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Abstract. We propose a new family of constraints which combine together
lexicographical ordering constraints for symmetry breaking with other common
global constraints. We give a general purpose propagator for this family of con-
straints, and show how to improve its complexity by exploiting properties of the
included global constraints.

1 Introduction

The way that a problem is modeled is critically important to the success of constraint
programming. Two important aspects of modeling are symmetry and global constraints.
A common and effective method of dealing with symmetry is to introduce constraints
which eliminate some or all of the symmetric solutions [1]. Such symmetry breaking
constraints are usually considered separately to other (global) constraints in a problem.
However, the interaction between problem and symmetry breaking constraints can often
have a significant impact on search. For instance, the interaction between problem and
symmetry breaking constraints gives an exponential reduction in the search required
to solve certain pigeonhole problems [2]. In this paper, we consider even tighter links
between problem and symmetry breaking constraints. We introduce a family of global
constraints which combine together a common type of symmetry breaking constraint
with a range of common problem constraints. This family of global constraints is useful
for modeling scheduling, rostering and other problems.

Our focus here is on matrix models [3]. Matrix models are constraint programs con-
taining matrices of decision variables on which common patterns of constraints are
posted. For example, in a rostering problem, we might have a matrix of decision vari-
ables with the rows representing different employees and the columns representing dif-
ferent shifts. A problem constraint might be posted along each row to ensure no one
works too many night shifts in any 7 day period, and along each column to ensure
sufficient employees work each shift. A common type of symmetry on such matrix
models is row interchangeability [4]. Returning to our rostering example, rows repre-
senting equally skilled employees might be interchangeable. An effective method to
break such symmetry is to order lexicographically the rows of the matrix[4]. To in-
crease the propagation between such symmetry breaking and problem constraints, we
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consider compositions of lexicographical ordering and problem constraints. We conjec-
ture that the additional pruning achieved by combining together symmetry breaking and
problem constraints will justify the additional cost of propagation. In support of this,
we present a simple problem where it gives a super-polynomial reduction in search. We
also implement these new propagators and run them on benchmark nurse scheduling
problems. Experimental results show that propagating of a combination of symmetry
breaking and global constraints reduces the search space significantly and improves run
time for most of the benchmarks.

2 Background

A constraint satisfaction problem (CSP) P consists of a set of variables X = {X [i]},
i = 1, . . . , n each of which has a finite domain D(X [i]), and a set of constraints C. We
use capital letters for variables (e.g. X [i] or Y [i]), lower case for values (e.g. v or vi) and
write X for the sequence of variables, X [1] to X [n]. A constraint C ∈ C has a scope,
denoted scope(C) ⊆ X and allows a subset of the possible assignments to the variables
scope(C), called solutions or supports of C. A constraint is domain consistent (DC) iff
for each variable X [i], every value in the domain of Xi belongs to a support. A solution
of a CSP P is an assignment of one value to each variable such that all constraints are
satisfied. A matrix model of a CSP is one in which there is one (or more) matrices of
decision variables. For instance, in a rostering problem, one dimension might represent
different employees and the other dimension might represent days of the week.

A common way to solve a CSP is with backtracking search. In each node of the
search tree, a decision restricts the domain of a variable and the solver infers the effects
of that decision by invoking a propagator for each constraint. A propagator for a con-
straint C is an algorithm which takes as input the domains of the variables in scope(C)
and returns restrictions of these domains. We say the a propagator enforces domain
consistency (DC) on a constraint C iff an invocation of the propagator ensures that the
constraint C is domain consistent.

A global constraint is a constraint in which the number of variables is not
fixed. Many common and useful global constraints have been proposed. We intro-
duce here the global constraints used in this paper. The global lexicographical or-
dering constraint LEX(X, Y ) is recursively defined to hold iff X [1] < Y [1], or
X [1] = Y [1] and LEX([X [2], . . . , X [n]], [Y [2], . . . , Y [n]]) [5]. This constraint is used
to break symmetries between vectors of variables. The global sequence constraint
SEQUENCE(l, u, k, X, V ) holds iff l ≤ |{i | X [i] ∈ V, j ≤ i < j + k}| ≤ u for each
1 ≤ j < n− k [6]. The regular language constraint REGULAR(A, X) holds iff X [1] to
X [n] takes a sequence of values accepted by the deterministic finite automaton A [7].
The last two constraints are useful in modeling rostering and scheduling problems.

3 The C&LEX Constraint

Two common patterns in many matrix models are that rows of the matrix are inter-
changeable, and that a global constraint C is applied to each row. To break such row
symmetry, we can post constraints that lexicographically order rows [4]. To improve
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propagation between the symmetry breaking and problem constraints, we propose the
C&LEX(X, Y , C) constraint. This holds iff C(X), C(Y ) and LEX(X, Y ) all simul-
taneously hold. To illustrate the potential value of such a C&LEX constraint, we give a
simple example where it reduces search super-polynomially.

Example 1. Let M be a n × 3 matrix in which all rows are interchangeable. Suppose
that C(X, Y, Z) ensures Y = X + Z , and that variable domains are as follows:

M =

⎛
⎜⎜⎜⎜⎝

{1, . . . , n − 1} {n + 1, . . . , 2n− 1} n
{1, . . . , n − 1} {n, . . . , 2n − 2} n − 1

. . . . . . . . .
{1, . . . , n − 1} {3, . . . , n + 1} 2
{1, . . . , n − 1} {2, . . . , n} 1

⎞
⎟⎟⎟⎟⎠

.

We assume that the branching heuristic instantiates variables top down and left to
right, trying the minimum value first. We also assume we enforce DC on posted con-
straints. If we model the problem with C&LEX constraints, we solve it without search.
On the other hand, if we model the problem with separate LEX and C constraints, we
explore an exponential sized search tree before detecting inconsistency using the men-
tioned branching heuristic and a super-polynomial sized tree with any k-way branching
heuristic.

3.1 Propagating C&LEX

We now show how, given a (polynomial time) propagator for the constraint C, we
can build a (polynomial time) propagator for C&LEX. The propagator is inspired by
the DC filtering algorithm for the LEXCHAIN constraint proposed by Carlsson and
Beldiceanu [8]. The LEXCHAIN constraint ensures that rows of the matrix M are
lexicographically ordered. If the LEXCHAIN constraint is posted on two rows then
LEXCHAIN is equivalent to the C&LEX(X, Y, True) constraint. However, unlike [8],
we can propagate here a conjunction of the LEX constraint and arbitrary global con-
straints C. The propagator for the C&LEX constraint is based on the following result
which decomposes propagation into two simpler problems.

Proposition 1. Let Xl be the lexicographically smallest solution of C(X), Yu be the
lexicographically greatest solution of C(Y ), and LEX(Xl, Yu). Then enforcing DC
on C&LEX(X, Y , C) is equivalent to enforcing DC on C&LEX(X , Yu, C) and on
C&LEX(Xl, Y , C) .

Proof. Suppose C&LEX(Xl, Y , C) is DC. We are looking for support for Yk =
v, where Yk is an arbitrary variable in Y . Let Y ′ be a support for Yk = v
in C&LEX(Xl, Y , C). Such a support exists because C&LEX(Xl, Y , C) is DC.
C&LEX(Xl, Y , C) ensures that Y ′ is a solution of C(Y ) and LEX(Xl, Y

′). Con-
sequently, Xl and Y ′ are a solution of C&LEX(X, Y , C). Similarly, we can find a
support for Xk = v, where Xk is an arbitrary variable in X . ��
Thus, we will build a propagator for C&LEX that constructs the lexicographically small-
est (greatest) solution of C(X) (C(Y )) and then uses two simplified C&LEX constraints
in which the first (second) sequence of variables is replaced by the appropriate bound.
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Finding the lexicographically smallest solution. We first show how to find the lexi-
cographically smallest solution of a constraint. We denote this algorithm Cmin(L, X).
A dual method is used to find the lexicographically greatest solution. We use a greedy
algorithm that scans through X and extends the partial solution by selecting the small-
est value from the domain of X [i] at ith step (line 6). To ensure that the selection at
the next step will never lead to a failure, the algorithm enforces DC after each value
selection (line 7). Algorithm 1 gives the pseudo-code for the Cmin(L, X) algorithm.
The time complexity of Algorithm 1 is O(nc + nd), where d is the total number of
values in the domains of variables X and c is the (polynomial) cost of enforcing DC
on C.

Algorithm 1. Cmin(L, X)
1: procedure Cmin(L : out, X : in)
2: if (DC(C(X)) == fail) then
3: return false;
4: Y = Copy(X);
5: for i = 1 to n do
6: Y [i] = L[i] = min(D(Y [i]));
7: DC(C(Y ));
8: return true;

Proposition 2. Let C(X) be a global constraint. Algorithm 1 returns the lexicograph-
ically smallest solution of the global constraint C if such a solution exists.

Proof. First we prove that if there is a solution to C(X) then Algorithm 1 returns a
solution. Second, we prove that the solution returned is the lexicographically smallest
solution.

1. If C(X) does not have a solution then Algorithm 1 fails at line 3. Otherwise C(X)
has a solution. Since DC(C(X)) leaves only consistent values, any value of X [1]
can be extended to a solution of C(X) and Algorithm 1 selects L[1] to be the
minimum value of X [1]. Suppose Algorithm 1 performed i−1 steps and the partial
solution is [L[1], . . . , L[i − 1]]. All values left in the domains of at X [i], . . . , X [n]
are consistent with the partial solution [L[1], . . . , L[i−1]]. Consequently, any value
that is in the domain of X [i] is consistent with [L[1], . . . , L[i − 1]] and can be
extended to a solution of C(X). The algorithm assigns L[i] to the minimum value
of X [i]. Moving forward to the end of the sequence, the algorithm finds a solution
to C(X).

2. By contradiction. Let L′ be the lexicographically smallest solution of C(X) and
L be the solution returned by Algorithm 1. Let i be the first position where L′

and L differ so that L′[i] < L[i], L′[k] = L[k], k = 1, . . . , i − 1. Consider ith
step of Algorithm 1. As DC(C(X)) is correct, all values of X [i] consistent with
[L[1], . . . , L[i−1]] are in the domain of X [i]. The algorithm selects L[i] to be equal
to min(D(X [i])). Therefore, [L[1], . . . , L[i]] is the lexicographically smallest pre-
fix of length i for a solution of C(X). Hence, there is no solution of C(X) with
prefix [L′[1], . . . , L′[i]] ≤lex [L[1], . . . , L[i]]. This leads to a contradiction.
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A filtering algorithm for the C&LEXlb(L, X, C) constraint. The propagation algo-
rithm for the C&LEXlb(L, X, C) constraint finds all possible supports that are greater
than or equal to the lower bound L and marks the values that occur in these supports.
Algorithm 2 gives the pseudo-code for the propagator for C&LEXlb. The algorithm uses
the auxiliary routine MarkConsistentV alues(C, X, X′). This finds all values in do-
mains of X′ that satisfy C(X′) and marks corresponding values in X . The time com-
plexity of the MarkConsistentV alues(C, X, X′) procedure is O(nd + c). The total
time complexity of the propagator for the C&LEXlb filtering algorithm is O(n(nd+c)).
A dual algorithm to C&LEXlb is C&LEXub(X , U , C) that finds all possible supports
that are less than or equal to the upper bound U and marks the values that occur in these
supports.

Algorithm 2. C&LEXlb(L, X, C)
1: procedure C&LEXlb(L : out, X : out, C : in)
2: if (DC(C(X)) == fail) then
3: return false;
4: LX = X;
5: for i = 1 to n do
6: D(LX[i]) = {vj |vj ∈ D(LX[i]) and L[i] < vj};
7: MarkConsistentV alue(C, X, LX);
8: if L[i] /∈ D(X[i]) then
9: break;
10: else
11: LX[i] = L[i];
12: if (i == n) then
13: MarkConsistentV alues(C, X, L);
14: for i = 1 to n do
15: Prune({vj ∈ D(X[i])|unmarked(vj)});

Algorithm 3. Mark consistent values
1: procedure MarkConsistentV alues(C : in, X : out, X′ : in)
2: Z = Copy(X′);
3: DC(C(Z));
4: for i = 1 to n do
5: Mark{vj |vj ∈ D(X[i]) and vj ∈ D(Z[i])};

We also need to prove that Algorithm 2 enforces domain consistency on the
C&LEXlb(L, X, C) constraint. A dual proof holds for C&LEXub.

Proposition 3. Algorithm 2 enforces DC on the C&LEXlb(L, X, C) constraint.

Proof. We first show that if a value v was not pruned from the domain of X [p] (or
marked) then it does have a support for C&LEXlb(L, X, C). We then show that if a
value v was pruned from the domain of X [p] (or not marked) then it does not have a
support.

1. Algorithm 2 marks values in two lines 7 and 13. Suppose at step i the algorithm
marks value v ∈ D(X [p]) at line 7. At this point we have that LX [k] = L[k],
k = 1, . . . , i− 1, L[i] < LX [i]. After enforcing DC on C(LX), the value v is left
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in the domain of LX [p]. Consequently, there exists a support for X [p] = v, starting
with [L[1], . . . , L[i − 1], v′, . . .], v′ ∈ D(LX [i]), that is strictly greater than L.
Marking at line 13 covers the case where L is a solution of C(X).

2. By contradiction. Suppose that value v ∈ D(X [p]) was not marked by Algorithm 2
but it has a support X′ such that L ≤lex X′. Let i be the first position where
L[i] < X [i] and L[k] = X [k], k = 1, . . . , i − 1. We consider three disjoint cases:

– The case that no such i exists. Then L is a support for value v ∈ D(X [p]).
Hence, value v has to be marked at line 13. This leads to a contradiction.

– The case that i ≤ n and p < i. Note that in this case v equals L[p]. Consider
Algorithm 2 at step i. At this point we have L[k] = LX [k], k = 1, . . . , i − 1.
After enforcing DC on C(LX) (line 7), values X ′[k], i = 1, . . . , n are left in
the domain of LX , because L[i] < X ′[i], L[k] = X ′[k], k = 1, . . . , i − 1.
Hence, value v ∈ X ′[p] will be marked at line 7. This leads to a contradiction.

– The case that i ≤ n and i ≤ p. Consider Algorithm 2 at step i. At this point
we have L[k] = LX [k], k = 1, . . . , i − 1. Moreover, value X ′[i] has to be in
the domain of LX [i], because value X ′[i] is greater than L[i] and is consistent
with the partial assignment [L[1], . . . , L[i − 1]]. Domains of variables LX
contain all values that have supports starting with [L[1], . . . , L[i − 1]] and are
strictly greater than L. Consequently, they contain X ′[i], i = 1, . . . , n and the
algorithm marks v at line 7. This leads to a contradiction.

��
A filtering algorithm for the C&LEX(X, Y , C). Algorithm 4 enforces domain con-
sistency on the C&LEX(X , Y , C) constraint. Following Proposition 1, Algorithm 4
finds the lexicographically smallest (greatest) solutions for C(X) (C(Y )) and runs a
relaxed version of C&LEX for each row. Algorithm 4 gives the pseudo-code for the
propagator for the C&LEX(X , Y , C) constraint.

Algorithm 4. C&LEX(X , Y , C)
1: procedure C&LEX(X : out, Y : out, C : in)
2: if (Cmin(Xl, X) == fail) or (Cmax(Y , Yu)) == fail) then
3: return false;
4: if (Xl >lex Yu) then
5: return false;
6: C&LEXlb(Xl, Y , C);
7: C&LEXub(X, Yu, C);

Proposition 4. Algorithm 4 enforces DC on the C&LEX(X, Y , C) constraint.

Proof. Correctness of the algorithm follows from correctness of the decomposition
(Proposition 1). However, we need to consider the case where Xl >lex Yu, prove
correctness of the C&LEXlb and C&LEXub algorithms and prove that the algorithm
only needs to run once.

If Xl >lex Yu then C&LEX(X, Y , C) does not have a solution and Algorithm 4
fails at line 5. Otherwise, we notice that if Xl ≤lex Yu then Xl and Yu is a solution of
C&LEX(X, Y , C), because Xl is a solution of C(X), Yu is a solution of C(Y ) and
Xl ≤lex Yu. Consequently, invocation of the simplified version of C&LEX at lines 6
and 7 cannot change Xl and Yu. ��
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Example 2. We consider how Algorithm 4 works on the first two rows C&LEX con-
straint from Example 1. Let n equal 5. In this case domains of the first two rows of

variables are

(
M [1]
M [2]

)
=

(
[1, 2, 3, 4] [6, 7, 8, 9] 5
[1, 2, 3, 4] [5, 6, 7, 8] 4

)
.

Suppose the solver branches on X [1] = 1. Algorithm 4 finds the lexicographi-
cally smallest and greatest solutions of M [1] and M [2] using Algorithm 1(line 2).
These solutions are [1, 6, 5] and [4, 8, 4] respectively . Then enforces DC on
C&LEXlb([1, 6, 5], M [2], C) in the following way:

1. copies M [2] to LX
2. marks all values that have a support starting with a value greater than 1 (that is 2, 3

and 4). There are three supports that satisfy this condition, namely, [2, 6, 4], [3, 7, 4]
and [4, 8, 4]. Checks conditions at line 8 and assigns LX [1] to 1. Then it moves to
the next iteration.

3. marks all values that have a support starting with a prefix greater than [1, 6]. There
are no such values. Checks conditions at line 8 and assigns LX [2] to 6. Then it
moves to the next iteration.

4. marks all values that have a support starting with a prefix greater than [1, 6, 5].
There are no such values. Checks conditions at line 8 and stops the marking part.

5. removes unmarked values: value 1 from X [2] and value 5 from Y [2].

Finally, it enforces DC on C&LEXub(M [1], [4, 8, 4], C). This sets M [1] to [1, 6, 5],
because the solver branched on X [1] = 1 and [1, 6, 5] is the only possible support for
this assignment.

The time complexity of the general algorithm is more expensive than the decomposi-
tion into individual constraints C(X), C(Y ) and LEX(X , Y ) by a linear factor. The
general algorithm is not incremental, but its performance can be improved by detecting
entailment. If Xu < Yl then the LEX constraint is entailed and C&LEX can be decom-
posed into two constraints C(X) and C(Y ). Similarly, we can improve the complexity
by detecting when C(X) and C(Y ) are entailed. As we show in the next sections,
the time complexity of the propagator for the C&LEX(X, Y , C) constraint can also
be improved by making it incremental for many common constraints C by exploiting
properties of C. Note also that Algorithm 4 easily extends to the case that different
global constraints are applied to X and Y .

3.2 The C&LEX(X, Y , SEQUENCE) Constraint

In this section we consider the case of a conjunction of the LEX constraint with
two SEQUENCE constraints. First we assume that variables X and Y are Boolean
variables. Later we will show how to extend this to the general case. In the
Boolean case, we can exploit properties of the filtering algorithm for the SEQUENCE

constraint (HPRS) proposed in [9]. The core of the HPRS algorithms is the
CheckConsistency procedure that detects inconsistency if the SEQUENCE con-
straint is unsatisfiable and returns the lexicographically smallest solution otherwise. The
HPRS algorithm runs CheckConsistency for each variable-value pair Xi = vj . If
CheckConsistency detects a failure, then value vj can be pruned from D(Xi), other-
wiseCheckConsistency returns the lexicographically smallest support for Xi = vj .
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As was shown in [9], the algorithm can be modified so that CheckConsistency re-
turns the lexicographically greatest support. Both versions of the algorithm are useful
for us. We will use the min subscript for the first version of the algorithm, and the max
subscript for the second.

Due to these properties of the HPRS algorithm, a propagator for the C&LEX

(X, Yu, SEQUENCE)lb, denoted HPRS′
min(X, Yu), is a slight modification of

HPRSmin, which checks that the lexicographically smallest support for Xi = vj

returned by the CheckConsistencymin procedure is lexicographically smaller
than or equal to Yu. To find the lexicographically greatest solution, Yu, of the
SEQUENCE(Y ) constraint, we run CheckConsistencymax on variables Y . Dual
reasoning is applied to the C&LEX(Xl, Y , SEQUENCE)ub constraint. Algorithms 5
shows pseudo code for DC propagator for the C&LEX(X, Y , SEQUENCE) constraint.

Algorithm 5. C&LEX(X , Y , SEQUENCE)
1: procedure C&LEX(X : out, Y : out, SEQUENCE(l, u, k) : in)
2: if ¬(CheckConsistencymin(Xl, X)) or ¬(CheckConsistencymax(Y , Yu)) then
3: return false;
4: if (Xl >lex Yu) then
5: return false;
6: HPRS′

max(Xl, Y , SEQUENCE(l, u, k));
7: HPRS′

min(X, Yu, SEQUENCE(l, u, k));

HPRS′
min and HPRS′

max are incremental algorithms, therefore the total time
complexity of Algorithm 5 is equal to the complexity of the HPRS algorithm, which
is O(n3) down a branch of the search tree. Correctness of Algorithm 5 follows from
Proposition 1 and correctness of the HPRS algorithm.

Example 3. Consider the SEQUENCE(2, 2, 3, [X [1], X [2], X [3], X [4]]) and
SEQUENCE(2, 2, 3, [Y [1], Y [2], Y [3], Y [4]]) constraints. The domains of the vari-
ables are X = [{0, 1}, {1}, {0, 1}, {0, 1}] and Y = [{0, 1}, {0, 1}, {1}, {0, 1}]. Note
that each of the two SEQUENCE and the LEX(X, Y ) constraints are domain consistent.

The C&LEX(X, Y , SEQUENCE) constraint fixes variables X to [0, 1, 1, 0]. The lex-
icographically greatest solution for the SEQUENCE(Y ) is [1, 0, 1, 0], while the lexico-
graphically smallest support for X [1] = 1 is [1, 1, 0, 1]. Therefore, the value 1 will be
pruned from the domain of X [1]. For the same reason, the value 0 will be pruned from
X [3] and the value 1 will be pruned from X [4].

Consider the general case, where X and Y are finite domain variables. We can chan-
nel the variables X , Y into Boolean variables bX ,bY and post SEQUENCE(bX ),
SEQUENCE(bY ), which does not hinder propagation. Unfortunately, we cannot post
the LEX constraint on the Boolean variables bX and bY , because some solu-
tions will be lost. For example, suppose we have SEQUENCE(X , 0, 1, 2, {2, 3}) and
SEQUENCE(Y , 0, 1, 2, {2, 3}) constraints. Let X = [2, 0, 2] and Y = [3, 0, 0] be solu-
tions of these constraints. The corresponding Boolean variables are bX = [1, 0, 1] and
bY = [1, 0, 0]. Clearly X <lex Y , but bX >lex bY . Therefore, the LEX constraint can
be enforced only on the original variables.
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The problem is that the HPRS algorithm returns the lexicographically smallest so-
lution on Boolean variables. As the example above shows, lexicographical compar-
ison between Boolean solutions of SEQUENCEs bX and bY is not sound with re-
spect to the original variables. Therefore, given a solution of SEQUENCE(bX), we
need to find the corresponding lexicographically smallest solution of SEQUENCE(X).
We observe that if we restrict ourselves to a special case of SEQUENCE(l, u, k, v, X)
where max(D \ v) < min(v) then this problem can be solved in linear time as
follows. Let bX be a solution for SEQUENCE(bX). Then the corresponding lexico-
graphically smallest solution X for SEQUENCE(X) is X [i] = min(v ∩ D(X [i]))
if bX [i] = 1 and X [i] = min(D(X [i])) otherwise. In a similar way we can find
the corresponding lexicographically greatest solution. A slight modification to Algo-
rithm 5 is needed in this case. Whenever we need to check whether bX is smaller
than or equal to bY , we transform bX to the corresponding lexicographically smallest
solution, bY to the corresponding lexicographically greatest solution and perform the
comparison.

3.3 The C&LEX(X, Y , REGULAR) Constraint

With the REGULAR(A, X) constraint, we will show that we can build a propagator for
C&LEX which takes just O(nT ) time, compared to O(n2T ) for our general purpose
propagator, where d is the maximum domain size and T is the number of transitions of
the automaton A. We will use the following example to illustrate results in this section.

Example 4. Consider the C&LEX(X, Y , C) constraint where the C is
REGULAR(A, X) and A is the automaton presented in Figure 1. Domains of
variables are X [1] ∈ {1, 2}, X [2] ∈ {1, 3}, X [3] ∈ {2} and Y [1] ∈ {1, 2, 3},
Y [2] ∈ {1, 2}, Y [3] ∈ {1, 3}.

Consider Algorithm 1 that finds the lexicographically smallest solution of the
REGULAR constraint. At line 7 it invokes a DC propagator for the REGULAR con-
straint to ensure that an extension of a partial solution on each step leads to a solution
of the constraint. To do so, it prunes all values that are inconsistent with the current
partial assignment. We will show that for the REGULAR constraint values consistent
with the current partial assignment can be found in O(log(d)) time.

Let Gx be a layered graph for the REGULAR constraint and Li = [L[1], . . . , L[i]] be
a partial assignment at the ith iteration of the loop (lines 4 - 6, Algorithm 6). Then Li

1

2

3

4

1

3

2

2

2
3

1

Fig. 1. Automation for Example 4
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corresponds to a path from the initial node at 0th layer to a node qi
j at ith layer. Clearly,

values of X [i + 1] consistent with the partial assignment Li are labels of outgoing arcs
from the node qi

j . We can find the label with the minimal value in O(log(d)) time.
Algorithm 6 shows pseudo-code for REGULARmin(A, L, X). Figure 2 shows a run of
REGULARmin(A, L, X) for variables X in Example 4. The lexicographically smallest
solution corresponds to dashed arcs.

Algorithm 6. REGULARmin(A, L, X)
1: procedure REGULARmin(A : in, L : out, X : in)
2: Build graph Gx;
3: q[0] = q0

0 ;
4: for i = 1 to n do
5: L[i] = min{vj |vj ∈ outgoing arcs(q[i − 1])};
6: q[i] = tA(q[i − 1], L[i]); � tA is the transition function of A.
7: return L;

The time complexity of Algorithm 2 for the REGULAR constraint is also O(nT ).
The algorithm works with the layered graph rather than original variables. On each
step it marks edges that occur in feasible paths in Gx that are lexicographically greater
than or equal to L. Figure 3 shows execution of C&LEXlb(Xl, Y , REGULAR) for vari-
ables Y and the lexicographically smallest solution for X , Xl = (1, 3, 2), from Ex-
ample 4. It starts at initial node s and marks all arcs on feasible paths starting with
values greater than Xl[1] = 1 (that is 2 or 3). Figure 3(a) shows the removed arc
in gray and marked arcs in dashed style. Then, from the initial node at 0th layer it
moves to the 2nd node at the 1st layer (Figure 3 (b)). The algorithm marks all arcs
on paths starting with a prefix greater than [Xl[1], Xl[2]] = [1, 3]. There are no such
feasible paths. So the MarkConsistentArcs algorithm does not mark extra arcs. Fi-
nally, it finds that there is no outgoing arc from the 2nd node at 2nd layer labeled with
3 and stops its marking phase. There are two unmarked arcs that are solid gray arcs at
Figure 3 (b). The algorithm prunes value 1 from the domain of Y [1], because there
are no marked arcs labeled with value 1 for Y [1]. Algorithm 8 shows the pseudo-code
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Fig. 2. The REGULARmin(A, L, X) algorithm. Dashed arcs correspond to the lexicographically
smallest solution.
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Algorithm 7. Mark consistent arcs
1: procedure MarkConsistentArcs(Gx : out, q : in)
2: Mark all arcs that occur on a path from q to the final node;

Algorithm 8. C&LEXlb(L, X, REGULAR)
1: procedure C&LEXlb(L : in, X : out, REGULAR : in)
2: Build graph Gx;
3: q[0] = q0

0 ;
4: qL = 0;
5: for i = 1 to n do
6: Remove outgoing arcs from the node q[i − 1] labeled with {min(X[i]), . . . , L[i]};
7: MarkConsistentArcs(Gx, q[i − 1]);
8: if (∃ a outgoing arc from q[i − 1])∧(i �= 1) then
9: mark arcs (q[k − 1], q[k]), k = qL, . . . , i − 1 ;
10: qL = i − 1;
11: if L[i] /∈ D(X[i]) then
12: break;
13: q[i] = TA(q[i − 1], L[i]); � TA is the transition function of A.
14: if (i == n) then
15: mark arcs (q[k − 1], q[k]), k = qL, . . . , n;
16: for i = 1 to n do
17: Prune({vj ∈ D(X[i])|unmarked(vj)});

for C&LEXlb(L, X, REGULAR). Note that the MarkConsistentArcs algorithm for
the REGULAR constraint is incremental. The algorithm performs a constant number of
operations (deletion, marking) on each edge. Therefore, the total time complexity is
O(nT ) at each invocation of the C&LEXlb(L, X, REGULAR) constraint.

The second algorithm that we propose represents the C&LEX(X, Y , REGULAR) as
a single automaton that is the product of automata for two REGULAR constraints and an
automaton for LEX. First, we create individual automata for each of three constraints.
Let Q be the number of states for each REGULAR constraint and d be the number of
states for the LEX constraint. Second, we interleave the variables X and Y , to get the
sequence X [1], Y [1], X [2], Y [2], . . . , X [n], Y [n]. The resulting automaton is a product
of individual automata that works on the constructed sequence of interleaved variables.
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Fig. 4. The C&LEX(X , Y , REGULAR) algorithm. Dashed arcs show the shortest path through
the arc (sy, 2).

The number of states of the final automaton is Q′ = O(dQ2). The total time complexity
to enforce DC on the C&LEX(X, Y , REGULAR) constraint is thus O(nT ′), where
T ′ is the number of transitions of the product automaton. It should be noted that this
algorithm is very easy to implement. Once the product automaton is constructed, we
encode the REGULAR constraint for it as a set of ternary transition constraints [10].

The third way to propagate the C&LEX(X , Y , REGULAR) constraint is to encode
it as a cost REGULAR constraint. W.L.O.G., we assume that there exist only one initial
and one final state. Let Gx be the layered graph for REGULAR(X) and Gy be the
layered graph for REGULAR(Y ). We replace the final state at n + 1th layer in Gx with
the initial state at 0th layer at Gy . Finally, we need to encode LEX(X , Y ) using the
layered graph. We recall that the LEX(X , Y ) constraint can be encoded as an arithmetic
constraint (dn−1X [1] + . . . + d0X [n] ≤ dn−1Y [1] + . . . + d0Y [n]) or (dn−1X [1] +
. . . + d0X [n]− dn−1Y [1] − . . . − d0Y [n] ≤ 0), where d = |⋃n

i=1 D(X [i])|.
In turn this arithmetic constraint can be encoded in the layered graph by adding

weights on corresponding arcs. The construction for Example 4 is presented in
Figure 4. Values in brackets are weights to encode the LEX(X, Y ) constraint. For
instance, the arc (sx, 2) has weight 9. The arc corresponds to the first variable with
the coefficient d2, d = 3. It is labeled with value 1. The weight equals 1 × d2 = 9.
More generally, an arc between the k − 1th and kth layers labeled with vj is given
weight vjd

n−k. Note that the weights of arcs that correspond to variables Y are
negative. Hence, the C&LEX(X, Y , REGULAR) constraint can be encoded as a cost
REGULAR([A,A], [X , Y ], W ) constraint, where W is the cost variable, [A,A] are two
consecutive automata. W has to be less than or equal to 0. Consider for example the
shortest path through the arc (sy, 2). The cost of the shortest path through this arc is 3.
Consequently, value 1 can be pruned form the domain of Y [1].

The time complexity of enforcing DC on the cost REGULAR([A,A], [XY ], W ) is
O(nT ), where d = |⋃n

i=1 D(X [i])| and T is the number of transitions of A.1 Again,
the use of large integers adds a linear factor to the complexity, so we get O(n2T ).

1 Note that we have negative weights on arcs. However, we can add a constant dn to the weight
of each arc and increase the upper bound of W by this constant.
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4 Experimental Results

To evaluate the performance of the proposed algorithms we carried out a series of
experiments nurse scheduling problems (NSP) for C&LEX(X , Y , SEQUENCE) and
C&LEX(X, Y , REGULAR) constraints. We used Ilog 6.2 for our experiments and ran
them on an Intel(R) Xeon(R) E5405 2.0Ghz with 4Gb of RAM. All benchmarks are
modeled using a matrix model of n × m variables, where m is the number of columns
and n is the number of rows.

The C&LEX(X, Y , SEQUENCE) constraint. The instances for this problem are
taken from www.projectmanagement.ugent.be/nsp.php. For each day in the schedul-
ing period, a nurse is assigned to a day, evening, or night shift or takes a day off. The
original benchmarks specify minimal required staff allocation for each shift and indi-
vidual preferences for each nurse. We ignore these preferences and replace them with
a set of constraints that model common workload restrictions for all nurses. Therefore
we use only labor demand requirements from the original benchmarks. We also convert
these problems to Boolean problems by ignoring different shifts and only distinguish-
ing whether the nurse does or does not work on the given day. The labor demand for
each day is the sum of labor demands for all shifts during this day. In addition to the
labor demand we post a single SEQUENCE constraint for each row. We use a static vari-
able ordering that assigns all columns in turn starting from the last one. Each column
is assigned from the bottom to the top. This tests if propagation can overcome a poor
branching heuristic which conflicts with symmetry breaking constraints. We used six
models with different SEQUENCE constraints posed on rows of the matrix. Each model
was run on 100 instances over a 28-day scheduling period with 30 nurses. Results are
presented in Table 1. We compare C&LEX(X, Y , SEQUENCE) with the decomposition
into two SEQUENCE constraints and LEX. In the case of the decomposition we used two
algorithms to propagate the SEQUENCE constraint. The first is the decomposition of the
SEQUENCE constraint into individual AMONG constraints (AD), the second is the orig-
inal HPRS filtering algorithm for SEQUENCE2. The decompositions are faster on easy
instances that have a small number of backtracks, while they can not solve harder in-
stances within the time limit. Overall, the model with the C&LEX(X, Y , SEQUENCE)
constraint performs about 4 times fewer backtracks and solves about 80 more instances
compared to the decompositions.

The C&LEX(X, Y , REGULAR) constraint. We implemented the second al-
gorithm from Section 3.3, which propagates C&LEX(X, Y , REGULAR) using a
product of automata for two REGULAR constraints and the automaton for the LEX con-
straint. C&LEX(X , Y , REGULAR) was compared with decomposition into individual
REGULAR and LEX constraints. We used two models with different REGULAR con-
straints posed on rows of the matrix. Each model was run on 100 instances over a 7-
day scheduling period with 25 nurses. We use the same variable ordering as above. The
REGULAR constraint in the first model expresses that each nurse should have at least
12 hours of break between 2 shifts. The REGULAR constraint in the second model ex-
presses that each nurse should have at least 12 hours of break between 2 shifts and at least

2 We would like to thank Willem-Jan van Hoeve for providing us with the implementation of
the HPRS algorithm.
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Table 1. Simplified NSPs. Number of instances solved in 60 sec / average time to solve.

AD, LEX HPRS, LEX C&LEX

1 SEQUENCE(3,4,5) 46 / 1.27 46 / 2.76 74 / 1.44
2 SEQUENCE(2,3,4) 66 / 0.63 66 / 1.29 83 / 2.66
3 SEQUENCE(1,2,3) 20 / 0.54 20 / 1.04 34 / 3.17
4 SEQUENCE(4,5,7) 78 / 1.36 77 / 2.31 82 / 2.43
5 SEQUENCE(3,4,7) 55 / 0.55 55 / 1.07 58 / 1.53
6 SEQUENCE(2,3,5) 19 / 5.38 18 / 8.27 31 / 1.74

solved/total 284 /600 282 /600 362 /600
avg time for solved 1.230 2.194 2.147

avg bt for solved 18732 16048 4382

Table 2. NSPs. Number of instances solved in 60 sec / average time to solve.

REGULAR, LEX C&LEX

12 hours break 30 / 9.31 93 / 2.59
12 hours break + 2 consecutive shifts 87 / 1.05 88 / 0.22

solved/total 117 /200 181 /200
avg time for solved 3.166 1.439

avg bt for solved 35434 1220

two consecutive days on any shift. Results are presented in Table 2. The model with the
C&LEX(X, Y , REGULAR) constraint solves 64 more instances than decompositions
and shows better run times and takes fewer backtracks.

5 Related and Future Work

Symmetry breaking constraints have on the whole been considered separately to prob-
lem constraints. The only exception to this of which we are aware is a combination
of lexicographical ordering and sum constraints [11]. This demonstrated ‘that on more
difficult problems, or when the branching heuristic conflicted with the symmetry break-
ing, the extra pruning provided by the interaction of problem and symmetry break-
ing constraints is worthwhile. Our work supports these results. Experimental results
show that using a combination of LEX and other global constraints achieves signif-
icant improvement in the number of backtracks and run time. Our future work is
to construct a filtering algorithm for the conjunction of the Hamming distance con-
straint with other global constraints. This is useful for modeling scheduling prob-
lems where we would like to provide similar or different schedules for employees.
We expect that performance improvement will be even greater than for the C&LEX

constraint, because the Hamming distance constraint is much tighter than the LEX

constraint.
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