

Lecture Notes in Computer Science 5698
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Victor Malyshkin (Ed.)

Parallel Computing
Technologies

10th International Conference, PaCT 2009
Novosibirsk, Russia, August 31-September 4, 2009
Proceedings

13

Volume Editor

Victor Malyshkin
Russian Academy of Sciences
Institute of Computational Mathematics and Mathematical Geophysics
Supercomputer Software Department
Pr. Lavrentieva, ICM&MG RAS, 630090 Novosibirsk, Russia
E-mail: malysh@ssd.sscc.ru

Library of Congress Control Number: 2009931640

CR Subject Classification (1998): D.2, D.3.2, F.1.2, G.1, G.4, I.6.8, C.1.4, C.2.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-03274-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03274-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12724918 06/3180 5 4 3 2 1 0

Preface

The PaCT-2009 (Parallel Computing Technologies) conference was a four-day
event held in Novosibirsk. This was the tenth international conference to be held
in the PaCT series. The conferences are held in Russia every odd year. The first
conference, PaCT 1991, was held in Novosibirsk (Academgorodok), September
7–11, 1991. The next PaCT conferences were held in Obninsk (near Moscow),
August 30 to September 4, 1993; in St. Petersburg, September 12–15, 1995; in
Yaroslavl, September 9–12, 1997; in Pushkin (near St. Petersburg), September
6–10, 1999; in Academgorodok (Novosibirsk), September 3–7, 2001; in Nizhni
Novgorod, September 15–19, 2003; in Krasnoyarsk, September 5–9, 2005; in
Pereslavl-Zalessky, September 3–7, 2007. Since 1995 all the PaCT Proceedings
have been published by Springer in the LNCS series. PaCT-2009 was jointly
organized by the Institute of Computational Mathematics and Mathematical
Geophysics of the Russian Academy of Sciences (RAS) and the State University
of Novosibirsk. The purpose of the conference was to bring together scientists
working on theory, architecture, software, hardware and the solution of large-
scale problems in order to provide integrated discussions on parallel computing
technologies. The conference attracted about 100 participants from around the
world. Authors from 17 countries submitted 72 papers. Of those submitted, 34
were selected for the conference as regular papers; there were also 2 invited pa-
pers. In addition there were a number of posters presented. All the papers were
internationally reviewed by at least three referees. A demo session was organized
for the participants. Different tools were submitted for demonstration and for
the tutorial, one of them being WinAlt (Windows Animated Language Tool) for
description. We would like to extend many thanks to our sponsors: the Russian
Academy of Sciences, the Russian Fund for Basic Research, IBM, NVIDIA, HP
and Microsoft for their financial support.

September 2009 Victor Malyshkin

Organization

PaCT 2009 was organized by the Supercomputer Software Department, Institute
of Computational Mathematics and Mathematical Geophysics, Siberian Branch,
Russian Academy of Science (SB RAS) in cooperation with Novosibirsk National
University and Novosibirsk State Technical Universities.

Organizing Committee

Conference Chair Victor Malyshkin (Russian Academy of Sciences)
Conference Co-chair Mikhail Lavrrenliev (Novosibirsk National

University, Russia)
Conference Secretary Maxim Gorodnichev (Russian Academy of Sciences)
Organizing Committee V. Malyshkin (Russian Academy of Sciences)

M. Lavrentiev (Novosibirsk National University,
Russia)

B. Glinskiy (Russian Academy of Sciences)
M. Gorodnichev (Russian Academy of Sciences)
S. Achasova (Russian Academy of Sciences)
K. Chajuk (Russian Academy of Sciences)
S. Kireev (Russian Academy of Sciences)
V. Perepelkin (Russian Academy of Sciences)
A. Usov (Russian Academy of Sciences)

Program Committee

V. Malyshkin Russian Academy of Sciences (Chairman)
S. Abramov Russian Academy of Sciences
S. Bandini University of Milano-Bicocca, Italy
O. Bandman Russian Academy of Sciences
F. Cappello INRIA, France
T. Casavant University of Iowa, USA
B. Chetverushkin Russian Academy of Sciences
P. Degano State University of Pisa, Italy
D. Désérable INSA, Rennes, France
S. Gorlatch University of Münster, Germany
Yu. Karpov St. Petersburg Polytechnical University, Russia
K.-C. Li Providence University, Taiwan
T. Ludwig Ruprecht-Karls-Universität Heidelberg, Germany
G. Mauri University of Milan, Italy
M. Valero Barcelona Supercomputer Center, Spain
D. Petcu Western University of Timisoara, Romania

VIII Organization

M. Raynal IRISA, Rennes, France
B. Roux IRPHE, France
P. Sloot University of Amsterdam, The Netherlands
C. Trinitis LRR, Munich, Germany
R. Wyrzykowski Czestochowa University of Technology, Poland
L. Yang St. Francis Xavier University, Canada

Referees

S. Gorlatch
F. Glinka
P. Kegel
A. Ploss
M. Schellmann
O. Bandman
V. Malyshkin
M. Gorodnichev
S. Kireev
Y. Karpov

T. Ludwig
P. Degano
M. Raynal
A. Khutoretskij
D. Petcu
T. Casavant
A. Nepomniaschaya
S. Achasova
D. Désérable
G. Mauri

Sponsoring Institutions

Russian Academy of Sciences
The Russian Fund for Basic Research
IBM
NVIDIA
HP
Microsoft

Table of Contents

Models of Parallel Computing

Asynchronous Language and System of Numerical Algorithms
Fragmented Programming . 1

Sergey Arykov and Victor Malyshkin

Analyzing Metadata Performance in Distributed File Systems 8
Christoph Biardzki and Thomas Ludwig

Towards Parametric Verification of Prioritized Time Petri Nets 19
Anna Dedova and Irina Virbitskaite

Software Transactional Memories: An Approach for Multicore
Programming . 26

Damien Imbs and Michel Raynal

Sparse Matrix Operations on Multi-core Architectures 41
Carsten Trinitis, Tilman Küstner, Josef Weidendorfer, and
Jasmin Smajic

Multi-granularity Parallel Computing in a Genome-Scale Molecular
Evolution Application . 49

Jesse D. Walters, Thomas B. Bair, Terry A. Braun, Todd E. Scheetz,
John P. Robinson, and Thomas L. Casavant

Methods and Algorithms

Efficient Parallelization of the Preconditioned Conjugate Gradient
Method . 60

Gilbert Accary, Oleg Bessonov, Dominique Fougère,
Konstantin Gavrilov, Sofiane Meradji, and Dominique Morvan

Parallel FFT with Eden Skeletons . 73
Jost Berthold, Mischa Dieterle, Oleg Lobachev, and Rita Loogen

Parallel Implementation of Generalized Newton Method for Solving
Large-Scale LP Problems . 84

Yu. G. Evtushenko, V.A. Garanzha, A.I. Golikov, and H.M. Nguyen

Dynamic Real-Time Resource Provisioning for Massively Multiplayer
Online Games . 98

Radu Prodan, Vlad Nae, Thomas Fahringer, and Herbert Jordan

X Table of Contents

2D Fast Poisson Solver for High-Performance Computing 112
Alexander Kalinkin, Yuri M. Laevsky, and Sergey Gololobov

Solution of Large-Scale Problems of Global Optimization on the Basis
of Parallel Algorithms and Cluster Implementation of Computing
Processes . 121

Vladimir Koshur, Dmitriy Kuzmin, Aleksandr Legalov, and
Kirill Pushkaryov

DEEP - Differential Evolution Entirely Parallel Method for Gene
Regulatory Networks . 126

Konstantin Kozlov and Alexander Samsonov

Efficiency of Parallel Monte Carlo Method to Solve Nonlinear
Coagulation Equation . 133

Mikhail Marchenko

Parallel Algorithm for Triangular Mesh Reconstruction by Deformation
in Medical Applications . 142

Olga Nechaeva and Ivan Afanasyev

Parallel Algorithms of Numeric Integration Using Lattice Cubature
Formulas . 147

Marat D. Ramazanov and Dzhangir Y. Rakhmatullin

Fine-Grained Parallelism

A CA-Based Self-organizing Environment: A Configurable Adaptive
Illumination Facility . 153

Stefania Bandini, Andrea Bonomi, Giuseppe Vizzari, and
Vito Acconci

A Lattice-Gas Model of Fluid Flow through Tortuous Channels of
Hydrophilous and Hydrophobic Porous Materials . 168

Olga Bandman

Solving All-to-All Communication with CA Agents More Effectively
with Flags . 182

Patrick Ediger and Rolf Hoffmann

The GCA-w Massively Parallel Model . 194
Rolf Hoffmann

Implementation of Fine-Grained Algorithms on Graphical Processing
Unit . 207

Konstantin Kalgin

Table of Contents XI

Parallel Implementation of Lattice Boltzmann Flow Simulation in
Fortran-DVM Language . 216

Leonid Kamenshchikov

Parallel Discrete Event Simulation with AnyLogic . 226
Mikhail Kondratyev and Maxim Garifullin

LGA Method for 1D Sound Wave Simulation in Inhomogeneous
Media . 237

Valentina Markova

Cellular-Automaton Simulation of a Cumulative Jet Formation 249
Yu. Medvedev

Associative Version of the Ramalingam Decremental Algorithm for
Dynamic Updating the Single-Sink Shortest-Paths Subgraph 257

Anna Nepomniaschaya

Cellular Automata-Based S-Boxes vs. DES S-Boxes 269
Miroslaw Szaban and Franciszek Seredynski

Hierarchical Dependency Graphs: Abstraction and Methodology for
Mapping Systolic Array Designs to Multicore Processors 284

Sudhir Vinjamuri and Viktor Prasanna

Parallel Programming Tools and Support

A Tool for Detecting First Races in OpenMP Programs 299
Mun-Hye Kang, Ok-Kyoon Ha, Sang-Woo Jun, and Yong-Kee Jun

Load Balancing of Parallel Block Overlapped Incomplete Cholesky
Preconditioning . 304

Igor Kaporin and Igor Konshin

Distributions and Schedules of CPU Time in a Multiprocessor System
When the Users’ Utility Functions Are Linear . 316

Alexander Khutoretskij and Sergei Bredikhin

Visualizing Potential Deadlocks in Multithreaded Programs 321
Byung-Chul Kim, Sang-Woo Jun, Dae Joon Hwang, and
Yong-Kee Jun

Fragmentation of Numerical Algorithms for the Parallel Subroutines
Library . 331

Victor E. Malyshkin, Sergey B. Sorokin, and Ksenia G. Chajuk

Object-Oriented Parallel Image Processing Library 344
Evgeny V. Rusin

XII Table of Contents

Application-Level and Job-Flow Scheduling: An Approach for Achieving
Quality of Service in Distributed Computing . 350

Victor Toporkov

Filmification of Methods: Representation of Particle-In-Cell
Algorithms . 360

Yutaka Watanobe, Victor Malyshkin, Rentaro Yoshioka,
Nikolay Mirenkov, and Hamido Fujita

Parallel Evidence Propagation on Multicore Processors 377
Yinglong Xia, Xiaojun Feng, and Viktor K. Prasanna

Applications

Parallelization of Temperature Distribution Simulations for
Semiconductor and Polymer Composite Material on Distributed
Memory Architecture . 392

Norma Alias, Roziha Darwis, Noriza Satam, and Mohamed Othman

Implementation of a Non-bonded Interaction Calculation Algorithm for
the Cell Architecture . 399

Eduard Fomin and Nikolay Alemasov

A Parallel 3D Code for Simulation of Self-gravitating Gas-Dust
Systems . 406

Sergei Kireev

Supercomputer Simulation of an Astrophysical Object Collapse by the
Fluids-in-Cell Method . 414

Igor Kulikov, Galina Lazareva, Alexey Snytnikov, and
Vitaly Vshivkov

High-Performance Tsunami Wave Propagation Modeling 423
Mikhail Lavrentiev-jr, Alexey Romanenko, Vasily Titov, and
Alexander Vazhenin

Parallel Object Motion Prediction in a Robotic Navigational
Environment . 435

Vijay S. Rajpurohit and Manohara Pai M.M.

Numerical Simulations of Unsteady Shock Wave Interactions Using
SaC and Fortran-90 . 445

Daniel Rolls, Carl Joslin, Alexei Kudryavtsev,
Sven-Bodo Scholz, and Alex Shafarenko

Parallel Medical Image Reconstruction: From Graphics Processors to
Grids . 457

Maraike Schellmann, Sergei Gorlatch, Dominik Meiländer,
Thomas Kösters, Klaus Schäfers, Frank Wübbeling, and
Martin Burger

Author Index . 475

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 1–7, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Asynchronous Language and System of Numerical
Algorithms Fragmented Programming

Sergey Arykov and Victor Malyshkin

Supercomputer Software Department,
Institute of Computational Mathematics and Mathematical Geophysics

Russian Academy of Sciences,
6, pr. Lavrentieva, 630090, Novosibirsk, Russia

{arykov,malysh}@ssd.sscc.ru

Abstract. A fragmented approach to parallel programming of numerical meth-
ods and its implementation in the asynchronous programming system Aspect
are considered. It provides several important advantages like automatic imple-
mentation of dynamic properties (setting up on available resources, dynamic
load balancing, dynamic resource distribution, etc.) of an application program.
The asynchronous parallel programming system Aspect is considered which
implements a conception of fragmented programming on supercomputers with
shared memory architecture.

Keywords: fragmented technology of programming, asynchronous languages
and programming systems, dynamic program's properties, automation of paral-
lel realization of numerical models.

1 Introduction

The development of high-quality parallel programs still remains a complicated task
because the developer has to manually solve many various problems related to dy-
namic properties of a parallel program (dynamic setting up on available resources,
dynamic load balancing, dynamic resource distribution, etc.).

In this paper we propose a fragmented approach to parallel numerical programs
development and organization of computations [1-2], which allows to provide an
automatic implementation of dynamic properties of an application program. The main
idea of this approach is to represent a program as a set of computational fragments,
which are sufficiently small for loading available resources but still big enough to
keep the overhead from control reasonable.

2 A Fragmented Approach to Parallel Programming

The essence of the fragmented approach is to represent an algorithm and its imple-
menting program as a set of data fragments and code fragments. In the course of exe-
cution, the fragmented structure of a program is kept.

2 S. Arykov and V. Malyshkin

Each code fragment is supplied with a set of input data fragments used to com-
pute output data fragments. The substitution of data fragments as parameters into a
code fragment is referred to as applying a code fragment to data fragments (the same
code fragment may be applied to different data fragments). The code fragment with
its input and output data fragments constitutes a computation fragment. On the set of
computation fragments a partial order (control) is defined. The resulting program is
created from such computation fragments, with fragmentation of the program kept
during the program execution.

Execution of a fragmented program is the execution of computation fragments in
any order that does not contradict to the defined control. Each computation fragment
receives its resources during setting on execution, creates a new process of the pro-
gram and can migrate from one processor to another.

Consider a simple example of matrix multiplication algorithm. Three 9 x 9 matri-
ces A, B and C are given. Matrix C is initialized with zeros.

First, we need to construct the matrices from a number of 3x3 submatrices (Fig. 1).
Each submatrix represents a data fragment which is denoted with the name of the ma-
trix along with the number of the submatrix. For example,)1,1(C denotes the first

fragment of the matrix C.

(1,2)

B

(1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

CA

Fig. 1. Fragmentation of the matrix multiplication task

Then, we define a code fragment F, which receives two data fragments as an input
and produces one data fragment as an output by multiplying the first data fragment by
the second one according to formula (1):

∑=
k

kjikij bac (1)

(here ijc is an entry in the resulting data fragment). Then the product of the matrix A

and the matrix B multiplication can be calculated using formula (2)

∑=
k

jkkiji BAC),(),(),((2)

(here),(jiC is a data fragment of the matrix C). Addition of the results can either be
implemented as a separate code fragment or embedded into the code fragment F (as is
offered in the sequel).

 Asynchronous Language and System of Numerical Algorithms 3

Now let us apply the code fragment to appropriate data fragments, i.e. define the
computation fragments. We denote the computation fragment with the name of the
code fragment followed by a list of data fragments in parentheses, which are used by
this code fragment. To compute)1,1(C it is required that three computation fragments

be executed:),,()1,1()1,1()1,1(CBAF ,),,()1,1()1,2()2,1(CBAF and),,()1,1()1,3()3,1(CBAF . Since

each of those fragments writes the results obtained to the data fragment)1,1(C , we

should define the order of executing the computation fragments in order to avoid the
data racing. For example, we can require that),,()1,1()1,2()2,1(CBAF be executed after

),,()1,1()1,1()1,1(CBAF , and),,()1,1()1,3()3,1(CBAF after),,()1,1()1,2()2,1(CBAF . Other com-

putation fragments to compute the rest of the matrix C can be formed in a similar
way, and as a result we obtain a fragmented program. It should be noted that the com-
putation fragments that compute different data fragments of the matrix C can be exe-
cuted in parallel.

The example above brings about a few important conclusions:

1. The algorithm used inside the code fragment differs from formula (1) in an ex-
tra operation of addition. A difference is not random as the fragmentation of
the algorithm can require its modification and so it cannot be accomplished
automatically.

2. The algorithm can be fragmented in different ways. For example, for an 8x8
matrix data fragments 2x2, 2x4, 4x4, etc. can be used. The only important
thing is that it should be possible to construct the initial data structures from
all data fragments. The choice of the size of data fragments directly affects the
overall number of the fragments in the program being the major parameter of
the program fragmented.

Algorithms of different application areas can be fragmented with a different quality.
In this paper, we consider the fragmented approach as applied to realization of nu-
merical models. In this area, the approach provides considerable benefits:

1. Ability to automatically construct a parallel program. When the fragmented
approach is applied, the most complex dependences are hidden inside code
fragments, which allow a certain formalization of constructing a parallel
program based on the control scheme.

2. Ability to provide a parallel program with a set of dynamic properties. It can
be attained due to the fragmented structure of a program.

3. Portability between different architectures. As a fragmented program allows
some flexibility in choosing the order of computation fragments execution,
there is a good reserve for adopting the program to a specific supercomputer.

4. Possibility to store control schemes for different tasks in the library for their
further reuse.

3 Implementation of the Parallel Programming System Aspect

The parallel programming system Aspect is one of possible implementations of
the fragmented approach to developing parallel programs. At the moment it is

4 S. Arykov and V. Malyshkin

oriented to finding solutions for numerical models using multiprocessors and mul-
ticores architectures.

The Aspect is based on asynchronous model of computation. The system consists
of the two main components: a translator and an executive subsystem. The input for
the translator is a text written in the Aspect programming language; the output is an
asynchronous program in C++. After translation, the asynchronous program is com-
bined with an executive subsystem, written in C++, and is compiled into an execution
file. It is done using a standard C++ compiler, e.g., gcc.

The Aspect programming language allows representing algorithms with different
levels of asynchronism. Its main peculiarities are:

1. Static data types.
2. Explicit declaration of data dependences between operations.
3. Partial distribution of resources (it allows several assignments to one vari-

able).
4. Focus on regular data structures (the main data type is an array).
5. An imperative language (like C++) is used to define computations inside

code fragment.

A detailed description of Aspect programming language is out of the scope of this
paper, thus its main properties will be shown in a simple task of matrix multiplication
discussed in Section 2.1.

The text of the program solving the task of matrix multiplication on the Aspect
programming language.

program MultMatrix {
data fragments
 double Matrix[m][m]
code fragments
 F(in Matrix A, Matrix B, Matrix C; out Matrix C) {
 for(int i=0; i<m; i++)
 for(int j=0; j<m; j++)
 for(int k=0; k<m; k++)
 C[i][j] += A[i][k]*B[k][j];
 }
task data
 Matrix A[n][n], B[n][n], C[n][n]
task computations
 S[i][j][k]: F(in A[i][k], B[k][j], C[i][j]; out
 C[i][j]) where i: 0..n-1, j: 0..n-1, k: 0..n-1
task control
 S[i][j][k] < S[i][j][k+1]
}

The meaning of most constructions of the program is obvious. Computations inside
the code fragment F are defined using C++ language. In the section task computations
application of the code fragment F to the task data is defined. Each of the indices i, j,
k goes through all values in the range defined after the index name; each combination

 Asynchronous Language and System of Numerical Algorithms 5

of (i, j, k) creates a separate computation fragment. In the section task control we de-
fine the order of executing different computation fragments. The computation frag-
ments with equal indices i and j will be executed sequentially as index k grows.

4 Results of Experiments

As a test platform, the computer with the following configuration was used: Athlon
64 X2 3600+ (2*256 L2) / 1024 DDR2 / Windows Vista Home Premium (32 bit) /
Visual C++ 9.0 (with options /O2 and /arch:SSE2).

All tasks were implemented in C++. Entries of the matrices are real numbers with
double precision. In all the tables, the time of computing is given in seconds.

4.1 Matrix Multiplication

Fragmentation of this algorithm is described in Section 2.1.
The ‘Standard solution’ method is implemented according to formula (1). When

solving this task with ACML, the ‘dgemm’ procedure was used. Two versions of the
fragmented approach were tested: one using formula (1) for computations inside the
code fragment (‘standard solution’) and the other one using the ‘dgemm’ from ACML
library for computations inside the code fragment (‘ACML’). The results obtained are
shown in Table 1.

Table 1. Matrix multiplication task

Method/Matrix size 512x512 1024x1024 2048x2048

Standard solution 3,26 45,64 499,22

AMD Core Math Library 4.2.0 0,09 0,73 5,67

Fragmented approach (standard solution) 0,22 1,78 14,52

Fragmented approach (ACML) 0,16 1,00 7,89

A fragmented version of the matrix multiplication algorithm is about 25 times as

fast as the standard solution, since the fragmented approach using cache memory is
much more efficient. At the same time, it is about 2.5 times worse than ACML be-
cause ACML is optimized especially for AMD on a low level). However, if we use
the ‘dgemm’ inside the code fragment, then the difference will come as little as 40%.
That is a good result with allowance for all advantages that the fragmented approach
automatically provides to a parallel program.

4.2 LU Decomposition

An algorithm can be fragmented in the following way [3]: the source matrix is built
out of the data fragments similar to the matrix multiplication task (see Fig. 1) and four

6 S. Arykov and V. Malyshkin

code fragments are created. The first code fragment will process the data located on
the main diagonal; the second code fragment – the data fragments to the right of the
first data fragment; the third code fragment – the data fragments below the first data
fragment and the fourth code fragment will calculate the rest data fragments.

Computations are performed through iterations. On the first iteration the data
fragment)1,1(A will be computed. After that, the data fragments to the right ()2,1(A ,

)3,1(A) and below it ()1,2(A ,)1,3(A) can be computed simultaneously. Finally, the inter-

nal matrix ()2,2(A ,)3,2(A ,)2,3(A ,)3,3(A) should be recomputed. The next iteration will

be applied only to the internal matrix, thus)2,2(A will be first computed, then)3,2(A ,

)2,3(A and, finally,)3,3(A , etc.

Two versions of the standard solution were tested with a column and a row order
of the arrays representation in the memory. When solving this task with ACML, the
‘dgetrf’ procedure was used. Our results are shown in Table 2.

Table 2. LU decomposition task

Method/Matrix size 512x512 1024x1024 2048x2048

Standard solution (column order) 2,55 24,98 244,06

Standard solution (row order) 0,27 2,14 16,30

AMD Core Math Library 4.2.0 0,03 0,26 2,11

Fragmented approach (column order) 0,08 0,67 5,52

Fragmented approach (row order) 0,08 0,66 5,23

We see that the difference in time for the standard solution with different order

of entries in the memory is multiple to ten, but with the fragmented approach it be-
comes inessential. That is another benefit of the fragmented approach: even when
the user does not know anything about peculiarities of the arrays representation in
the memory, the fragmented structure of the program will not allow losing much in
performance.

In the task in question, the algorithm fragmentation requires some changes in it,
which do not allow using the ‘dgetrf’ procedure from ACML library to implement
computations inside the code fragments.

5 Related Works

An active research intended for increasing the level of programming takes place in
different countries as well as in Russia. In Russia, the closest projects are T-system
[4] and mpC [5]. From the foreign projects we would like to single out ALF [6] and
RapidMind [7].

 Asynchronous Language and System of Numerical Algorithms 7

A large body of associated research is carried out in the field of producing high-
performance libraries for linear algebra (ATLAS [8], Plasma [9]), where the blocked
algorithms that are friendly to the cash-memory of processors are developed.

6 Conclusion

The fragmented approach to parallel programming is elaborated in this paper. The
programming language and the asynchronous programming system Aspect were de-
signed, developed and tested on model tasks. They are intended to solve problems of
numerical modeling.

Further research plans aimed at improving the computation model for its subse-
quent application in supercomputers with distributed memory architecture, at im-
plementing dynamic load balancing on such architectures and at testing the Aspect
system on real application tasks.

References

1. Malyshkin, V.E., Valkovskii, V.A.: Synthesis of Parallel Programs and Systems on the Basis
of Computational Models. Nauka, Novosibirsk (1988)

2. Malyshkin, V.E.: Fragmented Programming of Library Parallel Numerical Subroutines. In:
7th International Conference on Software Methodologies, Tools and Techniques, vol. 182,
pp. 413–423. IOS Press, Roma (2007)

3. Malyshkin, V.E., Sorokin, S.B., Chajuk, K.G.: Fragmentation of Numerical Algorithms for
the Parallel Subroutines Library. In: Proceedings of PaCT 2009 (2009)

4. Moskovsky, A., Roganov, V., Abramov, S.: Parallelism granules aggregation with the
T-system. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 293–302. Springer,
Heidelberg (2007)

5. Lastovetsky, A.L.: Parallel Computing on Heterogeneous Networks. John Wiley & Sons,
Chichester (2003)

6. Accelerated Library Framework for Cell Broadband Engine,
 http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/
 41838EDB5A15CCCD002573530063D465

7. McCool, M., Wadleigh, K., Henderson, B., Lin, H.: Performance evaluation of GPUs using
the RapidMind development platform. In: ACM/IEEE Conference on Supercomputing,
Tampa, Florida, Article No. 181. ACM, New York (2006)

8. Automatically Tuned Linear Algebra Software (ATLAS),
 http://math-atlas.sourceforge.net

9. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A Class of Parallel Tiled Linear Algebra
Algorithms for Multicore Architectures. Parallel Computing 35(1), 38–53 (2009)

Analyzing Metadata Performance in Distributed

File Systems

Christoph Biardzki1 and Thomas Ludwig2

1 Leibniz-Rechenzentrum (LRZ)
der Bayerischen Akademie der Wissenschaften,

Boltzmannstr. 1, 85748 Garching, Germany
biardzki@lrz.de

2 German Climate Computing Centre (DKRZ)
Bundesstrasse 55, 20146 Hamburg, Germany

ludwig@dkrz.de

Abstract. The performance of metadata processing in large distributed
file systems currently presents larger challenges than scaling of data
throughput. The paper presents a novel, distributed benchmark called
DMetabench for measuring the performance of metadata operations
(e.g. file creation). DMetabench runs in environments with potentially
thousands of nodes and allows an assessment of the scalability of meta-
data operations. Additionally, precise run-time performance data is pre-
served which allows for a better understanding of performance artifacts.
Validation results from production file systems at the Leibniz Supercom-
puting Centre (LRZ) are provided and discussed. Possible applications
of knowledge about metadata performance scaling include the choice of
an optimal parallelization strategy for metadata-itensive workload in a
specific runtime environment.

Keywords: distributed file system, metadata, benchmark.

1 Introduction

A paradigm shift to massively distributed computing environments has sparked
new interest in scalable storage solutions. Although distributed file systems have
been used for many years, they only scaled for specific applications, such as file
serving in desktop environments, for much of their existence. Only recently did
parallel file systems enable the creation of large storage solutions with 100s
of Terabytes. However, determining how to cope with millions or billions of
files in an efficient manner remains a challenge. This shifts the attention of the
research community from scaling data storage capabilities towards scaling the
performance of metadata – the information needed to organize and find data in
a file system.

Early distributed file systems, such as Sun’s NFS [1], basically enabled remote
access to a local file system on a server. More recent architectures allow for
multiple file servers in a common client name space (e.g. AFS [2]) or a separate

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 8–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Analyzing Metadata Performance in Distributed File Systems 9

storage of data and metadata (e.g. CXFS [3] or Lustre [4]). The objective of
adding more servers is to increase capacity and performance while maintaining
the illusion of a local file system to the application layer.

2 Metadata Semantics

File system semantics define the operational behavior of a file system and include
pre-conditions as well as post-conditions. Semantics can describe the visibility
of operations (e.g. the point in time when updates are visible in a distributed
environment), persistence and durability guarantees or file system invariants
(e.g. a file path uniquely describes a file). The behavior of distributed file systems
originally comes from local disk file systems which in turn adhere to standards
like, for example, POSIX [5]. However, several guarantees which are trivial within
a single operating system instance, like the instant visibility of write operations,
can be difficult to efficiently implement in a distributed environment. Thus,
some distributed file systems have chosen to relax some of the guarantees and to
define additional procedures. For example, the open-to-close semantics of AFS
dictate that writes to a file are only visible to other processes after a close()
or an explicit flush operation. Other semantics like close-to-open or immutable
are also being used. Such relaxations can reduce the amount of locking and thus
improve performance.

Remarkably, some metadata-focused operations, such as creating a new file,
still carry the uniqueness guarantees given by a local file system and therefore
prohibit any shortcuts regarding access coordination in a distributed environ-
ment. In this way, the very basic process of creating a file is a potential bottleneck
in distributed file systems depending on the locking mechanisms involved. Per-
formance of non-modifying metadata operations, such as reading file attributes,
can also suffer from network latency depending on the presence of caches. Some
real-life workloads, for example filesystem-based mail servers, search engines,
data backup, replication or virus scanning are inherently metadata-intensive.

To sidestep latency, a parallelization of operations (e.g. creating multiple files
concurrently) is a possible solution. The attractivity of this approach is further
enhanced by the fact that distributed file systems often include large disk arrays
which are well-suited to processing multiple requests at the same time by request
distribution. From the client perspective the current architectural trend towards
multi-core architectures enables increased concurrency inside a single operating
system (OS) instance and thus also more simultaneous – but potentially conflict-
ing – metadata operations (intra-node concurrency). On the other hand some
distributed file systems were optimized for inter-node concurrency, which means
access from multiple different OS instances. These two types have profound im-
plications on the performance of concurrent metadata operations because often
different consistency mechanisms are used. Furthermore most distributed file
systems allow to tune parameters which influence concurrency limits. Thus it is
quite difficult to find out how to parallelize a metadata-intensive task in a way
which achieves optimum performance.

10 C. Biardzki and T. Ludwig

3 DMetabench - A Distributed Metadata Benchmark

To gain more insight into the topic of parallelizing metadata operations a spe-
cial metadata microbenchmark called DMetabench has been developed at LRZ.
DMetabench is implemented in Python and MPI and uses a master-worker ar-
chitecture (fig. 1) to start multiple parallel processes and then perform selected
metadata operations on a common distributed file system. Typical MPI runtime
environments for DMetabench include a wide spectrum of distributed systems
from single nodes to large compute clusters and also large SMP machines.

A metadata operation (e.g. ’delete file’) is defined as a plug-in written in
Python and using standard file system APIs such as open(). DMetabench then
allows to estimate how many of these operations per time unit can be performed
using a given number of processes and a given file system. Every benchmark
run consists of a preparation, a benchmark and a cleanup phase. This is useful
to fulfill preconditions (e.g. files must exist before deletion). An example of a
complete benchmark plugin is MakeFiles which creates empty files in a separate
directory for every process and thus stresses the ability of the filesystem to
generate new file metadata.

One distinctive feature of DMetabench is the ability to recognize the place-
ment of processes within the OS instance boundaries in the MPI environment.
Using this technique the intra- and inter-node cases can be differentiated and
DMetabench automatically iterates over possible combinations of the number of
processes per OS instance and number of OS instances (fig. 2). The resulting
data helps to pinpoint the optimal parallelization style for a given environment
and gathers data for different setups in a single benchmark run.

Additionally, the runtime performance of by each process is logged in fine-
granular intervals (approximately 0.1s) to capture information about variations
in performance. In comparison, existing benchmarks often only measure the
runtime and the number of operations to calculate an ”average” performance and
lose much interesting information in this way. The usefulness of the additional
data will be shown later in section 4.

To facilitate the evaluation of results measurement data from DMetabench
can be easily visualized using the two-step process shown in fig. 3. First, the
time-stamped performance data is aggregated to obtain summary data, e.g. for
all processes on a node. Then the operator can decide to compare multiple data
sets in a single diagram using auxiliary scripts which help to create the necessary
control files for the plotting software. There are three different types of diagrams
available: the runtime chart (fig. 4) shows the summary performance for the par-
ticipating processes during a measurement. The upper part shows the number of
operations completed. In the mid part, an indicator called coefficient of variation
(COV) shows the ratio of standard deviation of single-process performance to
the mean value. The COV helps to assess whether there are large differences in
the speed of particular processes. Large values can indicate problems with the
test setup (e.g. network problems for a single compute node). The bottom part
shows the momentary aggregate performance for all processes.

Analyzing Metadata Performance in Distributed File Systems 11

Node

Worker Process

Distributed File
System

Worker Process

Node

Worker Process Worker Process

... ...

Node

Master Process

Filesystem access Filesystem access

Filesystem
access

MPI Runtime
Environment

Fig. 1. Deployment diagram for DMetabench

Master
process

Worker
process

Worker
process

Worker
process

Worker
process

Worker
process

Worker
process

Worker
process

Worker
process

Get placement

Get node
configuration

1 process per node on
1 node

1 process per node on
2 nodes

Node A Node B Node C

...

1 process per node on
3 nodes

2 processes per node on
1 node

2 processes per node on
2 nodes

2 processes per node on
3 nodes

Fig. 2. Example intra-/internode measurement sequence for nine processes on three
nodes

12 C. Biardzki and T. Ludwig

Fig. 3. DMetabench workflow for preprocessing and comparing data using charts

The two other charts (fig. 5 and fig. 6) visualize the scaling of a particular
operation type for a given number of processes respectively a given number of
nodes (operating system instances). The specifics of the example figure will be
discussed in detail later.

4 Measurements on Production Systems

DMetabench has been used on a variety of distributed file systems at the Leibniz
Supercomputing Centre (LRZ) in Munich. LRZ hosts one of Germany’s national
supercomputers, the HLRB2, which is a supercluster with nineteen 512-core
SGI Altix 4700 systems. The HLRB2 uses a 600 TB SGI CXFS file system
for temporary data and a clustered NFS-based file server (Ontap GX [6]) for
home and project data. Additionally a 600+ node linux cluster at LRZ uses
both NFS-based file servers and also a Lustre parallel file system. Three selected
examples shown below were chosen mainly for their qualitative characteristics
and not because of absolute performance numbers which of course depend on
the particular hardware setup and software version.

The chart in fig. 4 illustrates how the time-logging feature of DMetabench
helps to understand the runtime environment. It shows twenty compute nodes
with one process per node which create files in parallel on a shared NFS file
system. Line (a) shows an undisturbed measurement and in (b) a CPU-hogging
process was started on one of the nodes during t=19s to t=28s. The middle COV
graph clearly shows an elevated plateau indicating a larger difference in the per-
formance of the particular processes. A conventional benchmark, which averages

Analyzing Metadata Performance in Distributed File Systems 13

Fig. 4. Example runtime performance chart generated with DMetabench

14 C. Biardzki and T. Ludwig

Number of processes

2 4 6 8 10 12 14 16

T
ot

al
 o

pe
ra

tio
ns

 /
s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

NFS MakeFiles Lustre MakeFiles
CXFS MakeFiles XFS MakeFiles (local filesystem)

Fig. 5. Comparison of multi-process scaling of three different remote file systems (NFS,
CXFS and Lustre) and a local XFS file system on a single node

runtime and the number of operations completed, would have missed such arti-
facts. On the other hand the bottom graph with the total performance exhibits
a regular sawtooth pattern, which means that total file creation performance
varies during the measurement. The reason here is the WAFL[7] file system used
by the measured NFS file server which performs regular consistency points. This
process takes away processing time, so that file creation performance is reduced.
Here, DMetabench allows to observe the inner working of a file server from a
black-box perspective. Very similar results can be obtained with Lustre and the
underlying ext3 file system with its regular 10s buffer cache flush intervals.

Figure 5 demonstrates 0-byte file creation characteristics of different file sys-
tems on the same 16-core SMP machine with up to 14 processes. A local XFS [8]
file system has an almost equal performance with both a single and many pro-
cesses. This explains why there were hardly any efforts to parallelize metadata-
intensive workloads – it does not really matter for local file systems. On the
contrary NFS begins with a much slower single process performance but then
scales up to ten processes. Both Lustre and CXFS are much slower and do not
scale up with more processes.

Finally figure 6 and 7 demonstrate intra- and inter-node scaling of two dif-
ferent file systems (NFS and Lustre). NFS scales both within a single compute
node and with multiple nodes up to the performance limit of the NFS file server.
For example the performance of 4 processes on one node, 4 processes on two
nodes (2 per node) and 4 processes on four nodes (1 per node) are quite similar.
Lustre (in version 1.6) does not scale within a single OS instance which can be
a problem for large SMP nodes. The reason is that there is a hard-coded limit
of one simultaneous modifying metadata operation per node in Lustre while

Analyzing Metadata Performance in Distributed File Systems 15

Number of nodes

5 10 15 20

T
ot

al
 o

pe
ra

tio
ns

 /
s

0

2000

4000

6000

8000

10000

12000

14000

16000

NFS MakeFiles 1 process per node
NFS MakeFiles 2 processes per node
NFS MakeFiles 4 processes per node
NFS MakeFiles 6 processes per node

Fig. 6. Multi-node and multi-process file creation with NFS

Number of nodes

5 10 15 20

T
ot

al
 o

pe
ra

tio
ns

 /
s

0

500

1000

1500

2000

2500

3000

Lustre MakeFiles 1 process per node
Lustre MakeFiles 2 processes per node
Lustre MakeFiles 4 processes per node
Lustre MakeFiles 6 processes per node

Fig. 7. Multi-node and multi-process file creation on Lustre

non-modifiying operations like stat() can be issued concurrently. NFS on Linux
has higher limits for simultaneous operations which helps to achieve better intra-
node scaling. This kind of differences has direct practical applications on the

16 C. Biardzki and T. Ludwig

Number of processes

100 200 300 400 500

T
ot

al
 o

pe
ra

tio
ns

 /
s

0

500

1000

1500

2000

2500

3000

3500

MakeFiles NFS (Ontap GX) on 512 core Altix 4700 partition
MakeFiles CXFS on 512 core Altix 4700 partition

Fig. 8. File creation performance of NFS (Netapp Ontap GX) and a SAN file system
(SGI CXFS)

choice of file systems for specific applications. For example a maildir-format
based mail server like Postfix exhibits a high percentage of concurrent file cre-
ations during mail delivery and requires good intra-node scaling. On the other
hand Lustre can handle file creations from thousands of nodes (inter-node) even
if its performance within a single node is limited.

Early versions of DMetabench have been used successfully at LRZ for bench-
marking and acceptance tests of file systems during procurements of large storage
systems for supercomputers (e.g. the HLRB2). Among others extensive testing
of a clustered NAS system (Ontap GX) has been performed. As an example, fig.
8 shows the difference in file creation performance between the NAS system and
a shared SAN-File system on a 512-core Altix 4700 SMP system.

5 Related Work

File system benchmarking has been traditionally used to evaluate improvements
in existing file systems as well as for testing new architectures. There are many
I/O benchmarks which focus on data throughput, e.g. IOzone [9], IOmeter [10]
or b eff io [11]. The typical workload includes different types of access to the
data in a file with very little metadata activity.

Well-known benchmarks with a focus on metadata handling include the An-
drew Benchmark [12], Netapp’s single-threaded Postmark [13] or the official
SPEC SFS 97 for NFS and SFS 2008 [14] for NFS and CIFS. The Andrew Bench-
mark and Postmark are application-level benchmarks which use the OS API

Analyzing Metadata Performance in Distributed File Systems 17

to access a file system. In contrast, SPEC SFS is filesystem-specific and generates
NFS and CIFS-protocol packets and bypasses the operating system. All these
benchmarks intermix data and metadata workloads to resemble real-life work-
loads while DMetabench tries to explicitly avoid data access and thus establishs
an upper limit of performance for pure metadata operations. An interesting,
recent metadata benchmark is Filebench [15] but it does not currently support
distributed execution.

6 Summary

DMetabench is a microbenchmark which can be used to qualitatively measure
the performance of concurrent metadata operations in distributed file systems.
It is specifically useful to optimize the concurrency and placement of metadata-
intensive workloads when both multiple nodes and multiple processes per node
are possible options. DMetabench runs on standard MPI environments and has
been tested with hundreds of processes both on clusters and large SMP systems.
Besides showing scaling properties of a file system the fine-grained time-logging
feature of DMetabench allows observation of inner workings of a file system from
a black-box perspective.

References

1. Callaghan, B., Pawlowski, B., Staubach, P.: NFS Version 3 Protocol Specification
(1995), http://www.ietf.org/rfc/rfc1813.txt

2. Campbell, R.: Managing AFS: The Andrew File System. Prentice-Hall, Englewood
Cliffs (1998)

3. Shepard, L., Eppe, E.: SGI InfiniteStorage Shares Filesystem CXFS: A High-
Performance, Multi-OS Filesystem from SGI. Technical report, Silicon Graphics
(2006)

4. Cluster File Systems, Inc.: Lustre 1.6 Operations Manual (2007)
5. The Open Group: The Single UNIX Specification, Version 3. Technical report

(2004)
6. Eisler, M., Corbett, P., Kazar, M., Nydick, D.S., Wagner, J.C.: Data ONTAP GX:

A Scalable Storage Cluster. In: Proceedings of FAST 2007 (2007)
7. Hitz, D., Lau, J., Malcolm, M.: File System Design for an NFS File Server Appli-

ance. Technical report, Network Appliance (TR 3002)
8. Sweeney, A., Doucette, D., Hu, W., Anderson, C., Nishimoto, M., Peck, G.: Scal-

ability in the XFS File System. In: Proceedings of the USENIX 1996 Technical
Conference, San Diego, CA, USA, pp. 1–14 (22–26 1996)

9. Norcott, W.D., Capps, D.: Iozone Filesystem Benchmark (2006),
http://www.iozone.org/

10. Intel Corporation: Iometer (1998), http://www.iometer.org/
11. Rabenseifner, R., Koniges, A.E., Prost, J.P., Hedges, R.: The Parallel Effective I/O

Bandwidth Benchmark: b eff io. Technical report, High-Performance Computing
Center, HLRS (2001)

http://www.ietf.org/rfc/rfc1813.txt
http://www.iozone.org/
http://www.iometer.org/

18 C. Biardzki and T. Ludwig

12. Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan, M., Sidebotham,
R., West, M.: Scale and Performance in a Distributed File System. ACM Transac-
tions on Computer Systems 6, 51–81 (1988)

13. Katcher, J.: PostMark: A new file system benchmark. Technical report 3022, Net-
work Appliance (1997)

14. SPEC: SPECsfs 2008 User’s Guide. Technical Report Version 1.0, Standard Per-
formance Evaluation Corporation (SPEC) (2008)

15. McDougall, R., Mauro, J.: Filebench tutorial (2006),
http://www.solarisinternals.com/si/tools/filebench

http://www.solarisinternals.com/si/tools/filebench

Towards Parametric Verification of

Prioritized Time Petri Nets�

Anna Dedova1 and Irina Virbitskaite1,2

1 Novosibirsk State University
2, Pirogova st., Novosibirsk, 630090, Russia

2 A.P. Ershov Institute of Informatics Systems
Siberian Division of the Russian Academy of Sciences

6, Acad. Lavrentiev avenue, 630090, Novosibirsk, Russia
annavd@ngs.ru, virb@iis.nsk.su

Abstract. The intention of the paper is to develop an algorithm for
parametric timing behaviour verification of real-time and concurrent sys-
tems represented by prioritized time Petri nets (PrTPNs). To achieve
the purpose, we introduce a notion of the parametric PrTPN which is
a modification of the PrTPN by using parameter variables in specifi-
cation of timing constraints on transition firings. System properties are
given as formulae of a parametric extension of the real-time branching
time temporal logic TCTL, PTCTL. The verification algorithm consists
in constructing conditions on timing parameter variables under which
the PrTPN with bounded parameters works w.r.t. the checked PTCTL-
formula. It is also shown the correctness and evaluated the complexity
of the algorithm proposed.

1 Introduction

Within the last two decades, serious attempts have been made to extend the
success of model checking to the real-time setting — timed models (e.g., timed
automata [1], time Petri nets [8]) and timed temporal logics (see, for example,
[1]). One of the major obstacles for real-time model checking is that it usually
requires overly detailed specification of timing characteristics of both the sys-
tem and its properties. In the case when the checked formula is not satisfied by
the system the timing characteristics are changed, and verification algorithm is
applied again. It leaves users in repetitive trial-and-error cycles to select proper
timing characteristics. One of the ways out is parametric reasoning working on a
model with parameters — symbolic constants with unknown, fixed values. In [3],
Alur et al. have introduced parameters in discrete- and dense-timed automata
and have shown that the emptiness problem is decidable when only one clock
is compared to parameters. In [2,6,12], the authors have introduced parameters
in temporal logics and established that the model-checking problem for TCTL

� This work is supported in part by the DFG-RFBR (grant No 436 RUS
113/1002/01,09-01-91334).

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 19–25, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

20 A. Dedova and I. Virbitskaite

extended with parameters (PTCTL) over discrete- and dense-timed automata
(without parameters) is decidable. The paper [7] has studied the model-checking
and parameter synthesis problems of the language PTCTL over discrete-timed
automata with parameters. It has turned out that the problems are undecidable
over discrete-timed automata with only one parametric clock. In [6,7] the dura-
tions of runs of a timed automata are shown to be expressible in the arithmetic
of Presburger (when the time domain is discrete) and the theory of the reals
(when the time domain is dense). The paper [11] provided a timing behaviour
analysis algorithm for one-safe time Petri nets and TCTL-formulae using cac-
tus structures [12] to calculate the durations of runs. More recently, ”on-the-fly”
model checking algorithms for parametric time Petri nets with stopwatches w.r.t.
a subset of PTCTL-formulae have been put forward in [9].

The intention of the paper is to develop an algorithm for parametric timing
behaviour verification of real-time and concurrent systems represented by prior-
itized time Petri nets (PrTPNs). To fulfill the purpose, we introduce a notion
of the parametric PrTPN which is a modification of the PrTPN by using pa-
rameter variables in specification of timing constraints on transition firings. Net
properties are given as formulae of PTCTL. The durations of computational
paths are expressed in formulae of the real arithmetic [6]. A timing behaviour
analysis algorithm consists in constructing conditions on timing parameter vari-
ables under which the PrTPN with bounded parameters works w.r.t. the checked
PTCTL-formula.

2 Parametric Prioritized Time Petri Nets

In this section, we fist define some notations which are needed to introduce
parameters into the net model and logic formulae, and then consider some ter-
minology concerning parametric prioritized time Petri nets.

Let N be the set of natural numbers. Also, let R be the set of nonnegative
real numbers and R+ the set of positive real numbers. Assume a finite set Θ of
parameters θ that are shared by the net model and the logical formulae. Let θ
with and without subscripts range over Θ. A parameter valuation χ for Θ is a
mapping from Θ into N which assigns a natural number to each parameter θ
from Θ. From now on, α, β, . . . mean any linear term

∑
j∈J

cjθj + c with cj , c ∈ N

and J ⊂ {1, ..., n}. A parameter valuation χ can be naturally extended to linear
terms by defining χ(c) = c for any c ∈ N. We shall use T to denote the set of
linear terms. Let I(N, T) be the set of parametric time intervals i such that the
left end-point of i, ↓ i, belongs to N∪T and the right end-point of i, ↑ i, belongs
to N ∪ T ∪ {∞}. Given i ∈ I(N, T) and a parameter valuation χ, iχ denotes
the time interval obtained from i by replacing every occurrence of parameters θ
with χ(θ).

We now consider the notion of Petri nets. A Petri net is a tuple N = (P , T ,
•(·), (·)•, m∗), where P is a finite set of places, T is a finite set of transitions
(P ∩ T = ∅), •(·) ∈ (NP)T (resp. (·)• ∈ (NP)T) is the forward (resp. backward)
incidence mapping, m∗ ∈ NP is the initial marking. We shall use •t (resp. t•) to

Towards Parametric Verification of Prioritized Time Petri Nets 21

denote the set of places •t = {p ∈ P |• t(p) > 0} (resp. t• = {p ∈ P | t•(p) > 0}).
A marking m of N is a mapping from NP . A transition t is enabled in a marking
m if m ≥• t, otherwise it is disabled. Let enable(m) be the set of transitions,
enabled in m. Define a predicate ↑ enabled(t′,m, t) ∈ {true, false} which is
true, if a transition t′ is newly enabled after firing a transition t in a marking
m, and false, otherwise: ↑ enabled(t′,m, t) = [t′ ∈ enabled(m −• t + t•)] ∧ [t′ �∈
enabled(m−•t) ∨ (t = t′)].

Time Petri Nets were introduced in [8] and extend Petri Nets with timing
constraints on the firings of transitions. An extension of time Petri nets with
priorities (PrTPNs for short) has been proposed in [5]. In a PrTPN, a transition
is not allowed to fire if some transition with higher priority is fireable at the
same instant. We introduce an extension of PrTPNs — parametric PrTPNs
whose transitions are associated with time predicates representing unspecified
timing constraints on transition firings. Let V = [T → R] be the set of time
assignments for transitions from T .

Definition 1. A parametric prioritized time Petri net (PPrTPN) is a tuple
N = (P , T , •(·), (·)•, m∗, �, Θ, I, ν∗), where (P , T , •(·), (·)•, m∗) is a Petri
net, �∈ T × T is a transitive, asymmetric, irreflexive binary priority relation,
Θ is a finite set of parameters (Θ ∩ (P ∪ T) = ∅), I : T → I(N, T) is a function
that associates each transition t with a parametric time interval I(t) ∈ I(N, T),
ν∗ ∈ V is the initial time assignment. Let ΘN to denote the set of parameters
appearing in linear terms in a specification of N .

The semantics of a PPrTPN N is defined at a parameter valuation χ. From
now on, Nχ means a PrTPN obtained from PPrTPN N by replacing every
occurrence of a parameter θ with χ(θ) for all θ ∈ ΘN . A state q of Nχ is a pair
〈m, ν〉, where m is a marking of Nχ and ν ∈ V . The initial state of Nχ is the
pair q∗ = 〈m∗, ν∗〉. The states of Nχ change, if time passes or if a transition
fires. Let q = 〈m, ν〉, q′ = 〈m′, ν′〉 be states of Nχ. In a state q, time δ ∈ R+ can
pass, if for all t ∈ enable(m) there exists δ′ ≥ δ such that ν(t) + δ′ ∈ (I(t))χ. In
this case, the state q′ is obtained by passing δ from q (written q δ⇒ q′), if m′ = m
and ν′ = ν + δ. In a state q, a transition t ∈ T is fireable, if t ∈ enable(m),
ν(t) ∈ (I(t))χ, and for all t′ ∈ enabled(m) if t′ � t then ν(t′) �∈ (I(t))χ. In
this case, the state q′ is obtained by firing t from q (written q

0⇒ q′ or q t⇒ q′),

if m′ = m −• t + t•, and ∀t′ ∈ T � ν′(t′) =
{

0, if ↑ enabled(t′,m, t),
ν(t′), otherwise. A

q-run (run) r of Nχ is a finite (infinite) sequence r = (qi)0≤i≤j (r = (qi)i≥0)

of states and real numbers δi ∈ R of the form: q = q0
δ0⇒ q1 . . . qj−1

δj−1⇒ qj

(q = q0
δ0⇒ q1 . . . qn−1

δn−1⇒ qn . . .). A position p in r is a state qi + δ, where
either δ = 0 or 0 < δ < δi (0 ≤ i < j or i ≥ 0). The duration D(r,p) of a
run r in a position p = qj + δ is equal to

∑
0≤i<j δi + δ. The set of positions in

a run r can be totally ordered as follows. Let p = qi + δ and p′ = qi′ + δ′ be
two positions in r. Then p < p′ iff either i < i′ or i = i′ and δ < δ′. We shall
write p ≤ p′ if p < p′ or p = p′. A state q is reachable in Nχ if it appears in

22 A. Dedova and I. Virbitskaite

a q∗-run of Nχ. Let RS(Nχ) denote the set of all reachable states of Nχ. To
guarantee that in any run of Nχ time is increasing beyond any bound, we need
the following progress condition: for every set of transitions {t1, t2, . . . , tn} s.t.
∀ 1 ≤ i < n � t•i ∩ •ti+1 �= ∅ and t•n ∩ •t1 �= ∅ it holds

∑
1≤i≤n ↓ (I(ti))χ > 0. We

call Nχ bounded, if there is K ∈ N such that for any 〈m, ν〉 ∈ RS(Nχ) and any
p ∈ P holds m(p) ≤ K. In the sequel, Nχ will always denote a bounded PrTPN
satisfying the progress condition.

3 PTCTL: Syntax and Semantics

In this section, we review the syntax and semantics of PTCTL (Parametric
Timed Computation Tree Logic) proposed in [12].

Definition 2. The PTCTL-formula ϕ is is inductively defined by the following
grammar: φ ::= P | ¬φ | φ ∨ φ | α ∼ β | φ Q U∼αφ, where ∼∈ {<,≤,=,≥, >},
Q ∈ {∃, ∀}, P ∈ PR and PR = {P | P : m → {true, false}} is a set
of propositions on the net marking. The set of free parameters of ϕ is denoted
by Θϕ.

Given a PTCTL-formula ϕ and a parameter valuation χ, we let ϕχ be the
PTCTL-formula obtained from ϕ by replacing every occurrence of θ with χ(θ)
for all θ ∈ Θϕ. PTCTL-formulae ϕχ are interpreted on the states of a model
M = (RS(Nχ),W), where W : RS(Nχ) → 2PR is a function such that
W(q = 〈m, ν〉) = {P ∈ PR | P(m) = true}. Given a state q ∈ RS(Nχ) and a
PTCTL-formula ϕχ, the satisfaction relation Nχ, q |= ϕχ is defined inductively
as follows:

Nχ, q |= Pχ ⇐⇒ P ∈ W(q)
Nχ, q |= (¬φ)χ ⇐⇒ Nχ, q �|= φχ

Nχ, q |= (φ ∨ ψ)χ ⇐⇒ Nχ, q |= φχ or Nχ, q |= ψχ

Nχ, q |= (α ∼ β)χ ⇐⇒ χ(α) ∼ χ(β)
Nχ, q |= (φ Q U∼αψ)χ ⇐⇒ for any/some (depending on Q) q-run r = (qi)i≥0

in Nχ, there exists a position p in r such that
D(r,p) ∼ χ(α), Nχ,p |= ψχ and Nχ,p′ |= φχ

for all positions p′ in r such that p′ < p

We say that Nχ satisfies ϕχ (written Nχ |= ϕχ) iff Nχ, q∗ |= ϕχ.
The parametric timing behaviour analysis problem PT BA(N , ϕ) is formu-

lated as follows: compute a symbolic representation of the set of parameter
valuations χ on Θϕ such that Nχ |= ϕχ. The structural translation preserv-
ing timed language acceptance proposed in [4] from a TA into a bounded TPN
can straightforwardly be extended to parametric TA. As the emptiness problem
(and then, the reachability problem) is undecidable for parametric TA [3], it is
also undecidable for parametric TPNs. Since the emptiness problem is a particu-
lar case of the model checking problem, the latter is undecidable for parametric
TPNs and hence for parametric PrTPNs. Thus, PT BA(N , ϕ) is undecidable
because it is a more general problem.

Towards Parametric Verification of Prioritized Time Petri Nets 23

4 Parametric Timing Behaviour Analysis

First, we recall the definition of regions (equivalence classes of states) and region
graphs [1] in order to get a finite representation of the state-space of the PrTPN
Nχ. Let cNχ mean the biggest constant from N appearing as the endpoint of a
time interval in Nχ. For any δ ∈ R, {δ} denotes the fractional part of δ, and �δ�
denotes the integral part of δ. Given ν, ν′ ∈ V , ν � ν′ iff the following conditions
are met: (i) for each t ∈ T : either �ν(t)� = �ν′(t)� or ν(t), ν′(t) > cNχ , (ii) for
each t, t′ ∈ T such that ν(t) ≤ cNχ and ν′(t) ≤ cNχ : (a) {ν(t)} ≤ {ν(t′)} ⇔
{ν′(t)} ≤ {ν′(t′)}; (b) {ν(t)} = 0 ⇔ {ν′(t)} = 0. Given ν ∈ V , we use [ν] to
denote the equivalence class of ν w.r.t. �. A region of Nχ is called to be a set
[q] = 〈m, [ν]〉 = {〈m′, ν′〉 ∈ RS(Nχ) | m = m′ ∧ ν′ � ν}. A region 〈m, [ν]〉 is
called boundary, if ν �� ν + δ for any δ > 0; unbounded, if ν(t) > cNχ for any
t ∈ T . A predicate B(v) is true, if v is boundary region, and false, otherwise.
For 〈m, [ν]〉 �= 〈m′, [ν′]〉, 〈m′, [ν′]〉 is said to be a successor of 〈m, [ν]〉 (written
〈m′, [ν′]〉 = succ(〈m, [ν]〉)), if m = m′, ν′ = ν + δ for some positive δ ∈ R+

and ν + δ′ ∈ [ν] ∪ [ν′] for all δ′ < δ. The region graph of Nχ is defined to be
the labelled directed graph G(Nχ) = (V,E, l). The vertex set V is the set of
all regions of Nχ. The edge set E consists of two types of edges: (i) the edge
(〈m, [ν]〉, 〈m′, [ν′]〉) may represent firing a transition if 〈m′, ν′〉 is obtained from
〈m, ν〉 by firing some t ∈ T ; (ii) the edge (〈m, [ν]〉, 〈m′, [ν′]〉) may represent the
passage of time if either 〈m′, [ν′]〉 = succ(〈m, [ν]〉) or 〈m, [ν]〉 = 〈m′, [ν′]〉 is an
unbounded region. The function l labels an edge either with the symbol ′t′ (if the
edge represents firing t) or with the symbol ′δ′ (if the edge represents the passage
of time). It is well-known that the size of the region graph G(Nχ) is bounded
by 2|N

χ|. From now on, v∗ denotes the initial region [q∗] of G(Nχ). There is a
correspondence between runs r in Nχ and paths ρ in G(Nχ). Let r = (qi)i≥0.

Consider qi
δi⇒ qi+1. If δi = 0 or [qi] = [qi+1] is an unbounded region, then

([qi], [qi+1]) is an edge in G(Nχ), according to the definition of G(Nχ). If δi > 0,
then there are positions pj (0 ≤ j ≤ ni +1) in r such that qi = p0, qi+1 = pni+1,
and [pj+1] = succ([pj]) for all 0 ≤ j ≤ ni. In this case, the obtained path π(r)
in G(Nχ) corresponds to the run r in Nχ, and we say that π(r) is the path
associated with r.

Next, we use the theory of the reals to calculate run durations. Real Arith-
metic (RA) is the set of first-order formulae of 〈R,+, <,N, 0, 1〉, where N is a
unary predicate. The RA-formulae are interpreted over the real numbers. The
interpretation of N is defined such that N(x) holds iff x is a natural number. RA
has a decidable theory with complexity in 3ExpTime in the size of the sentence
[6]. Consider the definitions of auxiliary sets. Given a region graphGχ = (V,E, l)
with v, v′ ∈ V and S ⊆ V , we define λχ

S,v,v′ as the set of x ∈ R such that (i)
there exists a finite run r = (qi)0≤i≤j in Nχ with duration x = D(r, qj), (ii)
v = v0, v

′ = vk and vl ∈ S (0 ≤ l < k) for the path π(r) = (vl)0≤l≤k in Gχ, asso-
ciated with r. Let φ(y) be a formula with a single free variable y. A set Y ⊆ N
is definable by an RA-formula if Y is the set of all assignments of variable y
making the formula φ(y) true.

24 A. Dedova and I. Virbitskaite

Proposition 1. Givenaregion graphGχ = (V,E, l)withv, v′ ∈ V andS ⊆ V , the
setλχ

S,v,v′ is definable by anRA-formula; the construction of the formula is effective.

Finally, we formulate and solve a restricted variant of PT BA(N , ϕ). Let Ω ⊆
RΘN be a convex polyhedron that is the domain of the parameters from ΘN ,
and ΩN be the set of the natural valued points of Ω, that is finite and can be
defined by using standard techniques. We restrict ourselves to constructing a
symbolic representation of parameter valuations on Θϕ, which belong to ΩN on
ΘN , and denote the restricted problem as PT BA(NΩ, ϕ). Define an equivalence
relation ≈ on the set Υ = {χ | χ|ΘN ∈ ΩN} as follows: χ1 ≈ χ2 iff χ1(θ) =
χ2(θ), for all θ ∈ ΘN . Let Υ≈ denote the set of ≈-equivalent classes of Υ , and
γ ∈ Υ≈. Clearly, for each χ ∈ γ we have the same Nχ (resp. λχ

S,v,v′), so we can
denote it as N γ (resp. λγ

S,v,v′). To symbolically represent parameter valuations
on Θϕ, we construct for each γ ∈ Υ≈ an RA-formula Δ(ϕ, v∗, γ), with free
variables θ1, . . . , θk ∈ Θϕ, such that Nχ, v∗ |= ϕχ for some valuation χ ∈ γ iff
the sentence ∃θ1 . . . ∃θkΔ(ϕ, v∗, χ) is true. The approach is correct because
RA has a decidable theory and Υ≈ is a finite set. The main instrument of the
approach is to describe by an RA-formula, for given two regions v = [q], v′ = [q′]
in G(N γ), all the possible values of duration D(r, qj) for finite runs r from q
to q′ in N γ . For a region v of Gγ and a PTCTL-formula ϕ, the construction of
Δ(ϕ, v, γ) is easily performed by induction on the length of ϕ.

Theorem 1. Given γ ∈ Υ≈, a region v of N γ , a PTCTL-formula ϕ with Θϕ =
{θ1, ..., θk}, there exists an RA-formulaΔ(ϕ, v, γ) such that Nχ, v |= ϕχ for some
valuation χ ∈ γ iff the sentence ∃θ1...∃θkΔ(ϕ, v, γ) is true. The construction of
Δ(ϕ, v, γ) is effective.

Theorem 2. There exists a procedure for solving PT BA(NΩ, ϕ) which is in
2ExpTime in the product of the sizes of N and ϕ.

��
��

��
��

��
���

�p2 p3

p1

�

�
���

�
���

�
���

�
���[0, α] [1, 1]

[1,∞][0, β]

t1 t2

t3 t4� �

a) b)

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

� �

� �

� �

� � �

�

� � �

�

��

� �

�

�

�

�

�

�

�� ��

� �

� �

� �

	

�
�

v∗

v8

v10

v11

v12

v1

v9

v14

δ

�
� 	
v13

v2

v3

v15 v16

v18

v20

v17

v19

v21

δ	
 �
v7

v5

v4

v6

δ δ

δ δ

δ

δ

δ

t4

t4

t4

t4

t4

t4

t4

t1 t1 t1 t1t2 t2

t3 t3

t3

δ δ δ

δ δ

δ

δ

Fig. 1. a) PPrTPN N1, b) region graph G(N γ
1)

Towards Parametric Verification of Prioritized Time Petri Nets 25

Example 1. In Fig. 1a), an example of a PPrTPN N1 is given that includes
two linear terms α = θ1 + 1 and β = θ2. Assume Ω : θ1 = 0, 0 ≤ θ2 ≤ 1.
Consider the case with N γ

1 , where γ = {χ | χ(θ1) = 0, χ(θ2) = 0} ∈ Υ≈. The
region graph G(N γ

1) is shown in Fig. 1b). Contemplate the PTCTL-formula
ϕ = ∀ �>θ (m(p2) = 0 ∨ m(p3) = 0). Applying standard transformations, we
get ϕ = ¬(true∃ U>θ(m(p2) > 0∧m(p3) > 0)). Using the reasonings in the proof
of Theorem 1 [10], Δ(true∃U>θ(m(p2) > 0 ∧m(p3) > 0), v∗, γ) = [Δ(m(p2) >
0 ∧m(p3) > 0, v∗, γ) ∧ (0 > θ)]

∨
v′∈V

∨
S⊂V [∃x > θλγ

S,v∗,v′(x) ∧Δ(m(p2) > 0 ∧
m(p3) > 0, v′, γ) ∧

∧
s∈S Δ(true, s, γ) ∧ (¬B(v′) → Δ(true, v′, γ))]. One can see

that Δ(m(p2) > 0∧m(p3) > 0, v′, γ) is true only for v′ = v3, v′ = v8 and v′ = v9.
Then, λγ

S,v∗,v3
(x) = ”x = 1”, λγ

S,v∗,v8
(x) = ”x = 0”, λγ

S,v∗,v9
(x) = ”0 < x < 1”,

for all S ⊆ V such that λγ
S,v∗,v′ �= ∅. Thus, we have Δ(true∃U>θ(m(p2) >

0 ∧m(p3) > 0), v∗, γ) = ∃x > θ 0 ≤ x ≤ 1. So, Δ(∀�>θ(m(p2) = 0 ∨ m(p3) =
0), v∗, γ) = ¬(∃x > θ 0 ≤ x ≤ 1), i.e. θ ≥ 1. For the other possible γ ∈ Υ≈, the
results are obtained analogously.

References

1. Alur, R., Dill, D.: The theory of timed automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

2. Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for
”model measuring”. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.)
ICALP 1999. LNCS, vol. 1644, pp. 159–168. Springer, Heidelberg (1999)

3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Proc.
STOC 1993, pp. 592–601. ACM Press, New York (1993)

4. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of the
expressiveness of timed automata and time Petri nets. In: Pettersson, P., Yi, W.
(eds.) FORMATS 2005. LNCS, vol. 3829, pp. 211–225. Springer, Heidelberg (2005)

5. Berthomieu, B., Peres, F., Vernadat, F.: Bridging the gap between timed automata
and bounded time petri nets. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006.
LNCS, vol. 4202, pp. 82–97. Springer, Heidelberg (2006)

6. Bruyère, V., Dall’olio, E., Raskin, J.-F.: Durations, parametric model-checking in
timed automata with Pressburger arithmetic. In: Alt, H., Habib, M. (eds.) STACS
2003. LNCS, vol. 2607, pp. 687–698. Springer, Heidelberg (2003)

7. Bruyère, V., Raskin, J.-F.: Real-time model-checking: Parameters everywhere. Log-
ical Methods in Computer Science 3(1:7), 1–30 (2007)

8. Merlin, P., Faber, D.J.: Recoverability of communication protocols. IEEE Trans.
of Communication COM-24(9) (1976)

9. Louis-Marie Traonouez, L.-M., Lime, D., Roux, O.H.: Parametric model-checking of
time petri nets with stopwatches using the state-class graph. In: Cassez, F., Jard, C.
(eds.) FORMATS 2008. LNCS, vol. 5215, pp. 280–294. Springer, Heidelberg (2008)

10. Virbitskaite, I.B., Dedova, A.V.: Towards Parametric Verification of Prioritized
Time Petri Nets, http://www.iis.nsk.su/persons/virb/virbded09.zip

11. Virbitskaite, I.B., Pokozy, E.A.: Parametric behaviour analysis for time Petri nets.
In: Malyshkin, V.E. (ed.) PaCT 1999. LNCS, vol. 1662, pp. 134–140. Springer,
Heidelberg (1999)

12. Wang, F.: Parametric timing analysis for real-time systems. Information and Com-
putation 130, 131–150 (1996)

http://www.iis.nsk.su/persons/virb/virbded09.zip

Software Transactional Memories:
An Approach for Multicore Programming

Damien Imbs and Michel Raynal

IRISA, Université de Rennes 1, 35042 Rennes, France
{damien.imbs,raynal}@irisa.fr

Abstract. The recent advance of multicore architectures and the deployment of
multiprocessors as the mainstream computing platforms have given rise to a new
concurrent programming impetus. Software transactional memories (STM) are
one of the most promising approach to take up this challenge. The aim of a STM
system is to discharge the application programmer from the management of syn-
chronization when he/she has to write multiprocess programs. His/her task is to
decompose his/her program in a set of sequential tasks that access shared objects,
and to decompose each task in atomic units of computation. The management
of the required synchronization is ensured by the associated STM system. This
paper presents two STM systems, and a formal proof for the second one. Such a
proof -that is not trivial- is one of the very first proofs of a STM system. In that
sense, this paper strives to contribute to the establishment of theoretical founda-
tions for STM systems.

Keywords: Concurrent programming, Consistent global state, Consistency con-
dition, Linearizability, Lock, Logical clock, Opacity, Serializability, Shared ob-
ject, Software transactional memory, Transaction.

1 Introduction

The challenging advent of multicore architectures. The speed of light has a limit. When
combined with other physical and architectural demands, this physical constraint places
limits on processor clocks: their speed is no longer rising. Hence, software performance
can no longer be obtained by increasing CPU clock frequencies. To face this new chal-
lenge, (since a few years ago) manufacturers have investigated and are producing what
they call multicore architectures, i.e., architectures in which each chip is made up of
several processors that share a common memory. This constitutes what is called “the
multicore revolution” [6].

The main challenge associated with multicore architectures is “how to exploit their
power?” Of course, the old (classical) “multi-process programming” (multi-threading)
methods are an answer to this question. Basically, these methods provide the program-
mers with the concept of a lock. According to the abstraction level considered, this lock
can be a semaphore object, a monitor object, or the programmer’s favorite synchroniza-
tion object.

Unfortunately, traditional lock-based solutions have inherent drawbacks. On one
side, if the set of data whose accesses are controlled by a single lock is too large

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 26–40, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Software Transactional Memories: An Approach for Multicore Programming 27

(large grain), the parallelism can be drastically reduced. On another side, the solu-
tions where a lock is associated with each datum (fine grain), are error-prone (possible
presence of subtle deadlocks), difficult to design, master and prove correct. In other
words, providing the application programmers with locks is far from being the panacea
when one has to produce correct and efficient multi-process (multi-thread) programs.
Interestingly enough, multicore architectures have (in some sense) rang the revival of
concurrent programming.

The Software Transactional Memory approach. The concept of Software Transactional
Memory (STM) is an answer to the previous challenge. The notion of transactional
memory has first been proposed (fifteen years ago) by Herlihy and Moss to implement
concurrent data structures [7]. It has then been implemented in software by Shavit and
Touitou [15], and has recently gained a great momentum as a promising alternative to
locks in concurrent programming [3,5,12,14].

Transactional memory abstracts the complexity associated with concurrent accesses
to shared data by replacing locking with atomic execution units. In that way, the pro-
grammer has to focus where atomicity is required and not on the way it has to be
realized. The aim of a STM system is consequently to discharge the programmer from
the direct management of synchronization entailed by accesses to concurrent objects.

More generally, STM is a middleware approach that provides the programmers with
the transaction concept (this concept is close but different from the notion of transac-
tions encountered in databases [3]). More precisely, a process is designed as (or de-
composed into) a sequence of transactions, each transaction being a piece of code that,
while accessing any number of shared objects, always appears as being executed atom-
ically. The job of the programmer is only to define the units of computation that are
the transactions. He does not have to worry about the fact that the base objects can be
concurrently accessed by transactions. Except when he defines the beginning and the
end of a transaction, the programmer is not concerned by synchronization. It is the job
of the STM system to ensure that transactions execute as if they were atomic.

Of course, a solution in which a single transaction executes at a time trivially imple-
ments transaction atomicity but is irrelevant from an efficiency point of view. So, a STM
system has to do “its best” to execute as many transactions per time unit as possible.
Similarly to a scheduler, a STM system is an on-line algorithm that does not know the
future. If the STM is not trivial (i.e., it allows several transactions that access the same
objects in a conflicting manner to run concurrently), this intrinsic limitation can direct
it to abort some transactions in order to ensure both transaction atomicity and object
consistency. From a programming point of view, an aborted transaction has no effect
(it is up to the process that issued an aborted transaction to re-issue it or not; usually, a
transaction that is restarted is considered as a new transaction).

Content of the paper. This paper is an introduction to STM systems, with an algorith-
mic and theoretical flavor. It is made up of three main sections. First, Section 2 presents
a consistency condition suited to STM systems (called opacity [4]), and a STM archi-
tecture. Then, each of the two following sections presents a STM system that -in its own
way- ensures the opacity consistency condition. The first (Section 3) is a simplified ver-
sion of the well-known TL2 system [2] that has proved to be particularly efficient on

28 D. Imbs and M. Raynal

meaningful benchmarks. The design of nearly all the STM systems proposed so far has
been driven by efficiency, and nearly none of them has been proved correct. So, to give
a broader view of the STM topic, the second STM system that is presented (Section 4)
is formally proved correct1. Formal proofs are important as they provide STM systems
with solid foundations, and consequently participate in establishing STM systems as a
fundamental approach for concurrent programming [1].

2 A STM Computation Model

2.1 On STM Consistency Conditions

The classical consistency criterion for database transactions is serializability [13]
(sometimes strengthened in “strict serializability”, as implemented when using the 2-
phase locking mechanism). The serializability consistency criterion involves only the
transactions that are committed. Said differently, a transaction that aborts is not pre-
vented from accessing an inconsistent state before aborting. In a STM system, the code
encapsulated in a transaction can be any piece of code (involving shared data), it is not
restricted to predefined patterns. Consequently a transaction always has to operate on
a consistent state. To be more explicit, let us consider the following example where a
transaction contains the statement x← a/(b−c) (where a, b and c are integer data), and
let us assume that b− c is different from 0 in all the consistent states. If the values of b
and c read by a transaction come from different states, it is possible that the transaction
obtains values such as b = c (and b = c defines an inconsistent state). If this occurs, the
transaction raises an exception that has to be handled by the process that invoked the
corresponding transaction2. Such bad behaviors have to be prevented in STM systems:
whatever its fate (commit or abort) a transaction has to always see a consistent state of
the data it accesses. The aborted transactions have to be harmless.

This is what is captured by the opacity consistency condition. Informally suggested
in [2], and then formally introduced and deeply investigated in [4], opacity requires that
no transaction reads values from an inconsistent global state. It is strict serializability
when considering each committed transaction entirely, and an appropriate read prefix
of each aborted transaction.

More precisely, let us associate with each aborted transaction T the read prefix that
contains all its read operations until T aborts (if the abort is entailed by a read, this read
is not included in the prefix). An execution of a set of transactions satisfies the opacity
condition if all the committed transactions and the read prefix of each aborted trans-
action appear as if they have been executed one after the other, this sequential order
being in agreement with their real time occurrence order. A formal definition of opac-
ity appears in [4]. A very general framework for consistency conditions is introduced
in [10], where is also introduced the virtual world consistency condition. A protocol
implementing this general condition is described in [11].

1 The STM system presented in this section has been introduced in [9] without being proved
correct. So, this section validates and complements that paper.

2 Even worse undesirable behaviors can be obtained when reading values from inconsistent
states. This occurs for example when an inconsistent state provides a transaction with values
that generate infinite loops.

Software Transactional Memories: An Approach for Multicore Programming 29

2.2 The STM System Interface

The STM system provides the transactions with four operations denoted beginT (),
X.readT (), X.writeT (), and try to commitT (), where T is a transaction, and X a
shared base object.

– beginT () is invoked by T when it starts. It initializes local control variables.
– X.readT () is invoked by the transaction T to read the base objectX . That operation

returns a value of X or the control value abort. If abort is returned, the invoking
transaction is aborted (in that case, the corresponding read does not belong to the
read prefix associated with T).

– X.writeT (v) is invoked by the transaction T to update X to the new value v. That
operation returns the control value ok or the control value abort. Like in the oper-
ation X.readT (), if abort is returned, the invoking transaction is aborted.

– If a transaction attains its last statement (as defined by the user, which means it has
not been aborted before) it executes the operation try to commitT (). That opera-
tion decides the fate of T by returning commit or abort. (Let us notice, a transac-
tion T that invokes try to commitT () has not been aborted during an invocation of
X.readT ().)

2.3 The Incremental Read/Deferred Update Model

In this transaction system model, each transaction T uses a local working space. When
T invokesX.readT () for the first time, it reads the value of X from the shared memory
and copies it into its local working space. Later X.readT () invocations (if any) use this
copy. So, if T reads X and then Y , these reads are done incrementally, and the state of
the shared memory can have changed in between.

When T invokesX.writeT (v), it writes v into its working space (and does not access
the shared memory). Finally, if T is not aborted while it is executing try to commitT (),
it copies the values written (if any) from its local working space to the shared memory.
(A similar deferred update model is used in some database transaction systems.)

3 A Sketch of TL2 (Transactional Locking 2)

3.1 Aim and Principles

The TL2 STM system [2] aims at reducing the synchronization cost due to the read,
write and validation (i.e., try to commit()) operations. To that end, it associates a lock
with each data object and uses a logical global clock (integer) that is read by all the
transactions and increased by each writing transaction that commits. This global clock
is basically used to validate the consistency of the state of the data objects a transaction
is working on. The TL2 protocol is particularly efficient when there are few conflicts
between concurrent transactions. (Two transactions conflict if they concurrently access
the same object and one access is a write).

TL2 ensures the opacity property. The performance study depicted in [2] (based
on a red-black tree benchmark) shows that TL2 is pretty efficient. It has nevertheless
scenarios in which a transaction is directed to abort despite the fact that it has read

30 D. Imbs and M. Raynal

values from a consistent state (these scenarios depend on the value of the global clock.
They can occur when, despite the fact that all the values read by a transaction T are
mutually consistent, one of them has been written by a transaction concurrent with T).

3.2 A Simplified Version of TL2

A very schematic description of the operations beginT (), X.readT (), X.writeT (v) and
try to commitT () used in TL2 [2] is given in Figure 1 for an update transaction. As
indicated previously, the protocols implementing these operations are based on a global
(logical) clock and a lock per object.

The global clock, denoted CLOCK , is increased (atomic Fetch&Increment() op-
eration) each time an update transaction T invokes try to commitT () (line 11). More-
over, when a transaction starts it invokes the additional operation beginT () to obtain a
birthdate (defined as the current value of the clock).

At the implementation level, an object X is made up of two fields: a data field
X.value containing the current value of the object, and a control field X.date con-
taining the date at which that value was created (line 12 of try to commitT ()). A lock
is associated with each object.

The case of an update transaction. Each transaction T manages a local read set lrsT ,
and a local write set lwsT . As far as a X.readT () is concerned we have the following.
If, previously, a local copy lcx of the object X has been created by an invocation of
X.writeT (v) issued by the same transaction, its value is returned (lines 01-02). Other-
wise, X is read from the shared memory, and X’s id is added to the local read set lrsT
(line 03). Finally, if the date associated with the current value of X is greater than the
birthdate of T , the transaction is aborted (line 04). (This is because, T has possibly read
other values that are no longer consistent with the value of X just obtained.) If the date
associated with the current value of X is not greater than the birthdate of T , that value
is returned by the X.readT () operation. (In that case, the value read is consistent with
the values previously read by T .)

The operationX.writeT (v) in TL2 and the one in the proposed protocol are similar.
If there is no local copy of X , one is created and its value field is set to v. The local
write set lwsT is also updated to remember that X has been written by T . The lifetime
of the local copy lcx ofX created by aX.writeT (v) operation spans the duration of the
transaction T .

When a transaction T invokes try to commitT () it first locks all the objects in
lrsT ∪ lwsT . Then, T checks if the current values of the objects X it has read are
still mutually consistent, and consistent with respect to the new values it has (locally)
written. This is done by comparing the current date X.date of each object X that has
been read to the birthdate of T . If one of these dates is greater than its birthdate, there is
a possible inconsistency and consequently T is aborted (line 11). Otherwise, T can be
committed. Before being committed (line 14), T has to set the objects it has written to
their new values (line 13). Their control part has also to be updated: they are set to the
last clock value obtained by T (line 12). Finally, T releases the locks and commits.

Remark. This presentation of the try to commitT () operation of TL2 does not take
into account all of its aspects. As an example, if at line 09, all the locks cannot be

Software Transactional Memories: An Approach for Multicore Programming 31

operation beginT (): birthdate ← CLOCK .
==
operation X.readT ():
(01) if (there is a local copy lcx of X)
(02) then return (lcx.value) % the local copy lcx was created by a write of X %
(03) else lcx ← copy of X read from the shared memory; lrsT ← lrsT ∪ {X};
(04) if lcx.date > birthdate then return (abort) else return (lcx.value) end if
(05) end if.
==
operation X.writeT (v):
(06) if (there is no local copy of X) then allocate local space lcx for a copy end if;
(07) lcx.value ← v; lwsT ← lwsT ∪ {X};
(08) return (ok).
==
operation try to commitT ():
(09) lock all the objects in (lrsT ∪ lwsT);
(10) for each X ∈ lrsT do % the date of X is read from the shared memory %
(11) if X.date > birthdate then release all the locks; return (abort) end if end for;
(12) commit date ← Fetch&Increment(CLOCK);
(13) for each X ∈ lwsT do X ← (lcx.value, commit date) end for;
(14) release all the locks; return (commit).

Fig. 1. TL2 algorithm for an update transaction

immediately obtained, TL2 can abort the transaction (and restart it later). This can allow
for more efficient behaviors. Moreover, the lock of an object is used to contain its date
value (this allows for more efficient read operations.)

The Case of a read only transaction. Such a transaction T does not modify the shared
objects. The code of its X.readT () and try to commitT () operations can be simplified.
This is left as an exercise for the reader.

4 A Window-Based STM System

This STM system has been proposed in [9] where is introduced the notion of �obligation
property. It is called window-based because a logical time window is associated with
each transaction, and a transaction has to be aborted when its window becomes empty.
The opacity property does not prevent a STM system from aborting all the transactions.
An obligation property states circumstances in which a STM system must commit a
transaction T . Two obligation properties are defined in [9], and the aim of the system
described in [9] is to satisfy both opacity and these obligation properties.

4.1 The STM Control Variables

The object fields, the object locks, the logical global clock, the local sets lrsT and lwsT

have the same meaning as in TL2. The following additional (shared or local) control
variables are also used:

32 D. Imbs and M. Raynal

– A set RSX per base object X . This set, initialized to ∅, contains the ids of the
transactions that have read X since the last update of X . A transaction adds its id
to RSX to indicate a possible read/write conflict.

– A control variable MAX DATET , initialized to +∞, is associated with each trans-
action T . It keeps the smallest date at which an object read by T has been overwrit-
ten. That variable allows the transaction T to safely evaluate the abstract property
P2(T). As we will see, we have P2(T) ⇒ (MAX DATET = +∞), and the
STM system will direct T to commit when MAX DATET = +∞.

– read onlyT is a local boolean, initialized to true, that is set to false , if T invokes
a X.writeT (v) operation.

– min dateT is a local variable containing the greatest date of the objects T has read
so far. Its initial value is 0. Combined with MAX DATET , that variable allows a
safe evaluation of the abstract property P1(T). As we will see, we have P1(T) ⇒
(min dateT ≤ MAX DATET), and the STM system will not abort a read-only
transaction T if min dateT ≤ MAX DATET .

4.2 The STM Operations

The three operations that constitute the STM system X.readT (), X.writeT (v), and
try to commitT (), are described in Figure 2. As in a lot of other protocols (e.g., STM
or discrete event simulation), the underlying idea is to associate a time window, namely
[min dateT ,MAX DATET], with each transaction T . This time window is managed
as follows:

– When a read-only or update transaction T reads a new object (from the shared
memory), it accordingly updates min dateT , and aborts if its time window be-
comes empty. A time window becomes empty when the system is unable to guar-
antee that the values previously read by T and the value it has just obtained belong
to a consistent snapshot.

– When an update transaction T is about to commit, it has two things to do. First,
write into the shared memory the new values of the objects it has updated, and
define their dates as the current clock value. These writes may render inconsistent
the snapshot of a transaction T ′ that has already obtained values and will read a new
object in the future. Hence, in order to prevent such an inconsistency from occurring
(see the previous item), the transaction T sets MAX DATET ′ to the current clock
value if

(
(T ′ ∈ RSX) ∧ (X ∈ lwsT)

)
and (MAX DATET ′ = +∞).

The operation X.readT (). When T invokes X.readT (), it obtains the value of X cur-
rently kept in the local memory if there is one (lines 01 and 07). Otherwise, T first
allocates space in its local memory for a copy of X (line 02), obtains the value of X
from the shared memory and updates RSX accordingly (line 03). The update of RSX

allows T to announce a read/write conflict that will occur with the transactions that will
update X . This line is the only place where read/write conflicts are announced in the
proposed STM algorithm.

Then, T updates its local control variables lrsT and min dateT (line 04) in order
to keep them consistent. Finally, T checks its time window (line 05) to know if its

Software Transactional Memories: An Approach for Multicore Programming 33

snapshot is consistent. If the time window is empty, the value it has just obtained from
the memory can make its current snapshot inconsistent and consequently T aborts.

Remark. Looking into the details, when a transaction T readsX from the shared mem-
ory, a single cause can cause the window predicate (min dateT > MAX DATET)
to be true:min dateT has just been increased, and MAX DATET has been decreased
to a finite value. T is then aborted due to a write/read conflict on X and a read/write
conflict on Y �= X .

operation X.readT ():
(01) if (there is no local copy of X) then
(02) allocate local space lcx for a copy;
(03) lock X; lcx ← X; RSX ← RSX ∪ {T}; unlock X;
(04) lrsT ← lrsT ∪ {X}; min dateT ← max(min dateT , lcx.date);
(05) if (min dateT > MAX DATET) then return(abort) end if
(06) end if;
(07) return (lcx.value).
==
operation X.writeT (v):
(08) read onlyT ← false;
(09) if (there is no local copy of X) then allocate local space lcx for a copy end if;
(10) lcx.value ← v; lwsT ← lwsT ∪ {X};
(11) return (ok).
==
operation try to commitT ():
(12) if (read onlyT)
(13) then return(commit)
(14) else lock all the objects in lrsT ∪ lwsT ;
(15) if (MAX DATET �= +∞) then release all the locks; return(abort) end if;
(16) current time ← CLOCK ;
(17) for each T ′ ∈ (∪X∈lwsT RSX

)
do C&S(MAX DATET ′ , +∞, current time) end for;

(18) commit time ← Fetch&Increment(CLOCK);
(19) for each X ∈ lwsT do X ← (lcx.value, commit time); RSX ← ∅ end for;
(20) release all the locks; return(commit)
(21) end if.

Fig. 2. A window-based STM system

The operationX.writeT (). The text of the algorithm implementingX.writeT () is very
simple. The transaction first sets a flag to record that it is not a read-only transaction
(line 08). If there is no local copy of X , corresponding space is allocated in the local
memory (line 09); let us remark that this does not entail a read of X from the shared
memory. Finally, T updates the local copy of X , and records in lrwT that it has lo-
cally written the copy of X (line 10). It is important to notice that an invocation of
X.writeT () is purely local: it involves no access to the shared memory, and cannot
entail an immediate abort of the corresponding transaction.

34 D. Imbs and M. Raynal

The operation try to commitT (). This operation works as follows. If the invoking
transaction is a read-only transaction, it is committed (lines 12-13). So, a read-only
transaction can abort only during the invocation of a X.readT () operation (line 05).

If the transaction T is an update transaction, try to commitT () first locks all the
objects accessed by T (line 14). (In order to prevent deadlocks, it is assumed that these
objects are locked according to a predefined total order, e.g., their identity order.) Then,
T checks if MAX DATET �= +∞. If this is the case, there is a read/write conflict:
T has read an object that since then has been overwritten. Consequently, there is no
guarantee for the current snapshot of T (that is consistent) and the write operations of
T to appear as being atomic. T consequently aborts (after having released all the locks
it has previously acquired, line 15).

If the predicate MAX DATET = +∞ is true, T will necessarily commit. But, be-
fore releasing the locks and committing (line 20), T has to (1) write in the shared mem-
ory the new values of the objects with their new dates (lines 18-19), and (2) update the
control variables to indicate possible (read/write with read in the past, or write/read with
read in the future) conflicts due to the objects it has written. As indicated at the begin-
ning of this section, (1) read/write conflicts are managed by setting MAX DATET ′ to
the current clock value for all the transactions T ′ such that

(
(T ′ ∈ RSX)∧(X ∈ lwsT)

)
(lines 16-17), and consequently RSX is reset to ∅ (line 19), while (2) write/read con-
flicts on an object X are managed by setting the date of X to the commit time of T .

As two transactionsT 1 and T 2 can simultaneously find MAX DATET ′ = +∞ and
try to change its value, the modification of MAX DATET ′ is controlled by an atomic
compare&swap operation (denoted C&S(), line 17).

4.3 Formal Framework to Prove the Opacity Property

Events at the shared memory level. Each transaction generates events defined as
follows.

– Begin and end events. The event denoted BT is associated with the beginning of
the transaction T , while the event ET is associated with its termination. ET can be
of two types, namelyAT and CT , where AT is the event “abort of T ”, while CT is
the event “commit of T ”.

– Read events. The event denoted rT (X)v is associated with the atomic read of X
(from the shared memory) issued by the transaction T . The value v denotes the
value returned by the read. If the value v is irrelevant rT (X)v is abbreviated rT (X).

– Write events. The event denotedwT (X)v is associated with the atomic write of the
value v in the shared object X (in the shared memory). If the value v is irrelevant
wT (X)v is abbreviated wT (X). Without loss of generality we assume that no two
writes on the same object X write the same value. We also assume that all the
objects are initially written by a fictitious transaction.

History at the shared memory level. Given an execution, let H be the set of all the
(begin, end, read and write) events generated by the transactions. As the events corre-
spond to atomic operations, they can be totally ordered. It follows that, at the shared
memory level, an execution can be represented by the pair Ĥ = (H,<H) where <H

Software Transactional Memories: An Approach for Multicore Programming 35

denotes the total ordering on its events. Ĥ is called a shared memory history. As <H

is a total order, it is possible to associate a unique “date” with each event in H . (In the
following an event is sometimes used to denote its date.)

History at the transaction level. Let TR be the set of transactions issued during an
execution. Let→TR be the order relation defined on the transactions of TR as follows:
T 1 →TR T 2 if ET1 <H BT2 (T 1 has terminated before T 2 starts). If T 1 �→TR

T 2 ∧ T 2 �→TR T 1, we say that T 1 and T 2 are concurrent (their executions overlap
in time). At the transaction level, that execution is defined by the partial order T̂R =
(TR,→TR), that is called a transaction level history or a transaction run.

Sequential, equivalent and linearizable histories. A transaction history ŜT = (ST ,
→ST) is sequential if no two of its transactions are concurrent. Hence, in a sequential
history, T 1 �→ST T 2 ⇔ T 2 →ST T 1, thus →ST is a total order. A sequential transac-
tion history is legal if each of its read operations returns the value of the last write on
the same object.

A sequential transaction history ŜT is equivalent to a transaction history T̂R if (1)
ST = TR (i.e., they are made of the same transactions (same values read and written)
in ŜT and in T̂R), and (2) the total order →ST respects the partial order →TR (i.e.,
→TR⊆→ST).

A transaction history ÂA is linearizable if there exists a history ŜA that is sequential,
legal and equivalent to ÂA [8]. If a transaction history ÂA is linearizable it is possible
to associate a single point of the time line with every transaction, no two transactions
being associated with the same point. This point is called the linearization point of the
corresponding transaction.

Reduced histories. Given a run of transactions T̂R =
(
TR,→TR

)
, let C (resp. A) be

the set of transactions that commit (resp., abort) in that run.
Given T ∈ A, let T ′ = ρ(T) be the transaction built from T as follows (ρ stands

for “reduced”). As T has been aborted, there is a read or a write on a base object that
entailed that abortion. Let prefix (T) be the prefix of T that includes all the read and
write operations on the base objects accessed by T until (but excluding) the read or
write that entailed the abort of T . T ′ = ρ(T) is obtained from prefix(T) by replacing
its write operations on base objects and all the subsequent read operations on these
objects, by corresponding write and read operations on a copy in local memory. The
idea here is that only an appropriate prefix of an aborted transaction is considered: its
write operations on base objects (and the subsequent read operations) are made fictitious
in T ′ = ρ(T).

Finally, let A′ = {T ′ | T ′ = ρ(T) ∧ T ∈ A}, and ρ̂(TR) =
(
ρ(TR),→ρ(TR)

)
where ρ(TR) = C ∪ A′ (i.e., ρ(TR) contains all the transactions of T̂R that commit,
plus ρ(T) for each transaction T ∈ TR that aborts) and→ρ(TR)=→TR. Opacity states
that the transactions in C ∪A′ can be consistently and totally ordered according to their

real-time order, i.e., ρ̂(TR) is linearizable.

Types of conflict. Two operations conflict if both access the same object and one of
these operations is a write. Considering two transactions T 1 and T 2 that access the
same object X , three types of conflict can occur. More specifically:

36 D. Imbs and M. Raynal

– Read/write conflict: conflict(X,RT1,WT2)
def=

(
rT1(X) <H wT2(X)

)
.

– Write/read conflict: conflict(X,WT1, RT2)
def=

(
wT1(X) <H rT2(X)

)
.

– Write/write conflict: conflict(X,WT1,WT2)
def=

(
wT1(X) <H wT2(X)

)
.

The read-from relation. The read-from relation between transactions, denoted →rf , is

defined as follows: T 1 X→rf T 2 if T 2 reads the value that T 1 wrote in the object X .

4.4 A Formal Proof of the Opacity Property

Principle of the proof of the opacity property. According to the algorithms imple-
menting the operationsX.readT () andX.writeT (v) described in Figure 2, we ignore all
the read operations on an object that follow another operation on the same object within
the same transaction, and all the write operations that follow another write operation
on the same object within the same transaction (these are operations local to the memory
of the process that executes them). Building ρ(TR) from TR is then a straightforward
process.

To prove that the protocol described in Figure 2 satisfies the opacity consistency
criterion, we need to prove that, for any transaction history T̂R produced by this proto-

col, there is a sequential legal history ŜT equivalent to ρ̂(TR). This amounts to prove
the following properties (where Ĥ is the shared memory level history generated by the
transaction history T̂R):

1. →ST is a total order,
2. ∀T ∈ TR :

(
T commits⇒ T ∈ ST

)
∧
(
T aborts⇒ ρ(T) ∈ ST

)
,

3. →ρ(TR)⊆→ST ,

4. T1 X→rf T2 ⇒ �T3 such that
(
T1 →ST T3 →ST T2

)
∧
(
wT3 (X) ∈ H

)
,

5. T1 X→rf T2 ⇒ T1 →ST T2 .

Definition of the linearization points. ST is produced by ordering the transactions
according to their linearization points. The linearization point of the transaction T is
denoted �T . The linearization points of the transactions are defined as follows :

– If a transaction T aborts, �T is the time at which its MAX DATET global vari-
able is assigned a finite value by a transaction T ′ (line 17 of the try to commit()
operation of T ′).

– If a read-only transaction T commits, �T is placed at the earliest of (1) the oc-
currence time of the test during its last read operation (line 05 of the X.read()
operation) and (2) the time at which MAX DATET is assigned a finite value by
another transaction. This value is unique and well-defined (this follows from the
invocation of C&S (MAX DATET ′ ,+∞, current time) at line 17).

– If an update transaction T commits, �T is placed at the execution of line 18 by T
(read and increase of the clock).

The total order <H (defined on the events generated by T̂R) can be extended with
these linearization points. Transactions whose linearization points happen at the same
time are ordered arbitrarily.

Software Transactional Memories: An Approach for Multicore Programming 37

Proof of the opacity property. Let T̂R = (TR,→TR) be a transaction history. Let
ŜT = (ρ(TR),→ST) be a history whose transactions are the transactions ρ(TR), and
such that →ST is defined according to the linearization points of each transaction in
ρ(TR). If two transactions have the same linearization point, they are ordered arbi-
trarily. Finally, let us recall that the linearization points can be trivially added to the
sequential history Ĥ = (H,<H) defined on the events generated by the transaction
history T̂R. So, we consider in the following that the set H includes the transaction
linearization points.

Lemma 1. →ST is a total order.

Proof. Trivial from the definition of the linearization points. �

Lemma 2. →ρ(TR)⊆→ST .

Proof. This lemma follows from the fact that, given any transaction T , its linearization
point is placed between its BT and ET events (that define its lifetime). Therefore, if
T 1 →ρ(TR) T 2 (T 1 ends before T 2 begins), then T 1 →ST T 2. �

Let finite(T , t) be the predicate ”at time t, MAX DATET �= +∞”.

Lemma 3. finite(T , t) ⇒ �T <H t.

Proof. The proof of the lemma consists in showing that the linearization point of a
transaction T cannot be after the time at which MAX DATET is assigned a finite
value. There are three cases.

– By construction, if T aborts, its linearization point �T is the time at which the
control variable MAX DATET is assigned a finite value, which proves the lemma.

– If T is read-only and commits, again by construction, its linearization point �T is
placed at the latest at the time at which MAX DATET is assigned a finite value
(if it ever is), which again proves the lemma.

– If T writes and commits, �T is placed during its try to commit() operation, while
T holds the locks of every object that it has read. (If MAX DATET had a finite
value before it acquired all the locks, it would not commit due to line 15.) Let
us notice that MAX DATET can be assigned a finite value only by an update
transaction holding a lock on a base object previously read by T . As T releases the
locks just before committing (line 20), it follows that �T occurs before the time at
which MAX DATET is assigned a finite value, which proves the last case of the
lemma. �

Let rsX (T, t) be the predicate “at time t, T ∈ RSX or MAX DATET �= +∞ ”.
In the following, ALT (X, op) denotes the event associated with the acquisition of

the lock on the object X issued by the transaction T during an invocation of op where
op is X.readT () or try to commitT ().

Similarly, RLT (X, op) denotes the event associated with the release of the lock on
the object X issued by the transaction T during an invocation of op. Let us recall

38 D. Imbs and M. Raynal

that, as <H (the shared memory history) is a total order, each event in H (including
now ALT (X, op) and RLT (X, op)) can be seen as a date of the time line. This “date”
view of a sequential history on events will be used in the following proofs.

Lemma 4. (TW
X→rf TR) ⇒ �T ′

W such that
(
TW →ST T ′

W →ST TR

)
∧
(
wT ′

W
(X) ∈ H

)
.

Proof. The proof is by contradiction. Let us assume that there are transactions TW ,

T ′
W and TR and an object X such that (1) TW

X→rf TR, (2) wT ′
W

(X)v′ ∈ H and (3)
TW →ST T ′

W →ST TR.
As both TW and T ′

W write X (shared memory accesses), they have necessarily
committed (a write in shared memory occurs only at line 19 during the execution of
try to commit(), abbreviated ttc in the following). Moreover, their linearization points
�TW and �T ′

W
occur while they hold the lock onX (before committing), from which we

have the following implications:

TW →ST T ′
W ⇔ �TW <H �T ′

W
,

�TW <H �T ′
W

⇒ RLTW (X, ttc) <H ALT ′
W

(X, ttc),

RLTW (X, ttc) <H ALT ′
W

(X, ttc) ⇒ wTW (X)v <H wT ′
W

(X)v′,(
TW

X→rf TR

)
∧
(
wTW (X)v <H wT ′

W
(X) v′

)
⇒

wTW (X) v <H rTR(X)v <H wT ′
W

(X)v′.

Hence, we have (TW →ST T ′
W) ⇒ (rTR(X)v <H wT ′

W
(X)v′).

On another side, a transaction T that reads an object X always adds its id to RSX

before releasing the lock onX . Therefore, the predicate rsX (T ,RLT (X ,X .readT ()))
is true (a transaction T is removed from RSX only after MAX DATET has been as-
signed a finite value). From this observation and the previous result, we have: rTR(X)v
<H wT ′

W
(X)v′ ∧ rsX (TR,RLTR(X ,X .readTR())) ⇒ rsX (TR,ALT ′

W
(X , ttc)), and

then

(Due to line 17) rsX (TR,ALT ′
W

(X , ttc)) ∧
(
wT ′

W
(X)v′ ∈ H

)
⇒ finite(TR, �T ′

W
),

(Due to Lemma 3) finite(TR, �T ′
W

) ⇒ �TR <H �T ′
W
,

(and finally) �TR <H �T ′
W
⇔ TR →ST T ′

W ,

which proves that, contrarily to the initial assumption, T ′
W cannot precede TR in the

sequential transaction history ŜT . �

Lemma 5. (TW
X→rf TR) ⇒ (TW →ST TR).

Proof. The proof is made up of two parts. First it is shown that (TW
X→rf TR) ⇒

¬finite(TR, �TW), and then it is shown that ¬finite(TR, �TW) ∧ TW
X→rf TR ⇒

(TW →ST TR).

Part 1: Proof of (TW
X→rf TR) ⇒ ¬finite(TR, �TW).

Software Transactional Memories: An Approach for Multicore Programming 39

Let us assume by contradiction that finite(TR, �TW) is true. Due to the atomic
C&S() operation used at line 17, MAX DATETR is assigned a finite value only once.
MAX DATETR will then be strictly smaller than the value of X.date after TW writes

it. The test at line 05 of the X.readT () operation will then fail, leading to ¬(TW
X→rf

TR). Summarizing this reasoning, we have finite(TR, �TW) ⇒ ¬(TW
X→rf TR), whose

contrapositive is what we wanted to prove.

Part 2: Proof of ¬finite(TR, �TW) ∧ TW
X→rf TR ⇒ (TW →ST TR).

As defined earlier, the linearization point �TR depends on the fact that TR commits or
aborts, and is a read-only or update transaction. The proof considers the three possible
cases.

– If TR is an update transaction that commits, its linearization point �TR occurs after
its invocation of try to commit(). Due to this observation, the fact that TW releases

its locks after its linearization point, and TW
X→rf TR, we have �TW <H �TR , i.e.,

TW →ST TR.
– If TR is a (read-only or update) transaction that aborts, its linearization point �TR is

the time at which MAX DATETR is assigned a finite value. Because TW
X→rf TR

we have ¬finite(TR, �TW). Moreover, due to ¬finite(TR, �TW) and the fact that

TR aborts, we have �TW <H �TR , i.e., TW →ST TR. It follows that TW
X→rf

TR ⇒ TW →ST TR.
– If TR is a read-only transaction that commits, its linearization point �TR is placed

either at the time at which MAX DATETR is assigned a finite value (then the case
is the same as a transaction that aborts, see before), or at the time of the test during
its last read operation (line 05). In the latter case, we have wTW (X)v <H �TW <H

RLTW (X, ttc) <H ALTR(X,X.readTR()) <H rTR(X)v <H �TR , from which
we have �TW <H �TR , i.e., TW →ST TR.

Hence, in all cases, we have (TW
X→rf TR) ⇒ (TW →ST TR). �

Theorem 1. Every transaction history produced by the algorithm described in Figure
2 satisfies the opacity consistency property.

Proof. The proof follows from the construction of the set ρ(TR) (Section 4.3, Section
4.4, and text of the algorithm), the definition of the linearization points (Section 4.4),
and the Lemmas 1, 2, 4 and 5. �

5 Conclusion

The aim of this paper was to show that Software Transactional Memory is a novel
promising approach to address multiprocess programming. It discharges the program-
mer from using and managing base synchronization mechanism. The programmer only
has to focus his/her attention (1) on the decomposition of his/her application into pro-
cesses, and, for each process, (2) on its decomposition into atomic units.

40 D. Imbs and M. Raynal

To illustrate these notions, two STM protocols have been presented. Both are based
on a logical global clock, and on locks associated with each shared object. The second
protocol has been proved correct. Such a proof constitutes a step in establishing the
foundations of STM systems.

References

1. Attiya, H.: Needed: Foundations for Transactional Memory. ACM Sigact News, Distributed
Computing Column 39(1), 59–61 (2008)

2. Dice, D., Shalev, O., Shavit, N.: Transactional Locking II. In: Dolev, S. (ed.) DISC 2006.
LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

3. Felber, P., Fetzer, Ch., Guerraoui, R., Harris, T.: Transactions are coming Back, but Are They
The Same? ACM Sigact News, Distributed Computing Column 39(1), 48–58 (2008)

4. Guerraoui, R., Kapałka, M.: On the Correctness of Transactional Memory. In: Proc. 13th
ACM SIGPLAN Symp. on Principles and Practice of Par. Progr. (PPoPP 2008), pp. 175–184
(2008)

5. Harris, T., Cristal, A., Unsal, O.S., Ayguade, E., Gagliardi, F., Smith, B., Valero, M.: Trans-
actional Memory: an Overview. IEEE Micro 27(3), 8–29 (2007)

6. Herlihy, M.P., Luchangco, V.: Distributed Computing and the Multicore Revolution. ACM
SIGACT News 39(1), 62–72 (2008)

7. Herlihy, M.P., Moss, J.E.B.: Transactional Memory: Architectural Support for Lock-
free Data Structures. In: Proc. 20th ACM Int’l Symp. on Comp. Arch (ISCA 1993),
pp. 289–300 (1993)

8. Herlihy, M.P., Wing, J.M.: Linearizability: a Correctness Condition for Concurrent Objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

9. Imbs, D., Raynal, M.: Provable STM Properties: Leveraging Clock and Locks to Favor Com-
mit and Early Abort. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.) ICDCN 2009. LNCS,
vol. 5408, pp. 67–78. Springer, Heidelberg (2008)

10. Imbs, D., Raynal, M.: On the Consistency Conditions of Transactional Memories. Tech Re-
port #1917, 23 pages, IRISA, Université de Rennes, France (2009)

11. Imbs, D., Raynal, M.: A versatile STM protocol with invisible read operations that satisfies
the virtual world consistency condition. In: 16th Colloquium on Structural Information and
Communication Complexity (SIROCCO 2009). LNCS. Springer, Heidelberg (2009)

12. Larus, J., Kozyrakis, Ch.: Transactional Memory: Is TM the Answer for Improving Parallel
Programming? Communications of the ACM 51(7), 80–89 (2008)

13. Papadimitriou, Ch.H.: The Serializability of Concurrent Updates. Journal of the ACM 26(4),
631–653 (1979)

14. Raynal, M.: Synchronization is coming back, but is it the same? Keynote Speech. In: IEEE
22nd Int’l Conf. on Advanced Inf. Networking and Applications (AINA 2008), pp. 1–10
(2008)

15. Shavit, N., Touitou, D.: Software Transactional Memory. Distributed Computing 10(2),
99–116 (1997)

Sparse Matrix Operations on Multi-core

Architectures

Carsten Trinitis1, Tilman Küstner1, Josef Weidendorfer1, and Jasmin Smajic2

1 Lehrstuhl für Rechnertechnik und Rechnerorganisation
Institut für Informatik

Technische Universität München, Germany
{Carsten.Trinitis,Tilman.Kuestner,Josef.Weidendorfer}@in.tum.de

2 ABB Corporate Research Center
Baden-Daettwil, Switzerland
Jasmin.Smajic@ch.abb.com

Abstract. This paper compares various contemporary multi-core based
microprocessor architectures with different memory interconnects regard-
ing performance, speedup, and parallel efficiency. Sparse matrix opera-
tions are used as a benchmark application from the area of electrical
engineering. Within this context, thread to core pinnning and cache op-
timization are two important aspects which are investigated in more
detail.

Keywords: Multi-core, pinning, cache optimization, performance opti-
mization, sparse matrices.

1 Introduction

Sparse matrix operations can be among of the most difficult applications in
numerical simulation. Within this research field, an application from electrical
engineering has been analyzed, utilizing various tools developed at Technische
Universität München, namely within the Munich Multicore Initiative (MMI) 1.
An OpenMP [6] based parallel version of the code was investigated with regard
to possible performance improvements using MMI’s tools.

For NDA reasons with the project partner, all simulations were conducted
with synthetic model data.

Within recent years, a trend towards multi-core architectures with currently
four cores for a standard x86 based architecture can be observed. In order to
fully utilize the potential of such machines, applications must be parallelized and
analyzed with regard to runtime, speedup, and parallel efficiency. With multi-
core architectures becoming more and more complex, it is of crucial importance
to compare different hardware architectures with regard to how well they are
suited for the application under investigation. Thus, six contemporary x86 based
architectures have been investigated for a sparse matrix solver. The remainder

1 http://mmi.in.tum.de

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 41–48, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

42 C. Trinitis et al.

of this paper is organized as follows: Section 2 will give a brief introduction to
sparse matrix problems, section 3 gives an overview on the hardware which was
used for benchmarking, and section 4 presents and analyzes runtimes, speedup,
and parallel efficiency obtained on these systems. Section 5 provides an analysis
on the program’s cache behavior, and section 6 concludes and gives an outlook
on future work.

2 Sparse Matrix Operations

Making a sparse matrix application scale is a fairly difficult task. In the case dis-
cussed in this paper, less than one per cent of the entries in the matrix are non-
zero, and distributed according to a pattern given by the electrical engineering
application. This makes it difficult to access the entries in the calculations in a
way that is cache friendly. The first code developed for this particular application
was developed in the mid eighties [8], when the primary focus in the code struc-
ture was to minimize the matrix bandwidth (and thus minimizing the number of
floating point operations), i.e. keep the number of fill-ins to a minimum [2].

To minimize the number of floating point operations, i.e. keep the number
of fill-ins to a minimum (“fill-ins” means additional matrix entries created dur-
ing the Gauss elimination or LDU-factorization that were zero in the original
matrix). While it is still important to avoid unnecessary floating point oper-
ations, memory performance has improved in a much slower pace than CPU-
performance, compared to when the initial code was written for this application.
That means that the number of floating point operations may no longer be the
biggest bottleneck when it comes to application scalability.

This application uses the Markowitz criteria [4] to minimize the number of
fill-ins during the LDU-factorization [8]. It performs a large number of sparse
matrix operations that are totally independent of each other, i.e. it is not the
LDU-operations that have been parallelized - it is the independent calculations
that execute in parallel.

3 Hardware Environment

Comprehensive benchmark tests were carried out on six different systems, with
different hardware architectures. In the list below, the nickname of the system,
followed by the processor type and amount of main memory are given.

– Nehalem – 2×Intel Xeon X5570 (Gainestown, quad-core (8 cores with Hy-
perThreading enabled), 2.93 GHz, 8 MB shared L3 cache, 2×QPI), 12 GB
DDR3 RAM

– Dunnington – 4× Intel Xeon X7460 (Dunnington, hexa-core, 2.66 GHz, 16 MB
shared L3 cache), 1066 MHz FSB, 32 GB DDR2 RAM

– Shanghai – 2×AMD Opteron 2376 (Shanghai, quad-core, 2.41 GHz, 6 MB
shared L3 cache, 2×HyperTransport 3.0), 32 GB DDR3 RAM

Sparse Matrix Operations on Multi-core Architectures 43

Fig. 1. Front Side Bus based system

Fig. 2. NUMA like system

– Barcelona – 2×AMD Opteron 2352 (Barcelona, quad-core, 2.11 GHz, 2 MB
shared L3 cache, 2×HyperTransport 3.0), 16 GB DDR2 RAM

– X4600 – Sun Fire X4600 M2: 8×AMD Opteron 8218 (Santa Rosa, 2.60 GHz,
dual-core, 1 MB L3 cache per core, 3×HyperTransport), 64 GB DDR2 RAM

– Clovertown – 2×Intel Xeon X5355 (Clovertown, quad-core, 2.66 GHz, 4 MB
L2 cache shared across two cores), 1333 MHz FSB, 8 GB DDR2 RAM

As can be seen from this list, the processor architectures comprise the latest Intel
architecture codenamed ”Nehalem” as well the latest AMD processor ”Shang-
hai” and some ”older” processor types by both Intel and AMD.

These systems represent two different architectures:

– A front side bus (FSB) based system, as depicted in figure 1, represented by
the Clovertown and Dunnington systems.

– A NUMA like system, as depicted in figure 2, represented by the Nehalem,
Barcelona, Shanghai, and x4600 systems.

4 Measurements

As reported in previous research work carried out by the Munich Multicore Ini-
tiative at LRR-TUM, thread to core pinning does have a non negligible impact on
parallel program performance on multicore architectures. The optimal pinnning
can vary significantly, depending on the processor, on the overall system archi-
tecture as well as on the cache hierarchy [7], [5]. With the autopin tool developed

44 C. Trinitis et al.

by MMI, thread to core pinning on all available architectures was thoroughly
tested for our sparse matrix operations. To pin a thread to a specific processor
core, autopin makes use of the system call sched_setaffinity. This prevents
threads from moving between cores, which would result in poor cache usage. In
some cases it is desirable to not use all cores on a chip, i.e. in order to avoid
pinning to cores which share the same cache or which are located on the same
chip. For details on cache usage see section 5.

The first set of measurements focused on total program runtime. These were
carried out on all six architectures with eight parallel threads. The pinning order
used here was the optimal pinning order as determined by autopin, i.e. 0, 4,
1, 5, 2, 6, 3, 7, with the core numbers denoting the cores as depicted in
figures 1 and 2. As can be seen from figure 3a, Intel’s Nehalem architecture
shows the best performance, followed by AMD Shanghai and Barcelona. Here,
all available cores were utilized, i.e. one thread was pinned to each core. This also
applies to the Clovertown system. For the Dunnington and X4600 systems (with
24 and 16 available cores, respectively), the optimal pinning for eight threads
was determined with MMI’s autopin tool. This turned out to be using one core
of the dual core chips for the X4600 architecture, and two cores of the hexacore
chips on the Dunnington architecture, such that they do not share a common
L2 cache.

(a) Total time (in seconds) with one
(gray) and eight (black) threads

(b) Speedup with eight threads

Fig. 3. Total time (a) and speedup (b)

Next, parallel efficiency was investigated by determining the speedup factors
on all six architectures with the same pinning. For eight threads, most systems
showed an average speedup of 5.0 to 5.5. The poorest parallel efficiency was
measured on the Clovertown system with a speedup of only 2.6, whereas Dun-
nington system performed best with a speedup of 6.3. This good performance is
attributed to its large 16 MB last-level cache. It must be noted, however, that

Sparse Matrix Operations on Multi-core Architectures 45

only 8 threads were run on a 4 × 6 core system, i.e. one third of the cores was
utilized on each socket, allowing 8MB cache per core. When pinning a thread
to all 24 cores, the efficiency drops down to 16%, which is due to the high
load on the memory link. Hence, it could be found out with autopin that the
application scales optimal on the Dunnington system when utilizing two cores
per socket. Moreover, this also refers to the overall runtime: On the 24-core
Dunnington system, optimal performance (i.e. runtime) was achieved with 8
threads at 2 threads per core. Therefore, it is advisable to investigate the target
architecture an application is supposed to run on with regard to optimal pinning
before utilizing all available cores, as additional cores do not deliver additional
performance in certain cases.

Fig. 4. Total runtime, parallel efficiency, and speedup for Shanghai

Figure 3 depicts the total runtime for one and eight threads as well as the
speedup for eight threads on all six architectures. Figures 4 and 5 compare total
runtime, speedup, and parallel efficiency for the Shanghai and Nehalem systems
in more detail. In these figures, the respective optimal pinning, starting from 1
core, has been used. The pinning order is depicted in the diagrams. Thus, e.g.
for the Shanghai (see fig. 4, 1 thread was pinned to core #0, 2 threads were
pinned to cores #0 and #4, 3 threads to cores #0, #4, and #5, etc. . For these
two latest AMD and Intel systems, parallel efficiency is above 90 per cent for
two cores and above 80 per cent for up to four cores, which is due to the fact
that threads are always pinned to cores in such a way that the available cache
is used optimally.

46 C. Trinitis et al.

Fig. 5. Total runtime, parallel efficiency, and speedup for Nehalem

5 Analysis of Cache Behavior

In addition to the measurements presented in the previous section, the applica-
tion’s cache behavior was analyzed in order to spot further bottlenecks and ob-
tain possible performance improvements. For simulating the application’s cache
usage, the tools Callgrind/KCachegrind [10],[9], which were developed in the
DIME [1] project, and extended by MMI, were used for the investigations. Call-
grind is part of the open-source project Valgrind [3], which consists of tools for
correctness checking and profiling built on a infrastructure for dynamic runtime
instrumentation.

Three test cases were examined:

– A single thread running on a core with 4 MB L2 cache.
– Four threads running on a quad-core processor with 4 MB shared L2 cache

(as on the systems investigated in previous sections).
– Four threads running on a quad core processor with 16 MB shared L2 cache.

The main objective for these test cases was to determine data sharing char-
acteristics of the given OpenMP parallelization. The test cases approximate the
behavior on multi-core architectures with shared last-level caches realistically.
The main difference between reality and the simulations carried out with MMI’s
cache analysis tools is that a shared last-level cache is normally realized as a
third cache level, but this has no impact on the simulation results.

The simulation showed almost exactly the same number of instruction fetches
and data references in all test cases, when aggregated over all threads. This

Sparse Matrix Operations on Multi-core Architectures 47

Table 1. Simulated L2 cache misses

1 thread, 4 MB L2 4 threads, 4 MB L2 4 threads, 16 MB L2

Total 987,490,834 1,380,396,029 57,413,638
airflowb 174,203,730 265,674,181 285,145
lqdflowb 184,610,326 264,806,996 230,186

comes as no surprise as the same input data was used in all cases, but it also
proofs the comparability of the L2 cache misses, which are displayed in table 1.

Taking a look at the first row of the table above denoting the cache misses of
the entire program, it can be noticed that there is a major drop when moving to
larger cache size (i.e. 16MB). This means that this amount of cache is capable
of holding the input data of the examined bus model. This also correlates to
the good performance numbers on the Dunnington system. When moving from
one to four threads sharing the smaller 4 MB cache, the increase in cache misses
is not as tremendous. This is because a considerable amount of data can be
shared across the threads. Also, the data shows that the parallelization does
not increase the total memory space requirement in contrast to the sequential
version. Clearly, shared caches are beneficial for the given application.

Regarding potential performance bottlenecks in the code, the functions
airflowb and lqdflowb were identified as the ones which caused the most cache
misses. In test cases one and two (small L2 cache) these two function contribute
to nearly a quarter (22% to 24%) of all cache misses. In simulations carried out
for 16 MB cache, however, they only account for 5.6% of the total misses.

6 Conclusions and Future Work

Six contemporary multicore architectures were compared with a parallel ref-
erence application for sparse matrix solvers. The application was parallelized
with a shared memory model under OpenMP. Thread to core pinning and cache
otimization were investigated with regard to the application under considera-
tion. The investigations showed, that, depending on the processor architecture
as well as on the memory interconnect, it is not always advisable to utilize all
available core in a system. With regard to cache optimization, is has been shown
that potential bottlenecks can be easily detected with MMI’s simulation tools.

References

1. DiME DFG Project, Web Page,
http://www10.informatik.uni-erlangen.de/Research/Projects/DiME

2. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices.
In: ACM Annual Conference/Annual Meeting, Proceedings of the 24th national
conference, pp. 157–172 (1969)

3. The Valgrind Developers. Valgrind Web Page, http://valgrind.org/

http://www10.informatik.uni-erlangen.de/Research/Projects/DiME
http://valgrind.org/

48 C. Trinitis et al.

4. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford
University Press, Oxford (1986)

5. Klug, T., Ott, M., Weidendorfer, J., Trinitis, C.: autopin - automated optimization
of thread-to-core pinning on multicore system 3 (2008)

6. OpenMP.org. The OpenMP API specification for parallel programming,
http://www.openmp.org/

7. Ott, M., Klug, T., Weidendorfer, J., Trinitis, C.: autopin - automated optimization
of thread-to-core pinning on multicore systems. In: First Workshop on Programma-
bility Issues for Multi-Core Computers (MULTIPROG). Workshop proceedings, 1st
Multiprog workshop, Gothenburg, Sweden (January 2008)

8. Tinney, W.F., Brandwajn, V., Chan, S.M.: Sparse vector methods. IEEE Transac-
tions on Power Apparatus and Systems PAS-104(2) (February 1985)

9. Weidendorfer, J.: KCachegrind Web Page, http://kcachegrind.sourceforge.net/
10. Weidendorfer, J., Kowarschik, M., Trinitis, C.: A tool suite for simulation based

analysis of memory access behavior. In: Bubak, M., van Albada, G.D., Sloot,
P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 440–447. Springer,
Heidelberg (2004)

http://www.openmp.org/
http://kcachegrind.sourceforge.net/

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 49–59, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Multi-granularity Parallel Computing in a
Genome-Scale Molecular Evolution Application

Jesse D. Walters2,4, Thomas B. Bair2, Terry A. Braun1,2,4,5, Todd E. Scheetz1,2,4,5,
John P. Robinson1,4, and Thomas L. Casavant1,2,3,4

1 Center for Bioinformatics and Computational Biology
2 Coordinated Laboratory for Computational Genomics

3 Department of Biomedical Engineering
4 Department of Electrical and Computer Engineering
5 Department of Ophthalmology and Visual Sciences,

University of Iowa, Iowa City, IA 52242 USA
clcg@eng.uiowa.edu

Abstract. Previously [1], we reported a coarse-grained parallel computational
approach to identifying rare molecular evolutionary events often referred to as
horizontal gene transfers. Very high degrees of parallelism (up to 65x speedup
on 4,096 processors) were reported, yet the overall execution time for a realistic
problem size was still on the order of 12 days. With the availability of large
numbers of compute clusters, as well as genomic sequence from more than
2,000 species containing as many as 35,000 genes each, and trillions of se-
quence nucleotides in all, we demonstrated the computational feasibility of a
method to examine "clusters" of genes using phylogenetic tree similarity as a
distance metric. A full serial solution to this problem requires years of CPU
time, yet only makes modest IPC and memory demands; thus, it is an ideal can-
didate for a grid computing approach involving low-cost compute nodes. This
paper now describes a multiple granularity parallelism solution that includes
exploitation of multi-core shared memory nodes to address fine-grained aspects
in the tree-clustering phase of our previous deployment of XenoCluster 1.0. In
addition to benchmarking results that show up to 80% speedup efficiency on 8
CPU cores, we report on the biological accuracy and relevance of our results
compared to a reported set of known xenologs in yeast.

1 Introduction

Historically, evolutionary biological research has proceeded from painstaking taxo-
nomical classification according to the physical characteristics of hundreds of organ-
isms and species. The Human Genome Project and subsequent application of massive
DNA and RNA sequencing capacity has made available rich datasets capable of an-
swering broad evolutionary questions from a molecular point of view. These trillions
of nucleotides of DNA sequence data from thousands of species containing as many
as 35,000 genes each makes it possible to pose biological and biomedical questions
that just a few years ago would have been inconceivable. In our previous paper [1],
we described XenoCluster 1.0 which addressed one such setting known as horizontal

50 J.D. Walters et al.

gene transfer, or jumping genes. In addition, general issues facing the use of heteroge-
neous networks for such problems were addressed. The results of that initial implemen-
tation showed that it was possible to efficiently harness more than 4,096 processors
organized in a heterogeneous grid of modest sized compute clusters to reduce the over-
all computation time of a typical problem setting from more than 2 years to roughly 12
days. This paper extends that initial work to exploit fine-grained shared memory paral-
lelization of previously unparallelized portions of that application which further re-
duces practical execution times by another order of magnitude. We also address the
issue of biological accuracy and relevance of predictions using recently reported

xenologs in S.cerevisiae (budding yeast). kground and Related Work
For the sake of completeness, an abbreviated overview of some background infor-

mation as well as our general discovery method [1] is presented here.

2 Biological Background

Typical genes are transferred through lineages, from one generation to the next within
a species. However, an alternate form of “inheritance” is possible in which genetic
material crosses species boundaries. This form of inheritance is termed horizontal
gene transfer. Our ability to identify patterns of horizontal gene transfer can increase
our understanding of the evolution of species and the structure of the tree of life.

General features of horizontal gene transfer include higher inter-species sequence
similarity between two taxa (species) that are in different clades (branches) of the
consensus tree. To accomplish this, a broad set of species must be sampled. The limit-
ing factors in this process are the availability of sequence for a large number of taxa
and the capability to harness sufficient computational power to identify orthologous
sequences, construct phylogenetic trees for each orthologous set of genes, and then
compare the trees derived from each orthologous set to identify non-evolutionary
inheritance patterns.

2.1 Computational Background

Several operations are necessary to identify horizontal gene transfers, or other anoma-
lous gene inheritance events. First, orthologous sequences must be identified. Next
these sequences must be aligned, and phylogenetic trees created. Finally, the tree
structures must be compared to identify atypical patterns of inheritance.

There are several computational methods for determining orthology. The most
commonly accepted method is based upon a strongly connected graph constructed of
nodes representing genes across species in which each element is more similar to the
others in the set than to genes from outside the set. There are several previously gen-
erated set of orthologs publicly available. These include COG and KOG [2], Or-
thoMCL [3] and EGO [4]. The method employed in our work incorporates sequences
from all organisms available in NCBI’s non-redundant amino acid database (NR) ad
uses a straight-forward reciprocal BLAST criteria.

Phylogenetic analysis allows determination of the most likely pattern of inheritance
of a gene. Programs such as PHYLIP [5] and PAUP [6] are commonly used to

 Multi-granularity Parallel Computing 51

construct phylogenetic trees, based upon an aligned set of orthologous sequences.
High-performance parallel phylogenetic inference has been extensively studied by
Stamatakis in the RAxML-VI-HPC with impressive performance optimizations [7].
Due to its widespread acceptance and usage, we use PHYLIP in our work.

3 Methods and Solution

We now summarize our parallel grid of clusters solution in heterogeneous-latency
networks. The algorithm is divided into 3 major phases:

1. Identification of a maximal set of orthologous genes.
2. Generation of phylogenetic trees resulting from orthologous groups.
3. Clustering of these trees into groups corresponding to genes which show

consistent evolutionary behavior.

In phase 1, it is necessary to identify potential homologous genes for every gene in
the union of a complex set of 1000s of species. This is accomplished by BLASTing
[8] each gene against the set of all known genes in all species, and then performing a
reciprocal BLAST operation to verify that the best hit for each gene hits the original
gene with the highest rank score. This becomes the base set of orthologous gene
groups to be used in phase 2 among which xenologs may be identified. The second
phase involves the sequence trimming and multiple alignment of all members of each
of the orthologous gene groups, followed by the automated generation of a phyloge-
netic tree for each aligned group. The final phase performs an all-pairs distance analy-
sis of phylogenetic trees for all gene groups, and then uses a clustering technique to
identify maximal sets of trees, which represent sets of genes which share a common
evolutionary history. Design details of the procedure outlined above are presented in
our previous paper [1], and are illustrated summarily in Figure 1. The highlights are
repeated here for completeness only.

Ortholog identification was performed using the COE (Computational Orthology
Engine) system, developed at the University of Iowa. COE identifies orthologous
sequence groups using a reciprocal best-alignment strategy. Each mRNA RefSeq [9]
sequence for a base species was BLASTed against NCBI’s non-redundant amino acid
database. For each BLAST result, the top hit of each species was selected, if and only
if it met a stringent quality threshold criterion. If the threshold criterion was met, a
reciprocal BLAST was performed with these top species hits against the RefSeq data-
base [9] to further support the orthology inference.

Text parsing of the BLAST results was performed using custom BioPerl [10]
scripts, and batch scheduling of all BLAST operations in phase 1 was performed
using the Portable Batch System [11].

Once ortholog identification has been performed, the next phase is trimming,
alignment, and phylogenetic tree generation. The trimming of sequences is done using
a custom Perl script. Multiple sequence alignment is accomplished using the well-
established clustalw software [12]. The final step in this phase is the generation of the

52 J.D. Walters et al.

Human
Refseq
mRNAs

Single mRNA
extraction from
database

NR

BLAST vs NR Reciprocal
Criteria Met?

S

Yes

BLAST vs Refseq

No

G

Ortholog not
considered

No

Refseq
Best Hit?

Ortholog
Identified

Ortholog
Sequence
Trimming

Clustalw
Alignment

PHYLIP:
Seqboot

PHYLIP:
Protdist

PHYLIP:
Fitch

PHYLIP:
Consense

Tree Database

UIPTC

Tree Cluster
Database

Tree
Merging

Fig. 1. A detailed flowchart of the XenoCluster approach

phylogenetic trees – the PHYLIP [5] software suite was used to generate each of the
trees. These programs generated the sequence distance matrices and the phylogenetic
trees for each of the bootstrap replicates. Finally, the consense program was run to
obtain the consensus phylogenetic tree based upon the bootstrap replicates.

Finally, the phylogenetic tree clustering was performed from the results of the
PHYLIP software package. This involves two main sub-phases – distance matrix
generation, and clustering. Inter-tree distance was calculated using a modified version
of the TreeRank [13] algorithm. Our adaptation of this algorithm was implemented in
POSIX C with pthread support. Development of this software was done on Fedora 9.0
and Redhat Enterprise machines. The second sub-phase involved clustering, given a
complete distance matrix from every tree to every other tree.

 Multi-granularity Parallel Computing 53

3.1 Grid/Cluster Implementation and Benchmarking Details

Each of the phases described above were implemented in a LINUX environment
(2.2GHz dual Athlon with 2GB RAM running Fedora Redhat 9.0), and benchmark
executions were performed using the largest set of human genes in April of 2005. For
this analysis, and all benchmarks, this consisted of the set of all 20,364 known human
RefSeq mRNA sequences. Runtime estimates for the first phase of the computation,
which involved the COE system, varied significantly with system threshold parame-
ters. The initial iteration of the system yielded an average of 588 cpu seconds per Ref-
Seq mRNA. Variations of the aforementioned match length, alignment score and
e-value thresholds can change the number of reciprocal BLASTs performed and there-
fore the average runtime. Thus, the values reported in Table 1 are an average taken
across the entire set of 20,364 genes. The COE results yielded an average of 12.6
orthologs per human RefSeq mRNA. More relevant to performance, an average of 39
reciprocal BLASTs were performed for each RefSeq mRNA. Thus, approximately
32% of the reciprocal alignments were considered “true” orthologs by our method.

In our previous work [1], we discussed in detail the effects of deployment of
XenoCluster on a large-scale grid of compute clusters. We utilized the figure of 588
seconds to estimate and bound the runtime of the entire dataset through the COE
system. To confirm the accuracy of our execution-time predictive model, 20,364
mRNAs at an average of 588 seconds would yield 3,326 CPU hours of compute-time.

Table 1. Benchmark timings on 20,364 human genes for the component phases of XenoCluster
run with 1 dual CPU node (cluster size 1). Timings taken on a 2.2GHz dual Athlon with 2GB
RAM running Fedora Redhat 9.0.

Phase/component Time (Seconds) # of Iterations Total (Seconds)
Intra Cluster IPC 124 1 124
Inter Cluster IPC 311 1 311
Initial BLAST 301 20,364 6,129,564
Reciprocal BLAST 12 794,196 9,530,352
Sequence Alignment 33 20,364 672,012
PHYLIP tree generation 2,518 20,364 51,276,552
Tree Clustering 1,036,800 1 1,036,800
Total 1,040,099 855,291 68,645,715
Days to completion 794.5106

Wall-clock Time Breakdown N=1 K=1

9% 14%

1%

74%

2% Initial Blast
Reciprocal Blast
Sequence Alignment
PHYLIP
Tree Clustering

54 J.D. Walters et al.

A benchmark was then performed on a 16-node Linux cluster where the observed
execution time was shortened to 207 cluster hours. This was very close to the ex-
pected time of approximately 12 days. Runtimes for PHYLIP were 579 cpu seconds
at 100 bootstrap iterations, while an average of 2,518 cpu seconds was achieved at
500 bootstrap iterations. The tree clustering phase (UIPTC) results were extrapolated
to reveal the estimated overall runtime of the full set of 20,364 genes.

Table 1 summarizes the detailed times (in wall-clock time units of seconds) of 5
computational and 2 communication elements of XenoCluster. Details are provided in
our previous paper. Note that the first four computational elements parallelize cleanly
across all genes. However, in the final phase, the times for tree clustering (UIPTC) do
not show the effects of parallelization.

4 Results and Discussion

In [1] we presented the performance results of the coarse-grained grid-based paralleli-
zation of the approach outlined above. Now we present the results of fine-grained
parallelization of the Tree Clustering (UIPTC) phase, as well as the biological valida-
tion of our method. In our benchmarking results shown above, UIPTC requires ap-
proximately 12.2 days of computational time. While this amounts to only 2% of the
serial execution time as shown in Table 1, this phase now comprises 99% of the best-
case parallel execution time as shown in Table 2.

Table 2. Execution times with a coarse-grained cluster-parallel implementation utilizing K=128
Linux Clusters, and N=32 CPUs/Cluster. A total of 4,096 processors in all for a net speedup
of 65.

Phase/component Time (Seconds) # of Iterations Total (Seconds)
Intra Cluster IPC 124 128 15,872
Inter Cluster IPC 311 32 9,952
Initial BLAST 301 5 1,505
Reciprocal BLAST 12 194 2,328
Sequence Alignment 33 5 165
PHYLIP tree generation 2,518 5 12,590
Tree Clustering 1,036,800 1 1,036,800
Total 1,040,099 242 1,079,212
Days to completion 12.5

The fine-grained parallelization of the UIPTC algorithm was done using the

pthread multi-threading package for Linux 2.4 based kernels [14]. This package
allows for several threads or light-weight processes to share memory but maintain
independent execution paths. The most obvious place to harness multiprocessor capa-
bilities in UIPTC was in the treeSim() function [1]. In this function, (NxN)/2 inde-
pendent comparisons of the trees to one another is performed. These comparisons
were randomly partitioned into sets. Each set is then run in a different thread.

 Multi-granularity Parallel Computing 55

The distribution of work to threads was accomplished by assigning a unique ID to
each thread and providing the total number of threads in the process to each thread.
The ID and number of threads allowed each thread to process a given row I in the NxN
matrix and perform the following operation: mod(I, numThreads) == ID. If this state-
ment was true, the thread takes local responsibility for all the computation in that row.

Table 3 shows the results of parallelization of UIPTC on a set of HP workstations
with dual-core Opteron processors. For small numbers of CPUs, almost linear speedup
is observed. The use of the rudimentary load balancing as mentioned earlier was ade-
quate, and provided threads with desirable computational load. Although excellent
speedup was achieved, most users will be limited to 2 or 4 CPUs per system simply
because most x86 architectures do not scale well above 8 CPUs. Thus, 16 and 32
thread implementations would be unlikely to be efficient without additional message
passing infrastructure [15]. Figure 2 and Table 3 show runtime speedup and efficiency
results for UIPTC with different numbers of threads. Note that efficiency begins to
decrease as the number of CPUs approaches 8. This can be attributed to memory la-
tency and system bus bottlenecks. However, speedup is achieved as one increases the
number of threads from 7 to 8, which means additional speedup could be achieved by
simply using more CPUs. Note that memory usage was less than 10 megabytes and
therefore not a limiting factor, however, memory demand grows at an O(n2) rate,
which means it may be something to consider as datasets grow. Benchmarking was
performed using HP workstation using 4 2.2 GHz Dual Core Opteron Processors. The
benchmarking dataset was the complete yeast tree build described above.

4.1 Biological Validation and Interpretation of Results

Results for the COE phase of the XenoCluster system applied to the S.cerevisiae (yeast)
species yielded on averaged 30 orthologs per yeast RefSeq gene. These orthologs were,
on average, 361 amino acids long. A total of 128,190 orthologs were identified from
4,234 of 7,001 RefSeq genes. The 2,767 genes which did not yield orthologs, were most
likely alternative transcripts which already were represented in the original gene set.
This is a reasonable explanation as it is estimated that S.cerevisiae has approximately
5,000 genes. Of the 4,234 yeast gene ortholog sets identified above, 2,650 trees were
produced from our PHYLIP pipeline. Approximately 2,000 trees were not created be-
cause they lacked the minimum criteria of 5 orthologous species. This criterion was
utilized because trees with less than 5 species may mis-represent an HGT event.

Table 3. UIPTC parallel runtime and efficiency results for 1 through 8 CPUs

Number of CPUs Observed Runtime Theoretical Runtime Efficiency%
1 7434 7434 100
2 3781 3717 98.27818133
3 2548 2478 97.17514124
4 1995 1858.5 92.65536723
5 1699 1486.8 85.72773742
6 1403 1239 86.76351897
7 1227 1062 84.46327684
8 1116 929.25 79.9031477

56 J.D. Walters et al.

Runtime Results

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8

Number of CPUs

Runtime (Minutes)

Efficiency

Fig. 2. UIPTC runtime and efficiency results from Table 3

Several iterations of phylogenetic clustering of the yeast genome were then per-
formed utilizing several different similarity threshold values. These thresholds were
the minimum TreeRank similarity needed to classify a tree in question, into a
tree/gene cluster. Threshold values varied from 60 % up to 97 percent. Figure 3 shows
the number of clusters formed for each of the threshold values used. Most of the clus-
ters remain very small, while one or two large “consensus” clusters represent the
majority of the sequences. For example, for the 95% identity clustering, the 87 result-
ing clusters consisted of 1 cluster of size 2129 trees, and 86 relatively small clusters
consisting of fewer than 5 trees each.

To validate the utility of this approach, a list of 10 independently identified
S.Cerevisiae horizontal gene transfer (HGT) cases were identified from the published
in biological literature [16] and observed in the XenoCluster dataset. Each of the 10
RefSeq identifiers were BLASTed against the latest RefSeq release to identify their
current RefSeq ids. We then examined the position of these genes in the resulting
clustering. The results of this analysis are shown in Table 4. Four of the ten genes
(YFR055W, YMR090W, YOL164W, YJL217W) lacked sufficient homology to other
available species to meet our criteria of 5 species for reciprocal BLAST hits, and thus
could neither be confirmed nor denied as valid xenologs. Of the remaining six, two
were identified as belonging to singleton clusters (i.e., lacked similarity to the phy-
logenetic trees of any other yeast genes) at thresholds of 85% (YDR540C) and 90%
(YJL218W). These two examples provide the strongest evidence of the validity of our
approach. However, the remaining four cases (YPL245W, YKL216W, YNR057C,
and YNR058W) were as yet unaccounted for.

In addition to a percent identity threshold, a secondary clustering criterion was im-
plemented to improve HGT detection. The secondary criterion specifies a minimum
number of trees that must meet the percent identity threshold in order for the tree in

 Multi-granularity Parallel Computing 57

Fig. 3. Tree similarity threshold versus the number of resulting clusters. At very low thresholds,
all genes/trees form a single cluster, while at high thresholds the number of clusters increases,
yet most genes are found to be contained in a small number of relatively large clusters.

Table 4. Validation of Xenocluster using "known" yeast Xenologs [16]. %FS is the percentage
to form a singleton cluster. %JL is the percentage to join the large cluster. #LL is the number of
links to other trees in the largest cluster.

Yeast Gene ID Gene name %FS %JL # LL
YFR055W Hypoth Protein
YMR090W Hypoth Protein
YOL164W BDS1
YJL217W Hypoth Protein
YDR540C Hypoth Protein 85%
YJL218W Hypoth Protein 90%
YPL245W Hypoth Protein 97% 25
YKL216W URA1 97% 12
YNR057C BIO4 97% 7
YNR058W BIO3 97% 1

question to be incorporated into the cluster. Currently, if a single tree-tree comparison
yields a result greater than or equal to the percent identity threshold, the tree in ques-
tion will become part of that cluster. By applying this criteria to the single largest
cluster (the one that represents the canonical structure the tree illustrating the true
evolutionary position of yeast in the tree of life), we are able to distill trees (or genes)

58 J.D. Walters et al.

whose similarity to this dominant structure only consists of links to very few other
members of that cluster. Our hypothesis was that these genes would also be excellent
candidates as the result of GHT events.

With our current clustering results, we have observed several strongly related trees
within the large consensus cluster. These trees may have as many as 1,005 tree-tree
comparisons with other trees in the same cluster that are greater than or equal to the
95% percent identity threshold. However, many of the trees in this large cluster have
only 1 tree-tree comparison that is equal to or greater than the selected percent identity
threshold. By requiring more than a single tree-tree match greater than or equal to the
specified percent identity, we were able to identify clusters that contain only trees that
are strongly related to each other. Figure 4 displays in sorted order, the number of tree-
tree comparisons from the consensus cluster that have greater than or equal to the 95
percent identity threshold. The four documented HGT cases that are in this cluster all
have 25 or fewer tree-tree comparisons that meet the 95% identity threshold. The
strongest of these is YNR058W, which shows 95% similarity to only one other gene in
the large cluster. Thus, of the six known cases of HGT in yeast which have sufficient
orthology information, all are known to be either very unique with respect to the phy-
logenetic tree structure, or to only have weak evidence for similarity to other genes.

0

200

400

600

800

1000

1200

1 134 267 400 533 666 799 932 106511981331 146415971730186319962129

Trees Within Consensus Cluster

M
at

ch
 C

o
u

Fig. 4. Analysis of the number of tree-tree comparisons meeting the similarity criteria specified.
The largest number of connections is a tree with similarity of over 97% to 1,004 other trees.
There are approximately 150 trees with fewer than 25 links to other trees

References

1. Walters, J., Casavant, T., Robinson, J., Bair, T., Braun, T., Scheetz, T.: XenoCluster: A
Grid Computing Approach to Finding Ancient Evolutionary Anomolies. In: Malyshkin,
V.E. (ed.) PaCT 2005. LNCS, vol. 3606, pp. 355–366. Springer, Heidelberg (2005)

2. Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V.,
Krylov, D., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S., Smirnov, S.,
Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J., Natale, D.A.: The COG database: an
updated version includes eukaryotes. BMC Bioinformatics 4(1), 41 (2003)

 Multi-granularity Parallel Computing 59

3. Li, L., Stoeckert Jr., C., Roos, D.S.: OrthoMCL. Identification of Ortholog Groups for Eu-
karyotic Genomes. Genome Res. 13, 2178–2189 (2003)

4. Lee, Y., Sultana, R., Pertea, G., Cho, J., Karamycheva, S., Tsia, J., Parvizi, B., Cheung, F.,
Tonescu, V., White, J., Holt, I., Liang, F., Quackenbush, J.: Cross-referencing eukaryotic
genomes: TIGR orthologous gene alignments (TOGA). Genome Research 12(3), 493–502
(2002)

5. Felsenstein, J.: PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5, 164–166
(1989)

6. Swofford, D.: LPAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods).
Version 4. Sinauer Associates, Sunderland, Massachusetts (2003)

7. Alexandros, S.: RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses
with Thousands of Taxa and Mixed Models. Bioinformatics 22(21), 2688–2690 (2006)

8. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment
search tool. J. Mol. Biol. 15, 403–410 (1990)

9. Pruitt, K.D., Katz, K., Sicotte, H., Maglott, D.R.: Introducing RefSeq and LocusLink: cu-
rated human genome resources at the NCBI. Trends Genet. 16(1), 44–47 (2000)

10. Stajich, J.E., Block, D., Boulez, K., Brenner, S.E., Chervitz, S.A., Dagdigian, C., Fuellen,
G., Gilbert, J.G.R., Korf, I., Lapp, H., Lehvaslaiho, H., Matsalla, C., Mungall, C.J., Os-
borne, B.I., Pocock, M.R., Schattner, P., Senger, M., Stein, L.D., Stupka, E.D., Wilkinson,
M., Birney, E.: The Bioperl Toolkit: Perl modules for the life sciences. Genome Re-
search 12(10), 1611–1618 (2002)

11. PBS Pro, http://www.pbspro.com/
12. Thompson, J.D., Higgins, D.G., Gibson, T.J.: Improving the sensitivity of progressive

multiple sequence alignment through sequence weighting, positions-specific gap penalties
and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

13. Wang, J.T.L., Shan, H., Shasha, D., Piel, W.H.: TreeRank: A Similarity Measure for Near-
est Neighbor Searching in Phylogenetic Databases. In: Proceedings of the 15th Interna-
tional Conference on Scientific and Statistical Database Management (SSDBM 2003),
Cambridge, Massachusetts, pp. 171–180 (2003)

14. Nichols, B., Buttlar, D., Farrell, J.P.: Pthreads Programming A POSIX Standard for Better
Multiprocessing. O’Reilly, Sebastopol (1996)

15. Squyres, J.M., Lumsdaine, A.: A Component Architecture for LAM/MPI. In: Dongarra, J.,
Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003. LNCS, vol. 2840, pp. 379–387.
Springer, Heidelberg (2003)

16. Hall, C., Brachat, S., Dietrich, F.S.: Contribution of horizontal gene transfer to the evolu-
tion of Saccharomyces cerevisiae. Eukaryot Cell. 4(6), 1102–1115 (2005)

Efficient Parallelization of the Preconditioned

Conjugate Gradient Method

Gilbert Accary1, Oleg Bessonov2, Dominique Fougère3,
Konstantin Gavrilov4, Sofiane Meradji3, and Dominique Morvan5

1 Université Saint-Esprit de Kaslik, B.P. 446 Jounieh, Lebanon
2 Institute for Problems in Mechanics of Russian Academy of Sciences,

101, Vernadsky ave., 119526 Moscow, Russia
3 Laboratoire de Modélisation, Mécanique et Procédés Propres, L3M–IMT, La Jetée,

Technopôle de Château-Gombert, 13451 Marseille Cedex 20, France
4 Perm State University, 15, Bukirev str., 614990 Perm, Russia

5 Université de la Méditerranée, UNIMECA, 60, rue Joliot Curie,
13453 Marseille Cedex 13, France

gilbertaccary@usek.edu.lb, bess@ipmnet.ru, fougere@l3m.univ-mrs.fr,

gavrilov k@inbox.ru, sofiane@l3m.univ-mrs.fr, dominique.morvan@univmed.fr

Abstract. In this paper we present methods for efficient parallelization
of the solution of pressure Poisson equation arising in 3D CFD forest
fire modeling. The solution procedure employs the Conjugate Gradient
method with implicit Modified ILU (MILU) preconditioner. The basic
idea for parallelizing recursive incomplete-decomposition algorithms is
to use a direct nested twisted approach in combination with a staircase
method. Parallelization of MILU-CG solver is implemented in OpenMP
environment for Non-uniform memory (NuMA) computer systems. Per-
formance results of the parallelized algorithm are presented and analyzed
for different number of processors (up to 16).

1 Introduction

This work is performed in frame of the European integrated fire management
project (Fire Paradox) and is aimed to simulate 3D fire behaviour and effects.
The work is based on the previous experience in 2D simulations [1,2] extended to
3 spatial dimensions. This extension requires deep optimization of the solution
procedure together with taking benefit of parallelization for moderate number of
processors. At the initial stage of the work, this parallelization was implemented
for the basic algorithm, resulting in fully functional code covering several phys-
ical mechanisms [3,4]. Efficient parallelization of the initial numerical code was
possible because of the ”explicit” nature of most numerical procedures including
the Conjugate Gradient (CG) solver for pressure Poisson equation.

However, the original CG method [5,6] is expensive and consumes a lot of
computing power (up to 50-70% of total processor time). The main reason of
it is that CG has the same explicit nature and propagates information through
the computational domain very slow, one grid point per iteration. In order to

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 60–72, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Efficient Parallelization of the Preconditioned Conjugate Gradient Method 61

accelerate this method, a preconditioning procedure must be employed. Unfor-
tunately, if such a procedure belongs to the explicit class, it can’t accelerate the
convergence substantially. Because of this, procedures of the implicit class must
be introduces, such as the Incomplete LU-decomposition (ILU) method [6,7].

ILU-preconditioners have proved to be very efficient in solving symmetric
positive-definite linear systems by CG. However, the property of fast propaga-
tion of information greatly complicates parallelization of these algorithms. Gen-
erally speaking, there is no universal and efficient method for parallelizing ILU,
taking into account the sparse nature of a matrix. As a consequence, researchers
have to develop some modifications of the method. One well-known approach is
the class of domain decomposition methods [7], where the solution of the orig-
inal global linear system for preconditioning is replaced with the independent
solutions of smaller (local) systems within subdomains, with further coupling of
partial results. Despite being very popular, this approach is not enough efficient
because it makes the convergence slower (or even impossible at all).

Therefore, it is desirable to keep the basic idea of ILU and look for a direct
method of parallelization of LU-decomposition. In order to achieve this goal, it
is necessary to find all sorts of parallelization potential of the method. For some
classes of numerical problems, this potential can be revealed from their geometric
properties. For example, in case of one-dimensional discretization, the resulting
tridiagonal linear system can be solved by the ”twisted factorization” method
which is easily parallelizable for 2 processors. For Cartesian grid in 3 dimensions,
this method can be generalized with increasing the parallelization potential to
8 processors. The new method is known as ”nested twisted factorization” [8].

In order to extend parallelization to 16 processors or more, we can use another
approach, the ”staircase method” [9] (also called ”pipeline parallelization” [10]).
Being not very efficient as a main parallelization method (see [11]), it can be
used as a supplement to the basic approach (e.g. for doubling the number of
processors used).

In the current work we utilize both above approaches: nested twisted factor-
ization for parallelizing up to 8 processors, and, additionally, staircase extension
for 16 processors.

Another point to analyze is the derivation of the Modified ILU (MILU) pre-
conditioning [12]. The MILU preconditioner works much better than the original
ILU (in terms of convergence rate) because it approximates the inverse of a ma-
trix much more accurately. Usually, the MILU preconditioner is considered as a
modification of the ILU by so-called ”diagonal compensation”, without looking
at the quantitative effect of this compensation and without estimating approxi-
mation errors. In order to be able to derive a MILU-class preconditioner that is
suitable for efficient parallelization it is necessary to carry out such analysis.

Thereby, in this paper we will describe the numerical method and general
parallelization approach for NuMA computers in frame of OpenMP environment,
then derive and analyze a MILU-class preconditioner, and present methods for
parallelizing the MILU-CG solver for 8 and 16 processors. At the end, we will
evaluate and discuss parallel performance of the new method.

62 G. Accary et al.

2 Numerical Method and Main Parallelization Approach

We consider Newtonian fluid flow governed by non-stationary Navier-Stokes
equations in Boussinesq and Low Mach approximations. The set of equations
consists of the continuity equation, the momentum equations in three spatial
dimensions (i = 1, 2, 3) and the equations for energy and turbulent quantities:

∂

∂t
(ρφ) +

∂

∂xi
(ρφui) =

∂

∂xi

(
Γ

(
∂φ

∂xi

))
+ Sφ with φ = 1, u1, u2, u3, T, k, ε

where φ represents the transported variable; ρ and ui are respectively the local
density and the i-th component of velocity; Γ – the effective diffusion coefficient;
Sφ – the source term for the corresponding variable.

The Finite Volume discretization is applied to the non-uniform Cartesian
staggered grid. The transport equations are solved by a fully implicit segregated
method based on the SIMPLE-class algorithm. The non-symmetric linear sys-
tems obtained from the discretized equations are solved by the BiCGStab itera-
tive method, while the symmetric linear system of the pressure Poisson equation
is solved by the Conjugate Gradient method (CG). The code is applicable for
simulation of flows in rectangular domains.

Parallelization of the algorithm is performed in frame of the OpenMP environ-
ment [13]. Generally, the OpenMP extension to a high level language (Fortran)
is very simple and complements this language by several comment-like directives
which instruct a compiler how to perform parallelization. The most important
directive is ”PARALLEL DO” which is usually applied to an outermost ”do”
statement (Fig. 1, left). In accordance with the number of processors, iterations
of this loop are evenly distributed between threads of a program for execution in
different processors. This corresponds to the geometric splitting of a processed
array into sub-arrays by the last spatial dimension (Fig. 1, right).

The OpenMP parallelization model is very convenient for ”true” shared-
memory computers with uniform memory, because in this case it is possible
to split a multidimensional computational domain by any spatial direction. For

0 1 2 3
processors

k

j i

Fig. 1. Example of ”PARALLEL DO” directive (left); geometric splitting of a data
array by this directive (right)

Efficient Parallelization of the Preconditioned Conjugate Gradient Method 63

systems with Non-uniform memory (NuMA), only splitting by the last direction
ensures that necessary portions of data are fully located within the corresponding
processor node’s memory. In order to avoid remote memory accesses, algorithms
must be rearranged. Some sorts of algorithms (e.g. ”implicit”, with recursive
dependences in all spatial directions) can’t be parallelized easily and efficiently
within the OpenMP model. On the other hand, ”explicit” algorithms that pass
sequentially through data arrays and use small local data access patterns (sten-
cils), may benefit from this model. Accesses to remote memory occur only within
boundaries between subdomains in this case.

One-dimensional splitting of multidimensional arrays imposes another limita-
tion on the OpenMP model for NuMA computers: subdomains may become too
“narrow” in this dimension, and, as a result, accesses to remote memory through
boundaries become frequent enough. Also, the last dimension may become not
divisible by the number of processors that results in a bad load balance. These
limitations restrict the degree of efficient parallelization by moderate number of
processors (typically 8–16).

Parallelization method of the basic algorithms is described in details in [3].

3 Analysis of Implicit Preconditioners

The original (non-preconditioned) Conjugate Gradient method [5,6] of the so-
lution of a linear system Ax = b is very simple for implementation and can be
easily parallelized. However, because of the explicit nature, it has low conver-
gence rate and requires about O(N) iterations, where N is the dimension of the
problem in one spatial direction.

Because of this, the CG method is usually applied to the preconditioned linear
system (M−1A)x = M−1b whereM is a symmetric positive-definite matrix that
is ”close” to the main matrix A (which is also symmetric and positive-definite).
To be more accurate, a system to be solved looks as (L−1AL−T)x∗ = L−1b
where LL−1 = M , but in the preconditioned CG algorithm only computations
of the sort x = M−1z or Mx = z are needed [5,6,14].

Preconditioning works well if the condition number of the matrix L−1AL−T

is much less than that of the original matrix A. The simplest way to reduce
this condition number and accelerate the convergence is to apply an ”explicit”
preconditioner (B = M−1) than doesn’t require the inversion of M (i.e. x = Bz
is to be computed).

A good example of this sort is the polynomial Jacobi preconditioner that is
based on a truncated series of the approximation 1/(1− a) = 1 + a+ a2 + . . .

B = M−1 =
n∑

k=0

(Hk)P−1 where P = diag(A), H = P−1(P −A) = I − P−1A

For n = 0, this expression degenerates to the diagonal preconditionerB = P−1

which is normally not considered as a true preconditioner because of its simplic-
ity. For n = 1, the Jacobi preconditioner looks as B = (I+(I−P−1A))P−1 and

64 G. Accary et al.

improves acceleration rate by two times (with some increase of computational
complexity). This exactly corresponds to the expansion of the computational
stencil of one iteration of the algorithm. Therefore, it can be easily applied and
parallelized. On the other hand, variants of Jacobi preconditioner with n = 2 or
n = 3 happen to be not effective (acceleration is improved by less than 3 or 4
times, respectively) and are therefore rejected.

Unfortunately, neither sort of the simple explicit preconditioner can improve
the convergence radically. For this reason, it is absolutely necessary to design a
preconditioner of implicit sort.

Looking at the Incomplete LU (ILU) class of preconditioners, let us first con-
sider basic criteria for its selection:

– Preconditioner matrix M must be chosen ”close” to the main matrix A
in such a way that the approximation error ε = ||Mx − Ax|| would be
sufficiently small (for typical values of the solution vector x).

– Matrix M must be suitable for decomposition into factors (e.g. M = LU)
and these factors must be invertable with low computational cost, i.e. must
allow economical solution of auxiliary linear systems Ly = z and Ux = y.

– Solution of these auxiliary systems must be subject to efficient parallelization
(and decomposition of the matrix M also, if possible).

Let us now reformulate the concept of ”incomplete (approximate) decompo-
sition of the original matrix A” as ”exact decomposition of the approximating
matrix M”. With this new formulation, we will need to find such factors L and
U (where M = LU) that difference between matrices A and M is minimized,
provided that these factors are easy to invert.

The most popular decomposition for ILU is splitting an approximation of the
symmetric sparse matrix A by lower triangular factor L and upper triangular
factor U = LT. In this case, the product M = LLT will reproduce mainly the
sparsity pattern of A, generating additionally some fill-in. For 7-diagonal Poisson
matrix in 3D we will have 6 parasitic diagonals. Influence of these parasitic
diagonals must be compensated by some way.

Further consideration will be carried out for 2-dimensional case (extension to
3D is straightforward). Multiplying together 3-diagonal triangular factors L and
LT, we obtain a 7-diagonal matrix M with 2 parasitic diagonals (Fig. 2). If we
depict stencils of all three matrices, we will see that the stencil of the product
matrix M has acquired two new nodes SE and NW corresponding to the lower
and upper parasitic diagonals. In terms of the computational grid, these nodes
correspond to grid points (i+1,j-1) and (i-1,j+1), respectively (where the
polar node P corresponds to (i,j)).

If the solution vector x is sufficiently smooth, we can approximate values in
the nodes SE and NW by different ways (estimating the approximation error in
each case).

1. Neglect: xSE = 0, xNW = 0 (ε = ||Mx−Ax|| = O(h0)). This is the original
unmodified ILU (DILU). Its convergence properties are not good, they are at the
same level as that of the explicit preconditioners (O(N) iterations are required).
For this reason, DILU normally is not used for finding smooth solutions.

Efficient Parallelization of the Preconditioned Conjugate Gradient Method 65

P

N

S

W E

i

j

P

N

S

W E

i

j

P

NW

SE

N

S

W E

i

j

Fig. 2. Illustration of the decomposition L·LT → M (above) and corresponding stencils
of this decomposition (below)

2. Piecewise constant approximation: xSE = xP, xNW = xP (ε = ||Mx−Ax|| =
O(h1)). This is exactly the Modified ILU (MILU) we are looking for. Its con-
vergence properties are much better (O(N

1
2) iterations are required). For this

reason, MILU is widely used.
3. Bilinear interpolation: xSE = xS + xE − xP, xNW = xN + xW − xP (ε =

||Mx−Ax|| = O(h2)). This is similar to the Strongly Implicit Procedure (SIP)
of Stone [15]. This procedure is generally used as a principal iterative method,
rather than as a preconditioner for CG. Unfortunately, this method can’t be
applied as a preconditioner to the classical (symmetric) Conjugate Gradient
because it produces non-symmetric matrix M . However, it can be considered as
an option for non-symmetric solvers of CG family.

Thus we have obtained a quantitative foundation of the Modified ILUmethod.
Usually, the MILU is considered in terms of diagonal compensation [12,6]. The
above formulas for xSE and xNW justify this approach, because approximations of
these values as xP exactly correspond to the application of this compensation to
the main diagonal. It should be noted that in complicated cases it is necessary to
be accurate and attentive when applying this compensation in order to keep the
order of approximation of the matrix M . It seems that researchers sometimes
don’t achieve the expected convergence rate with MILU and conclude that it is
not much better for their problems than the original unmodified ILU.

To perform MILU decomposition and compute its triangular factor L, we
apply the following formula (where brackets indicate the above approximation):

LLTx ≈
[
LLTx

]
approx = Ax

Practically, it is convenient to represent the decomposition as follows:

M = (L +D)D−1(D + LT)

66 G. Accary et al.

where D – main diagonal, and L and LT – non-diagonal elements of triangular
factors. With such decomposition, these non-diagonal elements will be equal to
the non-diagonal elements of the original matrix A (LA and LT

A, respectively),
and it will be necessary to compute only diagonal elements D.

Generally, L and LT in the above form of decomposition don’t have to be
triangular matrices. In order to approximate the matrix A, it is enough if the
following conditions are satisfied:

L ∪ LT = LA ∪ LT
A

L ∩ LT = ∅

In other words, these factors must complement each other in representing non-
diagonal elements of A. For this general form of decomposition, parasitic ele-
ments of the matrix M , as well as new nodes in the matrix stencil, may appear
in different positions.

The general form of incomplete decomposition (that can’t be called ”Lower-
Upper” anymore) may become convenient for constructing matrices of special
form suitable for efficient parallelization. For example, the nested twisted de-
composition (that will be considered in the next section) produces factors and a
product matrix as on Fig. 3 (here represented for 2D case).

Fig. 3. Nested twisted factorization L · LT → M suitable for parallelization

Orientations of new nodes appeared in stencils of product matrices for the
classical LU-decomposition, and for the above nested twisted form, are depicted
on Fig. 4, left. Here, stencils are shown in four quadrants of 2D computational
domain for both cases, at left and at right respectively (all stencils within a
quadrant have the same orientation). We can see that for the classical decom-
position (Fig. 2) all stencils within a domain have the same orientation, while
for the nested twisted form (Fig. 3) there is a symmetry in both (all) spatial
directions. This symmetry may happen to be useful for improving convergence
in some cases. Fig. 4, right, represents convergence history of two methods –
original LU (anisotropic) and nested twisted (symmetric) – for non-smooth grid
100× 100× 100 with strong non-uniformities. Here the symmetric method has
convergence rate about 1.5 times higher than the non-symmetric one.

Efficient Parallelization of the Preconditioned Conjugate Gradient Method 67

i

j

i

j

1

1e-02

1e-04

1e-06

1e-08

1e-10
 0 20 40 60 80 100

non-symmetric MILU
symmetric MILU

Fig. 4. Orientation of stencils of classical (non-symmetric) and nested twisted (sym-
metric) factorization (left); example of convergence of these two factorizations (right)

Table 1 presents the comparison of 3 discussed preconditioners on the solu-
tion of discretized Poisson equation of the size 200 × 200 × 120 (4.8 · 106 grid
points) with accuracy 10−10 on Itanium 2 processor (1.5 GHz, L3-cache 4M). Pre-
sented results confirm acceleration factors in comparison with classical (diagonal-
preconditioning) case: 2 for Jacobi, and about N

1
2 for Modified ILU.

Table 1. Convergence and computational complexity of preconditioners

preconditioner
classical

diagonal

polynomial

Jacobi n=1

MILU with

symmetry

iteration count 346 172 37

processor time (sec) 58.55 38.55 10.81

relative speed 1.00 1.52 5.42

iteration cost (sec) 0.169 0.224 0.292

relative iteration cost 1.00 1.32 1.73

4 Parallelization Method for 8 Processors

Decomposition of the approximating matrix M = (L+D)D−1(D+LT) as well
as solution of auxiliary linear systems (L + D)D−1y = z and (D + LT)x = y
belong to the class of implicit (recursive) algorithms. For this reason a geometric
domain can’t be split into subdomains to perform computations independently in
different processors. Therefore, it is necessary to find such geometric properties
of the algorithm that parallelization would become possible.

The original idea is taken from the twisted factorization of a tridiagonal lin-
ear system, when Gauss elimination is performed from two sides simultaneously
(for a subdiagonal and a superdiagonal, respectively). This idea can be naturally

68 G. Accary et al.

generalized to 2 and 3 dimensions, as follows from the fact that all spatial direc-
tions are symmetric to each other. Owing to this, nested application of twisted
factorization becomes possible. This method is called ”nested twisted” [8] and
is sometimes formulated as ”van der Vorst ordering of a matrix” (see [14]).

The nested twisted factorization method can be used for direct parallelization
of the solution for up to 8 processors (in a Cartesian domain). The computational
scheme of this method is as following. A rectangular parallelepipedic domain is
split into 8 octants by separator planes (Fig. 5). In each octant, Gauss elimina-
tion is performed from the corner in the direction inwards (in all 3 dimensions),
independently in different processors (Fig. 5, left). This sort of Gauss elimina-
tion, as well as the initial decomposition of a matrix (performed once in the
beginning of the routine) corresponds to the matrix splitting depicted on Fig. 3
(as represented for 2D case).

0 1
4 5 1 3

5 7

4 5
6 7

j

k
i

j

k
i

Fig. 5. Parallelization of the nested twisted factorization. Illustration of the method
(left); separator planes (right).

After finishing eliminations in the internal points of octants, they are per-
formed in quadrants of separator planes by the same way (Fig. 5, right). Then,
points on lines of intersection of separator planes are processed, and finally a
solution at the central point is computed. The following backsubstitution is per-
formed in reverse sequence, from the central point in the direction outwards.

The above scheme needs some reorganization of data arrays when imple-
mented on computer systems with non-uniform memory (NuMA). The natural
geometric splitting of arrays by the last spatial direction (Fig. 6, right) is no
more applicable. It would lead to multiple accesses to remote memories, because
such array placement doesn’t correspond to the data access pattern of the algo-
rithm (Fig. 6, left). Accesses to data located within a local memory of another
processor are performed with larger latency and lower data access rate, that
would lead to significant performance degradation.

Besides this, accesses must be organized monotonically, by reading long se-
quences of data with increasing or decreasing addresses. This means that (at
least) first two indices of arrays (i,j) both should be either increased or de-
creased through iterations of the main loop. The reason of this requirement is
that modern processors rely on so-called streaming data prefetch, otherwise data
access rate would be very low.

Efficient Parallelization of the Preconditioned Conjugate Gradient Method 69

0 1
4 5 1 3

5 7

4 5
6 7

j

k
i

0
1
2
3
4
5
6
7

j

k
i

Fig. 6. Parallelization of the nested twisted factorization. Organization of data arrays
(left) in comparison with the natural splitting (right).

As a consequence, all data arrays in the parallelized algorithm must be orga-
nized in such a way, that elements within an octant are numbered from the corner
in the direction inwards. Technically, these data are represented as 4-dimensio-
nal arrays (i,j,k,ij) where the first 3 indices enumerate elements within a
subarray (octant), while the last one indicates the subarray (octant) number
(Fig. 6, left). This placement requires that initial data arrays (that are in the
natural ordering) are copied to the work arrays with the above organization in
the beginning of the routine, and resulting data are copied back in the end.

5 Extension of Parallelization Method for 16 Processors

Parallelization for 16 processors or more needs another approach because the
potential of nested twisted factorization is exhausted. For recursive algorithms
as Gauss elimination, the staircase (or pipeline) method can be employed [9,10].
This method is illustrated on Fig. 7. The method is applied within each octant
in order to additionally parallelize processing for 2 (or more) processors. For the
efficient implementation, a subdomain is split into 2 parts in the direction of
the index j – see, for example, the bottom-left octant (Fig. 7) divided between
processors 0 and 1. Computations in a plane (i,j) for any particular value of k
can’t be performed by processor 1 until they’ve been finished by processor 0.
However they can be fulfilled in a pipelined fashion: processor 1 computes a
layer for some k at the same time when processor 0 computes the next layer
for k+1. This method needs synchronization between processors in a pair: be-
fore starting computations for some k, processor 1 must wait for processor 0
to finish computations in the same layer. At the backsubstitution stage of the
algorithm, computations are performed in reverse order, when processor 0 waits
for processor 1 for synchronization.

Implementation of this method leads to some algorithmic overhead because at
the beginning (for the first value of k) processor 1 is idle waiting for the results
from processor 0, and at the end (for the last value of k) processor 0 is idle after
finishing its work. In order to reduce synchronization expenses, blocking by the
index k can be applied. Currently, the blocking factor it equal to 2.

70 G. Accary et al.

0 1 3 2
8 9 11 10 2 6

10
14

8 9 11 10
12 13 15 14

j

k
i

Fig. 7. Parallelization for 16 processors with the staircase method

The staircase method must be used only in the recursive parts of the algo-
rithm, i.e. in the application of incomplete decomposition. The Conjugate Gra-
dient algorithm itself is not recursive and doesn’t need synchronizations between
processors in pairs.

The above method of parallelization can be used for more than two processors.
In this case the algorithmic scheme will have more ”stairs” and more points of
synchronizations. However, the staircase approach is not widely used alone as a
main parallelization method because of performance limitations (see [11]).

6 Parallelization Results

The results of parallelization efficiency of the new method are presented on Fig. 8.
These results correspond to the solution of discretized Poisson equation of the
size 200× 200× 120 (4.8 · 106 grid points) with accuracy 10−10 on SGI Altix 350
computer system with non-uniform memory organization (NuMA).

 1

 2

 4

 8

 16

 1 2 4 8 16

Fig. 8. Parallelization results

Before commenting these results, we will first describe a computer system
used for development and measurements. SGI Altix 350 system is organized of
two-processor computational nodes interconnected by the special NuMA-link
interfaces through the high-speed switch that provides accesses to non-local

Efficient Parallelization of the Preconditioned Conjugate Gradient Method 71

(remote) memories. Logically, the considered system belongs to the shared-
memory class, when every process may transparently access any memory location
in a system. However, remote accesses are much slower than local ones.

Another point is that two processors within a node share the same memory
and compete for accesses. As a result, total memory access rate achieved by
two processors is not much higher than the rate achieved by one, i.e. common
memory is the main performance limiter for memory-bound applications. The
ILU-preconditioned CG algorithm belongs to this class, and for this reason the
achieved acceleration for 2 processors is rather small, only 1.25. However, if
2-processor run is performed on 2 computational nodes, using one processor in
each node, its acceleration becomes almost optimal and reaches 1.93. This means,
that low results for 2 processors represent the property of a computer system,
rather than that of the parallelization method. On computer systems with higher
memory access limit, it is expected that results would be substantially higher.

For 4 processors, the achieved acceleration (relative to 2 processors) is good
enough, because each pair of processors works with its individual memory and
total memory throughput doubles. For 8 processors, we also have the reasonable
scaling, while for 16 processors we can see negative effects of algorithmic overhead
and non-perfect load balance.

Generally, despite the increased complexity of parallelization of the implicit
incomplete decomposition, parallelization results of the current implementation
are in good correspondence with the results for the basic algorithm [3] which is of
the explicit nature. Owing to the substantial increase of the speed of CG method
(due to the MILU-class preconditioning), as well as to the efficient parallelization,
the relative cost of the solution of Poisson equation within the total processor
time of the problem has decreased sharply and dropped to the insignificant
level.

7 Conclusion

In this work we have developed a parallel method of the solution of pressure
Poisson equation based on the generalized idea of Modified ILU precondition-
ing for the Conjugate Gradient procedure. The new method demonstrates good
parallelization efficiency on multiprocessor systems with non-uniform memory
organization (NuMA) with up to 16 processors. This sort of systems becomes
more and more popular with development and propagation of multi-core micro-
processors. The new generation of quad-core processors, Intel Xeon (Core i7)
and AMD Opteron (K10), will become the main computational device in com-
ing years, with integration of 2- and 4-processors in a single system of the type
NuMA (up to 16-32 processor in total). This sort of computer systems will have
more balanced memory subsystems with much higher data access bound, allow-
ing the above method to achieve better parallel performance and scalability. The
described method can be also implemented in the hybrid MPI/OpenMP environ-
ment for modern clusters built on computing nodes with NuMA organization.

72 G. Accary et al.

Acknowledgements. This work was supported by the European integrated
fire management project (Fire Paradox) under the Sixth Framework Programme
(Work Package WP2.2 ”3D-modelling of fire behaviour and effects”), and partly
by the Programme N15 of the Presidium of the Russian Academy of Sciences.

References

1. Morvan, D., Dupuy, J.L.: Modeling of Fire Spread through a Forest Fuel Bed Using
a Multiphase Formulation. Combust. Flame 127, 1981–1994 (2001)

2. Morvan, D., Dupuy, J.L.: Modeling the Propagation of a Wildfire through a
Mediterranean Shrub Using a Multiphase Formulation. Combust. Flame 138,
199–210 (2004)

3. Accary, G., Bessonov, O., Fougère, D., Meradji, S., Morvan, D.: Optimized Parallel
Approach for 3D Modelling of Forest Fire Behaviour. In: Malyshkin, V.E. (ed.)
PaCT 2007. LNCS, vol. 4671, pp. 96–102. Springer, Heidelberg (2007)

4. Scarella, G., Accary, G., Meradji, S., Morvan, D., Bessonov, O.: Three-Dimensional
Numerical Simulation of the Interaction between Natural Convection and Radia-
tion in a Differentially Heated Cavity in the Low Mach Number Approximation. In:
CHT 2008 International Symposium on Advances in Computational Heat Transfer,
CHT-08-193, Begell House, Inc. (2008)

5. Shewchuk, J.R.: An Introduction to the Conjugate Gradient Method without
the Agonizing Pain. School of Computer Science, Carnegie Mellon University,
Pittsburgh (1994)

6. Ortega, J.M.: Introduction to Parallel and Vector Solution of Linear Systems.
Plenum Press, New York (1988)

7. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston
(2000)

8. van der Vorst, H.A.: Large Tridiagonal and Block Tridiagonal Linear Systems on
Vector and Parallel Computers. Par. Comp. 5, 45–54 (1987)

9. Bastian, P., Horton, G.: Parallelization of Robust Multi-Grid Methods:
ILU-Factorization and Frequency Decomposition Method. SIAM J. Stat. Com-
put. 12, 1457–1470 (1991)

10. Elizarova, T., Chetverushkin, B.: Implementation of Multiprocessor Transputer
System for Computer Simulation of Computational Physics Problems (in Russian).
Mathematical Modeling 4(11), 75–100 (1992)

11. Vuik, C., van Nooyen, R.R.P., Wesseling, P.: Parallelism in ILU-Preconditioned
GMRES. Par. Comp. 24, 1927–1946 (1998)

12. Gustafsson, I.: A Class of First Order Factorization Methods. BIT 18, 142–156
(1978)

13. Dagum, L., Menon, R.: OpenMP: An Industry-Standard API for Shared-Memory
Programming. IEEE Computational Science and Engineering 5(1), 46–55 (1998)

14. Benzi, M.: Preconditioning Techniques for Large Linear Systems: A Survey. J. Com-
put. Phys. 182, 418–477 (2002)

15. Stone, H.L.: Iterative Solution of Implicit Approximations of Multidimensional
Partial Differential Equations. SIAM J. Numer. Anal. 5, 530–558 (1968)

Parallel FFT with Eden Skeletons�

Jost Berthold, Mischa Dieterle, Oleg Lobachev, and Rita Loogen

Philipps-Universität Marburg, Fachbereich Mathematik und Informatik
Hans Meerwein Straße, D-35032 Marburg, Germany

{berthold,dieterle,lobachev,loogen}@informatik.uni-marburg.de

Abstract. The paper investigates and compares skeleton-based Eden
implementations of different FFT-algorithms on workstation clusters
with distributed memory. Our experiments show that the basic divide-
and-conquer versions suffer from an inherent input distribution and re-
sult collection problem. Advanced approaches like calculating FFT using
a parallel map-and-transpose skeleton provide more flexibility to over-
come these problems. Assuming a distributed access to input data and
re-organising computation to return results in a distributed way improves
the parallel runtime behaviour.

1 Introduction

The well-known Fourier transform, which describes frequency distribution in a
signal, finds diverse applications from pure mathematical applications to real-life
scenarios such as digital signal processing. Today’s state of the art is the Fast
Fourier Transform (FFT). Cooley and Tukey [4] were the first to propose an FFT
algorithm in 1965 (known as 2-radix FFT) with time complexity O(n logn). A
range of other FFT algorithms have been discovered since then [16].

Developing an efficient parallel distributed-memory implementation of FFT
is a great challenge. The manual of the recent 3.2 alpha release of FFTW1

warns that “distributed-memory parallelism can easily pose an unacceptably
high communications overhead for small problems”. In the broader context
of an implementation for parallel computer algebra algorithms in the paral-
lel Haskell extension Eden [15,13], we investigate parallelisation strategies for
different FFT algorithms. The goal of our work has not been to develop the
fastest distributed-memory FFT, but to investigate a skeleton-based paralleli-
sation of FFT. In Eden, skeletons [3,14,1] are higher-order functions defining
general parallel evaluation schemes. The skeleton approach to parallelisation
cleanly separates problem-related and problem-independent issues. This simpli-
fies the parallelisation of algorithms enormously. In essence, FFT algorithms
are based on divide-and-conquer strategies. In this paper, we utilize skeletons
for two variations of parallel divide-and-conquer evaluations: a distributed ex-
pansion scheme which unfolds the computation tree dynamically and spawns
� Supported by the DFG grant LO 630-3/1.
1 Fastest Fourier Transform in the West,
http://www.fftw.org/fftw-3.2alpha3-doc/

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 73–83, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

74 J. Berthold et al.

parallel processes for the evaluation of sub-trees as long as processor elements
are available, and a flat expansion scheme which unfolds the tree up to a given
depth and evaluates all sub-trees at this depth in parallel. Moreover, we present
a parallel map-and-transpose skeleton for the implementation of more advanced
FFT methods. Our skeletons are applicable to a whole class of algorithms, those
which rely on fixed-branching divide-and-conquer or parallel map-and-transpose
schemes.

We analyse the parallel runtime behaviour of various skeleton/algorithm com-
binations using activity profiles of parallel program executions on networks of
workstations, i. e. distributed-memory parallel machines. In addition, we inves-
tigate their scalability when increasing the number of processor elements.

Plan of Paper. The following two sections elaborate on divide-and-conquer ap-
proaches of parallel FFT (Section 2) and on advanced approaches (Section 3).
In each section, we will describe appropriate skeletons for the parallelisation of
FFT algorithms and an experimental evaluation of the parallelised algorithms.
Section 4 discusses related work, the final section concludes.

2 Divide-and-Conquer FFT

FFT Algorithms. The classic 2-radix FFT algorithm by Cooley and Tukey divides
the input vector xs of length n into two halves, computes their element-wise sum
and difference, and multiplies the latter with powers of an n-th primitive root
of unity, the twiddle factors. The algorithm recursively computes the FFT of
these vectors, and combines the results simply by interleaving them element-
wise. Recursion ends at singleton vectors which are returned unmodified. This
version is called decimation in frequency.

An alternative version, called decimation in time, essentially consists of the
opposite dividing and combining steps. The input vector is split into the sub-
vectors with even and odd indices (inverse to the interleaving step above). After
evaluating the recursive calls of FFT for the sub-vectors, the more complex com-
bination of the result lists follows. The first and second half of the overall result
are defined as element-wise sums and differences including again a multiplication
with the twiddle factors.

Divide-and-Conquer Skeletons. The essence of a divide-and-conquer algorithm
is to decide whether the problem is trivial and, in this case, to solve it, or else
to decompose non-trivial problems into a number of sub-problems, which are
solved recursively, and to combine the output. A general skeleton takes parameter
functions for this functionality, as shown here:
type DivideConquer a b = (a -> Bool) -> (a -> b) -- trivial? / solve

-> (a -> [a]) -> ([b] -> b) -- split / combine

-> a -> b -- problem / result

The resulting structure is a tree of task nodes where child nodes are the sub-
problems, the leaves representing trivial tasks.

Parallel FFT with Eden Skeletons 75

1

2

3

5 7 6

4

8

(a) Binary distributed expansion,
depth 3

1

2 3 8765 94

(b) Binary flat expansion, depth 3

Fig. 1. Divide-and-conquer expansion schemes

A fundamental Eden skeleton which specifies a general divide-and-conquer
algorithm structure can be found in [14]. In [1], we have refined and adapted
this skeleton for fixed branching divide-and-conquer algorithms like FFT. Two
different basic strategies have been used to unfold a process tree. The distributed
expansion scheme creates the process tree in a distributed fashion: One of the tree
branches is processed locally, the others are instantiated as new processes, as long
as processor elements are available. This results in a distributed expansion of the
computation (cf. Fig. 1(a)). Explicit placement of processes is essential to achieve
a balanced distribution of processes on the available processor elements. The
boxes indicate which tree node are evaluated by the same process. The numbers
indicate a possible placement on 8 processor elements (PEs). The corresponding
skeleton has the following interface (type):

dcN :: (Trans a, Trans b) =>

Int -> [Int] -> -- branching degree / processor elements

DivideConquer a b

The Eden type class Trans provides internally used communication functions.
The first two skeleton parameters determine the fixed branching degree of the
underlying divide-and-conquer tree and a list of available processor numbers
used for explicit process placement.

In the flat expansion skeleton, the main process unfolds the divide-and-conquer
tree up to a given depth, usually with more branches than available PEs. The
resulting subtrees are then evaluated by parallel processes, the main process
combines the results of the sub-processes. This results in a homogeneous flat ex-
pansion scheme from a single source depicted in Fig. 1(b) for the binary variant.
A uniform distribution of the subtrees on processors can be achieved using a farm
of worker processes with static or dynamic task distribution. The corresponding
skeleton has the following interface (type):

dcDM_N :: (Trans a, Trans b) =>

Int -> Int -> -- unfolding depth / branching degree

DivideConquer a b

Here the first two skeleton parameters determine the unfolding depth of the
underlying divide-and-conquer tree and the fixed branching degree. A detailed

76 J. Berthold et al.

-- Parallel 2-radix FFT, decimation in time, with input

-- chunking size, instantiates dcN skeleton

fft2radixTime :: Int -> [Complex Double] -> [Complex Double]

fft2radixTime c xs

= chunkDC c chunkL concat

(dcN 2 [2..noPe]) isSingleton id (unshuffle 2) combine2

Fig. 2. Parallelisation by Skeleton Instantiation

explanation of these Eden divide-and-conquer skeletons can be found in [1]. Fig. 2
shows a sample instantiation of the dcN skeleton with branching degree 2 and
explicit process placement on PEs 2 to noPe (the number of available PEs). Input
vectors (lists) are chunked into larger pieces to reduce communication costs.

Experimental Results. The following runtime experiments have been performed
on a local network of 8 Linux workstations with Core 2 Duo processors and 2 GB
RAM connected by Fast Ethernet. The Eden runtime system is instrumented
in such a way that a runtime flag activates a tracing mechanism which pro-
tocols parallelism-related events like process/thread creation/termination, state
changes of machines (i. e. processors), processes and threads, and message send-
ing and receiving. The trace files can then be visualised by the EdenTV tool
(Eden Trace Viewer) [2]. The resulting graphics (see e.g. Figure 3) which are
best viewed in colour are two-dimensional diagrams. The time scale is on the
horizontal axis. The vertical axis shows the machine numbers, on which the pro-
cesses are placed. For each process, there is a coloured horizontal bar, which
shows the process states over time. Green parts (grey) indicate that a thread
is working, red parts (dark grey) indicate that all threads of the process are
blocked, usually because they are waiting for input, or because the processor
is communicating. Yellow areas (light grey) indicate that there are runnable
threads but some system activity like e. g. garbage collection is taking place.
Data transfer, i. e. messages can be optionally indicated as arrows from the
sending to the receiving process.

Our first experiments tested the standard Cooley-Tukey 2-radix FFT algo-
rithm variants decimation in frequency and decimation in time with the dis-
tributed expansion and flat expansion skeletons. Figure 3 shows typical traces
and the runtimes obtained with the following parameters: input size 220 (double
precision complex numbers), chunk size2 1500, recursion depth 4 and heap size
1500MB.

The activity profiles in Figure 3 reveal that the flat expansion skeleton leads
to a much better runtime behaviour than the distributed expansion skeleton.
This is due to the good load balance in the worker processes which start imme-
diately. Note that the skeleton even co-locates one worker process with the main

2 The chunk size is only used by the distributed expansion skeleton to reduce the
number of messages.

Parallel FFT with Eden Skeletons 77

Distributed Expansion Flat Expansion

D
ec

im
a
ti
o
n

in
F
re

q
u
en

cy

Runtime: 24.80 s Runtime: 6.92 s

D
ec

im
a
ti
o
n

in
T

im
e

Runtime: 17.85 s Runtime: 7.78 s

Fig. 3. Traces and runtimes of divide-and-conquer approaches, without/with messages

process on machine 1 (lowest bars). The communication overhead is low — only
80 messages were sent in both versions.

The decimation in frequency flat expansion version was the fastest version
with 6.92 s. This is due to the fact that the post processing in the master can
be done very fast, because combining the results is a trivial shuffle, while the
top level combining phase of the decimation in time version takes almost three
quarters of the overall runtime.

With the flat expansion skeleton, we eliminate the input communication,
i. e. distributing tasks to the worker processes. Each worker receives the whole
unevaluated task specification and evaluates its own part on demand. Contrar-
ily, work distribution is slower with the distributed expansion skeleton because
the main process distributes the tasks to all worker processes. These are initially
blocked waiting for their tasks and start working at different points in time. This
leads to an inhomogeneous runtime behaviour.

3 Advanced Approaches

The parallel divide-and-conquer FFT-implementations show an acceptable per-
formance using few processors, but do not scale well. Therefore we have im-
plemented a more sophisticated algorithm taken from [7] which minimizes data

78 J. Berthold et al.

dependencies and provides more fine grained parallelism. The input vector is
divided into rows of a matrix with side lengths l = 2k. Thus, the input vector is
of length n = l2 = 4k. The algorithm consists of three phases:

1. preprocessing: permutation of input in bit reverse order, tagging input ele-
ments with their position and their segment’s length, split into rows.

2. central processing: local fft3 ◦ a global transpose ◦ local fft3
3. postprocessing: concat and remove tags

The key difference between the ordinary sequential FFT and fft3 is that the
latter operates on triples which contain additional information like a position tag.
It works with global twiddle factors to simulate a contiguous, single-dimensional
FFT algorithm. The divide step is a trivial split of lists. The combine step needs
to be modified using the additional information in the triples. Because of the
permuted input, it is possible to perform FFT locally on the available subsets
of global lists in a global manner. For more details, see [7].

We have derived a skeleton for the central phase of the above scheme which
consists of a composition of parallel maps and an intermediate global communi-
cation to implement the global transpose. The skeleton has been inspired by the
distributable homomorphism skeleton of Gorlatch and Bischof [8]. It can also be
used for the distributed-memory FFT algorithms proposed in [17,10].

The Parallel Map-and-Transpose Skeleton implements the functionality
(parMap f1) ◦ transpose ◦ (parMap f2).

Defining it with this simple function composition is not appropriate, because all
data would be gathered in the main process in between the two parmap phases.
This again would provoke too much communication and process creation over-
head. Our skeleton parMapTranspose includes a distributed transpose phase in be-
tween two parallel map evaluations. The skeleton’s input is a matrix which will be
distributed row cyclic. In our application the functions f1 and f2 will be sequential
fft3 invocations. In order to save the costs of input distribution, the parallel maps
are executed by direct mapping [12] which means that the matrix is not commu-
nicated but transferred unevaluated within the process abstraction’s body. The
child processes will then evaluate the needed parts locally and demand driven.

The Eden code of the skeleton uses the following Eden constructs. The library
function spawn :: (Trans a, Trans b) => [Process a b] -> [a] -> [b] creates a list
of processes from a list of process abstractions and a list of corresponding pro-
cess inputs. A process abstraction is a function that will be evaluated by a pro-
cess. Process is the type constructor for Eden Process abstractions, which are
created by the function process :: (a -> b) -> Process a b. Eden provides the
following functions to dynamically define new input channels for processes. The
Eden function createChans :: Int → ([ChanName a], [a]) creates a list of new (in-
put) channel names. Data (lazily) received via the channels can be accessed in
the second component of the result tuple of createChans. Channel names can be
communicated to other processes which can write into the corresponding chan-
nels with the Eden function multifill :: [ChanName a] → [a] → b → b, which
concurrently passes data via given channels and returns its third argument.

Parallel FFT with Eden Skeletons 79

parMapTranspose :: Int -> ([a] -> [b]) -> ([b] -> [c]) -> [[a]] -> [c]

parMapTranspose np f1 f2 matrix = shuffle res

where

myProcs css = spawn [process (distr2d_f np f1 f2 rows)

| rows <- unshuffle np matrix] css

(res,chanss) = myProcs $ transpose chanss

distr2d_fs :: Int -> ([a] -> [b]) -> ([b] -> [c]) ->

[[a]] -> [ChanName[b]] -> ([[c]],[ChanName [b]])

distr2d_fs np f1 f2 rows theirChanNs

= let (myChanNs, theirFstRes) = createChans np

intermediateRes = map f1 rows

myFstRes = unshuffle np $ transpose intermediateRes

res = map f2 $ shuffleMatrixFracs theirFstRes

in (multifill theirChanNs myFstRes $ res, myChanNs)

-- types of auxiliary functions

-- round robin distribution and combination of list elements

unshuffle :: Int -> [a] -> [[a]]

shuffle :: [[a]] -> [a]

-- combine n matrix fragments into one matrix

shuffleMatrixFracs :: [[[a]]] -> [[a]]

Fig. 4. Parallel map-and-transpose skeleton

The code of the parallel map-and-transpose skeleton parMapTranspose is shown
in Figure 4. The distributed map functionality is easily defined. Let np be the
number of available PEs (processing elements). We divide the matrix rows into
np contiguous blocks using the function unshuffle. At the end the final result is
re-composed using the inverse function shuffle. As many processes as available
PEs are created using the Eden function spawn. Each process applies the function
distr2d fs np f1 f2 to its portion of rows and the lazily communicated input
(a row of css). The latter consists of a list of np channel names which are used to
establish a direct link to all processes: each process can thus send data directly to
each other process3. Each process evaluates the function distr2D fs which firstly
leads to the creation of np input channel names myChanNs for the corresponding
process. These are returned to the parent process in the second component of the
result tuple of distr2d fs. The parent process receives a whole matrix chanss ::

[[ChanName a]] of channel names (np channel names from np processes), which
it transposes before sending them row-wise back to the child processes. Each
process receives thus lazily np channel names theirChanNs for communicating
data to all processes. The parallel transposition can thus occur without sending
data through the parent process.
3 To simplify the specification the channel list even contains a channel which will be

used by the process to transfer data to itself.

80 J. Berthold et al.

Processes per machine view . . . with messages

Fig. 5. Trace of parallel FFT using map-and-transpose skeleton (input size 220, 3.5
seconds on 26 Pentium 4 machines)

After the first map f1 evaluation, a process locally unshuffles the columns of
the result (the locally transposed result rows) into np lists. These are sent via
the received input channels of the other processes using the function multifill.
The input for the second map phase is received via the initially created own input
channels. The column fragments are composed to form rows of the transposed
intermediate result matrix. The second map f2 application produces the final
result of the child processes.

Experimental Results. The following traces and runtime measurements have been
obtained on a Beowulf cluster at Heriot-Watt-University, Edinburgh, which con-
sists of 32 Intel Pentium 4 SMP processors running at 3 GHz with 512 MB
RAM and a Fast Ethernet interconnection. We implemented the FFT version
of Gorlatch and Bischof [7] using our map-and-transpose skeleton. Result col-
lection and post processing (a simple shuffle) have been omitted leaving the
result matrix in a distributed column-wise manner. A runtime trace, again for
input size 410, is depicted in Figure 5. The communication provoked by the
distributed transpose phase overlaps the second computation phase, such that
stream communication and computation terminate almost at the same time. The
first computation phase is dominant because of the preprocessing, in particular
the reordering (bit reversal) of the input list and the computation of the twiddle-
factors. Noticeable are also the frequent “runnable” phases, which are garbage
collections.

Parallel FFT with Eden Skeletons 81

on 22 Pentium 4 CPU’s @ 3.00 GHz, on 7 Core 2 Duo CPU’s @ 2.40 GHz,
512 MB RAM, fast Ethernet 2 GB RAM, fast Ethernet

Fig. 6. Runtime and scalability comparison of parallel FFT approaches

Figure 6 shows the runtimes of the parallel map-and-transpose FFT version
with and without final result collection (Figure 6, triangle marks) in comparison
with the best divide-and-conquer versions (4-radix4, Flat Expansion, Decima-
tion in Time and Frequency). We have measured these versions on the Beowulf
cluster and on our local network of dual-core machines, which are more powerful
and have more RAM than the Beowulf nodes. The parallel map-and-transpose
versions scale well when increasing the number of processing elements. However,
for a small number of PEs it is less efficient than the divide-and-conquer ver-
sions discussed in Section 2. Including result collection in the map-and-transpose
version decreases the performance clearly. The runtime differences of the vari-
ous versions are less distinct on the powerful dual-core processors than on the
Beowulf nodes. The huge performance penalties of the algorithms with a small
number of worker processes on the Beowulf are due to more garbage collection
rounds, because of the limited memory size.

4 Related Work

A range of parallel FFT implementations have been presented in the past ([6,5],
to mention only a few). The vast majority is tailored for shared-memory systems,
see e. g. [9] as an example for a high-level implementation in the functional array
language SAC or [1] for experiments with our divide-and-conquer skeletons on
multi-core machines. Distributed implementations are mostly based on C+MPI.
The distributed MPI-based FFTW implementation [6] is especially tailored for
4 4-radix divides the input into 4 parts instead of two.

82 J. Berthold et al.

transforming arrays so large that they do not fit into the memory of a single
processor. In contrast to these specialised approaches, our work propagates a
skeleton-based parallelisation. In his PhD thesis [11], Christoph Herrmann gives
a broad overview, classification, and a vast amount of implementation variants
for divide-and-conquer, while we have focused on divide-and-conquer schemes
with a fixed branching degree. The skeleton-based version of parallel FFT in
[8,7] underlies our parallel map-and-transpose implementation of FFT.

5 Conclusions

The skeleton approach to the parallelisation of FFT provides a high flexibility.
In total, six different parallel FFT approaches have been compared, on the ba-
sis of three different skeletons: two parallel divide-and-conquer and a parallel
map-and-transpose skeleton. We have achieved an acceptable parallel runtime
behaviour with a low parallelisation effort. The most effective techniques to lower
the communication overhead have been the use of direct mapping to avoid in-
put communication and leaving the results in a distributed manner to avoid the
result communication. When applicable, these techniques substantially improve
the efficiency.

Acknowledgements. Thanks go to Thomas Horstmeyer for his comments.

References

1. Berthold, J., Dieterle, M., Lobachev, O., Loogen, R.: Distributed memory pro-
gramming on many-cores – a case study using Eden divide-&-conquer skeletons.
In: ARCS Workshop on Many–Cores, Delft, NL, pp. 47–55. VDE–Verlag (2009)

2. Berthold, J., Loogen, R.: Visualizing Parallel Functional Program Executions: Case
Studies with the Eden Trace Viewer. In: Proc. of the Intl. Conf. ParCo 2007 – Paral-
lel Computing: Architectures, Algorithms and Applications. IOS Press, Amsterdam
(2007)

3. Cole, M.I.: Algorithmic skeletons: Structured management of parallel computation.
In: Research Monographs in Parallel and Distributed Computing. Pitman (1989)

4. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
fourier series. Math. Comput. 19, 297–301 (1965)

5. Dmitruk, P., Wang, L., Matthaeus, W., Zhang, R., Seckel, D.: Scalable parallel fft
for spectral simulations on a beowulf cluster. Parallel Computing 27(14) (2001)

6. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. of the
IEEE 93(2) (2005)

7. Gorlatch, S.: Programming with divide-and-conquer skeletons: A case study of
FFT. J. of Supercomputing, 85–97 (1998)

8. Gorlatch, S., Bischof, H.: A generic MPI implementation for a data-parallel skele-
ton: Formal derivation and application to FFT. Par. Proc. Let. 8(4) (1998)

9. Grelck, C., Scholz, S.-B.: Towards an efficient functional implementation of the nas
benchmark ft. In: Malyshkin, V.E. (ed.) PaCT 2003. LNCS, vol. 2763, pp. 230–235.
Springer, Heidelberg (2003)

Parallel FFT with Eden Skeletons 83

10. Gupta, S.K.S., Huang, C.-H., Sadayappan, P., Johnson, R.W.: Implementing fast
Fourier transforms on distributed-memory multiprocessors using data redistribu-
tions. Par. Proc. Let. 4(4), 477–488 (1994)

11. Herrmann, C.A.: The Skeleton-Based Parallelization of Divide-and-Conquer Re-
cursions. PhD thesis, Universität Passau (2000) ISBN 3-89722-556-5

12. Klusik, U., Loogen, R., Priebe, S.: Controlling Parallelism and Data Distribution
in Eden. In: TFP, vol. 2, pp. 53–64. Intellect (2000)

13. Lobachev, O., Loogen, R.: Towards an Implementation of a Computer Algebra
System in a Functional Language. In: Autexier, S., Campbell, J., Rubio, J., Sorge,
V., Suzuki, M., Wiedijk, F. (eds.) AISC 2008, Calculemus 2008, and MKM 2008.
LNCS (LNAI), vol. 5144, pp. 141–154. Springer, Heidelberg (2008)

14. Loogen, R., Ortega-Mallén, Y., Peña, R., Priebe, S., Rubio, F.: Parallelism Ab-
stractions in Eden. In: Rabhi, F.A., Gorlatch, S. (eds.) Patterns and Skeletons for
Parallel and Distributed Computing. Springer, Heidelberg (2003)

15. Loogen, R., Ortega-Mallén, Y., Peña-Maŕı, R.: Parallel Functional Programming
in Eden. J. of Functional Programming 15(3), 431–475 (2005)

16. Nussbaumer, H.: Fast Fourier Transform and Convolution Algorithms. Springer,
Berlin (1981)

17. Pease, M.C.: An adaptation of the fast Fourier transform for parallel processing.
JACM 15(2), 252–264 (1962)

Parallel Implementation of Generalized Newton

Method for Solving Large-Scale LP Problems

Yu.G. Evtushenko, V.A. Garanzha, A.I. Golikov, and H.M. Nguyen

Computing Center RAS, Moscow 119333 Vavilov str. 40, Russia

Abstract. The augmented Lagrangian and Generalized Newton meth-
ods are used to simultaneously solve the primal and dual linear program-
ming (LP) problems. We propose parallel implementation of the method
to solve the primal linear programming problem with very large number
(≈ 2 · 106) of nonnegative variables and a large (≈ 2 · 105) number of
equality type constraints.

Keywords: linear programming, Newton method, parallel computing.

1 Introduction

In [1], [2] we proposed to use an approach close to the augmented Lagrangian
technique. The approach involved has the following main advantage: after a sin-
gle unconstrained maximization of an auxiliary function which is similar to the
augmented Lagrangian we obtain the exact projection of a point onto the solu-
tion set of primal LP problem. The auxiliary function has a parameter (similar to
the penalty coefficient) which must exceed or be equal to some threshold value.
This value is found under the regularity condition (see Theorem 1). Using this
result, we maximize once more the auxiliary function with changed Lagrangian
multipliers and obtain the exact solution of the dual LP problem (Theorem 2).
Theorem 3 states that the exact primal and dual solutions of the LP problem can
be obtained in a finite number of iterations with an arbitrary positive value of
the parameter. The auxiliary unconstrained maximization problems are solved
by the fast generalized Newton method. The maximized function is piecewise
quadratic, concave, differentiable, but not twice differentiable. Therefore, a gen-
eralized Hessian of this function is used. The finite global convergence of the
generalized Newton method was established in [3]. Our method for solving LP
problems implemented in MATLAB [2]. It was highly competitive to some well-
known commercial packages and outperformed them in solving LP problems with
a very large number (≈ ·106) of nonnegative variables and a moderate number
(≈ 5 · 103) of equality type constraints [2].

The proposed parallel approach permits us to increase the number of equality
type constraints up to ≈ 2 · 105.

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 84–97, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Parallel Method For LP Problems 85

2 Finding a Projection onto the Primal Solution Set

Consider the primal linear program in the standard form

f∗ = min
x∈X

c�x, X = {x ∈ IRn : Ax = b, x ≥ 0n} (P)

together with its dual

f∗ = max
u∈U

b�u, U = {u ∈ IRm : A�u ≤ c}, (D)

where A ∈ IRm×n, c ∈ Rn, and b ∈ Rm are given, x is a primal variable and u
is a dual variable, 0i denotes the i-dimensional zero vector.

Assume that the solution setX∗ of the primal problem (P) is nonempty, hence
the solution set U∗ of the dual problem (D) is also nonempty.

Let x̂ ∈ IRn be an arbitrary vector. Consider the problem of finding least
2-norm projection x̂∗ of the point x̂ on X∗

1
2‖x̂∗ − x̂‖2 = min

x∈X∗

1
2‖x− x̂‖2, (1)

X∗ = {x ∈ IRn : Ax = b, c�x = f∗, x ≥ 0n}.

Henceforth ‖a‖ denotes the Euclidian norm of a vector a.
The solution x̂∗ of problem (1) is unique. Let us introduce the Lagrange

function for problem (1)

L(x, p, β, x̂) =
1
2
‖x− x̂‖2 + p�(b−Ax) + β(c�x− f∗),

where p ∈ IRm and β ∈ IR1 are Lagrange multipliers, x̂ is considered to be a
fixed parameter vector. The dual problem of (1) is

max
p∈IRm

max
β∈IR1

min
x∈IRn

+

L(x, p, β, x̂). (2)

The Kuhn-Tucker conditions for problem (1) imply the existence of p ∈ IRm

and β ∈ IR1 such that

x− x̂−A�p+ βc ≥ 0n, x ≥ 0n, (3)
D(x)(x − x̂−A�p+ βc) = 0n, Ax = b, c�x = f∗,

where D(z) denotes the diagonal matrix whose ith diagonal element is the ith
component of the vector z. It is easy to verify that both inequalities in (3) are
equivalent to

x = (x̂ +A�p− βc)+, (4)

where a+ denotes the vector a with all the negative components replaced by
zeros.

86 Y.G. Evtushenko et al.

We can say that (4) gives us the solution of the inner minimization problem
in (2). By substituting (4) into L(x, p, β, x̂), we obtain the dual function

L̃(p, β, x̂) = b�p− 1
2
‖(x̂+A�p− βc)+‖2 − βf∗ +

1
2
‖x̂‖2.

Hence problem (2) is reduced to the solution of the exterior maximization prob-
lem

max
p∈IRm

max
β∈IR1

L̃(p, β, x̂). (5)

If the solutions p and β of problem (5) are found, then after substitution p
and β into (4) we obtain the projection x̂∗ which solves the problem (1).

The optimality conditions for problem (5) are the following

L̃p(p, β, x̂) = b−A(x̂+A�p− βc)+ = b−Ax = 0m,

L̃β(p, β, x̂) = c�(x̂+A�p− βc)+ − f∗ = c�x− f∗ = 0,

where x is given by (4). These conditions are satisfied if and only if x ∈ X∗ and
x = x̂∗.

Unfortunately the unconstrained optimization problem (5) contains an
unknown value f∗. It is possible to simplify this problem and remove this short-
coming. We show that if the value β is chosen large enough then the maximiza-
tion over the variable β can be omitted. Instead of (5) we propose to solve the
following simplified unconstrained maximization problem

max
p∈IRm

S(p, β, x̂), (6)

where x̂ and β are fixed and the function S(p, β, x̂) is given by

S(p, β, x̂) = b�p− 1
2
‖(x̂+A�p− βc)+‖2. (7)

Without loss of generality, one can assume that the first l components of x̂∗
are strictly greater than zero. In accordance with this assumption, we represent
vectors x̂∗, x̂ and c, as well as the matrix A in the form

x̂�∗ = [[x̂l
∗]

�, [x̂d
∗]

�], x̂� = [[x̂l]�, [x̂d]�],

c� = [[cl]�, [cd]�], A = [Al | Ad],

where x̂l
∗ > 0l, x̂d

∗ = 0d, d = n− l. In accordance with this representation we can
write v�∗ = [vl

∗
�
, vd

∗
�]. Consider the Kuhn-Tucker optimality conditions for the

primal problem (P). Besides the primal feasibility we have a complementarity
condition x̂�∗ v∗ = 0, where the dual slack v∗ ∈ IRn

+ and the following dual
feasibility conditions have the form

vl
∗ = cl − A�

l u∗ = 0l, (8)
vd
∗ = cd −A�

d u∗ ≥ 0d. (9)

Parallel Method For LP Problems 87

The necessary and sufficient optimality conditions (the Kuhn-Tacker condi-
tions) for problem (1) can be written in the expanded form

x̂l
∗ = x̂l +A�

l p− βcl > 0l, (10)
x̂d∗ = 0d, x̂

d +A�
d p− βcd ≤ 0d, (11)

Alx̂
l∗ = b, cl

�
x̂l∗ = f∗.

From solutions (10)-(11) we find Lagrange multiplies [p, β] such that β is
minimal, i.e. consider LP problem

β∗ = inf
β∈IR1

inf
p∈IRm

{β : A�
l p− βcl = x̂l

∗ − x̂l, A�
d p− βcd ≤ −x̂d}. (12)

The constraints in (12) are consistent, but goal function β can be unbounded
from below. In this case let be β∗ = γ where γ is an arbitrary number.

If equality system in (12) has single valued solution p, then β∗ has following
form

β∗ =

{
max
i∈σ

(x̂d+A�
d (AlA

�
l)−1Al(x̂l

∗−x̂l))i

(vd∗)i , if σ �= ∅
γ > −∞, if σ = ∅

(13)

where σ = {1 ≤ i ≤ d : (vd
∗)i > 0} and γ is an arbitrary number.

Theorem 1. Assume that the solution set X∗ for problem (P) is nonempty.
Then for all β ≥ β∗, where β∗ is defined by (12) the unique least 2-norm projec-
tion x̂∗ of a point x̂ onto X∗ is given by

x̂∗ = (x̂+A�p(β)− βc)+, (14)

where p(β) is a point attaining the maximum in (6).
If additionally the rank of submatrix Al corresponding to nonzero components

of vector x̂∗ is m, then β∗ is defined by (13) and exact solution of (D) is

u∗ =
1
β

(p(β) − (AlA
�
l)−1Al(x̂∗ − x̂l)). (15)

This Theorem generalizes the results obtained in paper [4] devoted to finding
a normal solution to the primal LP problem. It is obvious that the value of β∗
defined by (13) may be negative. The corresponding very simple example is given
in Ref. [4].

The function S(p, β, x̂), where x̂ = 0n, can be considered as a new asymptotic
exterior penalty function of the dual linear program (D) [4]. The point p(β)
which maximizes S(p, β, x̂) does not solve the dual LP problem (D) for finite β,
but the ratio p(β)/β → u∗ as β →∞. If β ≥ β∗ then formula (14) provides the
exact solution x̂∗ to problem (1) (the projection of x̂ onto the solution set X∗ of
the original primal linear program (P)) and if x̂ = 0n then we obtain the exact
normal solution of (P).

The next Theorem tells us that we can get a solution to problem (D) from
the single unconstrained maximization problem (6) if a point x∗ ∈ X∗ is known.

88 Y.G. Evtushenko et al.

Theorem 2. Assume that the solution set X∗ of problem (P) is nonempty. Then
for all β > 0 and x̂ = x∗ ∈ X∗ an exact solution of the dual problem (D) is given
by u∗ = p(β)/β, where p(β) is a point attaining the maximum of S(p, β, x∗).

Hence, when Theorem 1 is used and the point x̂∗ ∈ X∗ is found, then Theorem 2
provides a very effective and simple tool for solving the dual problem (D). An
exact solution to (D) can be obtained by only one unconstrained maximizing
the function S(p, β, x̂∗) with arbitrary β > 0.

3 Iterative Process for Solving Primal and Dual LP
Problems

In this section we are looking for the arbitrary admissible solutions x∗ ∈ X∗
and u∗ ∈ U∗ instead of the projection x̂∗. Due to this simplification the iterative
process described below does not require the knowledge of the threshold value
β∗.

Function (7) can be considered as an augmented Lagrangian for the linear
program (D). Let us introduce the following iterative process (the augmented
Lagrangian method for the dual LP problem (D))

ps+1 ∈ arg max
p∈IRm

{b�p− 1
2‖(xs +AT p− βc)+‖2} (16)

xs+1 = (xs +AT ps+1 − βc)+, (17)

where x0 is an arbitrary starting point.

Theorem 3. Assume that the solution set X∗ of problem (P) is nonempty. Then
for all β > 0 and for arbitrary starting point x0 the iterative process (16)–
(17) converges to x∗ ∈ X∗ in a finite number of iterations ω. The formula
u∗ = pω+1/β gives an exact solution of the dual problem (D).

Unconstrained maximization in (6) or (16) can be carried out by the conjugate
gradient method or by other iterative methods. Following [3] we utilize the gen-
eralized Newton method for solving these subproblems. The resulting iterative
method can be described as follows.

1. Set β > 0, specify the initial points x0 and p0, specify the tolerances tol1
and tol for outer and inner iterations, respectively.

2. Compute the gradient

Gk =
∂

∂p
S(pk, β, xs) = b−A(xs +A�pk − βc)+, (18)

on each k-th Newton’s inner iteration for solving the unconstrained maxi-
mization problem (16), s is the number of external iteration.

3. Using the generalized Hessian for (18) define m×m matrix

Hk = δI +ADkA
T (19)

Parallel Method For LP Problems 89

where A – the initial m × n matrix, the diagonal matrix Dk ∈ IRn×n is
defined as follow:

(Dk)ii =
{

1 if (xs +A�pk − βc)i > 0
0 if (xk +A�pk − βc)i ≤ 0 (20)

4. The maximizing direction δp is found as a solution of the linear system

Hkδp = −Gk. (21)

Since Hk is a symmetric positive matrix we can use the preconditioned con-
jugate gradient method for solving the linear system (21). The diagonal part
of matrix Hk is used as a preconditioner.

5. Define pk+1 = pk − τkδp, where τk is the stepsize chosen by Armijo rule:

τk = max
τ
S(pk − τδp, β, xs)

In practice, the parameter τk was set as 1 for all taken experiments.
6. If inequality ||pk+1 − pk|| ≤ tol holds then we set p̃ = pk+1, compute xs+1 =

(xs + A�p̃ − βc)+. Otherwise we increment iteration number k and go to
step 2.

7. If inequality ||ps+1 − ps|| ≤ tol1 holds then u� = p̃/β and solution to the
primal problem (P) is x� = xk+1. Else we set p0 = p̃, increment iteration
number s and go to step 2.

Distributed memory parallel implementation of the above iterative scheme
based on MPI library calls for communications is described below. The basic
parallel operations of the algorithm 1-7 which cannot avoid data exchange be-
tween nodes are the following:

– multiplication of matrix A ∈ IRm×n or A� by a vector;
– scalar product of vectors with size n or m;
– forming matrix (19);
– multiplication of matrix (19) by a vector;

For example, the conjugate gradient method requires distributed inner prod-
uct computations and distributed multiplication of matrix (19) by a vector.
Other operations are local. Calculation of gradient (18) requires distributed
matrix-vector products with matrices A and AT .

Efficiency of parallel algorithm crucially depends on problem data distribution
across computing nodes. Parallel data partitioning for LP solvers is discussed in
[5], [6]. Below we describe and compare several data partitioning schemes.

Block Column Partitioning Scheme. Since number of columns n in matrix
A is much larger compared to the number of rows m, we can use simply block
column matrix partitioning (“column scheme” for short). Matrix A is split into
np block column submatrices Ai with approximately the same size. Matrix Ai

is stored at the i-th node, as shown in fig. 1.

90 Y.G. Evtushenko et al.

+ + +H H HH1 2 3 4 = A A A A

A

A

A

A

D

1 2 3 4

11

D

D

D2

3

4

2

3

4

pp

Fig. 1. Block column partitioning scheme

In what follows, for the sake of brevity, we will assume that all submatrices
have the same size, i.e. matrix Ai ∈ IRm×Nc and subvector xi ∈ IRNc , where
Nc = n/np belongs to i-th processor. Copies of vectors p and b are stored on
each processor.

Obviously matrix-vector product A�
i p does not require any communications.

Otherwise, matrix-vector product Ax can be written as

Ax =
np∑
i=1

Aixi

where i-th processor computes vector Aixi. The sum of np vectors of size m is
computed using MPI function MPI_Allreduce.

Matrix H can be represented as a sum of np terms

H =
np∑
i=1

Hi, where Hi = AiDiA
�
i .

Here Di ∈ IRNc×Nc are the diagonal blocks of matrix D. In column scheme
matrix H is not computed, instead each processor compute independently only
its term Hi. As a result the matrix-vector product looks as follow:

Hq =
np∑
i=1

Hiq,

i.e. vectorHiq is computed on i-th processors and the sum of np resulting vectors
is computed using MPI function MPI_Allreduce. The resulting vector will be
available on each processor.

Thus the conjugate gradient solver for linear system (21) is not parallel at all
and total computational expences for this solver are proportional to the number
of processors.

Let γ denote the ratio of computational expenses for solving linear system to
the remaining computational expenses at one iteration of Newton method. If we
neglect the time for communications, then the upper bound for parallel speedup
can be estimated using simple formula

s(np) = np
1 + γ

1 + γn
. (22)

Parallel Method For LP Problems 91

Thus, if γ = 0.05 then s(4) = 3.5 and s(6) = 4.85. If we take into considera-
tion the real communication expenses the speedup could be noticeably worse.
Obviously column scheme is effective only in case of sufficiently small γ.

Block Row Partitioning Scheme. In order construct parallel solver for linear
system (21) one can use block row partitioning scheme (for short “row scheme”)
shown on fig. 2.

A4

A3

A2

A1

A1
T A2

T A3
T A4

T

D

H1
H2

H3

H4

2

4

1
p

p

p

p3

2

4

1
p

p

p

p3
=

Fig. 2. Block row partitioning scheme

Here matrix A is divided into np row blocks. For the sake of brevity we again
assume that all blocks contain the same number of rows Nr, thus m = np ×Nr.
In row scheme vector x ∈ IRn is copied onto all np processors, vector p ∈ IRm is
distributed and consists of subvectors pi of the size Nr.

Matrix-vector product AT p can be written as

AT p =
np∑
i=1

AT
i pi. (23)

At the first glance, the calculations of i-th term are local and in order to com-
pute AT p one have to sum up np vectors of size n using, for example, function
MPI_Allreduce. However, the value n appears to be so big that the time spent
on communication turns out unacceptably large and does not allow to achieve
the speedup.

We face another difficulty while computing the Hessian matrix. If ith processor
stores only the submatrix Ai then computing ADAT will require exchanging all
the submatrixes resulting in prohibiting amount of communications.

In order to resolve above problems we store whole matrix A on each node. As
a result forming generalized Hessian matrix via

Hi = AiDA
T
i (24)

does not require any communications. The floating point operation count at this
stage can be estimated as Nrmρ

2ρzn, where ρ and ρz are the fractions of nonzero
elements in A and in diagonal matrix D, respectively.

92 Y.G. Evtushenko et al.

In order to compute AT p the subvectors pi are gathered into single vector p
simultaneously stored on all processors. Thus we avoid O(n) communications,
but matrix-vector product is no longer parallel.

Let us introduce the coefficient

α =
ρmn

m2nρ2ρz
=

1
mρρz

(25)

being an approximate ratio of computational cost for multiplying matrix A by
a vector to expenses for forming Hessian matrix in serial implementation. Using
this coefficient one can easily derive crude but simple upper bound of speedup
for row scheme:

s(np) = np
1 + 2α

1 + (np + 1)α
(26)

Numerical experiments show that formula (25) is too pessimistic and real ratio
is much smaller. If we set α = 0.1 then s(8) = 5.05.

The main drawback of the row scheme is that it is not memory parallel since
leading term of the total memory estimate looks as ρmnnp and is not scaled
with the number of processors.

On the bright side, if the matrix A is supersparse in a sense that the matrix
H is also sparse, then the block row partitioning scheme can be very efficient
but parallel algorithm should be modified. In particular, the row scheme allows
highly effective parallel implementation of the preconditioned conjugate gradient
method for solving linear system, the reliable partial LU-decomposition can be
use as a preconditioner. Thus row scheme based algorithm can be used for very
stiff LP problems.

Matrix-Free Algorithm. The memory nonoptimality of row scheme sharply
limits the maximum size of solvable problems, so there arises the necessity of
building the algorithm that is memory optimal and allows to keep only one block
row of matrix A per processor.

We implemented the matrix-free version of the Newton method where the
Hessian matrix H is not formed at all, we only compute it’s main diagonal.
Matrix-vector product q = Ap can be computed as a sequence of operations

qi = Ai

np∑
j=1

DAT
j pj ,

where subvector pj is stored at j-th processor. In the simplest implementation
the term DAT

i pi can be computed by i-th processor, while the sum of np terms
can be computed using function MPI_Allreduce. The resulting vector can be
multiplied by matrix Ai. In order to avoid O(n) data exchanges we use the
sparseness of diagonal matrix D, which essentially means that the number of
nonzeros in vector DAT

j pj cannot exceed number of nonzeros in D. Thus the
number of nonzeros in sparse vectors can be estimated as ρzn which can be
hundred times smaller compared to n. Sparse vectors are packed and sent to
another processors. Note that integer sparseness data should be sent as well.

Parallel Method For LP Problems 93

Unfortunately, on the stage of forming matrix D one still need to compute
AT p, therefore we still have to sum np vectors of the size n at least once at each
Newton iteration. Thus we do not expect to receive any speedup for resulting
matrix-free algorithm, we rather hope that it’s parallel implementation would
not be slower than the sequential one. In this case the parallel implementation
will be much more effective compared to out-of-core LP solvers.

General Block Partitioning Scheme. In order to attain higher parallel effi-
ciency it is reasonable to use general block partitioning scheme (“cellular scheme”
for short), which is the combination of column and row schemes, with matrix A
divided into rectangular blocks as shown on fig.3.

D1

D2

D3

D4

H
H
H
H

14

24

34

44

1

2

3p
p4

p
p 1

2

3p
p4

p
p

=
A11
A
A
A

21

31

41

A
A
A
A

24

14

34

44

A11
T AT AT AT

21 31 41

AT AT AT AT
14 24 34 44

+++
H11
H
H
H

H
H
H
H

H
H
H
H

21

31

41

12

22

32

42

13

23

33

43

Fig. 3. Cellular scheme

We assume that the total number of processors can be presented as np =
nr × nc, e.g. the processors are placed at nodes of the nr × nc grid. For the
brevity sake we assume again that n = nc×Nc m = nr×Nr. Matrix A consists
of np submatrixes Aij ∈ IRNr×Nc . In this scheme vector x ∈ IRn is divided into
nc subvectors xi, vector p is divided into nr subvectors pj , subvector xi is stored
on each processor of the i-row of the grid simultaneously and subvector pj is
copied on all nc processors of j-th column of the grid. As in row scheme, we
assume that for all i, the i-th processor of jth column in the grid keeps the
whole j-th column block of the matrix A, and not just the submatrix Aij . Thus
we store nr copies of matrix A.

Assuming that vector p is available at each of nr × nc processors, the same
formula

xi =
nr∑

j=1

AT
jipj

can be used for all nodes in a i-th column of the grid independently. Thus vector
xi is available on all processors of the i-th column without communications, but
matrix AT is multiplied by vector p nr times. Thus arithmetic cost of this step
is close to ρmnnr.

It is convenient for implement independent collective operations within one
vertical or horizontal line of the processor grid using the communicator splitting
function provided by MPI’s library.

94 Y.G. Evtushenko et al.

The operation Ax turns out to be almost local and requires communications
only for summing nc subvectors of size Nr independently on each group of nc

processors in nr rows of the grid.
The assembling of the Hessian matrix requires only local computations.
Using coefficients γ and α defined as above we can derive the rather crude

but simple upper bound for the speedup of cellular scheme:

su(nr × nc) = nr
1 + 2α

1 + (nr + 1)α
nc

1 + γ

1 + γnc
(27)

If we set γ = 0.05 and α = 0.1 in formula (27), then su(8× 8) = 30.3.

Cyclic Data Partitioning with Reflections. In cellular scheme we did not
take into account the symmetry of generalized Hessian matrix which could cut
down the computational cost for forming matrix H almost by half. It is very
easy to use symmetry in the column scheme, but the attempt to do the same in
the row and cellular schemes leads to load disbalance of processors for forming
H as well for computing product of H by a vector.

In order to attain optimal load balancing one can use the well-known cyclic
data partitioning with reflections shown on fig. 4 in the case of np = 4.

 1

 1
 2
 3
 4

 4
 3

 1

 1
 2
 3
 4

 2

 4
 3
 2

 1 2 3 4 4 3 2 1 1 2 3 4 4 3 2 1

1

1
2
3
4

4
3

1

1
2
3
4

2

4
3
2

 1 2 3 4 4 3 2 1 1 2 3 4 4 3 2 1
 1

 1
 2
 3
 4

 4
 3

 1

 1
 2
 3
 4

 2

 4
 3
 2

 1 2 3 4 4 3 2 1 1 2 3 4 4 3 2 1

Fig. 4. Cyclic data partitioning with reflections

This partitioning is close to the cellular scheme, but the rows of matrix A
are divided into groups, in each group row are distributed between processors,
and numbering scheme between nearby groups is changed to opposite (reflected).
One can easily check that such a data distribution can balance both symmetric
matrix assembly and matrix-vector product.

This scheme was not implemented in current work but simpler cellular scheme
was used to model its behaviour. However one should keep in mind that in cyclic
scheme coefficient α can be almost two times larger compared to cellular one so
speedup results can be somewhat worse.

4 Results of Numerical Experiments

We used synthetic LP test problems [1], [2]. The test problem generator produces
for given solutions x∗ and u∗ of the LP problem a random matrix A for a given

Parallel Method For LP Problems 95

Table 1. Results for the column scheme with m = 104, n = 106, ρ = 0.01

np 1 2 4 8 16 32 64

Ttot (sec.) 1439.32 1311.40 568.79 408.94 236.68 188.17 142.65

stot 1 1.10 2.53 3.52 6.08 7.65 10.09

Tlin(sec.) 121.88 124.42 122.09 120.60 116.87 109.80 106.17

slin 1 0.98 1.00 1.01 1.04 1.11 1.15

Trem (sec.) 1317.35 1186.69 446.61 288.25 119.73 78.30 36.40

srem 1 1.11 2.95 4.57 11.00 16.82 36.19

Table 2. Results for the row scheme with m = 5000, n = 106, ρ = 0.01

np 1 2 4 8 16 32 64

Ttot (sec.) 406.66 242.78 121.32 62.02 32.13 18.43 15.49

stot 1 1.67 3.35 6.56 12.66 22.07 26.24

Tlin(sec.) 31.47 16.45 8.36 4.4 2.28 1.55 2.09

slin 1 1.91 3.77 7.16 13.81 20.24 15.04

Trem (sec.) 375.13 226.24 112.88 57.53 29.76 16.79 13.32

srem 1 1.66 3.32 6.52 12.60 22.35 28.16

Table 3. Results for the cellular scheme with m = 104, n = 106, ρ = 0.01

np = nr × nc 1 = 1 × 1 4 = 2 × 2 16 = 4 × 4 64 = 8 × 8

Ttot (sec.) 1439.32 502.98 145.13 45.65

stot 1 2.86 9.92 31.53

Tlin (sec.) 121.88 62.17 31.66 15.89

slin 1 1.96 3.85 7.67

Trem (sec.) 1317.35 440.73 113.43 29.74

srem 1 2.99 11.61 44.30

Table 4. Results for matrix-free algorithm

m × n × ρ np Ttot Δ1 Δ2 Δ3

5 · 104 × 106 × 0.01 16 400.02 2.1 · 10−6 2.1 · 10−7 1.1 · 10−10

105 × 106 × 0.01 20 484.62 8.1 · 10−6 3.6 · 10−6 5.6 · 10−11

105 × 2 · 106 × 0.01 40 823.13 4.5 · 10−6 4.2 · 10−7 7.2 · 10−11

2 · 105 × 2 · 106 × 0.01 80 2317.42 4.9 · 10−5 6.6 · 10−6 5.2 · 10−10

m (number of equality constraints) and n (number of nonnegative variables) and
density ρ. In particular, ρ = 1 means that all the entries in A were generated as
random numbers, whereas ρ = 0.01 indicates that only one percent of the entries
in A was generated randomly and others were set equal to zero.

96 Y.G. Evtushenko et al.

Fig. 5. Speedup diagrams

In tables 1-3 the total wall-clock time for solving LP problem is denoted as
Ttot, Tlin means the time spent on solving linear systems (21), Trem is time
for remaining computations. The total speedup is denoted as Stot, speedup of
solving linear systems is Slin and Srem means the speedup of the remainder.

Table 4 presents some computational results for matrix-free algorithm. Resid-
uals of LP problem areΔ1 = ‖Ax−b‖∞,Δ2 = ‖(ATu−c)+‖∞,Δ3 = |cTx−b�u|.

Speedup results are illustrated in Fig. 5.

Conclusions and Directions of Further Research. Parallel versions of
LP solver based on several data distribution schemes were implemented and
applied to large scale LP problems. As expected, constructing efficient parallel

Parallel Method For LP Problems 97

algorithm for LP problems was found to be quite hard problem thus in each
version of parallel algorithm we were looking for acceptable compromise between
arithmetic scalability and memory scalability. In the current setting best speedup
results were attained using general block partitioning scheme, however for various
combinations of size and sparsity pattern of the matrix A one should look for
optimal data distribution scheme between row partitioning, column partitioning
and general block partitioning.

While the resulting speedup is acceptable (above 30 on 64 cores), one should
keep in mind that in practice creating input data for parallel LP solver is quite
nontrivial task and actually it can be more costly compared to parallel solution.

We did not used shared memory parallelism in the current implementation of
the numerical algorithm and one can expect that combination of distributed/
shared memory algorithms based on MPI/OpenMP can much better suit to
multi-core architecture of modern CPU’s.

Another important issue is optimization of operations with dense and sparse
matrices. While we have used Lapack functions for efficient computation of
matrix-vector product Hp assuming that matrix H is a full matrix, operations
with sparse matrices still leave much room for optimization. In particular, one
can use special cash-aware or cash-independent sparse matrix storage schemes,
potentially may sharply reduce wall-clock time for sparse matrix-vector products
and change the speedup results.

Acknowledgments. This study was supported by the Russian Foundation
for Basic Research (project no. 08-01-00619) and by the Program of the State
Support of Leading Scientific Schools (project no.NSh-5073.2008.1).

References

1. Golikov, A.I., Evtushenko, Yu.G.: Solution Method for Large-Scale Linear Program-
ming Problems. Doklady Mathematics 70(1), 615–619 (2004)

2. Evtushenko, Yu.G., Golikov, A.I., Mollaverdi, N.: Augmented Lagrangian method
for large-scale linear programming problems. Optim. Methods and Software 7(4-5),
515–524 (2005)

3. Mangasarian, O.L.: A Newton Method for Linear Programming. Jour. of Optim.
Theory and Appl. 121, 1–18 (2004)

4. Golikov, A.I., Evtushenko, Yu.G.: Search for Normal Solutions in Linear Program-
ming Problems. Comput. Math. and Math. Phys. 40, 1694–1714 (2000)

5. Karypis, G., Gupta, A., Kumar, V.: A parallel formulation of interior point algo-
rithms. In: Proceedings of Supercomputing, pp. 204–213 (1994)

6. Coleman, T.F., Czyzyk, J., Sun, C., Wagner, M., Wright, S.J.: pPCx: Parallel Soft-
ware for Linear Programming. In: Proceedings of the Eighth SIAM Conference
on Parallel Processing for Scientific Computing, PPSC 1997, Hyatt Regency Min-
neapolis on Nicollel Mall Hotel, Minneapolis, Minnesota, USA, March 14-17. SIAM,
Philadelphia (1997)

Dynamic Real-Time Resource Provisioning for

Massively Multiplayer Online Games�

Radu Prodan, Vlad Nae, Thomas Fahringer, and Herbert Jordan

Institute of Computer Science, University of Innsbruck,
Technikerstraße 21a, A-6020 Innsbruck, Austria

{vlad,radu,tf,jordan}@dps.uibk.ac.at

Abstract. Massively Multiplayer Online Games (MMOG) are a class
of computationally-intensive client-server applications with severe real-
time Quality of Service (QoS) requirements, such the number of updates
per second each client needs to receive from the servers for a fluent and
realistic experience. To guarantee the QoS requirements, game providers
currently over-provision a large amount of their resources, which makes
the overall efficiency of provisioning and utilisation of resources rather
low and prohibits any but the largest providers from joining the market.

To address this deficiency, we propose a new prediction-based method
for dynamic resource provisioning and scaling of MMOGs in distributed
Grid environments. Firstly, a load prediction service anticipates the fu-
ture game world entity distribution from historical trace data using a fast
and flexible neural network-based method. On top of it, we developed
generic analytical game load models used to foresee future hot-spots that
congest the game servers and make the overall environment fragmented
and unplayable. Finally, a resource allocation service performs dynamic
load distribution, balancing, and migration of entities that keep the game
servers reasonably loaded such that the real-time QoS requirements are
maintained.

1 Introduction

Online entertainment including gaming is a huge growth sector worldwide. Mas-
sively Multiplayer Online Games (MMOG) grew from 10 thousand subscribers
in 1997 to 6.7 million in 2003 and the rate is accelerating estimated to 60 million
people by 2011. The release of World of Warcraft in 2005 saw a single game break
the barrier of 4 million subscribers worldwide. The market size shows equally im-
pressive numbers, estimated by the Entertainment Software Association (ESA)
to 7 billion USD with an avid growth over 300% in the last 10 years. In compar-
ison, the Motion Picture Association of America (MPAA) reports a size of 8.99
billion USD and the Recording Industry Association of America (RIAA) a size

� This research is partially funded by the European Union through the IST-034601
edutain@grid project

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 98–111, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Dynamic Real-Time Resource Provisioning for MMOG 99

Fig. 1. Area of interest

of 12.3 billion USD which stagnates (and even decreased by 2%) in the last 10
years. It is therefore expected that the game industry will soon grow larger than
both movie and music market sizes.

Today’s MMOG operate as client-server architectures, in which the game
server simulates a world via computing and database operations, receives and
processes commands from the clients (shootings, collection of items, chat), and
inter-operates with a billing and accounting system. The game severs must re-
spond with new game state information to the distributed clients promptly
within a given real-time interval to ensure a smooth, responsive, and fair ex-
perience for all players. Depending on game, typical response times must be
between 100 milliseconds (10 hertz) to ensure fluent play in online First Person
Shooter (FPS) action games. Failing to deliver timely simulation updates leads
to a degraded game experience and brings unhappiness to players that cancel
their accounts.

2 Background

The vast majority of games follow a client-server architecture with a similar
computational model. The game server runs an infinite loop in which the state of
all entities is computed, stored into a persistent database, and then broadcasted
to the clients. All entities within a specific avatar’s area of interest (usually a
surrounding zone) are considered to be interacting with the respective avatar
and have an impact on its state. There are four main factors that affect the
load of a game session: the size of the game world, the total number of entities,
the density of entities within the area of interest, and the level of interaction.

100 R. Prodan et al.

Fig. 2. Zoning and mirroring

Obviously, the more populated the entities’ areas of interest are and the more
interactions between entities exist, the higher the load of the underlying game
server will be. An overloaded game server delivers state updates to clients (i.e.
movements and actions of teammates and opponents) at a lower frequency than
required which makes the overall environment fragmented and unplayable.

Today, a single computer is limited to around 500 simultaneous and persistent
network connections, and databases can manage the update of around 500 ob-
jects per second [10]. To support at the same time millions of active concurrent
players and many more other game entities, Massively Multiplayer Online Games
(MMOG) operators are distributing the load of a game world across multiple
computational resources using three main techniques: zoning, mirroring, and
instancing.

Spatial scaling of a game session is achieved through a conventional paral-
lelization technique called zoning [3], based on similar data locality concepts as
in scientific parallel processing. Zoning partitions the game world into geograph-
ical areas to be handled independently by separate machines (see Figure 2).
Zones are not necessarily of same shape and size, but should have an even load
distribution that satisfies the Quality of Service (QoS) requirements. Today, zon-
ing is successfully employed in slower-paced (compared fast-paced to FPS action
games) adventure games, widely known as Massively Multiplayer Online Role
Playing Games (MMORPG) [9], where the transition between zones can only
happen through certain portals (e.g. special doors, teleportation, accompanied

Dynamic Real-Time Resource Provisioning for MMOG 101

on the screen by a load clock or some standard animation video) and requires an
important amount of time. Typically, zones are started manually by the game
operators based on the current load, player demand, or new game world and
scenario developments.

The second technique called mirroring [8] targets parallelization of game ses-
sions with a large density of players located and interacting within each other’s
area of interest (see Figure 2). Such situations are typical to fast-paced FPS ac-
tion games in which players typically gather in certain hot-spot action areas that
congest the game servers that are no longer capable of delivering state updates
at the required rate. To address this problem, mirroring defines a novel method
of distributing the load by replicating the same game zone on several CPUs.
Each replicated server computes the state for a subset of entities called active
entities, while the remaining ones, called shadow entities (which are active in
the other participating servers), are synchronised across servers. It was proven
in previous research that the overhead of synchronising shadow entities is much
lower than the overhead of computing the load produced by active entities [8].

The third technique called instancing is a simplification of mirroring which
distributes the session load by starting multiple parallel instances of the highly
populated zones. The instances are completely independent of each other, which
mean that two avatars from different instances will not see each other, even
if they are located at coordinates within their area of interest. This technique
is relatively easy to implement based on the zoning technique and is mostly
employed for MMORPGs, where the implementation ”cheat” of starting multiple
independent instances of the same zone is less visible to the players.

Work at the University of Münster is developing the Real-Time Framework
(RTF) [6] that proposes to the game developers a portable API and optimised
protocols which facilitate parallelization of game sessions using the zoning, mir-
roring, and instancing techniques.

3 Method

To accommodate such a huge user load (millions of players), the game providers
typically install and operate a large infrastructure, with hundreds to thousands
of computers for each game in order to provide the required QoS. For example,
the operating infrastructure of the MMOG World of Warcraft [2] has over 10
thousand computers. However, similar to fashion goods, the demand of a MMOG
is highly dynamic and thus, even for the large providers that operate several titles
in parallel, a large portion of the resources are unnecessary which leads to a very
inefficient and low resource utilisation. In addition, this enterprise limitation has
negative economic impacts by preventing any but the largest hosting centres
from joining the market which will dramatically increase prices because those
centres must be capable of handling peaks in demand, even if the resources are
not needed for much of the time.

To alleviate this problem, we propose to use the Grid computing potential
of providing on-demand access to the huge amount of cheap computers con-
nected to the Internet. Despite this advantage, delivering the required real-time

102 R. Prodan et al.

Load Model

Predicted
Load

Resource
Allocation

NETMEMCPU LLLL ,,max

1 2 3

654

Level 01’

Neural Neural Neural

Level 01
(t+ t)

Preprocessor Preprocessor

Preprocessor Preprocessor Preprocessor

Preprocessor

Neural
Network

Neural
Network

Neural
Network

Neural
Network

Neural
Network

Neural
Network

1 2 3

654Level 01
(t)

Fig. 3. Prediction-based resource provisioning method

QoS needs remains a challenging task since MMOGs, and especially FPS games,
are highly dynamic and allow many users concentrate in each other’s proxim-
ity within a short period of time causing excessive server load that no longer
sends state updates at the required rate. Dynamically deciding and establish-
ing a new parallelization strategy like zoning, mirroring, and instances may be
under circumstances an expensive operation taking several seconds that causes
unacceptable delays in the users’ experience if not hidden properly by the mid-
dleware.

To solve this challenge, we designed a resource allocation and provisioning
method consisting of three services (see Figure 3). A load prediction service
sketched in Section 4 is in charge of projecting the future distribution of entities
in the game world and tries to timely foresee critical hot-spots that congest
the game servers. On top of it, a load modelling service described in detail
in Section 5 is using analytical methods for estimating the game load based

Dynamic Real-Time Resource Provisioning for MMOG 103

on entity distribution and possible interactions. Finally, a resource allocation
service summarised in Section 6 is using the load information to trigger new
game distributions through zoning, replication, or instancing, that accommodate
the player load while guaranteeing the real-time QoS constraints.

We present experimental results that validate our methods in Section 7 and
conclude in Section 8.

4 Load Prediction

The load of MMOGs is highly dynamic not only because of the high number of
players connected to the same game session, but also due to their often unpre-
dictable interactions. The interaction between players depends on their position
in the game world and on whether they find themselves in each other’s area of
interest. Ultimately, the load of a game session depends therefore on the position
of players in the game world which is the task of the load prediction service.

Highly dynamic real-tome applications like online games require fast predic-
tion methods in order to be of any real use. At the same time, the (often un-
predictable) human factor makes the problem even harder and requires adaptive
techniques, which simple methods such as average, exponential smoothing, or
last value fail to achieve. We therefore decided on a solution based on neural
networks due to a number of reasons that make them suitable for predicting the
load of online game sessions in real-time, as we will experimentally demonstrate
in Section 7.1: they adapt to a wide range of time series, they offer better predic-
tion results than other simple methods, and they are sufficiently fast compared
to other more sophisticated statistical analysis.

Our neural network-based prediction strategy is to partition the game world
into subareas, where the size of a subarea needs to be small enough such that its
load can be characterised by the entity count. The overall entity distribution in
the entire game world consists of a map of entity counts for each subarea. The
predictor uses one separate neural network for each subarea which receives as
input the entity count at equidistant past time intervals and delivers as output
the entity count at the next time step (see Figure 3). The predicted entity count
for the entire game world is the sum of all the subarea predictions, which will
be used afterwards by the load modelling service for estimating the game server
load.

5 Load Modelling

Having the future entity distribution information produced by the load predic-
tion service, the goal of load modelling is to perform the mapping to machine
load information. As part of this service, we propose analytical models for ex-
pressing the load of three type of resources that are mostly used by the current
MMOGs: CPU, memory, and network.

Let us consider N clients connected to a distributed game session aggregating
a total of H machines from different resource providers. Let us further consider

104 R. Prodan et al.

that inside the game world roam BE client-independent entities. On each the
machine, only AE entities are active (not shadows) and there are C clients
connected (see Section 2).

The game intelligence consists of a single game loop, which is invariably true
for all modern games. A game loop iteration is called a tick and in each tick there
are certain steps that have to be performed: (i) processing events coming from the
clients connected to the current machine; (ii) processing state updates received
from the other machines for the shadow entities (client-independent and other-
wise); and (iii) processing the states of the active entities (client-independent
and otherwise).

5.1 CPU Load Model

In this section we propose an analytical model for the load of one single machine
in a distributed game session.

We can distinguish three basic time consuming activities within one game tick:
(i) the computation of an interaction between two entities ti; (ii) the receipt of
an event message from one client tm; and (iii) the update of one entity’s state
received/sent from/to another machine tu. In order to keep the complexity of
this model acceptable, we assume that user-independent entities do not interact
among themselves, which is true in the majority of cases. We model the CPU
time tM spent for sending and receiving messages from each client to a server
(active client-controlled entities) as follows:

tM = C · tm.

The CPU time tU spent by the server for processing the state updates from the
other machines is:

tU = (N − C) · tu + (BE −AE) · tu +AE · tu,

and the CPU time tI spent by the server for computing the interactions that
involve active entities is:

tI = I · ti,
where I is the total number of interactions involving the active entities. Ob-
viously, the computation of interactions that do not involve active entities is
allotted to other machines.

Let us denote by IC the number of interacting client-controlled entities with
any other entities (client-controlled or otherwise). Furthermore, we define pci

as the average number of interactions involving active client-controlled entities
expressed as a percentage of IC. Analogously, we define pei as the average num-
ber of interactions involving active client-independent entities expressed as a
percentage of BE. The total number of interactions will composed of the num-
ber of interactions between active client-controlled entities and the number of
interactions between active client-controlled and client-independent entities:

I = pci · IC2 + pei · IC ·BE.

Dynamic Real-Time Resource Provisioning for MMOG 105

Consequently, the CPU time tI for processing the interactions involving all active
entities can be calculated as follows:

tI =
(
pci · IC2 + pei · IC · BE

)
· ti.

Approximating the time consumed for sending/receiving an event message as
equal to the time needed to update the state of one entity (tm = tu), the total
CPU time consumed in one tick becomes:

tC = (N +BE) · tu +
(
pci · IC2 + pei · IC · BE

)
· ti.

Furthermore, quantifying ti with regard to tu as ti = pui · tu, the CPU time
consumed in one tick becomes:

tC =
(
N +BE + pui · pci · IC2 + pui · pei · IC ·BE

)
· ti.

Finally, considering tSAT as the tick saturation threshold, we can define the CPU
load function as follows:

LCPU =
tC
tSAT

=
N +BE + pui · pci · IC2 + pui · pei · IC ·BE

v
,

where v is the CPU speed expressed as an integer representing the number of
tu-long tasks the CPU is able to perform in a tSAT -long time interval.

5.2 Memory Load Model

The memory model is less complex than the processor load model, since all
machines involved in the mirroring process keep the entity-state records for all
entities participating in the game session. First, we take into account the game-
dependent constants such as the amount of memory mgame needed to run the
actual game engine with no game world loaded and no clients connected. Next,
we definemworld as the amount of memory used for the game world being played.
As for entity-related memory constants, let mcs denote the amount of memory
needed to store the state of one client-controlled entity, and mes the amount
of memory needed to store the state of a client-independent entity. We ignore
the interaction between entities because it does not have a significant impact on
the memory load. Aggregating all the data, the memory consumption M on a
machine taking part in a distributed game session is:

M = N ·mcs +BE ·mes +mgame +mworld.

As a consequence, the final memory load function is:

LMEM =
M

Mmachine
=
N ·mcs +BE ·mes +mgame +mworld

Mmachine
,

where Mmachine represents the amount of memory available on the respective
machine.

106 R. Prodan et al.

5.3 Network Load Model

In terms of network consumption, we define first the outgoing network bandwidth
usage for a machine running a zone of a distributed game session as follows:

Dout = C · dcout + (H − 1) · (C +AE) · dupdate,

where dcout represents the amount of data sent to a client and dupdate the amount
of data exchanged between machines for updating a single entity’s state.

Secondly, the incoming network bandwidth usage for a machine running a
zone of a distributed game session is defined as:

Din = C · dcin + (N − C +BE −AE) · dupdate,

where dcin represents the amount of data received from a client.

5.4 Overall Load Model

We merge the previously presented models into an overall resource load model
for MMOGs, where the load of the entire system is imposed by the maximum
load of the individual resources:

L = max (LCPU , LMEM , LNET) .

To stress the generality of our modelling approach, MMOG classes can be defined
using the set of constants involved in all of the models previously described:

MMOGclass = {(BE) , (mcs,mes,mgame,mworld) , (dcout, dcin, dupdate)} .

Obviously, BE is not MMOG-dependent, but rather game world and game play
style (e.g. single play, team play)-dependent. Nevertheless, we included it among
the constants defining the MMOG class because we can consider games running
different game worlds and game play styles as belonging to different MMOG
classes.

6 Resource Allocation

Based on the predicted resource load within the next time interval, the resource
allocation service arranges for the provisioning of the resources required for a
proper execution that guarantees a good experience to all players. A typical ac-
tion performed by the resource allocation service is to extend game sessions with
new zones or replication servers to accommodate an increased number of players
during peak hours. Conversely, the resource allocation service deallocates and
merges multiple under-utilised game servers to improve the resource utilisation.
The resources that need to be provisioned by the resource allocation service can
be of four types, as considered by the load modelling service: CPU, memory, in-
put from the external network, and output to the external network of a resource
provider.

Dynamic Real-Time Resource Provisioning for MMOG 107

After allocating the required resources, the resource allocation service in-
structs the game servers through the RTF API [6] what parallelization strategy
to apply and which entities to migrate to new servers (see Section 2). Since the
allocation of resources and establishing of a new game session load distribution
scheme is a latency prone task (several seconds), an important aspect is to trig-
ger it early enough using load prediction and modelling services such that the
users to not experience any lags during their play.

An important remaining aspect is that resource providers use in general dif-
ferent policies describing one time bulk and one resource bulk as the minimum
allocation units for each type of resource. The measurement unit for the policy
resources is a generic “unit‘” which represents the requirement for the respective
resource from a fully loaded game server (e.g. one CPU unit represents the CPU
demand for a fully loaded game zone).

7 Experiments

We present in this section experimental results that validate our load prediction
and resource allocation approaches.

7.1 Load Prediction

As there is no real online game available which is capable of generating the
load patterns required for a thorough testing and validation of our prediction
method, we developed a distributed FPS game simulator on top of the RTF li-
brary [6] supporting the zoning technique and the inter-zone migration of entities

Fig. 4. Game simulator snapshot

108 R. Prodan et al.

Table 1. Simulation trace data sets

Data set
Peak hours

Peak load
Overall Instantaneous

modelling dynamics (17 h.) dynamics (2 min.)

Set 1 No +++++ +++++ +++++
Set 2 No +++++ +++++ +++++
Set 3 No +++++ +++++ +++++
Set 4 No +++++ +++++ +++++

Set 5 Yes +++++ +++++ +++++
Set 6 Yes +++++ +++++ +++++
Set 7 Yes +++++ +++++ +++++
Set 8 Yes +++++ +++++ +++++

(see Figure 4). We use this simulator for generating realistic load patterns such
as entity interaction hot-spots or simply large numbers of entities managed by
one game server. The entities in the simulation are driven by several Artificial
Intelligence (AI) profiles which determine their behaviour during a simulation:
aggressive determines the entity to seek and interact with opponents; team player
causes the entity to act in a group together with its teammates; scout leads the
entity for discovering uncharted zones of the game world (not guaranteeing any
interaction); and camper simulates a well-known tactic in FPS games to hide
and wait for the opponent. The four profiles have been selected to match the
four behavioural profiles most encountered in MMOGs [1]: the achiever, the ex-
plorer, the socialiser, and the killer, respectively. To also account for the mixed
behaviour encountered in deployed MMOGs [1], each entity has its own pre-
ferred profile, but can change the profiles dynamically during the emulation. We
further tried to get as close as possible to real games by importing maps from a
very popular FPS game (Counter Strike 1.6 [5]).

We evaluated the prediction service using eight different data traces gener-
ated with our simulator for a duration of 17 hours with a sampling rate of
two minutes (see Table 1). The first four data traces simulate different sce-
narios of a highly dynamic FPS game, while the other four are characteristic
to different MMORPG sessions. We compared the error of the neural network
prediction against other fast prediction methods such as moving average, last
value, and exponential smoothing, which have been proven to be effective in
large dynamic environments as the Grid [11]. Each prediction algorithm receives
as input each trace data set, and outputs for each input set sample a predic-
tion. For each prediction algorithm and trace data set combination, we define
the prediction error as the ratio between the sum of all sample prediction errors
and the sum of all N samples in the trace data set (expressed as a percentage):

PE =
∑N

i=1|nreal
i −npred

i |∑
N
i=1 nreal

i

·100, where nreal
i and npred

i denote the real, respectively
predicted entity counts at time step i.

The results shown in Figure 5(a) shows that, apart from producing better or
at least equal predictions, the important quality of our method is its ability to

Dynamic Real-Time Resource Provisioning for MMOG 109

0%

10%

20%

30%

40%

50%

60%

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

P
re

d
ic

ti
o

n
 e

rr
o

r
[%

]

Neural Average Moving average
Last value Exp. Smoothing 25% Exp. Smoothing 50%
Exp. Smoothing 75% Sliding window median

(a) Prediction comparison

 0.001

 0.01

 0.1

 1

 10

 100

Neural Sliding window Average Exp smoothing

Ti
m

e
[μ

s]

Prediction method

Min, Max, Median, 1st and 3rd quartiles

(b) Prediction time

Fig. 5. Neural network-based prediction results

adapt to various types of input signals, which the other methods fail to achieve.
Even though they often produce good results, the drawback of the other methods
is that it is not universally clear during a game play which of them should be
applied as the real-time prediction method for the next time step. Moreover,
as the dynamics of the game may change, for example during peak hours, the
best prediction method may change too. Our neural network-based prediction
successfully manages to adapt to all these types of signals and always delivers
good prediction results. Furthermore, the best results were obtained for the more
dynamic signals which best characterise the FPS games.

Figure 5(b) depicts the duration of one prediction on a common off-the-shelf
desktop workstation with an Intel Core Duo E6700 (2.66 gigahertz) processor for
all discussed prediction methods except last value which has no computational
requirements. Although the neural network predictor is the slowest of them, it is
nevertheless extremely fast with an average prediction duration of approximately
7 microseconds which makes it suitable for the severe real-time requirements of
online games.

110 R. Prodan et al.

 0

 20

 40

 60

 80

 100

 120

 140

08/18
00:00

08/20
00:00

08/22
00:00

08/24
00:00

08/26
00:00

08/28
00:00

C
P

U
 u

ni
ts

Time

Overall load
Overall dynamical allocation

Overall static allocation

Fig. 6. Static versus dynamic resource allocation

7.2 Resource Allocation

In evaluating the efficiency of the resource allocation, we used traces collected
from the official Web page of an MMORPG game called RuneScape [7].
RuneScape is not a traditional MMORPG, but consists of several minigames
combining elements of RPG and FPS. Thus, various levels of player interactiv-
ity coexist in the same game and the game load cannot be trivially computed
with the linear models employed in [12], but require more sophisticated meth-
ods like we presented in Section 5. The traces contain the number of players
over time for each server group used by the RuneScape game operators1. For
this work, we have analysed over six months of data until March 2008 with the
metrics being evaluated every two minutes giving over 10 thousand samples for
each simulation ensuring statistical soundness. We used in our experiments a
minimum resource bulk of 0.25 and a time bulk of six hours (i.e. deallocation
cannot be done earlier, as explained in Section 6).

To quantify the effectiveness of resource allocation, we measure the over-
allocation as the percentage allocated from the total amount of resources neces-
sary for the seamless execution of the MMOG that maintains the real-time QoS
requirements. We define the total resource over-allocation Ω(t) at time instance
t as the cumulated over-allocation of all machines participating in the game ses-
sion, where M is the number of machines in the session, αm(t) represents the
allocated resource on machine m and λm(t) represents the resource usage (the

generated load) on machine m: Ω(t) =
∑M

m=1 αm(t)∑
M
m=1 λm(t)

· 100.
Figure 6 shows comparatively the static and dynamic resource allocation for

the same workload. As expected, the dynamic resource allocation is better than
the static over-provisioning strategy. The average over-allocation is drastically
1 We could not use this traces for the load prediction validation since the zones on one

server group are too large for an accurate prediction and contain no entity position
information.

Dynamic Real-Time Resource Provisioning for MMOG 111

reduced from 250% in case of static over-provisioning to around 25% (mostly
due to the six hour time bulk) for the dynamic allocation strategy.

8 Conclusions

We proposed a new prediction-based method for dynamic resource provisioning
and scaling of real-time MMOGs in distributed Grid environments. Firstly, we
developed a load prediction service that accurately estimates the future game
world entity distribution from historical information using a fast and flexible neu-
ral network-based approach. Apart from the ability to adapt to a wide range of
signals characteristic to different game genres, styles, and user loads, our method
is also extremely fast which makes it suitable to applications with real-time re-
quirements like online games. On top of it, we developed generic analytical game
load models used to foresee future hot-spots that congest the game servers and
make the overall environment fragmented and unplayable. Based on the load pre-
diction information, a resource allocation service performs dynamic provisioning,
proactive load balancing, and migration of entities that keep the game servers
reasonably loaded to maintain the real-time QoS requirements. Using our allo-
cation method, we demonstrated a 10-fold improvement in resource provisioning
for a real-world MMORPG game.

References

1. Bartle, R.: Designing Virtual Worlds. New Riders Games (2003)
2. Inc. Blizzard Entertainment. World of warcraft,

http://www.worldofwarcraft.com/
3. Cai, W., Xavier, P., Turner, S.J., Lee, B.S.: A scalable architecture for supporting

interactive games on the internet. In: PADS 2002: Proceedings of the sixteenth
workshop on Parallel and distributed simulation, pp. 60–67. IEEE Computer So-
ciety Press, Washington (2002)

4. Feng, W., Brandt, D., Saha, D.: A Long-Term Study of a Popular MMORPG. In:
Proceedings of NetGames 2007, Netgames, pp. 19–24 (2007)

5. Inc. GameData. Counter strike, http://www.counter-strike.com
6. Glinka, F., Ploss, A., Müller-Iden, J., Gorlatch, S.: A real-time framework for

developing scalable multiplayer online games. In: NetGames. ACM Press, New
York (2007)

7. Ltd. Jagex. Runescape (November 2007), http://www.runescape.com
8. Müller-Iden, J., Gorlatch, S.: Rokkatan: scaling an RTS game design to the mas-

sively multiplayer realm. Computers in Entertainment 4(3), 11 (2006)
9. MMORPG.COM. Your headquarters for massive multiplayer online role-playing

games, http://www.mmorpg.com/
10. White, W.M., Koch, C., Gehrke, J., Demers, A.J.: Database research opportunities

in computer games. SIGMOD Record 36(3), 7–13 (2007)
11. Wolski, R.: Experiences with predicting resource performance on-line in computa-

tional grid settings. ACM SIGMETRICS Performance Evaluation Review 30(4),
41–49 (2003)

12. Ye, L., Cheng, M.: System-performance modeling for massively multiplayer online
role-playing games. IBM Systems Journal 45(1) (2006)

http://www.worldofwarcraft.com/
http://www.counter-strike.com
http://www.runescape.com
http://www.mmorpg.com/

2D Fast Poisson Solver for High-Performance

Computing

Alexander Kalinkin1, Yuri M. Laevsky2, and Sergey Gololobov1

1 Intel Corporation, Lavrentieva ave. 6/1, 630090 Novosibirsk, Russia
2 Institute of Computational Mathematics and Mathematical Geophysics SB RAS,

Lavrentieva ave. 6
laev@labchem.sscc.ru

1 Introduction

Among elliptic boundary value problems, the class of problems with separable
variables can be solved fast and directly. Elliptic problems with separable vari-
ables usually assume that the computational domains are simple e.g., rectangle
or circle, and constant coefficients [1]. This kind of problems can serve to gen-
erate preconditioners in iterative procedures for more complex methods. They
can also be used in low-accuracy models similar to the ones used in Numeri-
cal Weather Simulations. A straightforward implementation of solvers for such
problems makes them considered as too simple to pay much attention to them.
For instance, NETLIB* contains the codes of various solvers for problems with
separable variables. We are not aware if such solvers are provided as separate
solvers in other software packages except NETLIB Fishpack* and Intel R© Math
Kernel Library (Intel R© MKL) together with Intel Cluster Poisson Solver Library
(Intel R© CPSL). The problems with the separable variables can be suboptimal in
the sense that they require slightly more arithmetic operations (up to logarithmic
factor) than the number of unknowns to compute the solution to the problem.
This statement is true if, for example, the sizes of the discretized problems are
powers of 2. Computational Mathematics suggests that we take into considera-
tion not only arithmetic operations, but also the cost of memory operations as
well. Modern computers can perform computations at a very high speed, while
lacking the ability to deliver data to the computational units. Keeping in mind
that a memory operation can easily be dozen to hundred times slower than an
arithmetic one, a computationally optimal algorithm could compute the solution
slower than memory optimal algorithm. The recent developments in processor
industry resulted in multicore processors become standard processors not only
for powerful clusters, but also for home computers and laptops. Therefore, the
algorithm can also be non-optimal from the parallelization point of view. Opti-
mality here can be understood in terms of the number of synchronization points
and/or in terms of the amount of data that needs to be transferred between
different cores/processors. In summary, the modern computational algorithm
should focus on 3 key aspects, namely, parallelization, memory operations, and
arithmetic costs. The purpose of this paper is to demonstrate on a simple 2D
problem with separable variables that taking into account modern model the

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 112–120, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2D Fast Poisson Solver for High-Performance Computing 113

solution can be computed efficiently and fast. This would also help developers to
compute solution to the problem with separable variables really negligible with
respect to other computations. To complete our goal, we will evaluate software
provided by Intel Corporation. In particular, we focus on the comparison (where
possible) of NETLIB Fishpack* and Intel R© CPSL provided at [2] as well as Intel
MKL provided at [3]. This paper is organized as follows. First we are solving
a 2D Helmholtz problem using single precision on a shared memory machine
with two 4-Core Intel R© Xeon R© Processors E5462. Next we do the same but
use double precision arithmetic. Lastly we use double precision on a distributed
memory machine using MPI.

2 Problem Statement

We are going to use the following notation for boundaries of a rectangular domain
ax < x < bx, ay < y < by on a Cartesian plane:

bdaxψ = x = ax, ayψ ≤ y ≤ by,bdbxψ
= x = bx, ayψ ≤ y ≤ by,

bdayψ = y = ay, axψ ≤ x ≤ bx,bdbyψ
= y = by, axψ ≤ x ≤ bx � .

(1)

The wildcard ”*” may stand for any of the symbols ax, bx, ay, by, so that bd∗
denotes any of the above boundaries. The 2D Helmholtz problem is to find an
approximate solution of the Helmholtz equation

−∂
2u

∂x2 −
∂2u

∂y2 + qu = f(x, y), q = const ≥ 0, (2)

in a rectangle, that is, a rectangular domain ax ≤ x ≤ bx, ay ≤ y ≤ by, with one
of the following boundary conditions on each boundary bd∗:

The Dirichlet boundary condition: u(x, y) = G(x, y)
The Neumann boundary condition: ∂u

∂n = g(x, y)

n = −x on bdax , n = x on bdbx and n = −y on bday , n = y on bdby

We can see that the Poisson problem can be obtained from the Helmholtz prob-
lem by setting the Helmholtz coefficient q to zero. The Laplace problem can
be obtained by setting the right-hand side f to zero in addition to Helmholtz
coefficient. To find an approximate solution for 2D problems, a uniform mesh is
built in the rectangular domain:

xi = ax + ihx, yj = y(j)

i = 0, . . . , nx, hx =
bx − ax

nx
,

ay = y(0), < . . . < y(j) < . . . < y(nj) = bj

(3)

It is possible to use the standard five-point finite difference approximation on
this mesh to compute the approximation to the solution. We assume that the

114 A. Kalinkin, Y.M. Laevsky, and S. Gololobov

values of the approximate solution are computed in the mesh points (xi, yj), pro-
vided the values of the right-hand side f(x, y) at these points are given and the
values of the appropriate boundary functions G(x, y) and/or g(x, y) in the mesh
points laying on the boundary of the rectangular domain are known. We con-
ducted our measurements on two 4-Core Intel R© Xeon R© Processors E5462 (12M
Cache, 2.80 GHz, 1600 MHz FSB) equipped with 16GB of RAM. All test cases
were compiled with Intel R© C/C++ and Fortran compilers (version 10.1.018).
We used the following set of options -xT -O3 -ipo -no-prec-div static recom-
mended for the best performance. We ran each piece of code 4 times in a loop
and then selected the best time out of the four collected. Time measurements
were completed using the dsecnd routine from Intel R© MKL 10.1 Update 1+.
MPI measurements were completed with MVAPICH* 1.0 and the correspond-
ing MPI Wtime routine (single run). We also used the Poisson Library from
Intel R© MKL 10.1 Update 1, the Intel R© Cluster Poisson Solver Library from
whatif.intel.com (release 1.0.0.003) and NETLIB Fishpack* library built with
Intel R© Fortran compiler mentioned above. Discrete Fourier Transform (DFT)
computations are highly dependent on the dimension. For powers of 2, the DFT
requires the least possible number of operations, while for the primes the number
of operations reaches its maximum value. We consider only dimensions that are
powers of 2 as the difficult test case with a high data movement to operations
ratio.

3 Single Precision SMP Results

We first look at single precision computations that are of value for Numerical
Weather Simulation problems and consider the hwscrt routine from NETLIB
Fishpack* and the Poisson Library (PL) from Intel R© MKL. The hwscrt routine
is able to compute the solution to the 2D Helmholtz problem in a Cartesian
coordinate system in a single step. PL does computations in four steps by con-
secutive calls to the s init helmholtz 2d, s commit helmholtz 2d, s helmholtz 2d,
and free helmholtz 2d routines. For fairness, we measure the total time spent in
computations for both software libraries. We consider the homogeneous Dirichlet
problem with an exact solution on the rectangular domain 0 < x < 1, 0 < y < 1
as our test case. The first figure shows the ratio of computational time spent in
the hwscrt routine and computational time spent in four PL routines for different
regular mesh sizes starting from 4x4 and ending with 8192x8192 and with differ-
ent numbers of OMP threads. We dont refine the mesh further as the accuracy
of computations degrades for a larger number of mesh points. When the ratio
curve is above 1, PL Helmholtz 2D solver is faster than NETLIB Fishpack*.
Figure 2 shows scalability of Intel R© MKL PL routines in 2D Cartesian case. As
the hwscrt routine from NETLIB Fishpack* is not threaded, there is very little
difference in run time for different numbers of OMP threads in this routine. It is
worth mentioning that the routine can be threaded, however that would require
considerable additional work. From Figure 1, it can be seen that even on a single

2D Fast Poisson Solver for High-Performance Computing 115

thread, the PL routines can be up to 5 times faster than the hwscrt routine from
NETLIB Fishpack*. When threaded, the advantage grows up to 25 times on 8
threads. It is also clear that PL has heavier interface that results in essentially
slower performance for small problems (sizes up to 128). However, PL can regain
some performance in the case when the solution of problems different in right-
hand side only as it can do pre- (init and commit) and post-computational (free)
step only once unlike the hwscrt routine.

Performance tests and ratings are measured using specific computer systems
and/or components and reflect the approximate performance of Intel products as
measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance. Buyers should consult other sources
of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the
performance of Intel products, visit Intel Performance Benchmark Limitations.

Fig. 1. Comparison of NETLIB Fishpack* and Intel R© MKL (2D Cartesian case)
(single precision)

Fig. 2. Scalability of Intel R© MKL PL (2D Cartesian case) (single precision)

116 A. Kalinkin, Y.M. Laevsky, and S. Gololobov

Table 1. Computational time and error on 1 thread (single precision)

size NxN Pl time(s) Fishpack*
time(s)

Max norm of er-
ror for PL

Max norm of er-
ror for Fishpack*

32 3,78E-05 5,52E-05 7,34E-04 7,34E-04

128 4,44E-04 1,21E-03 1,34E-04 5,45E-05

512 6,69E-03 2,57E-02 2,50E-04 4,04E-01

2048 1,61E-01 7,97E-01 5,98E-03 9,45E-01

8192 2,96E-00 1,52E+01 1,59E-01 9,99E-01

Table 2. Computational time and error on 8 thread (single precision)

size NxN Pl time(s) Fishpack*
time(s)

Max norm of er-
ror for PL

Max norm of er-
ror for Fishpack*

32 1,52E-04 5,55E-05 7,34E-04 7,34E-04

128 3,17E-04 1,21E-03 1,34E-04 5,45E-05

512 2,20E-03 2,58E-02 2,50E-04 4,04E-01

2048 3,47E-02 8,00E-01 5,98E-03 9,45E-01

8192 6,00E-01 1,52E+01 1,59E-01 9,99E-01

Again, it can be clearly seen that multiple threads worse of turning on only
for larger sizes of problems (starting from 128). However, later the scalability
of PL gets really good (up to 5 times speed-up for 8 threads vs. 1 thread). It
should be kept in mind that for very small times of order (-6)(-4) variations of
measurements is relatively strong. We did not take any special steps to stabilize
our measurements as for such small computational times it is not so important if
the computational time is 1.0E-06 or 5.0E-06. The data related to performance
run on 1 thread are contained in Table 1:

The data related to performance run on 8 threads are contained in Table 2:
From the Tables above, we can see the substantial drop in accuracy in the

hwscrt routine at size 512. The accuracy of computations becomes inacceptable
starting at size 2048 (of order of magnitude of the seek solution).

We note that PL has large interface overhead for small size problems as there
is no difference between computational times for the sizes varying from 32 up to
and including 128. We think that small size problems are not of great interest for
HPC area, so the lower performance of PL in this range should not be considered
as a problem.

We can also conclude that single precision computations do not actually require
a cluster because of a small size of the problem (up to 64Mx4bytes per element
256MB of memory). However, cluster software may benefit from having Helmholtz
solver for distributed memory machines to avoid excessive communications.

2D Fast Poisson Solver for High-Performance Computing 117

4 Double Precision SMP Results

Performance tests and ratings are measured using specific computer systems
and/or components and reflect the approximate performance of Intel products as
measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance. Buyers should consult other sources
of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the
performance of Intel products, visit Intel Performance Benchmark Limitations.

Fig. 3. Comparison of NETLIB Fishpack* and Intel R© MKL (2D Cartesian case)
(double precision)

Fig. 4. Scalability of Intel R© MKL PL (2D Cartesian case) (double precision)

We next look at double precision computations that are of value for pre-
conditioning of elliptic problems with slightly varying coefficients and we con-
sider again the hwscrt routine from NETLIB Fishpack* and the Poisson Library
from Intel R© MKL. PL does computations in four steps by consecutive calls
to the double precision routines d init helmholtz 2d, d commit helmholtz 2d,
d helmholtz 2d, and free helmholtz 2d. We measured the total time spent in
computations for both software libraries.

118 A. Kalinkin, Y.M. Laevsky, and S. Gololobov

We consider the same homogeneous Dirichlet problem with the same exact
solution on the same rectangular domain 0 < x < 1, 0 < y < 1 as our test case.
Figure 4 shows the ratio of computational time spent in the hwscrt routine and
computational time spent in four PL routines for different regular mesh sizes
starting from 4x4 and ending with 16384x16384 and with different numbers of
OMP threads. We can refine the mesh further as the accuracy of computations
is good enough at least for PL, but the time for computations using the hwscrt
routine would be too big. When the ratio curve is above 1, PL Helmholtz 2D
solver is faster than NETLIB Fishpack*.

Figure 4 shows scalability of PL routines in 2D Cartesian case.
From the Figures above, we can come to the similar conclusions as for single

precision computations. We can also conclude that double precision computa-
tions could be of interest for the cluster computations because the problem size
can be huge enough for a single machine to handle it. And this is the topic for
our next consideration.

5 Double Precision MPI Results

At last, we look at double precision computations for distributed memory ma-
chine. We cannot consider the hwscrt routine from NETLIB Fishpack* anymore
as it is not designed for such kind of computations. Therefore, Intel R© CPSL
software will be evaluated only. Intel R© CPSL does computations in four steps
by consecutive calls to the double precision routines dmv0 init helmholtz 2d,
dmv0 commit helmholtz 2d, dmv0 helmholtz 2d, and dmv0 free helmholtz 2d.
We measured the computational time only (the time spent in the
dmv0 helmholtz 2d routine).

We consider the same homogeneous Dirichlet problem with the exact solution
on the rectangular domain u(x, y) = sin(πx)sin(πy) ,0 < x < 1, 0 < y < 1 as
our test case.

Following the instruction, we properly distributed the array f that initially
contains the right-hand side of the problem. This array is represented as a rect-
angle (1 . . .nx+ 1, 1 . . .ny+ 1) containing the values of the corresponding func-
tion. It is distributed among MPI processes so that the MPI process with rank
p (p = 0, . . . , nproc − 1) contains the sub-array f(1 . . .nx + 1, np . . .np+1 − 1),
where

n1 = 1, np+1 = np + [nx+1
nproc] + 1, ifp < nx+1

nproc ,

np+1 = np + [nx+1
nproc], ifp ≥ nx+1

nproc .

Here [u
v] is the integer part of u

v , {u
v } is the remainder u− [u

v] ∗ v, and nproc is
the number of MPI processes.

It is obvious that for the dimensions that are powers of 2, the scalability
of the software on such small problems cannot be good as the communications
will be dominating over the computations. Therefore, it is better to use the Pois-
son Library from Intel MKL for solving the problems of the limited size. In order

2D Fast Poisson Solver for High-Performance Computing 119

Table 3. Summarized results

OMP threads\MPI
processes

16 32 64 128

1 1,58E+02 5,57E+01 2,70E+01 1,24E+01

2 1,06E+02 5,14E+01 1,76E+01 8,72E+00

4 7,72E+01 2,76E+01 1,32E+01 6,65E+00

8 6,61E+01 2,50E+01 1,28E+01 6,38E+00

to get the real value of the Intel R© CPSL, we took the problem of size 105x105,
that is, the problem with 1010 unknowns and ran it. The results are summarized
in Table 3:

We can see that OMP scalability is poor. However, MPI scalability is per-
fect and presented on Figure 5 for single thread per MPI process. Super linear
speed-up is explained by the effect from the memory swap. The more processes
are involved in computations the more data can fit into the computer memory.
Therefore, the computations are performed faster.

Performance tests and ratings are measured using specific computer systems
and/or components and reflect the approximate performance of Intel products as
measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance. Buyers should consult other sources
of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the
performance of Intel products, visit Intel Performance Benchmark Limitations.

Fig. 5. Scalability of Intel R© MKL PL (2D Cartesian case) (double precision)

6 Conclusions

We have investigated the performance of software available for solving 2D
Helmholtz problems with separable variables on rectangular domains. We found

120 A. Kalinkin, Y.M. Laevsky, and S. Gololobov

that the straightforward implementation of the solver from NETLIB Fishpack*
shows good performance for small size problems (up to 128 mesh points in one
dimension). The more sophisticated implementation of Intel R© MKL PL shows
better performance and scalability on larger problem sizes. Performance gains
are from 5 up to 25 times for some dimensions. It also provides better accuracy
for large problem sizes.

We found that Intel CPSL provides additional benefits for distributed mem-
ory machines. While hybrid (MPI+OMP) performance is not improving with
the growing number of threads, the pure distributed memory (MPI only) per-
formance demonstrates extremely good scalability results.

References

1. Samarskii, A.A., Nikolaev, E.S.: Methods of Solution of Grid Problems. Nauka,
Moscow (1978) (in Russian)

2. Intel Cluster Poisson Solver Library,
http://software.intel.com/en-us/articles/intel-cluster-poisson-solver-

library

3. Intel Math Kernel Library, http://www.intel.com/software/products/mkl

http://software.intel.com/en-us/articles/intel-cluster-poisson-solver-library
http://software.intel.com/en-us/articles/intel-cluster-poisson-solver-library
http://www.intel.com/software/products/mkl

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 121–125, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Solution of Large-Scale Problems of Global Optimization
on the Basis of Parallel Algorithms and Cluster

Implementation of Computing Processes

Vladimir Koshur, Dmitriy Kuzmin, Aleksandr Legalov, and Kirill Pushkaryov

Siberian Federal University, Institute of Space and Information Technology,
Kirenskiy St., 26, Krasnoyarsk, 660074, Russia

VKoshur@sfu-kras.ru

Abstract. The parallel hybrid inverse neural network coordinate approxima-
tions algorithm (PHINNCA) for solution of large-scale global optimization
problems is proposed in this work. The algorithm maps a trial value of an ob-
jective function into values of objective function arguments. It decreases a trial
value step by step to find a global minimum. Dual generalized regression neural
networks are used to perform the mapping. The algorithm is intended for cluster
systems. A search is carried out concurrently. When there are multiple pro-
cesses, they share the information about their progress and apply a simulated
annealing procedure to it.

Keywords: optimization, global optimization, large-scale problems solution,
cluster, neural networks.

1 Introduction

Global optimization is important in both theory and praxis. It involves more complex
algorithms than local optimization, but results are of great value. Sometimes locating
of local extremes is sufficient. At the same time, there are tasks where global optimi-
zation is indispensable, for example, computer-assisted proofs, safety verification, and
molecule conformation search [1]. Nowadays there are many global optimization
methods, such as evolutionary algorithms [2], the simulated annealing [3], the Monte
Carlo method [1], the coordinates averaging method [4].

Global optimization of unsmooth functions with multiple extremes over subsets of
N-dimensional space (N = 102–106) is a challenging problem of computer science.
Usually practical objective functions are complex, and their evaluation requires partial
simulation of a system that is being optimized. An aerodynamic shape optimization
(7–10 variables in the very simplified case [5]), a protein folding problem
(3M variables, where M is a number of molecules), a nonlinear least squares problem
(dimensionality is proportional to a training set size in training neural networks) are
computation-intensive. Effective parallel algorithms and procedures are necessary to
solve such problems. Nowadays clusters are widely employed in high performance
computing, as they are powerful, scalable and relatively inexpensive [6]. 410 of 500

122 V. Koshur et al.

world supercomputers were clusters as of November 2008 [7]. So, it seems particu-
larly important to develop applications for such architectures.

In this paper we present the parallel hybrid inverse neural network coordinate ap-
proximations algorithm (PHINNCA), a new global optimization algorithm, which we
consider promising. In the work [8] it was shown that inverse dependencies approxi-
mation may be used to perform a global optimization. The new algorithm is based on
the inverse neural network coordinate approximations algorithm (INNCA) [9], which
is being developed by the authors, and the simulated annealing technique [3]. The
algorithm is well suited for cluster implementation.

2 Synopsis of the PHINNCA

The hybrid algorithm combines the INNCA with the simulated annealing technique.
A search is carried out in parallel (N processes are shown in Fig. 1). Multiple proc-
esses perform inverse coordinate approximations concurrently. The processes con-
tinually exchange the best results that they achieved. A process adopts the results that
are worse than its own with certain probability (4) and thus it does an annealing.

Fig. 1. Structure of the parallel program. Each process performs inverse neural network coordi-
nate approximations (INNCA), shares its best results with other processes, and does a simulated
annealing (SA) on the base of results received from others.

The program is suitable for cluster execution. The authors implemented it using the
“Parallel Computing Toolbox” [10] of the MATLAB system.

3 Description of the PHINNCA

Suppose we have the bounded function Rf →Ω:)(x
r

, where
n

n Rxxx ⊂Ω∈=),...,,(21x
r

. Further assume that the function is continuous almost

 Solution of Large-Scale Problems of Global Optimization 123

everywhere in the bounded area },1],,[:),...,,{(21 nibaxxxx iiin =∈=Ω . We

must find the point of global minimum minx
r

)(min)(minmin xx
x

rr
r fff

Ω∈
== . (1)

The algorithm for approximate calculation of minx
r

 is iterative. Define the set of

candidate points at the k-th iteration][kX as

][][][]1[][]0[]0[; kkkkk PHBXXBX ∪∪∪== − . (2)

The points from][kB are generated by blind search and may be random or form a
uniform mesh. They are intended to reveal the behaviour of the objective function in
the search space. The information accumulated about the behaviour contributes to the

heuristic search. The heuristic search generates points for][kH set. Multiple search
processes running in parallel exchange information about the best candidate solutions

discovered so far. That information ends up in][kP set.

The set of prediction functions iΦ is a core of the heuristic search. For each coor-

dinate we have

Ω∈∈=Φ= x
r

,),,...,2,1(),(Rfnifx ii ϕϕ . (3)

The functions map values of the objective function to values of its arguments. Tak-
ing (3) into account, we require the prediction functions to be such that

minmin
xx
rr ⎯⎯⎯ →⎯ → ffϕ

. With that functions, we decrease ϕf , a trial value of the objec-

tive function, step by step to find a global minimum.
The authors invented DGRNN (Dual Generalized Regression Neural Networks), a

modification of GRNN (Generalized Regression Neural Networks) [11], to approxi-
mate the prediction functions (3). In contrast with GRNN, DGRNN has an additional
input, a focal point. The point must be a center of area of interest. A DGRNN operates
in a neighbourhood of a focal point while an influence of remote items of a training
set is suppressed. Fig. 2 demonstrates the behaviour of DGRNN and GRNN predic-

tion functions for the function 1)1()1()(22
1 ++⋅−= xxxf .

Recall that the search processes exchange information about their progress, and the

best points received at the k-th iteration from the other processes accumulate in][kP .

So, we find the best of them,))((minarg
][

][xp
x

rr
r

f
kP

k

∈
= .

A procedure analogous to simulated annealing [2] is employed by a process to de-

cide whether it should accept the best of the points received (][kp
r

) or proceed with a

locally generated value (][kx
r

). The point is accepted with a probability

))()(][][kk
a f(fP xp

rr − ,

124 V. Koshur et al.

Fig. 2. Inverse neural network coordinate approximations for the function)(1 xf

⎪⎩

⎪
⎨
⎧ <

= −

else,

0, if1
)(

/0 kT

x
a

e

x
xP (4)

where T0 is an initial annealing temperature.
A process stops when a progress speed falls below the threshold, or the limit of ite-

rations is reached, or value of the objective function is satisfactorily low.
Finally, when the search stops at the S-th iteration, the final answer is

][

)(minargˆ
min

SX

f
∈

=
x

xx
r

rr
.

4 Conclusion

Global optimization problems are computation-intensive. So, global optimization
applications are good candidates for parallel implementation.

In this article we inquired into application of the parallel hybrid inverse neural
network coordinate approximations algorithm to global optimization. The algorithm
combines the INNCA algorithm with simulated annealing and is well suited for run-
ning on clusters. It uses the DGRNN, a modified GRNN, to approximate inverse
relations. The authors regard the algorithm as a promising routine for solution of
large-scale problems of global optimization.

 Solution of Large-Scale Problems of Global Optimization 125

References

1. Neumaier, A.: Complete Search in Continuous Global Optimization and Constraint Satis-
faction, http://www.mat.univie.ac.at/~neum/glopt/mss/Neu04.pdf

2. Wang, H., Ersoy, O.: Novel Evolutionary Global Optimization Algorithms and Their
Applications, http://docs.lib.purdue.edu/ecetr/340/

3. Russel, S., Norvig, P.: Artifical Intelligence: A Modern Approach, 2nd edn. Williams Pub-
lishing House, Moscow (2006) (in Russian)

4. Ruban, A.I.: Global Optimization by Averaging of Coordinates (in Russian). IPC KGTU,
Krasnoyarsk (2004)

5. Mengistu, T., Ghaly, W.: Global Optimization Methods for the Aerodynamic Shape De-
sign of Transonic Cascades,

 http://www.mat.univie.ac.at/~neum/glopt/mss/MenG03.pdf
6. Voevodin, V.V., Voevodin, Vl.V.: Parallel Computing (in Russian). BHV-Petersburg,

Saint Petersburg (2004)
7. Architecture share for 11/2008 | TOP500 Supercomputing Sites,

 http://www.top500.org/stats/list/32/archtype
8. Koshur, V.D.: Adaptive Algorithm of Global Optimization Based on Weighted Averaging

of Coordinates and Fuzzy Neural Networks (in Russian). Electronic peer-reviewed journal
“Neuroinformatika” 1(2), 106–124 (2006),

 http://www.niisi.ru/iont/ni/Journal/N2/Koshur.pdf
9. Koshur, V.D., Pushkaryov, K.V.: Global Optimization Based on Inverse Relations and

Generalized Regression Neural Networks (in Russian). In: X-th All Russia Scientific and
Technical Conference “Neuroinformatika 2008”. MIFI, Moscow (2008)

10. MathWorks: Parallel Computing Toolbox: Programming Overview: Product Introduction:
Overview,
http://www.mathworks.com/access/helpdesk/help/toolbox/
distcomp/brkl0o6.html

11. Medvedev, V.S., Potyomkin, V.G.: Neural Networks. MATLAB 6 (in Russian). Dialog-
MIFI, Moscow (2002)

DEEP - Differential Evolution Entirely Parallel

Method for Gene Regulatory Networks

Konstantin Kozlov1,� and Alexander Samsonov2

1 Dept. of computational biology, State Polytechnical University, St.Petersburg,
195251 Russia

kozlov@spbcas.ru
2 A.F. Ioffe Physico-technical Institute of the Russian Academy of Sciences,

St.Petersburg, 194021, Russia
samsonov@math.ioffe.ru

Abstract. DEEP - Differential Evolution Entirely Parallel method is
applied to the biological data fitting problem. We introduce a new mi-
gration scheme, in which the best member of the branch substitutes the
oldest member of the next branch, that provides a high speed of the al-
gorithm convergence. We analyze the performance and efficiency of the
developed algorithm on a test problem of finding the regulatory inter-
actions within the network of gap genes that control the development
of early Drosophila embryo. The parameters of a set of nonlinear differ-
ential equations are determined by minimizing the total error between
the model behavior and experimental observations. The age of the indi-
viduum is defined by the number of iterations this individuum survived
without changes. We used a ring topology for the network of computa-
tional nodes. The computer codes are available upon request.

Keywords: differential evolution, optimization, regulatory gene
networks.

1 Introduction

Differential evolution is an effective method for the minimization of various and
complex quality functionals. Its power is based on the fact that under appropriate
conditions it will attain the global extremum of the functional; its weakness is in
high computational demand and dependence on control variables, that provides
a motivation to parallelize DE. Previous work in this area has produced a number
of methods that perform well in certain particular problems, but not in general
applications.

Gene regulatory networks (GRNs) are the important set of models that has
been developed for mathematical treatment and analyzing the developmental
processes in biological objects. GRN represents the activation or repression of
transcription of the gene product by other genes. The spatio-temporal dynamics
of gene expression is described in the context of this study by the system of
� Corresponding author.

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 126–132, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

DEEP - Differential Evolution Entirely Parallel Method for GRNs 127

highly nonlinear differential equations. Their parameters are to be found as a
solution to the inverse problem of fitting the experimental gene expression data
to computed model output.

We introduce a new migration scheme for the Differential Evolution Entirely
Parallel (DEEP) method, that provides a high speed of the algorithm conver-
gence. We present numerical results on optimization using the developed algo-
rithm for the test problem of finding parameters in a network of two genes and
the analysis of the dependency of the accuracy of the final result on the period
of communication between branches. We show how changes in the quality of the
answer computed in parallel can be compensated for by constructing a function
relating the quality of the answer to the number of iterations required to obtain
it in serial computations.

2 Methods and Algorithms

2.1 Differential Evolution Entirely Parallel Method

DE is a stochastic iterative optimization technique proposed by Storn and
Price [1], that starts from the set of the randomly generated parameter vec-
tors qi, i = 1, ..., NP . . The set is called population, and the vectors are called
individuals. The population on each iteration is referred to as a generation. The
size of population NP is fixed. The first trial vector is calculated by:

v = qr1 + S(qr2 − qr3) (1)

where q• is the member of the current generation g, S is a predefined scaling con-
stant and r1, r2, r3 are different random indices of the members of population.
The second trial vector is calculated using ”trigonometric mutation rule” [2].

z =
qr1 + qr2 + qr3

3
+ (s2 − s1)(qr1 − qr2) (2)

+ (s3 − s2)(qr2 − qr3) + (s1 − s3)(qr3 − qr1)

where si = |F (qri)|/s∗, i = 1, 2, 3, s∗ = |F (qr1)|+ |F (qr2)|+ |F (qr3)|. The third
trial vector is defined as follows:

wj =

{
vj , j = 〈n〉I , 〈n+ 1〉I , ..., 〈n+ L− 1〉I
zj j < 〈n〉I OR j > 〈n+ L− 1〉I

(3)

where n is a randomly chosen index, 〈x〉y is the reminder of division x by y and
L is determined by Pr(L = a) = (p)a where p is the probability of crossover.
The new individuum replaces its parent if the value of the quality functional for
its set of parameters is less than that for the latter one.

The original algorithm was highly dependent on internal parameters as re-
ported by other authors, see, for example [3]. An efficient adaptive scheme for
selection of internal parameters S and p based on the control of the population
diversity was developed in [4] where a new control parameter γ was introduced.

128 K. Kozlov and A. Samsonov

Being an evolutionary algorithm, DE can be easily parallelized due to the
fact that each member of the population is evaluated individually. The whole
population is divided into subpopulations that are sometimes called islands or
branches, one per each computational node. The individual members of branches
are then allowed to migrate, i.e. move, from one branch to another according to
predefined topology [5]. The number of iterations between migrations is called
communication period Π .

We have developed a new migration scheme for the Parallel Differential Evo-
lution in which the best member of one branch is used to substitute the oldest
member of the target branch. The age of the individuum in our approach is de-
fined by the number of iterations this individuum survived without changes. The
computational nodes are organized in a ring and individuals migrate from node
k to node k + 1 if it exists and from the last one to the first one. Calculations
are stopped in case that the functional F decreases less than a predefined value
ρ during M steps.

The effect of parallelization is measured with respect to the number of the
evaluations of functional Q as the most time consuming operation in the al-
gorithm [6]. The parallel DE is considered as the converged one if one of the
branches has converged. Then Qp equals to the number of functional evalu-
ations of the converged branch. For different number of nodes N speedup is
defined as A(N) = Qs(F̂p(N))/Q̂p(N) ∗ 100% and parallel efficiency: E(N) =
A(N)/N ∗ 100%, where hat sign (ˆ) denotes the average over a set of runs,
subscripts s and p denote serial and parallel runs respectively, and F denotes
the final value of the functional.

2.2 Gene Regulatory Network Model

Segmentation genes in the fruit fly Drosophila control the development of seg-
ments, which are repeating units forming the body of the fly [7]. Immediately
following the deposition of a Drosophila egg, a rapid series of 13 almost syn-
chronous nuclear divisions take place, without the formation of cells. The period
between two subsequent nuclear divisions is called cleavage cycle.

The expression of segmentation genes is to a very good level of approximation
a function only of distance along the anterior-posterior (A-P) axis (the long
axis of the embryo quasi ellipsoid). This allows to use models with only one-
dimensional array of nuclei along the A-P axis. Let us denote as M(n) the
number of nuclei under consideration in cleavage cycle n. This number varies
with n as M(n) = 2M(n− 1).

Denoting the concentration of the ath gene product (protein) in a nucleus i
at time t by va

i (t), we write a set of ordinary differential equations for N zygotic
genes as:

dva
i (t)
dt

= Rag

(
N∑

b=1

T abvb
i (t) +ma

i

)
− λava

i (t) + (4)

+ Da(n)
[
(va

i−1(t)− va
i (t)) + (va

i+1(t)− va
i (t))

]
,

where a = 1, ..., N ; i = 1, ...,M(n).

DEEP - Differential Evolution Entirely Parallel Method for GRNs 129

The first term on the right hand side of (4) describes the regulated rate of
synthesis of protein from the ath gene. The function g(·) is to be a monotonic
sigmoid ranging from zero to one, and we use the following form g(y) = (1/2)(
1 + y/

√
y2 + 1

)
. The regulation of gene a by gene b is characterized by the

regulatory matrix element T ab. The term ma
i describes the aggregate regulatory

effect of various maternal transcription factors on gene a in nucleus i, which is
constant in time in most cases. The maximum rate of synthesis for protein a is
given by the function Ra. The second term on the right hand side of equation
(4) describes the degradation of ath protein, which is modeled as first order de-
cay with rate λa. Diffusion of protein from nucleus i to two adjacent nuclei is
described in the third term. The equations (4) are augmented with initial con-
ditions, whose values depend on the precise biological situation being modeled.

The model was successfully used in [8] to describe formation of stripes by the
pair-rule gene even-skipped as the result of regulation from gap and maternal
genes. In [9,11], the pattern formation in the gap gene system was studied basing
on the model. The data on gene expression in fruit fly Drosophila is available in
FlyEx database [10].

3 Results

To study the convergence of the method in a lab conditions we produced the
artificial gene expression data for the network of two genes in eight nuclei by inte-
gration the model equations, using the set of parameters that represents already
known solution. We took the model output for 9 time moments to calculate the
functional value. The parameters associated with one gene are fixed, so seven
are sought by the optimizer. We used κ = max

i

|qtrue−qopt|
|qtrue| ∗100% to measure the

accuracy of the obtained approximation of parameter set qopt in respect to the
known solution qtrue.

We have neglected the communication costs in our performance analysis made
for the sample runs because in real applications the time of evaluating the quality
functional is much larger than that for the communication needed for information
exchange, which makes communication time indeed negligible.

3.1 Serial Convergence Curve

The serial algorithm was implemented in ANSI C programming language and
run on Dell PowerEdge 2800 with 2 Xeons 2.4 GHz.

Due to an absence of an analytical model for this algorithm the optimal choice
of communication period Π is an empirical process up to date. The effect of
parallelization is essentially eliminated when Π is large. In the case of small Π ,
the divergence of the population will decrease too rapidly resulting in severe loss
of quality of the results. We show that a suitable choice of Π can lead to very
high efficiency.

In order to compensate any changes in the quality of the result because of
parallelization, it is desirable to know the expected number of serial iterations

130 K. Kozlov and A. Samsonov

corresponding to a particular value of a quality functional. Then the speedup
can be calculated by dividing the number of expected serial iterations at the
final value of a functional obtained in parallel by the average number of parallel
iterations required.

In the problem of finding the parameters of gene regulatory networks the
final value of the quality functional is affected by the number of algorithmic
parameters and hence does not correspond to a unique number of iterations.
We characterized the function Qs(F̂p(N)) that gives the number of functional
evaluations that the serial algorithm needs to obtain the same value of the quality
functional as in parallel by an extensive series of numerical runs varying:

- quality criterion threshold ρ: 1e-2, 1e-3, 1e-4, 1e-5;
- quality criterion number of steps M : 50, 75, 100, 150;
- adaptive scheme control parameter γ: 0.90, 1.10, 1.20, 1.30;
- number of individuals in population NP : 70, 90, 100, 110, 120, 130, 140,

150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280;
- communication period C: 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30, 35.

In our experiments we used communication in serial runs as it increases the
convergence speed. For each combination of parameters we made 100 runs that
equals the total number of 1, 612, 800 runs. Results are plotted with points in
Figure 1.

 4.6

 4.7

 4.8

 4.9

 5

 5.1

 5.2

 5.3

-4.8 -4.6 -4.4 -4.2 -4 -3.8 -3.6 -3.4 -3.2 -3

lo
g 1

0(
Q

s)

log10(Fs)

Experiment
Maximum efficiency
Convergence curve

Fig. 1. Convergence curve. Each point represents one combination of parameters.
log10(Q̂s) vs log10(F̂s).

The lower left-hand side of the graph shows a region where DE is most efficient,
i.e. contains the desired characteristic relationship between the functional value
and serial iterations for efficient evolution. Thus, the serial performance curve is
constructed by fitting the points in that region to a power law. The data is well
fitted by the equation (Figure 1):

log10(Q̂s) = −0.3039 ∗ log10(F̂s) + 3.5099 (5)

DEEP - Differential Evolution Entirely Parallel Method for GRNs 131

3.2 Parallel Performance

The parallel algorithm was implemented in ANSI C programming language and
MPI was used for parallelization. Runs were performed with different combi-
nations of parameters on the cluster of The Ioffe Physical-Technical Institute
equipped with 24 Pentium III Xeons working at 2.0 GHz, 14 AMD AthlonMP
2400+ and 160 IBM PowerPC 2200 processors. Table 1 shows best results with
respect to κ.

Table 1. Best optimization results for test problem in respect to solution quality κ
for different number of nodes N . The following parameters are given for each case:
stopping criterion parameters M and ρ, control parameter γ, communication period C
and the number of functional evalutations Q.

N M ρ γ C κ Q

10 150 1e-3 0.90 10 9.65 3715

20 150 1e-2 0.90 10 6.39 2679

40 150 1e-2 0.90 5 3.52 2289

50 150 1e-2 0.90 3 2.35 2090

70 75 1e-4 0.90 4 1.80 2031

100 75 1e-4 0.90 2 1.27 1670

 25

 30

 35

 40

 45

 50

 55

 1 1.5 2 2.5 3 3.5 4 4.5 5

S
pe

ed
up

 (
%

)

Communication period (iterations)

Fig. 2. Speedup vs communication period Π . The parameter values are: N = 100,
NP = 7, M = 75, ρ = 1e − 4, γ = 0.90.

The algorithmic parameters, such as quality criterion, number of individuals
and communication period may influence the final result in a quite complicated
manner. We used approximation (5) to find the number of iterations Qs that
the serial algorithm will need to reach the value of the quality functional Fp

that was obtained in the parallel runs and thus to calculate the speedup and

132 K. Kozlov and A. Samsonov

efficiency for different number of nodes. The parallel efficiency is about 80% for
the 50 nodes and 55% for 100 nodes. Both speedup and efficiency vary with the
number of computational nodes. For the given number of nodes, fixed population
size, stopping criterion and control variable γ speedup can be plotted as function
of communication periodΠ as shown in Figure 2 for N = 100,NP = 7, M = 75,
ρ = 1e− 4, and γ = 0.90.

The reliability of the method is demonstrated by the recovery of the param-
eters with about 1% accuracy.

Acknowledgments

Our sincere thanks to M. Samsonova, J. Reinitz and V. Gursky for many valuable
discussions. The support of the study by the NIH Grant RR07801, the CRDF
GAP Awards RUB-1578-ST-05, the RFBR Grants 08-01-00315-a, 08-01-00712-a
is gratefully acknowledged.

References

1. Storn, R., Price, K.: Differential Evolution. A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces, Technical Report TR-95-012, ICSI
(1995)

2. Fan, H.-Y., Lampinen, J.: A Trigonometric Mutation Operation to Differential
Evolution. Journal of Global Optimization 27, 105–129 (2003)

3. Gaemperle, R., Mueller, S.D., Koumoutsakos, P.: A Parameter Study for Differ-
ential Evolution. In: Grmela, A., Mastorakis, N.E. (eds.) Advances in Intelligent
Systems, Fuzzy Systems, Evolutionary Computation, pp. 293–298. WSEAS Press
(2002)

4. Zaharie, D.: Parameter Adaptation in Differential Evolution by Controlling the
Population Diversity. In: Petcu, D., et al. (eds.) Proc. of 4th InternationalWork-
shop on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara,
Romania, pp. 385–397 (2002)

5. Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel differen-
tial evolution. In: Congress on Evolutionary Computation (CEC 2004), Portland,
Oregon (2004)

6. Chu, K.-W., Deng, Y., Reinitz, J.: Parallel simulated annealing by mixing of states.
Journal of Computational Physics 148, 646–662 (1999)

7. Lawrence, P.A.: The Making of a Fly. Blackwell Sci. Publ., Oxford (1992)
8. Reinitz, J., Sharp, D.: Mechanism of Formation of Eve Stripes. Mechanisms of

Development 49, 133–158 (1995)
9. Jaeger, J., Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov,

K.N., Manu, Myasnikova, E., Vanario-Alonso, C.E., Samsonova, M., Sharp, D.H.,
Reinitz, J.: Dynamic control of positional information in the early drosophila em-
bryo. Nature 430, 368–371 (2004)

10. Pisarev, A., Poustelnikova, E., Samsonova, M., Reinitz, J.: FlyEx, the quantita-
tive atlas on segmentation gene expression at cellular resolution. Nucl. Acids Res.
(2008), doi:10.1093/nar/gkn717

11. Gursky, V.V., Jaeger, J., Kozlov, K.N., Reinitz, J., Samsonov, A.M.: Pattern forma-
tion and nuclear divisions are uncoupled in drosophila segmentation: Comparison
of spatially discrete and continuous models. PhysicaD 197, 286–302 (2004)

Efficiency of Parallel Monte Carlo Method to

Solve Nonlinear Coagulation Equation�

Mikhail Marchenko

Institute of Computational Mathematics and Mathematical Geophysics,
Siberian Division of Russian Academy of Sciences,

pr. Lavrentieva, 6, Novosibirsk, 630090, Russia
mam@osmf.sscc.ru

Abstract. A parallel Direct Simulation Monte Carlo (DSMC) algo-
rithm to solve a spatially inhomogeneous nonlinear equation of coag-
ulation is presented. The algorithm is based on simulating the evolution
of stochastic test particles ensembles. The algorithm can be effectively
implemented on parallel computers of different architectures including
GRID infrastructure based on MPLS networks. A problem of minimizing
the computational cost of the algorithm is considered. To implement the
algorithm on GRID infrastructure we carry out preliminary simulation
of an underlying network. Such simulation enables to define minimal net-
work bandwidth necessary for efficient parallel decomposition of DSMC
algorithm.

Keywords: Kinetic equation, coagulation equation, Monte Carlo
method, Direct Simulation Monte Carlo Method, multiparticle ensem-
ble, parallel algorithm.

1 Coagulation Equation

We consider a Cauchy problem for a system of spatially inhomogeneous non-
linear equations of coagulation (the system is also referred to as coagulation
equation) [7]:

∂c1
∂t

+ div(vc1) = −c1
∞∑

j=1

K(1, j)cj ,

∂ci
∂t

+ div(vci) (1)

=
1
2

i−1∑
j=1

K(i− j, j)ci−jcj − ci

∞∑
j=1

K(i, j)cj, i ≥ 2,

ci(0, x) = c0i (x)

� The work was supported by RFBR grants No. 09-01-00639 and No. 09-01-00035,
Russian Science Support Foundation’s grant.

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 133–141, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

134 M. Marchenko

Here ci = ci(t, x), i = 1, 2, . . . is concentration of i-mers at time t and point
x, v = v(x) is a spatially inhomogeneous velocity field, K(i, j) is a coagulation
kernel, c0i (x) is a concentration of i-mers at t = 0. We consider the equation
inside time-spatial domain Ω × (0, T], where Ω ⊂ R3, T <∞.

We evaluate the following functionals of the equation solution:

ϕi(t) =
∫

G

ci(t, x)dx, G ⊆ Ω. (2)

Also we consider the same space integrals of spectrum moments.

2 Monte Carlo Algorithm (Single Processor Case)

To solve coagulation equation (1) we simulate sample values of test particles
ensemble

ξ = ξ(T) = {p1, p2, . . . , pN},
where N = N(T). The pair pk = (lk, xk) is called a test particle. Here lk ≥ 1 is
a size of the particle (integer value), xk ∈ R3 is a position of the particle. Denote
by N0 an initial number of test particles at t = 0.

Note that a velocity variable is not included to the phase state of the test
particle (cf. with the opposite case in [2]). The reason is that the velocity filed
is defined for the particle system a-priori (see (1)).

Lets us split the spatial domain Ω into sufficiently small non-overlapping sub-
domains Ω1, Ω2, . . . , ΩS (they will be referred to as interaction subdomains).
Denote by ρs a volume of s-th interaction subdomain. To define Monte Carlo
algorithm let us consider so called ’regularized’ coagulation kernel [2,4]:

Kρ(p1, p2) =
S∑

s=1

ρ−1
s hs(x1)hs(x2)K(l1, l2), (3)

where hs(x) is an indicator function of the domain Ωs.
Assume that there exists a majorant for the coagulation kernel:

K(l1, l2) ≤ K̂ <∞.

Then the majorant for the ’regularized’ kernel (3) is defined as follows:

K̂ρ(p1, p2) = K̂ρ−1
min, (4)

where ρmin = min
k
ρk.

Let us split the interval [0, T] into subintervals of length &t. According to
the majorant frequency algorithm [2,4] a sample value ξ = ξ(T) is simulated as
follows:

1. Simulating the initial distribution of particles according to the probability
density f(i, x) = c0i (x). Thus we have initial state of the particles ensemble
ξ(0) = {p1, p2, . . . , pN0}.
Set t = 0, tc = 0.

Efficiency of Parallel Monte Carlo Method 135

2. Simulating a random value τ - a time between subsequent coagulation events.
The value τ is exponentially distributed with the parameter

ν̂ =
1

2N0

∑
i=j

K̂ρ(pi, pj). (5)

Set tc = tc + τ .
If tc > &t the algorithm switches to the stage 6.

3. Choosing a pair of coagulating particles (pi, pj) with the probability (0.5N
(N − 1))−1.

4. Simulating a real or fictitious coagulation event for the chosen pair. A prob-
ability of fictitious event Pf (pi, pj) is given as follows:

Pf (pi, pj) = 1,

provided both the particles belong to different interaction subdomains;

Pf (pi, pj) = 1− K(li, lj)ρmin

K̂ρs

,

provided both the particles belong to the same interaction subdomain Ωs.
When the real coagulation event occurs, the chosen pair of particles merges
into one particle and the phase state of the ensemble changes as follows:

(pi, pj) = ((li, xi), (lj , xj)) → p′i = (li + lj , xi), N = N − 1.

When the fictitious coagulation event occurs, the phase state of the ensemble
doesn’t change.

5. Switching to the stage 2.
6. Simulating the spatial transport of all particles according to Euler method

with the step size &t:
x′i = xi +&tv(xi).

Set tc = 0, t = t+&t.
7. If t ≤ T the algorithm switches to the stage 2.

Then the functional ϕ can be estimated according to the formula

ϕ ≈ Eξζ ≈
1
L

L∑
i=1

ζi,

where ζi = ζ(ξi), the notation Eξ stands for the expectation with respect to
distribution of ξ.

Denote by εdet a deterministic error of the estimator ζ (i.e. the error of es-
timating ϕ with Eξζ). Denote by εstat a statistical error of the estimator ζ
(i.e. the error of estimating Eξζ with 1/L

∑L
i=1 ζi). It is known that εstat =

γ
√

Dζ/L, γ = const.

136 M. Marchenko

3 Monte Carlo Algorithm (Multiprocessor Case)

We consider a case when the number of particles N is so large that a simulation
of a sample ξ must be carried out only on M processors of parallel computer:

ξ = {ξ(1), ξ(2), . . . , ξ(M)}.

To make parallel decomposition of the single processor algorithm, the com-
putational domain Ω ⊂ R3 is splitted into M non-overlapping subdomains
Ω̂1, Ω̂2, . . . , Ω̂M , the particles being sorted out into subdomains. These subdo-
mains will be referred to as processors’ subdomains. Denote by nm a number
of particles in m-th subdomain. Each subdomain will be treated by a single
processor.

Let us write the majorant frequency in the following way: ν̂ =
M∑

m=1

ν̂m, where

ν̂m =
1

2N0

∑
i=j

K̂ρ(pi, pj), (6)

the summation being taken over the particles belonging to Ω̂m [2,4]. Then a
parallel simulation may be carried out as follows:

1. Each processor simulates initial condition independent of other processors
(see stage 1):

ξ(m)(0) = {p(m)
1 , p

(m)
2 , . . . , p(m)

nm
}, m = 1, 2, . . . ,M.

2. On m-th processor over the step size &t all coagulation events (real and
fictitious) are simulated independent of other processors (see stages 2-5). In
simulation instead of the parameter ν̂ in (5) we use parameter ν̂m from (6)
and instead of N we use nm. At the end of immediate interval &t we get

ξ(m)(i&t) = {p(m)
1 , p

(m)
2 , . . . , p(m)

nm
},

nm = nm(i&t), m = 1, 2, . . . ,M, i = 1, 2, . . . , T/&t.

3. At the end of &t all processors exchange particles according to Euler method
(see stage 6). Thus we get the updated ensembles ξ(m)(i&t), m = 1, 2, . . . ,M .
Then the parallel algorithm switches to the stage 2.

Requirements for parallel random number streams being very strong, it is
necessary to use well tested generator. It is recommended to use the generator
introduced and tested in [6].

3.1 Optimal Choice of Parallel Algorithm’s Parameters

While increasing the number of processors M it is reasonable to change other
parameters of the algorithm in order to get better accuracy of computations. But

Efficiency of Parallel Monte Carlo Method 137

it is necessary to change algorithm’s parameters in an optimal way otherwise the
computational cost may grow.

Note that
ξ = ξ(p,N0,&t, ρ,M, {Ω̂m}M

m=1),

where ρ is a typical volume of interaction subdomains, {Ω̂m}M
m=1 is a set of pro-

cessors’ subdomains and p is a set of parameters corresponding to the coagulation
equation (1) and the functional (2). Note that we neglect a dependence of ξ on
interaction subdomains {Ωs}S

s=1. It is possible to do it under some restrictions
on the form of interaction subdomains.

An expectation of a computer time for Monte Carlo algorithm equals to t1L,
where t1 is an expectation of a computer time to simulate one sample. It follows
from an equality of a deterministic error εdet and a stochastic error εstat that

L ∼ ε−2
detDζ,

where Dζ is a variance of the estimator. Therefore a computational cost of
the algorithm is in direct proportion to the value

C(ζ) = t1ε
−2
detDζ.

Note that εdet and εstat don’t depend on M and {Ω̂m}M
m=1:

εdet = εdet(p,N0,&t, ρ), εstat = εstat(p,N0,&t, ρ, L).

Let us call the following function a relative efficiency of the parallel decom-
position:

Φ =
C(ζ)|M=1

C(ζ)|M>1
=
t1|M=1

t1|M>1
.

Here while simulating the values of p,N0,&t, ρ are the same for M = 1 and
M > 1.

We assume a hypothesis that the variance of the estimator has the following
dependence upon the parameters of the algorithm:

Dζ = D(p,N0,&t, ρ) ∼ N−1
0 D1(p),

the variance nearly not depending on ρ and &t. It is possible to prove this
hypothesis rigorously but this proof lies beyond the framework of this paper.

Also we assume that the deterministic error has the following order of mag-
nitude [2,4]:

εdet = e(p,N0,&t, ρ) ∼ E1(p)N−1
0 + E2(p)&t+ E3(p)ρ.

It follows from the last formula that

&t ∼ N−1
0 , ρ ∼ N−1

0 . (7)

Therefore
Dζ ∼ N−1

0 , εdet ∼ N−1
0 , L ∼ ε−2

detDζ ∼ N0.

138 M. Marchenko

Let us investigate how the function t1 depends on its parameters. It is evident
that

t1 = t1(p,N0,&t, ρ,M, {Ω̂m}M
m=1).

It is clear that
t1 = E(t(i) + t(c) + t(e)),

where t(i) corresponds to the simulation of the initial state of particles ensemble,
t(c) corresponds to the independent sequential simulation of coagulation events
on different processors, t(e) corresponds to the exchange of particles between
processors. Let us derive orders of magnitude of the values t(i), t(c), t(e).

The parallel algorithm is synchronized at i = 1, 2, . . . , T/&t, namely, before
data exchange stage and after having finished it. Therefore

t(c) =
T/�t∑
i=1

t
(c)
i , t

(c)
i = max

m=1,...,M
t
(c)
i,m,

t(e) =
T/�t∑
i=1

t
(e)
i , t

(e)
i = max

m=1,...,M
t
(e)
i,m,

where t(c)i,m is a computer time corresponding to sequential simulation of coagu-

lation events on m-th processor over i-th time interval &t, t(e)i,m is a computer
time corresponding to the data exchange. It is clear that in an optimal case the
following relationships for each sample must hold:

t
(c)
i,1 ≈ t

(c)
i,2 ≈ . . . t

(c)
i,M , (8)

t
(e)
i,1 ≈ t

(e)
i,2 ≈ . . . t

(e)
i,M (9)

at each step i = 1, 2, . . . , T/&t.
Note that it is hard to formalize a choice of {Ω̂m}M

m=1. In what follows we
give some requirements for the choice of processors’ subdomains.

First of all, we assume that the number of links between processors (i.e., a
virtual topology of communications) is constant while changing &t and M . It
follows that the value of t(e)i,m doesn’t depend on the number of processors.

In what follows we describe some requirements for {Ω̂m}M
m=1 to approximate

relationships (8, 9). According to [2,4] the value of t(c)i,m has the following order
of magnitude:

t
(c)
i,m ∼ pm&tnm, (10)

where the constant pm corresponds to the performance of the computer. There-
fore if {Ω̂m}M

m=1 are chosen such that

n1(0) ≈ n2(0) ≈ . . . ≈ nM (0), (11)
n1(i&t) ≈ n2(i&t) ≈ . . . ≈ nM (i&t), i = 1, 2, . . . , T/&t

then the relationship (8) holds. Therefore a computational load of the parallel
algorithm is quite well balanced provided Et(e) ≈ Et(c).

Efficiency of Parallel Monte Carlo Method 139

We consider a case when (11) holds automatically. It means that the coagula-
tion equation has specific properties and the parameters of the parallel algorithm
are being chosen in a specific way.

While simulating the initial condition, each processor makes the same amount
of computational work. Namely, m-th processor uses the same random numbers
as other processors use getting test particles in turn and choosing particles be-
longing to Ω̂m. Therefore

Et(i) = CiN0. (12)

It follows from (11) that

max
m=1,...,M

t
(c)
i,m ≈ t

(c)
i,m∗ , i = 1, 2, . . . , T/&t

for some processor number m∗. A computational time it takes to simulate the

fictitious coagulation events equals to
N0

M2

Cf

ρ
&t, where Cf = const. For the real

coagulation events a computational time equals to
N0

M
Cr&t, where Cr = const.

Therefore

t
(c)
i,m∗ ≈

N0

M

(Cf

Mρ
+ Cr

)
&t, Et(c) ∼ N0

M

(Cf

Mρ
+ Cr

)
. (13)

A dependence of t(e)i,m on the parameters N0,&t,M, {Ω̂m}M
m=1 is obviously quite

complicated. Also it is necessary to take into account a technology of processing
the requests to send and receive data by a network software. Assume that the
following relationship holds:

t
(e)
i ≤ CeN0M

r&t, r ≥ 0, i = 1, 2, . . . , T/&t,

where Ce = const. Considering the upper bound as the worst case of data ex-
change contribution we have

Et(e) ∼ CeN0M
r. (14)

Let us specify the dependence of N0 upon M in the following way:

N0 = N ′
0M

d, 0 ≤ d ≤ 1. (15)

If we change the variables N0, ρ for M taking into account (7) and (15) then for
the case M > 1 we get the following relationship:

t1|M>1 ∼ CiN0 +
N0

M
(
Cf

Mρ
+ Cr) + CeN0M

r

∼ CiM
d + CfM

2(d−1) + CrM
d−1 + CeM

d+r.

Similarly, for the case M = 1 we get the following relationship:

t1|M=1 ∼ CiN0 +N0(
Cf

ρ
+ Cr) ∼ (Ci + Cr)Md + CfM

2d.

140 M. Marchenko

Therefore for the case M > 1 the computational cost has the following order of
magnitude:

C(ζ) ∼M2d+r. (16)

The relative efficiency of parallel decomposition has the following order of mag-
nitude as M →∞:

– if Ce = 0 then Φ ∼Md →∞;
– if Ce > 0, d < r then Φ ∼Md−r → 0;
– if Ce > 0, d = r then Φ ∼ const;
– if Ce > 0, d > r then Φ ∼Md−r →∞.

Let us discuss the idea of optimal use of computing system resources. Compu-
tational cost’s order of magnitude being quite high as M →∞, it is reasonable
to set d < 1. Thus we get the following additional advantage: the processors of a
computing system will not be fully loaded with the calculations. Then it is pos-
sible to use free computational resources to increase the number of independent
samples of ξ to decrease the value of stochastic error εstat. Alternatively, it is
also possible to use sample splitting technique to decrease the value of Dζ.

In conclusion let us note that the foregoing results were obtained for the case
when he numbers of particles nm, m = 1, 2, . . . ,M were almost equal during
simulation according to (11). But we hope that in the case when the distribution
of particle ensemble among processors is quite close to (11) one a behavior of
relative efficiency and computational cost will be close to the above-mentioned
relationships. Surely, the most complicated cases have to be investigated later on.

3.2 Implementation of Parallel Monte Carlo Algorithm on GRID
Infrastructure

In what follows we give some practical advices on the implementation of the
DSMC algorithm on GRID infrastructure. We assume that computers forming
GRID infrastructure have different performances. Also, underlying network is
thought to be MPLS one, so we can order necessary network bandwidth. It is
clear taht in the case of GRID implementation the computational cost of the
data exchange is greater than the computational cost of sequential computations:
Et(c) ' Et(e).

Here a main question is choosing the necessary network bandwidth. It is evi-
dent that in practice the number of processors M can not be increased infinitely.
So it is not clear when the relative efficiency starts showing the asymptotic be-
havior (as described hereinbefore). Therefore a question arises which is a minimal
network bandwidth under which

t1|M=1 = t1|M=M ′ , (17)

where M ′ is a number of available processors.
To determine minimal network bandwidth we make preliminary computations

with M = M ′ and necessary values of ρ,&t and {Ω̂m}M
m=1. Actually the values

of L and N0 may be quite small. At the end we have the estimates for the values

Efficiency of Parallel Monte Carlo Method 141

t(i), t(c), t(e). Actually instead of t(e) it is reasonable to evaluate b(e) - an amount
of data transferred between processors (in bytes). If necessary we can scale the
values of t(i), t(c), b(e) to the necessary value of N0. It easy to do it because the
values of t(i), t(c), b(e) are in direct proportion to N0. Having all this information
we can simulate a behavior of the network using special network simulator [1].
Such simulation enables to evaluate minimal network bandwidth to satisfy the
condition (17).

In details this approach is described in [5,3].

References

1. Adami, D., Giordano, S., Pagano, M.: Dynamic Network Resources Allocation in
Grids through a Grid Network Resource Broker. In: INGRID 2007 (2007)

2. Ivanov, M.S., Rogazinskii, S.V.: Efiicient schemes of direct statistical simulation of
rarified gas flows. Mathematical Modeling 1(7), 130–145 (1989)

3. Marchenko, M., Adami, D., Callegari, C., Giordano, S., Pagano, M.: Design and
Deployment of a Network-aware Grid for e-Science Applications. In: IEEE Interna-
tional Conference on Communications ICC 2009 (2009)

4. Marchenko, M.A.: A study of a parallel statistical modelling algorithm for solution of
the nonlinear coagulation equation. Russ. J. Numer. Anal. Math. Modelling. 23(6),
597–614 (2008)

5. Marchenko, M., Adami, D., Callegari, C., Giordano, S., Pagano, M.: A GRID
network-aware for efficient parallel Monte Carlo simulation of coagulation phenom-
ena. In: INGRID 2008 (2008)

6. Marchenko, M.A., Mikhailov, G.A.: Parallel realization of statistical simulation and
random number generators. Russ. J. Numer. Anal. Math. Modelling 17(1), 113–124
(2002)

7. Voloshuk, V.M., Sedunov, Yu.S.: Processes of coagulation in disperse systems.
Leningrad-Gidrometeoizdat (1975)

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 142–146, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Parallel Algorithm for Triangular Mesh Reconstruction
by Deformation in Medical Applications*

Olga Nechaeva1 and Ivan Afanasyev2

1 Supercomputer Software Department
ICMMG, Siberian Branch

Russian Academy of Science
Pr. Lavrentieva, 6, Novosibirsk, 630090, Russia

nechaeva@ssd.sscc.ru
2 Department of Mechanics and Mathematics

Novosibirsk State University
Pirogova, 2, Novosibirsk, 630090, Russia

ivan_bunin@mail.ru

Abstract. The main goal of this paper is to develop an efficient method of tri-
angular mesh generation for physical objects which have similar geometrical
structure. The method is based on deforming a high quality mesh generated
over some “ideal” object into another object of the same structure with mesh
quality preservation. The approach uses the Self Organizing Maps algorithm
and has been applied for constructing meshes on human femur bones using the
GeomBox and GeomRandom packages. A parallel deformation algorithm is
implemented using MPI. The efficiency of the parallelization is about 90%.

1 Introduction

Accurate Finite Element (FE) analysis requires high quality meshes. In some fields
like medicine, geophysics, materials, etc., physical objects under analysis are de-
scribed by raw data measured by laser scanners, computer tomography devices,
etc. [1] The first processing stage produces a high resolution but lacking necessary
quality triangular mesh. Further, this low quality triangulation has to be turned into a
high quality one with less number of points. This stage is usually labor-intensive and
should produce meshes with the requirements of particular FE tool [2]. The paper is
focused on automation of mesh construction starting from a low quality triangulation.

The automation is applicable to a series of physical objects which have similar
geometrical structure. The idea proposed in this work is based on effective reusing of
high quality meshes collected so far. Once generated, a high quality mesh can be
deformed in a special way to fit an object of the same structure. The deformation
algorithm should provide acceptable quality of the resulting mesh.

* This work was supported by the NSU-Intel Laboratory of High Performance Computing

Systems (Novosibirsk State University).

 Parallel Algorithm for Triangular Mesh Reconstruction 143

This approach is especially useful, for example, in medical applications. Particu-
larly, we applied the proposed method for mesh generation in FE analysis of a realistic
femur nail bone implant system in a typical proximal femoral fracture [3]. All human
femur bones have similar geometrical structure, i.e. they differ from each other only in
size and local proportions. Therefore, it is possible to deform a high quality mesh over
some “ideal” bone and make it fit the femur bones of trauma patients with minimum
mesh quality distortion. The method could be helpful because the same procedure of
FE analysis should be applied many times for a lot of patients.

The proposed mesh deformation algorithm is based on the Kohonen’s Self Orga-
nizing Maps (SOM) [4]. SOM is a stochastic algorithm which is usually applied for
projection of high dimensional data onto a low dimensional space. When running the
SOM algorithm, a low quality triangulation which defines the object is used only for
sampling random points over the object surface (in case of surface mesh generation)
and inside of it (in case of volume mesh construction). In our present work, the
case of surface mesh deformation has been considered carefully. Also it has to be
noted that the proposed method is not limited to using a triangulation as the physical
object description. The geometry can be given, for example, by a point cloud or
voxelization.

The important issue in medical applications is the speed of diagnosis making.
Therefore, the significant part of the paper is devoted to parallel implementation
of the mesh deformation algorithm. Due to it’s simplicity and internal parallelism,
the SOM algorithm can be efficiently parallelized for any parallel computing
technology.

2 General Idea of Deformation Algorithm

Let Q be an “ideal” physical object in the Euclid space with a high quality triangular
mesh 1{ ,..., }N NQ q q= , where N is the number of mesh points and iq Q∈ , 1,...,i N=

are the coordinates of these points. Let G be an object having the geometrical struc-
ture being similar to Q. In this work, G is given by some surface triangulation. There
is no requirements on this triangulation, because it is used only for random point gen-
eration on G. The goal is to iteratively deform the mesh QN to make it fit G. The re-
sulting mesh 1{ ,..., }N NG x x= , where ix G∈ , 1,...,i N= , should satisfy a given set

1{ ,..., }sC C of quality criteria with the given tolerance percentage values
max max

1{ ,..., }sθ θ . In order to measure the accuracy of approximation of G by GN, the

distance d(G, GN) can be calculated as the maximum Euclid distance from all points
in G to all triangles in GN and vise versa. The maximum acceptable value
d(G, GN) = dmax is to be given. When applying the iterative SOM algorithm [4] for
mesh deformation, initial positions xi(0) can be obtained by a linear mapping f which
matches centers of QN and G in such a way that xi(0) = f(qi), 1,...,i N= .

At each iteration t (from T0 to T), a random point y is generated from the surface of
G uniformly; among all the mesh points xi(t) the winning point ()mx t is selected,

which is closest to y; and all mesh points adjust their locations according to the rule:

144 O. Nechaeva and I. Afanasyev

(1) () (,)(())
mi i q i ix t x t t q y x tθ+ = + − , (1)

where (,) [0,1]
mq it qθ ∈ controls the magnitude of mesh points displacements in G

while they move towards the point y, and essentially influences the quality of resulting
meshes and speed of construction process [4]. At the end of the iterative process, the
SOM algorithm tends to reproduce local patterns of mesh points mutual positions in
QN. Maximum number of iterations T is selected depending on N and tolerances

max max
1{ ,..., }sθ θ . The difference of our SOM application is that QN is unstructured.

3 Parallel Algorithm for Mesh Deformation

In order to make the proposed deformation algorithm as fast as possible, the paralleli-
zation is considered in this section. The most time consuming operations in the SOM
algorithm are (1) calculation of winning point and (2) adjustment of mesh points loca-
tions xi(t). Fortunately, all mesh points in these operations are processed in the same
way independently of each other. In case of distributed memory computer system,
parallel algorithm for mesh deformation is following.

Let a multicomputer consist of k processors P0, …, Pk–1. The set of mesh points GN
is distributed over the processors. It has to be noted that the points can be distributed
in an arbitrary order. Let ()j

NG be a subset of the mesh nodes stored in the processor

Pj, j = 0,…, k–1. Let also the mesh QN be distributed over the processors in such a
way that the processor jP contains a subset ()j

NQ and if ()() j
i Nx t G∈ , then ()j

i Nq Q∈ . It

is important to ensure the same sequence of random points at each processor.

Parallel Algorithm
All processors perform the following operations at each iteration t = T0, …, T.

a) Point generation. In each processor, the same random point y∈G is generated.
b) Winner determination. Each processor Pj searches for the point ()

() () j
m j Nx t G∈

that is the closest to y (xm(j)(t) is a local winner) and performs MPI_Allreduce with the
operation MPI_MINLOC to distribute ()|| () ||m jy x t− and determine the global winner

xm(t). Then, if the local winner computed by the processor Pj is the global winner,
then this processor broadcasts the point qm to all other processors.

c) Mesh points adjustment. Each processor Pj adjusts locations of the mesh points
by applying the rule (1) to all ()() j

i Nx t G∈ .

It has to be pointed out that interprocessor communications occur only for global
winner selection. Due to the low amount of communications, this parallel algorithm
of mesh deformation is highly efficient. In case of QN being unstructured it is difficult
to optimize the sequential algorithm of mesh deformation. It makes parallel algorithm
even more valuable for unstructured meshes than structured ones.

The proposed parallel algorithm has been implemented using MPI library. In Fig.1,
time has been measured for T0 = 0.2T, T = 10N. The mesh GN size has been equal to
N = 8034 points. All measurements have been made in Siberian Supercomputer Center

 Parallel Algorithm for Triangular Mesh Reconstruction 145

(a) (b)

0

0.2

0.4

0.6

0.8

1

1 5 9 13 17 21 25

1
p

p

T
E

pT
=

 EpTp

0

100

200

300

400

500

600

1 5 9 13 17 21 25

Fig. 1. Computation time (a) and efficiency (b) measured for 1 time step with T0 = 0.2T,
T = 10N and N = 8034 points

using NKS-160 system that consists of 160 processors Intel Itanium 2, 1,6 GHz. The
efficiency of parallelization obtained is about 90%.

4 Application in Medicine

The proposed method of mesh deformation has been demonstrated for the problem of
FE analysis of a realistic femur nail bone implant system in a typical proximal femo-
ral fracture [3]. All human femur bones have similar geometrical structure, i.e. they
differ from each other only in size and local proportions. In Fig. 2, two femur bones
are shown: first is a bone of the normal man from the Visible Human Project [5],
second is a bone of a trauma patient. The problem is to deform the mesh over the first
bone and make it fit the second one.

Fig. 2. Two femur bones used in computations: a bone of the normal man from the Visible
Human Project (top), a bone of a trauma patient (bottom)

In order to control the resulting quality, the set 1 2{ , }C C of criteria has been used

where C1 and C2 are the following.
1) C1 criterion. The area of the considered triangle divided by the area of the equi-

lateral triangle with the same circumcircle radius. The ABAQUS package [6] recom-
mends the quality measure C1 to be greater than 0.01.

146 O. Nechaeva and I. Afanasyev

2) C2 criterion. Minimum triangle angle: the ABAQUS package [6] recommends
that the angle is to be greater than 45 degrees.

Let the tolerances for this criteria be max max
1 2 10%θ θ= = (depending on particular

requirements). Also, let the maximum distance between G and GN be equal to the
average length of triangle edges in QN: dmax = dav(QN). After the criteria has been
measured, the tolerances are calculated according to the following formula.

(() ())100%

()
j N j N

j
j N

C Q C G

C Q
θ

−
=

According to this formula, negative values of θj correspond to the improvement of
mesh quality, while positive values should be less than max

jθ . In the table below, the

results of mesh deformation are shown.

Criterion QN GN Tolerances

C1 0.43322 0.397 1 8.36%θ =

C2 0.39851 0.36614 2 8.122%θ =

d – – d(G,GN) = 0.49dav

The quality of the deformed mesh decreased, but is still in the acceptable range.

Also, the maximum distance between G and GN satisfies the required condition.
In our implementation we used GeomRandom package by AITricks [7] which al-

lowed us to generate random points on triangulated surface. Also, the visualization
package GeomBox [7] has been used for visualizing the femur bone and all other
required data.

References

1. Pursiainen, S., Hakula, H.: A High-order Finite Element Method for Electrical Impedance
Tomography. PIERS Online 2(3), 260–264 (2006)

2. Date, H., Kanai, S., Kishinami, T., Nishigaki, I.: Mesh simplification and adaptive LOD for
finite element mesh generation. In: Computer Aided Design and Computer Graphics, Ninth
International Conference, 6 p. (2005)

3. Helwig, P., Faust, G., Hindenlang, U., Kröplin, B., Eingartner, C.: Finite element analysis
of a bone-implant system with the proximal femur nail. Technology and Health
Care 14(4-5), 411–419 (2006)

4. Kohonen, T.: Self-organizing Maps. Springer Series in Information Sciences, vol. 30, 501 p.
Springer, Heidelberg (2001)

5. The Visible Human Project of the National Library of Medicine (National Institution of
Health),
http://www.nlm.nih.gov/research/visible/visible_human.html

6. Abaqus FEA, http://www.simulia.com/products/abaqus_fea.html
7. GeomRandom and GeomBox packages (AITricks), http://aitricks.com

Parallel Algorithms of Numeric Integration

Using Lattice Cubature Formulas

Marat D. Ramazanov and Dzhangir Y. Rakhmatullin

Institute of Mathematic with Computing Centre of RAS,
112, Chernyshevsky str.,Ufa, Russia, 450008

Tel.: +7(347)272-59-36, +7(347)273-33-42, Fax: +7(347)272-59-36
RamazanovMD@yandex.ru

http://matem.anrb.ru

Abstract. The results of theory and applications of optimal lattice cu-
bature formulas are described. The approximate integration program
based on lattice formulas is considered. It has sufficiently high preci-
sion for complicated domains with smooth boundaries and dimensions
up to 10 and high efficiency of paralleling.

Keywords: cubature formulas, approximate integration, calculus math-
ematics, functional analysis.

1 Introduction

Lattice cubature formulas are approximations of integrals
∫
Ω

dxf(x) by linear

combinations of f values in the lattice nodes

{Hk| k ∈ Zn, H— matrix n× n, detH > 0}, Kf = detH
∑

Hk∈Ω

ckf(Hk).

Integrands f are from some Banach space B that formalizes their smoothness
property. Norm of an error functional lΩ : f →

∫
Ω

dxf(x)−Kf in the conjugate

space B∗ defines a quality of the cubature formula.
Optimal formula has coefficients {c0k} which minimize that norm:

{c0k} = arg min
{ck}

‖lΩ‖B∗

This theory was founded by academic S.L. Sobolev [1]. Now, due to evolu-
tion of the theory we made algorithms near to optimal on all functional spaces
generally used in calculus mathematics [2]-[4].

Programs calculated with the use of these algorithms are tested on supercom-
puters MVS-1000, MVS-15000VM and MVS-100 of the Joint Supercomputer
Center RAS. It is clear that we can easily parallelize the lattice cubature formu-
las’ algorithm by distributing of lattice nodes among processors of computation
system. Therefore, we have high efficiency coefficient (about 70%–90%) for these
programs.

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 147–152, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

148 M.D. Ramazanov and D.Y. Rakhmatullin

Big part of communication between processors decreases performance in calcu-
lating of mathematical physics tasks. Probably it is because of “stable heredity”,
that is almost all algorithms were written in single-processor computers’ age.
Nowadays these algorithms are parallelized somehow. Hence we believe now one
should use computational algorithms that are originally well parallelized. For
example one should reduce problems to calculating of integral equations solving
by using of iteration methods.

Mathematical idea of our algorithms is in reducing of stated input parameters’
smoothness (boundaries of integration domains, integrands, kernels of integral
operators) into high precision of approximated numeric solutions. For example
let integration domain Ω has a boundary Γ M times continuously differentiable,
and integrand also belongs to CM (Ω) class. So lattice cubature formulas with
the nodes {hk| k ∈ Zn} approximate integrals with accuracy O(hm), h→ 0 on
every space Wm

p , Cm, with m < M . Moreover, for every mentioned space and
for smoothness parameter M we have the same algorithm (and corresponding
program) which is asymptotically optimal. It means

‖lΩ,as
N ‖B∗

min
ck

‖lΩN‖B∗
→ 1 with N →∞,

where N is amount of nodes of cubature formula. That is the algorithm has
property of conditional unsaturablity for smoothness m < M .

Let’s schematically describe one of our algorithms of approximate integral
calculating on multidimensional bounded domains with smooth boundaries by
cubature formula with nodes on the lattice {hk| k ∈ Zn, h << 1}. Let’s use

generalized functions terminology. lΩN (x) =
J∑

j=0
ϕj(x)lj,N (x), where {ϕj(x)}J

j=0

is a unity partition in Ω,
J∑

j=0
ϕj(x) ≡ 1, subordinated to conditions

supp ϕ0 ⊂ Ω, ∀j = 1, J supp ϕj ∩ Γ =

= {x| ∃kj ∈ 1, n, xkj = ψj(x1, . . . , xkj−1, xkj+1, . . . , xn), ψj ∈ CM}}.

lj,N (x) = χΩ ∩ supp ϕj(x)− detHN

∑
hk∈Ω

cj,kδ(x− hk), ∀j = 0, J,

‖lj,N(x)‖(W m
p)∗ = O(hm), ∀m < M, ∀p < 1.

To provide the last estimate we represent lj,N as a result of change of variables
ys = xs, s �= kj , ykj = xkj − ψj in the functional lj(y) =

∑
k∈Zn

kj≥0

λM (y−hk
h).

Here λM (y) = χQ(y)−
∑

s∈Zn

|s|≤S

asδ(y − s), Q = [0, 1)n, (λM (y), yα) = 0 ∀|α| < M .

λM is called elementary functional of order M . Then we recalculate integrands
values in the “curved” lattice nodes x(k)

s = hks with s �= kj , x
(k)
kj

= hkj − ψj

Parallel Algorithms of Numeric Integration 149

by values in the sought lattice {hk}. lj(y) has (Wm
p)∗–norm of order O(hm),

∀m < M . We change variables and recalculate their values from given nodes to
another ones in such a way to save this order for functionals lj,N . At last we
get error functional lΩN with (Wm

p)∗–norm of order O(hm) for all p ∈ (1,∞) and
m ∈ (n

p ,M).
Constructed functional has bounded boundary layer (BBL-property), that is

all its coefficients are bounded uniformly on h and are equal to one for the nodes
that are more than Lh away from the boundary with some constant L. We proved
equivalence of order and asymptotic optimality for such cubature formulas.

Theorem. Cubature formula with BBL is asymptotically optimal on every space
from the set {

W̃m
p (Ω))

}
m ∈ (m1,m2),
p ∈ (p1, p2)

if and only if it is optimal by order on each of them with
n
p < m1 < m2 < M, 1 < p1 < p2 <∞.

Besides for BBL-formulas constructed according to the algorithm we also
established asymptotic optimality for the spaces Wμ with norms

‖f‖W μ =
∫
dξ|f̃(ξ)μ(2πiξ)|,

where f̃(ξ) is Fourier transformation of function f , and for the Hilbert spaces
W̃μ

2 with norms

‖f‖W̃ μ
2

=

(∑
k∈Zn

|fkμ(2πik)|2
)1/2

.

Here we assume that function μ is infinitely differentiable, has growth estimates
in infinity for ξ ∈ Rn

C1(1 + |ξ|)m1 ≤ |μ(2πiξ)| ≤ C2(1 + |ξ|)m2 , m1 < m2 < M,

and appears the symbol of hypoelliptic pseudodifferential operator

μ(D)f(x) =
∫
dξf̃(ξ)μ(2πiξ)e2πixξ.

Last formula is equivalent to the following estimates

∃ρ > 0 ∀α ∃Cα ∀ξ |Dαμ(2πiξ) ≤ Cα(1 + |ξ|)m2−ρ|α|.

2 Algorithm and Program of Numeric Calculation of
Integrals in n-Dimensional Case

The program “CubaInt” is designed for calculation of multidimensional integrals
on bounded convex domains with smooth boundaries. Here the results of tests
with some parameters [5].

150 M.D. Ramazanov and D.Y. Rakhmatullin

1. n from 2 to 10.
2. f(x) =

∑n
i=1 aix

bi

i .
3. M from 2 to 6.
4. h = Ñ−1, Ñ = 10 . . . 105.
5. Ω = {x : Φ(x) = 0, Φ(x) = 1−

∑n
i=1 ci(xi − 0.5)di}.

6. P from 1 to 1000.

For example let’s take a = (2, 1, 2, 1, ..., 2, 1), b = (2, 4, 2, 4..., 2, 4), c = (6.25,
39.0625, ..., 6.25, 39.0625), d = (2, 4, 2, 4..., 2, 4).

Calculation accuracy is estimated by decimal digits stability in answers with
h tends to zero. The independent parameters are dimension n, smoothness M ,
amount of lattice nodes Ñ and the number of proccesors P .

Table 1. n=2, theoretical and experimental error orders

experiment theory

Ñ\M 2 3 4 5 6 2 3 4 5 6

50 3 3 2 2 1 4 6 7 9 11
100 4 4 3 2 2 4 6 8 10 12
200 7 5 4 5 3 5 7 10 12 14
400 8 9 11 7 7 6 8 11 14 16
800 8 10 12 13 14 6 9 12 15 18
1600 9 11 13 15 16 7 10 13 17 20
3200 10 12 15 16 17 8 11 15 18 22
6400 11 14 16 18 18 8 12 16 20 23
12800 12 15 17 18 17 9 13 17 21 25

Table 2. n=3, theoretical and experimental error orders

experiment theory

Ñ\M 2 3 4 5 6 2 3 4 5 6

50 3 3 2 2 1 4 6 7 9 11
100 4 4 3 3 2 4 6 8 10 12
200 6 7 5 4 4 5 7 10 12 14
400 8 8 8 8 7 6 8 11 14 16
800 9 9 10 9 9 6 9 12 15 18
1600 9 10 11 11 10 7 10 13 17 20

Tables 1–3 demonstrate the orders of absolute errors obtained both in cal-
culations and in theoretical estimates. We can see that experimental results
approximately correspond to theoretical ones except two cases. First, if we have
small value of N and big M then boundary layer will not be thick enough to

Parallel Algorithms of Numeric Integration 151

Table 3. n=5, theoretical and experimental error orders

experiment theory

Ñ \ M 2 3 4 5 6 2 3 4 5 6

25 4 3 3 3 2 3 5 6 7 9
50 4 4 4 3 3 4 6 7 9 11
75 5 4 4 3 2 4 6 8 10 12
100 5 4 4 4 3 4 6 8 10 12
125 6 5 4 4 4 5 7 9 11 13
150 7 6 5 5 4 5 7 9 11 14
175 7 7 5 5 4 5 7 9 12 14
200 7 7 6 5 5 5 7 10 12 14

include 2M nodes. Second, with type “long double” we cannot increase our pre-
cision more than 18 significant digits. Here we also do not take in consideration
the norm of intergant.

Now let’s analyse paralleling quality of the program with the following pa-
rameters:

SP =
T1

TP
, EP =

SP

P
,

where TP is a running time on P processors.
Figure 1 shows deviations of experimental speedups SP (dark polylines) from

the ideal ones (light straight lines).
The paralleling efficiency slightly decreases with increasing of processors quan-

tity. That fact is caused by peculiarity of distributing of computing among

Fig. 1. Calculation speedups

152 M.D. Ramazanov and D.Y. Rakhmatullin

processors. Every processor gets almost equal nodes quantity, but computational
complexity is not equal in every node. Therefore a distribution of task is not very
uniform.

References

1. Sobolev, S.L.: Introduction to the Theory of Cubature Formulas. Nauka, Moscow
(1974) (in Russian)

2. Ramazanov, M.D.: To the Lp-theory of Sobolev Formulas. Siberian Advances in
Mathematics 9(1), 99–125 (1999)

3. Ramazanov, M.D.: Optimization of the Lattice Cubature Formula Error Functional
Norm in Scale of Wiener Spaces. Reports of Russian Academy of Sciences 36(6),
743–745 (1997) (in Russian)

4. Ramazanov, M.D.: The Cubature Formulas of S.L. Sobolev: The Evolution of the
Theory and Applications. In: International Conference on Multivariate Approxima-
tion, Haus Bommerholz, p. 33. Tech. Univ. Dortmund (2008)

5. Rakhmatullin, D.Y.: Integration on Multidimensional Spaces on Multiprocessing
Calculating Systems. Vychislitel’nye tehnologii 11(3), 118–125 (2006) (in Russian)

A CA-Based Self-organizing Environment:
A Configurable Adaptive Illumination Facility

Stefania Bandini1, Andrea Bonomi1, Giuseppe Vizzari1, and Vito Acconci2

1 Complex Systems and Artificial Intelligence (CSAI) research center
Department of Computer Science, Systems and Communication (DISCo)

University of Milan - Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

{bandini,bonomi,vizzari}@disco.unimib.it
2 Acconci Studio

20 Jay St., Suite #215, Brooklyn, NY 11201, USA
studio@acconci.com

Abstract. The term Ambient Intelligence refers to electronic environments that
are sensitive and responsive to the presence of people; in this paper an example of
ambient intelligence whose goal is to enhance the experience of pedestrians mov-
ing inside the related physical environment will be presented. In the described
approach the environment itself is endowed with a set of sensors (to perceive hu-
mans or other physical entities such as dogs, bicycles, etc.), interacting with a set
of actuators that choose their actions in an attempt improve the overall experience
of these users; in particular, the introduced system realizes an adaptive illumina-
tion facility. The model for the interaction and action of sensors and actuators is
a dissipative multilayered cellular automata, supporting a self-organization of the
system as a response to the presence and movements of people inside it. The pa-
per will introduce the model, as well as the results of simulations of its application
in a concrete case study.

1 Introduction

Ambient Intelligence [1] is a vision of future human environments endowed with a large
number of electronic devices, interconnected by means of wireless communication fa-
cilities, able to perceive and react to the presence of people. These facilities can have
very different goals, from explicitly providing electronic services to humans accessing
the related environment through computational devices (such as personal computers or
PDAs), to simply providing some form of ambient adaptation to the users’ presence
(or voice, or gestures), without requiring him/her to employ a computational device.
Besides the specific aims of the ambient intelligent system, there is a growing interest
on approaches, models and mechanisms supporting forms of self-organization and man-
agement of the components (both hardware and software) of such systems. The latter
are growingly viewed in terms of autonomous entities, managing internal resources and
interacting with surrounding ones so as to obtain the desired overall system behaviour
as a result of local actions and interactions among system components. Examples of
this kind of approach can be found both in relatively traditional pervasive computing

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 153–167, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

154 S. Bandini et al.

applications (see, e.g., [2]), but also in a new wave of systems developed in the vein of
amorphous computing [3] such as the one on paintable computers described in [4]. In
this extreme application a whole display architecture is composed of autonomous and
interacting graphic systems, each devoted to a single pixel, that must thus interact and
coordinate their behaviours even to display a simple character.

This paper describes a Cellular Automata based approach to the modeling and real-
ization of a self-organizing ambient intelligence system; the latter is viewed in terms
of cells comprising sensors and actuators. The former can trigger the behaviours of the
latter, both through the interaction of elements enclosed in the same cell and by means
of the local interaction among adjacent cells. The transition rule adopted for the CA was
derived by previous applications to reproduce natural phenomena such as percolation
processes of pesticides in the soil, in specific percolation beds for the coffee industry
and for the experimentation of elasticity properties of batches for tires [5,6], by model-
ing mechanisms of reaction and diffusion. In this specific application this rule is used
to manage the interactions of cells arranged through a multilayered architecture [7],
better suited to represent an artificial environment comprising a set of sensors that per-
ceive the presence of humans (or other physical entities such as dogs, bicycles, cars),
and actuators that choose their actions in an attempt improve the overall experience of
these users. Throughout the paper we will adopt the example of an adaptive illumination
facility, that is being designed and realized by the Acconci Studio in Indianapolis.

The developed model is the core component of an overall system supporting the
design and definition of the above introduced facilities, through the simulation and en-
visioning of its dynamic behaviour related to specific parameters (both related to the
transition rule of the CA and the number of lights and sensors). Part of the simulator
generates patterns of movement of pedestrians that represent inputs for the CA and an-
other part of the system generates a visualization of the system dynamics, interpreting
the states of the CA. These parts could be actually removed and the system could be di-
rectly interfaced to field sensors and actuators, effectively piloting them, in a centralized
approach. Alternative and more adequate distributed hardware/software architectures
could be employed, such as in the aforementioned approaches; nevertheless the CA and
its transition rule represent a formal and executable specification of the behaviour of
system components.

The following section will introduce the specific scenario in which this research ef-
fort is set, describing the requirements for the adaptive illumination system and the
environment adaptation model. Section 3 introduces the modeling approach, setting it
in the relevant literature, while section 4 describes the developed model in details. A
description of the developed environment supporting designers will follow, then con-
clusions and future works will end the paper.

2 The Application Scenario

The Acconci Studio was founded in 1988 to help realize public-space projects through
experimental architecture and public art afforts. The method of Acconci Studio is on the
one hand to make a new space by turning an old one inside-out and upside-down; and
on the other hand to insert within a site a capsule that grows out of itself and spreads into

A CA-Based Self-organizing Environment 155

a landscape. They treat architecture as an occasion for activity; they make spaces fluid,
changeable, portable. They have recently completed a person-made island in Graz, a
plaza in Memphis, a gallery in NY, a clothing store in Tokyo; they are currently working
on a building façade in Milan, a park on a street median in Vienna, and a skate park in
San Juan1.

The Studio has recently been involved in a project for the renovation of a tunnel
in the Virginia Avenue Garage in Indianapolis. The tunnel is currently mostly devoted
to cars, with relatively limited space on the sidewalks and its illumination is strictly
functional. The planned renovation for the tunnel comprises a set of interventions along
the direction defined by the following narrative description of the project:

The passage through the building should be a volume of color, a solid of color.
Its a world of its own, a world in itself, separate from the streets outside at either
end. Walking, cycling, through the building should be like walking through a
solid, it should be like being fixed in color.

The color might change during the day, according to the time of day: pink
in the morning, for example, becomes purple at noon becomes blue, or blue-
green, at night. This world-in-itself keeps its own time, shows its own time in
its own way.

The color is there to make a heaviness, a thickness, only so that the thick-
ness can be broken. The thickness is pierced through with something, theres a
sparkle, its you that sparkles, walking or cycling though the passage, this tun-
nel of color. Well no, not really, its not you: but its you that sets off the sparkle
a sparkle here, sparkle there, then another sparkle in-between one sparkle af-
fects the other, pulls the other, like a magnet a point of sparkle is stretched out
into a line of sparkles is stretched out into a network of sparkles.

These sparkles are above you, below you, they spread out in front of you,
they light your way through the tunnel. The sparkles multiply: its you who
sets them off, only you, but – when another person comes toward you in the
opposite direction, when another person passes you, when a car passes by some
of these sparkles, some of these fire-flies, have found a new attractor, they go
off in a different direction.

The above narrative description of the desired adaptive environment comprises two
main effects of illumination, also depicted in a graphical elaboration of the desired
visual effect shown in Figure 1:

– an overall effect of uniformly coloring the environment through a background, am-
bient light that can change through time, but slowly with respect to the movements
and immediate perceptions of people passing in the tunnel;

– a local effect of illumination reacting to the presence of pedestrians, bicycles, cars
and other physical entities.

The first type of effect can be achieved in a relatively simple and centralized way,
requiring in fact a uniform type of illumination that has a slow dynamic. The second

1 http://www.acconci.com

156 S. Bandini et al.

Fig. 1. A visual elaboration of the desired adaptive illumination facility (the image appears cour-
tesy of the Acconci Studio)

point requires instead a different view on the illumination facility. In particular, it must
be able to perceive the presence of pedestrians and other physical entities passing in it,
in other words it must be endowed with sensors. Moreover, it must be able to exhibit
local changes as a reaction to the outputs of the aforementioned sensors, providing thus
for a non uniform component to the overall illumination. The overall environment must
be thus split into parts, proper subsystems.

However, these subsystems cannot operate in isolation, since one of the requirements
is to achieve patterns of illumination that are local and small, when compared to the
size of the tunnel, but that can have a larger extent than the space occupied by a single
physical entity (“sparkles are above you, below you, they spread out in front of you, they
light your way through the tunnel”). The subsystems must thus be able to interact, to
influence one another to achieve more complex illumination effects than just providing
a spotlight on the occupied positions.

In the following part of the paper we will focus on this more dynamic and reactive
part of the overall illumination facility. The need to consider a physical environment
as an assembly of local subsystems arranged in a network, each able to decide on its
own state according to a local stimulus and according to the influences of neighbouring
subsystems led us to consider Cellular Automata as a suitable model to capture and
reproduce the above described specification for the illumination facility.

3 Related Works

Cellular Automata (CA), introduced by John von Neumann as an environment for
studying self-replicating systems [8], have been primary investigated as theoretical

A CA-Based Self-organizing Environment 157

concept and as a method for simulation and modeling [9]. They have also been used as
computational framework for specific kind of applications (e.g. image processing [10],
robot path planning [11]) and they have also inspired several parallel computer architec-
tures, such as the Connection Machine [12] and the Cellular Automata Machine [13].

Automata Networks [14] are a generalization of the classic CA, based on the intro-
duction of the network abstraction between automata nodes. Multilayered Automata
Network have been defined in [7] as a generalization of Automata Networks. The main
features of the Multilayered Automata Network are the explicit introduction of a hier-
archical structure based on nested graphs. Such graphs are composed of vertices and
edges where each vertex can be in turn be a nested graph of lower level. A Multilayered
Automata Network is directly obtained from the nested graph structure by introducing
states and a transition function.

Dissipative Cellular Automata (DCA), defined in [15], are also an extension of CA.
DCA differ from the basic model mainly for two characteristics: while CA are syn-
chronous and closed systems, DCA are open and asynchronous. In particular, in DCA
the cells are characterized by a thread of control of their own, autonomously managing
the elaboration of the local cell state transition rule. DCA can thus be considered as an
open agent system [16], in wich the cells update their state independently of each other
and they are directly influenced by the environment.

In order to take advantages of both the Multilayered Automata Network and the Dis-
sipative Cellular Automata, we introduced a new class of automata called Dissipative
Multilayered Automata Network (D-MAN). An informal definition this model describes
D-MAN as Multilayered Automata Network in which the cells update their state in an
asynchronous way and they are open to influences by the external environment.

This extension is useful because we want to use the D-MAN as a computational en-
vironment to specify and simulate the behaviour of a distributed control system. The
systems will be composed of several subsystems that are influenced by the environ-
ment in which they are situated and that are able to update their state asynchronously.
Moreover each subsystem is able to communicate with its neighbours.

4 The Proposed Approach

The proposed approach adopts a Dissipative Multilayered Automata Network (D-MAN)
model to realize a distributed control system able to face the challenges of the previously
presented scenario. The control system is composed of a set of controllers distributed
throughout the system; each of them has both the responsibility of controlling a part
of the whole system as well as to collaborate with a subset of the other controllers
(identified according to the architecture of the CA model) in order to achieve the desired
overall system behavior. In the proposed architecture, every node is a cell of a D-MAN
that can communicate only with its neighbours, it processes signals from sensors and it
controls a predefined set of lights associated to it. The approach is totally distributed:
there is no centralized control and no hierarchical structuring of the controllers, not only
from a logical point of view but also a physical one. In the following sections, each of
the components of the proposed approach will be described in details.

158 S. Bandini et al.

Fig. 2. The proposed architecture for the distributed control system to be managed through a
D-MAN approach

4.1 System Architecture

The designed system is an homogeneous peer system, as described in Figure 2: every
controller has the responsibility of managing sensors and actuators belonging to a fixed
area of space. All controllers are homogeneous, both in terms of hardware and software
capabilities. Every controller is connected to a motion sensor, which roughly covers the
controlled area, some lights (about 40 LED lights) and neighbouring controllers.

Figure 3 describes the multiple layers of the model: the external one (level 2) is the
communication layer between the controllers of the system. Every controller is an au-
tomata network of two nodes, one node is a sensor communication layer and represents
a space in which every sensor connected to the microcontroller has a correspondent
cell. The other node represents the actuators’ layer in which the cells pilot the actuators
(lights, in our case). Since the external layer is a physical one and every cell is an inde-
pendent microcontroller, it cannot be assumed that the entrire network is synchronized.
In same cases, a synchronous network can be constructed (for example, a single clock
devices can be connected to each microcontroller or the microcontrollers can be syn-
chronized by a process communicating with a master node), but the most general case
is an asynchronous network.

4.2 Sensors Layer

The Sensor Layer is a Level 0 Dissipative Automata. As previously introduced, it is
composed of a single cell, since only one sensor is connected to each microcontroller.

A CA-Based Self-organizing Environment 159

Level 2
Inter-controller
communication

Level 1
Intra-controller
communication

Level 0
Actuators Layer

Level 0
Sensors Layer

Fig. 3. The proposed automata network for the D-MAN

It is a Dissipative Automata because the internal state of the cell is influenced by the
external environment. The state of the cell is represented by a single numerical value
vs ∈ N8bit, where

N8bit ⊂ N0, ∀x : x ∈ N8bit ⇒ x < 28

The limit value was chosen for performance reasons because 8-bit microcontrollers
are widely diffused and they can be sufficiently powerful to manage this kind of situa-
tion. The value of vs is computed as

vs(t+ 1) = vs(t) ·m+ s(t+ 1) · (1−m)

where m ∈ R, 0 ≤ m ≤ 1 is the memory coefficient that indicates the degree of
correlation between the previous value of vs and the new value, while s(t) ∈ N8bit is
the reading of the sensor at the time s(t). If the sensor is capable of distance measuring,
s(t) is inverse proportional to the measured distance (so, if the distance is 0, the value
is 255, if the distance is ∞ the value is 0). If the sensor is a motion detector sensor (it
able to signal 1 if an object is present or 0 otherwise) s(t), s(t) is equal to 0 if there is
not detected motion, c in case of motion, where c ∈ N8bit is a constant (in our tests,
128 and 192 are good values for c).

4.3 Diffusion Rule

The diffusion rule is used to propagate the sensors signals throughout the system. At a
given time, every level 2 cell is characterized by an intensity of the signal, v ∈ N8bit.
Informally, the value of v at time t + 1 depends of the value of v at time t and on the
value of vs(t + 1), to capture both the aspects of interaction with neighbouring cells
and the memory of the previous external stimulus caused by the presence of a physical
entity in the area associated to the cell.

160 S. Bandini et al.

t = 0 t = 10

t = 20 t = 30

Fig. 4. An example of the dynamic behaviour of a diffusion operation. The signal intensity is
spread throughout the lattice, leading to a uniform value; the total signal intensity remains stable
through time, since evaporation was not considered.

The intensity of the signal decreases over time, in a process we call evaporation. In
particular, let us define εevp(v) as the function that computes the quantity of signal to
decrement from the signal and is defined as

εevp(v) = v · e1 + e0

where e0 ∈ R+ is a constant evaporation quantity and e1 ∈ R, 0 ≤ e1 ≤ 1 is the
evaporation rate (e.g. a value of 0.1 means a 10% evaporation rate).

The evaporation function evp(v), computing the intensity of signal v from time t to
t+ 1, is thus defined as

evp(v) =
{

0 if εevp(v) > v
v − εevp(v) otherwise

The evaporation function is used in combination with the neighbours’ signal intensi-
ties to compute the new intensity of a given cell.

The automaton is contained in the finite two-dimensional square grid N2. We suppose
that the cell Ci,j is located on the grid at the position i, j, where i ∈ N and j ∈ N.
According to the von Neumann neighbourood [17], a cell Ci,j (unless it is placed on
the border of the lattice) has 4 neighbours, denoted by Ci−1,j , Ci,j+1, Ci+1,j , Ci,j−1.

A CA-Based Self-organizing Environment 161

A5 A1 A6

A4 A9 A2

A8 A3 A7

v1

v2

v3

v4

v1

v2

v3

v4

v1 + v2

2

v2 + v3

2
v3 + v4

2

v + v1

2

vn
n=1

4

4

Fig. 5. Correlation between the upper layer cell subparts and the actuators layer cells

For simplicity, we numbered the neighbours of a cell from 1 to 4, so for the cell Ci,j ,
N1 is Ci−1,j , N2 is Ci,j+1, N3 is Ci+1,j , and N4 is Ci,j−1

At a given time, every cell is characterized by an intensity of the sensor signal. Each
cell is divided into four parts (as shown in Figure 5), each part can have a different signal
intensity, and the overall intensity of the signal of the cell is the sum of the parts intensity
values. The state of each cell Ci,j of the automaton is defined by Ci,j = 〈v1, v2, v3, v4〉
where v1, v2, v3, v4 ∈ N8bit represent the intensity of the signal of the 4 subparts. Vi,j(t)
represents the total intensity of the signals (i.e. the sum of the subparts signal intensity)
of the cell i, j at time t. The total intensity of the neighbours are denoted by VN1, VN2,
VN3, and VN4. The signal intensity of the subparts and the total intensity are computed
with the following formulas:

vj(t+ 1) =

{
evp(V (t))·q+evp(VNj(t))·(1−q)

4 if ∃Nj
evp(V (t))

4 otherwise

V (t+ 1) =
4∑

i=1

vi(t+ 1)

where q ∈ R, 0 ≤ q ≤ 1 is the conservation coefficient (i.e. if q is equals to 0, the new
state of a cell is not influenced by the neighbours values, if it is equals to 0.5 the new
values is a mean among the previous value of the cell and the neighbours value, if it is
equals to 1, the new value does not depend on the previous value of the cell but only
from the neighbours). The effect of this modeling choice is that the parts of cells along
the border of the lattice are only influenced through time by the contributions of other
parts (that are adjacent to inner cells of the lattice) to the overall cell intensity.

4.4 Actuators Layer

The cells of the actuator layer determinate the actuators actions. In this project the
actuators are LED lamps that are turned on and off according the the state of the cell.
Instead of controlling a single LED from a cell, every cell is related to a group of LEDs
disposed in the same (small) area.

In the case of regular neighbourhood, each controlled area in divided into 9 sub-areas
and each sub-area contains a group of LEDs controlled by the same actuators layer cell.
The state of each cell is influenced only by the state of the signal intensity of the upper
layer cell. The correlation between the upper layer cell subparts and the actuators layer
cells is shown in Figure 5.

162 S. Bandini et al.

The state of the actuators cells A1..A9, Aj ∈ N8bit is computed with the following
formula:

Ai(t+ 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi(t+ 1) 1 ≤ i ≤ 4
v4(t+ 1) + v1(t+ 1)

2
i = 5

v1(t+ 1) + v2(t+ 1)
2

i = 6
v2(t+ 1) + v3(t+ 1)

2
i = 7

v3(t+ 1) + v4(t+ 1)
2

i = 8

1
4

4∑
j=1

vj(t+ 1) i = 9

There are different approaches to associate LED activity (i.e. being on or off, with
which intensity) to the state of the related actuator cell. A first one consists in directly
connecting the lights’ intensity to the signal level of the correspondent cell; more details
on this will be given in the following Section.

5 The Design Environment

The design of a physical environment (e.g. building, store, square, road) is a composite
activity, comprising several tasks that gradually define the initial idea into a detailed
project, through the production of intermediate and increasingly detailed models. CAD
softwares (e.g AutoCAD), and also 3D modelling applications (e.g. Autodesk 3DStudio
Max, Blender) are generally used to define the digital models for the project and to
generate photo realistic renderings and animations. These applications are extremely
useful to design a lights installation like the one related to this scenario, but mainly
from the physical point of view. From the obtained 3D models it is easy to extract the
necessary information for a correct positioning of lights in the real space.

In order to generate a dynamics in this kind of structure, to grant the lights the abil-
ity to change illumination intensity and possibly color, it is also possible to “script”
these applications in order to characterize lights with a proper behaviour. Such scripts,
created as text files or with graphical logic editors2, define the evolution of the overall
system over time. These scripts are however heavily dependent on the adopted soft-
ware and they are not suitable for controlling real installations, even though they can
be used to achieve a graphical proof of concept. Another issue is that these tools are
characterized by a “global” approach, whereas the system is actually made up of indi-
vidual microcontrollers’ programs acting and interacting to achieve the global desired
effect.

The issue of defining a local behaviour for autonomous simple components leading
to a given overall behaviour is actually a significant research problem (see, e.g., [18]
for an investigation in this direction). In this experience, our aim was to facilitate the

2 For example, Blender has a graphical logic editor for defining interactive behaviour either
using a Graphical User Interface or exploiting a Python API for a more sophisticated control.

A CA-Based Self-organizing Environment 163

Fig. 6. A screenshot of the design environment. On the left, there is the system configurator and
the global intensity graph, on the right the lights view.

user in designing the dynamic behavior of a lights installation by supporting the en-
visioning of the effects of a given configuration for the transition rule guiding lights;
therefore we created an ad-hoc tool, also shown in Figure 6, comprising both a simu-
lation environment and a graphical parameters configurator. This tool support the spec-
ification of the values for some of the parameters of the transition rule, affecting the
global behavior of the overall system. The integrated simulation helps understanding
how the changes of the single parameters influence the overall behavior of the illumi-
nation facility: every changed parameter is immediately used in the transition rule of
every cell.

In the following paragraphs, the tool’s main components are described. Ad the end
of this section, some experimental configurations and the related dynamic evolution are
presented.

5.1 The Cells Simulator

The main component of the design environment is the simulator. This component sim-
ulates the dynamic evolution of the cell over the time, according to the transition rule.
The simulated cells are disposed over a regular grid and each cell is connected to its
neighbors according to the von Neumann neighbourood. By default, the tools is con-
figured to simulate 400 cells, organized in a 20x20 grid. The grid is not toroidal, to

164 S. Bandini et al.

better simulate a (portion of) the real installation space. Each cell has an internal state
represented as an 8 bits unsigned number. In order to better simulate the real asyn-
chronous system, an independent thread of control, that re-evaluates the internal state
of the cell every 200 ms is associated to each cell. At the simulation startup, each thread
starts after a small (< 1 s) random delay, in order to avoid a sequential activation of the
threads, that is not realized in the real system. The operating system scheduler intro-
duces additional random delays during both the activation and the execution cycle of the
threads.

5.2 The Lights View

The aim of the Lights View is to realize an interactive visualization of the dynamic
evolution of the system. In particular, the user can simulate the presence of people in
the simulated environment by clicking on the cells and moving the mouse cursor. Each
cell of the simulated system is associated an area of the screen representing a group of
lights controlled by the cells. More precisely, it is possible to define at runtime if the
area controlled by each cell is subdivided in 9 sub-areas (9 different lights groups) or if
it is a single homogeneous light group. Each simulated group of lights is characterized
by 256 different light intensity levels.

On the left of lights view, there is a graph showing the evolution over the time of the
sum of all the cells intensity levels. This graph is particularly useful to set the coeffi-
cients of the evaporation function.

5.3 The System Configurator

Through this component, the user can define most of the parameters related to the tran-
sition rule of the simulated system.

The first two sliders control the evaporation coefficients e0 and e1, the next one con-
trols the sensibility parameters q (see Section 4.3 for the parameters’ semantics). The
“mouse increment” slider defines the amount of the increment in the cell intensity when
a user clicks on the cell: it represents the sensitiveness of the cell to sensor stimulus in
the real system.

Under the four sliders there is a small panel that supports drawing the function that
correlates the internal cell intensity value and the correspondent light group intensity
value. The default function, represented by a diagonal segment between the (0,0) posi-
tion and the (255,255) position, is the “equal” function (i.e. if the cell intensity has value
x, the lights intensity has value x). It is possible to draw an arbitrary function, setting
for each cell intensity value a correspondent light intensity value simply drawing the
function over the graph.

The last four sliders control the sensitivity of each cell to the neighbors in the four
directions (qN , qE , qS , qW); by keeping these values separated it is possible to con-
figure the cell to be more sensitive to the cells in a specific direction (e.g. left or
right).

Finally, there is a check-box to switch between 1 and 9 lights groups per cell.

A CA-Based Self-organizing Environment 165

Fig. 7. Example 1: e0 = 0.75, e1 = 0, q = 0.1, f = eq, qN = qE = qS = qW = 1

Fig. 8. Example 2: e0 = 1, e1 = 0.1, q = 0.5, f = eq, qN = qE = qS = qW = 1

Fig. 9. Example 3: e0 = 0.05, e1 = 0, q = 0.0, f = eq, qN = qE = qS = qW = 1

Fig. 10. Example 4: e0 = 0.01, e1 = 0, q = 0.0, f = eq, qN = 0.1, qE = qS = qW = 0

Fig. 11. Example 5: e0 = 0.6, e1 = 0, q = 0.7, qN = qE = qS = qW = 1

166 S. Bandini et al.

5.4 Experimental Configurations

This last section presents some consideration about the relations between the parameters
value and the system behavior. This is not intended to be exhaustive analysis, it only
presents some relevant usage examples of the design environment.

The first example, shown in Figure 7, describes 3 steps of evolution of the sys-
tem configured with the default parameters (e0 = 0.75, e1 = 0, q = 0.1, mouse
increment = 255, f = eq, qN = qE = qS = qW = 1). The system, in this con-
figuration, acts as a sort of spot-light around the stimulated areas. When the movement
of a person on the space is simulated with a mouse input a light trace is generated
following the mouse movement. The trace is not present anymore in Figure 8, with an
increased evaporation coefficient (e0 = 1, e1 = 0.1, q = 0.5); on the contrary, in Figure
9 a long-persistent tail is produced with a very low evaporation level and no neighbours
sensibility (e0 = 0.05, e1 = 0, q = 0). Figure 10 shows a different configuration with a
high sensitivity to the southern neighbour (e0 = 0.01, e1 = 0, q = 0.0, f = eq, qN =
0.1, qE = qS = qW = 0). A sort of “smoke” arising from southern cells can be viewed.
The last example, shown in Figure 11, is achieved through an ad-hoc intensity-light
correlation function (shown in red line in the figure) and the following parameters:
e0 = 0.6, e1 = 0, q = 0.7, qN = qE = qS = qW = 1.

It is interesting to notice how many different behaviors can be achieved by means of
a different parameter specification of the same transition rule.

6 Future Development

The paper introduced an ambient intelligence scenario aimed at improving the every-
day experience of pedestrians and people passing through the related environment. A
specific scenario related to the definition and development of an adaptive illumination
facility was introduced, and a CA-based model supporting the specified behaviour for
the illumination facility was defined. A prototype of a system supporting designers in
the definition of the relevant parameters for this model and for the overall illumination
facility was also introduced.

The renovation project is currently under development on the architectural and engi-
neering side, whereas the CA-based model has shown its adequacy to the problem spec-
ification, both in order to provide a formal specification of the behaviour for the system
components. The realized prototype explored the possibility of realizing an ad hoc tool
that can integrate the traditional CAD systems for supporting designers in simulating
and envisioning the dynamic behaviour of complex, self-organizing installations. It has
been used to understand the adequacy of the modeling approach in reproducing the de-
sired self-organized adaptive behaviour of the environment to the presence of pedestri-
ans. We are currently improving the prototype, on one hand, to provide a better support
for the Indianapolis project and, on the other, to realize a more general framework for
supporting designers of dynamic self-organizing environments.

The modeling approach, finally, can also be adopted as a mechanism specifying and
simulating the interaction of physically distributed autonomous components, for in-
stance in monitoring and control applications.

A CA-Based Self-organizing Environment 167

References

1. Shadbolt, N.: Ambient Intelligence. IEEE Intelligent Systems 18(4), 2–3 (2003)
2. Filho, A.E.S., Lupu, E.C., Dulay, N., Keoh, S.L., Twidle, K.P., Sloman, M., Heeps, S.,

Strowes, S., Sventek, J.: Towards supporting interactions between self-managed cells. In:
[19], pp. 224–236

3. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr., T., Nagpal, R., Rauch,
E., Sussman, G.J., Weiss, R.: Amorphous computing. Commun. ACM 43, 74–82 (2000)

4. Butera, W.: Text display and graphics control on a paintable computer. In: [19], pp. 45–54
5. Bandini, S., Erbacci, G., Mauri, G.: Implementing cellular automata based models on parallel

architectures: The capp project. In: Malyshkin, V.E. (ed.) PaCT 1999. LNCS, vol. 1662,
pp. 167–179. Springer, Heidelberg (1999)

6. Bandini, S., Mauri, G., Pavesi, G., Simone, C.: Parallel simulation of reaction-diffusion phe-
nomena in percolation processes: A model based on cellular automata. Future Generation
Comp. Syst. 17(6), 679–688 (2001)

7. Bandini, S., Mauri, G.: Multilayered cellular automata. Theor. Comput. Sci. 217(1), 99–113
(1999)

8. von Neumann, J.: Theory of Self-Reproducting Automata. University of Illinois Press (1966)
9. Weimar, J.R.: Simulation with Cellular Automata. Logos Verlag, Berlin (1997)

10. Rosin, P.L.: Training cellular automata for image processing. IEEE Transactions on Image
Processing 15(7), 2076–2087 (2006)

11. Behring, C., Bracho, M., Castro, M., Moreno, J.A.: An algorithm for robot path planning
with cellular automata. In: Bandini, S., Worsch, T. (eds.) ACRI 2000, pp. 11–19. Springer,
Heidelberg (2000)

12. Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1985)
13. Margolus, N., Toffoli, T.: Cellular Automata Machines. A new environment for modelling.

MIT Press, Cambridge (1987)
14. Goles, E., Martinez, S.: Neural and Automata Networks: Dynamical Behavior and Applica-

tions. Kluwer Academic Publishers, Dordrecht (1990)
15. Zambonelli, F., Mamei, M., Roli, A.: What can cellular automata tell us about the behavior

of large multi-agent systems? In: Garcia, A.F., de Lucena, C.J.P., Zambonelli, F., Omicini,
A., Castro, J. (eds.) Software Engineering for Large-Scale Multi-Agent Systems. LNCS,
vol. 2603, pp. 216–231. Springer, Heidelberg (2003)

16. Jennings, N.R.: On agent-based software engineering. Artif. Intell. 117(2), 277–296 (2000)
17. Gutowitz, H.: Cellular Automata: Theory and Experiment. MIT Press/Bradford Books,

Cambridge (1991)
18. Yamins, D., Nagpal, R.: Automated global-to-local programming in 1-d spatial multi-agent

systems. In: AAMAS 2008: Proceedings of the 7th international joint conference on Au-
tonomous agents and multiagent systems, Richland, SC, International Foundation for Au-
tonomous Agents and Multiagent Systems, pp. 615–622 (2008)

19. Proceedings of the First International Conference on Self-Adaptive and Self-Organizing
Systems, SASO 2007, Boston, MA, USA, July 9-11. SASO. IEEE Computer Society, Los
Alamitos (2007)

A Lattice-Gas Model of Fluid Flow through

Tortuous Channels of Hydrophilous and
Hydrophobic Porous Materials�

Olga Bandman

Supercomputer Software Department
ICM&MG, Siberian Branch, Russian Academy of Sciences

Pr. Lavrentieva, 6, Novosibirsk, 630090, Russia
bandman@ssd.sscc.ru

Abstract. A cellular automata (CA) approach is proposed for simulat-
ing a fluid flow through the porous material with tortuous channels and
different wetting properties of pore walls. The approach aims to combine
CA methods both for construction the structure of porous material model
and to simulate the fluid flow through it. It is shown that any kind of
tortuous structure may be obtained by pattern formation CA evolution,
which is then used as a medium for Lattice Gas CA model application.
The model is provided by special boundary conditions to account for
additional tension forces between solid and liquid substances, determin-
ing the hydrophobic and hydrophilous properties of the material. The
model has been tested on a small 2D array to obtain some dependencies
of flow velocity on the tortuosity and wetting properties of pore walls.
Parallel implementation of flow simulation through a carbon electrode
of a hydrogen fuel cell is also performed, demonstrating high efficiency
(>70%) of parallelization.

Keywords: cellular automata, Lattice-Gas models, pattern formation,
porous medium, parallel implementation.

1 Introduction

Fluid flow in porous materials is of great interest for many reasons. Porous
materials are extensively used both in engineering (building materials, petroleum
recovery) and research (catalysis, electrochemistry). The main characteristic of a
certain porous material is its permeability for liquids or gases. A bright example
of porous materials application is a hydrogen Proton Exchange Membrane Fuel
Cell, the main parts of which – the polymer membrane and the carbon electrodes
are made of porous substances, power generating capability of the cell strongly
depending of the materials properties [1]. Obviously, simulation of processes in

� Supported by 1) Presidium of Russian Academy of Sciences, Basic Research Program
N 2 (2009), 2) Siberian Branch of Russian Academy of Sciences, Interdisciplinary
Project 32 (2009).

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 168–181, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Lattice-Gas Model of Fluid Flow through Tortuous Channels 169

porous components is useful, and, sometimes, urgently needed both when the
material is produced, and when the device is designed.

The problem of porous material simulation is not a new one. The earlier in-
vestigations are dated to the middle of the past century. At that time a porous
medium was regarded as a bulk substance, whose permeability properties be-
ing characterized by a porosity coefficient (ratio of pore volume to that of solid
substance). The famous Darcy low was mainly used when dealing with porous
materials. At the age of computer and numerical methods a number of mathe-
matical models based on Partial Differential Equations were developed [2], being
capable to simulate the fluid flow at pore level, i.e.simulating the flow through
the pore channels. These models experience the following difficulties. First, the
construction of porous medium itself yielding in boundary conditions is a sep-
arate nontrivial problem. Usually, the porous material is represented by many
randomly allocated simple geometrical figures like circles and rectangles of ap-
propriate size. Such an approximation is sometimes too coarse, especially when
soft porous materials such as polymers or carbons are under consideration. The
second problem lays in the complexity of the differential equations solution. To
simulate the flow the nonlinear Navier-Stokes equation is to be solved, which
is a hard task due to the complex boundary conditions and difficulty of paral-
lel implementation. To make the problem easier convection-diffusion models [2]
based on linear partial differential equations is frequently used. In both cases
the irregularity of pores configuration causes troubles in writing the equations.
To overcome last difficulty the method referred to in [3] as “computing from
images” has been proposed. This idea was implemented in the application of
fine grained simulation models, such that finite element and finite difference nu-
merical methods and cellular automata. The fine-grained explicit form of com-
putational process representation on a lattice allows to map it onto the pixels of
the material image. Moreover, in some practical cases the image may be given
as digitized photo or computer tomography [3], but when a general method of
simulation is under development it is worth to have special algorithms and pro-
grams for obtaining the initial image of the medium with proper pore channels
configuration.

With the appearing of Lattice-Gas [4] cellular Automata hydrodynamics the
investigations of porous materials at porous level (as a flow in pores) make
progress rapidly, the majority of methods used being based on the Lattice-
Boltzmann (LBM) method [6]. A short but complete review of LBM methods
implementation for porous material study is given in [7]. Some of them are very
sophisticated allowing for permeability prediction and calculating the tortuosity
of the flow. Very impressive results are presented in [8,9], where 3D flows are
simulated at pore level.

For all that, there remain many aspects to be studied. Some of them motivate
the approach used in the paper. They are as follow.

1) Although Lattice-Boltzmann hydrodynamics is considered more advanced
and is nowadays more frequently used, the classic form of Lattice Gas cellular
automata has its advantages. The first is the absence of round off errors, and

170 O. Bandman

the second is computational stability, both features being the consequence of
the completely discrete representation of all values used in simulation process.
A not the least of the factor is the desire to expand the classical approach to CA
hydrodynamics, combining it with CA methods for the porous medium model
construction.

2) Indeed, in the majority of studies the porous material is represented as a
structure built out of rectangles, cylinders or spheres, each fitting better with
a group of porous materials, the universal case being unlikely achievable. In
our investigation we show preferences to Cellular Automata techniques which
give us an opportunity to obtain porous medium model by exploiting the CA
capability of pattern formation. The proper choice of CA parameters allows to
obtain the pore model with wanted pattern motifs and tortuosity. We expect
that such a model fits with soft porous materials [2] to the best advantage. So,
the first objective of the paper is to introduce and test the method of obtaining
the medium model using CA techniques.

3) It is quite clear, that for simulating even a small specimen a very large
cellular automaton is needed. Hence, parallel implementation is unavoidable,
and its efficiency should also be taken into consideration when evaluating the
method features. The fact that simulation is accomplished over a composition of
two CAs with identical size, makes reasonable the parallelization of both cellular
CAs as a single task.

Based on these three arguments an approach to simulation of a fluid flow
through porous medium is presented. The approach is constrained to static
porous media, whose morphology does not change during the process under
investigation. After the Introduction, in Section 2, the problem statement is
given intuitively and formally. In section 3 the porous medium model and its
computer representation are described. Section 4 is devoted to the boundary
conditions of hydrophilous and hydrophobic porous materials. In section 5 the
results of testing the method on a single computer and its implementation on a
supercomputer cluster are presented.

2 The Problem Statement

Simulation of fluid flow through a porous material aims to investigate the porous
material properties. Simulation methods and computer tools are in demand when
the material production is under development, and also when a certain device
is designed in which the flow through the porous membrane is used, or on the
contrary such a flow should be prevented. Porous medium itself is a very complex
entity for computer simulation. It cannot be found two porous material speci-
men which are quite identical, hence there is indeterminacy in its mathematical
description. When pores are filled with flowing liquid the process representation
becomes yet more uncertain. Hence, simulation methods can not claim to have a
high degree of accuracy. Most likely, the simulation results should be regarded as
qualitative ones, although some quantitative characteristics can also be obtained.

A Lattice-Gas Model of Fluid Flow through Tortuous Channels 171

The simulation method here is developed for the 2D case. Usually 2D version
is regarded as an approximation of the 3D one, the last being of actual interest.
In our approach an attempt is made to develop fluid flow simulation process
together with the procedure of obtaining the porous medium model. Thus, the
simulation task turns out to be a superposition [10] of two cellular automata, i.e.
(ℵP = 〈AP ,M,ΘP 〉 and ℵ = ℵF (ℵP), where ℵF = 〈AF ,M,ΘF 〉 stand for porous
medium model and for flow model, respectively. Accordingly, they are further
referred to as a “PoreCA” and “FlowCA”. The first may be either synchronous
or asynchronous, the second is synchronous. They have identical naming sets
MP = MF = M , but different alphabets AP �= AF and different transition
function sets ΘP �= ΘF . The composed model allows us to perform a number
of simulation with slightly changed initial conditions for ℵP . In other words, to
perform simulation of the same flow through several specimens slightly differing
in patterns but having the same motif inherent to the type of the porous material
under investigation. Performing a number of simulations on those patterns with
the same motif one may obtain far more reliable information about the porous
properties.

The simulation task is formulated as follows. Given are two sets of parameters.
The first is concerned with the porous material properties. It is characterized by
the following data.

1) The size of the specimen. Since this study is confined to a 2D case, the
length and the width of the specimen should be known.

2) Porosity coefficient
Por = S0/S1, (1)

where S0 and S1 are the areas occupied by pores and solids, respectively.
3) Resistance of medium to the flow. The notion is newly introduced here.

In part, it is a reciprocal of the habitual “permeability” taking into account the
impact of pore channels layout relative to the flow direction.

Res = L1/L0, (2)

where L1 and L0 are the lengths of the projections of the total pore-solid border
length L onto the main flow direction (L0) and onto that one being orthogonal
to it (L1).

5)Tortuosity of pore channels. Although the notion is qualitative we introduce
a quantitative assessment, which is expressed through the amounts of extremities
in the “pore border lines” b(x, y), i.e.

Tort = Eextr (3)

where Eextr is a number of extremities of the pore border lines allocated on a
unit of area.

6) Wettability. This property characterizes the interfacial tension between the
liquid and solid. It has a quantitative measure as a wetting angle, which depends
on the solid and liquid substances properties and smoothness of pore surface.
The accuracy of that measure is poor, moreover, for most porous materials it is

172 O. Bandman

not known. Hence, we confine ourselves to qualitative estimate in terms of the
words hydrophobic (not wettable), and hydrophilous(wettable).

Moreover, the porous material 2D representations differ by pattern images. In
order to differentiate pore media by image types we follow [11], where the pat-
terns are classified according to the associations with common life pictures, which
are referred to as “motifs”, such as “patches”, “stripes” “clouds”, “islands”.

The second set of given data includes the liquid substance properties: density
and viscosity. The fluid is assumed to inflow from one side (say, the left one)
of the specimen and to outflow on the opposite side, the pressure drop or the
mean velocity of the flow being given. These data are used for constructing the
FlowCA and for giving physical interpretation to the simulation results [15].

Each simulation run aims to produce the following information.

1) The flow rate Q, i.e. the amount of liquid passing through the specimen in
a unit of time .

2) The flow velocity distribution V (i, j) in pores (velocity field, maximum
velocity, existence of vortices, cavities).

A series of simulation runs allows to obtain some useful dependencies of Q
and V (i, j) on pressure drop, channel tortuosity, wettability of solid material.

3 CA Models of Porous Media

A class of cellular automata which simulates pattern formation may be success-
fully used to obtain the model of porous medium. It is a class 2 according to
Wolfram’s classification [12]. It comprises CAs which in their evolution tend to
a stable global configuration. With Boolean alphabet of the CA the cell states
equal to “ones” are usually represented in black, and those equal to “zero” – in
white, forming a kind of tortuous patterns, looking like curved stripes, fanciful
patches, spirals, ovals, which are classified as “motifs”. The motifs and the de-
gree of tortuosity may be regulated by changing the CA parameters and initial
global state. Hence, using the pattern formation CAs it is possible to obtain the
wanted porous medium model in the form of an image where solids are in black
and the empties are in white.

Two types of pattern formation CA are the most suitable for being used for
porous medium model construction. They are as follows.

1) The so called “phase separation” CA [13], and
2) The CAs with weighted templates, which are more known as Cellular Neural

Networks (CNN) [11].

To represent the PorCA ℵP = 〈A,M, θ〉 formally it is enough to specify its
alphabet, which is a Boolean one AP = {0, 1}, its size I × J , which determine
the set of cell coordinates MP = {(i, j) : i = 0, . . . , I; j = 0, . . . , J} referred to
a set of cell names. A pair (a, (i, j)) : a ∈ A, (i, j) ∈ M , is referred to as a cell,
and the set of CA cells is called as a cellular array Ω = {(a, (i, j)) : A ∈ A; i =
0, . . . , I; j = 0, . . . , J)}.

A Lattice-Gas Model of Fluid Flow through Tortuous Channels 173

The third notion is a local operator denoted by θ. Local operator is spatially
translational. It is given in a form of substitution, which changes some states of
a set of closely allocated cells, called further according to [14] as a local configu-
ration

S(i, j) = {(v0, (i, j)), ..., (vk, φk(i, j)), ..., (vq, φq(i, j))}, (4)

where VS = {v0, v1, ..., vq} is a state template of S(i, j), and

TS = {(i, j), φ1(i, j), ..., φk(i, j), ...φq(i, j)} (5)

is the naming template for S(i, j). The functions φk(i, j) in (5) indicate the cell
names that form a neighborhood for the cell (i,j).

A local operator consists of two local configurations with a substitution symbol
in between.

θ(i, j) : S(i, j) → S′(i, j), (6)

where S(i, j) and S′(i, j) are referred to as a basic, and a next state local config-
urations of θ, respectively, (i, j) being called a main cell for θ, the corresponding
state templates being VS = {v0, v1, ..., vq} and US = {v′0, ..., v′r}, respectively,
r ≤ q.

Next states v′k ∈ V ′
S′ , k = 0, ..., r, are values of a transition function

v′k = fk(v0, ..., vq), k = 0, 1, ..., r. (7)

In PorCAs transition functions are either Boolean functions or simple arithmeti-
cal ones.

Application of θ to a cell (i, j) ∈M consists of two actions:

1) computing next states according to (7), and
2) updating cells of S(i, j) assigning the obtained values to the corresponding

cells states.

Application of θ(i, j) to all (i, j) ∈ M) transforms a cellular array Ω(t) into
the next-state one Ω(t+ 1). The sequence

Σ(Ω) = (Ω(0), Ω(1), ..., Ω(t), Ω(t + 1), ..., Ω(t̂)), (8)

obtained during iterative operation on the CA is called the evolution, t being
the iteration number, and Ω(0) - the initial cellular array. During the evolution
the cellular array changes its “black-white” pattern tending to a stable one.

Each CA produces a scope of patterns characterized by similar features, which
define a certain motif. There is no strict method for CA synthesis by the given
properties of the resulting pattern. Only a weak correspondence between the
transition function and produced motifs may be known. Moreover, in the range
of one and the same CA and the corresponding motif, a great variety of patterns,
differing in tortuosity, porosity and orientation of black-white borders may be ob-
tained by variation of CA initial cellular array. Also, when running the iterative
process of evolution it is possible to observe the sequence of produced patterns
and stop the process at any moment when Ω(t) meets the wanted parameters.

174 O. Bandman

Example 1. The CA ℵP1 = 〈A1,M1, θ1〉 is a model of the process of phase-
separation. Being applied to a cellular array Ω(0) with randomly distributed
“ones” and “zeroes”, this CA gradually aggregates the “ones” in patches of
fancy forms. The parameters of ℵP1 are as follows. A1 = {0, 1}, the size is
I × J = 300× 300,

θ1 : {(vkl, (i− k, j − l)) : k, l = −r, ..., r} → (v′, (i, j)), (9)

where

v′ =
{

1, if s = (q − 1)/2 or s > (q + 1)/2,
0, if s = (q + 1)/2 or s < (q − 1)/2, (10)

where

q = (2r + 1)2, s =
q∑

kl=0

vkl

In Fig.1 three patterns produced by ℵP1 are shown. The simulation was per-
formed with periodic boundary conditions. The initial cellular array is a random
distribution of “ones” over M1 with average density ρ = 0.5. From the resulting
evolution of ℵP1 the properties of porous media represented by the obtained
pattern, are easily computed according to (1-3). Thus, the patterns in Fig.2 are
characterized by the porosity Por � 0.6. The tortuosity of the pattern at t = 10
is 10 times larger than that of t = 50. As for the resistance, it is equal for both
patterns, being approximately Res � 0.55.

Fig. 1. Three snapshots obtained while simulating the evolution of a CA ℵP1, given
by (9,10)

Example 2. Two CAs ℵP2 = 〈A2,M2, θ2〉, and ℵP3 = 〈A3,M3, θ3〉, which differ
in mode of operation and in initial cellular arrays produce the patterns with
different motifs.

Both CAs have Boolean alphabets, are of equal size I × J = 400 × 400.
The first one (ℵP2) operates in synchronous mode. Being applied to a cellular
array Ω2(0) with randomly distributed “ones” having the density ρ = 0.001, it
produces “round spots” of equal size randomly located over the array. In the
process of the evolution the spots grow in diameter, exhibiting the decrease of

A Lattice-Gas Model of Fluid Flow through Tortuous Channels 175

the porosity coefficient of the corresponding cellular array. When the porosity
match the wanted value the evolution stops.

The local operator is as follows.

θ2 : (v0, (i, j)), (v1, φ1(i, j)), . . . , (vq, φq(i, j))} → (v′0, (i, j)), (11)

where q = (2r + 1)2, r = 3 being the radius of neighborhood template, q = 49.

φl(i, j) = (i+ gl, j + hl), gl = lmod(2r+1) − r, hl = �l/(2r + 1)�;

v′0 =
{

1, if
∑q

l=0 wlvl > 0
0, otherwise, (12)

where

wl =
{

1, if gl ≤ 1 & hl ≤ 1
−0, 2 otherwise.

Sum in (12) may be also obtained by imposing a weighted template

W =

a a a a a a a
a a a a a a a
a a 1 1 1 a a
a a 1 1 1 a a
a a 1 1 1 a a
a a a a a a a
a a a a a a a

, a = -0.2,

onto a cell and computing the sum of products of its entries by underlying cell
states. A snapshot at t = 10 of the evolution of ℵP2 is shown In Fig.2a.

Fig. 2. Two patterns obtained by evolution of two CAs with weighted templates, and
θ2, given by (11,12): a) with synchronous mode of operation and initial density ρ =
0, 001, b) with asynchronous mode of operation and initial density distributions ρi =
0.008

176 O. Bandman

ℵP3 operates in asynchronous mode, starting with an initial cellular array
Ω3(0) having “ones” and “zeroes” distributed randomly with the density ρi =
0.008. The obtained pattern is inverted turning the formatted black stripes into
solids and leaving the the white area for pores. The obtained pattern is a stable
one (Fig.2b).

The two above examples are given just to show that a great variety of porous
structure may be obtained in the form of a Boolean array by using pattern
formation CA. Among them are the widely used in porous medium investigation
circles (Fig.2a) and fibers (Fig2.b)

4 CA-Model of the Flow

The CA-model for fluid flow simulating, referred further as the FlowCA and
denoted as ℵF = 〈Af ,MF , Θ〉, is a Gas-Lattice FHP CA-model [4,5] with special
boundary conditions. The flow is represented by abstract particles, moving and
colliding in a discrete hexagonal space. The naming set is given by the set of
hexagons coordinates. In our implementation we use the most simple way of
mapping the hexagonal space onto the rectangular lattice, which implies the cell
centers being allocated as a chessboard assuming each cell to occupy a pair of
coordinates along one (say the jth) of the axes, thus having the six neighbors
(Fig.3 a). The distances between two neighboring cells are assumed to be equal
to 1. So, M = {(i, j) : i = 0, 1, . . . , I; j = 0, 1, . . . , J}. The naming template

T (i, j) = {(i, j), φ1(i, j), . . . , φ6(i, j)}, (13)

where

φ0(i, j) = (i, j), φ1(i, j) = (i, j + 2), φ2(i, j) = (i− 1, j + 1),
φ3(i, j) = (i− 1, j − 1), φ4(i, j) = (i, j − 2), φ5(i, j) = (i+ 1, j − 1),

φ6(i, j) = (i+ 1, j + 1) .
(14)

Each cell may have up to 6 particles, each being provided with a velocity
vector directed towards one of the neighbors. The cell state alphabet represents
the 6 moving particles by Boolean vectors 6 bit long: A = {(v1, . . . , vk, . . . , v6) :
vk ∈ {0, 1}, |A| = 26. A component vk = 1 of a state vector indicates that the
cell (v, (i, j)), has a particle moving towards the kth neighbor with a velocity
vk = 1. Particle mass is equal to 1.

The set of two local operators Θ = {θ1, θ2} determines the CA functioning,
θ1 representing a propagation substep, θ2 – simulating the collision.

θ1(i, j) : {(v0, (i, j)) . . . , (vl, φl(i, j)), . . . , (v6, φ6(i, j))} → {(v0′, (i, j))}, (15)

where

v′(i, j) =
6∨

l=0

vl(φl+3(i, j)). (16)

A Lattice-Gas Model of Fluid Flow through Tortuous Channels 177

Here and further summation of indices is +mod6.
The collision operator is as follows.

θ2(i, j) = {(v0, (i, j))} → {(v0′, (i, j))}. (17)

The transition function in (17) v0′ = f(v0) is given in the form of a table, some
arguments having two equiprobable outcomes. The principles of collision rules
functioning is shown in Fig. 3b. The essential requirement is the satisfaction of
the lows of mass and momentum conservation. Of course, all rules obtained by
rotation those given in Fig.3b are also included in the transition rules set.

Fig. 3. Graphical representation of a) hexagonal Lattice mapping onto the rectangular
one, and b) collision operators in FHP model

The mode of operation of Lattice-Gas CA is two-stage synchronous, i.e. each
iteration consists of two stages: the propagation operators (16) act on the first
stage, on the second stage the collision operator completes the transition to the
next global state, i.e. Θ = θ2(θ1). The set of cells is partitioned into four parts:
pore cells ΩP , wall cells ΩW , input cells ΩIn, and output cells ΩOut, the collision
rules ifor which being different.

For representing the interactions between the pore cells and walls the collision
rules are used, referred to as border rules. They depend on tension forces between
the liquid and the solid pore wall surface, which determines the wettability of
porous material. So, the wall-cell collision rules are of two types: 1)the no-slip
rules, which are, sometimes, referred to as bounce-back boundary conditions, used
in hydrophobic porous materials, and 2) the slip rules expressing slip boundary
conditions, which characterize the hydrophilous pore materials. In both cases the
border rules are applied to the cells belonging to a layer of B ∈ ΩW alongside
the pores, referred to as a border layer, i.e. (i, j) ∈ B if T (i, j)

⋂
ΩP �= ∅.

The no-slip collision rule prescribes the particle entering the border layer
cell to reverse its direction. Naturally, the rule does not conserve the momen-
tum, due to the additional tension forces between solid and liquid. As for mass

178 O. Bandman

conservation law, it is obviously satisfied with any pore tortuosity. So, the colli-
sion rule in border layer cells for no-slip border condition is as follows

θn−s : (v, (i, j)) → (v′, (i.j)) ∀(i, j) ∈ B, (18)

where the components of v′(i, j) are

v′k = vk+3 (19)

The above no-slip collision rule provides fluid velocity to be zero in the direct
vicinity of the walls. If more strong hydrophobicity is wanted, then some fictitious
wall cells should be added along the border which increase roughness of the
border. Those cells have to replace the pore cells, (i, j) ∈ ΩP and should meet
the condition |T (i, j)

⋂
ΩP | ≥ 4. They are chosen randomly with probability

ranging from p = 0 to p = 0.5, maximum being reached with p = 0.5.
The slip collision rule prescribes a particle entering the border layer to con-

tinue moving along the channel wall changing the direction as less as possible. In
porous media with regular straight channels this principle is realized by specular
reflection rules. In tortuous porous medium with arbitrary border curvature this
rule should be transformed into a number of rules depending on mutual location
of the border cell relative to its neighbors in the wall and on the number of wall
cells in the cell neighborhood. Hence, the collision operator being the same as
in no-slip case (18) has the following transition functions.

If T (i, j)
⋂
ΩP = {φk(i, j), φk+1(i, j)}, then

v′k = vk+4, v′k+1 = vk+3, k = 1, . . . , 6, (20)

otherwise the transition function should be the same that in no-slip case (19).
The above slip collision rules do not provide strong hydrophility. When

stronger hydrophility is wanted, then a procedure similar to that for increas-
ing hydrophobity should be applied. Namely, some fictitious wall cells adjacent
to the border ones, should be added in such a way that smooth the border. This
condition yields in |T (i, j)

⋂
ΩP | ≤ 2. The cells meeting this condition are cho-

sen randomly with probability ranging from p = 0 to p = 0.5, maximum being
reached with p = 0.5.

The proposed approach is further illustrated by an Example of simulating the
flow of water through a carbon hydrophobic cathode in Proton Exchange Fuel
Cell [1]. But beforehand, in order to test the presented approach in more details,
a simulation is performed on a small prototype fragment.

5 Implementation of the Method

The carbon porous specimen and its small prototype fragment are shown in
Fig.4. The averaged diameter of pore channels in the material under investigation
is about 10μ.

Following the method of mapping physics onto CA-models from[15], it is pos-
sible to obtain all parameters of the model. Since, according to the theory and

A Lattice-Gas Model of Fluid Flow through Tortuous Channels 179

Fig. 4. A porous carbon cathode and its small prototype fragment, used for the com-
putational test experiments

practice of porous medium [2] simulation, the smallest channel should be � 10
times wider than model length units, the length scale is chosen to be h = 0.2 � μ,
which yields the model size of the given specimen to be 1000×250000 cells. The
viscosity scale Sc(ν) is also straightforward, because the viscosity of FHP-model
is proved to be νCA = 0.85 [5], and the viscosity of water is νw = 10−4 m2s−1,
yielding Sc(ν) = 1.17 · 10−5 m2s−1. These two scales allow to calculate all oth-
ers relations between the CA-model and their physical counterparts. They are
as follows:

particle mass mp = (ρw/(h3 × 6) = 2.7 · 10−18 kg,
time step τ = h2/Sc(ν) = 3.5 · 10−8 s,
velocity scale Sc(v) = h/τ = 0.57 · 10−3 ms−1,
flux scale Scf = F ·mp/τ kgs−1, F defining the number of particles passing

through the fragment per iteration, computed during the simulation process.

The last scale is the most important because it is a main characteristic of a
porous materials.

For testing the proposed method on a personal computer and to observe the
process in its dynamics a prototype fragment of the size 300 × 300 cells has
been chosen, which is 2800 times less than the real length. The simulation has
been performed for a number of different fragments, obtained by changing the
parameters of the pattern formation CA. The velocity fields and the flows values
have been obtained. In Fig. 5 on the left side a velocity field of a flow through
a hydrophobic prototype fragment is shown, obtained after t = 4000 iterations
when the process reached the stable state. In Fig.5 on the right side four pro-
files of density and averaged velocity, taken in the vertical cut of the middle of the

180 O. Bandman

Fig. 5. The snapshots of fluid flow simulation through the hydrophobic prototype frag-
ment: on the left side the velocity field is shown, on the right side the profiles of density
(the black curve) and the velocity (the gray curve) through the vertical cut in the nar-
row part of the channel, marked by a dark line

Table 1. Flow Q through the fragment (Fig.5) and mean velocities 〈v〉 in its vertical
cut at t = 4000 for four cases shown in Fig.5

case property Q 〈v〉
a hydrophobic 39.5 0.88
b strong hydrophobic 36.7 0.85
c weak hydrophilous 40.9 0.86
d hydrophilous 42.1 0.87

fragment are shown for different border conditions of the pore walls. In Table 1
the averaged velocities in the cut (in units per iteration), and flows through the
fragment (in particle numbers per iteration) (F/t), are given for the four cases,
shown in Fig.5.

For investigating the real size specimen (0.2×50mm) the simulation has been
performed on 128 computers (the Cluster K-100 of Joint Supercomputer Center
of Russian Academy of Sciences), using MPI library. The cellular array was
decomposed into 128 domains each being of size 1000× 2000. For constructing
the 2D representation of the porous medium a “phase separation” CA with R = 3
(Section 3) was used. The total flow F , obtained for hydrophobic specimen with
porosity Por=0,608 is 83867 particles/iteration, which makes 0.319 kg/s through
a 3D specimen of one cm wide. The efficiency of parallelization in an eight-core
node is computed as

Enode = T (1) · 8/T (8) � 0.2,

where T (1) is the time of one domain processing in a single core, T (8) is the time
of eight domain processing on in an 8-core node. The efficiency of parallelization
in a cluster

Ecluster = T (8) · 16/T (128) � 0.982,

where T (128) is the time of processing 128 domains in 16 eight-core nodes.

A Lattice-Gas Model of Fluid Flow through Tortuous Channels 181

6 Conclusion

A method for simulation fluid flow at pore level though porous materials with
different wettability of pore walls is presented. The method combines the con-
struction of the porous material structure and simulation the flow of gas or
liquid through it. Both stages are based on classical CA simulation methods,
which manifests their capability and the extent of CA applications. The imple-
mentation of the method in a single computer as well as in a cluster showed its
simplicity of programming and efficiency of parallel implementation

References

1. Larminie, J., Dicks, A.: Fuel Cells Systems Explained. John Wiley & Sons,
New York (2003)

2. Sahimi, M.: Flow phenomena in rocks: from continuum models to fractals, per-
colation, cellular automata and simulated annealing. Rev. Modern Physics 65(4),
1393–1533 (1993)

3. Garboczi, E.J., Bentz, D.P., Snyder, K.A., Martys, N.S., Stutzman, P.E.,
Ferraris, C.F., Jeffrey, W.: Modeling And Measuring the Structure And Properties
of Cement-Based Materials (An electronic monograph),
http://ciks.cbt.nist.gov/garbocz/appendix2/node8.html

4. Rothman, B.H., Zaleski, S.: Lattice-Gas Cellular Automata. Simple Models of
Complex Hydrodynamics. Cambridge Univ. Press, London (1997)

5. Frish, U., d’Humieres, D., Hasslacher, B., Lallemand, P., Pomeau, Y., Rivet, J.P.:
Lattice-Gas hydrodynamics in two and three dimensions. Complex Systems 1,
649–707 (1987)

6. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford
University Press, New York (2001)

7. Nabovati, A., Sousa, A.C.M.: Fluid Flow Simulation In Random Porous Media At
Pore Level Using The Lattice Boltzmann Method. J. of Eng. Sci. and Techn. 2(3),
226–237 (2007)

8. Clague, D.S., Kandhai, D., Zang, R., Sloot, P.M.A.: Hydraulic permeabolity of
(un)bounded fibrous media using the Lattice Boltzmann method. Physical Review
E 61(1), 616–625 (2000)

9. Pan, C., Hilpert, M., Miller, C.T.: Pore-scakle modeling of saturated permeabilities
in random sphrere packings. Physical Review E 64(6), Article N 006702 (2001)

10. Bandman, O.: Composing Fine-Grained Parallel Algorithms for Spatial dynamics
Simulation. In: Malyshkin, V.E. (ed.) PaCT 2005. LNCS, vol. 3606, pp. 99–113.
Springer, Heidelberg (2005)

11. CNN: a Paradigm for Complexity. World Scientific, Singapore (2002)
12. Wolfram, S.: A new kind of science. Wolfram Media Inc., Champaign (2002)
13. Toffolli, T., Margolus, N.: Cellular Automata Machines. MIT Press, USA (1987)
14. Achasova, S., Bandman, O., Markova, V., Piskunov, S.: Parallel Substitution

Algorithm. Theory and Application. World Scientific, Singapore (1994)
15. Bandman, O.: Mapping physical phenomena onto CA-models. In: Adamatsky,

A., Alonso-Sanz, R., Lawiczak, A., Martinez, G.J., Morita, K., Worsch, T. (eds.)
AUTOMATA 2008. Theory and Application of Cellular Automata, pp. 391–397.
Luniver Press, UK (2008)

http://ciks.cbt.nist.gov/garbocz/appendix2/node8.html

Solving All-to-All Communication with CA

Agents More Effectively with Flags

Patrick Ediger and Rolf Hoffmann

Technische Universität Darmstadt
FB Informatik, FG Rechnerarchitektur

Hochschulstr. 10, 64289 Darmstadt, Germany
{ediger,hoffmann}@ra.informatik.tu-darmstadt.de

Abstract. We have investigated the all-to-all communication problem
for a multi-agent system modeled in cellular automata. The agents’ task
is to solve the problem by communicating their initially mutually ex-
clusive information to all the other agents. In order to evolve the best
behavior of agents with a uniform rule we used a set of 20 initial con-
figurations, 10 with border, 10 with cyclic wrap-around. The behavior
was evolved by a genetic algorithm for agents with (1) simple moving
abilities, (2) for agents with more sophisticated moving abilities and (3)
for agents with indirect communication capabilities (reading and writ-
ing flags into the environmental cells). The results show that the more
sophisticated agents are not only more effective but also more efficient
regarding the effort that has to be made finding a feasible behavior with
the genetic algorithm.

Keywords: cellular automata, multi-agent system, evolving behavior,
different action sets.

1 Introduction

The general goal of our project is to develop methods to optimize the local
behavior of moving agents in a multi-agent system in order to fulfill a given
global task. In this investigation we particularly concentrate on the moving and
communication abilities of the agents in order to find out whether increasing
the complexity of an agent can lead to a better behavior without increasing the
effort for the optimizing procedure at the same time.

The global task we chose for this investigation is the all-to-all communication
task: Several agents are moving around in a cellular automata (CA) grid. Each
one initially has got one part of the mutually distributed information which
can be exchanged when the agents meet in certain defined local patterns (com-
munication situations). The task is considered successful when all agents have
gathered the complete information. Possible communication situations are shown
in Fig. 1. In the cases a, b, c the agents are directly in contact. But it is a matter
of definition whether such situations allow communication. For this investigation

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 182–193, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Solving All-to-All Communication with CA Agents 183

(a) (b) (c)

C

(e)
C

(f)

C

(d) C

Fig. 1. Communication situations. Communication is only allowed for the cases d, e, f
using a mediator C.

we have defined the patterns d, e, f to be the only ones which allow communi-
cation. A reason could be that communication can only take place if a media-
tor/negotiator is used between them. Furthermore the mediator may perform a
particular computation (e. g., average, maximum, priority select). Such conflicts
occur when agents want to move to the same target position, like vehicles which
are meeting in a cross-way. The center of the crossing can be interpreted as the
mediator.

In this contribution we pose the following questions: Which abilities do the
agents need to efficiently solve the given problem? Regarding that adding more
abilities to the agents raises their complexity, does the optimization become
harder or can we evolve better agent behaviors with the same amount of opti-
mization time?

In former investigations [1] we have tried to find the best algorithms for the
Creatures’ Exploration Problem, in which the creatures (agents) have the task
to visit all empty cells in shortest time. The presented problem is related to
it with respect to finding an optimal movement of the agents. But the task is
different: Now the agents shall exchange their information in shortest time taking
advantage out of the conflicts which are useful and necessary for the all-to-all
communication.

All-to-all communication is a very common task in distributed computing. The
problem’s specification can depend on many fixed or dynamic varying parameters
like the number and location of nodes, the number and location of processes, the
number, users and properties of the communication channels and so on. All-to-
all communication in multi-agent systems is related to multi-agent problems like
finding a consensus [2], synchronizing oscillators, flocking theory or rendezvous in
space [3], or in general to distributed algorithms with robots [4]. We have already
studied the problem of all-to-all communication [5,6]. In both investigations a
grid of size 33 × 33 without obstacles and 16 randomly distributed agents at
the beginning were used. There were three types of environments given in which
the task had to be fulfilled: An environment with border EnvB, an environment
without border EnvC (cyclic, wrap-around) and a “dual environment” EnvBC.

184 P. Ediger and R. Hoffmann

Fig. 2. Patterns emerged by simulation for the best algorithm for a particular initial
configuration evolved for the dual EnvBC (applied to EnvB with border and also
applied to EnvC with wrap around). The white spots indicate positions of mediators
where an information exchange has occurred.

The dual environment joins EnvB and EnvC meaning that the agents shall be
able to communicate successfully in both environments. We will restrict this
investigation to the dual environment.

The best algorithms evolved for EnvBC [5] needed 773.2 steps (CA genera-
tions) averaged over 50 random initial settings of the agents with border and
50 without border. Fig. 2 shows the typical patterns caused by the visited cells
of the agents (the darker the more often visited). It should be noted that the
algorithms were evolved before for the communication situations a, b, c instead
of d, e, f now (Fig. 1) and that the agents used a very limited action set (if
cannot move forward: turn right/left, if can move forward: turn right/left and
move forward simultaneously). This limited action set (in section 2 denoted as
RX/LX) will later be used for comparison (task (1) in section 4) but the goal
is to evolve agents with a more powerful action set.

Our research in general is also related to works like: evolving optimal rules for
cellular automata (CA) [7,8], finding out the center of gravity by marching pixels
by evolutionary methods [9], modeling multi-agent systems in CA to simulate
pedestrian movement [10] or traffic flow [11].

The remainder of this paper is structured as follows. In Section 2 the model-
ing of the multi-agent system (MAS) including the possible action sets for the
agents are explained. The genetic procedure used to evolve the agents’ behavior
is described in Section 3. Section 4 provides the results of this investigation and
Section 5 concludes.

2 CA Modeling of the Multi-agent System

The whole system is modeled by cellular automata. It consists of an environ-
ment (n×m grid) with borders or without borders (wrap-around) and k uniform
agents. An agent has a certain moving direction and it can only read the infor-
mation from one cell ahead (target cell, front cell). If it detects a border cell or
an agent in front or a conflict, it will stay on the current cell. A conflict occurs
when two or more agents want to move to the same front cell (crossing point, cell
in conflict, mediator). In order to detect a conflict an extended neighborhood [5]

Solving All-to-All Communication with CA Agents 185

is needed (Manhattan distance of 2 in the moving direction). Alternatively the
conflict detection can be realized by an arbitration logic [1] which is available
in each cell. The arbitration logic evaluates the move requests coming from the
agents and replies asynchronously by an acknowledge signal in the same clock
cycle.

In order to model the distribution of information we are using a bit vector
with k bits which is stored in each agent. At the beginning the bits are set
mutually exclusive (bit(i)=1 for agent(i)). When two, three or four agents form
a communication situation they exchange their information by simply OR-ing
their bit vectors together. The task is successfully solved when the bit vectors
of all agents obtain 11 . . . 1.

In the case that the agent can move forward it will move forward. In addition
to the movement ahead, which is not decided by the agent but implicitly by its
local environment, an agent decides to perform simultaneously a turning action:

– R: turn 90 degrees to the right.
– L: turn 90 degrees to the left.
– S : stay (or “straight”) in the same direction as before.

Apart from the agent’s movement and the information exchange, an agent
has indirect communication capabilities. Each cell of the environment contains
a (status) flag f which is either 0 or 1 and used as an input for the decision
making process. The flag’s status can be seen as a tracing information like a
“pheromone” left by other agents or even by the reading agent itself. The agent
is able to perform three different actions on the flag of the cell on which the
agent is currently located:

– 0 : set flag to value 0.
– 1 : set flag to value 1.
– X : leave flag value as it is.

Thus in total there are nine possibilities of actions that an agent can perform
in one generation: R0, R1, RX , L0, L1, LX , S0, S1 and SX . The agent performs
the rule:

1. (Evaluate move condition x): If (front cell == obstacle ∨ agent ∨ con-

flict) then x = 0 else x = 1
2. (React): If (x) then move forward and perform actionR0 . . .SX , else perform

action R0 . . .SX

The decision which of the actions will be performed depends on the behavior
of the agent. The behavior (algorithm) of an agent is defined by a finite state
machine. Input of the state machine is the move condition x and the status flag
f . Output of the state machine is the signal y whose values are mapped to the
possible actions described before (see also Table 1).

A state machine is defined by a state transition table (Fig. 3) with current
input x and f , current state s, next state s′ and current output y. In order to

186 P. Ediger and R. Hoffmann

SX

LX

S1

R0

S1

LX

R0

LX

R0

SX

R0

S1

SX

LX

LX

S1

S1

LX

R0

1

0 35

2

4

LX

LX

S1

LX

LX

x=1, f= 1

x=1, f= 0

x=0, f= 1

x=0, f= 0

f 0 1f 0 1

x 0 1 0 1

s 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

s' 0 2 3 4 5 5 4 3 2 2 4 3 1 2 5 4 5 1 5 5 5 5 4 4

y S1 S1 SX LX R0 LX S1 LX S1 LX SX LX R0 R0 S1 LX R0 SX S1 LX LX LX R0 LX

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Fig. 3. A state table and the corresponding state graph, defining the behavior (algo-
rithm) of an agent, restricted to 6 states and the actions R0, LX, S1 and SX

keep the control automaton simple, we restrict the number of states and actions
to a certain limit (see Sec. 3). Modeling the behavior with a state machine with a
restricted number of states and evaluation by enumerations was also undertaken
in SOS [12].

To solve the problem very general either theoretical or practical with respect
to all interesting parameters is too difficult. Therefore we have specialized our
investigation. The grid size was set to 33 × 33. This size was taken over from
former investigations allowing to distribute equally a varying number of agents
at the borders. In this investigation the number of agents is set to k = 16.
From former investigations in multi-agent systems we know that a number of
agents between approx. 8 and 64 can lead to good synergy effects and a sufficient
number of conflicts which are required here.

3 The Genetic Procedure

The ultimate goal is to find the optimal behavior on average for all possible
initial configurations. As we cannot test all possible configurations we will be
satisfied if we can find the best behaviors for a test set of 20 randomly generated
initial configurations (10 with border and 10 with wrap-around), i. e., randomly
generated starting positions and directions for the 16 agents. As the search space
for different behaviors is very large we are not able to check all possible behaviors
by enumeration. The number of state machines which can be coded using a
statetable is K = (#s#y)(#s#x#f) where #s is the number of states, #x#f is

Solving All-to-All Communication with CA Agents 187

the number of different input values and #y is the number of different output
actions. Therefore we used a genetic procedure and tried to find the best behavior
within a reasonable computational time limit. In the former investigations [5]
we have experimented with #x = 2 (only move condition, no flags), #y = 2
(allowing only the actions RX and LX) and #s = 6 in order to keep the control
automaton as simple as possible. With these values 1212 possible state tables
can be defined. Note that not all of these represent distinct behaviors (e. g.,
permutation of the states leads to equivalent behaviors) or useful behaviors (e. g.,
state graphs which make little use of the inputs or which are weakly connected).
If we add the flag status information to the inputs (#x = 4) and for example
two more actions (#y = 4), our formula gives us in total 2424 possible state
tables, meaning that the search space increases exponentially.

The fitness of a multi-agent system is defined as the number of steps which
are necessary to distribute (all-to-all) the information, averaged over all initial
configurations (start positions and direction of the creatures) under test. In
other words we search for state algorithms which can solve the problem with a
minimum number of steps.

A concatenation of the pairs (s′, y) in the state table (Fig. 3) is a string
representation and defines the genome of one individual, a possible solution.
P populations of N individuals are updated in each generation (optimization
iteration). During each iteration M offsprings are produced in each population.
The union of the currentN individuals and theM offsprings are sorted according
to their fitness and the N best are selected to form the next population. An
offspring is produced as follows:

1. (Get Parents) Two parents are chosen for each population. Each parent
is chosen from the own population with a probability of p1 and from an
arbitrary other population with the probability of (1− p1).

2. (Crossover) Each new component (s′i, yi) of the genome string is taken
from either the first parent or the second parent with a probability of 50%.
This means that the tuple (next state, output) for the position i=(input,
state) is inherited from any parent.

3. (Mutation) Each component (s′i, yi) is afterwards mutated with a proba-
bility pf p2. Thereby the next state and the output at position i are changed
to a random value.

The fitness function F is evaluated by simulating the agent system. It reflects
three aspects:

1. The number of agents (maximum 16) which have gathered the complete in-
formation. If an agent has gathered the complete information it is informed.
If all agents are informed, we characterize the agent system respectively the
algorithm as successful. If the agents are successful on all given initial con-
figurations then we characterize the agent system respectively the algorithm
as completely successful.

2. The algorithm should perform at least one communication.

188 P. Ediger and R. Hoffmann

3. The number of steps in the CA simulation to reach successfulness. We will
call this value also communication time.

The used fitness function integrates these aspects by using appropriate weights:

F = 105(16− a) + 104(1− c) + tc

where a is the number of informed agents, c = 1 if at least one communication
took place, c = 0 if not, and tc is the communication time.

The first and second part of the fitness function are only relevant at the be-
ginning of the genetic algorithm (GA) for the ordering of the poor individuals.
After the genetic algorithm has proceeded a certain time only successful algo-
rithms are held in the populations. For successful algorithms the relation Fitness
= communication time = steps holds. Note that a lower fitness value is better.

4 Results

We evaluated the effectiveness and efficiency for the indirect communication
through flags and for the different moving abilities. As indicator for effectiveness
the fitness (quality) of the evolved algorithms is used, while as indicator for
efficiency the computational effort of the genetic algorithm is used. For that
purpose we carried out the following five tasks (Fig. 4):

Fig. 4. Schematic depiction of the different tasks carried out. Right hand side shows
the typical patterns emerged by the best algorithm found for each of the action sets
{RX, LX}, {RX, LX, SX} and {R0, LX, S1, SX}. Tc indicates the average of the com-
munication times tc over all 20 environments.

Solving All-to-All Communication with CA Agents 189

Table 1. Mapping of the output y to the corresponding actions of the nine selected
action sets wi, u and v

w0 w1 w2 w3 w4 w5 w6 w7 w8 u v

y = 0 R0 R0 R0 R0 R0 R1 R1 R1 RX RX RX

y = 1 L0 L1 L1 LX LX L1 LX LX LX LX LX

y = 2 S1 S0 S1 S0 S1 S0 S0 S0 S0 SX

y = 3 SX SX SX S1 SX SX S1 SX S1

(0) (Initialize) 10 random initial configurations for the environment with bor-
der (EnvB) and 10 without (cyclic, EnvC) were computed in advance and
used for all experiments.

(1) (Simple Movement) The genetic procedure was performed evolving algo-
rithms U with s = 6 states restricted to the actions u = {RX,LX}, i. e.,
without the ability to walk straight or to read and write flags.

(2) (Complex Movement) The genetic procedure was performed evolving al-
gorithms V with s = 6 states restricted to the actions v = {RX,LX, SX},
i. e., with the additional ability to walk straight but not to read and write
flags.

(3) (Tracing Agents) The genetic procedure was performed evolving algo-
rithms W0 - W8 with s = 6 states and nine different sets (w0 - w8, Table 1)
of #y = 4 different output actions, including the ability to walk straight and
to read and write flags.

(4) (Evaluation) The evolved algorithms U , V and W0 - W8 were compared.

We used #s = 6 possible states because we yielded good results for this
amount in former investigations. In order to limit the search space to a reasonable
number we restricted the possible outputs in task (3) to #y = 4. This also gives
us the chance to compare among the algorithms Wi by using different action
sets with the same complexity. There are in total 126 possible combinations
taking four out of nine actions. We reduced this number to nine (Table 1) by
the following constraints:

1. At least one of each action changing the flag status (0/1/X) should be in-
cluded (45 combinations left).

2. Demanding symmetry and the ability to walk straight, the four moving ac-
tions should consist of one R-, one L- and two S-actions (15 combinations
left).

3. If interchanging R and L leads to another action set among the 15, then
keep only one of the two (9 combinations possible).

The algorithms were evolved using P = 3 populations with N = 100 indi-
viduals each, M = 10 offsprings, p1 = 2% and p2 = 9%. For each task six
independent runs were performed for g = 10,000 generations. The results were
averaged over these six runs whenever it makes sense.

190 P. Ediger and R. Hoffmann

The first task delivered one algorithm U that could solve all 20 environments
on average in Tc = 638.1 steps. Taking into account the 10 best algorithms of
each run of the GA and averaging over the six runs, the mean value is 661.9
steps. The best algorithm V however needs only Tc = 470.6 steps, while the
average value of the top 10 over all six runs is 542.3. This means that walking
straight (SX) is an effective action and should be considered when designing
rules for the agents. The fact that in both cases 10,000 generations were used in
all runs means that the increasing complexity of the control automata does not
seem to make it harder for the GA to find a feasible solution.

These results were also compared to random walkers. 1,000,000 runs were
simulated with the moving abilities RX , LX and SX . On average the 16 ran-
dom walkers needed 1,038 steps to communicate successfully. In all runs the
communication was completely successful while the communication time was
distributed between 825 and 1,290. Random walkers with the actions RX and
LX only performed even worse needing 1,311 steps on average. Compared to the
best algorithms U and V the random walkers are significantly slower.

The values Tc averaged over the ten best found algorithms Wi and over the
six runs range from 353.1 to 418.6 (Fig. 5), which is considerably better than
the evolved algorithms without the ability to communicate through flags. The
best algorithm that was found is shown in Fig. 3. It uses the actions set w4 =
{R0, LX, S1, SX} and needs Tc = 319.6 steps to complete the task. Obviously
the ability to use flags is effective.

Despite the increasing complexity of the algorithms (U < V < W), the GA
is able to find better solutions Wi than V with the same amount of generations.
But apart from that observation, we also compared the actual computation time
for the GA runs. It turned out that the GA evolving algorithms Wi needed 14.1
hours on average on a PC (dual core 2GHz) for six runs. The GA to evolve
algorithms V needed 15.6 hours while evolving algorithms U took 18.3 hours of
computation time on the same machine. This is due to the fact that the fitness
correlates with the simulation time and fitness was obviously better in the case
of task (3). Adding the new actions (move straight, use flags) to the agents’
behavior thus is effective and efficient.

In Fig. 5 the algorithms Wi are sorted by communication time (averaged Top
10 evolved algorithms). The three worst evolved algorithms are W1, W7 and W5,
which all comprise the actions S0 and SX . It seems the combination of these
two actions is not so effective. In order to find out the reason, we further in-
vestigated which of the four actions the agents actually use during simulation.
Therefore we analyzed the data of all the top 10 algorithms of all runs of all
action sets wi. It turned out that in all nine cases the agents preferred to take
the actions y = 2/3 (stay or walk straight) instead of y = 0/1 (turn left or
right). Averaged over all nine combinations the actions y = 2/3 were performed
in 72.8% of all steps, although there is no significant overweight of these out-
puts in the state tables. According to that, walking straight is a good strategy for

Solving All-to-All Communication with CA Agents 191

 300

 350

 400

 450

 500

 550

 600

 650

W
4

W
0

W
8

W
3

W
2

W
6

W
1

W
7

W
5

C
om

m
un

ic
at

io
n

T
im

e

Best Wi
Averaged Top 10 Wi

Best V
Averaged Top10 V

Fig. 5. The best algorithms Wi and the averaged top 10 evolved algorithms Wi (with
flags) compared to the best algorithm V and the averaged top 10 evolved algorithms
V (without flags)

Fig. 6. Patterns of the flags (first line) and the visited cells (second line) for the best
algorithm W4 during the simulation of one environment

the all-to-all communication task, and if the agents are only able to set flags
to f = 1 when changing their direction, the information provided by the flags
cannot be communicated so efficiently.

We have also investigated the patterns of the communication flags. An exam-
ple is shown in Fig. 6. The number of flags with value f = 1 increases during
the first steps of the simulation and then it stays at a certain level with some
fluctuations in the amount and positions. We observed that the agents very of-
ten turn their direction after detecting a flag. Until now it is not clear how to
interpret the meaning of the flags in terms of human knowledge.

192 P. Ediger and R. Hoffmann

5 Conclusion

The agents’ behavior to solve the all-to-all communication problem by moving
around in a cellular automata grid was evolved by a genetic algorithm. We
examined the potential of different sets of possible moving and communicating
abilities of the agents.

The best evolved algorithm with the basic moving capabilities only needs on
average 638 steps to solve the problem. By adding more sophisticated moving
abilities and a simple indirect form of communication between the agents we
could evolve an algorithm that is able to solve the same problem in only 320
steps on average. In general the algorithms with more sophisticated abilities
have a superior behavior and the optimization time is even lower than for the
simpler algorithms. Thus we conclude that adding the ability to walk straight
and communicate indirectly through flags is an adequate way to improve the
agents’ behavior.

As the increase of possible actions or states always includes less complex
automata, one question that arises is: Is there an amount of states or possible
actions at which the efficiency of the genetic algorithm decreases? In future
investigations we want to find out whether these limits exist and furthermore if
it is a good strategy to evolve at first less complex automata and then use them as
a base to develop by hand or by heuristic methods more complex automata with
better behavior. We will also focus on the parameters of the genetic algorithm
and evaluate other heuristic methods in order to find out which is most suitable
for the optimization of state tables. Eventually the set of actions itself could
become a candidate for being optimized by heuristic methods.

References

1. Halbach, M., Hoffmann, R., Both, L.: Optimal 6-state algorithms for the behavior
of several moving creatures. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.)
ACRI 2006. LNCS, vol. 4173, pp. 571–581. Springer, Heidelberg (2006)

2. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked
multi-agent systems. Proceedings of the IEEE 95, 215–233 (2007)

3. Lin, J., Morse, A.S., Anderson, B.D.O.: The Multi-Agent Rendezvous Problem. An
Extended Summary. In: Nehmer, J. (ed.) Experiences with Distributed Systems.
LNCS, vol. 309, pp. 257–289. Springer, Heidelberg (1988)

4. Principe, G., Santoro, N.: Distributed Algorithms for Autonomous Mobile Robots.
In: 4th IFIP International Conference on TCS. IFIP, vol. 209, pp. 47–62. Springer,
Heidelberg (2006)

5. Ediger, P., Hoffmann, R.: Optimizing the creature’s rule for all-to-all communica-
tion. In: EPSRC Workshop Automata 2008. Theory and Applications of Cellular
Automata, Bristol, UK, June 12-14, pp. 398–410 (2008)

6. Hoffmann, R., Ediger, P.: Evolving multi-creature systems for all-to-all communi-
cation. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S.
(eds.) ACRI 2008. LNCS, vol. 5191, pp. 550–554. Springer, Heidelberg (2008)

7. Sipper, M.: Evolution of Parallel Cellular Machines. LNCS, vol. 1194. Springer,
Heidelberg (1997)

Solving All-to-All Communication with CA Agents 193

8. Sipper, M., Tomassini, M.: Computation in artificially evolved, non-uniform cellular
automata. Theor. Comput. Sci. 217(1), 81–98 (1999)

9. Komann, M., Mainka, A., Fey, D.: Comparison of evolving uniform, non-uniform
cellular automaton, and genetic programming for centroid detection with hard-
ware agents. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 432–441.
Springer, Heidelberg (2007)

10. Dijkstra, J., Jessurun, J., Timmermans, H.J.P.: A multi-agent cellular automata
model of pedestrian movement. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedes-
trian and Evacuation Dynamics, pp. 173–181. Springer, Heidelberg (2001)

11. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J.
de Physique 2, 2221 (1992)

12. Mesot, B., Sanchez, E., Peña, C.A., Perez-Uribe, A.: SOS++: Finding smart be-
haviors using learning and evolution. In: Standish, R., Bedau, M., Abbass, H. (eds.)
Artificial Life VIII: The 8th International Conference on Artificial Life,
pp. 264–273. MIT Press, Cambridge (2002)

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 194–206, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The GCA-w Massively Parallel Model

Rolf Hoffmann

Technische Universität Darmstadt, Hochschulstr. 10, 64289 Darmstadt, Germany
hoffmann@ra.informatik.tu-darmstadt.de

Abstract. We introduce the GCA-w model (Global Cellular Automata with
write access) that is an extension of the GCA (Global Cellular Automata)
model, which is in turn an extension of the cellular automata (CA) model. All
three models are called "massively parallel" because the models are based on
cells that are updated synchronously in parallel. In the CA model, the cells
have static links to their local neighbors whereas in the GCA model, the links
are dynamic to any global neighbor. In both models, the access is “read-only”.
Thereby no write conflict can occur which reduces the complexity of the
model and its implementation. The GCA model can be used for many parallel
problems that can be described with a changing global (or locally restricted)
neighborhood. The main restriction of the GCA model is the forbidden write
access to neighboring cells. Although the write access can be emulated in
O(log n) time this slowdown is not desired in practical applications. Therefore,
the GCA-w model was developed. The GCA-w model allows to change the
state of the own cell as well as the states of the neighboring cells. Thereby par-
allel algorithms can be executed faster and the activity of the cells can be con-
trolled in order, e.g., to reduce power consumption or to use inactive cells for
other purposes. The application of the GCA-w model is demonstrated for some
parallel algorithms: pointer inversion, sorting with pointers, synchronization
and Pascal’s triangle. In addition, a hardware architecture is outlined which
can execute this model.

Keywords: Massively Parallel Model, Global Cellular Automata, GCA with
Write Access, Dynamic Neighborhood, Dynamic Cell Activation, GCA-w
Applications, GCA-w Architecture.

1 Introduction

A new massively parallel computing model, called “GCA-w” (GCA with write-
access) is proposed [1], that is an extension of the GCA (Global Cellular Automata)
model [16, 15, 14, 12, 11] that is in turn an extension of the cellular automata (CA)
model. The cells of a GCA can dynamically establish links to their global neighbors,
whereas the cells of a CA use fixed links to their local neighbors. The GCA and CA
models have in common that they allow only read access to their neighbors and there-
fore no write conflicts can occur. Thereby the complexity of the model is kept low
and implementations in software or parallel hardware can easily be accomplished.

 The GCA-w Massively Parallel Model 195

It was already shown that the GCA model is suited for a large number of parallel
problems (Jacobi iteration to solve a system of linear equations [9, 3], Finding the
connected components of a graph [4, 10], Random Distribution of particles with non
local dynamic neighbors [5], N-body force calculation [2], Sorting numbers [8],
Graph algorithms [12]). Also efficient parallel hardware architectures [13, 8, 5, 3, 2]
have been designed. The language GCAL [9] was developed to simulate GCA algo-
rithms and to use the language as an input for an automatic design process generating
an application specific data parallel hardware to be configured on an FPGA.

The GCA model can also be mapped onto the PRAM-CROW model [6]. There-
fore, PRAM-CROW algorithms can be executed on the GCA model with the same
time complexity using the same amount of processors respectively cells.

The restrictions of the GCA model are twofold:

(1) No write access to the neighbors: Although it is possible to simulate a write ac-
cess in O(log n) time [6], this slowdown might be unacceptable for practical applica-
tions. In addition, particular algorithms can be described more naturally if the
neighbor’s state can be modified.

(2) No dynamic activation: In the GCA model cells can deactivate themselves.
Thereby the number of active cells that are involved in the computation can be re-
duced. An inactive cell cannot change its state but its state can be read by another cell.
Enlarging the number of active cells dynamically is only achievable by an additional
mechanism like a central control. In order to control the number of active cells in a
decentralized way by the cells themselves, write access to the neighbors is mandatory.
The reason is that an inactive cell cannot activate itself; it has to be activated by an-
other active cell. A dynamic varying activity is very often an inherent property of
parallel algorithms which should be exploited in order to use the computational re-
sources of inactive cells for other computations or to reduce the power consumption.

Related Work. The PSA model [7] of computation is a very general and powerful
model based on substitution rules. It allows also modifying the state of arbitrary target
cells (right side of the substitution) using a “base” and a “context”. In relation to the
GCA-w the base corresponds to the cell under consideration, the context corresponds
to the read neighbors and the right side corresponds to the cells which are modified. –
There is also a relation to the CRCW-PRAM [18, 17] model. The PRAM model is
based on a physical view with p processors that have global memory access to physi-
cal data words whereas the GCA-w is based on logical computing cells tailored to the
application. Another difference of the GCA-w model compared to PRAM is the direct
support of dynamic links and the rule based approach similar to the CA model.

2 The GCA-w Model

The GCA-w model overcomes the restrictions of the GCA model by allowing write
access to the neighbors. A cell can operate in two modes:

(1) Normal GCA mode (n-mode): A cell reads information from the dynamically
linked neighbors and then updates its own state (data and link information)
only.

196 R. Hoffmann

Fig. 1. Each cell is dynamically connected to global (or locally restricted) neighbors (grey). The
state of the centre cell including the links and the states of its neighbors can be changed (grey to
black) by a local rule.

(2) Write mode (w-mode): A cell reads information from the dynamically linked
neighbors and then updates its neighbors’ states and optionally its own state
(Fig. 1).

The w-mode can be used to activate or to inactivate a neighbor, e.g., by sending a
certain control code to that neighbor. An inactive cell serves as a storage-only cell that
can be accessed (read and write) by another active cell. As an inactive cell does not
use its computational resources itself, they might be used by other cells.

With the availability of the w-mode, many parallel algorithms can be described
with a lower time-complexity and furthermore the computing resources of inactive
cells could be used for other computations.

An inherent problem remains, which is complicating an implementation: There
may occur write conflicts. They can either be avoided by using the w-mode in an
“exclusive” way meaning that the algorithm ensures that no write conflict can occur.
Otherwise, the conflicts have to be resolved automatically in a defined manner.
Well-known conflict resolution strategies among others are Arbitrary, Priority,
Common, or Reduction. The handling of conflicts will be discussed in more detail in
a future contribution.

GCA-w with Unstructured State. A GCA-w consists of an array of processing cells
(Fig. 2). Each cell k contains a state q, an address function h and a rule function f.
The cells’ states are updated in four phases:

(1) The effective address peff of the global neighbor (in the general case multiple
neighbors are permitted) is computed.

(2) The dynamic link to the neighbor is established in order to read state q*.
(3) The local rule f is applied that computes the results f1 and f2.
(4) The result f1 is optionally written to update the cell’s state q and the result f2

is optionally written to update the state q* of the neighbor cell.

Optionally the functions h and f may take into account central control information,
like the generation counter t, common parameters, control codes or address offsets.
Note that the model does not require central control information because the computa-
tion of such information can be replicated in each cell. The reason for using a central
control is to minimize the cell’s complexity.

 The GCA-w Massively Parallel Model 197

Fig. 2. The global neighbor is accessed using the effective address peff computed by the cell.
The next states f1 and f2 are computed and are stored in q and q*.

GCA-w with Structured State. Each cell (Fig. 3) contains a data field d and one or
more link information fields p. The link information field p is also denoted as pointer
field because it can directly act as a pointer if h is the identity function. The GCA-w
model is called one-handed if only one neighbor can be addressed, two-handed if two
neighbors can be addressed and so on. (In a more general case the number of links
could be different for different cells.) The one-handed model seems to be sufficient for
most practical applications, as it is the case for most of the GCA algorithms investi-
gated so far. In addition, the multi-handed model can be simulated on the one-handed
model. Therefore, the following considerations are restricted to the one-handed model.

e1, e2, g1, g2

h

peff

e2

cell k neighbor cell

d p d* p*

e1 g1

g2

e1, e2, g1, g2

h

peff

e2

cell k neighbor cell

d p d* p*

e1 g1

g2

Fig. 3. The state q of a cell can be partitioned into a data field d and one or more link informa-
tion fields p

The local information (d, p) and the global information (d*, p*) are inputs of the
functions e and g which compute the next data and the next link respectively (Fig. 3).
All cells are updated in parallel in a synchronous way generation by generation. The
functions e and g may further depend on the local space index k of the cell and central
control information. An optional function h is used to compute the effective address
peff of the global cell in the current generation.

198 R. Hoffmann

The operation principle of a GCA-w can be defined in two forms: basic GCA-w
model, or general GCA-w model that includes the basic model.

Basic Model. The basic GCA-w model removes the address calculation function h (h
is the identity function h = p), meaning that the effective address is peff = p. The next
pointer and the next data fields are computed by the following rules:

d <= e1(d, p, d*, p*, k, control),
p <= g1(d, p, d*, p*, k, control),
d* <= e2(d, p, d*, p*, k, control),
p* <= g2(d, p, d*, p*, k, control).

The assignment symbol “<=” is used to indicate the synchronous updating. If the
arrays D = d0 d1 . . . dn−1 and P = p0 p1 . . . pn−1 are used to denote the data fields re-
spectively the pointer fields of the cells then d, d*, p, p* are equivalent to

d = D[k], p = P[k], d* = D[p] and p* = P[p].

Note that the uniform functions used in the cells (not dependent on the local space
index k) can be specialized resulting in non-uniform functions: f(k, …) → fk (…).

The advantage of the basic model is that it is simpler because it does not require
the function h, thereby also reducing the implementation effort. The user of this
model has to be aware that the effective address in the current generation has to be
computed in the previous generation. This can always be accomplished if the actual
central control information is not influencing directly the effective address. The gen-
eral GCA model is a more convenient choice from the programmer’s point of view
when an algorithm can be described more naturally by computing the effective ad-
dress in the current generation.

General Model. The general GCA-w model uses the additional rule h that computes
the effective address:

peff = h(d, p, k, control), d* = D[peff], p* = P[peff].

The assignment symbol “=” indicates that a value is assigned to the temporary
pointer variable peff that may be a wire or a temporary register in a hardware
implementation.

Note that a cell of the basic GCA-w can be seen as a Moore-automaton, because
the effective address (the output) is stored in a register and does not directly depend
on an input. In contrast, a cell of the general GCA-w operates as a Mealy-automaton
if the computation of the effective address is depending on central control information
received from the environment.

A hardware implementation of the GCA-w model can be simplified in all cases
where the pointer p follows an address pattern which is known in advance and which
is not data dependent: peff = h(k, control). Such a case with “known pointers” appears
in many applications (e.g., hypercube algorithms). Then the link fields in the cells are
not necessary. In a sequential implementation of the model a central address generator
can easily generate these addresses.

 The GCA-w Massively Parallel Model 199

A structured GCA-w can be transformed into an unstructured GCA-w by unifying
the two fields d and p into one single word q, such that q is partly or alternatively
interpreted as data or pointer information. The unstructured unified model has the
advantage that it is simpler and can be implemented with fewer hardware resources.
The unstructured model can also been seen as “untyped” because the types “data” and
“pointer” are not distinguished whereas the structured model can be seen as “typed”.

Write Conflicts. As mentioned before write conflicts may occur, for different reasons.
A cell may use itself as a neighbor if the effective address is equal to the cell's index. If
this case is not forbidden or given another semantic then two the values f1 and f2 (both
produced by the cell itself) to be written may cause a conflict. The probably most fre-
quent conflict might occur if one or more cells k try to update a neighboring cell k*
which also tries to update itself. For the one-handed GCA-w at most n write conflicts
may occur on one cell. If the absence of write conflicts cannot be guaranteed, which is
especially the case if the neighborhood is data dependent or random, the model and the
corresponding hardware have to offer a defined conflict resolution strategy. We will
not discuss here the different possibilities but it is obvious that the conflict detection
and resolution will complicate the hardware and slow down the computation.

Modifications of the GCA-w Model or Future Extensions of the Model. The
model can be modified or supplemented by further features in order to meet practical,
dedicated or more general requirements. Such modifications or features are

• The cell array contains storage-only cells that cannot compute and thus cannot be
activated. They are distinguished into "constant" cells (with read-only access) and
"variable" cells (with read and write access).

• Cells are dynamically restricted to read access only.
• Cells may be deactivated forever.
• Another updating scheme is used such as asynchronous updating.
• Several cell arrays (interacting or not interacting) are computed in parallel.
• The output of one generation is written into a new cell field in a dataflow manner.
• Non-uniform cells are used built from structures or rules that are space-

dependent.
• The cell’s state is separated into a public and private (hidden) part. Only the pub-

lic part can be accessed by another cell.
• Cells are considered as objects containing methods which can be invoked by the

cell itself or by another cell.
• Cells are dynamically created or deleted.

3 Some Applications

It was already shown that the GCA model is applicable to many parallel applications
and that it can efficiently be supported by hardware [13, 11]. Recently it was shown
that the classical PRAM models can be simulated on the GCA [6]. The write access
available in the PRAM models can be simulated with a slowdown of O(log n)
using a tree of cells. If an algorithm guarantees the “exclusive-write” property this

200 R. Hoffmann

slowdown can be eliminated through the direct write access available in the GCA-w
model. In the following, the expressiveness of the GCA-w model is demonstrated by
some applications.

Pointer Inversion. Consider an unidirectional linked list. The task is to invert the
direction of the pointers. This task can directly be performed through the GCA-write
mode.

Version 1: It is assumed that the list is cyclic. Then the algorithm is very simple.

 type cell = (data: integer; pointer: 0..n-1)
 C: array [0 .. n-1] of cell
 parallel C[k=0 .. n-1]

// pointer is directly used as effective address “neighbor”; basic model
neighbor = pointer
// neighbor.pointer is an abbreviation for C[C[k].pointer].pointer
neighbor.pointer <= k // write own index to neighbor’s pointer

 endparallel

This algorithm can also be used for a non-cyclic linear list. The idea is that one node
(e.g., node 0) of the cyclic list is a special node used to mark the head and the tail of
the list. An outgoing arc from that node points to the head, an incoming arc marks the
tail. The following version is one algorithm for a non-cyclic linear list. Other alterna-
tive algorithms are given in [1].

Version 2: This version solves the problem in one generation without additional vari-
ables using a write-conflict resolution method based on priorities. The tail of the list is
marked by a self-loop. A write conflict occurs for all cells except for the new head
cell. This conflict is resolved by giving priority to the write-access induced by a re-
mote cell.

 type cell = (data: integer; p: 0 .. n-1)
 C: array [0 .. n] of cell
 initial C[k = 0 .. n-2].p <= k+1, C[n-1].p <= n-1 endinitial
 parallel C[k = 0 .. n-1]
 neighbor = p
 conflict // this section describes the conflict resolution
 // high priority: write k to neighbor’s pointer
 priority 1: if (neighbor ≠ k) then neighbor.p <= k endif
 // low priority: mark new head
 priority 2: p <= k // applies only for new head
 endconflict

endparallel

Sorting with Pointers. Some PRAM sorting algorithms and the GCA algorithm in
[14] compute for each element first the target position where it should be located.
In the second phase, the elements are copied in parallel to their targets. The second
phase requires write access to an arbitrary cell. The GCA-w model provides
this capability. Note that the following sorting algorithm with O(n) steps is not
optimal.

 The GCA-w Massively Parallel Model 201

type cell = (d: integer; target: 0 .. n-1)
parallel C [k = 0 .. n-1] target <= 0 endparallel
// phase 1
for t = 1 to n – 1 do

parallel C[k = 0 .. n-1]
neighbor = (k + t) mod n // defines function h, general model
if (neighbor.d < d) or (neighbor.d = d and neighbor < k)
then target <= target +1 endif

endparallel
endfor
// phase 2
parallel C[k = 0 .. n-1] target.d <= d endparallel // write to target cell

Synchronization. All cells shall change simultaneously from the ZERO state into
the FIRE state. The problem is related to the well-known Firing-Squad problem. The
number n of cells is not known in advance. The “general” is located on the left (k=0,
Fig. 4) end and starts the process being the only active cell. Using the global
neighborhood from the beginning the problem could be solved trivially if all the
soldiers (the other cells) would directly observe the general. But it is assumed that at
the beginning only local neighborhoods are allowed. Initially each cell is connected
to its right neighbor except the right end soldier who is pointing to himself thereby
marking the end of the chain (Fig. 4 A). The purpose of the first version with N+1
generations is to show how N = n+1 cells can be activated in principle one after the
other forming a wave of activity. Note that a more efficient algorithm with 2+log2 N
generations can be designed using the well-known pointer-jumping technique
(version 2, Fig. 4 B).

Version 1

type cell = (data: (ZERO, FIRE); p: 0 .. n; active: activity)
C: array [0 .. n] of cell
initial

C[0 .. n-1].data <= ZERO
C[0].active <= TRUE // only left border cell is initially active
C[k = 0 .. n-1].p <= k+1 // cells point to its right neighbor
C[n].p <=n // right border cell points to itself

endinitial

repeat
parallel C[k where active] // only do for active cells
 // activate right neighbor, write mode
 if (p = k+1) then p.active <= TRUE endif
 // if not right border reached increment pointer for active cells only

if (p.p ≠ p) then p <= p+1 endif
 // wait one step until right border cell was activated
if (p.p = p) and (p.active = TRUE) then data <= FIRE endif

endparallel
endrepeat

202 R. Hoffmann

Version 2

type cell = (data: (ZERO, FIRE); p: 0 .. n; active: activity)
C: array [0 .. n] of cell
initial

C[0 .. n-1].data <= ZERO
C[0 .. n-1].active <= TRUE // except cell n: all are active
C[k = 0 .. n-1].p <= k+1 // cells point to its right neighbor
C[n].p <=n // right border cell n points to itself

endinitial

repeat
parallel C[k where active] // only do for active cells

p <= p.p // pointer jumping
// if general points to the last soldier n then activate him
if (k = 0) and (p.p = p) then p.active <= TRUE endif
// when last soldier was activated then fire all
if (p.p = p) and (p.active = TRUE) then data <= FIRE endif

endparallel
endrepeat

k = 0 1 2 3 n k = 0 1 2 3 n

(A) (B)

k = 0 1 2 3 n k = 0 1 2 3 n

(A) (B)

Fig. 4. (A) The activity is gradually propagated (grey) until after n+1 generations all cells
change into the FIRE state (black). (B) The last soldier is detected faster using pointer jumping.

Pascal's Triangle. This well-known triangle (already known before Pascal described
it, e.g. by Yanghui), computes the binomial coefficients. It can be drawn in different
ways. Filling empty sites with zeroes (Fig. 5 A), the computation can easily be for-
mulated by the Cellular Automata rule: (Center Left + Right). However, redun-
dant "zero" additions are performed. In order to avoid unnecessary zero additions,
the aligned representation (Fig. 5 B) can be used. Filling the empty sites with zeroes
the computation can be described by the CA rule (Center Left + Center) more
efficiently.

Note that in a CA with n cells always (n-1) cells are updated, although in this ex-
ample the interesting information is propagated gradually from left to right. Only
in the last generation, all cells produce a useful result (except cell 0). On average,

 The GCA-w Massively Parallel Model 203

0
0

0
0

0
0

1
1

1
1

1
1

0
1

2
3

4
5

0
0

1
3

6
10

0
0

1
4

10

0
1

5 1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0 0
0

0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0 0

0

0

0
0

0

0

1
1
1
1
1
1

1
2
3
4
5

1
3
6
10

1
4
10

1
5 1

k = 0 1 2 3 4 5

(A) (B)0
0

0
0

0
0

1
1

1
1

1
1

0
1

2
3

4
5

0
0

1
3

6
10

0
0

1
4

10

0
1

5 1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0 0
0

0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0 0

0

0

0
0

0

0

0
0

0
0

0
0

1
1

1
1

1
1

0
1

2
3

4
5

0
0

1
3

6
10

0
0

1
4

10

0
1

5 1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0 0
0

0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0 0

0

0

0
0

0

0

1
1
1
1
1
1

1
2
3
4
5

1
3
6
10

1
4
10

1
5 1

k = 0 1 2 3 4 5

1
1
1
1
1
1

1
2
3
4
5

1
3
6
10

1
4
10

1
5 1

k = 0 1 2 3 4 5

(A) (B)

Fig. 5. (A) The value "0" is used to indicate the spaces. The value x[k] in line j is the sum of
x[k-1]+x[k+1] of line (j-1). (1D-CA rule: Center Left + Right). (B) Aligned representation,
result of deleting the "0"s from Fig. 5 A and shifting the remaining numbers to the left border.

approximately only half of the cells are producing a useful result. Of course, by the
use of a central control, the cells can gradually be included into the computational
process. But it is desired to control the amount of active cells by the cells themselves
in a decentralized way. The GCA-w model supplies this feature. The redundant pro-
duction of zeroes in the right part of a line can be avoided. In the following program
only useful computations are performed.

Initially only cell (k=0) is active. In the first generation, it performs three actions:
(1) writing d <=1 to its right neighbor (k=1), (2) activating the right neighbor, and (3)
deactivating itself. Thereby in every new generation, a new cell is activated at the
right end.

 type cell = (data: integer; active: activity)
 // left, right are temps used as effective addresses to be computed
 C: array [0 .. n] of cell // example n=5
 initial
 C[0].data <= 1, C[0].active <= TRUE
 endinitial
 repeat
 parallel C[k where active] // only do for active cells
 left = k-1, right = k+1 // fixed local neighbors like in CA
 if (k=0) then active <= FALSE, right.data<= 1, right.active <= TRUE endif
 if (data ≠ 1) then data <= data + left.data endif
 if (data =1) and (k<n) then data <= data + left.data,
 right.data <= 1, right.active <=TRUE endif
 if (data =1) and (k=n) then data <= data + left.data, right.data <= 1 endif

 endparallel
 endrepeat

4 Hardware Architecture

Efficient hardware architectures can be designed for the GCA-w model with moderate
effort. The designer may choose a fully parallel architecture, or a multiprocessor ar-
chitecture, or a pipelined sequential architecture or a data parallel architecture com-
posed of multiple sequential architectures.

204 R. Hoffmann

The fully parallel architecture for n cells uses n registers (q, or d and p), n func-
tional units (h, e, g) and a link network that can supply in parallel the links which are
demanded by the execution of the parallel algorithm. In most of the practical applica-
tions the full connectivity (all-to-all) needs not to be implemented because parallel
algorithms mainly use only dedicated communication patterns. A standard multiproc-
essor architecture can be used or designed that is complemented with special hard-
ware components or special vector-like instructions in order to support the model and
accelerate the execution. In the following the principle of a sequential pipelined archi-
tecture is described that can be used as a component for a data parallel architecture.

cell index k

read address
k, control

k, control

k,
controlcell state

q=(d,p)

peff
effective address of

neighbor

next states

write address

primary
memory

secondary
memory

R S RS‘
neighbor‘s

cell state q*
h

w

result
temporary
memory

f

k, control

RS‘
q*next

qnext

v

cell index k
read address

k, control

k, control

k,
controlcell state

q=(d,p)

peff
effective address of

neighbor

next states

write address

primary
memory

secondary
memory

R S RS‘
neighbor‘s

cell state q*
h

w

result
temporary
memory

f

k, control

RS‘
q*next

qnext

v

Fig. 6. A general architecture for the GCA-w model. The cells are processed sequentially in a
pipeline mode.

The proposed pipelined sequential architecture (Fig. 6) works as follows: The
cell’s state q is read sequentially from the primary memory R using an address
counter k. Then follows the computation of the effective address peff and the neighbor
is read from the memory S. Now all the information is available to compute the next
cell states qnext and q*next by the function f and the write address by the function w. RS’
is a temporary two-port memory which stores qnext at the cell’s location k (or more
general at v(k, control)) and q*next at the location of the computed write address w. RS’
is copied back into R and S at the end of the current generation in order to achieve the
synchronous updating scheme. In order to avoid the copying of the new data two two-
port memories RS (read+read) and RS’ (write+write) can be used which are inter-
changed by switches after each generation. Alternatively one 4-port memory (2*read
+ 2*write) can be used that is divided into two pages which are interchanged using the
most significant address bit.

Note that the write address will be equal to the neighbor's address (w = peff) for
most applications but the hardware offers a more general functionality w = w (q, peff,
q*, k, control), e.g., w = k+constant, p+constant, peff +constant, p*. This architecture
can be specialized in several ways, e.g., by using a multiplexer with the inputs k, k+1,
k-1, p, peff , p* for the function w. Thereby another "write"-neighbor than peff can be
chosen. If w=p* the new state q*next is written to the address stored in the neighbor
peff. This case offers an additional indirect accessing, which might be useful in sophis-
ticated parallel algorithms, e.g., move data to a target that is specified in the neighbor.
In addition the write address v of the own cell can be modified, typically by using an
offset v = k+offset. Thereby the cells in the array can be shifted or permuted, or the

 The GCA-w Massively Parallel Model 205

whole cell field can be placed at another base address in order to realize a dataflow /
streaming mode of operation.

A conflict resolution logic has to be added to the architecture in case that a GCA-w
algorithm running on this architecture induces write conflicts. This logic becomes more
complex when the degree of parallelism implemented in the hardware is increasing.

If only active cells shall be computed then additional logic has to be added, e.g., an
activation list holding the indices kactive of the active cells. The list can be updated in
parallel to the cell processing and it has to be used instead of the cell counter k.

Compared to a sequential GCA-architecture [13, 5] the write address function w,
the second write port to the RS’ memory, and the conflict resolution logic has to be
added.

5 Conclusion

A new parallel computing model called GCA-w, Global Cellular Automata with write
access to the neighbors, was presented. GCA-w is an extension of the GCA model
that is related to the Cellular Automata (CA) model. In the GCA and GCA-w model
the neighbors are linked dynamically to the cell under consideration and the data and
the link information are modified by a local rule. Thereby a cell can decide itself
which shall be its neighbors in the next generation. The new GCA-w model over-
comes the restriction that a cell can only modify its own state. Thereby any global cell
in the whole cell array can be the target of an information transfer. Compared to the
normal GCA model a write access needs not to be simulated with a slowdown of
O(log n), it can be performed directly in O(1). Furthermore “sleeping” cells can be
turned dynamically into active cells in a decentralized way. “Sleeping” resources
might be assigned dynamically to other active cells leading to better resource utiliza-
tion or lower power consumption. Classical PRAM algorithms as well as practical
parallel applications can easily be mapped onto this model. Such algorithms can also
be described clearly with constructs available from classical parallel languages. The
proposed architecture shows that hardware support of this model can be realized
without much effort.

Acknowledgment. Many thanks to Prof. Keller (FernUni Hagen) who made a num-
ber of valuable comments on the manuscript, especially concerning the handling of
conflict situations and the pointer inversion example. I also like to thank P. Ediger
who carefully read the manuscript and contributed to different versions of the pointer
inversion example.

References

1. Hoffmann, R.: GCA-w: Globaler Zellularer Automat mit Schreibzugriff, Fachgebiet Re-
chnerarchitektur, Technische Universität Darmstadt, Internal Report (January 2009)

2. Jendrsczok, J., Hoffmann, R., Lenck, T.: Generated Horizontal and Vertical Data parallel
GCA Machines for the N-Body Force Calculation. In: Berekovic, M., Müller-Schloer, C.,
Stephan Wang, C.H. (eds.) ARCS 2009. LNCS, vol. 5455, pp. 96–107. Springer, Heidel-
berg (2009)

206 R. Hoffmann

3. Jendrsczok, J., Homann, R., Ediger, P.: A Generated Data Parallel GCA Machine for the
Jacobi Method, 3. In: HiPEAC Workshop on Reconfigurable Computing, HiPEAC Conf.
Cyprus 2009 (2009)

4. Jendrsczok, J., Hoffmann, R., Keller, J.: Implementing Hirschberg’s PRAM-Algorithm for
Connected Components on a Global Cellular Automaton. International Journal of Founda-
tions of Computer Science (IJFCS) 19(6) (2008)

5. Jendrsczok, J., Ediger, P., Hoffmann, R.: A scalable configurable architecture for the mas-
sively parallel GCA model. In: IEEE International Symposium on Parallel and Distributed
Processing (IPDPS), Workshop on Advances in Parallel and Distributed Computational
Models (APDCM) (April 2008)

6. Osterloh, A., Keller, J.: Das GCA-Modell im Vergleich zum PRAM-Modell. Informatik-
Bericht 350 - 3/2009, FernUniversität in Hagen

7. Achasova, S., Bandman, O., Markova, V., Piskunov, S.: Parallel Substitution Algorithms,
Theory and Applications. World Scientific, Singapore (1994)

8. Heenes, W.: Entwurf und Realisierung von massivparallelen Architekturen für Globale
Zellulare Automaten. PhD thesis, Technische Universität Darmstadt (2007)

9. Jendrsczok, J., Ediger, P., Hoffmann, R.: The Global Cellular Automata Experimental
Language GCA-L, Technischer Bericht, RA-1-2007, Technische Universität Darmstadt,
FB Informatik (2007)

10. Jendrsczok, J., Hoffmann, R., Keller, J.: Hirschberg’s Algorithm on a GCA and its Parallel
Hardware Implementation. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par
2007. LNCS, vol. 4641, pp. 815–824. Springer, Heidelberg (2007)

11. Heenes, W., Hoffmann, R., Jendrsczok, J.: A Multiprocessor Architecture for the Mas-
sively Parallel Model GCA. In: IPDPS/SMTPS 2006, IEEE Proceedings: 20th Interna-
tional Parallel & Distributed Processing Symposium (2006)

12. Ehrt, Chr.: Globaler Zellularautomat: Parallele Algorithmen. Diplomarbeit, Technische
Universität Darmstadt (2005)

13. Hoffmann, R., Heenes, W., Halbach, M.: Implementation of the Massively Parallel Model
GCA. In: PARELEC, pp. 135–139. IEEE Computer Society, Los Alamitos (2004)

14. Hoffmann, R., Völkmann, K.-P., Heenes, W.: GCA: A massively parallel Model. In:
IPDPS 2003 (2003)

15. Hoffmann, R., Völkmann, K.-P., Waldschmidt, S., Heenes, W.: GCA: Global Cellular
Automata, A Flexible Parallel Model. In: Malyshkin, V.E. (ed.) PaCT 2001. LNCS,
vol. 2127, pp. 66–73. Springer, Heidelberg (2001)

16. Hoffmann, R., Völkmann, K.-P., Waldschmidt, S.: Global Cellular Automata GCA: An
Universal Extension of the CA Model. In: Worsch, T. (ed.) ACRI 2000 Conference (2000)

17. Keller, J., Keßler, Chr., Träff, J.: Practical PRAM Programming. Wiley, Chichester (2001)
18. JaJa, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Reading (1992)

Implementation of Fine-Grained Algorithms on

Graphical Processing Unit

Konstantin Kalgin

ICMMG SB RAS, Novosibirsk, Russia
kalgin@ssd.sscc.ru

Abstract. In this paper we solve the problem of mapping of fine-
grained algorithm to graphical processing unit (GPU). Synchronous,
asynchronous, block-synchronous and probabilistic cellular automata
and explicit scheme of PDE are used as examples. Different implemen-
tation variants and their performances are presented.

1 Introduction

As history has shown, there are two ways of processor development. The first
one is to design completely new processor architecture. The second one — to
improve and adapt existing processors to new market requirements. Both ways
have highs and lows, but it is not the subject of our work. We just note that in
the second way the end product is cheaper and comes to the market faster. This
point has influenced on the appearance of our paper.

Nowadays processor architecture becomes significantly more complex — mul-
ticore processors come instead of conventional ones. Nobody now complicates
structures of cores. It is more efficient to make them simpler and then increase
the number of cores on a chip. But in this case a processor becomes more
complicated.

When a new processor architecture appears, we meet the following problem:
how to map existing algorithms into it.

In this paper we solve the problem of mapping of fine-grained algorithm to
the GPU. We consider only GPU with CUDA [1] support. Synchronous, asyn-
chronous, block-synchronous and probabilistic cellular automata and explicit
scheme of PDE (ES) are used as examples.

Of course, our choice of GPU does not depend on low cost and high availability.
We choose it as far as GPU architecture and fine-grained algorithms structure
are conformed.

2 GPU Architecture

General points. GPU is a well known device connected to the main board (host
computer) through the PCI Express bus. It consists of a processor and an on-
board RAM (further called global memory). A host program fully controls the

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 207–215, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

208 K. Kalgin

GPU (memory management and program execution). The processor consists
of multiprocessors (MP). MP is a union of eight streaming processors (SP).
Processor and memory frequencies, number of MPs and global memory size
depend on GPU version and may be adopted to market requirements.

Multiprocessor architecture is mainly SIMD-oriented (Single Instruction Mul-
tiple Data). But it is more flexible than the majority of conventional SIMD-
extensions. Sometimes it is called SIMT (Single Instruction Multiple Threads).
SIMT architecture requires a programmer to manipulate the threads rather than
the vectors. With not too high restrictions on performance it also permits arbi-
trary branching behavior for threads.

Memory hierarchy. In addition to on-board global memory there are other types
of on-chip memory: registers (8192 or 16384 32-bit registers per multiprocessor),
shared memory (16384 bytes per multiprocessor), constant and texture caches.
The registers have 0-clock latency, the shared memory has 4 clocks of latency
and the global memory has 300-600 clocks of latency. The shared memory is used
as a fast temporary buffer for processed data. It helps to decrease the intensity
of global memory usage.

Kernel is a C function that, when called, is executed N times in parallel by N
different CUDA threads. Every thread that executes a kernel is given a unique
thread ID (further called coordinates) accessible within the kernel.

Thread hierarchy. The whole set of CUDA threads is divided into blocks. Blocks
have the same sizes (less then 512) and shapes. Thus, a kernel is executed by
equally-shaped thread blocks. So, the total number of threads equals the number
of threads per block times the number of blocks. Threads within a block can
cooperate by sharing data through some shared memory and synchronizing their
execution to coordinate memory access.

3 Cellular Automata and Explicit Scheme

Model spaces of CA and ES are both discrete and regular. Further we consider
only 2-dimensional model spaces (cellular arrays and meshes). Values of a func-
tion corresponding to ES are said to be located in mesh points, whereas CA
states are stored in mesh cells. However, for considered model spaces it does not
matter.

The following properties are important for the performance of parallel imple-
mentation of the models:

– local interactions — to compute new states/values we need only neighboring
cell states/values;

– spatial (data) parallelism — computations of new values can be performed
simultaneously.

We give no general definition of CA. It can be found in [4], where not only clas-
sical but asynchronous, probabilistic and block-synchronous CA are described.
Though, in the examples each case is properly defined.

Implementation of Fine-Grained Algorithms on Graphical Processing Unit 209

3.1 Explicit Scheme

Let us consider a differential equation with partial derivatives that models phase
separation process [6]:

ut = 0.2(uxx + uyy)− 0.2(u− 0.1)(u− 0.5)(u− 0.9) (1)

Equation (1) is solved by ES with five-point template (2):

ut+1
x,y = ut +

τ

5

(ut
x−1 + ut

x+1 + ut
y−1 + ut

y+1 − 4ut

h2 −

−(ut − 0.1)(ut − 0.5)(ut − 0.9)
) (2)

It is interesting that equation (1) has CA analog considered in Sec. 3.2.

Fig. 1. First, 50th, 100th, 200th and 300th time step of phase separation process simu-
lated by ES (2). Mesh size is 300 × 300.

Implementation. Every ES time step a grid of threads is spawned having the
same size as the ES mesh. The set of mesh point coordinates and the set of
thread coordinates are isomorphic. For each mesh point of the model space we
put into one-to-one correspondence a GPU thread having identical coordinates.

A mesh point is called inner with respect to a block of threads, if the thread
corresponding to the point belongs to the block. Remaining mesh points are
called outer points. A mesh point is called boundary point with respect to the
block of threads, if it is outer and its value is needed to compute a new value in
an inner point.

Implementation with only global memory usage. Values of the function ut(x, y) in
mesh points (further called ”values in points”) are stored in the global memory.
Therefore each use of a value in a point yields global memory access. In addition,
a new value computing requires four global memory access. Totally we have five
global memory access.

Implementation with shared memory usage. Values in mesh points are also stored
in the global memory. The shared memory is used only when the block of threads
is running. It is used for storing the values in inner and boundary points. Each
value in an inner point is loaded to the shared memory from the global mem-
ory by appropriate thread. Special threads are assigned for loading values in
boundary points to the shared memory.

210 K. Kalgin

Thus, in comparison to the above case the number of global memory access
is reduced, i.e. values in inner points are loaded from the global memory only
once and from the shared memory only five times per iteration.

3.2 Classical Cellular Automata

Let us consider an example of classical CA that models phase separation process.
Each cell can be in one of two states — 0 or 1. The state of it depends on the
states of eight neighbors of the cell.

Simulating process consists of iterations. On each iteration we simultaneously
update all cell states according to the rule:

state =

{
0, sum = 5 or sum < 4
1, else

,

where sum is the number of neighboring cells in state 1.

Fig. 2. First, 50th, 100th, 200th and 300th iterations of phase separation process mod-
eling by CA. Mesh size is 300 × 300.

Implementation of CA differs from ES only by the computations of new values
and by the number of used neighboring cells. It is important with a view to GPU
implementation performance.

A 32-bit integer is used to represent a cell state in GPU. This choice is caused
by GPU constraints on the fast global memory access. With 8-bit or 16-bit
integer it results in hardware or software time overhead (packing and unpacking).
Experiments show that packing and unpacking lead to a decrease of performance
(rather than an increase).

Time of computations significantly depends on neighborhood size because the
number of global memory access depends on it. In the case of cellular automata,
the number of global memory access to inner cells is reduced by factor 9 (thanks
to the shared memory).

3.3 Probabilistic Cellular Automata

Let us consider an example of probabilistic cellular automata (PCA) with Mar-
golus neighborhood that models the process of diffusion. This PCA has the
continuous analog — PDE of diffusion (heat conduction).

Implementation of Fine-Grained Algorithms on Graphical Processing Unit 211

Fig. 3. Possible movements Fig. 4. Possible movements in two
iterations

Each cell can be in one of two states — 0 and 1. Cellular array is decomposed
into odd and even squares of 2 × 2 cells (Fig. 3). Simulation process consists of
iterations. An iteration consists of simultaneous rotatings of all even squares and
then simultaneous rotatings of all odd squares of 2×2 cells (Fig. 4). Each square
is rotated independently and clockwise or counterclockwise (Fig. 2). Direction
of rotations is determined by pseudo-random numbers.

Implementation of this CA have two special specific properties.
The first one is that we need pseudo-random numbers (PRN) to compute new

cell states. GPU implementations of PRN generators are considered in Sec. 3.4.
Notice that to compute new states of all cells we need to generate the amount
of PRNs equal to half a number of cells.

Second. For computing new cell states we need to spawn a grid of threads
twice. In this case the amount of calculations is not growing rather than the
amount of global memory access. Computation time is growing respectively. We
can see similar time increase in the case of block-synchronous CA considered in
Sec. 3.6.

3.4 Pseudo-random Number Generation

To generate PRNs with large periods we use two types of generators: 64-bits
linear congruential generator (LCG) and 32-bits Mersenne twister (MT). Used
particular parameters and means of parallelization are taken from [2,3].

We run N/K GPU threads for generating N numbers: each thread gener-
ates K numbers. At the beginning of each thread execution we should load the
set of its parameters. This set has a determined size. So, with small K thread
initialization takes the most of time. But with large K we have small number
of threads, therefore the full power of GPU is not available. The optimal K is
selected via experiment.

Main difference between these generators (with a view to implementation
performance) is in the number of required operations and in the type of operands.
In LCG 64-bit operands are used, whereas in MT 32-bit operands are used. But
with MT we have to carry out much more operations then with LCG.

212 K. Kalgin

It is shown in Sec. 4.2 that the relation between performances of these gen-
erators depends on particular GPU version. So, to gain better performance of
number generation with particular GPU the appropriate generator should be
chosen.

3.5 Asynchronous Cellular Automata

Let us consider asynchronous cellular automata (ACA) to make full view of
capability of fine-grained implementation on GPU.

Classical example is the diffusion ACA. Simulating process of ACA is divided
into steps. At each step a cell is chosen randomly. Then its state exchanges with
the state of a neighboring cell (again randomly chosen).

This CA has the same continuous counterpart as the considered above PCA
— differential equation of diffusion. Since this ACA is probabilistic, computation
of new values needs pseudo-random numbers generation.

Implementation. We can not simultaneously execute several steps on the same
cellular array without synchronization because these steps may have the same
values of cells in use. It can lead to races and wrong results.

Therefore, we have to generate N numbers in special manner to execute N
steps without races. This task is not too simple in the sense of computational
complexity.

Assume we are able to solve this problem in a negligibly small time. Unfortu-
nately, even under this assumption, GPU can not overtake CPU in simulating
the ACA. Results of execution are represented in Sec. 4.3.

3.6 Block-Synchronous Cellular Automata

There is no suitable computer that allows to increase ACA simulating perfor-
mance easily and efficiently. For ACA simulating on a cluster there are at least
three complicated parallel algorithms [7,8,9]. As for GPU, the efficient execution
is constrained by random memory access time.

Therefore, block-synchronous cellular automata (BSCA) analog is used in-
stead of the original ACA [4] due to the following facts:

– BSCA can be easily constructed from the particular ACA
– BSCA can be efficiently implemented on majority of computers
– BSCA approximates ACA

Let us consider block-synchronous analog of ACA diffusion [5]. Simulating
process consists of iterations. Each iteration has five macro-steps. A macro-step
consists of synchronously executed steps.

The coordinates of cells to be updated at each step are determined as follows.
The cellular array is covered in regular manner by five-cell template (von Neu-
mann neighborhood) without intersections. The remaining four similar coverings
are obtained by translation of the first one. Let us put coverings into one-to-one
correspondence with macro-steps. Then, for each macro-step we can choose cen-
ters of templates of appropriate covering as steps coordinates. It allows us to
avoid races.

Implementation of Fine-Grained Algorithms on Graphical Processing Unit 213

Implementation of BSCA slightly differs from considered implementation of
PCA. The main difference is in the number of spawned grid of threads per
iteration (five times). It results in the corresponding time growing, see Sec. 4.3.

4 Results

In this section performances of different implementations are showed on Core2
processor (one core), GeForce 8800 GTX 512Mb and GTX 280 1Gb (further
called GPU 8800 and GPU 280). The unit of performance measurement is
million updated cells/second (Mcell), and million generated numbers/second
(Mprn).

4.1 Cellular Automata and Explicit Difference Scheme

There are two main properties of any particular CA and ES with a view to imple-
mentation performance: the neighborhood size and complexity of new state/value
computation. The CA under consideration has 9-cell neighborhood and ES has
5-cell one. But computation of a new value in ES takes more time then com-
putation of a new state in CA. So, the times of execution for CA and ES are
approximately the same.

Fig. 5. Cellular automata (nine-point template, 8 operations)

Fig. 6. Explicit scheme (five-point template, 14 operations)

214 K. Kalgin

Fig. 7. Pseudo-random numbers generation

Fig. 8. Margolus diffusion

Fig. 9. Asynchronous cellular automata
diffusion

Fig. 10. Block-synchronous cellular au-
tomata diffusion

On Figs. 5 and 6 we can see the influence of shared memory usage. Take notice
of the difference between performances on GPUs: the influence of shared memory
usage is more significant on GPU 8800 than on GPU 280. It can be explained
by substantial improvement of global memory access subsystem in GPU 280.

4.2 Probabilistic Cellular Automata

We have implemented two pseudo-random generators: Mersenne Twister (MT)
and Linear Congruential Generator (LCG). It is shown in Fig. 8 that ratio of
generators performances depends on GPU generation. So, to gain a better perfor-
mance of number generation with a particular GPU the appropriate generator

Implementation of Fine-Grained Algorithms on Graphical Processing Unit 215

should be chosen. In Fig. 7 we can see that the PCA execution time equals
nearly half of the synchronous CA execution time. Origins of the execution time
increasing are described in Sec. 3.3.

4.3 Asynchronous and Block-Synchronous Cellular Automata

The efficient execution of ACA on GPU is constrained by time of random mem-
ory access. The time of random memory access is ten times as much as time of
regular memory access. These constraints result in poor performance indepen-
dently of GPU version (Fig. 9). The BSCA implementation shows better results
(Fig. 10) because of regular memory access.

5 Conclusion

In this paper we study some aspects of the problem of fine-grained algorithm
mapping to GPU. Explicit scheme and different sorts of cellular automata are
used as examples. All considered examples, with the exception of ACA, show
sufficiently large GPU performances relatively to the CPU performances. Exper-
iments show suitability of GPU usage in explicit-scheme and cellular automata
simulating.

References

1. NVIDIA CUDA Programming Guide, http://www.nvidia.com/object/cuda.html
2. Podlozhnyuk V.: Parallel Mersenne Twister,

http://www.nvidia.com/object/cuda.html

3. Marchenko, M.: Parallel Pseudorandom Number Generator for Large-Scale Monte
Carlo Simulations. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671,
pp. 276–282. Springer, Heidelberg (2007)

4. Bandman, O.L.: Synchronous versus asynchronous cellular automata for simulating
nano-systems kinetics. Bulletin of the Novosibirsk Computer Center. Series: Com-
puter Science (27), 1–12 (2006)

5. Bandman, O.L.: Parallel Simulation of Asynchronous Cellular Automata Evolution.
In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173,
pp. 41–47. Springer, Heidelberg (2006)

6. Schlogl, F.: Chemical reaction models for non-equilibrium phase transitions. Zh.
Physik. 253, 147–161 (1972)

7. Lubachevsky, B.D.: Efficient Parallel Simulations of Asynchronous Cellular Arrays.
Complex Systems 1(6), 1099–1123 (1987)

8. Overeinder, B.J., Sloot, P.M.A.: Extensions to Time Warp Parallel Simulation for
Spatial Decomposed Applications

9. Kalgin, K.V.: Parallel Simulation of Asynchronous Cellular Automata evolution.
Bulletin of the Novosibirsk Computer Center. Series: Computer Science (27), 55–62
(2008)

http://www.nvidia.com/object/cuda.html
http://www.nvidia.com/object/cuda.html

Parallel Implementation of Lattice Boltzmann

Flow Simulation in Fortran-DVM Language

Leonid Kamenshchikov

Institute of Computational Modeling SB RAS,
Krasnoyarsk, Akademgorodok, 660036, Russia

lk@icm.krasn.ru

Abstract. During the last twenty years the lattice Boltzmann method
(LBM) has been developed as an alternative approach for modeling of
fluid dynamics. A parallel implementation of the LBM for 3D fluid dy-
namics simulations using the Fortran-DVM language is presented. The
LBM is parallelized by using spatial decomposition and implemented on
a distributed memory cluster MVS-100K. The test problem has been
solved for different number of processors (from 1 to 1024). Pictures of
flows are compared visually with the similar pictures published in the
literature.

1 Introduction

Development of the Lattice Boltzmann method (LB-method) has begun in 1988
when the article of McNamara and Zanetti [1] has been published. They sug-
gested to replace Boolean variables in already well-known discrete models of
gases by continuous distribution functions. Since then it has been published
many books on LBM, for example [2,3,4], and the number of papers grows ex-
ponentially [5–25].

The lattice Boltzmann model is based on the statistical physics and describes
the microscopic behavior of particles in a very simplified manner, but on the
macroscopic level it gives correct average values for velocity, density, pressure
and for other characteristics of flows.

The main advantages of the LB-method are: (1) initial equations have a simple
form, in its there are derivatives only of the first order, nonlinearity is present
only in an algebraic source; (2) in view of local character of calculations, the
LB-method is easily realised on parallel computers that in much ”compensates”
an increase of total number of the solved equations; (3) processes of convection-
diffusion are presented by means of a small set of the fixed velocity vectors of
particles that reduces corresponding calculations to a simple shift along these
vectors; (4) it is not necessary to solve Poisson equation on each time step in
all domain for the correction of pressure as it becomes in many traditional al-
gorithms for solution of the Navier-Stokes equations; (5) many scientists predict

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 216–225, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Parallel Implementation 217

to this method the big prospects for modeling of physical and chemical pro-
cesses in geometrically complex areas of micro and nano sizes (porous media
and micro-structures); (6) easiness of a writing of machine programs.

2 Lattice Boltzmann Model

Following [5,6,7] we will consider the basic equations and the simplest numeri-
cal algorithm for modeling of isothermal incompressible fluid flows as the most
typical case.

The LB-method is based on the classical Boltzmann kinetic equation:

∂f

∂t
+ ξ · ∇rf + F · ∇ξf = Q(f), (1)

where f ≡ f(r, ξ, t) is a single-particle distribution function in the phase space
(r, ξ), r = (x, y, z) is the coordinate of a particle, ξ is velocity, t is time, F is
external force, Q(f) is integral of collisions.

The macroscopic variables (density, velocities, pressure) can be computed sim-
ply by moment integration as

ρ(r, t) =
∫
fd3ξ, u(r, t) =

1
ρ

∫
ξfd3ξ, p(r, t) =

1
3

∫
(ξ − u)2fd3ξ. (2)

The nonlinear integro-differential equation (1) is too complex for numerical
solution. Therefore a success of the lattice Boltzmann method became possible
only after invention of the simplified forms of this equation.

First, the nonlinear integral of collisions Q(f) has been written (for the sim-
plest case) in the form of Bhatnagar-Gross-Krook [26]:

Q(f) =
1
τ

(feq − f), (3)

where

feq =
ρ

(2πRT)3/2 exp
(
− (u− ξ)2

2RT

)
(4)

is the Maxwell-Boltzmann distribution function, τ is the relaxation time due to
collision, R is the ideal gas constant, T is temperature.

Second, a finite set (a lattice) of velocities in the space of particles velocities
is fixed:

L = {ξm, m = 0, . . . ,M−1}. (5)

An example of such lattice for 3D (M = 19) space is shown in Fig. 1. The zero
vector always enters into the set L.

Denoting fm(r, t) = f(r, ξm, t) and suppose for simplicity F = 0, we receive
the system of discrete Boltzmann equations, which are required to be solved
numerically:

218 L. Kamenshchikov

Fig. 1. Cubic velocity lattice L for 3D models (M = 19)

∂tfm + ξm · ∇rfm =
1
τ

(feq
m − fm), m = 0, . . . ,M−1. (6)

It is also supposed that a uniform grid, with an identical step δx on all axes,
in the space of coordinates is given:

P = {rijk = r0 + [(i− 1)δx, (j − 1)δx, (k − 1)δx],
i = 1, . . . , ni, j = 1, . . . , nj , k = 1, . . . , nk}. (7)

Integrating (6) on a small interval (0, δt) along the line ξm and neglecting
by the variables of the order O(δ2t) we receive the lattice Boltzmann equation
(LB-equation):

fm(r + ξmδt, t+ δt) = fm(r, t) +
δt
τ

(feq
m − fm), m = 0, . . . ,M−1, (8)

or denoting ω = δt/τ :

fm(r +ξmδt, t+ δt) = ωfeq
m (r, t)+ (1−ω)fm(r, t), m = 0, . . . ,M−1.

(9)
The equations (9) are usually solved by splitting method in two steps [7]. On

the first step the results of collisions only are calculated:

f̃m(r, t) = ωfeq
m (r, t) + (1− ω)fm(r, t), m = 0, . . . ,M−1, r ∈ P . (10)

On the second step the propagation process (or ’free flight’ [9]) is considered:

fm(r + ξmδt, t+ δt) = f̃m(r, t), m = 0, . . . ,M−1. (11)

The mass density and velocity vector are defined as follows:

ρ(r, t) =
∑
m

fm(r, t) u(r, t) =
1
ρ

∑
m

ξmfm(r, t). (12)

Parallel Implementation 219

It has been shown [6] that these ρ(r, t) and u(r, t) are also solutions of fol-
lowing the Navier-Stokes equations:

∇ · u = 0, (13)

ρ∂tu + ρu · ∇u = −∇p+ νρ∇2u, (14)

where

p = c2sρ, cs = c/
√

3, c = δx/δt, ν =
(τ∗ − 1/2)

3
δ2x
δt
, τ∗ = τ/δt. (15)

At derivation of the equations (13)–(14) all expressions of the order O(δ2x),
O(Ma2) and above have been neglected. Here Ma = |u|/cs is the Mach num-
ber which should be small enough to provide incompressibility of fluid. For this
case and for constant temperature the equilibrium distribution functions can be
written in more simple form [5]:

feq
m = ρwm

[
1 +

ξm · u
c2s

+
1

2c4s

(
(ξm · u)2 − c2s|u|2

)]
, m = 0, . . . ,M−1, (16)

where

w0 = 1/3; wm = 1/9, m = 1, . . . , 6; wm = 1/36, m = 7, . . . , 18. (17)

3 Fortran-DVM Language

Usage of well-known MPI-approach for parallel programming has some signifi-
cant disadvantages: the development and debugging of such programs requires
much more effort from the programmer because the level of language is too
low; the efficient program execution on clusters requires load balancing which is
difficult to provide in MPI-approach, etc.

DVM-system developed in Keldysh Institute of Applied Mathematics of Rus-
sian Academy of Sciences allows to develop parallel programs in C-DVM and
Fortran-DVM languages for different architecture computers and computer net-
works [27,28,29].

Fortran-DVM is a set of extensions to the Fortran-77 standard that permits
programmers to distribute data among multiple processors. Using Fortran-DVM
languages a programmer deals with the only one version of the program both
for serial and parallel execution. Besides algorithm description by means of
Fortran-77 features the program contains rules for parallel execution of the al-
gorithm. These rules are syntactically organized in such a manner that they are
“invisible” for standard Fortran compilers and doesn’t prevent DVM-program
execution and debugging on personal computers or workstations as usual serial
program.

220 L. Kamenshchikov

The main goals of the DVM-system are follows [29]. Simplicity of parallel
program development. Portability of parallel program onto different architecture
computers (serial and parallel). For serial computers the portability is provided
by DVM-directive ’transparency’ for standard Fortran-77 compilers. High perfor-
mance of program execution. Reusability (composition of parallel applications
from several modules). Unified parallelism model for Fortran-77 languages, and,
as result, unified system of runtime support, debugging, performance analyzing
and prediction. Elements of Fortran-95 are allowed also at the latest versions.

A user of DVM-system always receives following characteristics of productiv-
ity of the program [29]: (1) the number of used processorsNcpu; (2) astronomical
execution time; (3) ’total processor time’ is production of the time of execution
by the number of used processors; (4) ’productive time’ is a predicted execution
time on one processor; (5) ’efficiency coefficient’ is ratio of productive time to to-
tal processor time; (6) ’lost time’ is total processor time minus productive time.
Lost time components: (6a) ’insufficient parallelism’ are losses because of per-
formance of serial parts of the program on all processors; (6b) ’communications’
are losses because of interprocessor exchanges; (6c) ’idle time’ is time of absence
any operation on processors; (7) ’load imbalance’ is possible losses because of
different loading of processors.

Calculations were performed on cluster MVS-100K at the Joint SuperCom-
puter Center RAS which is now the most powerful supercomputer in Russia for
civil applications with the peak performance 95.04 TFlops. It has 7920 processing
element cores running at 3 GHz.

4 Numerical Experiment: 3D Lid Driven Cavity

The laminar flows in the 2D lid-driven cavity is a classical test problem which is
well studied both experimentally and numerically. More a challenge is studying
flows in the 3D cavity (Fig. 2). We apply the algorithm described above for
solving this task.

Fig. 2. General view of a 3D lid driven cubic cavity

Parallel Implementation 221

Fig. 3. Comparison of velocity fields in a vertical center-plane x = const. Left: this
work; right: from [30].

Fig. 4. Comparison of velocity fields in a vertical center-plane y = const. Left: this
work; right: from [30].

Flow at a Reynolds number Re = ULH/ν of 1000 is considered here. Values of
edge size H = 1 m and kinematic viscosity of fluid ν = 1.5 ·10−5 m2/s (as for air)
were used. Since Re = 1000 then velocity of the lid is UL = 1.5·10−2 m/s. No-slip
conditions were applied on the rest walls.

222 L. Kamenshchikov

Fig. 5. Comparison of velocity fields in a horizontal center-plane z = const. Left: this
work; right: from [30].

In Figs. 3–5 comparisons of our calculations and results of other authors [30],
which used mixed boundary and finite element method, are shown. Pictures of
flows in the middle sections of the cavity turned out practically identical.

For parallel calculations the cavity is split into some blocks, so that in each
block there is whenever possible an equal number of nodes of the spatial grid.
Each block is solved on its own processor.

Below for specification of such blocks we write [Nx, Ny, Nz] where Nx, Ny,
Nz are numbers of partition intervals along axes X, Y, Z, respectively. It is
obvious that Ncpu = Nx · Ny · Nz. In particular, the record [1,1,1] means that
one processor is used only.

Calculations were performed for five uniform grids, from 64 × 64 × 64 to
1024 × 1024 × 1024, and so that the number of nodes on each following grid
increases in 8 times. In Table 1 execution time for different grids at performance
of 1000 time steps and at different number of processors Ncpu is presented. It is
visible that computation time is practically proportional to the grid size.

It is interesting also to compare execution time and efficiency for the same
number of processors but with different structure of blocks.

For example, let us consider 128 processors but with different allocation on
axes: [8,4,4], [4,8,4] and [4,4,8]. As shown from the Table the block [8,4,4] works
usually more fast and effectively than [4,8,4] and [4,4,8]. The last block yields
the worst results. It is possible to explain by accepted arrangement of Fortran-
arrays in memory (the first index varies faster). For the block [8,4,4] the time
for communications between processors is less than for [4,8,4] and else less than
for [4,4,8]. It confirms also by statistics given out by DVM-system.

Parallel Implementation 223

Table 1. Execution time and efficiency vs. a number of processors and structure of
blocks [Nx, Ny, Nz] for different grid size

No. Number of [Nx, Ny , Nz] Execution time (minutes) Eff. Coef.
processors for 1000 time steps

1) Grid size 64 × 64 × 64
1 1 [1,1,1] 1.437 1.000
2 2 [2,1,1] 0.900 0.960
3 2 [1,2,1] 0.974 0.947
4 2 [1,1,2] 1.021 0.936
5 4 [2,2,1] 0.807 0.913
6 8 [2,2,2] 0.846 0.686

2) Grid size 128 × 128 × 128
7 1 [1,1,1] 15.02 1.000
8 2 [2,1,1] 8.606 0.980
9 2 [1,2,1] 8.783 0.980
10 2 [1,1,2] 8.992 0.981
11 4 [2,2,1] 6.701 0.939
12 8 [2,2,2] 7.857 0.944

3) Grid size 256 × 256 × 256
13 32 [4,4,2] 15.48 0.850
14 64 [4,4,4] 7.132 0.648
15 128 [8,4,4] 3.601 0.613
16 128 [4,8,4] 4.047 0.490
17 128 [4,4,8] 4.167 0.451
18 256 [8,8,4] 1.859 0.496

4) Grid size 512 × 512 × 512
19 64 [4,4,4] 61.16 0.748
20 128 [8,4,4] 31.67 0.917
21 128 [4,8,4] 31.92 0.639
22 128 [4,4,8] 34.16 0.578

5) Grid size 1024 × 1024 × 1024
23 512 [8,8,8] 63.45 0.813
24 1024 [16,8,8] 32.83 0.902
25 1024 [8,16,8] 32.96 0.886
26 1024 [8,8,16] 47.38 0.494

5 Conclusion

The lattice Boltzmann method is a relatively new and promising numerical tech-
nique for simulating fluid flows. Discrete Boltzmann equations can be solved lo-
cally and explicitly. This method is ideal for parallel large scale computations.
Fortran-DVM allows easily to create and implement debugging of parallel pro-
grams. The 3D lid-driven cavity flow is simulated by parallel LB-method. Results
were compared visually with those of other authors. A good agreement is shown.

224 L. Kamenshchikov

Acknowledgements

This work is supported by the Russian Foundation for Basic Research, project
No. 08-01-00621.

References

1. McNamara, G.R., Zanetti, G.: Use of the Boltzmann Equation to Simulate Lattice-
Gas Automata. Phys. Rev. Lett. 61, 2332–2335 (1988)

2. Wolf-Gladrow, D.A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Mod-
els. Lecture Notes in Mathematics, vol. 1725. Springer, Heidelberg (2000)

3. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford
University Press, New York (2001)

4. Sukop, M.C., Thorne Jr., D.T.: Lattice Boltzmann Modeling: An Introduction for
Geoscientists and Engineers. Springer, Berlin (2007)

5. Qian, Y.H., D’Humieres, D., Lallemand, P.: Lattice BGK Models for Navier-Stokes
Equation. Europhys. Lett. 17, 479–484 (1992)

6. Xiaoyi, H., Luo, L.-S.: Theory of the lattice Boltzmann method: From the Boltzmann
equation to the lattice Boltzmann equation. Phys. Rev. E. 56, 6333–6336 (1997)

7. Chen, S., Doolen, G.D.: Lattice Boltzmann methods for fluid flows. Annu. Rev.
Fluid Mech. 30, 329–364 (1998)

8. Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice
Boltzmann BGK model. Phys Fluids 9, 1591–1598 (1997)

9. Brownlee, R.A., Gorban, A.N., Levesley, J.: Stability and stabilization of the lattice
Boltzmann method. Phys. Rev. E. 75, 1–17 (2007)

10. Encyclopedia of Microfluidics and Nanofluidics. In: Dongqing, L. (ed.), 2226 p, in
3 volumes. Springer (2008)

11. Chen, Y.S., Shan, X.W., Chen, H.D.: New direction of computational fluid dy-
namics and its applications in industry. Sci. China Ser. E-Tech. Sci. 50, 521–533
(2007)

12. Hu, S., Yah, G., Shi, W.: A lattice Boltzmann model for compressible perfect gas.
Acta Mechanica Sinica 13, 218–226 (1997)

13. Bing, H., Feng, W.-B., Z. Wu, Cheng, Y.-M.: Parallel Simulation of Compressible
Fluid Dynamics Using Lattice Boltzmann Method. In: The First International
Symposium on Optimization and Systems Biology (OSB 2007), Beijing, China,
pp. 451–458 (2007)

14. Baoming, L., Kwok Daniel, Y.: A Lattice Boltzmann model with high Reynolds
number in the presence of external forces to describe microfluidics. Heat and Mass
Transfer 40, 843–851 (2004)

15. Zhou, Y., Zhang, R., Staroselsky, I., Chen, H.: Numerical simulation of laminar
and turbulent buoyancy-driven flows using a lattice Boltzmann based algorithm.
Int. J. Heat Mass Tran. 47, 4869–4879 (2004)

16. Thürey, N., Rüde, U.: Stable free surface flows with the lattice Boltzman method
on adaptively coarsened grids. Computing and Visualization in Science, 179–196
(2008), doi:10.1007/s00791-008-0090-4

17. Zhou, J.G.: A lattice Boltzmann model for the shallow water equations with tur-
bulence modeling. Int. J.l of Modern Physics C 13, 1135–1150 (2002)

18. Zhang, X., Bengough, A.G., Crawford, J.W., Young, I.M.: A lattice BGK model
for advection and anisotropic dispersion equation. Advances in water Resources 25,
1–8 (2002)

Parallel Implementation 225

19. Shiyi, C., Hudong, C., Daniel, M., William, M.: Lattice Boltzmann model for sim-
ulation of magnetohydrodynamics. Phys. Rev. Lett. 67, 3776–3779 (1991)

20. Derksen, J.J.: The Lattice-Boltzmann Method for Multiphase Fluid Flow
Simulations and Euler-Lagrange Large-Eddy Simulations. In: Marchisio, D.L.,
Fox, R.O. (eds.) Multiphase Reacting Flows: Modelling and Simulation,
pp. 181–228. Springer, Vienna (2007)

21. Swift Michael, R., Osborn, W.R., Yeomans, J.M.: Lattice Boltzmann Simulation
of Nonideal Fluids. Physical Review Lett. 75, 830–833 (1995)

22. Xu, Y.-s., Liu, C.-q., Yu, H.-d.: New studying of lattice Boltzmann method for
two-phase driven in porous media. Appl. Math. and Mech. 23, 387–393 (2002)

23. Shu, C., Niu, X.D., Chew, Y.T.: A Lattice Boltzmann Kinetic Model for Microflow
and Heat Transfer. J. Stat. Phys. 121, 239–255 (2005)

24. Medvedev, D.A., Ershov, A.P., Kupershtokh, A.L.: Numerical Investigation of Hy-
drodynamic and Electrohydrodynamic Instabilities (in Russian). Dynamics of Con-
tinuous media 120, 93–103 (2002)

25. Medvedev, D.A., Kupershtokh, A.L.: Mesoscopic Simulations of Electrohydrody-
namic Flows (in Russian). Fizicheskaja mezomekhanika (Physical mesomechan-
ics) 9, 27–35 (2006)

26. Bhatnagar, P., Gross, E.P., Krook, M.K.: A model for collision processes in gases:
I. small amplitude processes in charged and neutral one-component system. Phys.
Rev. 94, 511–525 (1954)

27. Konovalov, N.A., Krukov, V.A., Mihailov, S.N., Pogrebtsov, A.A.: Fortran DVM —
a Language for Portable Parallel Program Development. In: Proc. of Software For
Multiprocessors & Supercomputers: Theory, Practice, Experience, Institute for Sys-
tem Programming RAS, Moscow, pp. 124–133 (1994)

28. Krukov, V.A.: Working out of Parallel Programs for Computing Clusters and Net-
works (in Russian). The Information Technology and Computing Systems (1-2),
42–61 (2003)

29. DVM-System, http://www.keldysh.ru/dvm
30. Z̆unic̆, Z., Hribers̆ek, M., S̆kerget, L., Ravnik, J.: 3D Lid Driven Cavity Flow

By Mixed Boundary and Finite Element Method. In: Wesseling, P., Oñate, E.,
Périaux, J. (eds.) ECCOMAS CFD 2006, TU Delft, The Netherlands, pp. 1–12
(2006)

http://www.keldysh.ru/dvm

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 226–236, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Parallel Discrete Event Simulation with AnyLogic

Mikhail Kondratyev and Maxim Garifullin

St. Petersburg State Polytechnical University,
Distributed Computing and Networking Department,

21, Politekhnicheskaya ul., St. Petersburg, Russia, 194021
Mikhail.A.Kondratyev@gmail.com, Maxim@xjtek.com

Abstract. Nowadays simulation modeling is applied for solving a wide range
of problems. There are simulations which require significant performance and
time resources. To decrease overall simulation time a model can be converted
to a distributed system and executed on a computer network. The goal of this
project is to create a library enabling clear and rapid development parallel dis-
crete event models in AnyLogic. The library is aimed for professionals in
computer simulation and helps to reduce code amount. The project includes a
research on different synchronization algorithms. In this paper we present
techniques which can be used in creating distributed models. We present com-
parison of a single threaded model with a distributed model implementing
optimistic algorithm. The comparison shows a significant improvement in
wallclock time achieved by separating the model into independent submodels
with minimal communications.

Keywords: AnyLogic, parallel discrete event simulation, Java RMI, agent
based simulation, epidemic, Time Warp.

1 Introduction

Simulation modeling nowadays is applied for a wide range of problems. Computer
simulation modeling can be considered as an imitation of a real life implemented by a
computer program. There are many tools for designing and executing simulation
models. Some of these tools are aimed for specific application areas, some of them
are general purpose simulation tools. Regardless of the tool any execution or simula-
tion of a model requires CPU time and consumes memory. At the moment the need
for global optimization causes requirements for flexibility, accuracy and level of de-
tails of simulation models to grow rapidly. These requirements often hit limitations of
modern computers. For such simulations result cannot be obtained in a reasonable
amount of time and therefore special techniques should be applied to decrease the
wallclock time. One of the approaches is to remove certain details, events or proc-
esses from a model so that the wallclock time obviously decreases, but accuracy of
output results decreases as well. If decreasing the precision of the result is impossible
then distribution of a model execution can be applied.

If a computer model is distributed over a network, components of the model are
executed on independent computers. Theoretically, if the communication between the

 Parallel Discrete Event Simulation with AnyLogic 227

submodels is negligible then increase in the execution performance is proportional to
the number of computers in the network. In case of a data exchange between the
model components the communication time should be added to the overall wallclock
time.

Most of simulation tools which are practically used for solving problems are single
threaded. Arena, Extend, VenSim are single threaded applications. To create a dis-
tributed simulation a modeler has to leave an environment to which he used to and has
to recreate the model using environment which supports distributed applications.
Recreation of a model may require translation of the system behavior from a model-
ing language to a programming language. E.g. a process description with a sequence
of library blocks should be translated into Java code. Additional and really significant
amount of coding should be made up to carry out support of communications between
the distributed components. For professionals in computer simulation these tasks may
occur to be out of their scope.

In this project we are developing techniques for rapid development of distributed
simulation models. We are aimed to eliminate coding related steps of the model creat-
ing by adding library blocks directly into a simulation modeling tool. Modeler will be
focused on a modeling process rather than programming by using these blocks. The
modeler would need to logically divide a model into blocks with minimal communi-
cations between these blocks. Then by adding several library blocks and making a
simplified setup the single threaded model will be easily turned into a distributed
model. Then such a model can be executed on the computer network.

2 Simulation Platform

Most of simulation tools were originally designed for specific applications: manufactur-
ing, material handling, financial simulations, logistics optimization. There are several
platforms positioned as a general purpose tools which allow user to create a simulation
of almost any real life object. In this project we are developing a solution for wide range
of applications and therefore the number one criterion for selecting a simulation tool is
that the chosen tool has to be a general purpose tool.

The second priority criterion is flexibility of a tool. Developing a library for dis-
tributed modeling obviously requires ability to create user libraries. Furthermore there
should be enough functions and language constructs for programming complex li-
brary blocks with network interfaces. In many tools user is limited with a simplified
scripting language while developing library blocks.

At the very initial stage of the project we made a research on the simulation tools
using two criteria described earlier (general purpose tool and flexible library devel-
opment). As the result of this research we have selected AnyLogic developed by XJ
Technologies. AnyLogic is based on Java and is positioned as a general purpose
simulation tool.

After the tool selection we made a review of existing Java technologies helping
developing distributed applications. Any distributed application is a set of program
components communicating with each other. Any single component is an independent
program block, executed in a separate thread. In general when developing a distrib-
uted system programmers typically reuse one of existing platforms for messaging or

228 M. Kondratyev and M. Garifullin

data exchange over the network. Developing a customized messaging platform from
scratch significantly increases a development time, leverages need for testing and
later support. Using existing software or predefined components for distributed appli-
cations on a base level minimizes risks in this part of the system.

There are three widely used technologies helping programmers to create distributed
applications with Java. Abbreviations are RMI, CORBA and DCOM. In this project
we use RMI (figure 1).

Fig. 1. Java RMI technology

The main factor influenced on our decision is that RMI is fully integrated with Java
from version 1.1. AnyLogic is based on Java and allows a user to fully use power of
Java in any place of a model or a library. Current version of AnyLogic uses Java 1.6
and therefore RMI is available in all versions of AnyLogic (educational, regular, older
builds). An object which supposed to be accessed remotely is visible to a Java name-
space via special interface. This interface should be published in RMI namespace.
This interface contains description of methods which can be invoked for the object. A
client interacts with the object using a reference to the published interface. Calling
remote methods is clear for a programmer and is done in the same way as calling
regular Java local functions. The clearness is another advantage of using RMI. RMI
also supports data sending from one object to another remote object. Data is serialized
using standard Java Serialization mechanisms, and then sent over the network.

The essential of a distributed simulation is a logic that synchronizes distributed
parts of the model. The logic is build on top of the messaging platform and can be
considered as a higher level in the overall system. The synchronization logic uses
subset of RMI functions to send messages between the model components.

3 Synchronizing Model Components

AnyLogic is mostly used for creating discrete event models. In this project we will
consider only discrete event simulations. Distributing continues simulations requires
extremely specialized techniques and is out of scope of this project.

AnyLogic is a general purpose simulation tool which supports all of the three well
known approaches for building simulation models. AnyLogic supports System Dy-
namics which typically deals with continuous systems with equations. Also the tool
supports Agent Based and Process-Centric (which is frequently called simply the Dis-
crete Event and utilized for queuing systems modeling) approaches used for imitating

 Parallel Discrete Event Simulation with AnyLogic 229

systems with discrete events. Presented library allows distribute any discrete event
model, agent based or process-centric for instance. Since agent based models are the
most exigent for computing resources, we considered that the library would almost be
used for distributing agent based models.

The base concept of discrete event simulation is an event. Event is something that
occurs in a moment of time, event is an atomic execution of a sequence of commands.
While developing any discrete event model we transfer only discrete events into the
model from the real world. We assume that nothing changes in between two events.
Only events may cause changes in the system, also events may generate or cancel
other events.

A model reflects a real life object with a set of state variables, where each variable
corresponds to a property of an object. Set of values of variables characterizes a state
of the system in the particular moment in a model time and the list of planned events,
which should occur in model time future. In most cases of discrete event modeling the
order of concurrent events execution is important. If an execution order differs from
an order assumed by a model developer, results of the simulation won’t be correct.
Besides, an engine should ensure reproducibility of simulations runs. It means that
consequent executions with the same input should produce the same result.

Event management in AnyLogic is implemented with a single event queue. This
queue stores current events, which would occur in the current moment of model time,
past or already processed events and future events. AnyLogic engine selects one of
events scheduled for a current moment of model time. This event is then executed – a
sequence of Java commands associated with this event is executed. This event may
create a new event in a future or cancel an event already scheduled. Then the engine
selects the next event from the events scheduled for the current moment of model
time.

In case of single threaded models AnyLogic engine manages events to ensure cor-
rect sequence of events execution, but in case of parallel (distributed) discrete event
simulation we divide a problem into a set of sub problems and each of them is repre-
sented with an independent AnyLogic model. Thus each submodel has its own model
time and own event queue. One submodel can interact with another submodel by
passing messages. As a result of receiving a message a new event will be generated in
the submodel. If an event should be generated at time t, whereas the model time has
progressed up to t + Δt, difficulties may take place. E.g. a plane arrives from a remote
city to a local city on Jan 1st, but the local city time is Jan 10th. This event delay is
called “causality problem”.

To avoid causality problem one have to implement special synchronization algo-
rithms. There are two common classes of such algorithms: conservative and optimis-
tic algorithms [1, 2, 3].

The aim of conservative algorithms is to avoid causality problem. The basic as-
sumption of conservative algorithms is that distributed components use FIFO chan-
nels for message passing. Thus the submodel receives messages in the same order as
the remote submodel sends them. If a submodel at the moment of time t receives a
message which was send by a remote submodel at time t + Δt, then there will be no
messages in Δt interval coming from that remote submodel. Therefore the receiving
submodel can safely continue model execution in the Δt interval assuming that there
will be no new events and therefore there will be no causality problems. If there are

230 M. Kondratyev and M. Garifullin

no messages coming from remote model then computations should be paused to pre-
vent causality problems. Upon receiving a message computations can be resumed.

The major disadvantage of conservative algorithms is low performance caused by
pausing computations while waiting for an incoming message. This significantly de-
creases effect of running model parts in parallel. Besides that, a system running under
conservative algorithm may run into a deadlock. If there is a cycle of submodels where
each submodel waits for a message from each other a deadlock occurs and the whole
model execution stops. Deadlock prevention or resolving requires additional logic.

Optimistic or aggressive algorithms are based on a concept of a rollback. Whereas
conservative algorithms prevent system components from a causality problem, opti-
mistic algorithms ignore such risk until it actually happens. If a causality problem is
detected then optimistic algorithms use some kind of compensation algorithms.
Mostly wide used algorithms are periodically saving a model state. If a causality
problem occurs then the algorithm performs the model rollback to a historical state.
Then a new event is inserted into a model and the model resumes its execution.

The disadvantage of optimistic algorithms is follows: when a submodel performs a
rollback it should cancel all messages sent to other submodels during the rollback
period. Cancellation is done via so called antimessages. Each antimessage may cause
rollback in other submodels which turns into an escalating number of rollbacks all
over the system. Each rollback requires CPU time and therefore a large amount of
rollbacks may take greater losses than the total increase in performance caused by
distributing.

There are several techniques that allow decreasing a number of rollbacks. One of
the techniques is so called relaxed synchronization. This technique can be applied if
order of execution of events is not very important. In this case it is assumed that all
events in a certain time window are imminent and therefore an order of execution is
not important. Using this technique may violate the requirement of reproducible re-
sults, but significantly increases performance of optimistic algorithms.

Conservative and optimistic algorithms are two mostly used algorithms for syn-
chronizing distributed submodels. Depending on a problem each algorithm will give
different performance gain. In a distributed system the algorithm is the number one
factor which influences the success of turning a single threaded model into a distrib-
uted one.

4 Example of a Distributed Agent Based Model

In this project we are developing a library that enables a simulation modeler to extend
a model with an ability to run on a computer network. The model parts can be syn-
chronized using different algorithms therefore allowing a modeler to choose an opti-
mal synchronization algorithm.

The first version of the library is designed to support a subclass of discrete event
models. The subclass is called Agent Based modeling and is a type of modeling which
is widely used to solve many different problems. There is no common definition of
what is agent based and what is agent. People still discuss what properties should a
thing have to be called an agent. Commonly referenced features are ability to move,
ability to learn, communications etc. From practical point of view we will stress only

 Parallel Discrete Event Simulation with AnyLogic 231

one feature common for all agent based models. Agents based models are essentially
decentralized. There is no such place where a global behavior of a system is defined.
On a contrary, a modeler defines a system behavior on a level of individual compo-
nents and the global behavior emerges as the result of many individuals sharing the
same environment, following their own local rules and communicating with each
other. This approach is widely used for describing complex social and economic
models. Besides flexibility agent based models typically require much more computa-
tional resources than traditional equation based models. There are simulations where
accuracy can be achieved only by modeling millions of agents concurrently in the
same environment with the same timescale. Therefore we expect that this project will
give a lot of benefits and will break certain limits in agent based simulations.

Up to this moment we have developed as baseline version of the library which is a
part of AnyLogic simulation tool. The library uses RMI for passing messages between
distributed parts. In the following section an example of creating a distributed model
is provided. The example is based on a classical agent based problem of an epidemic.

Fig. 2. Model of behavior of agents in particular city. On the left there is a statechart represent-
ing the behavior of each agent.

The problem considers a region with cities. People live in cities, communicate with
each other and travel between the cities. The assumption is that people or agents leave
in metric space and can be Susceptible, then Infectious if infected with another person
and than being Recovered. Disease spreading is distance based – only in a certain
range infected person may pass a disease to a susceptible person (figure 2).

If a simulation consists of a single city then simulation obviously can be done in a
reasonable amount of time. Simulation complexity exponentially grows with a num-
ber of agents and for millions of agents in metric space a simulation often hits per-
formance limitations. For example Moscow region in Russia contains more than 10
millions of people and simulation of this population is computationally expensive.

232 M. Kondratyev and M. Garifullin

Even more important problem is getting accurate prediction of the disease spreading
on a country basis. With several highly populated regions modeling the whole country
is an extremely expensive in terms of computation resources. Keeping results accurate
prevents from scaling the country down or using techniques like grouping agents. Then
distributed modeling can be applied to decrease the overall simulation time. Convert-
ing the model into a distributed system is nontrivial task because there are communica-
tions between people and movements of people between cities (figure 3).

Fig. 3. Migration of agents

In this example problem we represent movements between cities as periodic flights
with a certain number of people onboard. There are no predefined schedules for
flights, just randomly selected moments of time.

This model was developed in AnyLogic in several versions. The first model was
designed as a single threaded model and was used for later comparison. The model
includes three cities. This baseline model can be further extended with additional
agent behaviors like family contacts, employment and etc. In this case study we were
analyzing spreading of a disease with one agent initially infected in a certain city.

The model was distributed into three parts each containing a single city. Each part
was executed in a separate thread. Planes were represented as messages with parame-
ters, i.e. number of passengers onboard. For message passing we use RMI (a technol-
ogy for rapid development of distributed systems integrated with Java 1.1). Submodels
are synchronized using Time Warp algorithm [4].

Defining a remotely visible object starts from defining a special Java interface
which should extend a predefined interface java.rmi.Remote. This interface defines
methods which can be accessed remotely. Methods can be extended to receive pa-
rameters – either of primitive types (integer, double, logical values etc.) or compound
types. In case of using the compound types each type must be serializable. In this case
Java creates a copy of such variable and sends the copy to the network.

After defining the remote interface the interface should be implemented by a class.
The class must extend java.rmi.server.UnicastRemoteObject. The last step is to create
a skeleton and a stub using rmic compiler which is provided in Java Development Kit.
Stubs and skeletons are used while making remote calls (figure 4).

 Parallel Discrete Event Simulation with AnyLogic 233

Fig. 4. Java RMI technology in action. Stubs and skeletons are used while making remote calls.

To send a message (plane with passengers) from a component 1 to a component 2
the component 1 obtains a remote reference to an object Airport_Imp. The reference
is obtained using a special RMI naming service which resolves string names into
references. The object Airport_Imp implements functions for message passing and
can be considered as an intermediate level between the simulation model and RMI
scope. Functions of the object Airport_Imp are defined in a remote interface Air-
port_Int and therefore are available remotely.

Instead of direct accessing the methods of Airport_Imp (e.g. accept a plain) the
component 1 invokes methods of a stub Airport_Stub. The stub is a lightweight copy
of Airport_Imp and is the only one class needed for the component 1 to be able to
access Airport_Imp object. Implementation and the component 2 are located on a
separate computer.

RMI transmits the function call from the stub into a skeleton Airport_Skel over
TCP/IP. The skeleton is created on the component 2 side. The skeleton receives parame-
ters values and invokes the corresponding function of Airport_Imp. This invocation may
pass a message to the model and the model may return data into the component 1.

In the following section we present performance analysis for the model. Figure 5
shows a dependency of the overall wallclock time from a number of agents. Agents
were uniformly distributed over all cities. The diagram contains two curves – one is
for the single threaded model and another one is for the distributed version with three
threads. The diagram shows 7-9 times better performance for the distributed version.
One of the reasons of this performance improvement is a type of updates used in the
single threaded model by the AnyLogic. When some agents interact with each other
all other agents are refreshed. If a single agents gets sick then agents in all other cities
were updated which never happens in a real life.

234 M. Kondratyev and M. Garifullin

Fig. 5. Dependence of wallclock time on the number of agents

All these experiments were done on a Cure 2 Duo processor. Therefore one of the
threads was executed on a single core and two others were sharing the second core.
We expect even better results if using 3 independent computers or a processor with
more than 2 cores.

The model has proven the effect of converting the single threaded model into a dis-
tributed model. The simulation time was decreased significantly using optimistic
algorithm with rollbacks. In certain other simulation using purely optimistic algo-
rithms potentially may give the same time as the single threaded model. Optimistic
algorithms periodically save a system state including all agent states into a memory.
In this particular model we were saving the system state each time a plane departs.
Increasing a size of agents population will increase memory consumption and will
definitely increase the time needed to save a state and later reload the state if a roll-
back is needed. Using distributed approach gives performance improvements over
single threaded models event in this case, but after a certain point optimistic algo-
rithms should be replaced with conservative algorithms.

Generally speaking, models with heavy computations and relatively small memory
requirements can be efficiently synchronized with optimistic algorithms. Conservative
algorithms are capable for simulation models with greater memory requirements and
relatively simple event processing.

Another factor influencing significant performance improvements in this model is
tuning synchronization algorithms with additional information from the problem. E.g.
we have considered average trip time between the cities. If a plane departs at time t,

 Parallel Discrete Event Simulation with AnyLogic 235

then arriving of the plane is at time t + Δt. Considering Δt while saving states pre-
vents algorithms from doing unnecessary rollbacks. Figure 6 shows a dependency of
an overall simulation time from the value of Δt. The assumption of the model was that
distance and therefore the travel time is the same for all three cities. Decrease in the
simulation time is caused not only by increase in algorithms efficiency, but also be-
cause of fewer events in the model. With the fixed number of planes the greater travel
time decreases number of departures and arrivals in the same period of time.

Fig. 6. Dependence of wallclock time on plane travel time

5 Conclusion

The example model has proven the efficiency of converting a single threaded model
into a distributed model. These results can be further improved, by using smarter
algorithms with a relaxed synchronization. If a plane arrives to a city at 1:00 p.m. but
the city time is 1:10 p.m. then causality problem occurs. If the time difference is neg-
ligible then a model can skip a rollback and process the plane at 1:10 p.m. For this
particular application this approach has an intuitive connection with a real life when a
plane is delayed and arrives a bit later than scheduled. Ignoring the gap and process-
ing the plane later allows avoiding spending CPU time on the rollback.

For certain agent based models using optimistic algorithms and saving a model
state only while sending messages can be less effective. E.g. there can be fairly small

236 M. Kondratyev and M. Garifullin

amount of messages between submodels and heavy calculation in between. If a roll-
back occurs then a significant amount of calculation is lost. In this case the submodel
can be extended with an ability to save its state periodically between sending mes-
sages to other submodels.

We plan to extend the model with ability to switch between synchronization algo-
rithms. The basic version of the algorithms will be extended with additional smart
elements, e.g. relaxed synchronization. So far we have implemented a part of the
library blocks. Each block has a graphical interface and can be used for clear conver-
sion of a single threaded AnyLogic model into a distributed AnyLogic model. The
library allows selecting either optimistic or conservative algorithm.

The library significantly increases performance not only when running a model on
a network of computers, but also when running a model on multi core processors.

References

1. Fujimoto, R.M.: Parallel discrete event simulation. In: Proc. of the Winter Simulation Conf.,
pp. 19–28 (1989)

2. Fujimoto, R.M.: Distributed simulation systems. In: Proc. of the Winter Simulation Conf.,
pp. 124–134 (2003)

3. Perumalla, K.S.: Parallel and distributed simulation: traditional techniques and recent
advances. In: Proc. of the Winter Simulation Conf., pp. 84–95 (2006)

4. Jefferson, D.R.: Virtual time. ACM Transactions on Programming Languages and
Systems 7(3), 404–425 (1985)

LGA Method for 1D Sound Wave Simulation in

Inhomogeneous Media�

Valentina Markova

Supercomputer Software Department
ICM&MG, Siberian Branch, Russian Academy of Sciences

Pr. Lavrentieva, 6, Novosibirsk, 630090, Russia
markova@ssd.sscc.ru

Abstract. The Lattice Gas Automata (LGA) models are based on a mi-
croscopic model of physical process and can be considered as an adjunct
to the traditional numerical methods to the spatial dynamics simulation.
Here we consider two simple LGA models (HPPrp and HPP). They are
based on a regular two-dimensional four-neighbors Euclidean lattice. Lat-
tice nodes can be occupied by the moving particles and the moving. In
this paper, the possibility of the LGA models to simulate sound wave
process in inhomogeneous media formed from two gases (helium and
methane) are investigated.

1 Introduction

In the Lattice Gag Automata (LGA) models [1-3], dynamics of an event is de-
scribed by a set of hypothetical particles, which have moved through space and
collided with each other and with obstacles. The space is represented as a regular
lattice whose nodes can contain a quantity of hypothetical particles. Each lattice
node is assigned to a LGA cell. As opposed to the classical cellular automaton,
an initial state of the LGA cell is determined by a set of some particles, locating
in the cell at this time moment. There are two types of particles: the moving
particles and the rest particles. The moving particles have unit mass and unit
velocity. The rest particles have the same velocity (equal to zero) and a different
mass. Interactions between particles are simple. Each interaction consists of two
successive steps: collision and propagation. The collision rules are chosen in such
a way that the mass and momentum conservation laws are satisfied. The collision
rules determine the LGA cell transition table. All cells update their own states
simultaneously and synchronously. An iterative change of the LGA global state
(evolution of the LGA) describes the dynamics of an event on microscopic level.

In this paper,the ability of a simple LGA models to simulate sound wave
propagation in inhomogeneous medium by the example of a medium from two
gases (helium and methane). As the models, two LGA models (HPP and HPPrp)

� Supported by 1)Presidium of Russian Academy of Sciences, Basic Research Program
N 2 (2009), 2) Siberian Branch of Russian Academy of Sciences, Interdisciplinary
Project N (2009).

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 237–248, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

238 V. Markova

on regular two-dimensional four-neighbor Euclidean lattice are used. The HPP
model is a special case of the HPPrp model: the HPPrp cells contain not only
the moving particles, but the rest particles as well. In [3] it is shown that the
HPPrp model corresponds to the wave equation and in addition allows to realize
media with different sound wave velocity.

This paper is organized as follows. After the Introduction, in the second sec-
tion, the main concepts of the HPPrp models is given. The third section is
concerned with an experimental study of 1D sound wave propagation in the
HPPrp medium. Here, the influence of the HPPrp model parameters on the ve-
locity of 1D sound wave propagation is studied. Technique for evaluation the
HPPrp medium and its parameters by physical velocity of the sound wave prop-
agation in the given medium and vice versa is suggested. A simple example of
1D sound wave propagation in inhomogeneous medium (helium and methane)
is discussed.

2 HPPrp Models of 1D Wave Propagation Process

2.1 The HPPrp Model

The HPPrp model is defined on regular two-dimensional four-neighbor Euclidean
lattice. Each HPPrp cell can contain the moving particles (mov) and the rest
particles (rp). The moving particles have unit mass and unit speed. No more than
one moving particle may occupy a given lattice site or move in a given direction
at a given time. The rest particles have the same velocity (equal to zero) and a
different mass. Here we will consider the rest particles with the masses equal to
2, 4, 8, and 16.

The HPPrp cell state is defined by the two vectors: the velocity vector −→v and
the mass vector −→m. The length of the velocity vector is equal to the number of
neighbors, i.e.,−→v = (v1, v2, v3, v4). The l-th digit value of the vector, l = 1, 2, 3, 4,
shows the presence (vl = 1) or the absence (vl = 0) of the moving particles in the
direction to the l-th neighbor. The length of the mass vector is equal to the num-
ber of neighbors plus the number of the rest particles −→m = (m4+br ,m3+br , . . . ,
m1). The l-th digit value of the vector, l = 1, 2, . . . , 4 + br, determines the pres-
ence (ml = 1) or the absence (ml = 0) of a rest particle with mass 2l−4 in a cell.
So, the state of a HPPrp cell is represented by two Boolean vectors: the first vec-
tor of length 4 (the velocity vector) and the second vector of length (4 + br) (the
mass vector). (In the following, the HPPrp model with one rest particle will be
indicated by HPP1rp, the HPPrp model with two rest particles will be indicated
by HPP2rp and so on.) The HPP3rp cell with the velocity vector −→v = (0, 1, 1, 0)
and the mass vector −→m = (0,1,1, 0, 1, 1, 0) is shown in Figure 1a. (An arrow in
the cell shows the direction of the velocity vector particle.)

2.2 The HPPrp Model Behavior

Each interaction of the HPPrp-cell consists of two successive steps: collision and
propagation.

LGA Method for 1D Sound Wave Simulation in Inhomogeneous Media 239

Fig. 1. Examples of cells: the HPP3rp cell (a) and HPP cell (b)

Propagation step. In the propagation step, in each cell all moving particles
move in the direction defined by the bit position in the velocity vector.

Collision step. In the HPPrp model, the energy exchange may occur not only
between moving particles in each cell, but between the moving and the rest
particles as well. In response to this exchange, either a rest particle is created
and moving particles are annihilated or a rest particle is annihilated and moving
particles are created. In the general case, the collision rules are deterministic or
non-deterministic. They can be divided into the three groups.

Group 1 (head-on collision). The moving particles collide with each other
according to head-on collision rule (Figure 2) independent of the presence or the
absence of the rest particles.

Fig. 2. Collision rules

Group 2 (rest particle creation). If in a cell, the collision rule is hold for
two (four) moving particles and there is initially no mass 2 (4) rest particle,
then moving particles will be annihilated and a mass 2 (4) rest particle will be
created, respectively (Figure 3a). If in a cell, the collision rules are hold for two
moving particles and there are initially no mass 4 rest particle and mass 2 rest
particle, then moving particles and mass 2 rest particle will be annihilated and
a mass 4 rest particle will be created (Figure 3b).

Group 3 (rest particle annihilation). If a mass 2 (4) rest particle already
exists in the cell, and there are no two (four) moving particles for which the
collision rule is hold, then two (four) moving particles will be created after the
collision step, respectively, and the rest particle will be annihilated (Figure 4a).
If a mass 4 rest particle already exists in the cell, and there are no a mass 2 (4)

240 V. Markova

Fig. 3. The rest particle creation rules

rest particle and no four (or two) moving particles for which the collision rules
are hold, then two moving particles and a mass 2 rest particle will be created
after the collision step, and a mass 4 rest particle will be annihilated (Figure 4b).

Fig. 4. The rest particle annihilation rules

The rest particles are created (annihilated) with a certain probability Pk,
k = 1, 2, . . . , br, in so doing, the following limitations should be met

Pk+1 ≥ Pk,

br∑
k=1

Pk ≤ 1. (1)

Unfortunately, the HPPrp models have some spurious conservation laws, such
as the total momentum in the i-direction along each horizontal line and the total
momentum in the j-direction along each vertical line.

So, the HPPrp models are characterized by the following parameters.

– A set of probabilities of moving particles presence in the initial particle
distribution Pmov = 〈pmov

4 , pmov
3 , pmov

2 , pmov
1 〉.

– Number of rest particles and their mass.
– A set of probabilities of rest particles presence in the initial particle distri-

bution P rp = 〈prp
br
, prp

br−1, ..., p
rp
1 〉.

– A probabilities of creating and annihilating of the rest particles for which
the conditions (1) should be met.

The HPP model is a special case of the HPPrp model. The HPP cells contain
only moving particles. Collision rules are limited by head-on collision rules. he
HPP model has superfluous laws of conservation: the total mass and moment are
conserved along each space axis individually. In addition, the HPP model does
not satisfy all the conditions of isotropy. That is the reason that the HPP model

LGA Method for 1D Sound Wave Simulation in Inhomogeneous Media 241

has limited usefulness in the physical modeling. In [3], as an example, a capability
of simulating three-dimensional electromagnetic fields has been demonstrated.
The HPP cell with the velocity vector −→v = (0, 1, 1, 0) and the mass vector
−→m = (0, 1, 1, 0) is shown in Figure 1b.

2.3 Averaged Values

In terms of the cellular automata modeling, a 2D cellular array W = {w(i, j)}
with M × N size cells is represented a medium wherein any physical event is
observed. The array cells are the HPPrp cells. A finite-state automaton is as-
signed to each cell. The automaton transition table has 2br+4 states. The HPPrp
cells initial states are generated according to two sets: the set of probabilities
of moving particles presence Pmov and the set of probabilities of rest particles
presence P rp. Collision and propagation rules make up the automaton transi-
tion rules. Further the array of the HPPrp cells will be called by the HPPrp
medium. Each medium cell with coordinate w(i, j) is given by two parame-
ters: the velocity vector −→v ij = (v4(ij), v3(ij), v2(ij), v1(ij)) and the mass vector
−→mij = (m4+br (ij),m3+br (ij), . . . ,m1(ij)).

In the simulation, the enumerated parameters of the medium cells have no
practical significance. But the averaged values of this parameters over some
averaging area Av(ij) are of interest. The area Av(ij) includes all cells with
coordinates (̂i, ĵ) placed not farther from a cell with coordinate (i, j), than at
a certain distance r called the averaging radius. In our case, the area Av(ij)
defines a square (2r + 1) cells on side. Further the medium cell with coordinate
(i, j) will be given by the following averaged values

〈ρmov
ij 〉 =

1
|Av(ij)|

∑
(̂i,ĵ)∈Av(ij)

4∑
l=1

ml(̂i, ĵ),

〈ρrp
ij 〉 =

1
|Av(ij)|

∑
(̂i,ĵ)∈Av(ij)

(
4∑

l=1

ml (̂i, ĵ) +
br+4∑
l=5

2l−4ml(̂i, ĵ)

)
, (2)

〈−→u ij〉 =
1

|Av(ij)|
∑

(̂i,ĵ)∈Av(ij)

v1(̂i, ĵ)−→e 1 + v2(̂i, ĵ)−→e 2 + v3 (̂i, ĵ)−→e 3 + v4 (̂i, ĵ)−→e 4,

where 〈ρmov
ij 〉 is the averaged density of the moving particles, 〈ρrp

ij 〉 is the averaged
density of all particles in the HPPrp cell, 〈−→u ij〉 is the averaged of the velocity
vector, |Av(ij)| – is the number of the cells situated in Av(ij). The averaged
projection of the velocity vector on the axis X (Y) is convenient to be used for
our purpose

〈vx
ij〉 =

1
|Av(ij)|

∑
(̂i,ĵ)∈Av(ij)

v1(̂i, ĵ)− v3(̂i, ĵ). (3)

242 V. Markova

(For simplicity, 〈vx
ij〉 will be called by the averaged projection of the velocity

vector.) In the Table 1 averaged values of density 〈ρrp〉 for all HPPrp media in
the equilibrium state are listed. It implies that the probability of all rest particle
presence in initial distribution equals to 0,5. Further the density 〈ρrp〉 will de
called the model density of HPPrp medium.

Table 1.

rp LGA model 〈ρrp〉
0 HPP 2
1 HPP1rp (m1 = 2) 3
2 HPP2rp (m2 = 4, m1 = 2) 5
3 HPP3rp (m3 = 8, m2 = 4, m1=2) 9
4 HPP4rp (m4 = 16, m3 = 8, m2=4, m1=2) 17

In [3] it is shown, that if a small disturbance with density ρ is superposed onto
an equilibrium state of the HPPrp with density ρpr and zero velocity, then the
behavior of the HPPrp medium adheres to the linear wave equation in terms of
density ρ:

∂2ρ

∂t2
− v2

ph∇2ρ = 0,

where vph is the sound wave velocity.

3 Experimental Study of 1D Sound Wave Propagation in
the HPPrp Medium

3.1 1D Sound Wave Propagation Simulation

In the experiments carried out, the propagation of 1D unit sound wave prop-
agation process is presented by evolution as evolution of a cellular array W of
size 200× 2000 cells. A source for generation of initial momentum is located in
the center of W and represents a subarray H of 200× 100 cells. Each source cell
generates several particles within one iteration. These can be either the moving
particles and (or) the rest ones. Cells of the rest part of the arrayW are the HP-
Prp cells. The initial states of the array cells were generated according to a set of
probabilities of the rest particles P rp and a set of probabilities the moving ones
presence Pmov in the initial particle distribution for the given HPPrp medium
and source. The boundary conditions are periodical. A radius of averaging r=25.
Since the wave process is symmetric with respect to a source, we will consider
only the right part of the array W in the subsequent.

The wave process in the HPPrp medium will be given by a changing two
functions.

– The dependence of averaged over the array columns of 〈ρrp
ij 〉(t) (2) (twice

averaged density of the HPPrp medium cell) on time

LGA Method for 1D Sound Wave Simulation in Inhomogeneous Media 243

〈ρrp
j 〉(t) =

∑M−1
i=0 〈ρrp

ij 〉(t)
M

, j = 0, 1, ..., N/2,

where 〈ρrp
ij 〉(t) is an averaged model density value of the medium cell with

coordinate (i, j) at the time instant t.
– The dependence of averaged over the array columns of 〈vx

ij〉(t) (3) (twice
averaged projection of the velocity vector of the moving particles onto the
axis X) on time

〈vx
j 〉(t) =

∑M−1
i=0 〈vx

ij〉(t)
M

, j = 0, 1, ..., N/2,

where 〈vx
ij〉(t) is an averaged projection of the velocity vector of the medium

cell with coordinate (i, j) at the the time instant t.

Let us consider a unit wave process in the HPP medium. The unperturbed
HPP media is at equilibrium state (〈ρmov

ij 〉 = 2 for all i = 0, 1, ...,M and j =
0, 1, ..., N/2. Let each disturbance source cell generates three moving particles
with equal probabilities presence in the initial particle distribution, i.e., pmov

1 =
pmov
2 = pmov

3 = pmov
4 = 1. This means that a velocity vector of each source cell

equals one of four values: −→v 1
ij = (0, 1, 1, 1), −→v 2

ij = (1, 0, 1, 1), −→v 3
ij = (1, 1, 0, 1),

−→v 4
ij = (1, 1, 1, 0). The projections of the above velocity vectors onto axis OX

differ in value and sign: (vx
ij)

1 = +1 (a particle moving in the direction of wave
propagation), (vx

ij)
4 = −1 (a particle moving in the opposite direction of wave

propagation), (vx
ij)

2 = (vx
ij)

3 = 0 (a moving along axis OX is absent). Hence,
〈(vx

j)〉(0) = 0 for all j = 0, 1, ..., N/2. Further this source will be represented by
S1. A unit wave is formed as a result of action of the disturbance source S1. The
generated unit wave process is shown at Figure 5 and Figure 6. Figure 5 presents
twice averaged density of the HPP medium for t = 0, t = 200, t = 300, t = 900
and t = 1000. Figure 6 illustrates twice averaged projection of the velocity vector
of the moving particles onto the axis X for t = 0, t = 200, t = 300, t = 900 and
t = 1000.

3.2 The Influence of Moving Particles Direction in Cells of a Source

Figure 7 presents two twice averaged projection of the velocity vector onto the
axis OX for t = 200, corresponding two 1D unit sound waves. The waves are
generated by different sources (S1 and S2). The cells of both sources are the
HPP cells. They contain three moving particles, and differ by moving particles
direction in the initial state. As opposite to the cells of the source S1, cells of the
source S2 generates three moving particles with unequal probabilities presence
in the initial particle distribution, namely, pmov

1 = pmov
2 = pmov

3 = 1, pmov
4 = 0.

This means that all cells of the source S2 are the some value of velocity vector
equals to −→v ij = (0, 1, 1, 1). Hence, (vx

j)(0) = 1 for all j = 0, 1, ..., N/2.
The experiments have shown that a maximum value of the twice averaged

vector projection, corresponding to the first wave, exceeds that of the twice
averaged vector projection, corresponding to the second wave. Note that the
first wave ranks below the second one in the second parameter (width).

244 V. Markova

Fig. 5. The dependence of twice averaged density of the HPP medium cell on time

Fig. 6. The dependence of twice projection of the velocity vector onto the axis X on
time

3.3 The Influence of Rest Particle Number in Cells of a Source

Figure 8 shows two twice averaged cell density in equilibrium HPP medium
with two source (S2 and S3) for t = 400. The first source cells are the HPP cells,
they contain three moving particles with unequal probabilities presence in the
initial particle distribution: pmov

1 = pmov
2 = pmov

3 = 1, pmov
4 = 0. Hence, −→mij =

(0, 1, 1, 1) for all i = 0, 1, ...,M and j = 0, 1, ..., N/2. The second source cells
are the HPP1rp cells with the following probabilities of the rest and the moving
particles presence in the initial particle distribution: pmov

1 = pmov
2 = pmov

3 = 1,
pmov
4 = 0 and prp

1 = 1. This means that all cells of the source S3 are the some
value of mass vector equals to −→mij = (1, 0, 1, 1, 1). In the source S3, a mass 2 rest
particles are annihilated after the collision step according to the following rules:
(1, 0, 0, 0, 0) =⇒ (0, 1, 0, 1, 0) ∨ (0, 0, 1, 0, 1); (1, 1, 0, 1, 0) =⇒ (0, 1, 1, 1, 1);

LGA Method for 1D Sound Wave Simulation in Inhomogeneous Media 245

Fig. 7. Two twice averaged projection of velocity vector onto the axis OX for t = 200

(1, 0, 1, 0, 1) =⇒ (0, 1, 1, 1, 1). As a result of moving particles creation in the
cells of the source S3, the generated unit wave exceeds the one, resulted from
the action of the source S3 on the HPP medium in the maximal density value.
If we introduce the collision rules of rest particles in the cells of a source, then
as a result a wave front will form.

Fig. 8. Two twice averaged density of the HPP medium with two source for t = 400

A large body of performed experiments pointed to the fact that the density
function amplitude is diminished as the iteration number increases, the wave-
front ia washed out. In doing so,the mass and momentum conservation laws are
satisfied. So, the HPPrp wave model captures a diffusion effect as opposed to
wave equation.

246 V. Markova

3.4 Determination of Velocity of the Sound Wave Propagation

The velocity of the sound wave propagation is defined as the number of array
cells for which maximum value of the model density travels in a unit time. (Fur-
ther the velocity of the sound wave propagation in the HPPrp medium will de
called the model velocity vm). Model velocity is measured in terms cells/iteration.
Since the moving particles were allowed to move only in the direction of their
nearest neighbors, | vm |< 1. In Figure 9 the model velocity dependence of
the moving particle density for medium at the equilibrium state is shown. The
velocity curves are symmetric about the density 〈ρmov〉 = 2, regardless of the
numbers of the rest particles and the probability of their presence. In all HPPrp
media, the sound waves achieve maximum velocity and the greatest difference in
magnitude for the density 〈ρm〉 = 2. In [4] two methods of changing the model
velocity are presented. The first method is based on change in the rest particle
initial distribution, the second one is based on change in the collision rules.

Fig. 9. The model velocity dependence of density of the moving particles

3.5 Correspondence between the Model and the Physical Sound
Wave Velocity

In order for the sound wave propagation to be simulated in different physical
media (solid, gas, fluid) each physical medium must be assigned the HPPrp
medium by physical velocity vph with which the sound wave travels in the given
physical medium and vice versa. For this purpose, a scale coefficient for velocity
conversion (from physical velocity to model velocity and vice versa) must be
defined. Let the sound wave propagates in gases be 965 – 313 m/s. The sound
wave reaches maximum physical velocity in helium, maximum model velocity in
the HPP medium. As a result, helium is assigned the HPP medium. In the general
case, any HPPrp medium can be used as a basic media under the following
condition: the ratio between the physical velocity of sound wave in gases do not
exceed the ratio between the model velocity of sound wave in the HPPrp media

LGA Method for 1D Sound Wave Simulation in Inhomogeneous Media 247

corresponding to the given gases. Further the HPP medium will be considered
as a basic one, then scale coefficient is defined as

μhel = vph/vm = 1, 38 · 103.

For example, the sound wave propagates in methane with the velocity vph =
439 m/s. According to the scale coefficient μhel, the model sound velocity in
methane vm = 0, 31. The sound wave propagates with such velocity in all HPPrp
media but for different density of moving particles and the probability of the rest
particles presence in the initial particle distribution (Figure 6). Which of the all
HPPrp medium is preferred? It is determined by a task. Such a medium is most
often chosen, which has the model density near to the equilibrium state. If this
is not obtained, then the probability of the rest particles presence or (and) the
probability creating of the rest particles need to be changed. For our example,
methane corresponds to the HPP2rp medium with the following parameters. The
probabilities of the rest particles and probabilities the moving ones presence the
initial particle distribution are pmov

1 = pmov
2 = pmov

3 = 1, pmov
4 = 1, prp

1 = 0, 5,
prp
2 = 0, 44. The collision rules are equiprobable.

3.6 The Simulation of 1D Sound Wave Propagation Process in
Inhomogeneous Media

In experiments, inhomogeneous medium is formed from two gases: helium (light
medium) and methane (heavy medium). Here the light medium is the HPP me-
dia in at equilibrium state. The heavy medium is the HPP2rp medium with
the above-listen parameters. Demarcation line of between two media runs the
length of the 220-th collum of the array. As opposed to an explicit finite-difference

Fig. 10. There twice averaged projection of velocity vector onto the axis OX at the
demarcation line

248 V. Markova

method of the sound wave simulation in inhomogeneous media, the LGA method
does not require additional boundary conditions and collision rules on the bound-
ary of discontinuity of density. Figure 10 shows he dependence of twice projection
of the velocity vector onto the axis X the averaged flow change in helium-methane
medium. As soon as the sound wave reaches the demarcation line, two effects
(a refraction and a reflection) are observed. An experiment demonstrated that
the model velocities of the refracted and reflected sound waves are equal in mag-
nitude to the sound wave model velocities in the media corresponding to helium
and to methane, respectively.

4 Conclusion

In this paper, the model wave velocity dependence of the HPPrp model parame-
ters (number of the rest particles, density of the moving particles, the probability
of the rest particles presence, and probabilities of creating and annihilating of
the rest particles) are experimentally investigated. Technique for evaluation the
HPPrp medium and its parameters by physical velocity of the sound wave propa-
gation in the given medium and vice versa is given. The sound wave propagation
process in inhomogeneous media is formed from two gases (helium and methane)
is simulated. Experiments showed the following.

– The LGA method does not require additional conditions on the boundary of
discontinuity of density for sound wave simulation in inhomogeneous media,
as opposed to an explicit finite-difference method of wave equation solution.

– The sound wave velocity in the given HPPrp medium and velocity in the
same medium after the boundary of discontinuity coincide very closely.

References

1. Hardy, J., Pomean, Y., de Pazzis, O.: Time evolution of a two-dimensional model
system. Journal of Math. Physics 14, 1746–1752 (1973)

2. Zhang, M., Cule, D., Shafai, L., Bridges, G., Simons, N.: Computing electromag-
netic fields in inhomogeneous media using lattice gas automata. In: Proceedings of
1998 Symposium on Antenna Technology and Applied Electromagnetics, Ottawa,
Canada, August 14–16 (1998)

3. Simons, N.R.S., Bridges, G., Cuhachi, M.: A Lattice-Gas Automaton Capable of
Modeling Three-Dimentional Electromagnetic Fields. Journal of Computational
Physics 151, 816–835 (1999)

4. Markova, V.: Sound wave propagation simulation in an ingomogeneous medium
using Lattice Gas Automata. Bull. Novosibirsk Comp. Center. Ser. Computer
Science (27), 71–81 (2008)

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 249–256, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Cellular-Automaton Simulation
of a Cumulative Jet Formation

Yu. Medvedev

Institute of Computational Mathematics and Mathematical Geophysics,
Supercomputer Software Dept., Academican Lavrentiev ave. 6,

630090, Novosibirsk, Russia
medvedev@ssd.sscc.ru

Abstract. A new cellular-automaton FHP-GWC model is proposed. Computing
experiments have been carried out with this model; they demonstrate a correla-
tion of the new model with the physical laws.

Keywords: Cellular automata, gas flow, cumulative jet.

1 Introduction

One of perspective directions of physical processes simulation is using cellular auto-
mata (CA). CA models of flows called the Lattice-Gas have been suggested in the
seventies the last century [1] and since then are promptly advanced. These models are
discrete; their ground is the Boolean algebra. They allow to construct efficient pro-
grams and to minimize computer time usage.

The FHP (Frish, Hasslacher, Pomeau) model introduced in [1] is a Lattice-Gas CA
is used for simulating viscous fluid flow. The FHP-MP (multiparticle FHP) model [2]
allows simulating fluids with less viscosity than the FHP model because of using
wider range of pressure.

The paper aims at expanding a Lattice-Gas flow model 1) to simulate a gas flow
carrying several powdered components, and 2) usage of initial conditions with high
pressure gas for having possibility to achieve a high velocity of the flow like by an
explosion. These two innovations have given the chance to simulate the cumulative jet.

In the paper, the new model FHP-GWC (FHP with multiparticle gas and fine pow-
ders of W, C, and WC) is proposed, and results of its experimental research are de-
scribed. An example of a formation of a cumulative jet with a tungsten powder is
given.

2 Model Specification

The FHP-GWC model is a CA, which is represented as a triplet 〈Κ, N, Θ〉, where Κ is
a set of the cells, N is the set of the neighbors, Θ is a set of the transition functions.

The set Κ = {c1, c2, …, ci, …} consists of the cells allocated in corresponding sites
in some discrete space. Each cell c ∈ Κ is described by a state s(c) and two coordinates

250 Yu. Medvedev

x(c) and y(c) on the Cartesian plane. Therefore, between any two cells c1 ∈ Κ and c2 ∈
Κ it is easy to calculate the distance d(c1, c2). State s(c) of a cell c ∈ Κ depends on a
discrete clock t. Coordinates x(c) and y(c) of a cell c ∈ Κ are time-independent. At the
FHP-GWC model the state s(c) is a set of one integer vector and three Boolean ones.
That is because this model is the quite new model different from the FHP and the FHP-
MP models.

For each cell c ∈ Κ an ordered set N(c) = {ni(c): n0(c) = c, ni(c) ∈ Κ & d(c, ni(c)) =
1, (i = 1, 2, …, b)} is determined. Its terms belong to a neighborhood with the cell c
and they are called its neighboring cells or neighbors. The constant b characterizes
the number of non-identical neighbors of each cell c ∈ Κ. Each cell is a neighbor to
itself, i.e. n0(c) = c. Thus, the number of neighbors of each cell c of the FHP-GWC
model is equal to seven. There is a correspondence between the outputs in a cell c ∈
Κ and the inputs of neighbors of this cell and vice versa. Thus, a structure of the CA
cells set Κ is a graph in which vertices are cells, and edges from the set is the
neighborhood relation. This graph has a regular lattice and degree of its vertices is
equal to b.

In the FHP-GWC model, the CA with a synchronous operation is used. In each cy-

cle (iteration), there is a replacement of states ()s t in all cells c ∈ Κ, by the states

() ()()1s t s tθ+ = , where ()()s tθ ∈ Θ is suitable next-state function. So, Θ is

the set of transition functions, which define the CA evolution.

A state s of a cell c ∈ Κ is a set () () () () (){ }, , ,G W C WCs c s c s c s c s c= con-

sisted of three vectors. The first ()Gs c has integer components ()G
is c , i = 0, 1, …,

b, determining a number of gas particles in the cell c with unit velocity vector ()ie c
r

,

directed towards the neighbor ni(c) (for i = 1, …, b) or equal to zero (for i = 0). Vectors

() () () ()()0 1, , ,W W W W
bs c s c s c s c= K , () () () ()()0 1, , ,C C C C

bs c s c s c s c= K ,

and () () () ()()0 1, , ,WC WC WC WC
bs c s c s c s c= K are Boolean; their components

determine presence or absence of tungsten, carbon, and carbide particles with velocity

vectors ()W iM e c
r

, ()C iM e c
r

, and ()WC iM e c
r

 respectively, where i = 0, 1, …, b;

WM , CM , and WCM are specific weights of tungsten, carbon, and carbide parti-

cles. No more than one of each velocity vector () ()W
i is c e c

r
, () ()C

i is c e c
r

, and

() ()WC
i is c e c

r
 can be directed to the neighbor ni(c). A set of states s(c) of all cells c

∈ Κ in the same instant t is called a global state σ(t) = {s(c1), s(c2), …, s(ci), …} of
the CA.

A cell c, the unit velocity vectors ()ie c
r

, and the set of the neighbors ni (c), i = 0,

1, …, 6 are given in Fig. 1. The total particles mass moving in the direction ()ie c
r

 is

equal to () () () () ()G W C WC
i i W i C i WC im c s c M s c M s c M s c= + + + .

 Cellular-Automaton Simulation of a Cumulative Jet Formation 251

x

y

1e

2e 3e

4e

5e6e

n5(c)

n4(c)

n3(c)n2(c)

n1(c)

n6(c)

c

Fig. 1. The neighborhood and the unit vectors

The mass of gas particles in a cell c is equal to:

() ()
0

b
G G

i
i

m c s c
=

=∑ , (1)

where b = 6 is a number of possible directions of velocity vector, G
is is the ith com-

ponent of the gas states vector Gs . A physical interpretation of the vector ()Gs c

components values is the following: G
is defines the number of unit mass particles of

the gas, whose velocity vector G
i is e
r

 is directed towards the neighbor ni(c). The tung-

sten particle mass is in MW times larger than the gas particle mass, so:

() ()
0

b
W W

W i
i

m c M s c
=

= ∑ . (2)

The carbon particle mass is in MC times larger than the gas particle mass, so:

() ()
0

b
C C

C i
i

m c M s c
=

= ∑ . (3)

The carbide particle mass is in MWC times larger than the gas particle mass, so:

() ()
0

b
WC WC

WC i
i

m c M s c
=

= ∑ . (4)

252 Yu. Medvedev

Thus, the total mass of all particles in the cell c is equal to:

() () () () ()G W C WCm c m c m c m c m c= + + + . (5)

The model momentum ()p c
r

 in a cell c ∈ Κ is the total momentum of all particles

() () () () ()G W C WC
i i i i ip c p c p c p c p c= + + +r r r r r

, including gas particles

() () ()G G
i i ip c s c e c=r r

, tungsten particles () () ()W W
i W i ip c M s c e c=r r

, carbon

particles () () ()C C
i C i ip c M s c e c=r r

, and carbide particles

() () ()WC WC
i WC i ip c M s c e c=r r

, directed to all neighbors ni(c), where i = 0, 1, …, b,

and b = 6:

1

b

i
i

p p
=

=∑r r
, (6)

From (1), with allowance for Fig. 1, it is easy to compute the total momentum p
r

of the projections px and py onto Cartesian axes Ox and Oy:

()2 3 5 6

3

2xp p p p p= + − −r r r r
, (7)

()4 1 3 5 2 6

1

2yp p p p p p p= − + + − −r r r r r r
. (8)

We introduce three types of cells c ∈ Κ. As conventional cells cc ∈ Κc we call
those ones, in which both mass and momentum conservation laws are satisfied. The
wall cells cw ∈ Κw (walls) are the cells, in which mass conservation law is satisfied,
but momentum conservation law can be violated. And, finally, source cells cs ∈ Κs
(sources) are cells, in which both the law of mass conservation and the law of mo-
mentum conservation can be violated. Sets of conventional cells Κc, of walls Κw, and
of sources Κs do not pairwise intersect (Κс ∩ Κw = ∅, Κс ∩ Κs = ∅, Κw ∩ Κs = ∅).
Integration of these sets coincides with set of all cells of the CA (Κс ∪ Κw ∪ Κs = Κ).
The behavior of walls and sources specifies the boundary conditions of the CA.

Each iteration of the CA evolution has two phases: propagation and collision. So,
next-state function θ of a cell c ∈ Κ consists of a superposition of the propagation
function θ1 and the collision function θ2:

()() ()()()2 1s c s cθ θ θ= . (9)

Both functions θ 1 and θ 2 should satisfy the laws of mass and momentum
conservation:

 Cellular-Automaton Simulation of a Cumulative Jet Formation 253

()() ()
0 0

b b

j i i
c i c i

s c s cΜ Μ

∈Κ = ∈Κ =
=∑∑ ∑∑θ , (10)

()() ()
1 1

b b

j i i
c i c i

p c p c
∈Κ = ∈Κ =

=∑∑ ∑∑r rθ , (11)

where { }, , ,G W C WCΜ ∈ is a type of a substance (medium), and { }1,2j ∈ is

the type of function.
In the propagation phase, in each cell c ∈ Κ each particle specified by components

()is cΜ of state vectors ()s cΜr , at i = 1, …, 6, propagates to the neighboring cell

ni(c) corresponding to its velocity vector ()ie c
r

. The rest particles corresponding to

()0s cΜ , remain in the cell c. Thus, the i-th component ()is cΜ of state vectors

()s cΜr of the cell c after propagation adopts a value:

()() ()() ()()
()

2 mod6 1
1

, if 1,2, , ;

, if 0.

i i
i

i

s N c i b
s c

s c i

Μ
+ +Μ

Μ

⎧ = …⎪= ⎨
⎪ =⎩

θ (12)

In spite of the fact that at propagation phase mass and momentum of particles in a
single cell are changed, within the whole CA they are maintained, i.e. requirements
(10) and (11) are fulfilled.

In the collision phase, there is a veering of particles velocity vectors directions ac-
cording to some collision rules which are independent of states of the neighboring
cells, i.e. θ2 depends only on the its own state. In the FHP-GWC model the function θ2
is probabilistic. The collision rules for the above types of the cells (conventional cells,
walls, and sources) are described below.

In the conventional cells cc ∈ Κc, the function θ2 is implemented as follows. In the
beginning synthesis of the tungsten carbide is performed. For this purpose, each pair
of a tungsten and a carbon particles with antiparallel velocity vectors should be con-
verted to a particle of the tungsten carbide provided that in the direction of the tung-
sten velocity there is no carbide particle and there are MW – MC or more gas particles.
After synthesis, value of the function θ2 is selected from the set of states which con-

serve the mass of each substance ()cm cΜ and the total momentum ()cp c
r

:

()() () ()2
0 0

b b

i c i c r c
i i

s c s c m cθ Μ Μ Μ

= =

= −∑ ∑ ,

∀cc ∈ Κc, { }, , ,G W C WC∀Μ ∈ ,

(13)

()() ()2
1 1

b b

i c i c
i i

p c p cθ
= =

=∑ ∑r r
, ∀cc ∈ Κc, (14)

254 Yu. Medvedev

where () { }0, , ,r c W C WCm c M M MΜ ∈ − is the reaction mass in the cell cc for vari-

ous M: gas, tungsten, carbon and carbide respectively. One of the possible value
obeying (13) and (14) should be chosen with equal probability. Fulfillment of (13)
and (14) provides that of (10) and (11).

In the cells cw ∈ Κw, which are walls, particles are "mirrored" backwards, thus vio-
lating the momentum conservation law:

()() ()() ()
()
2 mod 6 1

2

, if 1, 2, , ;

, if 0.

wi

i w

i w

s c i b
s c

s c i

Μ
+ +Μ

Μ

⎧ = …⎪= ⎨
=⎪⎩

θ (15)

Since the number of particles of every substance in a cell is not changed, require-
ments (13) and, therefore, (10) are satisfied. It is not so for (11), because directions of

the velocity vectors () ()i w i ws c e cΜ r
 of the particles are changed; it is admitted by

boundary conditions. Such a behavior of particles in wall cells simulates a require-
ment of zero speed of the flow on borders of obstacles.

Each cell-source cs ∈ Κs sustains the given density of the gas particles ()0
G

scρ . For

this purpose, it generates particles with any possible velocity direction in case that the

current density of particles () ()0
G G

s sc cρ ρ< . The number of generated particles is

equal to the difference between a given and a current densities () ()0
G G

s sc cρ ρ− . It

is possible to construct various structures of sources. For example, having placed them
in one line, we can obtain a source of a steady particle flow with a given density. A
single source cell simulates an injector. Naturally, when generating new particles neither

the mass ()G
sm c nor the momentum ()G

sp c
r

 are conserved. The boundary condi-

tions in sources enable a breach of conditions (10) and (11).

In simulation, the averaged values of a flow velocity u
r

, of the gas density

Gρ , of the tungsten density Wρ , of the carbon density Cρ , and of the car-

bide density WCρ over some averaging vicinity Av(c0) in which one includes all

cells c ∈ Κ placed not farther from a cell c0, than on some distance r called the aver-
aging radius, have a practical significance. Also the amount of the synthesized tung-
sten carbide is of interest.

An averaged flow velocity is the sum of velocity vectors of all particles in the av-
eraging vicinity Av(c0), divided by the cardinal number of the Av(c0):

() ()
()

()()0

0
0

0

0

1

b

i
i
b

c Av c
i

i

p c
u c

Av c m c

=

∈

=

=
∑

∑
∑

r

r
, (16)

where |Av(c0)| is the number of the cells situated in the Av(c0).

 Cellular-Automaton Simulation of a Cumulative Jet Formation 255

An averaged density of particles ρ Μ is evaluated in the same vicinity Av(c0) as

follows:

() () ()
()0

0
00

1 b

i
c Av c i

c s c
Av c

Μ Μ

∈ =

= ∑ ∑ρ . (17)

An averaged value of velocity u
r

 is the model velocity of a flow. Averaged den-

sities of the tungsten Wρ , the carbon Cρ , and the carbide WCρ particles are

the model densities this substances. An averaged density of the gas particles Gρ is

the model pressure.
We will notice that average values of the model velocity, the model density, and

the model pressure match their physical analogs only in case when the averaging
vicinity Av(c) consists exclusively of conventional cells cc ∈ Κc. Otherwise, we sug-

gest the values u
r

 and ρ Μ as indefinite. This requirement does not allow calcu-

lating the values u
r

 and ρ Μ for the cells, which are closer to walls cw ∈ Κw and

sources cs ∈ Κs, than averaging radius r.

3 Computer Simulation

For experimental studying of the proposed model its program implementation has
been performed. This allows carrying out computation experiments both on single-
processor computers, and on multiprocessor or multicomputer systems. The code has
been written in C, parallelism is implemented by means of the MPI library. The com-
putation experiments with the FHP-GWC model have been performed. The qualita-
tive behavior of a simulated cumulative jet is obtained.

The CA used in this computation experiment has the size 200 by 400 cells (along
Cartesian axes Ox and Oy respectively). Its initial state is given in the Fig. 2 at the left
top part. The perimeter cells with coordinates in the intervals [(1, 1), (1, 200)], [(1, 1),
(400, 1)], [(1, 200), (400, 200)], and [(400, 1), (400, 200)] are walls (thin lines in the
Fig. 2). The cells forming the nozzle with coordinates in the intervals [(100, 1), (100,
80)], [(100, 121), (100, 200)] are walls also. Remaining cells are conventional ones.

They contain the gas particles with density 3G
iρ = particles per each i-th direction

(i = 0, 1, …, 6). The tungsten powder with density 0 1Wρ = rest particles per cell is

the set of cells on the left by two sloping strips with thickness equal to 10 cells. The
mass of the tungsten particle MW = 20. For representing explode, the tungsten strips
are bordered from the outside by two high-pressure gas strips with thickness equal to

20 cells and with density 0 60Gρ = rest particles per cell (invisible in the Fig. 2).

256 Yu. Medvedev

Fig. 2. Cumulative jet with a tungsten fine powder

After 50, 250 and 600 iterations the average density of tungsten Wρ with aver-

aging radius r = 1 has been obtained (Fig. 2). The jet of the tungsten powder looks
similar to the obtained in natural experiments. Results of this experiment demonstrate
that the FHP-GWC model correctly reproduces process in the cumulative jets and
corresponds to physics.

4 Conclusion

In the paper the new cellular-automaton FHP-GWC model is proposed. The model
intended for simulating cumulative powder-gas jet. The computing experiments have
been carried out; they demonstrate a correlation of the new model with the physical
laws.

Future work will deal with cumulative jet in which a chemical reaction of tungsten
carbide synthesis in colliding two cumulative jets. Also, the parallel program realiza-
tion of the model will be studied by computing on clusters.

So, simulating gas flow with powder components is requested by the investigations
in the field of new composite materials.

References

1. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-Gas Automata for Navier-Stokes Equations.
Phys. Rev. Lett. N 56, 1505 (1986)

2. Medvedev, Yu.: The FHP-MP model as multiparticle Lattice-Gas. Bull. Nov. Comp. Cen-
ter, Comp. Science 27, 83–91 (2008)

Associative Version of the Ramalingam

Decremental Algorithm for Dynamic Updating
the Single-Sink Shortest-Paths Subgraph

Anna Nepomniaschaya

Institute of Computational Mathematics and Mathematical Geophysics,
Siberian Division of Russian Academy of Sciences,

pr. Lavrentieva, 6, Novosibirsk, 630090, Russia
anep@ssd.sscc.ru

Abstract. We propose an efficient implementation of the Ramalingam
algorithm for dynamic updating the single-sink shortest-paths subgraph
of a directed weighted graph after deletion of an edge using a model of as-
sociative (content addressable) parallel systems with vertical processing
(the STAR–machine). The associative version of the Ramalingam decre-
mental algorithm is given as the procedure DeleteArc, whose correctness
is proved and the time complexity is evaluated. We compare implemen-
tations of the Ramalingam decremental algorithm and its associative
version and present the main advantages of the associative version.

Keywords: Directed weighted graph, subgraph of the shortest paths,
adjacency matrix, decremental algorithm, associative parallel processor,
access data by contents.

1 Introduction

Finding the shortest paths in a weighted graph is a fundamental and well stud-
ied problem in computer science. Such a problem arises in practice in different
application settings. There are two versions of this problem: finding the single
source shortest paths and finding the all–pairs shortest paths.

The dynamic version of the single source shortest paths problem consists of
maintaining the shortest paths information while the graph changes without
recomputing everything from scratch after every update on the graph. The most
general types of update operations for the single source shortest paths problem
include insertions and deletions of edges and update operations on the edge
weights. When arbitrary sequences of the above operations are allowed, we refer
to the fully dynamic problem. If we consider only insertions (deletions) of edges,
we refer to the incremental (decremental) problem.

In the case of arbitrary real edge weights, Ramalingam and Reps [10, 11] de-
vise fully dynamic algorithms for updating the single source shortest paths using
the output bounded model. In this model, the running time of an algorithm is
analyzed in terms of the output change rather than the input size. The authors
assume that the graph has no negative–length cycles before and after input

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 257–268, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

258 A. Nepomniaschaya

update. Frigioni et al. [4] study the semi–dynamic single source shortest paths
problem for both directed and undirected graphs with positive real edge weights
in terms of the output complexity. Frigioni et al. [3] propose fully dynamic algo-
rithms for updating the distances and a single source shortest paths tree (sp-tree)
in either a directed or an undirected graph with positive real edge weights under
arbitrary sequences of edge updates. The cost of the update operations is given
as a function of the number of output updates by using the notion of k-bounded
accounting function. Frigioni et al. [5] propose the fully dynamic solution for the
problem of updating the shortest paths from a given source in a directed graph
with arbitrary edge weights. The authors devise a new algorithm for performing
edge deletions and weight increases that explicitly deals with zero–length cycles.
Algorithms from [3–5, 10, 11] use the dynamic version of the Dijkstra algorithm
[1]. Narváez et al. [6] propose two incremental methods to transform the well–
known static algorithms of Dijkstra, Bellman-Ford, and D’Esopo-Pape into new
dynamic algorithms for updating an sp-tree after changing edge weights.

In this paper, we deal with a directed graph G and the shortest-paths sub-
graph SP (G) that consists of all shortest paths from every vertex to the sink. We
propose an associative version of the Ramalingam algorithm [10] for the dynamic
update of SP (G) after deletion of an edge from G. Our model of computation
(the STAR–machine) simulates the run of associative (content addressable) par-
allel systems of the SIMD type with bit–serial (vertical) processing. Such an
architecture is best suited to solve the graph problems. We first offer a sim-
ple and natural data structure for efficient implementation of the Ramalingam
decremental algorithm on the STAR–machine. The associative version of this
algorithm is given as the procedure DeleteArc, whose correctness is proved. We
obtain that this procedure takes O(hk) time, where h is the number of bits for
coding the infinity and k is the number of vertices, whose shortest paths to the
sink change after deleting an edge from SP (G). Following [2], we assume that
each elementary operation of the STAR–machine (its microstep) takes one unit
of time. We also present the main advantages of the associative version of the
Ramalingam decremental algorithm.

2 Model of Associative Parallel Machine

Here, we propose a brief description of our model. It is defined as an abstract
STAR–machine of the SIMD type with the vertical data processing [7]. It consists
of the following components:

– a sequential control unit (CU), where programs and scalar constants are
stored;

– an associative processing unit consisting of p single–bit processing elements
(PEs);

– a matrix memory for the associative processing unit.

The CU passes an instruction to all PEs in one unit of time. All active PEs
execute it in parallel, while inactive PEs do not perform it. Activation of a PE
depends on data.

Associative Version of the Ramalingam Decremental Algorithm 259

Input binary data are given in the form of two–dimensional tables, where
each datum occupies an individual row and is updated by a dedicated PE. In
any table, rows are numbered from top to bottom and columns – from left to
right. Some tables may be loaded into the memory.

An associative processing unit is represented as h vertical registers, each con-
sisting of p bits. Vertical registers can be regarded as a one-column array. The
bit columns of the tabular data are stored in the registers that perform the
necessary Boolean operations.

The run is described by means of the language STAR being an extension of
Pascal. Let us briefly consider the STAR constructions needed for the paper. To
simulate the data processing in the matrix memory, we use the data types word,
slice, and table. Constants for the types slice and word are represented as a
sequence of symbols of a set {0, 1} enclosed within single quotation marks. The
types slice and word are used for the bit column access and the bit row access,
respectively, and the type table is used for defining the tabular data. Assume
that any variable of the type slice consists of p components, which belong to
{0, 1}. For simplicity, let us call slice any variable of the type slice.

Let us present some elementary operations and a predicate for slices.
Let X , Y be variables of the type slice and i be a variable of the type integer.

We use the following operations:

SET(Y) simultaneously sets all components of Y to ′1′;
CLR(Y) simultaneously sets all components of Y to ′0′;
Y (i) selects the i-th component of Y ;
FND(Y) returns the number i of the first (the uppermost) ′1′ of Y , i ≥ 0;
STEP(Y) returns the same result as FND(Y), then resets the first ′1′ found

to ′0′;
CONVERT(Y) returns a row, whose every i-th bit coincides with Y (i). It is

applied when a row of one matrix is used as a slice for another matrix.

The operations FND(Y), STEP(Y), and CONVERT(Y) are used only as the
right part of the assignment statement, while the operation Y (i) is used as both
the right part and the left part of the assignment statement.

To carry out the data parallelism, we introduce in the usual way the bitwise
Boolean operations: X andY , X or Y , not Y , X xor Y . We also use a predicate
SOME(Y) that results in true if there is at least a single bit ′1′ in the slice Y .1

Note that the predicate SOME(Y) and all operations for the type slice are
also performed for the type word. We will also employ the bitwise Boolean
operations between a variable w of the type word and a variable Y of the type
slice, where the number of bits in w coincides with the number of bits in Y .

Let T be a variable of the type table. We employ the following operations:

ROW(i, T) returns the i-th row of the matrix T ;
COL(i, T) returns its i-th column.

1 For simplicity, the notation Y �= Θ denotes that the predicate SOME(Y) results in
true.

260 A. Nepomniaschaya

Note that the STAR statements are defined in the same manner as for Pascal.
Now, we recall a group of basic procedures [8, 9] implemented on the STAR–

machine which will be used later on. These procedures use the given slice X to
indicate with ′1′ the row positions used in the corresponding procedure.

The procedure MIN(T,X,Z) defines positions of rows in the given matrix T
where the minimal element is located. These positions are marked with ′1′ in
the result slice Z.

The procedure SETMIN(T, F,X,Z) defines positions of the matrix T rows
that are less than the corresponding rows of the matrix F . It returns the slice
Z, where Z(i) =′ 1′ if ROW(i, T) <ROW(i, F) and X(i) =′ 1′.

The procedure WCOPY(v,X, F) writes the given binary word v into those
rows of the matrix F , that correspond to positions ′1′ in the slice X . Other rows
of the matrix F consist of zeros.

The procedure TCOPY1(T, j, h, F) writes h columns from the given matrix
T , starting from the (1 + (j − 1)h)-th column, into the result matrix F (j ≥ 1).

The procedure HIT(T, F,X,Z) defines positions of the corresponding identical
rows in the given matrices T and F using the slice X . These positions are marked
with ′1′ in the result slice Z.

The procedure ADDV(T, F,X,R) writes into the matrix R the result of pa-
rallel addition of the corresponding rows of matrices T and F , whose positions
are selected with ′1′ in the slice X . This algorithm uses the table 5.1 from [2].

The procedure ADDC(T,X, v, F) adds the binary word v to the rows of the
matrix T selected with ′1′ in X , and writes down the result into the correspond-
ing rows of the matrix F . Other rows of the matrix F are set to zero.

The procedure TMERGE(T,X, F) writes the rows of the matrix T , that cor-
respond to positions ′1′ in the slice X , into the matrix F . Other rows of the
matrix F are not changed.

In [8, 9], we have shown that these procedures take O(h) time each, where h
is the number of bit columns in the corresponding matrix.

3 Preliminaries

Let G = (V,E,w) be a directed weighted graph with the set of vertices V =
{1, 2, . . . , n}, the set of directed edges (arcs) E ⊆ V ×V and the function w that
assigns a weight to every edge. We will consider graphs with a distinguished
vertex s called sink.

An adjacency matrix Adj = [aij] of a directed graph G is an n × n Boolean
matrix, where aij = 1 if and only if there is an arc from the vertex i to the
vertex j in the set E.

An arc e directed from i to j is denoted by e = (i, j), where the vertex i is the
head of e (or father) and the vertex j is its tail (or son). We assume that all
arcs have a positive weight and w(u, v) = ∞ if (u, v) /∈ E. Let h be the number
of bits for coding the infinity.

A path from u to s in G is a finite sequence of vertices u = v1, v2, . . . , vk = s,
where (vi, vi+1) ∈ E for i = 1, 2, . . . , k − 1 and k > 1. The shortest path from u
to s is the path of the minimal sum of weights of its arcs.

Associative Version of the Ramalingam Decremental Algorithm 261

Let dist(u) denote the length of the shortest path from u to s and SP (G)
denote the subgraph of the shortest paths from all vertices of G to the sink.

By analogy with Ramalingam, we introduce the following notations.
We denote by outdegree(v) the number of arcs outgoing from the vertex v

in SP (G). Let an arc (i, j) be deleted from SP (G). Let AffectedV denote the
set of all vertices u in SP (G) such that all paths from u to the sink include the
deleted arc (i, j). An arc (x, y) is called affected by deleting the arc (i, j) in
SP (G) if there is no such path from x to s in the new graph that uses the arc
(x, y) and the length of the path is equal to distold(x).

4 The Ramalingam Decremental Algorithm for the
Single-Sink Shortest Paths Problem

Let an arc (i, j) be deleted from SP (G) and outdegree(i) = 0.
The Ramalingam decremental algorithm for dynamic updating the single-sink

shortest-paths subgraph consists of the following two stages.
At the first stage, one determines the set AffectedV and all affected arcs

obtained after deleting the arc (i, j) from SP (G). Then affected arcs are deleted
from SP (G).

At the second stage, for every affected vertex vi, one computes a new shortest
path from vi to s in G and updates SP (G).

The first stage is performed as follows.
Initially, AffectedV = Θ. To construct it, an auxiliary set of vertices Work-

Set is used. Initially, WorkSet = {i} because outdegree(i) = 0 after deleting
the arc (i, j) from SP (G). Vertices in WorkSet are sequentially updated. The
current updated vertex u is deleted from WorkSet and is included into the set
AffectedV . Then every arc (x, u) entering the vertex u is deleted from SP (G)
and outdegree(x) is decreased by one. If outdegree(x) = 0, the vertex x is
included into WorkSet.

To perform the second stage, one uses a heap PriorityQueue, whose elements
are affected vertices with a key. At this stage, one first computes for every affected
vertex u such a new shortest path to the sink that does not include other affected
vertices. The value of dist(u) is its current key in the heap. After that one updates
SP (G) as follows.

At every iteration, a vertex with the minimum key in the heap (say a) is
deleted from the set PriorityQueue. Then one determines those arcs (a, b) that
belong to an alternative path from the vertex a to the sink and distnew(a) =
w(a, b)+distold(b). Every such arc (a, b) is included into SP (G) and outdegree(a)
is increased by one. Further all arcs (c, a) are analyzed. If a new path from the
vertex c to the sink includes the arc (c, a) and distnew(c) < distold(c), the current
value dist(c) is equal to distnew(c) and this value is the new key for the vertex
c in PriorityQueue.

The process is completed after updating all vertices in the heap.

262 A. Nepomniaschaya

5 Associative Version of the Ramalingam Decremental
Algorithm

To design an associative version of the Ramalingam decremental algorithm, we
employ the following data structure:

– an n × n adjacency matrix G, whose every i-th column saves with ′1′ the
tails of arcs outgoing from the vertex i;

– an n × n adjacency matrix SP , whose every i-th column saves with ′1′

the tails of arcs outgoing from the vertex i that belong to the shortest-paths
subgraph;

– an n × hn matrix Weight that contains as elements the arc weights. It
consists of n fields having h bits each. The weight of an arc (i, j) is written in
the j-th row of the i-th field;

– an n×hn matrix Cost that contains as elements the arc weights. It consists
of n fields having h bits each. The weight of an arc (i, j) is written in the i-th
row of the j-th field;

– an n×h matrix Dist, whose every i-th row saves the shortest distance from
the vertex i to the sink;

– a slice AffectedV that saves with ′1′ positions of all affected vertices.

Note that the i-th field of the matrixWeight saves the weights of arcs outgoing
from the vertex i, while the i-th field of the matrix Cost saves the weights of
arcs entering the vertex i.

We will use the following property of the matrices G and SP .

Property 1. In every i-th row of the matrices G and SP , the heads of arcs entering
the vertex i are marked with ′1′.

Let an arc (i, j) be deleted from G and SP .
We first provide an associative parallel algorithm (say Algorithm A) for se-

lecting the set of affected vertices and arcs. This algorithm uses the slices WS
and AffectedV and the matrix SP . It performs the following steps.

Step 1. Set zeros into the slices AffectedV and WS. Check whether there is an
arc outgoing from the vertex i in SP . If it is true, go to exit. Otherwise, include
the vertex i into WS.

Step 2. While WS �= Θ, perform the following actions:

– delete the position of the first ′1′ (say k) from the slice WS. Include the
vertex k into the slice AffectedV ;

– delete all arcs from SP that enter the vertex k;
– for every deleted arc (r, k), include the vertex r into the slice WS if there

is no arc outgoing from r in SP .

On the STAR–machine, this algorithm is implemented as the procedure Find-
AffectedVert.

Associative Version of the Ramalingam Decremental Algorithm 263

An associative parallel algorithm for finding a new distance to the sink from
an affected vertex k (say Algorithm B) uses the slice AffectedV and the matrices
G and Dist. It runs as follows.

Step 1. Compute in parallel distances from the vertex k to s for every path in
the matrix G that begins with an arc (k, r), where r /∈ AffectedV .
Step 2. Select the minimum distance from k to s and write it down into the k-th
row of the matrix Dist.

On the STAR–machine, this algorithm is implemented as the procedure Com-
puteNewDist.

An associative parallel algorithm for updating arcs outgoing from an affected
vertex k (say Algorithm C) uses the slices Z and Y , and the matrices G, SP ,
and Dist. It performs the following steps.

Step 1. By means of a slice (say Z), save the positions of all arcs outgoing from
the vertex k in the matrix G.
Step 2. Determine in parallel distances from the vertex k to the sink for different
paths that include an arc marked with ′1′ in the slice Z.
Step 3. By means of a slice (say Y), save positions of those arcs (k, l) for which
dist(k) = w(k, l) + dist(l).
Step 4. Include positions of arcs marked with ′1′ in the slice Y into SP .

On the STAR–machine, this algorithm is implemented as the procedure Up-
dateOutgoingArcs.

An associative parallel algorithm for updating arcs entering an affected vertex
k (say Algorithm D) uses the slices Z and Y and the matrices G and Dist. It
performs the following steps.

Step 1. By means of a slice (say Z), save the heads of arcs entering the vertex k
in G.
Step 2. For all vertices l marked with ′1′ in the slice Z, determine in parallel
distances to the sink in every path starting with the arc (l, k).
Step 3. By means of a slice (say Y), save positions of those vertices r, marked
with ′1′ in the slice Z, for which distnew(r) < distold(r). Then write distnew(r)
in the corresponding rows of the matrix Dist.

On the STAR–machine, this algorithm is implemented as the procedure Up-
dateIncomingArcs.

Now, we provide an associative parallel algorithm for updating the shortest-
paths subgraph after deletion of the arc (i, j) from the matrix G. It performs
the following steps.

Step 1. Delete the position of the arc (i, j) from the matrix G. If (i, j) /∈ SP , go
to exit. Otherwise, delete the position of this arc from the matrix SP .
Step 2. By means of the Algorithm A, construct the slice AffectedV and delete
affected arcs from SP . Save a copy of the slice AffectedV in another slice
(say X).

264 A. Nepomniaschaya

Step 3. While X �= Θ, determine new distances to the sink from all affected
vertices as follows:

– select the position of the current affected vertex k in the slice X and mark
it with ′0′;

– by means of the Algorithm B, determine the new distance from the vertex
k to the sink.
Step 4. While AffectedV �= Θ, update affected vertices taking into account their
new distances to the sink as follows:

– knowing the slice AffectedV and the matrix Dist, determine the position
of an affected vertex q having the minimum distance to the sink and mark this
position with ′0′ in AffectedV ;

– by means of the Algorithm C, update the arcs outgoing from the vertex q;
– by means of the Algorithm D, update the arcs entering the vertex q.

On the STAR–machine, this algorithm is given as the procedure DeleteArc.

6 Implementation of the Associative Version of the
Ramalingam Decremental Algorithm

In this section, we first briefly explain the run of the auxiliary procedures. Then
we propose the procedure DeleteArc. In a full paper, we will provide the detailed
analysis of the auxiliary procedures and their correctness.

We first consider the procedure FindAffectedVert. Knowing the head i of the
deleted arc (i, j) and the matrix SP , it returns the updated matrix SP and the
slice AffectedV , where positions of all affected vertices are marked with ′1′.

Let the current vertex k be included into the slice AffectedV . To delete the
arcs entering the vertex k and to update their heads, we first save the k-th row
of the matrix SP by means of a variable v of the type word. Then we write
zeros in the k-th row of SP . While v �= Θ, by means of the operation STEP(v),
we select the leftmost head r and check whether COL(r, SP) consists of zeros.

Now we explain the procedure ComputeNewDist. Knowing the integers h and
k, the slice AffectedV and the matrices G, Weight, and Dist, it returns the
updated matrix Dist.

To determine a new distance in G from the vertex k to s, we first save the sons
of k that are not affected. Then by means of TCOPY1, we select the k-th field
of the matrix Weight. Further, by means of ADDV, we add the k-th field of the
matrix Weight and the matrix Dist for the corresponding selected rows. Finally,
by means of the basic procedure MIN and the operation FND, we determine the
new distance from k to s and write it into the k-th row of the matrix Dist.

Now, we proceed to the procedure UpdateOutgoingArcs. Knowing the integers
h and k, and the current matrices G, Weight, Dist, and SP , the procedure
returns the updated matrix SP .

By analogy with the procedure ComputeNewDist, this procedure first saves
different distances from k to s in a matrix W2. Then by means of WCOPY,

Associative Version of the Ramalingam Decremental Algorithm 265

the distance from k to s is written in the rows of a matrix W1 that correspond
to positions of sons of the vertex k in G. Further, by means of HIT, we select
the sons of k that belong to the alternative shortest paths from k to s. Finally,
positions of these arcs are included into SP .

Finally, we consider the procedure UpdateIncomingArcs. Knowing the integers
h and k and the current matrices G, Cost, and Dist, the procedure returns the
updated matrix Dist.

Initially, by means of the operation CONVERT, we transform the k-th row
of the matrix G into a slice Z. Then by means of TCOPY1, we select the k-th
field of the matrix Cost. To determine the new distances to s from the heads of
arcs entering the vertex k, we add dist(k) to the rows of the k-th field of the
matrix Cost, using the slice Z and the basic procedure ADDC. Then by means
of SETMIN, we select the heads r of arcs entering k for which distnew(r) <
distold(r). Finally, we write distnew(r) in the corresponding rows of the matrix
Dist.

Let us proceed to the procedure DeleteArc. Knowing the deleted arc (i, j),
the integer h and the current matrices G, Weight, Cost, Dist, and SP , the
procedure returns the updated matrices G, SP , and Dist with the use of the
above auxiliary procedures.

procedure DeleteArc(i,j,h:integer;Weight,Cost:table;
var G,SP:table; var Dist: table);

/* The arc (i, j) is deleted from the matrices G and SP. */
var k: integer;
AffectedV,X,Y:slice(G);
label 1;

1. Begin X:=COL(i,G); X(j):=’0’;
2. COL(i,G):=X;
/* The arc (i, j) is deleted from G. */
3. X:=COL(i,SP);
4. if X(j)=’0’ then goto 1;
5. X(j):=’0’; COL(i,SP):=X;
/* The arc (i, j) is deleted from SP. */
6. FindAffectedVert(i,SP,AffectedV);
/* This procedure returns the updated matrix SP
and the slice AffectedV . */

7. X:=AffectedV;
8. while SOME(X) do
9. begin k:=STEP(X);

10. ComputeNewDist(h,k,AffectedV,G,Weight,Dist);
/* The new distance from the vertex k to s is written
in the k-th row of the matrix Dist. */

11. end;
12. while SOME(AffectedV) do
13. begin MIN(Dist,AffectedV,Y);
14. k:=FND(Y); AffectedV(k):=’0’;

266 A. Nepomniaschaya

15. UpdateOutgoingArcs(h,k,G,Weight,Dist,SP);
/* We include into SP those arcs (k, r), for which
dist(k) = w(k, r) + dist(r). */

16. UpdateIncomingArcs(h,k,G,Cost,Dist);
/* We write distnew(l) into the l-th row of the matrix Dist
if distnew(l) < distold(l) and the arc (l, k) belongs
to the path from l to s. */

17. end;
18. 1: End.

Theorem 1. Let a directed weighted graph be given as an adjacency matrix G
and a matrix Weight. Let matrices Cost, SP, and Dist and the number of bits h
for coding the infinity be also given. Let an arc (i,j) be deleted from the graph.
Then after performing the procedure DeleteArc, this arc is deleted from the ma-
trices G and SP. Moreover, matrices SP and Dist are updated according to the
algorithms A, B, C, and D.

Proof. (Sketch). We prove this by induction in terms of the number q of
affected vertices that appear after deleting the arc (i, j) from SP .

Basis is proved for q = 1. One can immediately check that after performing
lines 1–5, the arc (i, j) is deleted from the matrices G and SP . After performing
the procedure FinfAffectedVert (line 6), the slice AffectedV saves the vertex i
and all arcs, entering this vertex, are deleted from SP . After performing line
7, we have X(i) =′ 1′. One can easily check that after fulfilling line 9, we have
k = i and X = Θ because initially the slice X is the copy of AffectedV . After
performing the auxiliary procedure ComputeNewDist (line 10), the new distance
from i to s is written in the i-th row of the matrix Dist. Since X = Θ, we carry
out line 12. After performing lines 12–14, we have k = i and AffectedV = Θ.
Further, after performing the procedure UpdateOutgoingarcs (line 15), all arcs
(i, r) for which distnew(i) = w(i, r) + distold(r) are included into SP .

By assumption, there is a single affected vertex in SP . It means that there is
an alternative path to the sink for every vertex l, being the head of any arc (l, i)
in SP . Therefore after performing the procedure UpdateIncomingArcs (line 16),
the matrix Dist does not change.

Hence, after performing the procedure Deletearc, the arc (i, j) is deleted from
the matrices G and SP , distnew(i) is written into the i-th row of the matrix
Dist, and all arcs (i, r), for which distnew(i) = w(i, r) + distold(r), are included
into SP .

Step of induction. Let the assertion be true when no more than q ≥ 1 affected
vertices are updated in the given graph. We will prove the assertion for q + 1
affected vertices.

One can immediately verify that, after performing lines 1–7, the arc (i, j) is
deleted from G and SP , the slice AffectedV saves positions of q+1 affected ver-
tices, affected arcs are deleted from SP , and the slice X is a copy of AffectedV .
After performing line 9, the position of the first (or uppermost) affected vertex

Associative Version of the Ramalingam Decremental Algorithm 267

k is determined. By analogy with the basis, after performing the procedure
ComputeNewDist (line 10), the new distance from k to s is written into the k-th
row of the matrix Dist. Now, only q affected vertices are marked with ′1′ in
the slice AffectedV . By the inductive assumption, after execution of the cycle
while SOME(X) do (line 8), new distances from every affected vertex to s will
be written in the corresponding rows of the matrix Dist.

Since X = Θ, we carry out the cycle while SOME(AffectedV) do (line 12).
After performing lines 13–14, we determine the position of the affected vertex
k having the minimum new distance to s and mark it with ′0′ in the slice
AffectedV After performing the procedure UpdateOutgoingarcs (line 15), we
include into SP the positions of arcs (k, r), for which distnew(k) = w(k, r) +
distold(r). Further, after performing the procedure UpdateIncomingArcs (line 16),
for every affected vertex r, for which distnew(r) < distold(r), we write distnew(r)
into the r-th row of the matrix Dist.

Now, there are only q affected vertices, whose positions are marked with ′1′

in the slice AffextedV . By the inductive assumption, after updating q affected
vertices, all alternative paths from every affected vertex r to the sink are included
into SP and the new distance from r to s is written in the r-th row of the matrix
Dist. Hence, the assertion is true for q + 1 affected vertices.

This completes the proof.
Let us evaluate the time complexity of the procedure DeleteArc. To this end,

we first evaluate the time complexity of the auxiliary procedures. Let h be the
number of bits for coding the infinity and k be the number of affected vertices
that appear in SP (G) after deleting the arc (i, j). The auxiliary procedure Find-
AffectedVert takes O(k) time. Other auxiliary procedures take O(h) time each.
In the procedure DeleteArc, the cycle while SOME(X) do (lines 8–11) and the
cycle while SOME(AffectedV) do (lines 12–17) take O(kh) time each. Hence,
the procedure DeleteArc takes O(kh) time.

Now we compare implementations of the Ramalingam decremental algorithm
and its associative version:

– the Ramalingam decremental algorithm uses a heap of vertices, where the
distance from any affected vertex r to the sink is its current key in the heap.
The associative version saves the current distance from r to s in the r-th row of
the matrix Dist;

– for every affected vertex r, the Ramalingam decremental algorithm deter-
mines in succession different distances from r to s and assignes the minimum
distance among them to the current key for the vertex r in the heap. The as-
sociative version simultaneously determines different distances from r to s and
writes the minimum distance into the r-th row of the matrix Dist;

– for every affected vertex r, the Ramalingam decremental algorithm deter-
mines in succession those arcs (r, l), for which dist(r) = w(r, l) + dist(l). The
associative version simultaneously determines positions of such arcs;

– for every affected vertex r, the Ramalingam decremental algorithm deter-
mines in succession those arcs (q, r), for which distnew(q) < distold(q), then
assigns distnew(q) to the current key of q in the heap. The associative version

268 A. Nepomniaschaya

simultaneously determines positions of such heads of arcs (q, r), then
simultaneously writes the new distances from them to the sink into the cor-
responding rows of the matrix Dist.

7 Conclusions

We have proposed a new data structure for efficient implementation of the Rama-
lingam decremental algorithm on the STAR–machine having no less than n PEs.
The associative version of the Ramalingam decremental algorithm is represented
as the procedure DeleteArc, whose correctness is proved. We have obtained that
this procedure takes O(kh) time per a deletion, where h is the number of bits for
coding the infinity and k is the number of affected vertices that appear in SP (G)
after deleting an arc. It is assumed that each microstep of the STAR–machine
takes one unit of time. We have also compared the implementations of the Ra-
malingam decremental algorithm and its associative version and presented the
main advantages of the associative version.

We are planning to design an associative version of the Ramalingam incre-
mental algorithm for the dynamic update of the shortest-paths subgraph after
insertion of an arc into the given graph.

References

1. Dijkstra, E.W.: A Note on Two Problems in Connection with Graphs. Numerische
Mathematik 1, 269–271 (1959)

2. Foster, C.C.: Content Addressable Parallel Processors. Van Nostrand Reinhold
Company, New York (1976)

3. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully Dynamic Algorithms for
Maintaining Shortest Paths Trees. J. of Algorithms 34, 351–381 (2000)

4. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Semi–dynamic Algorithms for
Maintaining Single Source Shortest Paths Trees. Algorithmica 25, 250–274 (1998)

5. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully Dynamic Shortest Paths
in Digraphs with Arbitrary Arc Weights. J. of Algorithms 49, 86–113 (2003)

6. Narváez, P., Siu, K.-Y., Tzeng, H.-Y.: New Dynamic Algorithms for Shortest Paths
Tree Computation. IEEE/ACM Trans. Networking. 8, 734–746 (2000)

7. Nepomniaschaya, A.S.: Language STAR for Associative and Parallel Computation
with Vertical Data Processing. In: Mirenkov, N. (ed.) Proc. of the Intern. Conf.
Parallel Computing Technologies, pp. 258–265. World Scientific, Singapore (1991)

8. Nepomniaschaya, A.S.: Solution of Path Problems Using Associative Parallel Pro-
cessors. In: Intern. Conf. on Parallel and Distributed Systems, ICPADS 1997,
pp. 610–617. IEEE Press, New York (1997)

9. Nepomniaschaya, A.S., Dvoskina, M.A.: A simple Implementation of Dijkstra’s
Shortest Path Algorithm on Associative Parallel Processors. Fundamenta Infor-
maticae 43, 227–243 (2000)

10. Ramalingam, G.: Bounded Incremental Computation. LNCS, vol. 1089. Springer,
Heidelberg (1996)

11. Ramalingam, G., Reps, T.: An Incremental Algorithm for a Generalization of the
Shortest Paths Problem. J. of Algorithms 21, 267–305 (1996)

Cellular Automata-Based S-Boxes

vs. DES S-Boxes

Miroslaw Szaban1 and Franciszek Seredynski2,3

1 Institute of Computer Science, University of Podlasie
3-go Maja 54, 08-110 Siedlce, Poland

mszaban@ap.siedlce.pl
2 Institute of Computer Science, Polish Academy of Sciences,

Ordona 21, 01-237 Warsaw, Poland
3 Polish-Japanese Institute of Information Technology

Koszykowa 86, 02-008 Warsaw, Poland
sered@ipipan.waw.pl

Abstract. In the paper we use recently proposed cellular automata
(CA) - based methodology [9] to design 6x4 S-boxes functionally equiv-
alent to S-boxes used in current cryptographic standard known as DES.
We provide an exhaustive experimental analysis of the proposed CA-
based S-box in terms of non-linearity, autocorrelation, balance and strict
avalanche criterion, and compare it with DES S-boxes. We show that
the proposed CA-based S-box has cryptographic properties comparable
or better than classical S-box tables. The interesting feature of the pro-
posed S-box is a dynamic flexible structure fully functionally realized
by CA, while the classical DES S-box is represented by predefined un-
changeable table structure.

Keywords: Cellular Automata, S-boxes, Block Cipher, Cryptography,
Boolean Functions.

1 Introduction

Cryptography plays an important role in security of data in the modern world.
Two main cryptography approaches are used today to provide a secure commu-
nication: secret key and public key systems. An extensive overview of currently
known or emerging cryptography techniques used in both types of systems can
be found in [8]. The main concerns of this paper are cryptosystems with a se-
cret key. The main interests of this work are CA and their application to design
S-boxes. S-boxes functionally realize some Boolean functions, important from
point of view of requested cryptographic features performed by S-boxes in secret
key systems.

Many known secure standards of symmetric key cryptography, such as, e.g.
[3], [4], use efficient and secure algorithms working on the base of S-boxes.
S-boxes are ones of the most important components of block ciphers, which
are permanently upgraded, or substituted by new better constructions.

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 269–283, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

270 M. Szaban and F. Seredynski

In the next section the concept of the S-box and its most known applications
in DES cryptographic standards are presented. Section 3 describes the main
cryptographic criteria to examine Boolean functions. In section 4 two different
Boolean functions are proposed as measures of non-linearity, autocorrelation
and balance of S-boxes. Section 5 outlines the concept of CA. In section 6 the
idea of creating CA-based S-boxes is proposed. Section 7 presents results of
examination of cryptographic features of CA-based S-boxes and their comparison
with classical DES S-boxes. The last section concludes the paper.

2 S-Boxes in Cryptography

S-box (see, [3]) is a function f : Bn → Bk, which from each of n Boolean input
values of Bn block consisting of n bits bi (i ≤ n) generates some k Boolean
output values called Bk block consisting of k bits bj (j ≤ k and k ≤ n),
what corresponds to the mapping bit strings (b0, b1, ..., bn) → (b0, b1, ..., bk).

S1 S2 S3 S4 S5 S6 S7 S8

P

E

R (32 BITS)

K (48 BITS)48 BITS

32 BITS

Fig. 1. Ciphering with use of S-boxes S1, ..., S8 in DES algorithm [3]

One of well known application of S-boxes is using them in Data Encryption
Standard (DES) as the ”heart” of this algorithm [3]. In DES algorithm 64 input
bits are changed by Initial Permutation. After that the 64-bit block is trans-
formed into two blocks of bits composed of 32 bits. One of these two blocks
is the block R (see, Fig. 1). The next operation in the algorithm, named E,
takes a block of 32 bits as input and yields a block of 48 bits as output. The
operation ⊗ (XOR: bit-by-bit addition modulo 2) creates from the block E(R)
and the 48-bit block of key K a new block of bits (see, Fig. 1). In the next
step, 48 bits (E(R) ⊗ K) are cut into eight blocks composed of 6 bits each,
which are sent to eight S-boxes S1, ..., S8. Each of DES S-boxes is the function,
which map 6 input bits into 4 output bits. Reassuming, these eight wide known
functions collectively transform the 48-bit input block into 32-bit output block
(see, Fig. 1).

Cellular Automata-Based S-Boxes vs. DES S-Boxes 271

Row
No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Column Number

1 1 0 0 1 0

1 0 0 1

1 0

1 1 0 0

Fig. 2. Mapping the 6 bits into the 4 bits with use of S-box S1 (in DES algorithm [3])
represented as table

Each of the functions S1, ..., S8 are tables composed of 16-columns and 4-
rows. Each function takes a 6-bit block as input and yields a 4-bit block as
output.

Let us consider the function S1 represented in Fig. 2 by specially designed
table. Suppose that the input block of this function is the block B6, e.g. 110010.
Two bits from B6, the first and the last one (bits 10) define row 2 of the S1
block. Four middle bits 1001 define the column 9 of the S1 block. Intersection
of the column 9 and row 2 points in the table the number 12, what corresponds
to 1100, and these bits are considered as the B4 output block.

S-boxes are also used in modern symmetric key cryptography systems, e.g. in
the new standard Advanced Encryption Standard (AES) [4], successor of DES.

Let us note that the classical S-boxes, as described above, are constant, not
flexible structures requesting predefined sizes of memory. Therefore, it is hard to
use them in new designed cryptographic algorithms, which request using dynamic
S-boxes. The purpose of this study was to design a flexible S-boxes, ready to
use in cryptographic algorithms with dynamic S-boxes. It seems that CA are
appropriate tool to design such S-boxes.

3 Cryptographic Criteria for Evaluation of Boolean
Functions

A motivation for applying CA to realize S-boxes steams from potentially very
interesting features of CA. CA have a computational possibilities equivalent to
Universal Turing Machine [12], what means that such Boolean functions can be
realized. What more, CA of a given size and with their rules (see, Section 4) can
potentially realize not one, but a number of S-box functions, what gives a pos-
sibility of designing much more stronger cryptography systems. The important
issue is also efficiency of running cryptography systems. CA is a highly paral-
lel system, easy in hardware implementation, what results in high efficiency of
CA-based systems.

272 M. Szaban and F. Seredynski

The quality of S-boxes designed with use of CA must be verified by required
properties of S-boxes. The most important definitions and dependencies related
to this issue are recalled below from cryptographic literature [1], [2], [10], [13].

A Boolean function f : Z n
2 → Z2 maps n binary inputs to a single binary

output. The list of the size of 2n of all possible outputs is the truth table. Polarity
form of the truth table is denoted by f̂ (x) and defined as:

f̂(x) = (−1)f(x). (1)

Boolean function is named a linear function, when it can be expressed as a XOR
function defined on input variables. Let x = (x1, x2, ..., xn) be input variables,
then the linear function Lω(x) defined with use of coefficients ω ∈ Zn

2 is expressed
by the equation:

Lω(x) = ω1x1 ⊗ ω2x2 ⊗ ...⊗ ωnxn, (2)

where ωixi denotes AND operation on i-th bit of ω and x, the operation ⊗
denotes XOR on bits. A set of affine functions is the set composed of linear
functions and its complements.

Walsh Hadamard Transform F̂f (ω) defines a correlation between a function
f and relevant linear function Lω(x). It measures how well the linear function
approximates function f . Walsh Hadamard Transform is a product of polar forms
f and Lω and can be expressed as:

F̂f (ω) =
∑

x∈Bn

f̂(x)L̂ω(x). (3)

The absolute maximum value in the space of transforms is defined by:

WHmax(f) = maxω∈Bn |F̂f (ω)|. (4)

The non-linearity Nf of a Boolean function f is the minimal distance of the
function f to the set of affine functions and is calculated as:

Nf =
1
2
(2n −WHmax(f)). (5)

The higher is the non-linearity of observed ciphers (WHmax is low) the cipher
is more difficult to cryptanalysis.

The next important property of ciphers is autocorrelation ACf . Autocorre-
lation defines correlation between polar form f(x) and its polar shifted version,
f(x⊗ s). Autocorrelation of a Boolean function f is defined by Autocorrelation
Transform given by the equation:

r̂f (s) =
∑

x

f̂(x)f̂ (x⊗ s), (6)

where s ∈ Zn
2 − {0}. The absolute maximum value of any autocorrelations is

denoted by the equation:

ACf = maxs=0|
∑

x

f̂(x)f̂ (x⊗ s)|. (7)

Cellular Automata-Based S-Boxes vs. DES S-Boxes 273

The lowest is the autocorrelation of observed ciphers the cipher is more difficult
to attacks.

Balance (regularity) is another important criterion which should be fulfilled
by a Boolean function used in ciphering (see, [13]). This means that each output
bit (0 or 1) should appear an equally number of times for all possible values
of inputs. The balance of a Boolean function is measured using its Hamming
Weight, and is defined as:

HW =
1
2
(2n −

∑
x∈Bn

f̂(x)). (8)

Boolean function is balanced when its Hamming Weight is equal to 2n−1.
Strict Avalanche Criterion (SAC) was first introduced by Webster and Tavares

[10]. A Boolean function of n variables satisfy SAC, if complements of any of
the n input bits result in changing the output bit with probability equal to 1

2 . It
means, that for each of n-element vector cn with only one the i− th bit of this
vector equal to 1 (cni) the following equation is satisfied:∑

x∈Bn

f(x)⊗ f(x⊗ cni) = 2n−1. (9)

The analysis of satisfaction of SAC for Boolean function f is measured by the
distance dSAC, which is expressed by the equation:

dSACf = max1≤i≤n|2n−1 −
∑

x∈Bn

f(x)⊗ f(x⊗ cni)|. (10)

One can see that for ideally balanced a Boolean function f the value of dSAC
is equal to 0. For the function not ideally balanced the values of dSAC will be
in the range (0, 2n−1].

4 Measuring Cryptographic Properties of S-Boxes

S-boxes as functions mapping n input bits into k output bits under condition
k ≤ n generally do not satisfy conditions to be a Boolean function, because the
number of output bits of S-boxes is usually higher then one bit (1 ≤ k). However,
the quality of block ciphers received with use of S-boxes is usually measured by
criteria proper to Boolean functions. The question which arises is how to apply
these criteria to S-boxes (block ciphers). Let us consider two possible methods
to solve this problem.

4.1 Method 1: Linear Combination of Single-Output S-Boxes

S-boxes are functions, which from n input bits generate k output bits. However,
a Boolean function returns as output one bit. To use Boolean functions criteria
to examine S-boxes, we need to transform all k bits output of an S-box into one

274 M. Szaban and F. Seredynski

output bit. After this modification, we obtain a new Boolean function which can
be defined as: fβ : Bn → B1, and expressed by the formula (see, [1], [2], [5], [7]):

fβ(x) = β1f1(x)⊗ β2f2(x) ⊗ ...⊗ βkfk(x). (11)

The new function is a linear combination of k functions fi(x), i ≤ k, where
βi ∈ Bk. Each of these functions is defined as a simple S-box (single-output
S-box, a part of the n× k S-box). The relationship (vector (β1, ..., βk)) between
simple S-boxes is a result of the S-box table composition.

Under this approach cryptographical properties of S-boxes presented in sec-
tion 3 are calculated with use of the Boolean function fβ(x).

4.2 Method 2: Set of Single-Output S-Boxes

In this method the S-box is considered as a set of simple S-boxes. A simple S-box
satisfies conditions to be a Boolean function. Each simple S-box is a function:
fi : Bn → B1, where i = 1, 2, ..., k and the 1-bit output is one of k output bits
of the S-box.

Cryptographic properties of an S-box are measured under this method sepa-
rately for each simple S-box ({f1, ..., fk}), where k is the number of output bits
in the n × k S-box. To analyze the n × k S-box, using the single-output S-box
method, the k single-output S-boxes are considered. It results in analyzing the k
Boolean functions corresponding to single-output S-boxes and evaluating their
non-linearities, autocorrelations, balances and SACs. Partial results are com-
pared and the worst ones become the final evaluation of the analyzed S-box.
Such an approach was used in cryptanalysis and recently in [6] to analyze the
6× 6 S-boxes.

5 The Concept of Cellular Automata

One dimensional (1D) CA is in the simplest case a collection of two-state ele-
mentary cells arranged in a lattice of the length N , and locally interacting in a
discrete time t. For each cell i called a central cell, a neighbourhood of a radius r
is defined, consisting of ni = 2r+1 cells, including the cell i. When considering a
finite size of CA, and a cyclic boundary condition is applied, it results in a circle
grid (Fig. 3). It is assumed that a state qt+1

i of a cell i at the time t+ 1 depends
only on states of its neighbourhood at the time t, i.e. qt+1

i = f(qt
i , q

t
i1, q

t
i2, , q

t
in),

and a transition function f , called a rule, which defines a rule of updating state
of the cell i (Fig. 3). A length L of a rule and a number of neighbourhood states
for a binary uniform CA is L = 2n, where n = ni is a number of cells of a
given neighbourhood, and a number of such rules can be expressed as 2L. Fig. 3
presents an example of the rule 01011010 (called also rule 90) for r = 1. The
length L of the rule consists of 8 bits. CA for systems with a secrete key were
first studied by Wolfram [11]. He used 1D uniform CA to generate pseudorandom
numbers. 1D uniform CA use only one rule as transition function, in opposite
to 1D nonuniform CA, which use more than one rule to update cells of CA.

Cellular Automata-Based S-Boxes vs. DES S-Boxes 275

1D Cellular Automata

Neighbourhood

time step t 1 0 0 0 1 0 1 1 0 1 0 0
0 1 N-2 N-1

time step t+1 0 1 0 1 0 0 1 1 0 0 1 1
0 1 N-2 N-1

Rule of CA
Neighbourhood radius r=1,

Neighbourhood state 111 110 101 100 011 010 001 000

Rule 0 1 0 1 1 0 1 0

rule 010110102 = 9010

Fig. 3. 1D cellular automata with neighbourhood radius equal to 1

6 Constructing CA-Based S-Boxes

6.1 Major Principles

A classic S-box is a function expressed as a table containing natural numbers.
Cryptographic literature shows many examples and methods of searching S-
box tables. The quality of S-boxes are measured with use of different functions
which examine their different properties [5], [1], [7], [10], [13]. Some of the most
important test functions were presented in section 3. In [5], [1], [7] authors treat
the problem of designing S-box tables as a combinatorial optimization problem
and apply different metaheuristics to search solutions in the huge space of S-box
tables solutions. Recently [9] we have proposed CA-based approach to create
S-boxes in the form not tables, but some virtual entities.

The CA-based S-box can be seen as CA composed of the following elements:

– a number of CA cells performing the role of background
– a number of CA cells performing the role of input/output of CA-based S-box
– an initial state of CA
– an appropriate rule/rules of CA.

It is assumed that CA will evolve during a number of time steps. Selected cells of
CA (in its initial state) serve as input bits of the S-box, and the same cells, after
declared time steps, are considered as the output of the S-box. To construct CA
performing the S-box function it is necessary to find appropriate CA rules and
verify produced results according to the S-box functions criteria.

6.2 Details of Construction

The first step in constructing the n× k CA-based S-box is selecting a number of
CA cells. A number of CA cells must be not lower than max|n, k|. This number

276 M. Szaban and F. Seredynski

should be also enough large to generate cycles longer than the number of CA
time steps [6]. It is worth to say at this moment, about inputs and outputs of
CA-based S-box. Construction of n×n S-box is simple (see, [9]), because we can
use n cells of CA and from n inputs we obtain n outputs. How to use CA to
construct n× k S-boxes, when n ≥ k? For this purpose we propose to consider
the first n CA cells at the time step t = 0 as input cells, and the first k CA cells
at the last time step as output cells (see, Fig. 4).

Input bits of CA-based S-box

time step 1 1 0 0 0 1 0 1 1 0 1 0 0
0 1 n N-2 N-1

time step 2 0 1 0 1 0 0 1 1 0 0 1 1
0 1 N-2 N-1

Output bits of CA-based S-box

time step T 1 0 0 0 1 0 1 1 0 1 0 0
0 1 k N-2 N-1

Fig. 4. CA-based the n × k S-box construction

In [9] we used quite long CA (with a number CA cells = 100), where sig-
nificant input/output-bit cells collectively cooperate with other cells called the
background. This construction is large enough to satisfy condition for non-cycle
construction. The number of time steps which satisfy this condition is equal to
100 (see, [9]).

Not every CA rule is suitable to provide proper quality for CA-based S-
box. We selected four rules {30, 86, 135, 149} (for CA, with neighborhood radius
r = 1) as only proper for this purpose (see also, [9]). These rules change CA cells
in time step t into cells in time step t+ 1, as follows:

Rule 30 : qt+1
i = qt

i−1 ⊗ (qt
i ∨ qt

i+1), (12)

Rule 86 : qt+1
i = (qt

i−1 ∨ qt
i)⊗ qt

i+1, (13)

Rule 135 : qt+1
i = qt

i−1 ⊗ (qt
i ∨ qt

i+1), (14)

Rule 149 : qt+1
i = (qt

i−1 ∨ qt
i)⊗ qt

i+1. (15)

Other single rules are too weak to be used in CA-based S-boxes.
The initial state of CA (the first n bits interpreted as the S-box input) is

randomly set and CA starts to run. After a predefined number of time steps the
CA stops and its the first k bits are treated as output bits, which are next used

Cellular Automata-Based S-Boxes vs. DES S-Boxes 277

to evaluate quality of CA-based S-boxes. All experimental results presented in
the next section are calculated assuming the start of CA from many different
initial states.

7 Analysis and Comparison of S-Boxes

7.1 DES S-Boxes Analysis

In [9] we proposed the 8×8 CA-based S-boxes, which offer cryptographic quality
in general comparable or better then nowadays constructed S-box tables. In
this paper we propose a CA-based construction of DES S-boxes. They perform
mapping from the 6 bits to the 4 bits (the 6× 4 S-boxes). The length of the CA
is equal to 100 cells. The CA is controlled by one of rules from the set presented
in section 6.2. The CA will evolve during 100 time steps. As it was shown in
section 6.2, in the corresponding CA the first 6 input bits are considered as input
of DES S-box and, after evolving CA a predefined number of steps, the first 4
bits are considered as output bits.

Table 1. The range of values and the best theoretical values of cryptographical prop-
erties (Nf , ACf , HWf and dSACf) for the 6 × 4 S-boxes

Nf ACf HWf dSACf

The best value 32 0 32 0
Range of values [0, 32] [0, 64] [0, 32] [0, 32]

Table 2. Non-linearity (Nf), autocorrelation (ACf), balance (HWf) and distance to
Strict Avalanche Criterion (dSAC) for DES 6 × 4 S-boxes (Method 1 - linear combi-
nation of simple S-boxes, Method 2 - set of simple S-boxes)

S-box Method 1 Method 2
(Nf , ACf , HWf , dSACf) (Nf , ACf , HWf , dSACf)

DES, S1 (14, 48, 32, 24) (18, 40, 32, 16)
DES, S2 (20, 48, 32, 16) (18, 56, 32, 28)
DES, S3 (16, 40, 32, 12) (18, 48, 32, 24)
DES, S4 (16, 64, 32, 32) (22, 24, 32, 12)
DES, S5 (12, 40, 32, 16) (18, 40, 32, 20)
DES, S6 (20, 40, 32, 8) (20, 48, 32, 20)
DES, S7 (18, 32, 32, 16) (14, 48, 32, 24)
DES, S8 (16, 48, 32, 24) (20, 40, 32, 20)

Let us analyze cryptographic quality of DES S-boxes and compare it with
quality of the new proposed CA-based S-boxes performing the same role as DES
S-boxes. For this purpose we will use measures presented in section 4.

The results of analysis of DES S-boxes are presented in Table 1 and Table 2.
Table 1 shows the best (ideal) values and possible ranges of values of crypto-
graphical properties of the the 6×4 S-boxes independently on their construction.

278 M. Szaban and F. Seredynski

Table 2 shows values of non-linearity, autocorrelation, balance and distance
to strict avalanche criterion for all S-boxes S1, S2, ..., S8 in DES. These results
were obtained with use of two methods (Method 1, Method 2) of construction
of Boolean function for S-boxes presented in section 4.

One can see that while the ideal value of non-linearity is equal to 32, this value
for DES S-boxes changes in the range [12, 20] (Method 1) and [14, 22] (Method
2). The values of autocorrelation change in the range [32, 64] (Method 1) and
[24, 56] (Method 2). The value of balance is equal to 32 and is independent on
the method. The values of distance to strict avalanche criterion ranged [8, 32]
(Method 1) and [12, 28] (Method 2). We can see that values of non-linearity,
autocorrelation and distance to SAC are quite far from ideal ones. The only
value of balance has the ideal value.

7.2 Analysis of CA-Based S-Boxes Corresponding to DES S-Boxes

The results of analysis of CA-based S-boxes with rules 30, 86, 135, 149 are pre-
sented in Table 3. These results were obtained on the base of 10000 runs from
random initial CA states. It is worth to notice the main difference between run-
ning DES S-boxes and CA-based S-boxes. For each input of a S-box we obtain
one output in DES S-boxes, while for a single input of CA-based S-boxes we
can obtain a number of outputs, which depends on the number of CA initial
states. Therefore, the Table 3 shows results related to extreme, the best and
the worst CA-based S-boxes (values of non-linearity, autocorrelation, Hamming
Weight and distance to fulfills SAC). More exactly, it contains fours, where ei-
ther non-linearity, autocorrelation, Hamming Weight or distance to fulfill SAC
takes minimal or maximal value.

One can see that there exist initial states of CA which provide values of Nf ,
ACf and dSACf better than corresponding values of DES S-boxes, and this
is true for each of considered CA rules. For example, for rule 30, 135, 149 the
four (24, 16, 32, 4) and for rule 86 the four (24, 16, 32, 8) is much better then
any four for DES S-boxes shown in Table 2, measured by Method 1 - linear
combination of simple S-boxes. For Method 2 - set of simple S-boxes, CA-based
S-boxes are comparable with DES S-box S4 and better then other DES S-boxes
(compare third column in Table 2 with second in Table 3).

7.3 Analysis of Non-linearity of CA-Based S-Boxes

Let us analyze schedule of non-linearity, autocorrelation, Hamming Weight and
distance to SAC for CA-based S-boxes. Fig. 5 presents detailed study of non-
linearity in CA-based the 6× 4 S-boxes with use of Method 1 (a) and Method
2 (b). It shows percentage distribution of CA corresponding to different initial
states and their quality in the sense of non-linearity. Single CA were presented
on X-axis of Fig. 5 in increasing order of Nf (from left to right). One can see
that there exist a relatively large number of initial CA states which provide good
values of Nf (and better than DES S-boxes) see, range (21, 25) for Method 1
(see, Fig. 5a), and few (value 23) for Method 2 (see, Fig. 5b).

Cellular Automata-Based S-Boxes vs. DES S-Boxes 279

Table 3. Properties of non-linearity (Nf), autocorrelation (ACf), balance expressed by
Hamming Weight (HWf) and distance to fulfills SAC (dSACf) for the 6×4 CA-based
S-boxes selected from 10000 initial states (the best/worst values in bold)

Method 1 - linear combination of simple S-boxes

S-box The best CA-based S-boxes The worst CA-based S-boxes
CA rule: (Nf , ACf , HWf , dSACf) (Nf , ACf , HWf , dSACf)

30 (25, 20, 31, 6), (23, 12, 31, 6), (14, 40, 26, 16), (19, 52, 31, 10),
(24, 16, 32, 4), (25, 28, 29, 2) (17, 36, 17, 10), (21, 44, 29, 22)

86 (25, 12, 31, 6), (24, 16, 32, 8), (13, 36, 31, 14), (22, 48, 28, 24),
(22, 24, 30, 0) (17, 28, 17, 14)

135 (25, 12, 29, 6), (24, 16, 32, 4), (13, 36, 31, 18), (19, 52, 31, 10),
(22, 24, 26, 0) (18, 48, 18, 16), (20, 48, 32, 24)

149 (25, 20, 31, 2), (24, 16, 28, 0), (14, 48, 30, 12), (19, 52, 23, 6),
(24, 16, 32, 4) (17, 28, 17, 14), (19, 44, 31, 22)

Method 2 - set of simple S-boxes

S-box The best CA-based S-boxes The worst CA-based S-boxes
CA rule: (Nf , ACf , HWf , dSACf) (Nf , ACf , HWf , dSACf)

30 (23, 20, 27, 10), (23, 28, 31, 10), (13, 44, 30, 14), (20, 56, 25, 12),
(23, 28, 27, 6) (17, 36, 17, 18), (18, 48, 28, 24)

86 (23, 28, 25, 6), (21, 20, 25, 10), (12, 40, 26, 20), (17, 52, 24, 18),
(17, 36, 31, 14), (22, 32, 22, 4) (15, 44, 15, 22)

135 (23, 20, 29, 10), (22, 32, 32, 8), (12, 40, 27, 16), (20, 56, 24, 16),
(22, 40, 28, 4) (16, 32, 16, 12), (15, 52, 29, 26)

149 (23, 20, 27, 6), (20, 32, 32, 12) (12, 36, 29, 16), (19, 52, 27, 26),
(16, 48, 16, 12)

0

5

10

15

20

25

30

12 -
S5

13 14 -
S1

15 16 -
S3,
S4,
S8

17 18 -
S7

19 20 -
S6

21 22 23 24 25

Values of non-linearity (Nf)

N
u

m
b

er
 o

f
C

A
 f

ro
m

 1
00

00
 (

%
) Rule 30 Rule 86 Rule 135 Rule 149

0

5

10

15

20

25

30

12 13 14 -
S7

15 16 17 18 -
S1,
S2,

S3, S5

19 20 -
S6, S8

21 22 -
S4

23

Values of non-linearity (Nf)

N
u

m
b

er
 o

f
C

A
 f

ro
m

 1
00

00
 (

%
)

Rule 30 Rule 86 Rule 135 Rule 149

a) b)

Fig. 5. Percentage of CA corresponding to Nf for CA-based S-boxes, measured by
Method 1 (a) and Method 2 (b)

As it was mentioned earlier, each CA with a given initial state can be consid-
ered as an independent CA-based S-box. Table 4 presents the percentage of CA
for a given initial state and selected CA rules, which give results of non-linearity
better than DES S-box tables. On the base of data presented in Table 4, we

280 M. Szaban and F. Seredynski

Table 4. Percentage of CA corresponding to CA-based S-boxes characterizing by values
of Nf better than DES S-boxes (Method 1 - linear combination of simple S-boxes,
Method 2 - set of simple S-boxes)

Rule 30 86 135 149

CA better than the best DES S-box (Method 1) 77.22% 77.75% 77.15% 77.09%
CA better than the best DES S-box (Method 2) 0.8% 0.65% 0.74% 0.5%

can conclude this part of study, that almost 80% randomly selected CA-based
S-boxes (measured by Method 1) gives better results than DES S-boxes, but al-
most 1% selected CA-based S-boxes (measured by Method 2) give better results
than DES S-boxes, for Nf .

7.4 Analysis of Autocorrelation of CA-Based S-Boxes

Fig. 6 presents detailed study of autocorrelation in CA-based the 6× 4 S-boxes
with use of Method 1 (a) and Method 2 (b). It shows percentage distribution
of CA corresponding to different initial states and their quality in the sense
of autocorrelation. Single CA were presented on X-axis of Fig. 6 in increasing
order of ACf (from left to right). One can see that there exist a relatively large
number of initial CA states which provide good values of ACf (and better than
DES S-boxes) see, range (12, 28) for Method 1 (see, Fig. 6a), and few (value 20)
for Method 2 (see, Fig. 6b).

0

5

10

15

20

25

30

12 16 20 24 28 32 -
S7

36 40 -
S3,

S5, S6

44 48 -
S1,

S2, S8

52 64 -
S4

Values of autocorrelation (ACf)

N
u

m
b

er
 o

f
C

A
 f

ro
m

 1
00

00
 (

%
) Rule 30 Rule 86 Rule 135 Rule 149

0

5

10

15

20

25

30

35

40

20 24 - S4 28 32 36 40 - S1,
S5, S8

44 48 - S3,
S6, S7

52 56 - S2

Values of autocorrelation (ACf)

N
u

m
b

er
 o

f
C

A
 f

ro
m

 1
00

00
 (

%
)

Rule 30 Rule 86 Rule 135 Rule 149

a) b)

Fig. 6. Percentage of CA corresponding to ACf for CA-based S-boxes, measured by
Method 1 (a) and Method 2 (b)

Table 5 presents the percentage of CA for a given initial state and randomly
selected CA rules, which give results of autocorrelation better than DES S-box
tables. On the base of data presented in Table 5, we can conclude this part of
study, that 70% randomly selected CA-based S-boxes (measured by Method 1)
gives better results than DES S-boxes, but less than 1% selected CA-based S-
boxes (measured by Method 2) give better results than DES S-boxes, for ACf .

Cellular Automata-Based S-Boxes vs. DES S-Boxes 281

Table 5. Percentage of CA corresponding to CA-based S-boxes characterizing by values
of ACf better than DES S-boxes (Method 1 - linear combination of simple S-boxes,
Method 2 - set of simple S-boxes)

Rule 30 86 135 149

CA better than the best DES S-box (Method 1) 69.2% 70.75% 70.79% 69.12%
CA better than the best DES S-box (Method 2) 0.04% 0.02% 0.04% 0.03%

7.5 Analysis of Balance of CA-Based S-Boxes

DES S-boxes are always balanced, because despite of the method of measure
provide an output with the same number of 0s and 1s (HWf = 32).

For all CA (with their different initial states), CA-based S-boxes do not pro-
vide the same number of 0s and 1s for selected output cells of CA. As a measure
of CA-based S-boxes balance, values of HWf were calculated.

0

2

4

6

8

10

12

14

16

18

20

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Values of Hamming Weight (HWf)

N
u

m
b

er
 o

f
C

A
 f

ro
m

 1
00

00
 (

%
)

Rule 30 Rule 86 Rule 135 Rule 149

0

2

4

6

8

10

12

14

16

18

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Values of Hamming Weight (HWf)

N
u

m
b

er
 o

f
C

A
 f

ro
m

 1
00

00
 (

%
)

Rule 30 Rule 86 Rule 135 Rule 149

a) b)

Fig. 7. Percentage of CA corresponding to balance (expressed by Hamming Weight)
of values for CA-based S-boxes, measured by Method 1 (a) and Method 2 (b)

Histograms in Fig. 7 present Hamming Weight of balance for CA-based S-
boxes in 10000 CA (with different, random initial states). A number of balanced
CA-based S-boxes (with HWf = 32) is almost 10% (see, Fig. 7a) and less than
1% (see, Fig. 7b), for Method 1 and Method 2, respectively. However, for CA
we need to analyze this problem more widely. Balance of CA, should be calcu-
lated from a number of CA with random initial states, because CA is not one
initial state, but large number of CA with all of possible initial states. In our
case, CA size is equal to 100. A number of possible initial states (and differ-
ent CA) is equal to 2100. As a representative sample was used 10000 CA with
random initial states. For each rule, from 10000 CA, number of 0s and 1s for
selected output cells of CAs was averaged and HWf was calculated. Obtained
Hamming Weights was near to value 32 (ideal), what characterizes CA-based
S-boxes properly.

282 M. Szaban and F. Seredynski

7.6 Analysis of SAC of CA-Based S-Boxes

DES S-boxes not satisfy SAC. These S-boxes are characterized by high values of
dSAC, except of S-box S6 measured by the Method 1 and S4 measured by the
Method 2 (see, Table 2). The distance to SAC for S-box S6 is the shortest and
equal to 8 (Method 1), also for S4 is equal to 12 (Method 2).

0

5

10

15

20

25

0 2 4 6 8 -
S6

10 12 -
S3

14 16 -
S2,
S5,
S7

18 20 22 24 -
S1,
S8

32 -
S4

Values of distance to Strict Avalanche Criterion (dSACf)

N
u

m
b

er
 o

f
C

A
 f

ro
m

 1
00

00
 (

%
)

Rule 30 Rule 86 Rule 135 Rule 149

0

5

10

15

20

25

30

4 6 8 10 12 -
S4

14 16 -
S1

18 20 -
S5,
S6,
S8

22 24 -
S3,
S7

26 28 -
S2

Values of distance to Strict Avalanche Criterion (dSACf)

N
u

m
b

er
 o

f
C

A
 f

ro
m

 1
00

00
 (

%
)

Rule 30 Rule 86 Rule 135 Rule 149

a) b)

Fig. 8. Percentage of CA corresponding to dSAC values for CA-based S-boxes, mea-
sured by Method 1 (a) and Method 2 (b)

Fig. 8 presents histograms of dSAC for 10000 CA (with different, random
initial states). One can observe that dSAC for CA-based S-boxes is in the range
[0, 24] for the Method 1, and [4, 26] for the Method 2. For the best CA-based
S-boxes dSAC are equal 0 for rule 86, 135, 149 and 2 for 30 (Method 1), similarly
value 4 for rules 86, 135 and 6 for rules 30, 149 (Method 2). It is much better
(shorter distance) then for DES S-Boxes. For the Method 1, the most frequently
obtained dSAC values in CA are the following: 6, 8, 10. For the Method 2, dSAC
values, which were obtained the most frequent in CA are values 10, 12, 14.

Table 6. Percentage of CA corresponding to CA-based S-boxes characterizing by values
of dSACf better than DES S-boxes (Method 1 - linear combination of simple S-boxes,
Method 2 - set of simple S-boxes)

Rule 30 86 135 149

CA better than the best DES S-box (Method 1) 27.1% 26.4% 27.34% 28.54%
CA better than the best DES S-box (Method 2) 31.61% 31.35% 30.91% 32.31%

When we interpret each CA with an initial state as independent CA-based
S-box, than we can conclude this part of the study, that more than 26% (Method
1, see, Table 6) and 31% (Method 2, see, Table 6) selected CA-based S-boxes
give shorter distances to SAC than DES S-boxes.

8 Conclusions and Future Work

The paper presents an idea of creating S-boxes using CA-based approach. Clas-
sical S-boxes based on tables are fixed structure constructions. We are interested

Cellular Automata-Based S-Boxes vs. DES S-Boxes 283

in creating CA-based S-boxes, which are dynamical structures. CA from input
block of bits generates output block of bits and is evaluated by the same ex-
amine criteria like the traditional S-box. Conducted experiments have shown
that the 6 × 4 CA-based S-boxes characterized in most, by a high non-linearity
and low autocorrelation independent on method of its measure. These values in
many cases are better than classical tables of DES S-boxes. Balance of proposed
S-boxes seems to be quite good for single CA, but when we calculates Hamming
Weight from each CA, CAs show us almost balanced. The average value of dSAC
of CA-based S-boxes are comparable with the best DES S-boxes, but for many
single CA (single CA-based S-boxes) dSAC values are much more low (than
better), than for DES tables. The next step of researches will be examining all
of possible initial states of CA under conditions of the highest possible Nf , the
lowest ACf , perfect balance (50%) (these means HWf = 32), and also for the
lowest value of dSACf .

References

1. Clark, J.A., Jacob, J.L., Stepney, S.: The Design of S-Boxes by Simulated Anneal-
ing. New Generation Computing 23(3), 219–231 (2005)

2. Dowson, E., Millan, W., Simpson, L.: Designing Boolean Functions for Crypto-
graphic Applications, Contributions to General Algebra 12, pp. 1–22. Verlag Jo-
hannes Heyn, Klagenfurt (2000)

3. Federal Information Processing Standards Publication, FIPS PUB 46-3, DES
(1999), http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

4. Federal Information Processing Standards Publications, FIPS PUBS 197, AES
(2001), http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

5. Millan, W., Burnett, L., Carter, G., Clark, A., Dawson, E.: Evolutionary Heuristics
for Finding Cryptographically Strong S-Boxes. In: Varadharajan, V., Mu, Y. (eds.)
ICICS 1999. LNCS, vol. 1726, pp. 263–274. Springer, Heidelberg (1999)

6. Mukhopadhyay, D., Chowdhury, D.R., Rebeiro, C.: Theory of Composing Non-
linear Machines with Predictable Cyclic Structures. In: Umeo, H., Morishita, S.,
Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191,
pp. 210–219. Springer, Heidelberg (2008)

7. Nedjah, N., de Macedo Mourelle, L.: Designing Substitution Boxes for Secure Ci-
phers. International Journal Innovative Computing and Application 1(1), 86–91
(2007)

8. Scheier, B.: Applied Cryptography. Wiley, New York (1996)
9. Szaban, M., Seredynski, F.: Cryptographically Strong S-Boxes Based on Cellular

Automata. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini,
S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 478–485. Springer, Heidelberg (2008)

10. Webster, A.F., Tavares, S.: On the Design of S-Boxes. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986)

11. Wolfram, S.: Cryptography with Cellular Automata. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1986)

12. Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign (2002)
13. Youssef, A., Tavares, S.: Resistance of Balanced S-boxes to Linear and Differential

Cryptanalysis. Information Processing Letters 56, 249–252 (1995)

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Hierarchical Dependency Graphs: Abstraction

and Methodology for Mapping Systolic Array
Designs to Multicore Processors�

Sudhir Vinjamuri and Viktor Prasanna

3740 McClintock Avenue EEB 200, Ming Hsieh Department of Electrical Engineering
University of Southern California, California, USA 90089-2562
Tel.: +1-213-740-1521, +1-213-740-4483; Fax: +1-213-740-4418

sudhir.vinjamuri@usc.edu, prasanna@usc.edu

Abstract. Systolic array designs and dependency graphs are some of
the most important class of algorithms in several scientific computing
areas. In this paper, we first propose an abstraction based on the funda-
mental principles behind designing systolic arrays. Then, based on the
abstraction, we propose a methodology to map a dependency graph to
a generic multicore processor. Then we present two case studies: Con-
volution and Transitive Closure, on two state of the art multicore ar-
chitectures: Intel Xeon and Cell multicore processors, illustrating the
ideas in the paper. We achieved scalable results and higher performance
compared to standard compiler optimizations and other recent imple-
mentations in the case studies. We comment on the performance of the
algorithms by taking into consideration the architectural features of the
two multicore platforms.

Keywords: parallel programming, multicore, systolic array designs,
dependency graphs, high performance computing.

1 Introduction and Background

Signal and image processing algorithms, matrix and linear algebra operations,
graph algorithms, molecular dynamics and geo-physics are some of the core
scientific computing research areas ([1]). The 70s, 80s saw the upsurge of a
revolutionary high performance computing technology - systolic array processors
([3]) necessitated by increasing demands of speed and performance in these areas.
A lot of research work has been done to expose the parallelism and pipelining
available in several important scientific computing applications to be exploited
by systolic array processors ([1], [2], [4], [5]). For many of these algorithms, the

� This research was partially supported by the NSF under grant number CNS-0613376.
NSF equipment grant CNS-0454407 is gratefully acknowledged. The authors ac-
knowledge Georgia Institute of Technology, its Sony-Toshiba-IBM Center of Com-
petence, and the National Science Foundation, for the use of Cell Broadband Engine
resources that have contributed to this research.

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 284–298, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Hierarchical Dependency Graphs 285

hardware needed to be flexible and robust to be able to adapt to new problems
and also variations in known algorithms. Many solutions were proposed to this
problem such as configurable systolic array processing platforms, FPGAs and
reconfigurable computing platforms ([8]).

Today’s computing revolution is driven by massive on-chip parallelism ([9]).
For the foreseeable future, high performance computing machines will almost
certainly be equipped with nodes featuring multicore processors where each pro-
cessor contains several full featured general purpose processing cores, private and
shared caches. So the primary motivation of this work is to study, how ”classi-
cal” algorithms can be ”recycled” now that parallel computing has a renaissance
with the advent of multicore computers. Also, the configurable platforms of sys-
tolic arrays pale out in comparison with multicore processors of comparable area
and cost in terms of raw compute power and peak performance achievable due
to high clock rate, chip density and economies of scale of multicore processors.
Hence, it is highly desirable to extract parallelism and pipelining necessary for
systolic array designs from multicore processors. If done intelligently, this will
result in highly optimized performance since those properties are inherent to
multicore architectures.

To the best of our knowledge, there is no known prior work to map dependency
graphs or systolic arrays to the current generation of multicore processors. We
believe this is the first attempt for studying this problem. The main challenge of
coming up with a methodology to map any systolic array designs to a multicore
processor requires deep understanding of systolic array design procedures, data
partitioning, scheduling operations and data flow control. On a multicore pro-
cessor this poses extra challenges where synchronization of the operations and
data of the cores has to be controlled by the programmer. The remainder of this
paper is organized as follows: Section 2 is the crux of this paper where we present
the approach for this study, the abstraction of Hierarchical Dependency Graphs
and mapping methodology to multicore processors. In Section 3, we present two
case studies of two algorithms on two multicore architectures. We conclude the
paper with a brief summary and avenues for future work in Section 4.

2 Hierarchical Dependency Graphs

In this Section, first we substantiate the approach adopted in this paper. Then
in Section 2.2, we discuss the properties of dependency graphs, differentiate and
define data flows. In Section 2.3, we describe the abstraction of hierarchical
dependency graphs and their properties. In Section 2.4, we discuss the steps to
generate a mapping for a generic dependency graph to a multicore processor.

2.1 Approach for This Study

Systolic array algorithms may or may not have a specific design methodol-
ogy/steps ([6]). The methodology for designing systolic arrays is a description

286 S. Vinjamuri and V. Prasanna

of a sequence of steps at best and not a concrete algorithm that takes an appli-
cation and designs a systolic array for it. Figure 1 shows one of the widely used
set of steps to design systolic arrays ([1]).

Single Assignment Code,
Processor Assignment

and Scheduling

Systolization

Fig. 1. Steps for designing a systolic
array

Dependency graphs are converted into sys-
tolic arrays by passing them through a
sequence of steps one of which is single as-
signment code. The motivation of single as-
signment code is to avoid broadcasting in
the VLSI design technology because it brings
down the clock rate. But, in the case of to-
day’s multicore processors, while write con-
flict between cores to a memory location is a
problem, broadcasting is not a problem cur-
rently because all that means is a value being
read by all processors which, as will become
evident from the case studies, is not a prob-
lem. Hence we consider the designs at the
level of dependency graphs. But one ambi-
guity arises in the cases where the systolic
array design is very similar or the same as
the dependency graph. To resolve this issue,
we consider systolic array designs at the level
of dependency graphs itself in this paper.

2.2 Dependency Graphs

The theory of dependency graphs has been
discussed in [10]. These were later used ([1])
in the design of systolic arrays. In this paper,
to make our approach intuitive, instead of getting into intricate details of the
definitions of dependency graphs, we use an example of a dependency graph to
describe our ideas.As the properties used in the example are generic to depen-
dency graphs and also through the case studies, it will be clear that our approach
can be applied to any dependency graph. We chose the systolic array design for
transitive closure([2], [4]) as the example. So we briefly describe the problem and
its systolic array design below. Additional details can be found in [2].

Transitive closure is a fundamental problem in a wide variety of fields, most
notably network routing and distributed computing. Suppose we have a directed
graph G with N vertices and E edges. Transitive closure of the graph involves
in computing for each vertex of the graph, the subset of vertices to which it is
connected and the shortest distance between them (The 0-1 version of transitive
closure only shows if the vertices are connected. We use the generic version which
gives the shortest distances also). Given the graph, the adjacency matrix W is
a 2 dimensional matrix with elements representing edge weights (eqn. 1).

Hierarchical Dependency Graphs 287

wi,j =

⎧⎨⎩0 if i = j
weight of edge connecting vertex i to j if i �= jand(i, j) ∈ E
∞ if i �= jand(i, j) /∈ E

(1)

A

A

A A

A A
111213

2122

31

A
11

A
12

A
13

A
21

A
22

A
31

A
N1

A
1N

i

j
i + j

Fig. 2. Systolic Array Implementa-
tion of Transitive Closure

The dependency graph design for transitive
closure is as follows:
1. Given a graph with N vertices in the adja-
cency matrix representation (A), feed the ma-
trix into an NxN systolic array of processing
elements (PEs) both row-wise from top and
column-wise from left as shown in Figure 2.
2. At each PE (i, j), update the local variable
C(i,j) by the following formula:

C(i,j) = min(C(i,j), A(i,k) +A(k,j)) (2)

where A(i,k) is the value received from the top
and A(k,j) is the value received from the left.
3. If i=k, pass the value C(i,j) down, other-
wise pass A(k,j) down. If j=k, pass the value
C(i,j) to the right, otherwise pass A(i,k) to the right.
4. Finally, when data elements reach the edge of the matrix, a loop around con-
nection should be made such that A(i,N) passes data to A(i,1) and A(N,j) passes
data to A(1,j) (see Figure 2).
5. The above computation results in the transitive closure of the input once all
the input elements have been passed through the entire array exactly 3 times.
We consider 1 of the 3 cycles of the operation for discussing the properties below.

Properties of Dependency Graphs: We need two properties of dependency
graphs ([1], [10]). We will be using these to explain the properties of hierarchical
dependency graphs in Section 2.3.

Property of Parallelism: This property states that, at a specific instant of
time, a number of nodes can be processing data in parallel. There are many vari-
ations on how this parallelism is present depending on the dependency graph.
For e.g. in Figure 2, nodes along the anti-diagonal can process data in parallel.
Calling the top right corner node as (0, 0) and î, ĵ axis as shown in the Figure,
nodes (1, 0) and (0, 1) can process data in parallel. Similarly, nodes in each set
[(2, 0), (1, 1), (0, 2)], [(3, 0), (2, 1), (1, 2), (0, 3)] etc. can process data in parallel.

Property of Modularity, Regularity and Scaling: The array consists of
modular processing units with homogeneous interconnections. Moreover, the
computing network may be extended indefinitely based on the problem size.
For e.g. in Figure 2, the size of the dependency graph is the size of the adjacency
matrix. Hence, for a problem of size of N , the dependency graph is of size NxN .

288 S. Vinjamuri and V. Prasanna

A problem of size 2N has a dependency graph of size 2Nx2N , which can inter-
preted modularly as connecting four dependency graphs of a problem of size N
(i.e. adjacency matrices of size NxN).

Data Flow: We differentiate the data flowing in the dependency graph into
two types:

– Data that is updated at a node before being sent to the next node.
– Data that is sent as it is, without any modifications to the next node.

Definitions

Update Direction (UD): We define UD as the direction in which data that is
updated at a node, is sent to another node. In other words, this is the direction
in which there is a dependency in data flow. The UD is represented by a unit
vector along that direction. There can be more than one UD for a dependency
graph. For instance, transitive closure (Figure 2) has two UDs: along î and ĵ
directions (i.e. data updated at a node is sent to the neighboring nodes along î
and ĵ directions) (These UDs will be used to cut the dependency graphs during
the mapping process (discussed in the Section 2.4)).

Unified Update Direction (UUD): In the case where a dependency graph
has multiple UDs, we define UUD as the unit vector along the average of the
UDs. Every dependency graph whether it has one UD or multiple UDs, has only
a single UUD. In the case where the dependency graph has only a single UD,
that itself will become the UUD. So the UUD for transitive closure is along
(̂i+ĵ)/

√
2 (The UUD will be used in scheduling of the hierarchical dependency

graph during the mapping process (discussed in the Section 2.4)).

Θ (Theta): The maximum angle between any two UDs in a dependency graph.

2.3 Abstraction

We explain the abstraction of hierarchical dependency graphs with an example.
Consider the dependency graph of size 9 x 9, which is similar to the transitive
closure design, in Figure 3(a). Consider the time instant at which all the nodes
in the graph are busy processing data. At the beginning of each cycle, each node
gets inputs from top and left directions, processes data and outputs updated data
to the right and bottom directions. Similarly for every cycle, there is input from
top and left directions and output to the right and bottom directions flowing
for the overall dependency graph. Similar to transitive closure design, there are
two UDs for this dependency graph along the î and ĵ directions and the UUD
is along (̂i+ĵ)/

√
2.

We have re-drawn Figure 3(a) in Figure 3(b) with the following modifica-
tions. Cut the dependency graph along six lines parallel to the UDs, three in
each direction as shown as dashed lines. Represent each partition with a shaded

Hierarchical Dependency Graphs 289

i

j

Fig. 3. Hierarchical Systolic Array

big node (name it macro node), encompassing the 3 x 3 matrix of nodes (name
them micro nodes) inside it. Represent the data flow into and out of each macro
node with a bold arrow. For e.g., for the top left macro node, the arrow from
above represents input coming to all the top 3 micro nodes inside it, the arrow
from left represents input coming into all 3 micro nodes on the left. Similarly,
the right and bottom arrows represent output from all three right and bottom
micro nodes respectively, inside it. This is true for all macro nodes in Figure 3(b).

Formalizing the Abstraction: The idea of bisecting a dependency graph into
parts and representing each partition by a macro node is called Hierarchi-
cal Dependency Graphs (HDGs). In this paper, we discuss about HDGs
of one level of hierarchy: a macro dependency graph consisting of a set of
macro nodes, which is nothing but the complete dependency graph being stud-
ied from the point of view of the macro nodes. Each macro node has a micro
dependency graph (one macro node with micro nodes) inside it. While this
abstraction some similarity to tiling ([4]), this idea can be more easily extended
to multiple levels of hierarchies, for new generation high performance comput-
ing and supercomputing systems with various levels of parallelism and compute
power organization.

2.4 Mapping Methodology

In this Section, we first explain the mapping technique and provide an argu-
ment for its viability. In both these instances, we will be discussing in terms of
the number of cycles of operation of macro nodes. So we first characterize this
idea.

290 S. Vinjamuri and V. Prasanna

Characterization of c cycles of a macro node: A dependency graph oper-
ates in cycles. This means, in each cycle, a node gets input at the beginning of
a cycle, processes the data and outputs data at the end of the cycle. We refer to
c cycles of operation of a macro node as, all micro nodes inside the macro node
execute c cycles of operation each, taking care of the dependencies between the
macro node and the remaining part of the macro dependency graph and also,
dependency between the micro nodes themselves inside the macro node.

Steps for mapping a Dependency Graph to a Multicore Processor:
The following are the steps for generating a mapping for a dependency graph on
to a multicore processor:

– Cut the dependency graph along the UDs and represent each partition as a
macro node.

– Schedule the macro nodes along the UUD taking care of the dependencies
between macro nodes, by assigning c cycles of operation of a macro node to
each core.

– It is possible to schedule in parallel, all macro nodes perpendicular to the
UUD. This should be done step by step, along the UUD.

By stating properties of HDGs below, we will show that there is enough
parallelism between the macro nodes that many macro nodes can be scheduled
in parallel to many cores which can operate independently. Also, the above
methodology will become clearer by examining these steps in the case studies in
Section 3. There is also one more issue: the value of c. This will also be discussed
after the properties of HDGs.

Viability of the mapping technique: We describe properties of the Hierar-
chical Dependency Graphs to show the viability of our mapping technique.

Property of Parallelism between Macro Nodes: Extending the property
of parallelism in Section 2.2, at a single instant of time, several macro blocks can
be processing data in parallel.

Basis for the property: We know that the conception of dependency graphs
and systolic array designs is to extract the parallelism in the algorithm. At a
single instant of time, many nodes in a DG can be processing data in parallel and
passing data between each other at the end of each cycle (property of parallelism
in Section 2.2). The above property is merely extending that parallelism from
micro nodes to the level of macro nodes.

Property of Independent Operation of a Macro node: There exists at
least one scheduling order by which, each of the macro blocks can be processed
independent of the other for c cycles of operation of the macro node. The value
of c is discussed below.

Basis for the property: This property is extension of the property of modu-
larity, regularity and scaling in Section 2.2.

Hierarchical Dependency Graphs 291

Value of c: The value of c is of important concern for us since, it decides the
number of cycles for which a macro node can be processed independently by a
core. This is directly related to taking care of the dependencies between macro
nodes and hence automatically parallelizing the complete dependency graph on
to the multicore processor. There can be two variations in the value that c can
take based on the Θ of a dependency graph.

– 0o ≤ Θ ≤ 90o : We show the two boundary cases in the two case studies, and
prove that c can take the total number of cycles of the dependency graph
in this scenario. If there is only one UD for the dependency graph, it falls
into the category of Θ = 0o. This being the case of convolution, transitive
closure has Θ = 90o.

– 90o < Θ ≤ 180o : The value c can take varies depending on the DG design
and how the dependencies between nodes and macro blocks are arranged.
Also, most common DG designs fall into the previous category. In this paper,
we do not consider this case and plan to study this in future work.

The two cases 180o < Θ ≤ 270o and 270o < Θ ≤ 360o can be interpreted as
90o < Θ ≤ 180o and 0o < Θ ≤ 90o respectively.

3 Case Studies

We present case studies of two algorithms on two architectures and we show
scalable results in all four cases. First, we present a simple generic model of a
multicore processor. We use this model to explain the mapping of the algorithm
to a generic multicore processor, hence providing support to our claim that our
methodology of mapping dependency graphs is applicable to multicore processors
in general. Then we give a brief description of the two multicore platforms and
the details of their architectures. In Sections 3.2 and 3.3, we present the mapping
of transitive closure and convolution to multicore processors using the generic
model as explained above. In Section 3.4, we discuss the experimental results for
the two algorithms on the two platforms.

3.1 Architecture Summaries

LC LC

LS

DRAM
Memory

Controller

LCLC

Core 1

Core 2

Core m-1

Core m

Fig. 4. Generic model of a multicore
processor

The multicore processor model is shown
in Figure 4. The chip has m cores, each
core having a local cache (LC). These lo-
cal cache access main memory via a mem-
ory controller. We give a brief description
of the architectures below and explain
more details wherever necessary later in
the paper (Section 3.4).

292 S. Vinjamuri and V. Prasanna

Intel Quad Core Processor: One of our platforms is a state-of-the-art ho-
mogeneous multicore processor system: Intel Xeon quadcore system. It contains
two Intel Xeon x86 64 E5335 processors, each having four cores. The processors
run at 2.00 GHz with 4 MB cache and 16 GB memory. The operating system
is Red Hat Enterprise Linux WS release 4 (Nahant Update 7). We installed
GCC version 4.1.2 compiler and Intel C/C++ Compiler (ICC) version 10.0 with
streaming SIMD extensions 3 (SSE 3), also known as Prescott New Instructions
(PNI).

Cell Broadband Engine: The Cell BE processor ([9]) is one of the first het-
erogeneous multicore processors that has given the programmer explicit control
of memory management and low level communication primitives between the
cores on the chip. It consists of a traditional microprocessor (PPE) that controls
8 SIMD co-processing units (SPEs), a high speed memory controller and a high
bandwidth bus interface (EIB), all integrated on a single chip. Each SPE consists
of a synergistic processor unit (SPU) and a memory flow controller (MFC) and
256 KB of local store (LS) where the MFC is a software controlled unit serv-
ing the memory management between the LS and main memory. This utility of
software controlled LS allows more efficient use of memory bandwidth than is
possible with standard prefetch schemes on conventional cache hierarchies, but
also poses extra challenges for the programmer. At 3.2 GHz, the single precision
peak performance of the Cell processor is 204.8GFLOPS with Fused Multiply
Add (two ops) primitive and 102.4GFLOPS without it (single op).

3.2 Case 1: Transitive Closure

A

A A

A A A

A A A

A

11121314

212223

3132

41

A
11

A
12

A
13

A
14

A
21

A
22

A
32

A
31

A41 A
32

UD(i)

UD(j) UUD

Fig. 5. Hierarchical Dependency Graph for
Transitive Closure

Algorithm Description: The al-
gorithm and the dependency graph
design for transitive closure are de-
scribed in Section 2.2. So, we di-
rectly describe the mapping. We
consider here sample sizes of the
problem and the cut sets for ease
of illustration. The actual numbers
can be varied depending on the real
world problem sizes. Examples of
these experiments are given in the
Section 3.4.

Consider transitive closure prob-
lem of size N = 8. So we have an
adjacency matrix of size 8 x 8. Fig-
ure 5 shows this 8 x 8 adjacency ma-
trix. As described previously, there
are two UDs along î and ĵ and the UUD is along (̂i+ĵ)/

√
2. Also, as previously

explained, we refer to one cycle of operation of a node as, the node taking input
from top and left directions, processes it and send output to the left and bottom

Hierarchical Dependency Graphs 293

directions at the end of the cycle. The total number of cycles of operation of
each node in the graph is equal to N = 8.

Mapping: We follow the steps of mapping as described in Section 2.4. First, cut
the dependency graph with 8 cut lines, 4 in each direction parallel to the UDs.
Figure 5 shows the 2 x 2 macro blocks shaded, after cutting the graph. Observe
that this Figure is very similar to Figure 3(b) where the difference is that the
macro blocks are of size 3 x 3, and the problem size is N = 9 in that Figure.
Next, schedule the macro nodes along the UUD and execute each macro node for
”N cycles of the macro node” (Section 2.4). Therefore, c is equal to the complete
cycles of the macro node. Also, schedule macro nodes perpendicular to the UUD
in parallel to multiple cores, which process those macro nodes independently.

Numbering the top left macro node and micro node (0, 0) and î and ĵ axis in
Figure 5, the above steps of mapping have the following interpretation:

1. A single core processes macro node (0, 0) (here processes means update the
macro node for all N cycles, i.e., micro node (0, 0) is processed for 8 cycles,
then micro nodes (1, 0) and (0, 1) are processed for 8 cycles, then micro
node (1, 1) is processed for 8 cycles).

2. Process macro nodes (0, 1) and (1, 0) in parallel by two cores independently.
3. Process macro nodes (0, 2), (1, 1) and (2, 0) in parallel by three cores inde-

pendently.
4. Process macro nodes (0, 3), (1, 2), (2, 1) and (3, 0) in parallel by four cores

independently.
5. Process macro nodes (1, 3), (2, 2) and (3, 1) in parallel by three cores inde-

pendently.
6. and so on ...

There is a synchronization point after each step, which can be removed once
the number of macro nodes processed in parallel in a step exceeds the number
of cores, m on the chip.

The above mapping and scheduling takes care of the dependencies between all
nodes of the dependency graph in Figure 2. Also, observe that the HDG satisfies
the properties described in Section 2.2. The first property states that there will be
parallelism between the macro nodes. This is true since, with large problem sizes,
the number of macro blocks that can be scheduled in parallel increases, and all
m cores will be busy. The second property states that, there exists a scheduling
order by which, the macro blocks can be processed independent of each other
for c(= N) cycles of operation of the macro node. This is also true since, all
the macro blocks along the perpendicular to the UUD have no dependencies
and can be processed for c(= N) cycles of operation. Also by respecting the
dependencies between macro blocks along the UUD by a synchronization point
wherever necessary, the macro blocks along the UUD are also scheduled for N
cycles of operation.

294 S. Vinjamuri and V. Prasanna

3.3 Case 2: Convolution

Algorithm Description: Convolution is one of the most important kernels in
scientific computing. It is of fundamental importance [11] in signal processing,
image processing, communication systems, computer vision and pattern recog-
nition algorithms. Variations of convolution [5] are also used to solve integer
multiplication and polynomial multiplication problems. There has been a lot of
interest for high performance convolution computation recently [7], [8]. We de-
scribe the mapping of 1D convolution dependency graph to a multicore processor
using our technique. A good feature of the 1D dependency graph design is that,
2D and 3D designs are exact symmetric and modular extensions of the 1D de-
sign. So our mapping technique is directly applicable to 2D and 3D convolution
also.

Consider two digital signals A and B of dimension 1 x N . The convolution C
of A and B, represented by C = A ⊗ B, is a 1 x 2N − 1 given by equation 3,

C(i) = ΣA(i).B(N − i) (3)

(a) (b)

A AA A A A A A A

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

C

C

C C C C C C C C C

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17

A AA A A A A A A1 2 3 4 5 6 7 8 9

B

B

B

B

B

B

B

B

B

1

2

3

4

5

6

7

8

9

C C C C C13 14 15 16 17C C C C9 10 11 12

C8

C7

C6

C5

C4

C3

C2

C1

j
i

C1 C2 C3 C4 C5 C6 C7 C8 C9

C10

C12

C11

C13

C14

C15

C16

C17

C1 C2 C3 C4 C5 C6 C7 C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

Fig. 6. Dependency Graph (DG) and Hierarchical DG Abstraction for Convolution

Consider a problem of size N = 9. The dependency graph for computing the
convolution of A and B is shown in Figure 6(a). Unlike transitive closure where
all data flowing in the dependency graph is being updated, here not all data is
updated. So, as described in Section 2.2, we differentiate the two types of data
flowing. So in the Figure, we show the data that is not being updated (signals A
and B) with black coloured lines and data being updated (signal C) with blue
coloured lines. With î and ĵ axis as shown, there is a single UD along (−̂i+ĵ)/

√
2.

Since there is only one UD, that itself will become the UUD.

Hierarchical Dependency Graphs 295

Mapping: Using the steps of mapping as described in Section 2.4, cut the de-
pendency graph along the UD. Figure 6(b) shows the dependency graph after
this operation where the four partitions resulting from three cut lines (shown in
dashed lines in Figure 6(a)): after C5, C8 and C12, are shown in shaded blocks.
Each partition, a macro block, is represented by a shaded region with its inputs
and outputs. A single line can be drawn perpendicular to the UUD which will pass
through all macro nodes, which means there is no dependency between them and
all the four macro nodes can be scheduled in parallel to four cores independently.
Hence, when there arem cores, the dependency graph is partitioned intommacro
blocks, with equal computational load, each of which will be processed by each
core independently. Similar to the transitive closure case, observe that the HDG
for convolution satisfies the two properties in Section 2.2.

3.4 Experimental Results and Discussion

We provide experimental results below proving that the mapping techniques give
scalable results on multicore processors. We comment about the performance
(single precision) and optimizations in Section 3.4.

Performance on Cell Blade

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10

Number of SPEs

T
im

e
in

 s
ec

o
n

d
s

0

2

4

6

8

10

S
p

ee
d

u
p

Execution
time (2048)

Execution
time (4096)

Speedup
(2048)

Speedup
(4096)

(a)

Performance on Dual Intel Quad Core

0

20

40

60

80

100

120

140

0 2 4 6 8

Number of Threads

T
im

e
in

 s
ec

o
n

d
s

0

2

4

6

8

S
p

ee
d

u
p

Execution
time (2048)

Execution
time (4096)

Speedup
(2048)

Speedup
(4096)

(b)

Fig. 7. Experimental results for Transitive Closure

Transitive Closure: We considered problems of sizes N = 2048 and 4096.
Each macro block is of size 64 x 64 by using 32 and 64 cut lines in each direction
parallel to the UDs respectively for the two problem sizes. Hence, there are a total
of 32 x 32 and 64 x 64 macro blocks for problem sizes 2048 and 4096 respectively.
Figure 7(a) shows the scalable results on Cell blade. The performance achieved
is 4.42GFLOPS. Figure 7(b) shows the scalable results on the dual Intel quad
core platform. We achieved 10.54GFLOPS on this platform.

Convolution: We considered problem of size N = 32K. Figure 8(a) shows
performance results on Cell Blade. We achieved 0.801GFLOPS on this platform.
Figure 8(b) shows the results on the Intel quad core platform. The performance
achieved is 17.5GFLOPS. Both the results are scalable as can be observed from
the Speedup plots.

296 S. Vinjamuri and V. Prasanna

Performance on Cell Blade

0

5

10

15

20

25

0 2 4 6 8 10

Number of SPEs

T
im

e
in

 s
ec

o
n

d
s

0

2

4

6

8

10

S
p

ee
d

u
p

Execution time

Speedup

(a)

Performance on Dual Intel Quad Core

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10

Number of Threads

T
im

e
in

 s
ec

o
n

d
s

0

2

4

6

8

10

S
p

ee
d

u
p

Execution time

Speedup

(b)

Fig. 8. Experimental results for Convolution

Discussion: Before commenting about the performance itself, we need to de-
scribe the differences and factors in architecture and programming models for
the Cell and Intel multicore processors that effect the performance. First, in
the Cell processor, as mentioned in Section 3.1, the complete memory manage-
ment between the main memory and local stores of SPEs is in the hands of
the programmer. While this increases the complexity of programming, it gives
an advantage for achieving performance in cases where the operating system
and cache coherency protocols cause heavy overhead and limit the performance.
Whereas, in the Intel quad core, memory management is completely handled by
the operating system and compiler. This difference also allows us to do a baseline
implementation comparison (Figure 10) with our techniques on the Intel pro-
cessor but not on the Cell (here baseline implementation means the algorithm
implementation without our parallelization techniques and only with compiler
optimizations). This is because, unlike the Intel processor where the compiler
can execute a piece of code, on the Cell processor, we need to parallelize and
take care of memory management right for the most basic implementation.

Second, the SPEs in the Cell processor are highly specialized for SIMD pro-
cessing units but with pre-condition that the data should be aligned in memory.
SIMDization is not possible with mis-aligned data and which means operations
on mis-aligned data ([9]) should be loaded in a single preferred slot of a vector
register, the data is processed and written back to memory from the preferred
slot. This causes a heavy overhead decreasing the performance by orders of mag-
nitude ([9]). SIMDization is more easy on the Intel quad core, in fact the Intel
ICC compiler is good enough to auto-simdize operations quite efficiently.

Lastly, Cell SPEs have a bad branch prediction units compared to the Intel’s
cores. This is because SPE’s architecture is optimized for streaming data ([9]).

Performance of Transitive Closure: We achieved a high performance of
10.54GFLOPS on the Intel Quad core processor. The compiler auto-simdizied
the code. We manually SIMDized the code on the Cell processor by grouping
operations on micro node into a vector operation. But at the end ofN cycles, one
value (the lowest) out of the four should be assigned to the micro node. There is

Hierarchical Dependency Graphs 297

no vector primitive that does this on the Cell leading to a non-SIMD operation
and also a branch prediction operation. This lead to the drop in performance
and we achieved 4.42GFLOPS. With an improved branch prediction unit and
more hardware to take care of non-SIMD operations in future versions of Cell
([9]), there is a very promising possibility to achieve peak performance of the
algorithm on the Cell.

Performance of Convolution: We achieved 17.5GFLOPS on the Intel plat-
form, whereas we achieved only 0.801GFLOPS on the Cell. This is because, the
convolution algorithm necessitates operations on non-aligned data in every clock
cycle. As these operations are not SIMDized, they lead to heavy loss in perfor-
mance on the Cell processor. As mentioned above, this is one aspect that has to be
addressed in future versions of the Cell processor to improve its potential to wide
range of algorithms. Also, our performance of 17.5GFLOPS on the Intel platform
is higher than other recent research work for high performance computation of
convolution. In different contexts of the same convolution operation, researchers
have achieved 2.16GFLOPS per node ([7]) on a 4-rack Blue Gene system (4096
nodes leading to overall 7TFLOPS) and 3.16GFLOPS ([8]) on an FPGA platform.

main
{
 float A[N], B[N], C[2*N-1]
 // Values initialized for vectors A and B
 // C vector initialized to 0

 begin(measure time)
 for(i = 0; i < N; i++)
 {

for(j = 0; j < (i+1); j++)
{
 C[i] = C[i] + A[j]*B[i - j];
}

 }
 for(i = N; i < (2*N-1); i++)
 {

for(j = (i-(N-1)); j < N; j++)
{
 C[i] = C[i] + A[j]*B[i-j];
}

 }
 end(measure time)
}

float A[N], B[N], C[2*N-1]; // Globally
accessible to main and all threads

Thread 1's function
{ Does work of macro block 1}

Thread 2's function
{ Does work of macro block 2}

…

Thread m's function
{ Does work of macro block m}

main
{
 // Values initialized for A and B
 // Vector C initialized to 0

 begin(measure time)
 // Create m-pthreads and call their
 // respective functions.
 // m can take values between 1 to 8
 // (cores on the chip)
 // Wait for threads to join
 end(measure time)
}

(a) Base line code (b) Parallelized code

Fig. 9. Pseudo code for convolution

Comparing with Com-
piler Optimizations:
To measure the im-
pact of our paralleliza-
tion with the compiler
optimizations, we ran a
baseline implementation
for convolution which
involved straight cod-
ing of the algorithm
with compiler optimiza-
tions (-O2, -O3, -O4, -
msse3 etc.) both with
GCC and Intel’s ICC
compiler. The pseudo
codes for the baseline
implementation and our
parallelized version are
shown in Figure 9. Fig-
ure 10 shows the results
from this experiment.
The best possible performance achieved by a compiler is 2.2GFLOPS (Base-
line for ICC) whereas with our parallelization, we achieved 17.5GFLOPS. This
shows that our mapping technique has given the compiler more opportunities to
parallelize and optimize the dependency graph computations on the multicore
processor.

298 S. Vinjamuri and V. Prasanna

4 Conclusion

Performance Comparison for Convolution

0
2
4
6
8

10
12
14
16
18
20

Baseline with
gcc

Baseline with icc Parallelized code
with gcc

Parallelized code
with icc

P
er

fo
rm

an
ce

 in
 G

F
L

O
P

S
Fig. 10. Comparison with Compiler Opti-
mizations

We summarize the contributions
made by this paper. Starting from
a seminal problem of mapping sys-
tolic arrays to multicore processors,
we made the observation that map-
ping of dependency graphs is more
fundamental and should be studied
rather than systolic arrays. We de-
fined the abstraction of Hierarchical
Dependency Graphs, using which we
proposed a mapping methodology to
map and parallelize a dependency
graph to a multicore processor.
We presented two case studies and
achieved scalable results and good performance illustrating our methodology. In
future, we plan to conduct more case studies of mapping dependency graphs to
multicore processors and also possibly integrate these techniques into compilers.

References

1. Kung, S.Y.: VLSI Array Processors. In: Kailath, T. (ed.) Prentice-Hall, Englewood
Cliffs (1988)

2. Ullman, J.D.: Computational aspects of VLSI. Computer Science Press (1983)
3. Kung, H.T., Leiserson, C.E.: Systolic arrays (for VLSI). In: Sparse Matrix Sympo-

sium, pp. 256–282. SIAM, Philadelphia (1978)
4. Penner, M., Prasanna, V.K.: Cache Friendly Implementations of Transitive Clo-

sure. In: Proc. of PACT (2001)
5. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,

Trees and Hypercubes. Morgan Kaufmann, San Francisco (1992)
6. Rao, S.K., Kailath, T.: Regular Iterative Algorithms and their Implementation on

Processor Arrays. Proc. of the IEEE 76, 259–269 (1988)
7. Nukada, A., Hourai, Y., Nishada, A., Akiyama, Y.: High Performance 3D Convolu-

tion for Protein Docking on IBM Blue Gene. In: Stojmenovic, I., Thulasiram, R.K.,
Yang, L.T., Jia, W., Guo, M., de Mello, R.F. (eds.) ISPA 2007. LNCS, vol. 4742,
pp. 958–969. Springer, Heidelberg (2007)

8. Huitzil, C.T., Estrada, M.A.: Real-time image processing with a compact FPGA-
based systolic architecture. Journal of Real-Time Imaging (10) 177–187 (2004)

9. Arevalo, A., Matinate, R.M., Pandlan, M., Peri, E., Ruby, K., Thomas, F., Almond,
C.: Prog. the Cell Broadband Engine: Examples and Best Practises, IBM Redbooks

10. Karp, R.M., Miller, R.E., Winograd, S.: The Organization of Computations for
Uniform Recurrence Equations. Jour. of ACM 14(3), 563–590 (1967)

11. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-Time Signal Processing.
Prentice Hall Signal Processing Series (2004)

A Tool for Detecting First Races in OpenMP

Programs�

Mun-Hye Kang1, Ok-Kyoon Ha1, Sang-Woo Jun2, and Yong-Kee Jun1,��

1 Gyeongsang National University, Jinju, 660-701 South Korea
2 Seoul National University, Seoul, 151-742 South Korea

kturtle@hanmail.net,jassmin@gnu.ac.kr,aradia.jun@gmail.com,jun@gnu.ac.kr

Abstract. First race detection is especially important for effective de-
bugging, because the removal of such races may make other affected races
disappear. The previous tools can not guarantee that detected races are
the first races to occur. We present a new tool to detect first races in a
program with nested parallelism using a two-pass on-the-fly technique.
To show accuracy, we empirically compare our tool with previous tools
using a set of synthetic programs with OpenMP directives.

Keywords: OpenMP programs, first races to occur, race detection.

1 Introduction

A data race [1,6] or simply a race occurs when there are two conflicting accesses
from different threads to a shared variable without appropriate synchronization,
and at least one access is a write. Detecting these races is important for de-
bugging programs with OpenMP directives, because races result in unintended
non-deterministic executions of the program. For effective debugging, it is espe-
cially important to detect the first data races to occur (first races), because the
removal of such races may make other affected races disappear or appear. The
previous tools for debugging the races in OpenMP [7] programs include Intel
Thread Checker [2,9] and Sun Thread Analyzer [8,9]. But, these tools can not
guarantee that detected races are the first races.

This paper presents an effective tool that reports the first races in programs
with nested parallelism using a labeling scheme called NR Labeling [5] and a
race detection protocol [4]. The NR generates logical concurrency information
for every thread in an execution, and does not require central bottlenecks that
using local data structures require. The protocol detects the races by monitor-
ing candidate accesses that may be involved in first races during two passes of

� This research was supported by the MKE (The Ministry of Knowledge Economy),
Korea,under the ITRC (Information Technology Research Center) support program
supervised by the IITA (Institute for Information Technology Advancement) (IITA-
2009-C1090-0904-0001).

�� Corresponding author: In Gyeongsang National University, he is also involved in the
Research Institute of Computer and Information Communication (RICIC).

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 299–303, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

300 M.-H. Kang et al.

program executions. This paper presents our tool which detects the first races
during the two passes of program execution, and empirically shows with a set of
synthetic programs that our tool is practical with respect to accuracy.

2 Background

A data race [1,6] or simply a race occurs when there are two conflicting accesses
from different threads to a shared variable without appropriate synchronization,
and at least one access is a write. Since such races result in unintended non-
deterministic executions of programs, it is important to detect the races for the
effective debugging of such programs. To help user’s understanding, an execution
of a parallel program is represented by a directed acyclic graph called POEG
(Partial Order Execution Graph) [3] as shown in Fig. 1. In a POEG, a vertex
indicates a fork or join operation, and an arc between vertices represents a forked
or joined thread. The accesses named r and w drawn in the figure as small dots
on the arcs represent a read and a write access, that access the same shared
variable, respectively. The numbers in the access names indicate the order in
which those accesses are observed.

An access ej is affected by another access ei, if ei happened before ej and ei

is involved in a race. A race ei-ej is unaffected, if neither ei nor ej are affected
by any other accesses. A race is partially affected, if only one of ei and ej is
affected by another access. A tangle is a set of partially affected races such that
if ei-ej is a race in the tangle then exactly one of them is affected by ek such
that ek is also involved in a race of the same tangle. A tangled race is a partially
affected race that is involved in a tangle. A first race [4] to occur (first race) is
either an unaffected race or a tangled race. Fig. 1 shows a POEG which includes
eleven races, but only two of the eleven races can be the first races. Eliminating
the two possibly first races is very important for effective debugging, because it
may make the other nine affected races disappear or appear.

r1

w4

r2

w5

r6 r7

w3

Fig. 1. The POEG

detected races
Synthetic Our Tool Checker Aanlyzer

1
r1 r2 r1-w4 r1-w4

-
w3 w4 r2-w3 r2-w3

2
r1 r2 w3 r1-w3

-
r2-w3

r4 r5 r6 r2-w3 r1-w3

3 r1 r2 r3 r2-w4 w4-r2 -

4
r1 r2 w3 r1-w3

- -
w4 r5 r6 r2-w3

5
r1 r2 w3 r1-w3

- -
w4 r5 r6 r7 r2-w3

Fig. 2. The Results for Accuracy

A Tool for Detecting First Races in OpenMP Programs 301

The previous tools for debugging races in OpenMP programs include Intel
Thread Checker [2,9] and Sun Thread Analyzer [8,9]. Thread Checker sequen-
tially executes a program to project parallel threads by instrumenting the source
code with additional codes, and then detects races by checking data dependency
during an execution of the program. The tool does not verify the existence of
races, including the first racesin an execution. In Fig. 1, Thread Checker detects
six races {w4-r2, w4-w5, r1-w5, w5-w3, w5-r6, w5-r7}, but these races are af-
fected by two first races. Thread Analyzer has not been published the internal
mechanism of Thread Analyzer, and it has not been analyzed with respect to its
functionality for detecting races in OpenMP programs. Unfortunately, by exper-
imenting it with just one small set of synthetic programs we discovered that the
tool can not guarantee that detected races are the first races. In Fig. 1, Thread
Analyzer detects seven races, but these races are also affected by first races.

3 The First Race Detection Tool

Fig. 3 shows the client-server structure of our tool. In the client side, there are
four modules: selector, instrumentor, sender, and reporter. In the server side,
there is the compiler, and run-time libraries for race detection. First, when the
source codes to be debugged are admitted, the selector module helps the users
select shared variables and the information of race detection protocol to be used
for monitoring. The scanner module analyzes the source program to add the
protocol libraries, and the instrumentor module adds the race detection protocol
into the source code. The instrumented source program is transferred to the
server by the sender module in the client. The server executes the instrumented
object program compiled and linked with the library of protocol engine and
transfers the results of race detection to the client. Finally, the reporter module
in the client notifies the results to the user.

For detecting the first races, the protocol [4] implemented in run-time libraries
in the server efficiently detects the races in programs with nested parallelism
during two passes of program executions. In the first pass, the protocol collects
candidate accesses that may be involved in first races, keeping a constant number

scanner

client server

source
program

race
information

sender

instrumented
program

execution
result

reporter

compiler

instrumen-
ted objectprogram

Information
selector

instru-
mentor

Fig. 3. Design of the first race detection tool

302 M.-H. Kang et al.

Fig. 4. Interface of Effective tool

of accesses stored for each shared variable during an execution. In the second
pass, each candidate collected in the first pass is also examined based on the
happened-before relation and the left-of relation if the current access is conflicting
with the candidate access, in order to complete the set of candidate accesses
collected in the first pass. This protocol is efficient with regard to execution
time and memory space, because a small constant is the number of accesses
stored for each shared variable during the execution. The protocol detects all
but one of the first race in the worst case.

Fig. 4 shows the programm interface which consists of four components: a
classical menu bar, a work space, a tool bar, and a log view. The work space
consists of three parts: a list of opened program files, a source code window
to display the selected program, and the information of detected races. The
tool bar consists of four buttons: Mode Selector, Program Analyzer, Program
Instrumentor, and Race Detector. These buttons are arranged to reflect the
procedure of detecting races. The Mode Selector invokes a window as shown in
Fig. 4(b) to select the protocol. The Program Analyzer extracts information from
the source program to detect the first races in programs with nested parallelism,
and then shows a window for selecting a shared variable to be monitored. And,
the log view shows the results of Program Analyzer. The Program Instrumentor
adds the run-time library of a race detection protocol in the source code. The
Race Detector creates an executable file by compiling the instrumented code
which calls the run-time library of the protocol in the server and the Reporter
presents information on detected races. Each entry of the information includes a
line number and two accesses which are represented with event types and thread
labels. If the user clicks twice highlighted lines of the log view using the Report
Highlight tab, the tool highlights every line of the corresponding source code.

The client programs of the tool is implemented in the Java language and de-
veloped in Eclipse environment using Java Development Kit version 1.6. The
run-time libraries of the tool in the server are implemented in the C language.

A Tool for Detecting First Races in OpenMP Programs 303

We installed Intel C/C++ version 10 to compile OpenMP programs and devel-
oped a socket program to transfer files. To experiment with previous tools, we
installed Thread Checker 3.1 for Linux and Thread Analyzer of Sun Studio 12.
To show accuracy of our tool, we empirically compare the tool with the previous
tools using a set of synthetic programs with OpenMP directives. Synthetic pro-
grams were developed by varying the thread number, the nesting depth, and the
location or number of write events. Fig. 2 shows the test results for accuracy from
five types of synthetic programs. The first program shows two parallel threads
using two columns and the next three types of programs have three parallel
threads. The remaining type of programs start three parallel threads of which
the last thread forks two child threads. In the result, our tool detected only the
first races to occur in every kind of synthetic programs, and Thread Checker and
Analyzer did not detect the first races in the many types of programs.

4 Conclusion

This paper presents a novel tool that detects the first races in the program with
nested parallelism using a two-pass on-the-fly technique. We empirically compare
our tool with the previous tools using a set of synthetic programs with OpenMP
directives, and the results support that our tool efficiently detects only the first
races in all kinds of synthetic programs.

References

1. Banerjee, U., Bliss, B., Ma, Z., Petersen, P.: A Theory of Data Race Detection. In:
Workshop on Parallel and Distributed Systems: Testing and Debugging (PADTAD),
Portland, USA, pp. 69–78. ACM, New York (2006)

2. Banerjee, U., Bliss, B., Ma, Z., Petersen, P.: Unraveling Data Race Detection in
the Intel Thread Checker. In: Workshop on Software Tools for Multi-core Systems
(STMCS), Portland, USA, pp. 69–78. ACM, New York (2006)

3. Dinning, A., Schonberg, E.: An Empirical Comparison of Monitoring Algorithms
for Access Anomaly Detection. In: 2nd Symposium on Principles and Practice of
Parallel Programming (PPoPP), pp. 1–10. ACM, New York (1990)

4. Ha, K., Jun, Y., Yoo, K.: Efficient On-the-fly Detection of First Races in Nested Par-
allel Programs. In: Workshop on State-of-the-Art in Scientific Computing (PARA),
Copenhagen, Denmark, June 2004, pp. 75–84 (2004)

5. Jun, Y., Koh, K.: On-the-fly Detection of Access Anomalies in Nested Parallel Loops.
In: 3rd ACM/ONR Workshop on Parallel and Distributed Debugging (WPDD), San
Diego, California, pp. 107–117. ACM, New York (1993); also in SIGPLAN Notices
28(12), 107–117 (1993)

6. Netzer, R.H.B., Miller, B.P.: What Are Race Conditions? Some Issues and Formal-
izations. Letters on Prog. Lang. and Syst. 1(1), 74–88 (1992)

7. OpenMP Architecture Review Board, OpenMP Application Programs Interface,
Version 3.0 (May 2007)

8. Sun Microsystems, Inc.: Sun Studio 12: Thread Analyzer User’s Guide (2007)
9. Terboven, C.: Comparing Intel Thread Checker and Sun Thread Analyzer. In: Min-

isymp. on Scalability and Usability of HPC Prog. Tools, In PARCO (September
2007)

Load Balancing of Parallel Block Overlapped

Incomplete Cholesky Preconditioning

Igor Kaporin and Igor Konshin

Dorodnicyn Computing Center of Russian Academy of Sciences,
Vavilov str. 40, 119333 Moscow, Russia

{kaporin,konshin}@ccas.ru

Abstract. A modification of the second order Incomplete Cholesky (IC)
factorization with controllable amount of fill-in is described and analyzed.
This algorithm is applied to the construction of well balanced coarse-
grain parallel preconditioning for the Conjugate Gradient (CG) iterative
solution of linear systems with symmetric positive definite matrix. The
efficiency of the resulting parallel algorithm is illustrated by a series
of numerical experiments using large-scale ill-conditioned test matrices
taken from the collection of the University of Florida.

Keywords: symmetric positive definite matrix, incomplete Cholesky
factorization, conjugate gradient method, parallel preconditioning.

1 Introduction

An analysis of the parallel performance of parallel preconditioned CG solver
described, e.g., in [1], [3], showed that the imbalance of the independent tasks at
the stage of preconditioning application (due to the loosely controlled variations
in the density of the IC factors of submatrices) is mainly responsible for the loss
in the overall parallel efficiency.

A simple strategy considered below is to drop down the smallest entries in the
most filled incomplete factors. Both matrix theory and numerical experiments
show that a slight deterioration in the preconditioning quality should be more
than compensated by the reduction of the time cost per iteration.

For the second order IC factorization [2] we propose to reassign the largest by
magnitude entries from the error matrix to the IC factor. It may improve both
the balancing and convergence rate.

2 Theoretical Analysis of the Post-filtering Techniques

Let us consider separately the cases of the (plain) IC factorization and the IC2
factorization [2] (with the structured error term). Hereafter, we will assume that
A is symmetric positive definite matrix symmetrically scaled to the unit main
diagonal.

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 304–315, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Load Balancing of Parallel Block Overlapped IC Preconditioning 305

2.1 Plain IC Truncation

Let the IC factor U be obtained from the standard IC equation

A = UTU − S , (1)

where S is the error matrix, each element of which is O(τ) and τ is the truncation
parameter, 0 < τ ' 1. When one applies a Jennings–Malik type algorithm [5],
the matrix S is symmetric nonnegative definite and therefore

λ(U−TAU−1) ≤ 1 ,

i.e., the eigenvalues of the preconditioned matrix is bounded by 1. At the same
time, most eigenvalues of the preconditioned matrix are clustered around 1,
which improves the numerical stability of the the corresponding preconditioned
CG iterations [7].

Now we consider the splitting of U into the ‘main’ term and the ‘error’ term:

U = Ũ + R̃ ,

where the entries of strictly upper triangular matrix R also do not exceed τ in
magnitude.

Using the IC equation (1), one has then

A = (Ũ + R̃)T (Ũ + R̃)− S

= ŨT Ũ + (ŨT R̃ + R̃T Ũ + R̃T R̃− S) .

Hence,
ŨT Ũ = A+ S̃ ,

where
S̃ = S − ŨT R̃− R̃T Ũ + R̃T R̃ ,

i.e. Ũ is the exact IC of A + S̃, where the matrix S̃ is the perturbed error ma-
trix. The latter also has O(τ) entries, but, in general, it is symmetric indefinite.
Therefore, the norm ‖Ũ−1‖ can be unbounded, and the corresponding precon-
ditioning is not robust. Of course, the matrix S can be made positive definite
by performing an IC factorization of the modified matrix, e.g., A+ σIn (cf. [6]),
but the shift parameter should be as rough as O(τ) in order to guarantee the
robustness. Therefore, the quality of such preconditioner is often insufficient,
especially for ill-conditioned matrices A.

2.2 Truncation of IC2 Factor U

A special type structured error matrix arises in the IC2 factorization [2]

A = UTU + UTR+RTU − S . (2)

306 I. Kaporin and I. Konshin

where R is a strictly upper triangular error matrix, each element of which is
O(τ), S is a symmetric error matrix, each element of which is O(τ2) and τ is
the truncation parameter, 0 < τ ' 1.

The following two facts (see [2]) are of key importance:
(a) for the same τ , both IC and IC2 factorizations have quite similar upper

bounds on the fill-in for U , and
(b) on the contrary, the condition number of matrix A preconditioned by IC

and IC2 are O(τcondA) and O(τ(condA)1/2), respectively. This explains the
superior performance of IC2 preconditioning observed in its practical use (see,
e.g., [2], [3]).

The following proposition can be readily deduced from results of [2].

Theorem 1. For the preconditioned matrix

M = U−TAU−1

defined according to (2), one has the estimate

λ(M) ≤ 1 + γ (3)

whenever
RTR ≤ γS (4)

holds.

Remark 1. A simple method which guarantees the validity of (4) is the use of
an a priori diagonal shift of the order O(τ2) for the original matrix A, cf. [2].

We now consider the splitting

U = Ũ + R̂ , (5)

where R includes certain amount of the smallest by magnitude nonzero elements
of U , and estimate the quality of the preconditioning obtained by the use of
truncated (or post-filtered) IC factor Ũ .

Theorem 2. For the preconditioned matrix

M̃ = Ũ−TAŨ−1

defined according to (2) and (5), one has the estimate

λ(M̃) ≤ 1 + γ

1− γ̂ − 2
√
γγ̂

(6)

whenever conditions (4) and
R̂T R̂ ≤ γ̂S (7)

with γ̂ < (
√
γ +

√
1 + γ)−2 hold.

Remark 2. The other theoretical properties (e.g., the lower spectral bound) of
the post-truncated IC2 remain essentially the same as for the original version
presented in [2].

Load Balancing of Parallel Block Overlapped IC Preconditioning 307

2.3 Truncation of IC2 Error Matrix R

Next we consider the splitting of the IC2 error matrix

R = R̂+ R̃ , (8)

where R̂ includes certain amount of the largest by magnitude nonzero elements
of R, and estimate the quality of the preconditioning obtained by the use of
augmented IC2 factor

Ũ = U + R̂ . (9)

It appears that the only difference with the above case of IC2 factor truncation
(see Theorem 2) is that the equation R̃ = R + R̂ is replaced by R̃ = R − R̂.
Therefore, it can be readily shown that the corresponding estimate (6) holds
under the same conditions (4) and (7).

Hence, in both cases one should take care about keeping the norm of the
matrix R̂ sufficiently small. However, when the truncation of error matrix R is
performed, the norm ‖R̂‖ is not large since ‖R‖ is bounded.

On the other hand, it makes sense to include into R̂ the largest by the mag-
nitude elements of R, thus making R̃ as small as possible. This well agrees with
the following result related to the estimation of the K-condition number

K(M) =
(

1
n

trace(M)
)n /

detM ,

where M is the preconditioned matrix. (A detailed discussion of the relation of
K(M) to convergence of the CG method can be found in [1], [2].)

Theorem 3. For the preconditioned matrix

M̃ = Ũ−TAŨ−1

defined according to (2) and (9), the following upper bound for the K-condition
number is valid,

K(M̃) ≤ (detU)2/ detA , (10)

whenever the condition
R̃T R̃ ≤ S +RTR (11)

holds.

Hence, if the matrix R̃ is sufficiently small by the norm, then the K-condition
number of the preconditioned matrix has an upper bound which does not depend
on this matrix.

3 Finding a Prescribed Amount of Smallest Elements in
Array

According to (7), one should include in R̂ the smallest entries of U in order to
keep γ̂ as small as possible in the case of post-filtering the IC2 factor. On the

308 I. Kaporin and I. Konshin

contrary, if the IC2 error matrix is filtered, one may choose to find the largest
entries of R.

An obvious approach is to sort the whole array U and include into the matrix
R̂ its smallest entries, which would cost O(nz(U) log nz(U)) operations.

To reduce the cost of truncation we use hashing over the interval [0, 1] di-
vided into n equal segments, where n is the dimension of the matrix A. After
rehashing with the corrected interval boundaries we obtain the required thresh-
old up to 1 element accuracy. The costs of such procedure is about 2n+ 2nz(U)
operations.

4 A Description of Parallel IC2-Based Preconditioning

Let A be reordered and split in the same way as for the Block Jacobi precon-
ditioning, i.e. the t-th diagonal block of the symmetrically reordered matrix has
the dimension nt and n1 + . . . + np = n. Here t = 1, ..., p, and p is the block
dimension of A. For the t-th diagonal block, let us define the ‘basic’ index set as

{kt−1 + 1, . . . , kt} ,

where
kt−1 = n1 + ... + nt−1 , k0 = 0 , kp = n ,

and introduce the ‘overlapping’ index sets as

{jt(1), . . . , jt(mt − nt)} , jt(p) ≤ kt−1 ,

where
mt ≥ nt , m1 = n1 .

For each t, the latter index set typically includes those indices not greater than
kt that are the most ‘essentially’ connected to the basic index set, e.g. in the
sense of the sparse matrix graph adjacency relations. According to [1], [3], the
Block Incomplete Inverse Cholesky (BIIC) preconditioner H is:

H =
p∑

t=1

VtU
−1
t

[
0 0
0 Int

]
U−T

t V T
t ,

where Vt are rectangular matrices composed of unit n-vectors ej as follows:

Vt = [ejt(1)|...|ejt(mt−nt)|ekt−1+1|...|ekt] , t = 1, ..., p ,

and each upper triangular matrix Ut is the (approximate) right Cholesky factor
of the t-th ‘extended’ diagonal mt ×mt submatrix V T

t AVt, that is,

V T
t AVt ≈ UT

t Ut , t = 1, ..., p .

Load Balancing of Parallel Block Overlapped IC Preconditioning 309

4.1 Block Splitting and Overlap

In our implementation, the matrix graph splitting is performed without any
use of actual topology of underlying physical models. We use the public-domain
graph partitioning package METIS [4] to divide the node set into p approximately
equal ‘subdomains’ (or blocks).

The overlap is obtained using the sparsity structure of the qth degree of the
coefficient matrix Aq. We refer to q as the overlap size parameter.

4.2 Load Balancing Strategies

Except of relatively small number of additions, an application of the parallel
preconditioner BIIC2 (Block Incomplete Inverse Cholesky 2nd order) described
in [3] is reduced to p independent lower and upper sparse triangular solves. Here
p is the number of parallel processors available.

Even if a nearly equal partition of the matrix into overlapping blocks is used,
the quantities NZ(Ut) may be unequal in general. In this case, at the iteration
stage the triangular solves become imbalanced which may essentially deteriorate
the overall efficiency.

The most obvious load balancing strategy consists in post-filtering of the
incomplete factors. Here, one should use a somewhat finer truncation parameter
at the factorization stage in order to maintain a sufficient preconditioning quality
even with the post-filtered factors.

In what follows, we use the following balancing options:

‘STD’ denote the preconditioner obtained as is with no any post-processing;
‘MIN’ denotes the post-filtering of each matrix Ut in order to reduce all NZ(Ut)

down to the minimum value over p blocks;
‘MAX’ denotes the augmentation of each Ut with the largest elements taken

from the error matrix Rt in order to enlarge all NZ(Ut) up to their maximum
value;

‘AVR’ denotes the combination of the latter two strategies in order to equalize
NZ(Ut) near the arithmetic mean value.

5 Numerical Results

We have performed numerical experiments on MVS6000IM computer with Dual
Core Intel Itanium 2 processors under RedHat Linux v.2.4.21-20 using MPICH
for GM v.1.2.6.14b communication library for data transfer.

5.1 Test Problems and Solution Statistics

We have considered several most ill-conditioned matrices found in the University
of Florida sparse matrix collection [8]. The matrix properties are presented in
Table 1, where

‘Matrix’ is the matrix name;
n is the matrix size;

310 I. Kaporin and I. Konshin

‘NZ’ is the number of nonzeros in matrix A, and
‘Cond’ is the estimated condition number.
In all experiments we take the right-hand side b = Ax∗, with x∗ ≡ 1 as the

exact solution and x0 ≡ 0 as the initial guess.
In the construction of the preconditioner, the default drop tolerance threshold

parameter τ is equal to 10−3. The overlap size parameter q is equal to 10 in all
cases.

The PCG iterations were performed until the accuracy ||Axk − b||/||b|| < ε =
10−8 was achieved.

In the tables below, we use the following notation:

p is the number of processors (blocks) used;
‘Balanc’ denotes the type of load balancing as indicated earlier in Subsec-

tion 4.2;
‘Dens’ is the preconditioner density NZ(U)/NZ(UA) with respect to the den-

sity of the upper triangle of matrix A;
‘Imb’ is the measure of imbalance in the sizes of preconditioner blocks defined

as

Imb = 1−
∑p

i=1 NZ(Ui)
pmax1≤i≤p NZ(Ui)

;

‘It’ stands for number of iterations, and
‘Twc’ stands for wall clock total solution time.

5.2 Test Results and Discussion

In the Tables 2–13, we present a comparison for the above mentioned four
balancing strategies used with IC(τ), IC(τ2), and IC2(τ, τ2) preconditionings
on p = 1 (serial version) and p = 8 processors, obtained for the test problems
specified in Table 1.

Table 1. Matrix properties

Matrix n NZ NZ/n It(PJ) Cond(As)

bcsstk25 15 439 252 241 16.3 3178 3.55×106

msc23052 23 052 1 154 814 50.0 19086 7.57×107

gridgena 48 962 512 084 10.4 3216 1.35×105

cvxbqp1 50 000 349 968 6.9 16 1.73×101

oilpan 73 752 3 597 188 48.7 18222 1.03×108

s3dkt3m2 90 449 3 753 461 41.4 40313 3.12×1010

x104 108 384 10 167 624 93.8 64790 2.12×109

g2 circuit 150 102 726 674 4.8 881 2.34×105

BenElechi1 245 874 13 150 496 53.4 31501 1.84×109

msdoor 415 863 20 240 935 48.6 30081 1.95×108

af 1 k101 503 625 17 550 675 34.8 17321 4.43×107

parabolic fem 525 825 3 674 625 6.9 1321 2.10×105

Load Balancing of Parallel Block Overlapped IC Preconditioning 311

Table 2. Comparison of balancing strategies for ‘bcsstk25’ problem

Method p Balanc Dens Imb It Twc

IC(τ) 1 STD 2.21 .00 404 3.67
IC(τ) 8 STD 4.07 .44 396 1.31
IC(τ) 8 MIN 1.80 .00 586 1.26

IC(τ 2) 1 STD 14.83 .00 17 2.29
IC(τ 2) 8 STD 29.91 .48 35 1.45
IC(τ 2) 8 MIN 8.14 .00 63 1.10

IC2(τ, τ 2) 1 STD 3.51 .00 50 2.20
IC2(τ, τ 2) 8 STD 5.74 .45 72 1.07
IC2(τ, τ 2) 8 MIN 2.18 .00 866 2.24
IC2(τ, τ 2) 8 AVR 4.71 .00 109 1.11
IC2(τ, τ 2) 8 MAX 9.24 .00 52 1.03

Table 3. Comparison of balancing strategies for ‘msc23052’ problem

Method p Balanc Dens Imb It Twc

IC(τ) 1 STD 1.75 .00 1320 43.32
IC(τ) 8 STD 4.26 .44 1222 15.28
IC(τ) 8 MIN 1.55 .00 3143 17.54

IC(τ 2) 1 STD 12.89 .00 103 28.78
IC(τ 2) 8 STD 19.94 .57 157 15.92
IC(τ 2) 8 MIN 3.96 .00 1651 19.95

IC2(τ, τ 2) 1 STD 2.42 .00 343 25.89
IC2(τ, τ 2) 8 STD 5.59 .45 269 10.37
IC2(τ, τ 2) 8 MIN 1.87 .00 >10000 —
IC2(τ, τ 2) 8 AVR 5.36 .00 429 9.95
IC2(τ, τ 2) 8 MAX 8.44 .00 194 8.87

Table 4. Comparison of balancing strategies for ‘gridgena’ problem

Method p Balanc Dens Imb It Twc

IC(τ) 1 STD 2.76 .00 198 5.89
IC(τ) 8 STD 3.26 .17 220 1.16
IC(τ) 8 MIN 2.57 .00 243 1.17

IC(τ 2) 1 STD 27.62 .00 11 7.80
IC(τ 2) 8 STD 15.05 .22 114 2.02
IC(τ 2) 8 MIN 10.27 .00 115 1.45

IC2(τ, τ 2) 1 STD 6.33 .00 59 7.22
IC2(τ, τ 2) 8 STD 5.88 .21 125 1.24
IC2(τ, τ 2) 8 MIN 4.42 .00 159 1.29
IC2(τ, τ 2) 8 AVR 5.88 .00 134 1.23
IC2(τ, τ 2) 8 MAX 7.34 .00 117 1.30

312 I. Kaporin and I. Konshin

Table 5. Comparison of balancing strategies for ‘cvxbqp1’ problem

Method p Balanc Dens Imb It Twc

IC(τ) 1 STD 3.95 .00 135 3.81
IC(τ) 8 STD 7.78 .44 189 2.38
IC(τ) 8 MIN 3.08 .00 1358 7.56

IC(τ 2) 1 STD 55.47 .00 19 23.01
IC(τ 2) 8 STD 52.06 .49 67 5.51
IC(τ 2) 8 MIN 10.32 .00 136 3.23

IC2(τ, τ 2) 1 STD 5.85 .00 48 19.53
IC2(τ, τ 2) 8 STD 10.38 .48 75 3.32
IC2(τ, τ 2) 8 MIN 3.44 .00 >10000 —
IC2(τ, τ 2) 8 AVR 9.17 .00 151 3.32
IC2(τ, τ 2) 8 MAX 16.13 .00 70 3.02

Table 6. Comparison of balancing strategies for ‘oilpan’ problem

Method p Balanc Dens Imb It Twc

IC(τ) 1 STD 1.43 .00 1333 116.54
IC(τ) 8 STD 2.38 .31 1454 30.76
IC(τ) 8 MIN 1.27 .00 1566 21.03

IC(τ 2) 1 STD 10.32 .00 90 63.89
IC(τ 2) 8 STD 10.50 .33 98 12.71
IC(τ 2) 8 MIN 4.82 .00 118 9.24

IC2(τ, τ 2) 1 STD 1.82 .00 148 36.51
IC2(τ, τ 2) 8 STD 2.93 .31 110 7.17
IC2(τ, τ 2) 8 MIN 1.54 .00 6350 90.28
IC2(τ, τ 2) 8 AVR 2.93 .00 154 7.54
IC2(τ, τ 2) 8 MAX 3.93 .00 107 7.27

Table 7. Comparison of balancing strategies for ‘s3dkt3m2’ problem

Method p Balanc Dens Imb It Twc

IC(τ) 1 STD 1.77 .00 3728 403.38
IC(τ) 8 STD 2.31 .33 3740 82.29
IC(τ) 8 MIN 1.42 .00 3988 56.32

IC(τ 2) 1 STD 19.90 .00 192 199.48
IC(τ 2) 8 STD 12.33 .36 246 27.53
IC(τ 2) 8 MIN 6.82 .00 246 15.05

IC2(τ, τ 2) 1 STD 2.97 .00 247 79.84
IC2(τ, τ 2) 8 STD 3.61 .30 261 12.66
IC2(τ, τ 2) 8 MIN 2.17 .00 758 17.52
IC2(τ, τ 2) 8 AVR 3.61 .00 271 11.22
IC2(τ, τ 2) 8 MAX 5.06 .00 246 12.47

Load Balancing of Parallel Block Overlapped IC Preconditioning 313

Table 8. Comparison of balancing strategies for ‘x104’ problem

Method p Balanc Dens Imb It Twc

IC(τ) 1 STD 0.88 .00 5180 606.06
IC(τ) 8 STD 1.82 .40 6314 306.90
IC(τ) 8 MIN 0.75 .00 >10000 —

IC(τ 2) 1 STD 6.70 .00 292 247.29
IC(τ 2) 8 STD 13.39 .52 757 265.93
IC(τ 2) 8 MIN 3.55 .00 1084 123.10

IC2(τ, τ 2) 1 STD 1.12 .00 753 167.35
IC2(τ, τ 2) 8 STD 2.28 .40 941 101.21
IC2(τ, τ 2) 8 MIN 0.91 .00 5617 191.48
IC2(τ, τ 2) 8 AVR 2.23 .00 1143 93.49
IC2(τ, τ 2) 8 MAX 3.77 .00 795 95.53

Table 9. Comparison of balancing strategies for ‘g2 circuit’ problem

Method p Balanc Dens Imb It Twc

IC(τ) 1 STD 4.33 .00 86 6.33
IC(τ) 8 STD 5.24 .10 124 1.82
IC(τ) 8 MIN 4.05 .00 134 1.77

IC(τ 2) 1 STD 54.87 .00 11 32.82
IC(τ 2) 8 STD 48.28 .12 26 4.42
IC(τ 2) 8 MIN 25.84 .00 25 3.80

IC2(τ, τ 2) 1 STD 6.69 .00 26 18.85
IC2(τ, τ 2) 8 STD 7.74 .10 38 2.84
IC2(τ, τ 2) 8 MIN 5.88 .00 54 2.82
IC2(τ, τ 2) 8 AVR 7.74 .00 37 2.68
IC2(τ, τ 2) 8 MAX 8.56 .00 36 2.69

Table 10. Comparison of balancing strategies for ‘BenElechi1’ problem

Method p Balanc Dens Imb It Twc

IC(τ) 1 STD 1.79 .00 2450 985.59
IC(τ) 8 STD 2.18 .13 2535 169.36
IC(τ) 8 MIN 1.70 .00 2544 137.06

IC(τ 2) 1 STD 17.19 .00 152 558.59
IC(τ 2) 8 STD 14.03 .26 295 117.34
IC(τ 2) 8 MIN 9.30 .00 295 88.52

IC2(τ, τ 2) 1 STD 2.59 .00 276 295.10
IC2(τ, τ 2) 8 STD 3.04 .12 382 57.41
IC2(τ, τ 2) 8 MIN 2.32 .00 597 65.23
IC2(τ, τ 2) 8 AVR 3.04 .00 397 56.47
IC2(τ, τ 2) 8 MAX 3.47 .00 361 56.11

314 I. Kaporin and I. Konshin

Table 11. Comparison of balancing strategies for ‘msdoor’ problem

Method p Balanc Dens Imb It Twc

IC(τ) 1 STD 2.00 .00 1905 1275.95
IC(τ) 8 STD 2.50 .22 1972 247.80
IC(τ) 8 MIN 1.93 .00 1999 186.61

IC(τ 2) 1 STD out of memory —
IC(τ 2) 8 STD 17.40 .20 178 156.57
IC(τ 2) 8 MIN 10.77 .00 181 121.82

IC2(τ, τ 2) 1 STD 2.62 .00 198 495.71
IC2(τ, τ 2) 8 STD 3.23 .23 202 76.51
IC2(τ, τ 2) 8 MIN 2.42 .00 361 84.40
IC2(τ, τ 2) 8 AVR 3.24 .00 234 76.04
IC2(τ, τ 2) 8 MAX 4.23 .00 191 75.67

Table 12. Comparison of balancing strategies for ‘af 1 k101’ problem

Method p Balanc Dens Imb It Twc

IC(τ) 1 STD 1.32 .00 908 405.86
IC(τ) 8 STD 1.45 .12 1023 72.73
IC(τ) 8 MIN 1.28 .00 1025 67.58

IC(τ 2) 1 STD 12.61 .00 60 254.40
IC(τ 2) 8 STD 9.74 .13 139 47.25
IC(τ 2) 8 MIN 6.91 .00 140 38.29

IC2(τ, τ 2) 1 STD 1.95 .00 163 170.64
IC2(τ, τ 2) 8 STD 2.01 .11 212 26.87
IC2(τ, τ 2) 8 MIN 1.77 .00 384 38.30
IC2(τ, τ 2) 8 AVR 2.01 .00 239 28.59
IC2(τ, τ 2) 8 MAX 2.25 .00 197 26.34

Table 13. Comparison of balancing strategies for ‘parabolic fem’ problem

Method p Balanc Dens Imb It Twc

IC(τ) 1 STD 3.24 .00 138 41.18
IC(τ) 8 STD 3.53 .15 214 9.86
IC(τ) 8 MIN 2.70 .00 231 8.83

IC(τ 2) 1 STD 42.60 .00 11 89.48
IC(τ 2) 8 STD 28.42 .13 70 17.84
IC(τ 2) 8 MIN 23.97 .00 70 16.02

IC2(τ, τ 2) 1 STD 5.29 .00 62 40.79
IC2(τ, τ 2) 8 STD 5.86 .12 97 7.72
IC2(τ, τ 2) 8 MIN 5.01 .00 108 7.67
IC2(τ, τ 2) 8 AVR 5.86 .00 100 7.63
IC2(τ, τ 2) 8 MAX 6.63 .00 93 7.57

Load Balancing of Parallel Block Overlapped IC Preconditioning 315

It is seen that the most obvious load balancing based on the ‘MIN’ strategy
often shows poor convergence. For instance, for the problem ‘msc23052’ the
convergence is not achieved for 10000 iterations (see Table 3).

The sharp increase in the iteration number for many hard-to-solve problems
(such as ‘bcsstk25’, ‘msc23052’, ‘oilpan’, ‘cvxbqp1’, ‘x104’) for BIIC2 precon-
ditioning with 8 processors and ‘MIN’ balancing strategy is explained by the
presence of very large λmax(M̃), as indicate the estimated bounds for this quan-
tity. Note that typical values which guarantee the numerical stability of the PCG
iterations are below 2. This destructive effect may be related to the violation of
the upper bound on the norm of truncated parts of Ut, see Theorem 2 earlier.

On the other hand, the numerical results show that the proposed load bal-
ancing based on the ‘MAX’ strategy is sufficiently robust and efficient. In many
cases, the use of ‘MAX’ balancing strategy resulted in a smaller total solution
time as compared to the original (unbalanced) ‘STD’ version.

References

1. Kaporin, I.E.: New convergence results and preconditioning strategies for the con-
jugate gradient method. Numer. Linear Algebra Appls. 1, 179–210 (1994)

2. Kaporin, I.E.: High quality preconditionings of a general symmetric positive definite
matrix based on its UT U + UT R + RT U -decomposition. Numer. Lin. Alg. Appl. 5,
483–509 (1998)

3. Kaporin, I.E., Konshin, I.N.: A parallel block overlap preconditioning with inexact
submatrix inversion for linear elasticity problems. Numer. Lin. Algebra Appl. 9,
141–162 (2002)

4. Karypis, G., Kumar, V.: Multilevel k-way hypergraph partitioning, Technical Report
98-036, Dept. Comp. Sci. Engrg. Army HPC Research Center, Univ. of Minnesota,
MN (1998)

5. Jennings, A., Malik, G.M.: Partial elimination. J. Inst. Math. Appl. 20, 307–316
(1977)

6. Manteuffel, T.A.: An incomplete factorization technique for positive definite linear
systems. Math. Comput. 34, 473–497 (1980)

7. Notay, Y.: On the convergence rate of the conjugate gradients in presence of rounding
errors. Numer. Math. 65, 301–317 (1993)

8. University of Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices

http://www.cise.ufl.edu/research/sparse/matrices

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 316–320, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Distributions and Schedules of CPU Time
in a Multiprocessor System

When the Users’ Utility Functions Are Linear

Alexander Khutoretskij1 and Sergei Bredikhin2

1 Novosibirsk State Teacher's Training University
hab@dus.nsc.ru

2 Institute of Computational Mathematics and Mathematical Geophysics SB RAS
bred@nsc.ru

Abstract. We consider a market of CPU time in a multiprocessor system pro-
viding the payable services. We suggest a market model under the following
assumptions: (i) processors may be of different capacity; (ii) the processors’
owners (suppliers) may have the different reservation prices; (iii) every user
(consumer) has a linear utility function and one task within the considered pe-
riod; (iv) a task can use different processors, but it cannot use two processors
at the same moment. The main result is that all equilibrium CPU time distribu-
tions can be obtained as solutions to some linear programming problem, and
equilibrium prices can be determined on the base of shadow prices for the
same problem. An equilibrium distribution shows, what time each task should
use each processor, but, generally speaking, it doesn’t determine a scheduling.
If the most labour-intensive job can be completed within the time-period to be
distributed, using only the slowest processor, then the simple algorithm exists
for constructing a scheduling corresponding to some equilibrium distribution.
In general case such algorithm is unknown.

Keywords: Distribution, scheduling, multiprocessor system, CPU time, paid
services, market equilibrium, linear programming.

1 Introduction

With an extension of the circle of users and development of computing systems, there
arises the problem of funding the operating costs and capital spendings [1, 2]. The
concept of computing systems rendering paid services is very popular now. The prob-
lem of financing is not resolved still for such systems. It would be ideal to incorporate
the subsystem calculating the equilibrium prices into the resource management
mechanism. Then the resources could be sold at calculated equilibrium prices, and the
problem of paid services were solved. Models of equilibrium in the market of CPU
time were considered in [3 – 5]. In these papers, the prices of equilibrium are derived
without taking into account possible differences in processors’ throughputs.

 Distributions and Schedules of CPU Time in a Multiprocessor System 317

2 Market Model

Market structure. We consider the market of cycles of different processors within the
period of length T. There are M customers (users) and N suppliers in the market. Each
supplier owns one processor, these processors may have various throughputs, and
suppliers may have various reservation prices. Each user has a linear utility function,
and during considered period he would like to execute one task. The task may use
various processors, but not two processors simultaneously.

Model of a supplier. The supplier j owns a processor which performs sj cycles during
a time unit with specific cost cj. During the period it may provide total sjT cycles.

When selling qj CPU cycles at the price pj, the supplier will obtain the profit
(pj – cj)qj. His goal is to choose supply during the period so as to maximize the profit
(supplier's surplus): (pj – cj)qj → max subject to 0 ≤ qj ≤ sjT.

Then the supply correspondence of supplier j has the following form:

Sj(pj) =
⎪
⎩

⎪
⎨

⎧

>

=

<

. if ,

, if ,] [0,

, if ,0

jjj

jjj

jj

cpTs

cpTs

cp

 (1)

Model of a user. The user i has budget Bi and one task of volume Qi (CPU cycles).
Therefore, he is willing to pay ai = Bi / Qi for one cycle.

Consumption bundle of the user i is a vector xi = (xij)j, where xij ≥ 0 is the number
of cycles of processor j allocated to task i. Such vector xi should meet the following
conditions: (a) Tsx

j jij ≤∑)/((the total execution time of a task over all processors

should not exceed the length of period); (b) ∑ j ijx ≤ Qi (the total number of cycles

allocated to a task at all processors should not exceed its volume).
Let Xi be the set of all consumption bundles of the user i and let pj be the price of

the processor j cycles. Set p = (pj)j. Choosing some xi ∈ Xi under the prices p, the user
i obtains utility (consumer’s surplus) vi(x

i) = ∑ −
j ijji xpa)(. Thus, the user i selects

xi ∈ Xi so as to maximize utility function vi(x
i) under the budget restriction

∑ ≤
j iijj Bxp .

3 Equilibria

Each supplier j owns sjT CPU cycles during the considered period. If he have chosen
supply qj, then the situation may be equivalently interpreted as follows: the supplier j
demanded x0j = sjT – qj cycles of the processor j. Set x0 = (x0j)j.

Equilibrium in the considered market is a pare (x, p), where x = (x0, x1
, …, xn), such

that: (i) ∑ =

N

i ijx
0

≤ sjT for all j with equality if pj > 0 (the excess supply has zero price);

(ii) xi maximizes the utility function vi(x
i) over xi∈Xi; (iii) pi ≥ 0 for all i.

318 A. Khutoretskij and S. Bredikhin

If (x, p) is an equilibrium, then p is a vector of equilibrium prices, and x is an equi-
librium distribution.

Proposition 1. If (y, p) is an equilibrium, then there exists such equilibrium (x, p)
with the same prices, that

∑
=

N

i
ijx

0

= sjT for all j, (2)

i.e. at the same equilibrium prices an equilibrium distribution exists, in which the de-
mand of each supplier is exactly equal to unused remainder of the corresponding re-
source.

Proposition 2. If (x, p1) is an equilibrium, then there exists such equilibrium (x, p)
with the same distribution, that

pj ≥ cj for all j. (3)

We shall call equilibrium (x, p) normal, if it satisfies the conditions (2) and (3).
On the basis of the propositions 1 and 2 we will consider only normal equilibria

later on. In order to describe all such equilibria, let us consider the following linear
programming problem:

f(x) = ∑∑
= =

→−
M

i

N

j
ijji xca

1 1

max)((4)

subject to

∑ ≤
j

iij Qx for all i ≥ 1, (5)

∑
=

N

i
ijx

0

= sjT for all j, (6)

∑ ≤
j j

ij T
s

x
 for all i ≥ 1, (7)

x ≥ 0. (8)

The problem dual to (4) – (8) has the following form:

h(α, π, β) = ∑ ∑ ∑
≥ ≥

→β+π+α
1 1

min
i j i

ijjii TsTQ (9)

subject to: αi + πj + βi / sj ≥ ai – cj; αi ≥ 0; πj ≥ 0; βi ≥ 0 for all i, j. (10)

Here α = (αi)i, π = (πj)j and β = (βi)i are vectors of dual variables for restrictions (5),
(6), and (7), respectively.

The following two theorems establish a correspondence between the normal equi-
libria and optimal solutions to problems (4) – (8), (9) – (10).

 Distributions and Schedules of CPU Time in a Multiprocessor System 319

Theorem 1. If x is an optimal solution to the problem (4) – (8), (α, π, β) is an optimal
solution to the problem (9) – (10), and pj = cj + πj, then (x, p) is a normal equilibrium.

Theorem 2. If (x, p) is a normal equilibrium and πj = pj – cj for all j, then x is an op-
timal solution to the problem (4) – (8) and there exist such vectors α and β, that
(α, π, β) is an optimal solution to the problem (9) – (10).

Let us note some properties of a normal equilibrium (x, p).

 1. ∑ j ijj xp ≤ Bi (in equilibrium, the total payment of each user does not exceed

his budget).
 2. If xij > 0, then cj ≤ pj ≤ ai (the equilibrium price determines the distribution of
the total surplus cj – ai between consumer i and supplier j).
 3. If sj < sk and xij > 0 for some i, then pj < pk (the less throughput of an active
processor, the less price of its cycle).

4 Schedules

An optimal solution to the problem (4) – (8) provides an equilibrium distribution of
CPU time. A question appears: is it possible to realize this distribution by any sched-
ule in the sense of the following definition.

The schedule corresponding to distribution x is a collection of intervals [α k
ij , β k

ij]

(during which execution of the task i is scheduled at the processor j) for each i, j (1 ≤ i
≤ M, 1 ≤ j ≤ N) such, that: (a) [α k

ij , β k
ij] ∩ [α l

mn , β l
mn] = ∅ if: j = n and i ≠ m; or j =

n, i = m, and k ≠ l; or j ≠ n and i = m (intervals allocated to different tasks at the same
processor are pairwise disjoint, and intervals allocated to the same task are pairwise
disjoint as well); (b) sj∑ α−β

k

k
ij

k
ij][= j

ix (the total time allocated to task i at processor

j covers j
ix cycles). The schedule corresponding to an equilibrium distribution (if any)

will be called equilibrium schedule.

4.1 A Sufficient Condition for Existence of an Equilibrium Schedule

Assume that the most laborious task may be solved at the slowest processor during
the considered period:

Qi ≤ sjT for all i, j. (11)

Assumption (11) simplifies the problem (4) – (8) making the constraints (7) unnec-
essary: they are fulfilled for any distribution that meets other restrictions of the prob-
lem.

Assume that the processors are numbered in the order of non-decreasing сj, and the
tasks are numbered in the order of non-increasing ai.

Let us say that the distribution x is dense, if

xmn = min{snT –∑ <mi inx , Qm –∑ <nj jmx } for all m, n. (12)

320 A. Khutoretskij and S. Bredikhin

It is easy to see that the dense distribution is uniquely defined by the orderings of the
values ai and cj.

Theorem 3. Under the condition (11), the dense distribution is an optimal solution of
the problem (4) – (8) (and, consequently, it is an equilibrium distribution).

Theorem 4. Under the condition (11), there exists a schedule corresponding to the
dense distribution (and, consequently, it is an equilibrium schedule).

The last theorem is proven constructively, i.e. the simple algorithm is proposed for
construction of the schedule corresponding to the dense distribution.

4.2 Sketch of the Algorithm for Constructing the Equilibrium Schedule

If a1 < c1, then the equilibrium schedule is empty, none of tasks is solved.
If a1 ≥ c1, then at each step we will do the following: select the first underloaded

processor j and the first incompletely allocated task i. If ai ≥ cj, then allocate to task i
at processor j a time-interval with beginning at the first moment unoccupied at this
processor. The length of this interval is defined by (12): the minimum of non-
allocated volume of the task and non-distributed capacity of the processor. If ai < cj,
or all tasks are allocated, or all processors are loaded, then the schedule is constructed.

From assumption (11) it follows that: (a) the algorithm will allocate not more than
two intervals (possibly, no intervals) to each task; (b) if two intervals are allocated to
the same task, then they do not intersect, and are located at processors with consecu-
tive numbers (j and j + 1); one of this intervals occupies the end of the distributed pe-
riod at the processor j, and the second one occupies the beginning of the period at the
processor j + 1.

References

1. Gray, J.: Distributed Computing Economics. In: Herbert, A.J., Jones, K.S. (eds.) Computer
Systems: Theory, Technology, and Applications, pp. 93–101. Springer, New York (2003)

2. Wolski, R., Brevik, J., Plank, J., Bryan, T.: Grid resource allocation and control using com-
putational economies. In: Berman, F., Fox, G., Hey, T. (eds.) Grid Computing. Making the
Global Infrastructure a Reality, pp. 747–773. John Wiley & Sons, Chichester (2003)

3. Bredin, J., Kotz, D., Rus, D.: Utility Driven Mobile-Agent Scheduling. Technical Report
PCS-TR98-331. Hanover, Dartmouth College, Department of Computer Science (1998)

4. Bredikhin, S.V., Vyalkov, I.A., Savchenko, I., Yu., K.A.B.: Two Models of Adjusting for
Distribution of Computational Resources (in Russian). Siberian Journal of Industrial
Mathematics, IX(1(25)), 28–46 (2006)

5. Bredikhin, S.V., Tiunova, E.A., Khutoretskij, A.B.: Price Coordination of Supply and De-
mand at Distribution of Multiprocessor System Capacity (in Russian). Siberian Journal of
Industrial Mathematics X(1(31)), 20–28 (2007)

Visualizing Potential Deadlocks in

Multithreaded Programs�

Byung-Chul Kim1, Sang-Woo Jun2, Dae Joon Hwang3, and Yong-Kee Jun1,��

1 Gyeongsang National University, Jinju, 660-701, South Korea
2 Seoul National University, Seoul, 151-742, South Korea

3 SungKyunKwan University, Suwon, 440-746, South Korea
bckim@gnu.ac.kr, aradia.jun@gmail.com, djhwang@skku.edu, jun@gnu.ac.kr

Abstract. It is important to analyze and identify potential deadlocks
resident in multithreaded programs from a successful deadlock-free exe-
cution, because the nondeterministic nature of such programs may hide
the errors during testing. Visualizing the runtime behaviors of locking
operations makes it possible to debug such errors effectively, because it
provides intuitive understanding of different feasible executions caused
by nondeterminism. However, with previous visualization techniques, it
is hard to capture alternate orders imposed by locks due to their repre-
sentation of a partial-order over locking operations. This paper presents a
novel graph, called lock-causality graph, which represents alternate orders
over locking operations. A visualization tool implements the graph, and
demonstrates its power using the classical dining-philosophers problem
written in Java. The experiment result shows that the graph provides a
simple but powerful representation of potential deadlocks in an execution
instance not deadlocked.

Keywords: multithreaded programs, debugging, potential deadlocks,
visualization, lock-causality graph.

1 Introduction

A lock is a synchronization mechanism for preventing shared resources from
being accessed by threads with no proper synchronization. A deadlock [1,4],
which blocks some threads permanently, is one of the most common problems in
multithreaded programs [5,15] which use the lock mechanism. But the inherent
nondeterminism of multithreaded programs makes these deadlocks difficult to
analyze, test and debug [9,13]. Nondeterminism makes multiple executions of
same programs with the same input produce different results. This means that

� This research was supported by the MKE (The Ministry of Knowledge Economy),
Korea,under the ITRC (Information Technology Research Center) support program
supervised by the IITA (Institute for Information Technology Advancement) (IITA-
2009-C1090-0904-0001).

�� Corresponding author: In Gyeongsang National University, he is also involved in the
Research Institute of Computer and Information Communication (RICIC).

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 321–330, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

322 B.-C. Kim et al.

deadlocks resident in such programs may never occur during testing. Therefore,
debugging of multithreaded programs requires an effective technique to analyze
and identify potential deadlocks from a successful deadlock-free execution.

Some researches [1,2,4] have presented automatic techniques for detecting po-
tential deadlocks from an observed execution which is not deadlocked. These
techniques report the location of detected potential deadlock with the informa-
tion about threads and locks involved in such deadlocks, but do not provide the
information on what executions can actually cause such deadlocks. Therefore,
the results reported by the automatic techniques allow users to check whether a
program may contain deadlocks, but they are still difficult to debug the detected
deadlocks correctly and reasonably.

In general,the execution of multithreaded programs is complex as well as the
amount of traces is large, so that it is not easy to analyze the traces for de-
bugging such errors. Visualization [7,10,13] can ease the understanding of the
large and complex situations. Visualizing the runtime behaviors of locking oper-
ations helps to debug such errors correctly and reasonably, because it provides
intuitive understanding of different feasible executions caused by nondetermin-
ism. However, The previous visualization techniques [3,6,12,14,16] represent a
partial-order over locking operations with no reflection of alternate orders which
could have occurred by such operations.

This paper presents a novel graph, called lock-causality graph, which repre-
sents alternate orders over locking operations for helping to identify and debug
potential deadlocks in multithreaded programs. The graph uses a set of traces
to represent locking operations as its nodes, and threading operations between
two code blocks as its edges. The constructed graph has three types of symbols,
which are �, , and ∨ to depict the locking operations and three kinds of arrow
symbols, which are solid, dashed, and dotted arrows to depict the threading op-
erations. A visualization tool implements the graph, and demonstrates its power
using the classical dining-philosophers problem written in Java. The experiment
result shows that the graph provides a simple but powerful representation of
potential deadlocks in a successful deadlock-free execution.

This paper has some limitations. First, this paper only attempts to depict the
executions caused by different schedules, not different inputs to the program.
This limits is intrinsic to pure dynamic analysis, which look only at executions
and not at the program itself. Second, this paper helps to identify potential
deadlocks in multithreaded programs, but does not detect such errors automat-
ically. The users’ effort is required for identifying potential deadlocks from the
visualized behavior and is essential in analyzing the cause of such errors for
debugging.

This paper is organized as follows: Section 2 introduces previous work which
visualizes the behavior of locking operations for debugging multithreaded pro-
grams. In Section 3, visualizing potential deadlocks with the lock-causality graph
is presented. Section 4 describes a visualization tool which implements the graph.
Finally, conclusion and future works on this paper are given in Section 5.

Visualizing Potential Deadlocks in Multithreaded Programs 323

2 Related Work

Many approaches have developed for visualizing the runtime behavior of locking
operations for debugging deadlocks in multithreaded programs. Some of these
approaches, Javis [14] and Jacot [12], use the UML (Unified Modeling Language)
paradigm which is the standard for visual modeling of object-oriented systems.
Javis is a visualizing and debugging tool for multithreaded Java programs. Javis
visualizes only the actual deadlocks detected from traces on two diagrams, which
are the sequence diagram and the collaboration diagram. Javis supports abstrac-
tion, showing only the objects directly involved in the deadlock. Jacot is also a
dynamic visualization tool for multithreaded Java programs. The tool has the
UML sequence diagram and the thread state diagram to depict the interaction
between objects and the interleaving of threads over the flow of time.

However, the standard sequential diagram of UML is insufficient for repre-
senting the happens-before relation of multithreaded programs [3]. An extension
technique [3] of the sequential diagram is presented in order to address short-
comings of such a diagram. The technique adds some notations for threads as
executable tasks and the happens-before relation between events.

MutexView [16] has two size-varying circles to represent the relationship be-
tween threads and locks of the POSIX thread programming library on the KSR
system. A thread is indicated with a small circle distinguished by color and the
locks are represented with big circles. When a thread is trying to acquire the
lock, the small circle of the thread appears somewhere around the circle cor-
responding to the lock. When a thread gets the lock, it moves into the circle
and remains there until it releases the lock. Then it leaves the circle and disap-
pears. MutexView animates such situations and represents the actual deadlocks
at runtime.

The History Graph Window [6] shows the execution history of all threads. This
tool shows each thread with a history bar running left to right. Each history bar
has a color coded with green, blue, or red for running, joining or blocked by a
synchronization primitive, respectively. The History Graph Window has several
tags, each of which is related to a monitor, to visualize the behavior of locking
operations on-the-fly.

These approaches are hard to analyze and identify potential deadlocks from
their representations of multithreaded programs. They reflect a partial-order
rather than alternate orders over locking operations. This makes it difficult
to analyze different feasible executions which could have occurred by locking
operations.

3 Visualizing Potential Deadlocks

In order to visualize potential deadlocks in multithreaded programs, we presents
the lock-causality graph which represents alternate orders over locking opera-
tions. The lock-causality graph uses a set of traces from a successful deadlock-
free execution, which collects threading operations and locking operations. The

324 B.-C. Kim et al.

// Trace for // Trace for // Trace for // Trace for
// Main thread // t1 thread // t2 thread // t3 thread
1:TS:0:0:0:0 1:TS:0:0:1:2 1:TS:0:0:1:3 1:TS:0:0:1:2
2:TC:0:0:0:0 2:TC:0:0:0:0 2:LA:1:L1:0:0 2:LA:1:L3:0:0
3:TC:0:0:0:0 3:LA:1:L1:0:0 3:LA:2:L3:0:0 3:LN:1:L3:0:0
4:TJ:0:0:1:9 4:LA:2:L2:0:0 4:LA:3:L2:0:0 4:LA:2:L2:0:0
5:LA:1:L3:0:0 5:LA:3:L3:0:0 5:LW:3:L3:0:0 5:LR:1:L2:0:0
6:LA:2:L2:0:0 6:LR:2:L3:0:0 6:LR:2:L2:0:0 6:LR:0:L3:0:0
7:LR:1:L2:0:0 7:LR:1:L2:0:0 7:LR:1:L3:0:0 7:TT:0:0:0:0
8:LR:0:L3:0:0 8:LR:0:L1:0:0 8:LR:0:L1:0:0
9:TT:0:0:0:0 9:TT:0:0:0:0 9:TT:0:0:0:0

Fig. 1. A set of deadlock-free traces generated from an execution of a multithreaded
program

threading operations refer to thread start (TS), thread terminate (TT), thread
create (TC), and thread join (TJ) events. The TS and the TT events occur
when a thread starts and finishes the execution of its run method, respectively.
The TC event is generated when a thread completes the invocation of the start
method on a new thread, and the TJ event is generated when a thread, blocked
by invoking join method on another thread, resumes its execution. The locking
operations refer to lock acquire (LA), lock release (LR), lock wait (LW), lock
notify (LN) events. The LA and LR events are generated when a thread obtains
and releases a lock for entering and leaving a synchronized region, respectively.
The LW event occurs when a thread executing a synchronized region invokes
the wait method on an object. The LN event occurs when a thread invokes the
notify method on an object.

Fig. 1 shows a set of deadlock-free traces collected from an execution of a
multithreaded program. Each thread may have a local-file to store its trace for
efficiency. Each line of the trace consists of six entries separated by ‘:’. The first
entry is a timestamp indicating the number of events a thread has generated by
that time. This number is increased by one whenever a thread generates an event.
The second entry is the type of the events generated in the thread. The third
entry is the locking level indicating the number of locks owned by the thread
at that time. The fourth entry indicates the identifier of an object specified by
the locking operations. The next two entries consist of a thread identifier and a
timestamp, indicating the event which corresponds to this event.

The collected traces are used to analyze code blocks and execution orders
over the code blocks. A code block is defined to be a set of instructions between
two consecutive events of interest in the same thread. Each of Main, t1, and t2
threads has 8 code blocks and the thread t3 has 6 code blocks. The execution
order is decided according to event types. If an event type is one of TS, TT, TC,
and TJ events, which are threading operations, the execution order defined by
the event is “deterministic”. Deterministic order means that the blocks defined

Visualizing Potential Deadlocks in Multithreaded Programs 325

// Nodes for // Nodes for // Nodes for // Nodes for
// Main thread // t1 thread // t2 thread // t3 thread
0,1:-,-:-,-:0 1,1:-,-:-,-:0 2,1:-,-:-,-:0 3,1:-,-:-,-:0
0,2:-,-:-,-:0 1,2:-,-:-,-:0 2,2:LA,-:L1,-:1 3,2:LA,LN:L3,L3:1
0,3:-,-:-,-:0 1,3:LA,-:L1,-:1 2,3:LA,-:L3,-:2 3,3:-,-:-,-:1
0,4:-,-:-,-:0 1,4:LA,-:L2,-:2 2,4:LA,-:L2,-:3 3,4:LA,LR:L2,L2:2
0,5:LA,-:L3,-:1 1,5:LA,LR:L3,L3:3 2,5:LW,LR:L3,L2:3 3,5:-,LR:-,L3:1
0,6:LA,LR:L2,L2:2 1,6:-,LR:-,L2:2 2,6:-,LR:-,L3:2 3,6:-,-:-,-:0
0,7:-,LR:-L3:1 1,7:-,LR:-,L1:1 2,7:-,LR:-,L1:1
0,8:-,-:-,-:0 1,8:-,-:-,-:0 2,8:-,-:-,-:0

(a) The code blocks including the nondeterministic orders

(TC:0,1:1,1), (TC:0,2:2,1), (TC:1,1:3,1), (TJ:1,8:1,4)

(b)The deterministic orders

Fig. 2. Information generated by analyzing the traces of Fig. 1. The code blocks and
the deterministic orders are represented as nodes and edges of a lock-causality graph,
respectively.

by the event always execute in the same order in different executions. Otherwise,
i.e. if the event type is one of the locking operations, the execution order caused
by the event is “nondeterministic.” Nondeterministic order means that the blocks
defined by the event may occur in different order in different executions.

Fig. 2 shows the code blocks and the execution orders generated after the
analysis of the traces. The nondeterministic orders are shown on the code blocks
and the deterministic orders are shown separately. The code blocks consist of
four entries separated by ‘:’. The first entry indicates a unique identifier of a
block, which consists of a thread identifier and a block number. The second
entry, which consists of two locking operations, indicates the nondeterministic
order constrained on the block. The mark ‘-’ implies that the block does not have
a locking constraint. The next entry specifies two identifiers of objects used by
the locking operations. (The identifier of the object is a positive number rather
than the symbolic name in practice.) The mark ‘-’ implies that this block does
not have such an object. The last entry specifies the number of locks which the
block owns. A deterministic order consists of a operation type, a source block
identifier, and a destination block identifier. The entries of each deterministic
order are separated by ‘:’.

The lock-causality graph is a directed-acyclic graph whose nodes represent the
code blocks and whose edges represent the deterministic orders. The construction
of the graph is performed in two steps. In the first step, the nodes in the same
thread are connected and in the second step, two nodes in different threads are
connected by the deterministic order. In order to visualize the constructed graph,
we simply symbolize a node with a rectangle box and an edge with an arrow.
The constraints on a block imposed by nondeterministic orders are marked by

326 B.-C. Kim et al.

three symbols, which are � for LA event, for LR event, and ∨ for LW and LN
events. Their corresponding locking objects are distinguished by a unique color.
The graph has three kinds of edges, which are sequential edges for connecting
two nodes in the same thread, fork edges for TC events, and join edges for TJ
events. These three edges are represented with a solid arrow for a sequential
edge, a dotted arrow for a join edge, and a dashed arrow for a fork edge with the
head forward the destination node of an edge. Fig. 3 shows the visualized lock-
causality graph which was produced by the code blocks and the deterministic
orders of Fig. 2. The graph uses three colors for representing three lock objects,
green for the L1 object, red for the L2 object, and blue for the L3 object.

4 Debugging Potential Deadlocks

Nondeterminism may result in deadlocks resident in multithreaded programs
that are hidden during testing. The lock-causality graph presented by this pa-
per aims at helping to analyze and identify potential deadlocks that have not
occurred in an observed execution. This section describes how users analyze and
identify potential deadlocks on the graph.

The lock-causality graph captures the happens-before relation over locking
operations and locking constraints imposed on the blocks. The happens-before
relation defines a partial order between the locking operations. If a locking oper-
ation l1 happens before another locking operation l2, then l1 must occur before
l2 in all feasible executions of the program with the same input. Determining
such a relation on two locking operations requires checking whether there is a
path between them on the graph. A locking operation l1 is an ancestor of another
locking operation l2 if there is a path from l1 to l2 on the graph. Two locking
operations are concurrent if neither one is an ancestor of the other. The locking
constraint imposed on a block means that the block can not be executed by
multiple threads at the same time. A sequence of blocks, which starts from the
symbol � and ends at its closest symbol with the same color, defines a syn-
chronized region. When a thread is being executed in the region, other threads
attempting to enter another synchronized region defined by the same color are
blocked.

The graph of Fig. 3 shows that thread t1 has tried to acquire two locks in
order of red and blue colors, while the others have obtained them in order of
blue and red colors. The situation implies that three pairs of threads, (t1, Main),
(t1, t2), and (t1, t3), have a possibility to be involved in deadlocks. However, the
additional information perceived from the graph tells that t1 and Main threads
are not involved in a deadlock, because the join edge from t1 to Main makes the
synchronized region in Main thread to be always executed after t1 thread’s exe-
cution is completed. The graph shows that t1 and t2 threads do not produce such
an error. That is because the synchronized regions in both threads are protected
by another locking object with green color. In order for both threads to enter
the synchronized regions, they must obtain the lock for the object protecting
the regions first. The graph intuitively shows that there is no path between the

Visualizing Potential Deadlocks in Multithreaded Programs 327

Fig. 3. The lock-causality graph visualized with the nodes and edges of Fig. 2. The
small letters, r, g, and b right to the code blocks indicate red, blue, and green,
respectively.

synchronized regions in t1 and t3 nor any locking object protecting them on the
graph. Therefore, two threads may require their second locks while owning their
first locks in some executions. Such a situation results in both threads involved
in a deadlock.

The lock-causality graph provides some intuitive ways to debug the discovered
potential deadlock. The first way is to wrap the synchronized region in t1 thread
with the green-colored object. This is the simplest way but the extension of
synchronized region may decrease the performance of the program. The second
way is to change the order of the red and blue locks acquired by the t1 thread
into the order of the locks of blue and red. Users can easily understand that
the second way is the clearer and more reasonable way to debug the potential
deadlock without performance loss, compared to the first treatment.

328 B.-C. Kim et al.

5 Tool Development

We have implemented a tool that uses the lock-causality graph to visualize the
behavior of locking operations for analyzing and identifying potential deadlocks
in multithreaded Java programs. The tool consists of two modules: collector and
visualizer. The collector is the module in charge of capturing the runtime infor-
mation during the execution of a program and then storing the information on
thread-local files for efficiency. The input of the collector is a Java program with
a main method and a list of classes the user is interested in. The collector cap-
tures the runtime information of objects, classes and threads related to the given
classes. That is, the module filters out information which have no relationship
to the given classes.

The visualizer module analyzes the collected information, constructs the lock-
causality graph, and then draws the graph on a planar view. This module needs
to decide the position of the nodes in the graph. Main thread is located at the
horizontal center of the view and the location of the threads created by the Main
thread follows the odd-even system. For example, the first thread created by the
Main thread is positioned on the left side of the Main thread and the second
thread is placed on its right side. The latest created thread has the nearest
position to its parent. The nodes in a thread are assigned to a single vertical
line. The vertical position of a node is positioned below more than that of its
parent node. The vertical position of the first node in the Main thread is always
zero. The vertical position of the first nodes in the other threads is always one
more in value than that of the source node of the fork edge.

The tool is applied to the classical “dining-philosophers problem” for exper-
imenting the effectiveness of the lock-causality graph. The experiment is per-
formed on a Windows system with Intel Dual 2.5 GHz processor and 2 GB
memory. We suppose that all five philosophers take their left chopsticks simul-
taneously. Then they will all block on their right chopsticks, and there will be a
deadlock.

Fig. 4 shows the result of our tool applied on the program. The tool has four
panels, which are a static information panel, a dynamic information panel, a
graph panel, and a message panel to provide information related to the programs
of interest. The static information panel has a directory view for users to register
classes they are interested in and execute a Java program, and a class view for
showing the registered classes. The dynamic information panel has an object
view and a thread view for showing information of objects and threads, which
are instances of the classes of interest, respectively. The graph panel shows a
lock-causality graph for representing the runtime behavior of the program of
interest. Finally, the message panel shows output and error messages generated
during execution in the output view and the error view, respectively.

In Fig. 4, the class view implies that the program was executed with three
registered classes of interest and the object view tells us that five objects were
instantiated from the class Chopstick and five objects were instantiated from
the class Philosopher. The graph view shows that a thread creates five other
threads being synchronized to other threads with two locking objects, and then

Visualizing Potential Deadlocks in Multithreaded Programs 329

Fig. 4. The tool shows from an successful deadlock-free execution that the experi-
mented program can be deadlocked in different scheduling cases

waits for each created thread to complete. The graph view indicates that all of
the locking objects are assigned to each thread, except for one thread, and then
simultaneously assigned to the other threads. Therefore, users can intuitively see
that the program may be deadlocked in some execution.

6 Conclusion

Nondeterminism may cause deadlocks resident in multithreaded program to be
hidden during testing. This paper presented a lock-causality graph for helping to
analyze and identify potential deadlocks in multithreaded programs. The graph
represents alternate orders over lock operations by analyzing a set of traces gen-
erated from a successful deadlock-free execution. The experiment result shows
that the graph provides a simple and powerful representation of potential dead-
locks in multithreaded programs not deadlocked. We have some future work to
do on our graph. The first is to extend our graph for supporting different syn-
chronization mechanisms. The second is to improve our graph for dealing with
long-run and large programs.

330 B.-C. Kim et al.

References

1. Agarwal, A., Garg, V.K.: Run-Time Detection of Potential Deadlocks for Programs
with Locks, Semaphores, and Condition Variables. In: 2006 Workshop on Parallel
and Distributed Systems: Testing and Debugging (PADTAD), Portland, Maine,
pp. 51–60. ACM, New York (2006)

2. Agarwal, A., Wang, L., Stoller, S.D.: Detecting Potential Deadlocks with Static
Analysis and Run-Time Monitoring. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC
2005. LNCS, vol. 3875, pp. 191–207. Springer, Heidelberg (2006)

3. Artho, C., Havelund, K., Honiden, S.: Visualization of Concurrent Program Exe-
cutions. In: 31st Annual International Computer Software and Applications Con-
ference (COMPSAC), vol. 2, pp. 541–546. IEEE, Los Alamitos (2007)

4. Bensalem, S., Havelund, K.: Dynamic Deadlock Anaysis of Multi-threaded Pro-
grams. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC 2005. LNCS, vol. 3875,
pp. 208–223. Springer, Heidelberg (2006)

5. Birrell, D.A.: An Introduction to Programming with Threads. Technical Report
SR-35, Digital Equipment Corporation (January 1989)

6. Carr, S., Mayo, J., Shene, C.-K.: ThreadMentor: A Pedagogical Tool for
Multithreaded Programming. Journal on Education Resources in Computing
(JERIC) 3(1), 1–30 (2003)

7. Diehl, S.: Software Visualization: Visualizing the Structure, Behavior, and Evolve
of Software. Springer, Heidelberg (2007)

8. Fidge, C.J.: Partial Orders for Parallel Debugging. In: SIGPLAN/SIGOPS Work-
shop on Parallel and Distributed Debugging, pp. 183–194. ACM Press, New York
(1988)

9. Gatlin, S.K.: Trials and Tribulations of Debugging Concurrency. Queue 2(7), 66–73
(2004)

10. Kraemer, E.: Visualizing Concurrent Programs. In: Software Visualization: Pro-
gramming as a Multimedia Experience, pp. 237–258. The MIT Press, Cambridge
(1998)

11. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.
Communication of the ACM 21(7), 558–565 (1978)

12. Leroux, H., Requile-Romanczuk, A., Mingins, C.: JACOT: A Tool to Dynami-
cally Visualise the Execution of Concurrent Java Programs. In: 2nd Int. Conf. on
Principles and Practice of Programming in Java (PPPJ), Kilkenny City, Ireland,
pp. 201–206. ACM, New York (2003)

13. McDowell, C.E., Helmbold, D.P.: Debugging Concurrent Programs. Computing
Surveys 21(4), 593–622 (1989)

14. Mehner, K.: JaVis: A UML-Based Visualization and Debugging Environment for
Concurrent Java Programs. In: Diehl, S. (ed.) Dagstuhl Seminar 2001. LNCS,
vol. 2269, pp. 163–175. Springer, Heidelberg (2002)

15. Sanden, B.: Coping with Java Threads. Computer 37(4), 20–27 (2004)
16. Zhao, Q.A., Stasko, J.T.: Visualizing the Execution of Threads-based Parallel Pro-

grams. Technical Report GIT-GVU-95-01, College of Computing, George Institute
of Technology (January 1995)

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 331–343, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Fragmentation of Numerical Algorithms for the Parallel
Subroutines Library∗

Victor E. Malyshkin, Sergey B. Sorokin, and Ksenia G. Chajuk

Institute of Computational Mathematics and Mathematical Geophysics,
Russian Academy of Sciences, Novosibirsk

{malysh,chauk}@ssd.sscc.ru, sorokin@sscc.ru
http://www.sscc.ru

Abstract. Fragmentation of the often used numerical algorithms for inclusion
into the library of parallel numerical subroutines are considered. Algorithms
and programs fragmentation allow to create parallel programs that can be
executed on parallel computers of different types (multiprocessors and/or
multicomputers) and can be dynamically tuned to all the available resources.
Programs’ fragmentation is the way of automatic providing of the dynamic
properties of parallel programs, like dynamic load balancing. Algorithm’s
fragmentation is a technological method of numerical algorithms paralleliza-
tion which provides their effective parallel implementation.

Keywords: Asynchronous programming, parallel program, numerical algo-
rithm, fragments based programming, dynamic programs’ properties.

1 Introduction

The role that libraries of standard subroutines play in the sequential implementation
of numerical models is well known. The development of similar libraries of parallel
numerical subroutines is faced with a number of difficulties. The problems are caused
by the necessity to provide automatically the dynamic properties of application paral-
lel subroutines such as dynamic tunability to all the available resources of a computer
in the course of execution, internodes data transfer in parallel with the program execu-
tion to reduce overhead, dynamic load balancing and the others. The organization of a
library subroutines and execution of their calls from sequential and/or parallel appli-
cation programs should be made in such a way in order to avoid the necessity to pro-
gram dynamic properties.

For existing multicomputers many libraries of numerical subroutines were devel-
oped [1-8]. Basing on algorithm and program fragmentation, we plan to develop the
portable library of subroutines for numerical modeling that should also provide auto-
matically the dynamic properties of an application program.

∗ The work was supported by the grant Rosobrazovanie, contract RNP.2.2.1.1.3653 and by

the grant of the integrating program of Siberian Branch of the Russian Academy of Science
IP 5.1.

332 V.E. Malyshkin, S.B. Sorokin, and K.G. Chajuk

2 The Necessary Dynamic Properties of a Parallel Program

We consider that any good numerical parallel subprogram for a multicomputer should
possess a number of general necessary properties.

1. In the course of execution a parallel program is represented as a set of executed in
parallel and interacting processes1. The processes are assigned for execution to
different nodes of multicomputer providing equal workload of all the nodes.

2. Nondeterministic execution. On the set of processes the partial order of the proc-
esses execution is defined in some way, for example, like this is done in asyn-
chronous model of computations.

3. Tunability to all the available resources of a multicomputer. The executed pro-
gram should use all the available and necessary resources of a multicomputer.

4. Dynamic load balancing. Depending on input data, on different stages of execu-
tion, the processes might consume substantially different volume of resources (for
example, depending on number of iterations of an internal loop). In similar cases
a part of processes from overloaded processor element (PE) should migrate to a
neighbour underloaded node equalizing their workload.

5. Portability among multicomputers of some class. Portability, in particular, means,
that the structure and configuration of a multicomputer, volume of its resources,
should not be reflected in the code of an application parallel program.

6. Numerical model behavioral dynamism. Dynamic load balancing algorithms in a
program, implementing large scale numerical model, depends on the numerical
model behavior. In particular, prevailing direction of particles moving in the model
of plasma energy exchange (implemented with Particle-In-Cell method [9]) can be
used in order to construct the best plan of workload re-balancing. This substan-
tially reduces the number of time consumed operations of the dynamic workload
re-balancing.

7. Dynamic execution of the procedure call like call Proc(M, …) where Proc is frag-
mented numerical subroutine, M is the distributed array. This call should not de-
pend on array M distribution and/or migration of its parts (M distribution and/or
migration should not be described in the text of a program).

3 Numerical Algorithms Fragmentation

Technology of program construction out of ready made fragments/modules is well
known and the execution of such a fragmented program with the use of a run-time
system was discussed in numerous publications [10-17].

Our approach to fragmented programming is based on the method of parallel pro-
gram synthesis [17]. The general method of parallel programs construction is
reduced to parallel programming language and system, peculiarities of numerical
algorithms representation and execution are included into the language. For frag-
mented numerical programs execution the FLS run time system [16] was developed,
that knows from compiler the structure of a numerical fragmented algorithm and

1 Process – an executed program + its input/output data.

 Fragmentation of Numerical Algorithms for the Parallel Subroutines Library 333

uses this knowledge for optimization of the algorithm execution. In such a way, the
library of the fragmented numerical subroutines is not initially considered as a uni-
versal tool. It is especially developed as the library of subroutines, oriented to high
performance implementation of the large scale numerical models of natural phe-
nomena. This orientation is mostly embodied in the algorithms of the run-time sys-
tem and the algorithms fragmentation. All the above listed dynamic properties of
fragmented program are provided by the FLS. The development of the set of nu-
merical algorithms represented in the fragmented form (fragmented algorithms) is
the kernel of the library creation project.

The ideas of the numerical algorithms fragmentation are demonstrated below by a
number of examples of widely used numerical algorithms fragmentation, develop-
ment of the fragmented programs and their testing.

In this section the examples of fragmentation of several well known numerical al-
gorithms are given. The description of every algorithm is done in the same style. At
the beginning the initial algorithm is shortly described. Then its fragmented version is
given. Finally, the performance of the sequential implementation of the initial algo-
rithm and the parallel implementation of its fragmented version are compared. In se-
quential program, implementing an initial algorithm, the matrices are represented as a
whole whereas in fragmented program the matrices are located as a set of subma-
trices. In parallel implementation of the fragmented version anywhere the sequential
implementation was used, if possible. All the tested programs were developed with C
language.

All test were executed on smp4x64.sscc.ru. This is four-processors server HP In-
tegrity rx4640 with common memory. It includes 4 processors Intel Itanium2/ 1,5
GH, 4 Mb cache each, 64 GB memory with the bus bandwidth 12,8 GB/sec.

3.1 Matrices Multiplication

Initial Algorithm. The following algorithm of square matrices multiplication is used:

C=A×B,
, 1, , 1, , 1,

() , () , ()ij ij iji j N i j N i j N
A a B b C c= = == = = ,

 , , ,
1

, , , 1, 2,..., .
N

i j i l l j
k

c a b i j l N
=

= × =∑ (1)

This matrices multiplication is implemented by a sequential library subroutine
MMul.

Fig. 1. Fig. 2.

11C

* =
11B

31B

21BA(i, j)

11A
1 3A

12A

334 V.E. Malyshkin, S.B. Sorokin, and K.G. Chajuk

Fragmented Algorithm. Matrices A,B, and C are divided into the submatrices (data
fragments) of the same size (fig. 1), containing M lines and M columns. If there are
K K× data fragments, then M=M/K and it is possible to assign a pair of indexes I, J
, I,J =1,…K to every data fragment. In a Fig. 1 the case K=3 , M= N/3 is presented
The output data fragments

,I JC are computed as

, , ,
1

K

I J I L L J
L

C A B
=

= ×∑ =
,

1

K
L
I J

L

C
=
∑ (2)

where , , 1, 2,...,I J L K= . The matrices multiplication , , ,
L
I J I L L JC A B= × will be

implemented by a sequential library procedure MMul. The formula (2) is illustrated in
Fig. 3 in the case 1I J= = .

Therefore, in partial order to compute the output submatrix CI,J, the program
should be generated in which:

1. first, the MMul subroutine (code fragment) is applied to the input data fragments

,I LA and ,L JB in order to compute the output the data fragments

, , ,
L
I J I L L JC A B= × , , , 1, 2,...,I J L K= . The computation of the data fragments

CL
1,J, 1, 2,...,L K= , can be done in arbitrary order.

A code fragment and its processed input and output data fragments are jointly
called fragment of computation. In the course of execution the fragment of computa-
tion is called process.

2 when all the data fragments , , ,
L
I J I L L JC A B= × for a certain values of I and J are

computed, the sum , ,
1

K
L

I J I J
L

C C
=

=∑ can be computed by a SUM subroutine.

In order to compute the whole matrix C, all the data fragments C1,J should be
computed.

Testing. The implementation of the fragmented version is always done in such a way
that the size of a data fragment is set by a user before the program execution and can
be changed from one execution to another.

The sequential subroutines MMul (1) and SUM are used as a code fragments. The
formed fragments of computation are included into the common queue in proper or-
der. An idle PE choose from the common queue next fragment of computation for
execution, checks the readiness of all the fragment inputs and starts its execution, un-
til all the processes are completed.

After the completion of all the processes the result of initial matrices A and B
multiplication can be found in the matrix C .

Table 1 below contains the results of testing of the fragmented program.
In columns 3, 5, 7 the execution times of fragmented subrputines are given. In col-

umns 4, 6, 8 the speed-ups are presented. The speed-up is calculated as a(n,k) =
ts/tf(n,k), where ts is the time of execution of the sequential program, and tf(n,k) is the
execution time of the fragmented subroutine (k fragments) on n PE.

 Fragmentation of Numerical Algorithms for the Parallel Subroutines Library 335

Table 1.

Execution time and speed-up of fragmented matrices 1000Х1000
multiplication in comparison with the execution time of the sequential

program (360,87 e-6 s)

Numb
er of
fragm
ents

Size of
fragment

1 PE speed-up 2 PE speed-up 4 PE speed-up

1 2 3 4 5 6 7 8

4 500х500 356,99 1,01 180,26 2,00 63,51 5,68

16 250х250 302,36 1,19 167,54 2,15 55,79 6,47

25 200х200 294,64 1,22 159,27 2,27 55,09 6,55

100 100х100 303,77 1,19 156,68 2,30 55,22 6,54

400 50х50 306,09 1,18 163,28 2,21 54,69 6,60

1600 25х25 324,07 1,11 182,81 1,97 54,71 6,60

Resulting graphics is given in Fig. 3.

1000х1000

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

4 16 25 100 400 1600

number of fragment

ac
ce

le
ra

tio
n

1 PE

2 PE

4 PE

Fig. 3.

3.2 Matrix LU-Factorization

Algorithm of a matrix A=LU [18] factirization into right triangular U and left triangu-
lar L matrices is:

336 V.E. Malyshkin, S.B. Sorokin, and K.G. Chajuk

The elements of matrices
, 1,

()ij i j N
lL

=
= and

, 1,
()ij i j N
uU

=
= are calculated re-

currently following the formulae 3.

1 1

1 1

1
, .

j i

ij ij ik kj ij ij ik kj
k kii

l a l u u a l u
l

− −

= =

⎡ ⎤= − = −⎢ ⎥⎣ ⎦
∑ ∑ (3)

Data Fragments (DF): The matrix A, L, and U are divided into the DFs (Fig.1).

Code Fragments (CF): The only CF is used. It calculates:

- If i>j then Lij. Input: DF(i,1), …, DF(i,j), DF(1,j), …, DF(i,j).
 Output: DF(i,j).
- If i<j then Uij. Input: DF(i,1), …, DF(i,i), DF(1,j), ..., DF(i,j).
 Output: DF(i,j).

 - If i=j then Lij and Uij. Input: DF(1,j), …, DF(i,j), DF(i,1), …, DF(i,j). Output:
DF(i,j).

Computation Fragments (CompF) and the Partial Order on the Set of All CompF:

 - CompF(1,1): CF is applied to DF(1,1). Input: DF(1,1). Output: DF(1,1).
 - CompF(1,n1): For every positive integer n1, n1=2..K, CF is applied to DF(1,n1).

Input DF(1,1), …, DF(1,n1). Output: DF(1,n1).
 - CompF(n1,1): For every positive integer n1, n1=2..K, CF is applied to DF(n1,1).

Input DF(1,1), …, DF(n1,1). Output: DF(n1,1).

The partial order on the set of all the CompF(1,n1) and CompF(n2,1) is not defined.
All the computation fragments can be executed in arbitrary order. All these CompF

are less in partial order ρ than CompF(1,1), i.e., ρ ∋ (<(1,1),(1,2)>, <(1,1),(1,3)>, …,

<(1,1),(1,n1)>) ∪ (<(1,1),(2,1)>, <(1,1),(3,1)>, … , <(1,1),(n2,1)>).
 - CompF(2,2): CF is applied to DF(2,2). Input: DF(2,1), DF(1,2), DF(2,2). Output:

DF(2,2). Comp(2,2) is less in partial order ρ than CompF(1,2) and CompF(2,1).
 - CompF(2,n1): For every positive integer n1, n1=3..K, CF is applied to DF(2,n1).

Input DF(2,1), DF(2,2), DF(1,n1), DF(2,n1). Output: DF(2,n1).
 - CompF(n1,2): For every positive integer n1, n1=3..K, CF is applied to DF(n1,2).

Input DF(1,2), …, DF(n1,2), DF(n1,1), DF(n1,2). Output: DF(n1,2).

Order on CompF(2,3), …, CompF(2,n1) and CompF(3,2), … CompF(n2,2) is not
defined, all fragments can be execute in arbitrary order. All these CompFs in

partial order ρ less than CompF(2,2), i.e., ρ∋(<(2,2),(2,3)>,<(2,2),(2,4)>,

…,<(2,2),(2,n2)>)∪(<(2,2),(3,2)>,<(2,2),(4,2)>,<(2,2),(n1,2)>). And go on.

After the CompF(K,K) execution is completed the matrices L and U are computed
(Fig. 4).

 Fragmentation of Numerical Algorithms for the Parallel Subroutines Library 337

 A

Fig. 4.

The defined order is shown in a Fig. 5.

Fig. 5.

Table 2.

Execution time and speed-up of fragmented matrices
10000Х10000 factorization in comparison with the execution

time of the sequential program (3.54 s) Number of
fragments

Size of
fragment

1 PE Speed-
up

2 PE Speed-
up

4 PE Speed-
up

4 5000 3,76 0,94 1,93 1,83 1,13 3,13

16 2500 3,61 0,98 1,84 1,92 1,09 3,25

100 1000 3,52 1,01 1,81 1,96 0,98 3,61

400 500 3,55 1,00 1,73 2,05 0,91 3,89

1600 250 3,59 0,99 1,76 2,01 0,87 4,07

2500 200 3,67 0,96 1,82 1,95 0,90 3,93

10000 100 3,76 0,94 1,85 1,91 0,97 3,65

40000 50 3,84 0,92 1,91 1,85 1,06 3,34

L

L

U

U U
L

U

L

L

U

L

U

338 V.E. Malyshkin, S.B. Sorokin, and K.G. Chajuk

10000х10000

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

4 16 100 400 1600 2500 10000 40000

number of fragments

sp
ee

d
-u

p 1 PE

2 PE

4 PE

Fig. 6.

Testing. The result of testing are presented in Table 2 and Fig. 6.

3.3 QR-Factorization

QR-factorization [18] of a matrix A, N×N, is calculated by multiplication
R=A×Q1×…×QN, where Qi are orthogonal transformations of rotation.

Multiplication A×Q1 will zero all the elements of a matrix A, located in the first

column of the matrix A under element 11a . Multiplication A×Q1×Q2 will zero all the

elements of a matrix A, located in the second column of the matrix A under element

22a and go on. As result the matrix A will be transformed into the right triangular

matrix R.
Example for the case of 3×3 matrix A is below:

1 2 1 1 3 2 2 3 3

Initial

matrix A A A A Q A A Q R A Q

a

= = ⋅ = ⋅ = ⋅

11 12 13 11 12 13 11 12 13 11 12 13

21 22 23 22 23 22 23 22 23

31 32 33 32 33 33 33

 0 0 0

0 0 0 0 0

a a b b b b b b b b b

a a a b b c c c c

a a a b b c d

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟→ → →⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 Fragmentation of Numerical Algorithms for the Parallel Subroutines Library 339

Data Fragments. The matrices Ai are divided into the DFs just as this is done in fig.
1. Intermediate matrices Qi, j=1,2,…,K, are fragmented likewise. The same memory is
used in order to keep Ai and Qi. Actually, at any moment only column of Qi data
fragments is used and kept. Let Ai(i,j) is (i-th,j-th) DF of Ai, Qi(j) is the DF of Qi,
where i=1..K, j=1..K.

Code Fragments . Two types of code fragments:

 - CF1 - calculation of rotation matrices Qi and the elements of matrices Ai re-
calculation. Input: DFs Ai(i,i) and Ai(j,i). Output: Ai+1(j,i) and Qi(j), where i=1..K,
j=i..K.

 - CF2 – re-calculation of matrices Ai elements from matrix Qi. Input: DFs Ai(j,j1)
and Qi(j). Output: Ai+1(j,j1), where i=1..K, j=i..K, j1=i+1.

Computation Fragments and the Partial Order on the Set of All CompF
QR-decomposition of a matrix A is calculated iteratively.

1. The first iteration, i=1.
 a) the fragment of computation CompF(1,1): CF1 is applied to Ai(1,1) and trans-

form Ai(1,1) into the upper triangular form (fig.7). Input: Ai(1,1). Output: Ai(1,1),
Q1(1).

The fragments of computation CompF(1,n1): For every positive integer n1,
n1=2,...,K, CF2 is applied to Ai(1,n1), Input: Ai(1,n1) and Q1(1),. Output: Ai(1,n1).

 b) The fragment of computation CompF(2,1): CF1 is applied to Ai(2,1). Input:
Ai(1,1), A(2,1). Output: Ai(2,1), Q1(2).

 The fragments of computation CompF(2,n1): For every positive integer n1,
n1=2..K, CF2 is applied to Ai(2,n1). Input: Ai(2,n1) and Q1(2). Output: Ai(2,n1).

 c) A fragment of computions CompF(3,1): CF1 is applied to Ai(3,1). Input: Ai(1,1),
Ai(3,1). Output: Ai(3,1), Qi(3).

 The fragments of computation CompF(3,n1): For every positive integer n1,
n1=2..K, CF2 is applied to Ai(3,n1). Input: Ai(3,n1) and Qi(3). Output: Ai(3,n1).

 And so on, while all the Ai(j,1) are set into zero. The other CompF(K,n1), j=2..K,
n1=2..K, also should be executed.

 A partial order of execution on the set of computation fragments CompF(i,j), i>0,
j=2..K, and CompF(i+1,1) is not defined. Therefore, all these computation frag-
ments can be executed in arbitrary order. These fragments of computations are less

in partial order ρ than CompF(i,1). Thus, partial order ρ contains the elements

ρ∋(<(i,1), (i,j)>, <(i,1), (i+1,1)>), where i=1..K, j=2..K.

The partial order ρ defines here the order of computation fragments execution in-
side the iteration. Iterative execution can be defined by the control loop like for and
while. More complex control can be defined, for example, by Petri net.
2) The second iteration, i:=i+1, i≤K. Similarly the computation fragments are defined

for all the Ai(i,j), i=2..K, j=2..K. The code fragment CF1 is applied to all the first
column Ai(i,j), j=i..K. The CF2 is applied to all the Ai(i,j), i=2..K, j=3..K.
And go on until CompF(K,K) is executed and matrix R is calculated.

340 V.E. Malyshkin, S.B. Sorokin, and K.G. Chajuk

After 1st iteration

After 3rd iteration After 2nd iteration

Before 1st iteration

White means zero
elements

Fig.7.

Testing. The graphics below demonstrates the results of fragmented program testing
(Fig. 8).

Far more complex example of Particle-In-Cell method algorithms fragmentation
can be found in [9].

4000x4000

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

16 25 64 100 256 400 1600 6400 25600

number of fragments

sp
ee

d
-u

p

1 PE

2 PE

4 PE

Fig. 8.

 Fragmentation of Numerical Algorithms for the Parallel Subroutines Library 341

4 Qualitative Characteristics of a Fragmented Program Execution

The qualitative graphics of fragmented program execution (the same size of a prob-
lem and the same number of computer resources used) is shown in Fig. 9. The graph-
ics can be explained by the affect of several factors.

1. There is clearly visible minimum of the total time of a fragmented program exe-
cution. Initially, the time of the program execution is decreasing. With growing
the fragments number, more computer resources are involved in computation,
some fragments can be executed in parallel. Then, after minimum, the time of
execution is increasing, because the time of communications and control imple-
mentation began to exceed the benefits of parallel fragments execution.

2. The total time of monoprocessor execution of a fragmented program is less then
the time of execution of the sequential program because of the reduction of the
data access time.

Execution of fragmented programm

0

0,5
1

1,5
2

2,5

0 5 10 15

number of fragments

sp
ee

d
-u

p

Fig. 9.

3. If the size of data fragments is decreasing (accordingly, if the number of data
fragments is increasing), the fragmented program is executed faster since the data
fragments begin fully to fit in cache-memory.

4. The minimal time of execution point corresponds to an optimum ratio between
code fragment, control and communication execution. In this point idle time of
computer resources is reduced to a minimum, size of a fragment is optimal for
available resources, i.e. data fit in a cache, streams do not hinder each other, exe-
cution time allows to make all necessary communications in parallel with frag-
ments execution.

5 Conclusion and Future Work

We develop the library of fragmented numerical subroutines where subroutines port-
ability providing is concentrated in system software. Text of a subroutine, written in

342 V.E. Malyshkin, S.B. Sorokin, and K.G. Chajuk

fragmented algorithm programming language (FAPL), contains a numerical algo-
rithm description and user’s not obligatory recommendations on how to execute the
subroutine on parallel computer only. Actually, subroutine text contains the descrip-
tion of the algorithm of CompFs and processes creation.

Intelligent FAPL compiler also can collect the info on the structure of the set of
CompF basing on the regular data structures of numerical algorithms and can provide
runtime system by this knowledge, which is used for construction of the way of frag-
mented algorithm execution.

Because the performance of the subroutine execution depends mainly on the qual-
ity of compiler and run time system implementation, their improvement will be the
mainstream of the project. We hope to reach good performance of system software in
order even sequential program with subroutine calls could demonstrate highly effec-
tive parallel solution of numerical problems.

References

1. Glushkov, V.M., Ignatyev, M.V., Myasnikov, V.A., Torgashev, V.A.: Recursive machines
and computing technologies. In: Proceedings of the IFIP Congress, vol. 1, pp. 65–70.
North-Holland Publish. Co., Amsterdam (1974)

2. Hill, J., McColl, W., Stefanescu, D., Goudreau, M., Lang, K., Rao, S., Suel, T., Tsantilas,
Th., Bisseling, R.: BSPlib: the BSP Programming Library. Parallel Computing 24,
1947–1980 (1998)

3. Torgashev, V.A., Tsarev, I.V.: Sredstva organozatsii parallelnykh vychislenii i programmi-
rovaniya v multiprocessorakh s dynamicheskoi architechturoi. Programmirovanie (4),
53–67 (2001)

4. BSPlib, http://www.bsp-worldwide.org/
5. BLAS, http://www.netlib.org/blas/
6. ScaLAPACK, http://www.netlib.org/scalapack/
7. http://www.intel.com/cd/software/products/emea/rus/358876.htm
8. Charm++,

http://charm.cs.uiuc.edu/manuals/html/converse/manual.html
9. Kraeva, M.A., Malyshkin, V.E.: Assembly Technology for Parallel Realization of Numeri-

cal Models on MIMD-Multicomputers. The Int. Journal on Future Generation Computer
Systems 17(6), 755–765 (2001)

10. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.:
Cilk: An Efficient Multithreaded Runtime System. ACM SIGPLAN Notices 30(8),
207–216 (1995)

11. Foster, I., Kesselman, C., Tuecke, S.: Nexus: Runtime Support for Task-Parallel
Programming Languages. Cluster Computing 1(1), 95–107 (1998)

12. Shu, W., Kale, L.V.: Chare Kernel – a Runtime Support System for Parallel Computations.
Journal of Parallel and Distributed Computing 11(3), 198–211 (1991)

13. Chien, A.A., Karamcheti, V., Plevyak, J.: The Concert System – Compiler and Runtime
Support for Efficient, Fine-Grained Concurrent Object-Oriented Programs. - UIUC DCS
Tech Report R-93-1815 (1993)

14. Grimshaw, A.S., Weissman, J.B., Strayer, W.T.: Portable Run-Time Support for Dynamic
Object-Oriented Parallel Processing. ACM Transactions on Computer Systems
(TOCS) 14(2), 139–170 (1996)

 Fragmentation of Numerical Algorithms for the Parallel Subroutines Library 343

15. Benson, G.D., Olsson, R.A.: A Portable Run-Time System for the SR Concurrent Pro-
gramming Language. In: Proceedings of the Workshop on Run-Time Systems for Parallel
Programming (RTSPP) (April 1997)

16. Kalgin, K.V., Malyskin, V.E., Nechaev, S.P., Tschukin, G.A.: Runtime System for Parallel
Execution of Fragmented Subroutines. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS,
vol. 4671, pp. 544–552. Springer, Heidelberg (2007)

17. Valkovskii, V., Malyshkin, V.: Parallel Program Synthesis on the Basis of Computational
Models. – Novosibirsk, Nauka, 129 p. (In Russian/ Sintez Parallel’nykh program ya Vy-
chislitel’nykh modelyakh) (1988)

18. Faddeev, D.K., Faddeeva, V.N.: Computing methods of linear algebra. 2nd edn. Moscow,
Nauka, p. 656 (In Russian/ Vychislitel’nye metody lineinoi algebry) (1967)

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 344–349, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Object-Oriented Parallel Image Processing Library*

Evgeny V. Rusin

Institute of Computational Mathematics and Mathematical Geophysics SB RAS
prospect Akademika Lavrentjeva, 6, Novosibirsk, 630090, Russia

rev@ooi.sscc.ru

Abstract. The paper describes the experimental library SSCC_PIPL for image
processing on multicomputers. Basic principles of library building, some archi-
tectural solutions, and test results are given.

Keywords: image processing, parallel processing, library of subprograms.

1 Introduction

Remote sensing data processing tasks are characterized by the huge amount of data to
process (108 multispectral pixels is a typical case) and high labor-intensiveness of
processing algorithms (can easily exceed 108 operations per pixel). The need of re-
mote sensing data real-time analysis and interpretation (for example in flood or forest
fire monitoring) causes the necessity of using high-performance computational tools.
The most common type of such tools is multicomputers, MIMD systems with distrib-
uted memory.

The paper describes an experimental library SSCC_PIPL for image processing on
multicomputers. The library is created in the Institute of Computational Mathematics
and Mathematical Geophysics SB RAS and is intended to provide software support
for high-performance remote sensing data processing.

2 State-of-Art

World experience in creating parallel image processing systems [1-6] indicates that:

1. Such libraries should guard their users from implementation details including mul-
ticomputer architecture, parallel programming system, and so on. Ideally library in-
terface should be designed in such a way that parallel program using the library
would look like the sequential one.

2. Image processing algorithms can be divided into several large groups according to
their program implementation; implementations of different algorithms of the same
group contain essential common part of source code. These are: a) pixel-to-pixel
operations, when the result of an operation in a pixel depends only on the value of
original images in the same pixel; b) neighborhood-to-pixel operations when the
result of an operation in a pixel depends on the values of original images in some

* Supported by Russian Foundation for Basic Research (project No. 07-07-00085a).

 Object-Oriented Parallel Image Processing Library 345

relatively small neighborhood of the pixel; c) global operations when the result of
an operation in a pixel depends on whole original images.

3. Most image processing algorithms are naturally parallel and the number of
approaches to parallelize computations is small enough: cutting images without
overlaps (for pixel-to-pixel operations), cutting with margin overlaps (for neighbor-
hood-to-pixel operations), and cloning original images to all the executing proces-
sors (for global operations; here each processor calculates its own part of the result).

4. Permanent appearance of new algorithms requires extensibility of the systems and
the simplicity of user’s algorithms addition to them.

3 Basic Principles

We formulated the following principles for SSCC_PIPL library building:

1. The use of SPMD (Single Program Multiple Data) model. Parallel program using
the library is compiled into executable module, and each node of multicomputer
executes a copy of the module.

2. All the code responsible for parallel environment operations (initializa-
tion/termination of the environment, self-identification of a node among all the
executing nodes, interprocess transfer and synchronization) is located in the library
implementation. At the same time, we consider that the total hiding of parallelism
from user would lead to potential ineffectiveness of program systems based on al-
gorithm composition (one parallelization approach is most suitable for algorithm A;
another, for algorithm B; and third, possibly coinciding with the first or the second,
for the composition of A and B). Library user is supposed to be able to make some
general considerations on effective parallelization of the algorithm (for example,
optimal parallelization of the composition of three filterings with 5 by 5 window is
cutting image with margin overlap in 2 (overlap required for one transformation) ×
3 (number of transformations) = 6 pixels), and the library should allow user to
specify parallelization approach ‘in general’.

3. To avoid source code duplicating, the library should have a compact core contain-
ing several generic functions, each implements common code for the particular al-
gorithm group. Concrete algorithm is implemented by the ‘algorithm’ function
passed to generic function as a parameter and executing, for example, calculation
of the result in one pixel. Extensibility of the library is reached by possibility to
add algorithm functions. To extend the library, one does not need to deal with par-
allelism models but has to implement the operation in terms of image processing.

4. The library must minimize overheads caused by the abstraction level of computa-
tion model (in particular caused by using generic operation implemented in the
core once and parameterized with user’s code – see the previous item).

The library should be implemented in C++ and MPI. It provides the possibility of
low-level optimization, portability, as well as generalization with mechanisms of
inheritance and templates. Besides, MPI corresponds to SPMD model, and the sup-
port of object-oriented paradigm by C++ language provides the high degree of encap-
sulation of the implementation details behind high-level interface.

346 E.V. Rusin

4 Library Interface

The following classes constitute SSCC_PIPL library interface:

• RunTime, run-time environment. Provides auxiliary operations (MPI initializa-
tion/termination, debug messaging, time gaps measuring, and so on).

• Image, class implementing image abstraction. Provides methods for read-
ing/writing image from/to file in various graphic formats and transforming images.

• NeighborhoodManipulator, manipulator of image pixel neighborhood.
Allows implementing processing algorithms throwing off concrete image parame-
ters (size, distribution among processors, and so on) and thinking only in the terms
of neighborhood of the pixel being processed. The use of neighborhood manipula-
tor abstraction simplifies the creation of library-compatible user algorithm func-
tions.

5 Parallelization of Algorithms

The library provides the following ways to distribute an image between processors:

• Full copy of the image on each processor.
• Cutting the image onto non-overlapping horizontal strips whose number equals the

number of processors; each processor receives its own strip to process.
• Cutting the image onto overlapping horizontal strips: neighbor strips overlap in a

given number of rows; each processor receives its own strip and strip margin data
are duplicated on two processors. Image object maintains the validity of data in
the overlap areas and this maintenance is transparent for user.

6 Input-Output Operations

SSCC_PIPL library provides reading and writing images in various graphic formats
by using CxImage library [7]. CxImage is ANSI-compatible and can be used in
UNIX, Windows and MacOS environments. It is freely distributed in source code and
does not require additional licensing. However CxImage is sequential library and does
not support ‘distributedness’ of an image among several computers. That’s why
SSCC_PIPL executes input-output operations using star-like topology: one executing
processor is marked as a root and performs disk operations. Thus, reading image from
file is performed by ‘the root reads file with CxImage and sends necessary data to
other processors’ scheme, and writing image to file is performed by ‘the root gathers
whole image data from other processors and writes it to file with CxImage’ scheme.

7 Parametrization of Operations with Algorithms

Image transformations are implemented in SSCC_PIPL library as generic opera-
tions. To apply concrete transformation to an image, one should parametrize the

 Object-Oriented Parallel Image Processing Library 347

corresponding generic operation by concrete algorithm. At the design stage, the
choice appeared between two C++ parametrization mechanisms:

• Inheritance: generic operation argument is reference to abstract base class (inter-
face) with the pure virtual Process() method which performs calculation of
new value in a pixel by the current pixel values; concrete algorithm classes are de-
rived from the base and overrides Process() method.

• Templates: generic operation is a template method parametrized be concrete algo-
rithm class.

From considerations of performance and universality, SSCC_PIPL uses the second
approach; this allowed carrying overheads caused by the increasing of computation
model abstraction level from program execution time to compile time. Besides, such an
approach allows so-called embedding of the function that calculates pixel value that is
inserting a copy of the function body into each place the function is called. Embedding
is not available for virtual functions. As a result of this choice, the library must be
distributed in source code, user’s program compiles longer, but executes faster.

8 Sample Source Code

The following simplified program illustrates typical use case of the library, defining
user algorithm and parametrizing corresponding Image template method with it.

1. class Laplasian {
2. int LeftMargin() { return 1; }
3. int RightMargin() { return 1; }
4. int TopMargin() { return 1; }
5. int BottomMargin(){ return 1; }
6. int Process(NeighborhoodManipulator& nm) {
7. return (nm.PRC(-1, 0) + nm.PRC(0, 1)
8. + nm.PRC(1, 0) + nm.PRC(0, -1))/4
9. - nm.PRC(0, 0);
10. }
11. };

12. void main(int argc, char* argv[]) {
13. Image im;
14. Partitioning p(CutWithOverlap, 1);
15. im.Create(“<SOURCE_IMAGE>”, pi);
16. Laplasian l;
17. im.N2P<Laplasian>(l);
18. im.Save(“<DEST_IMAGE>”);
19. }

Laplacian class (lines 1-11) implements discrete Laplace transformation. Laplace
transformation of the image X = {xi,j} is defined as the image Y = {yi,j = (xi–1,j + xi+1,j +
xi,j–1 + xi,j+1)/4 – xi,j}. This is a transformation of neighborhood-to-pixel type. Lapla-
cian object is passed as a parameter to Image::N2P() (‘neighborhood-to-pixel’
operation) template method in line 17. Image transformation class must implement:

348 E.V. Rusin

1. Limiters (lines 2-5) that define the minimal square window needed to perform
calculations in a single pixel. For example, if LeftMargin() returns k, then
processing of pixel (i, j) involves pixels from j – 1, j – 2, …, j – k columns. Limit-
ers allow the environment to avoid calculations in image margin pixels and to de-
cide whether processors have enough information to perform operation in strip
margin pixels (if not, additional pixel values will be taken from the neighbor proc-
essors). In the example above, processing requires 3 by 3 window centered at the
pixel being processed, and all the limiters return 1.

2. Process() method (lines 6-10) that performs calculation in single image pixel.
The method accepts NeighborhoodManipulator object which allow refer-
encing pixels around the one being processed via PRC() (‘pixel relative to cur-
rent’) method. Environment calls this method for each image pixel.

Line 14 declares the partitioning object describing how to distribute the image among
processors. Here we cut the image into horizontal strips with one-pixel overlap; this is
enough to perform Laplace transformation without interprocessor communications.

Line 15 loads the image from the disk file and distributes it between processors.
Line 17 executes image parallel transformation: environment determines (by using

transformation’s limiters) whether executing processors have enough information for
calculation in strip margin pixels; initiates interprocessor exchange if there is no
enough information; and calls transformation’s Process() method for each pixel.

Line 18 stores the result image in the disk file.
As one can see, the code looks like a usual sequential program; all parallel code is

hidden in Image class implementation. Library user can implement their own image
transformation class and use it as a parameter for Image::N2P() or other template
method, setting desired parallelizing technique in Partitioning object.

9 Experimental Results

Answers on two main questions that are necessary to justify the chosen approach were
obtained in a result of test calculations.

The first question: Is overhead caused by the computation model abstraction level
reasonable? In order to answer the question, two parallel programs implementing the
algorithm of circle structure detection in aerospace images [8] were created, one was
written with SSCC_PIPL library (P1), and other was written ‘from nothing’ and ex-
plicitly called MPI subroutines, distributed data among processors, dealt with syn-
chronization, and so on (P2). The results are:

1. Writing P1 took much less time than writing P2.
2. The source code of P1 is much more compact than the one of P2.
3. P2 works approximately 10 percents faster than P1.

Thus we can state that the suggested approach substantially speeds up and simplifies
the development of parallel image processing programs at the expense of small de-
crease of program performance.

The second question: What parallelization efficiency does the library provide? Tests
executed on MVS-1000/M multicomputer of Siberian Supercomputer Center showed

 Object-Oriented Parallel Image Processing Library 349

that parallelization efficiency of circle structure detection algorithm on 16 processors
is about 95 percents, and this allows saying about perspectiveness of the suggested
approach.

References

1. Bräunl, T.: Tutorial in Data Parallel Image Processing. Australian Journal of Intelligent In-
formation Processing Systems 6(3), 164–174 (2001)

2. Jamieson, L.H., Delp, E.J., Patel, J.N., Wang, C.C.: A Library-based Program Development
Environment for Parallel Image Processing. In: Scalable Parallel Libraries Conference,
pp. 187–194 (1993)

3. Lebak, J., Kepner, J., Hoffmann, H., Rutledge, E.: Parallel VSIPL++: An Open Standard
Software Library for High-Performance Parallel Signal Processing. Proc. IEEE 93(2),
313–330 (2005)

4. Seinstra, F.J., Koelma, D.: The Lazy Programmer’s Approach to Building a Parallel Image
Processing Library. In: Parallel and Distributed Processing Symposium, pp. 1169–1176
(2001)

5. Seinstra, F.J., Koelma, D., Geusebroek, J.M., Verster, F.C., Smeulders, A.W.M.: Efficient
applications in user transparent parallel image processing. In: Parallel and Distributed Proc-
essing Symposium, pp. 127–134 (2002)

6. Squyres, J.M., Lumsdaine, A., Stevenson, R.L.: A Toolkit for Parallel Image Processing.
In: SPIE Proc., vol. 3452, pp. 69–80 (1998)

7. CxImage, http://www.xdp.it/cximage.htm
8. Alekseev, A.S., Pyatkin, V.P., Salov, G.I.: Crater Detection in Aero-Space Imagery Using

Simple Nonparametric Statistical Tests. In: Chetverikov, D., Kropatsch, W.G. (eds.) CAIP
1993. LNCS, vol. 719, pp. 793–799. Springer, Heidelberg (1993)

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 350–359, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Application-Level and Job-Flow Scheduling:
An Approach for Achieving Quality of Service in

Distributed Computing

Victor Toporkov

Computer Science Department, Moscow Power Engineering Institute,
ul. Krasnokazarmennaya 14, Moscow, 111250 Russia

ToporkovVV@mpei.ru

Abstract. This paper presents the scheduling strategies framework for distrib-
uted computing. The fact that architecture of the computational environment is
distributed, heterogeneous, and dynamic along with autonomy of processor
nodes, makes it much more difficult to manage and assign resources for job
execution which fulfils user expectations for quality of service (QoS). The
strategies are implemented using a combination of job-flow and application-
level techniques of scheduling and resource co-allocation within virtual organi-
zations of Grid. Applications are regarded as compound jobs with a complex
structure containing several tasks. Strategy is considered as a set of possible job
scheduling variants with a coordinated allocation of the tasks to the processor
nodes. The choice of the specific variant depends on the load level of the re-
source dynamics and is formed as a resource request, which is sent to a local
batch-job management system.

Keywords: scheduling, resource co-allocation, strategy, job, task, critical work.

1 Introduction

The fact that a distributed computational environment is heterogeneous and dynamic
along with the autonomy of processor nodes makes it much more difficult to manage
and assign resources for job execution at the required quality level [1]. Job manage-
ment issues including resource allocation and scheduling are addressed by a number
of research groups. Dealing with the wide range of different approaches to distributed
computing, one can pick out two polar and settled trends. First one is based on the
usage of the available and non-dedicated resources, where resource brokers are acting
as agents between users and processor nodes [2-4]. Several projects such as AppLeS
[5], APST [6], Legion [7], DRM [8], Condor-G [9], Nimrod/G [10] and others, which
follow this idea, are often associated with application-level scheduling. Another trend
is based on the concept of virtual organizations and is mainly aimed at Grid systems
[1, 11, 12]. Both trends have their own advantages and disadvantages.

Resource brokers, that are used in the first trend [2-10] are scalable and flexible
and can be adapted to a specific application. However resource distribution dedicated

 Application-Level and Job-Flow Scheduling 351

to the application-level as well as the usage of different criteria by independent users
for the respective job scheduling optimization [12], while considering possible com-
petition with other jobs, may deteriorate such integral characteristics as completion
time for the batch-job or resource load level [4, 13].

Forming virtual organizations [1] is essentially bordering the scalability of the
scheduling framework, although the set of the specific rules for job-flow assignment
and resource consuming [14] allows an overall increase in the efficiency of batch-job
scheduling and resource usage. Completion time for single jobs can be longer, be-
cause the structures of the jobs for some user-specific needs are not taken into ac-
count during the scheduling. In order to control the flow of independent jobs, special
metaschedulers, managers, Grid-dispatchers [11, 15] are acting as agents between
users and local batch-job systems. One can mention that the alternative Grid resource
structure has a single central entity, that is controlling the flow of all jobs and no
local schedulers are used (commercial platforms DCGrid, LiveCluster, GridMP,
Frontier, volunteer projects @Home [16] and CCS system, which supports dedicated
resources).

Distinct from existing Grid scheduling solutions [2-16], our approach supposes
techniques of dynamic redistribution of job-flows between processor nodes in con-
junction with application-level scheduling. It is considered, that the job can be com-
pound (multiprocessor) and the tasks, included in the job, are heterogeneous in terms
of computation volume and resource need. In order to complete the job, one would
co-allocate [17] the tasks to different nodes. Each task is executed on a single node
and it is supposed, that the local management system interprets it as a job accompa-
nied by a resource request.

On one hand, the structure of the job is usually not taken into account [13]. The
rare exception is the Maui cluster scheduler, which allows for a single job to con-
tain several parallel, but homogeneous (in terms of resource requirements) tasks. On
the other hand, there are several resource-query languages. Thus, JDL from WLMS
defines alternatives and preferences when making resource query, ClassAds exten-
sions in Condor-G [9] allows forming resource-queries for dependant jobs. The
execution of compound jobs is also supported by WLMS scheduling system of
gLite platform, though the resource requirements of specific components are not
taken into account.

What sets our work apart from other scheduling research is that we consider coor-
dinated application-level and job-flow management as a fundamental part of the
effective scheduling strategy within the virtual organization. The choice of the strat-
egy depends on the utilization state of processor nodes [4, 13], data storage and rep-
lication policies [11, 18, 19], the job structure (computational granularity and data
dependencies), user estimations of completion time, resource requirements, and
advance reservations [20].

The outline of the paper is as follows. Section 2 presents a framework for inte-
grated job-flow and application-level scheduling. In section 3, we provide details of
our approach based on strategies as sets of possible supporting schedules. Simulation
studies of coordinated scheduling techniques and results are discussed in Section 4.
We conclude and point to future directions in Section 5.

352 V. Toporkov

2 Scheduling Framework

In order to implement the effective coordinated scheduling [17] and allocation to
heterogeneous resources [13], it is very important to group user jobs into flows
according to the strategy selected. A hierarchical structure (Fig. 1) composed of a job-
flow metascheduler and subsidiary job managers, which are cooperating with local
batch-job management systems, is a core part of a scheduling framework proposed in
this paper. The advantages of hierarchically organized resources managers are
obvious, e.g., the hierarchical job-queue-control model is used in the GrADS me-
tascheduler [15]. Hierarchy of intermediate servers allows decreasing idle time for the
processor nodes, which can be inflicted by transport delays or by unavailability of the
managing server while it is dealing with the other processor nodes. Tree-view man-
ager structure in the network environment of distributed computing allows avoiding
deadlocks when accessing resources. Another important aspect of computing in het-
erogeneous environments is that processor nodes with the similar architecture, con-
tents, administrating policy are grouped together under the node manager control.

Task

Job manager (Sj)

j

jJobs of flow

iJobs of flow

queues

queuesTask

j

Job manager (Si)

Metascheduler
(Si, Sj, Sk job-flows strategies)

Job manager (Si, Sk)

Processor nodes

User job-flows

Job-flows
i k

Local
manager

Local
manager

Local
manager

Flow i Jobs of flow

Local
manager

Local
manager

Job reallocation

Processor nodes

k

i k

Fig. 1. Hierarchical structure of the scheduling framework

Users submit jobs to the metascheduler (see Fig. 1) which distributes job-flows
between processor node domains according to the selected scheduling and resource
co-allocation strategy Si, Sj or Sk. It does not mean, that these flows cannot “inter-
sect” each other on nodes. The special reallocation mechanism is provided. It is exe-
cuted on the higher-level manager or on the metascheduler-level. Job managers are
supporting and updating strategies based on cooperation with local managers and
simulation approach for job execution on processor nodes.

 Application-Level and Job-Flow Scheduling 353

Innovation of our approach consists in mechanisms of dynamic job-flow envi-
ronment reallocation based on scheduling strategies. The nature of distributed com-
putational environments itself demands the development of multicriteria [21] and
multifactor [22] strategies of coordinated scheduling and resource allocation. The
dynamic configuration of the environment, large number of resource reallocation
events, user’s and resource owner’s needs as well as virtual organization policy of
resource assignment should be taken into account. The scheduling strategy is formed
on a basis of formalized efficiency criteria, which sufficiently allow reflecting eco-
nomical principles [14] of resource allocation by using relevant cost functions and
solving the load balance problem for heterogeneous processor nodes. The strategy is
built by using methods of dynamic programming [23] in a way that allows optimiz-
ing scheduling and resource allocation for a set of tasks, comprising the compound
job.

3 Scheduling Strategies

The strategy is a set of possible resource allocation and schedules (distributions) for
all N tasks in the job:

Distribution:=<<Task 1/Allocation i,[Start 1, End 1]>,
…, <Task N/Allocation j, [Start N, End N]>>,

where Allocation i, j is the processor node i, j for Task 1, N; Start 1,
N, End 1, N – run time and stop time for Task 1, N execution. Time interval
[Start, End] is treated as so called wall time, defined at the resource reservation
time [20] in the local batch-job management system.

Figure 2 shows an exemplary information graph of a compound job with user task
estimations (Fig. 2, a) and a fragment of the strategy with Distribution variants
for schedules and co-allocations (Fig. 2, b). Vertices P1, ..., P6 are corresponding to
tasks, D1, ... , D8 – to data transfers. Distribution 2 (see Fig. 2, b) provides
minimum of a job execution cost-function CF2=37 equal to the sum of Vij/Ti,
i=1,…,N, where Vij is the relative computation volume, and Ti is the real load
time of processor node j by task i (rounded to nearest not-smaller integer). Obvi-
ously, actual solving time Ti for a task can be different from user estimation Tij. It
is to mention, such estimations are also necessary in several methods of priority
scheduling including backfilling in Maui cluster scheduler. Cost-functions can be
used in economical models [14] of resource distribution in virtual organizations and it
is worth noting that full costing in CF is not calculated in real money, but in some
conventional units (quotas), for example like in corporate non-commercial virtual
organizations. The essential point is different – user should pay additional cost in
order to use more powerful resource or to start the task faster. For that reason Dis-
tributions 1, 3 for the job in general (see Fig. 2, b) “cost” more
(CF1=CF3=41). The choice of a specific Distribution from the strategy depends
on the state and load level of processor nodes, and data storage policies.

354 V. Toporkov

 P2

P3

P4

P1

P5

P6

D1

D2

D7

D8

D4

D5

D3

D6

 (a)

 Disrtibution 1

0 5

P1/1 D1

Time

10 15 20

P5/2

P4/1 P6/4

P3/3

P2/1

D2

D3

D4

D5

D8

D7

D6

Р6 task allocation
(processor node 4)

CF1=41

 Distribution 2

0 5

P1/1 D1

Time

10 15 20

P5/4

P4/3 P6/1

P3/3

P2/1

D2

D3

D4

D5

D8

D7

D6 CF2=37

Disrtibution 3

0 5

P1/4 D1

Time

10 15 20

P5/2

P4/1 P6/1

P3/3

P2/1

D2

D3

D4

D5

D8

D7

D6
Р3 task
allocation

CF3=41

(b)

Fig. 2. Job graph with user’s estimations (a) and the fragment of the scheduling strategy (b)

A critical works method [23], which was developed for application-level schedul-
ing, can be further refined to build multifactor and multicriteria strategies for job-flow
distribution in virtual organizations. This method is based on dynamic programming
and therefore uses some integral characteristics, for example total resource usage cost
for the tasks that compose the job. However the method of critical works can be re-
ferred to the priority scheduling class. There is no conflict between these two facts,
because the method is dedicated for task co-allocation of compound jobs.

The gist of the method is a multiphase procedure, which is searching for a next
critical work – the longest (in terms of estimated execution time) chain of unassigned
tasks along with the best combination of available resources, and resolving collisions
cased by conflicts between tasks of different critical works competing for the same

Task Tasks
estimations P1 P2 P3 P4 P5 P6

Ti1 2 3 1 2 1 2

Ti2 4 6 2 4 2 4

Ti3 6 9 3 6 3 6

Ti4 8 12 4 8 4 8

Vij 20 30 10 20 10 20

 Application-Level and Job-Flow Scheduling 355

resource. As shown on Fig. 2, a, there are four critical works 12, 11, 10, and 9 time
units long (including data transfer time) on fastest processor nodes of the type 1:

P1-P2-P4-P6, P1-P2-P5-P6, P1-P3-P4-P6, P1-P3-P5-P6.

Distribution 2 has a collision (see Fig. 2, b), which occurred due to simulta-
neous attempts of tasks P4 and P5 to occupy processor node 3. This collision is fur-
ther resolved by the allocation of P4 to the processor node 3 and P5 to the node 4.
Such reallocations can be based on virtual organization economics – in order to take
higher performance processor node, user should “pay” more. The main positions of
the critical works method are described in earlier papers [21-23].

4 Simulations Studies and Results

We have implemented a simulation environment of the scheduling framework to
evaluate efficiency indices of different scheduling and co-allocation strategies. In
contrast to well-known Grid simulation systems such as ChicSim [11] or OptorSim
[24], our simulator generates multicriteria strategies as a number of supporting
schedules for metascheduler reactions to the events connected with resource assign-
ment and advance reservations. Strategies for more than 12000 jobs with a fixed
completion time were studied. Every task of a job had randomized completion time
estimations, computation volumes, data transfer times and volumes with a uniform
distribution. These parameters for various tasks had difference which was equal to
2...3. Processor nodes were selected in accordance to their relative performance. For
the first group of “fast” nodes the relative performance was equal to 0.66…1, for the
second and the third groups 0.33…066 and 0.33 (“slow” nodes) respectively. A
number of nodes was conformed to a job structure, i.e. a task parallelism degree, and
was varied from 20 to 30.

The strategies types are:

• S1 – with fine-grain computations and active data replication policy;
• S2 – with fine-grain computations and a remote data access;
• S3 – with coarse-grain computations and static data storage;
• MS1 – with fine-grain computations, active data replication policy, and the

best- and worst execution time estimations (a modification of strategy S1).

The strategy MS1 is less complete than the strategy S1 in the sense of coverage of
events in distributed environment. However the important point is the generation of a
strategy by efficient and economic computational procedures of the metascheduler
(see Fig. 1). The type S1 has more computational expenses than MS1.

We have conducted the statistical research of the critical works method for appli-
cation-level scheduling with above-mentioned types of strategies S1, S2, S3. The
main goal of the research was to estimate a forecast possibility for making applica-
tion-level schedules without taking into account independent job flows. For 12000
randomly generated jobs there were 38% admissible solutions for S1 strategy, 37%
for S2, and 33% for S3 (Fig. 3, a). This result is obvious: application-level sched-
ules implemented by the critical works method were constructed for available

356 V. Toporkov

S1 S2 S3

(a)

S1 S2 S3

(b)

Fig. 3. Simulation results for application-level scheduling: percentage of experiments with
admissible schedules (a) and percentage of collisions for “fast” processor nodes (b)

resources non-assigned to other independent jobs. Along with it there is a conflict
distribution for the processor nodes that have different performance (“fast” are 2-3
times faster, than “slow” ones): 32% for “fast” ones, 68% for “slow” ones in S1,
56% and 44% in S2, 74% and 26% for S3 (Fig. 3, b). This may be explained as
follows. The higher is the task state of distribution in the environment with active
data transfer policy, the lower is the probability of collision between tasks on a spe-
cific resource.

In order to implement the effective scheduling and resource allocation policy in
the virtual organization we should coordinate application and job-flow levels of the
scheduling. For each simulation experiment such factors as job completion “cost”
(Section 3), task execution time, scheduling forecast errors (start time estimation),
strategy live-to-time (time interval of acceptable schedules in a dynamic environment)
were studied (Fig. 4). Figure 4, a shows load level statistics of variable performance
processor nodes which allows discovering the pattern of the specific resource usage
when using strategies with coordinated job-flow and application-levels scheduling.

The strategy S2 performs the best in the term of load balancing for different
groups of processor nodes, while the strategy S1 tries to occupy “slow” nodes, and
the strategy S3 - the processors with the highest performance (see Fig. 4, a). Factor
quality analysis of S2, S3 strategies for the whole range of execution time estima-
tions for the selected processor nodes as well as modification MS1, when best- and

 Application-Level and Job-Flow Scheduling 357

20

S1

0.33-0.66

S2

Average node load level, %

0.66-1
Relative processor nodes performance

0

80

S3

0.33

40

60

0
МS1 S2

1

Relative job
completion cost

Job cost

Relative task
execution time

0

1

S3

Task execution time

0.50.5

0
МS1 S2

1

Relative
time-to-live

Time-to-live

Start time deviation
to job run time ratio

0

1

S3

Relative deviation

0.5 0.5

(a) (b) (c)

Fig. 4. QoS factors in diverse strategies: processor node load level (a); job completion cost and
task execution time (b); time-to-live and start deviation time (c)

worst-case execution time estimations were taken, is shown in Figures 4, b and 4, c.
Lowest-cost strategies are the “slowest” ones like S3 (see Fig. 4, b), they are most
persistent in the term of time-to-live as well (see Fig. 4, c). The strategies of the type
S3 try to monopolize processor resources with the highest performance and to mini-
mize data exchanges. Withal, less persistent are the “fastest”, most expensive and
most accurate strategies like S2. Less accurate strategies like MS1 (see Fig. 4, c) pro-
vide longer task completion time, than more accurate ones like S2 (Fig. 4, b), which
include more possible events, associated with processor node load level dynamics.

5 Conclusions and Future Work

The existing works in scheduling problems are related to either job scheduling prob-
lems or application-level scheduling. Fundamental difference between them and the
approach described is that the resultant dispatching strategies are based on the integra-
tion of job-flows management methods and application-level techniques. It allows
increasing the quality of service for the jobs and distributed environment resource
usage efficiency. Our results are promising, but we have bear in mind that they are
based on simplified computation scenarios, e.g. in our experiments we use first-come-
first-served (FCFS) management policy in local batch-job management systems.
Afore-cited research results of strategy characteristics were obtained by simulation of
global job-flow in a virtual organization. Inseparability condition for the resources
requires additional advanced research and simulation approach of local job passing
and local processor nodes load level forecasting methods development. Different job-
queue management models and scheduling algorithms can be used (FCFS modifica-
tions, least-work-first (LWF), backfilling, gang scheduling etc.) here. Along with it
local administering rules can be implemented. One of the most important aspects here

358 V. Toporkov

is that advance reservations [17, 20] have impact on the quality of service. Some of
the researches (particularly the one in Argonne National Laboratory) show, that pre-
liminary reservation nearly always increases queue waiting time. Backfilling de-
creases this time. With the use of FCFS strategy waiting time is shorter than with the
use of LWF. On the other hand, estimation error for starting time forecast is bigger
with FCFS than with LWF. Backfilling that is implemented in Maui cluster scheduler
includes advanced resource reservation mechanism and guarantees resource alloca-
tion. It leads to the difference increase between the desired reservation time and actual
job starting time when the local request flow is growing. Some of the quality aspects
and job-flow load balance problem are associated with dynamic priority changes,
when virtual organization user changes execution cost for a specific resource. All of
these problems require further research.

Acknowledgments. This work was supported by the Russian Foundation for Basic
Research (grant no. 09-01-00095) and by the State Analytical Program “The higher
school scientific potential development” (project no. 2.1.2/6718).

References

1. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Int. J. of High Performance Computing Applications 15(3), 200–222 (2001)

2. Thain, D., Tannenbaum, T., Livny, M.: Distributed Computing in Practice: the Condor Ex-
perience. Concurrency and Computation: Practice and Experience 17(2-4), 323–356
(2004)

3. Roy, A., Livny, M.: Condor and Preemptive Resume Scheduling. In: Nabrzyski, J.,
Schopf, J.M., Weglarz, J. (eds.) Grid resource management. State of the art and future
trends, pp. 135–144. Kluwer Academic Publishers, Dordrecht (2003)

4. Krzhizhanovskaya, V.V., Korkhov, V.: Dynamic Load Balancing of Black-Box Applica-
tions with a Resource Selection Mechanism on Heterogeneous Resources of Grid. In: Ma-
lyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 245–260. Springer, Heidelberg
(2007)

5. Berman, F.: High-performance Schedulers. In: Foster, I., Kesselman, C. (eds.) The Grid:
Blueprint for a New Computing Infrastructure, pp. 279–309. Morgan Kaufmann, San
Francisco (1999)

6. Yang, Y., Raadt, K., Casanova, H.: Multiround Algorithms for Scheduling Divisible
Loads. IEEE Transactions on Parallel and Distributed Systems 16(8), 1092–1102 (2005)

7. Natrajan, A., Humphrey, M.A., Grimshaw, A.S.: Grid Resource Management in Legion.
In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid resource management. State of the
art and future trends, pp. 145–160. Kluwer Academic Publishers, Dordrecht (2003)

8. Beiriger, J., Johnson, W., Bivens, H., Humphreys, S., Rhea, R.: Constructing the ASCI
Grid. In: 9th IEEE Symposium on High Performance Distributed Computing, pp. 193–200.
IEEE Press, New York (2000)

9. Frey, J., Foster, I., Livny, M., Tannenbaum, T., Tuecke, S.: Condor-G: a Computation
Management Agent for Multi-institutional Grids. In: 10th International Symposium on
High-Performance Distributed Computing, pp. 55–66. IEEE Press, New York (2001)

10. Abramson, D., Giddy, J., Kotler, L.: High Performance Parametric Modeling with Nim-
rod/G: Killer Application for the Global Grid? In: International Parallel and Distributed
Processing Symposium, pp. 520–528. IEEE Press, New York (2000)

 Application-Level and Job-Flow Scheduling 359

11. Ranganathan, K., Foster, I.: Decoupling Computation and Data Scheduling in Distributed
Data-intensive Applications. In: 11th IEEE International Symposium on High Performance
Distributed Computing, pp. 376–381. IEEE Press, New York (2002)

12. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria Aspects of Grid Re-
source Management. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid resource man-
agement. State of the art and future trends, pp. 271–293. Kluwer Academic Publishers,
Dordrecht (2003)

13. Tracy, D., Howard, J.S., Noah, B., Ladislau, B., et al.: A Comparison of Eleven Static
Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed
Computing Systems. J. of Parallel and Distributed Computing 61(6), 810–837 (2001)

14. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic Models for Resource Man-
agement and Scheduling in Grid Computing. J. of Concurrency and Computation: Practice
and Experience 14(5), 1507–1542 (2002)

15. Dail, H., Sievert, O., Berman, F., Casanova, H., et al.: Scheduling in the Grid Application
Development Software project. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid re-
source management. State of the art and future trends, pp. 73–98. Kluwer Academic Pub-
lishers, Dordrecht (2003)

16. Anderson, D.P., Fedak, G.: The Computational and Storage Potential of Volunteer Comput-
ing. In: IEEE/ACM International Symposium on Cluster Computing and Grid, pp. 73–80.
IEEE Press, New York (2006)

17. Ioannidou, M.A., Karatza, H.D.: Multi-site Scheduling with Multiple Job Reservations and
Forecasting Methods. In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J.,
Tang, F. (eds.) ISPA 2006. LNCS, vol. 4330, pp. 894–903. Springer, Heidelberg (2006)

18. Tang, M., Lee, B.S., Tang, X., Yeo, C.K.: The Impact of Data Replication on Job Schedul-
ing Performance in the Data Grid. Future Generation Computing Systems 22(3), 254–268
(2006)

19. Dang, N.N., Lim, S.B., Yeo, C.K.: Combination of Replication and Scheduling in Data
Grids. Int. J. of Computer Science and Network Security 7(3), 304–308 (2007)

20. Aida, K., Casanova, H.: Scheduling Mixed-parallel Applications with Advance Reserva-
tions. In: 17th IEEE International Symposium on High-Performance Distributed Comput-
ing, pp. 65–74. IEEE Press, New York (2008)

21. Toporkov, V.: Multicriteria Scheduling Strategies in Scalable Computing Systems. In:
Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 313–317. Springer, Heidelberg
(2007)

22. Toporkov, V.V., Tselishchev, A.S.: Safety Strategies of Scheduling and Resource Co-
allocation in Distributed Computing. In: 3rd International Conference on Dependability of
Computer Systems, pp. 152–159. IEEE CS Press, Los Alamitos (2008)

23. Toporkov, V.V.: Supporting Schedules of Resource Co-Allocation for Distributed Com-
puting in Scalable Systems. Programming and Computer Software 34(3), 160–172 (2008)

24. William, H.B., Cameron, D.G., Capozza, L., et al.: OptorSim – A Grid Simulator for
Studying Dynamic Data Replication Strategies. Int. J. of High Performance Computing
Applications 17(4), 403–416 (2003)

Filmification of Methods: Representation of

Particle-In-Cell Algorithms

Yutaka Watanobe1, Victor Malyshkin2, Rentaro Yoshioka1, Nikolay Mirenkov1,
and Hamido Fujita3

1 University of Aizu, Japan
2 Institute of Computational Mathematics and Mathematical Geophysics, Russia

3 Iwate Prefectural University, Japan

Abstract. Filmification of methods is an approach to find new formats
for program and data/knowledge representation. It is also to create a
basis for specifying and developing a new generation of programming en-
vironments. Within this approach various algorithms are analyzed and
represented as cyberFilms where special visual super-symbols (icons) are
introduced for defining meaning of the cyberFilm frames. In this paper,
the filmification of methods is applied for particle-in-cells algorithms.
Results demonstrate a promising compactness of the program represen-
tation, covering technical details of parallel implementation and an ef-
fectiveness of an open set of icons.

Keywords: cyberFilms, particle-in-cell, visual languages, programming.

1 Introduction

In spite of great efforts and essential progress of software industry, still we can
say that our programming languages are good for computers, but they are not so
good for people communication and their understanding of programs. It is pos-
sible to regularly read reports that American companies lose about $60 billion
every year because of software deficiency. On the other hand, our future is get-
ting to be much more difficult because PCs are becoming multi- and many-core
super-computers and super-computers are becoming peta-flops machines. In ad-
dition, a variety of embedded systems is growing, global business and knowledge
integration is enhancing, software security & safety are worsening, etc. Recently,
a serious number of projects has been initiated by Big computer players to de-
velop new programming tools oriented to multi- and many-core architectures (at
University of California Berkeley [16], University of Illinois [18], Stanford Univer-
sity [17] and Technical University of Munich [19] to mention a few). They are in
addition to existing Fujitsu remote procedure calls, RapidMind’s Multicore de-
velopment platform, PeakStream’s math library for graphics processors, Nvidia’s
CUDA, etc. Great efforts are taken to acquire knowledge of efficient implementa-
tions of software components and to introduce abstraction mechanisms that hide
hardware details from developers. Within these efforts, a variety of approaches
can be used. However, we think that the acquisition should not pay attention

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 360–376, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Filmification of Methods: Representation of Particle-In-Cell Algorithms 361

only to technical aspects of implementations. High level representations of algo-
rithmic features easier understandable by application programmers should also
be collected. In other words, we should promote not only high-performance of
parallel computers, but also high-performance of people involved.

In this paper we are promoting a concept of algorithmic cyberFilms as a new
environment for high-level specification (programming) of algorithms, acquisi-
tion them in a format of four visual languages supported by template programs
responsible for efficient implementations of corresponding high-level constructs.
One of the goals of the approach is to allow application programmers to focus on
their models and simulation experiments rather than on problems of efficient im-
plementation. Within this concept an open set of super-symbols (icons) to define
contents of cyberFilm frames is applied. However, new icons, to be introduced,
should represent some knowledge of a class of algorithms and methods of their
implementation. To test the idea of the open set and applicability of the concept
for various computational methods, features of particle-in-cells algorithms and
an attempt to create a cyberFilm for them are presented.

The use of cyberFilms to represent algorithms and to develop programs can
be considered as a type of best practice for developing parallel, as well as sequen-
tial, programs. Users are guided to explicitly specify a pre-defined set of features
of their programs and related algorithms in such a way that they can later be in-
dividually accessed by compilers to exploit parallelism and other optimizations.
Furthermore, the features can be browsed individually, or collectively, by spe-
cially tailored visual languages for enhancing users’ comprehension to support
bringing out extra creativity.

The rest of the paper is organized as follows. Algorithmic cyberFilm concept
and related papers are considered in Section 2, some features of particle-in-cells
(PIC) algorithms are presented in Section 3, filmification of the PIC approach
based on, so called, algorithmic skeleton view and integrated view are provided
in Section 4, and finally some additional comments and conclusion are presented
in Sections 5 and 6.

2 Algorithmic CyberFilm Concept and Related Papers

A cyberFilm is a set of series of color pictures (frames). A picture is to represent
a view (a feature) of an object or process. A series of pictures is to represent a
multiple view (a number of features) of an object or process. A multiple view is
to make the corresponding object or process be self-explained. The self-explained
film means that the associated pictures are organized and presented in such a
way that the semantic richness of data/ knowledge is clearly brought out. A num-
ber of features presented by multimedia frames are assembled into a structure
(cyberFilm). In the right time a right group of corresponding frames is extracted
and presented through a right channel. Fig. 1 depicts a structure scheme of the
cyberFilm format.

The first (leftist) series of frames represents algorithmic skeletons that show
space data structures and temporal schemes of computational flows on these

362 Y. Watanobe et al.

T
T[] = T[] + T[]

T
T[] =
T[] + T[]

GR, PD[]= GR[]; P[]= node()
GR, PD[]= GR[]; P[]= node()

GR, PD[]= D[] + 1; P[]= node()
GR, PD[]= D[] + 1; P[]= node()

-1
-1

-1
-1

S

GR
D[] =
GR[]; GR

D[]= D[] + 1; P[]= node()

Fig. 1. Four series of frames representing four views of an algorithm

structures. The second series shows variables and formulas (actions) that are
attached to the spice-time points of the algorithmic skeletons. The third series
represents input/output operations that define the algorithmic interface with
external world, as well as how a software component based on the algorithm
should look from outside. Finally, the fourth series shows a compact combination
of main features presented in the above mentioned groups of frames. For each
series of frames there is its own visual language. As a result, the programming
environment for making cyberFilms is a cluster of four mutually supplemented
languages (and supporting systems) to define four different views of each software
component. Each language uses its own set of pictures and super-characters of
a self-explanatory type. The following abbreviations are used for these visual
languages:

Algorithmic cyberFilm language = {LAD, LAC, LAF, LAT}, where

– LAD - Language of Algorithmic Dynamics
– LAC - Language of Algorithmic Commands
– LAF - Language of Algorithmic interFace
– LAT - Language of Algorithmic ”Text” (language of integrated views).

In these languages, open sets of visual constructs and super-characters are
used to define the contents of the cyberFilm frames and their translation into
executable codes. In addition to the constructs and super-characters, special
background pictures and symbols are used to simplify the contents understand-
ing. They do not have any influence on the code generation, but on user’s recog-
nition of semantics.

Examples of such constructs, super-characters and background pictures, and
the descriptions of various aspects of the filmification of methods related to se-
quential and parallel matrix multiplications, solving algebraic and partial differ-
ential equations, cellular automation-like algorithms, as well as to algorithms on
trees, pyramids, etc. can be found in [1-6]. A large set of algorithms on graphs and

Filmification of Methods: Representation of Particle-In-Cell Algorithms 363

a corresponding library are presented in [7-8]. Some aspects of the visualization
of input/output operations are considered in [9]. Fig.2 depicts examples of icons
to represent traversal schemes of algorithms. In fact, they are super-characters
for cyberFilm frames of LAT. Some of them are to specify parallel schemes of
computation; others are to specify sequential ones. For example, meaning of the
top-left icon is shown at Fig.3 where parallel operations are defined on nodes of
columns traversed from left to right and back.

Fig. 2. Examples of icons to represent traversal schemes of algorithms

1 2 3 4

5 6 7 8

Fig. 3. LAD cyberFrames representing meaning of the top-left icon in Fig.2

For better understanding of the approach, let us make an illustrative look at
a graph algorithm for solving the shortest path problem. It has only one LAT
frame presented by Fig.4 (explanation details can be find in [8]). The first row
of the frame is for data structures and variable declarations. It says that a graph
structures is considered with 1000 nodes and edges available from a file of A.
Then variable D of the integer type with elements attached to each node of the
graph is declared (the first micro-icon is for the graph structure, and the second

364 Y. Watanobe et al.

is for integer). After that, variable GR of integer type with elements attached
to each edge is declared. Under the first row, the algorithm itself is presented.
The left icon represents it by requiring the definition of two operations. One is a
terminal (represented by a circle and an executable formula) and another is non-
terminal (represented by square and another icon). In this case, the additional
icon requires the definitions of three terminal operations. An idea behind the
terminal operations is “do where highlighted nodes are.”

D

node() = rand

GR

whereassign

whereassign
D[] := 0

number
of nodes = 1000
edges = A EDGE

node() = where_n-min(D[])

D[] := min(D[], D[] + GR[])

FRINGE-G

Fig. 4. LAT cyberFilm frame for the shortest path problem

If user does not know/remember meaning of icons in such a view, the system
can immediately explain them by a set of LAD cyberFilm frames (like in Fig. 5)
where differently highlighted nodes mean different types of operations.

Basic types of the operation highlighting used in LAD cyberFilm frames are
depicted by Fig. 6.

For our further consideration, the following flashing operations (a, b, c and f)
are important to mention:

– a (full highlighting) is to specify possible change of variables in a node of
the data space structure,

– b (contour highlighting) is to specify reading access to variables in a node,
– c (half highlighting) is to specify (alternative) activities on nodes for the

next step of algorithm implementation,
– f (doubled highlighting) is to specify a transformation of the data space

structure.

These highlightings are to focus on types of operations (activities); the oper-
ations themselves are defined by LAC and LAT frames.

In order to transfer our results into a basis for a breakthrough technology,
within each set of cyberFrames above mentioned, we pay special attention to
the following:

– Self-explanatory features of each visual symbol, frame, scene and cyberFilm
as a whole to decrease necessity of rote memorization, unnecessary mental
simulation, and people adaptation to technology.

Filmification of Methods: Representation of Particle-In-Cell Algorithms 365

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Fig. 5. LAD cyberFilm frames representing meaning of icons from Fig. 4

animation operation write read control

(a)

(b)

(c)

(d)

(e)

(f)

change

take

select

wait

continue

transform

symbol

(write)

(read)

(g) transform-
select

name

full

contour

half

center

full-double

half-double

wave

select with
breakbar(h)

Fig. 6. Basic types of the operation highlighting (flashing) used in cyberFilm frames

366 Y. Watanobe et al.

– Acquisition of data-knowledge as cyberFilms to increase the programmer
performance, and as template programs to guarantee high performance of
executable code on parallel architectures.

– Programming each software component in four picture-based languages to
reach high level reliability through automatic checking correctness and hu-
man recognition of the component meaning.

The use of background images for cyberFrames to support not only under-
standability language constructs, but also to express such things as beauty or
feeling. A fundamental feature of the approach (as we have mentioned in the
introduction) is a concept of an open set of super-symbols (icons) to define con-
tents of cyberFilm frames and manage the visual code compactness. However,
to be introduced, new icons should represent some special knowledge of a class
of algorithms and methods of their implementation. That is why this paper is
related to features of particle-in-cells algorithms and our attempt to create a
cyberFilm for them.

3 PIC Algorithm Features

Particle-In-Cell (PIC) is widely used method for application models where es-
sential irregularity and even dynamically changed irregularity of the data struc-
tures should be involved. PIC is described in many papers and books, see
for example [10, 11], where numerous references to the PIC implementations
can be found. Let us look at some general features of the method through
considering the problem of energy exchange in plasma cloud. A real physical
space is represented by a model of a simulation domain called the space of
modeling (SM). SM contains the test particles; each particle is described by
the 3D coordinates, velocity, charge and mass. The electric E and magnetic B
fields are defined as vectors and discretized upon rectangular mesh (Fig.7 and
Fig.8). At any moment of modeling a particle belongs to a certain cell SM. The
trajectories of a huge number of test particles are calculated as these parti-
cles are moved under the influence of the electromagnetic fields computed self-
consistently on a discrete mesh. These trajectories represent a desirable solution
of the system of differential equations describing a physical phenomenon under
study.

The dynamics of the plasma cloud is determined by integrating the equations
of motion of every particle in the series of discrete time steps. At each time step
tk+1 := tk +Δt the following is done:

1. For each particle, the Lorentz force is calculated from the values of electro-
magnetic fields at the nearest mesh points (gathering phase);

2. For each particle the new co-ordinates and velocity of a particle are calcu-
lated; a particle can move from one cell to another (moving phase);

Filmification of Methods: Representation of Particle-In-Cell Algorithms 367

x

z

y

Bx01
Ez1

By01

Bx11

Ey1
Bz01

Bx10

By00
Bz11

By11
Bz00

Ex1

Bx00

By10

Bz10

Fig. 7. A cell of the SM with the
electric E and magnetic B fields, dis-
cretized upon a mesh

x

z

y

Fig. 8. The whole space of modeling
(SM) assembled out of cells

3. For each particle the charge carried by a particle to the new coordinates is
calculated to obtain the current charge and density, which are also discretized
upon the rectangular mesh (scattering phase);

4. Maxwell’s or Poisson equations are solved to update the electromagnetic
field (mesh phase).

Fragmentation and dynamic load balancing are the key features of the PIC
parallel implementation. For the PIC parallelization in each PE a number of
rectangular blocks (sub-domains of SM), including electromagnetic fields at the
corresponding mesh points and particles in the corresponding cells can be loaded
for processing (technologically the use of equal size blocks can be better). If a
particle leaves its sub-domain on the second step and flies to another sub-domain
in the course of modeling, then this particle should be transferred to the PE
containing this latter sub-domain (particles migration). Thus, even with an equal
initial workload of the PEs, in several steps of modeling, some PEs might contain
far more particles than the others. This results in the load imbalance. If the load
imbalance exceeds a threshold, then some block(s) should leave overloaded PE
and migrate to a neighbor under-loaded PE (dynamic load balancing). Many
algorithms of dynamic load balancing were published [12,13]. So, our goal is to
take into account some of their features for possible representations by constructs
of the cyberFilm language.

3.1 Description of the Forces Distribution Scheme on the Planes
and Inside a Cell

There are different schemes of the field discretization. One of them (electric and
magnetic fields discretization) is shown in Fig.7. Another scheme of the gravita-
tional field discretization can be found below in Fig. 9 (from [14]). This scheme is
implicitly used in algorithms for forces values calculation inside a cell (interpola-
tion) that depends on a model. These algorithms and forces distribution should
be programmed.

368 Y. Watanobe et al.

Fy
Fx

Fz

Fig. 9. Gravitational field discretization

3.2 Virtual Cells

Virtual cells are implemented in substantially different way then ordinary cells.
The method and algorithms of virtual cells implementation should be included
into compiler.

3.3 Particles and Processes Migration

Different algorithms can be used for processes migration implementation in the
case some node is overloaded because the most simple and natural algorithm of
cells migration consumes too many resources. Several algorithms of cells migra-
tion are used when the cells are aggregated into layers and columns [15]. Also
migration should be planned in such a way in order to predict the development
of simulated processes. The notion of threshold and algorithm of its calculation
should be provided.

3.4 Data Input/Output and Algorithms of Initial Data Distribution

Initial cells and particles distributions among the multicomputer nodes should
be also programmed because this distribution depends on the initial state of a
model.

3.5 Mutual Exclusion

In the model there are usually operations that demand the use of global infor-
mation. In particular, the invariable value of energy means that the model is
valid yet. The energy value is calculated as the sum of energy values in each cell.
Therefore, the synchronization programming for operations mutual exclusion
should be provided.

3.6 Gathering-Sending of Particles

Some particles should migrate from one to neighbor cells in the course of simula-
tion. This is done after synchronization. Therefore, the particles transfer should
be programmed.

Filmification of Methods: Representation of Particle-In-Cell Algorithms 369

3.7 Dividing-Incorporation of the Virtual Cells

A cell, in which the number of particles is too big, i.e., all its particles cannot
be located inside the memory of one node of multicomputer, is divided into
several cells that are implemented as virtual cell. Any virtual cell in its turn
also can be divided into several cells. If particles leave a virtual cell then some
adjacent virtual cells can be incorporated. The algorithms of cells dividing and
incorporation should be programmed in the cyberFilm language.

4 Filmification of Particle-In-Cells

Four series cyberFilm frames and corresponding four visual languages should be
used to represent an algorithm. However, black-and-white printing materials are
not the best way to show the filmification approach. So, we will focus on the inte-
grated view (in the LAT language) and on the algorithmic skeleton view (in the
LAD language) clarifying meaning of icons in the cyberFilm frames from the in-
tegrated view. Fig.10 is depicted a LAT cyberFilm frame for a Particles-In-Cells
algorithm (color versions of this and other figures related to PIC algorithmis are
presented at: http://borealis.u-aizu.ac.jp/aks/film/particle.html). To be inside
one page figure (and in one cyberFilm frame of the integrated view), we omitted
the declaration of variables (the top row of Fig.4 shows an example of such type
declaration) and made some generalization of formulas involved. The variables
omitted include 1) arrays related to nodes of 3D mesh structure, to cell centers,
and to cell side centers, as well as 2) sets of particles and their attributes. It is
also assumed that within this declaration, values of gravity forces in the cell side
centers were defined.

LAT frames usually include two columns: the first column is to represent an
algorithm hierarchy through a set of high-level visual constructs (icons) and
non-terminal operations, and the second one is to represent terminal operations
(formulas) disclosing the non-terminal operations. In our case, the hierarchy
of the first column includes only two levels. The top icon represents the PIC
algorithm as a whole. It shows that seven non-terminal operations should be
defined (squares/cubes and circles are used for non-terminals and terminals,
respectively). The bottom part of the icon also shows that the operations are
hierarchically involved in two internal constructs allowing some parallel activ-
ity. Very short lines above these internal constructs (at the left and right sides)
are hints about the parallel activity. Algorithmic skeleton view for this icon is
presented by Fig.11, where seven cyberFilm frames (computational steps) repre-
sent the PIC algorithm. Frame 6 is responsible for branching the computation.
All other frames highlight parallel non-terminal activity on all cells of 3D mesh
structure. The activities are different in different frame and highlighted by differ-
ent colors (here, different colors are pointed by different numbers near 3D mesh
structures). The parallel activity of each frame should be barrier synchronized
before going to the next frame (a special link is depicted if we want to avoid the
barrier synchronization between frames). Within each frame, the parallel activ-
ity on cells is defined as identical (the same color is used for all cells). To show

370 Y. Watanobe et al.

4

F[] = f1(φ[] - φ[])/h

F[] = f2(φ[] - φ[])/h

F[] = f3(φ[] - φ[])/h

1

1 2 3 4 5 7

2

3

4

5

7

1 2 3

-move.out[] = U -subset[] = -subset[] - U

-move.in[] = U

φ’[] = f(φ[] + φ[] + φ[] + φ[] + φ[] + φ[])

∑n0[,] - ∑n[,]　<　c・∑n0[,]

Output of attribute fields

n0[,] = n[,] = input n[,] = 0 n[,] = 0

m[] = input L[] = input u[] = input

assign if

assign if

n[,] < N

(n[,] = N) & (n[,] < N)

Fx[] = ζ1(F[], F[], F[], F[], F[], F[])i b c d e fa

Fy[] = ζ2(F[], F[], F[], F[], F[], F[])i b c d e fa

Fz[] = ζ3(F[], F[], F[], F[], F[], F[])i b c d e fa

u’[] = θ1(u[] , F[], m[], γ[])

L’[] = θ2(L[], u’[], γ[])

i

i

i i i

i i

MOVE(L’[], L[])

1

2

3

4

5 6 7 8

4

5

i = 1, 2, ...

i

i i i i i

P P

assign if
n[,] < NP i

i = 0 while i = i+1P

6

7

K() = n.v_subset[]

9

8

assign where

j j = H(, ∑ n[, l])i
i

10 ρ[] = ∑ m()・R(,)i i
i

11

if do
V(|φ’[] - φ[]| > ε)12

P

i i

P

P

9

4

13

14

15

10

11 12

13 14 15

if do
16

17

17

16

1

6

6

i i i i

i

i = 1, 2, ...

a

b

c

i i

i i

i i

1

1 1

1

2

2 2

Fig. 10. LAT cyberFilm frame for a Particles-in-cells algorithm

Filmification of Methods: Representation of Particle-In-Cell Algorithms 371

1 2 3 4

5 6 77

1

color 1 color 2 color 3 color 4

color 5 color 7

Fig. 11. LAD cyberFrames of PIC algorithm and the top-left icon from Fig. 10

4-A
1 2 3 4

selected all

1

2 1

2
1

2

Fig. 12. LAD cyberFrames of non-terminal activity 1 and corresponding icon from
Fig. 10

different activity, different colors are usually applied. In our case, the activity
on boundary cells and internal cells can be shown by different colors. For sim-
plify, this time we consider that this differentiation can be done on the terminal
formula level.

On the second level of the PIC hierarchy, seven non-terminal activities above
mentioned are presented by a set of other icons depicted in the first column. The
new icons are located in the first column with a same shift to the right. These
icons represent some visual constructs requiring the definition of only terminal
operations (if non-terminals are needed, they should be explained by beneath
icons shifted to the left). Non-terminal activity 1 requires the definition of four
terminal operations. The algorithmic skeleton view of the non-terminal activity
is presented by Fig.12.

It says that the activity includes four steps of the following type terminals:
1) - operations on variables attached to the cell center to create/change a dy-
namical data structure (a set of particles), 2) - parallel operations on variables
attached to different particles, 3) - parallel decisions on each particle status, and
4) - parallel operations on variables attached to particles with possible attention
to the existence of particle subsets. Some hints about results of operations at

372 Y. Watanobe et al.

the first frame can be observed at the second frame, and results of operations at
the third frame can be observed at the fourth frame. These hints are included
into semantic of doubled and half-flashing operations. The precise formulas for
all frame operations are presented in the rows of the second column of the LAT
view. Let us look at these formulas. They have the standard format of left and
right parts, but not so standard index expressions which rather directly show
where (in the space structures) data should be taken from, and where variables
should be changed. This show is based on flashed (highlighted) nodes and in-
dex stencils. For PIC algorithms to show operations on particles, special visual
symbols (circles with arrow) have been introduced.

Formulas for frame 1 are related to variables n and n0 attached to cell centers
and declared to represent sets of particles involved (n0 is to save the initial num-
ber of the particles); different subsets are specified by different types of particles
and different cells where particles are considered. First, variables n and n0 obtain
their value through an input operation (in fact, a subset of particles is created),
then two empty subsets of type 1 and type 2 particles are created. The doubled
flashing node is to specify a transformation of the data space structure (in this
case, an appearance of particles); a hint about a type of the transformation is
presented by the next frame.

Formulas for frame 2 are related to variables attached to particles: m (mass),
and vectors L (location) and u (velocity).

Formulas for frame 3 are about decisions related to particle status (activity
at the next frame). In this case, a distribution of the initial set particles among
two subsets if the particle number in a cell is greater than a threshold of N;
a cube micro image is an index expression to point a cell under consideration,
particle symbols with I and 2 are to refer to particles of type 1 and 2, respectively.
Clock micro icons are to define indivisible actions for checking conditions and the
allocation of a particle to a subset. A hint about possible results of the decisions
is presented by the next frame (”selected all” is to point that all particles change
the status).

Formulas for frame 4 are to calculate (for both types of particles) external
forces on each particle, new velocity and location. Contour flashing nodes of
a, b, c, etc. types, as well as contour flashing particle of i type are to show
that data are taken from the cell side centers and from particles themselves.
However, the contour flashings are presented only in the formulas and are not
in frame 4 that displays only full flashing particles where variables should be
updated. To provide some additional explanations of space structure places for
reading data, an auxiliary frame (Fig.13) behind frame 4 is used and shown on
request. (For simplicity, here schemes of operations are presented instead of real
operations.) Now let us go to the next non-terminal activity of the algorithm
representation. Non-terminal activity 2 requires the definition of five terminal
operations. Corresponding frames of the algorithmic skeleton view are presented
by Fig.14.

The first frame says that a parallel transformation operation should be done
on each particle. The (terminal) operation for this frame is defined by procedure

Filmification of Methods: Representation of Particle-In-Cell Algorithms 373

a

f
b
c

d

e

4-A

z y
x

Fig. 13. An auxiliary frame 4-A for Fig. 12

i i
i i

i i

i i

i i

i i

i

P

i

P

P

i

1 2

5

i i
i i

i i

i i

i i

i i

43
P

P

P

P

P
P

i

i

i

Fig. 14. Five algorithmic skeleton frames for non-terminal activity 2

MOVE on two arguments (current and expected positions of a particle). Results
of the transformation can be seen at frame 2. Some particles of type i (i = 1, 2, ...)
have been moved out of cell, but some of type p are coming into the cell from
other cells. The formulas related to frame 2 calculate subsets of particles moved
out, subsets of particles still stayed in, and a subset of particles came from other
cells. The operation for frame 3 makes decisions on distribution of new comers
among subsets of type i particles. First, p-particles go to a subset with i = 1,
then, if it is full and p-particles exist, to a subset with i = 2, and so on. The
operation for frame 4 calculates K (the number of subsets related to particles
with different i, in fact, it is the number of virtual cells mentioned in Section
3.7). We do not use explicitly this value in further formulas, because symbol
i = 1, 2, ... does it implicitly. However, we think it is useful to show as possible
opportunity. Finally, the operation for frame 5 transforms the number of the
subsets into smaller one if they are rather empty. The calculation of the new
subset number and assigning particles in the subsets are performed on each
particle in parallel based on function H . Checking conditions and assigning a
particle are performed as a non-divisible operation.

In a similar way, we can consider non-terminal activity of further five steps.
For example, activity 3 is to calculate some physical field values in centers of

374 Y. Watanobe et al.

neighboring cells through contribution from each particle belonging to a cell
under consideration (see, terminal formula 10). Activity 4 is to solve a Poisson
equation based on terminal operations 11 and 12. Activities 5 and 6 are to
calculate some physical field values in three cell side centers and to check the
termination of computation based on the number of particles left the physical
space simulated (see, terminal formulas 13-16). Finally, Activity 7 is to specify
output of attribute fields.

5 Additional Comments

In fact, it is our first attempt to apply the concept of cyberFilms for PIC algo-
rithms. The frames of two views and super-symbols introduced for the frames
show that the approach can be really promising for this types of algorithms.
It is possible to say that the size (compactness) of the LAT programs can be
very close to the compactness of formulas used by algorithms. The visual con-
structs presented can allow application programmers to focus on their models
and methods rather than on technical details of parallel implementations. How-
ever, it does not mean that nobody should care about such implementations.
In this approach, usually for each super-symbol representing a non-terminal ac-
tivity, a set of template programs is created and saved in special library. This
set is based on acquiring knowledge of efficient implementations depending on
features of possible parallel architectures, sizes of the physical space and the par-
ticle number, as well as granularity of terminal operations involved. One temple
program is selected from the set during the code generation.

The PIC algorithms possess a good natural parallelism related to operations in
different cells and on different particles. However, the dynamics of load balancing
requires a special attention to temple program implementations. In general, it
can be embedded into such program implementations through, for example, the
use of the virtual cell technique [17]. As a result, the user should not think about
this problem at all. However, it is possible to assume cases where some attention
to implementations within the high-level representation can be very useful for
generating a more efficient executable code. That is why to show how it can be
done, in the LAT program from Section 4 we introduced subsets of particles and
presented operations on the subset dividing and merging. In fact, it is a rather
direct form of the virtual cell representation.

6 Conclusion

An approach based on algorithmic cyberFilms has been applied to a high-level
programming (specification) of particle-in-cell (PIC) algorithms. Language of al-
gorithmic ”text” (LAT) based on a set of super-symbols has been used to present
an algorithm in a very compact form. Language of algorithmic dynamics (LAD)
has been used to present explanation of the super-symbols mentioned. To make
this high-level programming, a number of new super-symbols (icons) has been
introduced. This introduction has also demonstrated that the concept of an open

Filmification of Methods: Representation of Particle-In-Cell Algorithms 375

set of icons is a workable approach in acquiring new knowledge about algorithms
and developing a new generation of programming environments. High-level con-
structs and the program as a whole have shown that application programmers
can focus on their models and simulation experiments rather than on problems
of the efficient implementation. In the example considered, the users can change
the size of the 3D mesh structure, types of possible particles, attributes related to
particles, physical fields, input of particles, visualization of results, etc. Though
special template programs behind the constructs are considered as a main way of
implementation knowledge acquisition, nevertheless, the constructs themselves
can be used, if necessary, for providing serious support to the efficient code
generation.

Our future work will be related to further analysis of PIC algorithms and
corresponding template programs, as well as to analysis of other classes of ap-
plication methods. The goal of the analysis is to prepare a fundamental basis for
the specification of programming environment of a new generation.

References

1. Yoshioka, R., Mirenkov, N.: Visual Computing within Environment of Self-
explanatory Components. Soft Computing Journal 7(1), 20–32 (2002)

2. Yoshioka, R., Mirenkov, N.: A Multimedia System to Render and Edit Self-
explanatory Components. Journal of Internet Technology 3(1), 1–10 (2002)

3. Ebihara, T., Mirenkov, N., Nomoto, R., Nemoto, M.: Filmification of methods and
an example of its applications. International Journal of Software Engineering and
Knowledge Engineering 15(1), 87–115 (2005)

4. Saber, M., Mirenkov, N.: A visual representation of cellular automata-like systems.
Journal of Visual Languages and Computing 15, 409–438 (2004)

5. Ebihara, T., Mirenkov, N.: Self-explanatory software components for computation
on pyramids. Journal of Three Dimensional Images 14(4), 158–163 (2000)

6. Hirotomi, T., Mirenkov, N.: Multimedia representation of computation on trees.
Journal of Three Dimensional Images 13(3), 146–151 (1999)

7. Watanobe, Y., Mirenkov, N., Yoshioka, R.: Algorithm Library based on Algorith-
mic CyberFilms. Journal of Knowledge-Based Systems 22, 195–208 (2009)

8. Watanobe, Y., Mirenkov, N., Yoshioka, R., Monakhov, O.: Filmification of meth-
ods: A visual language for graph algorithms. Journal of Visual Languages and
Computing 19(1), 123–150 (2008)

9. Roxas, R., Mirenkov, N.: Input/Output Specifications within Self-explanatory
Components. Journal of Three Dimensional Images 16(1), 129–134 (2002)

10. Grigoryev, Yu.N., Vshivkov, V.A., Fedoruk, M.P.: Numerical ”Particle-in-Cell”
Methods: Theory and applications. Utrecht-Boston (2002)

11. Hockney, R., Eastwood, J.: Computer Simulation Using Particles. McGraw-Hill
Inc., New York (1981)

12. Kraeva, K., Malyshkin, V.: Dynamic load balancing algorithms for implementa-
tion of PIC method on MIMD multicomputers. Programmirovanie 1, 47–53 (1999)
(in Russian)

13. Corradi, A., Leonardi, L., Zambonelli, F.: Performance Comparison of Load
Balancing Policies based on a Diffusion Scheme. In: Lengauer, C., Griebl, M.,
Gorlatch, S. (eds.) Euro-Par 1997. LNCS, vol. 1300. Springer, Heidelberg (1997)

376 Y. Watanobe et al.

14. Kraeva, M.A., Malyshkin, V.E.: Assembly Technology for Parallel Realization of
Numerical Models on MIMD-Multicomputers. Int. Journal on Future Generation
Computer Systems 17(6), 755–765 (2001)

15. Kireev, S.: Parallel realization of PIC application to modeling of the problems
of gravitational space dynamics. Autometriya 3, 32–39 (2006) (in Russian Paral-
lel’naya metoda chastits v yacheikakh dlya modelirovaniya padach gravitatsionnoi
kosmodynamiki)

16. Parallel Computing Laboratory, Univ. of California Berkeley,
http://parlab.eecs.berkeley.edu/

17. Pervasive Parallelism Lab., Stanford University, http://ppl.stanford.edu/
18. Universal Parallel Computing Research Center, Univ. of Illinois,

http://www.upcrc.illinois.edu/

19. The Munich Multicore, http://www.lrr.in.tum.de/~weidendo/mmi/doku.php

http://parlab.eecs.berkeley.edu/
http://ppl.stanford.edu/
http://www.upcrc.illinois.edu/
http://www.lrr.in.tum.de/~weidendo/mmi/doku.php

Parallel Evidence Propagation on Multicore

Processors�

Yinglong Xia1, Xiaojun Feng3, and Viktor K. Prasanna1,2

1 Computer Science Department
2 Department of Electrical Engineering

University of Southern California, Los Angeles, CA 90089, U.S.A.
3 Department of Computer Science and Technology

Tsinghua University, Beijing 100084, China
{yinglonx,prasanna}@usc.edu, fxj05@mails.tsinghua.edu.cn

Abstract. In this paper, we design and implement an efficient technique
for parallel evidence propagation on state-of-the-art multicore proces-
sor systems. Evidence propagation is a major step in exact inference, a
key problem in exploring probabilistic graphical models. We propose a
rerooting algorithm to minimize the critical path in evidence propaga-
tion. The rerooted junction tree is used to construct a directed acyclic
graph (DAG) where each node represents a computation task for evi-
dence propagation. We develop a collaborative scheduler to dynamically
allocate the tasks to the cores of the processors. In addition, we integrate
a task partitioning module in the scheduler to partition large tasks so as
to achieve load balance across the cores. We implemented the proposed
method using Pthreads on both AMD and Intel quadcore processors. For
a representative set of junction trees, our method achieved almost linear
speedup. The execution time of our method was around twice as fast as
the OpenMP based implementation on both the platforms.

Keywords: Exact inference, Multicore, Junction tree, Scheduling.

1 Introduction

A full joint probability distribution for any real-world system can be used for
inference. However, such a distribution increases intractably with the number of
variables used to model the system. It is known that independence and condi-
tional independence relationships can greatly reduce the size of the joint proba-
bility distributions. This property is utilized by Bayesian networks [1]. Bayesian
networks have been used in artificial intelligence since the 1960s. They have found
applications in a number of domains, including medical diagnosis, consumer help
desks, pattern recognition, credit assessment, data mining and genetics [2][3][4].

Inference in a Bayesian network is the computation of the conditional proba-
bility of the query variables, given a set of evidence variables as the knowledge
� This research was partially supported by the U.S. National Science Foundation un-

der grant number CNS-0613376. NSF equipment grant CNS-0454407 is gratefully
acknowledged.

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 377–391, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

378 Y. Xia, X. Feng, and V.K. Prasanna

to the network. Inference in a Bayesian network can be exact or approximate.
Exact inference is NP hard [5]. The most popular exact inference algorithm for
multiply connected networks was proposed by Lauritzen and Speigelhalter [1],
which converts a Bayesian network into a junction tree, then performs exact
inference in the junction tree. The complexity of exact inference algorithms in-
creases dramatically with the density of the network, the width of the cliques
and the number of states of the random variables in the cliques. In many cases
exact inference must be performed in real time.

Almost all recent processors are designed to process simultaneous threads to
achieve higher performance than single core processors. Typical examples of mul-
ticore processors available today include AMD Opteron and Intel Xeon. While
chip multi-processing has been devised to deliver increased performance, an im-
portant challenge is to exploit the available parallelism. Prior work has shown
that system performance is sensitive to thread scheduling in simultaneous mul-
tithreaded (SMT) architectures [6]. To maximize the potential of such multicore
processors, users must understand both the algorithmic and architectural aspects
to design efficient scheduling solutions.

In this paper, we study parallelization of evidence propagation on state-of-
the-art multicore processors. We exploit both structural parallelism and data
parallelism to improve the performance of evidence propagation. We achieved
speedup of 7.4 using 8 cores on state-of-the-art platforms. This speedup is much
higher compared with the baseline methods e.g. OpenMP based implementation.
The proposed method can be extended for online scheduling of directed acyclic
graph (DAG) structured computations.

The paper is organized as follows: In Section 2, we discuss the background of
evidence propagation. Section 3 introduces related work. In Section 4, we present
junction tree rerooting. Section 5 defines computation tasks for evidence prop-
agation. Section 6 presents our collaborative scheduler for multicore processors.
Experimental results are shown in Section 7. Section 8 concludes the paper.

2 Background

A Bayesian network is a probabilistic graphical model that exploits conditional
independence to represent compactly a joint distribution. Figure 1 (a) shows
a sample Bayesian network, where each node represents a random variable.
The edges indicate the probabilistic dependence relationships between two ran-
dom variables. Notice that these edges can not form directed cycles. Thus, the
structure of a Bayesian network is a directed acyclic graph (DAG), denoted
G = (V , E), where V = {A1, A2, . . . , An} is the node set and E is the edge set.
Each random variable in the Bayesian network has a conditional probability table
P (Aj |pa(Aj)), where pa(Aj) is the parents of Aj . Given the Bayesian network,
a joint distribution is given by P (V) =

∏n
j=1 P (Aj |pa(Aj)), where Aj ∈ V [1].

The evidence in a Bayesian network is the variables that have been instan-
tiated, e.g. E = {Ae1 = ae1 , · · · , Aec = aec}, ek ∈ {1, 2, . . . , n}, where Aei is a
variable and aei is the instantiated value. Evidence can be propagated to other

Parallel Evidence Propagation on Multicore Processors 379

variables in the Bayesian network using Bayes’ Theorem. Propagating the evi-
dence throughout a Bayesian network is called inference, which can be exact or
approximate. Exact inference is proven to be NP hard [5]. The computational
complexity of exact inference increases dramatically with the size of the Bayesian
network and the number of states of the random variables.

Traditional exact inference using Bayes’ theorem fails for networks with undi-
rected cycles [1]. Most inference methods for networks with undirected cycles
convert a network to a cycle-free hypergraph called a junction tree. We illus-
trate a junction tree converted from the Bayesian network (Figure 1 (a)) in
Figure 1 (b), where all undirected cycles in are eliminated. Each vertex in Fig-
ure 1 (b) contains multiple random variables from the Bayesian network. For the
sake of exploring evidence propagation in a junction tree, we use the following
notations to formulate a junction tree. A junction tree is defined as J = (T, P̂),
where T represents a tree and P̂ denotes the parameter of the tree. Each vertex
Ci, known as a clique of J, is a set of random variables. Assuming Ci and Cj are
adjacent, the separator between them is defined as Ci ∩Cj . P̂ is a set of potential
tables. The potential table of Ci, denoted ψCi , can be viewed as the joint distri-
bution of the random variables in Ci. For a clique with w variables, each having
r states, the number of entries in Ci is rw.

Fig. 1. (a) A sample Bayesian network and (b) corresponding junction tree

In a junction tree, exact inference proceeds as follows: Assuming evidence is
E = {Ai = a} and Ai ∈ CY , E is absorbed at CY by instantiating the variable
Ai and renormalizing the remaining variables of the clique. The evidence is then
propagated from CY to any adjacent cliques CX . Let ψ∗

Y denote the potential table
of CY after E is absorbed, and ψX the potential table of CX . Mathematically,
evidence propagation is represented as [1]:

ψ∗
S =

∑
Y\S

ψ∗
Y , ψ∗

X = ψX
ψ∗
S
ψS

(1)

where S is a separator between cliques X and Y; ψS (ψ∗
S) denotes the original

(updated) potential table of S; ψ∗
X is the updated potential table of CX .

380 Y. Xia, X. Feng, and V.K. Prasanna

3 Related Work

There are several works on parallel exact inference, such as Pennock [5],
Kozlov and Singh [7] and Szolovits. However, some of those methods, such as [7],
are dependent upon the structure of the Bayesian network. The performance is
adversely affected if the structure of the input Bayesian network is changed.
Our method can be used for Bayesian networks and junction trees with various
structures. Some other methods, such as [5], exhibit limited performance for mul-
tiple evidence inputs. The performance of our method does not depend on the
number of evidence cliques. In [8], the authors discuss the structure conversion
of Bayesian networks, which is different from evidence propagation addressed
in this paper. In [9], the node level primitives are parallelized using message
passing on distributed memory platforms. The optimization proposed in [9] is
not applicable in this paper, since the multicore platforms have shared mem-
ory. However, the idea of parallelization of node level primitives is adapted by
our scheduler to partition large tasks. A junction tree decomposition method is
provided in [10] to partition junction trees for distributed memory platforms.
This method reduces communication between processors by duplicating some
cliques. We do not apply junction tree decomposition on our multicore plat-
forms, because the clique duplication consumes memory that is shared by all the
cores. A centralized scheduler for exact inference is introduced in [11], which is
implemented on Cell BE, a heterogeneous multicore processor with a PowerPC
element and 8 computing elements. However, the multicore platforms studied in
this paper are homogeneous, and the number of cores is small. Using a separate
core for centralized scheduling leads to performance loss. We deviate from the
above approaches and explore collaborative task scheduling techniques for exact
inference.

4 Junction Tree Rerooting for Minimizing Critical Path

A junction tree can be rerooted at any clique [5]. Consider rerooting a junction
tree at clique C. Let α be a preorder walk of the underlying undirected tree,
starting from C. Then, α encodes the desired new edge directions, i.e. an edge in
the rerooted tree points from Cαi to Cαj if and only if αi < αj . In the rerooting
procedure, we check the edges in the given junction tree and reverse any edges
inconsistent with α. The result is a new junction tree rooted at C, with the same
underlying undirected topology as the original tree.

Rerooting a junction tree can lead to acceleration of evidence propagation on
parallel computing systems. Let P (Ci, Cj) = Ci, Ci1 , Ci2 , ..., Cj denote a path from
Ci to Cj in a junction tree, and L(Ci,Cj) denote the weight of path P (Ci, Cj). Given
clique width wCt and clique degree kt for a clique Ct ∈ P (Ci, Cj), the weight of
the path L(Ci,Cj) is defined as:

L(Ci,Cj) =
∑

Ct∈P (Cr,Cj)

ktwCt

wCt∏
l=1

rl (2)

Parallel Evidence Propagation on Multicore Processors 381

The critical path (CP) of a junction tree is defined as the longest weighted path
of the junction tree. Give a junction tree J, the weight of a critical path, denoted
LCP , is given by LCP = maxCj∈JL(Cr,Cj), where Cr is the root. Notice that
evidence propagation in a critical path takes at least as much time as that in
other paths. Thus, among the rerooted junction trees, the one with the minimum
critical path leads to the best performance on parallel computing platforms.

A straightforward approach to find the optimal rerooted tree is as follows:
First, reroot the junction tree at each clique. Then, for each rerooted tree, calcu-
late the weight of the critical path. Finally, select the rerooted tree corresponding
to the minimum weight of the critical path. Given the number of cliques N and
maximum clique width wC , the serial computational complexity of the above
procedure is O(N2wC).

We present an efficient rerooting method (see Algorithm 1) to minimize the
critical path, which is based on the following lemma:

Lemma 1. Suppose that P (Cx, Cy) is the longest weighted path from a leaf clique
Cx to another leaf clique Cy in a given junction tree, and L(Cr,Cx) ≥ L(Cr,Cy),
where Cr is the root. Then, P (Cr, Cx) is a critical path in the given junction tree.

Proof sketch. Assume a critical path is P (Cr, Cz), Cz �= Cx. Let P (Cr, Cb1) denote
the longest common path between P (Cr, Cx) and P (Cr, Cy), and P (Cr, Cb2) the
longest common path between P (Cr, Cx) and P (Cr, Cz). Without loss of gen-
erality, assume Cb2 ∈ P (Cr, Cb1). Since P (Cr, Cz) is a critical path, we have
L(Cr,Cz) ≥ L(Cr,Cx). Note that L(Cr,Cz) = L(Cr,Cb2) + L(Cb2,Cz) and L(Cr,Cx) =
L(Cr,Cb2) + L(Cb2,Cb1) + L(Cb1,Cx). Therefore, L(Cb2,Cz) ≥ L(Cb2,Cb1) + L(Cb1,Cx) >
L(Cb1,Cx). Thus, we can find path P (Cz, Cy) = P (Cz, Cb2)P (Cb2, Cb1)P (Cb1, Cy)
which leads to:

L(Cz,Cy) = L(Cz,Cb2) + L(Cb2,Cb1) + L(Cb1,Cy) > L(Cb1,Cx) + L(Cb2,Cb1) + L(Cb1,Cy)

> L(Cx,Cb1) + L(Cb1,Cy) = L(Cx,Cy) (3)

The above inequality contradicts the assumption that P (Cx, Cy) is a longest
weighted path in the given junction tree. �

According to Lemma 1, the new root can be found once we identify the longest
weighted path between two leaves in the given junction tree. We introduce a
tuple 〈vi, pi, qi〉 for each clique Ci to find the longest weighted path (Lines 1-6
Algorithm 1), where vi records the complexity of a critical path of the subtree
rooted at Ci; pi and qi represent Cpi and Cpi , respectively, which are two children
of Ci. If Ci has no child, pi and qi are empty.

The path from Cpi to some leaf clique in the subtree rooted at Ci is the longest
weighted path among all paths from a child of Ci to a leaf clique, while the path
from Cqi to a certain leaf clique in the subtree rooted at Ci is the second longest
weighted path. The two paths are concatenated at Ci and form a leaf-to-leaf path
in the original junction tree. In Lines 3 and 4, argj max(vj) stands for the value
of the given argument (parameter) j for which the value of the given expression vj

382 Y. Xia, X. Feng, and V.K. Prasanna

Algorithm 1. Root selection for minimizing critical path
Input: Junction tree J
Output: New root Cr

1: initialize a tuple 〈vi, pi, qi〉 = 〈kiwCi

∏wCi
j=1 rj , 0, 0〉 for each Ci in J

2: for i = N downto 1 do
3: pi = argj max(vj),∀pa(Cj) = Ci

4: qi = argj max(vj),∀pa(Cj) = Ci and j �= pi

5: vi = vi + vpi

6: end for
7: select Cm where m = argi max(vi + vqi),∀i
8: initialize path P = {Cm}; i = m
9: while Ci is not a leaf clique do

10: i = pi; P = {Ci} ∪ P
11: end while
12: P = P ∪ Cqm ; i = m
13: while Ci is not a leaf node do
14: i = pi; P = P ∪ {Ci}
15: end while
16: denote Cx and Cy the two end cliques of path P
17: select new root Cr = argi min |L(Cx,Ci) − L(Ci,Cy)| ∀Ci ∈ P (Cx, Cy)

attains its maximum value. In Line 7, we detect a clique Cm on the longest
weighted path and identify the path in Lines 8-15 accordingly. The new root is
then selected in Line 17.

We briefly analyze the serial complexity of Algorithm 1. Line 1 takes wCN
time for initialization, where wC is clique width and N is the number of cliques.
The loop in Line 2 has N iterations and both Lines 3 and 4 take O(k) time,
where k is the maximum number of children of a clique. Line 7 takes O(N)
time, as do Lines 8-15, since a path consists of at most N cliques. Lines 16-17
can be completed in O(N) time. Since k < wC , the serial complexity of Algo-
rithm 1 is O(wCN), compared to O(wCN2), the complexity of the straightforward
approach.

5 Task Definition and Dependency Graph Construction

5.1 Task Definition

Evidence propagation consists of a series of computations called node level prim-
itives. There are four types of node level primitives: marginalization, extension,
multiplication and division [9]. In this paper, we define a task as the computation
of a node level primitive. The input to each task is one or two potential tables,
depending on the specific primitive type. The output is an updated potential
table. The details of the primitives are discussed in [9]. We illustrate the tasks
related to clique C in Figure 2 (b). Each number in brackets corresponds to a task
of which the primitive type is given in Figure 2 (c). The dashed dashed arrows

Parallel Evidence Propagation on Multicore Processors 383

in Figure 2 (b) illustrate whether the task works on the same potential table
or between two potential tables. The edge in Figure 2 (c) represent precedence
order of the execution of the tasks.

A property of the primitives is that the potential table of a clique can be
partitioned into independent activities and processed in parallel. The results
from each activity are combined (for extension, multiplication and division) or
added (for marginalization) to obtain the final output. This property is utilized
in Section 6.

Fig. 2. (a) Clique updating graph; (b) Primitives used to update a clique; (c) Local
task dependency graph with respect to the clique in (b)

5.2 Dependency Graph Construction

Given an arbitrary junction tree, we reroot it according to Section 4. The result-
ing tree is denoted J. We construct a task dependency graph G from J to describe
the precedence constraints among the tasks. The task dependency graph is cre-
ated in the following two steps:

First, we construct a clique updating graph to describe the coarse grained
dependency relationship between cliques in J. In exact inference, J is updated
twice [1]: (1) evidence is propagated from leaf cliques to the root; (2) evidence
is then propagated from the root to the leaf cliques. Thus, the clique updating
graph has two symmetric parts. In the first part, each clique depends on all
its children in J. In the second part, each clique depends on its parent in J.
Figure 2 (a) shows a sample clique updating graph from the junction tree given
in Figure 1 (b).

Second, based on the clique updating graph, we construct task dependency
graph G to describe the fine grained dependency relationship between the tasks
defined in Section 5.1. The tasks related to a clique C are shown in Figure 2 (b).
Considering the precedence order of the tasks, we obtain a small DAG called

384 Y. Xia, X. Feng, and V.K. Prasanna

a local task dependency graph (see Figure 2 (c)). Replacing each clique in Fig-
ure 2 (a) with its corresponding local task dependency graph, we obtain the task
dependency graph G for junction tree J.

6 Collaborative Scheduling

We propose a collaborative scheduler to allocate the tasks in the task depen-
dency graph G to the cores. We assume that there are P cores in a system. The
framework of the scheduler is shown in Figure 3. The global task list (GL) in
Figure 3 stores the tasks from the task dependency graph. Each entry of the list
stores a task and the related data, such as the task size, the task dependency
degree, and the links to its succeeding tasks. Initially, the dependency degree of
a task is the number of incoming edges of the task in G. Only the tasks with
dependency degree equal to 0 can be processed. The global task list is shared by
all the threads, so any thread can fetch a task, append new tasks, or decrease the
dependency degree of tasks. Before an entry of the list is accessed by a thread,
all the data in the entry must be protected by a lock to avoid concurrent write.

Fig. 3. Components of the collaborative scheduler

Every thread has an Allocate module which is in charge of decreasing task
dependency degrees and allocating tasks to the threads. The module only de-
creases the dependency degree of the tasks if their predecessors appear in the
Task ID buffer (see Figure 3). The task ID corresponds to the offset of the task
in the GL, so the module can find the task given the ID in O(1) time. If the
dependency degree of a task becomes 0 after the decrease operation, the module
allocates it to a thread with the aim of load balancing across threads. Various
heuristics can be used to balance the workload. In this paper, we allocate a task
to the thread with the smallest workload.

Parallel Evidence Propagation on Multicore Processors 385

Each thread has a local ready list (LL) to store the tasks allocated to the
thread. All the tasks in a LL are processed by the same thread. However, since
the tasks in the LL can be allocated by all the Allocate modules, the LLs are
actually global. Thus, locks are used to prevent concurrent write to LL. Each
LL has a weight counter to record the workload of the tasks in the LL. Once a
new task is inserted to (fetched from) the list, the workload of the task is added
to (subtracted from) the weight counter.

The Fetch module takes tasks from the LL in the same thread. Heuristics can
be used to select tasks from the LL. In this paper, we use a straightforward
method where the task at the head of the LL is fetched.

The Partition module checks the workload of the fetched task. The tasks with
heavy workload are partitioned for load balancing. As we discussed in Section 5.1,
a property of the primitives is that the potential table of a clique can be parti-
tioned easily. Thus, a task T can be partitioned to subtasks T̂1, T̂2, · · · , T̂n, each
processing a part of the potential table related to task T . Each subtask inherits
the parents of T in the task dependency graph G. However, we let T̂n be the
successor of T̂1, · · · , T̂n−1, and only T̂n inherits the successor of T . Therefore, the
results from the subtasks can be concatenated or added by T̂n. The Partition
module preserves the structure of G, except replacing T by the subtasks. The
module replaces T in the GL with T̂n, and appends other subtasks to the GL. T̂1
is sent to the Execute module and T̂2, · · · , T̂n−1 are evenly distributed to local
lists, so that these subtasks can be executed by several threads.

Each thread also has a local Execute module where the primitive related to a
task is performed. Once the primitive is completed, the Execute module sends
the ID of the task to the Task ID buffer, so that the Allocate module can
accordingly decrease the dependency degree of the successors of the task. The
Execute module also signals the Fetch module to take the next task, if any, from
LL.

The collaborative scheduling algorithm is shown in Algorithm 2. We use the
following notations in the algorithm: GL is the global list. LLi is the local ready
list in Thread i. dT and wT denote the dependency degree and the weight of
task T , respectively. Wi is the total weight of the tasks in LLi. δ is the threshold
of the size of potential table. Any potential table larger than δ is partitioned.
Line 1 in Algorithm 2 initializes the Task ID buffers. As shown in Line 3, the
scheduler keeps on working until all tasks are processed. Lines 4-10 correspond
to the Allocate module. Line 11 is the Fetch module. Lines 12-18 correspond to
the Partition module and Execute Module.

Algorithm 2 achieves load balancing by two means: First, the Allocate module
ensures that the new tasks are allocated to the threads where the total workload
of the tasks in its LL is the lowest. Second, the Partition module guarantees that
each single large task can be processed in parallel.

7 Experiments

We conducted experiments on two state-of-the-art homogeneous multicore pro-
cessor systems: Intel Xeon quadcore and AMD Opteron quadcore system. The

386 Y. Xia, X. Feng, and V.K. Prasanna

Algorithm 2. Collaborative Task Scheduling
1: ∀ T s.t. dT = 0, evenly distribute the ID of T to Task ID buffers
2: for Thread i (i = 1 . . . P) in parallel do
3: while GL∪LLi �= ∅ do
4: for T ∈ { successors of tasks in the i-th Task ID buffer } do
5: dT = dT − 1
6: if dT = 0 then
7: allocate T to LLj where j = argt min(Wt), t = 1 · · ·P
8: Wk = Wk + wT

9: end if
10: end for
11: fetch task T ′ from LLi

12: if the size of potential table ψT ′ > δ then
13: partition T ′ into subtasks T̂ ′

1, T̂ ′
2, · · · , T̂ ′

n s.t. ψ
T̂ ′

j
≤ δ, j = 1, · · · , n

14: replace T ′ in GL with T̂ ′
n, and allocate T̂ ′

1, · · · , T̂ ′
n−1 to local lists

15: execute T̂ ′
1 and place the task ID of T̂ ′

1 into the i-th Task ID buffer
16: else
17: execute T ′ and place the task ID of T ′ into the i-th Task ID buffer
18: end if
19: end while
20: end for

Fig. 4. Junction tree template for evaluat-
ing rerooting algorithm

former contained two Intel Xeon
x86 64 E5335 processors, each having
four cores. The processors ran at 2.00
GHz with 4 MB cache and 16 GB
memory. The operating system was
Red Hat Enterprise Linux WS release
4 (Nahant Update 7). We installed
GCC version 4.1.2 compiler and In-
tel C/C++ Compiler (ICC) version
10.0 with streaming SIMD extensions
3 (SSE 3), also known as Prescott
New Instructions (PNI). The latter
platform had two AMD Opteron 2347
quadcore processors, running at 1.9
GHz. The system had 16 GB DDR2 memory and the operating system was
Red Hat Linux CentOS version 5. We also used GCC 4.1.2 compiler on the
AMD platform.

To evaluate the performance of the junction tree rerooting method shown
in Algorithm 1, we generated four junction trees using the template shown in
Figure 4. The template in Figure 4 is a tree with b + 1 branches. R is the root.
Using b = 1, 2, 4, 8, we obtained four junction trees. Every junction tree had
512 cliques, each consisting of 15 binary variables. Thus, the serial complexity
of each Branch is approximately equal. Using Algorithm 1, clique R′ became
the new root after rerooting. For each junction tree, we performed evidence

Parallel Evidence Propagation on Multicore Processors 387

Fig. 5. Speedup due to rerooting on (a) Intel Xeon and (b) AMD Opteron. (b + 1) is
the total number of branches in the junction tree.

propagation on both the original tree and the rerooted tree, using various number
of cores. We disabled task partitioning, which provided parallelism at fine grained
level.

The results are shown in Figure 5. The speedup in Figure 5 was defined as
Sp = tR/tR′ , where tR (tR′) is the execution time of evidence propagation in
the original (rerooted) junction tree. According to Section 4, we know that when
clique R is the root, Branch 0 plus Branch 1 is a critical path. When R′ is the
root, only Branch 0 is the critical path. Thus, the maximum speedup is 2 for the
four junction trees, if the number of concurrent threads P is larger than b. When
P < b, Sp was less than 2, since some cliques without precedence constraint can
not be processed in parallel. From the results in Figure 5, we can see that the
rerooted tree led to speedup around 1.9, when 8 cores were used. In addition,
the maximum speedup was achieved using more threads as b increases. These
observations matched the analysis above. Notice that some speedup curves fell
slightly when 8 concurrent threads were used. This was caused by the overheads
such as the lock contention.

We also observed that, compared with the time for evidence propagation, the
percentage of overall execution time spent on junction tree rerooting was very
small. Rerooting the junction tree with 512 cliques took 24 microseconds on
the AMD Opteron quadcore system, compared to 2.8 × 107 microseconds for
the overall execution time. Thus, although Algorithm 1 was not parallelized, it
causes negligible overhead in parallel evidence propagation.

We generated junction trees of various sizes to analyze and evaluate the per-
formance of the proposed evidence propagation method. The junction trees were
generated using Bayes Net Toolbox [12]. The first junction tree (Junction tree
1) had 512 cliques and the average clique width was 20. The average degree
for each clique was 4. All random variables were binary. The second junction
tree (Junction tree 2) had 256 cliques and the average clique width was 15. The
number of states of random variables was 3 and the average clique degree was
4. The third junction tree (Junction tree 3) had 128 cliques. The clique width
was 10 and the number of states of random variables was 3. The average clique

388 Y. Xia, X. Feng, and V.K. Prasanna

degree was 2. All the three junction trees were rerooted using Algorithm 1. In
our experiments, we used double precision floating point numbers to represent
the probabilities and potentials.

Fig. 6. Scalability of exact inference using PNL li-
brary for various junction trees

We performed exact infer-
ence with respect to the above
three junction trees using In-
tel Open Source Probabilistic
Network Library (PNL) [13].
The scalability of the results
is shown in Figure 6. PNL
is a full function, free, open
source, graphical model li-
brary released under Berkeley
Software Distribution (BSD)
style license. PNL provides
an implementation for junc-
tion tree inference with dis-
crete parameters. The paral-
lel version of PNL is also provided by Intel [13]. The results shown in Figure 6
were obtained on a IBM P655 multiprocessor system, where each processor runs
at 1.5 GHz with 2 GB of memory. We can see from Figure 6 that, for all the
three junction trees, the execution time increased when the number of processors
was greater than 4.

Fig. 7. Scalability of exact inference using various methods on (a) Intel Xeon and (b)
AMD Opteron

We compared three parallel methods for evidence propagation on both Intel
Xeon and AMD Opteron in Figure 7. The first two methods were the baselines.
The first parallel method was the OpenMP based method, where the OpenMP
intrinsic functions were used to parallelize the sequential code. We used ICC
to compile the code on Xeon, while GCC was used on Opteron. The second
method is called data parallel method, where we created multiple threads for
each node level primitive. That is, the node level primitives were parallelized

Parallel Evidence Propagation on Multicore Processors 389

every time they were performed. The data parallel method is similar to the
task partitioning mechanism in our collaborative scheduler, but the overheads
were large. The third parallel method was the proposed method. Using Junction
trees 1-3 introduced above, we conducted experiments on both the platforms.
For all the three methods, we used level 3 optimization (-O3). The OpenMP
based method also benefited from the SSE3 optimization (-msse3). We show
the speedups in Figure 7. The results show that the proposed method exhibited
linear speedup and was superior compared with the baseline methods on both
the platforms. Performing the proposed method on 8 cores, we observed speedup
of 7.4 on Intel Xeon and 7.1 on AMD Opteron. Compared to the OpenMP based
method, our approach achieved speedup of 2.1 when 8 cores were used. Compared
to the data parallel method, we achieved speedup of 1.8 on AMD Opteron.

To show the load balance we achieved and the overhead of the collaborative
scheduler, we measured the computation time for each thread. In our context,
the computation time for a thread is the total time taken by the thread to
perform node level primitives. Thus, the time taken to fetch tasks, allocate tasks
and maintain the local ready list were not considered. The computation time
reflects the workload for each thread. We show the results in Figure 8 (a), which
were obtained on Opteron using Junction tree 1 defined above. We observed
very similar results for Junction tree 2 and 3. Due to space constraints, we show
results on Junction tree 1 only. We also calculated the ratio of the computation
time over the total parallel execution time. This ratio illustrates the quality of
the scheduler. From Figure 8 (b), we can see that, although the scheduling time
increased a little as the number of threads increases, it was not exceeding 0.9%
of the execution time for all the threads.

Fig. 8. (a) Load balance across the threads; (b) Computation time ratio for each thread

Finally, we modified parameters of Junction tree 1 to obtain a dozen junction
trees. We applied the proposed method on these junction trees to observe the
performance of our method in various situations. We varied the number of cliques
N , clique width wC , number of states r and average number of children k. We
obtained almost linear speedup for all cases. From the results in Figure 9 (a), we
observe that the speedups achieved in the experiments with various values for N
were all above 7. All of them exhibited linear speedups. In Figure 9 (b) and (c),

390 Y. Xia, X. Feng, and V.K. Prasanna

Fig. 9. Speedups of exact inference on multicore systems with respect to various junc-
tion tree parameters

all results showed linear speedup except the ones with wC = 10 and r = 2. The
reason was that the size of the potential table was small. For wC = 10 and r = 2,
the potential table had 1024 entries, about 1/1000 of the number of entries in a
potential table with wC = 20. However, since N and the junction tree structure
were the same, the scheduling requires approximately the same time for junction
tree with small potential tables. Thus, the overheads became relatively large. In
Figure 9 (d), all the results had similar performance when k was varied. All of
them achieved speedups of more than 7 using 8 cores.

8 Conclusions

We presented an efficient rerooting algorithm and a collaborative scheduling
algorithm for parallel evidence propagation. The proposed method exploited
both task and data parallelism in evidence propagation. Thus, even though one of
the levels can not provide enough parallelism, the proposed method still achieves
speedup on parallel platforms. Our implementation achieved 7.4× speedup using
8 cores. This speedup is much higher compared with the baseline methods, such
as the OpenMP based implementation. In the future, we plan to investigate the
overheads in the collaborative scheduler and further improve its performance.

Parallel Evidence Propagation on Multicore Processors 391

As more cores are integrated into a single chip, some overheads such as lock
contention will increase dramatically. We intend to improve the design of the
collaborative scheduler to reduce such overheads, so that the scheduler can be
used for a class of DAG structured computations in the many-core era.

References

1. Lauritzen, S.L., Spiegelhalter, D.J.: Local computation with probabilities and
graphical structures and their application to expert systems. J. Royal Statistical
Society B 50, 157–224 (1988)

2. Heckerman, D.: Bayesian networks for data mining. Data Mining and Knowledge
Discovery (1997)

3. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Prentice-Hall, Englewood Cliffs (2002)

4. Segal, E., Taskar, B., Gasch, A., Friedman, N., Koller, D.: Rich probabilistic models
for gene expression. In: 9th International Conference on Intelligent Systems for
Molecular Biology, pp. 243–252 (2001)

5. Pennock, D.: Logarithmic time parallel Bayesian inference. In: Proceedings of
the 14th Annual Conference on Uncertainty in Artificial Intelligence, pp. 431–438
(1998)

6. De Vuyst, M., Kumar, R., Tullsen, D.: Exploiting unbalanced thread scheduling
for energy and performance on a cmp of smt processors. In: IEEE International
Symposium on Parallel and Distributed Processing (IPDPS), pp. 1–6 (2006)

7. Kozlov, A.V., Singh, J.P.: A parallel Lauritzen-Spiegelhalter algorithm for proba-
bilistic inference. In: Supercomputing, pp. 320–329 (1994)

8. Xia, Y., Prasanna, V.K.: Parallel exact inference. In: Proceedings of the Parallel
Computing, pp. 185–192 (2007)

9. Xia, Y., Prasanna, V.K.: Node level primitives for parallel exact inference. In:
Proceedings of the 19th International Symposium on Computer Architecture and
High Performance Computing, pp. 221–228 (2007)

10. Xia, Y., Prasanna, V.K.: Junction tree decomposition for parallel exact infer-
ence. In: IEEE International Symposium on Parallel and Distributed Processing
(IPDPS), pp. 1–12 (2008)

11. Xia, Y., Prasanna, V.K.: Parallel exact inference on the cell broadband engine
processor. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pp. 1–12 (2008)

12. Murphy, K.: http://www.cs.ubc.ca/~murphyk/software/bnt/bnt.html
13. Intel Open Source Probabilistic Networks Library,

http://www.intel.com/technology/computing/pnl/

http://www.cs.ubc.ca/~murphyk/software/bnt/bnt.html
http://www.intel.com/technology/computing/pnl/

Parallelization of Temperature Distribution

Simulations for Semiconductor and Polymer
Composite Material on Distributed Memory

Architecture

Norma Alias1,�, Roziha Darwis2, Noriza Satam1, and Mohamed Othman2

1 Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
2 Universiti Putra Malaysia, Serdang, Selangor, Malaysia

norma@ibnusina.utm.my, {roziha.darwis,norizasatam}@gmail.com,
mothman@fsktm.upm.edu.my

Abstract. The implementations of parallel algorithms in solving par-
tial differential equations (PDEs) for heat transfer problems are based
on the high performance computing using distributed memory architec-
ture. In this paper, the parallel algorithms are exploited finite difference
method in solving multidimensional heat transfer problem for semicon-
ductor components and polymer composite materials. Parallel Virtual
Machine (PVM) and C language based on Linux operating system are
the platform to run the parallel algorithms. This research focused on
Red-Black Gauss Seidel (RBGS) iterative method. Parallel performance
evaluations in terms of speedup, efficiency, effectiveness, temporal per-
formance and communication cost are analyzed.

Keywords: Parallel Virtual Machine (PVM), Red-Black Gauss Seidel
(RBGS), Parallel Performance evaluations.

1 Introduction

The methodology to predict temperature is based on mathematical simulation
that focuses on parabolic and elliptic type of PDEs. The experiment will cov-
ers both semiconductor components and tire tread problem. The discretization
of PDEs will generate linear system of equations dealing with sequential com-
putational of large sparse matrices. This high computational complexity can
be solved efficiently by transforming the algorithms from sequential to parallel.
Huge executions of numerical method using several numbers of processors will
coined the numerical analysis in terms of convergence, accuracy and parallel per-
formance evaluations. The objective of this paper is to predict the temperature
behavior of semiconductor component and polymer composite material based on
mathematical modelling using parallelization.
� The authors acknowledge Ibnu Sina Institute, UTM and Ministry of Science, Tech-

nology and Innovation Malaysia for financial support, under research vot 79217 and
79219.

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 392–398, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Parallelization of Temperature Distribution Simulations 393

2 Mathematical Modelling on PDEs

This paper focuses on parabolic equation to visualize temperature behavior of
tire treads and semiconductor wire problem. Meanwhile, will be used elliptic
equation to predict multilayer full chip systems.

2.1 Polymer Composite Material

Temperature behavior for polymer composite material is focused on phase change
simulations for two types of parabolic equations associate with two phases sim-
ulations. Phases simulations involves heating and cooling process.

Mathematical model under consideration is one-dimensional parabolic equa-
tion based on two-phase Stefan problem [4] involving the appearance of a new
phase change. Prediction of liquid and solid simulation is given by,

ρlCl
∂Ul

∂t
= λl

∂2Ul

∂x2 + ρlUl, 0 < x < X(t) . (1)

ρsCs
∂Us

∂t
= λs

∂2Us

∂x2 + ρsUs, x > X(t) . (2)

where ρ, C and λ represents the density, heat capacity and thermal conductivity
of rubber. Subscript l and s indicate liquid and solid state of rubber and U
represent the temperature profile U(x, t).

2.2 Semiconductor of Multilayered Full Chip

In semiconductor manufacturing industries, accurate temperature behavior pre-
diction is an important issues in quality improvement of product. Mathematical
simulation of the prediction involves PDEs with elliptic type and has ability to
deal with large sparse matrices. The two-dimensional elliptic equation is gov-
erned by the following Poisson’s equation [1],

∂2u

∂x2 +
∂2u

∂y2 = f(x, y) . (3)

2.3 Semiconductor of Wires

The three-dimensional heat conduction in semiconductor wires problem involv-
ing the time dependent of parabolic PDEs type. The equation that contains
partial derivatives on the dependent variables are given by [5],

∂U

∂t
=
∂2U

∂x2 +
∂2U

∂y2 +
∂2U

∂z2 + h(x, y, t) . (4)

where U is interpreted as the time dependent of temperature profile per unit
volume respect to the x−, y− and z− axis. The heat conduction in semiconductor
wire having a constant cross section of the volume and it is depend on x, y, z
and t if the wire is not uniformly heating.

394 N. Alias et al.

3 Parallel Algorithm

Parallel algorithm in parallelizing (1), (2), (3) and (4) is Red Black Gauss-
Seidel(RBGS) Iteration Method. This method contains 2 subdomain, ΩR and
ΩH [6]. The calculation involves,

i. Grid calculation at ΩR

uk+1 =
1
a
(fi − cuk+1

i−1 − buk
i+1), i = 1, 3, 5, ...,m . (5)

ii. Grid calculation at ΩH

uk+1 =
1
a
(fi − cuk+1

i−1 − buk+1
i+1), i = 2, 4, 6, ...,m− 1 . (6)

The parallelization of RBGS can be directly implemented on distributed mem-
ory architecture. This is due to the data independence between two subdomains.
Parallel implementation will be evaluated as more processors added to the cluster
of distributed memory architecture.

Parallelized RBGS method converged faster compared to sequential RBGS.
Domain decomposition technique allows array division among local processors
and this will minimize communication. The structure of data has to be decom-
posed where given set of ranges assigned to particular processors must be phys-
ically sent to those processors during execution. The result must be sent back
to processor that responsible for coordinating the final result. The procedure for
parallel algorithm as show in Fig. 1 is pseudocode and communication between
master and workers in distributed memory architecture.

4 Parallel Performance Evaluations

The analysis of parallel performance evaluation be is done in terms of execution
time, speedup, efficiency, effectiveness, temporal performance and computational
complexity. The parallel performance evaluation metric are as described below,

a. Speedup,Sp = T1
Tp

b. Efficiency,Cp = Sp

p

where, T1 is the execution time using one processor, and Tp represents the exe-
cution time on p processors.

The important factors affecting performance are communication cost, compu-
tational and communication ratio. Communication cost will depends on many
factors includes network structure and contention [3]. Parallel execution time,
tpara divided into two parts namely, computational time, tcomp and communica-
tion time, tcomp. tcomp is time consumed to compute the arithmetic operations
such as multiplication and addition. As all processors doing the operation at
the same speed, calculation for tcomp is depends upon the size of message. Com-
munication cost comes from two major phases in sending a message: start-up

Parallelization of Temperature Distribution Simulations 395

 �Set number of iterations
Master's session
Invoke workers
Send variables and initial data to workers
For round : = 1 increase 1 until number of iterations do
For timestep :=1 until convergence criterion met do
Worker's session
Receive variables and initia l data from master
Calculations of power
For i = 1 increase until matrix size do
For j = 1 increase until matrix size do
If odd, do

;

End loop i
Communication between workers (left and right)
For i = 1 incre ase until matrix size do
For j = 1 increase until matrix size do If even, do

;

End loop j
End loop i
Check convergence
Communication between workers (left and right)
Send convergence analysis to master

Fig. 1. Pseudocode and parallel algorithm

396 N. Alias et al.

and data transmission phase [3]. Total time to send K units of data for a given
system can be written as,

tcomm = tstartup +Ktdata + tidle

where tcomm is time needed to communicate a K bytes message and tstartup is
sometimes referred as network latency time. tstartup is also referred as time to
send a message with no data. It includes time to pack message at source and
unpack the message at intended destination as well as to start a point-to-point
communication. tdata is time to transmit units of information. tstartup and tdata

assumed as constants and measured in bits/ sec. tidle is the time for message
latency and time to wait for all processors to complete the tasks.

4.1 Parallel Performance of 1D Phase Change Simulation

Parallel performance measurement for one-dimensional problem of tire treads is
shown in Fig. 2, by using matrices size are m = 100×100 with time execution is
225.88241μs, iteration is 150, Δx=1.0000E−2, Δt=1.0000E−2 and ε=1.0E−15.

[a]

0�

10�

20�

30�

40�

50�

60�

0� 2� 4� 6� 8� 10� 12�

no. of processor

ti
m

e
ex

ec
u

ti
o

n
 (

m
s)

[b]

0�

0.5�

1�

1.5�

2�

2.5�

3�

3.5�

0� 2� 4� 6� 8� 10� 12�

no. of processor

S
p

ee
d

u
p

[c]

0�

0.2�

0.4�

0.6�

0.8�

1�

1.2�

0� 2� 4� 6� 8� 10� 12�

no. of processor

E
ff

ic
ie

n
cy

[d]

0.00E+00�

5.00E-03�

1.00E-02�

1.50E-02�

2.00E-02�

2.50E-02�

3.00E-02�

0� 2� 4� 6� 8� 10� 12�

no. of processor

E
ff

ec
ti

ve
n

es
s

[e]

0.00E+00�

1.00E-05�

2.00E-05�

3.00E-05�

4.00E-05�

5.00E-05�

6.00E-05�

7.00E-05�

0� 2� 4� 6� 8� 10� 12�

no. of processor

T
em

p
o

ra
l p

er
fo

rm
an

ce

Fig. 2. Parallel performance evaluation for tire treads in terms of (a)Execution time
(b) Speedup (c) Efficiency (d) Effectiveness (e)Temporal performance

[a]

 �

0�

0.1�

0.2�

0.3�

0.4�

0.5�

0.6�

0.7�

0.8�

0.9�

2� 4� 6� 8� 10� 12� 14�

No. of Processors

E
xe

cu
ti

o
n

T
im

e

[b]

 �

0�

1�

2�

3�

4�

5�

6�

2� 4� 6� 8� 10� 12� 14�

No. of Processors

S
p

ee
d

u
p

[c]

 �

0�

0.1�

0.2�

0.3�

0.4�

0.5�

0.6�

0.7�

0.8�

0.9�

1�

2� 4� 6� 8� 10� 12� 14�

No. of Processors

E
ff

ic
ie

n
cy

[d]

 �

0�

0.2�

0.4�

0.6�

0.8�

1�

1.2�

1.4�

1.6�

1.8�

2� 4� 6� 8� 10� 12� 14�

No. of Processors

E
ff

ec
ti

ve
n

es
s

[e]

 �

0�

0.5�

1�

1.5�

2�

2.5�

3�

3.5�

4�

2� 4� 6� 8� 10� 12� 14�

No. of Processors

T
em

p
o

ra
l P

er
fo

rm
an

ce

Fig. 3. Parallel performance evaluation for multilayer full chip in terms of (a) Execution
time (b) Speedup (c) Efficiency (d) Effectiveness (e) Temporal performance

Parallelization of Temperature Distribution Simulations 397

[a]

0�

2�

4�

6�

8�

10�

12�

14�

16�

0� 5� 10� 15� 20� 25�

no. of processor

ti
m

e
ex

ec
u

ti
o

n
 (

m
s)

[b]

0�

1�

2�

3�

4�

5�

6�

7�

8�

0� 5� 10� 15� 20� 25�

no. of processor

sp
ee

d
u

p

[c]

0�

0.1�

0.2�

0.3�

0.4�

0.5�

0.6�

0� 5� 10� 15� 20� 25� 30�

no. of processor

E
ff

ic
en

cy

[d]

0�

0.01�

0.02�

0.03�

0.04�

0.05�

0.06�

0.07�

0� 5� 10� 15� 20� 25�

no. of processor

E
ff

ec
ti

ve
n

es
s

[e]

0�

0.05�

0.1�

0.15�

0.2�

0.25�

0� 5� 10� 15� 20� 25�

no.of processor

te
m

p
o

ra
l p

er
fo

rm
an

ce

Fig. 4. Parallel performance evaluation for semiconductor wires in terms of (a) Exe-
cution time (b) Speedup (c) Efficiency (d) Effectiveness (e) Temporal performance

4.2 Parallel Performance of 2D Poisson Equation

Parallel performance evaluation for two-dimensional of multilayered full chip is
as shown in Fig.3, by using matrices size arem = 400×400 with time execution is
84.7263μs, iteration is 200, Δx=1.0000, Δy=1.0000, Δt=1.0000 and ε=1.0E−3.

4.3 Parallel Performance of 3D Parabolic Equation

Fig. 4 shows the parallel performance evaluation for three-dimensional problem
of semiconductor wires. by using matrices size are m = 100 × 100 × 100 with
time execution is 282.9480μs, iteration is 760, Δx=1.0000E−2, Δy=1.0000E−2,
Δz=1.0000E−2, Δt=6.6667E−1 and ε=1.0E−9.

Fig. 2 to 4 show the parallel performance evaluations in terms of execution
time, speedup, efficiency, effectiveness and temporal performance. Figure 1(a),
2(a) and 3(a) show the time execution decreased upon increment of processor
number. In measuring efficiency of parallel algorithm, it is normal if the execution
results in significant decrement. This is due to two possible reasons such as
efficiency decrease as the number of processors increase and efficiency increase
as the size of matrices increase.

The drop of effectiveness shows that the problem under consideration will
effectively being solved using 10 to 20 numbers of processors. Improvement of
temporal performance evaluations are as illustrated in Figure 1(e), 2(e) and 3(e).

Numerical analysis for three-dimensional semiconductor wires is shown in
Table 1.

Table 1. Computational and Communication cost for different size of matrices

m 100×100 × 100 140×140 × 140
p exec comp ratio comm idle exec comp ratio comm idle

5 99.9 58.59 1.42 41.31 11.87 193 111.8 1.38 81.25 32.11
10 73.01 29.29 0.67 43.71 14.27 136.2 55.89 0.7 80.34 21.21
15 69.11 19.73 0.4 49.27 19.84 121 36.66 0.43 84.29 35.15
20 63.99 15.15 0.31 48.85 19.42 110.7 27.15 0.32 83.55 34.41

398 N. Alias et al.

5 Conclusion

Temperature visualization based on PDEs will result in accurate prediction and
suits well in distributed memory architecture environment. The parallel RBGS
method is proven to be efficient and effective method in solving multidimen-
sional problems that involved semiconductor and polymer composite material.
Additionally, distributed memory architecture that supports high computational
complexity and communication cost has significant ability in solving parabolic
and elliptic types of problem.

References

1. Zhan, Y., Sapatnekar, S.S.: A High Efficiency Full-Chip Thermal Simulation Al-
gorithm. In: Proceedings of the 2005 IEEE/ACM International conference on
Computer-aided design, pp. 635–638 (2005)

2. Juma, M., Bafrnec, M.: Experimental Determination of Rubber Curing Reaction
Heat Using the Transient Heat Conduction Equation. Chemical Papers 58(1),
29–32 (2004)

3. Wilkinson, B., Allen, M.: Parallel Programming Techniques and Applications Using
Networked Workstations and Parallel Computers. Prentice Hall, Upper Saddle River
(1999)

4. Solomon, A., Alexiades, V., Wilson, D.G.: The initial velocity of the emerging
free boundary in a two-phase Stefan Problem with imposed flux. Siam J. Math.
Anal. 18(5) (September 1987)

5. Gourlay, R., Mcguire, G.R.: J. Inst. Math. Appl. 7, 216 (1971)
6. University of Cambridge: Lecture Notes (Partial Differential Equation),

http://www.damtp.cam.ac.uk/lab/people/sd/lectures/nummeth98/pdes.htm

http://www.damtp.cam.ac.uk/lab/people/sd/lectures/nummeth98/pdes.htm

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 399–405, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Implementation of a Non-bonded Interaction Calculation
Algorithm for the Cell Architecture

Eduard Fomin and Nikolay Alemasov

Institute of Cytology and Genetics, Siberian Branch of the Rusian Academy of Science,
10 Lavrentiev Ave., 630090, Novosibirsk, Russia
{fomin,alemasov}@bionet.nsc.ru

Abstract. Calculation of non-bonded interactions takes up to 80% of the total
execution time of a molecular dynamics program. It can be accelerated by port-
ing the algorithm to the Cell architecture. A simple method of such porting has
been applied to the MOLKERN program, which simulates the structure and dy-
namics of biomolecular models. A 32-fold speedup was achieved for calculation
of short-range non-bonded interactions, and threefold, for long-range Coulomb
interactions. The overall program speedup proved to be more than 4.

Keywords: Molecular simulation programs, pairwise non-bonded interactions,
Cell processors.

1 Introduction

Programs simulating the structure and dynamics of biomolecular models constructed
on the force-field approximation are broadly used in molecular biology. This ap-
proximation assumes that the potential energy function of atom interaction can be
presented with practically sufficient accuracy, e.g., for the AMBER force field [1], as:

U = ∑Ub + ∑Ua + ∑Ud + ∑Ucoul + ∑Uvdw,

where Ub terms are energies of valence bonds; Ua, of valence angles; Ud, of torsion
angles; and Ucoul and Uvdw, of the Coulomb and Van der Waals interactions. The first
three sums in U are defined only for locally bound atoms; therefore, the total number
of terms in the ∑Ub, ∑Ua and ∑Ud sums is in direct proportion with the number of
atoms in the assemblage O(N). The last two sums are determined for all atom pairs of
the assemblage, and the total number of terms in Ucoul and Uvdw is in proportion with
O(N2). These terms form the bottleneck in molecular dynamics programs. For exam-
ple, the GROMACS program was tested by simulation of the small (35 aa) villin
headpiece protein in a cell containing 3000 water molecules, and the calculation under
discussion constituted 83% of the runtime [2].

There are three basic strategies for mapping the algorithm onto multiple-instruction
multiple-data (MIMD) machines [3]: (1) replicated data, i.e. each processor keeps a
copy of all data in its memory, but it works only with the part of the data that is as-
signed to it; (2) particle decomposition, i.e., assignment of particles to processors using
their indices; and (3) domain decomposition, i.e., assignment of particles to processors

400 E. Fomin and N. Alemasov

according to their spatial location. These mapping strategies can be helpful to process
large molecular systems containing a great number of atoms, but the long-time simula-
tion of such systems depends only on the speed of the individual processors of the
MIMD machine. Problems of this sort can be best solved by using hybrid
MIMD/SIMD architectures, such as the STI Cell processor [4].

Cell/BE [5] has nine cores. One of them is a PowerPC Processor Element (PPE), a
processor of the PowerPC architecture. The other eight cores are Synergistic Proces-
sor Elements (SPEs). Their architecture differs from that of PPE, and they are used as
main calculating devices. Each SPE has its own local 256 K storage (LS). It stores
both the code and data. Each SPE has a set of 128 128-bit registers and a large SIMD
instruction set. Owing to such architecture features as the heterogeneous multi-core
structure, parallelism at both coarse (across SPEs) and fine (within each SPE)
granularities, high data transfer bandwidth (200GB/s on chip and 25.6 GB/s off chip
for the 3.2GHz processor), and explicit local memory control through DMA, the
Cell/BE processor demonstrates tremendous superiority over others.

MOLKERN [6] has been designed for tasks involving simulation of the structure
and dynamics of biomolecule models including hundreds of thousands of atoms.
MOLKERN implements optimized algorithms with computational complexity no
more than O(N log N). MOLKERN was written in C++ with the use of the libraries
STL, BOOST, BLAS, and MPI and the OpenMP. The original MOLKERN version
was implemented for x86 processors. The purpose of the present work is to port the
MOLKERN program to the Cell architecture and optimize the most time-consuming
functions, calculating the energies and forces created by all pairwise interactions.

2 Methods

2.1 Algorithm

A simple algorithm of non-bonded interaction calculation has the computational com-
plexity O(N2). It is suitable for calculating small assemblages of few hundreds of at-
oms. The following pseudocode describes the calculation:

foreach (atom_pair in atom_pair_list) {

 {par1, par2} = get_params (atom1, atom2);

 force = calculate_force(par1, par2);

 write(force, atom1, atom2);

}

The algorithm runs across the list of atom pairs, gets the relevant data for either
atom of a pair from the memory, calculates the force acting between the atoms, and
puts the result to the memory.

In actual calculations, the algorithm is modified to reduce the computational com-
plexity. All atom pairs are classified into short- and long-range, depending on the dis-
tance between the atoms. The boundary between them is conventionally defined as
cutoff radius rcut, chosen so that at r>rcut potentials should monotonously decrease. In
this way, pairwise interactions can be summarized at short distances in the coordinate

 Implementation of a Non-bonded Interaction Calculation Algorithm 401

space according to the above pseudocode, and the number of such pairs varies directly
as O(N). Transformation in the reciprocal k-space is used for calculating forces in-
volving long-range pairs. The pseudocode for this calculation (e.g., in PPPM [7]) is as
follows:

foreach (atom) Q.insert(atom.charge, atom.X)

Q_ = dfft_forward(Q);

foreach (k in Q_) G_[k] = Q_[k]*coul_fourier(|k|)*k;

G = dfft_backward(G_);

foreach (atom) interpolation(G, atom.X);

This algorithm performs:

• calculation of the smooth charge distribution Q on the grid,
• direct Fourier transform of Q,
• calculation of the k-image of the Coulomb potential gradient G_, totaled over

all k-vectors, on the grid,
• inverse Fourier transform of the k-image of gradient G_ to the coordinate

space, and
• linear interpolation of the gradient determined at grid nodes to atom locations

to obtain forces.

The computational complexity of the algorithm, equaling O(N log N), is deter-
mined by the most time-consuming function, related to the Fourier transform.

2.2 Implementation

MOLKERN follows the common approach to pairwise interaction calculation. It gen-
erates the neighbor list in the range r < rcut, directly summarizes van der Waals and
short-range Coulomb interactions for these neighbors, and calculates the long-range
Coulomb part of the potential by the PPPM method for r > rcut. MOLKERN profiling
indicates that the greatest part of the calculation time (up to 92%) is taken by calcula-
tion of non-bonded interactions, including:

� direct summing of van der Waals and short-range Coulomb interactions for
pairs in the neighbor list (45–58% of the total time at rcut = 1 nm) and

� calculation of the long-range Coulomb interactions by the PPPM method
(34–46% of the total time at the grid size 0.2 nm).

The Cell version of MOLKERN is implemented for a server with two PowerX-
Cell8i processors, which had 2 PPEs and 16 SPEs.

Calculation of Short-range Non-bonded Interactions
The sequential version of the program uses an algorithm based on the above pseu-
docode. The simplest method of parallel processing of this algorithm involves the
OpenMP interface [8]. In contract to x86, where our use of OpenMP was successful
and yielded 45% gain per additional core [9], the performance of the algorithm on the

402 E. Fomin and N. Alemasov

Cell platform was tens of times worse. We analyzed this fact and found that the pro-
gram demanded too much data transfer between the main memory and SPE LS. Such
transfer between SPE and PPE cannot be controlled through OpenMP.

Thus, to optimize memory calls, the calculation of short-range pairwise interac-
tions was split into three functions performing the following tasks:

1. get() - reading all data from the memory to a data block.
2. calculate() - calculation and summation of energies and forces for pairs of block.
3. put() - transfer of the calculation results from the data block to the memory.

The calculation was performed block-by-block, and each block was processed by a
separate SPE, whereas data transfer between the block and the memory was per-
formed by four threads оf two PPEs. This data transfer was implemented with
OpenMP. The block-by-block approach is characterized by natural parallelization and
unnecessity of synchronization of subtasks executed in different SPEs, as the blocks
are independent of each other. The pseudocode for a single block is:

foreach (atom in atom_pair_list[select_atom]) {

 pars = get_params (atom);

 write(block, pars); // PPE + OpenMP

}

block.calculate(force); // SPE only

write(force, select_atom); // PPE

The procedure of data loading into blocks made use of the ordering of pairs natu-
rally provided by the nearest neighbor search algorithm. To process a particular atom,
blocks were loaded only with data for its neighbors, as far as the block size permitted.
It allowed the SPE to perform partial summation of forces produced by the neighbors
falling into the block. With the presence of several blocks storing data for neighbors
of the atom under consideration, the final summations were performed by the PPE
during data transfer to memory. In this approach, the block size affects the distribu-
tion of efforts on force summation between the SPE and PPE. Analysis of the depend-
ence of program performance on block size allowed the optimal value of 32K to be
chosen. With this size, for the majority of blocks all neighbors of a certain atom fall
into one block; therefore, additional summation of forces by the PPEs is not needed.
Larger block sizes do not provide better speed. Smaller blocks reduce the perform-
ance because the work on force summation is redistributed from SPEs to PPEs.

To implement the function, we wrote the code for thread initialization and data
transfer between the PPE and SPEs. It was no larger than 300 lines. Also, slight modi-
fications related to involvement of SIMD extensions were applied to codes perform-
ing calculations within blocks. The IBM SDK libspe2 and MASS SIMD libraries [10]
were used in the implementation.

Calculation of Long-range Non-bonded Interactions
Profiling of the code calculating long-range non-bonded interactions showed that
Fourier transform was its bottleneck (about ¾ of the code execution time). A simple
way for porting this code utilizes the FFTW library [11], which supports this platform

 Implementation of a Non-bonded Interaction Calculation Algorithm 403

starting from version 3.2. A drawback of this porting strategy is that the speedup does
not exceed 4 according to rough estimation.

2.3 Tests

The performance of the Cell version of the algorithm was tested on 3 proteins: 1AIE,
1AF2 and 1GC1 in a cell containing 2008, 5346 and 36873 water molecules, respec-
tively. The comparison was carried out with reference to the sequential MOLKERN
version, performed entirely by PPE. The results were obtained by averaging the time
of execution of short-range interaction calculation over the first five iterations of ge-
ometry optimization. The calculation of non-bonded interactions involved the poten-

tials: 6–12 van der Waals, the short-range Coulomb component erfc(√π * r / rcut) / r,

and the long-range Coulomb component erf(√π * r / rcut) / r.

3 Results and Discussion

Figure 1 presents a line graph illustrating the speedup of calculation of short-range
non-bonded interactions by the MOLKERN depending on the number of SPEs em-
ployed. It shows the results for various versions of the SPE code differing in use of
double or single precision and in using SIMD extensions. A log scale is used. Disper-
sion of the results in various test calculations is shown.

Fig. 1. Dependence of the speedup of short-range interaction calculation on the number of
SPEs employed. The results for various versions of the SPE code are shown: (a) double-precise
without SIMD extensions; (b) double-precise with SIMD extensions; (c) single-precise without
SIMD extensions; and (d) single-precise with SIMD extensions.

404 E. Fomin and N. Alemasov

For (a), (b), and (c), the SPEs were completely loaded, and the speed of calcula-
tions linearly increased with the number of SPEs. The maximum speedup of all these
codes, equaling 14.6, was achieved in case (c) with all the 16 SPEs. When SIMD ex-
tensions were used with single precision (d), the maximum speedup equaling 31.6
was achieved with 8 SPEs. The dependence of speedup on the number of SPEs was
not linear, which indicated that the load was improperly distributed between PPEs and
SPEs. SPE code was executed so fast that the four threads in two PPEs do not manage
to supply data. Thus, Cell has a great potential for further calculation acceleration by
utilizing SPEs inactive in this version. The relative error for the code executed by
SPEs in comparison with the sequential version was no more than 10-6.

The improvement of the performance of the function calculating the long-range
Coulomb potential in our version was limited by our porting strategy to 3.2. A great
acceleration of this portion of the algorithm is expected with total porting of the
PPPM method to SPEs to avoid the delay related to data preparation for FFT.

To sum up, the MOLKERN program was ported to the Cell architecture. The
program code is executed by PPE, whereas SPEs perform only the calculation of
non-bonded interactions. Almost 32-fold speedup was achieved for calculation of
short-range non-bonded interactions, and threefold, for long-range Coulomb inter-
actions. The overall performance of the program increased significantly, more than
fourfold.

Acknowledgments. This work was supported by Interdisciplinary SB RAS Basic
Research Integration projects 26 "Mathematical models, numerical methods, and par-
allel algorithms for large tasks from the Siberian Branch of the Russian Academy of
Sciences and their implementation on multiprocessor supercomputers" and 113 "De-
velopment of computation methods, algorithms, hardware, and software for parallel
simulation of natural processes". We are grateful to the T-platforms Company
(http://www.t-platforms.ru/) for providing access to the PowerXCell8i server.

References

1. Ponder, J.W., Case, D.A.: Force fields for protein simulations. Adv. Prot. Chem. 66, 27–85
(2003)

2. GROMACS: Fast, Free and Flexible MD. Benchmarks, http://www.gromacs.org
3. Griebel, M., Knapek, S., Zumbusch, G.: Numerical Simulation in Molecular Dynamics:

Numerics, Algorithms, Parallelization, Applications. Springer, Heidelberg (2007)
4. Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P.: The Potential of the Cell Proc-

essor for Scientific Computing. In: Proceedings of the 3rd conference on Computing fron-
tiers, Ischia, Italy, pp. 9–20 (2006)

5. Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.: Introduc-
tion to the Cell multiprocessor. IBM Journal of Research and Development 49(4/5),
589–604 (2005)

6. Fomin, E.S., Alemasov, N.A., Chirtsov, A.S., Fomin, A.E.: MOLKERN: A library of
software components for molecular modeling programs. Biophysics 51(suppl. 1), 110–112
(2006)

7. Hockney, R., Eastwood, J.: Computer simulation using particles. McGraw-Hill, New York
(1981)

 Implementation of a Non-bonded Interaction Calculation Algorithm 405

8. The OpenMP API specification for parallel programming, http://www.openmp.org
9. Alemasov, N.A., Fomin, E.S.: OPENMP+MPI parallel implementation of the MOLKERN

molecular modeling software package. In: Proceedings of the 6th International Conference
on Bioinformatics of Genome Regulation and Structure, p. 24 (2008)

10. IBM SDK for Multicore acceleration v 3.0,
http://www.ibm.com/developerworks

11. Frigo, M., Johnson, S.G.: FFTW on the Cell Processor,
http://www.fftw.org/cell/index.html

A Parallel 3D Code for Simulation of

Self-gravitating Gas-Dust Systems�

Sergei Kireev

ICMMG SB RAS, Novosibirsk, Russia
kireev@ssd.sscc.ru

Abstract. A parallel 3D code for simulation of galaxies and protoplan-
etary discs is developed. The model includes dust, gas, gravitation and
friction between dust and gas. The kinetic equation for dust particles
is solved by PIC method. Gas dynamics equations are solved by FLIC
method. In parallel implementation a domain decomposition technique
is used where each subdomain is processed by a group of processors.
Results of parallelization efficiency are presented.

1 Introduction

Using numerical simulation for solution of many astrophysical problems imposes
certain requirements on numerical models and their implementations. For ex-
ample, doing research of matter movement in galaxy or planet formation in
protoplanetary disc one has to consider several physical processes and observe
phenomena on different spatial and temporal scales. A program for numerical
simulation must be able to utilize a large computational power that is to be
ready to run on supercomputers.

The paper considers a parallel 3D code for investigation of astrophysical ob-
jects such as galaxies and protoplanetary discs. A numerical model widely used
for simulation of such objects includes dust and gas components and gravita-
tional interaction. Other processes such as chemical reactions, electromagnet-
ics, radiation are also took into account. Complexity of parallel implementation
results from the necessity to combine different physical processes and to use
different numerical methods in one implementation.

In recent years many astrophysical codes were developed, which solve N-body
problem together with gas dynamics and self-gravitation [1,2,3,4,5,6]. They differ
in methods used for solution of gas dynamics equations and methods of gravi-
tational forces calculation. In this paper a PIC (particle-in-cell) method is used
for simulation of dust component and a FLIC (fluid-in-cell) method is used for
simulation of gas component. It is a natural extension of 2D model described in
[7] to the 3D case.
� Supported by Subprogram 18-2 of RAS Presidium Program ”Biosphere origin and

evolution”, Subprogram Π-04 of RAS Presidium Program ”Stars and galaxies origin
and evolution”, RFBR (grant 08-01-00615), SB RAS Program on Supercomputers,
Grant of Rosobrazovanie, contract PHΠ .2.2.1.1.3653.

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 406–413, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Parallel 3D Code for Simulation of Self-gravitating Gas-Dust Systems 407

2 Mathematical Model

The mathematical model used in this paper includes collisionless Boltzman
(Vlasov-Liouville) equation (1) for dust component, four gas dynamics equa-
tions (2) and Poisson equation (3) for self-gravitation.

∂f

∂t
+ u

∂f

∂r
+ a

∂f

∂u
= 0, (1)

∂ρg

∂t
+ div(ρgv) = 0,

∂

∂t
(ρgv) + div [(ρgv)v] = −grad p− ρggradΦ+ kfrρpρg(u− v),

∂

∂t
(ρgE) + div [(ρgE)v] = −div(pv)− ρg(gradΦ,v) + kfrρpρg(u− v,u),

∂p

∂t
+ div(pv) = (γ − 1)

[
−p divv + kfrρpρg(u− v)2

]
(2)

ΔΦ2 = 4πρ. (3)

In (1–3) f(t, r,u) is time-dependent one-particle distribution function along
coordinates r and velocities u, a = F p + F p

fr is the acceleration of unit mass
particle.

Gravitational potential Φ can be divided in two parts: Φ = Φ1 + Φ2, where
Φ1 is the outer potential (for example, potential of the central mass of galaxy or
protoplanetary disc), and Φ2 is a self-consistent potential of the moving matter,
satisfying the Poisson equation (3). ρ = ρp + ρg is the aggregate density of dust
and gas components, where ρg is a gas density and ρp is a dust density, which
is determined by the equation ρp =

∫
f(t, r,u)du. p is a gas pressure, v is a gas

velocity, E = T
γ−1 + v2

2 is energy of the gas, where the temperature T satisfies
the equation of state: p = ρgT .

Gravitational forces affecting dust and gas are respectively F p = −ρp∇Φ
and F g = −ρg∇Φ. Besides, there is a friction force between dust and gas:
F p

fr = −F g
fr = kfrρpρg(v − u). The friction results in the gas heating: Qfr =

kfrρpρg(u− v)2, where kfr is the coefficient of friction.
All equations are in dimensionless form.

3 Numerical Methods

For discretization of 3D simulation domain a uniform Cartesizian grid is used.
The same grid is applied for simulation of dust, gas and Poisson equation solu-
tion. Boltzman equation (1) is solved by particle-in-cell (particle-mesh) method
[9,10]. It reduces the solution of 6D equation to the solution of 3D equations
of movement of a large number of model particles. Gas dynamics equations (2)
are solved by modified FLIC method [11]. The Poisson equation (3) is solved by
3D discrete Fourier transform. The input of the Poisson solver is a distribution
of summary dust and gas density. The output is a distribution of gravitational
potential. To improve the precision of calculations the region borders are moved

408 S. Kireev

afar from the center. So, there are two nested grids of different size – the smaller
one for solving dust and gas equations and the bigger one for solving the Poisson
equation.

The simulation algorithm includes the following operations performed on each
time step:

1. Shift of model particles by gravitational and frictional forces.
2. Calculation of gas properties on the smaller grid.
3. Calculation of dust density distribution on the smaller grid.
4. Calculation of dust velocity distribution on the smaller grid.
5. Calculation of summary dust-gas density distribution on the smaller grid.
6. Solution of Poisson equation on the bigger grid.
7. Calculation of gravitational forces on the smaller grid.

Correctness of solving equations (1-3) for dust, gas and gravitation were sep-
arately verified on analytical solutions. Control over solution of the whole task
is performed using conservation laws: mass, momentum and full energy.

4 Parallel Algorithm

Parallel implementation of the algorithm aims at solving large-scale problems in
acceptable time. The difficulty of PIC-method parallelization is that one must
deal with a fixed grid and free-moving particles. In the present implementation
scaling by the size of the grid is achieved by domain decomposition and scaling
by the number of particles – by processing particles of one subdomain by a group
of processors [12]. The planes dividing the computation domain are orthogonal
to the disc plane. In such a way we avoid initially non-uniform distribution of
particles between processors.

Every subdomain is assigned to a group of processors. The grid values (dust
density, dust velocities, gravitational potential and gravitational forces) of the
whole subdomain are stored in all processors of the group and the particles
of the subdomain are uniformly distributed between the processors. The initial
division of processors into groups is performed according to initial distribution
of particles.

To preserve uniform distribution of particles between processors a load balanc-
ing algorithm was implemented. This algorithm is a parallel implementation of
the new idea based on dynamic redistribution of processors among subdomains
according to particles distribution.

Each group of processors has a main processor which holds gas parameters
(density, momentum, velocity, pressure and full energy) and performs the so-
lution of gas dynamics equations. Explicit schemes are used in FLIC method,
so it is parallelized in a natural way using domain decomposition technique [8].
To calculate friction forces the values of gas density and velocity from the main
processor of each group should be broadcasted to the rest processes of the group.

When solving Poisson equation parallel Fourier transform is performed by
the free FFTW library. The library itself defines the decomposition of the bigger

A Parallel 3D Code for Simulation of Self-gravitating Gas-Dust Systems 409

grid. So, there are two grids of different size and differently distributed over the
processors (Fig. 1). That is why we need to redistribute the grid values twice per
time step: density values from the smaller to the bigger grid and gravitational
potential values from the bigger to the smaller grid.

Fig. 1. Decomposition of bigger and smaller grids

The parallel algorithm has a number of parameters, such as number of groups
and number of processors in each group. Their choice defines the efficiency of
the algorithm. The following decisions were made:

– Only one processor in each group performs the gas calculations, so it is
natural to set the number of groups to maximum.

– Initial distribution of processors among groups should be determined accord-
ing to initial particles distribution. In general case the number of processors
required in each group is unknown before particles are distributed. So, an
algorithm for step-by-step distribution of particles and processors among
groups was implemented. It eliminates the situation when one group has no
processors to hold particles whereas processors in some other group have a
plenty of free space. The final initial distribution of processors is obtained
by a load balance algorithm.

There are also a number of constraints on parameter values. For example, the
minimum number of groups is limited by the size of the cluster node memory.
The maximum number of groups is limited by the size of the smaller grid along
X axis. The maximum number of processors that could be used for Poisson
equation solution is limited by the size of the larger grid along X axis. One
other possible drawback of the algorithm is that it does not take into account a
physical topology of the cluster.

The parallel program was implemented using Fortran and C languages. An
MPI library is used for interprocess communications.

410 S. Kireev

5 Simulation Results

For evaluation of parallel algorithm efficiency several test runs were made sep-
arately for dust and gas components with gravitation and for the compound
self-gravitating gas-dust medium (Table 1). Initial substance distribution is a
thin disc in the center of the simulation domain. Therefore after decomposi-
tion central subdomains contain many particles whereas subdomains near edges
contain no particles. All runs were performed on cluster MVS100k in Joint Su-
percomputer Center in Moscow. Each cluster node contains two quad-core Xeon
3.0 GHz processors and not less then 4 GB of RAM. So, there are maximum 8
MPI processes per node.

Table 1. Task parameters for test runs

N Component
Smaller Larger Number of Size of data for
grid size grid size particles one process run

(1) dust 200 × 200 × 200 400 × 400 × 400 107 2.1 GB

(2) dust 300 × 300 × 300 600 × 600 × 600 107 5.8 GB

(3) dust 200 × 200 × 200 400 × 400 × 400 108 7.0 GB

(4) gas 200 × 200 × 200 400 × 400 × 400 – 2.0 GB

(5) gas 250 × 250 × 250 500 × 500 × 500 – 4.0 GB

(6) dust + gas 500 × 500 × 500 1000 × 1000 × 1000 109 93.0 GB

Figure 2 presents computation time, speedup and parallelization efficiency for
dust simulation with different sets of parameters. 100 time steps were performed.
A number of groups was set to maximum in each case.

(a) (b) (c)

Fig. 2. Computation time (a), speedup (b) and efficiency (c) for calculation of dust
component with three different sets of parameters using different number of processes

A Parallel 3D Code for Simulation of Self-gravitating Gas-Dust Systems 411

Results demonstrate a strong efficiency fall when processes reside in one node,
and after 8 processes the scalability is acceptable. With increase of the mesh
size the parallelization efficiency increases. But with increase of the number of
particles the efficiency sometimes decreases for certain number of processes.

The following test runs were performed to obtain the optimal number of
groups for these tasks (Fig. 3).

(a) (b)

Fig. 3. Computation time (a) and efficiency (b) for calculation of dust component with
three different sets of parameters using 64 processes and different number of groups

The results show that the task (2) with a larger grid works faster with a
bigger number of groups. The task (3) with a larger number of particles works
faster with a smaller number of groups, because more processes are put into the
groups processing subdomains with large number of particles. So, depending on
the prevalence of the grid size over the number of particles the optimal number
of groups will move to one or other direction.

Figure (Fig. 4) presents computation time, speedup and parallelization effi-
ciency for gas simulation with different sets of parameters. 100 time steps were
performed. A number of groups was set to maximum in each case.

After 8 processes the scalability is good. The most strong efficiency fall took
place from 1 to 8 processes in all tasks. The reason is a limit on memory band-
width in a cluster node. For comparison the same tasks up to 8 processes were
run using only one core in each node (Fig. 5). The results show that the ef-
ficiency fall is smaller when using processes in different nodes, especially for
the task with large meshes. So, the poor memory architecture results in great
performance degradation.

Figure 6 shows results for 100 time steps of gas-dust medium simulation using
different number of processes and groups. The time of computations decreases
with increase of the number of processes. But appropriate number of groups
should be chosen depending on the parameters of the task as well as on charac-
teristics of a cluster.

412 S. Kireev

(a) (b) (c)

Fig. 4. Computation time (a), speedup (b) and efficiency (c) for calculation of gas
component with two different sets of parameters using different number of processes

(a) (b)

Fig. 5. Comparison of computation time and efficiency for dust (a) and gas (b) simu-
lation using processes in one node or in different nodes

Fig. 6. Time of calculation for gas-dust self-gravitating medium simulation using dif-
ferent number of processes and groups

A Parallel 3D Code for Simulation of Self-gravitating Gas-Dust Systems 413

6 Conclusion

A parallel algorithm is developed and parallel code is implemented for 3D simula-
tion of self-gravitating gas-dust systems. The code allows performing large-scale
computations on a large number of processors in a reasonable time. Obtained
scalability is acceptable. The main reason of parallelization efficiency decrease
with increase of the number of processors is a memory bandwidth limit in a
cluster node. This is a result of poor memory architecture. The presented im-
plementation would show better results on processors with integrated memory
controller, which eliminates the memory bottleneck. The other two reasons of
efficiency decrease are the result of selected algorithm: a load imbalance due to
a large decomposition granularity and a communication overhead.

Acknowledgements. The author would like to thank Dr. V.A. Vshivkov for
scientific advising.

References

1. Miniati, F., Colella, P.: Block Structured Adaptive Mesh and Time Refinement for
Hybrid, Hyperbolic + N-body Systems. Journal of Computational Physics 227(1),
400–430 (2007)

2. O’Shea, B., Bryan, G., Bordner, J., et al.: Introducing Enzo, an AMR Cosmology
Application. Adaptive mesh refinement: theory and applications. Springer Lecture
Notes Comput. Sci. Engng., pp. 134–142 (2004)

3. Bryan, G.L., Norman, M.L., Stone, J.M., et al.: A piecewise parabolic method for
cosmological hydrodynamics. Comput. Phys. Comm. 89, 149 (1995)

4. Couchman, H.M.P., Thomas, P.A., Pearce, F.R.: Hydra: an Adaptive-Mesh Imple-
mentation of P3M-SPH. Astrophys. J. 452, 797 (1995)

5. Evrard, A.E.: Beyond N-body – 3D cosmological gas dynamics. Monthly Notices
Roy. Astronom. Soc. 235, 911 (1988)

6. Springel, V.: The Cosmological Simulation Code GADGET-2. Monthly Notices
Roy. Astronom. Soc. 364(4), 1105–1134 (2006)

7. Snytnikov, A.V., Vshivkov, V.A.: A Multigrid Parallel Program for Protoplan-
etary Disc Simulation. In: Malyshkin, V.E. (ed.) PaCT 2005. LNCS, vol. 3606,
pp. 457–467. Springer, Heidelberg (2005)

8. Vshivkov, V.A., Lazareva, G.G., Kireev, S.E., Kulikov, I.M.: Parallel implementa-
tion of the gas component model of self-gravitating protoplanetary disc on super-
computers. Vychislitel’nye tehnologii (in Russian) 12(3), 38–52 (2007)

9. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. IOP Pub-
lishing, Bristol (1988)

10. Grigoryev, Yu.N., Vshivkov, V.A., Fedoruk, M.P.: Numerical ”Particle-in-Cell”
Methods. Theory and Applications. VSP (2002)

11. Belocerkovskiy, O.M., Davydov, Yu.M.: Large particles method in gas dynamics.
M.: Nauka (in Russian) (1982)

12. Kireev, S.E.: Parallel implementation of particle-in-cell method for simulation of
gravitational cosmodynamics problems. Avtometriya (in Russian) 3, 32–39 (2006)

Supercomputer Simulation of an Astrophysical

Object Collapse by the Fluids-in-Cell Method�

Igor Kulikov1, Galina Lazareva2, Alexey Snytnikov2, and Vitaly Vshivkov2

1 Novosibirsk State Technical University, Novosibirsk, Russian Federation
2 Institute of Computational Mathematics and Mathematical Geophysics SB RAS,

Novosibirsk, Russian Federation
{kulikov,lazareva,snytav,vsh}@ssd.sscc.ru

Abstract. Parallel implementation of the Fluids-in-Cell Method (FlIC)
method is created for 3D cartesian simulation of an astrophysical object
collapse. The main parameters of the parallel implementation are given
of the FlIC method. The equations under solution are the gas dynamics
equations and Poisson equation. Simulation of collapse with FlIC method
is compared to SPH simulation. As a result, we can state that FlIC
method provided fine enough grid gives better spatial resolution than
SPH.

1 Introduction

Collapses of astrophysical objects are under active theoretical study today be-
cause of the emergence of a large amount of new observational data. The phe-
nomenon of collapse takes place both at initial and and at the final stages of
stellar evolution. An example of the latter are the expansions of supernovae
with collapsing core [1]. Simulation in astrophysics is the main method for in-
vestigation of nonlinear processes of cosmic structure evolution as well as for
verification of theories for the origin of the Universe. At the first place it is
necessary to introduce the gas component that interacts with dark matter via
gravitation.

At present two methods are mainly in use from the wide variety of the numer-
ical gas dynamics methods. They are the Lagrangian SPH (Smoothed Particle
Hydrodynamics) [2] method and Eulerian AMR (Adaptive Mesh Refinement)
[3] method. SPH method is based on the interpolation of grid cells in the soften-
ing area, and AMR techniques are based on the PPM (piece-parabolic method),
which is eesntially a high order Godunov method.

For the hydrodynamical quantities to be defined in SPH method it is necessary
to set smoothing length carefully. The smoothing length determines the number
of neighbours that affect the SPH particle. One of the features of the method is
that the number of neighbours must be kept nearly equal for all the particles in
the computational domain in order to gain correct solutions. If the numbers of
� The contents presented in this paper was partially supported by the Research Grants

from RFBR 08-01-00615 and Integration Project of SB RAS 103.

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 414–422, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Supercomputer Simulation of an Astrophysical Object Collapse 415

neighbours for all the particles differ significantly then the results of computation
are not reliable [4]. In order to deal with this problem an adaptive smoothing
length is introduced, which allows greater differences in the number of neighbours
from one partice to another.

Thus the setting of the smoothing length contains an uncertainty and conse-
quently affects the solution [5]. This is why the increase of the particle number
does not necessary lead to the correct solution in the SPH method.

Using AMR one usually sets the value of the finest grid step. It should be
noticed that it is difficult to estimate this value because too small grid step might
provoke problems if some gravitational instabilities arise. These problems are
common for grids with coordinate lines going along the domain boundaries. Even
with the finest possible grid steps the shape of the grid cell is still rectangular,
and the directions in the space are still not equiprobable, and still some rectangle-
shaped structures may appear only due to the grid influence. And in the case
of collapse with virtually unlimited density increase the value of the finest grid
step cannot be set at all.

The development of eulerian grid methods with no influence of the grid lines
on the solution may help to deal with this AMR bottleneck. The development
of the grid invariant methods is a more difficult problem than the building of
adaptive grids, nevertheless grid invariant methods are possible to create.

Gas dynamics equations are known to be invariant in respect to some point
transformation group in the space of dependent and independent variables. This
sort of invariance follows from the invariance of the conservation laws, the latter
being the basis for gas dynamics equations.

The use of the grid necessarily breaks invariance in the computation [6]. It
may be clearly seen, for example, in simulation of the flows that move under dif-
ferent angles in respect to the grid lines. Due to this reason the first differential
approximation is traditionally employed for the study of stability and dissipa-
tion properties of numerical schemes [7]. Russian scientists [8,9] have adapted
the Roe-Osher scheme for the solution of 3D gravitational gas dynamics for
ideal gas without AMR methods. The development of the rotation invariant
numerical schemes is considered in the following papers [10]. In the paper for
construction of finite difference schemes operator approach is proposed that re-
sults in symmetrical solutions. The second paper describes a modification of the
FlIC method.

The problem is three-dimensional and non-stationary. It implies strict require-
ments for the method to achieve good results with the limited computer memory
and computation time. Rapid progress of computers in recent time enabled to
conduct resource-consuming computations and obtain physically valuable results
for 3D programs. The use of supercomputers enables to use larger volumes of
data and to increase speed and, consequently, precision of computations [11].
It is extremely important for collapse simulation. The main goal of the present
work is the study of collapse simulation with the parallel implementations of the
grid FlIC method and the gridless SPH method.

416 I. Kulikov et al.

2 Numerical Method Description

Let us consider gas dynamics equation system together with Poisson equation
in the non-dimensional form:

∂ρ

∂t
+ div(ρv) = 0 (1)

∂ρv

∂t
+ div(vρv) = −grad(p)− ρgrad(Φ) (2)

∂p

∂t
+ div(pv) = −(γ − 1)pdiv(v), (3)

ΔΦ = 4πρ (4)

p = (γ − 1)ρε (5)

Here ρ is density, v is the velocity vector, p is the pressure, Φ is the gravita-
tional potential, ε is the unit density of inner energy, γ is the adiabat index.
For transition to the non-dimensional form the following basic quantities were
chosen:

– distance from the Sun to the Earth L = 1.5 · 1011m
– Solar mass M0 = 2 · 1030kg
– gravitational constant G = 6.67 · 10−11N ·m2 · kg

FlIC method was chosen as the basis for solving gas dynamics equations [12]. This
method was earlier applied for computations in gas dynamics without gravitation
[13]. Thus the method was to be modified for solving graviational gas dynamics
problems. The details of modification and numerical implementation are given
in [10].

Poisson equation is solved by the Fourier transform method. The 27 point
stencil is used for the approximation of Poisson equation. This kind of stencil is
required to achieve rotation invariance of the whole method [11].

3 Parallel Implementation

3.1 The Scheme of the Parallel Implementation

FlIC method is a difficult one for an efficient parallel implementation. One of
the main questions is the proper distribution of grid arrays between processor
elements. In order to create parallel implementation of the FlIC method do-
main decomposition technique was chosen. FlIC method for gravitational gas
dynamics has four stages:

1. Eulerian stage
2. Lagrangian stage
3. Poisson equation solution
4. Gas values recomputation

Supercomputer Simulation of an Astrophysical Object Collapse 417

Fig. 1. The portion of each FlIC stage in the total computation time

Relative time (in percent) for each stage during a timestep is shown in figure 1.
It should be noted that each stage consists of a constant number of operations
and the number of operations does not depend on the solution. Let us consider
domain decomposition for each stage. At each stage the computational domain
of the size Nx ×Ny ×Nz is divided along OX axis (fig. 2a) into layers with the
size Nx/P × Ny × Nz, here P is the number of processors. Domain decompo-
sition at the Eulerian stage is performed with one-layer overlapping (fig. 2b).
One layer is enough because the central difference operator is used for deriva-
tive approximation. Lagrangian stage contains the convectional transport of gas
values. It is essentially the redistribution of the values between adjacent cells
[10]. Since the domain is divided between processors the transport in boundary
layers should be computed by both adjacent processors. Thus Lagrangian stage
domain decomposition is performed with two-layer overlapping (fig. 2c).

The 3D parallel Fourier Transform is performed with the procedure from the
FFTW library [14]. Here the way of dividing the domain into subdomains is set
by FFTW itself.

3.2 The Efficiency of the Parallel Implementation

It reqires large amounts of data for the physically meaningful result to be
achieved in the gravitational gas dynamics. Thus it is important to estimate
what is the maximal size of the problem that allows still to obtain the speedup
of the parallel algorithm. The questions is: at what maximal size of the prob-
lem we can still decrease computation time by using more processors? In order
to solve problems of larger size it will be necessary to find new ways for the
parallelization of the method, or even new methods to solve the problem as a
whole.

Let us study the efficiency of the parallel implementation with small size
problem, that is suitable for the memory of a single processor node of a cluster.
Figure 3a gives the dependence of the total computation time on the number
of processsors. Figure 3b shows the speedup and figure 3c displays the parallel
program efficiency.

418 I. Kulikov et al.

Fig. 2. a) Dividing the computational domain along axis, b) Overlapping of the
subdomains at the Eulerian stage, c) Overlapping of the subdomains at the Lagrangian
stage

Fig. 3. Computation time (a), speedup (b), efficiency (c) of the parallel program

The given results for speedup and efficiency of the program under study are
similar to the properties of other parallel programs that deal with gravitational
gas dynamics [11,15,16].

Figure 4 shows the computation time for each of the stages. It is clear from the
figure that the speedup of the whole program is mainly defined by the speedup of
the Lagrangian stage. Eulerian stage computation as well as gas values recompu-
tation stage reach saturation with 6 or more processors. Saturation means that
computation time is no more larger than communication time.

Supercomputer Simulation of an Astrophysical Object Collapse 419

Fig. 4. Computation time for each stage and for method as a whole

4 Computational Experiment

Let us consider the result of collapse simulation. First it is necessary to esti-
mate the precision of the simulation. The main criterion if correctness is the
conservation of total energy of the system. Then it will be possible to compare
density profiles obtained by the FlIC method (the present implementation) and
by SPH method [17]. Initial density profile of the resting gas sphere used for the
simulation is shown in fig.5.

Pressure is given by the formula p = 0.1 · ργ , adiabat index is γ = 5/3.

Fig. 5. Initial density distribution

4.1 Precision of Collapse Simulation with FlIC Method

The goal of the present section is the study of the total energy behavior when
the number of grid nodes is being increased. The error in the total energy mostly
arises at the final stage of collapse when density as well as the other gas values
are increased by orders of magintude. In the conducted simulations the main

420 I. Kulikov et al.

part of the gas mass in the final collapse stage is situated inside the sphere with
the radius like Rcollaps = 0.1 ·R0 (10% from the initial radius of the gas sphere).
Thus for the correct simulation of the process it is necessary to have enough grid
cells at the length of Rcollaps.

Let us compare energy conservation with different number of grid nodes (fig.
6). It is seen from the figure that when the number of nodes is increased the rel-
ative error decreases. It means that it is possible to reach the necessary precision
provided large enough number of grid nodes. For the grid with 512× 512× 512
nodes the error is about 5%. It is tolerant for the comparison of the FlIC solution
with SPH solution.

Fig. 6. Error

4.2 Comparison of the FlIC Collapse Simulation with SPH
Simulation

Let us consider density profiles in collapse simulation by both FlIC and SPH
methods.

It is clear from the comparision of collapse simulation results (fig. 7a and 7b),
that the SPH profile is more gently sloping. It is possible that the restriction
of SPH method appear in the computation. The bottleneck of SPH method is
dealing with high density gradients, since the traditional SPH method provides
correct simulation only for small gradients inside the smoothing kernel. And if
the smoothing length for SPH particle is made very small to make the local
gradients low, then there would be problems to provide nearly equal number of
neighbours for all particles.

As it is seen from the conducted computations in the case of collapse simu-
lation the gradients can not be made low. Thus it is hard for traditional SPH
method to provide correct simulation. FlIC method simulates collapse with the
error of 5% in total energy provided 10 grid nodes for the length Rcollaps in the
final collapse stage. Let us note that mass distributions (fig. 7c) are in good
agreement with each other.

Supercomputer Simulation of an Astrophysical Object Collapse 421

Fig. 7. Density profiles obtained by FlIC method (a), SPH method (b), and mass
distribution (c)

5 Conclusion

The parallel implementation of FlIC method described in the paper is capable
of obtaing correct results for 3D gravitational gas dynamics. One of the main
problems is the distribution of grid arrays between procesors with the necessary
ovelapping. Test computations were conducted with the supercomputers NKS-
160 (Siberian Supercomputer Centre, Novosibirsk, Russia) and MVS-6000 (Joint
Supercomputer Centre, Moscow, Russia). These computations did not show lin-
ear speedup for gas dynamics equation solution because of the saturation due to
the high communication time.

The parallel implementation of gravitational gas dynamics enabled to use finer
grids for computation and to solve a wider variety of problems. As an example,
the steep gradients are hard to deal in SPH, but it is shown for the simulation of
collapse with FlIC method that setting large enough number of grid nodes will
provide the necessary precision.

References

1. Ardeljan, N.V., Bisnovatyi-Kogan, G.S., Kosmachevskii, K.V., Moiseenko, S.G.: An
implicit Lagrangian code for the treatment of nonstationary problems in rotating
astrophysical bodies. Astron. Astrophys. Suppl. Ser. 115, 573–594 (1996)

2. Monaghan, J.J., Gingold, R.A.: Shock simulation by the particle method SPH. J.
Comp. Phys. 52, 374–389 (1983)

422 I. Kulikov et al.

3. Collela, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-
dynamical simulations. J. Comp. Phys. 54, 174–201 (1984)

4. Attwood, R.E., Goodwin, S.P., Whitworth, A.P.: Adaptive Smoothing Length in
SPH. Astron. Astrophys. 464, 447–450 (2007)

5. Hubber, D.A., Goodwin, S.P., Whitworth, A.P.: Resolution requirements for sim-
ulating gravitational fragmentation using SPH. Astron. Astrophys. 450, 881–886
(2006)

6. Paasonen, V.I., Shokin, Yu.I., Yanenko, N.N.: On the theory of difference schemes
for gas dynamics. Lect. Not. Phys. 35, 293–303 (1975)

7. Shokin, J.: On the First Differential Approximation Method in the Theory of Dif-
ference Schemes for Hiperbolic Systems of Equations. Amer. Math. Society (1973)

8. Kaigorodov, P.V., Kuznetsov, O.A.: Adaptation of Roe-Osher Scheme for the Com-
puters with Massive-Parallel Architecture. KIAM Preprint 59 (2002)

9. Bisikalo, D.V., Boyarchuk, A.A., Kaygorodov, P.V., Kuznetsov, O.A., Matsuda, T.:
The Structure of Cool Accretion Disc in Semidetached Binaries. Astron. Rep. 81,
494–502 (2004)

10. Vshivkov, V.A., Lazareva, G.G., Kulikov, I.M.: A modified fluids-in-cell method
for problems of gravitational gas dynamics. Optoelectronics, Instrumentation and
Data Processing 43, 530–537 (2007)

11. Kireev, S., Kuksheva, E., Snytnikov, A., Snytnikov, N., Vshivkov, V.: Strate-
gies for Development of a Parallel Program for Protoplanetary Disc Simulation.
In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 128–139. Springer,
Heidelberg (2007)

12. Grigoryev, Y.N., Vshivkov, V.A., Fedoruk, M.P.: Numerical ”Particle-in-Cell”
Methods. Theory and applications, Utrecht-Boston (2002)

13. Flow Vision Home Page, http://www.flowvision.ru
14. FFTW Home Page, http://www.fftw.org
15. Snytnikov, N., Vshivkov, V., Snytnikov, V.: Study of 3D Dynamics of Gravitating

Systems Using Supercomputers: Methods and Applications. In: Malyshkin, V.E.
(ed.) PaCT 2007. LNCS, vol. 4671, pp. 162–173. Springer, Heidelberg (2007)

16. Snytnikov, A., Vshivkov, V.: A multigrid parallel program for protoplanetary disc
simulation. In: Malyshkin, V.E. (ed.) PaCT 2005. LNCS, vol. 3606, pp. 457–467.
Springer, Heidelberg (2005)

17. Springel, V., Yoshida, N., White, S.: GADGET: A code for collisionless and gas-
dynamical cosmological simulations. New Astronom 6, 79–117 (2001)

http://www.flowvision.ru
http://www.fftw.org

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 423–434, 2009.
© Springer-Verlag Berlin Heidelberg 2009

High-Performance Tsunami Wave Propagation Modeling

Mikhail Lavrentiev-jr1,2, Alexey Romanenko2, Vasily Titov3,
and Alexander Vazhenin4

1 Sobolev Institute of Mathematics of Russian Academy of Science, Novosibirsk, Russia
mlavr@nsu.ru

2 Novosibirsk State University, Novosibirsk, Russia
arom@ccfit.nsu.ru

3 NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, USA
vasily.titov@noaa.gov

4 University of Aizu, Aizu-Wakamatsu, Fukushima, Japan
vazhenin@u-aizu.ac.jp

Abstract. Strongest earthquake of December 26, 2004 generated catastrophic
tsunami in Indian Ocean. This shows that, in spite of recent technology pro-
gress, population at coastal zone is not protected against tsunami hazard. Here,
we address the problem of tsunami risks mitigation. Note that prediction of
tsunami wave parameters at certain locations should be made as early as pos-
sible to provide enough time for evacuation. Modern computational technolo-
gies can accurately calculate tsunami wave propagation over the deep ocean
provided that initial displacement (perturbation of the sea bed at tsunami
source) is known. Modern deep ocean tsunameters provide direct measurement
of the passing tsunami wave in real time, which help to estimate initial dis-
placement parameters right after the tsunami wave is recorded at one of the
deep ocean buoys. Therefore, fast tsunami propagation code that can calculate
tsunami evolution from estimated model source becomes critical for timely
evacuation decision for many coastal communities in case of a strong tsunami.
Numerical simulation of tsunami wave is very important task for risk evalua-
tion, assessment and mitigation. Here we discuss a part of MOST (Method of
Splitting Tsunami) software package, which has been accepted by the USA
National Ocean and Atmosphere Administration as the basic tool to calculate
tsunami wave propagation and evaluation of inundation parameters. Our main
objectives are speed up the sequential program, and adaptation of this program
for shared memory systems (OpenMP) and CELL architecture. Optimization
of the existing parallel and sequential code for the task of tsunami wave
propagation modeling as well as an adaptation of this code for systems based
on CELL BE processors (e.g. SONY PlayStation3) is discussed. The paper
also covers approaches and techniques for programs optimization and adapta-
tions, and obtained results.

Keywords: Tsunami Wave Propagation Modeling, Method of Splitting Tsu-
nami, Fine-grain Parallel Algorithms, OpenMP Paradigm, Cell BE Architecture.

424 M. Lavrentiev-jr et al.

1 Introduction

Shallow water approximations (both linear and nonlinear) are considered worldwide
as accurate propagation models for tsunami waves. These models describe reasonably
well waves parameters (both traveling times between all recorded sources and avail-
able measurement stations and amplitudes) even for rather rough digital bathymetry,
provided that the initial sea bed displacement at source is given. Several software
packages have been proposed to simulate wave propagation over the ocean and inun-
dation zones. Accordingly, we can distinguish several approaches related to the prac-
tical realization of those packages.

The method described in [1] is oriented to create a parallel hybrid tsunami simula-
tor that can mix different models, methods and meshes, maybe even incorporate
“alien software”. This goal is achieved by combining overlapping domain decomposi-
tion and object-oriented programming. Actually, the computing performance is not a
main goal of this approach.

In paper [2], eight different parallel implementations were used of the shallow wa-
ter equations to simulate the tsunami model. Each of these implementations used a
mixed-mode programming model from thread based shared memory, to distributed
memory and finally to a virtual shared memory. As shown in this paper, scalability
issues become paramount, and threading becomes a significant bottleneck if sufficient
node memory is not available.

TUNAMI-N2 [3] is a tsunami numerical simulation program with the linear theory
in deep sea and with the shallow water theory in shallow sea and on land with con-
stant grid size in the whole region. TUNAMI was originally authored by Imamura in
1993 for the Tsunami Inundation Modeling Exchange (TIME) program, and has been
applied to several tsunami events.

MOST (Method of Splitting Tsunami) [3-4], developed at Pacific Marine Envi-
ronmental Laboratory (NOAA, Seattle, USA), allows for real time tsunami inundation
forecasting by incorporating real-time data from detection buoys. The model MOST
is also used in the United States for developing inundation maps as well as for Tsu-
nami Inundation Modeling [6]. The new web enabled interface for MOST is released
with the name ComMIT. That is why that an acceleration of executable code of the
MOST package should provide additional time for tsunami hazard mitigation.

Here we present results of investigations of a performance gain, obtained with the
help of parallel technologies and devoted to fine-grained parallelization of a part of
the MOST software that is used for calculating the tsunami wave propagation over the
deep ocean. Particularly, the presented paper is focused on design and comparative
analysis of parallel algorithms for the OpenMP platform and the most attractive today
IBM Cell BE architecture.

The rest of this is organized as follows. Section 2 explains the mathematical model
for simulating wave propagation used in the MOST software including analysis of
numerical data needed for numerical modeling. In Sections 3, we describe sequential
and Open MP algorithms. Thereafter, Section 4 presents some preliminary parallel
simulation results for the Cell BE algorithms. Finally, some concluding remarks and
comments about future work are given in Section 5.

 High-Performance Tsunami Wave Propagation Modeling 425

2 Theoretical Backgrounds and Data Sets Analysis

First algorithms of MOST application have been designed in the Siberian Division of
the Russian Academy of Sciences (Novosibirsk, Russia) late in 80-s by Titov. Cur-
rently it is among the advanced tools for tsunami simulation. The MOST environment
includes numerical simulation codes capable of simulating all processes of tsunami
evolution: earthquake, transoceanic propagation, and inundation of dry land. Here, the
part is only discussed of the MOST software for calculating the wave propagation in a
deep ocean.

2.1 Mathematical Model

Wave propagation is simulated by nonlinear hyperbolic shallow water system

,

,

,0)()(

yyyxt

xxyxt

yxt

gDgHvvuvv

gDgHvuuuu

vHuHH

=+++

=+++

=++

where H(x, y, t) = η(x, y, t) + D(x, y, t) - stands for wave height, calculated from the
undisturbed sea level; D – depth profile (digital bathymetry); u(x, y, t), v(x, y, t) –
velocity components along x and y axis, respectively; g – acceleration of the gravity.

The above system could be presented in matrix form as

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0

,

0

0

00

,

0

00

0

, y

x

gD

gD

F

uH

gu

v

B

uH

u

gu

A

H

v

u

z

F
y

z
B

x

z
A

t

z =
∂
∂+

∂
∂+

∂
∂

(1)

Splitting method for numerical treatment is based on two auxiliary systems, each
depending on one spatial variable:

XxF
tx

A
tt

≤≤=+ 0,1∂
∂ϕ

∂
∂ϕ

 YyF
ty

B
tt

≤≤=+ 0,2∂
∂ψ

∂
∂ψ

.

0

0

,

0

0 21

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= y

x

gDF

gD

F

Each system could be transformed into canonical form:

,

,

,0

3

2

1

xxt

xxt

xt

gDqq

gDpp

vv

=+
=+
=′+′

λ
λ

λ
 (2)

426 M. Lavrentiev-jr et al.

where

.2

,2

,

gHuq

gHup

vv

−=
+=
=′

are invariants of the system (1) and

., 3,21 gHuu ±== λλ

Numerical algorithm for solution of the shallow water equations system (1) is de-
scribed as follows: After input data and variables initialization the girded variables are
to be determined by the finite difference scheme. Each time step of this algorithm is
splitting by two sub-steps. Each sub-step consists of determination of invariants v', p,
q using original variables values and of sequential solution of canonical system along
X and Y axis directions. After completion of the time-step the values of original vari-
ables u, v, H must be restored using new values of invariants.

The characteristic line method has been used to set the boundary conditions for the
system. At the open sea boundary the conditions

 gDrv 2,0' ±== , where 2= ±r u gH (i.e. r = p or q)

are used. At the land boundary the conditions of perfect reflection are used:

v = 0, p = -q.

For the numerical solution of the system the following finite difference scheme is
used:

where

It could be observed that calculations along coordinates could be performed inde-

pendently. This suggests performance gain through program parallelization.

2.2 Data Sets and Values

Let us estimate the data volume needed for successful modeling. For the typical digi-
tal bathymetry it is enough to have the distance between the mesh nodes about 3,6
km. Therefore, the computational domain should have a size of 2048x2048 points to

 High-Performance Tsunami Wave Propagation Modeling 427

cover the Pacific Ocean. Accordingly, the NOAA uses 2500x1800 mesh size. Taking
into account this mesh size, it is possible to estimate the time complexity of the
MOST method. The complete wave propagation modeling requires implementing
calculations for multiple time steps. The required number of such time steps is about
1440 to cover for 24 hours time period.

Importantly, our investigations were oriented to accelerate calculations of the sin-
gle time step. Therefore, this problem can be considered as a fine-grain task. That is
why the use of the shared memory programming paradigm seems to be very are at-
tractive in solving this problem. The total amount of data is no more that 64Mb. The
operation complexity is about 109 operations fro each time step.

3 Sequential and OpenMP Algorithms

3.1 Sequential Programs

Taking into account the mentioned above possibility to provide calculation independ-
ently along the X and Y coordinates, the following computing strategy could be used.

Calculations (for each time step)
1. Do calculation along X axis
 1. Prepare invariants along X axis for each row
 2. Do calculations (use invariants only) – swater
function
 3. Convert new values of invariants back to physical
quantities
1. Do calculation along Y axis
 1. Prepare invariants along Y axis for each row
 2. Do calculations (use invariants only) – swater
function
 3. Convert new values of invariants back to physical
quantities

Fig. 1. The main calculation loop

The original code of the MOST software was implemented on Fortran 90. It takes
3.31 seconds for one time step on 4 dual-core CPU server, based on Intel Xeon,
2.8GHz. After porting this program onto a C/C++ language, it takes about 3.00 sec-
onds to process the one time step. This time well use as a basis for comparison with
the parallel OpenMP and IBM Cell BE algorithms. To be able to have a portable
version that is suitable for the client-server programming model, this program was
also adopted to a Java environment with the calculation time about 18.5 seconds for
one time step. The Java class diagram is presented in Fig. 2. This allows also embed-
ding this program into a GUI environment as well as combining it with the visualiza-
tion tools.

428 M. Lavrentiev-jr et al.

Fig. 2. Java Class Diagram

3.2 Implementation on the OpenMP Platform

The OpenMP paradigm [7] is mainly focused on performing loop iterations in paral-
lel. Actually, a programmer should only point loops in a sequential program that can
be processed in parallel. Fig. 3 depicts results of speedup obtained by following to
this simple strategy (graph “OpenMP”) that was used for loops providing calculations
along X and Y axes (Fig. 1). The unstable and relatively small speedup is obtained
because of different directions of scanning matrix structures along X (row-wise scan-
ning) and Y (column-wise scanning) coordinates. This leads to an ineffective usage of
a cash memory in CPUs.

To keep such a scanning regularity for both computational steps, the intermediate
transposing was introduced of matrix structures. Actually, it is necessary to imple-
ment forward and back transpositions of four matrices. Importantly, matrix transposi-
tions were implemented in parallel using OpenMP operations based on a block-wise
matrix transposition. To optimize the block size, several experiments have been car-
ried out. This allowed achieving the maximum of performance with block size of
64x64 elements. Results presented in Fig. 3 (Graph “+Transposition”) show that this
strategy allowed to obtain stable speedup growing even that additional time have been
spend to implement matrix transpositions.

The last step of the performance optimization is in implementing a part of executa-
ble code using on embedded SIMD-stream co-processors. From the programmer’s
point of view, they can be programmed using special built-in CPU stream operations
known as SSE instructions. This part of executable code has been rewritten using SSE
instructions for calculations of invariants, height of wave and its speed along axis.
Results the final parallel program implementation are shown in Fig. 3 (graph
“+SSE”). The best result is about ten times speedup for 5 cores in comparison with
the sequential program (Fig. 1). Performance decrease with more then 5 cores is

 High-Performance Tsunami Wave Propagation Modeling 429

Fig. 3. Speedup of Several OpenMP Optimizations

because of using a smaller amount of data to be processed, and a prevalence of com-
munications over the computations in CPUs. As was pointed in Subsection 2.2, we
use the fixed mesh size required by acceptable result accuracy. Actually, here we
have additional possibilities to increase performance by increasing a size of mesh. To
analyze the accuracy of parallel algorithms, a set of numerical experiments are also
provided with different types of data distributions among the processes. The final
result fluctuates in the acceptable range of error measurements.

4 Algorithms for the IBM Cell BE Architecture

The Cell Architecture combines the considerable floating point resources required for
demanding numerical algorithms with a power efficient software-controlled memory
hierarchy [8,9]. Despite its radical departure from previous mainstream/commodity
processor designs, the Cell is particularly compelling because it will be produced at
such high volumes that it will be cost competitive with commodity CPUs. Example of
this approach can be the SONY PlayStation 3, the architecture of which includes the
Cell Broadband Engine (Cell BE) Processor. Cell BE processor is targeting for a wide
range of electronic devices (from portable/handheld PDAs to supercomputers), offer-
ing high performance for computer entertainment, virtual-reality, wireless communi-
cation, real-time video, interactive TV, and other high-performance applications. Cell

430 M. Lavrentiev-jr et al.

has a reputation of being difficult to program for. This is true in the sense that it is
‘more involved’ or ‘requires a different way of thinking’. The IBM provides users
with CELL SDK so users could write there own applications for this processor.

From the programmer’s point of view, the Cell BE architecture BE can be pre-
sented as shown in Fig. 4. The Cell computational resources can be divided into two
parts. The Power Processor Element (PPE) is a conventional processor the main re-
sponsibility of which to set up tasks for the SPE cores. In a Cell based operating
system (OS), the PPE runs the OS kernel, service program and the most of the user’s
applications. Each Synergistic Processor Element (SPE) is a RISC processor with
128-bit SIMD organization for single and double precision instructions. SPEs com-
pute intensive parts of the OS and applications. The SONY PlayStation3 allows the
user to use six SPE only. Two SPEs are reserved for OS needs. Taking into account
the OpenMP algorithms described above, the design of effective Cell algorithms was
mainly focused on distributing iterations along axis among SPEs.

Fig. 4. CELL BE CPU architecture

Actually, it is necessary to pass over several steps in order to develop effective Cell
algorithms. The first step is in porting a sequential program and running it on PPE. An
average PPE time for the one time step is about 7.5 seconds. We will use this time as
a basic value. The next step is in reorganizing a program in order to assign tasks for
SPEs. Fig. 5 shows results of comparison between two strategies. The first strategy is
when the PPE acts as a master sending tasks to SPEs. The second one is when SPEs
take their sub-tasks by themselves. As shown in Fig. 5, the PPE hardly could have
enough time to manage all SPEs, because processing time is rather small. When proc-
essing time significantly exceeded a time for data preparation this data distribution
strategy can be more effective. As it is mentioned in [9], it is necessary to combine

 High-Performance Tsunami Wave Propagation Modeling 431

I/O and processing operations for increasing the SPE performance. This can be
achieved by using two buffers of data in SPE: one buffer is for data processing, and
the other one is to prepare next portion of the data. The small performance increase
for the dual buffer implementation is that the data transfer rate is disparagingly taking
a little time in comparison with the processing time.

Fig. 5 shows that the speedup value is still on the very low level even that its growth
is rather stable. That is why the last step of the code optimization is devoted to realize
the most intensive computational parts by means of the SIMD and pipelining strategies
inside each SPE. Time measurements showed that the function call swater takes 97%
of the program execution time. The other investigations showed that while the number
of involved SPE is more than two, even pipeline (it response for calculations) idles for
98% of the time because of the access to the local memory and data conversion by odd
pipeline. Optimization of the swater function implementation using the vectorization
of calculations allowed to obtain the calculation speedup shown in Fig. 6.

Fig. 5. Parallel Cell Processing without Optimization

This amazing jump in performance was achieved by the following reasons:

• Code vectorization decreases the number of operations by the factor 4.
Operations over four floats are executed in parallel, which increase the
number of elementary operations from one to four per computer clock.
This is look like applying SSE instructions in general-purpose CPUs.

• SPEs only support quad-word loads and stores. Scalars lead to significant
downtime of pipeline.

• More efficient use of the registers takes place.

The final block diagrams for SPE and PPE are presented in Fig. 7 and 8.

432 M. Lavrentiev-jr et al.

Fig. 6. Speedup of the Optimized Cell Algorithm

Fig. 7. Block diagram for SPE

Taking into account the features of computer hardware used, the best results
achieved for a time needed to calculate the one time step are as follows:

• 0,9 sec for MPI (8 node Linux cluster, Dual Intel PIII-933MHz, RAM -
1GB network – FastEthernet),

• 0,31 sec for the OpenMP (5 cores, 4 dual-core Intel Xeon, 1.86GHz),
• 0,06 sec for the CELL BE (6 SPEs).

 High-Performance Tsunami Wave Propagation Modeling 433

Taking into account a problem complexity (about 109 operations), the maximum
performance is about 17 GFLOPS for the single time step using 6 SPE (Fig. 9). It is
more than 120 times more powerful than the original version for CELL PPE proces-
sor, more than 5 times faster than a parallel version optimized for 4 cores for OpenMP
as well as more than 50 times faster than the original sequential version.

Fig. 8. Block diagram for PPE

Fig. 9. Performance Evaluation for OpenMP and Cell BE Platforms

434 M. Lavrentiev-jr et al.

5 Conclusion

The Tsunami Wave Propagation module of the MOST was adapted for different par-
allel environments including Shared memory systems using OpenMP, Distributed
memory systems using MPI, and the IBM CELL BE. This kind of problem can be
characterized as rather difficult for parallel fine-grained implementation because of
necessity to use intermediate matrix transpositions in order to keep data streams on a
regular level. Nevertheless, we showed the possibility of a significant acceleration of
this problem solution time for different programming platforms including a modern
Cell environment with non-standard high-performance equipment like Sony Play-
Station3. That is why we consider this program as a portable and acceptable for orga-
nizing so-called “public” client-server computing on which the users can grant a free
computer time for calculations or obtain results of possible tsunami behaviors. The
key point of these future investigations can be a concept of “multi method” technique
for better determination of the initial displacement parameters by the recorded time
series processing combining with real time signal processing and technique of “calcu-
lations in advance”.

References

1. Cai, X., Langtangen, H.P.: Making Hybrid Tsunami Simulators in a Parallel Software
Framework. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) PARA 2006.
LNCS, vol. 4699, pp. 686–693. Springer, Heidelberg (2007)

2. Ganeshamoorthy, K., Ranasinghe, D.N., Silva, K.P.M.K., Wait, R.: Performance of Shallow
Water Equations Model on the Computational Grid with Overlay Memory Architectures. In:
The Second International Conference on Industrial and Information Systems (ICIIS 2007),
pp. 415–420. IEEE Press, Sri Lanka (2007)

3. Shuto, N., Imamura, F., Yalciner, A.C., Ozyurt, G.: TUNAMI N2: Tsunami Modeling
Manual, http://tunamin2.ce.metu.edu.tr/

4. Titov, V.V.: Numerical Modeling of Tsunami Propagation by using Variable Grid. In: The
IUGG/IOC International Tsunami Symposium, pp. 46–51. Computing Center Siberian Di-
vision USSR Academy of Sciences, Novosibirsk, USSR (1989)

5. Titov, V., Gonzalez, F.: Implementation and Testing of the Method of Splitting Tsunami
(MOST). Technical Memorandum ERL PMEL-112, National Oceanic and Atmospheric
Administration, Washington DC (1997)

6. Borrero, J.C., Sieh, K., Chlieh, M., Synolakis, C.E.: Tsunami Inundation Modeling for
Western Sumatra. Procedings of the National Academy of Sciences of the USA 103 (52)
(2006), http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=1750885

7. Chandra, R.: Parallel Programming in OpenMP. Morgan Kaupmann Publishers,
San Francisco (2001)

8. IBM Research - Cell. IBM, http://www.research.ibm.com/cell/
9. Cell Broadband Engine, Programming Handbook. IBM (2007)

Parallel Object Motion Prediction in a Robotic

Navigational Environment

Vijay S. Rajpurohit1 and Manohara Pai M.M.2

1 Department of Computer Science and Engg.
2 Department of Information and Communication Technology,

Manipal Institute of Technology, Manipal 576 104 India
vijaysr2k@yahoo.com, mmm.pai@manipal.edu

Abstract. In a dynamic Robot navigation system , the Robot has to
deal with multiple number of moving objects in the environment simul-
taneously. The control loop of Robot motion planning comprising of
sense-plan-act cycle has very short duration . Predicting the next in-
stance position (Short Term Prediction) and the trajectory (Long Term
Prediction) of moving objects in a dynamic navigation system is a part
of sense-plan-act cycle. With increase in the number of moving objects
under observation, the performance of the prediction techniques reduce
gradually. To overcome this drawback, in this paper we propose a par-
allel motion prediction algorithm to keep track of multiple number of
moving objects within the Robotic navigational environment. The im-
plementation of parallel algorithm is done on a cluster computing setup.
Performance of the algorithm is tested for different test case scenarios
with detailed analysis on efficiency and speedup.

Keywords: Dynamic motion prediction, Short term prediction, Long
Term Motion Prediction, Fuzzy rule base, Cluster Computing, Parallel
motion prediction.

1 Introduction

In a mobile Robot navigation system predicting the next instance position (Short
Term) of moving objects and identifying the trajectory of their motion (Long
Term) is one of the essential requirements for obstacle avoidance and safe path
planning towards destination. The success of the motion prediction techniques
largely depend on the response time of the prediction techniques applied and
the temporal validity of the predictions done. In other words one needs to plan
motion prediction fast but not very far in the future.

Research literature has addressed various solutions to the short term[1][4][7]
as well as long term motion predictions [2][3][9]. Usual tendency of the prediction
algorithms proposed in the literature is to consider the nearest object among all
the objects under observation for future prediction. This may lead to situations
like i)searching for the nearest object among all the objects under observation,

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 435–444, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

436 V.S. Rajpurohit and M.M. Manohara Pai

which takes considerable amount of time in prediction process. ii) When multiple
objects are at the same distance but at different locations, difficulty in selection
of the most critical object iii)Poor decisions regarding the future move of the
Robot.

Several researchers have proposed to exploit parallel computing techniques
to solve Robot motion planning problems[5][6][10]. In our previous work two
kinds of object motion predictions have been considered for short term and
long term predictions. A Fuzzy based predictor for short term motion prediction
algorithm[11] and Fuzzy Self Organizing Map based long term motion prediction
algorithm [12]. In this paper, our previous work is extended to allow the Robot to
handle multiple number of objects simultaneously using parallel implementation.
In the proposed approach both algorithms are integrated into the parallel motion
prediction model. Both algorithms in their sequential forms are tested for real
life data sets and have shown improved response time and better quality of
prediction over the other prediction techniques in various situations. The parallel
implementation of the proposed algorithm is done on cluster computing setup
using MPI instructions.

The paper is organized as follows. In Section 2 an overview of the Short
term and Long term motion prediction algorithms included in the proposed
work is given. Parallel computing architecture and algorithm for the proposed
work is presented in Section 3. Experimental results are elaborated in section 4.
Conclusions are given in Section 5.

2 Moving Object Motion Prediction

It is desirable for the Robot to perform obstacle avoidance in a manner that
resembles the human motion for obstacle avoidance. The Robot should act be-
fore the obstacles come too close. For this reason, future motion prediction of
obstacles is employed.

Short Term motion prediction in the proposed parallel prediction algorithm is
implemented using Fuzzy rule based motion prediction algorithm [11]. Positions
of moving object in the navigational environment are sampled at equal time in-
tervals and form the input to the Fuzzy Rule base. Next instance object position
is predicted using Fuzzy inference process with Mean of Maxima defuzzification.
The parallel prediction algorithm incorporates the Fuzzy based Self Organizing
Map(FSOM) algorithm[12] for long term motion prediction. The navigational
environment under observation is Fuzzy based, representing the object’s posi-
tion (Range and Direction) from the Robot in the form of Fuzzy values. Similar
motion patterns observed in the environment are clustered in the learning stage
using Self Organizing Map(SOM) and during estimation stage the SOM classifies
the partially observed object’s trajectory in the environment to one of the clus-
ters generated in the learning stage. The mean trajectory of the cluster identified
is the possible future trajectory of the moving object.

Parallel Object Motion Prediction in a Robotic Navigational Environment 437

3 Parallel Motion Prediction

In a real life scenario the Robot may encounter multiple number of objects at the
same time. To process all the objects in the scene simultaneously, the Robot has
to process all the objects data in sequential fashion,and should generate results
in quick succession such that the results are valid in real time. As the number of
objects in the scene increase the response time of the predictor increases for the
objects processed at the end. When the Robot encounters n number of objects
in the navigation environment, the expected response time of the nth object is
given by

ShortT erm+ LongTerm = δt + δt1 + δt2 + δt3.........δtn (1)

Where δt δt1, δt2δtn represent the time gap between first two sensor readings,
the time needed for predicting the next instance position and the trajectory of
object1, object2 Object n respectively.

Each object’s data is independent of other objects data in the navigational
environment and creates a scope for parallel processing. The parallel algorithm
is designed to work with a cluster of computers connected in parallel. Each node
in the cluster processes a single objectś data to predict its its next instance
position and the trajectory. The parallelization of the algorithm is done using
Message Passing Interface (MPI).The algorithm initializes the parallel program-
ming state. The Server receives the sensor data of all the objects observed by
the vision sensor. Each slave processor(c2 to cn) has the copy of prediction algo-
rithm comprising of both short term and long term prediction algorithms. The
Server sends each objectś data to a unique processor in the cluster and one of the
objectś data for itself. Each processor executes predictor algorithm with received
objectś data as input and calculates the next instance position and the future
trajectory of that object. Results of all the processors are are sent back to the
Server. Figure 1 represents the cluster of computers (c1 to cn) with each node
of the cluster having a separate copy of the predictor program.

3.1 The Parallel Prediction Algorithm

1. start
2. Initialize MPI states
3. If rank of the process is 0 do steps 4-29 until the Robot moves in the envi-

ronment
4. Begin process 0
5. Get Sensor Reading(Obj1 t1)
6. Get Sensor Reading(Obj2 t1)
7. Get Sensor Reading(Objn t1)
8. Get Sensor Reading(Obj1 t2)
9. Get Sensor Reading(Obj2 t2)

10.
11. Get Sensor Reading(Objn t2)

438 V.S. Rajpurohit and M.M. Manohara Pai

Fig. 1. Object Motion Prediction on a Cluster Computing System

12. if object 2 has not reached destination then Send object2 data to the process
with Rank1

13. if object n has not reached destination then Send object n data to the proces-
sor with Rank n-1

14. if object 1 has not reached destination then Call Short term predictor(Obj1 t1,
Obj1 t2, return Obj1 t3)

15. if object 1 has not reached destination then Call Long term predictor(Obj1 t1,
Obj1 t2, return winner index)

16. Receive data from process2
17.
18. Receive data from process n
19. Obj1 t1=Obj1 t2
20. Obj2 t1=Obj2 t2
21.
22. Objn t1=Objn t2
23. Decide the next action
24. if object1 has not reached destination then Get Sensor Reading(Obj1 t2) Goto

step 8
25. if object2 has not reached destination then Get Sensor Reading(Obj2 t2)Goto

step 9
26.
27. if object n has not reached destination then Get Sensor Reading(Objn t2)Goto

step 11
28. Finalize MPI states
29. End Processor 0

Parallel Object Motion Prediction in a Robotic Navigational Environment 439

30. If (process id=1) do steps 31-35 till the object 2 reaches destination
31. Receieve data of object 2 from processor0
32. Call Short term predictor(Obj2 t1,Obj2 t2, return Obj2 t3)
33. Call Long term predictor(Obj2 t1,Obj2 t2, return winner index)
34. Send the results of prediction to Rank 0
35. End Processor 1
36.
37. If (process id=n) do steps 38-42 till the object n reaches destination
38. Receieve data of object n from processor 0
39. Call Short term predictor(Objn t1,Objn t2, return Objn t3)
40. Call Long term predictor(Objn t1,Objn t2, return winner index)
41. Send the results of prediction to Rank 0
42. End Processor n
43. End

3.2 Time Complexity

Let p be the number of processors in the cluster. The complexity of the algorithm
is ((N +M)/p) ,where N is the time complexity of short term prediction and M
is the time complexity of the Long term prediction. Passing a message of length
n from one processor to another has time complexity Θ(n). Since broadcasting
to p processors require [log p] message passing steps, the overall time complexity
of broadcasting each iteration is Θ(n log p).

The parallel program requires n broadcasts . Each broadcast has [log p] steps.
Each step involves passing messages that are n bytes long. Hence the expected
communication time of parallel program is

[n [log p](λ+ n/β)] (2)

Adding computation time to communication time gives

[(N +M)/p+ n [log p](λ+ n/β)] (3)

However this expression will over estimate the parallel execution time because
it ignores the fact that there can be considerable overlap between computation
and communication.The message transmission time after first iteration is com-
pletely overlapped by computation time and should not be counted towards total
execution time.Expected execution time

[(N +M)/p+ n[log p]λ+ [log p](n/β)] (4)

4 Experimental Results and Analysis

We have performed experiments with both real and simulated data.Real data has
been gathered through bench mark data sets available on line from i)INRIA Labs
with data captured at INRIA Labs at Grenoble, France,ii)From Motion Capture

440 V.S. Rajpurohit and M.M. Manohara Pai

Web group of Univ of S.California and iii) From CMU Graphics Lab dataset. The
data sets consist of different human motion patterns. Simulated data consists of
noisy trajectories between predefined sequence of control points. Cluster com-
puting is setup using three IBM Intellistation Intel Xeon machines (processor
speed at 2.66 GHz). The parallelization of the algorithm is done using Message
Passing Interface (MPI) in C++ environment. The predictor algorithm is run
in parallel to keep track of multiple number of objects simultaneously(Figure2).
Each node in the cluster keeps track of a unique object observed in the scene.
To test the performance of the cluster system, the parallel predictor algorithm
is run on 02 and 03 processors (for 02 and 03 objects) with similar test cases.

Some of the results obtained for both short term and long term prediction
are shown in Figure 2. Each Sub Figure represents the top view of the human
motions observed in the environment. Results of both short term and Long
term motion predictions are shown separately to make the representations clear.
Figure 2 a,b represent the movement of the object from left to right direction
and the corresponding short term motion prediction path. Pi and Ai represent
the predicted and actual path traversed by the moving object. Pi(G) and Ai(G)
represent Predicted and actual goal of the object. A1 is the actual path observed
and A1(G) is the actual goal reached by the object A1. Figure 2a represents
a typical scenario when two moving objects were observed and 2b represents
another scenario when three moving objects were observed.

Figure2c,d represent the Long term motion prediction results when two and
three objects are in observation. Ai is the actual path observed and Ai(G) is
the actual goal reached. In the initial stage based on the partial trajectory ob-
served for the one of the moving objects(A1(G)), our predictor assumes P1 as
the predicted trajectory and P1(G) as the final destination (in this case it is
the outside door). But after reaching the intermediate goal (junction of multiple
trajectories) , the object decides to move in the direction of another destina-
tion. Our predictor immediately switches itself in the new direction and predicts
trajectory P1 2 and goal as P1 2(G). Similar observation is made for another
object (A2(G)) in the scene. In Figure 2d three moving objects are considered
and their corresponding predicted trajectories are shown. Performance of the
proposed parallel algorithm, in terms of speedup and efficiency , on two and
three processors is given in Table 1 and Table 2.

In order to run any problem in parallel we can check how much speed up
achievable by our algorithm when run in parallel. Some basic principles need to
be considered.The lower bound on the speedup log2n on a n processor system is
known as Minsky’s conjecture. This is pessimistic approach. A more optimistic
speedup estimate for upper bound can be given by Amdahl’s law. Let f be the
fraction of operations in a computation that must be performed sequentially ,
where 0 <= f <= 1. The maximum speedup achievable by a parallel computer
with p processors performing the computation is

ψ <= 1/(f + (1− f)/p) (5)

Amdahl’s law is based on the assumption that we are trying to solve a problem
of fixed size as quickly as possible . It provides an upper bound on the speedup

Parallel Object Motion Prediction in a Robotic Navigational Environment 441

Fig. 2. Prediction graphs showing parallel implementation of (a)(b) Short Term motion
prediction on 02 and 03 objects (c)(d)Long Term motion prediction on 02 and 03 objects

Table 1. Speedup and Efficiency of Parallel Motion Prediction algorithm for two
processors

serial (02
objects)in
Microsec-
onds

parallel
(2p)in Mi-
croseconds

Speedup Efficiency

444 260 1.70 0.85

410 250 1.64 0.82

370 253 1.46 0.73

386 248 1.55 0.77

360 247 1.45 0.72

363 242 1.5 0.75

389 248 1.56 0.78

301 185 1.62 0.81

392 251 1.56 0.78

461 258 1.78 0.89

421 258 1.63 0.81

509 306 1.66 0.83

562 306 1.83 0.91

442 V.S. Rajpurohit and M.M. Manohara Pai

Table 2. Speedup and Efficiency of Parallel Motion Prediction algorithm for three
processors

Serial (03
objects)in
Microsec-
onds

Parallel
(3p)in Mi-
croseconds

Speedup Efficiency

594 234 2.53 0.84

476 188 2.53 0.84

564 244 2.31 0.77

528 225 2.34 0.78

756 306 2.47 0.82

642 283 2.26 0.75

781 300 2.60 0.86

739 315 2.34 0.78

729 275 2.65 0.88

626 244 2.56 0.85

726 300 2.42 0.80

689 263 2.61 0.87

702 279 2.51 0.83

Fig. 3. Speedup Predicted by Amdahl’s Law and Minsky’s conjecture

achievable by applying a certain number of processors to solve the problem in
parallel. In the proposed parallel prediction algorithm the number of instructions
which are strictly sequential is 4% of the complete algorithm.These instructions
include initialization of message passing instructions, getting sensor readings
for each object and getting results from all cluster nodes. Figure 3 gives the ex-
pected performance of the proposed approach as per Amdahl’s law and Minsky’s
conjecture [8]. From the graph it can be observed that the performance of the
algorithm improves in the initial stage with increase in number of processors and
becomes constant though there is increase in number of processors after reaching
certain threshold.

Parallel Object Motion Prediction in a Robotic Navigational Environment 443

Table 3. Comparison of Speedup of Parallel prediction algorithm with Amdahl’s law
and Minsky’s Conjecture

Processors Average
Speedup
(On Cluster)

Speedup
(Amdahl’s
law)

Speedup
(Minsky’s
conjecture)

2 1.57 1.92 1

3 2.21 2.77 1.58

Average speedup achieved on two and three processors in the cluster, by the
proposed parallel predictor, are compared with the predictions of Amdahl’s law
and Minsky’s conjecture(Table 3). The performance of the algorithm is better
than the Minsky’s conjecture , still less than the values predicted by Amdahl’s
law. It can be concluded from our experiments that there is limitation on number
of processors which can be added to the cluster for parallel motion prediction
and parallel implementation will reach its threshold earlier than predicted by
the Amdahl’s law. The reduction in prediction time can be attributed to com-
munication delay and architectural constraints of the cluster system.

5 Conclusion

In this paper we have proposed a parallel motion prediction algorithm, for
predicting the motion of multiple dynamic objects, in Robotic navigational envi-
ronment simultaneously. Both Short term and Long term motion prediction tech-
niques are incorporated in the proposed parallel prediction algorithm. Results
of the study indicate that the parallel implementation of prediction algorithms
improve the speed up of the prediction time considerably. However the increase
in speedup is not linear due to the strictly sequential instructions present in the
algorithm and communication delay in the cluster setup, which puts a limitation
on the number of nodes in the cluster setup. Future work includes the efficient
decision making regarding Robotś future move,based on the predicted outputs
received from different nodes of the cluster.

Acknowledgements

The authors are indebted to AICTE Govt of India for funding the project.The
authors are thankful to the benchmark dataset provided by EC Funded CAVIAR
project, CMU Graphics lab and Motion capture web group.

References

1. Foka, A., Trahanias, P.E.: Predictive Autonomous Robot navigation. In: Proceed-
ings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and
Systems, EFPL, Lausanne, Switzerland, October 2002, pp. 490–494 (2002)

444 V.S. Rajpurohit and M.M. Manohara Pai

2. Messom, C.H., Sen Gupta, G., Demidenko, S., Siong, L.Y.: Improving predictive
control of a mobile robot: Application of image processing and kalman filtering. In:
IMTC 2003 Instrumentation and Measurement Technology Conference, Vail, CO,
USA, May 2003, pp. 20–22 (2003)

3. Perez, C., Reinoso, O., Vicente, M.A.: Robot hand visual tracking using an adaptive
fuzzy logic controller. In: Proceedings of WSCGS 2004, Plzen, Czech Republic
(February 2004)

4. Aycard, O., Petti, S., Vasquez, A.D., Yguel, M., Fraichard, T., Aycard, O.: Steps
Towards Safe Navigation in Open and Dynamic Environments. In: Laugier, C.,
Chatila, R. (eds.) Autonomous Navigation in Dynamic Environments: Models
and Algorithms. Springer Tracts in Advanced Robotics Series (STAR). Springer,
Heidelberg (2006)

5. Henrich, D.: Fast Motion Planning by Parallel Processing – a Review. Journal of
Intelligent and Robotic Systems 20, 45–69 (1997)

6. Mazer, E., Ahuactzin, J.M., Talbi, E.-G., Bessiére, P., Chatroux, T.: Parallel Mo-
tion Planning with the Ariadne’s Clew Algorithm. Lecture Notes in Control and
Information Sciences, vol. 200, archive, pp. 62–74. Springer, London (1993)

7. Yu, H., Su, T.: A Destination Driven Navigator with Dynamic Object Motion
Prediction. In: The Proceedings of International Conference on Robotics 2L Au-
tomation, Seoul, Korea, May 21-26, pp. 2692–2697 (2001)

8. Hwang, K., Briggs, F.A.: Computer Architecture and Parallel Processing.
McGraw-Hill, New York (1985)

9. Seyr, M., Jakubek, S., Novak, G.: Neural network predictive trajectory tracking of
an autonomous two-wheeled mobile robot. In: Proceedings of IFAC World Congress
(2005)

10. Caselli, S., Reggiani, M., Sbravati, R.: Parallel Path Planning with Multiple Eva-
sion Strategies. In: Proceedings of the 2002 IEEE International Conference on
Robotics & Automation Washington, DC, May 2002, pp. 260–266 (2002)

11. Rajpurohit, V.S., Manohara Pai, M.M.: An Optimized Fuzzy Based Short Term
Object Motion Prediction for Real-Life Robot Navigation Environment. In:
Sebillo, M., Vitiello, G., Schaefer, G. (eds.) VISUAL 2008. LNCS, vol. 5188,
pp. 114–125. Springer, Heidelberg (2008)

12. Rajpurohit, V.S., Manohara Pai, M.M.: Using Self Organizing Networks for Moving
Object Trajectory Prediction. International Journal on Artificial Intelligence and
Machine Learning 9(1), 27–34 (2009)

Numerical Simulations of Unsteady Shock Wave

Interactions Using SaC and Fortran-90

Daniel Rolls2, Carl Joslin2, Alexei Kudryavtsev1, Sven-Bodo Scholz2,
and Alex Shafarenko2

1 Institute of Theoretical and Applied Mechanics RAS SB,
Institutskaya st. 4/5,

Novosibirsk, 630090, Russia
2 Department of Computer Science, University of Hertfordshire, AL10 9AB, UK

Abstract. This paper briefly introduces SaC: a data-parallel language
with an imperative feel but side-effect free and declarative. The expe-
riences of porting a simulation of unsteady shock waves in the Euler
system from Fortran to SaC are reported. Both the SaC and Fortran
code was run on a 16-core AMD machine. We demonstrate scalability
and performance of our approach by comparison to Fortran.

1 Introduction

In the past when high performance was desired from code, high-levels of ab-
straction had to be comprimised. This paper will demonstrate our approach
which overcomes these shortcomings: we will present the data-parallel language
SaC [14] and exemplify its usage by implementing an unsteady shock wave sim-
ulator in the Euler system. SaC was developed by an international consortium
coordinated by one of the authors (Sven-Bodo Scholz). We will compare the
performance of our approach against Fortran by running this application on a
16-core computation server.

The language is close to C syntactically, which makes it more accessible to
computational scientists, while at the same time being a side-effect free, declar-
ative language. The latter enables a whole host of intricate optimisations in the
compiler and, perhaps more importantly, liberates the programmer from imple-
mentation concerns, such as the efficiency of memory access and space manage-
ment, exploitation of data-parallelism and optimisation of iteration spaces. In
addition, code that was written for a specific dimensionality of arrays can be
reused in higher dimensions thanks to an elaborate system of array subtyping
in SaC, as well as its facilities for function and operator overloading that far
exceed the capabilities of not only Fortran but the object-orientation languages
as well.

SaC has already been used for many kinds of application, ranging from image-
processing to cryptography to signal analysis. However, to our knowledge there
has been only one occasion of programming a Computational Fluid Dymamics

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 445–456, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

446 D. Rolls et al.

application in SaC namely the Kademtsev-Petviashivili system [4]. Even that
example is too esoteric to support any conclusions about practical suitability of
Single-Assignment C. In this paper we present for the first time the results of
using SaC as a tool in solving a real, practical problem: simulation of unsteady
shock waves in the Euler system.

The equations of fluid mechanics can be solved analitically for only a limited
number of simple flows. As a consequence, numerical simulation of fluid flows
known as Computational Fluid Dynamics (CFD) is widely used in both scientific
research and countless engineering applications. Efficiency of computations and
ease of code development is of great importance in CFD which is one of the
most perspective fields for implementing new concepts and tools of computer
science.

In Section 2 we will briefly outline the features of SaC that we would ar-
gue make it uniquely suitable for the class of applications being discussed.
Section 3 delineates the numerical method being used and Section 4 discuses
implementation issues we came across when porting a Fortran TVD implemen-
tatin to SaC. Our results are then presented in Section 5 and related work is
discussed in Section 6 before finally Section 7 discusses the lessons learnt and
concludes.

2 SaC

SaC is an array processing language that first appears to be an imperitive pro-
gram like Fortran but actually has more in common with functional programming
languages. A SaC function consists of a sequence of statements that define and
re-define array objects. To a C programmer this looks very similar to assigning
the result of expressions to arrays, but there is an important difference: what
may appear to the programmer to be the “control flow” in SaC is in fact a chain
of definitions that link with one another via the use of common variables, this
emphasises data as opposed to control dependencies. Thus any iterative update
becomes essentially a recurrence relation between the snapshots of the arrays
being updated, and it is up to the compiler whether or not the arrays need to be
recreated as objects in memory or whether the underlying computation may be
taken in-flow. That not withstanding, analogues of control structures, such as
the IF statement, are provided, if only with a slightly different interpretation, so
the illusion of programming a control flow may be retained as far as possible. IF
statements are expressions: this can be seen by observing that with imperitive
code, control flow through conditionals can affect whether a variable is defined;
however this is not valid SaC code.

Two main constructs of SaC support the kind of computation that we are
concerned with in this paper:

Most of the high level constructions in this paper are compiled down to the
following to constructs.

Numerical Simulations of Unsteady Shock Wave Interactions 447

with-loop. Despite the name, which reflects some historic choices of terminol-
ogy in SaC, the essence of this construct is a data-parallel array definition.
The programmer supplies a specification of the index space (in an extended
enumeration form) and the definition of the array value for a given index in
terms of an expression with other values possibly indexed and produced by
external functions. Definitions for different array values are assumed to be
mutually independent, hence data-parallelism is presented to the compiler
explicitly.

for loop. This is used for programming recurrences. The recurrence index is
specified in the for loop together with its initial value and increment, the
compiler interprets the loop body as a definition of the arrays emerging at
the final step of the recurrence in terms of the arrays defined prior to the
first step.

As with FORTRAN-90 small arithmetic expressions in SaC can operate on
whole arrays to conveniently express elementwise operations on those arrays.
E.g. a - b * c + c could be both an expression operating on scalars, arrays
or scalars and arrays where the scalar form of the expression is applied to cor-
responding indicies in the arrays a, b and c. For consise expressivness SaC

supports set notation which allows an expression to be defined for every el-
ement of a new array where each expression may depend on the index. E.g.
{ [i,j] -> matrix[j,i] } transposes a matrix by placing element (j, i) from
the original matrix into element (i, j) for all i and j.

Another feature of the language that finds its use in the application being
reported is its type system, which supports subtyping. To provide an overview
of this, we remark, by way of an example, that a vector can be interpreted
as a two dimensional array obtained by replicating the vector as a row in the
column dimension. This is a subtype of a general two dimensional array type. One
consequence of this is that a function that contains a tridiagonal solver for a one-
dimensional Poisson equation can be applied to a two dimensional array (acting
row-wise) and then applied again column-wise by using two transpositions, all
without changing a single line of code in the solver definition.

All these features make it possible to write function bodies that act on inputs
of any dimension which suffer no performance loss compared to more specialized
function bodies. Our code makes use of this fact to reuse function bodies for a
one dimensional and two dimensional shockwave simulation.

3 Application

SaC is used to develop an efficient solver for the compressible Euler equations,
which govern the flow of an inviscid perfect gas:

∂Q
∂t

+
∂F
∂x

+
∂G
∂y

= 0, (1)

448 D. Rolls et al.

Q =

⎡⎢⎢⎣
ρ
ρu
ρv
E

⎤⎥⎥⎦ , F =

⎡⎢⎢⎣
ρu
ρu2

ρuv
u(E + p)

⎤⎥⎥⎦ , G =

⎡⎢⎢⎣
ρv
ρuv
ρv2

v(E + p)

⎤⎥⎥⎦ . (2)

Here t is time, x and y are spatial coordinates, u and v are components of the
flow velocity, ρ is density, p is the pressure related to the total energy E as

p = (γ − 1)
(
E − ρ

u2 + v2

2

)
, (3)

where γ is the ratio of specific heats (γ = 1.4 for air). The Euler equations
are the canonical example of a hyperbolic system of nonlinear conservation laws
that describes conservation of mass, momentum and energy. Numerical methods,
originally developed for the Euler equations, can be also used for a wide variety
of other hyperbolic systems of conservation laws, which arise in physical models
describing physical phenomena in fields as varied as acoustics and gas dynamics,
traffic flow, elasticity, astrophysics and cosmology. Thus, the Euler solver is a
very representative example of a broad class of computational physics programs.

A salient feature of nonlinear hyperbolic equations is the emergence of dis-
continuous solutions such as shock waves, fluid and material interfaces. It turns
their numerical solution into a non-trivial task. Modern numerical methods for
solving the hyperbolic equation [9] are based on high-resolution shock-capturing
schemes originated from the seminal Godunov’s paper [7]. In these methods, the
computational domain is divided into a number of grid cells and the conserva-
tion laws are written for each cell. The computational procedure includes three
stages: 1) reconstruction (in each cell) of the flow variables on the cell faces from
cell-averaged variables; 2) evaluation of the numerical fluxes through the cell
boundaries; and 3) advancement of the solution from the time tn to time tn+1

where tn+1 = tn +Δt. These stages are successively reiterated during the time
intergation of Eq (1).

The reconstruction during the first stage should avoid the interpolation across
the flow discontinuities. Otherwise, numerical simulations fail because of a loss
of monotonicity and numerical oscillations developing near the discontinuities.
The Fortran code developed includes several techniques of monotone reconstruc-
tion, in particular, the TVD (Total Variation Diminishing) reconstructions of
the 2nd and 3rd orders with various slope limiters and the 3rd order WENO
(Weighted Essentially Non-Oscillatory) reconstruction, which automatically as-
signs the zero weight to the stencils crossing a discontinuity. The latter technique
is used in the examples of flow computation below. The reconstruction is applied
to the so-called (local) characterisic variables rather than to the primitive vari-
ables ρ, u, v and p or the conservative variables Q.

The evaluation of numerical axes is performed by approximately solving the
Riemann problems between two states on the “left” and “right” sides of the cell
boundaries resulting from the reconstruction. The code includes a few options

Numerical Simulations of Unsteady Shock Wave Interactions 449

for the approximate Riemann solver, below the results obtained from the shock
wave simulation are presented. For time advancement (Stage 3) the 2nd or 3rd
order TVD Runge-Kutta schemes are used.

As an example of flow computations both a one dimensional and two dimen-
sional problem is described below.

3.1 One Dimensional Simulation

The Euler code was used to solve the Sod shock tube problem [16], a common
test for the accuracy of computational gasdynamics code. The test consists of
a one dimensional Riemann problem. At the initial moment, the diaphragm
separates two resting gases with different pressures and densities. The top state
is (ρ, u, p) = (1, 0, 1) while the bottom state is (ρ, u, p) = (0.125, 0, 0.1). Here ρ
is the density, u is the flow velocity and p is the pressure. After the diaphragm
rapture, a shock wave and a contact discontinuity propagates to the bottom and
a rarefaction wave moves to the top. This is illustrated in Fig. 1.

Fig. 1. The expansion of a shockwave from the center in the one-dimensional simulation
where two gasses of different densities meet. The three diagrams move forward in time
from left to right and show the shockwave expanding.

3.2 Two-Dimensional Simulation

Here a numerical simulation of an unsteady shock wave interaction is conducted.
A schematic of flow configuration is shown in Fig. 2. The computational domain
is a square divided into rectangular grid of Nx × Ny cells. A part of its left
boundary is the exit section of a channel while the remaining portion of this
boundary is a solid wall. The exit section of another channel comprises part of
the computational domain’s bottom boundary. A shock waves propagates within
each of the channels and comes to the channels exits at the same moment (t = 0)
when the computation starta. Thus, at the initial moment, the domain is filled
by a quiescent gas. The boundary conditions in the exit sections of two channels
are imposed in such a way that the flow variables are equal to the values behind
the shock waves calculated from the Rankine-Hugoniot relations.

The computations have been conducted at the shock wave Mach numbers of
Ms = 2.2. At this value of Ms the flow behind the shock waves is supersonic so
that the flow variables in the exit sections are not changed during the compu-
tation. The size of the computational domain is Lx = Ly = 2h, where h is the
channel width and h = 200 in our benchmarks.

450 D. Rolls et al.

Ms

Ms

Computational domain

C
ha

nn
el

Channel

Shock wave

Sh
oc

k
w

av
e

Solid
walls

Solid
walls

Solid
walls

Fig. 2. A schematic of flow configuration and computational domain for the two-
dimensional simulation

Fig. 3. A snapshot of the shockwave in the two-dimensional simulation

The results of computations are shown in Fig. 3. The interaction between the
shock waves exhausting from the channels and their diffraction over solid walls
generate a complex flow structure. In addition to the primary shock waves, which
rapidly become approximately circular in shape, the irregular interaction of the
shock waves leads to formation of a Mach stem between them and emergence of
two reflected shock waves. The primary wave, the relected shock wave and the
Mach stem meet in the three points, from which slipstream surfaces emanate.
Behind each of the primary shock waves, there is a contact surface separating
the gas exhausted out of the channel from the gas which initially filled the
computatational domain. Secondary shock waves are formed closer to the exit
section starting from a point on the last characteristics of the channel lips. On
the later stages of evolution, the Mach stem itself becomes circular in shape and
occupies a large proportion of the leading shock front while the contact surface
behind it curls up into a mushroom-like structure.

Numerical Simulations of Unsteady Shock Wave Interactions 451

4 Implementation

To illustrate the arguments from Section 2 we have selected two example func-
tions from our TVD implementation in SaC.

4.1 dfDxNoBoundary

The function dfDxNoBoundary produces an array of the difference between each
neighbouring pair in a vector. It takes the difference of every element in a vector
but its first element with its left-neighbouring element and divides each element
by a constant. The resulting vector has a length of one element less than the
input vector.

As with the Fortran, in SaC the original vector is extended on both ends.
The function defines two new vectors, one with the first element removed and
one with the last element removed. An element-wise subtraction is applied to
these new vectors (with matching indexes) and the resulting array is divided
elementwise by a scalar (delta).

1 inline
2 fluid_cv[.] dfDxNoBoundary(fluid_cv[.] dqc, double delta)
3 {
4 return((drop([1], dqc) - drop([-1], dqc)) / delta);
5 }

To materialise each array in memory would be expensive; this style of program-
ming would not be feasible for computational science if every array was copied.
SaC’s functional underpinnings allow it to, among other things, avoid some un-
necessary calculations, memory allocation and memory copies. The style of code
above often performs extremely well contrary to initial expectations.

4.2 getDT

The GetDT function calculates the time step to take in each iteration of the
algorithm. It acts upon every element in a large array which represents the
computational domain. For the two dimensional case Fortran has a nested loop
structure with one loop for each dimension. The value EV is calculated each time
and the largest EV value is saved. Finally this value is divided by a constant.

1 SUBROUTINE GetDT
2 USE Cons
3 USE Vars
4 IMPLICIT REAL*8 (A-H,O-Z)
5

6 EVmax = 0.d0
7 DO iy=IYmin,IYmax
8 DO ix=IXmin,IXmax
9 Ux = QP(1,ix,iy)

10 Uy = QP(2,ix,iy)
11 Pc = QP(3,ix,iy)

452 D. Rolls et al.

12 Rc = QP(4,ix,iy)
13 C = SQRT(Gam*Pc/Rc)
14 EV = (ABS(Ux)+C)/Dx+(ABS(Uy)+C)/Dy
15 EVmax = MAX(EV,EVmax)
16 END DO
17 END DO
18

19 DT = CFL/EVmax
20

21 END

The SaC version of the function is shown below. In the following code GAM,
DELTA and CFL are constants.

1 inline
2 double getDt(fluid_pv[+] qp)
3 {
4 c = sqrt(GAM * p(qp) / rho(qp));
5 d = MathArray::fabs(u(qp));
6 ev = { iv -> (sum((d[iv] + c[iv]) / DELTA))};
7 return(CFL / maxval(ev));
8 }

The type of the function parameter is fluid_pv[+] which means an array of
unknown dimensionality of fluid_pv values where fluid_pv is a user defined
datatype. The syntax for an array type (t) can be syntactically represented as
t[x,y,z] for an array of size x by y by z, t[.,.] for a array of two dimensions
of unknown size and also t[+] for an array of unknown dimensionality.

The functions p and ρ extract the pressure and density from fluid_pv re-
spectively. The SaC function calculates the variable C above using elementwise
operations and then in line 6 EV is calculated which depends on the entire input
array. With little experience with SaC this function quickly becomes easier to
understand than the Fortran code. It is a functional definition (i.e. an expres-
sion) but the programmer is not obliged to use recursion on the array like a
functional programmer would do with lists.

This clearer imperative-like but functional style makes data dependencies
more obvious both to the programmer and to the compiler. In our simulation
the SaC compiler always calculates the dimensionality needed for this function
from its calls and therefore no penalty is paid for the generic type of qp.

5 Results

To evaluate the performance of SaC compared with Fortran we ran the 2D
simulation with a 400x400 grid as described in Section 3.2. The simulation was
run for 1000 time steps to ensure that the run time was sufficient to negate
the start-up time of the program. We made use of a 400x400 grid as this
was the size used in the original Fortran implementation. In the experiment
we used the third order Runge-Kutta TVD method and first order piecewise
constant reconstruction.

Numerical Simulations of Unsteady Shock Wave Interactions 453

Compiler Version Arguments

Sac2C
Sac2C 16094 -L fluid -maxoptcyc 100 -O3 -mt

-DDIM=2 -nofoldparallel -maxwlur 20stdlib 1120
Sun Studio
Compiler-f90

8.3 Linux i386
Patch 127145-01

-autopar -parallel -loopinfo -reduction
-O3 -fast

The computer used to perform these benchmarks is a 4xQuad-Core (16 core)
AMD OpteronTM 8356 with 16GB of RAM. The source code is available at
http://sac-home.org.

As the Fortran compiler uses OpenMP for parallelization, environment vari-
ables where set to control the runtime behaver of the Fortran code. Several
different combinations where tried however these made a negligible difference to
the runtime of the program. The options that produced the fastest runtimes, and
therefore where used for the main benchmarking, were: OMP_SCHEDULE=STATIC,
OMP_NESTED=TRUE and OMP_DYNAMIC=FALSE.

Fig. 4. Wall clock time of a 1000 time step simulation on a 400x400 grid

It can be seen in Figure 4 that SaC was much slower than the Fortran when
run on just one core. However the Fortran code did not scale well with the
number of cores, and as the number of cores increased performance degraded.
We therefore suspect that there is added overhead of communication between
the threads.

SaC does not use system calls for its inter thread communication but rather
uses the programs shared memory and spin locks to allow inter thread commu-
nication with very little overhead. This low overhead allows SaC to scale well
even when its problem size is to small for Fortran’s auto parallelize feature to

http://sac-home.org

454 D. Rolls et al.

work efficiently. There are optimizations which the SaC compiler can perform
which are only possible because SaC is a functional, single assignment language.
These optimizations help to allow the program to scale as SaC collates the many
small operations on the arrays into fewer larger operations. This is not possible
in procedural programing languages like Fortran as the compiler can not always
work out the data dependences in complete detail. With a functional programing
language like SaC it is possible to identify every dependency.

When the same benchmark was run with a larger 2000x2000 grid we discovered
that Fortran was able to scale slightly with small numbers of cores but after just
five cores it started to suffer from the overheads of inter-thread communication
again.

6 Related Work

Broadly three techniques exist for producing highly parallelizable code for scien-
tific simulations. The first technique is to carefully determine how a run should
be parallelised and to explicitly write the code to do this. The message pass-
ing interface API[6] is commonly used for this. Also a threading library like
Pthreads [11] could be used. Secondly, source-code annotations or directives can
be used to provide information to a compiler to show it how an execution can
be parallelised. Lastly compilers can try to autoparallelize code by analysing
dependencies between variables. This section gives a brief overview of the three
methods mentioned above and then discusses performance.

High-Performance Fortran [5] is an extension to FORTRAN-90 that allows the
addition of directives to the source code to annotate distribution and locality.
The Fortran code itself is written in a sequential style and already describes some
operations in a data-parallel way. High-Performance Fortran compilers can then
use these directives to compile to pipelined, vectorized, SIMD or message passing
parallel code.

For explicitly annotating parts of a program that can be parallelized on shared
memory systems the OpenMP [3] API is supported for C, C++ and Fortran.
Many autoparallelizing compilers produce programs that call upon this API
including the Intel and Sun Microsystems Fortran and C compilers.

ZPL [12] is a high level array processing language designed to be concise and
platform independent. It allows programmers to easily describe subarrays within
an array using a concept called regions. ZPL was designed with parallelism in
mind and has had its performance compared with other languages for applica-
tions inclusive of computational fluid dynamics applications [13].

Parallel performance results tend to vary depending on the application, archi-
tecture and type of parallelism. For example an application that performs well on
shared memory systems may not necessarily perform well when compiled to run
on a distributed memory system. In addition and rather surprisingly, carefully
crafted MPI applications might not necessarily have better speedups per core
than implicit parallelism in high level languages. One surprising example of this
is ZPL which has been shown to scale well in parallel runs with the Multigrid [1]
NAS benchmark [2] and even shown prospects with CFD [13].

Numerical Simulations of Unsteady Shock Wave Interactions 455

7 Conclusion

The results have shown that execution of high-performance applications written
in SaC can achieve speedups on parallel architectures. This shows that using
high-level abstractions in code operating on arrays is easier to understand. How-
ever, SaC’s real strength comes into play when auto-parallelizing code.

SaC provides a powerful expressiveness where the greater learning curve is
not grasping the paradigm but in resisting the temptation to try to optimize the
code, and thus making use of SaC’s ability to allow programs to be written with
a high level of abstraction.

Programmers need a good way to express their programs so that they are quick
to write, easy to understand and efficient to maintain. Up until now expressing
programs in a readable form, with high levels of abstraction has come at a
considerable performance penalty. However as can be seen in this paper it is
possible to write programs in a clear style with high levels of abstraction while
obtaining reasonable speedups that can be greater than those produced from the
compilers of languages that where originally designed as sequential languages.

The results of this paper used SaC’s Pthread back-end; future SaC back-
ends promise even more parallelism. CUDA [10], whilst challenging to harness,
has tremendous processing capabilities that will enable programs to make use of
high performance, low cost processing resources found on GPUs as a potentially
faster way of performing complicated simulations [15]. As part of an EU FP-
7 project a back-end is being developed for SaC which produces code for an
language which will compile to a many-core architecture called Microgrid [8].
This architecture will deliver considerable parallelism without the complexity
that is involved with CUDA.

For future architectures parallelism will be increasingly vital. The work in this
paper has shown that now that parallelism is important, it is possible to write ab-
stract code in a high-level language and still be able to compete with traditional
low-level, high performance languages like Fortran on parallel architectures.

Acknowledgments. This work was partly supported by the European FP-7
Integrated Project Apple-core (FP7-215216 — Architecture Paradigms and Pro-
gramming Languages for Efficient programming of multiple COREs).

References

1. Briggs, W.L., McCormick, S.F.: A multigrid tutorial. Society for Industrial Math-
ematics (2000)

2. Chamberlain, B.L., Deitz, S.J., Snyder, L.: A comparative study of the NAS
MG benchmark across parallel languages and architectures. In: Supercomputing,
ACM/IEEE 2000 Conference, pp. 46–46 (2000)

3. Chapman, B., Jost, G., Van Der Pas, R., Kuck, D.J.: Using OpenMP: portable
shared memory parallel programming. The MIT Press, Cambridge (2007)

456 D. Rolls et al.

4. Shafarenko, A., et al.: Implementing a numerical solution of the kpi equation us-
ing single assignment c: Lessons learned and experiences. In: Implementation and
Application of Functional Languages, 20th international symposium, pp. 160–170
(2005)

5. High Performance Fortran Forum. High Performance Fortran Language Specifica-
tion. Rice University (1993)

6. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Version 2.1. High Performance Computing Center Stuttgart (HLRS) (2008)

7. Godunov, S.K.: A difference method for numerical calculation of discontinuous
equations of hydrodynamics (in russian). Mat. Sb. 47, 271–300 (1959)

8. Grelck, C., Herhut, S., Jesshope, C., Joslin, C., Lankamp, M., Scholz, S.-B.,
Shafarenko, A.: Compiling the Functional Data-Parallel Language sac for Micro-
grids of Self-Adaptive Virtual Processors. In: 14th Workshop on Compilers for
Parallel Computing (CPC 2009), IBM Research Center, Zurich, Switzerland (2009)

9. Guinot, V.: Godunov-type schemes. Elsevier, Amsterdam (2003)
10. Guo, J., Thiyagalingam, J., Scholz, S.-B.: Towards Compiling SAC to CUDA.

In: Proceedings of the 10th Symposium On Trends In Functional Programming,
Komarno, Slovakia (June 2009)

11. Josey, A.: The Single UNIX Specification Version 3. Open Group (2004)
12. Lin, C., Snyder, L.: ZPL: An array sublanguage. In: Banerjee, U., Gelernter, D.,

Nicolau, A., Padua, D.A. (eds.) LCPC 1993. LNCS, vol. 768, pp. 96–114. Springer,
Heidelberg (1994)

13. Lin, C., Snyder, L.: SIMPLE performance results in ZPL. In: Pingali, K.K.,
Gelernter, D., Padua, D.A., Banerjee, U., Nicolau, A. (eds.) LCPC 1994. LNCS,
vol. 892, pp. 361–375. Springer, Heidelberg (1995)

14. Scholz, S.-B.: Single assignement c – efficient support for high-level array operations
in a functional setting. Journal of Functional Programming 13, 1005–1059 (2003)

15. Senocak, I., Thibault, J., Caylor, M.: J19. 2 Rapid-response Urban CFD Simula-
tions using a GPU Computing Paradigm on Desktop Supercomputers

16. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation laws. Journal of Computational Physics 27(1), 1–31 (1978)

Parallel Medical Image Reconstruction:

From Graphics Processors to Grids

Maraike Schellmann, Sergei Gorlatch, Dominik Meiländer, Thomas Kösters,
Klaus Schäfers, Frank Wübbeling, and Martin Burger

University of Münster, Germany
schellmann@uni-muenster.de

Abstract. We present a variety of possible parallelization approaches
for a real-world case study using several modern parallel and distributed
computer architectures. Our case study is a production-quality, time-
intensive algorithm for medical image reconstruction used in computer
tomography. We describe how this algorithm can be parallelized for the
main kinds of contemporary parallel architectures: shared-memory mul-
tiprocessors, distributed-memory clusters, graphics processors, the Cell
processor and, finally, how various architectures can be accessed in a dis-
tributed Grid environment. The main contribution of the paper, besides
the parallelization approaches, is their systematic comparison regarding
four important criteria: performance, programming comfort, accessibil-
ity, and cost-effectiveness. We report results of experiments on particular
parallel machines of different architectures that confirm the findings of
our systematic comparison.

1 Introduction

The research presented in this paper was conducted at the interdisciplinary col-
laborative research center (SFB) “Molecular Cardiovascular Imaging” at the
University of Münster. One of the major medical research topics of the SFB is
the detection of so-called vulnerable plaques in cardiac vessels using Positron
Emission Tomography (PET) (a vulnerable plaque is an instable deposit within
an arterial wall which may rupture and lead to a heart attack). In order to ac-
curately detect such small-sized thickenings, it is necessary to have PET images
with the highest spatial resolution.

The required improvement of images can be achieved by enhancing imag-
ing hardware (scanners) or software (image reconstruction and processing al-
gorithms). However, in either case, with increasing resolution and quality, the
computational cost of the imaging algorithms increases, too. Today, the run-
time on an off-the-shelf PC of one of the most accurate 3D PET reconstruction
algorithms (the list-mode OSEM) used for reconstruction of data produced by
a high-resolution small-animal PET scanner (the quadHIDAC [1]) ranges from
one hour to several days. Therefore, parallelization is crucial in order for such
hardware and software techniques to be used in clinical routine. With more ad-
vanced scanners and more precise and enhanced algorithms, an efficient parallel
implementation will become even more important.

V. Malyshkin (Ed.): PaCT 2009, LNCS 5698, pp. 457–473, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

458 M. Schellmann et al.

In this paper, we focus on the parallelization of the list-mode OSEM (Ordered
Subset Expectation Maximization) algorithm [2] for PET reconstruction. The
algorithm is representative for a large class of image reconstruction methods.
The foremost goal of this work is to find the most suitable parallel architecture
for this algorithm.

The suitability of a parallel architecture for a particular algorithm is usually
defined using two criteria : 1) the algorithm’s parallel performance, and 2) the
usability of available programming environments for this particular architecture.
In medical imaging, the medical personnel will be reluctant to use parallel soft-
ware if it requires a high administrative effort like searching for a free time-slot
on a number of cluster computers. Therefore, our third comparison criterion
will be accessibility. Moreover, while a server with several multi-core processors
might provide high performance and can be easily accessed over a local file sys-
tem, the purchase cost of such a server might limit its usage. Thus, we introduce
cost-effectiveness as our fourth criterion.

The contribution of this paper is three-fold: 1) It gives an overview of the par-
allel implementation of the list-mode OSEM algorithm on a number of parallel
architectures, including: shared-memory multiprocessors, multi-core processors,
cluster computers, graphics hardware and the Cell processor. 2) It identifies
the most suitable parallel architecture for typical image reconstruction tasks
by analyzing the parallel implementations for performance, appropriateness of
programming environments, accessibility of the corresponding architecture and
cost-effectiveness. 3) It describes how our grid system chooses the most suitable,
currently available parallel machine for a given reconstruction task and thus frees
the medical personnel from all administrative efforts.

The rest of the paper is structured as follows: we start with an introduction
to PET image reconstruction and the list-mode OSEM algorithm in Section 2.
We then introduce our parallel implementations on shared-memory machines,
clusters, graphics hardware and the Cell processor in Section 3. In Section 4, we
present runtime experiments and compare the parallel architectures using the
four criteria introduced above. In Section 5, we describe the distributed MIRGrid
system from a user perspective and, finally, present conclusions in Section 6.

2 Iterative PET Image Reconstruction

In Positron Emission Tomography (PET), a radioactive substance is injected
into a human or animal body. Afterwards, the body is placed inside a PET
scanner that contains several arrays of detectors. As the particles of the applied
substance decay, positrons are emitted (hence the name PET) and annihilate
with nearby electrons. During one such annihilation, two photons are emitted
in opposite directions (see Fig. 1). The “decay events” are registered by two
opposite detectors at the same time. The scanner records these events in a list
with each record comprising the positions of those two detectors.

For our comparative study, we consider the following representative algorithm
for creating an image from the events. List-Mode Ordered Subset Expectation

Parallel Medical Image Reconstruction: From Graphics Processors to Grids 459

Fig. 1. Two detectors register an event in a PET-scanner

Maximization [2,3] (called list-mode OSEM in the sequel) is a block-iterative
algorithm for 3D image reconstruction. List-mode OSEM takes a set of events
and splits them into s equally sized subsets.
For each subset l ∈ 0, . . . , s− 1, the following computation is performed:

fl+1 = flcl; cl =
1

At
N1

∑
i∈Sl

(Ai)t 1
Aifl

. (1)

Here f ∈ Rn is a 3D image in vector form with dimensions n = (X × Y ×Z),
A ∈ Rm×n, element aik of row Ai is the length of intersection of the line between
the two detectors of event i with voxel k of the reconstruction region, computed

with Siddon’s algorithm [4].
1

At
N1

is the so-called normalization vector. Since it

can be precomputed, we will omit it in the following. Note that the multiplication
of flcl is performed element-by-element. Each subset’s computation takes its
predecessor’s output image as input and produces a new, more precise image.

The overall structure of a sequential list-mode OSEM implementation is shown
in Listing 1. It comprises three nested loops, one outer loop with two inner
loops. The outer loop iterates over the subsets. The first inner loop iterates over
a subset’s events to compute the summation part of cl. The second inner loop
iterates over all elements of fl and cl to compute fl+1. The application in this
study can be used to reconstruct data from virtually every PET scanner if a
conversion method from the scanner data to world coordinates is available. In
this study, we use data acquired by the quadHIDAC scanner and employ the
conversion method for this scanner introduced in [2].

List-mode OSEM is a rather time-consuming algorithm. A typical 3D image
reconstruction processing 6 · 107 input events for a 150× 150× 280 PET image
takes more than two hours on an off-the-shelf PC. To reduce the algorithm’s
runtime we developed several parallel implementations for systems with shared

460 M. Schellmann et al.

for (int l = 0 ; l < subse t s ; l++) {
/∗ read subse t ∗/

/∗ compute c l ∗/
for (int i = 0 ; i < s u b s e t s i z e ; i++) {

. . . }

/∗ compute f l +1 ∗/
for (int k = 0 ; k < image s i z e ; k++) {

i f (c l [k] > 0 . 0)
f [k] ∗= c l [k] ;

} }

Listing 1. Sequential code comprises one outer loop with two nested inner loops

and distributed memory, as well as hybrid systems [5,6]. An implementation
for Compute Unified Device Architecture (CUDA) capable graphics processing
units [7] as well as for the Cell processor [8] is also available.

In the following section, we systematically compare these implementations
with respect to different criteria.

3 Parallel Image Reconstruction

Because of the data dependency between the subsets’ computations in (1), im-
plied by fl+1 = flcl, the subsets cannot be processed in parallel. The computa-
tion of cl and fl+1 is parallelizable, using the following idea.

For the computation of cl, all parallel implementations distribute the events
among the processing units (either processors or cores, from now on called PUs).
Now each PU computes a partial sum of cl. Afterwards, all partial results are
summed up over the communication link. For the computation of fl+1 = flcl,
the image is distributed among the PUs, thus each PU computes fl+1 = flcl for
its subimage in parallel.

3.1 Parallelization on Shared-Memory Processors

On shared-memory multiprocessors and multi-core processors, we developed an
OpenMP [9] implementation following the parallelization idea described above.

To parallelize the computation of cl and fl+1, we have to parallelize the two
inner loops of the list-mode OSEM algorithm. We use the parallel for direc-
tive of OpenMP that declares the successive for loop to be executed in parallel
by a team of threads for both loops (see Listing 2). Apart from the additional
compiler directives, no considerable changes were made to the sequential pro-
gram. Thus, an OpenMP-based parallel implementation of the list-mode OSEM
algorithm is easily derived from a sequential implementation.

Parallel Medical Image Reconstruction: From Graphics Processors to Grids 461

for (int l = 0 ; l < subse t s ; l++) {
/∗ read subse t ∗/
/∗ compute c l ∗/
#pragma omp p a r a l l e l for
for (int i = 0 ; i < s u b s e t s i z e ; i++) {

path=computePath (i) ;
. . .

#pragma omp c r i t i c a l
while (path [m] . coord != −1) {

c l [path [m] . coord]+=path [m] . l ength ∗c ;
} /∗ end o f c r i t i c a l s e c t i on ∗/

. . .
}
/∗ compute f l +1 ∗/
#pragma omp p a r a l l e l for
for (int k = 0 ; k < image s i z e ; k++) {

i f (c l [k] > 0 . 0)
f [k] = f [k] ∗ c l [k] ; } }

Listing 2. Sequential implementation with OpenMP compiler directives inserted

Within the first inner loop (summation part of cl), all threads perform multiple
additions to arbitrary voxels of a common intermediate image. We prevent race-
conditions using a mutex that declares the summation part mutually exclusive,
such that only one thread at a time is able to work on the image. In OpenMP,
mutexes are declared by using the critical construct which specifies a mutual
exclusion for the successive code section.

3.2 Parallelization on Cluster Computers

On distributed-memory clusters, we use MPI (Message Passing Interface) [10]
for the parallel implementation. Here, every process first reads “its” events from
the remote file system (see Fig. 2). All processes compute their partial sum of
cl simultaneously; then the result is summed up using MPI Allreduce. Finally,
before the next subset is started, all processes compute fl+1. Note that for the
computation of fl+1 the image is not distributed among the processes, because
the resulting network communication is more time-consuming than the actual
computations.

On hybrid machines (clusters), where each node is either a shared-memory
multiprocessor or a multi-core processor, we combine the MPI distributed-
memory implementation with the OpenMP shared-memory implementation.
Thus the partial sum of cl and fl+1 are computed simultaneously by all PUs
of the shared-memory machines (see Fig. 2).

462 M. Schellmann et al.

Fig. 2. The PSD strategy on a hybrid machine with 4 nodes with 4 processing units
each

Fig. 3. Architecture of an NVIDIA GPU with n multiprocessors and m shader units

3.3 Parallelization on Graphics Processors

GPU Architecture and CUDA. Modern GPUs (Graphics Processing Units)
can be used as mathematical coprocessors: they add computing power to the
CPU. A GPU is a parallel machine (see Fig. 3) that consists of SIMD (Single
Instruction Multiple Data) multiprocessors (ranging from 1 to 32). The stream
processors of a SIMD multiprocessor are called shader units. The GPU (also
called device) has its own fast memory with an amount of up to 4GB. On the
main board, one to four GPUs can be installed and used as coprocessors simulta-
neously. The GeForce 8800 GTX by NVIDIA, which we use in our experiments,
provides 768MB device memory and has 16 multiprocessors each with 8 shader
units.

Parallel Medical Image Reconstruction: From Graphics Processors to Grids 463

With CUDA (Compute Unified Device Architecture) [11], the GPU vendor
NVIDIA provides a programming interface that introduces the thread-program-
ming concept for GPUs to the C programming language. A block of threads
executing the same code fragment, the so-called kernel program, runs on one
multiprocessor. Each thread of this block runs on one of the shader units of
the GPU, each unit executing the kernel on a different data element. All blocks
of threads of one application are distributed among the multiprocessors by the
scheduler. The GPU’s device memory is shared among all threads.

List-Mode OSEM CUDA Implementation. The calculations for one subset
on the GPU proceed as follows:

1. The CPU reads the subsets’ events and copies them to the GPU device
memory.

2. Each thread computes a partial sum of cl and adds it directly to the device
memory. The amount of events per thread is chosen according to the follow-
ing considerations: Firstly, as many threads as possible should be started in
order to hide memory latency efficiently [12]. However, each thread needs to
save partial results in the device memory, which requires too much memory if
one thread is started per event. Therefore, the maximum number of threads
is started so that all partial results still fit into the device memory.

3. Each thread computes one voxel value for fl+1 = flcl.
4. fl+1 is copied back to the CPU.

Note that during the computation of cl (step 2), the threads write, as in
the shared-memory implementation, directly to the shared vector cl. In order
to avoid race conditions, we again have to protect cl with a mutex. Since this
is not directly possible with CUDA (necessary mechanisms are lacking, only
atomic integer operations exist), we decided to allow race conditions in the
GPU implementation due to the following considerations:

– When two threads add one float concurrently to one voxel, then, in the
worst case, one thread overwrites the other, i.e., the result will be slightly
underestimated.

– The image size (e.g., 150 · 150 · 280 = 6.300.000 in our experiments) is large
compared to the number of parallel writing threads (e.g., 128 in our exper-
iments); therefore, the number of race conditions and thus incorrect voxels
is relatively small. We estimated experimentally that only for about 0.04%
of all writes to cl a race condition occurs.

– Most importantly: the maximum relative error (arising from race conditions
and loss of precision due to single-precision floating point values) over all
voxels is less than 1 %, which leads to no visual effect on the reconstructed
images.

– The goal of the majority of all mouse and rat scans in the nuclear medicine
clinic is to decide whether any uptake of the radioactive substance has hap-
pened in a specific organ (e.g., the liver). For these experiments, only the
high accuracy of the reconstructed image, which we preserve when allow-
ing race-conditions, is important, and not the exact quantitative results,

464 M. Schellmann et al.

which we slightly underestimate by allowing race conditions. For quantita-
tive experiments, we can use a thread-safe shared-memory or Cell processor
reconstruction.

When we use two GPUs at the same time, we have two separate device memories.
The computations proceed as above, with each GPU computing half of the events
during the forward-projections (step 2) and half of the sub-images during the
computation of fl+1 (step 3). After all forward-projections, the two cls residing
on the device memories need to be summed up.

3.4 Parallelization on the Cell Processor

Cell Architecture and Its Programming. The Cell Broadband Engine is a
multiprocessor developed jointly by Sony Computer Entertainment Inc., Toshiba
Corp. and IBM Corp. It consists of one PowerPC Processor Element (PPE) and
eight processing cores called Synergistic Processor Elements (SPEs) (see Fig. 4).
Communication is performed through the Element Interconnection Bus (EIB)
which includes: 1) communication between PPE and SPEs, 2) access to shared
memory (main storage) and 3) I/O. The PPE acts as controller for the SPEs by
distributing computational workload and handling operating system tasks. The
PPE consists of the PowerPC Processor Unit (PPU) and a cache. The SPEs
are typically assigned to handle the computational workload of a program. Each
SPE consists of a Synergistic Processor Unit (SPU) running at 3.2GHz and a
local store (LS) of 256KB, from and to which it can transfer data from the main
storage via DMA transfers. DMA transfer size ranges from 128bytes to 16KB.
The SPUs have a local store data access rate of 51GB/sec.

To program applications for the Cell processor, IBM provides a Software De-
velopment Kit (SDK) [13] which contains the GCC C/C++-language compilers

Fig. 4. Cell architecture: One PPE and eight SPEs share access on Main Storage and
I/O Devices through the EIB

Parallel Medical Image Reconstruction: From Graphics Processors to Grids 465

for the PPU and the SPU. Furthermore, the SDK includes a set of Cell proces-
sor C/C++ libraries which provide an application programming interface (API)
for accessing the SPEs on PPE side. On SPE side, libraries provide DMA com-
mands for transferring data from main storage to local store and vice versa.
This includes atomic commands which provide mutual exclusion to avoid race
conditions.

List-Mode OSEM Cell Implementation. The calculation of one subitera-
tion of our example algorithm on p SPEs proceeds as follows:

1. The PPE reads the subsets’ events and stores them in the main storage.
Afterwards, the PPE sends each SPE a message to start computations.

2. Each thread computes a partial sum of cl and adds it directly to the device
memory. Since all threads write simultaneously to the shared cl, we use an
atomic operation.

3. The reconstruction image is divided into sub-images f j . Each SPE computes
f j

l+1 = f j
l c

j
l on its sub-image.

Note that for the forward projection (step 2), the programmer has to organize
transferring the required voxels of fl and cl from main storage to the SPEs’ local
store. Since the minimum DMA transfer size is 128bytes, then 128bytes instead
of 4 bytes for one float have to be transferred for each voxel of fl, when com-
puting cl,j and cl + cl,j. Since a path, in almost all cases, crosses through several
y- and z-planes of the 3D image, the bulk of additional transferred voxels of fl

cannot be used in the following computations (see Fig. 5). Using the minimum
transfer size of 128bytes, an average of 1.6 of the 32 transferred voxels, i.e., 5 %
of each DMA transfer are used.

When using two Cell processors, i.e., two PPEs and altogether sixteen SPEs,
we have two main storages, such that each PPE only communicates with its

Fig. 5. Two example paths: Path A shows a best-case scenario as only one DMA
transfer is required. Path B shows a worst-case scenario as ten DMA transfers are
required.

466 M. Schellmann et al.

SPEs. The communication between both main storages and the SPE manage-
ment is transparent to the programmer and thus the programmer can develop
his code as if there were only one PPE with sixteen SPEs.

4 Runtime Experiments and Architecture Comparison

Since the image size of the list-mode OSEM on all four architectures presented
in the previous section has only little influence on scalability [7,8], we restrict our
considerations to the typical image size of N = (150 × 150× 280). We use 107

events in 10 subsets acquired during a 15 minute mouse scan of the quadHIDAC
[1] small-animal PET scanner.

We use the following parallel machines in our experiments:

Quad-core Processor: Intel Core 2 Quad processor with four cores running
at 2.83GHz. Two cores share 6MB level 2 cache and all cores share the 4 GB
main memory. The memory throughput is up to 11 GB/s.

Hybrid Cluster: Arminius cluster with 200 Dual INTEL Xeon 3.2 GHZ 64bit
nodes, each with 4 GByte main memory, connected by an InfiniBand net-
work. To exploit the fast InfiniBand interconnect (point-to-point throughput
of up to 900MB/s), we used the Scali MPI Connect [14] implementation on
this machine.

GPUs: Two GPUs of the type NVIDIA GeForce 8800 GTX. They have 16
SIMD-multiprocessors, each with 8 shader units running at 1.35GHz. The
device memory is 768MB. The measured throughput between device and
CPU main memory is 1.5GB/s. The multi-processor to device throughput
is 86GB/s.

Cell Processor: A QS21 Blade Center equipped with two Cell processors. Each
Cell processor consists of one PPE running at 3.2GHz with 512KB L2 cache
and 1 GB main memory and 8 SPEs running also at 3.2GHz equipped with
256KB local storage. The EIB supports a peak bandwidth of 204.8GB/s
and the integrated memory controller (MIC) provides a peak bandwidth of
25.6GB/s to the DDR2 memory.

4.1 Performance

In the following, we analyze the performance of the parallel implementation in
terms of total runtime (Fig. 6) and scalability (Fig. 7).

The hybrid cluster outperforms all other architectures with a minimum recon-
struction time of ≈ 15 seconds on 64 processors. However, the implementation
does not scale well: the speedup on 16 processors is ≈ 7 and thus less than
50% of the ideal speedup. Moreover, runtime deteriorates for 128 processors.
For each subiteration, one MPI Allreduce is performed which includes at least
log2(p) communication rounds. For example, on 64 processors, at least 8 com-
munication rounds that each require a 48MB image to be sent from one process
to another are performed. Hence, with a point-to-point bandwidth of 900MB/s,

Parallel Medical Image Reconstruction: From Graphics Processors to Grids 467

Fig. 6. Runtime comparison: hybrid cluster (curve); quad-core processor, two GPUs
and two Cell processors (bars)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

S
pe

ed
up

Cell CPU Cluster

1 unit
2 units
4 units
8 units

16 units
32 units
64 units

128 units

Fig. 7. Scalability comparison: hybrid cluster (units =̂ processors), quad-core processor
(units =̂ cores) and two Cell processors (units =̂ SPEs)

in the best case, 0.4 seconds (of the overall 1.5 seconds computation time) are
spent in MPI communication for each subset. Thus, the application scales rather
poorly (refer to [5] for more details).

The two GPUs are only 1.6 times slower than the 64 processor cluster. How-
ever, runtime only decreased from 33 seconds to 24 seconds when going from
one to two GPUs. Since this is less than 50%, we can only expect little speedup
by adding more GPUs over the main board’s PCI Express slots. Furthermore,
since only an insufficient profiling tool exists, it is quite difficult to assess what

468 M. Schellmann et al.

the current performance bottleneck is. Therefore, we cannot determine if more
shader units or increased memory bandwidth would speed up our application.

The quad-core processor is ≈ 5 times slower than the 64 processors of the
hybrid cluster. The main limiting scalability factor on the quad-core processor
is, as on the cluster, the restricted memory bandwidth.

Although four times as many cores are available in two Cell processors with
overall 16 SPEs as on the quad-core processor, two Cells still provide the worst
runtime. As described in Section 3.4, only 5% of each 128byte DMA transfer is
actually used in computations. Therefore, a lot of time is spent in transferring
large amounts of unused data. Hence, the minimum size of 128bytes per DMA
transfer is an important limiting factor of the Cell architecture in our application.

4.2 Programming Comfort

Today, all four programming tools we use to implement the parallel algorithm,
can be seen as the standard to program the according architectures. Therefore,
comparing the programming tools allows us to compare the architectures with
respect to their programmability.

Implementing our application for shared-memory machines with OpenMP is
obviously the easiest choice: for our parallel implementation, we only added three
lines of code, one for each loop and the critical section. In [15] we have shown
that the recently introduced Intel’s Threading Building Blocks (TBB) library
provides better performance for our application; however, using TBB required
a complete rewrite of our code because C++ constructs are required. But once
rewritten, TBB not only provides better performance, but, additionally, task-
parallel concepts can be easily used, for example to overlap the reading of data
with computations.

For the MPI implementation, the communication with MPI Allreduce had to
be introduced to the sequential implementation. While this work was straight-
forward, it was more difficult to efficiently implement the processe’s concurrent
access to the remote file system when reading the input events. Nonetheless,
programming with MPI for our application was quite uncomplicated, when com-
pared to the GPU and Cell programming. Since the OpenMP implementation
is already available, no extra work needed to be done in order to implement the
algorithm on the hybrid cluster.

Programming with CUDA has some significant programming difficulties com-
pared to the other three architectures:

– Debugging and profiling is quite difficult on the GPU, especially because
the SUs cannot perform I/O operations and therefore not even a printf is
possible.

– Multiple GPUs have to be managed explicitly by the programmer.
– There exist no mutexes, semaphores or atomic floating point operations in

CUDA; therefore, we can only use the GPU implementation, as described in
Section 3.3 for non-quantitative reconstructions where race conditions can
be accepted.

Parallel Medical Image Reconstruction: From Graphics Processors to Grids 469

– CUDA is only available on NVIDIA GPUs. OpenCL, a novel programming
standard that closely resembles NVIDIA’s CUDA, has recently been specified
[18]. OpenCL will be supported, amongst others, by AMD and NVIDIA
GPUs.

For our application, we determined the following main disadvantages of the
Cell processor and the Cell SDK compared to the three other programming
environments:

– The restricted DMA transfer sizes (both in hardware and software) on the
Cell processor entail two disadvantages: 1) Programming is more difficult,
because often data elements have to be aligned to DMA transfer sizes man-
ually by the programmer, and 2) the minimum size of 128Bytes limits the
performance of our parallel Cell processor implementation enormously.

– In order to hide memory latency on the Cell processor, the programmer has
to explicitly implement double-buffering schemes that allow loading data to
local storages during simultaneous computations. On the other architectures,
memory latency is either hidden by switching among threads (GPU) or by
a complex, hardware-managed cache hierarchy; thus, programming on the
Cell processor is significantly more complicated.

Summarizing, we can say that the Cell SDK provides the lowest abstraction
level and, therefore, the Cell processor is the most difficult to program. While
CUDA provides a higher abstraction level, its lack of sufficient debugging tools
makes programming GPUs with this framework more tedious than programming
with MPI. Finally, OpenMP provides the highest abstraction level and is the
easiest to use.

4.3 Accessibility

Multi-core computers, workstations with CUDA-enabled GPUs and a Cell blade
can be run in a local network. Therefore, accessibility is high for all three. This
is especially true for multi-core processors, because they are available in virtu-
ally every off-the shelf computer today. On the contrary, buying a cluster for a
medical clinic will most likely be too expensive. Furthermore, accessing a remote
cluster results in two problems: 1) additional administrative effort is necessary
in order to reconstruct images on a remote cluster, e.g., the locating of free re-
sources, and 2) in- and output data have to be transferred over the Internet from
and to the cluster. While the first problem can be solved with the grid system we
introduce in Section 5, the second problem leads to considerably longer runtime.
For example, sending a 100MB input dataset with 107 events from the Univer-
sity of Münster to the above mentioned Arminius cluster at the University of
Paderborn (distance ≈ 100 km) takes ≈ 15 s. Hence, runtime for the reconstruc-
tion of 107 events on 64 processors of the hybrid cluster increases from about
15 seconds (Table 1) to about 30 seconds and is thus 1.25 times slower than the
GPU reconstruction.

470 M. Schellmann et al.

Table 1. Average measured runtime of the list-mode OSEM algorithm for 107 events
in 10 subiterations and estimated price for the corresponding architecture

Architecture:
Multi-core Hybrid GPU Cell

4 cores 64 processors 2 devices 2 cell procs

Runtime: 72.6 s 14.8 s 24.4 s 99.8 s

Est. Price: e1.500 e1.500.000 e2.000 e5.500

4.4 Cost-Effectiveness

The Cell processor demonstrated rather poor performance for our algorithm and
is not cheaper than GPUs and multi-core processors; thus, it is less cost-effective.
We estimate that a workstation equipped with a high-end CPU and a low-cost
GPU to be about as expensive as a workstation with a medium-cost CPU and
two high-end GPUs. But since the GPU outperforms the multi-core CPU by a
factor of two, the GPU is more cost-effective.

Buying and maintaining a cluster is quite expensive (about 1.5 million euros
for the cluster used in our experiments). Therefore, a cluster is definitely less
cost-effective than the other options. A second possibility is to buy computing
hours on a cluster. However, monthly costs for reliable cluster computation time
are quite high (e.g., 900 euros for 4.000 processor hours [16] which corresponds
to 20 reconstructions per day on 64 processors). Thus a GPU would be paid off
after three months and thus again provides significantly better cost-effectiveness.
Summarizing, GPU proves to be the most cost-effective parallel architecture,
followed by the multi-core CPU.

In the next section, we show how our grid system chooses the most suitable
architecture for a given reconstruction task from the available parallel machines.

5 Grid System for PET Reconstruction

MIRGrid (Medical Image Reconstruction Grid) [17] is an experimental grid sys-
tem that we have developed to integrate in a single application all steps of the
imaging process, which are traditionally performed by the user using different
software tools: from reading the raw data acquired by the scanner, over trans-
parent parallel reconstruction to the visualization and storage of reconstructed
images.

Additionally to the standard 3D list-mode OSEM reconstruction, the system
seamlessly integrates dynamic and gated reconstructions. In dynamic studies, a
4D image sequence is generated that captures the radioactive substance’s distri-
bution over time. The grid system allows the medical user to divide the complete
list-mode dataset into time intervals. The corresponding 3D reconstructions are
then performed transparently for the user. In gated reconstructions, one heart or
respiratory cycle is divided into a number of gates and each gate is reconstructed
independently by the grid system.

Parallel Medical Image Reconstruction: From Graphics Processors to Grids 471

Fig. 8. A screenshot of the client’s main window in MIRGrid

The MIRGrid system is composed of three modules: the client (see Fig. 8), the
scheduler and the runtime system. When a user starts the client program on his
local desktop computer, the client connects over the Internet to the scheduler-
server (the machine on which scheduler and runtime system run).

After the user has chosen the raw data previously collected by the scanner and
the parameters for reconstruction, the client sends the data and the parameters
to the scheduler.

Transparently to the user, the scheduler then assigns the reconstruction to a
HPC, and the runtime system starts and monitors the reconstruction on that
HPC. When the reconstruction is finished, the result images are sent back to the
client where they are visualized and stored.

The grid system currently supports shared-memory machines and cluster com-
puters. The system is installed at the nuclear medicine clinic in Münster and is
currently tested before going into productive use in a few months. We plan to
integrate support for GPUs on MIRGrid in the near future.

6 Conclusion

Our comparison of different parallelization approaches for an important medical
imaging application has brought several important findings.

472 M. Schellmann et al.

The GPU proved to be the most cost-effective architecture. Since it is also
quite well accessible, it is suitable for standard image reconstruction tasks. How-
ever, if very accurate quantitative reconstruction results are required, then multi-
core processors or hybrid clusters are to be preferred, because, in contrast to the
GPU, they allow to prevent race conditions. Also, programming for the GPU is
quite tedious and error-prone; therefore, for research code that is continuously
enhanced and tested, multi-core processors with OpenMP are to be preferred.

Currently, new algorithms are being developed in our collaborative research
group that are even more compute-intensive than the standard list-mode OSEM.
For example, we estimate that the so called EM-TV algorithm [19] applied to
3D PET and an advanced scatter correction method [20] will both be one to
two orders of magnitude more compute-intensive than the current algorithm. In
order to use such algorithms, clusters of multi-core processors will probably be
the architecture to target.

Our analysis and experiments demonstrated that the Cell processor is not
very useful for the list-mode OSEM reconstruction, because it provides poor
performance and is quite difficult to program.

Finally, our MIRGrid system transparently chooses the most suitable archi-
tecture for a given reconstruction task from the set of available parallel machines.

Acknowledgments

We thank the NVIDIA corporation for the donation of graphics hardware used in
our experiments. We thank IBM Deutschland for letting us access their QS21 Cell
blades. This work was partly funded by the Deutsche Forschungsgemeinschaft,
SFB 656 MoBil (Projects B2, B3, PM6).

References

1. Schäfers, K.P., Reader, A.J., Kriens, M., Knoess, C., Schober, O., Schäfers, M.:
Performance Evaluation of the 32-Module QuadHIDAC Small-Animal PET Scan-
ner. Journal Nucl. Med. 46(6), 996–1004 (2005)

2. Reader, A.J., Erlandsson, K., Flower, M.A., Ott, R.J.: Fast Accurate Iterative Re-
construction for Low-Statistics Positron Volume Imaging. Phys. Med. Biol. 43(4),
823–834 (1998)

3. Shepp, L.A., Vardi, Y.: Maximum Likelihood Reconstruction for Emission Tomog-
raphy. IEEE Trans. Med. Imag 1, 113–122 (1982)

4. Siddon, R.L.: Fast Calculation of the Exact Radiological Path for a Three-
Dimensional CT Array. Medical Physics 12(2), 252–255 (1985)

5. Hoefler, T., Schellmann, M., Gorlatch, S., Lumsdaine, A.: Communication Op-
timization for Medical Image Reconstruction Algorithms. In: Lastovetsky, A.,
Kechadi, T., Dongarra, J. (eds.) EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 75–83.
Springer, Heidelberg (2008)

6. Schellmann, M., Gorlatch, S.: Comparison of Two Decomposition Strategies for
Parallelizing the 3D List-Mode OSEM Algorithm. In: Proceedings Fully 3D Meet-
ing and HPIR Workshop, pp. 37–40 (2007)

Parallel Medical Image Reconstruction: From Graphics Processors to Grids 473

7. Schellmann, M., Vörding, J., Gorlatch, S., Meiländer, D.: Cost-Effective Medical
Image Reconstruction: From Clusters to Graphics Processing Units. In: Proceed-
ings of the 2008 Conference on Computing frontiers, pp. 283–292. ACM, New York
(2008)

8. Meiländer, D., Schellmann, M., Gorlatch, S.: Implementing a Data-Parallel Appli-
cation with Low Data Locality on Multicore Processors. In: International Confer-
ence on Architecture of Computing Systems - Workshop Proceedings, pp. 57–64.
VDE (2009)

9. OpenMP Architecture Review Board. OpenMP Application Program Interface
(May 2008)

10. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
http://www.mpi-forum.org

11. NVIDIA. NVIDIA CUDA Compute Unified Device Architecture,
http://developer.nvidia.com/object/cuda.html

12. Ryoo, S., Rodrigues, C., Baghsorkhi, S., Stone, S., Kirk, D., Hwu, W.: Optimization
Principles and Application Performance Evaluation of a Multithreaded GPU using
CUDA. In: PPoPP 2008: Proc. of the 13th ACM SIGPLAN Symposium, pp. 73–82
(2008)

13. IBM. Software Development Kit for Multicore Acceleration Version 3.0,
http://www.ibm.com/developerworks/power/cell/

14. Scali MPI connect, http://www.scali.com/
15. Kegel, P., Schellmann, M., Gorlatch, S.: Using OpenMP and Threading Build-

ing Blocks for Parallelizing Medical Imaging: A Comparison. In: Euro-Par 2009 -
Parallel Processing. LNCS, vol. 5704. Springer, Heidelberg (to appear, 2009)

16. Tsunamic Technologies Inc., Cluster computing on demand,
http://www.clusterondemand.com/

17. Schellmann, M., Böhm, D., Wichmann, S., Gorlatch, S.: Towards a Grid System
for Medical Image Reconstruction, pp. 3019–3025. IEEE Computer Society Press,
Los Alamitos (2007)

18. Khronos Group. OpenCL - The open standard for parallel programming of hetero-
geneous systems, http://www.khronos.org/opencl/

19. Brune, C., Sawatzky, A., Burger, M.: Bregman-EM-TV Methods with Application
to Optical Nanoscopy. In: Proceedings of the 2nd International Conference on Scale
Space and Variational Methods in Computer Vision. LNCS, vol. 5567, pp. 235–246.
Springer, Heidelberg (2009)

20. Kösters, T., Wübbeling, F., Natterer, F.: Scatter Correction in PET Using the
Transport Equation. In: IEEE Nuclear Science Symposium and Medical Imaging
Conference Record, pp. 3305–3309. IEEE, Los Alamitos (2006)

http://www.mpi-forum.org
http://developer.nvidia.com/object/cuda.html
http://www.ibm.com/developerworks/power/cell/
http://www.scali.com/
http://www.clusterondemand.com/
http://www.khronos.org/opencl/

Author Index

Accary, Gilbert 60
Acconci, Vito 153
Afanasyev, Ivan 142
Alemasov, Nikolay 399
Alias, Norma 392
Arykov, Sergey 1

Bair, Thomas B. 49
Bandini, Stefania 153
Bandman, Olga 168
Berthold, Jost 73
Bessonov, Oleg 60
Biardzki, Christoph 8
Bonomi, Andrea 153
Braun, Terry A. 49
Bredikhin, Sergei 316
Burger, Martin 457

Casavant, Thomas L. 49
Chajuk, Ksenia G. 331

Darwis, Roziha 392
Dedova, Anna 19
Dieterle, Mischa 73

Ediger, Patrick 182
Evtushenko, Yu. G. 84

Fahringer, Thomas 98
Feng, Xiaojun 377
Fomin, Eduard 399
Fougère, Dominique 60
Fujita, Hamido 360

Garanzha, V.A. 84
Garifullin, Maxim 226
Gavrilov, Konstantin 60
Golikov, A.I. 84
Gololobov, Sergey 112
Gorlatch, Sergei 457

Ha, Ok-Kyoon 299
Hoffmann, Rolf 182, 194
Hwang, Dae Joon 321

Imbs, Damien 26

Jordan, Herbert 98
Joslin, Carl 445
Jun, Sang-Woo 299, 321
Jun, Yong-Kee 299, 321

Kalgin, Konstantin 207
Kalinkin, Alexander 112
Kamenshchikov, Leonid 216
Kang, Mun-Hye 299
Kaporin, Igor 304
Khutoretskij, Alexander 316
Kim, Byung-Chul 321

Kireev, Sergei 406
Kondratyev, Mikhail 226
Konshin, Igor 304
Koshur, Vladimir 121
Kösters, Thomas 457
Kozlov, Konstantin 126
Kudryavtsev, Alexei 445
Kulikov, Igor 414
Küstner, Tilman 41
Kuzmin, Dmitriy 121

Laevsky, Yuri M. 112
Lavrentiev-jr, Mikhail 423
Lazareva, Galina 414
Legalov, Aleksandr 121

Lobachev, Oleg 73
Loogen, Rita 73
Ludwig, Thomas 8

Malyshkin, Victor E. 1, 331, 360
Manohara Pai, M.M. 435
Marchenko, Mikhail 133
Markova, Valentina 237
Medvedev, Yu. 249
Meiländer, Dominik 457
Meradji, Sofiane 60
Mirenkov, Nikolay 360
Morvan, Dominique 60

Nae, Vlad 98
Nechaeva, Olga 142
Nepomniaschaya, Anna 257

Nguyen, H.M. 84

476 Author Index

Othman, Mohamed 392

Prasanna, Viktor K. 284, 377
Prodan, Radu 98
Pushkaryov, Kirill 121

Rajpurohit, Vijay S. 435
Rakhmatullin, Dzhangir Y. 147
Ramazanov, Marat D. 147
Raynal, Michel 26
Robinson, John P. 49
Rolls, Daniel 445
Romanenko, Alexey 423
Rusin, Evgeny V. 344

Samsonov, Alexander 126
Satam, Noriza 392
Schäfers, Klaus 457
Scheetz, Todd E. 49
Schellmann, Maraike 457
Scholz, Sven-Bodo 445
Seredynski, Franciszek 269
Shafarenko, Alex 445

Smajic, Jasmin 41
Snytnikov, Alexey 414
Sorokin, Sergey B. 331
Szaban, Miroslaw 269

Titov, Vasily 423
Toporkov, Victor 350
Trinitis, Carsten 41

Vazhenin, Alexander 423
Vinjamuri, Sudhir 284
Virbitskaite, Irina 19
Vizzari, Giuseppe 153
Vshivkov, Vitaly 414

Walters, Jesse D. 49
Watanobe, Yutaka 360
Weidendorfer, Josef 41
Wübbeling, Frank 457

Xia, Yinglong 377

Yoshioka, Rentaro 360

	Title Page
	Preface
	Organization
	Table of Contents
	Models of Parallel Computing
	Asynchronous Language and System of Numerical Algorithms Fragmented Programming
	Introduction
	A Fragmented Approach to Parallel Programming
	Implementation of the Parallel Programming System Aspect
	Results of Experiments
	Matrix Multiplication
	LU Decomposition

	Related Works
	Conclusion
	References

	Analyzing Metadata Performance in Distributed File Systems
	Introduction
	Metadata Semantics
	DMetabench - A Distributed Metadata Benchmark
	Measurements on Production Systems
	Related Work
	Summary
	References

	Towards Parametric Verification of Prioritized Time Petri Nets
	Introduction
	Parametric Prioritized Time Petri Nets
	PTCTL: Syntax and Semantics
	Parametric Timing Behaviour Analysis
	References

	Software Transactional Memories: An Approach for Multicore Programming
	Introduction
	A STM Computation Model
	On STM Consistency Conditions
	The STM System Interface
	The Incremental Read/Deferred Update Model

	A Sketch of TL2 (Transactional Locking 2)
	Aim and Principles
	A Simplified Version of TL2

	A Window-Based STM System
	The STM Control Variables
	The STM Operations
	Formal Framework to Prove the Opacity Property
	A Formal Proof of the Opacity Property

	Conclusion
	References

	Sparse Matrix Operations on Multi-core Architectures
	Introduction
	Sparse Matrix Operations
	Hardware Environment
	Measurements
	Analysis of Cache Behavior
	Conclusions and Future Work
	References

	Multi-granularity Parallel Computing in a Genome-Scale Molecular Evolution Application
	Introduction
	Biological Background
	Computational Background

	Methods and Solution
	Grid/Cluster Implementation and Benchmarking Details

	Results and Discussion
	Biological Validation and Interpretation of Results

	References

	Methods and Algorithms
	Efficient Parallelization of the Preconditioned Conjugate Gradient Method
	Introduction
	Numerical Method and Main Parallelization Approach
	Analysis of Implicit Preconditioners
	Parallelization Method for 8 Processors
	Extension of Parallelization Method for 16 Processors
	Parallelization Results
	Conclusion
	References

	Parallel FFT with Eden Skeletons
	Introduction
	Divide-and-Conquer FFT
	Advanced Approaches
	Related Work
	Conclusions
	References

	Parallel Implementation of Generalized Newton Method for Solving Large-Scale LP Problems
	Introduction
	Finding a Projection onto the Primal Solution Set
	Iterative Process for Solving Primal and Dual LP Problems
	Results of Numerical Experiments
	References

	Dynamic Real-Time Resource Provisioning for Massively Multiplayer Online Games
	Introduction
	Background
	Method
	Load Prediction
	Load Modelling
	CPU Load Model
	Memory Load Model
	Network Load Model
	Overall Load Model

	Resource Allocation
	Experiments
	Load Prediction
	Resource Allocation

	Conclusions
	References

	2D Fast Poisson Solver for High-Performance Computing
	Introduction
	Problem Statement
	Single Precision SMP Results
	Double Precision SMP Results
	Double Precision MPI Results
	Conclusions
	References

	Solution of Large-Scale Problems of Global Optimization on the Basis of Parallel Algorithms and Cluster Implementation of Computing Processes
	Introduction
	Synopsis of the PHINNCA
	Description of the PHINNCA
	Conclusion
	References

	DEEP - Differential Evolution Entirely Parallel Method for Gene Regulatory Networks
	Introduction
	Methods and Algorithms
	Differential Evolution Entirely Parallel Method
	Gene Regulatory Network Model

	Results
	Serial Convergence Curve
	Parallel Performance

	References

	Efficiency of Parallel Monte Carlo Method to Solve Nonlinear Coagulation Equation
	Coagulation Equation
	Monte Carlo Algorithm (Single Processor Case)
	Monte Carlo Algorithm (Multiprocessor Case)
	Optimal Choice of Parallel Algorithm’s Parameters
	Implementation of Parallel Monte Carlo Algorithm on GRID Infrastructure

	References

	Parallel Algorithm for Triangular Mesh Reconstruction by Deformation in Medical Applications
	Introduction
	General Idea of Deformation Algorithm
	Parallel Algorithm for Mesh Deformation
	Application in Medicine
	References

	Parallel Algorithms of Numeric Integration Using Lattice Cubature Formulas
	Introduction
	Algorithm and Program of Numeric Calculation of Integrals in n-Dimensional Case
	References

	Fine-Grained Parallelism
	A CA-Based Self-organizing Environment: A Configurable Adaptive Illumination Facility
	Introduction
	The Application Scenario
	Related Works
	The Proposed Approach
	System Architecture
	Sensors Layer
	Diffusion Rule
	Actuators Layer

	The Design Environment
	The Cells Simulator
	The Lights View
	The System Configurator
	Experimental Configurations

	Future Development
	References

	A Lattice-Gas Model of Fluid Flow through Tortuous Channels of Hydrophilous and Hydrophobic Porous Materials
	Introduction
	The Problem Statement
	CA Models of Porous Media
	CA-Model of the Flow
	Implementation of the Method
	Conclusion
	References

	Solving All-to-All Communication with CA Agents More Effectively with Flags
	Introduction
	CA Modeling of the Multi-agent System
	The Genetic Procedure
	Results
	Conclusion
	References

	The GCA-w Massively Parallel Model
	Introduction
	The GCA-w Model
	Some Applications
	Hardware Architecture
	Conclusion
	References

	Implementation of Fine-Grained Algorithms on Graphical Processing Unit
	Introduction
	GPU Architecture
	Cellular Automata and Explicit Scheme
	Explicit Scheme
	Classical Cellular Automata
	Probabilistic Cellular Automata
	Pseudo-random Number Generation
	Asynchronous Cellular Automata
	Block-Synchronous Cellular Automata

	Results
	Cellular Automata and Explicit Difference Scheme
	Probabilistic Cellular Automata
	Asynchronous and Block-Synchronous Cellular Automata

	Conclusion
	References

	Parallel Implementation of Lattice Boltzmann Flow Simulation in Fortran-DVM Language
	Introduction
	Lattice Boltzmann Model
	Fortran-DVM Language
	Numerical Experiment: 3D Lid Driven Cavity
	Conclusion
	References

	Parallel Discrete Event Simulation with AnyLogic
	Introduction
	Simulation Platform
	Synchronizing Model Components
	Example of a Distributed Agent Based Model
	Conclusion
	References

	LGA Method for 1D Sound Wave Simulation in Inhomogeneous Media
	Introduction
	HPPrp Models of 1D Wave Propagation Process
	The HPPrp Model
	The HPPrp Model Behavior
	Averaged Values

	Experimental Study of 1D Sound Wave Propagation in the HPPrp Medium
	1D Sound Wave Propagation Simulation
	The Influence of Moving Particles Direction in Cells of a Source
	The Influence of Rest Particle Number in Cells of a Source
	Determination of Velocity of the Sound Wave Propagation
	Correspondence between the Model and the Physical Sound Wave Velocity
	The Simulation of 1D Sound Wave Propagation Process in Inhomogeneous Media

	Conclusion
	References

	Cellular-Automaton Simulation of a Cumulative Jet Formation
	Introduction
	Model Specification
	Computer Simulation
	Conclusion
	References

	Associative Version of the Ramalingam Decremental Algorithm for Dynamic Updating the Single-Sink Shortest-Paths Subgraph
	Introduction
	Model of Associative Parallel Machine
	Preliminaries
	The Ramalingam Decremental Algorithm for the Single-Sink Shortest Paths Problem
	Associative Version of the Ramalingam Decremental Algorithm
	Implementation of the Associative Version of the Ramalingam Decremental Algorithm
	Conclusions
	References

	Cellular Automata-Based S-Boxes vs. DES S-Boxes
	Introduction
	S-Boxes in Cryptography
	Cryptographic Criteria for Evaluation of Boolean Functions
	Measuring Cryptographic Properties of S-Boxes
	Method 1: Linear Combination of Single-Output S-Boxes
	Method 2: Set of Single-Output S-Boxes

	The Concept of Cellular Automata
	Constructing CA-Based S-Boxes
	Major Principles
	Details of Construction

	Analysis and Comparison of S-Boxes
	DES S-Boxes Analysis
	Analysis of CA-Based S-Boxes Corresponding to DES S-Boxes
	Analysis of Non-linearity of CA-Based S-Boxes
	Analysis of Autocorrelation of CA-Based S-Boxes
	Analysis of Balance of CA-Based S-Boxes
	Analysis of SAC of CA-Based S-Boxes

	Conclusions and Future Work
	References

	Hierarchical Dependency Graphs: Abstraction and Methodology for Mapping Systolic Array Designs to Multicore Processors
	Introduction and Background
	Hierarchical Dependency Graphs
	Approach for This Study
	Dependency Graphs
	Abstraction
	Mapping Methodology

	Case Studies
	Architecture Summaries
	Case 1: Transitive Closure
	Case 2: Convolution
	Experimental Results and Discussion

	Conclusion
	References

	Parallel Programming Tools and Support
	A Tool for Detecting First Races in OpenMP Programs
	Introduction
	Background
	The First Race Detection Tool
	Conclusion
	References

	Load Balancing of Parallel Block Overlapped Incomplete Cholesky Preconditioning
	Introduction
	Theoretical Analysis of the Post-filtering Techniques
	Plain IC Truncation
	Truncation of IC2 Factor U
	Truncation of IC2 Error Matrix RAA

	Finding a Prescribed Amount of Smallest Elements in Array
	A Description of Parallel IC2-Based Preconditioning
	Block Splitting and Overlap
	Load Balancing Strategies

	Numerical Results
	Test Problems and Solution Statistics
	Test Results and Discussion

	References

	Distributions and Schedules of CPU Time in a Multiprocessor System When the Users’ Utility Functions Are Linear
	Introduction
	Market Model
	Equilibria
	Schedules
	A Sufficient Condition for Existence of an Equilibrium Schedule
	Sketch of the Algorithm for Constructing the Equilibrium Schedule

	References

	Visualizing Potential Deadlocks in Multithreaded Programs
	Introduction
	Related Work
	Visualizing Potential Deadlocks
	Debugging Potential Deadlocks
	Tool Development
	Conclusion
	References

	Fragmentation of Numerical Algorithms for the Parallel Subroutines Library
	Introduction
	The Necessary Dynamic Properties of a Parallel Program
	Numerical Algorithms Fragmentation
	Matrices Multiplication
	Matrix LU-Factorization
	QR-Factorization

	Qualitative Characteristics of a Fragmented Program Execution
	Conclusion and Future Work
	References

	Object-Oriented Parallel Image Processing Library
	Introduction
	State-of-Art
	Basic Principles
	Library Interface
	Parallelization of Algorithms
	Input-Output Operations
	Parametrization of Operations with Algorithms
	Sample Source Code
	Experimental Results
	References

	Application-Level and Job-Flow Scheduling: An Approach for Achieving Quality of Service in Distributed Computing
	Introduction
	Scheduling Framework
	Scheduling Strategies
	Simulations Studies and Results
	Conclusions and Future Work
	References

	Filmification of Methods: Representation of Particle-In-Cell Algorithms
	Introduction
	Algorithmic CyberFilm Concept and Related Papers
	PIC Algorithm Features
	Description of the Forces Distribution Scheme on the Planes and Inside a Cell
	Virtual Cells
	Particles and Processes Migration
	Data Input/Output and Algorithms of Initial Data Distribution
	Mutual Exclusion
	Gathering-Sending of Particles
	Dividing-Incorporation of the Virtual Cells

	Filmification of Particle-In-Cells
	Additional Comments
	Conclusion
	References

	Parallel Evidence Propagation on Multicore Processors
	Introduction
	Background
	Related Work
	Junction Tree Rerooting for Minimizing Critical Path
	Task Definition and Dependency Graph Construction
	Task Definition
	Dependency Graph Construction

	Collaborative Scheduling
	Experiments
	Conclusions
	References

	Applications
	Parallelization of Temperature Distribution Simulations for Semiconductor and Polymer Composite Material on Distributed Memory Architecture
	Introduction
	Mathematical Modelling on PDEs
	Polymer Composite Material
	Semiconductor of Multilayered Full Chip
	Semiconductor of Wires

	Parallel Algorithm
	Parallel Performance Evaluations
	Parallel Performance of 1D Phase Change Simulation
	Parallel Performance of 2D Poisson Equation
	Parallel Performance of 3D Parabolic Equation

	Conclusion
	References

	Implementation of a Non-bonded Interaction Calculation Algorithm for the Cell Architecture
	Introduction
	Methods
	Algorithm
	Implementation
	Tests

	Results and Discussion
	References

	A Parallel 3D Code for Simulation of Self-gravitating Gas-Dust Systems
	Introduction
	MathematicalModel
	Numerical Methods
	Parallel Algorithm
	Simulation Results
	Conclusion
	References

	Supercomputer Simulation of an Astrophysical Object Collapse by the Fluids-in-Cell Method
	Introduction
	Numerical Method Description
	Parallel Implementation
	The Scheme of the Parallel Implementation
	The Efficiency of the Parallel Implementation

	Computational Experiment
	Precision of Collapse Simulation with FlIC Method
	Comparison of the FlIC Collapse Simulation with SPH Simulation

	Conclusion
	References

	High-Performance Tsunami Wave Propagation Modeling
	Introduction
	Theoretical Backgrounds and Data Sets Analysis
	Mathematical Model
	Data Sets and Values

	Sequential and OpenMP Algorithms
	Sequential Programs
	Implementation on the OpenMP Platform

	Algorithms for the IBM Cell BE Architecture
	Conclusion
	References

	Parallel Object Motion Prediction in a Robotic Navigational Environment
	Introduction
	Moving Object Motion Prediction
	Parallel Motion Prediction
	The Parallel Prediction Algorithm
	Time Complexity

	Experimental Results and Analysis
	Conclusion
	References

	Numerical Simulations of Unsteady Shock Wave Interactions Using SaC and Fortran-90
	Introduction
	{\it SaC}
	Application
	One Dimensional Simulation
	Two-Dimensional Simulation

	Implementation
	dfDxNoBoundary
	getDT

	Results
	Related Work
	Conclusion
	References

	Parallel Medical Image Reconstruction: From Graphics Processors to Grids
	Introduction
	Iterative PET Image Reconstruction
	Parallel Image Reconstruction
	Parallelization on Shared-Memory Processors
	Parallelization on Cluster Computers
	Parallelization on Graphics Processors
	Parallelization on the Cell Processor

	Runtime Experiments and Architecture Comparison
	Performance
	Programming Comfort
	Accessibility
	Cost-Effectiveness

	Grid System for PET Reconstruction
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

