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Preface

Constraint programming (CP) is a powerful programming paradigm for the
declarative description and the effective solving of large combinatorial problems.
Based on a strong theoretical foundation, it is increasingly attracting commercial
interest. Since the 1990s, CP has been deployed by many industry leaders, in
particular to model heterogeneous optimization and satisfaction problems. Ex-
amples of application domains where such problems naturally arise, and where
constraint programming has made a valuable contribution, are scheduling, pro-
duction planning, communication networks, routing, planning of satellite mis-
sions, robotics, and bioinformatics.

This volume contains the papers selected for the post-proceedings of the 13th
International Workshop on Constraint Solving and Constraint Logic Program-
ming (CSCLP 2008) held during June 18–20, 2008 in Rome, Italy. This workshop
was organized as the 13th meeting of the working group on Constraints of the
European Research Consortium for Informatics and Mathematics (ERCIM), con-
tinuing a series of workshops organized since the creation of the working group
in 1997. A selection of papers of these annual workshops plus some additional
contributions have been published since 2002 in a series of volumes which illus-
trate the evolution in the field, under the title “Recent Advances in Constraints”
in the Lecture Notes in Artificial Intelligence series.

This year there were 14 submissions to the proceedings. Each submission
was reviewed by three reviewers and the Program Committee decided to accept
nine papers for publication in this volume. The papers in this volume present
original research results, as well as applications, in many aspects of constraint
solving and constraint logic programming. Research topics that can be found
in the papers are first-order constraints, symmetry breaking, global constraints,
constraint optimization problems, distributed constraint solving problems, soft
constraints, as well as the analysis of application domains such as cumulative
resource problems and hybrid systems.

The editors would like to take the opportunity to thank all the authors who
submitted a paper to this volume, as well as the reviewers for their helpful and
invaluable work. The organization of the CSCLP 2008 workshop and the publi-
cation of this volume was made possible thanks to the support of the European
Research Consortium for Informatics and Mathematics (ERCIM), the Planning
and Scheduling Team (PST) at the Institute of Cognitive Science and Technol-
ogy (ISTC-CNR) of Rome, the Association for Constraint Programming (ACP),
and the Department of Pure and Applied Mathematics, University of Padova,
Italy. We hope that the present volume is useful to everyone interested in the
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recent advances and trends in constraint programming, constraint solving,
problem modeling, and applications.

May 2009 Angelo Oddi
François Fages

Francesca Rossi
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From Marriages to Coalitions: A Soft CSP
Approach

Stefano Bistarelli1,2,3, Simon Foley4, Barry O’Sullivan4,5,
and Francesco Santini1,2,6
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{stefano.bistarelli,francesco.santini}@iit.cnr.it

3 Dipartimento di Matematica e Informatica, Università di Perugia, Italy
bista@dipmat.unipg.it

4 Department of Computer Science, University College Cork, Ireland
{s.foley,b.osullivan}@cs.ucc.ie

5 Cork Constraint Computation Centre, University College Cork, Ireland
b.osullivan@4c.ucc.ie

6 IMT - Scuola di Studi Avanzati, Lucca, Italy
f.santini@imtlucca.it

Abstract. In this work we represent the Optimal Stable Marriage prob-
lem as a Soft Constraint Satisfaction Problem. In addition, we extend this
problem from couples of individuals to coalitions of generic agents, in or-
der to define new coalition-formation principles and stability conditions.
In the coalition case, we suppose the preference value as a trust score,
since trust can describe the belief of a node in the capabilities of an-
other node, in its honesty and reliability. Semiring-based soft constraints
represent a general and expressive framework that is able to deal with
distinct concepts of optimality by only changing the related c-semiring
structure, instead of using different ad-hoc algorithms. At last, we pro-
pose an implementation of the classical OSM problem using integer linear
programming tools.

1 Introduction

The Stable Marriage (SM) problem [13,19] and its many variants [16] have been
widely studied in the literature, because of the inherent appeal of the problem
and its important practical applications. A classical instance of the problem
comprises a bipartite set of n men and n women, and each person has a preference
list in which they rank all members of the opposite sex in a strict total order.
Then, a match MT is simply a bijection between men and women. A man mi and
a woman wj form a blocking pair for MT if mi prefers wj to his partner in MT
and wj prefers mi to her partner in MT . A matching that involves no blocking
pair is said to be stable, otherwise the matching is unstable. Even though the
SM problem has its roots as a combinatorial problem, it has also been studied
in game theory, economics and in operations research [10].

A. Oddi, F. Fages, and F. Rossi (Eds.): CSCLP 2008, LNAI 5655, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 S. Bistarelli et al.

However, in this paper we mainly concentrate on its optimization version, the
Optimal Stable Marriage (OSM) problem [16,19], which tries to find a match
that is not only stable, but also “good” according to some criterion based on
the preferences of all the individuals. Classical solutions deal instead only with
men-optimal (or women-optimal) marriages, in which every man (woman), gets
his (her) best possible partner.

We propose soft constraints as a very expressive framework where it is pos-
sible to cast different kinds of optimization criteria by only modifying the c-
semiring [1,4] structure on which the corresponding Soft Constraint Satisfaction
Problem (SCSP) [1] is based. In this sense, soft constraints prove to be a more
general solving framework with respect to the other ad-hoc algorithms presented
in literature for each different optimization problem [16]. In fact, we can also
deal with problem extensions such as incomplete preference lists and ties in the
same list. Therefore, in this paper we build a bridge between the OSM problems
and soft constraint satisfaction, as previously done between SM and classic con-
straint satisfaction [10,23]. Moreover, we use integer linear programming (ILP)
as a general method to solve these problems. The classical SM problem (thus,
the non-optimal version of the problem) has been already studied and solved
by using crisp constraints in [10,23]. In [10] the authors present two different
encodings of an instance of SM as an instance of a constraint satisfaction prob-
lem (CSP). Moreover, they show that arc consistency propagation achieves the
same results as the classical Extended Gale/Shapley (EGS) algorithm, thus easily
deriving the men/women-optimal solution [10].

The second main result provided in the paper relates to extending the stable
marriage definition from pairs of individuals to coalitions of agents. A coalition
can be defined as a temporary alliance among agents, during which they co-
operate in joint action for a common task [14]. Moreover, we use trust scores
instead of plain preferences in order to evaluate the relationships among agents.
Therefore, the notion of SM stability is translated to coalitions, and the prob-
lem is still solved by exploiting the optimization point of view: the final set of
coalitions is stable and is the most trustworthy with respect to the used trust
metric, represented by a c-semiring [2,6,22]. Even for this coalition extension we
use soft constraints to naturally model the problem.

The remainder of this paper is organized as follows. In Section 2 we summarize
the background on soft constraints, while Section 3 does the same for the OSM
problem. In Section 4 we represent the OSM problem with soft constraints and
we solve it with ILP. Section 5 extends the OSM problem to coalitions, still
representing the problem with soft constraints. Finally, Section 6 presents our
conclusions and directions for future work.

2 Soft Constraints

A c-semiring [1,4] S (or simply semiring in the following) is a tuple 〈A, +,×,0,1〉
where A is a set with two special elements (0,1 ∈ A) and with two operations
+ and × that satisfy certain properties: + is defined over (possibly infinite)
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sets of elements of A and thus is commutative, associative, idempotent, it is
closed and 0 is its unit element and 1 is its absorbing element; × is closed,
associative, commutative, distributes over +, 1 is its unit element, and 0 is
its absorbing element (for the exhaustive definition, please refer to [4]). The +
operation defines a partial order ≤S over A such that a ≤S b iff a + b = b; we
say that a ≤S b if b represents a value better than a. Other properties related
to the two operations are that + and × are monotone on ≤S, 0 is its minimum
and 1 its maximum, 〈A,≤S〉 is a complete lattice and + is its lub. Finally, if
× is idempotent, then + distributes over ×, 〈A,≤S〉 is a complete distributive
lattice and × its glb.

A soft constraint [1,4] may be seen as a constraint where each instantiation
of its variables has an associated preference. Given S = 〈A, +,×,0,1〉 and an
ordered set of variables V over a finite domain D, a soft constraint is a function
which, given an assignment η : V → D of the variables, returns a value of the
semiring. Using this notation C = η → A is the set of all possible constraints
that can be built starting from S, D and V . Any function in C involves all the
variables in V , but we impose that it depends on the assignment of only a finite
subset of them. So, for instance, a binary constraint cx,y over variables x and y, is
a function cx,y : V → D → A, but it depends only on the assignment of variables
{x, y} ⊆ V (the support of the constraint, or scope). Note that cη[v := d1] means
cη′ where η′ is η modified with the assignment v := d1. Note also that cη is the
application of a constraint function c : V → D → A to a function η : V → D;
what we obtain, is a semiring value cη = a. 0̄ and 1̄ respectively represent the
constraint functions associating 0 and 1 to all assignments of domain values; in
general, the ā function returns the semiring value a.

Given the set C, the combination function ⊗ : C × C → C is defined as
(c1 ⊗ c2)η = c1η × c2η (see also [1,4]). Informally, performing the ⊗ or between
two constraints means building a new constraint whose support involves all the
variables of the original ones, and which associates with each tuple of domain
values for such variables a semiring element which is obtained by multiplying
the elements associated by the original constraints to the appropriate sub-tuples.
The partial order ≤S over C can be easily extended among constraints by defin-
ing c1 	 c2 ⇐⇒ c1η ≤ c2η. Consider the set C and the partial order 	. Then
an entailment relation �⊆ ℘(C) × C is defined such that for each C ∈ ℘(C) and
c ∈ C, we have C � c ⇐⇒ ⊗

C 	 c (see also [1]).
Given a constraint c ∈ C and a variable v ∈ V , the projection [1,3,4] of c over

V −{v}, written c ⇓(V \{v}) is the constraint c′ such that c′η =
∑

d∈D cη[v := d].
Informally, projecting means eliminating some variables from the support.

A SCSP [1] defined as P = 〈C, con〉 (C is the set of constraints and con ⊆ V ,
i.e. a subset the problem variables). A problem P is α-consistent if blevel(P ) =
α [1]; P is instead simply “consistent” iff there exists α >S 0 such that P is α-
consistent [1]. P is inconsistent if it is not consistent. The best level of consistency
notion defined as blevel(P ) = Sol(P ) ⇓∅, where Sol(P ) = (

⊗
C) ⇓con [1].
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3 The Optimal Stable Marriage Problem

An instance of the classical stable marriage problem (SM) [9] comprises n men
and n women, and each person has a preference list in which all members of
the opposite sex are ranked in a strict total order. All men and women must
be matched together in a couple such that no element x of couple a prefers an
element y of different couple b that also prefers x (i.e. the stability condition of
the pairing). If such an (x, y) exists in the match, then it is defined as blocking;
a match is stable if no blocking pairs exist.

The problem was first studied by Gale and Shapley [9]. They showed that
there always exists at least a stable matching in any instance and they also
proposed a O(n2)-time algorithm to find one, i.e. the so-called Gale-Shapley (GS)
algorithm. An extended version of the GS algorithm, i.e. the EGS algorithm [13],
avoids some unnecessary steps by deleting from the preference lists certain (man,
woman) pairs that cannot belong to a stable matching. Notice that, in the man-
oriented version of the EGS algorithm, each man has the best partner (according
to his ranking) that he could obtain, whilst each woman has the worst partner
that she can accept. Similar considerations hold for the woman-oriented version
of EGS, where men have the worst possible partner.

For this reason, the classical problem has been extended [9] in order to find
a SM under a more equitable measure of optimality, thus obtaining an Op-
timal SM problem [12,15,16,19]. For example, in [15] the authors maximize
the total satisfaction in a SM by simply summing together the preferences of
both men, pM (mi, wj), and women, pW (mi, wi), in the SM given by MT =
{(mi, wj), . . . , (mk, wz)}. This sum needs to be minimized since pM (mi, wj) rep-
resents the rank of wj in mi’s list of preferences, where a low rank position stands
for a higher preference, i.e. 1 belongs to the most preferred partner; similar con-
siderations hold for the preferences of women, pW (mi, wj), which represents the
rank of mi in wi’s list of preferences. Therefore, we need to minimize this egali-
tarian cost [15]:

min

⎛
⎝ ∑

(mi,wj)∈MT

pM (mi, wj) +
∑

(mi,wj)∈MT

pW (mi, wj)

⎞
⎠ (1)

This optimization problem was originally posed by Knuth [15]. Other optimiza-
tion criteria are represented by minimizing the regret cost [12] as in (2):

min max
(mi,wj)∈MT

max{pM (mi, wj), pW (mi, wj)} (2)

or by minimizing the sex-equalness cost [17] as in (3):

min

∣∣∣∣∣∣
∑

(mi,wj)∈MT

pM (mi, wi) −
∑

(mi,wj)∈MT

pW (mi, wj)

∣∣∣∣∣∣ (3)

Even though the number of stable matchings for one instance grows exponen-
tially in general [16], (1) and (2) have been already solved in polynomial time using
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ad-hoc algorithms such as [15] and [12], respectively, by exploiting a lattice struc-
ture that condenses the information about all matchings. On the contrary, (3) is an
NP-hard problem for which only approximation algorithms have been given [17].

In the following, we consider preference as a more general weight, taken from
a semiring, instead of a position in the preference’s list of an individual; thus,
we suppose to have weighted preference lists [15]. A different but compatible,
with respect to OSM, variant of the SM problem allows incomplete preference’s
lists, i.e. the SM with incomplete lists (SMI ), if a person can exclude a partner
whom she/he does not want to be matched with [16]. Another extension is
represented by preference lists that allow ties, i.e. in which it is possible to
express the same preference for more than one possible partner: the problem is
usually named as SM with ties, i.e. SMT [16]. In this case, three stability notions
can be proposed [16]:

– Given any two couples (mi, wj) and (mk, wz), in a super stable match
a pair (mi, wz) is blocking iff pM (mi, wz) ≥ pM (mi, wi) ∧ pW (mi, wz) ≥
pW (mk, wz);

– In a strongly stable match a pair (mi, wz) is blocking iff pM (mi, wz) >
pM (mi, wi) ∧ pW (mi, wz) ≥ pW (mk, wz) or pM (mi, wz) ≥ pM (mi, wi) ∧
pW (mi, wz) > pW (mk, wz); and

– In a weakly stable match a pair (mi, wz) is blocking iff pM

(mi, wz) > pM (mi, wi) ∧ pW (mi, wz) > pW (mk, wz).

Hence, if a match is super stable then it is strongly stable, and if it is strongly
stable then it is weakly stable [16]. Allowing ties in preferences means that
objectives (1), (2) and (3) above become hard even to approximate [16]. By
joining together these two extensions, we obtain the SMTI problem: SM with
Ties and Incomplete lists [16].

The preferences of men and women can be represented with two matrices
M and W , respectively, as in Figure 2. A subset of these two matrices (for
sake of simplicity) is represented in Figure 1 as a bipartite graph, where only
the preferences of m1, m2, w1 and w2 are shown. For instance, the match
{(m1, w2), (m2, w1)} is not stable since (m1, w1) is a blocking pair: pM (m1, w1) <
pM (m1, w2)∧pW (m1, w1) < pW (m2, w1), i.e. 1 < 4∧1 < 4 (here we use < instead
of > because lower values are preferred).

xxxx
xxxx
xxxx
xxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxxm1 w1

xxxx
xxxx
xxxx
xxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxxm2 w2

1

4

3

1

1

4

3

5

Fig. 1. An OSM problem represented as a bipartite graph
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4 Representing the OSM Problem with Soft Constraints

In order to define an encoding of an OSM instance I as a SCSP instance P (see
Section 2), we introduce the set V of variables: m1, m2, . . . , mn corresponding
to men, and w1, w2, . . . , wn corresponding to women. The domain D of mi or
wj is [1, n]. For each i, j (1 ≤ i, j ≤ n), then η : V → D (as defined in Section 2)
denotes the value of variable mi and wj respectively, i.e., the partner associated
with the match. For example, η(m1) = 3 means that m1 is matched with w3.

We need three different set of soft constraints to describe an OSM problem,
according to each of the relationships we need to represent:

1. Preference constraints. These unary constraints represent the preferences
of men and women: for each of the values in the variable domain, i.e. for
each possible partner, they associate the relative preference. For example,
cmi(mi = j) = a represents the fact that the man mi has a degree of
preference value a for the woman wj (when the variable mi is instantiated
to j); on the other hand, cwj (wj = i) = b means that the same woman (wj)
has a preference for the same man (mi) equal to b; a and b are elements of
the chosen semiring set. We need 2n unary constraints: one for each man
and woman.

2. Marriage constraints. This set constrains the marriage relationships: if mi

is married with wj (i.e. η(mi) = j), then wj must be married with mi

(i.e. η(wj) = i). Formally, it can be defined by cm(mi, wj) = 0 if η(mi) =
h ∧ η(wj) = k ∧ (h �= j ∨ k �= i). We need n2 marriage constraints, one for
each possible man-woman couple.

3. Stability constraints. This set of 4-ary constraints avoids the presence of
blocking couples in the set of matches: cs(mi, mk, wj , wz) = 0 if mi and wj

are married (i.e. η(mi) = j and η(wj) = i) and if there exists a different
matched couple (mk, wz) (i.e. k �= i, z �= j and η(mk) = z and η(wz) = k)
such that cmi(mi = j) <S cmi(mi = z) ∧ cwz (wz = k) <S cwz (wz = i),
where S represents the chosen semiring (see Section 2). In previous stability
constraint definition we use <S because we are looking for a weakly stable
marriage (see Section 3). For super and strong stabilities (see Section 3) we
should instead define the stability constraints by using ≤S . Therefore, we
need n4 stability constraints of this kind.

Given this encoding, the set of consistent solutions of P is equivalent to the set
of solutions of I (i.e. an OSM problem instance). Therefore, unsatisfying the
marriage or stability constraints makes P inconsistent (see Section 2). By using
this formalization it is now possible to easily maximize the global satisfaction
of all the couples, and thus finding a solution for the OSM problem. In practice
it is possible to obtain the best possible solution of the SCSP problem being
considered by exploiting the properties of the chosen semiring operators, i.e. +
and ×. For example, we could consider the preference as a cost, and the cost of
the complete match could be obtained by summing together the costs of all the
found (non-blocking) pairs. In this case, and if we want to minimize the cost of
the n marriages, we can use the Weighted semiring [1,4], i.e. 〈R+, min, +̂, +∞, 0〉
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(+̂ is the arithmetic sum). Therefore, what we solve is exactly Objective (1) in
Section 3.

Otherwise, we could use the Fuzzy semiring 〈[0, 1], max, min, 0, 1〉 [1,4] to
maximize the “happiness” of the least sympathetic couple overall: the fuzzy
values in the interval [0, 1] represent an “happiness degree” of the marriage
relationships and are aggregated with min, but preferred with max. Again, what
we solve with this semiring is exactly Objective (2) in Section 3, if we consider
the ordering of the preferences as inverted (i.e. a high preference is better than
a lower one); this is the reason why we use max−min instead of min−max.

Finally, as an example on the expressiveness of our framework, we can use
the Probabilistic semiring 〈[0, 1], max, ×̂, 0, 1〉 [1,4] (×̂ is the arithmetic multipli-
cation) in order to maximize the probability that the obtained couples will not
split. It is also possible to maximize the “happiness” of a fixed man or woman
by setting to 1 the other preferences.

Moreover, we can represent the SMI extension reported in Section 3 by simply
declaring a preference constraint with value corresponding to 0: cmi(mi = j) = 0
if mi has not expressed a preference for wj . Further on, by having the same value
in the same preference list, i.e. cmi(mi = j) = a and cmi(mi = z) = a, we can
represent the SMT problem defined in Section 3. In Section 4.1 we consider
and solve the most general problem among those presented in Section 3, i.e. the
Optimal SMTI (OSMTI ).

Notice that such semiring structures allows us to consider also the preferences
of men and women being partially ordered (see Section 2), which is clearly more
generic and expressive with respect to the total ordering of the classical problem:
Bob could love/like Alice and Chandra more than Drew, but he could not relate
the first two girls with each other.

4.1 Specifying and Instance of the OSM Problem

In this section we solve the soft constraint formalization of the OSMTI problem
given with preference, marriage and stability constraints. To achieve this goal,
we represent and solve it as an ILP by using AMPL [8]. AMPL is a modeling lan-
guage for mathematical programming with a very general and expressive syntax.
It covers a variety of types and operations for the definition of indexing sets, as
well as a range of logical expressions. The solution can be obtained with different
solvers which can interface to AMPL; for our example we use CPLEX1. The soft
constraints can be represented with AMPL statements. The obtained SCSP can
be clearly solved also with other techniques as branch-and-bound [20], or branch-
and-bound and Symmetry Breaking via Dominance Detection (SBDD) [5]; how-
ever, the ILP solver represents a completely new approach with respect to SCSP,
and provides a bridge between the two fields.

We consider an instantiation of the (1) problem in Section 3, and therefore
the adopted semiring is 〈R+, min, +̂, +∞, 0〉, even if, as said before, we can also
solve other criteria by changing the semiring. The two matrices M and W in

1 http://www.ilog.com/products/cplex/

http://www.ilog.com/products/cplex/
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set MEN := m1 m2 m3 m4 m5 m6 ;
set WOMEN := w1 w2 w3 w4 w5 w6 ;

param M:           
          w1  w2  w3  w4  w5  w6 :=  
m1      1     4    Inf    5     5     3  
m2      3     4     6     1     5     2  
m3      1    Inf    4     2     3     5  
m4      6     1     3     4     2     1  
m5      3     1     2     4     5     6  
m6      3     3     1     6     5     4 ;

param W:           
          w1  w2  w3  w4  w5  w6 :=
m1      1     4     6     2    4     2  
m2      5     1     4     5    2     6  
m3      4     5     2     2   Inf    3  
m4      4     2     1     4    5     5  
m5      2     6     5    Inf    6     1  
m6      3    Inf    3     6    3     4 ;

Fig. 2. The data file of our example in AMPL: the sets of MEN and WOMEN and
their respective preference lists (M and W )

Figure 2 respectively represent the preference values of n = 6 men (MEN =
{m1, m2, m3, m4, m5, m6}) and n = 6 women (WOMEN = {w1, w2, w3, w4, w5,
w6}) taken from the Weighted semiring set. Notice that both M and W are
displayed Figure 2 with men on rows and women on columns, in order to improve
the readibility when comparing the two matrices. The lists of preferences of men
are represented by the rows of M , and the preferences of women are instead the
columns of W .

Since we want to deal with incomplete lists, the preference value corresponds
to the bottom element of the semiring (in Weighted semiring, it is ∞) if that
preference has not been expressed; Inf in Figure 2 is a shortcut for a very large
value that we can consider as the infinite value (e.g. 10000). For example, in
Figure 2 M [m1, w3] = ∞ means that m1 has no preference for w3. Moreover,
we can deal with ties at the same time, e.g. M [m4, w2] = M [m4, w6] = 1 in
Figure 2.

Notice that this problem could have no solution in general due to the fact
that the preference lists are incomplete and we want to find a perfect match (n
pairs). Moreover, since we have ties and we require a weakly stable matching,
the problem is NP-hard [16].

4.2 A Formalization as an Integer Linear Program

With AMPL we need to create two files storing the data of the problem (Figure 2)
and its model (Figure 3). The Marriage variable in Figure 3 corresponds to
the couples representing the best stable marriage, while the EgalitarianCost is
exactly computed as for Objective (1) in Section 3 and the goal is to minimize
it. Notice that by changing the mathematical operators of the OBJECTIVE in
Figure 3, it is possible to solve also Objectives (2) and (3) of Section 3. The
MenMarriages and WomenMarriages constraints state that each man and each
woman must have a partner, respectively, that is we require a perfect match. At
last, the Stability constraint prevents blocking pairs.
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option solver cplex;

### PARAMETERS ### 
set MEN; 
set WOMEN; 
param M {i in MEN, j in WOMEN}; 
param W {k in MEN, z in WOMEN};

### VARIABLES ### 
var Marriage {i in MEN, j in WOMEN} binary;

### OBJECTIVE ### 
minimize EgalitarianCost:  sum {i in MEN, j in WOMEN} 
      (( Marriage[i,j] * M[i,j] ) + 
      ( Marriage[i,j] * W[i,j] )) ;
 
### CONSTRAINTS ### 
subject to MenMarriages {i in MEN}: 
      sum {j in WOMEN} Marriage[i,j] = 1 ; 
subject to WomenMarriages  {j in WOMEN}: 
      sum {i in MEN} Marriage[i,j] = 1 ;
subject to Stability {i in MEN, k in MEN, j in WOMEN, z in WOMEN:
      ( M[i,z] < M[i,j] ) and 
      ( W[i,z] < W[k,z] )}:
      Marriage[i,j] + Marriage[k,z] <= 1; 

Fig. 3. The file storing the model for our example in AMPL

xxxx
xxxx
xxxx
xxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxxm1 w1

xxxx
xxxx
xxxx
xxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxxm2 w2

xxxx
xxxx
xxxx
xxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxxm3 w3

xxxx
xxxx
xxxx
xxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxxm4 w4

xxxx
xxxx
xxxx
xxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxxm5 w5

xxxx
xxxx
xxxx
xxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxxm6 w6

2

5

4

7

7

4

Fig. 4. The optimal stable match that can be obtained from the AMPL program in
Figure 2 and Figure 3

The three marriages that can be obtained with this formalization are re-
spectively SM1 = {(m1, w1), (m2, w2), (m3, w4), (m4, w6), (m5, w5), (m6, w3)},
SM2 = {(m1, w1), (m2, w2), (m3, w4), (m4, w3), (m5, w6), (m6, w5)} and, at
last, SM3 = {(m1, w1),(m2, w2), (m3, w4), (m4, w5), (m5, w6), (m6, w3)}. The
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egalitarian costs for these three matches are respectively ec(SM1) = 32,
ec(SM2) = 30 and ec(SM3) = 29, which is also the result of the program in
Figure 3 since it corresponds to the lowest possible cost. The SM3 solution is
also represented in Figure 4 as a bipartite graph, where the man/woman prefer-
ences within the same couple are added on the same edge, i.e. the cost of the edge
(m1, w1) is M [m1, w1] + W [m1, w2] = 2 (the values in the matrices of Figure 2).

5 Multi-Agent Systems and the Stable Marriage of
Coalitions

Cooperating groups, referred to as coalitions, have been thoroughly investigated
in artificial intelligence and game theory and have proved to be useful in both
real-world economic scenarios and multi-agent systems [14]. Coalitions, in gen-
eral, are task-directed and short-lived, but last longer than team organization [14]
(for example) and in some cases they have a long lifetime once created [11]. Given
the population of entities E, the problem of coalition formation consists in se-
lecting the appropriate partition of E, P = {C1, . . . , Cn} (|P | = |A| if each
entity forms a coalition on its own), such that ∀Ci ∈ P , Ci ⊆ E and Ci∩Cj = ∅,
if i �= j. P maximizes the utility (utility against costs) that each coalition can
achieve in the environment. Therefore, agents group together because utility can
be gained by working in groups, but this growth is somewhat limited by the costs
associated with forming and maintaining such a structure.

Cooperation involves a degree of risk arising from the uncertainties of inter-
acting with autonomous self-interested agents. Trust [18] describes a node’s be-
lief in another node’s capabilities, honesty and reliability based on its own direct
experiences. Therefore trust metrics have been already adopted to perceive this
risk, by estimating how likely other agents are to fulfill their cooperative commit-
ments [7,11]. Since trust is usually associated with a specific scope [18], we suppose
that this scope concerns the task that the coalition must face after its formation;
for example, in electronic marketplaces the agents in the same coalition agree with
a specific discount for each transaction executed [7,21]. Clearly, an entity can also
trust itself in achieving the task, and can form a singleton coalition.

5.1 Defining the Stable Marriage for Coalitions

In an individual-oriented approach an agent prefers to be in the same coalition
with the agent with whom it has the best relationship [7]. In socially-oriented
classification the agent instead prefers the coalition in which it has most sum-
mative trust [7]. In this Section we would like to rephrase the classical notion
of stability in SM problems (presented in Section 3) as coalition formation cri-
teria. Moreover, instead of a preference (as in Section 3), we need to consider
a trust relationship between two entities, which, inherently expresses a prefer-
ence in some sense. To do so, in Definition 1 we formalize how to compute the
trustworthiness of a whole coalition:
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Definition 1 (Trustworthiness of a Coalition). Given a coalition C of
agents defined by the set {x1, . . . , xn} and a trust function t defined on or-
dered pairs (i.e. t(xi, xy) is the trust score that xi associates with xj), the
trustworthiness of C (i.e. T (C)) is defined as the composition (i.e. ◦) of the
1-to-1 trust relationships, i.e. ∀xi, xj ∈ C. ◦ t(xi, xj) (notice that i can be equal
to j, modeling an agent’s trust in itself).

The ◦ function has already been defined in [6]; it models the composition of the
1-to-1 trust relationships. It can be used to consider also subjective ratings [18]
(i.e. personal points of view on the composition), even if in this paper we will con-
sider objective ratings [18] in order to easily represent and compute trust with a
mathematical operator. For instance, some practical instantiations of the ◦ func-
tion can be the arithmetic mean or the max operator: ∀xi, xj ∈ C. avg t(xi, xj)
or ∀xi, xj ∈ C. max t(xi, xj). Notice that the ◦ operation is not only a plain
“addition” of the single trust values, but it must also take into account also the
“added value” (or “subtracted value”) derived from the combination effect.

As proposed in Section 4 for the classical problem, by changing the semiring
structure we can represent different trust metrics [6,22]. Therefore, the opti-
mization of the set of coalitions can follow different principles, as, for example,
minimizing a general cost of the aggregation or maximizing the “consistency”
evaluation of the included entities, i.e. how much their interests are alike. In or-
der to extend the stability condition of the classical problem, blocking coalitions
are defined in Definition 2:

Definition 2 (Blocking Coalitions). Two coalitions Cu and Cv are defined as
blocking if, an individual xk ∈ Cv exists such that, ∀xi ∈ Cu, xj ∈ Cv with j �= k,
◦xi∈Cut(xk, xi) > ◦xj∈Cv t(xk, xj) and T (Cu ∪ xk) > T (Cu) at the same time.

Clearly, a set {C1, C2, . . . , Cn} of coalitions is stable if no blocking coalitions
exist in the partitioning of the agents. An example of two blocking coalitions is

C
C

1

2

x1

x2

x3

x4

x5

x6

x7

r

r

1

2

T (C     x  ) > T (C )1 14

r        (t (x ,x ), t (x ,x ), t(x ,x )) >   (t (x ,x ), t (x ,x ), t(x ,x ))1 r24 4 4 4 4 41 2 3 5 6 7

Fig. 5. A graphical intuition of two blocking coalitions
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sketched in Figure 5: if x4 prefers the coalition C1 (relationship r1 in Figure 5)
to the elements in its coalitions C2 (r2 in Figure 5), i.e. ◦(t(x4, x1), t(x4, x2),
t(x4, x3)) > ◦(t(x4, x5), t(x4, x6), t(x4, x7)), and C1 increases its trust value by
having x4 inside itself, i.e. T (C1∪x4) > T (C1), then C1 and C2 are two blocking
coalitions and the partitioning {C1, C2} is not stable and thus, it is not a feasible
solution of our problem.

We therefore require the stability condition to be satisfied, but at the same
time want to optimize the trustworthiness of the partition given by aggregating
together all the trustworthiness scores of the obtained coalitions.

5.2 A Formalization of the Problem

As accomplished in Section 4 for the classical problem, in this Section we de-
fine the soft constraints needed to represent the coalition-extension problem.
As an example, we adopt the Fuzzy semiring 〈[0, 1], max, min, 0, 1〉 in order to
maximize the minimum trustworthiness of all obtained coalitions (as proposed
also in [2,6]). The following definition takes the general ◦ operator (presented in
Section 5) as one of its parameters: it can be considered in some sense as a “lower
level” operator with respect to the other two semiring operators (i.e. + and ×).

The variables V of this problem are represented by the maximum number of
possible coalitions: {co1, co2, . . . , con} if we have to partition a set {x1,x2,. . . ,xn}
of n elements. The domain D for each of the variables is the powerset of the
element identifiers, i.e. P{1, 2, . . . , n}; for instance, if η(co1) = {1, 3, 5} it means
the the coalition co1 groups the elements x1, x2, x5 together Clearly, η(coi) = ∅
if the framework finds less than n coalitions.

1. Trust constraints. As an example from this class of constraint, the soft con-
straint ct(coi = {1, 3, 5}) = a quantifies the trustworthiness of the coalition
formed by {x1, x3, x5} into the semiring value represented by a. According
to Definition 1, this value is obtained by using the ◦ operator and composing
all the 1-to-1 trust relationships within the coalition. In this way we can find
the best set of coalitions according to the semiring operators. This kind of
constraint resembles the preference constraints given in Section 4.

2. Partition constraints. This set of constraints is similar to the Marriage con-
straints proposed in Section 4. It is used to enforce that an element belongs
only to one single coalition. For this goal we can use a binary crisp constraint
between any two coalition, as cp(coi, coj) = 0 if η(coi) ∩ η(coj) �= ∅, and
cp(coi, coj) = 1 otherwise (with i �= j). Moreover, we need to add one more
crisp constraint in order to enforce that all the elements are assigned to at
least one coalition: cp(co1, co2, . . . , con) = 0 if |η(co1)∪η(co2)∪· · ·∪η(con)| �=
n, and cp(co1, co2, . . . , con) = 1 if |η(co1) ∪ η(co2) ∪ · · · ∪ η(con)| = n.

3. Stability constraints. These crisp constraints model the stability condition
extended to coalitions, as proposed in Definition 2. We have several ternary
constraints for this goal: cs(cov, cou, xk) = 0 if k ∈ η(cov) (i.e. xk belongs to
the cov coalition), ◦i∈η(cou)t(xk, xi) > ◦j∈η(cov)t(xk, xj) and ct(η(cou)∪k) >
ct(cou). Otherwise, cs(cov, cou, xk) = 1.
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6 Conclusions

In this paper we have presented a general soft constraint-based framework to rep-
resent and solve the Optimal Stable Marriage (OSM) problem [15] and its variants
with incomplete preference lists or ties amongst preferences. The optimization cri-
terion depends on the chosen semiring (e.g. Weighted or Fuzzy) which can be used
to solved problems already proposed in literature, such as minimizing the egali-
tarian cost (see Section 3 and Section 4). Therefore, it is possible to solve all these
different optimization problems with the same general framework, and we do not
need an ad-hoc algorithm for each distinct case (e.g. [12,15,17]). One of the aims
of this paper was to relate the OSM and soft constraint satisfaction as done also
for the classical SM and classic constraint satisfaction [10,23]. Since many vari-
ants of the OSM problem are NP-hard [16], representing and solving the problem
as a SCSP can be a valuable strategy [10]. Integer linear programming, the tool
adopted to find a solution for the related soft constraint problem, was applied here
to this kind of problems for the first time.

Moreover, we have extended the OSM problem to achieve stable coalitions of
agents/individuals by using trust metrics as a way to express preferences. Thus,
we extend the stability conditions from agent-to-agent to agent-to-coalition (of
agents); in this case the marriage is between an agent and a group of agents. What
we obtain is a partition of the set of agents into trusted coalitions, such thatno agent
or coalition is interested in breaking the current relationships and consequently
changing the partition. As future work, we would like to also use ILP to solve the
problem extension to coalition formation, which has been modeled in Section 5.2.
Moreover, we would like to compare the performance of the ILP framework with
other classical SCSP solvers based on branch-and-bound procedures [5,20].

It would be interesting try to extend the results of this paper by modeling the
formation and the consequent behaviour of the other organizational paradigms
presented in [14], e.g. Holoarchies, Federations or Teams. To do so, we need to rep-
resent the different grouping relationships among the entities with soft constraints.
We would like also to further explore the strong links between OSM and Games
Theory, for example by developing even more sophisticated notions of stability.
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Abstract. Constraint solving problems (CSPs) represent a formaliza-
tion of an important class of problems in computer science. We propose
here a solving methodology based on the naming games. The naming
game was introduced to represent N agents that have to bootstrap an
agreement on a name to give to an object. The agents do not have a
hierarchy and use a minimal protocol. Still they converge to a consis-
tent state by using a distributed strategy. For this reason the naming
game can be used to untangle distributed constraint solving problems
(DCSPs). Moreover it represents a good starting point for a systematic
study of DCSP methods, which can be seen as further improvement of
this approach.

1 Introduction

The goal of this research is to generalize the naming game model in order to
define a distributed method to solve CSPs. In the study of this method we want
to fully exploit the power of distributed calculation, by letting the CSP solution
emerge, rather than being the conclusion to a sequence of statements.

In DCSP protocols we design a distributed architecture of processors, or more
generally a group of agents, to solve a CSP instantiation. In this framework we
see the problem as a dynamic system and we set the stable states of the system
as one of the possible solutions to our CSP. To do this we design each agent in
order to move towards a stable local state. The system is called “self-stabilizing”
whenever the global stable state is obtained starting from local stable state [2].
When the system finds the stable state the CSP instantation is solved. A protocol
designed in this way is resistant to damage and external threats because it can
react to changes in the problem.

In Section 2 we illustrate the naming game formalism and we make some
comparisons with the distributed CSP (DCSP) architecture. Then we describe
the language model that is common to the two formalizations and introduce
an interaction scheme to show the common framework. At last we state the
definition of Self-stabilizing system [2].

A. Oddi, F. Fages, and F. Rossi (Eds.): CSCLP 2008, LNAI 5655, pp. 16–32, 2009.
� Springer-Verlag Berlin Heidelberg 2009
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In Section 3 we explicitly describe our generalization and formalize the pro-
tocol that our algorithm will use and test it on different CSPs. Moreover, for
particular CSPs instantiations we analytically describe the multi-agent algorithm
evolution that makes the system converge to the solution.

2 Background

2.1 The Distributed Constraint Satisfaction Problem (DCSP)

Each constraint satisfaction problem (CSP) is defined by three sets 〈X, D, C〉:
X is a set of N variables x1, x2, . . . xN , D is the set of the definition domains
D1, D2, . . . , DN of the variables in X , and C is a set of constraints on the values
of these variables. Each variable Xi is defined in its variable domain Di with
i taking integer values from 1 to N . Each constraint is defined as a predicate
on the values of a sub-set of our variables Pk(xk1, xk2, . . . xkM ). The indices
k1, k2, . . .kM with M < N , are a sequence of strictly increasing integers from
1 to M and denote the sub-set of our variables xk1, xk2, . . . xkM . The Cartesian
product of these variable domains Dk1 × Dk2 × . . . × DkM is the domain of our
predicate. The predicate Pk is true only for a fixed subset T of its domain. When
the values assigned to the variables of the predicate Pk are in this subset T , the
predicate is true and we say that the constraint is satisfied. A CSP solution is a
particular tuple X of the x1, x2, . . .xN variable assignments that satisfy all the
constraints C.

In the DCSP [5], the variables of the CSP are distributed among the agents.
These agents are able to communicate between themselves and know all the
constraint predicates that are relevant to their own variables. The agents through
interaction find the appropriate values to assign to the variables and solve the
CSP.

2.2 Introduction to Naming Games

The naming games [7,9,10] describe a set of problems in which a number N of
agents bootstrap a commonly agreed name for an object. Each naming game
is defined by an interaction protocol. An important aspect of the naming game
is the hierarchy-free agent architecture. The naming task is achieved through a
sequence of interactions in which two agents are randomly extracted at each turn
to perform the role of the speaker and the listener (or hearer as used in [7,9]).
The speaker declares its name suggestion for the object. The listener receives the
word and computes the communication outcome. The communication outcome
is determined by the interaction protocol, in general it depends on the previous
interactions of the listener and if it agrees or disagrees with the name assignment.
The listener will express the communication outcome, which determines the
agents update at the end of each turn. The agents in this way change their
internal state at each turn through interaction. DCSP and the naming game
share a variety of common features [1], moreover we will show in Section 3 that
the naming game can be seen as a particular DCSP.
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2.3 The Communication Model

In this framework we define a general model that describes the communication
procedures between agents both in naming games and in DCSPs. The communi-
cation model consists of N agents (also called processors) arranged in a network.

The systems that we consider are self-stabilizing and evolve through interac-
tions in a stable state. We will use a central scheduler that at each turn randomly
extracts the agents that will be interacting.

The network links connect agents that can communicate with each other; this
network can be viewed as a communication graph. Each link can be seen as a reg-
ister rij on which the speaker i writes the variable assignment or word it wants
to communicate, and the listener j can read this assignment. We assume that the
two communication registers rij �= rji are different and that each communication
register can have more then one field. We also define a general communication
register in which only the speaker i can write and can be read by all the neighbor-
ing listeners. This is the convention which we will use since in our algorithm at
each interaction the speaker communicates the same variable assignment (word)
to all the neighbors. For each link of the communication graph rij we allocate
a register fij so the listener can give feedback on the communication outcome
using a predetermined signaling system.

The interaction scheme can be represented in three steps:

1. Broadcast. The speakers broadcast information related to the proposed as-
signment for the variable;

2. Feedback. The listeners feedback the interaction outcome expressing some
information on the speaker assignment by using a standardized signal system;

3. Update. The speakers and the listeners update their state regarding the over-
all interaction outcome.

In this scheme we see that at each turn the agents update their state. The
update reflects the interaction they have experienced. In this way the agent
communication makes the system self-stabilizing. We have presented the general
interaction scheme, wherein each naming game and DCSP algorithm has its own
characterizing protocol.

2.4 Self-stabilizing Algorithms

A self-stabilizing protocol [2] has some important propierties. First, the global
stable states are the wanted solutions to our problem. Second, the system con-
figurations are divided into two classes: legal associated to solutions and illegal
associated to non-solutions. We may define the protocol as self-stabilizing if in
any infinite execution the system finds a legal system configuration that is a
global equilibrium state. Moreover, we want the system to converge from any
initial state. These properties make the system fault tolerant and able to adapt
its solutions to changes in the environment.

To make a self-stabilizing algorithm we program the agents of our distributed
system to interact with the neighbors. The agents through these interactions
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update their state trying to find a stable state in their neighborhood. Since the
algorithm is distributed many legal configurations of the agents’ states and its
neighbors’ states start arising sparsely. Not all of these configurations are mu-
tually compatible and so form incompatible legal domains. The self-stabilizing
algorithm must find a way to make the global legal state emerge from the compe-
tition between this domains. Dijkstra [2] and Collin [6] suggest that an algorithm
designed in this way can not always converge and a special agent is needed to
break the system symmetry. In this paper we will show a different strategy based
on the concept of random behavior and probabilistic transition function that we
will discuss in the next sections.

3 Generalization of the Naming Game to Solve DCSP

In the naming game, the agents want to agree on the name given to an object.
This can be represented as a DCSP, where the name proposed by each agent is the
assignment of the CSPs variable controlled by the agent, and where an equality
constraint connects all the variables. On the other hand, we can generalize the
naming game to solve DCSPs.

We attribute an agent to each variable of the CSP as in [5]. Each agent
i = 1, 2, . . .N , names its own variable xi in respect to the variable domain Di.
We restrict the constraints to binary relation Cij between variable xi and xj .
This relation can be an equality (to represent the naming game), an inequality,
or any binary relation. If xiCijxj is true, then the values of the variables xi

and xj are consistent. We define two agents as neighbors if their variables are
connected by a constraint.

The agents have a list, which is a continuously updated subset of the domain
elements. The difference between the list and the domain is that the domain
is the set of values introduced by the problem instance, and the list is the set
of variable assignments that the agent subjectively forecasts to be in the global
solution, on the basis of its past interactions. When the agent is a speaker, it
will refer to this list to choose the value to broadcast and when it is a listener,
it will use this list to evaluate the speaker broadcasted value.

At turn t = 0 the agents start an empty list, because they still do not
have information about the other variable assignments. At each successive turn
t = 1, 2, . . . an agent is randomly extracted by the central scheduler to cover the
role of the speaker, and all its neighbors will be the listeners. The communica-
tion between the speaker s and a single listener l can be a success, a failure, or a
consistency failure. Let ds and dl be respectively the speaker’s and the listener’s
assignment. Success or failure is determined when the variable assignments sat-
isfy or not the relation dsCsldl. Consistency failure occurs when the listener
does not have any assignment in its variable domain that is consistent with the
proposed speaker variable assignment.

At the end of the turn all the listeners communicate to the speaker the success,
the failure, or the consistency failure of the communication.

If all the interaction sessions of the speakers with the neighboring listeners are
successful, we will have a success update: the speaker eliminates all the assignments
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and keeps only the successful assignment; the listeners eliminate all the assign-
ments that are not consistent to the successful assignment of the speaker. If there
was one or more consistency failure the speaker eliminates its variable assignment
from the variable domain, we call this a consistency failure update. If there was
no consistency failure and just one or more failures, there will be a failure update:
the listeners update their lists adding to the set of possible assignments the set of
consistent assignments of the speaker utterance.

The interaction, at each turn t, is represented by this protocol:

1. Broadcast. If the speaker list is empty it extracts an element from its variable
domain Ds, puts it in its list and communicates it to the neighboring listeners.
Otherwise, if its list is not empty, it randomly draws an element from its list
and communicates it to the listeners. We call the broadcast assignment ds.

2. Feedback. Then the listeners calculate the consistant assignment subset K and
the consistant domain subset K ′:
– Consistency evaluation. Each listener uses the constraint defined by the

edge, which connects it to the speaker, to find the consistent elements dl

to the element ds received from the speaker. The elements dl that it com-
pares with ds are the elements of its list. These consistent elements form
the consistent elements subset K. We define K = {dl ∈ list|dsCsldl}. If
K is empty the listeners compare each element of its variable domain Dl

with the element ds, to find a consistent domain subset K ′. We define
K ′ = {dl ∈ Dl|dsCsldl}.

The consistent elements subset K and the consistent domain subset K ′ de-
termine the following feedback:
– Success. If the listener has a set of elements dl consistent to ds in its list

(K is not empty), there is a success.
– Consistency failure. If the listener does not have any consistent elements

dl to ds in its list (K is empty), and if no element of the listener variable
domain is consistent to ds (K ′ is empty), there is a consistency failure.

– Failure. If the listener does not have any dl consistent elements to ds in
its list (K is empty), and if a non empty set of elements of the listener
variable domain are consistent to ds (K ′ is not empty), there is a failure.

3. Update. Then we determine the overall outcome of the speaker interaction
on the basis of the neighbors’ feedback:
– Success update. This occurs when all interactions are successful. The

speaker and the neighbors cancel all the elements in their list and update
it in the following way: the speaker stores only the successful element ds

and the listener stores the consistent elements in K.
– Consistency failure update. This occurs when there is at least one con-

sistency failure interaction. The speaker must eliminate the element ds

from its variable domain (this can be seen as a step of local consistency
pruning). The listeners do not change their state.

– Failure update. This occurs in the remaining cases. The speaker does not
update its list. The listeners update their lists by adding the set K ′ of
all the elements consistent with ds to the elements in the list.
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We can see that in the cases where the constraint xiCijxj is an equality, the
subset of consistent elements to xi is restricted to one assignment of xj . For this
assignment of the constraint xiCijxj we obtain the naming game as previously
described. Our contribution to the interaction protocol is to define K and K ′

since in the naming game the consistent listener assignment dl to the speakers
assignment ds is one and only one (dl = ds). This is fundamental to solve general
CSP instances. Moreover, in the naming game there is only one speaker and one
listener at each turn. Under this hypothesis the agents were not always able to
enforce local consistency (e.g.: graph coloring of a completely connected graph).
Thus we had to extend the interaction to all the speaker neighbors and let all
the neighbors be listeners.

At each successive turn the system evolves through the agents interactions in
a global equilibrium state. In the equilibrium state all the agents have only one
element for their variable and this element must satisfy the constraint xiCijxj

with the element chosen by the neighboring agents. We call this the state of
global consensus. Once in this state the interactions are always successful. The
probability to transit to a state different from the global consensus state is zero,
for this reason the global consensus state is referred to as an absorbing state. We
call the turn at which the system finds global consensus convergence turn tconv.

Interaction Example. As an example we can think of the interaction between
a speaker and its neighbors on a graph coloring instance. If the speakers list is
empty its draws a random element from its domain and puts it the list. If the
speakers list is not empty he draws a random element from the elements on this
list. Let’s say he picks the color red this will be its broadcast ds = ‘red′. Each
listener will use this value to compute K and K ′. First the listener will determine
which elements in its list are different from red: K = {dh ∈ list|‘red′ �= dh}. If K
is empty it will find the elements on its domain Dh which are different from red:
K ′ = {dh ∈ Dh|‘red′ �= dh}. Once the listener has calculated K and K ′ he can
determine the feedback. If K is not empty the listener will feedback a success. If
K ′ is not empty the listener will feedback a failure. If K and K ′ are empty the
listener will feedback a consistency failure. At this point the speaker will use the
feedback information to choose the update modality. If all the listeners feedback
success, this means that they have colors different from red in their list. The
speaker chooses to have a success update and this means that it deletes all the
colors from its list and keeps only the element red. The listeners contrarily delete
the red element in their list if there is one. If one or more listeners feedback a
failure then the speaker will not change its list, but the listeners will add the
elements in K ′ in their list. In this case, this means that the listener will have
in its list all the colors different from red, plus red, if this color was already in
the listener list.

Simple Algorithm Execution. The N -Queens Puzzle is the problem of plac-
ing N queens on a N × N chessboard without having them be mutually cap-
turable. This means that there can not be two queens that share the same row,
column, or diagonal. This is a well known problem and has been solved linearly
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t=7, s=1, b=0.
l=0, K={2}, K'={}: S.
l=2, K={2,3}, K'={}: S.
l=3, K={3,1}, K'={}: S.
Success update

t=8, s=1, b=0.
l=0, K={2}, K'={}: S.
l=2, K={2,3}, K'={}: S.
l=3, K={3,1}, K'={}: S.
Success update

t=9, s=0, b=2.
l=1, K={0}, K'={}: S.
l=2, K={3}, K'={}: S.
l=3, K={3,1}, K'={}: S.
Success update

t=10, s=1, b=0.
l=0, K={2}, K'={}: S.
l=2, K={3}, K'={}: S.
l=3, K={3,1}, K'={}: S.
Success update

t=11, s=0, b=2.
l=1, K={0}, K'={}: S.
l=2, K={3}, K'={}: S.
l=3, K={3,1}, K'={}: S.
Success update

t=12, s=3, b=1.
l=0, K={2}, K'={}: S.
l=1, K={0}, K'={}: S.
l=2, K={3}, K'={}: S.
Success update

t=1, s=3, b=3.
l=0, K={}, K'={1,2}: F.
l=1, K={}, K'={0.2}: F.
l=2, K={}, K'={0,1}: F.
Failure update

t=2, s=0, b=2.
l=1, K={0}, K'={}: S.
l=2, K={1}, K'={}: S.
l = 3, K={3}, K'={}: S.
Success update

t=3, s=0, b=2.
l=1, K={0}, K'={}: S.
l=2, K={1}, K'={}: S.
l=3, K={3}, K'={}: S.
Success update

t=4, s=3, b=3.
l=0, K={2}, K'={}: S.
l=1, K={0}, K'={}: S.
l=2, K={1}, K'={}: S.
Success update

t=5, s=1, b=0.
l=0, K={2}, K'= {}: S.
l=2, K={}, K'={2,3}: F.
l=3, K={3}, K'={}: S.
Failure update

t=6, s=2, b=3.
l=0, K={2}, K'={}: S.
l=1, K={0}, K'={}: S.
l=3, K={}, K'={0,1}: F.
Failure update

Fig. 1. Single algorithm run for the N-Queens Puzzle with N = 4

by specialized algorithms. Nevertheless it is considered a classical benchmark
and we use it to show how our algorithm can solve different instances. To reduce
the search space we assign the variables of a different column to each queen.
We can do this because if there were more then one queen in a column, they
would have been mutually capturable. In this way each of our agents will have
as its domain the values of a distinct column and all the agents will be mutu-
ally connected by an edge in the graph representing all the constraints. In the
example we show a N -Queens Puzzle with N = 4. Each agent (queen) is labeled
after its column with numbers from zero to three from left to right. The rows
are labeled from the bottom with numbers from zero to three. In the Figure 1
we show how the algorithm explores the solution space randomly and how it
evolves at each turn t. We write the speaker s that is extracted at each turn
and its broadcasted value b. Then we write the listeners l, their respective K,
K ′, and the feedbacks. At the end we write the updates. The picture represents
graphically the evolution of the agent’s list at the end of each turn.

At turn t = 1 (see Fig.1) speaker s = 3 is randomly drawn. The variable
controlled by this speaker is the position of the queen on the last column of
the chessboard. The speaker has an empty list, hence it draws from its variable
domain the element ds = 3 which corresponds to the highest row of its column.
The speaker add this new element to its list. Since all the agent are connected, all
the agents apart from the speaker are listeners. Their lists are empty therefore
K is empty. Thus they compute K ′ from the variable domain. The listeners
feedback failure, thus the speaker replies with a failure update. The listeners
add the elements of their respective K ′ to their lists. The picture in fig.1 shows
the elements in the agents’ lists at the end of the turn. At turn t = 2 speaker
s = 0 is drawn and it broadcasts the element ds = 2. All the listeners have
a consistent element in their list, therefore, their Ks are not empty, and they
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feedback a success. The listeners delete their lists and add the elements in their
K. At turn t = 3 the speaker s = 0 speaks again and broadcasts the same
element ds = 2. Therefore, the listener computes the same Ks of before, and
feedback a success. Thus we have a success update but since the Ks are the
same the system does not change. At turn t = 4 the speaker s = 0 is drawn and
broadcast the same variable ds = 3 that it had broadcasted at the first turn.
Since all the elements in the listeners’ lists are still consistent to this broadcast,
the algorithm has a success update and the agents’ lists remain the same. At
turn t = 5 a new speaker is drawn s = 1, it broadcasts ds = 0. The listeners
zero and three have a consistent element to this broadcast, therefore their K
is not empty. Furthermore, listeners two has no consistent elements to put in
K, and finds the rows two and three from its variable domain to be consistent
to this broadcast. The overall outcome is a failure and thus we have a failure
update. The listeners zero and two have empty K ′s so they do not change their
lists and listener two adds two new elements in its lists. At turn t = 6 agent two
speaks and broadcasts the element ds = 3. Agent three does not have consistent
elements to this broadcast and thus feedbacks a failure. Then we have a failure
update and agent two adds two elements to its list. At turn t = 7 agent one
speaks and broadcasts the element ds = 0. All the listeners have consistent
elements therefore their Ks are not empty. We get a success update. The agents
two and three both delete an element from their lists which is not consistent
to the speaker broadcast. At turn t = 8 agent one speaks again and broadcasts
the same element ds = 0. The system is unchanged. At turn t = 9 agent zero
speaks and broadcasts the element ds = 2. All listeners have consistent elements,
therefore, there is a success update. Listener two deletes an element which was
not consistent with the speaker broadcast. At turn t = 10 agent one speaks
and broadcasts the element ds = 0. All listeners have consistent elements to
this broadcast, there is a success update, and the system is unchanged. At turn
t = 11 agent zero speaks and broadcasts the element ds = 2. All listeners have
consistent elements to this broadcast, there is a success update, and the system
is unchanged. At turn t = 12 agent three speaks and broadcasts the element
ds = 1. All listeners have consistent elements to this broadcast, there is a success
update. Since the speaker had a different element in its list from the broadcasted
element ds = 1, he deletes this other element from its list. At this point all the
elements in the agents lists are mutually consistent. Therefore, all the successive
turns will have success updates and the system will not change any more. The
system has found its global equilibrium state which is a solution of the puzzle
we intended to solve.

3.1 Difference with Prior Self-stabilizing DCSPs

An agent in our algorithm is a finite state-machine. The agent (finite state-
machine) evolution in time is represented by a transition function which depends
on its state and its neighbors’ states in the current turn. In particular the com-
munication outcome is determined by the local state, where for local state s1 we
consider the agent state and its neighbors’ state all together.
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The communication outcome in the prior DCSPs can be forecast by the tran-
sition function. The transition function of an agent, which state is ai, in the
local state si is one and one only, and we can forecast exactly its next state ai+1
and the next local state si+1.

Let uniform protocols be distributed protocols, in which all the nodes are
logically equivalent and identically programmed. It has been proved that in par-
ticular situations uniform self-stabilizing algorithms can not always solve the
CSPs ([6]), in particular if we consider the ring ordering problems. In ring or-
dering problems we have N numbered nodes {n1, n2, . . . , nN} ordered on a cycle
graph. Each node has a variable, the variable assignment of the i + 1-th node
ni+1 is the consecutive number of the variable assignment of the i-th node ni in
modulo N . The variable domain is {0, 1, . . . , N − 1} and every link has the con-
straint {ni = j, ni+1 = (j + 1) mod N |0 ≤ j ≤ N}. Dijkstra [2] and Collin [6]
propose dropping the uniform protocol condition to make the problem solvable.

Our protocol overcomes this by introducing random behavior. Moreover, the
agent state is defined by an array that attributes a zero or a one to each element
of the agent domain. The array element will be zero if the element is not in the
list, and one if the element is in the list. This array determines a binary number
ai, which defines the state of the agent. If we know the states of all the agents,
the transition of each agent from state ai to aj is uniquely determined once we
know the agent that will be the speaker, the agents that will be the listeners,
and the element that will be broadcasted by the speaker (Fig.2(a)).

Since the speaker will be chosen randomly, we can compute the probability
for each agent being a speaker Ps. From this information, since we know the
underling graph and that all his neighbors will be listeners, we can compute the
probability for each agent to be a listener Pl. Knowing the speaker state, we can
compute the probability for each element to be broadcast Pb. At this point we
may be able to compute the probabilistic transition function T (Ps, Pl, Pb), which
will depend on the probabilities that we have just defined (Fig.2(b)).

Agent i
State si

Agent j
State sj

Fixed speaker,
hearer, and broadcast 

Agent i
State si

Agent j
State sj

Agent k
State sk

Agent z
State sz

Tij Tik Tiz

The transition function Tij depends on
the probabilities Ps, Pl, Pe.

(a) (b)

Fig. 2. (a) Shows that once we determine the speaker state, the broadcast, and the
listener state we are able to determine the speaker and listeners’ transitions. (b) Shows
that since we have the speaker probability Ps, the broadcast probability Pb, and the lis-
tener probability Pl we can determine the probabilistic transition function T (Ps, Pl, Pb).
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Fig. 3. The plot shows the ring ordering problem with N nodes, we see for the con-
vergence turn tconv the scaling proportion: tconv ∝ N3.3

In this setting the agent state at at turn t can now be represented by a discrete
distribution function and the transition function is now a Markovian Chain, the
arguments of which are the transition probabilities pj between the local states si

and sj . Thus we speak of a probabilistic transition function, which represents the
probability of finding the system in a certain state sj starting from si at time t.
This behavior induces the algorithm to explore the state space randomly, until it
finds the stable state that represents our expected solution. In the following plot
we show the convergence turn tconv scaling with the size N of the ring ordering
problem. We average the convergence turn tconv on ten runs of our algorithm
for a set size N . Then we plot this point in a double logarithmic scale to evince
the power law exponent of the function. We found that tconv ∝ N3.3.

3.2 Analytical Description

In this section we are going probabilistically analyze how our algorithm solves
graph problems for the following graphs structures: path graph and completely
connected graph. These are simple limiting cases that help us to picture how our
algorithm evolves in more general cases.

Path graph. The way our algorithm solves a path graph coloring instance can
be described through analytical consideration; similar observations can then be
extended to the cycle graph. The system dynamics are analogous to the naming
game on a one dimensional network [8]. To each node of the path graph we
attribute a natural number in increasing order, from the first node of the path,
to which we attribute 1, to the last node, to which we attribute N . We can see



26 S. Bistarelli and G. Gosti

that from a global point of view there are two final states: one state with odd
number nodes of one color and even number nodes of the second color; the other
state is inverted. At the beginning, when t < N/3, the system is dominated by
new local consistent nodes’ neighborhoods, which emerge sparsely and propagate
to the connected nodes. The speaker has an empty list and it has to draw the
assignment from the two element variable domain. In this way it selects one
of the two final states to which it starts to belong. By communicating with its
neighbors it makes them choose the same final state. We have in this way a small
consistent domain of three agents that agree on the final state.

Since the speakers are chosen by the scheduler randomly, after some time,
t > N/3, all the agents have been speakers or listeners at least once. Thus we
find approximately N/3 domains dispersed in little clusters of generally three
agents. Each of these domains belong to one final state or to the other.

At this point the domains start to compete. Between two domains we see an
overlapping region appear. This region is constituted by agents that have more
than one element in their lists. We can refer to them as undecided agents that
belong to both domains, since the agents are on a path graph this region is linear.
By probabilistic consideration we can see that this region tends to enclose less
than two agents. For this reason we define the region that they form as a border,
for a path graph of large size N the border width is negligible. So we approximate
that only one agent is within this border. Under this hypothesis we can evaluate
the evolution of the system as a diffusion problem, in which the borders move in
a random walk on the path graph. When a domain grows over another domain,
the second domain disappears. Thus the relation between the cluster growth and
time is Δx ∝ ( t

ξ )1/2, where ξ is the time needed for the random walk to display
a deviation of ±1 step from its position. The probability that the border will
move one step right or left on the path graph is ∝ 1/N , proportional to the
probability that an agent on the border or next to the border is extracted. Thus
we can fix the factor ξ ∝ 1/N . Since the lattice is long N we find the following
relation for the average convergence turn tconv ∝ N3. The average convergence
turn tconv is the average time at which the system finds global consistency. To
calculate this we add the weighted convergence turns of all the algorithm runs,
where the weights are the probabilities of the particular algorithm run.

Completely connected graph. Since all the variables in the graph coloring
of a completely connected graph are bound by a inequality constraint, these
variables must all be different. Thus N colors are necessary in this graph. To
color the completely connected graph the agents start with a color domain of
cardinality N .

At the beginning all the agents’ lists are empty. The first speaker chooses a
color and since all the agents are neighbors, it communicates with all of them.
The listener selects the colors from the variable domain consistent to the color
picked by the speaker. In the following turns the interactions are always suc-
cessful. Two cases may be observed: the speaker has never spoken so it selects
a color from its list and it shows the choice while the listeners cancel the same
color from their lists; or the speaker has already spoken once, so there are no



Solving CSPs with Naming Games 27

changes in the system because it already has only one color and all the other
agents have already deleted this assignment. Since at each turn only one agent
is a speaker, to let the system converge all the agents have to speak once.

Let N be the number of agents and n(t − 1) the number of agents that have
spoken once before turn t. The probability that a new agent will speak at turn
t considering that n(t − 1) agents have spoken already at turn t − 1 is:

P (X(t)
n = 1) = 1 − (

n

N
) (1)

P (X(t)
n = 0) =

i

N
. (2)

Where X
(t)
n is a random variable that is equal to one, when a new agent speaks

at turn t, and equal to zero, when the agent that speaks at turn t has already
spoken once. We calculate the probability that all agents have spoken once at
a certain turn t, this is the probability P (tconv) that the system converges at
turn t. We use this probability to compute the weighted average turn at which
the system converges. This will be the weighted average convergence turn tconv.
We calculate this average by calculating the absorbing time of the corresponding
absorbing Markow chain problem. If we consider as the beginning state, the state
in which no agent has spoken n(t = 0) = 0, we find the convergence time:

tconv = N

N−1∑
j=1

1
N − j

= N

N−1∑
k=1

1
k
∼ N log(N − 1) (3)

This, as we stated above corresponds to the time of convergence of our system,
when it is trying to color a completely connected graph.

3.3 Algorithm Test

We have tested the above algorithm in the following classical CSP problems:
graph coloring and n-queens puzzle. We plotted the graph of the convergence
turn tconv scaling with the number N of the CSP variables, each point was
measured by ten runs of our algorithm. We considered four types of graphs for
the graph coloring: path graphs, cycle graphs, completely connected graphs, and
Mycielsky graphs.

N-Queens Puzzle. In the case of the N -queens puzzle with N variables, we
measure the scaling proportion tconv ∝ N4.2 for the convergence turn (Fig. 4).

Graph Coloring. In the study of graph coloring we presented four different
graph structures:

– path graphs
– cycle graphs
– completely connected graph
– Mycielsky graphs.
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Fig. 4. The plot shows the N-queens puzzle with N variables, we see for the conver-
gence turn tconv the scaling proportion: tconv ∝ N4.2. The points on this graph are
averaged on ten algorithm runs.
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Fig. 5. The plot shows the graph coloring in the case of path graphs and special 2-
colorable cycle graphs with 2 colors. The convergence turn tconv of the path graphs
and cycle graphs exhibit a power law behavior tconv ∝ N3.0. The cycle graph exhibits
a faster convergence. The points on this graph are averaged on ten algorithm runs.

In the study of the path graph and the cycle graph we have restricted ourselves
to the 2 − chromatic cases: all the path graphs and only the even number node
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Fig. 6. The plot shows the graph coloring in the case of a completely connected graph
with N colors: in this case we find that the convergence turn is tconv ∼ N log(N). The
points on this graph are averaged on ten algorithm runs.

cycle graphs. Thus we imposed the agent variable domain to two colors. In
this context the convergence turn tconv of the path graph and the cycle graph
exhibit a power law behavior tconv ∝ N3.0. The cycle graph exhibits a faster
convergence (Fig. 5). We see from these measurements that the power law of
the convergent time scaled with the number of nodes N is compatible with our
analytical considerations.

The graph coloring in the case of a completely connected graph always needs at
least N colors: in this case we find that the convergence turn is tconv ∝ N log(N)
(Fig. 6).

The Mycielski graph [15] of an undirected graph G is generated by the My-
cielski transformation on the graph G and is denoted as μ(G) (see Fig.7). Let
the N number of nodes in the graph G be referred to as v1, v2, . . . , vN . The
Mycielski graph is obtained by adding to graph G N + 1 nodes: N of them will
be named u1, u2, . . . , uN and the last one w. We will connect with an edge all
the nodes u1, u2, . . . , uN to w. For each existing edge of the graph G between
two nodes vi and vj we include an edge in the Mycielski graph between vi and
uj and between ui and vj .

The Mycielski graph of graph G of N nodes and E edges has 2N + 1 nodes
and 2E + N edges.

Iterated Mycielski transform applications starting from the null graph, gen-
erates the graphs Mi = μ(Mi−1). The first graphs of the sequence are M0 the
null graph, M1 the one node graph, M2 the two connected nodes graph, M3 the
five nodes cycle graph, and M4 the Grötzsch graph with 11 vertices and 20 edges
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Fig. 7. Mycielski transformation of a five node cycle graph

Fig. 8. Mycielski graph sequence M1, M2, M3, M4, and M5[16]

Table 1. Convergence turn tconv of the Mycielski graph coloring. Mi is the Mycielski
graph identification, N is the number of nodes, E is the number of edges, k the optimal
coloring, and tconv the convergence turn.

Mi N E k optimal coloring tconv

M4 11 20 4 32 ± 2
M5 23 71 5 170 ± 20
M6 47 236 6 3300 ± 600
M7 95 755 7 (1.1 ± 0.2) · 106

(see Fig. 8). The number of colors k needed to color a graph Mi of the Mycielski
sequence is, k = 1 ([15]).

These graphs are particularly difficult to solve because they do not possess
triangular cliques, moreover, they have cliques of higher order and the coloring
number increases each Mycielski transformation ([14]). We ran our algorithm
to solve the graph coloring problem with the known optimal coloring. Table 1
shows for each graph of the Mycielski sequence Mi, the number of nodes N , the
number of edges E, the minimal number of colors needed k and the convergence
turn tconv of our algorithm.



Solving CSPs with Naming Games 31

4 Conclusions and Future Work

Our aim is to develop a probabilistic algorithm able to find the solution of a CSP
instance. In the study of this method we are trying to fully exploit the power of
distributed calculation. To do this we generalize the naming game algorithm, by
letting the CSP solution emerge, rather than being the conclusion of a sequence
of statements. As we saw in Subsection 3.2 our algorithm is based on the random
exploration of the system state space. Our algorithm travels through the possible
states until it finds the absorbing state, where it stabilizes. These ergodic features
guarantee that the system to has a probability equal to one to converge [13] for
long times t → +∞. Unfortunately this time depending on the particular CSP
instance can be too long for practical use.

This is achieved through the union of new topics addressed in statistical
physics (the naming game), and the abstract framework posed by constraint
solving.

In future work we will test the algorithm on a uniform random binary CSP
to fully validate this method. We also expect to generalize the communication
model to let more then one agent speak at the same turn. Once we have done
this we can let the agents speak spontaneously without a central scheduler.
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Abstract. Over the last decade, first-order constraints have been ef-
ficiently used in the artificial intelligence world to model many kinds
of complex problems such as: scheduling, resource allocation, computer
graphics and bio-informatics. Recently, a new property called decompo-
sability has been introduced and many first-order theories have been
proved to be decomposable such as finite or infinite trees, rational and
real numbers, linear dense order,...etc. A decision procedure in the form
of five rewriting rules has also been developed. It decides if a first-order
formula without free variables (proposition) is true or not in any de-
composable theory. Unfortunately, this later needs to normalize the ini-
tial proposition before starting the solving process. This transformation
generates many nested negations and quantifications which greatly slow
down the performances of this decision procedure. We present in this pa-
per an efficient decision procedure for functional decomposable theories,
i.e. theories whose set of relation is reduced to {=, �=}. This new decision
procedure does not need to normalize the formulas and transforms any
first-order proposition with any logical symbols into a boolean combi-
nation of basic formulas which are either equivalent to true or to false.
We show the efficiency of our algorithm (in time and space) and com-
pare its performances with those of the classical decision procedure for
decomposable theories. Our algorithm is able to solve first-order proposi-
tions involving many nested alternated quantifiers of the form ∃x̄∀ȳ over
different functional decomposable theories.

1 Introduction

First-order constraints are first-order formulas built on a set of function and rela-
tion symbols using the following logical symbols: =, �=, true, false,¬,∧,∨,→,↔,
∀, ∃, (, ). Over the last decade, first-order constraints have been efficiently used in
the artificial intelligence world to model many kinds of complex problems such
as: scheduling, resource allocation, configuration, temporal and spatial reason-
ing, computer graphics, bio-informatics [1,10]. However, in most of the cases, the
quantifiers are not used due to the inherent huge complexity in time and space
when solving first-order constraints with imbricated quantifiers, such as:

∃x∀y

[
x = f(y, x) ∧ f(x, f(w, y)) = f(f(y, x), w)∧
¬(∀v∃z (x = f(v, x) → w = f(z, w)))

]
,

A. Oddi, F. Fages, and F. Rossi (Eds.): CSCLP 2008, LNAI 5655, pp. 33–50, 2009.
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and if we use Maher’s theory of finite or infinite trees [6,11] then solving such a
constraint cannot be done with an algorithm of better complexity in time and
space than a huge tower of powers of two, i.e. 222...

whose depth is proportional
to the number of imbricated quantifiers [3,17]. Due to this high complexity, only
few general first-order constraint solvers have been developed in the past and no
one of them could solve complex first-order constraints with many imbricated
quantifiers.

Recently, we showed that a lot of first-order theories such as: finite or infinite
trees, real numbers, rational numbers, linear dense order without endpoints,...etc
share a new property that we called decomposability [7]. We have then presented
a decision procedure in the form of five rewriting rules which for any decompos-
able theory T can decide the satisfiability or unsatisfiability of any first-order
proposition, i.e. any first-order constraint whose all variables are quantified, such
as:

∃u2∀u1∃u3 ¬
⎡
⎣∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬(∃w1 v1 = g(w1))∧
¬(∃w2 u2 = g(w2) ∧ w2 = g(u3))

⎤
⎦ .

In order to decide the truth value of any proposition ϕ, our decision procedure
uses a pre-processing step which transforms ϕ into a particular form of formulas
called normalized formulas, i.e. formulas of the form

¬(∃x1...∃xn (α ∧
∧
i∈I

ϕi)), (1)

with α a conjunction of atomic formulas and the ϕ′
is sub-normalized formulas

of the same form an (1). Let us choose for instance the theory Tr of finite or
infinite trees [7,11]. Let f and g be two function symbols. The following formula
is normalized:

¬
[
∃y y = f(y) ∧

[¬(∃x y = f(x) ∧ x = g(y) ∧ ¬(∃z z = g(y)))∧
¬(∃v v = f(y))

]]
.

Once the normalized formula is obtained, our decision procedure can be used. It
transforms any normalized proposition into true or false. The problem is that, in
most of the cases, the normalized formula φ obtained from the initial proposition
ϕ is greatly bigger (more nested quantifiers and negations) than ϕ. In fact, if for
example we use the theory Q of rational numbers and if ϕ is the formula

∀x∃y y �= x,

then φ is the following normalized formula

¬(∃x true ∧ ¬(∃y true ∧ ¬(∃ε y = x)),

where ∃ε is the empty existential quantification. In this example, we move from a
very simple formula into a complex one with three nested imbricated quantifiers
and negations. By using our decision procedure on φ we get an execution time
which is larger than the one obtained using a direct simplification of ϕ into true
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since for all variable x we can find a variable y which is different from x in Q. This
big difference between the two execution times is due to the fact that each time
we have two imbricated negations of quantifiers, the decision procedure of [7] uses
a very costly distribution rule which eliminates one level of nested negations and
quantifications but exponentially increases the size of the formula, and so on until
reaching the formula true or the formula false. In other words, the more nested
quantifiers and negations we have in the normalized formula φ, the higher its exe-
cution time will be. It is then much more interesting for us if we can compute the
truth value directly from the initial constraint ϕ without transforming it into a
normalized formula φ since normalizing a formula implies the generation of many
nested negations and quantifiers. Unfortunately, there exists so far no algorithm
for decomposable theories which does not use the normalized formulas.

Contributions. In this paper, we build a new efficient decision procedure for
functional decomposable theories, i.e. decomposable theories whose signature
does not contain relations other than = and �=1. Our new algorithm does not
use any particular form of formulas and can be applied to any first-order formula
ϕ with any logical and functional symbols. It does not need to transform the
initial constraint ϕ into a normalized formula and uses a new approach as well
as new properties which are completely different from those used by our old
decision procedure for decomposable theories [7].

The main idea behind our algorithm consists in using new properties of func-
tional decomposable theories which enables us to not transform the initial for-
mula ϕ into a normalized one and to build directly from ϕ a boolean combination
of particular formulas which can be immediately reduced to true or to false . To
this end, we introduce the so called dual and basic formulas and build a set of
rewriting rules which handles dual formulas and transforms any proposition ϕ
into a boolean combination of basic formulas which can be immediately reduced
to true or to false.

This paper is organized in four sections followed by a conclusion. This intro-
duction is the first section. Section 2 is dedicated to a brief recall on first-order
logic and decomposable theories. We present in Section 3 our decision proce-
dure given in the form of 18 rewriting rules. We end this paper by a series of
benchmarks realized by a C++ implementation of our algorithm over two func-
tional decomposable theories. We show that our decision procedure is much more
efficient in time and space than the classical decision procedure for decompos-
able theories. The dual formulas, the working formulas, the algorithm and the
benchmarks are our new contributions in this paper.

2 Preliminaries

2.1 First-Order Formulas

Let V be an infinite set of variables. Let S be a set of symbols, called a signature
and partitioned into two disjoint sub-sets: the set F of function symbols and
1 Of course, these theories can have any set of function symbols.
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the set R of relation symbols. To each function symbol and relation is linked a
non-negative integer n called its arity. An n-ary symbol is a symbol of arity n.
A first-order constraint or formula is an expression of one of the eleven following
forms:

s = t, r(t1, . . . , tn), true, false ,
¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), (ϕ ↔ ψ),

(∀xϕ), (∃xϕ),
(2)

with x ∈ V , r an n-ary relation symbol taken from R, ϕ and ψ shorter formulas,
s, t and the tis terms, that are expressions of the one of the following two forms
x, f(t1, ..., tn), with x taken from V , f an n-ary function symbol taken from F
and the ti’s shorter terms. The formulas of the first line of (2) are known as
atomic, and flat if they are of one of the following forms:

true, false, x0 = x1, x0 = f(x1, ..., xn), r(x1, ..., xn),

with the xi’s (possibly non-distinct) variables taken from V , f ∈ F and r ∈ R.
We denote by AT the set of the conjunctions of flat atomic formulas.

An occurrence of a variable x in a formula φ is bound if it occurs in a sub-
formula of the form (∀xϕ) or (∃xϕ). It is free in the contrary case. The free
variables of a formula are those which have at least one free occurrence in this
formula. A proposition is a formula without free variables.

A model is a pair M = (D, F ), where D is a non-empty set of individuals
of M and F a set of functions and relations in D. We call instantiation of a
formula ϕ by individuals of M , the formula obtained from ϕ by replacing each
free occurrence of a free variable x in ϕ by the same individual i of D and by
considering each element of D as 0-ary function symbol.

A theory T is a (possibly infinite) set of propositions. We say that the model
M is a model of T , if for each element ϕ of T , M |= ϕ. If ϕ is a formula, we
write T |= ϕ if for each model M of T , M |= ϕ. A theory T is complete if for
every proposition ϕ, one and only one of the following properties holds: T |= ϕ,
T |= ¬ϕ.

2.2 Vectorial Quantifiers

Let M be a model and T a theory. Let x̄ = x1 . . . xn and ȳ = y1 . . . yn be two
words on V of the same length. Let ϕ, and ϕ(x̄) be formulas. We write

∃x̄ ϕ for ∃x1...∃xn ϕ,
∀x̄ ϕ for ∀x1...∀xn ϕ,
∃?x̄ ϕ(x̄) for ∀x̄∀ȳ ϕ(x̄) ∧ ϕ(ȳ) → ∧

i∈{1,...,n} xi = yi,

∃!x̄ ϕ for (∃x̄ ϕ) ∧ (∃?x̄ ϕ).

The word x̄, which can be the empty word ε, is called vector of variables. Note
that semantically the new quantifiers ∃? and ∃! simply means “at most one” and
”one and only one”.

Let us now introduce a convenient notation concerning the priority of the
quantifiers: ∃, ∃!, ∃? and ∀.
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Notation 2.2.1. Let Q be a quantifier taken from {∀, ∃, ∃!, ∃?}. Let x̄ be vector
of variables taken from V . We write:

Qx̄ϕ ∧ φ for Qx̄ (ϕ ∧ φ).

Example 1. Let I = {1, ..., n} be a finite set with n ≥ 0. Let ϕ and φi with i ∈ I
be formulas. Let x̄ and ȳi with i ∈ I be vectors of variables. We write:

∃x̄ ϕ ∧ ¬φ1 for ∃x̄ (ϕ ∧ ¬φ1),
∀x̄ ϕ ∧ φ1 for ∀x̄ (ϕ ∧ φ1),
∃!x̄ ϕ ∧∧i∈I(∃ȳiφi) for ∃!x̄ (ϕ ∧ (∃ȳ1φ1) ∧ ... ∧ (∃ȳnφn) ∧ true),
∃?x̄ ϕ ∧∧i∈I ¬(∃ȳiφi) for ∃?x̄ (ϕ ∧ (¬(∃ȳ1φ1)) ∧ ... ∧ (¬(∃ȳnφn)) ∧ true).

Let us end this sub-section by two properties which will help us to prove the
correctness of our decision procedure.

Property 2.2.2. If T |= ∃?x̄ ϕ then

T |= (∃x̄ ϕ ∧
∧
i∈I

¬φi) ↔ ((∃x̄ϕ) ∧
∧
i∈I

¬(∃x̄ ϕ ∧ φi)).

Property 2.2.3. If T |= ∃!x̄ ϕ then

T |= (∃x̄ ϕ ∧
∧
i∈I

¬φi) ↔
∧
i∈I

¬(∃x̄ ϕ ∧ φi).

2.3 The Infinite Quantifier ∃Ψ(u)
∞

Before introducing the definition of decomposable theories, we recall the defini-
tion of the infinite quantifier ∃Ψ(u)

∞ that we have given in [7]:

Definition 2.3.1. [7] Let M be a model, ϕ(x) a formula and Ψ(u) a set of
formulas having at most one free variable u. We write

M |= ∃Ψ(u)
∞ xϕ(x), (3)

if for every instantiation ∃xϕ′(x) of ∃xϕ(x) by individuals of M and for every
finite subset {ψ1(u), .., ψn(u)} of elements of Ψ(u), the set of the individuals i of
M such that M |= ϕ′(i) ∧∧j∈{1,...,n} ¬ψj(i) is infinite.

This infinite quantifier holds only for models whose set of individuals is infinite.
Note that if Ψ(u) = {false} then (3) simply means that M contains an infi-
nite set of individuals i such that ϕ(i). Informally, the notation (3) states that
there exists a full elimination of quantifiers in formulas of the form ∃xϕ(x) ∧∧

j∈{1,...,n} ¬ψj(x) due to an infinite set of valuations of x in M which satisfy
this formula.

Property 2.3.2. [7] Let J be a finite (possibly empty) set. Let ϕ(x) and ϕj(x)
with j ∈ J be M -formulas. If T |= ∃Ψ(u)

∞ xϕ(x) and if for each ϕj(x), at least
one of the following properties holds:
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– T |= ∃?xϕj(x),
– there exists ψj(u) ∈ Ψ(u) such that T |= ∀xϕj(x) → ψj(x),

then
T |= ∃xϕ(x) ∧∧j∈J ¬ϕj(x)

Property 2.3.3. [7] If T |= ∃Ψ(u)
∞ xϕ(x) then T |= ∃Ψ(u)

∞ x true.

2.4 Decomposable Theories

We now recall the definition of decomposable theories [7]. Informally, this defi-
nition simply states that in every decomposable theory T each formula of the
form ∃x̄ α, with α ∈ AT , is equivalent in T to a decomposed formula of the form
∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′)) where the formulas ∃x̄′ α′, ∃x̄′′ α′′, and ∃x̄′′′ α′′′

have elegant properties which can be expressed using the following quantifiers:
∃?, ∃! and ∃Ψ(u)

∞ .
In all what follows, we will use the abbreviation wnfv for “without new free

variables”. A formula ϕ is equivalent to a wnfv formula ψ in T means that
T |= ϕ ↔ ψ and ψ does not contain other free variables than those of ϕ.

Definition 2.4.1. A theory T is called decomposable if there exists a set Ψ(u)
of formulas, having at most one free variable u, and three sets A′, A′′ and A′′′

of formulas of the form ∃x̄ α with α ∈ AT such that:

1. Every formula of the form ∃x̄ α ∧ ψ, with α ∈ AT and ψ any formula, is
equivalent in T to a wnfv decomposed formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)),

with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′ and ∃x̄′′′ α′′′ ∈ A′′′.
2. If ∃x̄′α′ ∈ A′ then T |= ∃?x̄′ α′ and for each free variable y in ∃x̄′α′, at least

one of the following properties holds:
– T |= ∃?yx̄′ α′,
– there exists ψ(u) ∈ Ψ(u) such that T |= ∀y (∃x̄′ α′) → ψ(y).

3. If ∃x̄′′α′′ ∈ A′′ then for each x′′
i of x̄′′ we have T |= ∃Ψ(u)

∞ x′′
i α′′.

4. If ∃x̄′′′α′′′ ∈ A′′′ then T |= ∃!x̄′′′ α′′′.
5. If the formula ∃x̄′α′ belongs to A′ and has no free variables then this formula

is either the formula ∃εtrue or ∃εfalse.

In [7] many first-order theories have been proved to be decomposable such as:
theory of finite or infinite trees [6,11], Clark equational theories [2], rational and
real numbers with addition and subtraction [9] and many combinations based
on these theories [8]. From the proof of the decomposability of these theories
we can deduce their completeness using a decision procedure which for every
proposition produces either true or false [7]. This later uses a pre-processing
step which transforms the initial proposition ϕ into a particular form called
normalized formula. We will see in the next subsection the inconvenience of
such a transformation.
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2.5 Normalized Formulas

Definition 2.5.1. A normalized formula ϕ of depth d ≥ 1 is a formula of the
form

¬(∃x̄ α ∧
∧
i∈I

ϕi),

with I a finite (possibly empty) set, α ∈ AT and the ϕ′
is normalized formulas of

depth di with d = 1 + max{0, d1, ..., dn}.

Example 2.5.2. Let ϕ be the following formula

∀x∃y y �= x ∧ x = f(x), (4)

where f is a 1-ary function symbol. The preceding formula is equivalent in any
decomposable theory T to the following normalized formula φ of depth 3:

¬(∃x true ∧ ¬(∃y true ∧ ¬(∃ ε y = x ∨ x �= f(x))). (5)

In order to solve φ, the decision procedure of [7] uses among other things a rule
of the form

¬

⎡
⎢⎢⎣
∃x̄ α ∧ ϕ∧

¬
[∃ȳ′ β′∧∧

i∈I ¬(∃z̄′i δ′i)

]
⎤
⎥⎥⎦ =⇒

[¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∧∧
i∈I ¬(∃x̄ȳ′z̄′i α ∧ β′ ∧ δ′i ∧ ϕ)

]

this later transforms a normalized formula of depth 3 into a conjunction of nor-
malized formulas of depth 2. However, each time this rule decreases one depth
of the normalized formula, it builds a huge conjunction of new normalized for-
mulas. In fact, we showed in [7] that this rule is the only one responsible for the
exponential complexity in time and space of our decision procedure. On the other
hand, the transformation of the formula ϕ (the formula (4)) into the normalized
formula φ (the formula (5)) implies the creation of three nested negations and
thus we must apply two times our costly rule in order to decrease the depth of
the formula φ and get true or false. All these steps can be avoided by a direct
simplification of the initial constraint ϕ into true or false using new properties
of decomposable theories. This will be the scope of the next section of this paper.

3 A Decision Procedure for Functional Decomposable
Theories Based on Dual Formulas

We will see in this section how to build a new decision procedure which does not
need to transform the initial formula into a normalized formula. This algorithm
can be used for any functional decomposable theory, i.e. decomposable theory
whose set of relation is reduced to {=, �=}.



40 K. Djelloul

3.1 Dual Formulas

Let T be a functional decomposable theory together with the following signature
F∪{=, �=} where F is a (possibly infinite) set of function symbols. The sets Ψ(u),
A, A′, A′′ and A′′′ are now known and fixed for all the following sections.

Definition 3.1.1. A working formula is a first-order formula which does not
contain any occurrence of the logical symbol ¬.

It is clear that for any functional decomposable theory T we can transform any
first-order formula ϕ into a working formula. For that it is enough to distribute
the negation into the sub-formulas according to the classical rules of first-order
logic.

Example 3.1.2. Let ϕ be the following first-order formula

∃u2∀u1∃u3 ¬
⎡
⎣∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬(∃w1 v1 = g(w1))∧
¬(∃w2 u2 = g(w2) ∧ w2 = g(u3))

⎤
⎦ . (6)

The preceding formula is equivalent to the following working formula

∃u2∀u1∃u3

⎡
⎣∀v1 v1 �= f(u1, u2) ∨ u2 �= g(u1)∨

(∃w1 v1 = g(w1))∨
(∃w2 u2 = g(w2) ∧ w2 = g(u3))

⎤
⎦ . (7)

Definition 3.1.3. The dual ϕ of a working formula ϕ, is the formula obtained
by replacing each occurrence of =, �=, ∧, ∨, ∃, ∀ by �=, =, ∨, ∧, ∀, ∃.
Example 3.1.4. The dual of the working formula (7) is the following formula

∀u2∃u1∀u3

⎡
⎣∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧

(∀w1 v1 �= g(w1))∧
(∀w2 u2 �= g(w2) ∨ w2 �= g(u3))

⎤
⎦ .

Property 3.1.5. We show that T |= ϕ ↔ ϕ and T |= ϕ ↔ ¬ϕ.

3.2 Basic Formulas

Definition 3.2.1. A basic formula is a formula of the one of the following two
forms

(∃x̄ α), (∀x̄ α),

with α ∈ AT and x̄ a (possibly empty) vector of variables.

Using Definition 2.4.1, we show the following property:

Property 3.2.2. If ϕ is a basic formula without free variables then it is of one
of the following forms

(∃ε true), (∃ε false), (∀ε true), (∀ε false).
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Proof. Let ∃x̄ α be a basic formula with α ∈ AT . According to Definition 2.4.1
this formula is equivalent in T to a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′)),

with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′ and ∃x̄′′′ α′′′ ∈ A′′′. Since ∃x̄′′′ α′′′ ∈ A′′′ then
according to Definition 2.4.1 we have T |= ∃!x̄′′′α′′′, thus T |= ∃x̄′′′α′′′. The
preceding formula is then equivalent in T to

∃x̄′ α′ ∧ (∃x̄′′ α′′),

which is equivalent in T to

∃x̄′ α′ ∧ (∃x′′
1 ...x′′

n−1 (∃x′′
n α′′)).

Since ∃x̄′′ α′′ ∈ A′′ then according to Definition 2.4.1 we have T |= ∃Ψ(u)
∞ x′′

n α′′

and thus according to Property 2.3.2 (with J = ∅) T |= ∃x′′
n α′′. The preceding

formula is equivalent in T to

∃x̄′ α′ ∧ (∃x′′
1 ...x′′

n−1 true),

which is finally equivalent in T to

∃x̄′ α′.

According to the fifth point of Definition 2.4.1 the preceding formula is either
the formula ∃εtrue or ∃εfalse . By following the same steps and using Property
3.1.5, we show the rest of this property for the basic formulas of the form ∀x̄ α.

3.3 The Decision Procedure

Let ϕ be a proposition. Computing the truth value of ϕ in T proceeds as follows:
(1) Transform ϕ into a working formula φ.
(2) Apply the rewriting rules bellow on a sub-working formula of φ by con-

sidering that the connectors ∧ and ∨ are associative and commutative.
(3) Repeat the second step until no rule can be applied. We get at the end

either the formula true or the formula false.

Distribution

(1) ∃xϕ1 ∧ (ϕ2 ∨ ϕ3) ⇒ ∃x (ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ϕ3)
(2) ∀xϕ1 ∨ (ϕ2 ∧ ϕ3) ⇒ ∀x (ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3)
(3) ∃xϕ1 ∨ ϕ2 ⇒ ∃x ϕ1 ∨ ∃xϕ2

(4) ∀xϕ1 ∧ ϕ2 ⇒ ∀x ϕ1 ∧ ∀xϕ2

Lifting quantifications

(5) ∃x′ α′ ∧ (∃ȳ′β′ ∧∧i∈I(∀z̄′ λ
′
i)) ∧ ϕ1 ⇒ ∃x′ȳ′ α′ ∧ β′ ∧∧i∈I(∀z̄′ λ

′
i) ∧ ϕ1

(6) ∀x′ α′ ∨ (∀ȳ′β
′ ∨∨i∈I(∃z̄′ λ′

i)) ∨ ϕ1 ⇒ ∀x′ȳ′ α′ ∨ β
′ ∨∨i∈I(∃z̄′ λ′

i) ∨ ϕ1
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Local solving
(7) ∃x α ∧∧i∈I ϕi ⇒ false
(8) ∀x α ∨∨i∈I ϕi ⇒ true

Decomposition

(9) ∃x α ∧∧i∈I ϕi ⇒ (∃x′ α′) ∧ (∀x′ α′ ∨ ∃x′′ α′′ ∧∧i∈I(∀x′′′ α′′′ ∨ ϕi))
(10) ∀xα ∨∨i∈I φi ⇒ (∀x′ α′) ∨ (∃x′ α′ ∧ ∀x′′ α′′ ∨∨i∈I(∃x′′′ α′′′ ∧ φi))

Propagation of quantified formulas of A′′′ + Full elimination (when I = ∅)

(11) ∃x′′′ α′′′ ∧∧i∈I βi ⇒
∧

i∈I ∀x̄′′′α′′′ ∨ βi

(12) ∀x′′′ α′′′ ∨∨i∈I βi ⇒
∨

i∈I ∃x̄′′′α′′′ ∧ βi

Direct simplification into A′ + Full elimination of quantified formulas of A′′

(13) ∃x α ∧∧i∈I βi ⇒ ∃x′ α′ ∧∧i∈I′ βi

(14) ∀x α ∨∨i∈I βi ⇒ ∀x′ α′ ∨∨i∈I′ βi

Propagation of false and true

(15) ∃x ϕ ∧ false ⇒ false
(16) ∀x ϕ ∧ false ⇒ false
(17) ∃x ϕ ∨ true ⇒ true
(18) ∀x ϕ ∨ true ⇒ true

In all these rules I is a finite possibly empty set2, the ϕi’s and the φi’s are
working formulas and α ∈ AT .

– In the rules (1),...,(4), the vector x̄ is not empty.
– In the rules (5) and (6), the formulas (∃x′ α′), (∃ȳ′β′) and each (∃z̄i λi)

belong to A′.
– In the rules (7) and (8), the basic formula ∃x̄ α is equivalent to a decomposed

formula of the form (∃x̄′ false ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′))).
– In the rules (9) and (10), for all i ∈ I, ϕi �∈ AT and φi �∈ AT . Moreover,

the basic formula ∃x̄ α is equivalent to a decomposed formula of the form
(∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′))), with:
• α′ �= false,
• ∃x̄′′′ α′′′ �= ∃ε true.

– In the rules (11) and (12):
• For all i ∈ I, we have βi ∈ A′.
• (∃x̄′′′ α′′′) ∈ A′′′.

– In the rules (13) and (14):

2 We recall that if I = ∅ and ϕ any first-order constraint then
∧

i∈I ϕ is reduced to
true and

∨
i∈I ϕ is reduced to false.
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• The formula ∃x̄ α is not an element of A′ and is equivalent in T to
a decomposed formula of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃ε true)) with
α′ �= false.

• For all i ∈ I, we have βi ∈ A′.
• I ′ is the set of the i ∈ I such that βi does not have free occurrences of

any variable of x̄′′.

How does it work? our algorithm follows a clear strategy which decreases the
numbers of quantifications until reaching a boolean combination of basic formu-
las. More precisely, starting from any working formula ϕ without free variables,
the rules (1),...(4) transform ϕ into a quantified formula of the form ∃x α∧∧i∈I ϕi

or ∀xα∨∨i∈I ϕi where ϕi is a working formula. The rules (7) and (8) check that
the first level of the quantification is not equivalent to false or true. The rules
(9) and (10) decompose then the first level of the quantification and propagate
the third part of the decomposition (i.e. formulas which belong to A′′′). These
steps are repeated until no propagatiopn of A′′′ can be done. The rules (11),
(12) followed by (13) and (14) (all with I = ∅) eliminate the formulas which
belong to A′′′ and then those which belong to A′′ from the deepest formulas.
Once these elimination step done only formulas of A′ occur in the last level of
the formulas. The rules (11),...,(14) can now be applied again with I �= ∅ and
create formulas of the form ∃x′ α′ ∧∧i∈I′ β′

i or ∀x′ α′ ∨∨i∈I′ β′
i. The rules (5)

and (6) as well as the other rules can now be applied again and so on. After
a finite application of our rules, we get a boolean combination of formulas of
the form ∃x′ α′ ∧∧i∈I′ β′

i or ∀x′ α′ ∨∨i∈I′ β′
i. Since these formulas have no free

variable then from Property 3.2.2 each level is of one of the following forms:

(∃ε true), (∃ε false), (∀ε true), (∀ε false).

As a consequence, after a finite application of the rules (15),...,(18) we get either
true or false.

Note 1. In order to reach a so simplified final formula, we have also used the
following trivial equivalences during the application of our rules:

(λ1 ∧ λ1) ⇒ λ1

(λ1 ∧ true) ⇒ λ1

(λ1 ∧ λ2) ⇒ (λ2 ∧ λ1)
(λ1 ∨ λ2) ⇒ (λ2 ∨ λ1)
(λ1 ∧ (λ2 ∧ λ3)) ⇒ ((λ1 ∧ λ2) ∧ λ3)
(λ1 ∨ (λ2 ∨ λ3)) ⇒ ((λ1 ∨ λ2) ∨ λ3)

(μ1 ∨ μ1) ⇒ μ1

(μ1 ∨ false) ⇒ μ1

(μ1 ∧ μ2) ⇒ (μ2 ∧ μ1)
(μ1 ∨ μ2) ⇒ (μ2 ∨ μ1)
(μ1 ∧ (μ2 ∧ μ3)) ⇒ ((μ1 ∧ μ2) ∧ μ3)
(μ1 ∨ (μ2 ∨ μ3)) ⇒ ((μ1 ∨ μ2) ∨ μ3)

where λi and μi are working formulas.

Correctness of Our Rules

Let us show now that for each rule of the form p =⇒ p′ we have T |= p ↔ p′. The
rules (1),...,(8), (15),...,(18) are evident and belong the well known properties of
first-order logic. The other rules are new properties of decomposable theories
and deserve to be detailed.
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Proof of rule (9)

(9) ∃xα ∧∧i∈I ϕi ⇒ (∃x′ α′) ∧ (∀x′ α′ ∨ ∃x′′ α′′ ∧∧i∈I(∀x′′′ α′′′ ∨ ϕi))

According to the conditions of application of this rule, the formula ∃x̄ α is equiv-
alent in T to a decomposed formula of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′)).
Thus, the left formula of this rewriting rule is equivalent in T to the formula

∃x̄′ α′ ∧ (∃x̄′′α′′ ∧ (∃x̄′′′α′′′ ∧
∧
i∈I

ϕi)).

Since ∃x̄′′′ α′′′ ∈ A′′′, then according to the fourth point of Definition 2.4.1 we
have T |= ∃!x̄′′′α′′′, thus using Property 2.2.3 the preceding formula is equivalent
in T to

∃x̄′ α′ ∧ (∃x̄′′α′′ ∧
∧
i∈I

¬(∃x̄′′′α′′′ ∧ ¬ϕi))

According to the second point of Definition 2.4.1 we have T |= ∃?x̄′α′, thus using
Property 2.2.2 the preceding formula is equivalent in T to

(∃x̄′ α′) ∧ ¬(∃x̄′ α′ ∧ ¬(∃x̄′′α′′ ∧
∧
i∈I

¬(∃x̄′′′α′′′ ∧ ¬ϕi)))

i.e. to
(∃x̄′ α′) ∧ (∀x̄′ (¬α′) ∨ (∃x̄′′α′′ ∧

∧
i∈I

(∀x̄′′′(¬α′′′) ∨ ϕi)))

which according to Property 3.1.5 is equivalent in T to

(∃x̄′ α′) ∧ (∀x̄′ α′ ∨ ∃x̄′′α′′ ∧
∧
i∈I

(∀x̄′′′α′′′ ∨ ϕi))

Proof of rule (10)

(10) ∀x α ∨∨i∈I φi ⇒ (∀x′ α′) ∨ (∃x′ α′ ∧ ∀x′′ α′′ ∨∨i∈I(∃x′′′ α′′′ ∧ φi))

According to the preceding proof we deduce that the left hand side is equivalent
in T to the right hand side. Thus, the negation of both hand sides are also
equivalent. As a consequence we have:

T |= ¬(∃xα ∧∧i∈I ϕi) ↔ ¬((∃x′ α′) ∧ (∀x′ α′ ∨ ∃x′′ α′′ ∧∧i∈I(∀x′′′ α′′′ ∨ ϕi)))

By pushing down the negation from both sides and according to Property 3.1.5
we get

T |= ∀xα ∨∨i∈I φi ↔ (∀x′ α′) ∨ (∃x′ α′ ∧ ∀x′′ α′′ ∨∨i∈I(∃x′′′ α′′′ ∧ φi))

where φi is the formula ¬ϕi. According to the condition of application of rule
(9) we have ϕi �∈ AT then according to Property 3.1.5 we get φi �∈ AT .
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Proof of rule (11)

(11) ∃x′′′ α′′′ ∧∧i∈I βi ⇒
∧

i∈I ∀x̄′′′α′′′ ∨ βi

According to Property 3.1.5, the left hand side of rule (11) is equivalent in T to

(∃x′′′ α′′′ ∧
∧
i∈I

¬βi)

Since ∃x̄′′′ α′′′ ∈ A′′′, then according to the fourth point of Definition 2.4.1 we
have T |= ∃!x̄′′′α′′′, thus according to Property 2.2.3 the preceding formula is
equivalent in T to ∧

i∈I

¬(∃x′′′ α′′′ ∧ βi)

i.e. to ∧
i∈I

(∀x′′′ ¬α′′′ ∨ ¬βi)

which according to Property 3.1.5 is equivalent to∧
i∈I

(∀x′′′ α′′′ ∨ βi)

Proof of rule (12)

(12) ∀x′′′ α′′′ ∨
∨
i∈I

βi ⇒
∨
i∈I

∃x̄′′′α′′′ ∧ βi

According to the preceding proof we deduce that the left hand side is equivalent
in T to the right hand side. Thus, the negation of both hand sides are also
equivalent. As a consequence we have:

T |= ¬(∃x′′′ α′′′ ∧
∧
i∈I

βi) ↔ ¬(
∧
i∈I

∀x̄′′′α′′′ ∨ βi)

By pushing down the negation from both sides and according to Property 3.1.5
we get

T |= ∀x′′′ α′′′ ∨
∨
i∈I

βi ↔
∨
i∈I

∃x̄′′′α′′′ ∧ βi

Proof of rule (13)

(13) ∃x α ∧∧i∈I βi ⇒ ∃x′ α′ ∧∧i∈I′ βi

– the formula ∃x̄ α is not an element of A′ and is equivalent in T to a decom-
posed formula of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃ε true)) with α′ �= false.

– For all i ∈ I, we have βi ∈ A′.
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– I ′ is the set of the i ∈ I such that βi does not have free occurrences of any
variable of x̄′′.

According to the preceding conditions, the left hand side of rule (13) is equivalent
in T to

∃x′ α′ ∧ (∃x′′ α′′ ∧
∧
i∈I

βi)

Let us denote by I1, the set of the i ∈ I such that x′′
n does not have free

occurrences in the formula βi, thus the preceding formula is equivalent in T to

∃x′ α′ ∧ (∃x′′
1 ...∃x′′

n−1

[
(
∧

i∈I1
βi)∧

(∃x′′
n α′′ ∧∧i∈I−I1

βi)

]
). (8)

Since ∃x̄′′α′′ ∈ A′′ and βi ∈ A′ for every i ∈ I − I1, then according to Property
2.3.2 and the conditions 2 and 3 of Definition 2.4.1, the formula (8) is equivalent
in T to

∃x′ α′ ∧ (∃x′′
1 ...∃x′′

n−1 ((
∧

i∈I1
βi) ∧ true)). (9)

By repeating the three preceding steps (n − 1) times, by denoting by Ik the set
of the i ∈ Ik−1 such that x′′

(n−k+1) does not have free occurrences in βi, and by
using (n − 1) times Property 2.3.3, the preceding formula is equivalent in T to

∃x′ α′ ∧
∧

i∈In

βi

Proof of rule (14)

(14) ∀xα ∨
∨
i∈I

βi ⇒ ∀x′ α′ ∨
∨
i∈I′

βi

According to the preceding proof we deduce that the left hand side is equivalent
in T to the right hand side. Thus, the negation of both hand sides are also
equivalent. As a consequence we have:

T |= ¬(∃x α ∧∧i∈I βi) ⇒ ¬(∃x′ α′ ∧∧i∈I′ βi)

By pushing down the negation from both sides and according to Property 3.1.5
we get

T |= ∀xα ∨∨i∈I βi ↔ ∀x′ α′ ∨∨i∈I′ βi

Example 3.3.1. Let us solve the following formula ϕ1 in the theory of finite or
infinite trees:

∃x∀y ∃z z = f(y) ∧ x = f(x) ∨ (x = f(y) ∧ z = f(z))

According to the rule (3) the preceding formula is equivalent to

∃x∀y (∃z z = f(y) ∧ x = f(x)) ∨ (∃z x = f(y) ∧ z = f(z)).
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By applying the rule (9) with I = ∅ on (∃z z = f(y) ∧ x = f(x)) and also on
(x = f(y) ∧ z = f(z)), we get the following equivalent formula

∃x∀y ((x = f(x)) ∧ (x = f(x))) ∨ ((x = f(y)) ∧ ((x = f(y))),

In fact:

– the formula (∃z z = f(y) ∧ x = f(x)) is equivalent to a decomposed formula
of the form (∃ε x = f(x) ∧ (∃ε true ∧ (∃z z = f(y))).

– the formula (∃z x = f(y) ∧ z = f(z)) is equivalent to a decomposed formula
of the form (∃ε x = f(y) ∧ (∃ε true ∧ (∃z z = f(z))).

– We also recall that if I = ∅ then
∧

i∈I ϕi is the formula true and
∨

i∈I ϕi is
the formula false.

According to Note 1, the preceding formula is simplified into

∃x∀y x = f(x) ∨ x = f(y).

Since ∃x true ∈ A′′, then rule (13) can be applied. The preceding formula is
equivalent to the empty conjunction, i.e. the formula true.

4 Benchmarks: Randomly Generated Formulas

We have tested our rules on randomly generated formulas of the form

∃x̄1 α1 ∧ ∀ȳ1 β1 ∧ ∃x̄2 α2 ∧ ∀ȳ2 β2... (10)

such that in each sub-formula of the form ∃x̄i αi ∧ ∀ȳi βi we have:

– Each x̄i or ȳi is a vector of variables whose cardinality is randomly chosen
between 1 and 2.

– The formulas ∃x̄iαi and ∀ȳiβi are basic formulas.
– The number of the formulas in the αi and βi is randomly chosen between 1

and 5. Moreover, the formulas true or false occur at most once.
– The formulas are randomly generated starting from a set containing two

1-ary function symbols: f,− and two 2-ary function symbols +, g.

The benchmarks are realized on two decomposable theories:
(1) theory T1 of finite or infinite trees [6],
(2) theory T2 of the combination of finite or infinite trees and rational numbers

with addition and subtraction [9]. It represents an axiomatization of the model
of Prolog III [4] that we presented in [8].

We have used a 2.5Ghz Pentium IV processor with 1024Mb of RAM. For
each integer 1 ≤ AQ ≤ 16 (AQ stands for alternated quantifications ∃∀) we
randomly generated formulas with AQ nested alternated quantifications of the
form ∃x̄i αi ∧ ∀ȳi βi, we solved them and computed the average execution time
(CPU time in milliseconds). If for example AQ = 2 then we solved formulas of
the form ∃x̄1 α1 ∧ ∀ȳ1 β1 ∧ ∃x̄2 α2 ∧ ∀ȳ2 β2.

For each theory Ti, we note bellow the average execution times obtained
using our rules as well as those obtained using the classical decision procedure
for decomposable theories [7].
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Theory T1.
AQ 2 4 6 10 15 16

Algo [7] T1 132 490 1592 19234 − −
Our algo T1 92 231 704 9252 2556624 −

Theory T2.
AQ 2 4 6 9 13 14

Algo [7] T2 206 682 2188 69234 − −
Our algo T2 128 342 1128 32040 3011028 −

For both theories, the classical decision procedure takes much more time and
overflows the memory early (starting from AQ=10 for T1 and 9 for T2) comparing
with our new algorithm which can decide the truth value of formulas having more
than 15 alternations of ∀∃ (i.e. 30 quantifiers) in T1 and 13 (i.e. 26 quantifiers)
in T2.

This big differences (in time and space) is due to the fact that the decision
procedure of [7] needs to transform the initial constraint (10) into a normalized
formula before starting solving it. Such a transformation creates a complex and
huge normalized formula (in term of depth) with many imbricated alternated
quantifiers. This later will be solved mainly using a very costly rule (rule (5) in
[7]) which decreases the depth of the normalized formulas but increases exponen-
tially the number of conjunctions of the normalized formulas until overflowing
the memory. Our algorithm does not need to normalize the initial constraint
(10) and creates instead a boolean combination of basic formulas until reaching
the solved constraint true or false.

5 Conclusion

We have presented in this paper an efficient decision procedure for functional
decomposable theories, i.e. theories whose set of relation is reduced to {=, �=}
such as: Clark equational theory [2], theory of finite or infinite trees [11], rational
or real numbers with addition and subtraction, theory of queues [14] together
with the two functions add-left and add-right,...etc. To this end, we presented the
notion of dual and working formulas and used them to show how to transform
any first-order proposition into a boolean combination of formulas which are
either equivalent to true or to false.

The classical decision procedure for decomposable theories given in [7] needs to
normalize the initial proposition before starting the solving process. This trans-
formation generates many nested negations and quantifications which greatly
slow down the performances of the solver. Our new algorithm does not need
such a transformation and directly computes the truth value of any proposition
using new properties of functional decomposable theories.

We have shown the efficiency of our algorithm (in time and space) by com-
paring its performances with those of the classical decision procedure for decom-
posable theories [7]. Our algorithm can solve propositions involving more than
30 nested alternated quantifiers (∃∀) while the decision procedure overflows the
memory starting from 20 nested alternated quantifiers.
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Recently, we transformed the classical decision procedure into a full first-order
constraint solver which can manage free variables and present their solutions in
a clear and explicit way [5]. After many experimentations, we noted that the
performances of this later are still worse (in time and space) comparing with our
dual constraint algorithm while solving formulas of the form ∃x̄1 α1 ∧ ∀ȳ1 β1 ∧
∃x̄2 α2 ∧ ∀ȳ2 β2. This is mainly due to the fact that we kept our pre-processing
step which transforms the initial constraint into a normalized formula before
starting the solving process. The reason for keeping this step is simple:

(1) If we remove the pre-processing step then we can only create a boolean
combination of basic formulas. In this case, if there exists at least one free vari-
able then we can get some basic formulas with free variables which are neither
equivalent to false nor to true. As a consequence, our final formula will be a
boolean combination from which it is impossible to understand the values of the
free variables which satisfy the formula in all the models of T .

(2) If we keep the pre-processing step then we handle only normalized formulas
during the solving process. As a consequence, it is very easy to extract the
solutions of the free variables in the final solved form.

From (1) and (2) we can deduce that if we want a full first-order constraint
solver which manages free variables than we cannot avoid the pre-processing step
which normalizes the initial constraint. The dual algorithm given in this paper is
not able to manage free variables but is by far the most efficient when deciding
the truth values of any proposition, i.e. formula without free variables.

Currently, we are trying to find a more abstract characterizationand/or a model
theoretic characterization of the decomposable theories. The current definition
gives only an algorithmic insight into what it means for a theory to be complete.

Our work as presented in this paper contributes to enlarge the properties
of decomposable theories from a theoretical point of view but does not really
show the efficiency of our work on real practical problems. As a consequence,
we are now working on more meaningful (i.e., non random) benchmarks and try
to combine our approach with those of Satisfiability Modulo Theories (SMT)
community [15]. Many theories are of interests in particular: theory of lists [16]
and Presburger’s theory [12,13].
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Abstract. In the analysis of hybrid discrete-continuous systems, rich
arithmetic constraint formulae with complex Boolean structure arise
naturally. The iSAT algorithm, a solver for such formulae, is aimed at
bounded model checking of hybrid systems. In this paper, we identify
challenges emerging from planned and ongoing work to enhance the iSAT
algorithm. First, we propose an extension of iSAT to directly handle ordi-
nary differential equations as constraints. Second, we outline the recently
introduced generalization of the iSAT algorithm to deal with probabilis-
tic hybrid systems and some open research issues in that context. Third,
we present ideas on how to move from bounded to unbounded model
checking by using the concept of interpolation. Finally, we discuss the
adaption of some parallelization techniques to the iSAT case, which will
hopefully lead to performance gains in the future. By presenting these
open research questions, this paper aims at fostering discussions on these
extensions of constraint solving.

Keywords: mixed Boolean and arithmetic constraints, differential equa-
tions, stochastic SMT, Craig interpolation, parallel solver.

1 Introduction

The complexity of embedded systems, e.g. in automotive and avionics applica-
tions, has increased dramatically over the last decades. The safety criticality
of these systems calls for more and more sophisticated— especially computer-
aided— analysis techniques that enable engineers to assess the correctness of
their designs and implementations. For finding errors in models of large systems,
simulation has become one of the most successful and established methods. How-
ever, in general, simulation cannot guarantee the absence of errors for systems
with infinitely many states which naturally arise in these domains.
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In recent years, algorithms have been developed that can mathematically
prove the correctness of a huge variety of system classes with respect to a given
specification. Embedded systems often combine digital and analog components,
e.g. in multi-modal controllers or when describing them as integrated models of a
digital controller interacting with its continuously evolving plant. Hybrid systems
are a very rich modelling paradigm to describe such hybrid discrete-continuous
behavior. A hybrid system consists of a set of modes and a set of continuous
variables that together represent its state space. Its evolution is described by
a transition relation entailing discrete mode switches, also called transitions,
and arithmetic constraints describing the behavior of the continuous variables
within each mode. The latter is often achieved by using differential equations
that naturally arise when modelling physical entities. The mode switches are
governed by so-called transition guards, i.e. arithmetic constraints observing
the continuous variables, and can perform discrete actions by (potentially non-
deterministically) setting a variable x to a new value x′ satisfying an arithmetic
condition, e.g. x′ > sin(y2) or x′ = 4.2 · x.

The semantics of a hybrid system is defined by the set of its runs, i.e. the
possible evolutions it allows. Such an evolution can always be represented by a
sequence of variable valuations, where two successive valuations can either be
connected by a continuous evolution in the mode the system is in, or satisfy
the transition guard and action constraints, such that the system can actually
perform a switch from one mode to the next. This representation of a run is called
a trace and intuitively describes snapshots of the system’s evolution through the
state space at the endpoints of continuous trajectories and discrete jumps.

Returning to the motivation described initially, the reachability problem of
hybrid systems, i.e. the question of whether a particular state (e.g. a state rep-
resenting a fatal system failure) is reachable, is of particular interest to complex
systems verification and falsification. Though this problem is undecidable in gen-
eral, developing model checking algorithms and tools that can deal with a large
sample of systems that occur in real-world applications seems to be so relevant
that it can be considered a reasonable goal nonetheless. In addition to that,
robustness notions [1] can be used to find classes of systems, for which decision
procedures can be developed. Hybrid systems and decidability questions have
been extensively examined in the literature, for a detailed account see e.g. [2].

Among the most successful analysis methods for finite-state systems is bound-
ed model checking (BMC) [3,4], which has also been extended to the case of hy-
brid systems [5,6]. The idea of BMC is to encode the initial states, the transition
relation, and the target state specification of the system as predicates INIT (x0),
TRANS(xi, xi+1), and TARGET (xk), respectively, where x0, xi, xi+1, and xk

are instantiations of the vector of variables representing the discrete and contin-
uous state space. The initial predicate INIT (x0) is satisfied by a valuation of x0
iff that valuation characterizes an initial state. Analogously, the transition pred-
icate TRANS(xi, xi+1) holds for two (successive) valuations iff the system can
perform a discrete mode switch or a continuous evolution as described above.
We consider the succession from xi to xi+1 as a step of the system. Finally,
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the target predicate TARGET (xk) specifies the states whose reachability is ex-
amined. A hybrid system can thus reach a target state in a limited number of
steps k iff the following BMC formula is satisfiable.

Φk := INIT (x0) ∧TRANS(x0, x1) ∧ . . . ∧ TRANS(xk−1, xk)︸ ︷︷ ︸
k unwindings of the transition relation

∧TARGET (xk)

As the behavior of a hybrid system can in general be arbitrarily non-linear
and non-deterministic, the resulting BMC formula Φk is a Boolean combina-
tion of rich arithmetic constraints including differential equations. A solver that
can directly handle Φk is thus desirable. Approaches from continuous constraint
programming (cf. e.g. [7]) which can handle non-linear constraints are often re-
stricted to conjunctive formulae. On the other hand, most satisfiability modulo
theories (SMT, e.g. [8]) solvers— though being very capable of handling complex
Boolean structure— are confined to decidable theories— in particular, they do
not handle non-linear constraints. Recently, algorithms combining both domains
were published: ABsolver [9], which uses a non-linear optimization packet, and
iSAT [10], which uses techniques from interval constraint solving.

Structure of the paper. In Section 2, we briefly recall the iSAT algorithm that
constitutes the basic framework for our presentation. Section 3 identifies the
main directions for the extensions discussed in this paper, which are described
in more detail in Sections 4 – 7. Finally, we give some thoughts on synergies
between these different topics.

2 The iSAT Algorithm

In [10], the iSAT algorithm for solving mixed Boolean and non-linear (includ-
ing transcendental) arithmetic constraints over bounded reals and integers was
introduced. Differential equations however cannot be handled directly by iSAT
and need to be (over-)approximated or solved during modeling. Internally, iSAT
solves a conjunction of clauses, where a clause is a disjunction of atoms. An atom
(a.k.a. primitive constraint) contains one relational operator, at most one arith-
metic operation, and up to three variables, e.g. x ≥ sin(y), x = y+z, and z < 3.7.
By a Tseitin-like transformation [11], any BMC formula Φk can automatically
be rewritten into an equi-satisfiable formula in this kind of conjunctive normal
form, which grows at most linearly in the size of the original formula. The iSAT
algorithm is a generalization of the Davis-Putnam-Logemann-Loveland (DPLL)
procedure [12,13] using interval constraint propagation (ICP) (cf. e.g. [7]), and
manipulates interval valuations of the variables by alternating deduction and
splitting phases.

During the deduction phase, the solver searches for clauses in which all but
one atom are inconsistent under the current interval valuation. These remaining
consistent atoms are called unit. In order to retain a chance for satisfiability of
the formula, unit atoms have to be satisfied. This is similar to Boolean constraint
propagation in DPLL SAT solving. The unit atoms are therefore used for ICP
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during the deduction phase. New interval bounds can thus be deduced until a
fixed point is reached. For termination reasons, the ICP has to be stopped if the
progress of newly deduced bounds becomes negligible.

If a conflict occurs, i.e. the interval of a variable becomes empty, then a
conflict resolution procedure is called which analyzes the reason for the conflict.
If the conflict cannot be resolved the given formula is unsatisfiable. Otherwise, a
conflict clause is built from the reason of the conflict and added to the formula in
order to prevent the solver from revisiting the same conflict again. Furthermore,
conflict resolution requires the solver to take back some of the decisions and their
accompanying deductions that have been performed so far.

If the solver finds a solution, i.e. at least one atom in each clause is satisfied
by every point in the interval valuation, the algorithm stops. In general, equa-
tions like x = y · z can only be satisfied by point intervals. However, reaching
such point intervals by ICP cannot be guaranteed for continuous domains. One
option to mitigate this problem is to stop the search when all intervals have a
width smaller than a certain threshold, the so-called minimum splitting width,
and returning the found approximative solution. Having completed the deduc-
tion phase and neither found a conflict nor an (approximative) solution, iSAT
performs a decision by splitting an interval. A decision heuristics is used to select
one of the intervals whose width is still greater than or equal to the minimum
splitting width. The search is then resumed using this newly generated interval
bound which potentially triggers new deductions as described above.

3 Problem Description

The primary goal of this paper is to propose challenges that arise from planned
and ongoing work in the context of enhancing the iSAT algorithm into the direc-
tions of scope and performance. We hope that presenting these research questions
will foster discussions on these interesting topics.

In order to avoid an a priori overapproximation of the continuous dynamics
in system models, direct handling of ordinary differential equations is to be
integrated into iSAT’s deduction rules (Section 4). Another extension of the
scope is to enable iSAT to deal with probabilistic hybrid systems (Section 5).
Thereafter, we present ideas on how to move from bounded to unbounded model
checking by using the concept of interpolation. In Section 7, we discuss the
adaption of some parallelization techniques to the iSAT case, which will hopefully
lead to dramatic performance gains in the future.

4 Differential Equations as Constraints

In order to directly handle ordinary differential equations (ODEs) as constraints
within a formula, we need to extend the deduction mechanism used by iSAT to
not only propagate newly deduced bounds through arithmetic constraints using
ICP, but to also propagate new interval bounds through ODEs. A continuous
trajectory can often be described by an ODE of the form dx

dt = f(x) over a
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vector x of continuous variables. Being part of the predicative encoding of the
transition relation, this ODE describes the connection of the variable instances
xi and xi+1 from two successive BMC unwinding depths. We thus search for
solution functions of the ODE that emerge from the valuation of xi (the pre-
box ) and eventually reach the valuation of xi+1 (the postbox ). Analogously to
ICP, we are interested in pruning off all valuations from the pre- and postbox
that cannot belong to such trajectories. To achieve this, we thus need a safe
overapproximation of the ODE trajectories in order not to prune away possible
solutions.

Related work on safe enclosures of ODEs can be found in [14,15,16], where
error bounds on the remainder term of a Taylor series of the unknown exact solu-
tion are calculated and used as safe overapproximations of the errors induced by
the Taylor-series-based approximation of the trajectory. Using coordinate trans-
formations to suitably adapt the enclosures to the solution sets and thereby
mostly avoiding the so-called wrapping effect (cf. e.g. [14]), this approach works
well for linear ODEs. However, as for non-linear ODEs, coordinate transforma-
tions alone are often insufficient to eliminate the wrapping effect, the enclosures
quickly become very rough and finally unusably large in the non-linear case. A
newer approach— the so-called Taylor models [17] —have been shown to give
tighter enclosures for non-linear ODEs by employing a more symbolic represen-
tation of the enclosure sets. Henzinger et. al. use the Taylor-series-based enclo-
sure method in the HyperTech tool [18], also facing hybrid systems analysis,
however not in a constraint solving approach. In [19], CLP(F)— a very broad
framework to constraint logic programming— is applied to models of hybrid
systems. CLP(F) does however not include any measures against the wrapping
effect encountered when enclosing ODE trajectories with intervals.

This section of the paper tries to sum up the essential challenges and options
to solve them, that we see in the context of embedding safe enclosures of ODEs
into the iSAT algorithm. These major challenges are to

1. find methods and data structures that allow sufficiently tight overapproxi-
mating enclosures of the trajectories of an ODE that connect the interval
boxes representing pre- and postsets,

2. devise heuristics that allow to select the method fitting best into the current
phase of solving, e.g. coarse-grain but quick first enclosures to chop off the
most implausible parts of the solution space during an early phase of solving
versus tight but expensive enclosures to narrow an enclosure tube around an
actual error trace to reduce the probability of spurious counterexamples,

3. embed these methods in the solver process anywhere between calling them
like normal deduction rules that are executed whenever a new bound on a
variable is generated or as a subordinate solver that can be called arbitrarily
seldom to reduce the impact of an expensive method,

4. derive symbolic knowledge from ODE constraints that can be learned and
thus automatically extend the constraint system to contain redundant en-
codings reflecting some of the possible system dynamics without the need to
(probably always more expensively) re-enclose the ODE trajectories.
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In a first prototype, we have proved the feasibility of integrating a Taylor-series
based enclosure method as a subordinate solver to the iSAT algorithm. However,
first experiments with this prototype show that none of above challenges can be
regarded as completely mastered [20]. For each challenge a multitude of design
choices exist that may have a fundamental impact on the overall performance of
an ODE-enabled iSAT.

To approach the first challenge, we consider both the Taylor-based enclosure
methods [14,15,16], that were used for the prototype, and the more recently de-
veloped Taylor models [17] as possible choices. While Taylor series together with
coordinate transformations will probably be a good choice for linear ODEs, we
expect Taylor models to also allow to approach non-linear ODEs. Out of the
many existing numerical methods for numerical approximation of ODE trajec-
tories there may however be some whose truncation errors can be enclosed as
well. Exploring such methods may thus extend the spectrum of choices. The
most essential problem in this context will probably be to control the wrapping
effect in order to avoid unusably coarse overapproximations.

The second challenge necessitates, first, a pool of methods with different char-
acteristics, i.e. methods that are tailored to quickly generating results as well as
methods that allow tight enclosures, and second, a set of criteria that are easily
evaluable and allow to determine which enclosure method should be used. One
possible criterion could be the size of the currently searched box, where a small
box could indicate the use of more accurate methods.

Solving the third challenge will mean to find the best integration strategy for
the enclosure mechanisms. It can be expected that any good enclosure method
will normally be quite expensive in terms of runtime compared to arithmetic
interval propagators. This may suggest that performing enclosures very seldom
might be a good strategy. On the other hand, as an essential portion of the
system dynamics is encoded in the ODE constraints, it also seems necessary to
evaluate them often in order to detect conflicts early and thus to prune off those
parts of the search space that cannot contain any solutions.

Finally, we expect that learning new arithmetic constraints from the ODEs
(e.g. from monotony or stability arguments) will allow to reduce the number
of enclosures that actually need to be performed. Similar to learning conflict
clauses when the intersection of an enclosure with a pre- or postbox becomes
empty, these constraints would allow to prune off substantial parts of the search
space that cannot contain any solutions.

5 Stochastic Constraint Systems

Most of the common analysis procedures are confined to just prove or disprove
the safety of a system. However, for models of safety-critical systems interacting
with the environment it is often clear which incidents lead to unsafe behavior,
e.g. a power blackout combined with a failure of the emergency power system
can induce a safety-critical state of a nuclear power station. Although such ac-
cidents cannot be excluded in general, it is tried to strongly decrease the prob-
ability of safety-critical behavior s.t. the system is most likely safe. Thus, the
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Fig. 1. A fragment of a system model for a probabilistic component breakdown

verification goal in this application domain is whether the likelihood of reach-
ing unsafe states is below an acceptable threshold, e.g. less than 0.03%. As a
modeling framework to deal with uncertainties, we consider probabilistic hybrid
automata (PHA, cf. [21]) which extends the notion of hybrid automata s.t. the
non-deterministic selection of a transition is enriched by a probabilistic choice
according to a distribution over variants of the transition. I.e., each transition
carries a (discrete) probabilistic distribution. Each probabilistic choice within
such a distribution leads to a potentially different successor mode while per-
forming some discrete actions. An example of a PHA fragment modelling some
probabilistic component breakdown is shown in Fig. 1, where T , fcool, and t
denote the temperature, the cooling factor, and the time, resp., and Δt is the
discretization parameter.

In order to automatically compute the reachability probability of (un-)desired
properties of PHAs, in [21] we introduced stochastic satisfiability modulo theo-
ries (SSMT) as the unification of stochastic propositional satisfiability (SSAT)
[22] and satisfiability modulo theories (SMT, e.g. [8]). SSMT deals with ex-
istential and randomized quantification of finite-domain variables. An SSMT
formula is specified by a quantifier prefix and an SMT formula, e.g. ∃x ∈
{0, 1} R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1} : (x > 0 ∨ sin(4a) ≥ 0.3) ∧ (y > 0 ∨ sin(4a) < 0).
The value of a variable bound by an existential quantifier, as in ∃x ∈ {0, 1}, can
be set arbitrarily, while the value of a variable bound by a randomized quantifier,
as in

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1}, is determined stochastically by the corresponding
distribution, here 〈(0, 0.6), (1, 0.4)〉. E.g.,

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1} means that
the variable y is assigned the value 0 or 1 with probability 0.6 or 0.4, resp. The
solution of an SSMT problem Φ is a tree of assignments to the existential vari-
ables that maximizes the overall satisfaction probability of Φ (cf. [21] for more
details). In our application, we are interested in computing the maximum proba-
bility of satisfaction. For the example above, setting x to 0 yields the satisfaction
probability 0.4 since the assignment x = 0, y = 0 cannot satisfy the SMT for-
mula. For x = 1, both y = 0 and y = 1 lead to solutions and, thus, to satisfaction
probability 1.0. Hence, the maximum satisfaction probability is 1.0.
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The behavior of a PHA H (restricted to step depth k) together with a reacha-
bility property P can be described by an SSMT formula Φ in the following sense:
Φ is satisfiable with maximum probability p iff H fulfills property P (within k
steps) with maximum probability p. The idea of the formalized encoding of a
PHA into an SSMT formula, as presented in [21], is that the non-deterministic
choice of a transition in a PHA corresponds to existential quantification in SSMT,
while the probabilistic distributions correspond to randomized quantification.
The discrete-continuous behavior of the automaton is encoded by means of stan-
dard techniques. We are currently working on a modeling framework for PHAs
which automatically translates the modelled PHA into an SSMT formula [23].

Completing the verification procedure for PHAs, we recently extended the
iSAT solver to existential and randomized quantification (SiSAT, [24]). The main
idea of the SiSAT algorithm is to traverse the tree given by the quantifier prefix
and to properly call the iSAT algorithm. First experimental results proved the
concept: exploiting additional pruning rules which cut off huge parts of the
quantifier tree, the SiSAT tool is currently able to solve SSMT problems with up
to 110 quantified and 350 non-quantified variables, and up to 1100 clauses within
100 minutes. Problems including quantifiers are well-known not to be as scalable
as quantifier-free problems. However, we believe that further improvements, e.g.
value and variable ordering heuristics, will yield significant performance gains.
In the following, we highlight some open research issues for future work.

– Value and variable ordering heuristics are well-studied in SAT and Con-
straint Satisfaction to improve efficiency. For the quantified case, the variable
ordering within a block of quantifiers with the same type do not change the
semantics of the problem. This property can be exploited during the proof
search to rearrange the variables. To derive benefit from this fact, we will
investigate different static and dynamic ordering heuristics.

– Bounded model checking, i.e. stepwise unrolling the transition relation of
a system interspersed with model checking runs, facilitates to reuse and
propagate knowledge from previous runs (due to symmetries) such as conflict
clause reusing and shifting. In the quantified case, we are also interested in
maintaining and propagating knowledge about solutions of previous solver
calls. Besides skipping branches leading to a conflict, such a technique would
allow to avoid investigation of branches for which the satisfaction probability
was (partially) computed previously.

– The underlying iSAT algorithm which is based on interval arithmetic is in
general neither able to find a (real) solution nor to prove its absence. In such
cases the results are approximative solutions which suffice certain consis-
tency notions but do not guarantee real solutions. Concerning the reliability
of the computed satisfaction probabilities, we will extend the SiSAT tool
to deal with confidence intervals in order to obtain safe approximations of
satisfaction probabilities.

– Another issue concerning the reliability of the computed results is to of-
fer certificates of the satisfaction probabilities, i.e. proofs that the returned
probabilities are correct. Reliable results are of utmost importance in the
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verification of safety-critical industrial systems. A certificate that a
quantifier-free formula is satisfiable is simply a satisfying assignment to the
variables. A proof of unsatisfiability is often more complex, e.g. a clause res-
olution strategy in the propositional case. In our setting, such a certificate
seems to be a mixed version of both.

– To assess the practical significance, we will apply the SiSAT tool on real-
world benchmarks. Within the AVACS project1, we are especially interested
in benchmarks which deal with the impact of cooperative, distributed traffic
management on flow of road traffic. These benchmarks are representative
for a large number of hard scheduling and allocation problems and naturally
show uncertain behavior.

– A more fundamental challenge is to generalize the scope of the quantifiers to
continuous domains involving arbitrary probability distributions. This would
increase considerably the expressive power of SSMT.

6 Interpolation

In system’s verification, i.e. unbounded model checking, Craig interpolants [25]
have gained more and more attention over the last years. In [26], McMillan mod-
ified a bounded model checking procedure for Kripke Structures with the help of
interpolants s.t. the procedure becomes able to prove safety properties of a given
system for runs of any length. More recently, McMillan extended his work on
unbounded model checking to the quantifier-free theory of linear inequality and
uninterpreted function symbols [27], which is used, e.g., in software verification.
His approach has been implemented in the software model checker Blast [28].

As outlined in Section 1, bounded model checking aims at disproving a prop-
erty P (x) of a given system S. Thus, a BMC procedure tries to find an unwinding
depth k s.t. the corresponding BMC formula Φk with TARGET (xk) = ¬P (xk)
is satisfiable. On the other hand, the goal of unbounded model checking is to
prove that P holds for all runs of S. I.e., Φk with target ¬P (xk) is unsatisfiable
for any k ∈ N.

Such an unbounded model checking procedure can be obtained by means of
Craig interpolation. Given two formulae A and B s.t. A ∧ B is unsatisfiable.
Then, a formula p is called Craig interpolant for A and B iff (1) p contains
only variables which occur in both A and B ((A, B)-common variables), (2)
A ⇒ p, and (3) p ⇒ ¬B. A Craig interpolant p is called strongest if p implies
any other Craig interpolant p′, i.e. p ⇒ p′. Hence, any such interpolant p′

overapproximates p.
After showing that Φ0 = INIT (x0) ∧ TARGET (x0) is unsatisfiable (i.e. ini-

tially the target does not hold), McMillan’s procedure first solves the BMC
formula Φ1 = PREF ∧ SUFF, where

PREF := REACH (x0) ∧ TRANS(x0, x1) and
SUFF := TARGET (x1),

1 www.avacs.org
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and initially REACH (x0) := INIT (x0). If Φ1 is unsatisfiable then a Craig in-
terpolant p(x1) for the formulae PREF and SUFF is computed.2 By PREF ⇒
p(x1), the interpolant p(x1) is an overapproximation of the states reachable in
one system step from REACH (x0). If this overapproximation shifted to the ze-
roth instantiation of the variables (as described by p(x0)) is a subset of the so far
reachable states, i.e. p(x0) ⇒ REACH (x0), then further transitions can only
lead to states already characterized by REACH (x). As a consequence, the target
states are unreachable and the verification procedure succeeds. Otherwise, we
expand the set of reachable states s.t. it also covers the reachable states given
by the shifted interpolant, i.e. REACH (x0) := REACH (x0) ∨ p(x0). Then, the
procedure is iterated until the above termination criterion holds. Due to the
overapproximations of the reachable state set, showing the satisfiability of one
of the obtained formulae Φ1 does not imply that the target state is actually
reachable. For a more detailed account, confer [26].

Computing Craig interpolants for different theories can be found in the lit-
erature [27,29,30]. However, none of these approaches is capable of constructing
interpolants for the case of mixed Boolean and non-linear arithmetic constraints
including transcendental functions. Therefore, extending the concept of inter-
polation to this richer domain originating from hybrid systems analysis is an
interesting research issue. In the sequel, we identify the most essential challenges:

– Obtaining interpolants in the iSAT case requires construction rules. One way
might be to generalize Pudlák’s algorithm [31], that delivers interpolants for
the propositional case using the proof of unsatisfiability.

– Craig interpolants are not unique and therefore there exist interpolants that
are bigger or smaller, stronger or weaker then others, etc. Thus, an open
problem is to determine which characteristics of interpolants are favorable
especially in the sense of low computational costs.

– As the reachability problem of hybrid systems is in general undecidable, it
is worthwhile to identify decidable subclasses for which the interpolation
procedure always terminates. One promising starting point is to investigate
robustness notions for hybrid systems (cf. e.g. [1]), which may guarantee such
a termination property.

The following example illustrates that selecting suitable Craig interpolants is a
difficult problem. The system S with INIT (x0) = x0 ≥ 1, TRANS(xi, xi+1) =
xi+1 ≥ 0.5xi, and TARGET (xk) = xk ≤ 0 describes the evolution of a variable
x that is initially greater than 1 and is iteratively divided by 2. A property of
S is that x will never become less than 0. Consider the formula Φ1 = PREF ∧
SUFF = (x0 >= 1 ∧ x1 = 0.5x0) ∧ (x1 ≤ 0) which is unsatisfiable. A possible
Craig interpolant is p1 = x1 ≥ 0.5. As p1 � ⇒ INIT (x0) we use p1 as the new
initial state. The resulting formula (x0 >= 0.5 ∧ x1 = 0.5x0) ∧ (x1 ≤ 0) is also
unsatisfiable. A possible Craig interpolant is p2 = x1 ≥ 0.25. Since p2 does not
imply p1, we proceed. If we had computed p1 = x1 > 0 then p2 would imply p1,
resulting in a fixed point. Though the example suggests that weaker interpolants
are more suitable than stronger ones, this needs not to be true in general.
2 Note that p(x1) may only contain (PREF,SUFF)-common variables.
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7 Parallelization

Recent trends in hardware design towards multi-core and multiprocessor sys-
tems, and computer clusters call for the development of dedicated parallel algo-
rithms in order to exploit the full potential of these architectures. In the domain
of propositional SAT solving, parallel algorithms can be traced back to at least
1994, when Böm and Speckenmeyer presented the first parallel implementation
of a DPLL procedure for a transputer system consisting of up to 256 processors
[32]. During the past decade, more advanced implementations have been devel-
oped. Most existing parallel SAT solvers are based on DPLL, they are, however,
parallelized in different ways and focus on different hardware environments.

While some of them, such as PaSAT [33], PaMira [34], Satz [35], are designed for
distributed memory systems, others, like ySAT [36], MiraXT [37], are tailored to
use shared memory workstations. Both shared-memory and distributed-memory
workstations have advantages and disadvantages. Shared memory computers have
the benefit that all processors can access a shared common address space and
guarantee in general low latency and low communication overhead. In distributed
systems, on the other hand, each processor has its own local memory. Hence, pro-
cessors communicate over the network via messages causing slow inter-process
communication. Choosing the right memory architecture has thus an important
impact on the performance of any parallelized algorithm.

As iSAT builds upon DPLL, adapting different parallelization approaches
from purely propositional SAT solving to this richer framework constitutes an
important first goal. In [38], guiding paths are used to partition the search space
of a propositional SAT problem into non-overlapping parts that can be treated
in parallel by dynamically allotting them to different processors. The underlying
idea is to split the search space at the decision points of the DPLL search tree,
i.e. at points where a value for a propositional variable is selected. For this
purpose, the guiding path keeps track of possible alternative decisions that can
be given to an idle processor. This concept can be adapted to the iSAT context
by partitioning the search space at interval-splitting points (cf. Fig. 2).

Furthermore, the exchange of conflict clauses is an essential ingredient of
parallel SAT solvers to gain performance. Each conflict clause describes a part of

Decision

x ∈ [0, 3]

Deduction

y ∈ [3, 4] x ∈ [1, 3)

z ∈ [−1, 2]

z ∈ (2, 4]

Process 1

x ∈ (3, 6]
Process 2

Fig. 2. Search space partitioning at interval splitting points in iSAT (two processors)
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the search space which does not contain any solution. Thus, exchanging conflict
clauses prevents other processes from examining such conflicting parts that have
already been proven unsatisfiable by another process. Another such element is
to employ different decision heuristics for each involved processor. In [34], it
was shown that selecting the variables according to different decision heuristics
accelerated the PaMira solver by 70% on average.

In addition to parallelization techniques from propositional SAT, the iSAT
algorithm introduces new options. As the deduction mechanisms in iSAT (e.g.
ICP) are in general more expensive than Boolean deductions, parallelizing iSAT’s
deduction phase could be beneficial. Another observation is that smaller values
for the minimum splitting width (cf. Section 2) typically cause longer runtimes
of iSAT but allow more precise results. Exploiting this, solver instances with
greater minimum splitting widths could supply those instances having smaller
widths with conflict clauses in order to accelerate their search.

The high computational costs of checking large BMC instances call for the
development of parallel BMC techniques. While some approaches apply paral-
lel solvers to the same BMC instance, the authors of [39] introduce a different
approach by simultaneously solving different BMC instances. Moreover, they
also adapt the concept of sharing and shifting conflict clauses, first proposed
by Strichman [40] for sequential BMC, to the parallel setting. Since BMC for-
mulae Φk and Φm for the same system share common subformulae, it makes
sense to exchange conflict clauses between the corresponding solver instances.
Shifting conflict clauses is a related technique, that exploits the symmetry be-
tween different BMC formulae originating from the same system. As a BMC
formula Φk consists of k instantiations of the transition relation, conflict clauses
can be shifted within the current instantiation depth k. It is an open question
whether a similar parallel BMC scheme for non-linear hybrid systems with iSAT
as the underlying constraint solver yields performance gains comparable to those
encountered for linear hybrid systems using a combined SAT-LP solver [39].

8 Conclusion

In this paper, we sketched a number of challenges emerging from ongoing work
on the constraint-based analysis of hybrid systems. While these extensions are
currently developed separately from each other, core technologies like ICP or
conflict analysis are used commonly. We hope that by keeping these develop-
ments closely together, in particular by sharing data structures, synergies be-
come accessible in the long run. We think that among the issues emerging from
integration, some are more obvious than others. For example, employing ODE
deduction mechanisms as a subordinate solver within SiSAT or the parallelized
iSAT seems to be unproblematic. The same holds for the usage of a parallelized
solver as a decision engine within the stochastic SMT algorithm or the inter-
polation approach. On the other hand, even the theory of interpolation within
a probabilistic environment is still unclear, as is the generation of interpolants
from formulae comprising ODE constraints.
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While some details presented in this paper are specific to the iSAT context,
we think that the broader issues are of more general interest. For instance, ODE
propagation could be used within other SMT approaches [8] as a theory solver,
while e.g. decision heuristics and certificate generation may not only be applica-
ble to SSMT but could also be used in stochastic constraint programming [41].
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Abstract. In this paper, we present a rule-based modelling language
for constraint programming, called Rules2CP. Unlike other modelling
languages, Rules2CP adopts a single knowledge representation paradigm
based on rules without recursion, and a restricted set of data structures
based on records and enumerated lists given with iterators. We show that
this is sufficient to model constraint satisfaction problems, together with
search strategies where search trees are expressed by logical formulae, and
heuristic choice criteria are defined by preference orderings on variables
and formulae. We describe the compilation of Rules2CP statements to
constraint programs over finite domains, by a term rewriting system and
partial evaluation. We prove the confluence of these transformations and
provide a complexity bound on the size of the generated programs. The
expressiveness of Rules2CP is illustrated first with simple examples, and
then with a complete library for packing problems, called PKML, which,
in addition to pure bin packing and bin design problems, can deal with
common sense rules about weights, stability, as well as specific packing
business rules. The performances of both the compiler and the generated
code are evaluated on Korf’s benchmarks of optimal rectangle packing
problems.

1 Introduction

From a programming language standpoint, one striking feature of constraint
programming is its declarativity for stating combinatorial problems, describing
only the “what” and not the “how”, and yet its efficiency for solving large size
problem instances in many practical cases. From an application expert stand-
point however, constraint programming is not as declarative as one would wish,
and constraint programming systems are in fact very difficult to use by non-
programmers outside the range of already treated examples. This well recognized
difficulty has been presented as a main challenge for the constraint programming
community, and has motivated the search for more declarative front-end problem
modelling languages, such as for instance OPL [1,2], Zinc [3,4] and Essence [5].

In industry, the business rules approach to knowledge representation has a
wide audience because of the declarativity and granularity of rules which can
be introduced, checked, and modified one by one, and independently of any

A. Oddi, F. Fages, and F. Rossi (Eds.): CSCLP 2008, LNAI 5655, pp. 66–83, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



From Rules to Constraint Programs with the Rules2CP Modelling Language 67

particular procedural interpretation by a rule engine [6]. This provides an at-
tractive knowledge representation scheme for quickly evolving requirements, and
for maintaining systems with up to date information. In this article, we show
that such a rule-based knowledge representation paradigm can be developed as
a front-end modelling language for constraint programming. We present a gen-
eral purpose rule-based modelling language for constraint programming, called
Rules2CP. Unlike multi-headed condition-action rules, also called production
rules, Rules2CP rules are restricted to logical rules, with one head and no im-
perative actions, and where bounded quantifiers are used to represent complex
conditions. Such rules comply to the principle of independence from a proce-
dural interpretation by a rule engine [6], which is concretely demonstrated in
Rules2CP by their compilation to constraint programs using a completely dif-
ferent representation.

Unlike the other modelling languages proposed for constraint programming,
Rules2CP adopts a restricted set of data structures based on records and enu-
merated lists, given with iterators. We show that this is sufficient to express con-
straint satisfaction problems, together with search strategies where the search
tree is expressed by logical formulae, and complex heuristic choice criteria are
defined as preference orderings on variables and formulae.

The next section presents the Rules2CP language and shows how search
strategies and heuristics can be specified in a declarative manner. Sec. 2 de-
scribes the compilation of Rules2CP models into constraint programs over finite
domains with reified constraints, by term rewriting and partial evaluation. We
prove the confluence of these transformations which shows that the generated
constraint program does not depend on the order of application of the rewritings,
and provide a complexity bound on the size of the generated program.

Sec. 4 illustrates the expressive power of this approach with a particular
Rules2CP library, called the Packing Knowledge Modelling Library (PKML),
developed in the EU project Net-WMS1 for dealing with real-size non-pure bin
packing problems of the automotive industry. The performances of both the com-
piler and the generated code are evaluated in this section on Korf’s benchmarks
of optimal rectangle packing [7].

Finally, Sec. 5 compares Rules2CP with related work on OPL, Zinc and
Essence modelling languages, business rules, constraint logic programming and
term rewriting systems. We conclude on the simplicity and efficiency of Rules2CP
and on some of its current limitations.

2 The Rules2CP Language

2.1 Introductory Examples

Rules2CP is an untyped language for modelling constraint satisfaction problems
over finite domains using rules and declarations with records and enumerated
lists as data structures. Let us first look at some simple examples.
1 http://net-wms.ercim.org
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Example 1. The classical N-queens problem, i.e. placing N queens on a chess-
board of size N × N such that the queens are not on the same raw, column or
diagonal, can be modelled in Rules2CP with two declarations (q and board), for
creating a list of records representing the positions of the queens on the chess
board, one rule safe for defining when the queens do not attack each other (us-
ing the global constraint all different below), another rule solve for defining
the constraints and the search strategy, and one goal for solving a problem of a
given size:

q(I) = {row = _, column = I}.

board(N) = map(I, [1..N], q(I)).

safe(B) --> all_different(B) and

forall(Q, B, forall(R, B,

let(I, column(Q), let(J, column(R),

I<J implies row(Q)#J-I+row(R) and row(Q)#I-J+row(R))))).

solve(N) --> let(B, board(N), domain(B, 1, N) and safe(B) and

dynamic(variable_ordering([least(domain_size(row(^)))])

and labeling(B))).

? solve(4).

The search is specified in the solve rule by the labeling predicate for enu-
merating the variables contained in B with a dynamic variable ordering heuristics
by least domain size (first-fail heuristics).

Example 2. A disjunctive scheduling problem, such as the classical bridge prob-
lem [1], consists in finding the earliest start dates for a set of tasks given with
their durations, under constraints of precedence and mutual exclusion between
tasks. Such problems can be modelled in Rules2CP with records for tasks, and
rules for precedence and disjunctive constraints, as follows:

t1 = {start=_, duration=2}. t2 = {start=_, duration=5}.

t3 = {start=_, duration=4}. t4 = {start=_, duration=3}.

t5 = {start=_, duration=1}.

prec(T1, T2) --> start(T1) + duration(T1) =< start(T2).

disj(T1, T2) --> prec(T1,T2) or prec(T2,T1).

precedences --> prec(t1,t2) and prec(t2,t5) and prec(t1,t3) and prec(t3,t5)

disjunctives --> disj(t2,t3) and disj(t2,t4) and disj(t3,t4).

? domain([t1,t2,t3,t4,t5], 0, 20) and precedences and

conjunct_ordering([greatest(duration(A)+duration(B) if ^ is disj(A,B))])

and minimize(disjunctives, start(t5)).

The goal posts the domain and precedence constraints, specifies a heuristic
criterion for ordering the disjunctive constraints by decreasing durations of tasks,
and defines the search strategy by a logical formula (disjunctives) composed
of a conjunction of disjunctive constraints, and a minimization criterion (the
starting date of task t6). It is worth noting that this model does not use vari-
able labeling. In a computed optimal solution, the non-critical tasks will have a
flexible starting date.
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The ordering criterion is about the duration attributes of the tasks involved
in the disj rules, and does not actually depend on the variables. This strategy
corresponds to the ordering used implicitly in the classical bridge problem bench-
mark. By adding a criterion for selecting the disjunctive with highest difference
of durations in case of equality, as follows

conjunct_ordering([greatest(duration(A)+duration(B) if ^ is disj(A,B)),

greatest(abs(duration(A)-duration(B)) if ^ is disj(A,B))]).

the performances are slightly improved in the bridge problem.

2.2 Syntax

Let an ident be a word beginning with a lower case letter or any word between
quotes, a name be an identifier possibly prefixed by other identifiers for module
and package names, and a variable be a word beginning with either an upper
case letter or the underscore character. The syntax of Rules2CP statements is
given by the following grammar:

statement ::= import name. | head = expr. | head --> fol. | ? fol.
name ::= ident | name:ident
head ::= ident | ident(var,...,var)
fol ::= varbool | name | name(expr,...,expr) | expr relop expr

| fol logop fol | not fol | forall(var,expr,fol) | exists(var,expr,fol)
| foldl(var,expr,logop,expr,expr) | foldr(var,expr,logop,expr,expr)
| let(var,expr,fol) | search(fol) | dynamic(fol)

expr ::= varint | fol | string | [ enum ] | {ident = expr,...,ident= expr}
| name | name(expr,...,expr) | expr op expr |
| foldl(var,expr,op,expr,expr) | foldr(var,expr,op,expr,expr)
| map(var,expr,expr)

enum ::= enum , enum | expr | expr .. expr
varint ::= var | integer
varbool ::= var | 0 | 1
op ::= + | − | ∗ | / | min | max | log | exp
relop ::= < | =< | = | # | >= | >
logop ::= and | or | implies | equiv | xor

A statement is either a module import, a declaration, a rule or a goal. In
order to avoid name clashes in declaration and rule heads, the language includes
a simple module system that prefixes names with module and package names,
similarly to [8]. A head is formed with an ident with distinct variables as ar-
guments. Recursive definitions, as well as multiple definitions of a same head
symbol, are forbidden in declarations and rules, and each name must be defined
before its use. Apart from this, the order of the statements in a Rules2CP file is
not relevant.

The set V (E) of free variables in an expression E is the set of variables oc-
curring in E and not bound by a forall, exists, let, foldl, foldr or map
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operator. In a rule, L-->R, we assume V (R) ⊆ V (L), whereas in a declaration,
H=E, the introduced variables, in V (E) \V (H), represent unknown variables of
the problem.

The only data structures are integers, strings, enumerated lists and records.
Lists are formed without a binary list constructor, by enumerating all their
elements, or intervals of values in the case of integers. For instance [1,3..6,8]
represents the list [1,3,4,5,6,8]. Such lists are used to represent the domains of
variables in (var in list) formula, and in the answers returned to Rules2CP goals.
The following expressions: length(list), nth(integer,list), pos(element,list) and
attribute(record) are predefined for accessing the components of lists and records.
Furthermore, records have a default integer attribute uid which provides them
with a unique identifier.

The predefined function variables(expr) returns the list of variables con-
tained in an expression. The predefined predicate X in list constrains the vari-
able X to take integer values in a list of integer values. domain(expr,min,max))
is predefined to set the domain of all variables occurring in expr.

A fol formula can be considered as a 0/1 integer expression. This usual coer-
cion between booleans and integers, called reification, provides a great expressiv-
ity [9]. The (left and right) fold operators cannot be defined in first-order logic
and are Rule2CP builtins. These operators iterate the application of a binary
operator on a list of arguments. For instance, the product of the elements in a
list is defined by product(L)=foldr(X,L,*,1,X). Furthermore, a fol formula
can be evaluated dynamically instead of statically by prefixing the formula with
the predicate dynamic.

2.3 Search Predicates

Describing the search strategy in a modelling language is a challenging task as
search is usually considered as inherently procedural, and thus contradictory to
declarative modelling. This is however not our point of view in Rules2CP. Our
approach to this issue is to specify the decision variables and the branching for-
mulas of the problem in a declarative manner, and then heuristics as preference
orderings on variables and formulae.

In Rules2CP, the labeling of decision variables can be specified with the pre-
defined predicate labeling(expr) for enumerating the possible values of all the
variables contained in an expression, that is occurring as attributes of a record,
or recursively in a record referenced by attributes, in a list, or in a first-order
formula (see Example 1). The branching formulas are declared similarly with
the predicate search(fol) for specifying a search procedure by branching on all
disjunctions and existential quantifications occurring in a first-order formula (see
Example 2). Note that without the search predicate, the formula in argument
would be treated as a constraint by reification. A similar approach to specifying
search has been proposed for SAT in [10]. Here however, the only normalization
is the elimination of negations in the formula by descending them to the con-
straints. The structure of the formula is kept as an and-or search tree where the
disjunctions constitute the choice points.
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The predefined optimisation predicates, minimize(fol,expr) for searching a
fol and minimizing an expression, and maximize(fol,expr), can be imbricated.
This makes it possible to express multicriteria optimisation problems, and the
search for Pareto optimal solutions according to the lexicographic ordering of
the criteria as read from left to right.

2.4 Heuristics as Ordering Criteria

Adding the capability to express heuristic knowledge is mandatory for efficiency.
This is done in Rules2CP with predefined predicates for specifying both static
and dynamic choice criteria on variables and values for labeling, and on con-
junctive and disjunctive formulae for search. Dynamic criteria for ordering vari-
ables and values in labeling are standard in constraint programming systems,
see for instance [11,12]. In Rules2CP, they are defined more generally using the
expressive power of the language for specifying various criteria depending on
static or dynamic expression values.

The variable ordering predicates take a list of criteria for ordering the
variables in subsequent labeling predicate. The variables are sorted according
to the first criterion when it applies, then the second, etc. The variables for
which no criterion applies are considered at the end for labeling in the syntactic
order. The criteria have the following forms: greatest(expr), least(expr),
any(expr) or is(expr). The expression expr in a criterion contains the symbol
^ for denoting, for a given variable, the left-hand side of the Rules2CP declaration
that introduced the variable. If the expression cannot be evaluated on a variable,
the criterion is ignored. An any form selects a variable for which the expression
applies, independently of its value. An is form selects a variable if it is equal to
the result of the expression. For instance, in a 3-dimensional bin packing problem,
the predicate variable_ordering([greatest(volume(^)), least(uid(^))])
specifies a lexicographic static ordering of the variables by decreasing volume of
the object in which they have been declared, and by increasing uid attribute of
the object (for grouping the variables belonging to a same object).

The value ordering predicate takes similarly a list of criteria of the forms:
up, up(expr), for enumerating values in ascending order for the variables match-
ing the expression, or down, step for binary choices, enum for multiple choices,
bisect for dichotomy choices. A criterion applies to a variable if it matches
the expression. For instance, in a bin packing problem with x, y, z coordinates,
the predicate value_ordering([up(z(^)), bisect(x(^)), bisect(y(^))])
specifies the enumeration in ascending order for the z coordinates, and by di-
chotomy for the x and y coordinates.The capabilities of dissociating the speci-
fications of the variable and value heuristics, and of using static criteria about
the objects in which the variables appear, are very powerful. It is worth noticing
that this expressive power for the heuristics creates difficulties however for their
compilation to the constraint programming systems that mix variable and value
choice strategies in a single option list, and for which one cannot express differ-
ent value choice heuristics for the different variables in a same labeling predicate
[12]. In these cases, the compiler generates a labeling program.
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In search trees defined by logical formulae, the criteria for conjunct ordering
and disjunct ordering heuristics are defined similarly by pattern matching on
the rule heads that introduce conjunctive and disjunctive formulae under the
search predicate. This is illustrated in Example 2 with conditional expressions
of the form if ^ is φ; where ^ denotes the conjunct or disjunct candidate for
matching φ, and φ denotes either a rule head or directly a formula. The conjuncts
or disjuncts for which no criterion applies are considered last.

3 Compilation to Constraint Programs over Finite
Domains with Reified Constraints

Rules2CP models can be compiled to constraint satisfaction problems over finite
domains with reified constraints by interpreting Rules2CP statements using a
term rewriting system, i.e. with a rewriting process that rewrites subterms inside
terms according to general term rewriting rules. Let the size of an expression or
formula be the number of nodes in its tree representation, and let us denote by
→ the term rewriting rules of the compilation process. These rules are composed
of generic rewrite rules and code generation rules.

3.1 Generic Rewrite Rules

The following rewriting rules are associated to Rules2CP declarations and rules:

L → R for every rule of the form L --> R (where V (R) ⊆ V (L))
Lσ → Rσθ for every declaration of the form L = R and every ground sub-
stitution σ of the variables in V (L), where θ is a renaming substitution that
gives unique names indexed by Lσ to the variables in V (R) \ V (L).

In a Rules2CP rule, all the free variables of the right-hand side have to appear in
the left-hand side. In a declaration, there can be free variables introduced in the
right hand side and their scope is global. Hence these variables are given unique
names (with substitution θ) which will be the same at each invocation of the
declaration. These names are indexed by the left-hand side of the declaration
statement which has to be ground in that case (substitution σ). For example, the
row variables in the records declared by q(N) in Example 1 are given a unique
name indexed by the instance of the head q(i). These conventions provide a
basic book-keeping mechanism for retrieving the Rules2CP variables introduced
in declarations from their variable names. This is necessary to implement the
heuristic criteria, as well as for debugging and user-interaction purposes [13].

The ground arithmetic expressions are rewritten with the rule

expr → v if expr is a ground expression and v is its value,

This rule provides a partial evaluation mechanism for simplifying the arithmetic
expressions as well as the boolean conditions. This is crucial to limiting the size
of the generated program and eliminating at compile time the potential overhead
due to the data structures used in Rules2CP.

The accessors to data structures are rewritten with the following rule schemas
that impose that the lists in arguments are expanded first:
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[i .. j] → [i, i + 1,...,j] if i and j are integers and i ≤ j
length([e1,...,eN]) → N

nth(i,[e1,...,eN]) → ei

pos(e,[e1,...,eN]) → i where ei is the first occurrence of e in the list after
rewriting,
attribute(R) → V if R is a record with value V for attribute.

The quantifiers, foldr, foldl, map and let operators are binding operators
which use a dummy variable to denote place holders in an expression. They are
rewritten under the condition that their first argument is a variable and their
second argument is an expanded list:

foldr(X,[e1,· · ·,eN],op,e,φ) → φ[X/e1] op (... op φ[X/eN ]) (e if N = 0)
forall(X,[e1,· · ·,eN],φ) → φ[X/e1] and ... and φ[X/eN ] (1 if N = 0)
exists(X,[e1,· · ·,eN],φ) → φ[X/e1] or ... or φ[X/eN ] (0 if N = 0)
map(X,[e1,· · ·,eN],φ) → [φ[X/e1], ..., φ[X/eN ]]
let(X,e,φ) → φ[X/e]

where φ[X/e] denotes the formula φ where each free occurrence of variable X in
φ is replaced by expression e (after the usual renaming of the variables in φ in
order to avoid name clashes with the free variables in e).

Negations are eliminated by descending them to the variables and comparison
operators, with the obvious duality rules for the logical connectives, such as for
instance, replacing the negation of and (resp. equiv) into or (resp. xor) etc. It is
worth noting that these transformations do not increase the size of the formula.

3.2 Code Generation Rules

After the application of the previous generic rewrite rules, the actual transfor-
mation of a Rules2CP model to a constraint program of some target language,
is specified with code generation rules. Such rules are needed for the terms that
are not defined by Rules2CP statements, e.g. builtin constraints, as well as for
the arithmetic and logical expressions that are not expanded with the generic
rewrite rules described in the previous section. The free variables in declarations
are translated into finite domain variables of the target language, with the basic
book-keeping mechanism provided by the naming conventions.

The examples of code generation rules given in this section concern the compi-
lation of Rules2CP to SICStus-Prolog [12]. Basic constraints are thus rewritten
with term rewriting rules such as the following ones, where backquotes in strings
indicate subexpressions to rewrite:

A > B → "‘A #> ‘B"

A and B → "‘A #/\ ‘B"

lexicographic(L) → "lex_chain(‘L)"
domain(E,M, N) → "domain(L, M, N)" if M and N are integers and where L is
the list of variables remaining in E after rewriting
minimize(F, C) → "minimize((search(‘F),labeling([up],‘L)),‘C)" where
L is the list of variables occurring in the cost expression C.
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Obviously, such code generation rules generate programs of linear size. In ad-
dition to this static expansion of Rules2CP goals in a constraint program goal,
clauses are also generated for rules and declarations in order to interpret the
expressions under dynamic with the Rules2CP interpreter, which is not be de-
scribed for lack of space.

Example 3. The compilation of the N-queens problem in Example 1 generates
the following SICStus Prolog program :

:- use_module(library(clpfd)).

:- use_module(r2cp).

...

solve([Q_1,Q_2,Q_3,Q_4]) :-

rcp_var(from(q(1),0,1), Q_1), rcp_var(from(q(2),0,1), Q_2),...

domain([Q_1,Q_2,Q_3,Q_4], 1, 4),

all_different([Q_1,Q_2,Q_3,Q_4]),

Q_1#\=1+Q_2, Q_1#\= -1+Q_2, Q_1#\=2+Q_3, Q_1#\= -2+Q_3, Q_1#\=3+Q_4,

Q_1#\= -3+Q_4, Q_2#\=1+Q_3, Q_2#\= -1+Q_3, Q_2#\=2+Q_4,

Q_2#\= -2+Q_4, Q_3#\=1+Q_4, Q_3#\= -1+Q_4,

rcp_variable_ordering([least(var_order_criterion(1,[]))]),

rcp_labeling([Q_1,Q_2,Q_3,Q_4]).

Note that the inequality constraints are properly posted on ordered pairs of
queens, and that the other pairs of queens generated by the universal quantifiers
have been eliminated at compile time by partial evaluation. As the search heuris-
tics is dynamic, the Rules2CP interpreter is included in the generated program
to interpret the dynamic variable ordering heuristics using the labeling predicate
of the Rules2CP interpreter. In this case, the program is equivalent to SICStus
Prolog labeling with the first-fail option but the method is general.

Example 4. The disjunctive scheduling problem in Example 2 is compiled in a
constraint program which does not use the Rules2CP interpreter:

solve([T1,T2,T4,T3,T5]) :-

domain([T1,T2,T3,T4,T5], 0, 20),

T1+2#=<T2, T2+5#=<T5, T1+2#=<T3, T3+4#=<T5, T1+2#=<T3, T3+4#=<T5,

minimize((((T2+5#=<T3;T3+4#=<T2),(T2+5#=<T4;T4+3#=<T2),

(T3+4#=<T4;T4+3#=<T3)),labeling([up],[T5])), T5).

In the minimize predicate, the disjunctive formulae in the and-or search tree
have been reordered according to the heuristics by decreasing sums of the task
durations. The labeling of the variables contained in the cost function is added
by the compiler.

3.3 Confluence, Termination and Complexity

By having forbidden multiple definitions, and restricted the heads to contain
only distinct variables as arguments, one can show :

Proposition 1. For any Rules2CP model, the compilation term rewriting sys-
tem → is confluent.
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This means that the rewriting rules can be applied in any order, and generate the
same constraint program on a given input model. The proof in [14] shows that
the term rewriting system → is orthogonal, i.e. left-linear and non-overlapping,
which entails confluence [15] without termination assumption. By forbidding
recursion however, termination clearly holds:

Definition 1. Given a Rule2CP model M , let the definition rank ρ(s) of a
symbol s be defined inductively by:

ρ(s) = 0 if s is not the head symbol of a declaration or rule in M ,
ρ(s) = n + 1 if s is the head symbol of a declaration or rule in M , and n
is the greatest definition rank of the symbols in the right hand side of its
declaration or rule.

The definition rank of M is the maximum definition rank of the symbols in M .

Proposition 2. For any Rules2CP model, the term rewriting system → is
Noetherian.

Furthermore, a complexity bound on the size of the generated program can be
obtained.

Definition 2. Given a Rule2CP model M , let the fold rank α(s) of a symbol s
be defined inductively by:

α(s) = 0 if s is not the head symbol of a declaration or rule in M ,
α(s) =max{n + α(s′) | L = R ∈ M , s is the head symbol of L and R con-
tains a nesting of n fold operators or quantifiers on an expression containing
symbol s′}.

The fold rank of M is the maximum fold rank of the symbols in M .

Proposition 3. For any Rules2CP model M , the size of the generated program
is in O(la ∗ br), where l is the maximum length of the lists in M (or at least 1),
a is the fold rank of M , b is the maximum size of the declaration and rule bodies
in M , and r is the definition rank of M .

Proof. The proof is by induction on a. In the base case, a = 0, there is no
fold operator in M , and the size of the generated program is linearly bounded
by r duplications of rule bodies, i.e. is in O(br). In the induction case, a > 0,
let us first consider the size of the program generated without rewriting the
outermost occurrences of fold and quantifier operators. By induction, this size is
in O(la−1 ∗ br). Now, this generated program can be duplicated at most l times
by the outermost fold operators, hence the total size is in O(la ∗ br) under this
strategy. Since by confluence Prop. 1, the generated program is independent of
the strategy, the size of the generated program is thus in O(la ∗ br) under any
strategy.

In the N-queens problem of Example 1, since the fold rank is 2, the proposition
thus tells us that the size of the generated program for a board of size l is indeed
in O(l2).
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4 The Packing Knowledge Modelling Library PKML

In this section, we illustrate the expressive power of Rules2CP with the definition
of a Packing Knowledge Modelling Library (PKML) developed in the Net-WMS
project for dealing with real size non-pure bin packing problems in logistics
and automotive industry. A large subset of PKML rules restricted to linear
constraints has been shown in [16] to be compilable with indexical constraints in
the geometrical kernel of the global constraint geost [17] for higher-dimensional
placement problems. Here we define PKML as a library of Rules2CP declarations
and rules.

4.1 Shapes and Objects

PKML refers to shapes in Z
K . A point in this space is represented by the list of

its K integer coordinates [i1,...,iK]. These coordinates may be variables or
fixed integer values.

In PKML, a shape is a rigid assembly of boxes. A box is an orthotope in Z
K ,

and is represented in PKML by a record containing one size attribute giving the
list of the lengths of the box in each dimension. A shape is represented by a
record containing one attribute boxes for the list of boxes composing the shape,
and one attribute positions for the list of their positions in the assembly (i.e. a
list of lists of coordinates). For instance:

point1 = [x1,...,xK].
box1 = {size = [l1,...,lk]}.
shape1 = { boxes=[b1,...,bM], positions=[p1,...,pM]}
object1 = {shapes=[s1,...,sN], shape=_, origin=[x1,...,xK]}

A PKML object, such as a bin or an item, is a record containing one attribute
shapes for the list of its alternative shapes, one origin point, and some optional
attributes such as weight, virtual reality representations or others. The alterna-
tive shapes of an object may be the discrete rotations of a basic shape, or different
object shapes in a configuration problem. We do not distinguish between items
and bins features, since bins at one level can become items at another level, like
for instance in a multilevel bin packing problem for packing items into cartons,
cartons in pallets, and pallets into trucks.

The following declarations define respectively the volume of a box, a shape
composed of a single box, the size of a shape (i.e. assembly of boxes) in a given
dimension, and the volume of a shape in given dimensions (assuming no overlap
in the assembly):

volume_box(B) = product(size(B)).

box(L) = { boxes = [ {size = L} ], positions = [ map(_,L,0) ] }.

size(S, D) = foldr(I, [1..length(boxes(S))], max, 0,

nth(D,nth(I,positions(S))) +

nth(D,size(nth(I,boxes(S))))).

volume_assembly(S, Dims) = foldr(B, boxes(S), +, 0, volume_box(B)).
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It is worth noting that if the sizes of the boxes composing the shapes are known,
the size and volume expressions evaluate into fixed integer values, whereas if
the sizes are unknown, the expressions evaluate to terms containing variables.
These terms are used in PKML to define with reified constraints the end in one
dimension and the volume of an object with alternative shapes, as follows:

origin(O, D) = nth(D, origin(O)).

end(O, D) = origin(O, D) + foldr(S, shapes(O), +, 0,

(shape(O)=pos(S,shapes(O)))*size(S, D)).

volume(O, Dims) = foldr(S, shapes(O), +, 0,

(shape(O)=pos(S,shapes(O)))*volume_assembly(S,Dims)).

4.2 Placement Relations

PKML uses Allen’s interval relations [18] in one dimension, and the topological
relations of the Region Connection Calculus [19] in higher-dimensions, to express
placement constraints. These relations are predefined in libraries [14]. They are
used in PKML to define packing rules for pure bin packing and pure bin design
problems, symmetry breaking strategies, as well as specific packing business
rules for non pure problems taking into account other common sense rules and
industrial requirements and expertise.

The part of the PKML library dealing with pure bin packing problems is
defined as follows:

non_overlapping(Items, Dims) -->

forall(O1, Items, forall(O2, Items,

uid(O1) < uid(O2) implies not overlap(O1, O2, Dims))).

containmentAE(Items, Bins, Dims) -->

forall(I, Items, exists(B, Bins, contains_touch_rcc(B,I,Dims))).

bin_packing(Items, Bins, Dims) -->

containmentAE(Items, Bins, Dims) and non_overlapping(Items, Dims) and

labeling(Items).

The rules define respectively the non-overlapping of a list of items in a list of
dimensions, the containment of all items in bins, and pure bin packing problems.
Pure bin design problems are defined similarly with a declaration for the volume
of a bin, and a containment rule in some bin of all items:

containmentEA(Items, Bins, Dims) -->

exists(B, Bins, forall(I, Items, contains_touch_rcc(B,I,Dims))).

bin_design(Bin, Items, Dims) -->

containmentEA(Items, [Bin], Dims) and

minimize(labeling(Items), volume(Bin)).

Example 5. On the following simple shape pure bin packing problem

import(lib:pkml:pkml).

s1 = box([5,4,4]). s2 = box([4,4,2]). s3 = box([5,4,2]).

o1=object(s1,[0,0,0]). o2=object(s2,[_,_,_]). o3=object(s3,[_,_,_]).
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dimensions = [1,2,3]. bins = [o1]. items = [o2, o3].

? variable_ordering([greatest(volume(^, dimensions)), is(z(^))]) and

bin_packing(items, bins, dimensions).

the compiler generates the following SICStus-Prolog goal where the coordinate
variables are statically ordered for labeling:

solve([O2,O2_2,O2_3,O3,O3_2,O3_3]) :-

0#=<O2, O2+4#=<5, 0#=<O2_2, O2_2+4#=<4, 0#=<O2_3, O2_3+2#=<4, 0#=<O3,

O3+5#=<5, 0#=<O3_2, O3_2+4#=<4, 0#=<O3_3, O3_3+2#=<4,

O2+4#=<O3#\/O3+5#=<O2#\/(O2_2+4#=<O3_2#\/O3_2+4#=<O2_2

#\/(O2_3+2#=<O3_3#\/O3_3+2#=<O2_3)),

labeling([], [O3_3,O3,O3_2,O2_3,O2,O2_2]).

4.3 Packing Rules

Packing business rules are defined in Rules2CP to take into account further
common sense or industrial requirements that are beyond the scope of pure bin
packing problems [20]. For instance, the following rules about weights:

gravity(Items) -->

forall(O1, Items, origin(O1, 3) = 0 or

exists(O2, Items, uid(O1) # uid(O2) and on_top(O1, O2))).

weight_stacking(Items) -->

forall(O1, Items, forall(O2, Items,

(uid(O1) # uid(O2) and on_top(O1, O2)) implies lighter(O1,O2))).

weight_balancing(Items, Bin, D, Ratio) -->

let(L, sum( map(Il, Items, weight(Il)*(end(Il,D) =< (end(Bin,D)/2)))),

let(R, sum( map(Ir, Items, weight(Ir)*(end(Ir,D) >= (end(Bin,D)/2)))),

100*max(L,R) =< (100+Ratio)*min(L,R))).

express particular weight constraints in an admissible packing.
The complete PKML library including common sense rules dealing with the

weight of objects and the surface contact of stacked items, is given in [14]. With
these rules, Proposition 3 entails:

Proposition 4. PKML models containing lists of at most l elements generate
constraint programs of size O(l4) in presence of both alternative shapes and as-
semblies of boxes, O(l3) in presence of only one of them, and O(l2) in presence
of single box shapes only.

Business patterns can also be used in PKML to express knowledge about some
predefined (partial) solutions to packing problems. Such patterns are used in
the industry, for instance for filling pallets, or trucks, with maximum stability
according to some predefined solutions. Stability conditions can be expressed
with non-guillotine or non-visibility constraints [20], however packing patterns
provide a pragmatic and complementary approach to these important require-
ments. In PKML, packing patterns can be defined as records containing a list
of item shapes given with the coordinates of their origin, and bounds on their
weight.
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4.4 Performance Evaluation

We report here the performances of the Rules2CP compiler and of the generated
constraint program, on Korf’s benchmarks of optimal rectangle packing problems
[7]. These problems consists in finding the smallest rectangle containing n squares
of sizes Si = i for 1 ≤ i ≤ n. In [21] Simonis and O’Sullivan proposed a constraint
program implemented in SICStus Prolog which improved best known runtimes
up to a factor of 300.

Their search strategy decomposes the optimisation problem in two subprob-
lems. First, the different non symmetric bounding rectangle candidates are
enumerated in ascending order of areas. Then, for each bounding rectangle candi-
date, the N squares packing satisfaction problem is solved with a search strategy
based on interval splitting, working together with the disjoint2 and cumula-
tive global constraints. The strategy places the N squares ordered by decreasing
sizes. It first splits the domain of x coordinates into intervals, before fixing these
coordinates by dichotomy. The process is then repeated for the y coordinates.

Table 1. Optimal Rectangle Packing programs runtimes in seconds

N R2CP compilation Rules2CP Original
18 0.266 13 6
19 0.310 11 5
20 0.320 20 10
21 0.342 76 36
22 0.369 364 197
23 0.404 2076 1150
24 0.443 5230 1847
25 0.509 52909 17807

Table 1 compares the computation time in seconds obtained in Rules2CP
with their original program in SICStus-Prolog . The SICStus-Prolog program
generated from the Rules2CP model with dynamic search explores exactly the
same search space and is slower by a factor less than 3, due to the interpretation
overhead for the dynamic predicates. In all these examples, the compilation times
are below one second.

5 Related Work

5.1 Comparison with OPL, Zinc and Essence

Rules2CP differs from OPL [1], Zinc [3,4] and Essence [5] modelling languages
in several aspects, among which: the naming of rules, the restriction to simple
data structures of records and enumerated lists, the absence of recursion, the
declarative specification of heuristics as preference orderings, and the absence of
program annotations.
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This trade-off for ease of use was motivated by our search for a declarative mod-
elling language with no complicated programming constructs. We have shown that
the declarations and rules of Rules2CP allow the user to give names to data and
knowledge rules without complicated variable scope. A simple module system is
used in Rules2CP to avoid name clashes. The simplicity of these design choices
is reflected in the obtainment of a complexity bound on the size of the constraint
programs generated from Rules2CP models (Prop. 3). Moreover, the partial eval-
uation mechanism used in the rewriting process eliminates at compile-time the
overhead due to the simplicity of our data and control structures.

Interestingly, we have shown that complex search strategies can be expressed
declaratively in Rules2CP, by specifying decision variables and branching formu-
las, as well as both static and dynamic choice heuristics as preference orderings
on variables and values. These specifications use all the power of the language
to define heuristic criteria. This is currently not expressible in Zinc and Essence,
and can be achieved in OPL in aless declarative manner by programming. On
the other hand, we have not considered the compilation of Rules2CP to other
solvers such as local search, or mixed integer linear programs, as has been done
for OPL and Zinc systems.

5.2 Comparison with Constraint Logic Programming

As a modelling language, Rules2CP is a constraint logic programming language,
but not in the formal sense of the CLP scheme of Jaffar and Lassez [22]. Rules2CP
models can be compiled to CLP(FD) programs of potentially exponential size.
Note that the converse translation of Prolog programs into Rules2CP models
is not possible (apart from an arithmetic encoding) because of the absence of
recursion and of general list constructors in Rules2CP. Furthermore, free vari-
ables are not allowed in the right hand side of Rules2CP rules. Instead of the
local scope mechanism used for the free variables in CLP rules, a global scope
mechanism in used for the free variables in Rules2CP declarations. This global
scope mechanism has no counterpart in the CLP scheme which makes it often
necessary to pass the list of all variables as arguments to CLP predicates.

5.3 Comparison with Business Rules

Rules2CP is an attempt to use the business rules knowledge representation
paradigm for constraint programming. Business rules are very popular in the
industry because they provide a declarative mean for expressing expertise knowl-
edge. Business rules should describe independent pieces of knowledge, and should
be independent from a particular procedural interpretation by a rule engine [6].
Rules2CP realizes this aim in the context of combinatorial optimisation prob-
lems, by tranforming business rules into efficient programs using completely
different representations. Rules2CP rules are not general condition-action rules,
also called production rules in the expert system community, but logical rules
with only one head and no imperative actions. Bounded quantifiers are used to
represent complex conditions. Such conditions can also be expressed in many
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production rules systems, but here they are used at compile-time to setup a
constraint satisfaction problem, instead of at run-time to match patterns in a
database of facts.

5.4 Comparison with Term Rewriting Systems Tools

The compilation of Rules2CP models to constraint programs is defined and im-
plemented by a term rewriting system. The properties of confluence and termi-
nation of this process have been shown using term rewriting theory. There are
several term rewriting system tools available that could be directly used for the
implementation of the Rules2CP compiler. For instance, in the context of target
constraint solvers in Java, such as e.g. Choco, and for Java programming envi-
ronments in which Rules2CP data structures may be defined by Java objects,
the term rewriting system TOM [23] provides a pattern matching compiler for
programming term transformations defined by rules. This would make of TOM
an ideal system for implementing a Rules2CP compiler to Java, through a direct
translation of → rules into TOM pattern matching expressions.

6 Conclusion

The Rules2CP language is a rule-based modelling language for constraint pro-
gramming. It has been designed to allow application experts express knowledge,
common sense and industrial requirements about combinatorial optimisation
problems with rules (using appropriate editors). Rules2CP rules are declarative
and can be easily introduced, checked and modified one by one, independently
from their particular interpretation by a rule engine.

Search trees can also be specified declaratively in Rules2CP with logical for-
mulae, and search heuristics can be defined as preference orderings on vari-
ables, values, conjunctive and disjunctive formulae, using pattern matching on
rule names. This is in contrast with other modelling languages for which search
strategies still need be programmed. We have shown that search strategies for
scheduling can be easily expressed in Rules2CP in this manner, as well as the
search strategies of Simonis and O’Sullivan [21] for solving Korf’s optimal rect-
angle packing problem [7], with a constant overhead factor in the generated
code.

The PKML library dedicated to bin packing and bin design problems used in
these experiments, can deal in addition with extra requirements about weights,
oversizes, equilibrium constraints, and specific packing business rules. Further-
more, a large subset of PKML has been shown in [16] to be efficiently compilable
with indexicals within the geometrical kernel of the global constraint geost.

The transformation of Rules2CP models into constraint programs has been
described here by a term rewriting system with partial evaluation. The con-
fluence of these transformations has been shown, together with a complexity
bound on the size of the generated program. The obtainment of such a com-
plexity result reflects the simplicity of our design choices for Rules2CP, such as
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the absence of recursion and of general list constructor for instance. This com-
plexity bound shows however a potential exponential blow-up in the size of the
generated constraints. In such cases, the dynamical expansion strategy can be
used.

As for future work, several issues have not been discussed in this paper.
Rules2CP is currently untyped. One difficulty in typing Rules2CP models lies in
the coercions between expressions and formulae used in reification and involv-
ing a subtyping relation between booleans and integers [24]. More experiments
are also needed to evaluate the module system of Rules2CP and its capability
to develop libraries of models that can be reused in a hierarchy of models and
for special purpose applications. Finally, the specification of search strategies
in Rules2CP needs be explored more systematically, and could also be evalu-
ated with adaptive strategies in which the dynamic criteria depend on execution
profiling criteria.
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Combining Symmetry Breaking and Global
Constraints�

George Katsirelos, Nina Narodytska, and Toby Walsh
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Abstract. We propose a new family of constraints which combine together
lexicographical ordering constraints for symmetry breaking with other common
global constraints. We give a general purpose propagator for this family of con-
straints, and show how to improve its complexity by exploiting properties of the
included global constraints.

1 Introduction

The way that a problem is modeled is critically important to the success of constraint
programming. Two important aspects of modeling are symmetry and global constraints.
A common and effective method of dealing with symmetry is to introduce constraints
which eliminate some or all of the symmetric solutions [1]. Such symmetry breaking
constraints are usually considered separately to other (global) constraints in a problem.
However, the interaction between problem and symmetry breaking constraints can often
have a significant impact on search. For instance, the interaction between problem and
symmetry breaking constraints gives an exponential reduction in the search required
to solve certain pigeonhole problems [2]. In this paper, we consider even tighter links
between problem and symmetry breaking constraints. We introduce a family of global
constraints which combine together a common type of symmetry breaking constraint
with a range of common problem constraints. This family of global constraints is useful
for modeling scheduling, rostering and other problems.

Our focus here is on matrix models [3]. Matrix models are constraint programs con-
taining matrices of decision variables on which common patterns of constraints are
posted. For example, in a rostering problem, we might have a matrix of decision vari-
ables with the rows representing different employees and the columns representing dif-
ferent shifts. A problem constraint might be posted along each row to ensure no one
works too many night shifts in any 7 day period, and along each column to ensure
sufficient employees work each shift. A common type of symmetry on such matrix
models is row interchangeability [4]. Returning to our rostering example, rows repre-
senting equally skilled employees might be interchangeable. An effective method to
break such symmetry is to order lexicographically the rows of the matrix[4]. To in-
crease the propagation between such symmetry breaking and problem constraints, we
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consider compositions of lexicographical ordering and problem constraints. We conjec-
ture that the additional pruning achieved by combining together symmetry breaking and
problem constraints will justify the additional cost of propagation. In support of this,
we present a simple problem where it gives a super-polynomial reduction in search. We
also implement these new propagators and run them on benchmark nurse scheduling
problems. Experimental results show that propagating of a combination of symmetry
breaking and global constraints reduces the search space significantly and improves run
time for most of the benchmarks.

2 Background

A constraint satisfaction problem (CSP) P consists of a set of variables X = {X [i]},
i = 1, . . . , n each of which has a finite domain D(X [i]), and a set of constraints C. We
use capital letters for variables (e.g. X [i] or Y [i]), lower case for values (e.g. v or vi) and
write X for the sequence of variables, X [1] to X [n]. A constraint C ∈ C has a scope,
denoted scope(C) ⊆ X and allows a subset of the possible assignments to the variables
scope(C), called solutions or supports of C. A constraint is domain consistent (DC) iff
for each variable X [i], every value in the domain of Xi belongs to a support. A solution
of a CSP P is an assignment of one value to each variable such that all constraints are
satisfied. A matrix model of a CSP is one in which there is one (or more) matrices of
decision variables. For instance, in a rostering problem, one dimension might represent
different employees and the other dimension might represent days of the week.

A common way to solve a CSP is with backtracking search. In each node of the
search tree, a decision restricts the domain of a variable and the solver infers the effects
of that decision by invoking a propagator for each constraint. A propagator for a con-
straint C is an algorithm which takes as input the domains of the variables in scope(C)
and returns restrictions of these domains. We say the a propagator enforces domain
consistency (DC) on a constraint C iff an invocation of the propagator ensures that the
constraint C is domain consistent.

A global constraint is a constraint in which the number of variables is not
fixed. Many common and useful global constraints have been proposed. We intro-
duce here the global constraints used in this paper. The global lexicographical or-
dering constraint LEX(X, Y ) is recursively defined to hold iff X [1] < Y [1], or
X [1] = Y [1] and LEX([X [2], . . . , X [n]], [Y [2], . . . , Y [n]]) [5]. This constraint is used
to break symmetries between vectors of variables. The global sequence constraint
SEQUENCE(l, u, k, X, V ) holds iff l ≤ |{i | X [i] ∈ V, j ≤ i < j + k}| ≤ u for each
1 ≤ j < n− k [6]. The regular language constraint REGULAR(A, X) holds iff X [1] to
X [n] takes a sequence of values accepted by the deterministic finite automaton A [7].
The last two constraints are useful in modeling rostering and scheduling problems.

3 The C&LEX Constraint

Two common patterns in many matrix models are that rows of the matrix are inter-
changeable, and that a global constraint C is applied to each row. To break such row
symmetry, we can post constraints that lexicographically order rows [4]. To improve
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propagation between the symmetry breaking and problem constraints, we propose the
C&LEX(X, Y , C) constraint. This holds iff C(X), C(Y ) and LEX(X, Y ) all simul-
taneously hold. To illustrate the potential value of such a C&LEX constraint, we give a
simple example where it reduces search super-polynomially.

Example 1. Let M be a n × 3 matrix in which all rows are interchangeable. Suppose
that C(X, Y, Z) ensures Y = X + Z , and that variable domains are as follows:

M =

⎛
⎜⎜⎜⎜⎝
{1, . . . , n − 1} {n + 1, . . . , 2n− 1} n
{1, . . . , n − 1} {n, . . . , 2n − 2} n − 1

. . . . . . . . .
{1, . . . , n − 1} {3, . . . , n + 1} 2
{1, . . . , n − 1} {2, . . . , n} 1

⎞
⎟⎟⎟⎟⎠.

We assume that the branching heuristic instantiates variables top down and left to
right, trying the minimum value first. We also assume we enforce DC on posted con-
straints. If we model the problem with C&LEX constraints, we solve it without search.
On the other hand, if we model the problem with separate LEX and C constraints, we
explore an exponential sized search tree before detecting inconsistency using the men-
tioned branching heuristic and a super-polynomial sized tree with any k-way branching
heuristic.

3.1 Propagating C&LEX

We now show how, given a (polynomial time) propagator for the constraint C, we
can build a (polynomial time) propagator for C&LEX. The propagator is inspired by
the DC filtering algorithm for the LEXCHAIN constraint proposed by Carlsson and
Beldiceanu [8]. The LEXCHAIN constraint ensures that rows of the matrix M are
lexicographically ordered. If the LEXCHAIN constraint is posted on two rows then
LEXCHAIN is equivalent to the C&LEX(X, Y, True) constraint. However, unlike [8],
we can propagate here a conjunction of the LEX constraint and arbitrary global con-
straints C. The propagator for the C&LEX constraint is based on the following result
which decomposes propagation into two simpler problems.

Proposition 1. Let Xl be the lexicographically smallest solution of C(X), Yu be the
lexicographically greatest solution of C(Y ), and LEX(Xl, Yu). Then enforcing DC
on C&LEX(X, Y , C) is equivalent to enforcing DC on C&LEX(X , Yu, C) and on
C&LEX(Xl, Y , C) .

Proof. Suppose C&LEX(Xl, Y , C) is DC. We are looking for support for Yk =
v, where Yk is an arbitrary variable in Y . Let Y ′ be a support for Yk = v
in C&LEX(Xl, Y , C). Such a support exists because C&LEX(Xl, Y , C) is DC.
C&LEX(Xl, Y , C) ensures that Y ′ is a solution of C(Y ) and LEX(Xl, Y

′). Con-
sequently, Xl and Y ′ are a solution of C&LEX(X, Y , C). Similarly, we can find a
support for Xk = v, where Xk is an arbitrary variable in X . ��
Thus, we will build a propagator for C&LEX that constructs the lexicographically small-
est (greatest) solution of C(X) (C(Y )) and then uses two simplified C&LEX constraints
in which the first (second) sequence of variables is replaced by the appropriate bound.
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Finding the lexicographically smallest solution. We first show how to find the lexi-
cographically smallest solution of a constraint. We denote this algorithm Cmin(L, X).
A dual method is used to find the lexicographically greatest solution. We use a greedy
algorithm that scans through X and extends the partial solution by selecting the small-
est value from the domain of X [i] at ith step (line 6). To ensure that the selection at
the next step will never lead to a failure, the algorithm enforces DC after each value
selection (line 7). Algorithm 1 gives the pseudo-code for the Cmin(L, X) algorithm.
The time complexity of Algorithm 1 is O(nc + nd), where d is the total number of
values in the domains of variables X and c is the (polynomial) cost of enforcing DC
on C.

Algorithm 1. Cmin(L, X)
1: procedure Cmin(L : out, X : in)
2: if (DC(C(X)) == fail) then
3: return false;
4: Y = Copy(X);
5: for i = 1 to n do
6: Y [i] = L[i] = min(D(Y [i]));
7: DC(C(Y ));
8: return true;

Proposition 2. Let C(X) be a global constraint. Algorithm 1 returns the lexicograph-
ically smallest solution of the global constraint C if such a solution exists.

Proof. First we prove that if there is a solution to C(X) then Algorithm 1 returns a
solution. Second, we prove that the solution returned is the lexicographically smallest
solution.

1. If C(X) does not have a solution then Algorithm 1 fails at line 3. Otherwise C(X)
has a solution. Since DC(C(X)) leaves only consistent values, any value of X [1]
can be extended to a solution of C(X) and Algorithm 1 selects L[1] to be the
minimum value of X [1]. Suppose Algorithm 1 performed i−1 steps and the partial
solution is [L[1], . . . , L[i − 1]]. All values left in the domains of at X [i], . . . , X [n]
are consistent with the partial solution [L[1], . . . , L[i−1]]. Consequently, any value
that is in the domain of X [i] is consistent with [L[1], . . . , L[i − 1]] and can be
extended to a solution of C(X). The algorithm assigns L[i] to the minimum value
of X [i]. Moving forward to the end of the sequence, the algorithm finds a solution
to C(X).

2. By contradiction. Let L′ be the lexicographically smallest solution of C(X) and
L be the solution returned by Algorithm 1. Let i be the first position where L′

and L differ so that L′[i] < L[i], L′[k] = L[k], k = 1, . . . , i − 1. Consider ith
step of Algorithm 1. As DC(C(X)) is correct, all values of X [i] consistent with
[L[1], . . . , L[i−1]] are in the domain of X [i]. The algorithm selects L[i] to be equal
to min(D(X [i])). Therefore, [L[1], . . . , L[i]] is the lexicographically smallest pre-
fix of length i for a solution of C(X). Hence, there is no solution of C(X) with
prefix [L′[1], . . . , L′[i]] ≤lex [L[1], . . . , L[i]]. This leads to a contradiction.
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A filtering algorithm for the C&LEXlb(L, X, C) constraint. The propagation algo-
rithm for the C&LEXlb(L, X, C) constraint finds all possible supports that are greater
than or equal to the lower bound L and marks the values that occur in these supports.
Algorithm 2 gives the pseudo-code for the propagator for C&LEXlb. The algorithm uses
the auxiliary routine MarkConsistentV alues(C, X, X′). This finds all values in do-
mains of X′ that satisfy C(X′) and marks corresponding values in X . The time com-
plexity of the MarkConsistentV alues(C, X, X′) procedure is O(nd + c). The total
time complexity of the propagator for the C&LEXlb filtering algorithm is O(n(nd+c)).
A dual algorithm to C&LEXlb is C&LEXub(X , U , C) that finds all possible supports
that are less than or equal to the upper bound U and marks the values that occur in these
supports.

Algorithm 2. C&LEXlb(L, X, C)
1: procedure C&LEXlb(L : out, X : out, C : in)
2: if (DC(C(X)) == fail) then
3: return false;
4: LX = X;
5: for i = 1 to n do
6: D(LX[i]) = {vj |vj ∈ D(LX[i]) and L[i] < vj};
7: MarkConsistentV alue(C, X, LX);
8: if L[i] /∈ D(X[i]) then
9: break;
10: else
11: LX[i] = L[i];
12: if (i == n) then
13: MarkConsistentV alues(C, X, L);
14: for i = 1 to n do
15: Prune({vj ∈ D(X[i])|unmarked(vj)});

Algorithm 3. Mark consistent values
1: procedure MarkConsistentV alues(C : in, X : out, X′ : in)
2: Z = Copy(X′);
3: DC(C(Z));
4: for i = 1 to n do
5: Mark{vj |vj ∈ D(X[i]) and vj ∈ D(Z[i])};

We also need to prove that Algorithm 2 enforces domain consistency on the
C&LEXlb(L, X, C) constraint. A dual proof holds for C&LEXub.

Proposition 3. Algorithm 2 enforces DC on the C&LEXlb(L, X, C) constraint.

Proof. We first show that if a value v was not pruned from the domain of X [p] (or
marked) then it does have a support for C&LEXlb(L, X, C). We then show that if a
value v was pruned from the domain of X [p] (or not marked) then it does not have a
support.

1. Algorithm 2 marks values in two lines 7 and 13. Suppose at step i the algorithm
marks value v ∈ D(X [p]) at line 7. At this point we have that LX [k] = L[k],
k = 1, . . . , i− 1, L[i] < LX [i]. After enforcing DC on C(LX), the value v is left
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in the domain of LX [p]. Consequently, there exists a support for X [p] = v, starting
with [L[1], . . . , L[i − 1], v′, . . .], v′ ∈ D(LX [i]), that is strictly greater than L.
Marking at line 13 covers the case where L is a solution of C(X).

2. By contradiction. Suppose that value v ∈ D(X [p]) was not marked by Algorithm 2
but it has a support X′ such that L ≤lex X′. Let i be the first position where
L[i] < X [i] and L[k] = X [k], k = 1, . . . , i − 1. We consider three disjoint cases:

– The case that no such i exists. Then L is a support for value v ∈ D(X [p]).
Hence, value v has to be marked at line 13. This leads to a contradiction.

– The case that i ≤ n and p < i. Note that in this case v equals L[p]. Consider
Algorithm 2 at step i. At this point we have L[k] = LX [k], k = 1, . . . , i − 1.
After enforcing DC on C(LX) (line 7), values X ′[k], i = 1, . . . , n are left in
the domain of LX , because L[i] < X ′[i], L[k] = X ′[k], k = 1, . . . , i − 1.
Hence, value v ∈ X ′[p] will be marked at line 7. This leads to a contradiction.

– The case that i ≤ n and i ≤ p. Consider Algorithm 2 at step i. At this point
we have L[k] = LX [k], k = 1, . . . , i − 1. Moreover, value X ′[i] has to be in
the domain of LX [i], because value X ′[i] is greater than L[i] and is consistent
with the partial assignment [L[1], . . . , L[i − 1]]. Domains of variables LX
contain all values that have supports starting with [L[1], . . . , L[i − 1]] and are
strictly greater than L. Consequently, they contain X ′[i], i = 1, . . . , n and the
algorithm marks v at line 7. This leads to a contradiction.

��
A filtering algorithm for the C&LEX(X, Y , C). Algorithm 4 enforces domain con-
sistency on the C&LEX(X , Y , C) constraint. Following Proposition 1, Algorithm 4
finds the lexicographically smallest (greatest) solutions for C(X) (C(Y )) and runs a
relaxed version of C&LEX for each row. Algorithm 4 gives the pseudo-code for the
propagator for the C&LEX(X , Y , C) constraint.

Algorithm 4. C&LEX(X , Y , C)
1: procedure C&LEX(X : out, Y : out, C : in)
2: if (Cmin(Xl, X) == fail) or (Cmax(Y , Yu)) == fail) then
3: return false;
4: if (Xl >lex Yu) then
5: return false;
6: C&LEXlb(Xl, Y , C);
7: C&LEXub(X, Yu, C);

Proposition 4. Algorithm 4 enforces DC on the C&LEX(X, Y , C) constraint.

Proof. Correctness of the algorithm follows from correctness of the decomposition
(Proposition 1). However, we need to consider the case where Xl >lex Yu, prove
correctness of the C&LEXlb and C&LEXub algorithms and prove that the algorithm
only needs to run once.

If Xl >lex Yu then C&LEX(X, Y , C) does not have a solution and Algorithm 4
fails at line 5. Otherwise, we notice that if Xl ≤lex Yu then Xl and Yu is a solution of
C&LEX(X, Y , C), because Xl is a solution of C(X), Yu is a solution of C(Y ) and
Xl ≤lex Yu. Consequently, invocation of the simplified version of C&LEX at lines 6
and 7 cannot change Xl and Yu. ��



90 G. Katsirelos, N. Narodytska, and T. Walsh

Example 2. We consider how Algorithm 4 works on the first two rows C&LEX con-
straint from Example 1. Let n equal 5. In this case domains of the first two rows of

variables are

(
M [1]
M [2]

)
=
(

[1, 2, 3, 4] [6, 7, 8, 9] 5
[1, 2, 3, 4] [5, 6, 7, 8] 4

)
.

Suppose the solver branches on X [1] = 1. Algorithm 4 finds the lexicographi-
cally smallest and greatest solutions of M [1] and M [2] using Algorithm 1(line 2).
These solutions are [1, 6, 5] and [4, 8, 4] respectively . Then enforces DC on
C&LEXlb([1, 6, 5], M [2], C) in the following way:

1. copies M [2] to LX
2. marks all values that have a support starting with a value greater than 1 (that is 2, 3

and 4). There are three supports that satisfy this condition, namely, [2, 6, 4], [3, 7, 4]
and [4, 8, 4]. Checks conditions at line 8 and assigns LX [1] to 1. Then it moves to
the next iteration.

3. marks all values that have a support starting with a prefix greater than [1, 6]. There
are no such values. Checks conditions at line 8 and assigns LX [2] to 6. Then it
moves to the next iteration.

4. marks all values that have a support starting with a prefix greater than [1, 6, 5].
There are no such values. Checks conditions at line 8 and stops the marking part.

5. removes unmarked values: value 1 from X [2] and value 5 from Y [2].

Finally, it enforces DC on C&LEXub(M [1], [4, 8, 4], C). This sets M [1] to [1, 6, 5],
because the solver branched on X [1] = 1 and [1, 6, 5] is the only possible support for
this assignment.

The time complexity of the general algorithm is more expensive than the decomposi-
tion into individual constraints C(X), C(Y ) and LEX(X , Y ) by a linear factor. The
general algorithm is not incremental, but its performance can be improved by detecting
entailment. If Xu < Yl then the LEX constraint is entailed and C&LEX can be decom-
posed into two constraints C(X) and C(Y ). Similarly, we can improve the complexity
by detecting when C(X) and C(Y ) are entailed. As we show in the next sections,
the time complexity of the propagator for the C&LEX(X, Y , C) constraint can also
be improved by making it incremental for many common constraints C by exploiting
properties of C. Note also that Algorithm 4 easily extends to the case that different
global constraints are applied to X and Y .

3.2 The C&LEX(X, Y , SEQUENCE) Constraint

In this section we consider the case of a conjunction of the LEX constraint with
two SEQUENCE constraints. First we assume that variables X and Y are Boolean
variables. Later we will show how to extend this to the general case. In the
Boolean case, we can exploit properties of the filtering algorithm for the SEQUENCE

constraint (HPRS) proposed in [9]. The core of the HPRS algorithms is the
CheckConsistency procedure that detects inconsistency if the SEQUENCE con-
straint is unsatisfiable and returns the lexicographically smallest solution otherwise. The
HPRS algorithm runs CheckConsistency for each variable-value pair Xi = vj . If
CheckConsistency detects a failure, then value vj can be pruned from D(Xi), other-
wiseCheckConsistency returns the lexicographically smallest support for Xi = vj .
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As was shown in [9], the algorithm can be modified so that CheckConsistency re-
turns the lexicographically greatest support. Both versions of the algorithm are useful
for us. We will use the min subscript for the first version of the algorithm, and the max
subscript for the second.

Due to these properties of the HPRS algorithm, a propagator for the C&LEX

(X, Yu, SEQUENCE)lb, denoted HPRS′
min(X, Yu), is a slight modification of

HPRSmin, which checks that the lexicographically smallest support for Xi = vj

returned by the CheckConsistencymin procedure is lexicographically smaller
than or equal to Yu. To find the lexicographically greatest solution, Yu, of the
SEQUENCE(Y ) constraint, we run CheckConsistencymax on variables Y . Dual
reasoning is applied to the C&LEX(Xl, Y , SEQUENCE)ub constraint. Algorithms 5
shows pseudo code for DC propagator for the C&LEX(X, Y , SEQUENCE) constraint.

Algorithm 5. C&LEX(X , Y , SEQUENCE)
1: procedure C&LEX(X : out, Y : out, SEQUENCE(l, u, k) : in)
2: if ¬(CheckConsistencymin(Xl, X)) or ¬(CheckConsistencymax(Y , Yu)) then
3: return false;
4: if (Xl >lex Yu) then
5: return false;
6: HPRS′

max(Xl, Y , SEQUENCE(l, u, k));
7: HPRS′

min(X, Yu, SEQUENCE(l, u, k));

HPRS′
min and HPRS′

max are incremental algorithms, therefore the total time
complexity of Algorithm 5 is equal to the complexity of the HPRS algorithm, which
is O(n3) down a branch of the search tree. Correctness of Algorithm 5 follows from
Proposition 1 and correctness of the HPRS algorithm.

Example 3. Consider the SEQUENCE(2, 2, 3, [X [1], X [2], X [3], X [4]]) and
SEQUENCE(2, 2, 3, [Y [1], Y [2], Y [3], Y [4]]) constraints. The domains of the vari-
ables are X = [{0, 1}, {1}, {0, 1}, {0, 1}] and Y = [{0, 1}, {0, 1}, {1}, {0, 1}]. Note
that each of the two SEQUENCE and the LEX(X, Y ) constraints are domain consistent.

The C&LEX(X, Y , SEQUENCE) constraint fixes variables X to [0, 1, 1, 0]. The lex-
icographically greatest solution for the SEQUENCE(Y ) is [1, 0, 1, 0], while the lexico-
graphically smallest support for X [1] = 1 is [1, 1, 0, 1]. Therefore, the value 1 will be
pruned from the domain of X [1]. For the same reason, the value 0 will be pruned from
X [3] and the value 1 will be pruned from X [4].

Consider the general case, where X and Y are finite domain variables. We can chan-
nel the variables X , Y into Boolean variables bX ,bY and post SEQUENCE(bX ),
SEQUENCE(bY ), which does not hinder propagation. Unfortunately, we cannot post
the LEX constraint on the Boolean variables bX and bY , because some solu-
tions will be lost. For example, suppose we have SEQUENCE(X , 0, 1, 2, {2, 3}) and
SEQUENCE(Y , 0, 1, 2, {2, 3}) constraints. Let X = [2, 0, 2] and Y = [3, 0, 0] be solu-
tions of these constraints. The corresponding Boolean variables are bX = [1, 0, 1] and
bY = [1, 0, 0]. Clearly X <lex Y , but bX >lex bY . Therefore, the LEX constraint can
be enforced only on the original variables.
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The problem is that the HPRS algorithm returns the lexicographically smallest so-
lution on Boolean variables. As the example above shows, lexicographical compar-
ison between Boolean solutions of SEQUENCEs bX and bY is not sound with re-
spect to the original variables. Therefore, given a solution of SEQUENCE(bX), we
need to find the corresponding lexicographically smallest solution of SEQUENCE(X).
We observe that if we restrict ourselves to a special case of SEQUENCE(l, u, k, v, X)
where max(D \ v) < min(v) then this problem can be solved in linear time as
follows. Let bX be a solution for SEQUENCE(bX). Then the corresponding lexico-
graphically smallest solution X for SEQUENCE(X) is X [i] = min(v ∩ D(X [i]))
if bX [i] = 1 and X [i] = min(D(X [i])) otherwise. In a similar way we can find
the corresponding lexicographically greatest solution. A slight modification to Algo-
rithm 5 is needed in this case. Whenever we need to check whether bX is smaller
than or equal to bY , we transform bX to the corresponding lexicographically smallest
solution, bY to the corresponding lexicographically greatest solution and perform the
comparison.

3.3 The C&LEX(X, Y , REGULAR) Constraint

With the REGULAR(A, X) constraint, we will show that we can build a propagator for
C&LEX which takes just O(nT ) time, compared to O(n2T ) for our general purpose
propagator, where d is the maximum domain size and T is the number of transitions of
the automaton A. We will use the following example to illustrate results in this section.

Example 4. Consider the C&LEX(X, Y , C) constraint where the C is
REGULAR(A, X) and A is the automaton presented in Figure 1. Domains of
variables are X [1] ∈ {1, 2}, X [2] ∈ {1, 3}, X [3] ∈ {2} and Y [1] ∈ {1, 2, 3},
Y [2] ∈ {1, 2}, Y [3] ∈ {1, 3}.

Consider Algorithm 1 that finds the lexicographically smallest solution of the
REGULAR constraint. At line 7 it invokes a DC propagator for the REGULAR con-
straint to ensure that an extension of a partial solution on each step leads to a solution
of the constraint. To do so, it prunes all values that are inconsistent with the current
partial assignment. We will show that for the REGULAR constraint values consistent
with the current partial assignment can be found in O(log(d)) time.

Let Gx be a layered graph for the REGULAR constraint and Li = [L[1], . . . , L[i]] be
a partial assignment at the ith iteration of the loop (lines 4 - 6, Algorithm 6). Then Li
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Fig. 1. Automation for Example 4
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corresponds to a path from the initial node at 0th layer to a node qi
j at ith layer. Clearly,

values of X [i + 1] consistent with the partial assignment Li are labels of outgoing arcs
from the node qi

j . We can find the label with the minimal value in O(log(d)) time.
Algorithm 6 shows pseudo-code for REGULARmin(A, L, X). Figure 2 shows a run of
REGULARmin(A, L, X) for variables X in Example 4. The lexicographically smallest
solution corresponds to dashed arcs.

Algorithm 6. REGULARmin(A, L, X)
1: procedure REGULARmin(A : in, L : out, X : in)
2: Build graph Gx;
3: q[0] = q0

0 ;
4: for i = 1 to n do
5: L[i] = min{vj |vj ∈ outgoing arcs(q[i − 1])};
6: q[i] = tA(q[i − 1], L[i]); � tA is the transition function of A.
7: return L;

The time complexity of Algorithm 2 for the REGULAR constraint is also O(nT ).
The algorithm works with the layered graph rather than original variables. On each
step it marks edges that occur in feasible paths in Gx that are lexicographically greater
than or equal to L. Figure 3 shows execution of C&LEXlb(Xl, Y , REGULAR) for vari-
ables Y and the lexicographically smallest solution for X , Xl = (1, 3, 2), from Ex-
ample 4. It starts at initial node s and marks all arcs on feasible paths starting with
values greater than Xl[1] = 1 (that is 2 or 3). Figure 3(a) shows the removed arc
in gray and marked arcs in dashed style. Then, from the initial node at 0th layer it
moves to the 2nd node at the 1st layer (Figure 3 (b)). The algorithm marks all arcs
on paths starting with a prefix greater than [Xl[1], Xl[2]] = [1, 3]. There are no such
feasible paths. So the MarkConsistentArcs algorithm does not mark extra arcs. Fi-
nally, it finds that there is no outgoing arc from the 2nd node at 2nd layer labeled with
3 and stops its marking phase. There are two unmarked arcs that are solid gray arcs at
Figure 3 (b). The algorithm prunes value 1 from the domain of Y [1], because there
are no marked arcs labeled with value 1 for Y [1]. Algorithm 8 shows the pseudo-code
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Fig. 2. The REGULARmin(A, L, X) algorithm. Dashed arcs correspond to the lexicographically
smallest solution.
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Algorithm 7. Mark consistent arcs
1: procedure MarkConsistentArcs(Gx : out, q : in)
2: Mark all arcs that occur on a path from q to the final node;

Algorithm 8. C&LEXlb(L, X, REGULAR)
1: procedure C&LEXlb(L : in, X : out, REGULAR : in)
2: Build graph Gx;
3: q[0] = q0

0 ;
4: qL = 0;
5: for i = 1 to n do
6: Remove outgoing arcs from the node q[i − 1] labeled with {min(X[i]), . . . , L[i]};
7: MarkConsistentArcs(Gx, q[i − 1]);
8: if (∃ a outgoing arc from q[i − 1])∧(i �= 1) then
9: mark arcs (q[k − 1], q[k]), k = qL, . . . , i − 1 ;
10: qL = i − 1;
11: if L[i] /∈ D(X[i]) then
12: break;
13: q[i] = TA(q[i − 1], L[i]); � TA is the transition function of A.
14: if (i == n) then
15: mark arcs (q[k − 1], q[k]), k = qL, . . . , n;
16: for i = 1 to n do
17: Prune({vj ∈ D(X[i])|unmarked(vj)});

for C&LEXlb(L, X, REGULAR). Note that the MarkConsistentArcs algorithm for
the REGULAR constraint is incremental. The algorithm performs a constant number of
operations (deletion, marking) on each edge. Therefore, the total time complexity is
O(nT ) at each invocation of the C&LEXlb(L, X, REGULAR) constraint.

The second algorithm that we propose represents the C&LEX(X, Y , REGULAR) as
a single automaton that is the product of automata for two REGULAR constraints and an
automaton for LEX. First, we create individual automata for each of three constraints.
Let Q be the number of states for each REGULAR constraint and d be the number of
states for the LEX constraint. Second, we interleave the variables X and Y , to get the
sequence X [1], Y [1], X [2], Y [2], . . . , X [n], Y [n]. The resulting automaton is a product
of individual automata that works on the constructed sequence of interleaved variables.
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Fig. 3. A run of the C&LEXlb(L, X , REGULAR) algorithm. Dashed arcs are marked.



Combining Symmetry Breaking and Global Constraints 95

sy 1

2

3

4

1

2

3

4

1

2

3

4 f

1(-9)
3(-27)

2(-18)

2(-6)

2(-6)

1(
-3

)

2(-2)

1(
-1

)

-32*Y[1] -31*Y[2] -30*Y[3]

sx 1

2

3

4

1

2

3

4

1

2

3

4

1
(9)

3(9)

1(
3)

2(2)
2(2) 0

32*X[1] 31*X[2] 30*X[3]

2(18)

Layer
0

Layer
1

Layer
2

Layer
3

Layer
0

Layer
1

Layer
2

Layer
3

Fig. 4. The C&LEX(X , Y , REGULAR) algorithm. Dashed arcs show the shortest path through
the arc (sy, 2).

The number of states of the final automaton is Q′ = O(dQ2). The total time complexity
to enforce DC on the C&LEX(X, Y , REGULAR) constraint is thus O(nT ′), where
T ′ is the number of transitions of the product automaton. It should be noted that this
algorithm is very easy to implement. Once the product automaton is constructed, we
encode the REGULAR constraint for it as a set of ternary transition constraints [10].

The third way to propagate the C&LEX(X , Y , REGULAR) constraint is to encode
it as a cost REGULAR constraint. W.L.O.G., we assume that there exist only one initial
and one final state. Let Gx be the layered graph for REGULAR(X) and Gy be the
layered graph for REGULAR(Y ). We replace the final state at n + 1th layer in Gx with
the initial state at 0th layer at Gy . Finally, we need to encode LEX(X , Y ) using the
layered graph. We recall that the LEX(X , Y ) constraint can be encoded as an arithmetic
constraint (dn−1X [1] + . . . + d0X [n] ≤ dn−1Y [1] + . . . + d0Y [n]) or (dn−1X [1] +
. . . + d0X [n]− dn−1Y [1] − . . . − d0Y [n] ≤ 0), where d = |⋃n

i=1 D(X [i])|.
In turn this arithmetic constraint can be encoded in the layered graph by adding

weights on corresponding arcs. The construction for Example 4 is presented in
Figure 4. Values in brackets are weights to encode the LEX(X, Y ) constraint. For
instance, the arc (sx, 2) has weight 9. The arc corresponds to the first variable with
the coefficient d2, d = 3. It is labeled with value 1. The weight equals 1 × d2 = 9.
More generally, an arc between the k − 1th and kth layers labeled with vj is given
weight vjd

n−k. Note that the weights of arcs that correspond to variables Y are
negative. Hence, the C&LEX(X, Y , REGULAR) constraint can be encoded as a cost
REGULAR([A,A], [X , Y ], W ) constraint, where W is the cost variable, [A,A] are two
consecutive automata. W has to be less than or equal to 0. Consider for example the
shortest path through the arc (sy, 2). The cost of the shortest path through this arc is 3.
Consequently, value 1 can be pruned form the domain of Y [1].

The time complexity of enforcing DC on the cost REGULAR([A,A], [XY ], W ) is
O(nT ), where d = |⋃n

i=1 D(X [i])| and T is the number of transitions of A.1 Again,
the use of large integers adds a linear factor to the complexity, so we get O(n2T ).

1 Note that we have negative weights on arcs. However, we can add a constant dn to the weight
of each arc and increase the upper bound of W by this constant.
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4 Experimental Results

To evaluate the performance of the proposed algorithms we carried out a series of
experiments nurse scheduling problems (NSP) for C&LEX(X , Y , SEQUENCE) and
C&LEX(X, Y , REGULAR) constraints. We used Ilog 6.2 for our experiments and ran
them on an Intel(R) Xeon(R) E5405 2.0Ghz with 4Gb of RAM. All benchmarks are
modeled using a matrix model of n × m variables, where m is the number of columns
and n is the number of rows.

The C&LEX(X, Y , SEQUENCE) constraint. The instances for this problem are
taken from www.projectmanagement.ugent.be/nsp.php. For each day in the schedul-
ing period, a nurse is assigned to a day, evening, or night shift or takes a day off. The
original benchmarks specify minimal required staff allocation for each shift and indi-
vidual preferences for each nurse. We ignore these preferences and replace them with
a set of constraints that model common workload restrictions for all nurses. Therefore
we use only labor demand requirements from the original benchmarks. We also convert
these problems to Boolean problems by ignoring different shifts and only distinguish-
ing whether the nurse does or does not work on the given day. The labor demand for
each day is the sum of labor demands for all shifts during this day. In addition to the
labor demand we post a single SEQUENCE constraint for each row. We use a static vari-
able ordering that assigns all columns in turn starting from the last one. Each column
is assigned from the bottom to the top. This tests if propagation can overcome a poor
branching heuristic which conflicts with symmetry breaking constraints. We used six
models with different SEQUENCE constraints posed on rows of the matrix. Each model
was run on 100 instances over a 28-day scheduling period with 30 nurses. Results are
presented in Table 1. We compare C&LEX(X, Y , SEQUENCE) with the decomposition
into two SEQUENCE constraints and LEX. In the case of the decomposition we used two
algorithms to propagate the SEQUENCE constraint. The first is the decomposition of the
SEQUENCE constraint into individual AMONG constraints (AD), the second is the orig-
inal HPRS filtering algorithm for SEQUENCE2. The decompositions are faster on easy
instances that have a small number of backtracks, while they can not solve harder in-
stances within the time limit. Overall, the model with the C&LEX(X, Y , SEQUENCE)
constraint performs about 4 times fewer backtracks and solves about 80 more instances
compared to the decompositions.

The C&LEX(X, Y , REGULAR) constraint. We implemented the second al-
gorithm from Section 3.3, which propagates C&LEX(X, Y , REGULAR) using a
product of automata for two REGULAR constraints and the automaton for the LEX con-
straint. C&LEX(X , Y , REGULAR) was compared with decomposition into individual
REGULAR and LEX constraints. We used two models with different REGULAR con-
straints posed on rows of the matrix. Each model was run on 100 instances over a 7-
day scheduling period with 25 nurses. We use the same variable ordering as above. The
REGULAR constraint in the first model expresses that each nurse should have at least
12 hours of break between 2 shifts. The REGULAR constraint in the second model ex-
presses that each nurse should have at least 12 hours of break between 2 shifts and at least

2 We would like to thank Willem-Jan van Hoeve for providing us with the implementation of
the HPRS algorithm.
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Table 1. Simplified NSPs. Number of instances solved in 60 sec / average time to solve.

AD, LEX HPRS, LEX C&LEX

1 SEQUENCE(3,4,5) 46 / 1.27 46 / 2.76 74 / 1.44
2 SEQUENCE(2,3,4) 66 / 0.63 66 / 1.29 83 / 2.66
3 SEQUENCE(1,2,3) 20 / 0.54 20 / 1.04 34 / 3.17
4 SEQUENCE(4,5,7) 78 / 1.36 77 / 2.31 82 / 2.43
5 SEQUENCE(3,4,7) 55 / 0.55 55 / 1.07 58 / 1.53
6 SEQUENCE(2,3,5) 19 / 5.38 18 / 8.27 31 / 1.74

solved/total 284 /600 282 /600 362 /600
avg time for solved 1.230 2.194 2.147

avg bt for solved 18732 16048 4382

Table 2. NSPs. Number of instances solved in 60 sec / average time to solve.

REGULAR, LEX C&LEX

12 hours break 30 / 9.31 93 / 2.59
12 hours break + 2 consecutive shifts 87 / 1.05 88 / 0.22

solved/total 117 /200 181 /200
avg time for solved 3.166 1.439

avg bt for solved 35434 1220

two consecutive days on any shift. Results are presented in Table 2. The model with the
C&LEX(X, Y , REGULAR) constraint solves 64 more instances than decompositions
and shows better run times and takes fewer backtracks.

5 Related and Future Work

Symmetry breaking constraints have on the whole been considered separately to prob-
lem constraints. The only exception to this of which we are aware is a combination
of lexicographical ordering and sum constraints [11]. This demonstrated ‘that on more
difficult problems, or when the branching heuristic conflicted with the symmetry break-
ing, the extra pruning provided by the interaction of problem and symmetry break-
ing constraints is worthwhile. Our work supports these results. Experimental results
show that using a combination of LEX and other global constraints achieves signif-
icant improvement in the number of backtracks and run time. Our future work is
to construct a filtering algorithm for the conjunction of the Hamming distance con-
straint with other global constraints. This is useful for modeling scheduling prob-
lems where we would like to provide similar or different schedules for employees.
We expect that performance improvement will be even greater than for the C&LEX

constraint, because the Hamming distance constraint is much tighter than the LEX

constraint.
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Abstract. This paper proposes an iterative improvement algorithm for solving
instances of the Resource Constraint Project Scheduling Problem with Time-
Windows (RCPSP/max). The algorithm is based on Iterative Flattening Search
(IFS), an effective meta-heuristic strategy proposed over the past years for solv-
ing multi-capacity optimization scheduling problems. Given an initial solution,
IFS iteratively applies two steps: (1) a subset of solving decisions are randomly
retracted from a current solution (relaxation-step); (2) a new solution is incremen-
tally recomputed (flattening-step). At the end, the best solution found is returned.
To the best of our knowledge this is the first paper which proposes a version
of IFS for solving RCPSP/max instances. The main contribution of this paper is
threefold: (1) we succeed in improving 15 out of 90 solutions with respect to
the officially published current best, thus demonstrating the general efficacy of
IFS; (2) we highlight an intrisic limitation of the original IFS strategy in solving
RCPSP/max, such that under certain circumstances the two-step improvement
loop can get stuck in a status where no solving decision can be retracted; (3) we
propose two different escaping strategies which extend the original IFS proce-
dure. An experimental evaluation ends the paper, comparing the performances of
the proposed escaping strategies against the original IFS procedure.

1 Introduction

This paper explores the solving capabilities of the Iterative Flattening Search (IFS) al-
gorithm against scheduling problem instances belonging to the class of Resource Con-
strained Project Scheduling Problem with Time Windows (RCPSP/max). IFS represents
a family of stochastic local search ([1]) techniques that was originally introduced in
[2] as a non-systematic approach to solve difficult scheduling problem instances; as
demonstrated in [3], RCPSP/max problems indeed belong to this category, as both the
optimization and the feasibility versions of the problem are NP-hard.

IFS is devised to iteratively use heuristics for solving makespan-minimization sched-
uling problems, and it has been shown to have very good scaling capabilities. The pro-
cedure basically iterates two solving steps: (1) a relaxation step, where a subset of
solving decision made at iteration (i− 1) are randomly retracted at iteration i, and (2) a
flattening step, where a new solution is re-computed after the previous relaxation. The
choice of the term “flattening” stems from the fact that finding a solution equates to
pushing down the resource usage profiles below the maximum capacity threshold of
each resource involved in the problem (see Section 3.3).

A. Oddi, F. Fages, and F. Rossi (Eds.): CSCLP 2008, LNAI 5655, pp. 99–115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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A later improvement to the IFS algorithm was proposed in [4], where the original
single relaxation step was replaced by an iterative version, obtaining significant im-
provements in solution quality against comparable computational efficiency. Additional
optimal solutions and improvements on known upper-bounds for a Multi-Capacity Job
Shop Scheduling Problem (MCJSSP) benchmarks were obtained in [5]: this approach
follows the IFS schema but uses different engines for the flattening and relaxation steps.

This paper presents the first attempt, to the best of our knowledge, to use the IFS

algorithm to solve RCPSP/max problem instances. The present work aims at widening
the knowledge about IFS performance capabilities, by describing IFS’s behavior against
a particular situation (later on referred to as stall) into which the procedure may fall
during the solving process. The stall situation is characterized by the impossibility to
carry on any further relaxation step due to the absence of possibly retractable decisions
along the solution’s critical path. The occurrence of stalls has been discovered and an-
alyzed; in this work, two different relaxation policies (not based on the critical path)
are proposed to counter the stall effect, and their performance is assessed with respect
to the “no-action” policy of the original IFS procedure. In case of stall, such policies
basically look “somewhere else” in the current solution for alternative solving decisions
to retract, hence helping the retract-flattening cycle to escape the deadlock and proceed
towards an improved solution. As the paper will show, searching elsewhere for deci-
sions to retract yields better results with respect to the approach that ignores the stall;
moreover, the trend exhibited by the empirical results convinces us that pushing in the
direction of more informed retraction heuristics may pay off in terms of solution quality.

The paper is organized as follows: in Section 2, the reference RCPSP/max prob-
lem is presented, as well as the benchmark set chosen for the performed experiments;
Section 3 is dedicated to a thorough description of the IFS solving policy used through-
out this work; Section 4 describes in detail the stall situation, as well as the limits exhib-
ited by the original IFS implementation in tackling the resulting deadlock. Two novel
strategies to escape the stall are introduced, as well as the algorithm that integrates them
in the original IFS procedure. In Section 5, the experiments are described, and the most
interesting results are explained. Section 6 finally concludes the paper.

2 Reference Problem and Benchmarks

The Resource Constrained Project Scheduling Problem (RCPSP) has been widely studied
in Operations Research (OR) literature (see [6] for a survey). The RCPSP version with
Time Windows (RCPSP/max) is an extended formulation of the basic problem which
underlies a number of scheduling applications [7] and is considered particularly dif-
ficult, due to the presence of temporal separation constraints (in particular maximum
time lags) between project activities.

2.1 The RCPSP/max

The RCPSP/max can be formalized as follows:

– a set V of n activities must be executed, where each activity Ai has a fixed duration
pi. Each activity has a start-time st(Ai) and a completion-time et(Ai) that satisfies
the constraint st(Ai) + pi = et(Ai).
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– a set E of temporal constraints exists between various activity pairs 〈Ai, Aj〉 of the
form st(Aj) − st(Ai) ∈ [T min

ij , T max
ij ], called start-to-start constraints (time lags

or generalized precedence relations between activities).1

– a set R of renewable resources are available, where each resource rk is character-
ized by a maximum integer capacity ck ≥ 1.

– execution of an activity Ai requires some capacity from one or more resources.
For each resource rk the integer rci,k represents the required capacity (or size) of
activity Ai.

A schedule S is an assignment of values to the start-times of all activities in V
(S = (st(A1), . . . , st(An)). A schedule is time-feasible if all temporal constraints
are satisfied (all constraints st(Aj) − st(Ai) ∈ [T min

ij , T max
ij ] and st(Ai) + pi =

et(Ai) hold). A schedule is resource-feasible if all resource constraints are satisfied
(let A(S, t) = {Ai ∈ V |st(Ai) ≤ t < st(Ai) + pi} be the set of activities which
are in progress at time t and rk(S, t) =

∑
Ai∈A(S,t) rci,k the usage of resource rk

at that same time; for each t the constraint rk(S, t) ≤ ck must hold). A schedule is
feasible if both sets of constraints are satisfied. Solving the RCPSP/max optimization
problem equates to finding a feasible schedule with minimum makespan Mk, where
Mk(S) = maxAi∈V {et(Ai)}.

The feasibility version of the RCPSP is polynomial, while the optimization version
has been demonstrated to be NP-hard and among the most intractable combinatorial
optimization problems (see [8]). As opposed to the RCPSP, both the feasibility and
the optimization versions of the RCPSP/max are NP-hard (see [3]), which makes the
RCPSP/max an extrememly complex scheduling problem.

2.2 The UBO-200 Benchmarks

The RCPSP/max benchmarks that have been chosen for the present investigation are
taken from the well known UBO test sets2, generated by the project generator Pro-
Gen/max ([9]). The UBO problems represent a rather unexplored and challeging bench-
mark set, whose size generally ranges from 10 to 1000 activities; the otpimal solutions
for many instances of this benchmark are still unknown. in particular, the experiments
have been performed with the UBO-200 benchmark set, composed of 90 RCPSP/max in-
stances each made up of 200 activities and 5 multicapacity resources. It should be noted
that the UBO-200 problems represent a rather difficult testbed for scheduling algorithms,
because of the high number of activities involved, the complexity of the minimum and
maximum temporal contraints network, as well as the complexity of the resource con-
straints arising from the distribution of the multicapacity resources among the activities.
All these circumstances contribute to making the search space huge, and hence the need
to employ efficient stochastic search algorithms.

1 Note that since activity durations are constant values, end-to-end, end-to-start, and start-to-end
constraints between activities can all be represented in start-to-start form.

2 Available via world-wide-web at www.wior.uni-karlsruhe.de/LS_Neumann/
Forschung/ProGenMax/rcpspmax.html

www.wior.uni-karlsruhe.de/LS_Neumann/
Forschung/ProGenMax/rcpspmax.html
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3 Iterative Flattening Search

In this section we introduce a general IFS procedure, as depicted in Figure 1. The algo-
rithm basically alternates relaxation and flattening steps until a better solution is found
or a maximal number of iterations with no makespan improvement is executed. The
procedure takes two parameters as input: (1) an initial solution S; (2) a positive integer
MaxFail which specifies the maximum number of non-makespan improving moves
that the algorithm will tolerate before terminating. After initialization (Steps 1-2), a
solution is repeatedly modified within the while loop (Steps 3-10) by the application
of the RELAX and FLATTEN procedures. In case a better makespan solution is found
(Step 6), the new solution is stored in Sbest and the counter is reset to 0. Otherwise, if
no improvement is found within MaxFail moves, the algorithm terminates and returns
the best solution found.

A first distinctive aspect of the IFS algorithm is that it is based on a basic construc-
tive search. In previous works like [2,10] such feature is implemented as a Precedence
Constraint Posting (PCP) algorithm where a set of solution precedence constraints is
increasingly created while reasoning on resource contention peaks (see Section 3.3).
Both works select precedences by means of a basic Earliest Start Time Algorithm
(ESTA).

The second distinctive feature of the IFS is represented by the previously mentioned
relaxation step, whose role is to relax a feasible solution into a possibly resource infeasi-
ble, but precedence feasible, schedule by removing some search decisions represented
as precedence constraints between pair of activities; this schema integrates naturally
with the formalism used in this work to represent a solution, that is the solution repre-
sentation used by a PCP greedy algorithm.

The current section proceeds as follows: Section 3.1 is dedicated to the formalism
employed to represent both the scheduling solutions and the temporal problem underly-
ing every problem instance; Section 3.2 will describe the IFS relaxation step in details,
while the flattening step will be the object of Section 3.3.

IFS(S,MaxFail)
begin
1. Sbest ← S
2. counter ← 0
3. while (counter ≤ MaxFail) do
4. RELAX(S)
5. S ←FLATTEN(S)
6. if Mk(S) < Mk(Sbest) then
7. Sbest ← S
8. counter ← 0
9. else
10. counter ← counter + 1
11. return (Sbest)
end

Fig. 1. The IFS general schema
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3.1 The Scheduling Problem Representation Formalism

The class of scheduling algorithms we are focusing upon in this paper is based on a
representation of the basic scheduling problem as a precedence graph G(A, E) where
A is the set of activities (plus two fictitious activities source asource and sink asink),
and E is the set of precedence constraints defined among the nodes in A. A solution
S is represented as an extended graph GS of G, characterized by an additional set of
precedence constraints (or decisions) that are necessary to “solve” the original problem.
More specifically, the set E is partitioned in two subsets, E = Eprob ∪ Epost, where
Eprob is the set of precedence constraints originating from the problem definition, and
Epost is the set of precedence constraints posted to resolve resource conflicts. It should
be noted that in general, the directed graph GS(A, E) does not represent a single solu-
tion but rather a set of temporal solutions.

Temporal reasoning procedures on each scheduling solution are based on a directed
graph TM(TP, E) called time map [11], where the set of nodes TP represents time-
points or temporal variables (i.e., the origin point, the horizon point and the start and end
time points, st(Ai) and et(Ai), of each activity Ai, and the set of edges E represents
temporal distance constraints between pairs of time-points. Every temporal constraint
has the general form a ≤ tpj − tpi ≤ b and is represented in the graph TM(TP, E)
as a direct edge (tpi, tpj) with label [a, b]. Each time point tpi ∈ TP is associated to
an interval [lbi, ubi] of the possible time instants, or temporal values, where the event
associated to the time-points may take place in time. The time-point tp0, the origin
point, is associated to the constant interval [0, 0]. The graph TM(TP, E) corresponds
to a Simple Temporal Problem (STP) [12]; the computation of the intervals [lbi, ubi] and
the check for the STP’s consistency (an STP problem is inconsistent when there exists
at least an empty interval [lbi, ubi]), can be polynomially determined via shortest path
computations on a directed graph Gd(Vd, Ed) called distance graph.

The graph Gd is obtained from the time map TM(TP, E) as follows: (a) the set of
nodes Vd = TP ; (b) the set of edges Ed is built from the set E considering for each
constraint a ≤ tpj − tpi ≤ b ∈ E two weighted edges in the set Ed: the first one di-
rected from tpi to tpj with weight b, the second one directed from tpj to tpi with weight
−a. In Gd, the usual definitions of path and path’s length on a weighted graph are as-
sumed: a path is a sequence of consecutive edges (tp1, tp2), (tp2, tp3) . . . (tpn−1, tpn);
the length of a path is the sum of the weights associated to the sequence of edges. A
negative cycle is a closed path with negative length and an STP is consistent iff there
are no negative cycles in its graph Gd [12]. When no negative cycle is contained in the
graph, for each pair of time points (tpi, tpj), a shortest path distance dij is defined, and
the constraint −dji ≤ tpj − tpi ≤ dij holds. In particular, given that di0 is the length
of the shortest path on Gd from the time point tpi to the origin point tp0 and d0i is the
length of the shortest path from the origin point tp0 to the time point tpi, the interval
[lbi, ubi] of time values associated to the generic time variable tpi is computed on the
graph Gd as the interval [−di0, d0i] (see [12]).

3.2 The Relaxation Procedure

In general, a relaxation procedure transforms a feasible schedule into a possibly
resource infeasible, but temporally feasible one, by adopting different strategies for
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PCRELAX(S,pr, MaxRlxs)
begin
1. for 1 to MaxRlxs
2. forall (et(Ai), st(Aj)) ∈ CriticalPath(S) ∩Epost

3. if random(0,1) < pr

4. then S ← S \ (et(Ai), st(Aj))
end

Fig. 2. pc-based relaxation procedure

removing some search decisions. The strategy presented in this section, used in [2,4],
removes precedence constraints3 between pair of activities on the critical path (see be-
low) of a solution. The computation of the critical path is required every time before
launching the relaxation procedure. The reader should also note that in case of consec-
utive relaxations, retracting a set of constraints at iteration (i − 1) generally implies a
total modification of the previous critical path, which therefore has to be re-computed
from scracth, before retracting the next constraint set at iteration i. In this section we
consider the iterated relaxing strategy as presented in [4].

As mentioned above, the relaxation step is based on the concept of critical path. Re-
suming the definition of path and of path length given in Section 3.1, given a scheduling
solution S, the critical path of S is a sequence of consecutive edges (tp1, tp2), (tp2, tp3)
. . . (tpm−1, tpm) where tp1 = et(asource) and tpm = st(asink), such that any in-
crease in the length of the critical path directly reflects in an equivalent increase in S’s
makespan. Therefore, any improvement in makespan will necessarily require change
to some subset of precedence constraints situated on the critical path, since these con-
straints collectively determine the solution’s current makespan. Following this obser-
vation, the relaxation step introduced in [2] is designed to retract some number of
precedence constraints posted on the solution’s critical path. Figure 2 shows the
PCRELAX procedure. Steps 2-4 consider the set of posted precedence constraints
(et(Ai), st(Aj)), which belong to the current critical path and the set Epost. A sub-
set of these constraints is randomly selected on the basis of the parameter pr ∈ (0, 1)
and then removed from the current solution.

3.3 The Flattening Procedure

The relaxation schema yields an intermediate solution containing resource contention
peaks that should be flattened (removed from the current solution). To this aim, we
have implemented a general solution schema, based on a Precedence Constraint Posting
(PCP) strategy. The idea is the following: the existence of any resource contention peak
is motivated by the overlapping in time of two or more activities that require the same
resource, exceeding the resource’s maximum capacity. It is straightforward that in order
to solve the conflict, such activities should be temporally separated; the PCP strategy
is based on posting those new constraints that are necessary to separate the activities

3 Note that only precedence constraints belonging to the Epost set are retracted. Constraint
relaxation never involves the original problem constraints.
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PCPS(P, S)
begin
1. Propagate(S)
2. if IsSolution(S)
3. then return(S)
4. else
5. mcs ← SelectConflict(P, S)
6. if Solvable(mcs, S)
7. then
8. pc ← ChoosePrecedence(S, mcs)
9. PCPS(P, S ∪ {pc})
10. else return(fail)
end

Fig. 3. The PCPS algorithm

involved in any resource conflict, until all conflicts are eliminated and a temporally and
resource feasible solution is found.

The flattening step (see Figure 3) used in [2] is inspired by prior work on the Earliest
Start Time Algorithm (ESTA) from [13]. The algorithm is a variant of a class of PCP
scheduling procedures characterized by a two-phase solution generation process.The
first step constructs an infinite capacity solution. The current problem is formulated as
an STP [12] temporal constraint network (see Section 3.1), where temporal constraints
are modeled and satisfied (via constraint propagation), yielding a time feasible solution
that assumes infinite resource capacity.

The second step levels resource demand by posting precedence constraints. Resource
constraints are super-imposed by projecting “resource demand profiles” over time. The
detected resource conflicts, once reduced to Minimal Conflict Sets (MCS), are then re-
solved by iteratively posting simple precedence constraints between pairs of competing
activities. A MCS (see [10,14] for further details), is defined as a set of activities that
simultaneously require a resource rk with a combined capacity requirement > ck, such
that the combined requirement of any proper subset is ≤ ck. From the previous defi-
nition it follows that any precedence constraint separating any two activities belonging
to an MCS eliminates the resource conflict, therefore, isolating all the MCSs from a
contention peak represents a great advantage. The constraint posting process of ESTA is
based on the Earliest Start Solution (ESS) consistent with currently imposed temporal
constraints. At Step 1 the procedure Propagate propagates the current temporal con-
straints. It then proceeds to compute a resource conflict (Steps 2-5). If this set is empty
the ESS is also resource feasible and a solution is found; otherwise if a conflict exists that
can be solved, a new precedence constraint is posted (Steps 8-9); otherwise the process
fails (Step 10), meaning that the temporal constraints currently posted in the solution
disallow the separation of any pair of activities belonging to the MCS (unresolvable
MCS). For further details on the functions SelectConflict(), and ChoosePrecedence()
(non deterministic version of the precedence selection operator) the reader should refer
to the original references.
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Fig. 4. The shortest path distance dij from et(Ai) to st(Aj) for RCPSPs

3.4 RCPSP/max: Remarks on Temporal Propagation Complexity

Turning from RCPSP to RCPSP/max introduces an overhead of complexity the reader
should be made aware of, and which can help to explain the experimental results pre-
sented in Section 5. As explained above, within the IFS algorithm the calculus of the
shortest path distances dij on the graph Gd plays a fundamental role in both the flat-
tening step (when precedence constraints are added) and the relaxation step (when one
or more precedence constraints are retracted). In particular, in the procedure shown in
Figure 3, a precedence constraint is selected and posted between a pair of activities Ai

and Aj when considered the general inequality −dji ≤ st(Aj) − et(Ai) ≤ dij (see
Section 3.1) the condition dij ≥ 0 holds.

In the case of RCPSP instances, given a pair of unordered activities Ai and Aj ,
the distance dij between the two time points et(Ai) and st(Aj) can be calculated as
dij = di0 + d0j , where di0 is the shortest path distance from the time point et(Ai)
to the source and d0j is the shortest path distance from the source to st(Aj). The last
statement can be proved with the help of Figure 4. In fact, given a generic RCPSP in-
stance, the correspondent graph Gd contains three different kind of temporal constrains:
the horizon constraint 0 ≤ st(asink) − et(asource) ≤ H ; the duration constraints
pi ≤ et(Ai)−st(Ai) ≤ pi imposed on all the activities; the constraints posted between
the activities, which have the form a ≤ st(Aj) − et(Ai) ≤ +∞. As it is possible
to verify on Figure 4, the only way to find a shortest path from et(Ai) to st(Aj) is
to move backward towards the source (reference node with id 0), to follow the only
maximal constraints H , and reach the time point st(Aj) from the sink (the node with
id n + 1), hence the length of the shortest path from et(Ai) to st(Aj) has the value
dij = di0 + H + d(n+1)j = di0 + d0j . The shortest path information respect to the
source time point can be maintained by means of a Single Source Shortest Path prop-
agation algorithms (e.g. Bellman-Ford [15]), whose complexity is O(|V | · |E|), where
|V | is the number of time points and |E| is the number of edges in the STP.

As opposed with RCPSP, in the RCPSP/max case, information about the distance
between any pair of time points requires a more complex computation, because the
shortest path between a generic pair of time points st(Aj) and et(Ai) is not constrained
to contain the origin tp0 as in the previous case. Therefore, such information is generally
maintained as a |V |×|V | matrix called distance matrix, whose consistency maintenance
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Fig. 5. An example of deadlock (stall)

requires the utilization of All Pair Shortest Path algorithms (e.g. Floyd-Warshall [15]),
with an increase in computational complexity.

The second source of complexity regards the relaxation step, as in the RCPSP/max
case, the need to keep the distance information among all the time points consistent and
available after every constraint retraction, requires that the distance matrix be recom-
puted from scratch (e.g., by employing the Floyd- Warshall algorithm), an operation
which has complexity O(|V |3), and that is critical, given the high number of relax-
ations that characterize the IFS algorithm.

4 Improving the Current IFS Algorithm

Iterative Flattening Search was demonstrated to be an effective and scalable method for
scheduling optimization [2,4]. Our current research goal is to extend the simple and
effective search paradigm proposed by IFS to different and more general scheduling
problems than the original Resource Constrained Project Scheduling Problem (RCPSP).
As introduced above, in this work we propose our analysis on RCPSP/max instances,
where the presence of time-windows constraints makes even the search version of a
resource feasible solution an NP-hard problem.

As it will be described in the following section about the experimental analysis, the
original IFS algorithm [2,4] generally shows very interesting performance (see Figure 1)
on RCPSP/max instances. Yet, while running the experiments we discovered that the
original version of IFS also exhibits an intrinsic limitation.

The small example shown in Figure 5 clarifies the problem. The graph shows a
single-resource scheduling problem, where all the activities (represented as boxes) re-
quire the same amount of resource which is equal to the maximum resource capacity;
therefore, each pair of activities represents a Minimal Critical Set (MCS). In addition, the
names of activities and their durations are represented inside the boxes (e.g., A1 p = 6
meaning that the activity A1 has duration equal to 6 time units), the temporal constraints
imposed between the end-time and the start-time of two activities is represented as a la-
belled directed edge with label [lb, ub] (italic fonts). When there is no label, the default
value is [0, +∞]; the interval of the possible start-times (end-times) of each activity is
represented as an interval of bold-face values [lb, ub] posted at the lower left-corner
(lower right-corner) of each activity. Finally, two additional activities are depicted,
the asource representing the time origin, and the asink , representing the scheduling
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horizon; for these two activities we only show the bounds associated to the end-time
and the start-time, respectively. In the example of Figure 5, let us suppose that the
precedence constraint between the activites A1 and A3 has been posted in order to find
a solution; the time bounds shown in the figure are updated as a consequence of the
insertion of such precedence constraint. In particular, it is easy to see that the current
makespan has value 18 time units, which corresponds to the critical-path represented
by the sequence (et(asource), st(A2)), (et(A2), st(A4)), (et(A4), st(asink)). After the
insertion of the precedence constraint between A1 and A3, Figure 5 gives a snapshot
of a particular situation that the IFS procedure may easily encounter during the solving
process, characterized by the following conditions:

1. there are no solution precedence constraints on the current critical path, as can be
easily confirmed by visual inspection;

2. the graph does not represent a solution, because there exists an unsolvable Minimal
Critical Set (MCS) composed of the activities A1 and A2. This MCS is unsolvable
because activity A2 cannot start after than t = 4 and cannot end before t = 7,
so the activity is forced to be executed in the interval [4, 7); at the same time, A1
cannot start after than t = 6 and cannot end before t = 10, so the activity is forced
to be executed in the interval [6, 10). As a consequence, the activities are forced to
overlap in the interval [6, 7] and they can by no means be separated.

This situation characterizes a stall (or deadlock) because condition 1 makes it impossi-
ble for the IFS procedure to remove any constraint, in the current as well as in all the
possibly remaining relaxation steps. As a consequence of the impossibility to retract
previous decisions, all the remaining flattening steps will be confronted with the same
partial solution, which greatly increases the probability that the MCS is going to remain
unsolved until the MaxFail number of cycles will be exhausted.

There is a subtle point behind the previous issue, that should be better clarified. The
FLATTEN step in the IFS algorithm (see Figure 1) can be implemented according to two
different policies. In the first, the temporal constraints imposed during the flattening
step are committed in the current partial solution even when it does not represent a
feasible solution (i.e., the flattening step has failed); in the second policy, the temporal
constraints are committed only if the flattening step finds a feasible solution. The issue
is subtle because if the flattening step is implemented according to the first policy, the
stall represents an unresolvable deadlock; looking at Figure 5, it is easy to see that in
case the added precedence constraint between A1 and A3 is left in the partial solution,
the resulting MCS will never be resolved. In the opposite case, since the precedence
constraint is removed when no feasible solution is found, the flattening step of the IFS

procedure retains some chances to spontaneously exit the stall, for instance by imposing
a precedence constraint between asource and A1 that pushes the latter activity beyond
A3 and A4.

Nevertheless, even in case the flattening step is implemented according to the second
policy, the stall is not desirable for at least two reasons:

– as a matter of fact, the stall severely impairs the solving capabilities of the IFS

algorithm in that it inhibits one of the two pillars the procedure rests upon: the
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IFS(S,MaxFail)
begin
1. Sbest ← S
2. counter ← 0
3. while (counter ≤ MaxFail) do
4. C ← RELAX(S)
5. if(C = ∅ and Unsolved(S))
6. then Apply-Escaping-Strategy(S)
7. S ←FLATTEN(S)
8. if Mk(S) < Mk(Sbest) then
9. Sbest ← S
10. counter ← 0
11. else
12. counter ← counter + 1
13. return (Sbest)
end

Fig. 6. IFS search with escaping strategy

relaxation step. The stall forces the IFS procedure to merely “go forward”, which
completely spoils the efficiency of the algorithm;

– stalls are mostly encountered after a considerable number of solving cycles, when
the makespan has already been significantly reduced. This considerably lowers the
possibility that the flattening step will find an alternative solution (as described
in [16]). Empirical evidence confirms in fact that once a stall is ecountered, the
procedure hardly ever succeeds in escaping the deadlock.

For all these reasons, it is necessary to introduce a mechanism that, going beyond the
original relaxation policy based on the critical path, may help the procedure to escape
the deadlock and allow it to further improve the current best solution. Figure 6 shows an
extended version of Iterative Flattening Search, which uses an additional stall escape
strategy for managing cases like the one shown in Figure 5. The procedure mainly
works like the original one presented in Figure 1; the main difference is located at
Step 5 where, in case both the previous stall conditions are satisfied, an escape strategy
is applied. In order to escape stalls, we propose two different strategies:

- Full Restart (IFS-FR): according to this strategy, when a stall is encountered the
solution is immediately brought back to its original state. In other words, all the
solution constraints imposed in previous FLATTEN steps are retracted, which corre-
sponds exactly to starting the resolution from scratch;

- MCS-based Restart (IFS-MCSR): as opposed to the previous case, the rationale
behind this strategy is that the solving efforts made so far should not be com-
pletely discarded. As a stall is encountered, the solving process investigates
alternative paths for relaxable constraints. These new paths are computed on the
basis of the unsolved MCS reported along the last failure of the FLATTEN algo-
rithm. More specifically, for each pair of activities (Ai, Aj) belonging to an un-
solvable MCS = {A1, A2, . . . , Am}, the shortest path sequences between et(Ai)
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GETCRITICALDECISIONS(MCS)
begin
1. L ← ∅
2. foreach (Ai, Aj) ∈ {(Ai, Aj)|Ai �= Aj ∧ Ai, Aj ∈ MCS}
3. tp = st(Aj)
4. do
5. tps = pred(et(Ai), tp)
6. if Decision(tps, tp)
7. then Push((tps, tp), L)
8. tp ← tps

9. while tps �= et(Ai)
10.return(L)
end

Fig. 7. IFS-MCSR: computation of the critical decisions

and st(Aj) are computed, and all the solution precedence constraints possibily con-
tained in all such sequences are removed. Removing the constraints that combine
to make the MCS unresolvable, increases the possibility that the MCS be “unlocked”
and possibly resolved in future flattening steps.

Figure 7 shows the algorithm getCriticalDecisions, which considers as input an
unsolvable MCS and returns the list L of decisions to remove. In particular, for
each pair of activities (Ai, Aj) belonging to the unsolvable MCS, the procedure
collects all the precedence constraints imposed along the shortest path from the
time point et(Ai) to st(Aj) (the inner loop at Steps 4-9). The procedure works
on a Gd representation of the temporal information where the shortest paths are
represented via a predecessor function pred(), such that, tpz = pred(tpx, tpy) is
the predecessor time point of tpy along the shortest path from tpx to tpy , so the path
takes the form (tpx, tp1), (tp2, tp3) . . . (tpz, tpy). In case a precedence constraint
0 ≤ tps − tp ≤ +∞ has been posted between the current (tps, tp) pair of time
points (Decision(tps, tp) is true), the pair (tps, tp) is collected in a list L.

Fig. 8. Gd graph for the example of Figure 5
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Figure 8 depicts the graph Gd related to the stall example already presented in
Figure 5. As described above, the graph Gd is obtained from the original time map
by trasforming each constraint a ≤ tpj − tpi ≤ b ∈ E in two weighted edges:
the first one from tpi to tpj with weight b (the edge is omitted when b = +∞),
the second one from tpj to tpi with weight −a. In particular, when we apply the
procedure getCriticalDecisions() to the only unsolvable MCS = {A1, A2}, along
the shotest path (tp4, tp5), (tp5, tp2), (tp2, tp1) from et(A2) = tp4 to the st(A1) =
tp1, the only decision collected is the one posted between tp2 and tp5.

The procedure depicted in Figure 6 represents a specific contribution of this paper, and
in the following experimental section the original IFS strategy will be compared against
the two new stall escape strategies.

5 Experimental Analysis

In this section we present the results of the set of experiments that have been performed
in order to assess the behavior of the devised stall-escape strategies. The empirical anal-
ysis has been organized as follows: the whole set of RCPSP/max UBO-200 benchmark
(90 instances) has been solved with the IFS algorithm shown in Figure 6. The MaxRlxs
parameter and the removal probability pr of the relaxation step (see Figure 2), have been
respectitely set to 4 and 0.2. The MaxFail parameter of the algorithm (see Figure 1)
has been set to 100; the choice of such a small value is motivated by the fact that the
main objective of the experiments was to evaluate the capabilities of the algorithm to es-
cape the stall situation, rather than pushing the IFS algorithm towards the improvement
of the published makespan optima. Secondly, the authors were interested in measuring
the convergence rate of the algorithm (i.e., the speed with which it converges towards
the best known results), rather than its absolute performances. The reader should bear
in mind that this work represents the first attempt to use the IFS procedure to solve
large RCPSP/max instances against the possible occurrence of the stall situations; ex-
periments with higher values of the MaxFail parameter are currently being devised.
All the experiments have been performed using the libraries provided by the Timeline-
based Representation Framework (TRF, see [17]), a general modeling framework for
Planning & Scheduling problem fast prototyping.

The efficacy of such strategies is compared against the best known results published at
www.wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax/
rcpsp-max.html, and the original IFS behavior, which does not take the stall
situation into account at all. The main results of the experiments are shown in Table 1.

Table 1. Summary of the main experimental results

IFS IFS-FR IFS-MCSR

No. improved MKs 12 15 14
Avg. Makespan Gap 2.06 1.81 1.65

Avg. CPU time 2148.7 2024.7 1716.7
Avg. IFS cycles 142.7 148.5 145.0

www.wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax/
rcpsp-max.html
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In the table, the behavior of the three aforementioned strategies is compared according
to the following metrics:

- Number of Improved Makespans: this figure represents the number of instances
where the IFS algorithm succeeded in improving the makespan value w.r.t. the cur-
rent best;

- Average Makespan Gap [Δavg
mk ]4: this metric returns the average makespan gap

between the best published results (mk0
i ) and our experimental results, for all the

n instances belonging to the UBO-200 set;
- Average CPU Time: this figure returns the average CPU Time employed by the IFS

algorithm to solve all instances;
- Average IFS Cycles: this figure returns the average number of {relaxation - flatten}

cycles performed by IFS to solve all instances;

The first result that catches the eye is the number of makespan inprovements that has
been obtained; on a total of 90 problems, the original version of the IFS algorithm
succeeds in improving 12 instances (i.e., more than 13%). This circumstance is remark-
able, and a first conclusion can be drawn: the IFS approach can be effectively used also
against the RCPSP/max benchmark; its efficacy is mainly proved by the fact that all
experimental runs have been performed with an extremely low value of the MaxFail
parameter (100), where in general a value around the tenths of thousand is employed.
Indeed, the presence of maximum temporal constraints in the problems does not seem
to affect the algorithm’s convergence speed.

As the table shows, the average time to obtain a solution when no stall exit strategy is
employed is about 2150 seconds (around 36 minutes); the reader should not be misled
by the high solving time. As explained in Section 3.3, tackling the RCPSP/max en-
tails an increase in computational complexity, with respect to solving RCPSP instances.
Nonetheless, a considerable boost might be obtained by using the fastest versions avail-
able of the All Pair Shortest Path propagation algorithms, which is outside the scope of
this paper.

In this work, the attention should rather be focused on the low number of {relaxation
- flatten} cycles necessary to converge, because this figure is independent from all the
previous factors, and therefore should be regarded as one of the fairest efficiency mea-
sure. As shown, the average number of solving cycles is between 140 and 150 for all
strategies: as we will see, this is an interesting point, as it proves that using a different
stall escape strategy does not affect (on average) the number of solving cycles, but does
affect how effectively these cycles are employed. This last remark brings us directly
to the next issue of our experimentation, namely, measuring any difference in perfor-
mance that may depend on the different method used to counter the stalls. The table
shows that using either the IFS-FR or the IFS-MCSR strategy increases number of im-
proved instances, 15 (plus 16.6%) and 14 (plus 15.6%), respectively. Though the extent
of such improvements may seem modest, this result clearly proves the existence of a

4 Computed as:

Δavg
mk = 1

n

n∑
i=1

mki−mk0
i

mk0
i

.
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Fig. 9. CPU time spread accross the whole set of solved instances

quality increasing trend, and demonstrates that the utilization of stall escape heuristics
does allow for a more thorough investigation of the search space.

Interestingly enough, such improvements are also obtained with a significant de-
crease of the average computing time. In fact, using the IFS-FR strategy is 5.7% faster,
while using the IFS-MCSR strategy is 20% faster with respect to the original IFS proce-
dure. Along with the previous results, it should be noticed that the average makespan
gap (Δavg

mk ) tends to decrease when stall escape strategies are employed: compared to
the current best publicly available, such reduction is assessed to a value of 2.06, 1.81
and 1.65 when the IFS, IFS-FR and IFS-MCSR strategies are respectively used.

With this in mind, it is also possible to measure the performance of the IFS-FR and
IFS-MCSR strategies against the original IFS policy. The figures obtained from this anal-
ysis (not shown on the table) demonstrate that the makespan values using IFS-FR are
decreased on average by -0.23, and that the makespan values using the IFS-MCSR are
decreased on average by -0.38, over the IFS strategy.

The results presented in Table 1 can be summarized as follows:

1. a significant number of makespan improvements have been found, which proves
the general effectiveness of the IFS approach;

2. the utilization of stall escape policies yields better makespan optimization proper-
ties, either in terms of number and quality of improvements. More specifically, the
IFS-MCSR strategy is more effective than the IFS-FR strategy;

3. the utilization of stall escape policies improves computational efficiency. More
specifically, the IFS-MCSR strategy is more efficient than the IFS-FR strategy.

The last point is better described with the help of Figure 9, where the whole range of
solved problem instances is represented in the x-axis, while the y-axis measures the
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solving CPU time. The solving time is depicted for all of the stall escape strategies em-
ployed, IFS-FR, IFS-MCSR and IFS. As the graph shows, for about half of the instances
the three strategies barely employ the same time to find a solution (given that the IFS-
MCSR always perform slightly better); but as the difficulty of the problem increases,
the differences become more significant. In particular, in the second half of the x-axis
it is evident that the utilization of a stall escape strategy pays off with respect to the po-
licy that ignores the stalls. More in details, it can be seen that the IFS-MCSR generally
exhibits a better performance with respect to the IFS-FR strategy.

6 Conclusions and Future Work

This work gives a first contribution about the role of IFS strategies in solving Resource
Constraint Project Scheduling Problem with Time-Windows (RCPSP/max). RCPSP/
max represents a hard and general scheduling problem, such that even the search of a
feasible solution is NP-hard. In this paper we give two different contributions: firstly,
we discover an intrinsic limitation of the original IFS strategy in solving RCPSP/max
instances that may seriously affect IFS’s performance in all cases where the typical IFS

two-step improvement loop gets stuck in a state (stall) where no solving decision can
be retracted; in order to exit the stall and as a second contribution, we propose two
different escaping strategies which extend the original IFS procedure.

The performed experimental analysis has revealed that the originally proposed IFS

strategy can be effective in solving large-size RCPSP/max instances and has paved the
way for future research work on the definition of more effective solving procedures for
large size benchmarks. As a further extension of the present work, we plan to study
the effects of different flattening and relaxation procedures within the IFS loop, where
key issues for improving effectiveness will be the use of efficient temporal and resource
propagation algorithms as well as the definition of different strategies to retract decision
constraints form the current solution.
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8. Schäffter, M.: Scheduling with respect to forbidden sets. Discrete Applied Mathematics 72,
141–154 (1997)

9. Kolisch, R., Schwindt, C., Sprecher, A.: Benchmark Instances for Project Scheduling Prob-
lems. In: Weglarz, J. (ed.) Handbook on Recent Advances in Project Scheduling. Kluwer,
Dordrecht (1998)

10. Cesta, A., Oddi, A., Smith, S.F.: A constraint-based method for project scheduling with time
windows. J. Heuristics 8(1), 109–136 (2002)

11. Dean, T.: Large-scale temporal data bases for planning in complex domains. In: IJCAI, pp.
860–866 (1987)

12. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence 49, 61–
95 (1991)

13. Cesta, A., Oddi, A., Smith, S.: Profile Based Algorithms to Solve Multiple Capacitated Met-
ric Scheduling Problems. In: AIPS 1998. Proceedings of the 4th International Conference on
Artificial Intelligence Planning Systems, pp. 214–223 (1998)

14. Laborie, P., Ghallab, M.: Planning with Sharable Resource Constraints. In: Proceedings of
the 14th Int. Joint Conference on Artificial Intelligence (IJCAI 1995) (1995)

15. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.
MIT Press, Cambridge (2001)

16. Oddi, A., Cesta, A., Policella, N., Smith, S.F.: Iterative flattening search for resource
constrained scheduling. J. Intelligent Manufacturing (2008) (published on-line November,
2008), doi:10.1007/s10845-008-0163-8

17. Cesta, A., Fratini, S.: The timeline representation framework as a planning and scheduling
software development environment. (unpublished manuscript) (2008)



Robust Solutions in Unstable Optimization
Problems

Maria Silvia Pini1, Francesca Rossi1, Kristen Brent Venable1,
and Rina Dechter2

1 Dipartimento di Matematica Pura ed Applicata, Università di Padova, Italy
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Abstract. We consider constraint optimization problems where costs
(or preferences) are all given, but some are tagged as possibly unstable,
and provided with a range of alternative values. We also allow for some
uncontrollable variables, whose value cannot be decided by the agent
in charge of taking the decisions, but will be decided by Nature or by
some other agent. These two forms of uncertainty are often found in
many scheduling and planning scenarios. For such problems, we define
several notions of desirable solutions. Such notions take into account not
only the optimality of the solutions, but also their degree of robustness
(of the optimality status, or of the cost) w.r.t. the uncertainty present
in the problem. We provide an algorithm to find solutions accordingly
to the considered notions of optimality, and we study the properties of
these algorithms. For the uncontrollable variables, we propose to adopt
a variant of classical variable elimination, where we act pessimistically
rather than optimistically.

1 Introduction

Constraint programming [2,11] is successfully applied to many application do-
mains. Constraint satisfaction problems are defined by decision variables, do-
mains, and constraints that have to be satisfied. Optimization problems have an
objective function, or they associate costs, or preferences, with partial variable
instantiations, in order to discriminate among the possibly many solutions of the
problem.

Soft constraints [1] are a general formal modelling framework for constraint
optimization problems, where it is possible to express several different optimiza-
tion criteria. For example, both fuzzy constraints and weighted constraints, as
well as MaxCSPs, can naturally be modelled in this formalism.

The specification of a complex constraint optimization problem is a difficult
modelling task, that tries to capture the current knowledge about the constraints
and the costs of the problem. Even when the specification is complete, only some
parts of the problem’s parameters may be certain. Others may be viewed as
unstable due to possible future changes.
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Unstable costs are present in many real-life problems. A typical example is
the budget estimate for next year in a company. Typically, such an estimate is
based on data which is not known or not certain, and most of the times such
uncertainty is represented by using last year’s value (which can be seen as the
default value), plus some range of possible other values around the default value.
For example, one may not have the cost of fuel for next year, but he may know
that last year it was 2 dollars, and usually the new value is never more than
30% higher. As another example, one may have to base some calculation on the
number of pieces that will be produced in the year: a reasonable estimate could
be last year’s number assuming that the new number is within 5% from the old
value. In the first example, the default value is at the lower end of the range,
while in the second example it is in the middle of the range.

Other types of problems where unstable values may occur are when we want
to numerically represent linguistic concepts, such as ”more or less”, ”around”,
”at least”, or ”at most”. In all these cases, the natural formulation is to have a
value and a range around (or above, or below) such a value.

In all these settings, it is often possible to express the instability by a bounding
range of values. As another example, we may have a default cost of 10 for each
piece of a material, with a range from 5 to 15 containing all possible foreseen
alternatives costs.

Even though costs are unstable, we would still like to reason and perform
inference on the given ”default” optimization problem. This is possible in some
cases, as we will see in this paper.

Given constraint optimization problems where some of the costs are tagged
as unstable, we define several notions of desirable solutions, that take into ac-
count not only cost-optimality, but also a form of robustness (of the optimality
status, or of the cost) with respect to the uncertainty present in the problem.
For example, we could desire solutions that are cost-optimal and that remain
optimal even if the unstable costs change. In other scenarios, it could instead
be important to find solutions that are cost-optimal and whose cost does not
increase if the unstable costs change.

Some of the considered notions will yield sets of solutions that can possibly
be empty, while others (usually the least attractive) will always have at least a
single element. For each of the notions of optimality, we provide an algorithm to
find solutions according to that criterion, and we study their properties.

In addition to the notion of instability, we also accomodate the dichotomy
of having some uncontrollable variables, whose value cannot be decided by the
agent, but will be decided by Nature or by some other agent. This yields an
orthogonal form of uncertainty often found in scheduling or temporal problems
[12], where the occurrence of certain events can be decided only by others. For
example, in scheduling the activities of a satellite taking pictures of Earth, we
may have to schedule in advance the best times for taking some pictures of an
area without knowing the local weather conditions (that heavily impacts on the
quality of the pictures), which is decided by Nature.
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To handle the uncontrollable variables, we adopt a variant of classical variable
elimination, where we act pessimistically. This allows processing the uncontrol-
lable variables first, and then working on the controllable part ensuring that the
resulting inferences are safe with respect to the uncontrollable part.

Interestingly, no matter what notion of optimality we use, the complexity of
reasoning with the unstable and uncontrollable problems considered in this paper
do not increase the overall worst case complexity (for complete algorithms). In
particular, if the default problem belongs to a tractable class, even its unstable
and/or uncontrollable version is tractable.

Issues related to those considered in this paper have been studied also in
open CSPs [6] and interactive CSPs [9]. However, in such frameworks the un-
certainty is in the form of missing domain values, and not unstable costs. Also,
in dynamic CSPs [3], variables, domains, and constraints may change over time.
However, no preference range is given, and there are no uncontrollable variables.
Preference ranges are considered in [14], however no default value is given in the
various preference ranges. In [7] only uncontrollable variables are considered, but
no imprecise ranges are given. In [8] some preferences are missing (thus there
are no default value nor preference ranges) and the focus is on preference elicita-
tion to obtain the so-called necessarily optimal solutions (called O-ROB in this
paper). A similar setting can be found in [13] for hard CSPs.

2 Background: Soft Constraints for Optimization
Problems

A soft constraint [1] is just a classical constraint [2] where each instantiation of
its variables has an associated value from a (totally or partially ordered) set.
This set has two operations, which makes it similar to a semiring, and is called
a c-semiring.

More precisely, a c-semiring is a tuple 〈A, +,×,0,1〉 containing a set of pref-
erences A, a combination operation ×, that is useful to combine preferences, and
an additive operator + that induces a partial order ≤ over A. Such an ordering
gives us a way to compare (some of the) tuples of values and constraints. In
fact, when we have a ≤S b, we will say that b is better than a. Thus, 0 is the
worst value and 1 is the best one. The combination operator is intensive, that
is, ∀a, b ∈ A, a × b ≤S a, b.

A c-semiring 〈A, +,×,0,1〉 is said to be strictly monotonic iff the combination
operator × is strictly monotonic, i.e., for every a, b ∈ A, if a < b then, for every
c ∈ A, a × c < b × c.

Given a set of variables V with finite domain D, and a c-semiring 〈A,+,×,0, 1〉,
a soft constraint is a pair 〈def, con〉 where con ⊆ V is the scope of the constraint
and def : D|con| −→ A is the preference function of the constraint associating
to each tuple of assignments to the variables in con either a preference value
ranging between 0 and 1. A soft constraint problem (SCSP) is a triple 〈C, V, D〉,
where C is a set of soft constraints over the variables in V with domain D.



Robust Solutions in Unstable Optimization Problems 119

Given two constraints c1 = 〈def1, con1〉 and c2 = 〈def2, con2〉, their com-
bination c1 ⊗ c2 is the constraint 〈def, con〉 defined by con = con1 ∪ con2 and
def(t) = def1(t ↓con

con1
) ×def2(t ↓con

con2
)1. In words, combining two constraints

means building a new constraint which involves all the variables of the original
ones and which associates to each tuple of domain values for its variables a spe-
cific semiring element. Such an element is obtained by multiplying the elements
associated by the original constraints to the appropriate subtuples.

It may be useful to eliminate some variables from a constraint, using a no-
tion of projection. Given a subset of variables I ⊆ V , and a soft constraint
c = 〈def, con〉, the projection of c over I, written c ⇓I , is a new soft constraint
〈def ′, con′〉, where con′ = con ∩ I and def(t′) =

∑
{t|t↓con′=t′} def(t). In partic-

ular, the scope, con′, of the projection constraint contains the variables that con
and I have in common, and thus con′ ⊆ con. Moreover, the preference associated
to each assignment to the variables in con′, denoted with t′, is the highest (

∑
is the additive operator of the c-semiring) among the preferences associated by
def to any completion of t′, t, to an assignment to con.

Many known classes of satisfaction or optimization problems can be cast in
this formalism. For example, a classical CSP is just an SCSP where the chosen
c-semiring is: SCSP = 〈{false, true}, ∨,∧, false, true〉. In fact, constraints can
only be either satisfied (true) or violated (false), the logical and models the fact
that we want all the constraints to be satisfied, and the logical or models the
fact that we prefer true to false.

Fuzzy CSPs can be modeled in the SCSP framework by choosing the c-
semiring: SFCSP = 〈[0, 1], max, min, 0, 1〉. This means that preferences are
values between 0 and 1. The max operator shows that we prefer higher values to
lower ones. The min operator says that, when we combine preferences of several
constraints, we take the lowest value. Thus in fuzzy CSPs we want to maximize
the minimum preference. This is a pessimistic approach to preference handling,
that works well in application domains where one needs to be very cautious,
such as medical or space applications.

For weighted CSPs, the semiring is SWCSP = 〈!+, min, +, +∞, 0〉. Here
preferences are interpreted as costs from 0 to +∞, which are combined with the
sum and compared with min. Thus the optimization criterion is to minimize the
sum of the costs.

Given an assignment s to all the variables of an SCSP P = 〈C, V, D〉, we de-
note by pref(s, P ) the preference of s in P , defined as pref(s, P )=

∏
<def,con>∈C

def(s↓con). In words, it is obtained by taking the combination of the preferences
associated to the sub-tuples corresponding to the solution in the constraints. A
complete assignment of values to all the variables is an optimal solution if its pref-
erence is the best one w.r.t. the ordering induced by the additive operator. Thus,
if we are working with fuzzy CSPs, its preference value must be the highest one,
and if we are working with weighted CSPs, its cost must be the lowest. Given an
SCSP P , we denote with Opt(P ) the set of all the optimal solutions of P .

1 By t ↓X
Y we mean the subtuple obtained by projecting the tuple t (defined over the

set of variables X) over the set of variables Y ⊆ X.
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Semiring-based soft constraints model optimization problems by using pref-
erences in the constraints and combining them via the semiring combination
operator. This induces an ordering over the solutions of the problem, which can
be seen as an objective function. Thus soft constraints can model all objective
functions that are decomposable over the topology of the problem.

Techniques used to find optimal solutions of constraint optimization problems
can be divided into search-based schemes and inference-based schemes [2]. The
most common search-based algorithm for constraint optimization is Branch and
Bound (BB) [2,11]. On the other hand, a very general inference-based algorithm
is Bucket elimination (BE) [5], which may be seen as an extension of adaptive
consistency [2] to optimization problems. Given a linear order over the variables,
in the bucket processing phase, each variable is considered, in one direction of
the order, and it is removed by projecting the combination of the constraints
involving it over all the other variables in such constraints. After all the vari-
ables (but one) have been eliminated, in the forward phase, the variables can be
assigned, following the other direction of the order, and an optimal solution can
be found in polynomial time.

Both techniques have an exponential worst time case complexity. BE, in con-
trast with BB, also needs possibly exponential space, but it can exploit the graph
structure of the problem. For some structures, such as problems with tree-shaped
constraint graphs, optimal solutions can be found in polynomial time [2]. Re-
cent extension of Branch and Bound strategies that explore the AND/OR search
space of a graphical model were shown to allow similar complexity bounds to
inference-based schemes [4,10].

3 Unstable Optimization Problems

We define unstable SCSPs as SCSPs where there may be some unstable pref-
erences. Such preferences are specified by a default value d plus an an interval
[l, u], that contains all possible values that can replace the default value d.

Definition 1 (unstable soft constraint). Given a set of variables V with
finite domain D, and a c-semiring S = 〈A, +,×, 0, 1〉, an unstable soft constraint
is a pair 〈f, con〉 where con ⊆ V is the scope of the constraint and the preference
function of the constraint is f : D|con| −→ A × I, s.t. t "→ (d, [l, u]), where I is
a set of all the intervals of values in A and l ≤S d ≤S u. All tuples mapped into
(d, [l, u]) where l <S u (resp., l = u) are called unstable (resp., stable) tuples and
their preference d is called an unstable (resp., stable) preference.

In what follows, when there is a stable preference, instead of writing (d, [d, d])
we will simply write d. Also, when it is clear from the context, we will omit the
semiring name and we will write ≤ instead of ≤S . Notice that ≤S is not always
the usual ≤ over naturals or reals. In fact, if we are dealing with costs, where
higher means worst in the semiring, we have that c1 ≤S c2 when c2 ≤ c1.

As an example of an unstable constraint using the fuzzy c-semiring 〈[0, 1], max,
min, 0, 1〉, consider V = {X, Y }, D = {a, b}, con = V , and preference function
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f(X = a, Y = a) = 0.1, f(X = a, Y = b) = (0.5, [0.3, 0.6]), f(X = b, Y = a) =
0.6, f(X = b, Y = b) = (0.7, [0.5, 1]).

Instead, as an example of an unstable constraint using the weighted c-semiring
〈!+, min, +, +∞, 0〉, we can consider a constraint with con = V and cost func-
tion g(X = a, Y = a) = 100, g(X = a, Y = b) = (50, [60, 20]), g(X = b, Y =
a) = 80, g(X = b, Y = b) = (30, [50, 10]). Notice that according to the ordering
induced by the weighted c-semiring, we have, for example, 50 < 10, since 10 is
better than 50 in the weighted semiring.

Definition 2 (unstable SCSP). An unstable SCSP (USCSP) is a tuple 〈S, V,
D, C〉, where V is a set of variables with domain D and C is a set of unstable
soft constraints over the variables in V over the c-semiring S.

An USCSP where all the preferences are stable corresponds to an SCSP.

Definition 3 (solution). A solution of an USCSP is an assignment to all its
variables.

We now introduce our running example. Consider the problem related to building
a piece of furniture with some iron. Assume that for iron we may have high,
medium, or bad quality, with costs 50, 30, and 20. We also assume that the
processing time for the piece of furniture is 2 or 3 days, and that the processing
cost depends on the quality of the iron and on how many work days are needed.
This problem can be modelled by an USCSP over the weighted c-semiring with:

– two variables Qi and T representing the quality of the iron and the processing
time, with domains D(Qi) = {b, m, h} and D(T ) = {2, 3};

– an unstable soft constraint on Qi with cost function fi defined by fi(b) = 20,
fi(m) = 30, and fi(h) = 50;

– an unstable soft constraint on Qi and T , with cost function f defined by
f(h, 2) = 10, f(h, 3) = 20, f(m, 2) = (30, [60, 5]), f(m, 3) = (35, [100, 20]),
f(b, 2) = 80, f(b, 3) = 100. Thus, for example, if the iron is of bad quality,
the processing cost is 80 if the work is done in 2 days, and 100 is it is done
in 3 days. Also, if the quality is medium, and the work is done in 2 days,
we expect the processing cost to be 30. However, this value may change
in the range [60, 5]. Similarly, if the work is done in 3 days, we expect the
processing cost to be 35, but it can change in the range [100, 20]. A solution
is, for example, (Qi = h, T = 3): high quality iron is used and three days of
work are needed.

Clearly, not all solutions are equally desirable. In order to discriminate among
them, we will define some optimality notions for USCSPs, as well as algorithms
to handle them. To do this, we start by giving some basic notions which will be
useful in what follows.

Given an USCSP P , a scenario of P is an SCSP obtained from P by replacing
every unstable preference with a value in its range. SC(P ) denotes the set of all
possible scenarios of P .
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In terms of defining the notions of optimality, a special role will be played by
the default scenario, denoted by Pd, where only default values are considered.
Such a scenario represents the problem given by the user when instability is
ignored. Moreover, it will be useful to consider the worst scenario, denoted by Pl,
where only the worst elements in the ranges are considered, and the best scenario,
denoted by Pu, where only the best elements in the ranges are considered. We
will also denote the preference value of the optimal solutions of Pd, Pl, and Pu,
by, respectively, prefd, prefl, and prefu.

In the running example, we have that prefd = 60, obtained by solutions
(Qi = m, T = 2) and (Qi = h, T = 2). Also, prefu = 35, obtained by solution
(Qi = m, T = 2). Finally, prefl = 60, obtained by (Qi = h, T = 2).

4 Optimal and Optimality-Robust Solutions (O-ROB)

The first kind of solutions that we consider are optimal solutions that are robust
w.r.t. optimality. This means that their status of being optimal does not change,
regardless of any variation of the unstable preference values within their ranges.

Such a notion of optimality is useful when it is necessary to adopt a safe
attitude: we want our decision to be optimal no matter what happens to the
unstable parts of the problem.

Definition 4 (O-ROB). Given an USCSP P , a solution is in O-ROB(P )) iff

– it is optimal in Pd, and
– it is optimal in all other P ′ ∈ SC(P ).

Note that these solutions were called necessarily optimal in [8], that considers
problems where every interval is the largest one, and there were no default values.
While considering any range adds expressiveness, the presence of default values
is not important for this notion of optimality. In fact, the above definition could
easily be replaced by an equivalent one (more compact but less easy to relate to
the problem definition) where we only require s to be optimal in all P ′ ∈ SC(P ).
In fact, Pd is just one of the problems in SC(P ).

Proposition 1. Given an USCSP P , the set O-ROB(P ) may be empty.

In fact, in the running example, the optimal solutions of Pd are (Qi = m, T = 2),
and (Qi = h, T = 2). However, (Qi = m, T = 2) is not optimal in Pl, and
(Qi = h, T = 2) is not optimal in Pu. Thus O-ROB(P) is empty.

Algorithm 1 shows a procedure to find solutions in O-ROB(P ).
Find-OROB takes in input an USCSP P and returns either a solution in

O-ROB(P ), or nil. To do this, it computes an optimal solution sl of Pl and
an optimal solution su of Pu, with preferences prefl and prefu. This can be
done via any of the solving techniques for SCSPs (denoted with Solve in the
pseudocode). Then, if prefl = prefu, Find-OROB returns the optimal solution
of Pl, otherwise it returns nil. It is possible to show that Algorithm Find-OROB
is sound, but not complete. Thus, if it returns a solution, it is in O-ROB(P). If
instead it returns nil, this does not necessarily mean that O-ROB(P) is empty.
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Algorithm 1. Find-OROB
Input: an USCSP P ; Output: a solution or nil
(sl, prefl) ← Solve(Pl); (su, prefu) ← Solve(Pu)
if prefl = prefu then

return sl

else
return nil

Theorem 1. Given an USCSP P, if Find-OROB(P )= sl, then sl∈O-ROB(P ).

Proof. Assume Find-OROB(P ) = sl. Due to the monotonicity of the combi-
nation operator off the semiring, the preference of sl in any scenario can only
be higher than, or equal to, its value prefl in Pl. Since prefl = prefu, this
means that whatever preference values are assigned to unstable tuples within
their ranges, the preference of sl is always prefl and the preference of any other
solution is never greater than prefl. Thus sl is optimal in every scenario, and
therefore it is in O-ROB(P ). Q.E.D.

If Find-OROB(P ) = nil, consider a very simple USCSP P with one variable
X with domain {a, b, c} and with a unary unstable constraint over X with cost
function f(a) = (10, [20, 5]), f(b) = f(c) = 30. It is easy to see that prefu = 5,
prefl = 20, but (X = a) is in O-ROB(P ). Thus Find-OROB(P ) = nil but
O-ROB(P ) is not empty.

Notice that, if prefl = prefu, not every solution of Pu is in O-ROB(P ), since
there might be ways to set the unstable preferences that make that solution not
optimal in some scenarios. This is why we can only take the solutions in Pl.

Algorithm Find-OROB is therefore sound and not complete. However, finding
a solution in O-ROB(P) with algorithm Find-OROB requires just solving two op-
timization problems. In [8] it is shown that this approach is both sound and com-
plete when we restrict the preference ranges to be all equal to the [0,1] interval,
where 0 and 1 are the worst and the best preference values, and prefl > 0.

5 Optimal and Preference-Robust Solutions (P-ROB)

Another kind of optimal solutions that we consider are those that are robust
w.r.t. their preferences. That is, solutions that are optimal in the default scenario,
and that do not require additional cost if the scenario changes. However, they
could loose their optimality status if the scenario changes.

This notion is useful when we act under severe cost restrictions: we would like
our decisions to be optimal at least in the default scenario, and be sure that no
additional cost is needed if the unstable costs turn out to be different from the
default ones.

Definition 5 (P-ROB). Given an USCSP P , a solution s is in P-ROB(P ) iff

– it is optimal in Pd and
– ∀P ′ ∈ SC(P ), pref(s, P ′) ≥ pref(s, Pd) = prefd.
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In words, a solution is in P-ROB(P ) iff it is optimal in Pd and its preference
(prefd) may only improve if the scenario changes. Such solutions are interesting
whenever the optimal cost of the default problem is attractive, and we want to
make sure that in all other scenarios no additional cost will be required.

In the running example, among the optimal solutions of Pd, only (Qi = h, T =
2) is in P-ROB(P ).

Proposition 2. Given an USCSP P , P-ROB(P ) may be empty.

In fact, if we consider the USCSP R obtained from the USCSP defined in the
running example by changing the stable preference of (Qi = h, T = 2) from 10
to 20, the only optimal solution of Rd is (Qi = m, T = 2), but its preference
worsens in Rl. Thus P-ROB(R) is empty.

Algorithm 2 shows a method which, given in input a USCSP P , returns a
solution in P-ROB(P ) if there is any.

Algorithm 2. Find-PROB
Input: an USCSP P ; Output: a solution, or nil
(sl, prefl) ← Solve(Pl); (sd, prefd) ← Solve(Pd)
if prefd = prefl then

return sl

else
return nil

We will now prove that Algorithm Find-PROB is sound and complete.

Theorem 2. Given an USCSP P , if Find-PROB(P )=s then s ∈ P-ROB(P )
and if Find-PROB(P )=nil then P-ROB(P )=∅.
Proof. Assume Find-PROB(P ) returns a solution s. This happens if and only
if s is optimal in Pl. Since prefd = prefl, and due to monotonicity of the mul-
tiplicative operator of the c-semiring, s is optimal also in Pd. Again due to
monotonicity, ∀P ′ ∈ SC(P ), pref(s, Pd) = pref(s, Pl) ≤ pref(s, P ′). Thus, by
definition, s ∈ P-ROB(P ).

If Find-PROB(P ) returns nil then prefd > prefl, that is, for any optimal so-
lution s of Pd, pref(s, Pd) > pref(s, Pl). This means that P-ROB(P )=∅. Q.E.D.

To find a solution in P-ROB(P) with algorithm Find-PROB, it is enough to solve
two optimization problems. This was true also for Find-OROB, but Find-PROB
is both sound and complete.

6 Optimality-Robust and Preference-Robust Solutions
(OP-ROB)

A solution is robust w.r.t. to both optimality and preferences if it is optimal in
the default scenario, and both its optimality status and its cost do not worsen
if the scenario changes. This is the strongest and most desirable notion.
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This notion of optimality is useful when we have both cost restrictions and
stringent user requirements: the user wants a solutions which is optimal no mat-
ter what, and the company wants to make sure that there is no additional costs
if a scenario different from the default one occurs.

Definition 6 (OP-ROB). Given a USCSP P , a solution s ∈ OP-ROB(P ) iff

– it is optimal in Pd,
– it is optimal in all other P ′ ∈ SC(P ), and
– ∀P ′ ∈ SC(P ), pref(P ′, s) ≥ pref(Pd, s).

It is easy to see that a solution is in OP-ROB(P ) iff it is in O-ROB(P ) ∩
P-ROB(P ). In the running example, since we have shown in Section 4 that
OROB(P ) is empty, also OP-ROB(P ) is empty.

Proposition 3. Given an USCSP P , the set OP-ROB(P ) may be empty.

This follows immediately from the fact that O-ROB(P ) ∩ P-ROB(P ) = OP-
ROB(P ) and that both O-ROB(P ) and P-ROB(P ) may be empty.

To find such solutions, we combine the two procedures Find-OROB and Find-
PROB as shown in Algorithm 3.

Algorithm 3. Find-OPROB
Input: an USCSP P ; Output: a solution s, or nil
(sd, prefd) ← Solve(Pd); (sl, prefl) ← Solve(Pl); (su, prefu) ← Solve(Pu)
if prefd = prefl = prefu then

return sl

else
return nil

Algorithm Find-OPROB, given in input an USCSP P checks if prefd =
prefu = prefl. If this is so, it returns an optimal solution of Pl, otherwise it
returns nil. This method is sound but not complete, as shown in the following
theorem.

Theorem 3. Given an USCSP P , if Find-OPROB(P ) = s, then s ∈ OP-
ROB(P ). If Find-OROB(P )=nil, then OP-ROB(P ) might be not empty.

Proof. If Find-OPROB(P )=s, prefd = prefu = prefl. By Theorem 1, s ∈
O-ROB(P ). Also, by Theorem 2, s ∈ P-ROB(P ). Thus s ∈ O-ROB(P ) ∩ P-
ROB(P ) = OP-ROB(P ).

In order to show that, when Find-OROB(P )=nil, OP-ROB(P ) might be not
empty, let us consider an USCSP P with one variable X with domain {a, b, c} and
with a unary unstable constraint over X with cost function f(a) = (20, [20, 5]),
f(b) = f(c) = 30. It is easy to see that prefu = 5, prefl = prefd = 20, but
(X = a) is in OP-ROB(P ). Thus Find-OROB(P )=nil but OP-ROB(P ) is not
empty. Q.E.D.

Finding a solution in OP-ROB(P) using algorithm Find-OPROB amounts to
solving three SCSPs.
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7 The Best Preference-Robust Solutions (Best-ROB)

Solutions in P-ROB(P) are optimal in the default scenario and their cost never
increases if the scenario changes. If the main focus is avoiding additional costs
when the scenarios changes, rather than the optimality in the default scenario,
we can relax the first requirement. The set of solutions of this kind will be
denoted by Best-ROB(P ). A solution s is in Best-ROB(P ) if its cost in Pd can
only decrease by changing the scenario. Also, among the solutions with such a
property, it is the one with lowest cost in Pd.

Thus, a solution in Best-ROB(P ) could be non-optimal in the default scenario.
However, there is no better solution in Best-ROB(P ) whose cost does not increase
in some other scenarios.

Solutions of this kind are useful, for example, when budget limitations guide
the operations of a company more than solutions quality. In fact, such solutions
assure that no additional cost is needed, although they may sacrifice solution
optimality to achieve this.

Definition 7 (Best-ROB). Given an USCSP P , a solution s ∈ Best-ROB(P )
iff

– s ∈ F = {s| pref(s, Pd) > 0 and ∀P ′ ∈ SC(P ), pref(s, P ′) ≥ pref(s, Pd)}
and

– ∀s′ ∈ F , pref(s, Pd) ≥ pref(s′, Pd).

Notice that, in general, if P-ROB(P) �= ∅, then Best-ROB(P) = P-ROB(P).
This is the case of our running example, where both sets contain only solution
(Qi = h, T = 2).

Proposition 4. Given an USCSP P , the set Best-ROB(P ) may be empty.

To see this, let us consider the USCSP P with one variable X with domain
{a, b, c} and with a unary unstable constraint over X with cost function f(a) =
f(b) = f(c) = (10, [20, 5]). In such a case, all solutions have a cost in Pl which
is strictly higher than that in Pd. Thus Best-ROB(P )=∅.

Algorithm 4 shows the procedure for the strictly monotonic case which uses
an SCSP denoted with Pfix. Pfix is obtained from the USCSP P in input by just
fixing the unstable preferences as follows: for each unstable preference (d, [l, u])
in P , we put in Pfix, 0 if l < d, and d otherwise. The intuition behind the
construction of Pfix is to forbid those tuples associated to preferences that may
worsen w.r.t. their default values when the scenario changes.

Find-BestROBm checks if SCSP Pfix has a solution with preference strictly
better than 0. If so, it returns an optimal solution of Pfix, otherwise it returns
nil. This algorithm to find solutions in Best-ROB(P ) is both sound and complete.

Theorem 4. Given an USCSP P over a strictly monotonic c-semiring, if Find-
BestROBm(P ) = s, s ∈ Best-ROB(P ). Find-BestROBm(P )=nil iff Best-
ROB(P )=∅.
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Algorithm 4. Find-BestROBm
Input: an USCSP P with a strictly monotonic c-semiring; Output: a solution
s, or nil
(s, p) ← Solve(Pfix)
if p > 0 then

return s

else
return nil

Proof. Find-BestROBm(P ) = s iff p > 0. We need to show that Opt(Pfix) ⊆
Best-ROB(P ). By construction of Pfix, and due to the strict monotonicity of the
combination operator, we have that, ∀s′ ∈ Opt(Pfix), if pref(s′, Pfix) > 0, then
pref(s′, Pfix) = pref(s′, Pd) and, ∀P ′ ∈ SC(P ), pref(s′, P ′) ≥ pref(s′, Pd).
Thus, since s ∈ Opt(Pfix), it satisfies this property and there is no solution with
a higher preference in Pd satisfying it. This means that s ∈Best-ROB(P ).

Find-BestROBm(P ) = nil iff p = 0, that is, iff all solutions of Pfix have pref-
erence 0. Thus, for all s such that pref(s, Pd) > 0, s �∈ Best-ROB(P). The other
solutions, that have preference 0 in Pd, are not in Best-ROB(P) by definition.
Thus Best-ROB(P) = ∅. Q.E.D.

This theorem shows that algorithm Find-BestROBm is both sound and com-
plete. Finding solutions in Best-ROB(P) using this algorithm (that is, when
the combination operator is strictly monotonic) amounts at solving one SCSP.
However, this algorithm works only when the combination operator is strictly
monotonic. It is possible to define a sound but not complete approach that works
for any c-semiring.

Consider applying BE to scenarios Pd and Pl using the same variable ordering.
At the end of the bucket processing phase [2] in both scenarios, we obtain two
new SCSPs, say P ′

d and P ′
l , where there are additional constraints and possibly

lower preferences in the old constraints. The first variable in the linear order,
say x, has each value, say a, in its domain associated with the highest preference
(or lowest cost) of a solution of the corresponding scenario where x = a.

We then check if there are values for x that have the same preference in
both P ′

l and P ′
d. If this is not the case, we are not able to say anything about

set Best-ROB(P). Otherwise, we pick among such values one, say a, with the
highest preference, say p. Using the forward step of BE applied to x = a in P ′

l ,
assignment x = a can be extended to a solution of P ′

l (and thus of Pl) with
preference p. Due to the monotonicity of the combination operator and to the
fact that x = a has the same preference in P ′

l and P ′
d, such a solution has the

same preference p also in P ′
d (and thus in Pd). Moreover, there is no solution with

this property and a higher preference in Pd. This means that such a solution is
in Best-ROB(P).

This algorithm can always be used, but it is possibly not complete. It requires
to solve two SCSPs with BE to find a solution in Best-ROB(P).
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8 The Most Preference-Robust Optimal Solutions
(ROB-OPT)

Another way to be more tolerant with the conditions of P-ROB(P) is to relax
the second requirement, that is, to maintain optimality in the default scenario
but to allow for a decrease in the preference if the scenario changes. However,
such a decrease should be the smallest possible in the worst scenario. This set
of solution is called ROB-OPT(P).

Definition 8 (ROB-OPT). Given an USCSP P , a solution s ∈ ROB-OPT(P )
iff

– it is optimal in Pd, and,
– for every other optimal solution of Pd, say s′, pref(s, Pl) ≥ pref(s′, Pl).

In words, a solution is in ROB-OPT(P ) if it is optimal in the default scenario
and, among the solutions that are optimal in such a scenario, its preference value
decreases the least in the worst scenario.

Contrarily to all the previous notions of optimality, this set always contains at
least a solution. In general, if P-ROB(P) �= ∅, P-ROB(P) = ROB-OPT(P). This
is the case of our running example, where ROB-OPT(P) = {(Qi = h, T = 2)}.
Proposition 5. Given an USCSP P , ROB-OPT(P) is never empty.

It follows immediately from the fact that the set of optimal solutions of Pd is
never empty.

To find solutions in ROB-OPT(P), we propose a procedure based on defining
a new SCSP. Given an USCSP P , defined over the c-semiring S = 〈A, +,×, 0, 1〉,
we consider the SCSP Pdl with the same variables and constraint topology as
P , and defined over the c-semiring S′ = 〈A×A, lex(+, +), (×,×), (0,0), (1,1)〉.
In such a c-semiring, preferences are pairs which are combined by applying the
combination operator to the corresponding components and which are ordered
lexicographically with the first component being the most important one. In Pdl,
each tuple associated with preference (d, [l, u]) in P is instead associated with
preference (d, l). The intuition behind the definition of Pdl is that, by solving
it, we find solutions which in the first place maximize the combination of the
default preferences, and secondly maximize the combination of the lower bounds
of the ranges of the unstable preferences.

Theorem 5. Given an USCSP P and a solution s = Find-ROBOPT(P ), s ∈
ROB-OPT(P ).

Algorithm 5. Find-ROBOPT
Input: an USCSP P ; Output: a solution s
(s, p) ← Solve(Pdl)
return s
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Proof. Since Find-ROBOPT(P ) always returns an optimal solution of Pdl, it is
sufficient to prove that Opt(Pdl) = ROB-OPT(P ). We first show that Opt(Pdl) ⊆
ROB-OPT(P ). Notice that, by construction of Pdl, if a solution s has preference
(d, l) in Pdl, then in Pd it has preference d and l in Pl. Given a solution s ∈
Opt(Pdl) with preference (d, l), for every other solution s′ of Pdl with preference
(d′, l′), it must be that d ≥ d′. Thus, s ∈ Opt(Pd). Moreover, for every other
solution s′′ with preference (d, l′′), it must be that l ≥ l′′. Thus s ∈ ROB-
OPT(P ).

Next we show that ROB-OPT(P ) ⊆ Opt(Pdl). If s ∈ ROB-OPT(P ), it is
optimal in Pd and thus, in Pdl, it is among the solutions with a maximal first
component. Moreover, among the optimal solutions of Pd, s is one of the solutions
with the highest preference in Pl. This means that among those with the maximal
first component in Pdl, it has the highest second component. This corresponds
to being undominated w.r.t. the ordering induced by lex(+, +). Q.E.D.

9 USCSPS with Uncontrollable Variables

In unstable SCSPs all the variables are decided by the deciding agent. The only
form of uncertainty is the presence of the preference ranges around the default
values. However, in many real-life settings, there are also variables which are
uncontrollable, that is, their value cannot be chosen by the deciding agent. Such
a value will be decided by some other agent or by Nature. Typical examples are
times of events related to weather changes. For example, we don’t know when
the clouds will disappear.

We will now consider the presence of some of this kind of variables in an
unstable SCSP. In this generalized setting, the variables V of the problem will
be partitioned in two sets, namely Vc and Vu, containing, respectively, the con-
trollable and the uncontrollable variables. In this paper we assume to have no
information on the uncontrollable variables besides their domain values. For ex-
ample, we don’t have a probability, and not even a possibility, distribution over
such a domain.

There are many ways to reason with uncontrollable variables, which depend on
the attitude to risk of the agent. Examples are the notions of strong, weak, and
dynamic controllability in temporal reasoning [12]. Here we adopt a pessimistic
approach (which follows the same principle as for strong controllability), where
we want to make sure that the cost of the decision we take over the control-
lable part of the problem is guaranteed not to increase when the uncontrollable
variables are instantiated.

To achieve this, we first eliminate the uncontrollable variables one at a time in
a linear order. For each variable v in Vu, we consider all constraints c1, . . . , cn con-
necting v to other variables, say v1, . . . , vm, and we build a new constraint c con-
necting v1, . . . , vm, whose preference function f is defined as follows:
f(d1, . . . , dm) = Πd∈D(v)Π

n
i=1li(ti, d), where di is the subtuple of (d1, . . . , dm)

involving only values for the variables in con(ci), and li(ti, d) is the lower element
of the range associated to tuple (ti, d) by the preference function of constraint
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ci. In words, we associate to tuple (d1, . . . , dm) the greatest lower bound of the
preferences that can be obtained by extending this tuple to any value in the
domain of v.

Notice that this procedure can be seen as a variant of BE where we take the
worst case rather than the best one (as is done in the projection step).

Uncontrollable variables are eliminated one at a time, until only controllable
variables are left. Given an USCSP P with uncontrollable variables, we denote
by cont(P ) the resulting USCSP obtained by applying this procedure to P .

Theorem 6. Consider an USCSP P with controllable variables Vc and uncon-
trollable variables Vu. For any assignment s to the variables in Vc, and any
assignment s′ to the variables in Vu, pref(s, cont(P )) ≤S pref((s, s′), P ), where
S is the c-semiring over which P is defined.

Proof. It follows by monotonicity and intensivity of the × operator of the semir-
ing. Q.E.D.

We can therefore reason on an unstable SCSP P with uncontrollable variables
by first eliminating all uncontrollable variables, thus obtaining cont(P ), and
then by reasoning on cont(P ) according to any one of the optimality/robustness
criteria defined in the previous sections. No matter what solution we end up
with, we are sure that no additional cost will be needed when the values of
the uncontrollable variables will be known. For example, if we choose to use O-
ROB, we find a solution of the controllable part which is optimal for the default
scenario and remains optimal even if the unstable preferences change, and whose
preference level cannot decrease because of how Nature decides to instantiate the
uncontrollable variables.

10 Final Considerations and Future Work

For most of the notions of optimality considered in this paper, for which we
give sound and complete algorithms, finding an optimal solution for an unstable
SCSP P requires solving at most three SCSPs. This means that, to handle the
kind of uncertainty modelled by preference ranges and default values, we don’t
change the complexity class. In particular, for example, if the default problem
belongs to a tractable SCSP class, this is also true for any unstable SCSP with
the same topology.

We did not consider probability distributions over the ranges of the possible
values for the unstable costs. We believe there are several application domains
where probabilistic reasoning is not suitable, and one would rather prefer to
reason with exact, although unstable, information. However, we also envision
domains where it makes sense to consider the expected utility of a solution or
a scenario, and to take decisions based on such concepts. We plan to study this
adaptation of our work.

We also plan to implement the algorithms to obtain the several notions of
optimal solutions defined in this paper, and also to test experimentally how



Robust Solutions in Unstable Optimization Problems 131

many times those notions that may return an empty set actually do this. While
these notions seems to be less appealing because there may be none of them,
it may be that in certain application domains, or in classes of problems with a
certain structure, there are always some of them.
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Abstract. Many agent coordination problems can be modeled as dis-
tributed constraint optimization (DCOP) problems. ADOPT is an asyn-
chronous and distributed search algorithm that is able to solve DCOP
problems optimally. In this paper, we introduce Iterative Decreasing
Bound ADOPT (IDB-ADOPT), a modification of ADOPT that changes
the search strategy of ADOPT from performing one best-first search
to performing a series of depth-first searches. Each depth-first search is
provided with a bound, initially a large integer, and returns the first
solution whose cost is smaller than or equal to the bound. The bound
is then reduced to the cost of this solution minus one and the process
repeats. If there is no solution whose cost is smaller than or equal to
the bound, it returns a cost-minimal solution. Thus, IDB-ADOPT is an
anytime algorithm that solves DCOP problems with integer costs opti-
mally. Our experimental results for graph coloring problems show that
IDB-ADOPT runs faster (that is, needs fewer cycles) than ADOPT on
large DCOP problems, with savings of up to one order of magnitude.

Keywords: ADOPT, DCOP, Distributed Constraint Optimization,
Distributed Search Algorithms.

1 Introduction

Many agent coordination problems can be modeled as distributed constraint
optimization (DCOP) problems, including the scheduling of meetings [8], the
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sensors in sensor networks [7,10,13]. Unfortunately, solving DCOP problems op-
timally is NP-hard. A variety of search algorithms have therefore been developed
to solve DCOP problems as fast as possible to scale up to real-world domains
[9,10,12,3]. ADOPT (Asynchronous Distributed Constraint Optimization) [10]
is one of the pioneering DCOP algorithms and currently probably the most
extended one [11,4,2]. It is an asynchronous and distributed best-first search
algorithm that only needs a bounded amount of memory at each vertex and is
able to solve DCOP problems optimally. Researchers have recently scaled up
ADOPT by one order of magnitude by providing it with informed heuristics
that focus its search [1]. However, its runtime is still large for realistic DCOP
problems and it therefore needs to get scaled up further. In particular, in the
original ADOPT, each vertex can switch back and forth between different values
and then has to redo many searches since the results from the previous searches
have already been purged from memory due to its memory limitations. In this
paper, we address this problem of ADOPT by introducing Iterative Decreasing
Bound ADOPT (IDB-ADOPT), a modification of ADOPT that changes the
search strategy of ADOPT from performing one best-first search to perform-
ing a series of depth-first searches, where vertices do not switch back and forth
between different values. IDB-ADOPT is motivated by insights from heuristic
search that depth-first searches can outperform best-first searches in combina-
torial domains with search trees whose depths are bounded [15], and DCOP
problems are such domains. Each depth-first search of IDB-ADOPT is provided
with a bound, initially a large integer, and returns the first solution whose cost
is smaller than or equal to the bound. The bound is then reduced to the cost
of this solution minus one. If there is no solution whose cost is smaller than or
equal to the bound, it returns a cost-minimal solution. Thus, IDB-ADOPT is
an anytime algorithm that solves DCOP problems with integer costs optimally.
Our experimental results for graph coloring problems show that IDB-ADOPT
runs faster than ADOPT on large DCOP problems, with savings of up to one
order of magnitude.

2 DCOP Problems

Distributed constraint optimization (DCOP) problems model agent coordination
problems as constraint optimization problems on constraint graphs. Each vertex

x1

x3

x2

x1

x3

x2

for i < j

xi xj Cost
0 0 5
0 1 8
1 0 20
1 1 3

(a) (b) (c)

Fig. 1. Example DCOP problem

h i onmlkj

a

cb

gfed

x1

x3

x2

(a)

15 21 94331451933

0

00

32085

x1

x3

x2

(b)

Fig. 2. Search Tree



134 W. Yeoh, A. Felner, and S. Koenig

of a constraint graph represents an agent (sometimes referred to as variable)
and can take on a value from a given set (its domain). Edges denote constraints.
The cost of a constraint depends on the values of the vertex endpoints of the
corresponding edge, given by a table. We assume in this paper that all costs
are non-negative integers. An assignment of values to all vertices is a (complete)
solution. The cost of the solution is the sum of the costs of the constraints. One
wants to find a cost-minimal solution. As an example, Figure 1 (left) shows a
simple DCOP problem with three vertices, x1, x2 and x3, that each can take on
the values zero or one. There are three constraints, whose costs are specified by
the tables. For example, there is one constraint between vertices x1 and x2. If
both vertices take on value zero, then the cost of the constraint is five. The cost
of the solution x1 := 1, x2 := 1 and x3 := 1 is nine and cost-minimal.

3 ADOPT

We now give a slightly simplified description of ADOPT that makes the search
principle behind it easy to understand and is sufficient for our purposes. The
reader is referred to the original paper [10] for a full step-by-step description of
DCOP problems, ADOPT and the message passing mechanism used by ADOPT.
ADOPT basically operates as follows: In a preprocessing step, ADOPT trans-
forms the constraint graph into a constraint tree with the property that con-
straints exist only between a vertex and its ancestors and/or descendants. To
simplify our description further, we assume that every vertex has at most one
child in the constraint tree. In other words, the constraint tree is a chain, which
is the case for our example DCOP problem. Figure 1 (center) shows one possible
constraint tree for our example DCOP problem. ADOPT then performs a search
as will be described next.

3.1 Values of ADOPT

During the search of ADOPT, every vertex of the constraint graph maintains
some values. Every vertex maintains the value from its domain that it currently
takes on (called its current value), initially the best value (the best value is de-
fined below). Every vertex also maintains the values of its (connected) ancestors
in the constraint tree (called its current context). These values correspond to a
partial solution of the DCOP problem. Every vertex maintains, for each possible
value that it can take on, lower bounds on the cost of the cost-minimal solution
of the DCOP problem that is consistent with this value and its current context.
These lower bounds are initialized with the sum of the costs of the constraints
between the (connected) ancestors, which can be calculated since the current
context is known. One can obtain larger initial lower bounds to speed up the
search by adding informed pre-computed values (called heuristics), if available,
to the the sum of the costs of the constraints between the (connected) ancestors.
We call the lower bound of the current value of a vertex its current lower bound.
We call the smallest lower bound over all values that a vertex can take on its
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best lower bound and the corresponding value its best value. Every vertex also
maintains an upper bound on the cost of the cost-minimal solution of the DCOP
problem that is consistent with its current context. The upper bound is sim-
ply the cost-minimal solution found so far during the search that is consistent
with the current context, initially infinity. Finally, every vertex also maintains a
threshold (whose role will be explained below), initially zero. For every vertex,
ADOPT maintains the following threshold invariant: The threshold of a vertex
is guaranteed to be between its best lower bound and its upper bound. To keep
the threshold invariant satisfied, the vertex changes the value of its threshold as
follows: If the threshold is smaller than the best lower bound of the vertex then
the threshold is increased to the best lower bound. Similarly, if the threshold is
larger than the upper bound then the threshold is decreased to the upper bound.
These situations occur when the best lower bound increases above the threshold
or the upper bound decreases below the threshold.

3.2 Operation of ADOPT

Each vertex operates as follows: If its current lower bound is smaller than or equal
to the threshold, then the vertex keeps its current value. Otherwise, it changes
its current value by taking on its best value and then informs its (connected)
descendants in the constraint tree about its new value. Its descendants then
perform similar computations to help the vertex decrease its upper bound and
increase its current lower bound. ADOPT terminates when the threshold of the
root vertex of the constraint tree is equal to its upper bound.

3.3 Thresholds of ADOPT

The threshold of a vertex is of special importance in the remainder of this paper.
We now explain how it influences the values taken on by the vertex. As already
explained above, if the current lower bound of a vertex is smaller than or equal
to the threshold, then the vertex keeps its current value. Otherwise, it changes
its current value by taking on its best value. At this point in time, there are two
possible cases:

– Case 1. If there are still values whose lower bounds are smaller then its
threshold, then the vertex takes on its best value and keeps it until the lower
bound of that value increases above the threshold. The vertex repeats this
procedure until all lower bounds are larger than or equal to the threshold and
Case 2 is reached. Note that, during Case 1, the vertex takes on each value
only once (unless its ancestors switch values), and keeps this value as long as
the lower bound of the value is smaller than or equal to the threshold even
if some other value has a smaller lower bound. This results in a depth-first
search behavior.

– Case 2. If all lower bounds are larger than or equal to the threshold, then
the vertex increases the threshold to the best lower bound (to satisfy the
threshold invariant), if necessary, and then takes on its best value until the
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lower bound of that value increases. The vertex then repeats this procedure.
Note that, once Case 2 is reached, the vertex cannot go back to Case 1
unless its ancestors switch values. During Case 2, the vertex always takes
on its best value. This results in a best-first search behavior. The vertex can
switch back and forth between values and, in the process, take on the same
value several times.

ADOPT initializes the threshold of the root vertex of the constraint tree to zero.
The root vertex therefore starts with Case 2, and ADOPT performs a best-first
search. The threshold is important when a vertex switches back to a value that
it had taken on earlier already during the best-first search. In this case, it has
already increased the lower bound of this value, otherwise it would not have
switched from the value to a different one earlier. It now has to redo this search
to restore the lower bounds of its descendants at the point in time when it
last switched from this value to another value. These lower bounds have been
purged from memory since each vertex uses only a bounded amount of memory.
ADOPT restores these lower bounds with a depth-first search (inside the best-
first search) to be efficient. A best-first search is not needed for this purpose
since ADOPT only repeats a previous search. Case 1 performs this depth-first
search automatically.

4 Illustration of ADOPT

The operation of DCOP algorithms on constraint trees can be visualized with
search trees. Figure 2 shows a search tree for this constraint tree, where levels 1,
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2 and 3 of the search tree correspond to agents x1, x2 and x3, respectively. Left
branches correspond to the agents taking on the value zero and right branches
to the agents taking on the value one. Each non-leaf node thus corresponds
to a partial solution of the DCOP problem and each leaf node to a solution.
Figure 2(a) shows the identifiers of the nodes that allow us to refer to them easily,
and Figure 2(b) shows the sums of the constraint costs of all constraints that
involve only agents with known values. Node e in the search tree, for example,
corresponds to x1 := 0 and x2 := 1. It is annotated with the initial lower
bound on the cost of the cost-minimal solution of the DCOP problem that is
consistent with these values for the zero heuristics (no heuristics were added),
in this case the cost of the constraint between vertices x1 and x2 (= 8). This
value is the initial lower bound of vertex x2 for value one if its ancestor x1 has
value zero. Thus, the lower bounds of a vertex label the children of the vertex in
the search tree. To simplify our description, we assume that ADOPT performs
a synchronous rather than an asynchronous search and propagates information
with infinite speed. Figure 3 shows the resulting search. Consider the root vertex
x1. ADOPT initializes its threshold (th) with zero, its upper bound (ub) with
infinity, and its lower bounds with the initial lower bounds shown earlier. Both
of its lower bounds are equal to zero. Thus, it breaks ties and takes on value
zero (Step 1). The lower bounds of vertex x2 are initialized with the initial lower
bounds shown earlier for x1 := 0. The best value of vertex x2 is zero and its best
lower bound is five. Thus, vertex x1 can update its lower bound for value zero
from zero to five (Step 2). The best value of vertex x1 is now one and its best
lower bound (shown inside the root node of the search tree) is zero. Vertex x1
then switches to value one. The lower bounds of vertex x2 are initialized with
the initial lower bounds shown earlier for x1 := 1. The best value of vertex x2
is one and its best lower bound is three. Thus, vertex x1 can update its lower
bound for value one from zero to three. This violates the threshold invariant,
and thus the threshold is also increased to three. Its best value, however, remains
unchanged. Vertex x2 thus takes on value one. The lower bounds of vertex x3 are
initialized with the initial lower bounds shown earlier for x1 := 1 and x2 := 1.
The best value of vertex x3 is one and its best lower bound is nine. Thus, vertex
x2 can update its lower bound for value one from three to nine. Then, vertex x1
can update its lower bound for value one from three to nine (Step 4). The best
value of vertex x1 is now zero and its best lower bound is five. Vertex x1 thus
updates its threshold to five and then switches to value zero. The lower bounds
of vertex x2 are initialized with the initial lower bounds shown earlier for x1 := 0
and the previous lower bounds are purged from memory. (If the ancestors of a
vertex switch their values, then the vertex changes its node in the search tree
to a different node in its layer. Since each vertex has only a bounded amount
of memory, it can store information only for its current node in the search tree.
Thus, it has to delete its current lower bounds, as shown in the figure with the
X’s, and replace them with the initial lower bounds for the new values of its
ancestors.) The search continues and eventually reaches the node with x1 := 1,
x2 := 1 and x3 := 1 in Step 10. This is a solution with cost nine. Thus, vertex
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x1 updates its upper bound to nine, the termination condition is satisfied, and
ADOPT terminates with the cost-minimal solution x1 := 1, x2 := 1 and x3 := 1.

It is interesting to see that the behavior of ADOPT is similar to that of Korf’s
recursive best-first search (RBFS) [6], which ADOPT generalizes to the asyn-
chronous and distributed case. For example, ADOPT does not need centralized
control and is able to take advantage of parallel computations in case it operates
on constraint trees that are not chains. ADOPT and RBFS operate under the
same memory limitations. They both perform best-first searches and use depth-
first searches to redo previous best-first searches in order to restore information
already purged from memory. Vertex x1 in the example switches back and forth
between values zero and one, and then has to redo the previous searches. For
example, the best value of vertex x1 is one and its best lower bound is nine in
Step 7. Vertex x1 thus switches to value one. The lower bounds of vertex x2 are
initialized with the initial lower bounds shown earlier for x1 := 1 (namely, 20
and 3), but were already larger at the end of the previous search with x1 := 1
in Step 4 (namely, 20 and 9). ADOPT uses a depth-first search to restore them
in Steps 9-10, which is similar to what RBFS does in this situation.

5 IDB-ADOPT

A best-first search without memory limitations visits only the necessary nodes
in the search tree to find the optimal solution [5]. However, ADOPT performs
a best-first search where each vertex has only a bounded amount of memory
and thus has to redo many searches. To remedy this situations, we make the
following observation about ADOPT: If the cost of the cost-minimal solution is
less than or equal to the threshold of the root vertex, then ADOPT performs
a depth-first search and terminates after finding the first solution whose cost is
less than or equal to the threshold.

Explanation. When the initial threshold of the root vertex is smaller
than the initial upper bound of the root vertex but larger than or equal
to the cost of the cost-minimal solution (which implies that it is also
larger than or equal to the best lower bound of the root vertex), ADOPT
performs a depth-first search. The upper bound of the root vertex is the
cost of a cost-minimal solution found so far. If the upper bound is larger
than the threshold, then the depth-first search continues. Once the upper
bound is smaller than or equal to the threshold, then the threshold gets
set to the upper bound and the termination condition of ADOPT is
satisfied. Thus, once the depth-first search finds a solution with a cost
that is smaller than or equal to the threshold, ADOPT terminates with
that solution.

Our objective is to make ADOPT faster by only modifying it slightly based on
the above observation. We introduce Iterative Decreasing Bound ADOPT (IDB-
ADOPT), a modification of ADOPT that changes the search strategy of ADOPT
from performing a best-first search to performing a series of depth-first searches.
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procedure IDB-Adopt()
{01} threshold := a large integer;
{02} loop
{03} set the threshold of the root vertex to threshold;
{04} run the original ADOPT algorithm;
{05} if (solution quality found > threshold)
{06} return solution found;
{07} end if;
{08} threshold := solution quality found - 1;
{09} end loop;

Fig. 4. IDB-ADOPT

It assumes that the constraint costs are non-negative integers. Thus, if there is no
solution of integer cost x or smaller, then the cost-minimal solution must have a
cost of x+1 or larger. Figure 4 shows the pseudo code of IDB-ADOPT, which uses
ADOPT to implement the depth-first searches. IDB-ADOPT sets the threshold
of the root vertex to a large integer, that is, an integer larger than or equal
to the cost of a cost-minimal solution. Such an integer can easily be obtained
by summing the largest possible cost of each constraint over all constraints.
IDB-ADOPT then runs ADOPT. According to the above observation, ADOPT
terminates with a solution whose cost is less than or equal to the threshold if
such a solution exists, which is the case since the threshold is larger than or equal
to the cost of a cost-minimal solution. IDB-ADOPT then sets the threshold of
the root vertex to the cost of the solution minus one and runs ADOPT again.
This process continues until ADOPT terminates with a solution whose cost is
larger than the threshold. This solution is a cost-minimal solution.

Explanation. We use x to refer to the threshold of the root vertex of
the constraint tree at the beginning of the last search of ADOPT. Note
that the previous (second-to-last) search of ADOPT has already found
a cost-minimal solution of cost x + 1. The last search of ADOPT only
verifies that the solution is indeed cost-minimal. It behaves as follows:
ADOPT performs a depth-first search until all lower bounds of the root
vertex of the constraint tree are larger than x. At this point in time, at
least one of its lower bounds is smaller than or equal to the cost of a
cost-minimal solution and thus equal to x + 1. ADOPT either has not
found a solution of cost x+1 yet or has found such a solution already. In
the first case, the root vertex takes on its best value whose lower bound
is, as argued above, x+1 and performs a depth-first search until it either
finds a solution with that cost or increases the lower bound of that value
and then repeats the process with a different value whose lower bound
is x + 1. (In this case, it redoes one search for each value that it revisits.
However, it cannot revisit any value more than once since it will find
a solution with cost x + 1 during one of the searches and thus will not
take on values whose lower bounds are larger than x+1. Notice that this
property is not guaranteed for initial thresholds of the root node of the
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constraint tree that are smaller than x, including the zero value used by
ADOPT.) Finally, it finds a solution with cost x +1 since one exists. Its
upper bound is then set to x + 1. In the second case, its upper bound is
already equal to x + 1. Either way, its best lower bound is now equal to
its upper bound and its threshold is always between the two. Thus, its
threshold is now equal to its upper bound and the termination condition
of ADOPT is satisfied. ADOPT then terminates with a solution with
cost x + 1, which must be a cost-minimal solution since the best lower
bound of the root vertex of the constraint tree is equal to its upper
bound.

Thus, IDB-ADOPT is, like ADOPT, an asynchronous and distributed search
algorithm that only needs a bounded amount of memory at each vertex and is
able to solve DCOP problems optimally. IDB-ADOPT checks whether the cost
of the solution found by ADOPT is larger than the threshold. If so, it returns
this solution, which is a cost-minimal solution. Otherwise, it runs ADOPT again
(from scratch) with a new threshold. Since this threshold is reduced from one
ADOPT search to the next, ADOPT finds solutions of smaller and smaller costs
until it eventually finds the cost-minimal solution. Thus, IDB-ADOPT can be
used as an anytime algorithm [16].

6 Illustration of IDB-ADOPT

Figure 5 shows the searches of IDB-ADOPT for our example DCOP problem.
Consider the root vertex x1. IDB-ADOPT initializes its threshold with 60 (the
sum of the largest possible cost of each constraint over all constraints, which is
guaranteed to be larger than or equal to the cost of a cost-minimal solution), its
upper bound with infinity, and its lower bounds with the initial lower bounds
shown earlier. IDB-ADOPT then starts the first ADOPT search. Both of its
lower bounds are equal to zero. Thus, it breaks ties and takes on value zero
(Iteration 1, Step 1). Now consider vertex x2. Its lower bounds are initialized
with the initial lower bounds shown earlier for x1 := 0. The best value of vertex
x2 is zero and its best lower bound is five. Thus, vertex x1 can update its lower
bound for value zero from zero to five. The best value of vertex x1 is now one and
its best lower bound is zero. However, vertex x1 does not change its value since
the lower bound of its current value remains below the threshold. Vertex x2 thus
takes on value zero. The lower bounds of vertex x3 are initialized with the initial
lower bounds shown earlier for x1 := 0 and x2 := 0. The best value of vertex x3
is zero and its best lower bound is fifteen (Iteration 1, Step 3). Thus, vertex x2
can update its lower bound for value zero from five to fifteen. The best value of
vertex x2 is now one and its best lower bound is eight. However, vertex x2 does
not change its value since the lower bound of its current value remains below
the threshold (Iteration 1, Step 2). Thus, the search has reached the node with
x1 := 0, x2 := 0 and x3 := 0 in Iteration 1, Step 4. This is a solution with cost
fifteen. Thus, vertex x1 updates first its upper bound to fifteen and then also
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its threshold to fifteen. The termination condition is satisfied, and the ADOPT
search terminates with the solution x1 := 0, x2 := 0 and x3 := 0. Consider again
the root vertex x1. IDB-ADOPT then initializes its threshold with fourteen, its
upper bound with infinity, and its lower bounds with the initial lower bounds
shown earlier. IDB-ADOPT then starts the second ADOPT search, and so on.
Three observations are important here: First, each ADOPT search performs a
depth-first search and backtracks only when the lower bound of a value is larger
than the threshold. For example, vertex x2 switches from value zero to value one
in Iteration 2, Steps 3-4 because the lower bound of its value zero has become
larger than the threshold. No vertex switches back during an ADOPT search
to a previous value unless its ancestors have switched values. Second, different



142 W. Yeoh, A. Felner, and S. Koenig

ADOPT searches do repeat some of the effort. All three ADOPT searches, for
example, consider the case where x1 := 0 and x2 := 0. Finally, the second
ADOPT search already found the cost-minimal solution but the third ADOPT
search is needed to verify that it is indeed cost-minimal. Note that our example
DCOP problem is too small for IDB-ADOPT to run faster than ADOPT, which
we will explain below.

7 ADOPT versus IDB-ADOPT

ADOPT and IDB-ADOPT compare as follows: IDB-ADOPT performs repeated
ADOPT searches that produce better and better solutions. Each ADOPT search
performed by IDB-ADOPT has the property that vertices do not switch back and
forth between different values, unless their connected ancestors have switched
values, and thus does not incur the overhead of redoing previous searches. In
fact, IDB-ADOPT redoes no search within an ADOPT search (except for the
last one). It achieves this efficiency by performing depth-first searches rather
than best-first searches. However, depth-first searches are sources of a different
inefficiency since they explore partial solutions that best-first searches do not
explore. Thus, there is a trade-off between using a best-first search and hav-
ing to explore partial solutions repeatedly, and using a depth-first search and
having to explore additional (unimportant) partial solutions. We expect a best-
first search to do better if the heuristics (that are used to initialize the lower
bounds) are good and it thus does not have to redo many searches. We expect
a depth-first search to do better if the heuristics are misleading, for example,
if they are uninformed or the DCOP problems are large. Our experimental re-
sults for graph coloring problems indeed show that IDB-ADOPT runs faster
than ADOPT on large DCOP problems. Note, however, that it was our objec-
tive to modify ADOPT only slightly. Indeed, IDB-ADOPT modifies ADOPT by
putting a control loop on top of ADOPT that is only 9 lines long and calls it
repeatedly with different thresholds for the root vertex of the constraint tree.
This slight modification, however, does not implement the principle of a depth-
first search fully. In fact, IDB-ADOPT needed to perform only a single com-
plete branch-and-bound depth-first search and return the cost-minimal solution
found. Instead, IDB-ADOPT performs repeated depth-first searches, each of
which repeats parts of the previous depth-first searches, which results in addi-
tional (unnecessary) overhead because IDB-ADOPT partially redoes searches
from one ADOPT search to the next. Every vertex takes on all of its values that
are smaller than or equal to the threshold, unless the ADOPT search terminated
before that. Since the threshold of the previous ADOPT search was larger, the
vertex has taken on these values already during the previous ADOPT search, un-
less the previous ADOPT search terminated before that. (The previous ADOPT
search terminated earlier than the current one since the threshold of the previ-
ous ADOPT search was smaller than the one of the current ADOPT search.)
Thus, the current ADOPT search can prune more than the previous ADOPT
search but needs to search beyond the solution found by the previous ADOPT
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search. Our experimental results show that IDB-ADOPT still runs faster than
ADOPT on large DCOP problems in spite of this overhead. An asynchronous
and distributed branch-and-bound depth-first search algorithm would run even
faster than IDB-ADOPT. It would share with ADOPT and IDB-ADOPT that
it only needs a bounded amount of memory at each vertex and is able to solve
DCOP problems optimally. It is future work to develop such an algorithm.

8 Experiments

We evaluated IDB-ADOPT against ADOPT with uninformed heuristics (zero
heuristics) and the currently best-known informed heuristics (DP2 heuristics) [1]
on graph-coloring problems. Their number of vertices varied from 5 to 10. Their
constraint costs were in the range from one to an upper bound that varied from
3 over 10, 25, 50, 100 to 10000. We randomly generated 500 graph-coloring
problems with three values per vertex and an average link density of four for
each configuration of these two parameters.

In Experiment 1, we measured the average number of cycles needed by IDB-
ADOPT and ADOPT for finding optimal solutions for graph-coloring problems
with constraint costs ranging from 1 to 10000, as shown in Figure 6. (The number
of cycles is a measure of the runtime that takes into account that the vertices
can process information in parallel [10]. A smaller number of cycles implies a
smaller runtime.) Heuristics speed up both IDB-ADOPT and ADOPT but the
number of cycles needed by IDB-ADOPT with uninformed heuristics is already
smaller than the one needed by ADOPT with informed heuristics. The speedup
of informed IDB-ADOPT over informed ADOPT tends to increase with the
number of vertices, as shown in Figure 7. IDB-ADOPT is 88.7 percent faster
than ADOPT when the number of vertices is 10. That is, IDB-ADOPT speeds
up ADOPT by a factor of about 9 in this case, which is about one order of
magnitude.

In Experiment 2, we measured the speedup of informed IDB-ADOPT over
informed ADOPT for finding optimal solutions for graph-coloring problems with
10 vertices. The speedup tends to increase with the range of constraint costs, as
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Fig. 8. Speedups for Experiment 2

shown in Figure 8. IDB-ADOPT is 36.0 percent slower than ADOPT when the
constraint costs range from 1 to 3, but 88.7 percent faster than ADOPT when
the constraint costs range from 1 to 10000 and seems to converge to about this
value. The larger the ranges of constraint costs, the more complex the DCOP
problems and the more misleading the heuristics tend to be, which explains the
results.

In Experiment 3, we measured the speedup of informed IDB-ADOPT over
informed ADOPT for finding optimal solution for graph-coloring problems with
10 vertices and constraint costs ranging from 1 to 10000. We classified them
into buckets depending on how many cycles ADOPT needed to solve them:
0-1000, 1001-5000, 5001-10000, 10001-25000, 25001-50000 and 50001-∞ cycles.
The speedup tends to increase with the number of cycles ADOPT needed, as
shown in Figure 9. IDB-ADOPT is 5.8 percent slower than ADOPT in the bucket
1-1000, but 97.8 percent faster than ADOPT in the bucket 50001-∞ and seems
to converge to about this value. Again, the more cycles ADOPT needs, the more
complex the DCOP problems and the more misleading the heuristics tend to be,
which explains the results.
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9 Conclusions

In this paper, we introduced Iterative Decreasing Bound ADOPT (IDB-ADOPT),
a modification of ADOPT that changes the search strategy of ADOPT from per-
forming one best-first search to performing a series of depth-first searches. IDB-
ADOPT is, like ADOPT, an asynchronous and distributed search algorithm
that only needs a bounded amount of memory at each vertex and is able to
solve DCOP problems optimally. Our experimental results for graph coloring
problems showed that IDB-ADOPT has smaller cycle counts than ADOPT on
large DCOP problems, with savings of up to one order of magnitude. In addition,
IDB-ADOPT produces suboptimal solutions quickly and then improves them.
It can thus be used as an anytime algorithm.
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