Reentrant Readers-Writers: A Case Study
Combining Model Checking with
Theorem Proving

Bernard van Gastel, Leonard Lensink, Sjaak Smetsers, and Marko van Eekelen

Institute for Computing and Information Sciences, Radboud University Nijmegen
Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
b.vangastel@student.science.ru.nl,
{1.lensink,s.smetsers,m.vaneekelen}@cs.ru.nl

Abstract. The classic readers-writers problem has been extensively
studied. This holds to a lesser degree for the reentrant version, where it
is allowed to nest locking actions. Such nesting is useful when a library is
created with various procedures that each start and end with a lock. Al-
lowing nesting makes it possible for these procedures to call each other.
We considered an existing widely used industrial implementation of the
reentrant readers-writers problem. We modeled it using a model checker
revealing a serious error: a possible deadlock situation. The model was
improved and checked satisfactorily for a fixed number of processes. To
achieve a correctness result for an arbitrary number of processes the
model was converted to a theorem prover with which it was proven.

1 Introduction

It is generally acknowledged that the growth in processor speed is reaching a hard
physical limitation. This has led to a revival of interest in concurrent processing.
Also in industrial software, concurrency is increasingly used to improve efficiency
[26]. It is notoriously hard to write correct concurrent software. Finding bugs
in concurrent software and proving the correctness of (parts of) this software is
therefore attracting more and more attention, in particular where the software
is in the core of safety critical or industrial critical applications.

However, it can be incredibly difficult to track concurrent software bugs down.
In concurrent software bugs typically are caused by infrequent 'race conditions’
that are hard to reproduce. In such cases, it is necessary to thoroughly investigate
‘suspicious’ parts of the system in order to improve these components in such a
way that correctness is guaranteed.

Two commonly used techniques for checking correctness of such system are
formal wverification and testing. In practice, testing is widely and successfully
used to discover faulty behavior, but it cannot assure the absence of bugs. In
particular, for concurrent software testing is less suited due to the typical char-
acteristics of the bugs (infrequent and hard to reproduce). There are roughly two
approaches to formal verification: model checking and theorem proving. Model
checking [6/23] has the advantage that it can be performed automatically, pro-
vided that a suitable model of the software (or hardware) component has been

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 85 2009.
© Springer-Verlag Berlin Heidelberg 2009

86 B. van Gastel et al.

created. Furthermore, in the case a bug is found model checking yields a coun-
terexample scenario. A drawback of model checking is that it suffers from the
state-space explosion and typically requires a closed system. In principle, theo-
rem proving can handle any system. However, creating a proof may be hard and
it generally requires a large investment of time. It is only partially automated
and mainly driven by the user’s understanding of the system. Besides, when
theorem proving fails this does not necessarily imply that a bug is present. It
may also be that the proof could not be found by the user.

In this paper we consider the reentrant readers-writers problem as a formal
verification case study. The classic readers-writers problem [8] considers multiple
processes that want to have read and/or write access to a common resource (a
global variable or a shared object). The problem is to set up an access protocol
such that no two writers are writing at the same time and no reader is accessing
the common resource while a writer is accessing it. The classic problem is stud-
ied extensively[22]; the reentrant variant (in which locking can be nested) has
received less attention so far although it is used in Java, C# and C++ libraries.

We have chosen a widely used industrial library (Trolltech’s Qt) that provides
methods for reentrant readers-writers. For this library a serious bug is revealed
and removed. This case study is performed in a structured manner combining
the use of a model checker with the use of a theorem prover exploiting the
advantages of these methods and avoiding their weaknesses.

In Section 2] we will introduce the case study. Its model will be defined, im-
proved and checked for a fixed number of processes in Section Bl Using a theorem
prover the model will be fully verified in Section [l Finally, related work, future
work and concluding remarks are found in Sections [5] and

2 The Readers-Writers Problem

If in a concurrent setting two threads are working on the same resource, syn-
chronization of operations is often necessary to avoid errors. A test-and-set op-
eration is an important primitive for protecting common resources. This atomic
(i.e. non-interruptible) instruction is used to both test and (conditionally) write
to a memory location. To ensure that only one thread is able to access a resource
at a given time, these processes usually share a global boolean variable that is
controlled via test-and-set operations, and if a process is currently performing
a test-and-set, it is guaranteed that no other process may begin another test-
and-set until the first process is done. This primitive operation can be used to
implement locks. A lock has two operations: lock and unlock. The lock operation
is done before the critical section is entered, and the unlock operation is per-
formed after the critical section is left. The most basic lock can only be locked
one time by a given thread. However, for more sophisticated solutions, just an
atomic test-and-set operation is insufficient. This will require support of the un-
derlying OS: threads acquiring a lock already occupied by some thread should
be de-scheduled until the lock is released. A variant of this way of locking is
called condition locking: a thread can wait until a certain condition is satisfied,
and will automatically continue when notified (signalled) that the condition has

Reentrant Readers-Writers 87

been changed. An extension for both basic and condition locking is reentrancy,
i.e. allowing nested lock operations by the same thread.

A so-called read-write lock functions differently from a normal lock: it either
allows multiple threads to access the resource in a read-only way, or it allows
one, and only one, thread at any given time to have full access (both read
and write) to the resource ([I0]). These locks are the standard solution to the
producer/consumer problem in which a buffer has to be shared.

Several kinds of solutions to the classical readers-writers problem exist. Here,
we will consider a read-write locking mechanism with the following properties.

writers preference. Read-write locks suffer from two kinds of starvation, one
with each kind of lock operation. Write lock priority results in the possibility
of reader starvation: when constantly there is a thread waiting to acquire a
write lock, threads waiting for a read lock will never be able to proceed. Most
solutions give priority to write locks over read locks because write locks are
assumed to be more important, smaller, exclusive, and to occur less.
reentrant. A thread can acquire the lock multiple times, even when the thread
has not fully released the lock. Note that this property is important for mod-
ular programming: a function holding a lock can use other functions which
possibly acquire the same lock. We distinguish two variants of reentrancy:
1. Weakly reentrant: only permit sequences of either read or write locks;
2. Strongly reentrant: permit a thread holding a write lock to acquire a read
lock. This will allow the following sequence of lock operations: write lock,
read lock, unlock, unlock. Note that the same function is called to unlock
both a write lock and a read lock. The sequence of a read lock followed by
a write lock is not admitted because of the evident risk of a deadlock (e.g.
when two threads both want to perform the locking sequence read lock,
write lock they can both read but none of them can write).

2.1 Implementation of Read-Write Locks

In this section we show the C++ implementation of weakly reentrant read /write
locks being part of the multi-threading library of the Qt development framework,
version 4.3. The code is not complete; parts that are not relevant to this presen-
tation are omitted. This implementation uses other parts of the library: threads,
mutexes and conditions. Like e.g. in Java, a condition object allows a thread
that owns the lock but that cannot proceed, to wait until some condition is sat-
isfied. When a running thread completes a task and determines that a waiting
thread can now continue, it can call a signal on the corresponding condition.
This mechanism is used in the C++ code listed in Figure [l

The structure QReadWriteLockPrivate contains the attributes of the class.
These attributes are accessible via an indirection named d. The attributes mutex,
readerWait and writerWait are used to synchronize access to the other admin-
istrative attributes, of which accessCount keeps track of the number of locks (in-
cluding reentrant locks) acquired for this lock. A negative value is used for write

88 B. van Gastel et al.

struct QReadWriteLockPrivate
{

QReadWriteLockPrivate()

: accessCount (0),
currentWriter(0),
waitingReaders(0),
waitingWriters(0)

{1}

QMutex mutex;
QWaitCondition readerWait,

Qt: :HANDLE self =
QThread: : currentThreadId();

while (d->accessCount != 0) {
if (d->accessCount < 0 &&
self == d->currentWriter) {

break; // recursive write lock
}
++d->waitingWriters;
d->writerWait.wait (&d->mutex) ;
--d->waitingWriters;

}

writerWait; d->currentWriter = self;
--d->accessCount;
Q_ASSERT_X (d->accessCount<0,

.Il’ll...ll);

Qt: :HANDLE currentWriter;
int accessCount,waitingReaders, "o,
waitingWriters;

}; }

void QReadWriteLock: :lockForRead() void QReadWriteLock: :unlock()
{ {
QMutexLocker lock(&d->mutex);
while (d->accessCount < 0 ||

QMutexLocker lock(&d->mutex);
Q_ASSERT_X(d->accessCount !=0,

d->waitingWriters) { LUl
++d->waitingReaders; if ((d->accessCount > 0 &&
d->readerWait.wait (&d->mutex) ; --d->accessCount == 0) ||
--d->waitingReaders; (d->accessCount < 0 &&
} ++d->accessCount == 0)) {

++d->accessCount; d->currentWriter = 0;

Q_ASSERT_X (d->accessCount>0, if (d->waitingWriters) {
L D d->writerWait.wakeOne();
} } else if (d->waitingReaders) {
d->readerWait.wakeAll();
void QReadWriteLock: :lockForWrite() }
{ }
QMutexLocker lock(&d->mutex); }

Fig. 1. QReadWriteLock class of Qt

access and a positive value for read access. The attributes waitingReaders and
waitingWriters indicate the number of threads requesting a read respectively
write permission, that are currently pending. If some thread owns the write lock,
currentWriter contains a HANDLE to this thread; otherwise currentWriter is
a null pointer.

The code itself is fairly straightforward. The locking of the mutex is done
via the constructor of the wrapper class QMutexLocker. Unlocking this mutex
happens implicitly in the destructor of this wrapper. Observe that a write lock
can only be obtained when the lock is completely released (d->accessCount
== 0), or the thread already has obtained a write lock (a reentrant write lock
request, d->currentWriter == self).

Reentrant Readers-Writers 89

The code could be polished a bit. E.g. one of the administrative attributes
can be expressed in terms of the others. However, we have chosen not to deviate
from the original code, except for the messages in the assertions which were, of
course, more informative.

3 Model Checking Readers/Writers with Uppaal

Uppaal [I7] is a tool for modeling and verification of real-time systems. The
idea is to model a system using timed automata. Timed automata are finite
state machines with time. A system consists of a collection of such automata.
An automaton is composed of locations and transitions between these locations
defining how the system behaves. To control when to fire a transition one can
use guarded transitions and synchronized transitions. Guards are just boolean
expressions whereas the synchronization mechanism is based on hand-shakes:
two processes (automata) can take a simultaneous transition, if one does a send,
ch!, and the other a receive, ch?, on the same channel ch. For administration
purposes, but also for communication between processes, one can use global
variables. Moreover, each process can have its own local variables. Assignments
to local or global variables can be attached to transitions as so-called updates.

In this paper we will not make use of time. In Uppaal terminology: we don’t
have clock variables. Despite the absence of this most distinctive feature of
Uppaal, we have still chosen to use Uppaal here because of our local expertise and
the intuitive and easy to use graphical interface which supports understanding
and improving the model in a elegant way. The choice of model checker is however
not essential for the case study. It could also have been performed with any other
model checker such as e.g. SMV [19], mCRL2 [I1] or SPIN [14].

Constructing the Uppaal Model

Our intention is to model the code from Figure[as an abstract Uppaal model,
preferably in a way that the distance between code and model is kept as small
as possible. However, instead of trying to model Qt-threads in Uppaal we will
directly use the built-in Uppaal processes to represent these threads. Thread
handles are made explicit by numbering the processes, and using these numbers
as identifications. NT is the total number of processes. The identification numbers
are denoted by tid in the model, ranging 0 to NT - 1. The NT value is also used
to represent the null pointer for the variable currentWriter in the C++ code.
Mutexes and conditions directly depend on the thread implementation, so we
cannot model these objects by means of code abstraction. Instead we created an
abstract model in Uppaal that essentially simulates the behavior of these objects.
The result is shown in Figure Pl In this basic locking model, method calls are
simulated via synchronization messages. The conditions are represented by two
integer variables, sleepingReaders and sleepingWriters, that maintain the
number of waiting readers and waiting writers, respectively. A running process
can signal such a process which will result in a wake up message. A process
receiving such a message should always immediately try to acquire the lock,
otherwise mutual exclusion is not guaranteed anymore.

90 B. van Gastel et al.

signalOneWriter? signalAllReaders?

sleepingReaders==0

wakeOne!
sleepingWriters--
sleepingWriters > 0

sleepingReaders>0
wakeAll!
sleepingReaders--
Locked

writerWait?
sleepingWriters++

unlock? readerWait ?

sleepingReaders++

Unlocked

Fig. 2. Mutex and condition model

The RWLock implementation is model checked using the combination of this
basic locking process with a collection of concurrent processes, each continuously
performing either a lockForRead, lockForWrite, or unlock step. The abstract
model (see Figure B]) is obtained basically by translating C++ statements into
transitions.

For convenience of comparison, we have split the model into three parts, corre-
sponding to lockForRead, writeLock and unlock respectively. These parts can
be easily combined into a single model by collapsing the Start states, and, but
not necessarily, the Abort states. The auxiliary functions testRLock, testWLock,
and testReentrantWLock are defined as:

bool testRLock(ThreadId tid)

{ return waitingWriters>0 || (currentWriter!=NT && currentWriter!=tid);}

bool testWLock (ThreadId tid) bool testReentrantWLock (ThreadId tid)

{ return accessCount != 0 && { return accessCount != 0 &&
currentWriter != tid; tid == currentWriter;

} }

If a process performs a lock operation it will enter a location that is labeled
with EnterXX. Here, XX corresponds to the called operation. The call is left
via a LeaveXX location. For example, if a thread invokes lockForRead it will
enter the location EnterRL. Hereafter, the possible state transitions directly
reflect the corresponding flow of control in the original code for this method.
The call ends at LeaveRL. These special locations are introduced to have a
kind of separation between definition and usage of methods. If the thread was
suspended (due to a call to the wait method on the readerWait condition)
the process in the abstract model will be waiting in the location RWait. The
wrapper QMutexLocker has been replaced by a call to lock. To take the effect
of the destructor into account, we added a call to unlock at the end of the scope
of the wrapper object. Furthermore, observe that assertions are modeled as a
‘black hole’: a state, labeled Abort, from which there is no escape possible.

Reentrant Readers-Writers 91

lockForRead

EnterRL ReadLock RWait
\/.\

readerWait !

testRLock (tid)
waitingReaders++

lock!

ltestRLock (tid)

accessCount <=0

waitingReaders-~

accessCount++

unlock!

LeaveRL ™~ accessCount >0
lockForWrite
EnterWL lock! W\ri;e.kc:ck lock! waitingWriters--

testWLock(tid) wakeOne?

|)
Start ItestWLock(tid)

Abort

accessCount >= 0 Lock(tid)

currentWriter=tid, waiting\Writers++

! accessCount--
uniook testReentrantWLock(tid)
accessCount<0
LeaveWL e
unlock
EnterUN accessCount > 0_—29cessCount--

accessCount==0 currentWriter = NT

waitingWriters > 0

accessCount++

signalOneWriter!

accessCount =0

itefs == 0 &&
gReaders ==
signalAllReaders!

U™ waitingWriters == 0 8&
waitingReaders > 0

LeaveUN unlock!

Fig. 3. Uppaal models of the locking primitives

Checking the Model

The main purpose of a model checker is to verify the model w.r.t. a requirement
specification. In Uppaal, requirements are specified as queries consisting of path
and state formulae. The latter describe individual states whereas the former
range over execution paths or traces of the model. In Uppaal, the (state) formula
A[] o expresses that ¢ should be true in all reachable states. deadlock is a built-
in formula which is true if the state has no outgoing edges.

In our example we want to verify that the model is deadlock-free, which is a
state property. This can easily be expressed by means of the following query:

A[] not deadlock

When running Uppaal on this model consisting of 2 threads, the verifier will
almost instantly respond with: Property is not satisfied. The trace gener-
ated by Uppaal shows a counter example of the property, in this case a scenario
leading to a deadlock. The problem is that if a thread, which is already holding
a read lock, does a (reentrant) request for another read lock, it will be suspended

92 B. van Gastel et al.

if another thread is pending for a write lock (which is the case if the write lock
was requested after the first thread obtained the lock for the first time). Now
both threads are waiting for each other.

3.1 Correcting the Implementation/Model

The solution is to let a reentrant lock attempt always succeed. To avoid writ-
ers starvation, new read lock requests should be accepted only if there are no
writers waiting for the lock. To distinguish non-reentrant and reentrant uses, we
maintain, per thread, the current number of nested locks making no distinction
between read and write locks. Additionally, this solution allows strongly reen-
trant use. In the implementation this is achieved by adding a hash map (named
current of type QHash) to the attributes of the class that maps each thread
handle to a counter. To illustrate our adjustments, we show the implementation
of lockForRead [l.

void QReadWriteLock::lockForRead() {
QMutexLocker lock(&d->mutex) ;

Qt: :HANDLE self = QThread::currentThreadId();

QHash<Qt: :HANDLE, int>::iterator it = d->current.find(self);
if (it '= d->current.end()) {
++it.value();

Q_ASSERT_X(d->number0fThreads > 0, "...", "...");
return;
¥
while (d->currentWriter != 0 || d->waitingWriters > 0) {
++d->waitingReaders;
d->readerWait.wait (&d->mutex) ;
--d->waitingReaders;
}

d->current.insert(self, 1);
++d->number0fThreads;
Q_ASSERT_X(d->number0fThreads> 0, "...", "...");

To verify this implementation we again converted the code to Uppaal. Since
handles where represented by integers ranging from 0 to NT - 1 (where NT de-
notes the number of threads), we can use a simple integer array to maintain
the number of nested locks per thread, instead of a hash map. In this array, the
process id is used as an index. Figure @l shows the part of the Uppaal model
that corresponds to the improved lockForRead. For the full Uppaal model, see
www.cs.ru.nl/\simsjakie/papers/readerswriters/.

To limit the state space we have added an upper bound maxNest to the nest-
ing level and a counter readNest indicating the current nesting level. This vari-
able is decremented in the unlock part of the full model. Running Uppaal on

! For the complete code, see fwww.cs.ru.nl/~sjakie/papers/readersuriters/}

www.cs.ru.nl/$\sim $sjakie/papers/readerswriters/
www.cs.ru.nl/~sjakie/papers/readerswriters/

Reentrant Readers-Writers 93

currentWriter = NT ||

writersWaiting > 0 RWait

EnterRL BeginRL . ReadLock
! =
lock! Y current[tid] 0 Y

waitingReaders++

readNest < readersWait!

maxNest

current[tid] = 1,
numberOfThreads++

Start current[tid] > 0

Abort

lock!
waitingReaders--

currentftid]++

numberOfThreads <= 0 wakeupReader?

I(currentWriter I= NT I

readNest++ writersWaiting > 0)

unlock!

LeaveRL numberOfThreads >0 EndRL RBlocked

Fig. 4. Uppaal model of the correct version of lockForRead

the improved model will, not surprisingly, result in the message: Property is
satisfied. In this experiment we have limited the number of processes to 4,
and the maximum number of reentrant calls to 5. If we increase these values
slightly, the execution time worsens drastically. So, for a complete correctness
result, we have to proceed differently.

4 General Reentrant Readers-Writers Model

In this section we will formalize the Uppaal model in PVS [21].

We prove that the reentrant algorithm is free from deadlock when we
generalize to any number of processes. While explaining the formalization
we will briefly introduce PVS. For the complete PVS specification, see
www.cs.ru.nl/~sjakie/papers/readerswriters/.

4.1 Readers-Writers Model in PVS

PVS offers an interactive environment for the development and analysis of formal
specifications. The system consists of a specification language and a theorem
prover. The specification language of PVS is based on classic, typed higher-
order logic. It resembles common functional programming languages, such as
Haskell, LISP or ML. The choice of PVS as the theorem prover to model the
readers writers locking algorithm is purely based upon the presence of local
expertise. The proof can be reconstructed in any reasonably modern theorem
prover, for instance Isabelle [20] or Coq[5]. There is no implicit notion of state in
PVS specifications. So, we explicitly keep track of a system state that basically
consists of the system variables used in the Uppaal model.

In the Uppaal model a critical section starts with a lock! and ends with
either a unlock!, readersWait! or writersWait! synchronization. Not all the
state transitions are modelled individually in the PVS model. All actions occur-
ing inside a critical section are modeled as a single transition. This makes the
locking mechanism protecting the critical sections superfluous in the PVS model
and enables us to reduce the number of different locations. Only these locations in

www.cs.ru.nl/~sjakie/papers/readerswriters/

94 B. van Gastel et al.

the Uppaal model that are outside a critical section are needed and are tracked by
the ThreadLocation variable. Furthermore, the EnterXX and LeaveXX locations
are ignored, because they are only used as a label for a function call and have
no influence on the behavior of the modeled processes.

With NT denoting the total number of processes, we get the following
representation:

ThreadID : TYPE = below (NT)J
ThreadLocation : TYPE = { START, RWAIT, RBLOCKED, WWAIT, WBLOCKED }
ThreadInfo : TYPE = [# status : ThreadlLocation, current : nat #]E
System : TYPE = [# waitingWriters, waitingReaders,
number0fThreads : nat,
currentWriter : below(NT+1),

threads : ARRAY [ThreadID — ThreadInfo] #]f

The auxiliary variables readNest, writeNest and maxNest restrict the Uppaal
model to a maximum number of nested reads and writes. They also prevent
unwanted sequences of lock/unlock operations, e.g. when a write lock request
occurs after a read lock has already been obtained. In the PVS model we allow
for any amount of nesting, so the variables writeNest and maxNest introduced to
limit nesting can be discarded. The readNest variable is used to check whether
there already is a read lock present when a write lock is requested. In the PVS
model we have implemented this check by testing whether the lock counter for
this particular thread is 0 before it starts waiting for a (non-reentrant) write
lock. The logic behind it is that if, previously, a read lock had been obtained by
this thread, the counter would have been unequal to 0.

Because none of the variable updates in the Uppaal model occur outside of
a critical section, we can model the concurrent execution of the different pro-
cesses obtaining writelocks, readlocks and releasing them by treating them as
interleaved functions.

We first define a step function that executes one of the possible actions for
a single process. The step function is restricted to operate on a subset of the
System data type, signified by the validState? predicate, further explained in
Section The actions themselves do not deliver just a new state but a lifted
state. In PVS, the predefined 1ift datatype, consisting of two constructors up
and bottom, adds a bottom element to a given base type, in our case validState?
incorporating the state of the model. This is useful for defining partial functions,
particularly to indicate the cases that certain actions are not permitted.

In essence the step function corresponds to the center of the Uppaal model
consisting of the Start and the EnterXX/LeaveXX states.

step(tid:ThreadID, s1, s2: (validState?)): bool =
writelock(sl,tid) = up(s2) Vreadlock(sl,tid) = up(s2) V
unlock(sl,tid) = up(s2)

2 Denotes the set ofnatural numbers between 0 and NT, exclusive ofNT.
3 Recordtypes in PVS aresurrounded by [# and #].
4 Arrays in PVS are denoted as functions.

Reentrant Readers-Writers 95

The predicate interleave simulates parallel execution of threads.

interleave (s1,s2:System): bool =
3 (tid:ThreadID): step(tid,s1,s2)A
V (other_tid: ThreadID): other_tid # tid =
s1‘threads(other_tid) = s2‘threads(other_tid) [

4.2 Translation from Uppaal to PVS

The functions that perform the readlock, writelock and unlock respectively are
essentially the same as in the original code. It is very well possible to de-
rive the code automatically from the Uppaal model by identifying all paths
that start with a lock! action on its edge and lead to the first edge with an
unlock!, readersWait! or writersWait! action. The readlock function is pro-
vided as an example of this translation. For instance, the round trip in Figure
[from the Start location, through BeginRL directly going to EndRL, has guard
current [tid] > 0, and action current[tid]++; associated with it. It starts
and ends in the START location of the PVS model. This can be recognized as a
part of the code of the readlock function below.

readlock(sl:(validState?), tid:ThreadID) : lift[(validState?)| =
LET thread = sl‘threads(tid) IN
CASES thread‘status OF
START:
IF thread‘current > 0
THEN up(sl WITH [threads := sl‘threads wiTH
[tid := thread WITH [current := thread‘current+1]]])
ELSIF sl‘currentWriter # NTV sl‘waitingWriters > 0
THEN up(sl WiTH |[waitingReaders := sl‘waitingReaders + 1,
threads := sl1‘threads WITH
[tid := thread WITH [status := RWAIT]]])
ELSE up(sl wWitH | numberOfThreads := sl‘numberOfThreads + 1,
threads := sl1‘threads wiTH
[tid := thread WITH [current := 1]]])
ENDIF,
RBLOCKED:
IF sl‘currentWriter # NTV sl‘waitingWriters > 0
THEN up(sl)
ELSE up(sl WitH | numberOfThreads := sl‘numberOfThreads + 1,
waitingReaders := sl‘waitingReaders - 1,
threads := sl1‘threads WITH
[tid := thread WITH [current := 1, status := START]]])
ENDIF
ELSE:
up(s1)
ENDCASES

5 The ¢ operator denotes record selection.

96 B. van Gastel et al.

4.3 System Invariants

Not every combination of variables will be reached during normal execution of
the program. Auxiliary variables are maintained that keep track of the total
amount of processes that are in their critical section and of the number of pro-
cesses that are waiting for a lock. We express the consistency of the values of
those variables by using a validState? predicate. This is an invariant on the
global state of all the processes and essential in proving that the algorithm is
deadlock free. We want to express in this invariant that the global state is sane
and safe. Sanity is defined as:

— The value of the waitingReaders should be equal to the total number of
processes with a status of RWAIT or RBLOCKED.

— The value of the waitingWriters should be equal to the total number of
processes with a status of WWAIT or WBLOCKED.

— The value of the number0fThreads variable should be equal to the number
of processes with a lock count of 1 or higher.

Besides the redundant variables having sane values, we also prove that the in-
variant satisfies that any waiting process has a count of zero current readlocks,
stored in the current field of ThreadInfo. Furthermore, if a process has ob-
tained a write lock, then only that process can be in its critical section:

S: VAR System countInv(s): bool = s‘number0fThreads = count(s‘threads)

waitingWritersInv(s): bool = s‘waitingWriters = waitingWriters(s)
waitingReadersInv(s): bool = s‘waitingReaders = waitingReaders(s)

statusInv(s): bool = V(tid:ThreadID):
LET thr = s‘threads(tid) IN
thr‘status = WWAITV thr‘status = WBLOCKED V
thr‘status = RWAITV thr‘status = RBLOCKED = thr‘current = 0

writeLockedByInv(s) : bool = LET twlb = s‘currentWriter IN
twlb # NT = s‘numberOfThreads = 1A
s‘threads(twlb) ‘status = START A s‘threads(twlb) ‘current > 0A
V(tid:ThreadID): tid # twlb = s‘threads(tid)‘current = 0))

validState?(s) : bool = countInv(s)A waitingWritersInv(s) A
statusInv(s) A writeLockedByInv(s) A waitingReadersInv(s)

Before trying to prove the invariant with PVS, we have first tested the above
properties (except for waitingWritersInv) and waitingReadersInv) in the Up-
paal model to see if they hold in the fixed size model (see FigureH]). The proper-
ties waitingWritersInv and waitingReadersInv cannot be expressed in Uppaal
because one cannot count the number of processes residing in a specific location.
The inspection of the above properties in Uppaal enables us to detect any mis-
takes in the invariant before spending precious time on trying to prove them in
PVS.

Reentrant Readers-Writers 97

— A[JcountCurrents() = numberOfThreads (Count Inv.)[
— A[] Vt € ThreadId : Thread(t) .WWait V Thread(t) .RWaitV
Thread(t) .WBlocked V Thread(t) .RBlocked = current[t] =0 (STATUS INV.)
— AllcurrentWriter # NT = (WRITELOCKEDBY INV.)
number0fThreads =1 A
—Thread(currentWriter) .writeLockEnd = current [currentWriter] >0 A
Vt € ThreadId : t # currentWriter = current[t] =0

Fig. 5. The invariants checked in Uppaal

The definition of the readlock function over the dependent type validState?
implies that automatically type checking conditions are generated. They oblige
us to prove that, if we are in a valid state, the transition to another state will yield
a state for which the invariant still holds. The proof itself is a straightforward,
albeit large (about 400 proof commands), case distinction with the help of some
auxiliary lemmas.

4.4 No Deadlock

The theorem-prover PVS does not have an innate notion of deadlock. If, however,
we consider the state-transition model as a directed graph, in which the edges are
determined by the interleave function, deadlock can be detected in this state
transition graph by identifying a state for which there are no outgoing edges.
This interpretation of deadlock can be too limited. If, for example, there is a
situation where a process alters one of the state variables in a non terminating
loop, the state-transition model will yield an infinite graph and a deadlock will
not be detected, because each state has an outgoing edge. Still, all the other
processes will not be able to make progress. To obtain a more refined notion of
deadlock, we define a well founded ordering on the system state and show that
for each state reachable from the starting state (except for the starting state
itself), there exists a transition to a smaller state according to that ordering.
The smallest element within the order is the starting state. This means that
each reachable state has a path back to the starting state and consequently it is
impossible for any process to remain in a such a loop indefinitely. Moreover, this
also covers the situation in which we would have a local deadlock (i.e. several
but not all processes are waiting for each other).

t : VAR ThreadInfo
starting? : PRED|[ThreadInfo] = { t | t‘status = STARTA t‘current = 0}

startingState(s: (validState?)): bool =
V(tid:ThreadID): starting?(s‘threads(tid))

In the starting state all processes are running and there are no locks.
We create a well founded ordering by defining a state to become smaller if the
number of waiting processes decreases or alternatively, if the number of waiting

5 countCurrents determines the number of threads having a current greater than 0.

98 B. van Gastel et al.

processes remains the same and the total count of the number of processes that
have obtained a lock is decreasing. Well foundedness follows directly from the
well foundedness of the lexicographical ordering on pairs of natural numbers.

smallerState(s2, sl : (validState?)) : bool =
numberWaiting(s2) < numberWaiting(sl) V
numberWaiting(s2) = numberWaiting(sl) A
totalCount(s2) < totalCount(sl)

The numberWaiting function as well as the totalCount function are recursive
functions on the array with thread information yielding the number of processes
that have either a RBLOCKED, RWAIT, WBLOCKED or WWAIT status, and sum of all
current fields respectively.

Once we have established that each state transition maintains the invariant, all
we have to prove is that each transition, except for the starting state will possibly
result in a state that is smaller. This is the noDeadlock theorem. Proving this
theorem is mainly a case distinction with a couple of inductive proofs thrown
in for good measure. The induction is needed to establish that the increase and
decrease in the variables can only happen if certain preconditions are met. The
proof takes about 300 proof commands.

noDeadlock: THEOREM
V(s1: (validState?)) : —startingState(sl) =
3(s2: (validState?)) : interleave(sl, s2) A smallerState(s2, sl)

5 Related and Future Work

Several studies investigated either the conversion of code to state transition mod-
els, as is done e.g. in [28] with mcrl2 or the transformation of a state transition
model specified in a model checker to a state transition model specified in a
theorem prover, as is done e.g. in [16] using VeriTech. With the tool TAME one
can specify a time automaton directly in the theorem prover PVS [3]. For the
purpose of developing consistent requirement specifications, the transformation
of specifications in Uppaal [I7] to specifications in PVS has been studied in [9].

In [22] model checking and theorem proving are combined to analyze the
classic (non-reentrant) Readers/Writers problem. The authors do not start with
actual source code but with a tabular specification that can be translated
straightforwardly into SPIN and PVS. Safety and clean completion properties
are derived semi-automatically. Model checking is used to validate potential
invariants.

[13] reports on experiments in combing theorem proving with model checking
for verifying transition systems. The complexity of systems is reduced abstracting
out sources for unboundedness using theorem proving, resulting in an bounded
system suited for being model checked. One of the main difficulties is that formal
proof techniques are usually not scalable to real sized systems without an extra
effort to abstract the system manually to a suitable model.

Reentrant Readers-Writers 99

The verification framework SAL (See [25]) combines different analysis tools and
techniques for analyzing transition systems. Besides model checking and theorem
proving it provides program slicing, abstraction and invariant generation.

In [12] part of an aircraft control system is analyzed, using a theorem prover.
This experiment was previously performed on a single configuration with a model
checker. A technique called feature-based decomposition is proposed to determine
inductive invariants. It appears that this approach admits incremental exten-
sion of an initially simple base model making it better scalable than traditional
techniques.

Java Pathfinder (JPF) [29] operates directly on Java making a transformation
of source code superfluous. However, this tool works on a complete program, such
that it is much more difficult to create abstractions. The extension of JPF with
symbolic execution as discussed by [I] might be a solution to this problem.

An alternative for JPF is Bandera [7], which translates Java programs to the
input languages of SMV and SPIN. Like in JPF, it is difficult to analyse separate
pieces of code in Bandera. There is an interesting connection between Bandera
and PVS. To express that properties do not depend on specific values, Bandera
provides a dedicated language for specifying abstractions, i.e. concrete values are
automatically replaced by abstract values, thus reducing the state space. The
introduction of these abstract values may lead to prove obligations which can be
expressed and proven in PVS.

In [24] a model checking method is given which uses an extension of JML [I§]
to check properties of multi-threaded Java programs.

With Zing [2] on the one hand models can be created from source code and
on the other hand executable versions of the transition relation of a model can
be generated from the model. This has been used successfully by Microsoft to
model check parts of their concurrency libraries.

Future Work

The methodology used (creating in a structured way a model close to the code,
model checking it first and proving it afterwards) proved to be very valuable.
We found a bug, improved the code, extended the capabilities of the code and
proved it correct. One can say that the model checker was used to develop
the formal model which was proven with the theorem prover. This decreased
significantly the time investment of the use of a theorem prover to enhance
reliability. However, every model was created manually. We identified several
opportunities for tool support and further research.

Model checked related to source code. Tool support could be helpful here:
not only to ’translate’ the code from the source language to the model
checker’s language. It could also be used to record the abstractions that
are made. In this case that were: basic locks — lock process model, hash
tables — arrays, threads — processes and some name changes. A tool that
recorded these abstractions, could assist in creating trusted source code from
the model checked model.

100 B. van Gastel et al.

Model checked related to model proven. It would be interesting to prove that
the model in the theorem prover is equivalent with the model checked. In-
teresting methods to do this would be using a semantic compiler, as was
done in the European Robin project [27], or employing a specially designed
formal library for models created with a model checker, like e.g. TAME [3].

Model proven related to source code. Another interesting future research op-
tion is to investigate generating code from the fully proven model. This could
be code generated from code-carrying theories [I5] or it could be proof-
carrying code through the use of refinement techniques [4].

6 Concluding Remarks

We have investigated Trolltech’s widely used industrial implementation of the
reentrant readers-writers problem. Model checking revealed an error in the im-
plementation. Trolltech was informed about the bug. Recently, Trolltech released
a new version of the thread library (version 4.4) in which the error was repaired.
However, the new version of the Qt library is still only weakly reentrant, not
admitting threads that have write access to do a read lock. This limitation un-
necessarily hampers modular programming.

The improved Readers-Writers model described in this paper is deadlock free
and strongly reentrant. The model was first developed and checked for a limited
number of processes using a model checker. Then, the properties were proven
for any number of processes using a theorem prover.

Acknowledgements

We would like to thank both Erik Poll and the anonymous referees of an earlier
version of this paper for their useful comments improving the presentation of
this work.

References

1. Anand, S., Pasareanu, C.S., Visser, W.: Jpf-se: A symbolic execution extension to
java pathfinder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 134-138. Springer, Heidelberg (2007)

2. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: A model checker
for concurrent software. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 484-487. Springer, Heidelberg (2004)

3. Archer, M., Heitmeyer, C., Sims, S.: TAME: A PVS interface to simplify proofs
for automata models. In: User Interfaces for Theorem Provers, Eindhoven, The
Netherlands (1998)

4. Barbosa, M.A.: A refinement calculus for software components and architectures.
SIGSOFT Softw. Eng. Notes 30(5), 377-380 (2005)

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
In: Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Com-
puter Science. Springer, Heidelberg (2004)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Reentrant Readers-Writers 101

. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite state

concurrent systems using temporal logic specifications: A practical approach. In:
POPL, pp. 117-126 (1983)

. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby,

Zheng, H.: Bandera: extracting finite-state models from java source code. In: Pro-
ceedings of the 2000 International Conference on Software Engineering, pp. 439448
(2000)

. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with “readers” and

“writers”. Commun. ACM 14(10), 667668 (1971)

. de Groot, A.: Practical Automaton Proofs in PVS. PhD thesis, Radboud University

Nijmegen (2008)

Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concur-
rency in Practice. Addison Wesley Professional, Reading (2006)

Groote, J.F., Mathijssen, A.H.J., Reniers, M.A., Usenko, Y.S., van Weerdenburg,
M.J.: The formal specification language mCRL2. In: Proc. Methods for Modelling
Software Systems, number 06351 in Dagstuhl Seminar Proceedings (2007)

Ha, V., Rangarajan, M., Cofer, D., Rues, H., Dutertre, B.: Feature-based decom-
position of inductive proofs applied to real-time avionics software: An experience
report. In: ICSE 2004: Proceedings of the 26th International Conference on Soft-
ware Engineering, Washington, DC, USA, pp. 304-313. IEEE Computer Society,
Los Alamitos (2004)

Havelund, K., Shankar, N.: Experiments in Theorem Proving and Model Checking
for Protocol Verification. In: Gaudel, M.-C., Woodcock, J.C.P. (eds.) FME 1996.
LNCS, vol. 1051, pp. 662-681. Springer, Heidelberg (1996)

Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5), 279-295 (1997)

Jacobs, B., Smetsers, S., Wichers Schreur, R.: Code-carrying theories. Formal Asp.
Comput. 19(2), 191-203 (2007)

Katz, S.: Faithful translations among models and specifications. In: Oliveira, J.N.,
Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 419-434. Springer, Heidelberg
(2001)

Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134-152 (1997)

Leavens, G.T., Kiniry, J.R., Poll, E.: A jml tutorial: Modular specification and
verification of functional behavior for java. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, p. 37. Springer, Heidelberg (2007)

McMillan, K.L.: The SMV System. Carnegie Mellon University (1998-2001),
http://www.cs.cmu.edu/~modelcheck/smv.html

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748-752. Springer, Heidelberg
(1992)

Pantelic, V., Jin, X.-H., Lawford, M., Parnas, D.L.: Inspection of concurrent sys-
tems: Combining tables, theorem proving and model checking. In: Arabnia, H.R.,
Reza, H. (eds.) Software Engineering Research and Practice, pp. 629-635. CSREA
Press (2006)

Queille, J.-P., Sifakis, J.: Specification and verification of concurrent systems in
cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,
vol. 137, pp. 337-351. Springer, Heidelberg (1982)

Robby, E.R., Dwyer, M.B., Hatcliff, J.: Checking jml specifications using an exten-
sible software model checking framework. STTT 8(3), 280-299 (2006)

http://www.cs.cmu.edu/~modelcheck/smv.html

102 B. van Gastel et al.

25. Shankar, N.: Combining theorem proving and model checking through symbolic
analysis. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 1-16.
Springer, Heidelberg (2000)

26. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal 30(3) (March 2005)

27. Tews, H., Weber, T., Volp, M., Poll, E., van Eekelen, M., van Rossum, P.: Nova
Micro—Hypervisor Verification. Technical Report ICIS-R08012, Radboud Univer-
sity Nijmegen, Robin deliverable D13 (May 2008)

28. van Eekelen, M., ten Hoedt, S., Schreurs, R., Usenko, Y.S.: Analysis of a session-
layer protocol in mcrl2. verification of a real-life industrial implementation. In:
Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 182-199. Springer,
Heidelberg (2008)

29. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10(2), 203-232 (2003)

	Reentrant Readers-Writers: A Case Study Combining Model Checking with Theorem Proving
	Introduction
	The Readers-Writers Problem
	Implementation of Read-Write Locks

	Model Checking Readers/Writers with Uppaal
	Correcting the Implementation/Model

	General Reentrant Readers-Writers Model
	Readers-Writers Model in PVS
	Translation from Uppaal to PVS
	System Invariants
	No Deadlock

	Related and Future Work
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

