
Make Learning Fun with Programming Contests

Gines Garcia-Mateos and Jose Luis Fernandez-Aleman

Department of Informatics and Systems,
University of Murcia, 30100 Espinardo, Murcia, Spain

{ginesgm,aleman}@um.es

Abstract. Usually, higher education teachers have to deal with highly
populated classes and low levels of motivation. Making more entertaining
courses is a good way to overcome these limitations. But, how can fun
and entertainment be introduced in a course which is mainly based on a
final exam evaluation? We propose a new methodology based on two key
ideas: (i) replacing the final exam with a series of activities in a continu-
ous evaluation context; and (ii) making those activities more appealing
to the students. We describe an e-learning experience carried out in a
second-year programming course for computing majors. The activities
are designed as on-line programming competitions, where all students
participate and are able to see their global ranking. Experimental re-
sults show the effectiveness of this approach. On average, the dropout
rate decreased from 72% to 45% while the pass rate doubled.

Keywords: Learning strategies, programming contests, e-learning, on-
line judging.

1 Introduction

Since 1995, the percentage of students who have completed secondary education
has increased in OECD countries, on average, a 7%. The number of graduates in
higher education has also grown [1]. However, while demand for human resources
in science and technology has increased in these countries (it represents between
25% and 35% of the total labour force), the number of university graduates in
engineering and science –excluding health and welfare– has declined to one-fifth
[2]. Although in absolute terms the number of enrollments has risen, science
and engineering degrees are less and less attractive and dropout rates continue
to be high. To boost the supply of scientists and engineers, OECD offers some
recommendations. One of these suggestions is to make science and engineering
more accessible and attractive to young students.

Edutainment is an emerging alternative to traditional education methods.
Rapeepisarn et al [3] pointed out that “edutainment is the act of learning heavily
through any of various media such as television programs, video games, films,
music, multimedia, websites and computer software”. Entertainment is the media
to help students learn. The approach we describe here is in line with this goal:
raising interest of the students by virtually transforming a computer science
course into an on-line programming contest.

Z. Pan et al. (Eds.): Transactions on Edutainment II, LNCS 5660, pp. 246–257, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Make Learning Fun with Programming Contests 247

In our proposal, a traditional “final exam” methodology is replaced by a
series of carefully designed activities, many of them organized as programming
assignments. The key element of this e-learning course on programming is a
web-based automatic judging system called Mooshak [4], which was originally
created to manage on-line programming contests. Preliminary results show the
viability of the learning experience, and a high capacity to generate motivation
and enthusiasm among students. The approach is highly complementary with
other learning techniques and could be applied to other courses, specially in a
computer science degree.

The rest of the paper is organized as follows. Section 2 presents a brief re-
view of some related work. Then, we introduce the methodological principles
underlying our proposal in section 3. Section 4 describes the main results of the
edutainment-based methodology applied to 337 students in a second-year course
for computing majors. Section 5 discusses the results obtained by employing
this new e-learning method. Finally, in section 6, we present some concluding
remarks and outline the efforts to be made in the future.

2 Related Work

Edutainment has been successfully used in robotics, mathematics, language
learning and many other areas. Our paper focuses on computer science, partic-
ularly programming. Computer programming is in the core knowledge of many
science and engineering degrees. In the literature, most authors reach the same
conclusion: learning to program is difficult [5].

Therefore, many techniques and methods have been proposed to improve
novice students comprehension in teaching programming [5]. E-learning con-
stitutes a viable and promising alternative in programming pedagogy.

A good example is Guerreiro and Georgouli [6,7], who proposed an e-learning
educational strategy in first-year programming courses. They adopt Mooshak
automatic judging system for grading lab assignments and for self-assessment
purposes; some sample views of Mooshak are shown in Figure 1. This automatic
evaluation accounts for about 30% of the final mark. The approach provides
important benefits in CS1. A well thought out set of test cases prevents wrong
programs sent by students from passing test runs. As a consequence, students
must be much more rigorous in developing their programs. Likewise, students
obtain immediate feedback from Mooshak. Another advantage of the proposal is
the objectivity of the evaluation. Moreover, the authors consider that teachers
can save time and work if an automatic judging system is used. Nevertheless,
important concepts such as robustness and legibility are manually graded by the
instructors.

Our novel contribution resides in how to apply the on-line judging system: we
take Guerreiro and Georgouli’s strategy one step further, by completely replacing
the traditional “final exam evaluation” with a series of activities, most of them
using Mooshak. Thus, two important benefits are obtained: the students are very
motivated to take part in the proposed activities, with the hope of avoiding the

248 G. Garcia-Mateos and J.L. Fernandez-Aleman

User s view Judge s view
, ,

Fig. 1. Two sample views of Mooshak [4]. Left: sample view for a user of the system
(the students). The user can access the description of the problems, the list of submis-
sions done by all the users, the ranking of the best students, and the questions done
and answered. Right: sample view for a judge (a teacher). The judge is able to see
and analyze the submissions done, rejudge submissions, answer questions, and view
statistics of system’s usage.

final exam; and the work of the students is evaluated along the course, rather
than just in a single final exam. To ensure the authorship of the programs, a
source code plagiarism detection environment [8] is used. To appraise the quality
of the code, the human factor remains to be prominent.

According to some authors, edutainment can be organized in different ways
[9,10,11]. Our experience can be classified as follows:

Formal learning: It takes place in an education institution, leading to recog-
nized qualifications and uses organized learning situations.

Interactive and participatory: Students play and participate in the game.
Motivation: All students share the same interest: learn to program.
Type of media: The game type is a competition where edutainment is accom-

plished by a web-based educational system.

3 Methodological Approach

The pioneering experience described here was applied to a second-year course
on programming for computing majors; its duration is annual (two consecutive
semesters). The main problem observed in this course was a low motivation and
participation of the students, that resulted in very high dropout rates. Approx-
imately between 2/3 and 3/4 of the enrolled students dropped out.

With the aimof reversing this trend,wedeveloped amore participatorymethod-
ology, based on a continuous evaluation organization, with activities that are ap-
pealing and motivating for all students. In this section we describe in detail the key
elements of the proposed approach. First, we establish the pedagogical principles
that have guided our efforts. Then, the basic aspects of on-line judging systems are
presented. Finally, we analyze how to introduce this tool into the learning process.

Make Learning Fun with Programming Contests 249

3.1 Pedagogical Principles

By analyzing our teaching experience in previous years, and also taking into
account some recommendations given by other authors [5], we have identified
the following pedagogical principles:

Motivation. With a dropout rate around 70%, increasing the motivation of
students is essential. By motivation we understand the desire to learn new
concepts and methods, and to put them into practice.

Active learning. The students have to be involved in, and conscious of, their
own learning process. An active methodology, where students are not mere
spectators, is necessary to achieve a real and long-lasting learning.

Autonomous work. We believe that the best way to learn computer program-
ming is by programming. A simple memorization of concepts is nearly use-
less. The students have to reflect on algorithmic problems by themselves and
create autonomously their programs.

Feedback of the learning process. This feedback is considered from the po-
int of view of the students. Traditionally, they just obtain a final mark at the
end of the course. The method should provide students with a continuous
evaluation on how well they are doing.

All of these objectives require more entertaining and participatory activities,
both in class and out of class. In these situations is where e-learning tools can
produce a great benefit, not by substituting the teachers, but by helping them
to control and evaluate the activities.

3.2 On-Line Judging

The key element of our approach is an on-line judging system. This system is an
automatic tool which is able to evaluate the correction of computer programs,
based on a predefined set of pairs input/output. It has a web-based interface
–shown in Figure 1–, which is different for the students, teachers, guest users
and the system administrator.

More specifically, we are currently using Mooshak 1.4 [4], which is free and
publicly available. This system was originally created by Jose P. Leal to manage
programming competitions. However, Mooshak is applied more and more to
computer programming learning. It works as follows:

– A set of problem descriptions is available in the students’ web interface for
each activity that is proposed. These descriptions present problems related
with the theoretical concepts studied in class. Each description contains a
statement of the problem, a precise specification of the input of the program
and the expected output, along with some sample input/output pairs.

– The students can select any problem from the set to solve it. First, they tackle
the problem in their own computers, by writing a program which efficiently
produces the expected outputs. When they have tested their implementation
enough, they submit the solution to the judge using their interface.

250 G. Garcia-Mateos and J.L. Fernandez-Aleman

– The on-line judge receives the source code, compiles the program, and ex-
ecutes it using the predefined sets of secret input cases. Then, Mooshak
analyzes the output of the program (comparing it to the expected output)
and sends a response to the student indicating whether the program is cor-
rect or not. If the program is not accepted, the judge reports about the
rejection cause, such as for example if the program has a syntax error, or it
is inefficient in time or memory.

– Statistical information of all the submissions sent to the judge is accessible
both for teachers and for students. In particular, a ranking of the students
sorted by the number of problems solved is given. The system also includes
tools to send comments about the problem, and ask questions to the teachers.

Compared to other disciplines, judging the correction of a program, with a high
degree of certain, is relatively simple; that is what makes automatic evaluation
feasible. However, there are many aspects of programming that are not so easy
to evaluate: computational complexity, design and organization of the code, ro-
bustness, legibility, etc. In consequence, the task of human teachers remains to
be essential.

3.3 A Judge-Based Methodology

As mentioned in section 2, on-line judging systems have already been applied
in computer programming courses. We can distinguish four different kinds of
activities using automatic judging:

– Independent problems. In this kind of activity, many problems are pro-
posed to the students. The problems are independent of each other, and
with different levels of difficulty. The students are expected to select and
solve some of them, not necessarily all. Problems can be grouped by cat-
egory, in such a way that each category illustrates a programming tech-
nique discussed in class. Typically, some weeks are given to complete the
activity.

– Dependent problems. This case is preferable when the objective of an
activity is to develop a longer and more complex programming project. The
project is divided into small and consecutive subproblems; each of them
is described as a problem in the judge. The students have to solve all
the problems in the given order. In the itinerary, a number of program-
ming techniques can be illustrated. This activity can normally take several
months.

– Contest-style. Contrary to the other cases, here the presence of the stu-
dents is required. A set of at most 9 problems is given to the participants.
They have to try to solve as many problems as possible, and as fast as they
can. The contest can take between 4 and 6 hours.

– Designing problems. This is the most creative type of activities. The
students have to create a problem with the format of the judge: prob-
lem description, source code to solve it, input cases, and expected outputs.
The ability of the students to produce original and relevant problems is
evaluated.

Make Learning Fun with Programming Contests 251

4 Evaluation of the Method

In this section, we provide detailed information about the course where the ex-
periment was carried out, the application of the methodology, and the obtained
results. The study was conducted at the Computer Science Faculty of the Univer-
sity of Murcia (Spain). This Faculty has a long tradition –25 years– in teaching
Computer Science degrees.

4.1 Participants and Background

Table 1 summarizes the main information regarding the course and degrees under
study. In particular, the new methodology was first applied in the academic year
spanning from fall of 2007 to spring of 2008. Considering the enrollments, two
of the degrees (TECS and TECM) can be considered as highly populous, while
the other (CSE) is a reduced group.

Table 1. Course and degrees where the new methodology was applied. “ECTS”: equiv-
alent load in European Credits Transfer System; “Enroll07”: enrollment the year before
the experience; “Enroll08”: enrollment the year of the experience. CSE is a five-years
degree, while TECS and TECM are three-years degrees.

Course name Year Duration ECTS

Algorithms and data structures (ADS) 2nd year Annual 12

Degrees Acronym Enroll07 Enroll08

Computer science engineering CSE 56 44
Technical engineering in computer systems TECS 162 162
Technical engineering in computer management TECM 150 131

Total 368 337

ADS is basically a course in programming, emphasizing issues of algorithms
and data representation. This course introduces such topics as data structures
–including hash tables, trees and graphs–, objects, abstract data types and for-
mal specifications. The course also includes techniques for performance analysis
and design of algorithms. Design techniques such as divide and conquer, the
greedy approach, dynamic programming, backtracking, and branch and bound
are presented through a variety of algebraic, graph, and optimization problems.
The programming languages used to illustrate these concepts are C, C++ and
the formal specifications language Maude [12].

ADS was traditionally organized in a monolithic form: weekly lectures, labo-
ratory sessions, a final exam and a programming project for each semester. In
fall of 2007, the three courses were involved in the new system. Even though the
students were also given the possibility to follow the traditional method, more
than 2/3 of them actively participated in the proposed activities.

252 G. Garcia-Mateos and J.L. Fernandez-Aleman

4.2 Instantiation of the Method

Figure 2 shows a global view of the new organization of the course (right), as
compared to its traditional design (left). Activities U2, U3 and U5 are partial-
exams of the corresponding theory units; P2 is lab assignment involving a the-
oretical/experimental analysis of efficiency of the project created in P1. The
remaining activities are programming contests done in Mooshak.

First Semester: Data Structures

Traditional organization Continuous evaluation

U1. Formal specifications

U2,U3. Hash and trees exam

U4. Graphs
Programming project + Final exam

P1. Data structures implementation

Second Semester: Algorithms

Traditional organization Continuous evaluation

P2. Experimental analysis

U5. Algorithmic analysis exam

U6. Divide and conquer

U7. Greedy algorithms

U8. Dynamic programming

U9. Backtracking

Programming project + Final exam

U10. Branch and bound

Fig. 2. Comparison between the traditional methodology based on a “final exam” (FE)
evaluation, and the proposed “continuous evaluation” (CE) methodology. The activities
that use Mooshak are marked in gray. Activities U1, U2, etc. correspond to units of
theory; activities P1 and P2 correspond to practice.

There is a great variety in Mooshak’s activities: some of them are to be done in
groups, and others individually; sometimes the problems are assigned to the stu-
dents, other times they can freely choose; they can be dependent or independent
problems, etc. Figure 3 provides more information.

When introducing the on-line judge in the course, most work is not done in
the presence of the teacher. One of our main concerns was to guarantee the
originality and authorship of the programs submitted by the students. Some
strategies are applied to reduce the risk of plagiarism and to detect it:

– Some of the activities (P1 and P2) include a compulsory interview of each
group with the teachers, where they have to demonstrate their authorship.

– Authorship is guarantied in partial-exam activities (U2, U3 and U5).
– For the activities done in Mooshak, we use a plagiarism detection system

developed by Cebrian et al. [8]. Thanks to Mooshak, all the submissions are
available in judge’s server, so the plagiarism detector can be easily applied.

Finally, we have to note that all the activities have to be documented by the
students (written by hand), and they are manually corrected by the teachers.

Make Learning Fun with Programming Contests 253

Activity
Type of

problems

prob.

to pass

prob.

to max.

Total #

prob.

Indiv./

group
Language Assigned

U1. Formal specifications Independent 14 23 26 Group Maude No

U4. Graphs Independent 4 6 15 Indiv. C/C++ No

P1. Implem. of data struct. Dependent 13 16 17 Group C++ No

U6. Divide and conquer Dependent 1 2 16 Indiv. C/C++ Yes

U7. Greedy algorithms Independent 1 4 7 Indiv. C/C++ Yes/No

U8. Dynamic program. Independent 1 4 7 Indiv. C/C++ Yes/No

U9. Backtracking Independent 1 3 12 Indiv. C/C++ Yes/No

U10. Branch and bound Independent 0 2 12 Indiv. C/C++ No

Local program. contest Contest 0 3 8 Group Java/C/C++ No

Total 35 (8) 63 120

Fig. 3. Description of the activities in the CE method that use Mooshak. “# prob.
to pass”: minimum number of problems necessary to pass the activity; “# prob. to
max.”: number of problems to obtain the maximum mark; “Total # prob.”: number
of problems existing in the judge; “assigned”: indicates if the students are assigned
different problems or they can select by themselves (“yes/no” means some of them are
assigned). Some activities should be done individually, and others in groups of two. All
the activities were compulsory, except the last two that were optional.

4.3 Results of the On-line Judge

The overall impact of on-line judging in the teaching of ADS has been dramatic.
Up to 273 of the 337 enrolled students (81%) participated in some activity of the
judge; 268 of them (79.5%) solved at least one problem. This percentage raises
up to 84% in CSE and TECS groups.

In total, the on-line judge received 16054 submissions: 11969 C/C++ pro-
grams and 4085 Maude programs in U1. This makes an average of 59 submis-
sions per student: 44 C/C++ programs, and 15 Maude programs. The on-line
judge classified around 6427 of these as correct (40.1%), and 4417 as “wrong
answer” (27.5%). More information on the classification of the submissions, and
the percentages per unit of knowledge is shown in Table 2 and in Figure 4.

Table 2. Detail of the classification of the submissions by activity, as listed in
Figure 3. The last column indicates the number of students (or groups) that passed
the corresponding activity.

Activity Total Correct Wrong Runtime Other Pass the
submissions answer error errors activity

U1 4085 (25%) 1971 (48%) 1511 (37%) 600 (15%) 3 (0.1%) 85 groups
U4 2884 (18%) 1164 (40%) 493 (17%) 366 (13%) 861 (30%) 181 (54%)
P1 3615 (22%) 1229 (34%) 1099 (30%) 273 (8%) 1014 (28%) 41 groups
U6 2032 (12%) 705 (35%) 263 (13%) 161 (8%) 903 (44%) 178 (53%)
U7 1780 (11%) 619 (35%) 688 (39%) 66 (4%) 407 (23%) 182 (54%)
U8 830 (5%) 410 (49%) 189 (23%) 51 (6%) 180 (22%) 170 (50%)
U9 778 (4%) 309 (40%) 171 (22%) 12 (2%) 286 (37%) 162 (48%)
U10 50 (0.3%) 20 (40%) 3 (6%) 3 (6%) 24 (28%) 13 (4%)

Total 16054 6427 (40%) 4417 (28%) 1532 (10%) 3678 (23%) 75 (22%)

254 G. Garcia-Mateos and J.L. Fernandez-Aleman

1 11 21 31 41 51 >60

Problems solved by each student

0

2

4

6

8

10

12

14

#
o
f
s
t
u
d
e
n
t
s

48.2%

37.0%

14.7%

37.2%
4.9%

24.3%

7.8%
6.3%

4.1%

1.4%

14.0%

Accepted

Wrong
answer

Runtime
error

Accepted

Presentation
error

Wrong
answer

Runtime error Time
limit

Memory
limit

Compile
error

Other

a) b) c)

Fig. 4. Some results of the submissions made to the on-line judge. a) Classification of
the 4085 Maude programs in U1. b) Classification of the 11969 C/C++ programs in
the rest of activities. c) Number of problems solved by each student.

The average number of submissions per student until getting a program ac-
cepted is 2.7; anyway, many students found the solution to the problems at the
first attempt (mode is 1). As shown in Figure 4, compilation errors, runtime er-
rors, and excessive consumption of time and memory are caught by the system.

There is also a significant difference in the three groups under study. For
example, while the average acceptation rate in CSE is 50%, in TECS it is 37%
and in TECM 36%; this difference is consistently seen in all the activities.

Figure 4c) shows a histogram of the number of problems solved per student.
This value covers a wide range, from 1 to 80, with an average of 18.5, standard
deviation of 14.7, and with two modes of 8 and 12. As indicated in Table 2,
many students passed individual activities –normally over 50%–, although not
all of them passed all the activities.

Finally, it is also interesting to analyze when the students work. Figure 5 shows
two charts representing the number of submissions per hour and per day of the
week. The greatest period of activity takes place at lecture hours and days.
However, submissions done by the students outside lecture hours represent a
total of 48.6%, thus demonstrating the importance of autonomous work. In fact,
there is no single hour with 0 submissions.

2 4 6 8 10 12 14 16 18 20 220
Time of Day

0
200
400
600
800
1000
1200
1400

#
of

su
bm
is
si
on
s

Mon Tue Wed Thu Fri Sat Sun
Day of week

0

500

1000

1500

2000

2500

3000

#
of

su
bm
is
si
on
s

Fig. 5. Left: number of submissions made by the students in each hour of a day. The
minimum is at 7 am (18) and the local maxima at 12 pm (1423) and at 7 pm (1499).
In thick line, detailed number of submissions per 1/10 of an hour. Right: number of
submissions in each day of a week. Darker bars represent lecture hours and days.

Make Learning Fun with Programming Contests 255

Concerning the days of the week, the distribution is quite surprising, with a
peak on Wednesdays and a sudden decrease on Thursdays. Working habits also
differ from day to day. On Wednesdays, the maximum activity is clearly located
at 12 pm. However, in the rest of days the peaks are registered in the interval 6
pm – 7 pm; only on weekends most work is done between 8 pm and 9 pm.

5 Discussion

The results obtained after the application of the edutainment-based methodology
are very promising. Considering just the final marks of the students, shown in
Table 3, the new approach achieved excellent improvements. The most striking
fact is the dramatic decline in the dropout rate, from 72.3% to 44.8%. On the
other hand, the increase in the failure rate is due to the high number of students
that passed some activities but not all. However, we think they can be better
prepared to pass the course in subsequent attempts.

It is also observed that the improvement is far more significant in CSE than
in TECS and TECM; the pass rate in CSE degree grows from 19.64% to 61.36%.
The reduced size of this group has allowed a better application of the new
methodology. It could also be due to a general higher level of students in this
five-years degree as compared to the students in the “technical engineering”.

Analyzing these results, we think the proposed organization of the course
successfully meets all the pedagogical principles established in subsection 3.1:

– Motivation. In all the ways of using the on-line judge (independent, de-
pendent and contest style problems), the ranking plays a fundamental role
in motivating students to solve more problems, faster and more efficiently. If
students get an “accepted”, a rise in ranking means students get an incen-
tive to continue tackling other algorithmic problems. This is evident in the
high number of students who solved more problems than those necessary to
obtain the maximum mark: they also wanted to be up in the ranking.

– Active learning. When students solve the proposed problems, they play a
leading role in their own learning. As an example, it is worth underlining the
high number of comments and questions asked by the students in Mooshak.
In particular, 1119 questions were answered by the teachers along the course.

Table 3. Pass, failure and dropout rates of the three degrees where the new method-
ology was applied (in 2008), as compared to the results in the previous year (2007)

Final Total CSE TECS TECM
results 2007 2008 2007 2008 2007 2008 2007 2008

Pass rate 10.9% 22.3% 19.6% 61.4% 7.3% 13.0% 11.1% 19.1%
(40) (75) (11) (27) (11) (17) (18) (31)

Failure rate 16.8% 32.9% 14.3% 6.8% 22.7% 32.1% 12.3% 40.7%
(62) (111) (8) (3) (34) (42) (20) (66)

Dropout rate 72.3% 44.8% 66.1% 31.2% 70.0% 54.9% 76.5% 40.1%
(266) (151) (37) (14) (105) (72) (124) (65)

256 G. Garcia-Mateos and J.L. Fernandez-Aleman

– Autonomous work. Students can work in the labs, where they have help
from the teachers. However, it is evident that students mostly work at home,
and ask questions to the teachers by using Mooshak. Therefore, on-line judg-
ing eases to work autonomously.

– Feedback of the learning process. The web system provided feedback
to help students to correct many errors of the programs, thus avoiding as-
sistants spend much effort figuring out the causes of the failure, as happens
in a traditional evaluation. The judge is accessible 24-hours a day and the
feedback is instantaneous. From the point of view of the teachers, informa-
tion is also comprehensive and immediate; they can analyze the difficulty of
the problems, the evolution of the students, identify the best students, etc.

To conclude, we have to mention some remarkable results from a survey carried
out among the students of the CSE group, regarding their experience in the new
methodology. They were asked to indicate a degree of agreement/disagreement
with a series of statements. These are some of the items evaluated:

– 77% of the students agree that “they learn better with the new method”;
– 68% say that “the public ranking of the judge fosters competitiveness”;
– All students disagree with “cheating is easier with the on-line judge”;
– 91% say that “if they could choose, they would follow again the CE method”.

These ratios have to be considered as subjective appreciations made by the
students. Nevertheless, we have to observe that 75% of the students enrolled in
2008 were also enrolled in 2007. Thus, they were able to compare the new and the
old methodology. Proving that they really learn better is difficult, as they were
evaluated with different methods. However, considering only the theory units
corresponding to U2, U3 and U5 (that were evaluated with a written exam,
both in 2008 and 2007), the pass rate went from 18.6% in 2007 to 38.6% in 2008,
and the average mark (in range 0-10) went from 4.6 to 5.7.

On the negative side, we can mention two items:

– 86% of the students agree that “the feedback provided by the judge in case
of error is insufficient”. In order to reduce this problem, we took the strategy
of releasing one of the secret input/output cases for each problem.

– 60% say that “the total load of work is higher with the new methodology”;
only 27% say it is lower. We think this problem can be easily solved by
redesigning some of the activities. Nevertheless, the new methodology has
a crucial advantage over the traditional one: the students work along the
course, and not just some weeks before the final exam.

6 Conclusions and Future Work

In this paper, an innovative experience on computer science education –applying
the techniques, concepts and methods of edutainment– has been presented. En-
tertainment has traditionally been neglected in formal education, and specially
in university studies. We have shown that on-line judging systems can be used
to make more fun the activities of a programming course.

Make Learning Fun with Programming Contests 257

In general, the results of our experiment are outstanding. The approach im-
proves self-assessment skills and encourages students to work independently. The
public ranking and other statistical data provided by Mooshak, promote compet-
itiveness and offer appealing material to the students. The assessment is fair and
objective, and students gain additional feedback from the human judges. Obvi-
ously, the improvements are also due to the introduction of continuous evaluation
and the elimination of the final exam, which constitutes the second key element
of the proposed methodology.

Two major aspects remain to be improved in the future: the feedback provided
by the judge, and plagiarism detection. We are currently working on extensions
of Mooshak to provide detailed feedback in case of “wrong answer”, and to
integrate the plagiarism detector subsystem into the web interface of Mooshak.

References

1. Education at a Glance: OECD Indicators (2006),
http://www.oecd.org/edu/eag2006

2. OECD Science, Technology and Industry Scoreboard (2007),
http://www.oecd.org/sti/scoreboard

3. Rapeepisarn, K., Wong, K.W., Fung, C.C., Depickere, A.: Similarities and Differ-
ences Between “Learn Through Play” and “Edutainment”. In: Proc. of the 3rd
Australasian Conference on interactive Entertainment, pp. 28–32 (2006)

4. Leal, J.P., Silva, F.M.A.: Mooshak: a Web-based, Multi-site, Programming Contest
System. Software-Practice, and Experience 33(6), 567–581 (2003)

5. Robins, A., Rountree, J., Rountree, N.: Learning and Teaching Programming: A
Review and Discussion. Computer Science Education 13(2), 137–172 (2003)

6. Guerreiro, P., Georgouli, K.: Enhancing Elementary Programming Courses Using
E-learning with a Competitive Attitude. Int. Journal of Internet Education (2008)

7. Guerreiro, P., Georgouli, K.: Combating Anonymousness in Populous CS1 and CS2
Courses. In: Proc. ITICSE 2006, pp. 8–12 (2006)

8. Cebrian, M., Alfonseca, M., Ortega, A.: Towards the Validation of Plagiarism De-
tection Tools by Means of Grammar Evolution. IEEE Trans. on Evolutionary Com-
putation (2008)

9. Khine, M., Suja’ee, M.: Core Attributes of Interactive Computer Games and Adap-
tive Use for Edutainment. In: Pan, Z., Cheok, D.A.D., Müller, W., El Rhalibi, A.
(eds.) Transactions on Edutainment I. LNCS, vol. 5080, pp. 191–205. Springer,
Heidelberg (2008)

10. White, R.: That’s Edutainment. Hutchinson Leisure & Learning Group (2003),
http://www.whitehutchinson.com/leisure/articles/edutainment.shtml

11. Martens, A., Diener, H., Malo, S.: Core Attributes of Interactive Computer Games
and Adaptive Use for Edutainment. In: Pan, Z., Cheok, D.A.D., Müller, W., El
Rhalibi, A. (eds.) Transactions on Edutainment I. LNCS, vol. 5080, pp. 172–190.
Springer, Heidelberg (2008)

12. Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti, N., Meseguer, J., Talcott, C.:
All About Maude - A High-Performance Logical Framework. In: Clavel, M., Durán,
F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott, C. (eds.) All About
Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidel-
berg (2007)

http://www.oecd.org/edu/eag2006
http://www.oecd.org/sti/scoreboard
http://www.whitehutchinson.com/leisure/articles/edutainment.shtml

	Make Learning Fun with Programming Contests
	Introduction
	Related Work
	Methodological Approach
	Pedagogical Principles
	On-Line Judging
	A Judge-Based Methodology

	Evaluation of the Method
	Participants and Background
	Instantiation of the Method
	Results of the On-line Judge

	Discussion
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

