
Can Flash Memory Help in Model Checking?�
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Abstract. As flash media become common and their capacities and
speed grow, they are becoming a practical alternative for standard me-
chanical drives. So far, external memory model checking algorithms have
been optimized for mechanical hard disks corresponding to the model of
Aggarwal and Vitter [1]. Since flash memories are essentially different,
the model of Aggarwal and Vitter no longer describes their typical behav-
ior. On such a different device, algorithms can have different complexity,
which may lead to the design of completely new flash-memory-efficient
algorithms. We provide a model for computation of I/O complexity on
the model of Aggarwal and Vitter modified for flash memories. We dis-
cuss verification algorithms optimized for this model and compare the
performance of these algorithms with approaches known from I/O effi-
cient model checking on mechanical hard disks. We also give an answer,
when the usage of flash devices pays off and whether their further evolu-
tion in speed and capacity could broaden a range, where new algorithms
outperform the old ones.

1 Introduction

There are numerous computational tasks that require to generate and process
that huge amount of data that cannot be simply kept in internal memory. Un-
fortunately, it is not acceptable in terms of performance to rely on the standard
memory virtualization techniques provided by the operating system, and special-
ized algorithms must be devised to efficiently manipulate data stored externally.
These are the so called I/O efficient or external-memory algorithms [2].

I/O efficient algorithms reflect physical properties of external memory devices,
i.e. they are designed to minimize expensive random accesses to data in favor
of their block processing. However, likewise all the PC components, also the
external memory devices are being continuously developed and their properties
are improving in time. Recently, flash memory based external memory devices
became widely used as the so called solid state disks (SSDs). Unlike its mag-
netic counterpart, SSD does not rely on physical movements of the head(s) to
access the data. Therefore, the access time is much smaller for a solid state disk
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compared to the magnetic one. For example, the speed of random reads for a
solid state disk build with NAND flash memory lies roughly at the geometric
mean of the speeds of random access memory (RAM) and magnetic hard drive
(HDD) [3]. The only factor limiting solid state disks from being massively spread
is the cost of the device if expressed per stored bit. The cost per stored bit is
still significantly higher for SSDs than for magnetic disks. However, the cost per
bit is definitely subject to change in the future.

I/O efficient algorithms have been studied also in the context of formal verifi-
cation, model checking [4] in particular, as one of the techniques to fight the well
known state explosion problem. In this paper we focus on enumerative on-the-fly
LTL model checking, which is the standard option for analyzing software sys-
tems. Our goal is to consider a simple question that comes up with the advent of
solid state disks. Namely, if it is meaningful to design new I/O algorithms for LTL
model checking that would take advantage of the fast random reads of a solid
state disk, or if it is satisfactory to apply the existing I/O efficient LTL model
checking algorithms even for SSDs whose characteristics differ significantly from
the characteristics of the traditional magnetic disks.

To answer the question we design several techniques to implement an SSD
efficient graph traversal procedure, namely we discuss several variants of hash-
ing mechanism that is used by the Nested DFS algorithm to efficiently identify
already generated states during the graph traversal. We also report on a prelimi-
nary experimental comparison of newly suggested SSD efficient and the standard
I/O efficient techniques, and discuss the impact of possible technology improve-
ments that may come in the future.

The paper is organized as follows. In Section 2 we briefly recall the standard I/O
efficient techniques used for enumerative external memory LTL model-checking.
In Section 3 we state the differences between the standard magnetic and new solid
state disks. In Section 4 we describe several SSD efficient hashing techniques, and
we show in Section 5 how these can be used to design SSD efficient Nested DFS
algorithm. Section 6 report on our experimental evaluation of both the SSD and
I/O efficient techniques. Finally, in Section 7 we conclude the paper and plot what
impact may have possible future technological improvements.

2 I/O Efficient Model Checking with Mechanical Disks

LTL model checking problem can be reduced to the problem of accepting cycle
detection in the graph [4]. In the context of enumerative LTL model checking,
the graph to be searched for the presence of an accepting cycle is generated
on-the-fly meaning that if a graph traversal algorithm needs to proceed to an
immediate successors t of a state s, it computes state t from the state vector
of s. To prevent re-visiting of already explored states, all states that have been
processed are stored in memory, hence, if a state is generated it is first checked
against the set of stored states to learn whether it is a new state or has been
visited before. In the context of I/O efficient algorithms, this check is referred
to as the duplicate detection.
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Due to the huge number of states, their large size, and the speed of generat-
ing them, the memory demands while analyzing systems rise rapidly. In order to
release memory, states stored in the set of visited states have to be fully or par-
tially flushed to the external memory. Under this circumstances a check whether
a state has been visited may involve I/O operation as not only the states stored
in memory, but also the states stored on external memory device must be con-
sidered. This however renders a standard graph traversal algorithm inefficient as
the I/O operation is in orders of magnitude slower than a single or several reads
from the internal memory.

2.1 Graph Traversal

The core technique that gave birth to I/O efficient algorithms is the so called
delayed duplicate detection [5,6,7,8] whose idea is to postpone the individual
checks against the set of visited states and perform them together in a group
amortizing thus the cost of I/O operations per a single check.

There are other techniques that have significant impact on the performance
of an I/O efficient graph traversal algorithm. For example, it is possible to per-
form hash compaction or compression of states to be stored which results in
less amount of data to be transferred between external and internal memory.
Another quite successful improvement builds upon using a Bloom filter main-
tained in main memory in order to reduce unnecessary I/O operations. Also
simple partitioning of states stored on external memory may have impact on the
performance of an I/O efficient graph traversal procedure. For more details on
these techniques we kindly refer the reader to [9].

As mentioned above, an important aspect of an I/O efficient algorithm is that
the data stored on external memory is accessed in blocks. While the clever imple-
mentation techniques aim at reducing the number of I/O operations, or reducing
the amount of data being transferred, there is also possibility to improve the per-
formance of an I/O efficient algorithm by simple improving the performance of
an I/O operation. For example, by connecting two identical external memory
devices into a mirror RAID array we can achieve almost double bandwidth that
the block of data may be read with from the external memory device. Note that
this approach basically improves bandwidth only while does not influence the
latency, i.e. the time needed to read the first bit.

Similarly, it is possible to reduce time needed for solving the problem if in-
stead of the serial I/O efficient algorithm working over a single external device
a parallel I/O efficient algorithm is used utilizing multiple external memory de-
vices. This is, however, possible only if the algorithm involved allows parallel
processing, which is, for example, the case of breadth-first search, but is not the
case of depth-first search [10].

2.2 LTL Model Checking

For accepting cycle detection there is a space efficient optimal algorithm called
Nested Depth-First Search [11]. Unfortunately, the algorithm becomes rather
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Table 1. Characteristics of solid state and hard disk drives

HDD SSD

Read Bandwidth 65 MB/s 72 MB/s

Write Bandwidth 60 MB/s 70 MB/s

Random Read Access Time 11 ms 0.1 ms

Random Write Access Time 11 ms 5 ms

inefficient, as soon as states to be stored cannot be maintained in the main
memory [10,12].

Recently, three different I/O efficient algorithms for solving the LTL model
checking problem have been published [12,13,14]. In [12] the authors suggested to
avoid the DFS-based accepting cycle detection by the reduction of the problem to
the problem of testing reachability relation [15,16] whose I/O efficient solution
was further improved by using the directed A* search and parallelism. Since
the reduction to the reachability relation testing may result in up to quadratic
increase in the space complexity, this algorithm should be rather viewed as a
tool for bug hunting.

A new I/O efficient algorithm for LTL model checking was given in [13]. The
algorithm avoids the expensive increase in the space complexity, but does not
work on-the-fly, which means that the full state space must be generated and
stored on external memory device before it is checked for the presence of an
accepting cycle. This disadvantage makes the algorithm quite inefficient in the
cases an error can be discovered quickly using some on-the-fly algorithm. Finally,
the algorithm given in [14] is both on-the-fly and linear in the space requirements
with the respect to the size of the state space.

3 From Mechanical to Solid State Disks

Mechanical hard disks have been around for quite a long time, and they have
provided us with reliable service over these years. This is about to change with
the advent of Solid State Disks (SSD). A solid state disk is electrically, mechan-
ically and software compatible with a conventional (magnetic) hard disk drive.
The difference is that the storage medium is not magnetic (like a hard disk) or
optical (like a CD) but solid state semiconductor (NAND flash) such as bat-
tery backed RAM, EEPROM or other electrically erasable RAM-like chip. In
last years, NAND flash memories outpaced DRAM in terms of bit-density [17]
and the market with SSDs continues to grow. This provides faster access time
than a disk, because the data can be randomly accessed and does not rely on a
read/write interface head synchronising with a rotating disk. We list a typical
data transfer bandwidth and access time for both magnetic and solid state disk
in Table 1.

It became the standard to measure the analytical complexity of an I/O effi-
cient algorithm using the complexity model by Aggarwal and Vitter [1]. However,
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for solid state disk, the model is no more valid, since it does not cover the dif-
ferent access times for random read and write operations. For solid state disks,
we propose to extend the model of Aggarwal and Vitter with a penalty factor p
for random write operations.

4 I/O Efficient Graph Traversal with Solid State Disks

We observe that random read operations on SSDs are substantially faster than
on mechanical disks, while other parameters are similar. Therefore, it appears
natural to ask, whether it is necessary to employ delayed duplicate detection
(DDD) known from the current I/O efficient graph algorithms, or it is possi-
ble to build an efficient SSD algorithm using the standard immediate duplicate
detection (IDD), hashing in particular.

First, we study direct access to the solid state disk without exploiting RAM
usage. This implies both random read and random write operations. The imple-
mentation serves as a reference, and can be scaled to any implicit search with a
visited state space that fits on the solid state disk.

Next, we compress the state in internal memory to include the address on
secondary memory only. For this case states are written sequentially to the back-
ground memory in the order of generation. For resolving hash synonyms, states
lookup random reads are needed. Even though linear probing shows performance
deficiencies for internal hashing, for block-wise strategies, it is the apparent can-
didates. Alternative hashing strategies can reduce the number of random reads.

The third option fosters flushing the internal hash table to the external device,
once it becomes full. In this case, full state vectors are stored internally. For
large amounts of background memory and small vector sizes, large state spaces
can be looked at. Usually the exploration process is suspended while flushing the
internal hash table. We observe different trade-offs for the amount of randomness
for background readings and writing, which mainly depend on increasing the
locality of the access.

4.1 Hashing

The general setting (see Fig. 1) is a background hash table Hb kept on the
SSD, which can hold m = 2b entries. As said, SSDs prefer sequential writes and
sequential read, but can cope with an acceptable number of random reads. We
additionally assume a foreground hash table Hf with m′ = 2f entries. The ratio
between fore- and background is, therefore, r = 2k = 2b−f . Collisions especially
on the background hash table can yield additional burden. As chaining requires
overhead for storing and following links, we are left with open addressing and
adequate probing strategies.

As linear probing finds elements through sequential scanning, it is I/O effi-
cient. The efficiency analysis goes back to Knuth [18]. For a load factor of α
a successful search requires about 1/2 (1 + 1/(1 − α)) accesses on the average,
while an unsuccessful search requires about LPα = 1/2

(
1 + 1/(1 − α)2

)
accesses
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Fig. 1. Fore- and Background Memory, such as RAM and SSD

on the average. For a hash table that is filled up to α = 50% we have less than
three states to look at on the average, which easily fit into the I/O buffer. Given
that random access is slower than sequential access, this implies that unless the
hash table becomes filled, linear probing with one I/O per lookup per node is
an appropriate option for SSD-based hashing.

4.2 Mapping

The simplest method to apply SSDs in graph search is to store each node at its
background hash address in a file, and – if occupied – to apply conflict resolution
strategy on disk. By their large seek times, this option is clearly infeasible for
HDDs, but it does apply to some extent to SSDs. Nonetheless, besides extensive
use of random writes that operate block-wise and are, thus, expected to be slow,
one problem of the approach is the initialization time, incurred by erasing all
existing data stored in background memory.

Hence, we apply a refinement to speed-up search. With one additional bit-
vector array kept in RAM, we denote, whether or not a position is already
occupied. This limits initialization time to reset all bits in main memory, which is
much faster. Moreover, this saves lookup time in case of hashing a new state with
an unused table entry. Viewed differently, one can think of a Bloom filter [19],
with conflict resolution on disk. Figure 2 (left) illustrates the approach. The
bit-vector occupied memorizes, whether the address on the SSD is in use or not.

The extra amount of RAM additionally limits the size of the search spaces to
be processed. In search practice with a full state vector of several bytes to be
stored in the background memory, however, investing one bit per state in RAM
does not harm much, given that the ratio between main and external memory
remains moderate. The only limit for the exploration is imposed by the number
of states that can be stored on the solid state disk, which we assume to be
sufficiently large.
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Fig. 2. External hashing without and with merging

For analyzing the approach, let n be the number of nodes and e be the number
of edges in the state space graph that are looked at. Without occupied vector
requires e lookup and n insert operations. Let B is the size of a block (amount
of data retrieved, or written with one I/O operation) and |s| be the length of a
state. As long as LPα · |s| ≤ B, at most two1 blocks are read for each lookup2.
For LPα · |s| > B no additional random read access is necessary. After the
lookup, an insert operation results in one random write. This results in a flash
I/O complexity of O(e + pn). Using the occupied vector, the number of read
operations reduces from e to n, assuming that no collisions take place.

As the main bottleneck of the approach is random writing to the background
memory, as another refinement we can additionally employ a foreground hash
table as a write buffer. Due to numerous insert operations, the foreground hash
table will once become filled, and then has to be flushed to the background, which
incurs writes and subsequent reads. One option that we call merging is to sort
the internal hash table wrt. to the external hash function before flushing. If the
hash functions are correlated, the sequence is already presorted, by means that
the number of inversions inv(Hf ) = |{(i, j) | hf (si) < hf (sj)∧ hb(si) > hb(sj)}|
is small. If inv(Hf ) = O(m′) and given that we use an algorithm that exploits
presorting3, we obtain a linear time sorting algorithm. While flushing we now
have a sequential write (due to the linear probing strategy), such that the total
worst-case I/O time for flushing is bounded by the number of flushes times the
efforts for sequential writes. Figure 2 (right) illustrates the approach. As we are
able to exploit sequential data processing, updating the background hash table

1 when linear probing arrives at the end of the table, an additional seek to the start
of the file is needed.

2 at our system B = 4, 096 bytes, and |s| ≈ 40 bytes.

3 e.g. adaptive sort that runs in time m′ + m′ log
(

1 +
inv(Hf )

m′

)
.
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Fig. 3. Updating Tables in Hashing with Linear Probing while Merging

corresponds to a scan (Figure 3). Blocks are read into the RAM and merged
with the internal information and then flushed back to SSD.

4.3 Compressing

State compression is a common option in LTL model checking. There are lossless
compression strategies like FSM compaction [20], as well as lossy compression
strategies like bit-state hashing [21] or hash compaction [22]. For the sake of
completeness, in this paper we avoid lossy hash methods as they imply partial
state space coverage.

Probably the best lossless compression ratio is obtained using practical perfect
hash function [23,24]. Perfect hashing corresponds to an one-to-one mapping of
some set S to {1, . . . , |S|}. Different off-line algorithms [25] have been developed
that include perfect hash functions for what has been coined to the term semi-
external LTL model checking. We do not apply perfect hashing at all, as for the
construction of perfect hash functions, set S has to be known, which contradicts
the purpose of on-the-fly model checking.

Instead we store all state vectors in a file on the external storage device, and
substitute the state vector by its relative file pointer position. For an external
hash table of size m this requires �log m� bits per entry, that is m�logm� bits
in total. Figure 4 illustrates the approach with arrows denoting the position on
external memory. An additional bit-vector occupied is no longer needed.

This strategy also results in e lookups and n insert operations. Since the or-
dering of states on the SSD does not necessarily correlate with the order in main
memory, the lookup of states due to linear probing induces multiple random
reads. Hence, the amount of individual blocks which have to be read is bounded
by LPα · e. In contrast, all insert operations are performed sequentially, utilizing
a cache of B bytes in memory. Subsequently this approach performs O(LPα · e)
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random reads to the SSD. As long as LPα < 2 this approach performs less ran-
dom read operations then mapping. By using another internal hashing strategy,
e.g. cuckoo hashing [26] one reduces the number of lookups to at most 2. As
sequential writing of n states of s bytes requires n|s|/B I/Os, the total flash-
memory I/O complexity is O(LPα · e + n|s|/B).

4.4 Flushing

The above approaches either require significant time to write data according to
hb, or request significant sizes of foreground memory. There are further trade-offs
that we will consider next.

One first solution that we call padding is to append the entire foreground
hash table as it is to the existing data on the background table. Hence, the
background hash function can be roughly characterized as hb(s) = i ·m′ +hf(s),
where i denotes the current number of flushes, and s the state to be hashed.

Writing is sequential, and conflict resolution strategy is inherited from the
internal memory. For several flushing reading a state for answering membership
queries becomes involved, as the search for one state incurs up to r many table
lookups. Conflict resolution may lead to an even worse performance. For a mod-
erate number of states that exceed RAM resources only by a very small factor,
however, the average performance is expected to be good. As far as all states
can reside in main memory no access to the background memory is needed.

We can safely assume that load factor α is small enough, so that the extra
amount of work due to linear probing is transparent by using block accesses.
Again e lookups and n insert operations are performed. Let ei be the number
of successors generated in stage i, i ∈ {0, . . . , r − 1}. For stage 0 no access to
the background table is needed. For stage i, i > 0, at most O(i · ei) blocks have
to be read. Together with the sequential write of n elements (in r rounds) this
results in a flash memory complexity of O(n|s|/B + rp +

∑
0≤i<r i · ei) I/Os.
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Fig. 5. Padding and slicing

An illustration is provided in Figure 5 (left). The entire foreground hash table
has been flushed once, while the maximum number of flushes is set to 3.

The obvious alternative is to slice the background hash table such that hb(s)
becomes hf (s) · r + i. An illustration is provided in Figure 5 (right); situation
after one flush, and, again, at most 3 flushes are assumed.

The disadvantage of processing the entire external hash table during flushing
is compensated by the fact that the probing sequences in the hash tables can
now be searched concurrently. For the lookup we use a Boolean vector of size i
that monitors if an individual probing sequence has terminated with an empty
bucket. If all probing sequences fail, the query itself has failed.

5 I/O Efficient Model Checking with Solid State Disks

In Section 4 various implementations of graph traversal with SSD are shown. It is
apparent that some of them are less I/O efficient, but have lower demands on the
internal memory (mapping and flushing strategies), while others allocate more
of RAM, but perform much less I/O operations in the ordinary case (compress
strategy).

On the basis of these graph traversals, it is relatively easy to construct LTL
model checking algorithms. Nested DFS, as introduced above, can be imple-
mented with two independent hash tables. To save space it is, however, recom-
mended to use one hash table for storing the states and one internal bit-vector
array flagged to memorize if a state has been visited in the second depth-first
search.

With the above hashing schemes, we arrive at full flexibility in applying imme-
diate duplicate detection in Nested DFS. Table 2 summarizes the hash functions
applied and the amount of memory required for the different hashing strategies in
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Table 2. Trademarks for different hash strategies for on-the-fly LTL model checking
algorithm. Upper two lines give an overview of hash functions, lower three lines show
a space complexity in bits for different levels in memory hierarchy.

Mapping Compressing Padding Slicing

hf – hdmod m hdmod m hdmod m
hb hdmod m hdmod m i · m′ + hdmod m′ (hdmod m) · r + i

RAM 2m m + m�log m� 2m + m′ × |s| 2m + m′ × |s|
SSD m × |s| m × |s| m × |s| m × |s|
HDD maxi |Openi| × |s| maxi |Openi| × |s| maxi |Openi| × |s| maxi |Openi| × |s|
m = 2b, m′ = 2f , hd is hash function in DiVinE [27], m is the size of background hash
table (in the number of elements), |s| is state vector size (measured in bits), Openi is
the number of states in the search frontier in iteration i.

LTL model checking. Note that there are recent refinements to Nested DFS [28]
that are faster, but need more bits.

6 Experimental Evaluation

We implemented our algorithms in DiVinE (DIstributed VerIficatioN Environ-
ment) [27], including only part of the library deployed with DiVinE, namely state
generation and internal storage. For the implementation of external-memory
container and for algorithms for efficient sorting and scanning we use STXXL
(Standard Template Library for Extra Large Data Sets) [29]. Models are taken
from the BEEM library [30].

For the first set of experiments we used a Desktop PC with AMD Athlon
CPU (32 bit) a SATA HDD of 280 GB with 13.8 ms seek time and about 61.5
MB/s for sequential reading and a 32 GB 3.5” SATA high-speed flash memory
solid state disk (HAMA), which has 0.14 ms seek time and scales to about 93
MB/s for sequential reading.

To confirm the theoretical results we check the Rether-4 protocol from the
BEEM library (Fig. 6). The plot shows Nested DFS runs with different imme-
diate duplicate detection strategies. All experiments, aside from the mapping
strategy, were stopped after 40,000s (this strategy was stopped after 1,800s due
to its obvious lack of performance). The mapping strategy is the worst one be-
cause of numerous random writes. We use padding as a flushing strategy. As
linear probing is used to store the positions of the saved states, we observe an
increased number of read operations as the internal hash table becomes filled.
Compress strategy appears to perform the best, which corresponds to its I/O
complexity without any penalties for random write operations. The difference
between compress and compress (stack on hdd) is the location of the stack file.
In the first case, it was located on the SSD, in the second it was on a separate
HDD. We observe that having the stacks stored on a second hard disk gives
another speed-up of about 30% for the state space traversal.

The motivation for use of SSDs was to exploit fast random access to them.
Now, we compare new algorithms designed for SSDs to traditional I/O efficient
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Fig. 6. Comparing the three strategies on the Rether-4 model

algorithms, which we run on SSDs too. To get a fair picture about both ap-
proaches, we perform a reachability analysis in breadth first order. As a novel
approach we run BFS with immediate duplicate detection and compression strat-
egy (Compress BFS). As a traditional approach we run a standard external BFS
with delayed duplicate detection after each level (External BFS).

First, the state space of the Szymanski (5 prop4) model was generated using
both approaches. The plot in Fig. 7 demonstrates the dependency in expanding
speed between the Compress BFS and the BFS layer size, while the expanding
time per layer remains almost the same for External BFS. This is due to the
fact, that in delayed duplicate detection the time of level generation is mostly
determined by the size of the visited states set, which is completely passed for
each BFS layer. Thus, in large search depth, immediate duplicate detection saves
much time, compared to delayed duplicate detection.

Therefore, it is apparent that results strongly depend on a structure of
a state space. Provided that I/O complexity of External BFS is O((e/m +
#layers)(n|s|/B) [13], it is clear that its I/O complexity is highly dependent
on the number of BFS layers, while the I/O complexity of Compress BFS is
not. This can be demonstrated on the model Rether-2, with 552 BFS layers (see
Fig. 8). While External BFS performs poor on this model, Compress BFS fin-
ishes in several minutes. The new approach can also benefit from a small number
of back edges and various heuristics helping to recognize duplicates with no read-
ing from disk. This is a case of model Train-Gate, where the amount of random
reads was only 30 million, even though the state space has 50 million states, due
to the fact that duplicates were typically found in internal buffers (only 8 MB
large) before flushing to disk. Model MCS is an example, where External BFS
performs better – the state space has relatively low number of BFS levels (90).
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From the I/O complexities of both algorithms and from our measurements it
follows that External BFS has to slow down the exploration faster than Com-
press BFS with increasing portion of the state space explored. Thus, Compress
BFS can often outperform it from some BFS level due to its linearity in I/O
complexity. The moment, when Compress BFS outperforms External BFS de-
pends to high extent on numerous platform and input specific factors: state space
structure (number of BFS layers, portion of back edges), bandwidth, access time,
file system, implementation (we did not implemented heuristics from [14] or [9]).
Even though it is not easy to predict, whether or from which point of explo-
ration Compress BFS outperforms External BFS, the main impact of behaviour
of both algorithms is that there can be a threshold, from which Compress BFS
outperforms External BFS on a given input and so algorithms for SSDs like
Compress BFS are practical.

7 Conclusions

We have contributed several new approaches to hashing applied to SSDs. The
most important observation is with the advent of SSD technology, immediate
duplicate detection becomes tractable, offering much more flexibility for the
choice of the exploration strategy. Monitoring CPU performance, we observed
hashing strategies preserve ratios of 50% or more, suggesting that I/O waits are
present, but not thrashing. With SSDs random access time decreasing, SSDs will
likely become fast enough to rise the CPU usage to 100% making the SSD fully
transparent to the user4.

Compression, the best performing strategy, requires substantial main memory,
which according to current ratios of space between RAM and SSDs is still no
bottleneck. Although we have tested DFS and BFS, non heuristic algorithms,
our SSD hashing strategies can also be applied to heuristic approaches, e.g. A*
to rise the amount of states that can be visited. Using SSDs as a shared external
storage device for cluster computers will result in an even higher throughput,
even for random reads, giving a better possibility for parallel processing.

Directly compared to standard I/O algorithms, for a given model there can be
a threshold in state space exploration, from which these new approaches pay off
due to their linearity in size of state space – at least for the compress approach.
Traditional I/O efficient algorithms are not linear, but they have good constant
factors which allow them to outperform new approaches on many inputs. If the
bandwidth of SSDs will grow faster, traditional I/O algorithms pay off. If the
access time of SSDs will decrease faster than their bandwidth, the importance
of new approaches will increase.

Due to easiness of parallel disk connection, large capacities of SSD are possi-
ble5 . Nevertheless, prices for SDDs are still high. Fortunately, in last years they
decrease reasonably as the market with flash memories grows.
4 According to Dell, current prices for 32GB RAM are 6 times higher than for 32GB

SSDs.
5 E.g. StorgeSpire – 1 TB SDD array by Solid Data

(http://www.soliddata.com/products/storagespire).

http://www.soliddata.com/products/storagespire


164 J. Barnat et al.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

2. Sanders, P., Meyer, U., Sibeyn, J.F.: Algorithms for Memory Hierarchies. Springer,
Heidelberg (2002)

3. Min, S.L., Nam, E.H., Lee, Y.H.: Evolution of NAND flash memory interface.
In: Choi, L., Paek, Y., Cho, S. (eds.) ACSAC 2007. LNCS, vol. 4697, pp. 75–79.
Springer, Heidelberg (2007)

4. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

5. Korf, R.: Best-First Frontier Search with Delayed Duplicate Detection. In: AAAI
2004, pp. 650–657. AAAI Press / The MIT Press (2004)

6. Korf, R., Schultze, P.: Large-Scale Parallel Breadth-First Search. In: AAAI 2005,
pp. 1380–1385. AAAI Press / The MIT Press (2005)

7. Munagala, K., Ranade, A.: I/O-Complexity of Graph Algorithms. In: SODA 1999,
Philadelphia, PA, USA, pp. 687–694. Society for Industrial and Applied Mathe-
matics (1999)

8. Stern, U., Dill, D.L.: Using Magnetic Disk Instead of Main Memory in the Murphi
Verifier. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 172–183. Springer,
Heidelberg (1998)

9. Hammer, M., Weber, M.: To Store Or Not To Store Reloaded: Reclaiming Memory
On Demand. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.)
FMICS 2006 and PDMC 2006. LNCS, vol. 4346, pp. 51–66. Springer, Heidelberg
(2007)

10. Barnat, J.: Distributed Memory LTL Model Checking. PhD thesis, Faculty of In-
formatics, Masaryk University Brno (2004)

11. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Form. Methods Syst. Des. 1(2-3),
275–288 (1992)

12. Edelkamp, S., Jabbar, S.: Large-Scale Directed Model Checking LTL. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006)
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