
Using CSP||B Components:
Application to a Platoon of Vehicles�

Samuel Colin1, Arnaud Lanoix1, Olga Kouchnarenko2, and Jeanine Souquières1

1 LORIA – DEDALE Team – Nancy Université
Campus scientifique

F-54506 Vandoeuvre-Lès-Nancy, France
{firstname.lastname}@loria.fr

2 LIFC – TFC Team – University of Franche-Comté
16 route de Gray

F-25030 Besançon, France
{firstname.lastname}@lifc.univ-fcomte.fr

Abstract. This paper presents an experience report on the specification and the
validation of a real case study in the context of the industrial CRISTAL project.
The case study concerns a platoon of a new type of urban vehicles with new func-
tionalities and services. It is specified using the combination, named CSP‖B, of
two well-known formal methods, and validated using the corresponding support
tools. This large – both distributed and embedded – system typically corresponds
to a multi-level composition of components that have to cooperate. We identify
some lessons learned, showing how to develop and verify the specification and
check some properties in a compositional way using theoretical results and sup-
port tools to validate this complex system.

Keywords: formal methods, CSP||B, compositional modelling, specification,
verification, case study.

1 Introduction

This paper is dedicated to an experience report on the specification and the validation
of a real case study in the land transportation domain. It takes place in the context
of the industrial CRISTAL project which concerns the development of a new type of
urban vehicles with new functionalities and services. One of its major cornerstones is
the development, the validation and the certification of platoon of vehicles. A platoon is
a set of autonomous vehicles which have to move in a convoy – i.e. following the path
of the leader – through an intangible hooking.

Through the CRISTAL project’s collaboration, we have decided to consider each
vehicle, named Cristal in the following, as an agent of a Multi-Agent System (MAS).
The Cristal driving system perceives information about its environment before produc-
ing an instantaneous acceleration passed to its engine. In this context, we consider the

� This work has been partially supported by the French National Research Agency TACOS
project, ANR-06-SETI-017 (http://tacos.loria.fr) and by the pôle de compétitivité
Alsace/Franche-Comté CRISTAL project (http://www.projet-cristal.net).

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 103–118, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

104 S. Colin et al.

Fig. 1. A platoon of Cristals

platooning problem as a situated MAS which evolves following the Influence/Reaction
model (I/R) [1] in which agents are described separately from the environment. The
driving control concerns both a longitudinal control, i.e. maintaining an ideal distance
between each vehicle, and a lateral control, i.e. each vehicle should follow the track of
its predecessor, see Fig. 1. Both controls can be studied independently [2]. At this time,
we focus solely on the longitudinal control.

The platoon of Cristal vehicles is a mix of distributed and embedded systems. The
former are usually hard to understand and to debug as they can exhibit obscure be-
haviours. The latter require the satisfaction of safety/security/confidence requirements,
alone and when composed together. To address these problems, we reuse the CSP‖B
framework proposed by Schneider and Treharne [3] of well-established formal meth-
ods, B, an environment for the development of provably correct software [4], and CSP
(for Communicating Sequential Processes), a process algebra introduced by Hoare [5]
for modelling patterns of interactions. We motivate the use of CSP‖B by the existence
of pure B models describing the agents and vehicles behaviours [6]. By using CSP for
coordinating B machines, we aim at giving these B models the architectural, composi-
tional description they lack.

Our approach can be described as a mix between a “bottom-up” and a component-
based development. On the one hand, B machines are seen as the smallest abstract
components representing various parts of a Cristal vehicle. On the other hand, CSP is
used to put these components together, to describe higher-level compounds such as a
vehicle or a whole convoy and to make them communicate.

Our first experience with the CSP‖B platoon model is presented in a short paper [7].
Here the description of the case study involves detailing two architectural levels. We
first consider a single Cristal, then we show how to reuse it to constitute a platoon.
Later on we make the model evolve by replacing one component with several others to
separate functionalities and refine them1. This can be achieved for instance by adapters
to connect these new components within the initial architecture [8]. We follow a similar
approach, only CSP-oriented. Moreover we use previous theoretical results on CSP‖B
in an unintended way in this context.

On both the model description and its evolution, we illustrate the relevance of
CSP‖B for eliminating errors and ambiguities in an assembly and its communication

1 CSP‖B specifications discussed in this paper are available at
http://tacos.loria.fr/platoon-fmics08.zip

http://tacos.loria.fr/platoon-fmics08.zip

Using CSP||B Components: Application to a Platoon of Vehicles 105

protocols. We are convinced that writing formal specifications can aid in the process of
designing autonomous vehicles.

This paper is organised as follows. Section 2 briefly introduces the basic concepts
and existing tools on CSP‖B. Section 3 presents the specification and the verification
process of a single Cristal vehicle whereas Sect. 4 is dedicated to a platoon of vehicles.
Section 5 details a vehicle introducing new components, the engine and the location
ones. Section 6 presents related works, and Sect. 7 ends with lessons learned from this
industrial experience and some perspectives of this development.

2 Basic concepts and Tools on CSP‖B
The B machines specifying components are open modules which interact by the au-
thorised operation invocations. CSP describes processes, i.e. objects or entities which
exist independently, but may communicate with each other. When combining CSP and
B to develop distributed and concurrent systems, CSP is used to describe execution
orders for invoking the B machines operations and communications between the CSP
processes.

2.1 B Machines

B is a formal software development method used to model and reason about systems [4].
The B method has proved its strength in industry with the development of complex
real-life applications such as the Roissy VAL [9]. The principle behind building a B
model is the expression of system properties which are always true after each evolution
step of the model. The verification of a model correctness is thus akin to verifying the
preservation of these properties, no matter which step of evolution the system takes.

The B method is based on first-order logic, set theory and relations. Properties are
specified in the INVARIANT clause of the model, and its evolution is specified by the
operations in the OPERATIONS clause (see Fig. 3 for an example). The verification of
a B model consists in verifying that each operation – assuming its precondition and the
invariant hold – satisfies the INVARIANT, i.e. the model is consistent.

Support tools such as B4free (http://www.b4free.com) or AtelierB
(http://www.atelierb.eu) automatically generate Proof Obligations (POs) to
ensure the consistency. In our case study in Sect. 3 we use the B4free proof tool for
ensuring this consistency: this tool generates so-called “obvious” POs automatically
discharged and normal POs which have to be proved interactively if it was not done
automatically.

A strength of the B method is its stepwise refinement feature: the REFINEMENT of
a model makes it less indeterministic and more precise with the introduction of more
programming language-like features. Refinement can be done until the code of the op-
erations can actually be implemented in a programming language. The consistency of
a refinement must also be checked, this time by ensuring that the newly introduced
behaviour and/or data do not contradict the model they refine.

http://www.b4free.com
http://www.atelierb.eu

106 S. Colin et al.

2.2 Communicating Sequential Processes (CSP)

CSP allows the description of entities, called processes, which exist independently but
may communicate with each other. Thanks to dedicated operators it is possible to de-
scribe a set of processes as a single process, making CSP an ideal formalism for build-
ing a hierarchical composition of components. CSP is supported by the FDR2 model
checker (http://www.fsel.com). This tool is based on the generation of all the possi-
ble states of a model and the verification of these states against a desired property. We
used it for our case study in Sect. 3 and 4.

The denotational semantics of CSP is based on the observation of process be-
haviours. Three kinds of behaviours [10] are observed and well suited for the expression
of properties:

– traces, i.e. finite sequences of events, for safety properties;
– stable failures, i.e. traces augmented with a set of unperformable events at the end

thereof, for liveness properties and deadlock-freedom;
– failures/divergences, i.e. stable failures augmented with traces ending in an infinite

loop of internal events, for livelock-freedom.

Each semantics is associated with a notion of process refinement denoted:

– �T for traces refinement. This refinement is based on the equality of execution
traces.

– �SF for stable failures refinement. It is based on traces equality and failures equal-
ity, i.e. traces ending in a deadlock must be the same in the abstract process and its
refinement.

– �FD for failures/divergences refinement. It is based on traces, failures and diver-
gences equality, i.e. traces ending in an infinite loop must also be equal in the ab-
stract process and its refinement. It is the strongest form of refinement.

2.3 CSP‖B Components

In this section, we sum up the works by Schneider and Treharne on CSP‖B. The reader
interested in theoretical results is referred to [3,11,12]; for case studies, see for exam-
ple [13,14].

Specifying CSP controllers. In CSP‖B, the B part is specified as a standard B machine
without any restriction, while a controller for a B machine is a particular kind of CSP
process, called a CSP controller, defined by the following (subset of the) CSP grammar:

P ::= c ? x ! v → P | ope ! v ? x → P | b & P
| P1 � P2 | if b then P1 else P2 | S(p)

The process c ? x ! v → P can accept input x and output v along a communication
channel c. Having accepted x, it behaves as P.

A controller makes use of machine channels which provide the means for controllers
to synchronise with the B machine. For each operation x ← ope(v) of a controlled ma-
chine, there is a channel ope ! v ? x in the controller corresponding to the operation

http://www.fsel.com

Using CSP||B Components: Application to a Platoon of Vehicles 107

call: the output value v from the CSP description corresponds to the input parameter
of the B operation, and the input value x corresponds to the output of the operation. A
controlled B machine can only communicate on the machine channels of its controller.

The behaviour of a guarded process b & P depends on the evaluation of the boolean
condition b: if it is true, it behaves as P, otherwise it is unable to perform any events.
In some works (e.g. [3]), the notion of blocking assertion is defined by using a guarded
process on the inputs of a channel to restrict these inputs: c ? x & E(x) → P.

The external choice P1 � P2 is initially prepared to behave either as P1 or as P2,
with the choice made on the occurrence of the first event. The conditional choice
if b then P1 else P2 behaves as P1 or P2 depending on b. Finally, S(p) expresses a
recursive call.

Assembling CSP‖B components. In addition to the expression of simple processes,
CSP provides operators to combine them. The sharing operator P1 ‖E P2 executes P1
and P2 concurrently, requiring that P1 and P2 synchronise on the events into the sharing
alphabet E and allowing independent executions for other events. When combining a
CSP controller P and a B machine M associated with P, the sharing alphabet can be
dropped ((P ‖α(M) M) ≡ P ‖ M) as there is no ambiguity.

We also consider an indexed form of the sharing operator ‖i
Ei

P(i) which executes
the processes P(i) in a sharing manner. It is used to build up a collection of similar
controlled machines which exchange together.

Verifying CSP‖B components. The verification process to ensure the consistency of
a controlled machine (P‖M) in CSP‖B consists in verifying the following conditions:

1. the M machine consistency is checked using the B4Free proof tool;
2. the P controller deadlock-freedom in the stable-failures model is checked with the

FDR2 model-checking tool;
3. the P controller divergence-freedom is checked with FDR2;
4. the divergence-freedom of (P‖M) can be deduced by using a technique based on

Control Loop Invariants (CLI):

– P is translated into a B machine BBODYP using the rewriting rules of [11];
– a CLI is added to BBODYP;
– the BBODYP machine consistency checking is performed with B4Free;
– by way of [12, Theorem 1], we deduce the divergence-freedom of (P‖M);

5. by way of [3, Theorem 5.9] and the fact that P is deadlock-free, we deduce the
deadlock-freedom of (P‖M) in the stable failures model.

This verification process can be generalised to achieve the consistency checking of a
collection of controlled machines ‖i

Ei
(Pi ‖Mi):

1. we check the divergence-freedom of each (Pi ‖Mi) as previously;
2. by way of [3, Theorem 8.1], we deduce the divergence-freedom of ‖i

Ei
(Pi‖Mi);

3. we check the deadlock-freedom of ‖i
Ei

(Pi) with FDR2;
4. by way of [3, Theorem 8.6], we deduce the deadlock-freedom of ‖i

Ei
(Pi ‖Mi).

108 S. Colin et al.

Fig. 2. Architectural view of a Cristal

MODEL Vehicle
VARIABLES

speed, xpos
OPERATIONS

speed0← getSpeed = BEGIN speed0 := speed END ;
xpos0← getXpos = BEGIN xpos0 := xpos END ;
setAccel(accel) =
PRE accel ∈ MIN_ACCEL..MAX_ACCEL
THEN

ANY new_speed
WHERE new_speed = speed + accel
THEN

IF (new_speed > MAX_SPEED)
THEN

xpos := xpos + MAX_SPEED ‖ speed := MAX_SPEED
ELSE

IF (new_speed < 0)
THEN

xpos := xpos − (speed × speed) / (2 × accel)
‖ speed := 0

ELSE
xpos := xpos + speed + accel / 2 ‖ speed := new_speed

END
END

END
END

END

Fig. 3. The Vehicle B model

REFINEMENT CtrlVehicle_ref
VARIABLES

xpos_csp, speed_csp, cb
INVARIANT

xpos_csp ∈ Positions_csp
∧ speed_csp ∈ Speeds_csp
∧ cb = 0
OPERATIONS
CtrlVehicle =

BEGIN
CHOICE

BEGIN
xpos_csp← getXpos ;
speed_csp← getSpeed ;
ANY accel_csp WHERE

accel_csp ∈ Accels_csp
THEN

setAccel(accel_csp); cb := 0
END

END
OR

BEGIN
speed_csp← getSpeed ;
xpos_csp← getXpos;
ANY accel_csp WHERE

accel_csp ∈ Accels_csp
THEN

setAccel(accel_csp); cb := 0
END

END
END

END
END

Fig. 4. B rewriting of
CtrlVehicle

CtrlVehicle =
(getXpos ? xpos→ getSpeed ? speed→ vehicleInfo ! xpos ! speed→

vehicleAccel ? accel → setAccel ! accel → CtrlVehicle)
�
(getSpeed ? speed→ getXpos ? xpos→ vehicleInfo ! xpos ! speed→

vehicleAccel ? accel → setAccel ! accel → CtrlVehicle)

Fig. 5. The CtrlVehicle CSP controller

Using CSP||B Components: Application to a Platoon of Vehicles 109

3 Specifying a Single Cristal

As depicted in Fig. 2, in a first approximation, a Cristal vehicle is composed of two
parts: the vehicle and its driving system which controls the vehicle. Each part is itself
built upon a B machine controlled by an associated CSP process.

3.1 The Vehicle

Specifying the vehicle. The vehicle is a behavioural component reacting to a given
acceleration for speeding up or slowing down. It is built upon a Vehicle B ma-
chine that describes its inner workings, i.e. its knowledge of speed and location as
well as how it updates them w.r.t. a given acceleration, as illustrated in Fig. 3. The
speed← getSpeed() and xpos ← getXpos() methods capture data from the vehicle.
The setAccel(accel) method models how the vehicle behaves when passed on a new
instantaneous acceleration.

The B machine is made able to communicate by adding a CSP controller, CtrlVehicle,
depicted in Fig. 5. It schedules the calls to its various methods. The speed and the lo-
cation are passed on to the controller through getSpeed ? speed and getXpos ? xpos
channels corresponding to invocations of the homonymous methods of the B machine to
retrieve the speed and the location of the vehicle. Then, information about speed and lo-
cation is sent to requesting components through vehicleInfo ! xpos ! speed. Similarly,
the controller receives new instantaneous acceleration orders through vehicleAccel ?
accel and passes them on through setAccel ! accel to the B machine.

The whole vehicle component with communication facilities is then defined as a
parallel composition of the Vehicle machine and its CtrlVehicle controller.

Verifying the vehicle. We follow the verification process given Sect. 2.3 to ensure the
consistency of (CtrlVehicle ‖Vehicle):

– the Vehicle B machine consistency is successfully checked using B4Free (11 obvi-
ous POs + 10 normal POs, 2 of them have been proved interactively)

– the CtrlVehicle controller deadlock-freedom and its divergence-freedom are suc-
cessfully checked with FDR2 (6 states and 7 and transitions2 have to be checked);

– Figure 4 illustrates the B rewriting of CtrlVehicle. Its CLI is actually as simple
as the
 predicate modulo the typing predicates. This rewriting is shown consis-
tent with B4Free (11 obvious POs + 7 normal POs), then (CtrlVehicle ‖Vehicle) is
divergence-free;

– we automatically deduce the deadlock-freedom of (CtrlVehicle ‖Vehicle).

3.2 The Driving System

Specifying the driving system. The driving system (CtrlDrivingSystem(mode)‖Driving
System) is built up in a similar way. A DrivingSystem B machine models the decision
system: it updates its perceptions and decides for an acceleration passed on to the phys-
ical vehicle later on.

2 Verifications with FDR2 took place on a Macbook Core 2 Duo 2GHz with 1 GB of RAM.

110 S. Colin et al.

DrivingSys_percept(mode) =
((mode == SOLO) &
vehicleInfo ? myXpos ? mySpeed→ hciSpeed ! mySpeed→ DrivingSys_act(mode))
�
((mode == LEADER) &
vehicleInfo ? myXpos ? mySpeed→ hciSpeed ! mySpeed → comOut ! mySpeed ! myXpos→
DrivingSys_act(mode))
�
((mode == FOLLOWER) &
vehicleInfo ? myXpos ? mySpeed→ comIn ? preSpeed ? preXpos→ hciSpeed ! mySpeed→
setPerceptions! myXpos ! mySpeed ! preXpos ! preSpeed→ comOut ! mySpeed ! myXpos→
DrivingSys_act(mode))
�
((mode == LAST) &
vehicleInfo ? myXpos ? mySpeed→ comIn ? preSpeed ? preXpos→ hciSpeed ! mySpeed→
setPerceptions! myXpos ! mySpeed ! preXpos ! preSpeed→ DrivingSys_act(mode))

DrivingSys_act(mode) =
((mode == SOLO) ∨ (mode == LEADER) &
hciAccel ? accel → vehicleAccel ! accel → DrivingSys_percept(mode))
�

((mode == FOLLOWER) ∨ (mode == LAST) &
getInfluences ? accel → vehicleAccel ! accel → DrivingSys_percept(mode))

CtrlDrivingSystem(mode) = DrivingSys_percept(mode)

Fig. 6. The CtrlDrivingSystem(mode) CSP Controller

Communications are managed by a CtrlDrivingSystem CSP controller shown Fig. 6.
It has four running modes corresponding to different uses of a Cristal: SOLO, LEADER
of a platoon of Cristals, FOLLOWER of another Cristal into a platoon, and LAST vehicle
of a platoon.

In the SOLO mode, the controller requests Cristal speed from the vehicle via vehicle
Info ? myXpos ? mySpeed so as to make the HCI displays it (hciSpeed ! mySpeed). It
also receives an acceleration from the human driver passed on through hciAccel ? accel
and sends this desired acceleration to the vehicle through vehicleAccel ! accel.

The LEADER mode is very similar to the SOLO mode. The only difference consists
in additional sending of the Cristal information to the following Cristal via comOut !
mySpeed ! myXpos.

The FOLLOWER mode uses the DrivingSystem B machine: information required by
the machine to compute an accurate speed are obtained from the vehicle (vehicleInfo ?
myXpos ? mySpeed) and from the leading Cristal (comIn ? preSpeed ? preXpos). Once
data are obtained, they are passed on to the B machine through the setPerceptions()
method and sent to the following Cristal via comOut ! mySpeed ! myXpos. Otherwise,
the acceleration is obtained by a call to the getInfluences() method, and the result is
passed on to the vehicle via vehicleAccel ! accel.

The LAST mode is very similar to the FOLLOWER mode. The only difference is that
the last vehicle does not send its data to another one.

Verifying the driving system. Using the verification process given Sect. 2.3, the
CtrlDrivingSystem(mode)‖DrivingSystem driving system is shown divergence-free and
deadlock-free:

Using CSP||B Components: Application to a Platoon of Vehicles 111

– the DrivingSystem B machine is consistent (24 obvious POs + 1 normal PO);
– for each mode, the CtrlDrivingSystem(mode) CSP controller is deadlock-free and

divergence-free (4-4 states-transitions for the SOLO mode, 5-5 for the LEADER
mode, 7-7 for the FOLLOWER mode and 6-6 for the LAST mode);

– the B rewriting of CtrlDrivingSystem(mode) is consistent (23 obvious POs + 30
normal POs with 2 POs proved interactively).

3.3 The Cristal(mode) Assembly

Specifying the assembly. As illustrated Fig. 2, a Cristal is defined as the parallel com-
position of a vehicle and its associated driving system, expressed in CSP by:

Cristal(mode) =(CtrlVehicle ‖ Vehicle)
�

{∣∣∣ vehicleInfo,
vehicleAccel

∣∣∣
}
(CtrlDrivingSystem(mode) ‖ DrivingSystem)

Verifying the assembly. Cristal (mode) is shown consistent following the verification
process given in Sect. 2.3:

– (CtrlVehicle ‖Vehicle) and (CtrlDrivingSystem(mode)‖DrivingSystem) are di-
vergence-free, hence Cristal (mode) is also divergence-free;

– Cristal (mode) is deadlock-free as a consequence of the deadlock-freedom of
(CtrlVehicle ‖CtrlDrivingSystem(mode)) checked with FDR2 (8-9 states-transitions
for the SOLO mode, 9-10 for LEADER, 11-12 for FOLLOWER, 10-11 for LAST).

Checking a safety property. A safety property we are interested in, states that per-
ception and reaction should alternate while the Cristal runs, i.e. the data are always
updated (vehicleInfo) before applying an instantaneous acceleration to the vehicle
(vehicleAccel). This property is captured by the following CSP process:

Property = vehicleInfo ? xpos ? speed→ vehicleAccel ? accel→ Property

We need to show that the Cristal meets this property. For that, we first successfully
check with FDR2 that there is a trace refinement between the CSP part of Cristal (mode)
and Property, i.e. Property �T CtrlVehicle ‖CtrlDrivingSystem(mode). Then, by apply-
ing [3, Corollary 7.2], we obtain that Property �T Cristal (mode), i.e. the property is
satisfied by the Cristal (mode). The verification with FDR2 involved the same figures
for states-transitions as for the assembly verification above.

4 Specifying a Platoon of Cristals

Once we dispose of a correct model for a single Cristal (mode), we can focus on the spec-
ification of a platoon as presented Fig.7. We want the various Cristals to avoid going stale
when they move in a platoon. This might happen because a Cristal waits for information
from its leading one, i.e. we do not want the communications in the convoy to deadlock.

112 S. Colin et al.

Fig. 7. A Platoon of four Cristals

Cristal_p(pos,max) =
if (pos == 1)
then (Cristal (LEADER) [[comOut← com.pos]])
else if (pos == max)

then (Cristal (LAST) [[comIn← com.(pos−1)]])
else (Cristal (FOLLOWER) [[comIn← com.(pos−1), comOut← com.pos]])

Fig. 8. Cristal_p(pos,max)

Specifying the assembly. From the CSP||B specification of a generic Cristal (mode)
given in the previous section, we first define a Cristal occupying the position pos into
a platoon of max vehicles, as presented Fig. 8: if the Cristal is at the first position,
it runs on the LEADER mode, if it is at the last position, it runs on the LAST mode,
otherwise, it runs on the FOLLOWER mode. The communication channels are renamed
by com.pos/com.pos−1, so that the comOut channel of one Cristal matches with the
comIn channel of the following Cristal.

A platoon of max Cristals is defined as an assembly of max Cristal_p(pos,max) syn-
chronised on {| com.pos|}, as illustrated Fig. 7 for four vehicles:

Platoon(max) =

pos∈{1..max}�

{|com.pos|}

(Cristal_p(pos,max))

Table 1. Checks of the CSP
parts of Platoon(max)

states transitions time
Platoon(2) 45 95 0
Platoon(3) 225 700 0
Platoon(4) 1,125 4,625 0
Platoon(5) 5,625 28,750 0
Platoon(6) 28,125 171,875 0
Platoon(7) 140,625 1,000,000 2s
Platoon(8) 703,125 5,703,125 14s
Platoon(9) 3,515,625 32,031,250 1m27s
Platoon(10) 17,578,125 177,734,375 8m09s
Platoon(11) 87,890,625 976,562,500 3h01m56s

Verifying the assembly. To check the consistency
of Platoon(max), we follow the verification process
presented in Sect. 2.3. Since each Cristal is proved
divergence-free, Platoon(max) is divergence-free.

We have to consider the parallel composition of the
CSP parts of all the Cristals. Table 1 shows results for the
considered number of vehicles into the checked platoon.
The verification becomes more time-consuming starting
from about 11 vehicles. However, starting from four ve-
hicles, the number of vehicles does not change the com-
munication modes because it is all what we need to check
all kinds of intercommunications: between a leader and a
follower, between two following vehicles and between a follower and the last vehicles.

FDR2 checks that this assembly is deadlock-free, hence Platoon(max) is deadlock-
free. Consequently, this verification process validates the safety property introduced at
the beginning of Sect. 4 saying that the communications, expressed through renaming,
should not deadlock.

Using CSP||B Components: Application to a Platoon of Vehicles 113

Fig. 9. The Vehicle2 component

MODEL Location(er)
OPERATIONS
p_xpos← xposSensor(xpos) =
PRE xpos ∈ N

THEN
ANY xx WHERE xx ∈ N

∧ xpos − xpos × er / 100 ≤ xx
∧ xx ≤ xpos + xpos × er / 100

THEN
p_xpos := xx

END
END

END

Fig. 10. The Location B
model

5 Detailing (CtrlVehicle(mode)‖Vehicle)

The definition of the vehicle part presented in Sect. 3.1 is very general. In order to detail
information about the vehicle engine and its location, reflecting separation of concerns
inside the (CtrlVehicle (mode)‖Vehicle) component, we make the model presented in
Fig. 2 evolve. This evolution introduces new components as illustrated in Fig. 9. They
correspond to the following design choices:

1. Now the Vehicle B machine represents the “real” physical vehicle.
2. For compatibility purpose with the rest of the system, the CtrlVehicle is preserved

without any modifications.
3. Two new B components are added, modelling two sensors and an actuator, intro-

ducing a loss of precision to represent the sensor and actuator effects:
– The B Location machine show Fig. 10 represents an abstract location system

able to determine the geographic location of the physical vehicle. It perceives
the “real” location and returns an approximated value through
p_xpos← xposSensor(xpos) (with an error of er%). It might be implemented
later on by a GPS system, for instance.

– The B Engine machine is introduced to model a speed sensor on the phys-
ical vehicle and an acceleration actuator. It senses the “real” speed, returns
an approximated value through p_speed← speedSensor(speed) and applies a
decided acceleration order through accel ← accelActuator(d_accel).

4. Three new CSP controllers must be introduced to control the new B machines and
to manage communications, i.e. perceptions on the physical world and exchanges
between the machines.

5.1 Three New CSP controllers

Specifying CtrlPhysical. This controller manages the perceptions on the real vehicle.
It calls the speed← getSpeed() and xpos← getXpos() B methods – to accurate the
“real” speed and xpos – and sends these data on phyXpos ! xpos and phySpeed ! speed.

114 S. Colin et al.

It receives a decided acceleration through phyAccel ? accel, then it calls the method
setAccel(accel) .

CtrlPhysical =
(getSpeed ? speed→ phySpeed ! speed→ getXpos ? xpos→

phyXpos ! xpos → phyAccel ? accel→ setAccel ! accel→ CtrlPhysical)
�
(getXpos ? xpos→ phyXpos ! xpos→ getSpeed ? speed→

phySpeed ! speed → phyAccel ? accel→ setAccel ! accel→ CtrlPhysical)

Specifying CtrlLocation. This controller manages the B Location machine. It per-
ceives the “real” location on phyXpos ? xpos and calls p_xpos← xposSensor(xpos)
to pass them on to the Location component. It sends the perceived location through
xposOut ! p_xpos.

CtrlLocation =
phyXpos ? xpos→ xposSensor ! xpos ? p_xpos→ xposOut ! p_xpos→ phyAck→ phyAck→ CtrlLocation

Specifying CtrlEngine. This controller is in charge of the Engine B machine, i.e. the
speed sensor and the acceleration actuator. A speed perception consists in receiving the
“real” speed on phySpeed, passing it on to the B machine by calling the p_speed←
speedSensor(speed) method, and sending the perceived speed through speedOut !
p_speed. An acceleration setting consists in receiving the decided acceleration on
accelIn ? d_accel, passing them on to Engine by calling accel ← accelActuator(d_ac-
cel) and sending it to the real vehicle through phyAccel ! accel.

CtrlEngine =
phySpeed ? speed→ speedSensor ! speed ? p_speed→ speedOut ! p_speed→ phyAck→
accelIn ? d_accel→ accelActuator ! d_accel ? accel → phyAccel ! accel→ phyAck→ CtrlEngine

In our first model, speed and location perceptions are done before acceleration is
applied. Now, with the separation of concerns introduced by the two components Lo-
cation and Engine, it would be possible for location perception to be realised after an
acceleration setting, for instance. In order to ensure this, CtrlEngine and CtrlLocation
are synchronised through phyAck.

Verifying the new components. We successfully establish the consistency of (CtrlPhy
sical ‖Vehicle), (CtrlEngine‖Engine) and (CtrlLocation ‖ Location) using B4Free and
FDR2 by following the verification process presented in Sect. 2.3.

5.2 The Vehicle2 Assembly

Vehicle2 is defined as an assembly of the previously detailed components, synchronised
on their common channels:

Vehicle2 =

⎛
⎜⎜⎜⎝

�
{∣∣∣∣

phyAccel,
phySpeed,
phyXpos

∣∣∣∣
}

⎛
⎝(CtrlEngine ‖ Engine)

�

{|phyAck|}

(CtrlLocation ‖ Location)

⎞
⎠

(
CtrlPhysical

�
Vehicle

)

⎞
⎟⎟⎟⎠
[[

accelIn← setAccel,
xposOut← getXpos,
speedOut← getSpeed

]]

Some channels have to be renamed to match those of the CtrlVehicle controller.

Using CSP||B Components: Application to a Platoon of Vehicles 115

Verifying that Vehicle2 refines Vehicle. The goal of the Vehicle component evolution
is to retain the initial architecture, i.e. we want to replace Vehicle into Cristal (mode) by
Vehicle2 and prove that the already established properties are still valid, among which:

– the deadlock-freedom of the whole vehicle (Sect. 3.1);
– the fact that perceptions and actions alternate (Sect. 3.3);
– the deadlock-freedom of the whole convoy (Sect. 4).

Hence Vehicle2 must externally show the same traces as Vehicle and should not in-
troduce new deadlocks. Proving that Vehicle2 refines Vehicle in the stable failures
semantics suffices for ensuring that. Indeed, the stable failures refinement preserves
safety properties (because it implies trace refinement), liveness properties and deadlock-
freedom [10].

We unfortunately face a problem. Vehicle is a B model and Vehicle2 is an assembly of
CSP controllers and B machines: there is no manner to check this kind of refinement. To
solve this problem, our proposal consists in lifting the refinement checking to an upper
level, where refinement is well-defined. In a nutshell, we thus have to prove that the
(CtrlVehicle ‖Vehicle) component is refined by the (CtrlVehicle ‖Vehicle2) component
in the stable failures model which is denoted by:

(CtrlVehicle||Vehicle)\α(Vehicle)�SF (CtrlVehicle||Vehicle2)\α(Vehicle)

where α(Vehicle) ≡ {|getXpos,getSpeed,setAccel|}.
PROOF:
ASSUME:

CtrlVehicle2 =

⎛
⎜⎜⎜⎜⎜⎝

�
⎧⎨
⎩

∣∣∣∣∣∣
phyAccel,
phySpeed,
phyXpos

∣∣∣∣∣∣

⎫⎬
⎭

⎛
⎝CtrlEngine

�

{|phyAck|}

CtrlLocation

⎞
⎠

CtrlPhysical

⎞
⎟⎟⎟⎟⎟⎠

[[
accelIn← setAccel,
xposOut← getXpos,
speedOut← getSpeed

]]

(CtrlVehicle2 is the CSP part of Vehicle2)
1. (CtrlVehicle ‖Vehicle) \ α(Vehicle) �SF (CtrlVehicle‖CtrlVehicle2)\ α(Vehicle)
PROOF:

1.1. CtrlVehicle \ α(Vehicle) �SF (CtrlVehicle‖CtrlVehicle2) \ α(Vehicle)
(verification carried out by FDR2 – 6 states and 7 transitions)

1.2. (CtrlVehicle ‖Vehicle) \ α(Vehicle) �SF CtrlVehicle \ α(Vehicle)
PROOF:

1.2.1. traces(((CtrlVehicle ‖Vehicle) \ α(Vehicle) = traces(CtrlVehicle \ α(Vehicle))
(definition of traces, hiding of internal channels)

1.2.2. failures((CtrlVehicle ‖Vehicle) \ α(Vehicle)) = failures(CtrlVehicle \ α(Vehicle)) = /0
(deadlock-freedom verified by FDR2 – 32 states and 48 transitions, [3, theorem 5.9])

1.2.3. (CtrlVehicle ‖Vehicle) \ α(Vehicle) �SF CtrlVehicle \ α(Vehicle)
(1.2.1, 1.2.2, definition of �SF)

1.3. (CtrlVehicle ‖Vehicle) \ α(Vehicle) �SF (CtrlVehicle‖CtrlVehicle2)\ α(Vehicle)
(1.1, 1.2, transitivity of �SF)

2. (CtrlVehicle ‖CtrlVehicle2) \ α(Vehicle) �SF (CtrlVehicle‖Vehicle2) \ α(Vehicle)
PROOF:

2.1. CtrlVehicle2 \ α(Vehicle) �SF Vehicle2 \ α(Vehicle)
([3, corollary 8.7] applied to controllers of Vehicle2)

2.2. (CtrlVehicle ‖CtrlVehicle2) \ α(Vehicle) �SF (CtrlVehicle‖Vehicle2) \ α(Vehicle)
(2.1, monotonicity of �SF w.r.t. ‖ and hiding)

3. (CtrlVehicle ‖Vehicle) \ α(Vehicle) �SF (CtrlVehicle‖Vehicle2) \ α(Vehicle)
(1, 2, transitivity of �SF)

116 S. Colin et al.

As (CtrlVehicle ‖Vehicle) \ α(Vehicle) �SF (CtrlVehicle‖Vehicle2) \ α(Vehicle) is
true, all the properties we wanted to preserve from Vehicle to Vehicle2 are still true:
the deadlock-freedom of a vehicle, the deadlock-freedom of the whole convoy as well
as the alternation of perceptions and actions. In conclusion, we can replace Vehicle by
Vehicle2 without having to check the properties again.

6 Related Works

In addition to works on CSP‖B mentioned in Sect. 2, we would like to cite [15], where
the authors present a formal framework for verifying distributed embedded systems.
An embedded system is described as a set of concurrent real time functions which
communicate through a network of interconnected switches involving messages queues
and routing services. It presents an abstraction-based verification method which consists
in abstracting the communication network by end-to-end timed channels. Proving a
given safety property “requires then (1) to prove a set of proof obligations ensuring the
correctness of the abstraction step (i.e. the end-to-end channels correctly abstract the
network), and (2) to prove [this property] at the abstract level”. The expected advantage
of such a method lies on the ability to overcome the combinatorial explosion frequently
met when verifying complex systems. This method is illustrated by an avionic case
study.

As a comparison point, in [3] Schneider & Treharne illustrate their use of CSP‖B
with a multi-lift system that can be seen as a distributed system using several instances
of a lift, minus the fact that the interactions of the lifts are actually centralised in a
dedicated dispatcher. Our goal is very similar, but in contrast to [3], we want to avoid
relying on a centralised, or orchestrating, controller.

Similar works exist on structured development with the B method using decompo-
sition, hence in a more “top-down” approach, and refinement. For instance, Bontron
& Potet [16] propose a methodology for extracting components out of the enrichments
brought by refinement. The extracted components can then be handled to reason about
them so as to validate new properties or to detail them more. The interesting point is
that their approach stays within the B method framework: this means that the mod-
elling of component communication and its properties has to be done by using the B
notation, which can quickly get more cumbersome than an ad-hoc formalism like CSP.
Abrial [17] introduces the notion of decomposition of an event system: components are
obtained by splitting the specification in the chain of refinements into several specifi-
cations expressing different views or concerns about the model. Attiogbé [18] presents
an approach dual to the one of Abrial: event systems can be composed with a new
asynchronous parallel composition operator, which corresponds to bringing “bottom-
up” construction to event systems. In [19], Bellegarde & al. [19] propose a “bottom-up”
approach based on synchronisation conditions expressed on the guards of the events.
The spirit of the resulting formalism is close to that of CSP‖B. Unfortunately, it does
not seem to support message passing for communication modelling.

As stated in the introduction, this paper is an evolution of [7]. More precisely, in ad-
dition to a more detailed explanation of the specification process we followed with our
model, we exploited the renamings of channels so as to give a fitter way for instanciating

Using CSP||B Components: Application to a Platoon of Vehicles 117

and assembling several Cristals. We also illustrated a novel use of CSP‖B theoretical
results: Indeed, theorems about refinement or equivalences of CSP‖B components are
usually used for easing verification by allowing one to re-express a CSP controller into
a simpler one. We used these results to show how to insert new behaviours by splitting
up a controller/machine compound without breaking previously verified properties.

7 Conclusion

With the development of a real case study, a platoon of a new type of urban vehicles
in the context of the industrial CRISTAL project, we address the importance of for-
mal methods and their utility for highly practical applications. Our contribution mainly
concerns methodological aspects for applying known results and tool supports (FDR2
and B4Free). We show how to use the CSP‖B framework to compositionally validate
the specifications and prove properties of component-based systems, with a precise
verification process to ensure the consistency of a controlled machine (P‖M) and its
generalisation to a collection of controlled machines ‖i

Ei
(Pi ‖Mi).

These formal specifications form another contribution of this work. Indeed, having
formal CSP‖B specifications help – by establishing refinement relations – to prevent in-
compatibility among various implementations. Moreover, writing formal specifications
help in designing a way to manage the multi-level assembly.

This work points out the main drawback of the CSP‖B approach: at the interface
between the both models, CLIs and augmented B machines corresponding to CSP con-
trollers are not automatically generated. However, this task requires a high expertise
level. In our opinion, the user should be able to conduct all the verification steps auto-
matically. Automation of these verification steps could be a direction for future work.

On the case-study side, to go further, we are currently studying new properties such
as the non-collision, the non-unhooking and the non-oscillation: which ones are ex-
pressible with CSP‖B, which ones are tractable and verifiable? This particular perspec-
tive is related to a similar work by the authors of CSP‖B dealing with another kind of
multi-agent system in [14]. So far our use of CSP‖B for the platooning model reaches
similar conclusions. This nonetheless raises the question of which impact the expression
of more complex emerging properties does have on the model.

Further model development requires checking other refinement relations. It also in-
cludes evolutions in order to study what happens when a Cristal joins or leaves the
platoon, and which communication protocols must be obeyed to do so in a safe man-
ner. We also plan to take into account the lateral control and/or perturbations such as
pedestrians or other vehicles.

References

1. Ferber, J., Muller, J.P.: Influences and reaction: a model of situated multiagent systems. In:
2nd Int. Conf. on Multi-agent Systems, pp. 72–79 (1996)

2. Daviet, P., Parent, M.: Longitudinal and lateral servoing of vehicles in a platoon. In: Proceed-
ing of the IEEE Intelligent Vehicles Symposium, pp. 41–46 (1996)

3. Schneider, S.A., Treharne, H.E.: CSP theorems for communicating B machines. In: Formal
Aspects of Computing, Special issue of IFM 2004 (2005)

118 S. Colin et al.

4. Abrial, J.R.: The B Book. Cambridge University Press, Cambridge (1996)
5. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs

(1985)
6. Simonin, O., Lanoix, A., Colin, S., Scheuer, A., Charpillet, F.: Generic Expression in B of the

Influence/Reaction Model: Specifying and Verifying Situated Multi-Agent Systems. INRIA
Research Report 6304, INRIA (2007)

7. Colin, S., Lanoix, A., Kouchnarenko, O., Souquières, J.: Towards Validating a Platoon of
Cristal Vehicles using CSP||B. In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS,
vol. 5140, pp. 139–144. Springer, Heidelberg (2008)

8. Lanoix, A., Hatebur, D., Heisel, M., Souquières, J.: Enhancing dependability of component-
based systems. In: Abdennahder, N., Kordon, F. (eds.) Ada-Europe 2007. LNCS, vol. 4498,
pp. 41–54. Springer, Heidelberg (2007)

9. Badeau, F., Amelot, A.: Using B as a high level programming language in an industrial
project: Roissy VAL. In: Treharne, H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005.
LNCS, vol. 3455, pp. 334–354. Springer, Heidelberg (2005)

10. Roscoe, A.W.: The theory and Practice of Concurrency. Prentice Hall, Englewood Cliffs
(1997)

11. Treharne, H., Schneider, S.: Using a Process Algebra to Control B OPERATIONS. In: 1st
International Conference on Integrated Formal Methods (IFM 1999), pp. 437–457. Springer,
New York (1999)

12. Schneider, S., Treharne, H.: Communicating B Machines. In: Bert, D., Bowen, J.P., Henson,
M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 416–435. Springer,
Heidelberg (2002)

13. Evans, N., Treharne, H.E.: Investigating a file transfer protocol using CSP and B. Software
and Systems Modelling Journal 4, 258–276 (2005)

14. Schneider, S., Cavalcanti, A., Treharne, H., Woodcock, J.: A layered behavioural model of
platelets. In: 11th IEEE International Conference on Engieerging of Complex Computer Sys-
tems, ICECCS (2006)

15. Carcenac, F., Boniol, F.: A formal framework for verifying distributed embedded systems
based on abstraction methods. Int. J. Softw. Tools Technol. Transf. 8(6), 471–484 (2006)

16. Bontron, P., Potet, M.-L.: Automatic Construction of Validated B Components from Struc-
tured Developments. In: Bowen, J.P., Dunne, S., Galloway, A., King, S. (eds.) B 2000, ZUM
2000, and ZB 2000. LNCS, vol. 1878, pp. 127–147. Springer, Heidelberg (2000)

17. Abrial, J.R.: Discrete System Models, Version 1.1 (2002)
18. Attiogbé, C.: Communicating B Abstract Systems, Research Report RR-IRIN 02.08 (2002)

(updated July 2003)
19. Bellegarde, F., Julliand, J., Kouchnarenko, O.: Synchronized parallel composition of event

systems in B. In: Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB
2002. LNCS, vol. 2272, pp. 436–457. Springer, Heidelberg (2002)

	Using CSP||B Components: Application to a Platoon of Vehicles
	Introduction
	Basic concepts and Tools on CSP||B
	B Machines
	Communicating Sequential Processes (CSP)
	CSP||B Components

	Specifying a Single Cristal
	The Vehicle
	The Driving System
	The Cristal(mode) Assembly

	Specifying a Platoon of Cristals
	Detailing (CtrlVehicle(mode)||Vehicle)
	Three New CSP controllers
	The Vehicle2 Assembly

	Related Works
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

