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Abstract. In this paper we propose a certification technique for non-
interference of Java programs based on rewriting logic, a very general
logical and semantic framework efficiently implemented in the high-level
programming language Maude. Non–interference is a semantic program
property that prevents illicit information flow to happen. Starting from
a basic specification of the semantics of Java written in Maude, we de-
velop an information–flow extension of this operational Java semantics
which allows us to observe non-interference of Java programs. Then we
develop in Maude an abstract, finite-state version of the information-flow
operational semantics which supports finite program verification. As a
by–product of the verification, a certificate of non-interference is deliv-
ered which consists of a set of (abstract) rewriting proofs that can be
easily checked by the code consumer using a standard rewriting logic
engine.

1 Introduction

In the last decade, we have observed an increasing interest in formal methods
designed for trusting code coming from untrusted sources. Proof-carrying code
(PCC), originated by Necula [26], is a mechanism for ensuring the secure behav-
ior of programs that is useful for general software development, and particularly
advantageous for the development of mobile code. In PCC, a program contains
both the code and an encoding of an easy–to–check proof whose validity entails
compliance with a predefined security policy supplied by the code consumer.
The security certificate is automatically generated by the software producer.In
[1] we proposed an abstract PCC methodology for certifying Java source code
that is based on rewriting logic. Rewriting logic [22] is a flexible and expressive
logical framework in which a wide range of logics and models of computation
can be faithfully represented. The methodology of [1] is as follows. Consider a
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(concurrent) Java program together with a specification of the Java semantics,
given as a term rewriting system. Given a safety property (i.e. a system property
defined in terms of certain events not happening), the unreachability of the sys-
tem states denoting the situation that should never occur allows us to infer the
desired safety property. Unreachability analysis is performed using the standard
Maude (breadth-first) search command, which explores the entire (finite) state
space of the program. In the case when the unreachability test succeeds, the cor-
responding rewriting proofs demonstrating that those states cannot be reached
are delivered as the expected outcome certificate. Certificates are encoded as
(abstract) rewriting sequences that, together with an encoding in Maude of the
abstraction, can be checked by standard reduction. Our methodology extends
to other mainstream conventional languages or lower level languages (e.g. Java
bytecode) by simply replacing the concrete semantics by a semantics for the pro-
gramming language at hand; for instance, a rewriting logic semantics for Java
bytecode can be found in [15].

In this paper, we extend the methodology of [1] to certify confidentiality by
analysing non-interference. Confidentiality is a property by which information
related to an entity or party is not made available or disclosed to unauthorized
individuals, entities, or processes. However, an authorized accessing program
can, on purpose or not, leak secret data in some improper way. To ensure that
the program does not disclose secret data and fulfills data confidentiality poli-
cies, it is necessary therefore to analyse and control how information flows within
the program. In this paper we focus on data confidentiality certification of Java
programs. In order to express the non–interference safety policies for ensuring
confidentiality, we use standard JML [21], a property specification language for
Java modules. Each variable in the Java code is annotated with a confidential-
ity label that represents the confidentiality level of the variable and its data
values.

The contributions of this paper are as follows:

– Starting from a basic specification of the semantics of Java written in Maude
[14], we develop an information–flow extension of such an operational Java
semantics which allows us to observe non-interference of Java programs, and
is also written in Maude. For the best of our knowledge, a clear-cut semantics
for Java programs dealing with non-interference was lacking. Much of previ-
ous work on ensuring Java non–interference has focused on enforcing it by
appropriate information flow type systems by certifying and type preserving
compilers [24,25] or bytecode typechecking [6].

– We provide an abstract, finite-state version of the information-flow opera-
tional semantics which supports finite program verification. Thanks to the
different handling of rules and equations in Maude we do not suffer the state–
space explosion of more traditional approaches (see [23]).

– Our Java certification methodology allows us to deal with some Java fea-
tures not considered in the related literature ([20,30]): object fields, local
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variables and arrays. We deal with values delivered by a return statement,
a case not considered in [12,2,20,19]. We also consider return and break
statements within conditional and iteration statements. Finally, for method
invocations, we propagate context labels as proposed in [20], whereas they
did not implemented it.

– Regarding the confidentiality label inferred for assignment instructions, we
improve the granularity of the analysis over previous proposals [2,20] by
inferring the confidentiality label during the memory update.

– As a by–product of the verification, a certificate of non-interference is deliv-
ered which consists of a set of (abstract) rewriting proofs that can be easily
checked by the code consumer using a standard rewriting logic engine.

Section 2 introduces the rewriting logic semantics of Java considered in this pa-
per. In Section 3 we present the extended information-flow rewriting logic seman-
tics of Java, and Section 4 formalizes its abstract version. In Section 5 we propose
our certification methodology, which we illustrate in Section 6 with some encour-
aging experimental results that demonstrate the practicality of our approach. Fi-
nally, we discuss the related work in Section 7, and Section 8 concludes.

2 The Rewriting Logic Semantics of Java

We assume some basic knowledge of term rewriting [29] and rewriting logic [22].
In the following, we briefly describe the rewriting logic semantics of Java given
in [14] and used by the JavaFAN verification tool [15,16]. Its novelty and in-
terest are based on the following advantages: (i) formal specifications provide
a rigorous semantic definition for a language that can be mathematically scru-
tinized; (ii) such formal specifications can be developed with relatively little
effort1, even for large languages like Java [15] and the JVM [16]; (iii) the Maude
programming language [10], which implements rewriting logic, provides a for-
mal analysis infrastructure, so that its formal analysis tools (such as state-space
breadth-first search and LTL model checking) become available for free for each
programming language that is specified in Maude; and (iv) in spite of their gen-
erality, those formal analyses can be performed with competitive performance;
see [15].

In [14], a sufficiently large subset of full Java 1.4 language is specified in Maude,
including multithreading, inheritance, polymorphism, object references, and dy-
namic object allocation. However, Java native methods and many of the Java
built-in libraries available are not supported. The specification of Java operational
semantics is a rewrite theory, that is, a triple RJava = (ΣJava, EJava, RJava), with
ΣJava an order-sorted signature, EJava = ΔJava � BJava a set of ΣJava-equational
axioms where BJava are axioms such as associativity, commutativity and unity and
ΔJava is a set of terminating and confluent (modulo BJava) ΣJava-rewrite rules.

1 See the different programming languages available at
http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_Semantics

http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_Semantics
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Finally, RJava is a set of ΣJava-rewrite rules that are not required to be conflu-
ent and terminating. Intuitively, the sorts and function symbols in ΣJava describe
the static structure of the Java program state space as an algebraic data type, the
equations in ΔJava describe the operational semantics of its deterministic features,
and the rules in RJava describe its concurrent features. Following the rewriting
logic framework [29,22], we denote by u →r

Java v the fact that concrete terms u, v,
denoting Java program states, are rewritten (at the top position, see [14]) by us-
ing r, which is either a rule in RJava or an equation in ΔJava both applied modulo
BJava. We simply write u →Java v when no confusion can arise. We denote by
→∗

Java the extension of →Java to multiple rewrite steps, i.e., u →∗
Java v if there

exist u1, . . . , uk such that u →Java u1 →Java u2 · · ·uk →Java v.
Associativity, commutativity and unity (written ACU) axioms of binary op-

erations in BJava allow us to elegantly and effectively define (and implicitly im-
plement) the crucial infrastructure of the Java programming language, including
environments, threads, memory, input/output, synchronization information, and
stores as well as the lookup operations on them. All of them are implemented
as a (multi)-set union operation that builds up a “soup” of elements.

The rewrite theory RJava is defined as terms of a concrete sort State, with
the main state attributes (i.e., constructor symbols of the algebraic type State)
such as in, out, mem, or store. They define an algebraic structure which is
parametric w.r.t. a generic sort Value that defines all the possible values returned
by Java functions, or stored in the memory, etc. For instance, the int and
bool constructor symbols describe Java, integer and boolean values and are
defined in Maude as “op int : Int -> Value .” and “op bool : Bool -> Value

.”, where Int and Bool are the internal built–in Maude sorts that define integer
and boolean values. Intuitively, equations in ΔJava and rules in RJava are used
to specify the changes to the program state, i.e., the changes to the memory,
threads, input/output, etc. The semantics of Java is defined modularly, i.e.,
different features of the language are defined in separate Maude modules so to
ease extensions and maintenance [14].

The state space associated to a rewrite theory is determined in Maude only by
the program rules, since equations are deterministic. That is, rules and equations
are applied in the same way but Maude only keeps track of the rules applied
and omits the information about the equations applied. Therefore, the number
of rules and equations is relevant since the smaller the number of rules, the more
efficient the verification analysis, because the search space is smaller. According
to [14], the Java operational semantics contains about 424 equations and only 7
rules, which considerably saves memory and execution time.

The semantics of Java is defined in a continuation-based style [23]. Continua-
tions maintain the control context of each thread, which explicitly specifies the
next steps to be performed by the thread. Continuations are a typical technique
to transform the uncontrollable control context into controllable data context, by
stacking the sequence of actions that still need to be executed. Once the expres-
sion e on the top of a continuation (e -> k) is evaluated, its result will be passed
to the remaining continuation k. For instance, the Java addition operation on
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---First evaluate arguments

eq k((E + E’) -> K) = k((E, E’) -> (+ -> K)) .

---Then, compute addition

eq k((int(I), int(I’)) -> (+ -> K)) = k(int(I + I’) -> K) .

Fig. 1. Continuation-based equations for Java addition operator on integers

---First obtain location in store from variable name

eq k(Var -> K) env([Var, Loc] Env) obj(Obj)

= k(#(Loc) -> K) env([Var, Loc] Env) obj(Obj) .

---Then obtain value stored in such location

rl t(k(#(Loc) -> K) id(I) TC) store(Loc, Value, -1] Store)

=> t(k(Value -> K) id(I) TC) store([Loc,Value,-1] Store) .

Fig. 2. Continuation-based equation and rule for variable content retrieval

---Obtain variable location while keeping expression in the continuation

eq k((Var = E) -> K) = k(getLocation(Var) -> (=(E) -> K)) .

---Once the location is obtained, evaluate expression keeping location

eq k(Loc -> (=(E) -> K)) = k(E -> (=(Loc) -> K)) .

---Once the expression is computed, assign to location

eq k(Value -> (=(L) -> K)) = k([Value -> L] -> (V -> K)) .

---General procedure to update the shared memory

rl t(k([Value -> Loc] -> K) id(I) TC) store([Loc,Value’,-1] ST)

=> t(k(K) id(I) TC) store([Loc, shared(Value), -1] ST) .

Fig. 3. Continuation-based equations and rules for Java assignment operator

Java integers is specified2 in Figure 1 using continuations, where k is the con-
structor symbol used to denote a continuation in a thread, -> is the constructor
symbol used to concatenate continuations, int is the constructor symbol used
to denote a Java integer, and + with arity3 2 and inside the constructor int is
the Maude addition symbol, whereas + with arity 2 but outside the constructor
int is the Java addition symbol, and + with arity 0 is a continuation symbol
used to remember that the Java addition action is being stacked.

Another important aspect of the semantics is the use of Java variables. In
Figure 2 we show how the contents of a Java variable is retrieved from the store
in the Java state. The assignment operator for Java variables is specified in
Figure 3. Note that the relative order among assignment and retrieval operations
is relevant since multiple threads can try to concurrently assign a value to a

2 The Maude syntax is almost self-explanatory [10]. The general point is that each
syntactic element –e.g. a sort, an operation, an equation, a rule– is declared with an
obvious keyword: sort, op, eq, rl, etc., ended by a space and a period. We denote
variables with uppercase letters whereas lowercase letters denote Maude constructor
symbols.

3 The Maude syntax allows overloading of operators, with different arities.
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---Evaluates boolean expression keeping the then and else statements

eq k((if E S else S’ fi) -> K) = k(E -> (if(S, S’) -> K)) .

eq k(bool(true) -> (if(S, S’) -> K)) = k(S -> K) .

eq k(bool(false) -> (if(S, S’) -> K)) = k(S’ -> K) .

Fig. 4. Continuation-based equations for if-then-else statement

eq t(k(V -> return -> K) holds(Ll’) env(Env’)

fstack( fsi(K’, (holds(Ll) env(Env) TC)) Fstack) TC’)

= t(k(releaseEnv(Env’) -> release(Ll, Ll’) -> (V -> K’)) holds(Ll)

env(Env) fstack(Fstack) TC) .

Fig. 5. Continuation-based equation for return statement

variable or read its value from the store; hence a rule, instead of an equation,
is used to represent the physical assignment as well as the physical retrieval
from the store. In other words, the assignment operator and the retrieval of a
variable value are non-deterministic due to the presence of different threads, and
are specified with Maude rules instead of Maude equations.

A relevant aspect of the Java semantics for non-interference is the if-then-else
statement, shown in Figure 4. Also important for non-interference is the seman-
tic specification of the Java return statement, shown in Figure 5. The return
statement restores the previous environment, the held locks and the local thread
state from the function stack, and then updates the continuation to release the
method local environment and locks, and to restore them from the stack.

3 An Information-Flow Rewriting Logic Semantics for
Java

In this section, we develop an information-flow, extended version of the rewriting
logic semantics of Java recalled in Section 2. In order to motivate the new seman-
tics with appropriate Java examples, let us first briefly recall the Java modeling
language JML [21].

JML is a behavioral interface specification language that accepts Java built-
in operators in order to relieve Java programmers from the encumbrance of
learning a language-independent formal specification language like OCL [9]. As
an interface specification language, JML can describe the names and static in-
formation found in Java declarations of Java modules with preconditions (in
requires clauses), normal postconditions (in ensures clauses), invariants (in
invariant clauses) and assert statements (with the assert clauses), that ex-
press first-order logic statements. As a behavior specification language, JML can
also describe how the module will behave when assertions are intermixed with
the Java code.

The text of an annotation could be either in one line, after the marker //@,
or in many lines enclosed between the markers /*@ and @*/. In this paper, we
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consider lightweight specifications using the simplest JML clauses for Java meth-
ods and type specification of the simplest language level 0 (there are six levels
of annotations). We use two method specification clauses, the ensures clause
to indicate the required confidentiality label expected by the code consumer on
the result of a function and the requires clause to indicate any precondition
(Low or High) on the confidentiality label of a function input parameter. We use
assert clauses to indicate the confidentiality label of local variables. The JML
specifications written as code annotations are treated like Java comments that
are ignored by traditional compilers whereas they are automatically handled by
our certification methodology.

The problem of verification and certification of program non-interference using
information flow analysis, was first considered in [12]. The flow policy is usually
represented by a flow relation between security classes that specify the permissi-
ble flows between them. Each storage object (constant, scalar variable, array, or
file) is assigned to a security class. This assignment is static and inferred from
the declarations in the program. A non-interference policy means that variables
have fixed confidentiality levels and that inputs with high confidentiality level do
not influence outputs of lower confidentiality level [28,7,30,13]. This means that
the values stored in the high confidentiality variables cannot flow to the lower
confidentiality variables. It is implicitly assumed that constants appearing in a
Java program always have the lowest confidentiality level, i.e., the considered
Java program is authorized to access secret data but it does not contain secret
data in its code.

A non-interference policy can be represented by a relation 〈L,≤〉 and a label-
ing function Lab : V ar → L, where L is the finite set of confidentiality levels, ≤ is
a partial order between confidentiality levels, and V ar is the finite set of program
variables. Usually there are two confidentiality levels, i.e., Conf = {Low, High},
representing respectively the public non-secret data (low confidentiality) and the
secret private one (high confidentiality), so that Low ≤ High. 〈Conf,≤〉 forms a
lattice where Low is the greatest lower bound or bottom (⊥), High is the least
upper bound or top (�), and the join operator (	) is defined as Low	Low = Low
and, otherwise, X 	 Y = High. This means that values of Low labeled variables
can flow to High labeled variables, but also that values of High labeled variables
cannot flow to Low labeled variables. The information that flows in a program is
either explicit or implicit. An explicit illicit flow is caused by assignment state-
ments in which the values of expressions with high variables are assigned to low
variables [28,19], shown in the following.

Example 1. Consider the simple Java program borrowed from [20]. We use the
requires and ensures clauses and the operator \result. This example has an
illegal direct flow from the variable high with confidentiality label High to the
variable low with label Low in the first assignment statement. Nevertheless, the
final outcome is an integer constant value with the Low confidentiality label, so
that the final output is legal.

public int mE1(int high,int low) { low = high; low = 2; return low;}

/*@ requires high == High && low == Low; @ ensures \result == Low; @*/
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Another explicit illicit flow might occur in function and procedure invocations,
shown in the following example.

Example 2. Consider the following Java program borrowed from [30], whose
method mE522 calls the method decrementing with two parameters. The ex-
plicit illicit flow occurs at the decrementing invocation, which passes the High
variable high to the Low parameter i.

int decrementing(int high,int i) { high = high - 1; return i; }

/*@ requires high == High && i == Low; @ ensures \result == Low; @*/

int mE522(int high,int low){ low=decrementing(high,high); return low;}

/*@ requires high == High && low == Low; @ ensures \result == Low; @*/

The common source for implicit illicit flows, which can often go unnoticed [28,19],
are control flow statements guarded by boolean expressions with variables of
confidentiality High, shown in the following example.

Example 3. Consider a Java program, also borrowed from [30], with an if con-
trol flow statement. If the actual data passed to the low parameter is not 0
and the returned value is 0, then we know that the secret variable high has a
value greater than 2. Note that the notion of a global confidentiality label (called
context label) being updated after each conditional expression is necessary for
proper verification of such an implicit leaking [12,20,19].

public int mE2(int high,int low) { if (high > 2) low = 0; return low;}

/*@ requires high == High && low == Low; @ ensures \result == Low; @*/

In order to avoid false positives, we will dynamically restore the previous global
confidentiality label after each conditional construction, as shown in the following
example.

Example 4. Consider a slight modification of Example 3 where the returned
value does not actually depend on the value of the High variable high. That is,
the variable j is affected by the value of the variable high but the variable low
used in the return expression is not.

public int mE2*(int high,int low)

/*@ requires high == High && low == Low; @ ensures \result == Low; @*/

{int j=0;low = 0; /*@assert j==Low;@*/ if (high>2) j = 1; return low;}

We describe the information-flow extended version of the rewriting logic seman-
tics of Java by the rewrite theory RJavaE = (ΣJavaE , EJavaE , RJavaE), EJavaE =
ΔJavaE �BJavaE and its corresponding →JavaE rewriting relation. In the new se-
mantics, program data do not only consist of standard concrete values but each
value is decorated with its corresponding confidentiality label. Our approach
consists of extending RJava (taking advantage of its modularity) by conveniently
complementing the concrete domain Value as to consider the extended domain
Value × LValue.
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We introduce the sort LValue to represent values Low and High. We write
<Value,LValue> for a pair of a concrete value and its corresponding confiden-
tiality level label. We must also provide appropriate versions of the Java con-
structions and operators for the new extended domain. Recall that the symbols
env and store are the constructor symbols used by the original Java rewriting
semantics for the program environment and the memory store, respectively. The
new constructor symbol lenv is used to store the global confidentiality level
(context label).

Regarding confidentiality, we consider the following Java expressions as a spe-
cial case of the evaluation: literal constants, variable access, binary operators,
assignment expressions, unary pre– and post–fix operators and return expres-
sions. Thanks to the modularity of the rewriting logic approach to formalizing
program semantics, our changes to the semantics of Section 2 are incremental
and minimal. Variables receive an initial confidentiality level, which is stored in
the memory when the variable or parameter is created. Any operation writing a
value in a memory location stores, as the confidentiality label for such variable,
the join of the confidentiality label of the value to be written and the context
level at that moment, as shown in Figure 6. The label of any Integer constant
value, shown in Figure 7, is Low as expected, since constants are public data.
The label of a variable is the confidentiality label of its value in memory and,
therefore, the original equations of Figure 2 need no revision.

For the dynamic labeling of the context, the initial context label of any thread
is Low as usual [12,2,20,19]. Method invocation propagates context label with-
out changes as proposed in [20]. Assignment and expression statements do not
change context label. The context label may change only because of conditional
control flow statements to control indirect information flow, as shown in Fig-
ure 8. The current context label is stored in the continuation using the new
restoreLEnv continuation operator, which restores the previous context label
upon execution; see the last equation of Figure 8. According to [12,2,20,19], the
evaluation of boolean expressions returns a confidentiality level associated to the
resulting true or false value and, possibly, a modified context label. We up-
date the context label in order to reflect the confidentiality level returned by the
evaluation of the boolean expression, and then the two branches of the

rl t(k([< Value,LValue > -> L] -> K) id(I) lenv(LEnv) TC)

store([L, Value’, -1] ST)

=> t(k(K) id(I) lenv(LEnv) TC)

store([L, shared(< Value,LValue join LEnv >), -1] ST) .

Fig. 6. Rule for the extended memory write

eq k(i(I) -> K) = k(<int(I),Low> -> K) .

eq k(b(B) -> K) = k(<bool(B),Low> -> K) .

Fig. 7. Equations for extended constant evaluation
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--- First evaluates the boolean expression

--- and keeps the current context label

eq k((if E S else S’ fi) -> K) lenv(LEnv)

= k(E -> if(S, S’) -> restoreLEnv(LEnv) -> K) lenv(LEnv) .

--- Then updates the context label

eq k(< bool(true), LValue > -> (if(S, S’) -> K)) lenv(LEnv)

= k(S -> K) lenv(LEnv join LValue) .

eq k(< bool(false), LValue> -> (if(S, S’) -> K)) lenv(LEnv)

= k(S’ -> K) lenv(LEnv join LValue) .

--- New equation to restore previous context label

eq k(restoreLEnv(LEnv) -> K) lenv(LEnv’) = k(K) lenv(LEnv) .

Fig. 8. Continuation-based equations for the extended if-then-else statement

eq t(k(< V,LValue > -> return -> K) holds(Ll’) env(Env’)

lenv(LEnv) fstack(fsi(K’,(holds(Ll) env(Env) TC)) Fstack) TC’)

= t(k(releaseEnv(Env’) -> release(Ll,Ll’) -> (<V,LValue join LEnv> -> K’))

holds(Ll) env(Env) fstack(Fstack) TC) .

Fig. 9. Continuation-based equation for return statement

conditional expression will use such a new context confidentiality label for mem-
ory updates.

The extended semantics for the return statement considers not only the con-
fidentiality label of the value to be returned but also the context confidentiality
level, as shown in Figure 9.

4 The Abstract Rewriting Logic Semantics of Java

In this section, we develop an abstract version of the extended rewriting logic se-
mantics of Java developed in Section 3, described by the rewrite theory RJava# =
(ΣJava# , EJava# , RJava#), EJava# = ΔJava#�BJava# and its corresponding→Java#

rewriting relation. As in Section 3, our approach for the abstract Java semantics
consists of extending the original theory RJava (taking advantage of its modular-
ity) by abstracting the domain to LValue = {Low, High}, and introducing approx-
imate versions of the Java constructions and operators tailored to this domain.

An abstract interpretation (or abstraction) [11] of the program semantics is
given by an upper closure operator α : ℘(State) → ℘(State), that is mono-
tonic (for all SSt1, SSt2 ∈ ℘(State), SSt1 ⊆ SSt2 implies α(SSt1) ⊆ α(SSt2)),
idempotent (for all SSt ∈ ℘(State), α(SSt) ⊆ α(α(SSt))), and extensive (for
all SSt ∈ ℘(State), SSt ⊆ α(SSt)). The intuition of this definition is that
each Java program state St ∈ State is abstracted by its closure α({St}). Clo-
sure operators have many interesting properties. For instance, when the con-
sidered domain is a complete lattice, e.g. 〈α(State),⊆〉, each closure operator
is uniquely determined by the set of its fixed points. In the context of abstract
interpretation, closure operators are important because abstract domains can be
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equivalently defined by using them or by Galois insertions, as introduced in [11].
Let ι : α(℘(State)) → A be an isomorphism. Then, given an upper closure op-
erator α : ℘(State) → ℘(State), the structure (℘(State), α ◦ ι, ι−1, A) is a Galois
insertion, where α ◦ ι and ι−1 are the abstraction and concretization functions,
respectively (see [11] for further details). In our approach [1], we only need an
abstract function for each Java variable name x, e.g., αx : ℘(Value) → ℘(Value)
and homomorphically extend those abstract functions to an abstract function
α : ℘(State) → ℘(State). Indeed, for each variable x, α abstracts the values
stored in the Java memory for x using αx.

In this section, our abstraction function α : ℘(StateE) → ℘(StateE) is an
homomorphism extension to sets of states of the function 2nd : Int × LValue →
LValue, meaning that we disregard the actual values of data.

In the abstract Java semantics, several alternative computation steps of→JavaE

are mimicked by a single abstract computation step of →Java# , reflecting the fact
that several distinct behaviors are compressed into a single abstract state (i.e.
set of states). Consider e.g. the approximate version of the Java > operator. For
the case of comparing two abstract states SSt1 and SSt2 in ℘(StateE) for >, an
(inaccurate) approximation of the result is the set {<true,Low>, <true,High>,
<false,Low>, <false,High>}, since all combinations are possible when we would
compare concrete states. As explained in [1], the instrumentalization of the Java
semantics to deal with a set of states instead of one single state implicitly means
too many modifications.Therefore, we adopt a different approach. When several
→JavaE rewrite steps are mimicked by a single abstract rewriting state leading to
an abstract Java state, and those rewrite steps apply different rules or equations,
we use concurrency at the Maude level. That is, we add rules to RJava# to reflect
the different possible evolutions of the system.

Now, we are ready to formalize the abstract rewriting relation →Java# , which
intuitively develops the idea of applying only one rule or equation from the
concrete Java semantics to an abstract Java state while exploring the different
alternatives in a non-deterministic way. By abuse, we denote the abstraction of
a rule α({l}) → α({r}) by α({l} → {r}).
Definition 1 (Abstract rewriting). Let α : ℘(StateE) → ℘(StateE) be an ab-
straction. We define the approximated version of rewriting →Java#⊆ ℘(StateE)×
℘(StateE) by:

SSt1 →Java# SSt2 using α({l} → {r}) ∈ (RJava# ∪ ΔJava#)
iff ∀u ∈ α(SSt1), ∃v ∈ SSt2 s.t. u →JavaE v, using l → r ∈ RJavaE ∪ ΔJavaE .

We denote by →∗
Java# the extension of →Java# to multiple rewrite steps. The

following result follows straightforwardly by monotonicity, idempotency, and ex-
tensitivity of the upper closure operator α.

Theorem 1 (Correctness & Completeness). Let α : ℘(StateE)→℘(StateE)
be an abstraction. Let SSt1, SSt2 ∈ ℘(StateE). If SSt1 →∗

Java# SSt2, then for
all u ∈ α(SSt1), there is v ∈ SSt2 such that u →∗

JavaE v. Let St1, St2 ∈ StateE.
If St1 →∗

JavaE St2, then there exists SSt3 ∈ ℘(State) s.t. α(St1) →∗
Java# SSt3

and St2 ∈ SSt3.
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rl t(k([LValue -> L] -> K) TC) store([L, Value’] ST) lenv(LEnv)

=> t(k(K) TC) store([L, LValue join LEnv] ST) lenv(LEnv) .

Fig. 10. Abstract rule for the memory write

eq k(i(I) -> K) = k(Low -> K) .

Fig. 11. Abstract equation for constant evaluation

eq t(k(LValue -> return -> K) holds(Ll’) env(Env’) lenv(LEnv)

fstack(fsi(K’, (holds(Ll) env(Env) TC)) Fstack) TC’)

= t(k(releaseEnv(Env’) -> release(Ll, Ll’) -> LValue join LEnv -> K’)

holds(Ll) env(Env) lenv(LEnv) fstack(Fstack) TC) .

Fig. 12. Abstract equation for return statement

Therefore, in the following, we abstract the semantics of Section 3 so that (i)
each pair <Value,LValue> in the equations and rules are approximated by the
second component LValue; and (ii) those equations that cannot be proved conflu-
ent4 after the transformation are transformed into rules, to reflect the different
possible rewrites denoted by an abstract state. We additionally add a rule to
deal with confidentiality values alone, shown in Figure 10. For the label of an
integer constant value, we return Low as expected, shown in Figure 11. Note
that this can be still expressed by means of an equation, since confluence and
coherence [10] are preserved. The label of a variable is the confidentiality label
of its value in memory and, therefore, we keep the original equations of Figure
2. Analogously, regarding conditionals the equations of Figure 8 still work. Since
pairs <Bool,LValue> are handled by the return statement, its abstract semantics
is still given by the equation of Figure 9.

However, we must add an extra equation to deal with confidentiality values
alone, shown in Figure 12, which is almost identical to equations in Figure 9. The
following example illustrates the mechanization of the abstract Java semantics.

Example 5. Consider the Java program together with the call to the main func-
tion of Example 1. In the search command below, we ask for all possible values
returned by the main Java function of Example 1.

search in PGM-SEMANTICS-ABSTRACT :

java((preprocess(default class t(’Safe1NonInterference) imports nil

extends Object implements none {(public static) int ’mE1((int d(’high)),

(int d( ’low))) throws( noType) {((10@(’low = ’high;)) 1 @(’low = i(2);))

12@ return ’low ;} (public static) void ’main (t(’String) [] d(’args))

throws(noType) {5 @ (’System . ’out . ’println < ’mE1 < i(1), i(0)

4 See the Church-Rosser checker for Maude available at
http://www.lcc.uma.es/~duran/CRC/

http://www.lcc.uma.es/~duran/CRC/
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> > ;)}}) noType . ’main < new string [i(0)] > noVal))

=>! X:Output .

Solution 1 (state 1)

states: 2 rewrites: 248 in (7ms real) (0 rewrites/second)

X:Output --> pl(Low)

No more solutions.

The search command returns that one unique possible abstract Java execution
trace is possible, which leads to the abstract value Low as the outcome of the
Java instruction “System.out.println(mE1(1,0));”.

5 Certifying Java Source Code

Example 5 above illustrates how our methodology generates a safety certificate
which essentially consists of the set of (abstract) rewriting proofs of the form
t1 →r1

Java# t2 · · · →rk−1

Java# tk that implicitly describe the program states which
can (and cannot) be reached from a given (abstract) initial state. Since these
proofs correspond to the execution of the abstract Java semantics specification,
which is made available to the code consumer, the certificate can be inexpen-
sively checked on the consumer side by any standard rewrite engine by means of
a rewriting process that can be very simplified. Actually, it suffices to check that
each abstract rewriting step in the certificate is valid and that no rewriting chain
has been disregarded, which essentially amounts to use the matching infrastruc-
ture available within the rewriting engine. Note that, according to the different
treatment of rules and equations in Maude, where only transitions caused by
rules create new states in the space state, an extremely reduced certificate can
be delivered by just recording the rewrite steps given with the rules, while the
rewritings using the equations are omitted.

6 Experiments

The certification methodology presented here has been implemented in Maude5.
In developing and deploying the system, we fixed the following requirements: 1)
define a system architecture as simple as possible, 2) make the certification ser-
vice available to every Internet requester, and 3) hide the technical details from
the user. The prototype system offers a rewriting-based program certification
service, which is able to analyze safety properties of Java code which are related
to the safe use of types and with program non-interference.

In Table 1, we study three key points for the practicality of our approach: the
size of the reduced certificate versus the Java source code, the size of the reduced
certificate versus the size of the full certificate and the relative efficiency of pro-
ducing certificates w.r.t. their generation. The experiments have been performed
on a MacBook with 2 Gb RAM. Programs mE1 and mE2* are Java programs
5 It is publicly available at
http://www.dsic.upv.es/users/elp/toolsMaude/rewritingLogic.html

http://www.dsic.upv.es/users/elp/toolsMaude/rewritingLogic.html
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Table 1. Certificate sizes, and certification times

Full Cert. Size Red. Cert. Size Size Relation Full C. Gen. Time Red. Cert. Gen. Time
Code example (Kb) (Kb) (Red/Source) (ms) (ms)

mE1 443 2.62 2.29 16 3.5
mE2* 561 4.65 4.97 213.5 28.5

mE2v1E1 615 4.74 4.42 267 47
mE2mE1 578 4.66 3.98 245.5 31
mE522v1 604 2.91 1.67 14 3.5

mE3 553 4.55 4.33 377 57.5

containing the methods of Examples 1, and 4, respectively. Programs mE2mE1
and mE2v1E1 contain methods which are a sequential composition respectively
of Examples 3 and 1 and of a variation of Example 3 with Example 1. Program
mE522v1 is a non-interferent variation of Example 2. Program mE3, borrowed
from [20], is similar to program mE2mE1 using the equality == operator.

The two columns for “Full Cert.” show the size in Kbytes and the genera-
tion time, respectively, for the full certificates. Similarly for the two columns of
“Red. Cert.”. Running times are given in milliseconds and were averaged over
a sufficient number of iterations. The experiments are very encouraging, since
they show that the reduction in size of the certificate is very significant in all
cases, ranging the quotient “Red. Cert. Size/Full Cert. Size” from 8.2% in mE2*
to 4.8% for mE522v1. When we compare the time employed to generate the full
and reduced certificates we have that the reduced certificate generation time
takes only 12% of the full certificate generation time.

7 Related Work

Standard Java verification tools that use standard JML [21] as property speci-
fication language do not support non–interference certification. Some sophisti-
cated non–interference policies can be expressed by using the JML extensions of
the Krakatoa Java verification tool [13]. These JML extensions were developed
for Hoare-style assertions regarding program self-composition [4], which means
duplicating the code of the program thus requiring to distinguish the same pro-
gram variables in its two runs. However, non-interference policies that require
labeling data variables with confidentiality levels cannot be expressed by using
these JML extensions. The confidentiality aspect of non–interference is express-
ible using the JML specification pattern suggested in [20,30]. Unfortunately, this
proposal abuses notation by identifying confidentiality levels with values of the
program variables, and it cannot be applied in all cases [30].

Although non–interference has not been considered in current PCC implemen-
tations, there are some (not yet implemented) proposals for a subset of Java [5],
Java bytecode [27,7,6] and some simple, toy imperative languages [19,8]. How-
ever, none of them uses JML to express non–interference policies. [5] proposes
a type system, so that a compiler preserving the information flow type could be
developed for Java source code. [6] defines the first information flow type sys-
tem for a sequential JVM-like language that guarantees non–interference in type
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checked programs. The soundness was proven by using the theorem prover Coq,
and a certified verifier was extracted from the proof. The certified verifier could
be used as a PCC proof checker in the consumer’s side. Although we consider
only two security levels we can easily extend our methodology to the multilevels
of confidentiality of [6]. Our global policies attach security levels to object fields
but we do not consider heaps (where objects and their fields are stored). Our
local policies are very flexible since the security levels of local variables and
parameters of methods may change temporarily as in [19,20].

Some proposals also exist for non–interference verification that are based on
information flow analysis by using abstract interpretation [2,3,18,17]. However,
these proposals do neither generate a proof as a result of the verification nor use
JML to express non–interference policies. The idea of first enriching the original
semantics of the language by pairing each data value to its security level, and then
approximate it by only considering the security level is also in [2]. A similar idea
is developed in [17] where input and ouput channels are associated with security
levels. Regarding the values delivered by a return statement, our work is similar
to [3] and [17]. [18] introduces the notion of abstract non–interference: abstract
non–interference can be obtained by weakening the standard notion of non–
interference by making it parametric relatively to input/output abstractions. In
abstract non–interference, the abstract domains encode the allowed flows that
characterize the degree of precision of the knowledge of a potential attacker
observing the data.

To verify non–interferent Java source programs, there are other type based
proposals that do not use JML either to specify information flow policies, namely
the Java extensions JFlow [24] and Jif [25]. These compilers produce secure Java
source code for verified programs written in the languages JFlow and Jif by
first applying static information flow analysis based on type systems to track
the correspondence between the confidential information and the policies that
restrict its use.

8 Conclusion

As far as we know, we propose the first sound and complete, fully automatic
certification technique that applies to certifying non-interference of Java source
code. The proposed methodology features quality attributes (notably reliability
and security, but also good performance) through rigorous mechanisms which
integrate a wide range of well-established programming language techniques
(abstract interpretation, program semantics, meta-programming, etc). Our ap-
proach is based on a rewriting logic semantics specification of a sufficiently large
subset of the full Java 1.4 language [14]. Certificates are encoded as (abstract)
rewriting sequences which can be checked in the abstract Java semantics written
in Maude on the consumer side by standard reduction. Our certification method-
ology extends to other programming languages by simply replacing the concrete
semantics by a semantics for the programming language at hand, see [23].

Our work can be easily extended to cope with procedure methods, exceptions,
heaps, and multithreading, since they are considered in the Java rewriting logic
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semantics. Since we inherit from Maude and the Java rewriting semantics its
competitive performance (see [15]), we have a scalable technique that can be
further refined to certifying industrial complex Java programs.
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