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Abstract. Constraint solving problems (CSPs) represent a formaliza-
tion of an important class of problems in computer science. We propose
here a solving methodology based on the naming games. The naming
game was introduced to represent N agents that have to bootstrap an
agreement on a name to give to an object. The agents do not have a
hierarchy and use a minimal protocol. Still they converge to a consis-
tent state by using a distributed strategy. For this reason the naming
game can be used to untangle distributed constraint solving problems
(DCSPs). Moreover it represents a good starting point for a systematic
study of DCSP methods, which can be seen as further improvement of
this approach.

1 Introduction

The goal of this research is to generalize the naming game model in order to
define a distributed method to solve CSPs. In the study of this method we want
to fully exploit the power of distributed calculation, by letting the CSP solution
emerge, rather than being the conclusion to a sequence of statements.

In DCSP protocols we design a distributed architecture of processors, or more
generally a group of agents, to solve a CSP instantiation. In this framework we
see the problem as a dynamic system and we set the stable states of the system
as one of the possible solutions to our CSP. To do this we design each agent in
order to move towards a stable local state. The system is called “self-stabilizing”
whenever the global stable state is obtained starting from local stable state [2].
When the system finds the stable state the CSP instantation is solved. A protocol
designed in this way is resistant to damage and external threats because it can
react to changes in the problem.

In Section 2 we illustrate the naming game formalism and we make some
comparisons with the distributed CSP (DCSP) architecture. Then we describe
the language model that is common to the two formalizations and introduce
an interaction scheme to show the common framework. At last we state the
definition of Self-stabilizing system [2].
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In Section 3 we explicitly describe our generalization and formalize the pro-
tocol that our algorithm will use and test it on different CSPs. Moreover, for
particular CSPs instantiations we analytically describe the multi-agent algorithm
evolution that makes the system converge to the solution.

2 Background

2.1 The Distributed Constraint Satisfaction Problem (DCSP)

Each constraint satisfaction problem (CSP) is defined by three sets 〈X, D, C〉:
X is a set of N variables x1, x2, . . . xN , D is the set of the definition domains
D1, D2, . . . , DN of the variables in X , and C is a set of constraints on the values
of these variables. Each variable Xi is defined in its variable domain Di with
i taking integer values from 1 to N . Each constraint is defined as a predicate
on the values of a sub-set of our variables Pk(xk1, xk2, . . . xkM ). The indices
k1, k2, . . . kM with M < N , are a sequence of strictly increasing integers from
1 to M and denote the sub-set of our variables xk1, xk2, . . . xkM . The Cartesian
product of these variable domains Dk1 × Dk2 × . . . × DkM is the domain of our
predicate. The predicate Pk is true only for a fixed subset T of its domain. When
the values assigned to the variables of the predicate Pk are in this subset T , the
predicate is true and we say that the constraint is satisfied. A CSP solution is a
particular tuple X of the x1, x2, . . . xN variable assignments that satisfy all the
constraints C.

In the DCSP [5], the variables of the CSP are distributed among the agents.
These agents are able to communicate between themselves and know all the
constraint predicates that are relevant to their own variables. The agents through
interaction find the appropriate values to assign to the variables and solve the
CSP.

2.2 Introduction to Naming Games

The naming games [7,9,10] describe a set of problems in which a number N of
agents bootstrap a commonly agreed name for an object. Each naming game
is defined by an interaction protocol. An important aspect of the naming game
is the hierarchy-free agent architecture. The naming task is achieved through a
sequence of interactions in which two agents are randomly extracted at each turn
to perform the role of the speaker and the listener (or hearer as used in [7,9]).
The speaker declares its name suggestion for the object. The listener receives the
word and computes the communication outcome. The communication outcome
is determined by the interaction protocol, in general it depends on the previous
interactions of the listener and if it agrees or disagrees with the name assignment.
The listener will express the communication outcome, which determines the
agents update at the end of each turn. The agents in this way change their
internal state at each turn through interaction. DCSP and the naming game
share a variety of common features [1], moreover we will show in Section 3 that
the naming game can be seen as a particular DCSP.
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2.3 The Communication Model

In this framework we define a general model that describes the communication
procedures between agents both in naming games and in DCSPs. The communi-
cation model consists of N agents (also called processors) arranged in a network.

The systems that we consider are self-stabilizing and evolve through interac-
tions in a stable state. We will use a central scheduler that at each turn randomly
extracts the agents that will be interacting.

The network links connect agents that can communicate with each other; this
network can be viewed as a communication graph. Each link can be seen as a reg-
ister rij on which the speaker i writes the variable assignment or word it wants
to communicate, and the listener j can read this assignment. We assume that the
two communication registers rij �= rji are different and that each communication
register can have more then one field. We also define a general communication
register in which only the speaker i can write and can be read by all the neighbor-
ing listeners. This is the convention which we will use since in our algorithm at
each interaction the speaker communicates the same variable assignment (word)
to all the neighbors. For each link of the communication graph rij we allocate
a register fij so the listener can give feedback on the communication outcome
using a predetermined signaling system.

The interaction scheme can be represented in three steps:

1. Broadcast. The speakers broadcast information related to the proposed as-
signment for the variable;

2. Feedback. The listeners feedback the interaction outcome expressing some
information on the speaker assignment by using a standardized signal system;

3. Update. The speakers and the listeners update their state regarding the over-
all interaction outcome.

In this scheme we see that at each turn the agents update their state. The
update reflects the interaction they have experienced. In this way the agent
communication makes the system self-stabilizing. We have presented the general
interaction scheme, wherein each naming game and DCSP algorithm has its own
characterizing protocol.

2.4 Self-stabilizing Algorithms

A self-stabilizing protocol [2] has some important propierties. First, the global
stable states are the wanted solutions to our problem. Second, the system con-
figurations are divided into two classes: legal associated to solutions and illegal
associated to non-solutions. We may define the protocol as self-stabilizing if in
any infinite execution the system finds a legal system configuration that is a
global equilibrium state. Moreover, we want the system to converge from any
initial state. These properties make the system fault tolerant and able to adapt
its solutions to changes in the environment.

To make a self-stabilizing algorithm we program the agents of our distributed
system to interact with the neighbors. The agents through these interactions
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update their state trying to find a stable state in their neighborhood. Since the
algorithm is distributed many legal configurations of the agents’ states and its
neighbors’ states start arising sparsely. Not all of these configurations are mu-
tually compatible and so form incompatible legal domains. The self-stabilizing
algorithm must find a way to make the global legal state emerge from the compe-
tition between this domains. Dijkstra [2] and Collin [6] suggest that an algorithm
designed in this way can not always converge and a special agent is needed to
break the system symmetry. In this paper we will show a different strategy based
on the concept of random behavior and probabilistic transition function that we
will discuss in the next sections.

3 Generalization of the Naming Game to Solve DCSP

In the naming game, the agents want to agree on the name given to an object.
This can be represented as a DCSP, where the name proposed by each agent is the
assignment of the CSPs variable controlled by the agent, and where an equality
constraint connects all the variables. On the other hand, we can generalize the
naming game to solve DCSPs.

We attribute an agent to each variable of the CSP as in [5]. Each agent
i = 1, 2, . . .N , names its own variable xi in respect to the variable domain Di.
We restrict the constraints to binary relation Cij between variable xi and xj .
This relation can be an equality (to represent the naming game), an inequality,
or any binary relation. If xiCijxj is true, then the values of the variables xi

and xj are consistent. We define two agents as neighbors if their variables are
connected by a constraint.

The agents have a list, which is a continuously updated subset of the domain
elements. The difference between the list and the domain is that the domain
is the set of values introduced by the problem instance, and the list is the set
of variable assignments that the agent subjectively forecasts to be in the global
solution, on the basis of its past interactions. When the agent is a speaker, it
will refer to this list to choose the value to broadcast and when it is a listener,
it will use this list to evaluate the speaker broadcasted value.

At turn t = 0 the agents start an empty list, because they still do not
have information about the other variable assignments. At each successive turn
t = 1, 2, . . . an agent is randomly extracted by the central scheduler to cover the
role of the speaker, and all its neighbors will be the listeners. The communica-
tion between the speaker s and a single listener l can be a success, a failure, or a
consistency failure. Let ds and dl be respectively the speaker’s and the listener’s
assignment. Success or failure is determined when the variable assignments sat-
isfy or not the relation dsCsldl. Consistency failure occurs when the listener
does not have any assignment in its variable domain that is consistent with the
proposed speaker variable assignment.

At the end of the turn all the listeners communicate to the speaker the success,
the failure, or the consistency failure of the communication.

If all the interaction sessions of the speakers with the neighboring listeners are
successful, we will have a success update: the speaker eliminates all the assignments
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and keeps only the successful assignment; the listeners eliminate all the assign-
ments that are not consistent to the successful assignment of the speaker. If there
was one or more consistency failure the speaker eliminates its variable assignment
from the variable domain, we call this a consistency failure update. If there was
no consistency failure and just one or more failures, there will be a failure update:
the listeners update their lists adding to the set of possible assignments the set of
consistent assignments of the speaker utterance.

The interaction, at each turn t, is represented by this protocol:

1. Broadcast. If the speaker list is empty it extracts an element from its variable
domain Ds, puts it in its list and communicates it to the neighboring listeners.
Otherwise, if its list is not empty, it randomly draws an element from its list
and communicates it to the listeners. We call the broadcast assignment ds.

2. Feedback. Then the listeners calculate the consistant assignment subset K and
the consistant domain subset K ′:
– Consistency evaluation. Each listener uses the constraint defined by the

edge, which connects it to the speaker, to find the consistent elements dl

to the element ds received from the speaker. The elements dl that it com-
pares with ds are the elements of its list. These consistent elements form
the consistent elements subset K. We define K = {dl ∈ list|dsCsldl}. If
K is empty the listeners compare each element of its variable domain Dl

with the element ds, to find a consistent domain subset K ′. We define
K ′ = {dl ∈ Dl|dsCsldl}.

The consistent elements subset K and the consistent domain subset K ′ de-
termine the following feedback:
– Success. If the listener has a set of elements dl consistent to ds in its list

(K is not empty), there is a success.
– Consistency failure. If the listener does not have any consistent elements

dl to ds in its list (K is empty), and if no element of the listener variable
domain is consistent to ds (K ′ is empty), there is a consistency failure.

– Failure. If the listener does not have any dl consistent elements to ds in
its list (K is empty), and if a non empty set of elements of the listener
variable domain are consistent to ds (K ′ is not empty), there is a failure.

3. Update. Then we determine the overall outcome of the speaker interaction
on the basis of the neighbors’ feedback:
– Success update. This occurs when all interactions are successful. The

speaker and the neighbors cancel all the elements in their list and update
it in the following way: the speaker stores only the successful element ds

and the listener stores the consistent elements in K.
– Consistency failure update. This occurs when there is at least one con-

sistency failure interaction. The speaker must eliminate the element ds

from its variable domain (this can be seen as a step of local consistency
pruning). The listeners do not change their state.

– Failure update. This occurs in the remaining cases. The speaker does not
update its list. The listeners update their lists by adding the set K ′ of
all the elements consistent with ds to the elements in the list.
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We can see that in the cases where the constraint xiCijxj is an equality, the
subset of consistent elements to xi is restricted to one assignment of xj . For this
assignment of the constraint xiCijxj we obtain the naming game as previously
described. Our contribution to the interaction protocol is to define K and K ′

since in the naming game the consistent listener assignment dl to the speakers
assignment ds is one and only one (dl = ds). This is fundamental to solve general
CSP instances. Moreover, in the naming game there is only one speaker and one
listener at each turn. Under this hypothesis the agents were not always able to
enforce local consistency (e.g.: graph coloring of a completely connected graph).
Thus we had to extend the interaction to all the speaker neighbors and let all
the neighbors be listeners.

At each successive turn the system evolves through the agents interactions in
a global equilibrium state. In the equilibrium state all the agents have only one
element for their variable and this element must satisfy the constraint xiCijxj

with the element chosen by the neighboring agents. We call this the state of
global consensus. Once in this state the interactions are always successful. The
probability to transit to a state different from the global consensus state is zero,
for this reason the global consensus state is referred to as an absorbing state. We
call the turn at which the system finds global consensus convergence turn tconv.

Interaction Example. As an example we can think of the interaction between
a speaker and its neighbors on a graph coloring instance. If the speakers list is
empty its draws a random element from its domain and puts it the list. If the
speakers list is not empty he draws a random element from the elements on this
list. Let’s say he picks the color red this will be its broadcast ds = ‘red′. Each
listener will use this value to compute K and K ′. First the listener will determine
which elements in its list are different from red: K = {dh ∈ list|‘red′ �= dh}. If K
is empty it will find the elements on its domain Dh which are different from red:
K ′ = {dh ∈ Dh|‘red′ �= dh}. Once the listener has calculated K and K ′ he can
determine the feedback. If K is not empty the listener will feedback a success. If
K ′ is not empty the listener will feedback a failure. If K and K ′ are empty the
listener will feedback a consistency failure. At this point the speaker will use the
feedback information to choose the update modality. If all the listeners feedback
success, this means that they have colors different from red in their list. The
speaker chooses to have a success update and this means that it deletes all the
colors from its list and keeps only the element red. The listeners contrarily delete
the red element in their list if there is one. If one or more listeners feedback a
failure then the speaker will not change its list, but the listeners will add the
elements in K ′ in their list. In this case, this means that the listener will have
in its list all the colors different from red, plus red, if this color was already in
the listener list.

Simple Algorithm Execution. The N -Queens Puzzle is the problem of plac-
ing N queens on a N × N chessboard without having them be mutually cap-
turable. This means that there can not be two queens that share the same row,
column, or diagonal. This is a well known problem and has been solved linearly
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t=7, s=1, b=0.
l=0, K={2}, K'={}: S.
l=2, K={2,3}, K'={}: S.
l=3, K={3,1}, K'={}: S.
Success update

t=8, s=1, b=0.
l=0, K={2}, K'={}: S.
l=2, K={2,3}, K'={}: S.
l=3, K={3,1}, K'={}: S.
Success update

t=9, s=0, b=2.
l=1, K={0}, K'={}: S.
l=2, K={3}, K'={}: S.
l=3, K={3,1}, K'={}: S.
Success update

t=10, s=1, b=0.
l=0, K={2}, K'={}: S.
l=2, K={3}, K'={}: S.
l=3, K={3,1}, K'={}: S.
Success update

t=11, s=0, b=2.
l=1, K={0}, K'={}: S.
l=2, K={3}, K'={}: S.
l=3, K={3,1}, K'={}: S.
Success update

t=12, s=3, b=1.
l=0, K={2}, K'={}: S.
l=1, K={0}, K'={}: S.
l=2, K={3}, K'={}: S.
Success update

t=1, s=3, b=3.
l=0, K={}, K'={1,2}: F.
l=1, K={}, K'={0.2}: F.
l=2, K={}, K'={0,1}: F.
Failure update

t=2, s=0, b=2.
l=1, K={0}, K'={}: S.
l=2, K={1}, K'={}: S.
l = 3, K={3}, K'={}: S.
Success update

t=3, s=0, b=2.
l=1, K={0}, K'={}: S.
l=2, K={1}, K'={}: S.
l=3, K={3}, K'={}: S.
Success update

t=4, s=3, b=3.
l=0, K={2}, K'={}: S.
l=1, K={0}, K'={}: S.
l=2, K={1}, K'={}: S.
Success update

t=5, s=1, b=0.
l=0, K={2}, K'= {}: S.
l=2, K={}, K'={2,3}: F.
l=3, K={3}, K'={}: S.
Failure update

t=6, s=2, b=3.
l=0, K={2}, K'={}: S.
l=1, K={0}, K'={}: S.
l=3, K={}, K'={0,1}: F.
Failure update

Fig. 1. Single algorithm run for the N-Queens Puzzle with N = 4

by specialized algorithms. Nevertheless it is considered a classical benchmark
and we use it to show how our algorithm can solve different instances. To reduce
the search space we assign the variables of a different column to each queen.
We can do this because if there were more then one queen in a column, they
would have been mutually capturable. In this way each of our agents will have
as its domain the values of a distinct column and all the agents will be mutu-
ally connected by an edge in the graph representing all the constraints. In the
example we show a N -Queens Puzzle with N = 4. Each agent (queen) is labeled
after its column with numbers from zero to three from left to right. The rows
are labeled from the bottom with numbers from zero to three. In the Figure 1
we show how the algorithm explores the solution space randomly and how it
evolves at each turn t. We write the speaker s that is extracted at each turn
and its broadcasted value b. Then we write the listeners l, their respective K,
K ′, and the feedbacks. At the end we write the updates. The picture represents
graphically the evolution of the agent’s list at the end of each turn.

At turn t = 1 (see Fig.1) speaker s = 3 is randomly drawn. The variable
controlled by this speaker is the position of the queen on the last column of
the chessboard. The speaker has an empty list, hence it draws from its variable
domain the element ds = 3 which corresponds to the highest row of its column.
The speaker add this new element to its list. Since all the agent are connected, all
the agents apart from the speaker are listeners. Their lists are empty therefore
K is empty. Thus they compute K ′ from the variable domain. The listeners
feedback failure, thus the speaker replies with a failure update. The listeners
add the elements of their respective K ′ to their lists. The picture in fig.1 shows
the elements in the agents’ lists at the end of the turn. At turn t = 2 speaker
s = 0 is drawn and it broadcasts the element ds = 2. All the listeners have
a consistent element in their list, therefore, their Ks are not empty, and they
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feedback a success. The listeners delete their lists and add the elements in their
K. At turn t = 3 the speaker s = 0 speaks again and broadcasts the same
element ds = 2. Therefore, the listener computes the same Ks of before, and
feedback a success. Thus we have a success update but since the Ks are the
same the system does not change. At turn t = 4 the speaker s = 0 is drawn and
broadcast the same variable ds = 3 that it had broadcasted at the first turn.
Since all the elements in the listeners’ lists are still consistent to this broadcast,
the algorithm has a success update and the agents’ lists remain the same. At
turn t = 5 a new speaker is drawn s = 1, it broadcasts ds = 0. The listeners
zero and three have a consistent element to this broadcast, therefore their K
is not empty. Furthermore, listeners two has no consistent elements to put in
K, and finds the rows two and three from its variable domain to be consistent
to this broadcast. The overall outcome is a failure and thus we have a failure
update. The listeners zero and two have empty K ′s so they do not change their
lists and listener two adds two new elements in its lists. At turn t = 6 agent two
speaks and broadcasts the element ds = 3. Agent three does not have consistent
elements to this broadcast and thus feedbacks a failure. Then we have a failure
update and agent two adds two elements to its list. At turn t = 7 agent one
speaks and broadcasts the element ds = 0. All the listeners have consistent
elements therefore their Ks are not empty. We get a success update. The agents
two and three both delete an element from their lists which is not consistent
to the speaker broadcast. At turn t = 8 agent one speaks again and broadcasts
the same element ds = 0. The system is unchanged. At turn t = 9 agent zero
speaks and broadcasts the element ds = 2. All listeners have consistent elements,
therefore, there is a success update. Listener two deletes an element which was
not consistent with the speaker broadcast. At turn t = 10 agent one speaks
and broadcasts the element ds = 0. All listeners have consistent elements to
this broadcast, there is a success update, and the system is unchanged. At turn
t = 11 agent zero speaks and broadcasts the element ds = 2. All listeners have
consistent elements to this broadcast, there is a success update, and the system
is unchanged. At turn t = 12 agent three speaks and broadcasts the element
ds = 1. All listeners have consistent elements to this broadcast, there is a success
update. Since the speaker had a different element in its list from the broadcasted
element ds = 1, he deletes this other element from its list. At this point all the
elements in the agents lists are mutually consistent. Therefore, all the successive
turns will have success updates and the system will not change any more. The
system has found its global equilibrium state which is a solution of the puzzle
we intended to solve.

3.1 Difference with Prior Self-stabilizing DCSPs

An agent in our algorithm is a finite state-machine. The agent (finite state-
machine) evolution in time is represented by a transition function which depends
on its state and its neighbors’ states in the current turn. In particular the com-
munication outcome is determined by the local state, where for local state s1 we
consider the agent state and its neighbors’ state all together.
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The communication outcome in the prior DCSPs can be forecast by the tran-
sition function. The transition function of an agent, which state is ai, in the
local state si is one and one only, and we can forecast exactly its next state ai+1

and the next local state si+1.
Let uniform protocols be distributed protocols, in which all the nodes are

logically equivalent and identically programmed. It has been proved that in par-
ticular situations uniform self-stabilizing algorithms can not always solve the
CSPs ([6]), in particular if we consider the ring ordering problems. In ring or-
dering problems we have N numbered nodes {n1, n2, . . . , nN} ordered on a cycle
graph. Each node has a variable, the variable assignment of the i + 1-th node
ni+1 is the consecutive number of the variable assignment of the i-th node ni in
modulo N . The variable domain is {0, 1, . . . , N − 1} and every link has the con-
straint {ni = j, ni+1 = (j + 1) mod N |0 ≤ j ≤ N}. Dijkstra [2] and Collin [6]
propose dropping the uniform protocol condition to make the problem solvable.

Our protocol overcomes this by introducing random behavior. Moreover, the
agent state is defined by an array that attributes a zero or a one to each element
of the agent domain. The array element will be zero if the element is not in the
list, and one if the element is in the list. This array determines a binary number
ai, which defines the state of the agent. If we know the states of all the agents,
the transition of each agent from state ai to aj is uniquely determined once we
know the agent that will be the speaker, the agents that will be the listeners,
and the element that will be broadcasted by the speaker (Fig.2(a)).

Since the speaker will be chosen randomly, we can compute the probability
for each agent being a speaker Ps. From this information, since we know the
underling graph and that all his neighbors will be listeners, we can compute the
probability for each agent to be a listener Pl. Knowing the speaker state, we can
compute the probability for each element to be broadcast Pb. At this point we
may be able to compute the probabilistic transition function T (Ps, Pl, Pb), which
will depend on the probabilities that we have just defined (Fig.2(b)).

Agent i
State si

Agent j
State sj

Fixed speaker,
hearer, and broadcast 

Agent i
State si

Agent j
State sj

Agent k
State sk

Agent z
State sz

Tij Tik Tiz

The transition function Tij depends on
the probabilities Ps, Pl, Pe.

(a) (b)

Fig. 2. (a) Shows that once we determine the speaker state, the broadcast, and the
listener state we are able to determine the speaker and listeners’ transitions. (b) Shows
that since we have the speaker probability Ps, the broadcast probability Pb, and the lis-
tener probability Pl we can determine the probabilistic transition function T (Ps, Pl, Pb).
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Fig. 3. The plot shows the ring ordering problem with N nodes, we see for the con-
vergence turn tconv the scaling proportion: tconv ∝ N3.3

In this setting the agent state at at turn t can now be represented by a discrete
distribution function and the transition function is now a Markovian Chain, the
arguments of which are the transition probabilities pj between the local states si

and sj . Thus we speak of a probabilistic transition function, which represents the
probability of finding the system in a certain state sj starting from si at time t.
This behavior induces the algorithm to explore the state space randomly, until it
finds the stable state that represents our expected solution. In the following plot
we show the convergence turn tconv scaling with the size N of the ring ordering
problem. We average the convergence turn tconv on ten runs of our algorithm
for a set size N . Then we plot this point in a double logarithmic scale to evince
the power law exponent of the function. We found that tconv ∝ N3.3.

3.2 Analytical Description

In this section we are going probabilistically analyze how our algorithm solves
graph problems for the following graphs structures: path graph and completely
connected graph. These are simple limiting cases that help us to picture how our
algorithm evolves in more general cases.

Path graph. The way our algorithm solves a path graph coloring instance can
be described through analytical consideration; similar observations can then be
extended to the cycle graph. The system dynamics are analogous to the naming
game on a one dimensional network [8]. To each node of the path graph we
attribute a natural number in increasing order, from the first node of the path,
to which we attribute 1, to the last node, to which we attribute N . We can see



26 S. Bistarelli and G. Gosti

that from a global point of view there are two final states: one state with odd
number nodes of one color and even number nodes of the second color; the other
state is inverted. At the beginning, when t < N/3, the system is dominated by
new local consistent nodes’ neighborhoods, which emerge sparsely and propagate
to the connected nodes. The speaker has an empty list and it has to draw the
assignment from the two element variable domain. In this way it selects one
of the two final states to which it starts to belong. By communicating with its
neighbors it makes them choose the same final state. We have in this way a small
consistent domain of three agents that agree on the final state.

Since the speakers are chosen by the scheduler randomly, after some time,
t > N/3, all the agents have been speakers or listeners at least once. Thus we
find approximately N/3 domains dispersed in little clusters of generally three
agents. Each of these domains belong to one final state or to the other.

At this point the domains start to compete. Between two domains we see an
overlapping region appear. This region is constituted by agents that have more
than one element in their lists. We can refer to them as undecided agents that
belong to both domains, since the agents are on a path graph this region is linear.
By probabilistic consideration we can see that this region tends to enclose less
than two agents. For this reason we define the region that they form as a border,
for a path graph of large size N the border width is negligible. So we approximate
that only one agent is within this border. Under this hypothesis we can evaluate
the evolution of the system as a diffusion problem, in which the borders move in
a random walk on the path graph. When a domain grows over another domain,
the second domain disappears. Thus the relation between the cluster growth and
time is Δx ∝ ( t

ξ )1/2, where ξ is the time needed for the random walk to display
a deviation of ±1 step from its position. The probability that the border will
move one step right or left on the path graph is ∝ 1/N , proportional to the
probability that an agent on the border or next to the border is extracted. Thus
we can fix the factor ξ ∝ 1/N . Since the lattice is long N we find the following
relation for the average convergence turn tconv ∝ N3. The average convergence
turn tconv is the average time at which the system finds global consistency. To
calculate this we add the weighted convergence turns of all the algorithm runs,
where the weights are the probabilities of the particular algorithm run.

Completely connected graph. Since all the variables in the graph coloring
of a completely connected graph are bound by a inequality constraint, these
variables must all be different. Thus N colors are necessary in this graph. To
color the completely connected graph the agents start with a color domain of
cardinality N .

At the beginning all the agents’ lists are empty. The first speaker chooses a
color and since all the agents are neighbors, it communicates with all of them.
The listener selects the colors from the variable domain consistent to the color
picked by the speaker. In the following turns the interactions are always suc-
cessful. Two cases may be observed: the speaker has never spoken so it selects
a color from its list and it shows the choice while the listeners cancel the same
color from their lists; or the speaker has already spoken once, so there are no
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changes in the system because it already has only one color and all the other
agents have already deleted this assignment. Since at each turn only one agent
is a speaker, to let the system converge all the agents have to speak once.

Let N be the number of agents and n(t − 1) the number of agents that have
spoken once before turn t. The probability that a new agent will speak at turn
t considering that n(t − 1) agents have spoken already at turn t − 1 is:

P (X(t)
n = 1) = 1 − (

n

N
) (1)

P (X(t)
n = 0) =

i

N
. (2)

Where X
(t)
n is a random variable that is equal to one, when a new agent speaks

at turn t, and equal to zero, when the agent that speaks at turn t has already
spoken once. We calculate the probability that all agents have spoken once at
a certain turn t, this is the probability P (tconv) that the system converges at
turn t. We use this probability to compute the weighted average turn at which
the system converges. This will be the weighted average convergence turn tconv.
We calculate this average by calculating the absorbing time of the corresponding
absorbing Markow chain problem. If we consider as the beginning state, the state
in which no agent has spoken n(t = 0) = 0, we find the convergence time:

tconv = N

N−1∑

j=1

1
N − j

= N

N−1∑

k=1

1
k
∼ N log(N − 1) (3)

This, as we stated above corresponds to the time of convergence of our system,
when it is trying to color a completely connected graph.

3.3 Algorithm Test

We have tested the above algorithm in the following classical CSP problems:
graph coloring and n-queens puzzle. We plotted the graph of the convergence
turn tconv scaling with the number N of the CSP variables, each point was
measured by ten runs of our algorithm. We considered four types of graphs for
the graph coloring: path graphs, cycle graphs, completely connected graphs, and
Mycielsky graphs.

N-Queens Puzzle. In the case of the N -queens puzzle with N variables, we
measure the scaling proportion tconv ∝ N4.2 for the convergence turn (Fig. 4).

Graph Coloring. In the study of graph coloring we presented four different
graph structures:

– path graphs
– cycle graphs
– completely connected graph
– Mycielsky graphs.
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Fig. 4. The plot shows the N-queens puzzle with N variables, we see for the conver-
gence turn tconv the scaling proportion: tconv ∝ N4.2. The points on this graph are
averaged on ten algorithm runs.
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Fig. 5. The plot shows the graph coloring in the case of path graphs and special 2-
colorable cycle graphs with 2 colors. The convergence turn tconv of the path graphs
and cycle graphs exhibit a power law behavior tconv ∝ N3.0. The cycle graph exhibits
a faster convergence. The points on this graph are averaged on ten algorithm runs.

In the study of the path graph and the cycle graph we have restricted ourselves
to the 2 − chromatic cases: all the path graphs and only the even number node
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Fig. 6. The plot shows the graph coloring in the case of a completely connected graph
with N colors: in this case we find that the convergence turn is tconv ∼ N log(N). The
points on this graph are averaged on ten algorithm runs.

cycle graphs. Thus we imposed the agent variable domain to two colors. In
this context the convergence turn tconv of the path graph and the cycle graph
exhibit a power law behavior tconv ∝ N3.0. The cycle graph exhibits a faster
convergence (Fig. 5). We see from these measurements that the power law of
the convergent time scaled with the number of nodes N is compatible with our
analytical considerations.

The graph coloring in the case of a completely connected graph always needs at
least N colors: in this case we find that the convergence turn is tconv ∝ N log(N)
(Fig. 6).

The Mycielski graph [15] of an undirected graph G is generated by the My-
cielski transformation on the graph G and is denoted as μ(G) (see Fig.7). Let
the N number of nodes in the graph G be referred to as v1, v2, . . . , vN . The
Mycielski graph is obtained by adding to graph G N + 1 nodes: N of them will
be named u1, u2, . . . , uN and the last one w. We will connect with an edge all
the nodes u1, u2, . . . , uN to w. For each existing edge of the graph G between
two nodes vi and vj we include an edge in the Mycielski graph between vi and
uj and between ui and vj .

The Mycielski graph of graph G of N nodes and E edges has 2N + 1 nodes
and 2E + N edges.

Iterated Mycielski transform applications starting from the null graph, gen-
erates the graphs Mi = μ(Mi−1). The first graphs of the sequence are M0 the
null graph, M1 the one node graph, M2 the two connected nodes graph, M3 the
five nodes cycle graph, and M4 the Grötzsch graph with 11 vertices and 20 edges
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Fig. 7. Mycielski transformation of a five node cycle graph

Fig. 8. Mycielski graph sequence M1, M2, M3, M4, and M5[16]

Table 1. Convergence turn tconv of the Mycielski graph coloring. Mi is the Mycielski
graph identification, N is the number of nodes, E is the number of edges, k the optimal
coloring, and tconv the convergence turn.

Mi N E k optimal coloring tconv

M4 11 20 4 32 ± 2
M5 23 71 5 170 ± 20
M6 47 236 6 3300 ± 600
M7 95 755 7 (1.1 ± 0.2) · 106

(see Fig. 8). The number of colors k needed to color a graph Mi of the Mycielski
sequence is, k = 1 ([15]).

These graphs are particularly difficult to solve because they do not possess
triangular cliques, moreover, they have cliques of higher order and the coloring
number increases each Mycielski transformation ([14]). We ran our algorithm
to solve the graph coloring problem with the known optimal coloring. Table 1
shows for each graph of the Mycielski sequence Mi, the number of nodes N , the
number of edges E, the minimal number of colors needed k and the convergence
turn tconv of our algorithm.
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4 Conclusions and Future Work

Our aim is to develop a probabilistic algorithm able to find the solution of a CSP
instance. In the study of this method we are trying to fully exploit the power of
distributed calculation. To do this we generalize the naming game algorithm, by
letting the CSP solution emerge, rather than being the conclusion of a sequence
of statements. As we saw in Subsection 3.2 our algorithm is based on the random
exploration of the system state space. Our algorithm travels through the possible
states until it finds the absorbing state, where it stabilizes. These ergodic features
guarantee that the system to has a probability equal to one to converge [13] for
long times t → +∞. Unfortunately this time depending on the particular CSP
instance can be too long for practical use.

This is achieved through the union of new topics addressed in statistical
physics (the naming game), and the abstract framework posed by constraint
solving.

In future work we will test the algorithm on a uniform random binary CSP
to fully validate this method. We also expect to generalize the communication
model to let more then one agent speak at the same turn. Once we have done
this we can let the agents speak spontaneously without a central scheduler.
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