
Challenges in Constraint-Based Analysis of

Hybrid Systems�

Andreas Eggers1, Natalia Kalinnik2, Stefan Kupferschmid2, and Tino Teige1

1 Carl von Ossietzky Universität Oldenburg, Germany
{eggers,teige}@informatik.uni-oldenburg.de
2 Albert-Ludwigs-Universität Freiburg, Germany

{kalinnik,skupfers}@informatik.uni-freiburg.de

Abstract. In the analysis of hybrid discrete-continuous systems, rich
arithmetic constraint formulae with complex Boolean structure arise
naturally. The iSAT algorithm, a solver for such formulae, is aimed at
bounded model checking of hybrid systems. In this paper, we identify
challenges emerging from planned and ongoing work to enhance the iSAT
algorithm. First, we propose an extension of iSAT to directly handle ordi-
nary differential equations as constraints. Second, we outline the recently
introduced generalization of the iSAT algorithm to deal with probabilis-
tic hybrid systems and some open research issues in that context. Third,
we present ideas on how to move from bounded to unbounded model
checking by using the concept of interpolation. Finally, we discuss the
adaption of some parallelization techniques to the iSAT case, which will
hopefully lead to performance gains in the future. By presenting these
open research questions, this paper aims at fostering discussions on these
extensions of constraint solving.

Keywords: mixed Boolean and arithmetic constraints, differential equa-
tions, stochastic SMT, Craig interpolation, parallel solver.

1 Introduction

The complexity of embedded systems, e.g. in automotive and avionics applica-
tions, has increased dramatically over the last decades. The safety criticality
of these systems calls for more and more sophisticated— especially computer-
aided— analysis techniques that enable engineers to assess the correctness of
their designs and implementations. For finding errors in models of large systems,
simulation has become one of the most successful and established methods. How-
ever, in general, simulation cannot guarantee the absence of errors for systems
with infinitely many states which naturally arise in these domains.
� This work has been partially supported by the German Research Council (DFG)

as part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

A. Oddi, F. Fages, and F. Rossi (Eds.): CSCLP 2008, LNAI 5655, pp. 51–65, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

52 A. Eggers et al.

In recent years, algorithms have been developed that can mathematically
prove the correctness of a huge variety of system classes with respect to a given
specification. Embedded systems often combine digital and analog components,
e.g. in multi-modal controllers or when describing them as integrated models of a
digital controller interacting with its continuously evolving plant. Hybrid systems
are a very rich modelling paradigm to describe such hybrid discrete-continuous
behavior. A hybrid system consists of a set of modes and a set of continuous
variables that together represent its state space. Its evolution is described by
a transition relation entailing discrete mode switches, also called transitions,
and arithmetic constraints describing the behavior of the continuous variables
within each mode. The latter is often achieved by using differential equations
that naturally arise when modelling physical entities. The mode switches are
governed by so-called transition guards, i.e. arithmetic constraints observing
the continuous variables, and can perform discrete actions by (potentially non-
deterministically) setting a variable x to a new value x′ satisfying an arithmetic
condition, e.g. x′ > sin(y2) or x′ = 4.2 · x.

The semantics of a hybrid system is defined by the set of its runs, i.e. the
possible evolutions it allows. Such an evolution can always be represented by a
sequence of variable valuations, where two successive valuations can either be
connected by a continuous evolution in the mode the system is in, or satisfy
the transition guard and action constraints, such that the system can actually
perform a switch from one mode to the next. This representation of a run is called
a trace and intuitively describes snapshots of the system’s evolution through the
state space at the endpoints of continuous trajectories and discrete jumps.

Returning to the motivation described initially, the reachability problem of
hybrid systems, i.e. the question of whether a particular state (e.g. a state rep-
resenting a fatal system failure) is reachable, is of particular interest to complex
systems verification and falsification. Though this problem is undecidable in gen-
eral, developing model checking algorithms and tools that can deal with a large
sample of systems that occur in real-world applications seems to be so relevant
that it can be considered a reasonable goal nonetheless. In addition to that,
robustness notions [1] can be used to find classes of systems, for which decision
procedures can be developed. Hybrid systems and decidability questions have
been extensively examined in the literature, for a detailed account see e.g. [2].

Among the most successful analysis methods for finite-state systems is bound-
ed model checking (BMC) [3,4], which has also been extended to the case of hy-
brid systems [5,6]. The idea of BMC is to encode the initial states, the transition
relation, and the target state specification of the system as predicates INIT (x0),
TRANS(xi, xi+1), and TARGET (xk), respectively, where x0, xi, xi+1, and xk

are instantiations of the vector of variables representing the discrete and contin-
uous state space. The initial predicate INIT (x0) is satisfied by a valuation of x0

iff that valuation characterizes an initial state. Analogously, the transition pred-
icate TRANS(xi, xi+1) holds for two (successive) valuations iff the system can
perform a discrete mode switch or a continuous evolution as described above.
We consider the succession from xi to xi+1 as a step of the system. Finally,

Challenges in Constraint-Based Analysis of Hybrid Systems 53

the target predicate TARGET (xk) specifies the states whose reachability is ex-
amined. A hybrid system can thus reach a target state in a limited number of
steps k iff the following BMC formula is satisfiable.

Φk := INIT (x0) ∧TRANS(x0, x1) ∧ . . . ∧ TRANS(xk−1, xk)
︸ ︷︷ ︸

k unwindings of the transition relation

∧TARGET (xk)

As the behavior of a hybrid system can in general be arbitrarily non-linear
and non-deterministic, the resulting BMC formula Φk is a Boolean combina-
tion of rich arithmetic constraints including differential equations. A solver that
can directly handle Φk is thus desirable. Approaches from continuous constraint
programming (cf. e.g. [7]) which can handle non-linear constraints are often re-
stricted to conjunctive formulae. On the other hand, most satisfiability modulo
theories (SMT, e.g. [8]) solvers—though being very capable of handling complex
Boolean structure— are confined to decidable theories— in particular, they do
not handle non-linear constraints. Recently, algorithms combining both domains
were published: ABsolver [9], which uses a non-linear optimization packet, and
iSAT [10], which uses techniques from interval constraint solving.

Structure of the paper. In Section 2, we briefly recall the iSAT algorithm that
constitutes the basic framework for our presentation. Section 3 identifies the
main directions for the extensions discussed in this paper, which are described
in more detail in Sections 4 – 7. Finally, we give some thoughts on synergies
between these different topics.

2 The iSAT Algorithm

In [10], the iSAT algorithm for solving mixed Boolean and non-linear (includ-
ing transcendental) arithmetic constraints over bounded reals and integers was
introduced. Differential equations however cannot be handled directly by iSAT
and need to be (over-)approximated or solved during modeling. Internally, iSAT
solves a conjunction of clauses, where a clause is a disjunction of atoms. An atom
(a.k.a. primitive constraint) contains one relational operator, at most one arith-
metic operation, and up to three variables, e.g. x ≥ sin(y), x = y+z, and z < 3.7.
By a Tseitin-like transformation [11], any BMC formula Φk can automatically
be rewritten into an equi-satisfiable formula in this kind of conjunctive normal
form, which grows at most linearly in the size of the original formula. The iSAT
algorithm is a generalization of the Davis-Putnam-Logemann-Loveland (DPLL)
procedure [12,13] using interval constraint propagation (ICP) (cf. e.g. [7]), and
manipulates interval valuations of the variables by alternating deduction and
splitting phases.

During the deduction phase, the solver searches for clauses in which all but
one atom are inconsistent under the current interval valuation. These remaining
consistent atoms are called unit. In order to retain a chance for satisfiability of
the formula, unit atoms have to be satisfied. This is similar to Boolean constraint
propagation in DPLL SAT solving. The unit atoms are therefore used for ICP

54 A. Eggers et al.

during the deduction phase. New interval bounds can thus be deduced until a
fixed point is reached. For termination reasons, the ICP has to be stopped if the
progress of newly deduced bounds becomes negligible.

If a conflict occurs, i.e. the interval of a variable becomes empty, then a
conflict resolution procedure is called which analyzes the reason for the conflict.
If the conflict cannot be resolved the given formula is unsatisfiable. Otherwise, a
conflict clause is built from the reason of the conflict and added to the formula in
order to prevent the solver from revisiting the same conflict again. Furthermore,
conflict resolution requires the solver to take back some of the decisions and their
accompanying deductions that have been performed so far.

If the solver finds a solution, i.e. at least one atom in each clause is satisfied
by every point in the interval valuation, the algorithm stops. In general, equa-
tions like x = y · z can only be satisfied by point intervals. However, reaching
such point intervals by ICP cannot be guaranteed for continuous domains. One
option to mitigate this problem is to stop the search when all intervals have a
width smaller than a certain threshold, the so-called minimum splitting width,
and returning the found approximative solution. Having completed the deduc-
tion phase and neither found a conflict nor an (approximative) solution, iSAT
performs a decision by splitting an interval. A decision heuristics is used to select
one of the intervals whose width is still greater than or equal to the minimum
splitting width. The search is then resumed using this newly generated interval
bound which potentially triggers new deductions as described above.

3 Problem Description

The primary goal of this paper is to propose challenges that arise from planned
and ongoing work in the context of enhancing the iSAT algorithm into the direc-
tions of scope and performance. We hope that presenting these research questions
will foster discussions on these interesting topics.

In order to avoid an a priori overapproximation of the continuous dynamics
in system models, direct handling of ordinary differential equations is to be
integrated into iSAT’s deduction rules (Section 4). Another extension of the
scope is to enable iSAT to deal with probabilistic hybrid systems (Section 5).
Thereafter, we present ideas on how to move from bounded to unbounded model
checking by using the concept of interpolation. In Section 7, we discuss the
adaption of some parallelization techniques to the iSAT case, which will hopefully
lead to dramatic performance gains in the future.

4 Differential Equations as Constraints

In order to directly handle ordinary differential equations (ODEs) as constraints
within a formula, we need to extend the deduction mechanism used by iSAT to
not only propagate newly deduced bounds through arithmetic constraints using
ICP, but to also propagate new interval bounds through ODEs. A continuous
trajectory can often be described by an ODE of the form dx

dt = f(x) over a

Challenges in Constraint-Based Analysis of Hybrid Systems 55

vector x of continuous variables. Being part of the predicative encoding of the
transition relation, this ODE describes the connection of the variable instances
xi and xi+1 from two successive BMC unwinding depths. We thus search for
solution functions of the ODE that emerge from the valuation of xi (the pre-
box) and eventually reach the valuation of xi+1 (the postbox). Analogously to
ICP, we are interested in pruning off all valuations from the pre- and postbox
that cannot belong to such trajectories. To achieve this, we thus need a safe
overapproximation of the ODE trajectories in order not to prune away possible
solutions.

Related work on safe enclosures of ODEs can be found in [14,15,16], where
error bounds on the remainder term of a Taylor series of the unknown exact solu-
tion are calculated and used as safe overapproximations of the errors induced by
the Taylor-series-based approximation of the trajectory. Using coordinate trans-
formations to suitably adapt the enclosures to the solution sets and thereby
mostly avoiding the so-called wrapping effect (cf. e.g. [14]), this approach works
well for linear ODEs. However, as for non-linear ODEs, coordinate transforma-
tions alone are often insufficient to eliminate the wrapping effect, the enclosures
quickly become very rough and finally unusably large in the non-linear case. A
newer approach— the so-called Taylor models [17] —have been shown to give
tighter enclosures for non-linear ODEs by employing a more symbolic represen-
tation of the enclosure sets. Henzinger et. al. use the Taylor-series-based enclo-
sure method in the HyperTech tool [18], also facing hybrid systems analysis,
however not in a constraint solving approach. In [19], CLP(F)— a very broad
framework to constraint logic programming— is applied to models of hybrid
systems. CLP(F) does however not include any measures against the wrapping
effect encountered when enclosing ODE trajectories with intervals.

This section of the paper tries to sum up the essential challenges and options
to solve them, that we see in the context of embedding safe enclosures of ODEs
into the iSAT algorithm. These major challenges are to

1. find methods and data structures that allow sufficiently tight overapproxi-
mating enclosures of the trajectories of an ODE that connect the interval
boxes representing pre- and postsets,

2. devise heuristics that allow to select the method fitting best into the current
phase of solving, e.g. coarse-grain but quick first enclosures to chop off the
most implausible parts of the solution space during an early phase of solving
versus tight but expensive enclosures to narrow an enclosure tube around an
actual error trace to reduce the probability of spurious counterexamples,

3. embed these methods in the solver process anywhere between calling them
like normal deduction rules that are executed whenever a new bound on a
variable is generated or as a subordinate solver that can be called arbitrarily
seldom to reduce the impact of an expensive method,

4. derive symbolic knowledge from ODE constraints that can be learned and
thus automatically extend the constraint system to contain redundant en-
codings reflecting some of the possible system dynamics without the need to
(probably always more expensively) re-enclose the ODE trajectories.

56 A. Eggers et al.

In a first prototype, we have proved the feasibility of integrating a Taylor-series
based enclosure method as a subordinate solver to the iSAT algorithm. However,
first experiments with this prototype show that none of above challenges can be
regarded as completely mastered [20]. For each challenge a multitude of design
choices exist that may have a fundamental impact on the overall performance of
an ODE-enabled iSAT.

To approach the first challenge, we consider both the Taylor-based enclosure
methods [14,15,16], that were used for the prototype, and the more recently de-
veloped Taylor models [17] as possible choices. While Taylor series together with
coordinate transformations will probably be a good choice for linear ODEs, we
expect Taylor models to also allow to approach non-linear ODEs. Out of the
many existing numerical methods for numerical approximation of ODE trajec-
tories there may however be some whose truncation errors can be enclosed as
well. Exploring such methods may thus extend the spectrum of choices. The
most essential problem in this context will probably be to control the wrapping
effect in order to avoid unusably coarse overapproximations.

The second challenge necessitates, first, a pool of methods with different char-
acteristics, i.e. methods that are tailored to quickly generating results as well as
methods that allow tight enclosures, and second, a set of criteria that are easily
evaluable and allow to determine which enclosure method should be used. One
possible criterion could be the size of the currently searched box, where a small
box could indicate the use of more accurate methods.

Solving the third challenge will mean to find the best integration strategy for
the enclosure mechanisms. It can be expected that any good enclosure method
will normally be quite expensive in terms of runtime compared to arithmetic
interval propagators. This may suggest that performing enclosures very seldom
might be a good strategy. On the other hand, as an essential portion of the
system dynamics is encoded in the ODE constraints, it also seems necessary to
evaluate them often in order to detect conflicts early and thus to prune off those
parts of the search space that cannot contain any solutions.

Finally, we expect that learning new arithmetic constraints from the ODEs
(e.g. from monotony or stability arguments) will allow to reduce the number
of enclosures that actually need to be performed. Similar to learning conflict
clauses when the intersection of an enclosure with a pre- or postbox becomes
empty, these constraints would allow to prune off substantial parts of the search
space that cannot contain any solutions.

5 Stochastic Constraint Systems

Most of the common analysis procedures are confined to just prove or disprove
the safety of a system. However, for models of safety-critical systems interacting
with the environment it is often clear which incidents lead to unsafe behavior,
e.g. a power blackout combined with a failure of the emergency power system
can induce a safety-critical state of a nuclear power station. Although such ac-
cidents cannot be excluded in general, it is tried to strongly decrease the prob-
ability of safety-critical behavior s.t. the system is most likely safe. Thus, the

Challenges in Constraint-Based Analysis of Hybrid Systems 57

cooling
0.94

0.06

1.0

remaining system

T > 110◦

T ≥ 100◦

T < 90◦

T ≥ 90◦

t′ = t + Δt

T ′ = T − Δt · fcool

t′ = t + Δt

T ′ = T − Δt · fcool

t′ = t + Δt

Fig. 1. A fragment of a system model for a probabilistic component breakdown

verification goal in this application domain is whether the likelihood of reach-
ing unsafe states is below an acceptable threshold, e.g. less than 0.03%. As a
modeling framework to deal with uncertainties, we consider probabilistic hybrid
automata (PHA, cf. [21]) which extends the notion of hybrid automata s.t. the
non-deterministic selection of a transition is enriched by a probabilistic choice
according to a distribution over variants of the transition. I.e., each transition
carries a (discrete) probabilistic distribution. Each probabilistic choice within
such a distribution leads to a potentially different successor mode while per-
forming some discrete actions. An example of a PHA fragment modelling some
probabilistic component breakdown is shown in Fig. 1, where T , fcool, and t
denote the temperature, the cooling factor, and the time, resp., and Δt is the
discretization parameter.

In order to automatically compute the reachability probability of (un-)desired
properties of PHAs, in [21] we introduced stochastic satisfiability modulo theo-
ries (SSMT) as the unification of stochastic propositional satisfiability (SSAT)
[22] and satisfiability modulo theories (SMT, e.g. [8]). SSMT deals with ex-
istential and randomized quantification of finite-domain variables. An SSMT
formula is specified by a quantifier prefix and an SMT formula, e.g. ∃x ∈
{0, 1} R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1} : (x > 0 ∨ sin(4a) ≥ 0.3) ∧ (y > 0 ∨ sin(4a) < 0).
The value of a variable bound by an existential quantifier, as in ∃x ∈ {0, 1}, can
be set arbitrarily, while the value of a variable bound by a randomized quantifier,
as in

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1}, is determined stochastically by the corresponding
distribution, here 〈(0, 0.6), (1, 0.4)〉. E.g.,

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1} means that
the variable y is assigned the value 0 or 1 with probability 0.6 or 0.4, resp. The
solution of an SSMT problem Φ is a tree of assignments to the existential vari-
ables that maximizes the overall satisfaction probability of Φ (cf. [21] for more
details). In our application, we are interested in computing the maximum proba-
bility of satisfaction. For the example above, setting x to 0 yields the satisfaction
probability 0.4 since the assignment x = 0, y = 0 cannot satisfy the SMT for-
mula. For x = 1, both y = 0 and y = 1 lead to solutions and, thus, to satisfaction
probability 1.0. Hence, the maximum satisfaction probability is 1.0.

58 A. Eggers et al.

The behavior of a PHA H (restricted to step depth k) together with a reacha-
bility property P can be described by an SSMT formula Φ in the following sense:
Φ is satisfiable with maximum probability p iff H fulfills property P (within k
steps) with maximum probability p. The idea of the formalized encoding of a
PHA into an SSMT formula, as presented in [21], is that the non-deterministic
choice of a transition in a PHA corresponds to existential quantification in SSMT,
while the probabilistic distributions correspond to randomized quantification.
The discrete-continuous behavior of the automaton is encoded by means of stan-
dard techniques. We are currently working on a modeling framework for PHAs
which automatically translates the modelled PHA into an SSMT formula [23].

Completing the verification procedure for PHAs, we recently extended the
iSAT solver to existential and randomized quantification (SiSAT, [24]). The main
idea of the SiSAT algorithm is to traverse the tree given by the quantifier prefix
and to properly call the iSAT algorithm. First experimental results proved the
concept: exploiting additional pruning rules which cut off huge parts of the
quantifier tree, the SiSAT tool is currently able to solve SSMT problems with up
to 110 quantified and 350 non-quantified variables, and up to 1100 clauses within
100 minutes. Problems including quantifiers are well-known not to be as scalable
as quantifier-free problems. However, we believe that further improvements, e.g.
value and variable ordering heuristics, will yield significant performance gains.
In the following, we highlight some open research issues for future work.

– Value and variable ordering heuristics are well-studied in SAT and Con-
straint Satisfaction to improve efficiency. For the quantified case, the variable
ordering within a block of quantifiers with the same type do not change the
semantics of the problem. This property can be exploited during the proof
search to rearrange the variables. To derive benefit from this fact, we will
investigate different static and dynamic ordering heuristics.

– Bounded model checking, i.e. stepwise unrolling the transition relation of
a system interspersed with model checking runs, facilitates to reuse and
propagate knowledge from previous runs (due to symmetries) such as conflict
clause reusing and shifting. In the quantified case, we are also interested in
maintaining and propagating knowledge about solutions of previous solver
calls. Besides skipping branches leading to a conflict, such a technique would
allow to avoid investigation of branches for which the satisfaction probability
was (partially) computed previously.

– The underlying iSAT algorithm which is based on interval arithmetic is in
general neither able to find a (real) solution nor to prove its absence. In such
cases the results are approximative solutions which suffice certain consis-
tency notions but do not guarantee real solutions. Concerning the reliability
of the computed satisfaction probabilities, we will extend the SiSAT tool
to deal with confidence intervals in order to obtain safe approximations of
satisfaction probabilities.

– Another issue concerning the reliability of the computed results is to of-
fer certificates of the satisfaction probabilities, i.e. proofs that the returned
probabilities are correct. Reliable results are of utmost importance in the

Challenges in Constraint-Based Analysis of Hybrid Systems 59

verification of safety-critical industrial systems. A certificate that a
quantifier-free formula is satisfiable is simply a satisfying assignment to the
variables. A proof of unsatisfiability is often more complex, e.g. a clause res-
olution strategy in the propositional case. In our setting, such a certificate
seems to be a mixed version of both.

– To assess the practical significance, we will apply the SiSAT tool on real-
world benchmarks. Within the AVACS project1, we are especially interested
in benchmarks which deal with the impact of cooperative, distributed traffic
management on flow of road traffic. These benchmarks are representative
for a large number of hard scheduling and allocation problems and naturally
show uncertain behavior.

– A more fundamental challenge is to generalize the scope of the quantifiers to
continuous domains involving arbitrary probability distributions. This would
increase considerably the expressive power of SSMT.

6 Interpolation

In system’s verification, i.e. unbounded model checking, Craig interpolants [25]
have gained more and more attention over the last years. In [26], McMillan mod-
ified a bounded model checking procedure for Kripke Structures with the help of
interpolants s.t. the procedure becomes able to prove safety properties of a given
system for runs of any length. More recently, McMillan extended his work on
unbounded model checking to the quantifier-free theory of linear inequality and
uninterpreted function symbols [27], which is used, e.g., in software verification.
His approach has been implemented in the software model checker Blast [28].

As outlined in Section 1, bounded model checking aims at disproving a prop-
erty P (x) of a given system S. Thus, a BMC procedure tries to find an unwinding
depth k s.t. the corresponding BMC formula Φk with TARGET (xk) = ¬P (xk)
is satisfiable. On the other hand, the goal of unbounded model checking is to
prove that P holds for all runs of S. I.e., Φk with target ¬P (xk) is unsatisfiable
for any k ∈ N.

Such an unbounded model checking procedure can be obtained by means of
Craig interpolation. Given two formulae A and B s.t. A ∧ B is unsatisfiable.
Then, a formula p is called Craig interpolant for A and B iff (1) p contains
only variables which occur in both A and B ((A, B)-common variables), (2)
A ⇒ p, and (3) p ⇒ ¬B. A Craig interpolant p is called strongest if p implies
any other Craig interpolant p′, i.e. p ⇒ p′. Hence, any such interpolant p′

overapproximates p.
After showing that Φ0 = INIT (x0) ∧ TARGET (x0) is unsatisfiable (i.e. ini-

tially the target does not hold), McMillan’s procedure first solves the BMC
formula Φ1 = PREF ∧ SUFF, where

PREF := REACH (x0) ∧ TRANS(x0, x1) and
SUFF := TARGET (x1),

1 www.avacs.org

60 A. Eggers et al.

and initially REACH (x0) := INIT (x0). If Φ1 is unsatisfiable then a Craig in-
terpolant p(x1) for the formulae PREF and SUFF is computed.2 By PREF ⇒
p(x1), the interpolant p(x1) is an overapproximation of the states reachable in
one system step from REACH (x0). If this overapproximation shifted to the ze-
roth instantiation of the variables (as described by p(x0)) is a subset of the so far
reachable states, i.e. p(x0) ⇒ REACH (x0), then further transitions can only
lead to states already characterized by REACH (x). As a consequence, the target
states are unreachable and the verification procedure succeeds. Otherwise, we
expand the set of reachable states s.t. it also covers the reachable states given
by the shifted interpolant, i.e. REACH (x0) := REACH (x0) ∨ p(x0). Then, the
procedure is iterated until the above termination criterion holds. Due to the
overapproximations of the reachable state set, showing the satisfiability of one
of the obtained formulae Φ1 does not imply that the target state is actually
reachable. For a more detailed account, confer [26].

Computing Craig interpolants for different theories can be found in the lit-
erature [27,29,30]. However, none of these approaches is capable of constructing
interpolants for the case of mixed Boolean and non-linear arithmetic constraints
including transcendental functions. Therefore, extending the concept of inter-
polation to this richer domain originating from hybrid systems analysis is an
interesting research issue. In the sequel, we identify the most essential challenges:

– Obtaining interpolants in the iSAT case requires construction rules. One way
might be to generalize Pudlák’s algorithm [31], that delivers interpolants for
the propositional case using the proof of unsatisfiability.

– Craig interpolants are not unique and therefore there exist interpolants that
are bigger or smaller, stronger or weaker then others, etc. Thus, an open
problem is to determine which characteristics of interpolants are favorable
especially in the sense of low computational costs.

– As the reachability problem of hybrid systems is in general undecidable, it
is worthwhile to identify decidable subclasses for which the interpolation
procedure always terminates. One promising starting point is to investigate
robustness notions for hybrid systems (cf. e.g. [1]), which may guarantee such
a termination property.

The following example illustrates that selecting suitable Craig interpolants is a
difficult problem. The system S with INIT (x0) = x0 ≥ 1, TRANS(xi, xi+1) =
xi+1 ≥ 0.5xi, and TARGET (xk) = xk ≤ 0 describes the evolution of a variable
x that is initially greater than 1 and is iteratively divided by 2. A property of
S is that x will never become less than 0. Consider the formula Φ1 = PREF ∧
SUFF = (x0 >= 1 ∧ x1 = 0.5x0) ∧ (x1 ≤ 0) which is unsatisfiable. A possible
Craig interpolant is p1 = x1 ≥ 0.5. As p1 ⇒ INIT (x0) we use p1 as the new
initial state. The resulting formula (x0 >= 0.5 ∧ x1 = 0.5x0) ∧ (x1 ≤ 0) is also
unsatisfiable. A possible Craig interpolant is p2 = x1 ≥ 0.25. Since p2 does not
imply p1, we proceed. If we had computed p1 = x1 > 0 then p2 would imply p1,
resulting in a fixed point. Though the example suggests that weaker interpolants
are more suitable than stronger ones, this needs not to be true in general.
2 Note that p(x1) may only contain (PREF,SUFF)-common variables.

Challenges in Constraint-Based Analysis of Hybrid Systems 61

7 Parallelization

Recent trends in hardware design towards multi-core and multiprocessor sys-
tems, and computer clusters call for the development of dedicated parallel algo-
rithms in order to exploit the full potential of these architectures. In the domain
of propositional SAT solving, parallel algorithms can be traced back to at least
1994, when Böm and Speckenmeyer presented the first parallel implementation
of a DPLL procedure for a transputer system consisting of up to 256 processors
[32]. During the past decade, more advanced implementations have been devel-
oped. Most existing parallel SAT solvers are based on DPLL, they are, however,
parallelized in different ways and focus on different hardware environments.

While some of them, such as PaSAT [33], PaMira [34], Satz [35], are designed for
distributed memory systems, others, like ySAT [36], MiraXT [37], are tailored to
use shared memory workstations. Both shared-memory and distributed-memory
workstations have advantages and disadvantages. Shared memory computers have
the benefit that all processors can access a shared common address space and
guarantee in general low latency and low communication overhead. In distributed
systems, on the other hand, each processor has its own local memory. Hence, pro-
cessors communicate over the network via messages causing slow inter-process
communication. Choosing the right memory architecture has thus an important
impact on the performance of any parallelized algorithm.

As iSAT builds upon DPLL, adapting different parallelization approaches
from purely propositional SAT solving to this richer framework constitutes an
important first goal. In [38], guiding paths are used to partition the search space
of a propositional SAT problem into non-overlapping parts that can be treated
in parallel by dynamically allotting them to different processors. The underlying
idea is to split the search space at the decision points of the DPLL search tree,
i.e. at points where a value for a propositional variable is selected. For this
purpose, the guiding path keeps track of possible alternative decisions that can
be given to an idle processor. This concept can be adapted to the iSAT context
by partitioning the search space at interval-splitting points (cf. Fig. 2).

Furthermore, the exchange of conflict clauses is an essential ingredient of
parallel SAT solvers to gain performance. Each conflict clause describes a part of

Decision

x ∈ [0, 3]

Deduction

y ∈ [3, 4] x ∈ [1, 3)

z ∈ [−1, 2]

z ∈ (2, 4]

Process 1

x ∈ (3, 6]
Process 2

Fig. 2. Search space partitioning at interval splitting points in iSAT (two processors)

62 A. Eggers et al.

the search space which does not contain any solution. Thus, exchanging conflict
clauses prevents other processes from examining such conflicting parts that have
already been proven unsatisfiable by another process. Another such element is
to employ different decision heuristics for each involved processor. In [34], it
was shown that selecting the variables according to different decision heuristics
accelerated the PaMira solver by 70% on average.

In addition to parallelization techniques from propositional SAT, the iSAT
algorithm introduces new options. As the deduction mechanisms in iSAT (e.g.
ICP) are in general more expensive than Boolean deductions, parallelizing iSAT’s
deduction phase could be beneficial. Another observation is that smaller values
for the minimum splitting width (cf. Section 2) typically cause longer runtimes
of iSAT but allow more precise results. Exploiting this, solver instances with
greater minimum splitting widths could supply those instances having smaller
widths with conflict clauses in order to accelerate their search.

The high computational costs of checking large BMC instances call for the
development of parallel BMC techniques. While some approaches apply paral-
lel solvers to the same BMC instance, the authors of [39] introduce a different
approach by simultaneously solving different BMC instances. Moreover, they
also adapt the concept of sharing and shifting conflict clauses, first proposed
by Strichman [40] for sequential BMC, to the parallel setting. Since BMC for-
mulae Φk and Φm for the same system share common subformulae, it makes
sense to exchange conflict clauses between the corresponding solver instances.
Shifting conflict clauses is a related technique, that exploits the symmetry be-
tween different BMC formulae originating from the same system. As a BMC
formula Φk consists of k instantiations of the transition relation, conflict clauses
can be shifted within the current instantiation depth k. It is an open question
whether a similar parallel BMC scheme for non-linear hybrid systems with iSAT
as the underlying constraint solver yields performance gains comparable to those
encountered for linear hybrid systems using a combined SAT-LP solver [39].

8 Conclusion

In this paper, we sketched a number of challenges emerging from ongoing work
on the constraint-based analysis of hybrid systems. While these extensions are
currently developed separately from each other, core technologies like ICP or
conflict analysis are used commonly. We hope that by keeping these develop-
ments closely together, in particular by sharing data structures, synergies be-
come accessible in the long run. We think that among the issues emerging from
integration, some are more obvious than others. For example, employing ODE
deduction mechanisms as a subordinate solver within SiSAT or the parallelized
iSAT seems to be unproblematic. The same holds for the usage of a parallelized
solver as a decision engine within the stochastic SMT algorithm or the inter-
polation approach. On the other hand, even the theory of interpolation within
a probabilistic environment is still unclear, as is the generation of interpolants
from formulae comprising ODE constraints.

Challenges in Constraint-Based Analysis of Hybrid Systems 63

While some details presented in this paper are specific to the iSAT context,
we think that the broader issues are of more general interest. For instance, ODE
propagation could be used within other SMT approaches [8] as a theory solver,
while e.g. decision heuristics and certificate generation may not only be applica-
ble to SSMT but could also be used in stochastic constraint programming [41].

Acknowledgements

The authors would like to thank Erika Ábrahám, Bernd Becker, Christian Herde,
Holger Hermanns, and Tobias Schubert for many valuable discussions about the
presented topics, and Martin Fränzle for additionally commenting on earlier ver-
sions of this paper. Furthermore, the authors are very grateful to the anonymous
reviewers for their helpful remarks.

References

1. Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infinity
of states. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683,
pp. 126–140. Springer, Heidelberg (1999)

2. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? In: Proc. of the 27th Annual Symposium on Theory of Computing, pp.
373–382. ACM Press, New York (1995)

3. Groote, J.F., Koorn, J.W.C., van Vlijmen, S.F.M.: The Safety Guaranteeing Sys-
tem at Station Hoorn-Kersenboogerd. In: Conference on Computer Assurance, pp.
57–68. National Institute of Standards and Technology (1995)

4. Biere, A., Cimatti, A., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, p. 193. Springer, Heidelberg
(1999)

5. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying industrial hy-
brid systems with MathSAT. In: Bounded Model Checking (BMC 2004). ENTCS,
vol. 119, pp. 17–32 (2005)

6. Fränzle, M., Herde, C.: HySAT: An efficient proof engine for bounded model check-
ing of hybrid systems. Formal Methods in System Design 30(3), 179–198 (2007)

7. Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In: Rossi, F.,
van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Foundations
of Artificial Intelligence, pp. 571–603. Elsevier, Amsterdam (2006)

8. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability Mod-
ulo Theories. In: Handbook on Satisfiability, February 2009. Frontiers
in Artificial Intelligence and Applications, vol. 185. IO Press (2009),
ftp://ftp.cs.uiowa.edu/pub/tinelli/papers/BarSST-09.pdf

9. Bauer, A., Pister, M., Tautschnig, M.: Tool-support for the analysis of hybrid sys-
tems and models. In: Design, Automation and Test in Europe. IEEE, Los Alamitos
(2007)

10. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient Solving of
Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure.
JSAT Special Issue on SAT/CP Integration 1, 209–236 (2007)

11. Tseitin, G.: On the complexity of derivations in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logics (1968)

ftp://ftp.cs.uiowa.edu/pub/tinelli/papers/BarSST-09.pdf

64 A. Eggers et al.

12. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal
of the ACM 7(3), 201–215 (1960)

13. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving.
Communications of the ACM 5, 394–397 (1962)

14. Moore, R.E.: Automatic local coordinate transformation to reduce the growth of
error bounds in interval computation of solutions of ordinary differential equations.
In: Ball, L.B. (ed.) Error in Digital Computation, vol. II, pp. 103–140. Wiley, New
York (1965)

15. Lohner, R.: Einschließung der Lösung gewöhnlicher Anfangs- und Randwertauf-
gaben. PhD thesis, Fakultät für Mathematik der Universität Karlsruhe, Karlsruhe
(1988)

16. Stauning, O.: Automatic Validation of Numerical Solutions. PhD thesis, Technical
University of Denmark, Lyngby (1997)

17. Berz, M., Makino, K.: Verified Integration of ODEs and Flows Using Differential
Algebraic Methods on High-Order Taylor Models. Reliable Computing 4(4), 361–
369 (1998)

18. Henzinger, T.A., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond HYTECH:
Hybrid systems analysis using interval numerical methods. In: Lynch, N.A., Krogh,
B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 130–144. Springer, Heidelberg (2000)

19. Hickey, T., Wittenberg, D.: Rigorous modeling of hybrid systems using inter-
val arithmetic constraints. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS,
vol. 2993, pp. 402–416. Springer, Heidelberg (2004)

20. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: A direct SAT approach
to hybrid systems. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M.
(eds.) ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008)

21. Fränzle, M., Hermanns, H., Teige, T.: Stochastic Satisfiability Modulo Theory: A
Novel Technique for the Analysis of Probabilistic Hybrid Systems. In: Egerstedt,
M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidel-
berg (2008)

22. Papadimitriou, C.H.: Games against nature. J. Comput. Syst. Sci. 31(2), 288–301
(1985)

23. Schmitt, C.: Bounded Model Checking of Probabilistic Hybrid Automata. Mas-
ter’s thesis, Carl von Ossietzky University, Dpt. of Computing Science, Oldenburg,
Germany (March 2008)

24. Teige, T., Fränzle, M.: Stochastic Satisfiability modulo Theories for Non-linear
Arithmetic. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp.
248–262. Springer, Heidelberg (2008)

25. Craig, W.: Linear reasoning: A new form of the Herbrand-Gentzen theorem. Jour-
nal of Symbolic Logic 22(3), 250–268 (1957)

26. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

27. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1),
101–121 (2005)

28. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast: Applications to software engineering. International Journal on Software
Tools for Technology Transfer (STTT) 9(5-6), 505–525 (2007) (invited to special
issue of selected papers from FASE 2004/2005)

29. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation.
In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362.
Springer, Heidelberg (2007)

Challenges in Constraint-Based Analysis of Hybrid Systems 65

30. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in satis-
fiability modulo theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 397–412. Springer, Heidelberg (2008)

31. Pudlák, P.: Lower Bounds for Resolution and Cutting Plane Proofs and Monotone
Computations. Journal of Symbolic Logic 62(3), 981–998 (1997)

32. Böhm, M., Speckenmeyer, E.: A fast parallel SAT-solver - efficient workload bal-
ancing. Annals of Mathematics and Artificial Intelligence 17(3-4), 381–400 (1996)

33. Sinz, C., Blochinger, W., Küchlin, W.: PaSAT - parallel SAT-checking with lemma
exchange: Implementation and applications. In: Kautz, H., Selman, B. (eds.) LICS
2001 Workshop on Theory and Applications of Satisfiability Testing (SAT 2001),
June 2001. Electronic Notes in Discrete Mathematics, vol. 9. Elsevier Science Pub-
lishers, Boston (2001)

34. Schubert, T., Lewis, M., Becker, B.: PaMira – A Parallel SAT Solver with Knowl-
edge Sharing. In: 6th International Workshop on Microprocessor Test and Verifi-
cation (MTV 2005), pp. 29–36. IEEE Computer Society, Los Alamitos (2005)

35. Jurkowiak, B., Li, C.M., Utard, G.: Parallelizing SATZ Using Dynamic Work-
load Balancing. In: Proceedings of the Workshop on Theory and Applications of
Satisfiability Testing (SAT 2001), June 2001, vol. 9. Elsevier Science Publishers,
Amsterdam (2001)

36. Feldman, Y., Dershowitz, N., Hanna, Z.: Parallel multithreaded satisfiability
solver: Design and implementation. Electronic Notes in Theoretical Computer Sci-
ence 128(3), 75–90 (2005)

37. Lewis, M.D.T., Schubert, T., Becker, B.: Multithreaded SAT solving. In: Proceed-
ings of the 12th Asia and South Pacific Design Automation Conference, pp. 926–
931. IEEE Computer Society, Los Alamitos (2007)

38. Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: A distributed propositional
prover and its application to quasigroup problems. Journal of Symbolic Computa-
tion 21(4), 543–560 (1996)

39. Ábrahám, E., Schubert, T., Becker, B., Fränzle, M., Herde, C.: Parallel SAT solving
in bounded model checking. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol,
J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346, pp. 301–315. Springer,
Heidelberg (2007)

40. Strichman, O.: Accelerating bounded model checking of safety properties. Formal
Methods in System Design 24(1), 5–24 (2004)

41. Walsh, T.: Stochastic constraint programming. In: Proc. of the 15th European
Conference on Artificial Intelligence (ECAI 2002). IOS Press, Amsterdam (2002)

	Challenges in Constraint-Based Analysis of Hybrid Systems
	Introduction
	The iSAT Algorithm
	Problem Description
	Differential Equations as Constraints
	Stochastic Constraint Systems
	Interpolation
	Parallelization
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

