case, we assume that there is no such
concept of predefined conversations. We gain here in applicability.
1 You can download it at aclanalyser.sourceforge.net.

182 E. Serrano and J.A. Botia

The most important future work we are heading to is advancing towards
automatic methods for debugging, validation and verification of MAS software.
Currently, we are working on extending the INGENIAS metamodels to allow
specifying tests. Post mortem analysis will be a powerful mechanism to inspect
and inform about what happened in tests.

References

1. Iglesias, C.A., Garijo, M., Centeno-González, J.: A Survey of Agent-Oriented
Methodologies. In: Proceedings of the 5th International Workshop on Intelligent
Agents V, Agent Theories, Architectures, and Languages, July 04-07, pp. 317–330
(1998)

2. Birk, A., Dingsøyr, T., Stlhane, T.: Postmortem: Never leave a project without
it. IEEE Software, special issue on knowledge management in software engineer-
ing 19(3), 43–45 (2002)

3. Black, J.P., Coffin, M.H., Taylor, D.J., Kunz, T., Basten, A.A.: Linking Specifi-
cations, Abstraction, and Debugging., CCNG Technical Report E-232, Computer
Communications and Network Group, University of Waterloo (November 1993)

4. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E.: Multi-Agent Pro-
gramming: Languages, Platforms and Applications. Multiagent Systems, Artificial
Societies, and Simulated Organizations, vol. 15. Springer, Heidelberg (2005)

5. Bot́ıa, J.A., González, J.C., Gómez-Sanz, J., Pavón, J.: The INGENIAS Project. In:
6th International Workshop on Practical Applications on Agents and MultiAgent
Systems. IWPAAMS 2007, Salamanca, Spain (2007)

6. Carr, S., Fang, C., Jozwowski, T.R., Mayo, J., Shene, C.-K.: ConcurrentMentor:
A Visualization System for Distributed Programming Education. In: The 2003
International Conference on Parallel and Distributed Processing Techniques and
Applications, June 23-26, pp. 1676–1682. Las Vegas, Nevada (2003)

7. Dwyer, M., Clarke, L.: Data Flow Analysis for Verifying Properties of Concurrent
Programs. In: Proc. of ACM SIGSOFT 1994, New Orleans, LA, USA (1994)

8. Fang, W., Wang, C.-L., Zhu, W., Lau, F.C.M.: PAT: a postmortem object ac-
cess pattern analysis and visualization tool. In: IEEE International Symposium on
Cluster Computing and the Grid, CCGrid 2004 (2004)

9. Fromentin, E., Raynal, M., Garg, V., Tomlinson, A.: On the Fly Testing of Regular
Patterns in Distributed Computations. Internal Publication # 817, IRISA, Rennes,
France (1994)

10. Hallal, H., Petrenko, A., Ulrich, A., Boroday, S.: Using SDL Tools to Test Proper-
ties of Distributed Systems. In: Formal Approches to Testing of Software (FATES
2001), Workshop of the International Conference on Concurrency Theory (CON-
CUR 2001), Aalborg, Denmark, August 21-24 (2001)

11. Jard, C., Jeron, T., Jourdan, G.V., Rampon, J.X.: A General Approach to Trace-
checking in Distributed Computing Systems. In: Proc. IEEE Int. Conf. on Dis-
tributed Computing Systems, Poznan, Poland (June 1994)

12. Kumar, S., Spafford, E.: An Application of Pattern Matching in Intrusion De-
tection. Technical Report 94-013, Purdue University, Department of Computer
Sciences (March 1994)

13. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

Infrastructure for Forensic Analysis of Multi-Agent Systems 183

14. Lee, D.W., Ramakrishna, R.S.: Visok: A Flexible Visualization System for Dis-
tributed Java Object Application. In: Proceedings of 14th International Parallel
and Distributed Processing Synposium IPDPS 2000, Cancun, Mexico, May 1-5,
pp. 393–398 (2000)

15. Luckham, D.C., Frasca, B.: Complex Event Processing in Distributed Systems.
Stanford University Technical Report CSL-TR-98-754, 28 pages (March 1998)

16. Mattern, F.: Virtual time and global states of distributed systems. In: Proceedings
of the International Workshop on Parallel and Distributed Algorithms. LNCS, pp.
215–226. North-Holland, Amsterdam (1989)

17. Mazouzi, H., Seghrouchni, A.E.F., Haddad, S.: Open protocol design for complex
interactions in multi-agent systems. In: AAMAS 2002: Proceedings of the first
international joint conference on Autonomous agents and multiagent systems, pp.
517–526. ACM Press, New York (2002)

18. Miles, R.: AspectJ Cookbook, 1st edn., December 2004. Cookbooks, p. 354 (2004)
ISBN 10: 0-596-00654-3

19. Myers, G.J.: The Art fo Software Testing. Wiley-Interscience, Hoboken (1979)
20. Rossen, K.H.: Discrete Mathematics and Its Applications, 5th edn. McGraw-Hill,

cop., Boston (2003)
21. Stalhane, T., Dingsayr, T., Moe, N.B., Hanssen, G.K.: Post Mortem - An Assess-

ment of Two Approaches, EuroSPI, Limrerick, Ireland (2001)
22. Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoaglan, J.,

Levitt, K., Wee, C., Yip, R., Zerkle, D.: The Design of GrIDS: A Graph-Based
Intrusion Detection System. Technical Report, Department of Computer Science,
University of California at Davis (January 1999)

23. Van Dyke Parunak, H.: Visualizing Agent Conversations: Using Enhanced Dooley
Graphs for Agent Design and Analysis. In: Proceedings of the First International
Conference on Multi-Agent Systems

24. Vigueras, G., Botia, J.A.: Tracking causality by visualization of multi-agent inter-
actions using causality graphs. In: Dastani, M., El Fallah Seghrouchni, A., Ricci, A.,
Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 190–204. Springer,
Heidelberg (2008)

25. Ward, P.A.S.: A Framework Algorithm for Dynamic Centralized Dimension-
Bounded Timestamps. In: Proc. of CASCON 2000, Mississauga (2000)

Toolipse: An IDE for Development of JIAC
Applications

Erdene-Ochir Tuguldur, Axel Hessler, Benjamin Hirsch, and Sahin Albayrak

DAI-Labor, Technische Universität Berlin
tuguldur.erdene-ochir@dai-labor.de,

axel.hessler@dai-labor.de,
benjamin.hirsch@dai-labor.de,
sahin.albayrak@dai-labor.de

Abstract. Developing agent-based applications without an integrated
development environment (IDE) is difficult and error-prone. Providing
good IDEs to the developers eases agent programming and enhances the
quality of the output, which perhaps helps the agent-oriented paradigm
to become more widely accepted. To achieve this important objective,
we have developed Toolipse, a fully featured IDE prototype, based on
the Eclipse platform, for the development of JIAC applications. Toolipse
has been used and evaluated in teaching and a number of projects in
different domains and helped their users creating pinpoint solutions.

1 Introduction

When Shoham wrote his paper on agent-oriented programming [1], he coined
the phrase: “Agenthood is in the mind of the programmer”. This is still the
case, but nowadays application developers can choose between numerous agent
frameworks, methodologies and toolkits [2,3,4]. The AgentLink Roadmap [5] still
specifically notes that Tools are an important element if agent technology is ever
to take hold in the real world.

Since the inception of our agent framework JIAC (Java-based Intelligent Agent
Componentware), we provided tools which

– allow fast and efficient development of JIAC-based applications,
– narrow the gap between design and implementation,
– support beginners, advanced learners and experts at the same time,
– are based on standards and best practices in software engineering and tools

programming.

This paper presents the third major release of the tools. The first two were
stand-alone implementations [6,7]. The current one is a set of tools which has
been integrated in the Eclipse1 platform, called Toolipse. It provides visual and
source code editors, extensive help components and project resource manage-
ment. Toolipse is available together with JIAC on http://www.jiac.de.
1 http://www.eclipse.org/

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 184–196, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.jiac.de
http://www.eclipse.org/

Toolipse: An IDE for Development of JIAC Applications 185

1.1 JIAC Agent Framework

The JIAC agent framework supports the development of multi-agent systems
(MAS) using BDI agents and FIPA compliant platforms. The framework has
been implemented using the Java programming language. Two building blocks
constitute the basic agent architecture: the component system [8] and the JIAC
Agent Description Language (JADL) [9]. The basic architecture of a JIAC-
based application is summarised in the MAS meta-model, which is shown in
Figure 1.

Fig. 1. JIAC MAS meta-model

In the framework, the following concepts are defined and must be supported
by tools:

– Domain Vocabulary:
• Ontologies define categories, which are used to create the beliefs and the

interaction vocabulary of the agents.
• In addition to categories, ontologies provide functions and comparisons,

which can access and manipulate category instances. They are imple-
mented in Java.

– Knowledge:
• Initial beliefs (facts) using these categories are created before the agent

is started.
• Reaction rules constitute the reactive behaviour of an agent.
• Plan elements define the behaviour of the agents. They can be deliber-

atively selected and then become intentions. Plan elements can be used
to aggregate more complex plans by either the developer or a planning
component as part of an agent.

• Protocol plan elements define steps in an agent interaction for each par-
ticipating agent.

• Service plan elements are used to expose plan elements of an agent to
other agents and are used to find services and their providers.

186 E.-O. Tuguldur et al.

– Component:
• Agent beans are core components and also used to wrap or connect the

non-agent environment via Java APIs or user interfaces. They imple-
ment bean roles (to allow dynamic bean exchange at runtime) and can
communicate with each other using bean messages.

– Deployment:
• Agent roles are composites of agent functionalities and interaction capa-

bilities (services) from the above concepts.
• Agents are agent roles that have standard components as well as domain

specific agent roles and are able to run on an agent platforms.
• Agent platforms are agents, which play the role of an Agent Management

System (AMS) and Directory Facilitator (DF) [10], i.e. they provide man-
agement and white and yellow page services, and constitute the agent
environment and infrastructure services.

Additionally, the framework supports agent unit testing called AUnit [11],
which is supported by tools, too. Agent services are the units to test here.

1.2 JIAC Methodology

The JIAC methodology is an iterative and incremental process model which
supports re-use. It looks very similar to other agent-oriented methodologies,
such as PASSI [12] or Prometheus [13], but is, in fact, streamlined to the use of
our framework.

As shown in Figure 2, the development process starts with collecting domain
vocabulary and requirements, which then are structured and prioritised. In this
step, we also look for ontologies and other artifacts that can be re-used, saving
time and effort. Second, we take the requirements with the highest priority and

Fig. 2. JIAC methodology - iterative and incremental process model in SPEM [14]
notation

Toolipse: An IDE for Development of JIAC Applications 187

derive a MAS architecture by identifying agents and the platforms where the
agents reside on, and create a user interface prototype. The MAS architecture
then is detailed by deriving a role model, showing the design concerning func-
tionalities and interactions. Agents and agent roles available can be retrieved
from a repository consisting of standard and domain specific configurations. We
then implement the agents’ behaviour by coding or adapting plans, services and
protocols, which are plugged into agents during integration. This phase is ac-
companied with extensive unit testing. The agents are deployed to one or more
agent platforms and the application is ready to be evaluated. Depending on the
evaluation, we align and amend requirements and start the cycle again with
eliminating bugs and enhancing and adding features until we reach the desired
quality of the agent-based application.

2 Case Study

To illustrate parts of Toolipse’s functionality in this paper, we have chosen the
“Service Centric Bank” (SCB) scenario, a complex scenario in the bankers’ world.
The banking domain is currently undergoing changes towards new business mod-
els, increased customer orientation, breaking traditional value chains and inte-
grating new areas of activities. The Service Centric Bank is an active bank,
which supports multi-channel, ubiquitous customer interaction, implementing
the idea of one-stop finance with many connections to finance and non-finance
scenarios.

The approach [15] breaks down the complex domain into five sub-themes:

– Basic services, which mainly consist of classical banking services such as
money transfers or credits.

– Information and monitoring services, i.e. a number of notifiers which ob-
serve bank accounts and transactions, and also Selective Dissemination of
Information (SDI) services.

– Asset management with inclusion of customer needs and wishes and co-
operation with other financial service providers.

– Customer support when dealing with authorities such as taxes, customs pay-
ments, legal regulations or invoice issuing.

– Bank as integrator, which means co-operation with non-financial service
providers, e.g. in the case of customers moving.

There exist approaches or solutions for each of the sub-themes. The real chal-
lenge though is to take the independent services and interconnect them in a
dynamic, customer-oriented and short-term manner. We have implemented a
demonstrator of a subset of possible services using Toolipse and the JIAC agent
framework, which shows agent-based planning and adaptive behaviour without
hard-wiring financial workflows or supply chains. This case study has also been
one of the more complex scenarios, where we have tested Toolipse’s features and
usability.

188 E.-O. Tuguldur et al.

3 Toolipse

We have implemented Toolipse, a fully functional prototype of an IDE based
on the Eclipse platform, which facilitates the development of agent applications
with the JIAC agent framework, increases their quality and shortens the devel-
opment time. The aim was to hide the language syntax from the developers as
much as possible, to allow them to develop an agent application visually and
to assist them where possible. To achieve that, it provides the following main
functionalities:

– creating and building projects, managing their resources and providing an
internal resource model;

– creating JADL ontologies, manipulating them visually and importing on-
tologies from other ontology languages;

– developing agent knowledge in a visual environment;
– testing agent behaviours with agent unit tests;
– implementing agent beans in Java;
– configuring and deploying agent roles, agents and platforms visually;
– helping and guiding the developers through the entire development process

with documentations, interactive how-to’s and interactive tutorials.

Each functionality is realised as an Eclipse feature consisting of one or more
plugins and typically comprises wizards, editors and views, which are arranged
in an own perspective.

In Toolipse, wizards are used for creating projects and skeletal structures of
JIAC files; each file type has its own wizard. After creating a file, the agent
developers can edit the file with the associated editor, which is in the majority
of cases a multi-page editor consisting of a source code editor and of a visual
editor. The source code editors support syntax highlighting, warning and error
marking, folding, code formatting and code completion which suggests possible
completions to incomplete language expressions. In contrast to the source code
editors, which require from the developers good knowledge of the language, the
visual editors of Toolipse allow to work with abstract models, to create and
modify instances of the meta-model graphically. This facilitates the agent devel-
opment and minimises errors. In order to achieve this, the visual editors model
the JIAC concepts with the Eclipse Modeling Framework (EMF), visualise them
graphically with the Graphical Editing Framework (GEF) and provide simple
graphical layouts such as radial layout, zooming and modifying properties of
the visualised elements with the associated dialog windows as well as with the
Properties view of Eclipse.

This Properties view belongs to one of the so-called workbench part concepts:
views. They are typically used to navigate through resources or to assist the
editors with extra functionalities. For example, all our editors support the Out-
line view where the outline of the file which is currently open is displayed. In
addition to the Properties and Outline view, which are general views of Eclipse,
Toolipse provides its own views that navigate the developers through the JIAC

Toolipse: An IDE for Development of JIAC Applications 189

Fig. 3. Toolipse with the following components (from left to right): JIAC navigator,
knowledge editor (center), JIAC guide (bottom), interactive tutorial and user guide

resources, present results of agent unit tests, to help or to guide them through
the development process. Figure 3 shows the JIAC perspective with an editor
and some of these views.

In the following subsections, we go into detail on the above-mentioned main
features of Toolipse.

3.1 Resource and Project Management

The primary feature of an integrated development environment is a resource
and project management. It supports organising project structures, navigating
through resources, parsing files, caching and providing abstract resource model
elements and building projects. For these purposes, Toolipse provides a resource
manager, two incremental builders, a project wizard and a navigator view.

The resource manager maintains files, agent configurations and JADL lan-
guage concepts in an internal model for all open JIAC projects. It is used by
other components such as builders or editors. The internal model extends the
Java model of the Eclipse Java Development Tools (JDT) with the JIAC meta-
model. The model is always kept synchronous with the file system through a
resource listener, which listens for changes on the file system and updates the
model if required. Moreover, the manager uses caching methods to keep the size
of the model reasonably small. For example, it creates instances of JIAC re-
sources only once and sets the reference counter accordingly if the resource is
referenced in many projects.

190 E.-O. Tuguldur et al.

Two incremental builders are part of the resource and project management
tools: the ontology builder which translates JADL ontologies into Java classes
and the knowledge builder which converts JADL facts, reaction rules and plan
elements into an executable form. Like the resource manager, the incremental
builders listen for changes in the file system and trigger the build process if
required. Here, “incremental” means that the builders compute all resources
which depend on the changed resource and build only these relevant resources.
In case of errors and warnings, the builders mark the affected resources with the
corresponding annotations which are displayed in the Problems view of Eclipse,
amongst others. An example build process looks as follows if an ontology file has
changed or has been deleted:

1. The ontology builder calculates all ontology dependencies on the changed
ontology and translates them along with the changed ontology into Java
source files.

2. The JDT Java builder is activated afterwards because of new or modified
Java files.

3. Finally, the knowledge builder computes the knowledge dependencies and
builds the affected knowledge files, which completes the build process.

The projects created by Toolipse are also compatible to Maven2, so that they
can be build without the IDE. This feature is used, e.g. when different developers
frequently integrate their work [16].

In contrast to the resource manager and the incremental builders, which are
invisible to the users, the project wizard and the navigator view have UIs and
are used by the developers directly. The project wizard creates a project and
registers the ontology builder, the Java builder and the knowledge builder on
the project as project builders. Additionally, it adds so-called project natures to
the project. One of them, the JIAC project nature, indicates that the resource
manager should scan the project for resources, create the corresponding model
elements and update the resource model.

The last tool is the navigator which displays the resource model to support the
developers with a resource view that shows only JIAC files and their contents.
Moreover, the navigator also filters editor type specific resources. For example,
it shows only ontologies and categories if an ontology has been opened by an
ontology editor.

3.2 Domain Vocabulary

The development of an agent application typically starts with collecting the do-
main vocabulary, which is used to create the beliefs and the interaction vocabu-
lary of the agents. In Toolipse, this development step is assisted by a wizard for
creating JADL ontology files and a multi-page editor, which consists of a source
code editor and a visual editor. While the source code editor supports syntax

2 http://maven.apache.org/

http://maven.apache.org/

Toolipse: An IDE for Development of JIAC Applications 191

highlighting and code completion, the visual editor allows the developers to cre-
ate and manipulate ontologies graphically by visualising ontologies in UML3-like
class diagrams (see Figure 4).

The visual ontology editor models an ontology as a UML class, which con-
tains only methods (functions and comparisons), and does not contain any at-
tribute. The categories of an ontology are represented as UML classes, which
are connected with the parent ontology by UML compositions and contain only
attributes. Inheritance relationships between categories are modelled as UML
generalisations. In addition to the visualisation, the visual editor provides on-
tology editing functionalities which include importing other ontologies, creating
and modifying categories graphically, implementing ontology functions and com-
parisons and editing attributes of a category.

Fig. 4. The visual ontology editor modelling the SmartBank ontology of the SCB
scenario

As opposed to other ontology languages such as OWL4, it is not possible in
JADL to define categories and their instances in the same file. Thus, the visual
ontology editor does not support facts; however, facts can be modelled using the
knowledge editor.

Furthermore, in order to support interoperability, Toolipse facilitates the de-
velopment of ontologies with an import wizard, which currently translates OWL
Lite ontologies into JADL.

3 http://www.uml.org
4 http://www.w3.org/2004/OWL/

http://www.uml.org
http://www.w3.org/2004/OWL/

192 E.-O. Tuguldur et al.

3.3 Knowledge

Agent knowledge is described by JADL facts, reaction rules and plan elements.
To support the agent developers in creation and maintenance of agent knowledge,
Toolipse includes a knowledge editor, which comprises a source code editor and
a visual editor. The visual editor is a multi-page editor, which contains a page
for each knowledge type. Most of these pages are only form pages which create,
edit and delete agent knowledge elements; however, the page for plan elements
visualises JADL services, protocols and scripts as a flow chart and provides
graphical editing functionality. Figure 3 shows the knowledge editor together
with the fact form page, editing two facts of the SCB scenario.

Moreover, the IDE provides two wizards for the creation of agent knowledge
files: the JADL file wizard and the service wizard. While the former is used
to create arbitrary JADL knowledge files, the latter is more specific, in that it
creates a service description file as well as user and provider script files for the
service protocol implementation.

3.4 Testing

In order to enhance the quality of an application and to detect errors early
and continuously, it is essential to test [17]. For this purpose, JIAC provides
an agent unit testing framework called AUnit, which can test plan elements.
In Toolipse, an AUnit test can be created with the AUnit wizard and processed
with any XML editor. Although there are some XML editors available as Eclipse
plugins, we have added a simple XML editor to our IDE, which supports syntax
highlighting and launching of AUnit tests. After launching and running through
AUnit tests, the results are shown in the AUnit results view.

3.5 Agent Beans

Agent beans are usually used to implement agent core components or to wrap
non-agent environment using Java APIs. They are exchangeable at runtime.
The artifacts to create and modify here are agent beans, bean roles and bean
messages. The creation of these artifacts is supported in Toolipse by a number
of wizards, while the implementation support of agent beans is left to JDT. For
testing agent beans we rely on the JUnit5 framework, which is also supported
by JDT.

3.6 Deployment

In the last step of the agent development, the developers configure agent roles
and agents, deploy them into agent platforms and launch the platforms. This
development step is supported by wizards for creation of configuration files and
by multi-page editors, each of them consisting of an XML editor and a visual
5 http://junit.sourceforge.net/

http://junit.sourceforge.net/

Toolipse: An IDE for Development of JIAC Applications 193

Fig. 5. The agent role editor shows agent roles, agents and agent platforms together
with their relationships of the Service Centric Banking scenario

editor. While the visual editor for agents and agent roles visualises hierarchical
relationships between agents and agent roles, the visual platform editor graphi-
cally represents a platform into which agents can be inserted. Both visual editors
provide a set of form pages with which properties of agent roles, agents and plat-
forms can be manipulated. Toolipse includes also a platform launcher, which can
start a platform directly from the platform editor.

We have then prototyped a new agent role editor, which shows the overall
structure of an agent society and allows different views on it. Figure 5 shows
the new editor visualising agent roles, agents, platforms, their relationships and
assembly from our SCB case study.

3.7 Helpers and Guidance

To familiarise the developers with our agent framework and its IDE, we have
implemented a number of Toolipse help components, some of which extend the
help system of Eclipse, while others are realised as separate components.

First of all, the IDE extends the welcome site of Eclipse with its own cus-
tomised welcome site, which overviews the development steps, namely analysis,
design, implementation, testing and deployment of an agent application. With
each development step, a set of Toolipse and standalone tools is associated; the
developers can start these tools directly from the help site.

194 E.-O. Tuguldur et al.

Beside the customised welcome site, it adds so-called cheat sheets into the help
system of Eclipse. These cheat sheets are interactive how-to’s, which demonstrate
howaJIACconcept is createdwithawizardand then ismanipulatedwithan editor.

The next help component is the user guide, which guides the developers
through the development steps similarly to the Toolipse welcome site. While
this welcome site is designed to be displayed in full screen mode after the instal-
lation and gives an initial overview of Toolipse, the user guide, which is realised
as a view and is displayed next to the editor area, is intended for guiding the
users through the entire development process. Other than the user guide, the
JIAC guide gives the users only a short description of the currently selected tool,
providing constant supporting information.

Furthermore, the IDE provides interactive tutorials such as a pizza delivery
service, with which the developers can create a full JIAC project interactively.

4 Related Work

Although we concentrate on the needs of JIAC users in the first place, we have also
evaluated a number of other agent development tools, in particular tools that help
creating real-life applications. We have found the JACK Development Environ-
ment (JDE)6 very inspiring concerning the design of an agent-based application.
Based on a clear visual notation, the Design Tool and the Plan Editing Tool allow
modelling an application from different views and support code generation. To-
gether with the plan tracer and agent interaction display for runtime monitoring,
the JDE is a complete toolbox for easy and fast agent-based development. We are
also looking forward to test the CaFnE tool [18], which allows domain experts to
develop or modify agent applications. The description and demonstrator promise
a good step forward. A good standard toolkit for Jason applications has been de-
livered with the Jason IDE7, which provides project management and AgentSpeak
source code editing together with a number of wizards and debugging capabilities.
The Cougaar IDE8 has also been realised as a number of Eclipse plugins and pro-
vides the management and running of Cougaar projects. Whitestein created a De-
velopment Suite9 for their Living Systems (LS) Platform. It consists of two parts:
a number of Eclipse plugins for creating, re-use, debugging and monitoring of LS
applications and a Modeler, realised as plugin for a UML tool, which allows the
modelling of agents and their behaviour using AML [19].

5 Conclusion and Further Work

We have realised Toolipse, a fully featured IDE prototype for the fast and ef-
ficient development of JIAC agent applications, based on the Eclipse platform.
6 http://www.aosgrp.com/
7 http://jasonplugin.wikidot.com/
8 http://cougaaride.cougaar.org/
9 http://www.whitestein.com/autonomic-technology-platform/

ls-ts-development-suite

http://www.aosgrp.com/
http://jasonplugin.wikidot.com/
http://cougaaride.cougaar.org/
http://www.whitestein.com/autonomic-technology-platform/ls-ts-development-suite
http://www.whitestein.com/autonomic-technology-platform/ls-ts-development-suite

Toolipse: An IDE for Development of JIAC Applications 195

We have chosen Eclipse as integration platform for our tools in compliance with
best tool builder practice. The IDE supports both experts and beginners at the
same time. While it provides experts with standard text editor functionalities
such as syntax highlighting, warning and error marking, and code completion,
beginners can create an agent application solely by using visual editor functional-
ities, which include visualisation, zooming, graphic layouts, creating, editing and
deleting JIAC artifacts visually. Additionally, beginners and advanced learners
are assisted in Toolipse with IDE and framework documentations, guides, how-
to’s and interactive tutorials.

Our IDE has been used and tested in teaching and by a number of projects
in different domains. The feedback from the early testers was mainly positive.
The main deficiency, which the testers pointed out, was lack of a code refac-
toring capability. They also missed a possibility to edit higher level interaction
protocols, which is one of the most challenging topics. Additionally, some testers
wanted a feature which supports modelling agent services with standard pro-
cess modelling notations such as BPMN10(Business Process Modeling Notation)
using predefined basic services.

In the near future, we are planning a new release of our IDE, which comes
with revised and enhanced text editor functionalities. We also currently rework
the agent role editor, which allows to visualise all artifacts of a JIAC-based
application in one diagram as well as filtering diagram information to view dif-
ferent aspects of the application. The next tool we are working on is a visual
service design tool [20], which can model services with BPMN and transform
them into executable service languages. It is not a part of Toolipse, but supports
a transformer from BPMN to JADL and thus can be used as agent service mod-
elling tool supplementary to Toolipse. Both new tools, the new agent role editor
and visual service design tool, are implemented by using the Eclipse Graphical
Modeling Framework (GMF), which should be used instead of the out-of-date
combination of EMF and GEF. We are also planning to port all visual editors
of Toolipse to GMF.

Toolipse can be downloaded at http://www.jiac.de and the different fea-
tures can be tried directly. While we think that we have provided a fully featured
and powerful toolsuite, there is always work to be done and we hope that not
only will you give it a try but also let us know any further improvements that
we could make.

References

1. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60(1), 51–92
(1993)

2. Henderson-Sellers, B., Giorgini, P.: Agent-Oriented Methodologies. Idea Group
Publishing (2005)

3. Unland, R., Klusch, M., Calisti, M. (eds.): Software Agent-Based Applications,
Platforms and Develoment Kits. Whitestein Series in Software Agent Technologies.
Birkhauser Verlag, Basel (2005)

10 http://www.bpmn.org/

http://www.jiac.de
http://www.bpmn.org/

196 E.-O. Tuguldur et al.

4. Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Program-
ming. Languages, Platforms and Applications. Multiagent Systems, Artificial So-
cieties, and Simulated Organizations. Springer, Heidelberg (2005)

5. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing
as Interaction (A Roadmap for Agent Based Computing). AgentLink (2005)

6. Fricke, S., Keiser, J., Hessler, A.: Demo-Storyboard for the JIAC IV Agent Devel-
opment Environment. In: AAMAS Demonstration Session, Bologna, Italy (2002)

7. Hessler, A., Keiser, J., Feuerstack, S., Bsufka, K., Fricke, S.: Demo-Storyboard: An
Agent-based Framework supporting Rapid Application Development for Telecom-
munication Applications. In: AAMAS Demonstration Session, New York, USA
(2004)

8. Sesseler, R., Albayrak, S.: JIAC IV - an open, scalable agent architecture for
telecommunications applications. In: Proceedings of the First International NAISO
Congress on Autonomous Intelligent Systems (ICAIS 2002), ICSC Interdisciplinary
Research (2002)

9. Konnerth, T., Hirsch, B., Albayrak, S.: JADL – an agent description language for
smart agents. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS, vol. 4327, pp.
141–155. Springer, Heidelberg (2006)

10. Foundation for Intelligent Physical Agents: FIPA Agent Management Specification
(2004)

11. Zastrow, J.: Konzeption und realisierung eines frameworks zum testen von multi-
agentensystemen. Diplomarbeit, Technische Universität Berlin (2004)

12. Cossentino, M., Potts, C.: Passi: a process for specifying and implementing multi-
agent systems using uml (2001)

13. Padgham, L., Winikoff, M.: Prometheus: A methodology for developing intelli-
gent agents. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS,
vol. 2585, pp. 174–185. Springer, Heidelberg (2003)

14. Object Management Group: Software Process Engineering Metamodel (SPEM)
Specification. Version 1.1. Object Management Group, Inc. (2005)

15. Mücke, A.: Service Centric Bank. PhD thesis, Technische Universität Berlin (2008)
16. Fowler, M.: Continuous integration (2000), http://www.martinfowler.com/

articles/continuousIntegration.html

17. Beck, K.: Test Driven Development. By Example. Addison-Wesley/ Longman, Am-
sterdam (2002)

18. Jayatilleke, G., Padgham, L., Winikoff, M.: Component Agent Framework for non-
Experts (CAFnE) Toolkit. In: Software Agent-Based Applications, Platforms and
Development Kits. Whitestein Series in Software Agent Technology, pp. 169–195.
Birkhäuser Verlag, Basel (2005)

19. Whitestein Technologies: Agent Modeling Language (AML). Language Specifica-
tion. Version 0.9 (2004)

20. Küster, T.: Development of a visual service design tool providing a mapping from
BPMN to JIAC. Diploma thesis, Technische Universität Berlin (2007)

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html

Kerberos-Based Secure Multiagent Platform�

Jose M. Such��, Juan M. Alberola, Ana Garcia-Fornes,
Agustin Espinosa, and Vicent Botti

Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València
Camı́ de Vera s/n 46022, València

Spain

Abstract. Security is becoming a major concern in Multiagent Sys-
tems (MAS), since an agent’s incorrect or inappropriate behaviour may
cause non-desired effects such as money and data loss. Moreover, the
lack of security in some current MAS-based applications is one of the
reasons why MAS technology is being slowly introduced into industry.
However, adding security features such as authentication, integrity and
confidentiality results in a performance penalty. In this paper, a secu-
rity infrastructure for a Multiagent Platform (MAP) is presented. It is
based on both the Kerberos protocol and the Linux Operating System
access control. The design of this infrastructure is focused not only on
security but also on efficiency so that the MAP being secured allows the
development of secure and efficient Multiagent Systems.

1 Introduction

Security related studies in the Multiagent System (MAS) research field have
been growing over the last few years, just like intelligent autonomous agents
and MAS based applications have too. This is mainly due to the fact that the
understanding of the actual risk when using these sorts of applications is needed,
since an agent’s incorrect or inappropriate behaviour may cause non-desired
effects such as money and data loss. Therefore, security is a key issue that has to
be taken into account when developing these sort of applications, and the lack
of security in some current MAS-based applications is one of the reasons why
MAS technology is being slowly introduced into industry.

Some Multiagent Platforms (MAPs) are now taking into account security
concerns. For instance, Jade [3], SECMAP [21], Tryllian ADK [24], CAPA [14],
Cougaar [1], SeMoA [5] and Voyager [6] are security-concerned MAPs. All these
MAPs offer authentication, integrity and confidentiality. Moreover, some of them
(as detailed in section 4) offer access control mechanisms.

� This work was supported by CONSOLIDER-INGENIO 2010 under grant CSD2007-
00022 and Spanish goverment and FEDER funds under TIN2005-03395 and
TIN2006-14630-C03-01 projects.

�� Enjoying a grant of Conselleria d’Empresa, Universitat i Ciència de la Generalitat
Valenciana (BFPI06/096).

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 197–210, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

198 J.M. Such et al.

Including these security features obviously makes a MAP perform worse when
comparing it to the insecure version. As stated in [20], Jade with the security add-
on performs worse than normal Jade. Furthermore, this difference in performance
between both versions increases when the MAS running on top of the MAP is
composed of a large number of agents with a lot of interactions with each other.

This paper aims to propose a security infrastructure for Magentix, which
is a high-performance MAP. Therefore, the proposal also takes into account
performance concerns apart from security concerns.

A Magentix MAP can be run in different hosts that are connected by a local
network or by the Internet. The Internet is an insecure place, so assuring interac-
tions between agents located in different hosts is a necessity. Currently, network
communications are secured by means of assuring authentication, confidentiality
and integrity. Due to the Magentix design, all the interactions among agents are
carried out via a network interface (local or remote). Therefore, if these three
security features are guaranteed, interactions among Magentix agents will be
assured.

On the other hand, access control is needed to ensure these three features since
local attacks can be performed without the requirement of a network interface.
For instance, network communications are protected, so an agent cannot sniff
a communication between two other agents. However, in Magentix an agent is
implemented at a lower level as a Linux process. If no access control mechanism
is taken into account, all the agents can access the same local resources (for
example files), so confidentiality may be compromised. These sorts of problems
can be addressed if the access control mechanisms provided by Linux are used
correctly. How these troubles are addressed is detailed later.

The rest of the article is organized as follows. Section 2 presents Magen-
tix MAP and sums up its architecture. Section 3 shows different mechanisms
providing authentication, integrity and confidentiality and the choice made for
securing Magentix. Section 4 presents how access control can be achieved in
Magentix MAP. Section 5 details the Magentix secure version integrating the
concepts presented before. In Section 6, the performance of Magentix versus se-
cure Magentix is evaluated. Finally, section 7 presents some concluding remarks.

2 Magentix Multiagent Platform

Some current MAPs are not suitable for executing complex systems because
their designs are not oriented to improve efficiency and scalability issues. Previ-
ous studies ([18], [10], [22], [12], [9], [8]) have analysed some internal features of
current MAPs showing that the degradation rate of both efficiency and perfor-
mance is increasing according to how much the system grows.

These results have motivated the design and development of a MAP using
the Operating System (OS) resources. The aim of this MAP is to offer the same
services as most of the high level MAPs, but obtaining better performance using
services directly from the OS. The MAP designed is called Magentix [7], and has
been developed in the C language and over Linux OS.

Kerberos-Based Secure Multiagent Platform 199

Magentix MAP is composed of several hosts running the Linux OS (Figure
1). Each host runs a magentix process that manages the MAP structure, and
MAP host initialization and finalization. The MAP offers some services to sup-
port agent execution and development. Services are distributed among the MAP
hosts. So far, there are three services that have been developed: Agent Manage-
ment System (AMS), Directory Facilitator (DF) and Message Transport Service
(MTS). These three services are described by FIPA (Foundation for Intelligent
Physical Agents) standards [2].

Both AMS and DF services are implemented as a Linux process. These processes
aremagentix childprocesses and they are replicated in eachMAPhost. At the same
time, each Magentix agent is implemented as a Linux process and these processes
are ams child processes. Thus, the ams process controls every agent through Linux
OS services. The ams process manages agent initialisation, execution and finalisa-
tion. We can see in Figure 1 the processes tree of a Magentix host.

Fig. 1. Platform Structure

The MTS service has been developed as a function library. Magentix agents
and services use this library to carry out their communications. The MTS service
design is focused on efficiency and scalability. Its main features are:

1. Agent communication is carried out by a P2P system. It allows high scala-
bility in agent communication. Each Magentix agent has a server socket for
receiving connections from other agents by means of client sockets. To carry
out a new connection an agent creates a client socket that communicates
with the remote agent server socket. So, Magentix agents are client/server
at the same time.

2. Each agent has a TCP connection cache that mantains the most used agent
connections. This cache improves communication times since an agent does
not need to create a new TCP connection each time it wants to communicate
with another agent.

200 J.M. Such et al.

When a sender agent wants to send a message to a receiver agent, the
MTS service checks if the sender agent has a connection associated with the
receiver agent in the connection cache. If the sender agent has a connection
associated with the receiver agent, the message is sent to the receiver through
the connection socket. If there is no connection associated with the receiver
agent, the receiver agent address is consulted, and a new TCP connection
to the receiver agent is created. This TCP connection allows message send-
ing between these two agents. The new TCP connection is inserted in the
connection cache. If the connection cache is full the least used connection
(LRU) is closed before creating the new one.

3. Agent addresses (host, TCP port) can be consulted directly using a shared
memory table. This shared memory table returns the agent address, having
been given an agent name.

This table is named the Global Agent Table (GAT) and it is managed by
the AMS service. The name and address of each agent of the MAP is stored
in the GAT. The GAT is replicated in every ams process of the MAP. The
table is implemented as a shared memory table between the ams process
and the local host agents. The ams process has read and write access to the
shared memory table and the local host agents only have read access to the
shared memory table. As a result, any agent query to the ams is performed
efficiently.

Some other advanced functionalities are added to the MTS: a FIPA interaction
protocol manager, and agent groups management as a previous mechanism to
support agent organizations.

3 Authentication, Integrity and Confidentiality

Network communications are currently secured by means of assuring authenti-
cation, confidentiality and integrity. Jade, SECMAP, Cougaar, SeMoA and Voy-
ager use Secure Sockets Layer (SSL) to provide these security features. However,
other MAPs such as Tryllian ADK use ad-hoc mechanisms to offer these security
features. In Tryllian ADK, authentication and integrity checks are carried out
using signed files in which ADK agents are packaged.

As far as we are concerned, a mechanism providing these features is not worth
designing from scratch because there are standard mechanisms such as IPSEC,
SSL, TLS and Kerberos that can be adapted to agent technology. These mech-
anisms are discused below, and a choice is made taking into account Magentix
design and performance issues.

3.1 IPSEC

IPsec (Internet Protocol Security) [16] is an IP protocol extension adding strong
encryption allowing authentication services, so that, communications through
this protocol are secured. IPsec is a mandatory part of IPv6, and is optional for

Kerberos-Based Secure Multiagent Platform 201

use with IPv4. While the standard is designed to be indifferent to IP versions,
current widespread deployment and experience concerns IPv4 implementations.

IPsec protocols operate at the network layer, layer 3 of the OSI model. It
protects and authenticates IP datagrams among computers taking part in an
IPsec community. The IP security architecture uses the concept of a security
association as the basis for building security functions into IP. A security asso-
ciation is simply the bundle of algorithms and parameters that is being used to
encrypt and authenticate a particular flow in one direction. Therefore, in normal
bi-directional traffic, the flows are secured by a pair of security associations. The
actual choice of encryption and authentication algorithms is left to the IPsec
administrator.

3.2 SSL/TLS

Secure Sockets Layer (SSL) [15] and Transport Layer Security (TLS) [13], are
cryptographic protocols that provide two end-points in Internet with authen-
tication and information privacy. TLS is the SSL v3.1 standarization made by
IETF. Only the server is usually authenticated; mutual authentication requires
a Public Key Infrastructure (PKI) for the clients.

As TLS is the last version of these two protocols, it is the one compared
to the other alternatives. TLS involves three basic phases: first, peer negotia-
tion for algorithm support; second, public key exchange and certificate-based
authentication; and third, symmetric cypher encryption.

3.3 Kerberos

Kerberos [19] is a network authentication protocol. It provides applications based
on client/server paradigm with strong authentication using symmetric cypher
encryption. Kerberos protocol uses strong cryptography allowing a client to prove
its identity to a server (and vice versa) through an insecure network connection.
When both the client and the server prove their identity, they can also encrypt
all the communications in order to assure exchanged data confidentiality and
integrity.

Kerberos makes use of a trusted third party, termed a Key Distribution Center
(KDC). Kerberos works on the basis of tickets which serve to prove the identity of
users. The KDC maintains a database of secret keys; each entity on the network
shares a secret key known only to itself and to the KDC. Knowledge of this key
serves to prove an entity’s identity. For communication between two entities, the
KDC generates a session key which they can use to secure their interactions.

3.4 Discussion

IPsec, TLS and Kerberos offer the features required: authentication, integrity
and confidentiality. However, they offer these features in a different way. IPsec
operates at the network layer, so it is not aware of higher level protocols in-
cluded in IP datagrams. As each Magentix agent listens in a different TCP port,

202 J.M. Such et al.

IPsec is unable to distinguish between two different Magentix agents. Thus, the
authentication cannot be carried out at agent level. As a result, IPsec is not
suitable for our requirements in Magentix MAP.

Both TLS and Kerberos, as they operate at transport layer and application
layer respectively, allow Magentix agent authentication. As TLS operates at
transport layer and Kerberos does at application layer, integrating TLS in Ma-
gentix would be much easier than integrating Kerberos. The latter does not
carry out data sending, this is done by the user, whereas TLS only replaces
original socket functions with their secure equivalents. Moreover, encryption is
user-transparent when programming using TLS, i. e., there is no explicit func-
tion to cypher data to be sent. However, in Kerberos, developers have to call
API functions to encrypt and decrypt data. Therefore, Kerberos integration in
Magentix seems to be harder than TLS integration.

However, there are two main reasons that make Kerberos our choice to meet
Magentix communication security requirements: the Magentix messaging service
design and the cryptography type.

Regarding the Magentix messaging service design, each Magentix agent has
a cache that contains the most recently used connections with other agents, as
detailed in section 2. This design is due to the limitation in the number of open
sockets per process allowed by the Linux OS, and as MAS are systems with a high
level of interactions, an agent can be conversing with much more agents than
connections allowed. Hence, this design is intended to keep open the connections
corresponding to the most active conversations of an agent with other agents.

Both TLS and Kerberos establish a security context between two network end-
points when they authenticate to each other, and after that, the two end-points
can communicate with each other in a secure way using this security context.
However, Kerberos offers a key advantage when compared to TLS, i.e., Kerberos
can re-use a security context in different connections. As Kerberos operates at
application level, when a connection is closed the security context created can be
used in a new connection with the same destination end-point. In TLS, this can-
not be achieved since context negotiation is carried out each time a connection is
created. Although a context re-negotiation is also allowed, this process consumes
a similar amount of time to the creation of a new context. Furthermore, context
negotiation is the part of TLS with the highest time consumption.

When using Kerberos to secure Magentix agent interactions, a security context
established between two agents can be used in different connections between
these agents, so security context negotiations are avoided as much as possible,
and this would improve overall efficiency.

There is another important difference between both alternatives: the cryp-
tography type. While TLS uses both symmetric (or secret-key) and asymmetric
(or public-key) cryptography, Kerberos only uses symmetric cryptography. The
same key is used by symmetric cryptography algorithms when encrypting and de-
crypting data, whereas asymmetric cryptography algorithms use a key to encrypt
and a different key to decrypt. As a result, symmetric cryptography algorithms
are usually less complex and the keys used requires less bits than asymmetric

Kerberos-Based Secure Multiagent Platform 203

cryptography algorithms. Therefore, symmetric cryptography is more efficient
than asymmetric cryptography. However, key distribution is a problem when
symmetric cryptography is considered, because a pre-shared secret is needed
between the encrypting entity and decrypting entity.

As the Magentix MAP is designed taking into account efficiency, it seems
that Kerberos is the most suitable alternative to meet Magentix security re-
quirements. Efficiency problems of TLS are shown in the study made by Coarfa
et al. [11]. This study explains that securing a web server using TLS imposes
a factor of 3.4 to 9 overhead over an insecure web server. Their measurements
show that asymmetric cryptography computations are the single most expensive
operation in TLS, consuming 20-58% of the time spent in the web server. There
are some efforts to optimize TLS server throughput focussing on reducing the
CPU costs of the TLS connection setup phase, rather than working on the TLS
data exchange phase. In this way, Kuo et al. [17] present a comparative study
between conventional TLS versus modified TLS that uses pre-shared keys to
avoid CPU costs of the TLS connection setup phase, which implies asymmetric
cryptography computations. Therefore, using pre-shared keys only symmetric
cryptography is used. Results in this study show that TLS with pre-shared keys
performs better than conventional TLS (as expected), but the key distribution
problem arises, i. e., how two distribute a shared secret key between two entities
in a secure way.

Kerberos has no key distribution problem, and it only uses symmetric cryp-
tography, so it seems to be the most efficient alternative when securing Magentix
MAP.

4 Access Control

Most of the current MAPs are developed in Java language and run on top of the
Java Virtual Machine (JVM). In these sort of MAPs an agent is usually a Java
thread, so that, all the agents share the memory space of the JVM process. As
a result, the main problem when controlling access in these MAPs is the control
of what Java objects can be accessed by each agent.

This problem is addressed in different ways by several security-concerned
MAPs. For instance, agents in CAPA do not have any reference to either MAP
or other agent objects. Thus, attacks based on obtaining object references are
avoided. SECMAP encapsulates objects that reference agents in such a way that
these objects can only be accessed by authorized agents. In SeMoA, agents can-
not share classes. Other MAPs simply use existing Java technologies for object
access control, e.g., Jade and Tryllian ADK. The security add-on for Jade car-
ries out access control using Java/JAAS technology (Java Authentication and
Authorization Service). The mechanism used by the Tryllian ADK is similar to
the one used by a browser running a Java applet.

As in Magentix an agent is a Linux process, different agents do not share
memory, so there is no requirement to introduce any additional mechanism to
avoid the access of an agent to memory space of other agents. As explained in

204 J.M. Such et al.

section 2, the GAT table is mapped as shared memory in all the agents and the
AMS in a host, but only the AMS has write permissions, and these permissions
are assured by the Linux OS.

In order to control resource access, as Magentix is built on top of the Linux OS,
access control mechanisms of this OS can be used directly, i. e., users, groups and
an access control list in each resource detailing the permissions for the user that
owns this resource, the group that owns this resource and the rest of system
users. As Magentix agents are modeled as Linux processes owned by a Linux
user, access control is assured. Therefore, agents owned by the same Linux user
share resources, because it does not make sense that agents with the same owner
perform any kind of attack on each other.

5 Secure Magentix

This section details the security infrastructure design for the Magentix MAP.
As discused in section 3, Kerberos is chosen in order to provide Magentix with
authentication, integrity and confidentiality. There are some Kerberos implemen-
tations, but we use the MIT implementation [4]. There are some key concepts
in Kerberos, named principal and realm. The principal is the unique name of a
user or service allowed to authenticate using Kerberos. A principal follows the
form root[/instance]@REALM. For a typical user, the root is the same as their
login ID. The instance is optional. If the principal has an instance, it is sepa-
rated from the root with a forward slash (”/”). All principals in a realm have
their own key, which for users is derived from a password or is randomly set
for services. A realm is a network that uses Kerberos, composed of one or more
servers called Key Distribution Centers (KDCs) and a potentially large number
of clients. Moreover, Kerberos can be configured to use slave KDC’s that can be
accessed if the master KDC is not available, but that is beyond of the scope of
this paper.

In Secure Magentix, there is the MAP user concept. These users match a
Kerberos principal and follow the form user@MAGENTIX. Do not confuse the
MAP users with the local users of a Unix machine. Therefore, a MAP user has
to login in the system in the conventional way, and then authenticate itself to
Magentix (authenticating to the KDC) running the program mgx login that is
a wrapper for the kinit of the Kerberos distribution. For instance, let us have
a Linux machine with a user bob. bob sits in front of the Linux machine, logs in
the system an starts using it. When he needs to launch an agent in the running
Magentix MAP on the local host, he has to login first executing the mgx login
program using its Kerberos principal (for instance, bobby@MAGENTIX).

There are two different kinds of users in secure Magentix:

– Administrator. The administrator of a Magentix MAP. It has the following
permissions:

• Create and delete system users principals.
• Create and delete MAP services principals.
• Platform launching.

root[/instance]@REALM
user@MAGENTIX
bobby@MAGENTIX

Kerberos-Based Secure Multiagent Platform 205

– System Users. Users that are allowed to launch agents in a Magentix MAP.
Therefore, the administrator has to create a principal per each user that
requires launching agents. At any moment the administrator can remove an
agent launching right from a user simply by removing its principal.

The following sections detail how Kerberos and access control mechanisms
provided by the OS are integrated in Magentix.

5.1 Service Communication

Magentix services are based on information replication in each host. In order
to check the integrity of this information and protect it from being accessible
to non-authorized users, service communication needs to be secured. In order
to do so, the administrator creates a principal for each service with a ran-
dom key that is saved by default in /etc/krb5.keytab. That file is secured
using Linux OS access control and it can only be accessed by the root user, so
Magentix services have to run as root processes. Service principals follow the
form service/host@MAGENTIX. For instance, if pc.example.com is going to be
a part of a Magentix MAP, the administrator has to create the following prin-
cipals : magentix/pc.example.com@MAGENTIX, ams/pc.example.com@MAGENTIX
and df/pc.example.com@MAGENTIX.

When a service requires communication with another service, a security con-
text is established as client with the principal of the MAP administrator and as
server with the principal of the destination service. Using this security context
the information sent is encrypted and a message integrity code is calculated.
Therefore, the client is sure that the destination service is the service expected.
Moreover, the destination service knows that it is being contacted by a service
with the administrator identity, so the destination service will serve all the re-
quests it receives. Thus, only MAP services can exchange information with each
other. Other processes can neither send requests to the services nor observe in-
formation exchanged. Kerberos also avoid replay attacks and attacks due to the
clock1.

To carry out the implementation the GSS-API (Generic Security Service API
Version 2) [23] with Kerberos as lower level security mechanism is used. The uti-
lization of GSS-API improves portability, abstraction level and easy adaptation
to newer versions of Kerberos.

5.2 Agent Launching

Agent launching process is also secured and modified to allow secure agent com-
munications that are detailed in the next section. The aim is to assure that: first,
only MAP users can launch agents, and second, resources from agents launched
cannot be accessed by agents owned by a different user.

1 Kerberos only allows communication among PC’s taking part in a Kerberos network
if they are properly synchronized, using for example NTP.

/etc/krb5.keytab
service/host@MAGENTIX
pc.example.com
magentix/pc.example.com@MAGENTIX
ams/pc.example.com@MAGENTIX
df/pc.example.com@MAGENTIX

206 J.M. Such et al.

Fig. 2. Agent Launching

Figure 2 shows the process with its stages numbered. The stages are:
1. User authenticates to the KDC with the mgx login program using its MAP

identity (Kerberos principal).
2. User launches new agent program that has its setuid active and runs with

effective uid (euid) as root. Then, new agent asks the KDC for a ticket to
communicate with the ams service using the MAP identity of the user.

3. new agent reads the key generated by the ams when the MAP is launched
to ensure that the new agent implementation is the one expected. The file
containing this key (named mgx file) can only be read by root, that is the
reason why new agent has its setuid active.

4. A security context is created between the ams and new agent using the MAP
identity of the ams and the MAP identity of the user that has launched
the new agent. Then, new agent sends the request to create a new agent.
Although the request is not generated by the MAP administrator, the ams
accepts it in order to allow all MAP users to launch agents. The request
contains: the name of the agent to be created, the Linux uid and gid of the
requesting user, the key generated by the ams when the MAP is launched,
the route of the agent binary and the arguments for the agent.

5. The ams asks the KDC to create an identity for the new agent by means
of using the kadmin program of the Kerberos distribution. An agent MAP
identity (Kerberos principal) follows the form agentname@MAGENTIX.

6. The ams launches the binary of the agent setting its uid and gid to the uid
and gid of the Linux user that has launched the new agent. Therefore, the
agent created can only access the same Linux local resources as its owner.

Finally, when an agent dies, the ams removes its principal.

agentname@MAGENTIX

Kerberos-Based Secure Multiagent Platform 207

5.3 Agent Communication

Securing agent communication is similar to securing service communication, but
agents use the indentity that the ams has created for them when creating a
security context to allow a secure interaction with each other.

In order to make efficient use of security contexts, a context cache has been
added to each agent. This cache is based on a hash table indexed by destination
agent name that contains the corrresponding security context associated with
a destination agent. This cache is not related to connections cache, since the
number of connections is limited by the maximum number of file descriptors that
Linux allows per process and security contexts would be unlimited (but taking
into account available memory restrictions). Therefore, when a connection with
an agent is closed, the associated security context is not lost.

Kerberos security contexts expire (they are not valid infinitely), so an agent
can discover that a security context is no longer valid when trying to encrypt
or decrypt data. Then, a new security context has to be negotiated with his
conversation partner.

6 Performance Evaluation

In this section a performance evaluation between normal Magentix versus Ma-
gentix with the security infrastructure activated is made. Including security fea-
tures obviously makes Magentix perform worse, but further study is needed to
quantify this performance penalty, to determine whether adding the security in-
frastructure affects Magentix MAP performance in such a way that it becomes
unsuitable for developing MAS requiring high-performance.

As agent communication is provided with integrity and confidentiality when
using the security infrastructure, expensive cryptographic computations are re-
quired, so message sending performance will get worse with respect to the mes-
saging performance achieved when the security infrastructure is not used. As
MAS are distributed systems with a lot of interactions, using the security infras-
tructure may result in secure but inefficient MAS applications.

We have compared the message sending when Magentix uses its security in-
frastructure to when this infrastructure is not active. In order to carry out this
comparison, we have designed a test. In this test, we launch a sender agent that
exchanges messages of 10 bytes with a receiver agent. Each pair exchanges 1000
messages and the total time in the test is measured as the elapsed time (in sec-
onds) between when all the pairs start sending messages until all the pairs have
exchanged 1000 messages.

The test presented has been performed using 2 PCs Intel(R) Pentium(R) 4
CPU 3.00GHz, with 1GB of RAM memory, and running the Ubuntu Linux 6.06
OS (kernel 2.6.15). In secure Magentix, Kerberos has been configured to use AES
algorithm with 128-bit keys to encrypt and SHA-1 hash function with 96-bit keys
to perform HMAC computations.

Figure 3 shows results obtained. It is easily observed that when activating the
security infrastructure in Magentix (Secure Magentix) there is an extra overhead,

208 J.M. Such et al.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400

E
la

ps
ed

 T
im

e
(s

)

Agent Pairs

Magentix
Secure Magentix

Fig. 3. Magentix vs Secure Magentix

as one could expect. However, this overhead seems to be short enough so that
secure Magentix should allow the development of secure MAS with efficiency
requirements.

7 Conclusions

This paper presents a security infrastructure based on both the Kerberos pro-
tocol and the Linux OS access control in order to secure the Magentix MAP.
Kerberos provides the MAP with authentication, integrity and confidentiality,
while access control is achieved using Linux OS mechanisms.

Different alternatives are considered to bring authentication, integrity and
confidentiality to the Magentix MAP. IPsec is unsuitable for Magentix MAP
because it operates at network layer. When comparing TLS to Kerberos, the
latter seems to perform better because it is only based on symmetric cryptog-
raphy (more efficient than asymmetric cryptography) and allows the re-using of
security contexts in different connections with the same agent (avoiding security
context re-negotiations in each new connection).

A performance evaluation is also carried out in order to validate that even
adding the security infrastructure designed, the Magentix MAP remains efficient
enough to allow the development of complex MAS, i.e., with a huge number of
agents with a lot of interactions with each other and running on a huge number
of hosts distributed on a large network. Results presented in section 6 shows
that the overhead introduced by the security infrastructure is short enough so
that secure Magentix should be a MAP that supports secure complex MAS.

A future work is the definition of a general schema to control access to not only
OS resources but also other typical resources for a MAS. For instance, Magentix
MAP supports the creation of agent groups, so this general schema would allow

Kerberos-Based Secure Multiagent Platform 209

the specification of what agents can create groups. What is more, this general
schema would allow the specification of what agents can interact with others in
the same group, so agent organization hierarchies can be created.

References

1. Cougaar, http://www.cougaar.org
2. Fipa (the foundation for intelligent physical agents), http://www.fipa.org
3. Java agent development framework (jade), http://jade.tilab.com
4. Mit kerberos, http://web.mit.edu/Kerberos/
5. Semoa, http://www.semoa.org
6. Voyager, http://www.recursionsw.com/voyager.htm
7. Alberola, J.M., Mulet, L., Such, J.M., Garcia-Fornes, A., Espinosa, A., Botti, V.:

Operating system aware multiagent platform design. In: Proceedings of the Fifth
European Workshop on Multi-Agent Systems (EUMAS 2007), pp. 658–667 (2007)

8. Burbeck, K., Garpe, D., Nadjm-Tehrani, S.: Scale-up and performance studies of
three agent platforms. In: IPCCC 2004 (2004)

9. Camacho, D., Aler, R., Castro, C., Molina, J.M.: Performance evaluation of zeus,
jade, and skeletonagent frameworks. In: IEEE International Conference on Sys-
tems, Man and Cybernetics (2002)

10. Chmiel, K., Tomiak, D., Gawinecki, M., Karczmarek, P.: Testing the efficency of
jade agent platform. In: Proceedings of the ISPDC/HeteroPar 2004, pp. 49–56
(2004)

11. Coarfa, C., Druschel, P., Wallach, D.: Performance analysis of tls web servers (2002)
12. Cortese, E., Quarta, F., Vitaglione, G.: Scalability and performance of jade message

transport system. EXP. 3, 52–65 (2003)
13. Dierks, T., Allen, C.: The tls protocol version 1.0. RFC 2246 (1999)
14. Duvigneau, M., Moldt, D., Rölke, H.: Concurrent architecture for a multi-agent

platform. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS,
vol. 2585, pp. 59–72. Springer, Heidelberg (2003)

15. Frier, A., Karlton, P., Kocher, P.: The secure socket layer. Technical Report MSU-
CSE-00-2, Netscape Communications (1996)

16. Kent, S., Atkinson, R.: Security architecture for the internet protocol. RFC 2401
(1998)

17. Kuo, F.-C., Tschofenig, H., Meyer, F., Fu, X.: Comparison studies between pre-
shared and public key exchange mechanisms for transport layer security. In: IN-
FOCOM (2006)

18. Mulet, L., Such, J.M., Botti, J.M.A.V., Espinosa, A., Garcia, A., Terrasa, A.:
Performance evaluation of open-source multiagent platforms. In: Proceedings of
the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2006), pp. 1107–1109. Association for Computing Machinery,
Inc./ ACM Press (2006)

19. Neuman, C., Yu, T., Hartman, S., Raeburn, K.: The kerberos network authentica-
tion service (v5). RFC 4120 (2005)

20. Such, J.M., Alberola, J.M., Mulet, L., Espinosa, A., Garcia-Fornes, A., Botti,
V.: Large-scale multiagent platform benchmarks. In: Dastani, M., El Fallah
Seghrouchni, A., Leite, J., Torroni, P. (eds.) LADS 2007. LNCS, vol. 5118, pp.
192–204. Springer, Heidelberg (2008)

http://www.cougaar.org
http://www.fipa.org
http://jade.tilab.com
http://web.mit.edu/Kerberos/
http://www.semoa.org
http://www.recursionsw.com/voyager.htm

210 J.M. Such et al.

21. Ugurlu, S., Erdogan, N.: An overview of secmap secure mobile agent platform. In:
Proceedings of Second International Workshop on Safety and Security in Multia-
gent Systems (2005)

22. Vrba, P.: Java-based agent platform evaluation. In: Mař́ık, V., McFarlane, D.C.,
Valckenaers, P. (eds.) HoloMAS 2003. LNCS, vol. 2744, pp. 47–58. Springer, Hei-
delberg (2003)

23. Wray, J.: Generic security service api version 2: C-bindings. RFC 2744 (2000)
24. Xu, H., Shatz, S.M.: Adk: An agent development kit based on a formal design

model for multi-agent systems. Journal of Automated Software Engineering 10,
337–365 (2003)

Agent Contest Competition: 4th Edition

Tristan M. Behrens2, Mehdi Dastani1, Jürgen Dix2, and Peter Novák2

1Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

mehdi@cs.uu.nl
2Clausthal University of Technology

Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany
{tristan.behrens,dix,peter.novak}@tu-clausthal.de

Abstract. This paper summarises the Agent Contest 2008, organised
in association with ProMAS’08. The aim of the contest is to stimulate
research in the area of multi-agent systems by identifying key problems
and collecting suitable benchmarks that can serve as milestones for eval-
uating new tools, models, and techniques to develop multi-agent systems.
The first two editions of this contest were organised in association with
CLIMA conference series and the third edition was organised in asso-
ciation with ProMAS’07. Based on the experiences from the previous
three editions ([16,17,18]), the contest scenario has been changed to test
the participating multi-agent systems on their abilities to coordinate and
cooperate. We wanted to emphasise team work and team strategy issues
in a dynamic environment where teams compete for the same resources.
Seven groups from Iran, Ireland, England, France, Germany, Poland, and
Turkey did participate in this years contest.

1 Introduction

Multi-agent systems are beginning to play an important role in today’s soft-
ware development. In the field of agent-oriented software engineering, various
multi-agent system development methodologies have been proposed. Each
methodology focuses on specific stages of the multi-agent system development.
For example, Gaia [21] and Prometheus [20] focus on the specification and design
stages assuming that other stages such as requirement and implementation are
similar to corresponding stages of other software development paradigms. There-
fore, software developers using Gaia and Prometheus propose models to specify
and design multi-agent systems, while ignoring the implementation models.

Moreover, there is a growing number of agent-oriented programming languages
and development platforms that are proposed to facilitate the implementation
of multi-agent systems [11,15]. These programming languages and platforms in-
troduce programming constructs that can facilitate efficient and effective imple-
mentation and execution of multi-agent systems. The development of multi-agent
systems requires efficient and effective solutions for different problems which can
be divided into three classes: Problems related to (1) the development of individ-
ual agents, (2) the development of coordination and cooperation mechanisms to

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 211–222, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

212 T.M. Behrens et al.

manage the interactions between individual agents and team work, and (3) the
development of the shared environment in which agents perform their actions.

Typical problems related to individual agents are how to specify, design and
implement issues such as autonomy, pro-active/reactive behaviour, perception
and update of information, reasoning and deliberation, and planning. Typical
problems related to the interaction of individual agents are how to specify, de-
sign and implement issues such as communication, coordination, cooperation,
negotiation, and team working. Finally, typical problems related to the develop-
ment of their environment are how to specify, design and implement issues such
as resources and services, agents’ access to resources, active and passive sensing
of the environment, and realizing the effects of actions.
This competition started as an attempt to stimulate research in the area of
multi-agent systems by

1. identifying key problems in developing multi-agent systems, and
2. evaluating state-of-the-art tools, models, and techniques in the field of multi-

agent systems.

While there already exist several competitions in various areas of artificial in-
telligence (theorem proving, planning, Robo-Cup, Games, etc.) and, lately, also
in specialised areas in agent systems (Trading Agent Competition (TAC) [1]
and AgentCities competitions [2]), the emphasis of this contest is on the use
of existing tools, models, and techniques that are proposed to develop multi-
agent systems ([11,10,12,13,14,19]. In particular, we aim at evaluating existing
approaches for the development of multi-agent systems where individual agents
cooperate with each other to solve a task. In this respect, issues such as team
working, team strategy, interaction with dynamic environment, modeling the en-
vironment, limited perception, uncertain action effects, reasoning and planning,
and learning are essential.

The previous editions of this contest were organised in cooperation with
CLIMA and ProMAS workshop series. The scenario from this year is changed in
order to put the participating multi-agent systems under a test with respect to
coordination, cooperation, and team working issues in a dynamic environment
where teams of agents compete for the same resources.

2 Scenario Description

The competition task consisted of developing a multi-agent system to solve a co-
operative task in a dynamically changing environment. The environment of the
multi-agent system (see also [9]) is a grid-like world where agents can move from
one cell to a neighbouring cell. In this environment, herds of cows can appear
and move around in the environment showing swarm-like behavior. Participat-
ing agent teams are expected to explore the environment, avoid obstacles and
compete with another agent team to get most cows. The agents of each team
can coordinate their actions in order to control the movement of herds and move
as much cows as possible to their own corral. Agents have only a local view on
their environment, their perceptions are incomplete, and their actions can fail.

Agent Contest Competition: 4th Edition 213

There were seven teams participating in the competition:

– Jason from the ENS Mines of Saint Etienne, France, and University of
Durham, UK,

– SHABaN from the Iran University Of Science and Technology,
– Jadex from the Hamburg University of Applied Sciences,
– Bogtrotters from the University College Dublin, Ireland,
– Krzaczory from the, Polish Academy of Sciences,
– KANGAL from the Bogazici University, Istanbul, Turkey, and
– JIAC-TNG from the Technische Universität Berlin, Germany.

Each team competed against all other teams in a series ofmatches in parallelised
tournaments on three servers.Eachmatch between two competing teams consisted
of three simulations. A simulation between two teams was a competition between
them with respect to a certain starting configuration of the environment. Winning
a simulation yielded three points for the team, a draw was worth one point and a
loss resulted in zero points. The winner of the whole tournament was evaluated on
the basis of the overall number of collected points in the matches during the tourna-
ment. In the case of an equal number of points, the winner would have been decided
on the basis of the absolute number of collected cows. Details on the number of sim-
ulations per match and the exact structure of the competition has been published
prior to the Contest on the official Agent Contest 2008 website at http://cig.in.
tu-clausthal.de/agentcontest2008/.

2.1 Technical Description of the Scenario

In the contest, the agents from each participating team were executed locally
(on the participant’s hardware) while the simulated environment, in which all
agents from competing teams performed actions, was run on the remote contest
simulation server run by the contest organisers. The interaction/communication
between agents from one team were managed locally, but the interaction between
individual agents and their environment (run on the simulation server) took place
via Internet. Participating agents were connected to one of the simulation servers
that did provide the information about the environment. Each agent from each
team connected to and communicated with the simulation server using TCP
protocol and messages in XML format.

During the initial phase1 agents from all competing teams connected to the
simulation servers, identified and authenticated themselves and got general
match information. At the announced start time of the tournament, the sim-
ulation servers were on-line and the agents from participating teams were able
to connect to it. After a successful initial handshake during which agents identi-
fied themselves by their IDs and received acknowledgment from the servers, they
waited for the simulation start. The initial connecting phase took a reasonable

1 The contest organisers contacted participants before the actual tournament and
provided them the IDs necessary for identification of their agents for the tournament.

http://cig.in.tu-clausthal.de/agentcontest2008/
http://cig.in.tu-clausthal.de/agentcontest2008/

214 T.M. Behrens et al.

amount of time in order to allow agents to be initialised and getting connected
(15 minutes).

The simulation servers controlled the competitions by selecting the compet-
ing teams and managing the matches and simulations. In each simulation, a
simulation server, in a cyclic fashion, provided sensory information about the
environment to the participating agents and expected their reactions within a
given time limit. Each agent reacted to the received sensory information by indi-
cating which action (including the skip action) it wants to perform in the envi-
ronment. If no reaction was received from the agent within the given time limit,
the simulation server assumed that the agent performed the skip action. Agents
had only a local view on their environment, their perceptions were incomplete,
and their actions can fail. After a finite number of steps the simulation server
stopped the cycle and participating agents received a notification about the end
of a simulation. Then the server started a new simulation possibly involving the
same teams.

2.2 Team, Match, and Simulation

An agent team consisted of six software agents with distinct IDs. There were no
restrictions on the implementation of agents, although we encouraged the use
of approaches based on state-of-the-art tools, methodologies and languages for
programming agents and multi-agent systems, as well as the use of computational
logic based approaches. The tournament consisted of a number of matches. A
match was a sequence of simulations during which two teams of agents competed
in several different settings of the environment. For each match, the server 1)
picked two teams to play it and, subsequently, 2) started the first simulation
of the match. Each simulation in a match started by notifying the agents from
the participating teams and sending them the details of the simulation. These
included for example the size of the grid, the corral position, the number of
steps the simulation will perform, etc. A simulation consisted of a number of
simulation steps. Each step consisted of 1) sending a sensory information to
agents (one or more) and 2) waiting for their actions, and 3) processing agents’
replies and calculating the next state of the environment. As mentioned above,
in the case that an agent did not respond within a timeout (specified at the
beginning of the simulation) by a valid action, it was considered to perform the
skip action in the given simulation step.

2.3 Environment Objects

The (simulated) environment was a rectangular grid consisting of cells. The
simulated environment contained two corrals—one for each team—which serve
as a location where cows should be directed to. Each cell could contain either
nothing, an agent, a cow or an obstacle. If a cow entered a corral it was removed.
Agents could enter the corrals without effect. All three maps were hand crafted
for the particular scenario.

Agent Contest Competition: 4th Edition 215

2.4 Actions and Perceptions

At the start of each simulation the agents received the details of the environment:

– simulation ID,
– opponent’s ID,
– grid size,
– corral position and size, and
– number of steps the simulation will last.

Agents were located in the grid and the simulation server provided each agent
with the following information in each step:

– information about the cells in the visibility range of the agent (including the
one agent stands on),

– the agent’s absolute position in the grid,
– the current simulation step number,
– the number of caught cows and
– the deadline for responding.

If two agents were standing in each other’s field of view, they were able to
recognise whether they are enemies, or they belong to the same team. Also,
individual cows were identifiable.

All perceptions except for the agent’s and the corral’s position were subject to
be “forgotten” by the server, whereas the server never gave wrong information.

Agents were allowed to perform one action in a simulation step. The following
actions were allowed:

– skip – the agent does nothing,
– north – the agent moves to the north,
– northeast – the agent moves to the northeast,
– east – the agent moves to the east,
– southeast – the agent moves to the southeast,
– south – the agent moves to the south,
– southwest – the agent moves to the southwest,
– west – the agent moves to the west,
– northwest – the agent moves to the northwest.

All actions, except the skip action, could fail. The result of a failed action
is the same as the result of the skip action. An action can fail either because
the conditions for its successful execution are not fulfilled or because of the
information distortion.

2.5 Cow Movement Algorithm

Cows are simple creatures. They tend to move away from cells that they do not
like and to move towards cells they do like. Cows want to move away from agents
and trees. On the other hand, they are attracted by empty spaces and they want

216 T.M. Behrens et al.

to stay close to other cows, however not too close. Cows have the tendency to
form herds, which tend to be tighter in times when the animals are scared by
cowboys.

The cows have two fixed visibility ranges. Cows are attracted to other cows
that are in the visibility-square and not too close and they are repelled by cows
that are too close.

Cows are slower than agents. Each cow only moves every three steps. Our
simulation ensures that all cows do not move in the same step using a simple
algorithm.

The direction in which a cow will move in the next step is determined by
calculating a weighted linear-combination of the distance-vectors to visible cells,
with weights respective to the content of the cells. Cows do not move if the
resulting vector is zero. See [9] for technical details about cow movements.

2.6 Final Phase of the Simulation

In the final phase, the simulation server sent a message to each agent allowing
them to disconnect from the server. By this, the tournament was over.

3 Submission

The participation in this contest consisted of two parts. Participants first sub-
mitted the description of analysis, design and implementation of a multi-agent
system for the above application. We encouraged the use of existing state-of-
the-art multi-agent system methodologies to describe the systems. For the de-
scription of the implementations, the participants were asked to explain how the
design is implemented. This could be done by explaining, for example, which
programming language, platform, tools, and techniques are used to implement
the multi-agent system. All teams, except the one from Turkey, provided sub-
missions that are included in this volume.

The second part of the contest was the actual participation in the tournament
by means of an (executable) implementation of a multi-agent system. The agents
from each participating systems (agent teams) were executed locally (on the par-
ticipant’s hardware) while the simulated environment, in which all agents from
competing teams perform actions, was run on a remote contest simulation server.
Interaction/communication between agents from one team has been managed lo-
cally, but the interaction between individual agents and their environment (run
on the simulation server) was via Internet.

3.1 Received Submissions

For the 2008 edition of the Contest we initially received 9 submissions from 7
countries from all around the globe with a majority from Europe: JIAC-TNG [5]

Agent Contest Competition: 4th Edition 217

(Germany), Jadex [6] (Germany), SHABaN [7] (Iran), Krzacory [3] (Poland), Ja-
son [8] (France/United Kingdom), Bogtrotters [4] (Ireland), KANGAL (Turkey),
FLUX (Germany) and CSIRO (Australia). Shortly before the Contest launch,
the teams CSIRO and FLUX withdrew due to technical and organizational is-
sues in the development team, thus leaving finally 7 teams to compete in the
Contest. Detailed descriptions of the submissions (except for KANGAL team)
are included in this volume.

In comparison to the last editions, in this year’s Contest we could observe a
rise of using more formal approaches to system analysis and design. Four teams
(JIAC-TNG, Jadex, Jason and Bogtrotters) used a state-of-the-art methodology
to devise the multi-agent system architecture of their team. One team (SHABaN)
used a MAS prototyping language to evaluate their early designs. Finally the
teams KANGAL and Krzacory used either ad-hoc design, or their approach was
partly based on a utility function optimization technique.

Almost all the teams came up with a design using two generic role types
for their agents: herders and explorers. However, the resulting designs differ in
coordination techniques as well as approaches to MAS organisation and role-
assignment. According to the agent coordination the approaches can be divided
into two groups: those using a rather decentralised approach (JIAC-TNG, Jason
and Bogtrotters) and teams with a single centralised coordination entity/agent
(Jadex, SHABaN and Krzacory).

The centralised approaches used the main coordinator/master agent for steer-
ing the agents in the teams, however it can be observed that anyway all these
approaches left a significant part of the autonomous acting and decision making
on single agents (e.g. obstacle avoidance, exploration strategy, etc.). Unlike in
the previous Contest editions, this year we did not see a truly centralised ap-
proach - a one in which agents lack autonomy and are completely directed by
the team managing agent.

The approaches employed by the teams without a centralised control and
MAS organisation varied from using auctions for assignment a role in a team
to particular agents (Bogtrotters) to sharing intentions among agents in a team
(JIAC-TNG).

We observe also an interesting trend in approaches to agent navigation in the
environment. It seems that more and more teams employ the A∗ algorithm to
search for shortest paths in the map of the environment. Thus the navigation in
even complex environments is not that much of an issue as we could observe in
previous Contest editions.

Another interesting arising trend seems to be employment of MAS recov-
ery monitoring mechanisms to keep the agent team up and running. As this
used to be an issue in the previous years of the Contest, the teams JIAC-
TNG and Bogtrotters implemented a team recovery technique to restart/recreate
a crashed agent as well as to inform the restarted agent about the current
status of the team knowledge (note that both teams use a decentralised
approach).

218 T.M. Behrens et al.

4 Technical Infrastructure

In the fourth edition of this Agent Contest, we re-used the technical infrastruc-
ture we developed for the previous editions. Briefly, the server’s architecture
consists of

1. simulation plug-in: A replaceable module providing the logics of the envi-
ronment simulation,

2. agent session manager : Responsible for holding the sessions between the
server and individual agents and en/de-coding of XML messages of the pro-
tocol,

3. visualization library: It produced the SVG records from each time frame of
the simulation environment state,

4. contest webinterface: Providing a public view and interface to the MASSim
server, and

5. MASSim core module: Managing the tournament scheme and providing the
connection between the simulation plug-in, agent session manager and web-
interface.

A more detailed description of the system can be found in the report on the
second edition of the Agent Contest [17]. The system is published on the official
Contest website: http://cig.in.tu-clausthal.de/AgentContest/.

4.1 Contest Preparation

As in previous editions, before the tournament itself, the Contest organisation
went through several preparatory stages. We released the scenario description
for the Agent Contest on 18 February 2008 and updated on 18 April 2008. The
communication protocol for the simulation scenario was released later on 13
March 2008. The Agent Contest testing phase was launched on 29 April 2008
and ran until the very Contest tournament launch on 26 May 2008. During this
period, which lasted more than one month, the participants could freely connect
to the testing server and test their agents in a simulated match against our
dummy Bot agent team. We did not allow different teams to compete against
each other as this should happen only during the tournament itself. During the
testing phase, few minor bugs in the scenario implementation were discovered
and quickly fixed.

4.2 Tournament

The Agent Contest 2008 tournament itself was launched on Monday, May 26th
2008 at about 10:00 CEST (UTC/GMT+2). A few days in advance, the partici-
pants received the Internet coordinates of the tournament server together with
credentials for their agents. The Agent Contest was served on the three tour-
nament servers called Agent-Contest1, Agent-Contest2, and Agent-Contest3 that

http://cig.in.tu-clausthal.de/AgentContest/

Agent Contest Competition: 4th Edition 219

could be observed via a web-interface at the address http://agentserver.in.
tu-clausthal.de. We provided also a chat space for participants, what in the
course of the tournament itself turned out to be a vital and efficient communi-
cation tool.

The teams competed against each other on four successive days and based
on three different simulation servers. The time table of these matches are shown
below2:

Day \ server Agent-Contest1 AgentContest2 AgentContest3
26th May Jason vs SHABaN Jadex vs Bogtrotters JIAC-TNG vs krzaczory

Jadex vs KANGAL
Bogtrotters vs KANGAL

27th May Jason vs Jadex JIAC-TNG vs Bogtrotters krzaczory vs KANGAL
krzaczory vs SHABaN
KANGAL vs SHABaN

28th May Jason vs krzaczory JIAC-TNG vs Jadex
Jason vs Bogtrotters JIAC-TNG vs SHABaN
krzaczory vs Bogtrotters Jadex vs SHABaN

29th May Jason vs JIAC-TNG krzaczory vs Jadex SHABaN vs Bogtrotters
Jason vs KANGAL
JIAC-TNG vs KANGAL

All results, together with the SVG recordings of all the matches can be down-
loaded from http://agentserver.in.tu-clausthal.de.

4.3 Simulation Instances

The teams competed in matches each consisting of 3 different grid simulations
with identifiers CowSkullMountain, RazorEdge and Street (Figure 1). All scenar-
ios are handcrafted labyrinths to challenge agent teams obstacle avoiding and
communication approaches.

Fig. 1. Initial simulation scenarios cowskullmountain, razoredge, and street

2 The table is fragmented due to the fact that the tournament was originally scheduled
for 9 participating teams.

http://agentserver.in.tu-clausthal.de
http://agentserver.in.tu-clausthal.de
http://agentserver.in.tu-clausthal.de

220 T.M. Behrens et al.

5 Contest Results

The winner of the ProMAS Agent Contest 2008 was the JIAC-TNG team from
the DAI-Labor, Technische Universität Berlin, Germany. They gained the high-
est number of points: 46. The second team was Jadex (Germany) with 42 points
followed by the SHABaN team (Iran) with 37 points. The summary of the whole
tournament is summarised in the Table 1.

Table 1. Final tournament results

Rank Team CowScore Points
1. JIAC-TNG team 643 64
2. Jadex 542 42
3. SHABaN 373 37
4. krzaczory 379 26
5. Jason 393 21
6. bogtrotters 305 13
7. KANGAL 32 1

6 Conclusion

As in the previous Contest editions, our main motivations behind this Agent
Contest are the following:

– to foster the research and development of practically oriented approaches to
programming multi-agent systems, and

– to evaluate the state-of-the-art techniques in the field, and
– to identify key problems using these techniques.

After the success of the previous three editions of the Agent Contest we recog-
nised a need to shift the main focus of the Contest scenario from basic agent-
system issues (testing the state-of-the-art approaches to programming agents)
more towards a multi-agent setting, i.e. coordination and cooperation strategies
among agents in a MAS team. For the 2008 edition we devised a new scenario
cows & cowboys, which turned out to be more challenging and entertaining than
the previous gold miners scenario. The main emphasis was to construct a com-
petition scenario in such a way that the success of the team should strongly
depend on coordination of several agents. This was achieved by our design de-
cision, not to allow to push a group of cows in a certain direction by a single
agent.

Although initially we have been rather sceptical about solubility of the sce-
nario (and we still do not know a perfect solution), it turned out that the com-
peting teams performed rather well. The most difficult scenario turned out to be
the RazorEdge map 1. To push a group of cows through the narrow opening in
the map so that cows do not escape in the wrong direction turned out to require
good cooperation abilities of the agent team. In scenarios similar to this we see
still a potential for improvement of agent team performance.

Agent Contest Competition: 4th Edition 221

Similarly to the previous Contest editions, we collected interesting feedback
from the participants. To our pleasure, it turns out that one of the main gains
from participating in the Agent Contest tournaments are contributions to testing
and debugging of the participants MAS-oriented frameworks and programming
systems. Another important aspect seems to be the educational value of the
Contest: We seem to attract more and more teams including students on both
post-graduate, as well as undergraduate levels.

We run this year’s Contest edition in a different organisational structure. We
divided the tournament into four sub-tournaments, each ran on a separate day.
On each day we executed three parallel contests. This resulted into a significant
decrease of the tournament running time and allowed us to use larger maps
and more complex scenarios for individual simulations. In the future we want to
further follow this line.

Acknowledgements

We are very thankful to the students of the Department of Informatics of
Clausthal University of Technology. They worked very hard in order to meet
all the deadlines and deliver high-quality code. In particular, our thanks go this
year to

– Jens Dehnert and
– Slawomir Deren

for the numerous hours they have invested to help us get the scenario and the
tournament ready in time.

References

1. http://www.sics.se/tac

2. http://www.agentcities.org/EUNET/Competition

3. AC08 system description. In: Sixth International Workshop on Programming
Multi-Agent Systems (2008)

4. Dublin Bogtrotters: Agent Herders. In: Sixth International Workshop on Program-
ming Multi-Agent Systems (2008)

5. Herding agents - JIAC TNG in Multi-Agent Programming Contest 2008. In: Sixth
International Workshop on Programming Multi-Agent Systems (2008)

6. On Herding Artificial Cows: Using Jadex to Coordinate Cowboy Agents. In: Sixth
International Workshop on Programming Multi-Agent Systems (2008)

7. SHABaN multi-agent team to herd cows. In: Sixth International Workshop on
Programming Multi-Agent Systems (2008)

8. Using Jason and Moise+ to develop a team of cowboys. In: Sixth International
Workshop on Programming Multi-Agent Systems (2008)

9. Behrens, T.M., Dastani, M., Dix, J., Novák, P.: Technical aspects of the agent con-
test competition. Technical Report IfI-08-05, Clausthal University of Technology,
Dept of Computer Science, 4th edition (to appear) (2008)

http://www.sics.se/tac
http://www.agentcities.org/EUNET/Competition

222 T.M. Behrens et al.

10. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.): PROMAS
2003. LNCS, vol. 3067. Springer, Heidelberg (2004)

11. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.): Multi-Agent
Programming: Languages, Platforms and Applications. Multiagent Systems, Arti-
ficial Societies, and Simulated Organizations, vol. 15. Springer, Berlin (2005)

12. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.): PROMAS
2004. LNCS, vol. 3346. Springer, Heidelberg (2005)

13. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.): PROMAS
2005. LNCS, vol. 3862. Springer, Heidelberg (2006)

14. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.): PROMAS
2006. LNCS, vol. 4411. Springer, Heidelberg (2007)

15. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.): Multi-Agent
Tools: Languages, Platforms and Applications. Springer, Berlin (2009)

16. Dastani, M., Dix, J., Novák, P.: The First Contest on Multi-Agent Systems based
on Computational Logic. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS,
vol. 3900, pp. 373–384. Springer, Heidelberg (2006)

17. Dastani, M., Dix, J., Novák, P.: The second contest on multi-agent systems based
on computational logic. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006.
LNCS, vol. 4371, pp. 266–283. Springer, Heidelberg (2007)

18. Dastani, M., Dix, J., Novák, P.: Agent Contest Competition: 3rd edition. In: Das-
tani, M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007.
LNCS, vol. 4908, pp. 221–240. Springer, Heidelberg (2008)

19. Dastani, M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.): ProMAS
2007. LNCS, vol. 4908. Springer, Heidelberg (2008)

20. Padgham, L., Winikoff, M.: Prometheus: A methodology for developing intelligent
agents. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS (LNAI),
vol. 2585, pp. 174–185. Springer, Heidelberg (2003)

21. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 12(3), 317–370 (2003)

AC08 System Description

Jacek Szklarski�

Institute of Fundamental Technological Research, Polish Academy of Sciences
jszklar@ippt.gov.pl

Abstract. A simple multi-agent system which participated in the Multi-
Agent Programming Contest in association with ProMAS 2008 is
described. Agents take actions in order to maximize a global utility func-
tion from at each step. Coordination is done via the max-plus algorithm
or by the greedy strategy.

1 Introduction

The goal of agents in the contest scenario is to collect as many cows as possible
into a home corral and, possibly, make it more difficult for opponents to collect
theirs own cows. To do this the agents in the described system try to maximize
a global utility function U at each step. The value of U depends on the position
of observed cows, knowledge of the terrain and relative positions of cows, agents
and the corrals. At each step the agents communicate to agree what are the
optimal actions they should take, in order to get maximum U in the next step.
Bearing in mind that there exists 10s deadline for making the decision, we apply
the max-plus algorithm (1; 2) which can be interrupted at any time giving the
best solution found so far. Alternatively the greedy strategy is used.

2 System Analysis and Design

The goal of implementing the discussed MAS is to check if this simple approach
can actually generate cooperative behavior, and how its performance is compared
with more sophisticated methods. The agents maximize a simple mathematical
function which describes the observed environment, and any methodologies such
as Gaia or Tropos were not used. There are parameters used to calculate U ,
and some of them are specific to a single agent. Consequently, by using different
values for each agent one obtains heterogeneous system in which the agents have
different roles. Moreover, if the observed state of the game does not improve for
some time, the agents are can modify theirs parameters and take specific actions.

In theory, the system can be implemented as completely independent processes
corresponding to a single agent. However, it was more convenient to introduce
the master-agent which is used to collect the observed information from all the
agents and, after processing, it sends results back to the agents.
� Corresponding author.

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 223–227, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

224 J. Szklarski

3 Software Architecture

For reasons of convenience and simplicity, the system has been programmed with
use of Java language. The agents are based on the AbstractAgent class which
has been supplied by the Organizers of the contest. The agents communicate
with the master-agent over TCP/IP. The presented method can be implement
without any master-agent by means of all-to-all communication at each step. In
that case the vulnerability due to the master agent would be removed, and the
system would become completely decentralized (and independent of the number
of active agents).

4 Agent Team Strategy

4.1 The Master-Agent

All the agents after perceiving their environment send observed data to the single
master-agent. This agent keeps track of all the obstacles, the cows, the enemies
and the enemy corral. Since a cow moves only if (step mod 3) equals to its
individual randomly assigned (but constant) number, the master-agent can tell
if a cow with given id will move in the next step or not. Based on the observations
it also guesses possible weights w(cow), w(agent), etc. It also calculates shortest-
path distances to the home and enemy corral (if the latter has been observed),
and keeps information about knowledge of the environment.

4.2 Utility Function

The global utility function U , which all the agents try to increase, consists of
the three components

U = Ue + Uc + Up,

where Ue is a reward for exploration, Uc a reward for moving cows in the next step
closer to the home corral and further from the enemy corral, Up is a reward for
an agent being on a proper position (see below). In the current implementation
all the calculations of the utility function are done by the master-agent class.

Exploration. If an agent makes a proper observation of a cell (x, y), the master-
agent sets E(x, y) = 1 (initially E = 0 everywhere). Knowledge about the envi-
ronment decays, such as Et+1 = EtγE , where γE ∈ [0, 1] is a constant parameter.
When a new action for the agent i is considered, the reward for exploration is
calculated as

Ue(i) = βi

∑
(x,y)∈Vi

1 − E(x, y),

where Vi denotes all the positions of newly perceived cells by the agent i, βi ∈
[0, 1] is a constant number characterizing the agent’s exploration character. Ue

is then Ue = β
∑

i Ue(i), where β ∈ [0, 1] is yet another constant parameter.

AC08 System Description 225

Cows. For set of all the observed cows C,

Uc =
∑

(x,y)∈C
f [Dh(x, y)] + g[De(x, y)],

where Dh/De is the shortest-path distance from the home/enemy corral. f(x) =
c1x

c2 , g(x) = c3x
c4 , and ci are constant parameters (depending on the grid size

as well; c2, c4 are negative).

Position. In order to move an agent to a proper position with respect to the
cows and the corrals, another reward is provided. The algorithm for finding Up

is as follows:
C(x, y) ← 0 for all cells (x, y)
for all observed cows j do

Find a vector v1 directed from the cow j to the home corral along the
shortest path
for all cells (x, y) do

Find a vector v2 directed from (x, y) to the cow along the shortest path
α ← the angle between v1 and v2, α ∈ [0, 2π).
d ← the shortest distance between the cow j and (x, y)
C(x, y) ← C(x, y) + cos(α) × f(d)
Optionally, if C(x, y)0 then C(x, y) ← 0

end for
end for

here f(x) = d1x
d2 . Now, for each agent i at position (xa, ya), we calculate

pi(x, y) = C(x, y)g(r), for (x, y) ∈ Vi

and pi(x, y) = 0 for (x, y) /∈ Vi, r being the distance along the shortest path
between (x, y) and (xa, ya), g(x) = d3x

d4 , di are parameters. Afterwards inter-
actions with the other agents are handled, and the agent’s i payoff is calculated,

Up(i) =
∑

(x,y)∈Vi

⎛
⎝pi(x, y) −

∑
i�=j

pj(x, y)

⎞
⎠ .

In exactly the same way, but with different parameters, Ūp(i) is calculated for
the enemy corral.

Then
Up = λ

∑
i

(
Up(i) + Ūp(i)

)
,

λi and λ are parameters characterizing the agents.

4.3 Switching Agents to Special Modes

Each agent can operate in one of the two additional modes. These modes signif-
icantly improve the overall performance of the team.

226 J. Szklarski

Call for assistance. Each agent i can compute its local utility function UL(i)
based on information only from its neighborhood. The values UL are then sorted
in descending order. The winner, i.e., the agent a with the highest UL can call
the agent b with the lowest UL for help. If the call is accepted (it can be rejected
if, e.g., b itself has UL comparable with that of a), the agent b in the next steps
will travel along the shortest path to a place near the calling agent a. After
reaching the destination, b is switched back to the normal mode.

Single cow pushing. If for longer time, about 100 steps or so, the U does not
improve, one of the agents switches itself to a single-cow-pushing mode. This is
simply realized by assuming, that the agent sees only single cow, the one which
is at the smallest shortest-path distance from the home corral.

4.4 Coordination

Each agent should choose its action ai from the set of all possible actions A. The
goal is to find the joint action a = (a1, . . . , an) maximizing U , that is finding
a∗ = arg max

a
U(a). To do this we apply the max-plus algorithm in which the

agents exchange messages until a convergence criterion is met (1; 2).
Alternatively, a much faster simple greedy strategy is used. In this case, the

agent 1, as the first one, takes the action a1 giving the largest payoff, assuming
that the others do nothing. Then the agent 2 takes its best action, given that
the agent 1 took a1, etc. Note that the ordering of the agents is predefined.

4.5 The Strategy

The strategy is based solely on the process of maximizing the global utility
function in the next step, i.e., from step t to t+1. There is no long-term planning
and, consequently, the approach fails if actions giving reward in the far future
are necessary.

Firstly, if there are no cows observed, the agents explore the terrain by in-
creasing the term Ue. If a cow herd has been found, and, say, three agents have
taken care about them, the others still are able to explore since they do not get
any reward from Uc or Up.

The cows are controlled in the following way. First, by increasing Up, the
agents move to proper positions taking into account relative positions of the
corrals, the cows and themselves. Each distance is computed along the shortest-
path distance for the current known map of obstacles. The parameters are chosen
in such a way, that Up is more important for the agents than Uc. Nevertheless,
if the agents have already proper positions, theirs actions are chosen in a way
which maximizes Uc in the next step, i.e., by pushing the cows towards the home
corral and away from the enemy corral.

Action coordination is done via the distributed optimization, i.e., max-plus
algorithm, or by the greedy approach. The max-plus algorithm leads often to
more logical local behavior with respect to, e.g., three agents taking care about a
herd of cows. However, the number of collected cows after many steps is more or

AC08 System Description 227

less the same for the both methods. Therefore, using here the more sophisticated
algorithm gives no improvement. This is not surprising since in the system, the
locally made decisions have small influence on the goal in the far future.

Due to the nature of the system design there is no background processing
implemented. There exists a simple script handling crash recovery: if a process
representing any agent or the master-agent crashes, it is automatically restarted.

5 Discussion

The point of implementing the system and participating in the Agent Contest
2008 was to gain some insight concerning performance of the simple approach,
and compare the results with other, more advanced MAS. It is understood that
with absence of any long-term planning strategies, the agents are unable to
perform well on complicated and tricky maps.

Such poor performance was evident in the map RazorEdge (however, it should
be noted that this map was problematic for other systems as well). The agents
stubbornly tried to push entire herds through a small passage leading to the cor-
ridor towards the home corral. However, the nature of the competition was such
that, after the first day, the participants knew all the maps. Lacking clauses ex-
plicitly forbidding it, the teams were able to make changes in theirs MAS. There-
fore, after the second day it was decided to introduce the single-cow-pushing
mode discussed above. Due to this modification one agent starts to execute
”better something than nothing” strategy, and collects single cows in maps of
the RazorEdge style. Obviously this idea can be extended to all the agents. This
would significantly increased number of the collected cows in such cases, and re-
moved any cooperative behavior at the same time. Note here that in my opinion
implementing any hard-coded map-specific rules is absolutely pointless.

The performance in the other maps was much better. The agents were able to
cooperate and push entire herds towards the home corral. Moreover, they were
able to disturb the enemy and block cows from pushing them towards the enemy
corral.

When it comes to the technical approach, there were no problems concerning
implementing the MAS. The classes provided by the Organizers worked without
any serious problems. Similarly, during the contest itself, everything went fine.

Bibliography

[1] Vlassis, N., Elhorst, R., Kok, J.R.: Anytime algorithms for multiagent decision
making using coordination graphs. In: Proc. Intl. Conf. on Systems, Man and Cy-
bernetics (2004)

[2] Vlassis, N.: A Concise Introduction to Multiagent Systems and Distributed Artifi-
cial Intelligence. Morgan and Claypool (2007)

Herding Agents - JIAC TNG in Multi-Agent
Programming Contest 2008

Axel Hessler, Jan Keiser, Tobias Küster, Marcel Patzlaff, Alexander Thiele,
and Erdene-Ochir Tuguldur

DAI-Labor, Technische Universität Berlin, Germany

Abstract. Another essential problem of mankind must be solved in this
year’s agent contest: cow capturing. We present the JIAC approach to
this problem by applying the iterative and incremental JIAC method-
ology and JIAC tools. The solution will be designed and implemented
using the next generation of the JIAC agent framework that provides
easier way of agent construction, but that is in early beta state. We ad-
mire this contest as an evaluation platform for our developments (like
our last year’s MicroJIAC team).

1 Introduction

The JIAC TNG (The Next Generation) agent team has been prepared by mem-
bers of the Competence Center Agent Core Technologies of DAI-Labor at Tech-
nische Universität Berlin. We use the new JIAC TNG agent framework, the
successor of JIAC IV [1], with accompanying toolkit, which have been created
in the course of last year’s projects at DAI-Labor. The motivation to participate
in the contest was to test the functionality and usability of this framework like
our last year’s contribution to the competition did with MicroJIAC [2]. In con-
trast to AC’07, the scenario of this contest is more complex and requires more
coordination and cooperation. Thus, we are implementing a multi-agent system
which addresses those issues more than our previous contributions [2][3].

2 System Analysis and Design

We follow the iterative and incremental JIAC methodology (see Figure 1): First,
we collect domain vocabulary and requirements, structure and prioritise them.
For example, class Cow has attributes colour, methane output and origin. The
overall requirement is to capture and keep as much of these cows as possible. We
can find some necessary basic requirements such as the ability to communicate
with the competition server as well as with other agents, to sense the world and
to walk. The next step is to design the MAS architecture by naming agents that
play a role in the scenario. We just skip this step because we follow the design
of the organisers who have set a team of six agents into being. Then, we derive
an agent role model. Each of our agents must play different roles according to
the perceived situation and depending on what other agents, friends and foes,

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 228–232, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Herding Agents - JIAC TNG in Multi-Agent Programming Contest 2008 229

do or intend to do. We have found the following roles: scout, herder, and smart
opponent assistant. The scout role has capabilities to systematically search the
terrain for cows, the herder role is able to direct cows to the corral. The opponent
assistant is in itself a complex role. In AC’07 [3], we described our agents as fair,
stepping aside when opponents come. This time we concentrated on observing

Fig. 1. JIAC methodology - iterative and incremental process model in SPEM [4]
notation

Fig. 2. The agent role model created with the JIAC AgentRoleEditor tool

230 A. Hessler et al.

opponents’ behaviour and crisscrossing their plans. The agent role model (see
Figure 2) also contains the interdependencies between roles.

Each Agent has its own perceptions, thus developing its own world model over
time and also choosing its actions based on this world model. However, we believe
that team communication and coordination plays a vital role in solving the
contest scenario. Coordination strategies are specified in more detail in chapter 4.

While designing the MAS using JIAC tools, most of the implementation,
integration and deployment artefacts are generated from the design, and are im-
mediately ready to get evaluated, in order to generate new requirements or to
change the old ones. The JIAC methodology is an agile development methodol-
ogy with the outcome of real software agent-based systems. It does not iterate
theoretical designs without cross-checking it with reality. As the design is an
essential part in the development, it will not win the contest alone. When the
competition server became available, short iterations and prioritised increments
ensured a strong competitive solution.

3 Software Architecture

Our contribution is realised using the JIAC TNG agent framework which we are
currently developing as the successor of JIAC IV. It is aimed at the easy and
efficient development of large-scale and high-performance multi-agent systems.
It provides a scalable single-agent model and is built on state-of-the-art standard
technologies. The main focus rests on usability meaning that a developer can use
it easily and that he is supported by the right set of tools depending on what he

Fig. 3. The single agent control flow realising general cowherd behaviour

Herding Agents - JIAC TNG in Multi-Agent Programming Contest 2008 231

is doing. Like its predecessor JIAC IV and its smaller brother MicroJIAC, JIAC
TNG is implemented in the Java programming language.

The aforementioned roles are implemented with agent components which are
the behavioural structures of the agent. They access and modify the agent’s state,
generate knowledge and trigger the actions. We also use two sensor/actuator
components. One component, the standard communication component of the
framework, is used for the information exchange between our agents. The other
component gathers the perception messages from and delegates the action mes-
sages to the competition server (see Figure 3).

4 Agent Team Strategy

A team is always worth more than the sum of its participants. We assume that
this must also hold true for the MAS. We addressed this in several iterations
dealing with communication, coordination, and cooperation.

Our approach to communication and cooperation is fully decentralised. Each
agent has the capability of finding other agents on the network and communicat-
ing to them, no matter where they physically reside. Every agent builds its own
world model from what it is told by the server and the other agents. Every agent
also plans for itself, by taking the intentions of its teammates into account, and
also, of course, what it thinks what opponents intend to do.

Our agents cooperate on a number of levels. First, they share their perceptions.
Next, we enabled them to share their intentions (such as ”I plan to direct cow C
to (X,Y)”). This prevents agents from going to the same unknown field or even
exploring the same region of the world and thus wasting precious steps. Every
agent can appraise from what it knows if it will be better to leave the team
member alone or to take the intention as its own when it is more promising.

We did not investigate different coordination strategies. However, we have
observed emergent behaviour concerning herd driving: 3 or 4 agents collectively
driving a larger number of cows, just arising from communication of perception
and intention.

The agents navigate using the A* algorithm. We identified two different cases
for its application. First, if an agent wants to explore the area or come to help,
it calculates the path between its current position and the destination. Second,
if the agent wants to drive a cow, it calculates the path between the position of
the cow and the corral. So it knows where to position itself to be always behind
the cows. The navigation algorithm treats opponents as obstacles so our agents
will not block them explicitly.

Our agents possess two recovery mechanisms. The agent tries to reconnect,
whenever the connection between an agent and the server breaks during the
simulation. Furthermore, if an agent crashed and must be restarted, the agent
requests other agents after the restart to send their actual world states.

We followed the discussion about unmoral agents and decided to let the agents
make their own behavioural decisions. As a matter of fact, they are capable
of helping the opponent team scattering the cow herds. Also they avoid the
opponents’ corral by treating it like fields with obstacles.

232 A. Hessler et al.

5 Discussion

After our success in last year’s agent competition we are happy for once more
having the possibility to show the maturity of our new agent framework.

Clearly this year’s competition was a much greater challenge that it was last
year, since now the agents have to cope with “moving targets”, making the
world a lot more open and dynamic than it was before. There are much more
parameters to think of and a greater variability of possible behaviours. When
choosing our strategy we tried to consider as much as possible. We also were
very curious regarding the other teams strategies.

It is still a challenge and adventurous to use existing agent technology and
frameworks. While testing new ideas in this Agent Contest we try to bring
forward our understanding of what agents can achieve. And it is always a pleasure
to meet up with other teams in a competitive but friendly manner.

6 Conclusion

The JIAC TNG team solved the problem of capturing as much cows as possible.
We used the contest as evaluation platform for our new agent framework. The
greatest pleasure was the emergent team behaviour, which we did not foresee.
It was not clear to us that sharing perceptions and intentions between agents is
such a powerful concept. We also appreciate the higher scenario complexity.

References

1. Fricke, S., Bsufka, K., Keiser, J., Schmidt, T., Sesseler, R., Albayrak, S.: A Toolkit
for the Realization of Agent-based Telematic Services and Telecommunication Ap-
plications. Communications of the ACM 44(4), 43–48 (2001)

2. Tuguldur, E.O., Patzlaff, M.: Collecting gold. In: Dastani, M., El Fallah Seghrouchni,
A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 251–
255. Springer, Heidelberg (2008)

3. Hessler, A., Hirsch, B., Keiser, J.: JIAC IV in Multi-Agent Programming Contest
2007. In: Dastani, M., Fallah Seghrouchni, A.E., Ricci, A., Winikoff, M. (eds.) Pro-
MAS 2007. LNCS, vol. 4908, pp. 256–260. Springer, Heidelberg (2008)

4. Object Management Group: Software Process Engineering Metamodel (SPEM)
Specification. Version 1.1. Object Management Group, Inc. (2005)

On Herding Artificial Cows:
Using Jadex to Coordinate Cowboy Agents

Gregor Balthasar, Jan Sudeikat, and Wolfgang Renz

Multimedia Systems Laboratory,
Hamburg University of Applied Sciences,
Berliner Tor 7, 20099 Hamburg, Germany

Tel.: +49-40-42875-8304
{baltha g,sudeikat,wr}@informatik.haw-hamburg.de

Abstract. The Cows and Herders scenario of the 2008 Multi–Agent
Programming Contest provides a challenging testbed for the coordina-
tion of intelligent agents. Our first–time participation in this contest is
based on a set of BDI agents which share knowledge and coordinate
by a centralized planning guidance to cope with the (possibly) hostile
environment. The conceived design has been implemented in the Jadex
system which provides an execution environment for BDI–style agents
on the basis of a distributed systems middleware.

1 Introduction

The Jadex system [1] provides an execution environment and development tools
for realizing Multi–Agent Systems (MAS) that are composed of Belief–Desire–
Intention (BDI) agents. According to this agent architecture, the local agent
activity is guided by beliefs, goals and plans. The agents’ beliefs define the
domain-dependent abstraction of their environment as well as internal state.
Goals represent agents’ desires, typically understood as target states of beliefs.
Agents deliberate which goals to pursue and access a library of plans, in order
to accomplish intended goals. Developers implement Jadex agents by declar-
ing the structure of agents in XML language and implementing agent plans in
the Java programming language. Each agent is represented by a so-called Agent
Definition File (ADF) which describes the structure of beliefs, goals and plans
in XML syntax. The activities an agent can perform are coded in plans, i.e.
ordinary Java classes. The modularization of agents is enabled by so–called ca-
pabilities [2,3]. These are also given as ADFs that are accompanied by plan
classes.

In the following we describe the design of a Jadex–based MAS that had
competed in the 2008 Multi–Agent Programming Contest. BDI agents control
the individual players and their strategic game play is controlled by a cen-
tralized agent that maintains the sum of local agent perceptions as a global
game view and heuristically allocates agents to herd the identified swarms of
cows.

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 233–237, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

234 G. Balthasar, J. Sudeikat, and W. Renz

2 System Analysis and Design

The MAS is subject to incremental development of agent prototypes. Through-
out the development Tropos modeling notations and tools are utilized.1 While
the early requirements activities are inapplicable in the context of this contest,
Tropos provides appropriate tools, notations and mindsets to guide the refine-
ment of BDI agents during the incremental development.

The application consists of a homogeneous set of six Teammates which have
the ability to play a fixed set of roles. The two identified basic roles are:

– Explorer: wandering the environment and report perceptions
– Herder: cooperative guidance of groups of cows

The allocation of Teammates to the herding of cow swarms is decided by a cen-
tralized agent (so–called Herding Officer). This agent gets continuously informed
about the local perceptions of Teammates and decides on the basis of this ac-
cumulated knowledge, which agents should cooperatively steer a swarm to the
team corral.

Therefore, Teammate agents get allocated to herd swarms when these are iden-
tified. If no swarm is available they ask proactively for the allocation to a region
of the environment to be examined, thus allowing the coordination of collective
map exploration. These roles are carried out autonomously. The movement of
the Teammates and the guidance of agents that participate in cooperative herd-
ing both utilize an adjusted A* implementation. The communication with the
officer agent takes place via ACL messages. These are supported by the Jadex
agent system and enable the exchange of ontology objects, i.e. Java language
objects.

3 Software Architecture

The competition team is implemented in Jadex. It provides language constructs
for agent oriented programming, i.e. defining the beliefs, goals and plans of BDI–
like agents. The BDI agent architecture has been selected, as we found that
goal–oriented programming supports guiding the individual agent’s selection of
the different behaviors to exhibit. The Jadex implementation platform facilitates
the realization since it makes no restrictions on the (third–party) programming
language libraries to be used within agent plans. Also it provides a set of tools
for agent development and debugging.

In addition, the modularization of agent behaviors in capabilities is used to
structure the implementation. Each agent is equipped with a capability that
encapsulates the interactions with the competition server. The capability of-
fers a goal–oriented interface for the agent to connect to the game server, i.e.
issue movement actions. The perception of the environment is also encapsu-
lated by processing the messages that are received from the game server and

1 e.g. TAOM4E: http://sra.itc.it/tools/taom4e/

On Herding Artificial Cows: Using Jadex to Coordinate Cowboy Agents 235

storing the relevant information in the agents’ beliefbase. Agents react on the
changes of belief values (environment perception) as well as on receptions of
Jadex internal communication from team mates. The behaviors of agents (e.g
searching for cows, herding cows, etc.) is modularized to ensure the separation of
concerns.

The MAS is composed of a homogeneous set of Teammates and the coordi-
nator of the herding behavior (Herding Officer). Teammates interact with the
competition server, i.e. sense and (inter–)act with the environment. They use
MAS internal communication to request assistance from each other and regu-
larly communicate their (local) perceptions to the Herding Officer agent, which
provides a central representation of game information, i.e. team knowledge about
the environment state. The Herding Officer is also used to visualize the game
play. Herding cows is a cooperative effort and movement of the swarms is coor-
dinated by the Herding Officer.

Figure 1 (A) shows the dependency relationships of the identified agent types.
The Herding Officer agent depends on the communications of Teammates con-
cerning their perceptions to maintain the information and obtain the ability of
centralized planning. The Teammates in turn rely on the Herding Officer to
receive the role changing guidance and the exploration guidance as well as the
results of the centralized planning. The Teammates interact directly with
the Contest-Server. They depend on their local perceptions to be provided by
the Contest–Server and issue movement requests.

Fig. 1. The MAS Architecture. A: Tropos model for the dependencies between Team-
mates and the Herding Officer as well as the Contest-Server. B: Edited screenshot of
the environment visualization. The dashed line symbolizes the swarm bounding box.
Agents are positioned on the corners.

236 G. Balthasar, J. Sudeikat, and W. Renz

4 Agent Team Strategy

We distinguish the global strategy of the team itself and the local strategies
which steer the behavior of agents playing particular roles. The teams global
strategy is to move swarms of cows to the own corral as quickly as possible. The
game setting permits members of the opposing team to scare away cows herded
by agents or to block agents / cows of herded swarms at bottlenecks which are
possibly formed by obstacles. These issues are not included in our strategy.

The global effectiveness of the team crucially depends on bringing swarms of
cows to the corral. Due to this fact the biggest effort lies on the development of a
highly efficient herding strategy. As mentioned before the planning is implemented
in a centralized way, done by the well–informed Herding Officer. The results can
be requested by the Teammates. The Herding Algorithm works as follows:

1. Once identified swarms are selected by taking their size and their distance
to the team corral into account.

2. Paths are generated for each of these swarms by using the A* Algorithm
including a preprocessed map. Preprocessing refers to the provision of cells
which are next to obstacles, enemy agents or enemy corral cells with higher
costs, creating a buffer zone around them to avoid these areas.

3. Regarding the direction of the reversed vector of the first node computed by
the A* algorithm, a bounding box is generated around each swarm. Team-
mates are positioned at the corners of this box to steer swarm movement (cf.
Figure 1 (B)).

The actual algorithm is more complex as it has to identify swarms and allo-
cates up to 3 Teammates, according to the size of the swarm. The Teammate
agents themselves navigate autonomously in the environment and use the A* Al-
gorithm for pathfinding. The practical reasoning approach of BDI agents allows
to balance the reactivity to local perceived events with the long–term pursue of
team strategies provided by the Herding Officer. Anytime no swarm has to be
handled, the Teammate agents decide to explore the map and get guidance by
the Herding Officer in the form of a suggested area of the map to explore. The
following exploration is independently conducted by the Teammates.

The availability of the Teammate agents and the Herding Officer agent during
the competition is ensured. These agents continuously (re-)register at the MAS
Directory Facilitator (DF). A dedicated agent type continuously checks agent
registrations and automatically initializes a new agent instance if an entry is
missing, i.e. an agent is terminated abruptly.

5 Discussion

The chosen strategy of herding cows, using the A* Algorithm to continuously plan
the path a swarm should be steered along, works out very well most of the time.
This facilitates obstacle and opponent avoidance. A maximum number of three
herding agents per swarm is sufficient. Problems are only discovered in the start-
up period on maps with large coherent structures of obstacles which are not yet

On Herding Artificial Cows: Using Jadex to Coordinate Cowboy Agents 237

fully discovered. As a consequence, both the greedy-like mechanism for choosing
the swarm to be herded next and the A* Algorithm for planning the swarms’ path
cannot work properly. A solution for the first issue could be the replacement of the
Euclidean swarm/corral distance by the length of a calculated path. A solution
for the second issue could be the enforcement of an initial map exploration or the
selective exploration of unknown map areas to complete path calculations.

The contest itself provides a good testbed in terms of reaction speed and
stability for the used framework and the scenario is interesting and challenging.

The capability modularization concept [2,3] is particularly useful as it allowes
to encapsulate specific functionalities, e.g. the communication with the Contest
Server, therefore facilitating the separation of concerns in the agent models.

Finally some suggestions:

– An earlier release of a final scenario description and a public available testbed
would provide developers more time to focus on MAS-specific questions.

– In large swarms it can be observed, that cows blocking each other leads to
a kind of crystallization, which disables swarm movement. We would appre-
ciate an according revision of the cow-algorithm.

6 Conclusion

The first-time-participation in this contest-series has been both successful and in-
formative. Due to the lack of time between the release of the scenario description/
public available testbed and the beginning of the contest a centralized planning for
distributed plans had to be preferred to a distributed planning for distributed plans
[4]. Also, BDI features could not be worked out as far as originally planned.

Nevertheless the system works very well for most of all cases and with the
gained experiences and the now existing base we facilitate addressing the men-
tioned issues and more sophisticated strategic game play in future MAS designs.
Therefore, we are looking forward to the next–year’s competition that will hope-
fully be as challenging and exciting as this year’s.

References

1. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A bdi agent system combining
middleware and reasoning. In: Software Agent-Based Applications, Platforms and
Development Kits. Whitestein Series in Software Agent Technologies. Birkhäuser,
Basel (2005)

2. Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the capability concept for
flexible BDI agent modularization. In: Bordini, R.H., Dastani, M., Dix, J., El Fal-
lah Seghrouchni, A. (eds.) ProMAS 2005. LNCS, vol. 3862, pp. 139–155. Springer,
Heidelberg (2006)

3. Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring BDI agents in
functional clusters. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, pp. 277–
289. Springer, Heidelberg (2000)

4. Wooldridge, M.: An Introduction to Multi Agent Systems. Wiley, Chichester (2002)

Using Jason and MOISE+ to Develop a
Team of Cowboys

Jomi F. Hübner1, Rafael H. Bordini2, and Gauthier Picard1

1 École des Mines de Saint-Étienne, France
{hubner,picard}@emse.fr

2 University of Durham, UK
r.bordini@durham.ac.uk

1 Introduction

This paper gives an overview of a multi-agent system forming a team of “cowboys”
to compete in the Multi-Agent Programming Contest 2008 (the ‘Cows and Herders’
scenario). In the two previous contests, we tested and improved Jason [2], an agent
platform based on an extension of an agent-oriented programming language called
AgentSpeak(L) [5]. The language is inspired by the BDI architecture, thus based on no-
tions such as goals, plans, beliefs, intentions, etc. The participation in previous contests
also increased our experience both in using BDI concepts as well as in programming
agents with Jason specifically. In the 2006 contest, the focus was on the definition of
agent’s plans [1], leading to rather reactive agents. In the 2007 contest, the focus was
on (declarative) goals [3], leading to more pro-active, goal-directed agents.

For the 2008 contest, we were motivated to continue improving the multi-agent pro-
gramming abstractions, now towards social or organisational agents, using the concepts
such as roles and groups. The system is therefore developed in two dimensions: agents
(using declarative goals) and organisation (using groups, roles, and shared goals). Among
several organisational models available, we will use theMOISE+model because it is well
integrated with Jason [4]. Our objective in participating in this contest was thus twofold:
(i) to continue to test and improve Jason and its integration with MOISE+; (ii) evaluate
the use of organisational constructs in the development of the team.

2 System Analysis and Design

It is clear, from the description of the scenario, the importance of cowboys working as a
coordinated team. It would be very difficult for a cowboy alone to herd a group of cows.
We therefore adopted a strategy strongly tied to the notion of group of agents where
issues such as spatial formation, membership, and coordination would be emphasised.

The organisational structure of the team is specified in Fig. 1 using the MOISE+ no-
tation. Our team has two types of subgroups: one to explore the environment searching
for cows (the exploration group) and another one that leads the herd towards the corral
(the herding group). The team always has three instances of the exploration group, each
one responsible for some part of the scenario. The agents enter and leave these groups
as the result of their decision to start or stop searching cows. The herding groups are
dynamically created as the agents decide to herd a cluster of cows. The number of those

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 238–242, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Using Jason and MOISE+ to Develop a Team of Cowboys 239

explorer

leader

cowboy

3..3

1..2

acquaintance

authority

communication

compatibility

intra-group

Legend

min..max
composition:

inheritance:

role

Abs Role

inter-grouplinks

group

team

0..6

scouter herdboy

herder
0..1 0..3

1..11..1

exploration herding

Fig. 1. The Structural Specification of the Organisation

groups and the agents that belong to them depend on the size and location of found
clusters of cows. The following roles can be played by agents in the respective groups:

– explorer: explores the environment until it detects a cow;
– scouter: follows the explorer;
– herder: herds the cows detected by explorers until they reach the corral;
– herdboy: helps the herder to lead cows to the corral.

The roles leader and cowboy are abstract and used to specify common properties of
their sub-roles. For example, leaders have authority over others cowboys.

The general dynamics of the agents playing the above roles is described with the help
of the following scenario. (1-start) At the beginning of the simulation, three exploration
groups are created with two agents in each group, on playing the explorer and the other
the scouter role. Agents split themselves up so as to cover as wide a range as possible,
without necessarily keeping each other in sight. (2-herd) As soon as an agent perceives
cows, it informs the members of its exploration group. The explorer of the group creates
a new herding group and then changes its role to herder. The scouter also changes its
role to herdboy in the new group. After the new group is created, a cluster of cows is
assigned to it based on the cows already seen by the agents. The leader then defines
the group formation so that the cows are led to the corral. (3-merge) If two herding
groups are too near, they are ‘merged’: one group remains and the other is removed
from the organisation. All agents of the removed group change their roles to herdboy in
the remaining group. (4-dissolve) Once the corral is reached and the cluster is empty,
the herding group is dissolved and the agents create exploration groups returning to the
first step (1-start). Table 1 briefly presents the goals that agents are obligated to achieve
when playing each of the roles. An agent that adopts the role scouter, for instance, is
obligated to achieve the goals share seen cows and follow leader.

Although we have some global constraints over the agents’ behaviour (based on
the roles they are playing), they are autonomous to decide how to achieve the goals
assigned to them. While coordination and team work are managed by the MOISE+

tools, the autonomy and pro-activeness are facilitated by the BDI architecture of our
agents implemented in Jason. Regarding communication (required, for example, for the
share seen cows goal), we use speech-act based communication available in Jason.

240 J.F. Hübner, R.H. Bordini, and G. Picard

Table 1. The Organisational (Maintenance) Goals assigned to Roles

Role Goal Goal Description

explorer find scouter find a free agent nearby to play scouter and help in the exploration
change to herding check if it is best to change to a herding group
goto near unvisited go to the nearest unvisited location within the group’s area

scouter share seen cows share information about cows with other agents in the group
follow leader follow the leader of the group (an explorer)

herder recruit recruit more herdboys depending on the size of the cluster
release boys whenever the group has too many herdboys, release some
define formation compute the ideal location of each member of the group
be in formation go to the place allocated to the agent in the formation
change to exploring check if it is best to change to an exploring group

herdboy share seen cows share information about cows with other agents in the group
be in formation go to the place allocated to the agent in the formation

3 Software Architecture

To implement our agent team, two features of Jason were specially useful: architecture
customisation and internal actions. A customisation of the agent architecture is used to
interface between the agent and its environment. The environment for the Agent Contest
is implemented in a remote server that simulates the cattle field, sending perception
to the agents and receiving requests for action execution. Therefore, when an agent
attempts to perceive the environment, the customised architecture sends to the agent
the information provided by the server, and when the agent chooses an action to be
performed, the architecture sends the action execution request to the server.

Although most of the agent code was written in AgentSpeak, some parts were im-
plemented in Java, either because we used legacy code or Java was more appropriate
for the task. In particular, we already had a Java implementation of the A* search algo-
rithm, which we used to find paths and calculate distances in the various scenarios of
the competition. Also, the computation of the formation of the herding groups requires
a lot of vector operations, so best done in Java. These algorithms ware made accessible
to the agents by means of internal actions.

The organisational interaction is also made available to the agents by means of a
custom architecture and internal actions. This architecture produces events when: (1)
something has changed in the state of the organisation (e.g., a new group was created);
and (2) when the agent has some new obligation based on the roles it is playing. These
events may then lead to the creation of intentions to handle them. For example, when
some agent adopts the role herder in a herding group, achievement goal events are
produced for all obligatory goals of this role (Table 1). An AgentSpeak plan pattern as
follows was used to program suitable reactions to those events:

+!define_formation[group(G),role(R)] // plan to handle a goal addition
<- ... <the code> ...

.wait("+pos(X,Y,Cycle)"); // wait for the next cycle
!define_formation[group(G),role(R)]. // achieve that same goal again

Note that organisational goals here are maintenance goals: for example, at every sim-
ulation cycle the target group formation should be (re)defined. These goals are also
annotated with the group and the role that triggered the obligation. This allows us

Using Jason and MOISE+ to Develop a Team of Cowboys 241

to code interesting plans such as “-group(Type,GroupId) <- .drop_inten
tion(_[group(GroupId)]).”, i.e., whenever a group is removed (e.g., a herding
group), all the intentions that originated from that group are dropped.

Fig. 2. Team formation in a contest scenario.
Cows are yellow and obstacles are black. Green
squares inside red circles are target locations for
the agents (blue). The arrow indicates the direc-
tion of the corral.

The agents’ code is essentially a set
of plans to achieve such organisational
goals. In many cases, these plans have to
decide whether to change the organisa-
tion. For example, the goal recruit may
trigger a merging of two herding groups;
the actions of this plan are roughly: de-
stroy one group and ask their members
to change their roles (Algorithm 1). By
changing the roles, new goals are auto-
matically defined for the agents. To sum
up, decisions are taken at the organisa-
tional level (groups/roles), the goals and
intentions are a consequence.

The overall performance of the team
is, however, also dependent on lower
level algorithms. The most important are:
(i) A* to find good paths; (ii) the defini-
tion of the cluster of cows for a herding
group — the cluster should be the largest the agents can herd (see Algorithm 2); and
(iii) the definition of the agent formation so that the cows are led to the corral (Fig. 2
illustrated the result1 of our algorithm).

4 Discussion

The AgentSpeak code for the team is, in our opinion, quite an elegant solution, being
declarative, goal-based (or BDI-based), and adequately integrated with an organisa-
tional mode. In this paper, we have emphasised the modelling and programming of the
team by means of organisational concepts, specially groups and roles. Agents’ goals
originate from the obligations attached to their roles. This allows us to maintain high
abstraction level and good coding style. In some cases, to change the team behaviour
we simply changed the organisational specification that was followed by our cowboys.
The Jason interpreter provided good support for high-level communication, transpar-
ent integration with the contest server, use of existing Java code, and integration of
organisational programming through MOISE+. As in previous contests, the experience
helped us to improve several issues of Jason, MOISE+, and their integration.

We had three main difficulties in developing of our team. The first was the lack of
an analytical tool to model the organisational dynamics regarding both the changes of
agent’s roles and the life-cycle of groups. Although the MOISE+ specification language

1 Note that cows stuck to clusters which were difficult to move in the competition simulation
(cows behaved differently from the initial scenario description). Thus, even though the forma-
tion seems efficient, the best strategy to herd large clusters of cows was to herd them separately.

242 J.F. Hübner, R.H. Bordini, and G. Picard

plan merge(gi) // gi is the herding group of the agent using this plan

forall herding group gj such that gi > gj do
let Si be the set of cows of gi’s cluster
let Sj be the set of cows of gj ’s cluster
if Si ∩ Sj �= ∅ then

remove group gj from the organisation
ask all agents of gj to adopt the role scouter in gi

Algorithm 1: Group merging. The leaders of herding groups check a possible merging
with all other herding groups that have a smaller ID number.

function cluster(V , m) ; // V is the set of all seen cows in the group
// m is the maximum number of cows in the cluster

C ← { the cow in V nearest to the corral } ; // C is the resulting cluster
repeat

add ← false
forall v ∈ V do

if some cow in C sees v then
move v from V to C
add ← true

until ¬add ∨ |C| ≥ m

Algorithm 2: Cluster function. The leaders of herding groups use this function to
compute the current cluster of the group.

is used at runtime to constrain the dynamics of the organisation (e.g., by the cardinality
of roles), it does not help the agents to make decisions about when and what exactly to
change. The second problem was the lack of suitable tools to debug the team. Even with
the Jason mind inspector, communication sniffers, and organisational GUIs, finding
bugs take most of the development time. Due to its high abstraction level, BDI and organ-
isational programming require new kinds of debugging tools. These two issue will be the
subject of our future work. The third difficulty was due to the various problem-dependent
parameters (e.g., perception range, repulsion force, cluster size, herding group size) that
influenced the collective behaviour, differing from one scenario to another. This led us
to long tuning activities to obtain adequate behaviors, without any automatic learning
phase. Such an exploration of the parameter space may be an interesting challenge, but
hardly generalisable and outside of our interests.

References

1. Bordini, R.H., Hübner, J.F., Tralamazza, D.M.: Using Jason to implement a team of gold
miners. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS, vol. 4371, pp. 304–313.
Springer, Heidelberg (2007)

2. Bordini, R.H., Hübner, J.F., Wooldrige, M.: Programming Multi-Agent Systems in AgentS-
peak using Jason. John Wiley & Sons, Chichester (2007)

3. Hübner, J.F., Bordini, R.H.: Developing a team of gold miners using Jason. In: Dastani, M.,
Fallah Seghrouchni, A.E., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS, vol. 4908, pp.
241–245. Springer, Heidelberg (2008)

4. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multi-agent systems using the
MOISE+ model: Programming issues at the system and agent levels. Int. J.Agent-Oriented
Software Engineering 1(3/4), 370–395 (2007)

5. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Per-
ram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS (LNAI), vol. 1038, pp. 42–55.
Springer, Heidelberg (1996)

Dublin Bogtrotters: Agent Herders

M. Dragone, D. Lillis, C. Muldoon, R. Tynan,
R. W. Collier, and G. M. P. O’Hare

School of Computer Science and Informatics
University College Dublin

{mauro.dragone, david.lillis, conor.muldoon,

richard.tynan, rem.collier, gregory.ohare}@ucd.ie

Abstract. This paper describes an entry to the Multi-Agent Program-
ming Contest 2008. The approach employs the pre-existing Agent Fac-
tory framework and extends this framework in line with experience
gained from its use within the robotics domain.

1 Introduction

This paper outlines the approach adopted for the Dublin Bogtrotters entry in
the PROMAS Agent Programming Contest. For the purposes of the competi-
tion, we adapted the pre-existing Agent Factory (AF) framework [1,2], making
use of our previous experience in the area of robotics [3]. As is described in
Section 3, we have developed a 2-tier hybrid agent architecture that is loosely
based on the SoSAA architecture [3]. This system is implemented using an agile
methodology [4], outlined in Section 2, that supports agile modelling and test
driven development. Some details on the strategies that were employed in the
competition are discussed in Section 4.

2 System Analysis and Design

The system was specified and designed with the SADAAM methodology [4],
which supports agile modelling and test-driven development. In this method-
ology, agile modelling is realised using a combination of Agent UML Protocol
Diagrams and customised UML Case Diagrams and Activity Diagrams. As is
usual in such methodologies, rather than deliver a comprehensive system design,
we used our design notation only as a mechanism to clarify how certain core sys-
tem features were implemented. SADAAM was chosen because it has previously
been used in conjunction with AF to develop agent-based systems.

3 Software Architecture

The overall system architecture (figure 1 is oriented around a core set of herder
agents, that are supported by a number of ancillary agents, including: a herd

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 243–247, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

244 M. Dragone et al.

Fig. 1. Bogtrotter System (Left) and Hybrid Agent Architecture (Right)

manager agent that was responsible for creating herders and allocating user-
names to them; a health agent, that monitored the health of other agents (see
Section 4); and a strategy agent that oversaw potential strategies.

While all of the ancillary agents were implemented using only the Agent Fac-
tory Agent Programming Language (AFAPL) [5], the core herder agents were
implemented using a hybrid agent architecture that is inspired by the SoSAA
robot software framework [3]. This framework advocates the adoption of a two-
tier architecture for robotic systems that combines an intentional multi-agent
system with a low-level component-based infrastructure. The idea behind this
approach is that the upper agent layer enhances the lower-level mechanisms by
way of their intentional reasoning abilities and support for multi-agent organi-
sation. For instance, agents can negotiate the use of system resources, and also
supervise the low-level communication mechanisms that are used to exchange
non-ACL messages amongst low-level components.

For this competition, the framework was realised through a combination
AFAPL for the agent level and a simple Java-based architectural framework that
provided basic mechanisms that attend to the run-time and data-distribution
requirements of lower-level components. Interaction between these layers was
facilitated by a clear and standardised interface which was realised through
AF platform services. An overview of this architecture can be seen in
figure 1.

The AFAPL language models agents as mental entities whose internal state
consists of beliefs and commitments. Informally, beliefs represent the agent’s
current state of its environment, while commitments represent the outcome of
an underlying reasoning process through which the agent selects what activities
it should perform. In AFAPL, an agent has both primitive abilities, in the form
of directly executable actions, and composite abilities, in the form of plans built
from plan operators such as SEQ (sequential execution) and FOREACH (plan ex-
pansion). Execution of an AFAPL program involves the update of the agent’s
mental state by repeatedly applying an internal reasoning process that com-
bines: update of the agents beliefs via perception of the environment through
a set of auxiliary Java components, known as perceptors; the adoption of new
commitments though the evaluation of a set of commitment rules, which map

Dublin Bogtrotters: Agent Herders 245

belief states onto commitments that should be adopted should that state arise;
and the realisation of commitments through the performing of actions that
are implemented through a set of auxiliary Java components, known as
actuators.

The rationale for the hybrid architecture was to delegate many of the de-
tails of the herders’ control to a reactive behavioural system, whose operation
was linked to the underlying sensory-motor apparatus. This system consisted of
various components that formed the agents primary skill-set, including: simple
action patterns (stop, turn, move_backward)and more complex patterns that at-
tempt to maintain or achieve simple conditions between the agent and the environ-
ment (follow_border_obstacle, follow_border_herd, move_toward_target,
explore). Additional components embodying sensor data processing routines
were also included, that were used to recognise features in the agent’s world model
or to signal events generatedby the currently active behaviour (path_obstructed,
close(target)). These features and events were passed to the agents belief set
via perceptors, where they were used as perceptual triggers for the activation of
other behaviours specified by AFAPL plans.

4 Agent Team Strategy

Central to our approach were the herder agents. These agents were responsible
for controlling the behaviour of the herders and were organised into teams that
were formed to achieve a particular task (e.g. exploration, herding a particular
group of cows). Each team was controlled by a team manager agent. Resource
allocation was carried out by team managers holding auctions in which the
herders would bid using a greedy bidding strategy to join particular teams or
cover certain roles. These auctions were intended to have three notable benefits.
Firstly, because of the greedy nature of the agents’ bidding strategy, the time
needed to carry out these auctions was minimal. Secondly, an agent that is most
suited to a task was most likely to win an auction (e.g. for a task to explore a
particular part of the map, the bidding agent that is closest will win the auction).
Finally, it enabled dynamic reallocation of agents’ priorities. For example, as
more cows were discovered, agents could switch from exploring to teams that
engaged in herding, returning to exploring once the cows were gathered.

A key strategy underlying our approach was the use of hybrid communication
by combining Agent Communication Language (ACL)-based communication and
blackboard-based communication. The ACL-based communication was realised
the AF implementation of the FIPA-ACL standards, and the blackboard-based
communication was realised through a shared map that was accessible via Java
RMI. The shared map exported a distributed update interface to all the agents
in the system. Through this interface, each agent could update the server with
its own observations and receive in return an update of all the observations
collected by the rest of the team.

In each simulation step, each herding agent had a limited time slice to send
an action message. The message sent was determined by the agent’s current low-
level behaviour. For instance if the agent was engaged in a move_toward_target

246 M. Dragone et al.

behaviour, the next message would be a movement in a direction that aids in
the fulfillment of this goal. At all times, however, the higher-level management
agents reasoned about their perceived current state of the world in order to
optimise the overall strategies of the participating agents. This meant that an
agent’s active behaviour could change because of an instruction from a team
leader, or due to a change in team membership brought about by an auction.

Robustness was a high priority in participating in the contest. Herding agents
who were still active but had become disconnected from the competition server
needed to be capable of re-establishing that connection. Additionally, a health
management system monitored both agents and the agent platforms to detect
any failures that may occur. A failed agent was replaced with a new agent of the
same type and a failed platform resulted in all the agents formerly residing on
it being recreated on other platforms.

5 Discussion

Much of our effort was in designing and implementing the infrastructure frame-
work as this was our first entry in the contest. Unfortunately by the beginning
of the contest we had not completed testing and tuning of our functional compo-
nents to the extent we would have wished. As a result, our behavioural functions
occasionally encountered unexpected exceptions that had not arisen during de-
velopment, and the resource allocation auctions were not optimised in terms of
evaluating the costs and the benefits of engaging in the various tasks.

The difficulties with the auction were the greatest limiting factor in our per-
formance. Agents tended to prefer exploration and single-agent herding to the
formation of groups to herd larger numbers of cows. Figure 2 illustrates this
through a case where a herd of 15 cows were driven through the bottleneck of
the “RazorEdge” scenario (a map on which the average score was a mere 5 cows).
However, having pushed this herd through the gap, the agents decided to explore
for more cows rather than continue pushing this particular herd to the corral.
This shows that while the simple agent behaviours were effective, the weighting
attached to various scenarios for the purposes of the auctions were sub-optimal.

We believe that this year’s scenario was a very useful and well organised
attempt to promote multi-agent programming. Since we have now a working
infrastructure framework, we are in a position to be more competitive in the
next contest, as we will be able to focus our work on adapting our system to the
new application scenario and focus on our real interest: multi-agent coordination.

We feel that the slowness of the simulator was a big obstacle to our devel-
opment plan in this year’s first entry to the contest, as it was difficult to run a
sufficient number of simulations to test different task and environment configu-
rations. In the future, this would be also an obstacle to the adoption of machine
learning techniques that may require substantial amounts of training data.

We believe that real systems need MAS self-organisation techniques that are
shaped by ACL-based coordination but that still manage to produce reliable
and efficient control. Because of the large time slices allotted between moves,

Dublin Bogtrotters: Agent Herders 247

Fig. 2. RazorEdge Scenario: A herd is pushed through the bottleneck

teams are currently able to make use of computational expensive deliberation
phases before transmitting an instruction to the central server. While our system
architecture allowed us to produce very fast response in the behavioural layer,
we felt that the present organisation of the contest does not place a high value
such a feature. We believe that reducing the size of this time slice will force
participants to develop solutions that are closer to their real world counterparts.

6 Conclusion

This paper presents an overview of our submission to the ProMAS Multi-Agent
Programming Contest. The solution developed employed a hybrid agent archi-
tecture, whose upper deliberative layer was realised using AFAPL, and whose
lower layer consisted of a reactive architecture. High-level system behaviours
were designed using an agile modeling process, and were implemented in AFAPL.
These high level behaviours drove the adoption of various lower level reactive
behaviours, including obstacle avoidance, herding, and exploring.

References

1. O’Hare, G., Jennings, N.: Foundations of Distributed Artificial Intelligence. Wiley/
IEEE, Los Alamitos (1996)

2. Collier, R., O’Hare, G., Lowen, T., Rooney, C.: Beyond Prototyping in the Factory
of Agents. In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS,
vol. 2691, p. 383. Springer, Heidelberg (2003)

3. Dragone, M.: Sosaa: An agent-based robot software framework (2008),
http://csserver.ucd.ie/

4. Clynch, N., Collier, R.: Sadaam: Software agent development - an agile methodology.
In: Dastani, M., El Fallah Seghrouchni, A., Leite, J., Torroni, P. (eds.) LADS 2007.
LNCS, vol. 5118. Springer, Heidelberg (2007)

5. Collier, R.: Agent Factory: A Framework for the Engineering of Agent- Oriented
Applications. PhD thesis, University College Dublin (2002)

http://csserver.ucd.ie/

SHABaN Multi-agent Team To Herd Cows

Adel T. Rahmani, Alireza Saberi, Mehdi Mohammadi, Amin Nikanjam,
Ehsan Adeli Mosabbeb, and Monireh Abdoos

Iran University of Science and Technology
{rahmani,a saberi,mh mohammadi,nikanjam,eadeli,abdoos}@iust.ac.ir

Abstract. This paper is submitted as the final team description of SHA-
BaN1 team, one of the participants in the Second Multi-Agent Program-
ming Contest in association with the ProMAS 2008 workshop. Here we
describe the agent architecture and behaviors to solve a cooperative task
in a highly dynamic environment. Our approach consists of evaluating
strategies in NetLogo and a raw implementation.

1 Introduction

Multi-agent systems are composed of a number of interacting computing ele-
ments, also known as agents. Agents have two important capabilities: the abili-
ties to take autonomous actions and interact with other agents [1].

Agent contest is an attempt to motivate research in the area of multi-agent
system development and programming. The scenario this year is about cows
and herders. Each team owns six agents, whose duties are to collect cows and
guide them to the corral. To this end, we propose a multi-agent system to com-
pete against the opponent through a sequence of rationale actions aiming the
cooperation and coordination concepts.

NetLogo [2], a cross-platform multi-agent programmable modeling environ-
ment, is used for the simple prototyping and simulation of the strategies. After
designing and testing the strategies, a programming language is employed to
implement them.

The paper is organized as what follows: next section provides the information
on the analysis and design of system. Section 3 illustrates the software archi-
tecture of the proposed multi-agent system. In Section 4 we briefly describe the
team strategy and some algorithms. A discussion about the Contest is mentioned
in section 5. Finally the conclusion remarks could be found in section 6.

2 System Analysis and Design

The SHABaN team is designed as 6 independent agents that communicate with
a coordinator. Figure 1 shows the single agent architecture, coordination and
monitoring modules. The Communication component connects to the contest
simulation server, parses the received information and passes them to the per-
ceptor. The communication component sends back the desired actions and other
necessary information to the server.
1 SHABaN is a Farsi name that means shepherd.

K.V. Hindriks, A. Pokahr, and S. Sardina (Eds.): ProMAS 2008, LNAI 5442, pp. 248–252, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

SHABaN Multi-agent Team To Herd Cows 249

Fig. 1. Agent architecture, coordination and monitoring modules

Start Tournament:

for each agent in team:

Connect to simulation server using one TCP connection.

Identify and authenticate yourself and receive acknowledgement

from the server and wait for the match to start.

Start Match:

Get match information

Repeat for a finite number of steps:

Each agent gets sensory information.

Process the received sensory information.

Update the internal world model.

Each agent negotiates with the coordinator and selects an action

or autonomously select an action based on its goal.

Encode and send the actions to the simulation server.

Once a while, analyze the situation and update the strategy.

Fig. 2. Algorithmic description of SHABaN multi-agent team

The perceptor component senses the environment via the received informa-
tion, and updates the internal world model. Action selection component uses the
internal world model, preceptor, coordinator and library of strategies to select
the best action. Actually there are two basic roles for agents: exploration and
herding. In the exploration mode agents are to explore the environment but in
the herding mode they target a cow and try to move it toward the own cor-
ral. Actuator prepares the appropriate command due to the selected action and
passes it to the communication component.

The coordinator makes the comprehensive world model by using the internal
world model of the all agents and a modified BFS algorithm. This comprehensive
world model assists agents to find the best path to the corral and the nearest
cow. The monitor component uses coordinator information to present a world
view during run-time. The main usage of the monitor component is to ease the
debugging process.

A high-level algorithmic description of SHABaN is shown in figure 2.

250 A.T. Rahmani et al.

Fig. 3. A sample simulated environment using NetLogo

3 Software Architecture

This section gives an overview of the software tools used for simulation and
implementation of SHABaN team.

3.1 Simulation

NetLogo is a multi-agent programming language and modeling environment for
simulating natural and social phenomena. It was authored by Uri Wilensky in
1999 and still is under development at the Center for Connected Learning and
Computer-Based Modeling [2].

We use NetLogo to implement and evaluate our ideas before detailed imple-
mentation. Its simplicity lets us to test our strategies in a multi-agent envi-
ronment quickly. Furthermore, while contest server was not available NetLogo
was utilized as an appropriate simulation environment. Figure 3 shows a sample
simulated environment using NetLogo.

3.2 Implementation

For implementation a multi-agent and a non-multi-agent based approach were
firstly chosen. As the multi-agent approach, JIAC IV [3] was used. JIAC IV is
a framework for development of powerful emergent intelligence and autonomous
multi-agent systems. It is built on the basis of compact component architecture
and uses a specific agent programming language, JADL [4].

Due to the lack of enough experience with JIAC and the short time before
the contest, the JIAC IV approach was set aside after around a month of work-
ing with. A simple non-multi-agent based framework was implemented using

SHABaN Multi-agent Team To Herd Cows 251

a Windows platform and the C# programming language. All the algorithms
and interfacing protocols were implemented using this language. But for long-
term research, such a multi-agent implementation environment like JIAC, which
proved to be efficient, is strongly advised.

4 Agent Team strategy

We have defined two different roles for agents: exploration and herding. In ex-
ploration mode, agents travel to unknown or previously known areas and try
to detect the environment. Once the agent decides to bring a cow home, the
agent switches to herding mode. In the both modes once the agent receive the
sensory information, it updates the internal world model and consequently the
coordinator.

At the beginning of each match the grid is divided into some areas. Then
agents in the exploration mode go to the nearest area assigned by the coordi-
nator to explore that area. At each time step agents transfer their percept to
the internal world model. After some time steps and exploring sufficient areas
required for constructing the comprehensive world model, the coordinator makes
agents to switch to herding mode by assigning a cow to herd. Then each agent
autonomously tries to herd the specific cow toward the corral using a simple
algorithm based on the distance of neighbor cells to the corral.

As it was mentioned before a modified BFS algorithm is used to construct
the comprehensive world model. This model contains all grid information based
on agent perceptions: cows, trees, corrals and other agents. The BFS algorithm
assigns a semi-shortest path for each pair of cells in the environment. It uses
an incremental algorithm, such that once a new aspect of the environment is
discovered it updates all the previously found paths which could be improved
using these newly discovered cells. The comprehensive model is constructed in
coordinator based on all agents’ perceptions and is reachable by all agents.

In maze-like scenario the blocking strategy can play a leading role, if a bot-
tleneck is available and it can be detected by the agents. The coordinator finds
narrowest part of the way to opponent corral as bottleneck and assigns at most
two agents to patrol this area. This strategy will be effective if other agents do
their best and move cows to own corral efficiently. In order to detect bottle-
necks, the cells are divided in to groups based on their distance to opponent
corral and the group with smaller members has the chance to be a bottlenecks.
Furthermore, it is not necessary to explore the entire map or the opponent cor-
ral neighborhoods to detect the opponent bottleneck in symmetric maps. We
may find our bottleneck by exploring our corral neighborhoods and estimate the
opponent bottleneck location by considering the map symmetry.

5 Discussion

We think that our first attendance in the Agent Contest was successful. Engaging
in a time-consuming sophisticated process of developing multi-agent team is

252 A.T. Rahmani et al.

very useful as well as nice. We touch all the theoretic challenges in practice
and discover our shortcomings. From our point of view the main critic is lack
of effective cooperation. Individual behavior of SHABaN agents is acceptable
for us but they can not cooperate effectively with each other in exploring the
environment and herding.

Although Agents Contest 2008 is successful to serve its purpose to provide a
testbed for multi-agent system programming but we argue some suggestions. It
will be better if all teams come to a specific place to participate in the contest like
RoboCup series. Face to face discussions and observing the design and execution
of other teams will be really helpful. With remote online participation, we prefer
that all matches in a specific grid take place consecutively and at one session.
This approach seems to be much better than what is done in Agent Contest
2008.

6 Conclusion

In this paper we have demonstrated a multi-agent team, including six herders and
a coordinator, aiming the goal of collecting cows as much as possible. SHABaN
team strategies are first simulated and evaluated using NetLogo. It could usefully
help us to extract efficient ideas. The first attempt to participate in this contest,
for sure, has been a great experience and will ameliorate us for probable future
events. We look forward to participating in Agent Contest 2009.

References

1. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons LTD.,
Chichester (2002)

2. Wilensky, U.: NetLogo 4.0.2, Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL (2007),
http://ccl.northwestern.edu/netlogo

3. Sesseler, R.: A modular architecture for service based interactions between Agents,
PhD thesis, Technische Universität Berlin (2002)

4. Konnerth, T., Hirsch, B., Albayrak, S.: JADL-An Agent Description Language for
Smart Agents. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS, vol. 4327, pp.
141–155. Springer, Heidelberg (2006)

http://ccl.northwestern.edu/netlogo

Author Index

Abdoos, Monireh 248
Acay, Daghan L. 136
Albayrak, Sahin 184
Alberola, Juan M. 197
Au, Tsz-Chiu 1

Bade, Dirk 152
Balthasar, Gregor 233
Behrens, Tristan M. 211
Bordini, Rafael H. 238
Botia, Juan A. 168
Botti, Vicent 197
Braubach, Lars 152

Collier, Rem W. 243

Dastani, Mehdi 56, 211
Dennis, Louise A. 40
Dix, Jürgen 211
Dragone, Mauro 243

Espinosa, Agustin 197

Fisher, Michael 40

Galland, Stéphane 104
Garcia-Fornes, Ana 197
Garćıa-Magariño, Iván 120
Gaud, Nicolas 104
Gómez-Sanz, Jorge J. 120

Hessler, Axel 184, 228
Hilaire, Vincent 104
Hindriks, Koen V. 24
Hirsch, Benjamin 184
Hübner, Jomi F. 238

Jonker, Catholijn M. 24

Keiser, Jan 228
Koukam, Abderrafiâa 104

Küster, Tobias 228
Kuter, Ugur 1

Lamersdorf, Winfried 152
Lillis, David 243

Meyer, John-Jules Ch. 56
Mohammadi, Mehdi 248
Mosabbeb, Ehsan Adeli 248
Muldoon, Conor 243

Nau, Dana 1
Neville, Brendan 88
Nikanjam, Amin 248
Novák, Peter 72, 211

O’Hare, Gregory M.P. 243

Pasman, Wouter 24
Pasquier, Philippe 136
Patzlaff, Marcel 228
Pérez-Agüera, José R. 120
Picard, Gauthier 238
Pitt, Jeremy 88
Pokahr, Alexander 152

Rahmani, Adel T. 248
Renz, Wolfgang 233
Ricci, Alessandro 136

Saberi, Alireza 248
Serrano, Emilio 168
Sonenberg, Liz 136
Such, Jose M. 197
Sudeikat, Jan 233
Szklarski, Jacek 223

Thiele, Alexander 228
Tinnemeier, Nick A.M. 56
Tuguldur, Erdene-Ochir 184, 228
Tynan, Richard 243

	Title Page
	Preface
	Organization
	Table of Contents
	Planning for Interactions among Autonomous Agents
	Introduction
	Background
	AI Planning in General
	Classical Planning
	Classical Representation

	Nondeterministic Planning Problems and Multi-agency
	Representing Other Agents’ Actions
	Policies and Execution Structures
	Solutions
	Partitioning States into Equivalence Classes
	When the States Are Not Equivalent
	Maintaining Focus on the Current Task
	Combining Focusing with Reasoning about Equivalent States
	Interleaving Planning and Acting

	Using Predictive Agent Models
	MDP Planning Problems
	Translating Games into MDPs
	Partitioning States into Equivalence Classes
	The Noisy Iterated Prisoner’s Dilemma

	Discussion and Conclusions
	References

	Agent Programming Languages
	Exploring Heuristic Action Selection in Agent Programming
	Introduction
	Designing a Goal Agent for the Blocks World
	Heuristic Action Selection in Agent Programming
	Associating Utility Values with Action Execution
	Semantics
	Specifying Quantitative Utility Values

	Heuristic Action Selection in the Blocks World
	Conclusion
	References

	Programming Verifiable Heterogeneous Agent Systems
	Introduction
	TheAIL
	The AIL as an Environment for Heterogeneous Agents
	Gwendolen
	SAAPL
	GOAL
	Execution and Verification of the Contract Net Scenario
	Conclusions
	References

	Orwell’s Nightmare for Agents? Programming Multi-agent Organisations
	Introduction
	Key Concepts of Multi-agent Organisations
	The Normative Aspect of Organisations
	Other Organisational Aspects

	A Normative Multi-agent Programming Language
	Syntax of Programming Language
	Semantics of Programming Language

	Implementing Multi-agent Organisations
	Conclusion and Future Work
	References

	Jazzyk: A Programming Language for Hybrid Agents with Heterogeneous Knowledge Representations
	Motivation
	Behavioural State Machines
	Syntax
	Semantics

	Jazzyk, the Language and Interpreter
	Syntax
	Interpreter
	Extended Features and the Interpreter Implementation

	Jazzbot: Demo Application
	Answer Set Programming
	Ruby
	Nexuiz

	Discussion
	Related Work and Conclusion
	References

	Multi-agent Systems Frameworks
	PRESAGE: A Programming Environment for the Simulation of Agent Societies
	Introduction
	An Overview
	Platform Architecture
	The Base Simulation Module
	Managers
	External Connections
	Environmental Interfaces and Abstract Classes

	Agents, Participants and Communication
	The Participant Class
	Agent Communication

	Sample Applications
	Social Networks and Recommendation
	Open Distributed Agent Mediated Marketplace
	Adaptation of Voting Rules

	Related Work
	Summary and Conclusions
	References

	An Organisational Platform for Holonic and Multiagent Systems
	Introduction
	Metamodel of the Janus Platform
	Kernel and General Architecture of Janus
	Main Characteristics of Janus
	Communication
	Implementation of the Concept of Holon

	A Market Organisation Example
	Conclusion
	References

	A Complete-Computerised Delphi Process with a Multi-Agent System
	Introduction
	Delphi Method
	Reaching Consensus in MAS
	INGENIAS and IDK
	Representing the Delphi Method with INGENIAS Notation
	Domain Specific Delphi Aspects
	First Questionaire Generation
	Relevance Assessments
	Next Questionaires Generation

	Evaluation of the Delphi Method
	Preparing the Experiment
	Evaluation Results

	Conclusions and Future Work
	References

	Agent Environments and Tools
	How Situated Is Your Agent? A Cognitive Perspective
	Introduction
	Background: Philosophical Underpinnings
	An Example: Production Cell
	Extrospection Framework
	The Artifact Layer
	The Concept Layer

	The Extrospective Agent Mind
	Abstract Interpreter

	Metalevel Reasoning
	Option Selection
	Intention Handling

	Related Work
	Conclusion
	References

	An Awareness Model for Agents in Heterogeneous Environments
	Introduction
	Environment Model
	Entities and Events
	Model Requirements
	Architecture
	Information Organization
	Example

	Representing Information
	Distributing Information
	Protocol Requirements

	Prototypical Implementation
	Related Work
	Conclusion and Future Work
	References

	Infrastructure for Forensic Analysis of Multi-Agent Systems
	Introduction
	Related Work
	Global Snapshots Generation of MAS Tests
	Generic Collection of Messages in an Agents Platform
	Message Storing and Ordering
	Selection of Subsets of Messages
	Message Order Induced by Logical Clocks
	Valid Orders for Classic Representations

	Fire Example
	A Post Mortem Analysis

	Conclusions and Future Work
	References

	Toolipse: An IDE for Development of JIAC Applications
	Introduction
	JIAC Agent Framework
	JIAC Methodology

	Case Study
	Toolipse
	Resource and Project Management
	Domain Vocabulary
	Knowledge
	Testing
	Agent Beans
	Deployment
	Helpers and Guidance

	Related Work
	Conclusion and Further Work
	References

	Kerberos-Based Secure Multiagent Platform
	Introduction
	Magentix Multiagent Platform
	Authentication, Integrity and Confidentiality
	IPSEC
	SSL/TLS
	Kerberos
	Discussion

	Access Control
	Secure Magentix
	Service Communication
	Agent Launching
	Agent Communication

	Performance Evaluation
	Conclusions
	References

	Agent Contest
	Agent Contest Competition: 4th Edition
	Introduction
	Scenario Description
	Technical Description of the Scenario
	Team, Match, and Simulation
	Environment Objects
	Actions and Perceptions
	Cow Movement Algorithm
	Final Phase of the Simulation

	Submission
	Received Submissions

	Technical Infrastructure
	Contest Preparation
	Tournament
	Simulation Instances

	Contest Results
	Conclusion
	References

	AC08 System Description
	Introduction
	System Analysis and Design
	Software Architecture
	Agent Team Strategy
	The Master-Agent
	Utility Function
	Switching Agents to Special Modes
	Coordination
	The Strategy

	Discussion
	Bibliography

	Herding Agents - JIAC TNG in Multi-Agent Programming Contest 2008
	Introduction
	System Analysis and Design
	Software Architecture
	Agent Team Strategy
	Discussion
	Conclusion
	References

	On Herding Artificial Cows: Using Jadex to Coordinate Cowboy Agents
	Introduction
	System Analysis and Design
	Software Architecture
	Agent Team Strategy
	Discussion
	Conclusion
	References

	Using $Jason$ and ${\mathcal M}OISE^{+}$ to Develop a Team of Cowboys
	Introduction
	System Analysis and Design
	Software Architecture
	Discussion
	References

	Dublin Bogtrotters: Agent Herders
	Introduction
	System Analysis and Design
	Software Architecture
	Agent Team Strategy
	Discussion
	Conclusion
	References

	SHABaN Multi-agent Team To Herd Cows
	Introduction
	System Analysis and Design
	Software Architecture
	Simulation
	Implementation

	Agent Team strategy
	Discussion
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

