
Extending Structural Test Coverage Criteria for
Lustre Programs with Multi-clock Operators

Virginia Papailiopoulou, Laya Madani, Lydie du Bousquet, and Ioannis Parissis

University of Grenoble - Laboratoire d’Informatique de Grenoble
BP 72 - 38402 Saint-Martin d’Hères Cedex France

{Virginia.Papailiopoulou,Laya.Madani,Lydie.du-Bousquet,
Ioannis.Parissis}@imag.fr

Abstract. Lustre is a formal synchronous declarative language widely
used for modeling and specifying safety-critical applications in the fields
of avionics, transportation or energy production. Testing this kind of ap-
plications is an important and demanding task during the development
process. It mainly consists in generating test data and measuring the
achieved coverage. A hierarchy of structural coverage criteria for Lus-
tre programs have been recently defined to assess the thoroughness of
a given test set. They are based on the operator network, which is the
graphical representation of a Lustre program and depicts the way that
input flows are transformed into output flows through their propagation
along the program paths. The above criteria definition aimed at demon-
strating the opportunity of such a coverage assessment approach but
doesn’t deal with all the language constructions. In particular, the use
of multiple clocks has not been taken into account. In this paper, we ex-
tend the criteria to programs that use multiple clocks. Such an extension
allows for the application of the existing coverage metrics to industrial
software components, which usually operate on multiple clocks, without
negatively affecting the complexity of the criteria.

1 Introduction

Synchronous software is normally part of safety-critical applications in such do-
mains as avionics, transportation and energy. Formal specification is usually re-
quired to model the system behavior along the different levels of the development
process. Such a specification not only describes the correct function of the system
but also it defines the conditions under which that correct function is reached.
That specification can be further used to automatically generate test data.

Several programming languages have been proposed to specify and imple-
ment synchronous applications, such as Esterel [2], Signal [8] or Lustre [5,1].
Lustre is a declarative, data-flow language, which is devoted to the specifica-
tion of real-time applications. It provides formal specification and verification
facilities and ensures efficient C code generation. It is based on the synchronous
approach which demands that the software reacts to its inputs instantaneously.
In practice, that means that the software reaction is sufficiently fast so that ev-
ery change in the external environment is taken into account. As soon as the

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 23–36, 2009.
© Springer-Verlag Berlin Heidelberg 2009

24 V. Papailiopoulou et al.

order of all the events occurring both inside and outside the program is specified,
time constraints describing the behavior of a synchronous program can be ex-
pressed [6]. These characteristics make it possible to efficiently design and model
synchronous systems.

A graphical tool dedicated to the development of critical embedded systems
and often used by industries and professionals is SCADE (Safety Critical Ap-
plication Development Environment). SCADE is a graphical environment used
in the development of safety-critical embedded software. It is based on the Lus-
tre language and it allows the hierarchical definition of the system components
and the automatic code generation. From the SCADE functional specifications,
C code is automatically generated, though this transformation (SCADE to C)
is not standardized. This graphical modeling environment is used mainly in the
aerospace field (Airbus, DO-178B); however its capabilities serve also transporta-
tion, automotive and energy.

In major industrial applications, the testing process usually consists in produc-
ing test cases based on the functional requirements of the system under test. Test
objectives and test data are constructed with regard to the system requirements
and the coverage evaluation is applied on the generated C code. For programs
written in sequential languages, several adequacy criteria have been presented in
the past, such as path/branch coverage criteria, LCSAJ (Linear Code Sequence
And Jump) [10] and MC/DC (Modified Decision Condition Coverage).

These criteria are not conformed with the synchronous paradigm and cannot
be applied on Lustre programs to assess how thoroughly the produced test
data have tested the corresponding specification. Furthermore, it is difficult to
formally relate the coverage measurement results with the system specification
and the test objective. To deal with this problem, especially designed structural
coverage criteria for LUSTRE programs have been proposed [7]. Although these
criteria are comparable to the existing data-flow based criteria [9,3], they are not
the same. They aim at defining intermediate coverage objectives and estimating
the required test effort towards the final one. These criteria are based on the
notion of the activation condition of a path, which informally represents the
propagation of the effect of the input edge through the output edge.

However, the above coverage criteria can be applied only on specifications
that are defined under a unique global clock. The global clock is a boolean
flow that always values true and defines the frequency of the program execu-
tion cycles. Other, slower, clocks can be defined through boolean-valued flows.
They are mainly used to prevent useless operations of the program and to save
computational resources by forcing some program expressions to be evaluated
strictly on specific execution cycles. Thus, nested clocks may be used to restrict
the operation of certain flows when this is necessary, without affecting at the
same time the rest of the program variables. In Lustre, using multiple clocks
is made through two specific operators, when and current. In this paper, we pro-
pose the extension of the existing coverage criteria taking into account the when
and current operators. In fact, we define the activation conditions for the paths
containing these operators in order that the coverage criteria are applicable on

Extending Structural Test Coverage Criteria 25

such paths. The complexity of the criteria, in terms of the cost of computing the
paths and their activation conditions, is not increased.

The paper is structured in three main sections. Section 2 provides a brief
overview of the essential concepts on Lustre language. Section 3 presents the
existing coverage criteria for Lustre programs while in section 4 we thoroughly
demonstrate their extension to the use of multiple clocks. Section 5 concludes
and shows some perspectives for future work.

2 Overview of Lustre

Lustre [5] is a data-flow language. Contrary to imperative languages which
describe the control flow of a program, Lustre describes the way that the inputs
are turned into the outputs. Any variable or expression is represented by an
infinite sequence of values and take the n-th value at the n-th cycle of the
program execution, as it is shown in Figure 1. At each tick of a global clock,
all inputs are read and processed simultaneously and all outputs are emitted,
according to the synchrony hypothesis.

A Lustre program is structured into nodes. A node is a set of equations which
define the node’s outputs as a function of its inputs. Each variable can be defined
only once within a node and the order of equations is of no matter. Specifically,
when an expression E is assigned to a variable X, X=E, that indicates that the
respective sequences of values are identical throughout the program execution;
at any cycle, X and E have the same value. Once a node is defined, it can be
used inside other nodes like any other operator.

The operators supported by Lustre are the common arithmetic and logical
operators (+, -, *, /, and, or, not) as well as two specific temporal operators:
the precedence (pre) and the initialization (->). The pre operator introduces
to the flow a delay of one time unit, while the -> operator -also called fol-
lowed by (fby)- allows the flow initialization. Let X = (x0, x1, x2, x3, . . .) and
(e0, e1, e2, e3, . . .) be two Lustre expressions. Then pre(X) denotes the sequence
(nil, x0, x1, x2, x3, . . .), where nil is an undefined value, while X ->E denotes the
sequence (x0, e1, e2, e3, . . .).

o2
External Environment System Under Test

Time

one cycle

i0 i1 i2

o0 o1

Fig. 1. Synchronous software operation

26 V. Papailiopoulou et al.

node Never(A: bool) returns (never_A: bool);
let

never_A = not(A) -> not(A) and pre(never_A);
tel;

c1 c2 c3 c4 ...
A false false true false ...

never_A true true false false ...

Fig. 2. Example of a Lustre node

Lustre does not support loops (operators such for and while) nor recursive
calls. Consequently, the execution time of a Lustre program can be statically
computed and the satisfaction of the synchrony hypothesis can be checked.

A simple Lustre program is given in Figure 2, followed by an instance of its
execution. This program has a single input boolean variable and a single boolean
output. The output is true if and only if the input has never been true since the
beginning of the program execution.

2.1 Operator Network

The transformation of the inputs into the outputs in a Lustre program is done via
a set of operators.Therefore, it can be representedby a directed graph, the so called
operator network. An operator network is a graph with a set of N operators which
are connected to each other by a set of E ⊆ N ×N directed edges. Each operator
represents a logical or a numerical computation. With regard to the correspond-
ing Lustre program, an operator network has as many input edges (respectively,
output edges) as the program input variables (respectively, output variables).

Figure 3 shows the corresponding operator network for the node of Figure 2.

L3
pre

A

never_A

L1

L2

Fig. 3. The operator network for the node Never

An operator represents a data transfer from an input edge into an output
edge. There are two kinds of operators:

a) the basic operators which correspond to a basic computation and
b) the compound operators which correspond to the case where in a program,

a node calls another node1.
1 For the time being, we only consider basic operators.

Extending Structural Test Coverage Criteria 27

A basic operator is denoted as 〈ei, s〉, where ei, i = 1, 2, 3, . . ., stands for its
inputs edges and s stands for the output edge.

2.2 Clocks in Lustre

In Lustre, any variable and expression denotes a flow, i.e. each infinite sequence
of values is defined on a clock, which represents a sequence of time. Thus, a flow
is the pair of a sequence of values and a clock.

The clock serves to indicate when a value is assigned to the flow. That means
that a flow takes the n-th value of its sequence of values at the n-th time of its
clock. Any program has a cyclic behavior and that cycle defines a sequence of
times, i.e. a clock, which is the basic clock of a program. A flow on the basic
clock takes its n-th value at the n-th execution cycle of the program. Slower
clocks can be defined through flows of boolean values. The clock defined by a
boolean flow is the sequence of times at which the flow takes the value true.

Two operators affect the clock of a flow: when and current.
when is used to sample an expression on a slower clock. Let E be an expres-

sion and B a boolean expression with the same clock. Then X=E when B is an
expression whose clock is defined by B and its values are the same as those of
E ’s only when B is true. That means that the resulting flow X has not the same
clock with E or, alternatively, when B is false, X is not defined at all.

current operates on expressions with different clocks and is used to project
an expression on the immediately faster clock. Let E be an expression with
the clock defined by the boolean flow B which is not the basic clock. Then
Y=current(E) has the same clock as B and its value is the value of E at the last
time that B was true. Note that until B is true for the first time, the value of Y
will be nil.

The sampling and the projection are two complementary operations: a pro-
jection changes the clock of a flow to the clock that the flow had before its last
sampling operation. Trying to project a flow that was not sampled produces an
error. Table 1 provides the use of the two temporal Lustre operators in more
details.

Table 1. The use of the operators when and current

e e e e e e e e e . . .

. . .

x0 = e2 x1 = e4 x2 = e7 x3 = e8 . . .

y0 = nil y1 = nil y2 = e2 y3 = e2 y4 = e4 y5 = e4 y6 = e4 y7 = e7 y8 = e8 . . .

An example [4] of the use of clocks in Lustre is given in Figure 4.
The Lustre node mux receives as input the signal m. Starting from this input

value when the clock c is true, the program counts backwards until zero; from
this moment, it restarts from the current input value and so on.

28 V. Papailiopoulou et al.

node mux(m:int) returns (c:bool; y:int);
var (x:int) when c;
let
y = if c then current(x) else pre(y)-1;
c = true -> (pre(y)=0);
x = m when c;

tel;

− ITE

=

pre

when current
x

M1

M51

y
M2

M3

0

true
M4 c

m

Fig. 4. The mux example and the corresponding operator network

3 Coverage Criteria for Lustre Programs

3.1 Activation Conditions

Given an operator network N, paths can be defined in the program. That is, the
possible directions of flows from the input through the output. More formally, a
path is a finite sequence of edges 〈e0, e1, . . . , en〉, such that for ∀iε [0, n − 1], ei+1

is a successor of ei in N. A unit path is a path with two successive edges. For
instance, in the operator network of Figure 3, there can be found the following
paths.

p1 = 〈A, L1, never_A〉
p2 = 〈A, L1, L3, never_A〉
p3 = 〈A, L1, never_A, L2, L3, never_A〉
p4 = 〈A, L1, L3, never_A, L2, L3, never_A〉

Obviously, one could discover infinitely many paths in an operator network de-
pending on the number of cycles repeated in the path (i.e. the number of pre
operators in the path). However, we only consider paths of finite length by limit-
ing the number of cycles. That is, a path of length n is obtained by concatenating
a path of length n-1 with a unit path (of length 2). Thus, beginning from unit
paths, longer paths could be built; a path is finite if it contains no cycles or if
the number of cycles is limited.

A boolean Lustre expression is associated with each pair 〈e, s〉, denoting the
condition on which the data flows from the input edge e through the output s.

Extending Structural Test Coverage Criteria 29

Table 2. Activation conditions for all Lustre operators

Operator Activation condition
s = NOT (e) AC (e, s) = true

s = AND (a, b) AC (a, s) = not (a) or b
AC (b, s) = not (b) or a

s = OR (a, b) AC (a, s) = a or not (b)
AC (b, s) = b or not (a)

s = ITE (c, a, b) AC (c, s) = true
AC (a, s) = c

AC (b, s) = not (c)

relational operator AC (e, s) = true

s = FBY (a, b) AC (a, s) = true -> false
AC (b, s) = false -> true

s = PRE (e) AC (e, s) = false -> pre (true)

This condition is called activation condition. The evaluation of the activation
condition depends on what kind of operators the paths is composed of. Infor-
mally, the notion of the activation of a path is strongly related to the propagation
of the effect of the input edge through the output edge. More precisely, a path ac-
tivation condition shows the dependencies between the path inputs and outputs.
Therefore, the selection of a test set satisfying the paths activation conditions in
an operator network leads to a notion for the program coverage. Since covering
all the paths in an operator network could be impossible, because of their po-
tentially infinite number and length, in our approach, coverage is defined with
regard to a given path length.

Table 2 summarizes the formal expressions of the activation conditions for all
Lustre operators (except for when and current for the moment). In this table,
each operator op, with the input e and the output s, is paired with the respective
activation condition AC (e, s) for the unit path 〈e, s〉. Noted that some operators
may define several paths through their output, so the activation conditions are
listed according to the path inputs.

Let us consider the path p2 = 〈A, L1, L3, never_A〉 in the corresponding oper-
ator network for the node Never (Figure 3). The condition under which that path
is activated is represented by a boolean expression showing the propagation of
the input A through the output never_A. To calculate its activation condition,
we progressively apply the rules for the activation conditions of the correspond-
ing operators according to Table 22. Starting from the end of the path, we reach

2 In the general case (path of length n), the path p containing the pre operator
is activated if its prefix p’ is activated at the previous cycle of execution, that is
AC (p) = false -> pre (AC (p′)). Similarly in the case of the initialization opera-
tor fby, the given activation conditions are respectively generalized in the forms:
AC (p) = AC (p′) -> false (i.e. the path p is activated if its prefix p’ is activated
at the initial cycle of execution) and AC (p) = false -> AC (p′) (i.e. the path p is
activated if its prefix p’ is always activated except for the initial cycle of execution).

30 V. Papailiopoulou et al.

the beginning, moving one step at a time along the unit paths. Therefore, the
necessary steps would be the following:

AC (p2) = false -> AC (p′), where p′ = 〈A, L1, L3〉
AC (p′) = not (L1) or L2 andAC (p′′) = Aor pre (never_A) andAC (p′′),

where p′′ = 〈A, L1〉
AC (p′′) = true

After backward substitutions, the boolean expression for the activation condition
of the selected path is:

AC (p4) = false -> Aor pre (never_A).

In practice, in order for the path output to be dependent on the input, either the
input has to be true at the current execution cycle or the output at the previous
cycle has to be true; for the first cycle of the execution, the input needs to be
false.

3.2 Coverage Criteria

A Lustre/SCADE program is compiled into an equivalent C program. Provided
that the format of the generated C code depends on the compiler, it is hard to
fix a formal relation between the original Lustre program and the final C one.
In addition, major industrial standards, such as DO-178B in the avionics field,
demand coverage to be measured on the generated C code. Therefore, three
coverage criteria specifically defined for Lustre programs have been proposed
[7]. They are specified on the operator network according to the length of the
paths and the input variable values.

Let T be the set of test sets (input vectors) and Pn = {p|length(p) ≤ n} the
set of all paths in the operator network whose length is inferior or equal to n.
Hence, the following families of criteria are defined for a given and finite order
n ≥ 2. The input of a path p is denoted as in (p) whereas a path edge is denoted
as e.

1. Basic Coverage Criterion (BC). This criterion is satisfied if there is a set
of test input sequences, T , that activates at least once the set Pn. Formally,
∀p ∈ Pn, ∃t ∈ T : AC (p) = true. The aim of this criterion is basically
to ensure that all the dependencies between inputs and outputs have been
exercised at least once. In case that a path is not activated, certain errors
such as a missing or misplaced operator could not be detected.

2. Elementary Conditions Criterion (ECC). In order that an input se-
quence satisfies this criterion, it is required that the path p is activated for
both input values, true and false (taking into account that only boolean
variables are considered). Formally, ∀p ∈ Pn, ∃t ∈ T : in (p) ∧AC (p) = true
and not (in (p)) ∧ AC (p) = true. This criterion is stronger than the previous
one in the sense that it also takes into account the impact that the input
value variations have on the path output.

Extending Structural Test Coverage Criteria 31

3. Multiple Conditions Criterion (MCC). In this criterion, the path out-
put depends on all the combinations of the path edges, also including the
internal ones. A test input sequence is satisfied if and only if the path ac-
tivation condition is satisfied for each edge value along the path. Formally,
∀p ∈ Pn, ∀e ∈ p, ∃t ∈ T : e ∧ AC (p) = true and not (e) ∧ AC (p) = true.

The above criteria form a hierarchical relation: MCC satisfies all the conditions
that ECC does, which also subsumes BC.

4 Extension of Coverage Criteria to when and current
Operators

The aim of this paper is to extend the above criteria in order to support the two
temporal Lustre operators when and current, which handle the use of multiple
clocks since this is the case for many industrial applications.

The use of multiple clocks implies the filtering of some program expressions.
It consists in changing their execution cycle, activating it only at certain cycles
of the basic clock. Consequently, the associated paths are activated only if the
respective clock is true. As a result, the tester must adjust this rarefied path
activation rate according to the global timing.

In this section, we present the definition for the path activation conditions for
when and current, followed by their formal verification. Then, we demonstrate
the application of the extended criteria as well as the coverage evaluation, using
the simple example of the inverse counter of Section 2.2.

4.1 Activation Conditions for when and current

Informally, the activation conditions associated with the when and current oper-
ators are based on their intrinsic definition. Since the output values are defined
according to a condition (i.e. the true value of the clock), these operators can
be represented by means of the conditional operator if-then-else. For the ex-
pression E and the boolean expression B with the same clock,

– X=E when B could be seen as X=if B then E else NON_DEFINED and similarly,
– Y=current(X) could be seen as Y=if B then X else pre(X).

Hence, the formal definitions of the activation conditions result as follows:

Definition 1. Let e and s be the input and output edges respectively of a when
operator and let b be its clock. The activation conditions for the paths p1 = 〈e, s〉
and p2 = 〈b, s〉 are:
AC(p1) = b
AC(p2) = true

32 V. Papailiopoulou et al.

Definition 2. Let e and s be the input and output edges respectively of a current
operator and let b be the clock on which it operates. The activation condition for
the path p = 〈e, s〉 is:
AC(p) = b

As a result, to compute the paths and the associated activation conditions of
a Lustre node involving several clocks, one has just to replace the when and
current operators by the corresponding conditional operator (see Figure 5). At
this point, two basic issues need to be farther clarified. The first one concerns the
when case. Actually, there is no way of defining the value of the expression X when
the clock B is not true (branch NON_DEF in Figure 5(a)). By default, at these
instants, X does not occur and such paths (beginning with a non defined value)
are infeasible3. In the current case, the operator implicitly refers to the clock
parameter B, without using a separate input variable (see Figure 5(b)). This
hints at the fact that current always operates on an already sampled expression,
so the clock that determines its output activation should be the one on which
the input is sampled.

(b)

current
X Y

~~

ITE
X Y

B

pre

~~

ITE

BE X

NON_DEF

when

B
E X

(a)

Fig. 5. Modeling the when and current operators using the ITE

Let us assume the path p = 〈m, x, M1, M2, M3, M4, c〉 in the example of
Section 2.2, displayed in bold in Figure 4. Following the same procedure for
the activation condition computation and starting from the last path edge, the
activation conditions for the intermediate unit paths are:

AC (p) = false -> AC (p1), where p1 = 〈m, x, M1, M2, M3, M4〉
AC (p1) = true and AC (p2), where p2 = 〈m, x, M1, M2, M3〉
AC (p2) = false -> pre (AC (p3)), where p3 = 〈m, x, M1, M2〉
AC (p3) = c and AC (p4), where p4 = 〈m, x, M1〉
AC (p4) = c and AC (p5), where p5 = 〈m, x〉
AC (p5) = c

3 An infeasible path is a path which is never executed by any test cases, hence it can
never be covered.

Extending Structural Test Coverage Criteria 33

After backward substitutions, the activation condition of the selected path is:

AC (p) = false -> pre (c) .

This condition corresponds to the expected result and is compliant with the
above definitions, according to which the clock must be true to activate the
paths with when and current operators.

In order to evaluate the impact of these temporal operators on the coverage
assessment, we consider the operator network of Figure 4 and the paths:

p1 = 〈m, x, M1, y〉
p2 = 〈m, x, M1, M2, M3, M4, c〉
p3 = 〈m, x, M1, M2, M3, M5, y〉

Intuitively, if the clock c holds true, any change of the path input is propagated
through the output, hence the above paths are activated. Formally, the associated
activation conditions to be satisfied by a test set are:

AC (p1) = c

AC (p2) = false -> pre (c)

AC (p3) = not (c) and false -> pre (c).

Eventually, the input test sequences satisfy the basic criterion. Indeed, as soon
as the input m causes the clock c to take the suitable values, the activation
conditions are satisfied, since the latter depend only on the clock. In particular,
in case that the value of m at the first cycle is an integer different to zero (for
sake of simplicity, let us consider m = 2), the BC is satisfied in two steps since
the corresponding values for c are c=true, c=false. On the contrary, if at the first
execution cycle m equals to zero, the basic criterion is satisfied after three steps
with the corresponding values for c: c=true, c=true, c=false. These two samples
of input test sequences and the corresponding outputs are shown in Table 3.

Table 3. Test cases samples for the input m

c1 c2 c3 c4 ...
m i1 (�= 0) i2 i3 i4 ...
c true false false true ...
y i1 i1 − 1 0 i4 ...

c1 c2 c3 c4

m i1 (= 0) i2 i3 ...
c true true false ...
y 0 i2 i2 − 1 ...

4.2 An Illustrative Example

Let us consider a Lustre node that receives at the input a boolean signal set
and returns at the output a boolean signal level. The latter must be true during
delay cycles after each reception of set. Now, suppose that we want the level
to be high during delay seconds, instead of delay cycles. Taking advantage of
the use of the when and current operators, we could call the above node on a

34 V. Papailiopoulou et al.

node TIME_STABLE(set, second: bool; delay: int) returns
(level: bool);
var ck: bool;
let
level = current(STABLE((set, delay) when ck));
ck = true -> set or second;

tel;

node STABLE(set: bool; delay: int) returns (level: bool);
var count: int;
let
level = (count>0);
count = if set then delay

else if false->pre(level) then pre(count)-1
else 0;

tel;

Fig. 6. The node TIME_STABLE: a simple example with the when and current operators

suitable clock by filtering its inputs. The second must be provided as a boolean
input second, which would be true whenever a second elapses. The node must be
activated only when either a set signal or a second signal occurs and in addition
at the initial cycle, for initialization purposes. The Lustre code is quite simple
and it is shown in Figure 6, followed by the associated operator network4.

Similarly to the previous example, the paths to be covered are:

p1 = 〈set, T2, T3, T9, level〉
p2 = 〈delay, T8, T3, T9, level〉
p3 = 〈set, T1, ck, T2, T3, T9, level〉
p4 = 〈second, T1, ck, T2, T3, T9, level〉
p5 = 〈set, T1, ck, T8, T3, T9, level〉
p6 = 〈second, T1, ck, T8, T3, T9, level〉

To cover all these paths, one has to select a test set satisfying the following
activation conditions, calculated as it is described above:

AC (p1) = ck, where ck = true -> set or second
AC (p2) = ck and set
AC (p3) = ck and false -> set or not (second)
AC (p4) = ck and false -> second or not (set)
AC (p5) = ck and set and false -> set or not (second)
AC (p6) = ck and set and false -> second or not (set)

Since the code ensures the correct initialization of the clock, hence its activation
at the first cycle, the above paths are always activated at the first execution
cycle. For the rest of the execution, the basic criterion is satisfied with the
4 The nested node STABLE is used unfolded, since with this criteria definition, the

dependencies between a called node inputs and outputs cannot be determined.

Extending Structural Test Coverage Criteria 35

STABLEwhen

when

ITE >

pre − ITE

pre

current

second
set

delay

true

0

1 0

false

level

T1

T2

T3

T4
T5 T6

T7

T9

ck

T8

Fig. 7. The operator network for the node TIME_STABLE

following test sequence for the inputs (set, second): (1, 0),(0, 1), (1, 1). This test
set, which contains almost every possible combination of the inputs, satisfies
also the elementary conditions criterion (ECC), since the activation of the paths
depends on both boolean inputs.

Admittedly, the difficulty to meet the criteria is strongly related to the com-
plexity of the system under test as well as to the test case generation effort.
Moreover, activation conditions covered with short input sequences are easy to
be satisfied, as opposed to long test sets that correspond to complex instance
executions of the system under test. Experimental evaluation on more complex
case studies, including industrial software components, is necessary and part of
our future work in order to address these problems. Nonetheless, the enhanced
definitions of the structural criteria presented in this paper complete the cov-
erage assessment issue for Lustre programs, as all the language operators are
supported. In addition, the complexity of the criteria is not further affected,
because, in substance, we use nothing but if-then-else operators.

5 Conclusion

We presented the extension of the Lustre structural coverage criteria to support
the use of multiple clocks. We defined the activation conditions for the temporal
operators when and current, which are used to affect the clock of a Lustre
expression. We applied the results on suitable examples and we described how
the criteria could be employed. Yet, the research work presented in this paper
needs to be implemented and incorporated in Lustructu, a tool which measures
the structural coverage of Lustre programs.

In SCADE, coverage is measured through the Model Test Coverage (MTC)
module, in which the user can define his own criteria by defining the conditions to
be activated during testing. Thus, our work could be easily integrated in SCADE

36 V. Papailiopoulou et al.

in the sense that activation conditions corresponding to the defined criteria (BC,
ECC, MCC) could be assessed once they are transformed into suitable MTC
expressions. These issues are currently investigated within the framework of a
collaborative research project5.

Future work includes the evaluation of the proposed criteria involving in-
dustrial case studies. Furthermore, it is necessary to analyze the test sets to
determine their ability to satisfy the criteria and observe what happens with the
paths that the tests cannot cover.

Integration testing issues are also under study. In case of long paths to be cov-
ered, the total path number highly increases causing the coverage measures to be
non applicable. As a result, integration testing requires extending the definition of
the activation conditions to internal nodes, that is to the operators that the user
can define. Such an extension should make it possible to apply the code coverage
criteria on Lustre nodes that call other nodes (compound operators) without
having to unfold the latter ones and reducing the overall complexity.

References

1. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proceedings of the IEEE 91(1), 64–83
(2003)

2. Boussinot, F., De Simone, R.: The Esterel language. Proceedings of the IEEE 79(9),
1293–1304 (1991)

3. Clarke, L.A., Podgurski, A., Richardson, D.J., Zeil, S.J.: A formal evaluation of
data flow path selection criteria. IEEE Trans. Software Eng. 15(11), 1318–1332
(1989)

4. Girault, A., Nicollin, X.: Clock-driven automatic distribution of lustre programs.
In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 206–222. Springer,
Heidelberg (2003)

5. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language lustre. Proceedings of the IEEE 79(9), 1305–1320 (1991)

6. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying real-time systems
by means of the synchronous data-flow language lustre. IEEE Trans. Software
Eng. 18(9), 785–793 (1992)

7. Lakehal, A., Parissis, I.: Structural test coverage criteria for lustre programs. In:
The 10th International Workshop on Formal Methods for Industrial Critical Sys-
tems (FMICS), a joint event of ESEC/FSE 2005, Lisbon, Portugal, September
2005, pp. 35–43 (2005)

8. Le Guernic, P., Gautier, T., Le Borgne, M., Le Maire, C.: Programming Real-Time
Applications with SIGNAL. Proceedings of the IEEE 79(9), 1321–1336 (1991)

9. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information.
IEEE Trans. Software Eng. 11(4), 367–375 (1985)

10. Woodward, M.R., Hedley, D., Hennell, M.A.: Experience with path analysis and
testing of programs. IEEE Trans. Softw. Eng. 6(3), 278–286 (1980)

5 SIESTA project (www.siesta-project.com), funded by the French National Research
Agency.

	Extending Structural Test Coverage Criteria for Lustre Programs with Multi-clock Operators
	Introduction
	Overview of Lustre
	Operator Network
	Clocks in Lustre

	Coverage Criteria for Lustre Programs
	Activation Conditions
	Coverage Criteria

	Extension of Coverage Criteria to when and current Operators
	Activation Conditions for when and current
	An Illustrative Example

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

