

Lecture Notes in Computer Science 5673
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jens Palsberg Zhendong Su (Eds.)

Static Analysis
16th International Symposium, SAS 2009
Los Angeles, CA, USA, August 9-11, 2009
Proceedings

13

Volume Editors

Jens Palsberg
University of California, Department of Computer Science
4531K Boelter Hall, Los Angeles, CA 90095-1596, USA
E-mail: palsberg@cs.ucla.edu

Zhendong Su
University of California, Department of Computer Science
1 Shields Avenue, Davis, CA 95616, USA
E-mail: su@cs.ucdavis.edu

Library of Congress Control Number: 2009930752

CR Subject Classification (1998): D.3, F.3.1-2, I.2.2, F.4.2, B.8.1, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-03236-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03236-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12721160 06/3180 5 4 3 2 1 0

Preface

Static analysis is increasingly recognized as a fundamental tool for program
verification, bug detection, compiler optimization, program understanding, and
software maintenance. The series of Static Analysis Symposia has served as the
primary venue for presentation of theoretical, practical, and application advances
in the area.

This volume contains the proceedings of the 16th International Static Anal-
ysis Symposium (SAS 2009), which was held August 9–11, 2009 at UCLA, Uni-
versity of California, Los Angeles, USA. The previous SAS conferences were
held in Valencia, Spain (2008); Kongens Lyngby, Denmark (2007); Seoul, South
Korea (2006); London, UK (2005); Verona, Italy (2004); San Diego, USA (2003);
Madrid, Spain (2002); Paris, France (2001); Santa Barbara, USA (2000); Venice,
Italy (1999); Pisa, Italy (1998); Paris, France (1997); Aachen, Germany (1996);
Glasgow, UK (1995); and Namur, Belgium (1994).

In response to the call for papers, a total of 52 contributions were submitted to
the symposium. After a five-week paper review period and a subsequent two-week
online discussion, the Program Committee selected 21 papers for presentation
at the symposium and inclusion in this volume. The selection was based on
scientific quality, originality, and relevance to the symposium. Each submission
was reviewed by four (or more) Program Committee members with the help of
external reviewers.

In addition to the 21 accepted papers, this volume also contains abstracts of
talks given by two invited speakers: Rastislav Bodik (University of California,
Berkeley) and Shaz Qadeer (Microsoft).

SAS 2009 was co-located with LICS 2009, the 24th IEEE Symposium on Logic
in Computer Science. SAS and LICS had a day with shared sessions, including
an invited speaker: Edmund M. Clarke (Carnegie Mellon University, USA). Last
time SAS and LICS were co-located was in 2000 in Santa Barbara, USA.

We would like to thank members of the Program Committee for their thor-
ough reviews and dedicated involvement during the paper selection process. On
behalf of the Program Committee, we would like to express our gratitude to all
the authors who submitted papers and all the external reviewers for their in-
valuable contributions. We would also like to thank the Steering Committee for
their help and advice, and Andrei Voronkov for making EasyChair available to
us. Finally, we gratefully acknowledge the institution that sponsored this event:
UCLA, University of California, Los Angeles, USA.

August 2009 Jens Palsberg
Zhendong Su

Organization

Program Chairs

Jens Palsberg University of California, Los Angeles, USA
Zhendong Su University of California, Davis, USA

Program Committee

Alex Aiken Stanford University, USA
Maŕıa Alpuente Technical University of Valencia, Spain
Radhia Cousot CNRS/École Polytechnique, France
Sumit Gulwani Microsoft Research, USA
Chris Hankin Imperial College, UK
Joxan Jaffar National University of Singapore, Singapore
Suresh Jagannathan Purdue University, USA
Naoki Kobayashi Tohoku University, Japan
Viktor Kuncak Swiss Federal Institute of Technology,

Switzerland
Ana Milanova Rensselaer Polytechnic Institute, USA
Anders Møller BRICS, University of Aarhus, Denmark
Aditya Nori Microsoft Research, India
Andreas Podelski University of Freiburg, Germany
Jakob Rehof University of Dortmund, Germany
Thomas Reps University of Wisconsin-Madison, USA
Harald Søndergaard University of Melbourne, Australia
Eran Yahav IBM T.J. Watson Research Center, USA
Kwangkeun Yi Seoul National University, Korea

Steering Committee

Patrick Cousot École Normale Supérieure, France
Radhia Cousot CNRS/École Polytechnique, France
Roberto Giacobazzi Università degli Studi di Verona, Italy
Gilberto Filé Università di Padova, Italy
David Schmidt Kansas State University, USA

VIII Organization

External Reviewers

Gogul Balakrishnan
Demis Ballis
Gregory Batt
Ralph Becket
Julien Bertrane
Bruno Blanchet
Wei-Ngan Chin
Duc Hiep Chu
Marco Comini
Vijay D’Silva
Julian Dolby
Santiago Escobar
Jérôme Feret
Stephen Fink
Martin Fränzle
Pierre Ganty
Matt Giuca
Trevor Hansen
Martin Henz
Jose Hernandez-Orallo
Jose Iborra
Kazuhiro Inaba
Christophe Joubert
Siau-Cheng Khoo
William Klieber
Soonho Kong
Laura Kovacs
Oukseh Lee
Zhenkai Liang
Yin Liu
Benjamin Livshits
Francesco Logozzo
Salvador Lucas
Michael Maher
Roman Manevich
Matthieu Martel
Damien Massé

Laurent Mauborgne
Jan Midtgaard
Yasuhiko Minamide
Antoine Miné
Jorge Navas
Hakjoo Oh
Sungwoo Park
Ruzica Piskac
Bernie Pope
Shaz Qadeer
Sriram Rajamani
G. Ramalingam
Xavier Rival
Andrey Rybalchenko
Andrew Santosa
Ryosuke Sato
Peter Schachte
Sharon Shoham
Saurabh Srivastava
Peter Stuckey
Kohei Suenaga
Philippe Suter
Carolyn Talcott
Tachio Terauchi
Ashish Tiwari
Takeshi Tsukada
Hiroshi Unno
Kapil Vaswani
Martin Vechev
Ramarathnam Venkatesan
Alicia Villanueva
Razvan Voicu
Tanja Vos
Thomas Wies
Hongseok Yang
Greta Yorsh

Sponsoring Institutions

University of California, Los Angeles, USA

Table of Contents

Invited Talks

Algorithmic Program Synthesis with Partial Programs and Decision
Procedures . 1

Rastislav Bodik

Algorithmic Verification of Systems Software Using SMT Solvers 2
Shaz Qadeer

Contributed Papers

Abstraction Refinement for Quantified Array Assertions 3
Mohamed Nassim Seghir, Andreas Podelski, and Thomas Wies

Inferring Dataflow Properties of User Defined Table Processors 19
Songtao Xia, Manuel Fähndrich, and Francesco Logozzo

Polymorphic Fractional Capabilities . 36
Hirotoshi Yasuoka and Tachio Terauchi

Automatic Parallelization and Optimization of Programs by Proof
Rewriting . 52

Clément Hurlin

Refinement of Trace Abstraction . 69
Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski

The Causal Graph Revisited for Directed Model Checking 86
Martin Wehrle and Malte Helmert

Proving the Correctness of the Implementation of a Control-Command
Algorithm . 102

Olivier Bouissou

Abstract Interpretation of FIFO Replacement . 120
Daniel Grund and Jan Reineke

A Verifiable, Control Flow Aware Constraint Analyzer for Bounds
Check Elimination . 137

David Niedzielski, Jeffery von Ronne, Andreas Gampe, and
Kleanthis Psarris

Increasing the Scope and Resolution of Interprocedural Static Single
Assignment . 154

Silvian Calman and Jianwen Zhu

X Table of Contents

Region Analysis for Race Detection . 171
Helmut Seidl and Vesal Vojdani

Bottom-Up Shape Analysis . 188
Bhargav S. Gulavani, Supratik Chakraborty,
Ganesan Ramalingam, and Aditya V. Nori

The Complexity of Andersen’s Analysis in Practice 205
Manu Sridharan and Stephen J. Fink

Optimizing Pointer Analysis Using Bisimilarity . 222
Luke Simon

Type Analysis for JavaScript . 238
Simon Holm Jensen, Anders Møller, and Peter Thiemann

Abstract Parsing: Static Analysis of Dynamically Generated String
Output Using LR-Parsing Technology . 256

Kyung-Goo Doh, Hyunha Kim, and David A. Schmidt

Creating Transformations for Matrix Obfuscation . 273
Stephen Drape and Irina Voiculescu

Abstract Interpretation from a Topological Perspective 293
David A. Schmidt

Interval Polyhedra: An Abstract Domain to Infer Interval Linear
Relationships . 309

Liqian Chen, Antoine Miné, Ji Wang, and Patrick Cousot

Invariant Checking for Programs with Procedure Calls 326
Guillem Godoy and Ashish Tiwari

Inter-program Properties . 343
Andrei Voronkov and Iman Narasamdya

Author Index . 361

Algorithmic Program Synthesis with Partial
Programs and Decision Procedures

Rastislav Bodik

University of California, Berkeley

Abstract. Program synthesizer can derive programs that are efficient,
even surprising, but it must be first ”programmed” with human insights
about the domain and its implementation tricks. In deductive synthesis,
the insights are captured by domain theories, often elusive and always re-
quiring formal expertise. To bring synthesis to everyday programmers, we
have been exploring algorithmic synthesis, which is to deductive synthesis
what model checking is to deductive verification: Rather than deducing
a program with a theorem prover, algorithmic synthesis systematically
finds the program in a space of candidate implementations. If we help
programmers turn their insights into descriptions of candidates, we have
a chance for a practical synthesizer.

I will show how sketches-partial programs that syntactically define
the candidate space-allow programmers to express their insight while
eliding tedious code fragments. These fragments are filled in by CEGIS,
our counterexample-guided inductive synthesis algorithm that exploits
recent advances in automated decision procedures. I will also show how
these decision procedures allow us to implement an oracle that helps the
programmer refine and formalize his insight about a problem. Finally,
I will describe the linguistic support for synthesis in our SKETCH lan-
guage and show how we synthesized complex implementations of ciphers,
scientific codes, and concurrent lock-free data-structures.

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Algorithmic Verification of Systems Software
Using SMT Solvers

Shaz Qadeer

Microsoft Research, Redmond

Abstract. Program verification is an undecidable problem; all program
verifiers must make a tradeoff between precision and scalability. Over the
past decade, a variety of scalable program analysis tools have been devel-
oped. These tools, based primarily on techniques such as type systems
and dataflow analysis, scale to large and realistic programs. However,
to achieve scalability they sacrifice precision, resulting in a significant
number of false error reports and adversely affecting the usability of the
tool.

In this talk, I will present a different approach to program verification
realized in the HAVOC verifier for low-level systems software. HAVOC
works directly on the operational semantics of C programs based on a
physical model of memory that allows precise modeling of pointer arith-
metic and other unsafe operations prevalent in low-level software. To
achieve scalability, HAVOC performs modular verification using con-
tracts in an expressive assertion language that includes propositional
logic, arithmetic, and quantified type and data-structure invariants. The
assertion logic is closed under weakest precondition, thereby guarantee-
ing precise verification for loop-free and call-free code fragments. To re-
duce the effort of writing contracts, HAVOC provides a mechanism to
infer them automatically. It allows the user to populate the code with
candidate contracts and then searches efficiently through the candidate
set for a subset of consistent contracts.

The expressive contract language in HAVOC has two important bene-
fits. First, it allows the documentation and verification of properties and
invariants specific to a particular software system. Second, it allows a
user to systematically achieve the ideal of precise verification (with no
false alarms) by interacting with the verifier and providing key contracts
that could not be inferred automatically.

HAVOC has been implemented using the Boogie verification-condition
generator and the Z3 solver for Satisfiability-Modulo-Theories. I will de-
scribe the design and implementation of HAVOC and our experience
applying it to verify typestate assertions on medium-sized device drivers
with zero false alarms. I will conclude with a discussion of remaining
challenges and directions for future work.

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, p. 2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Abstraction Refinement for
Quantified Array Assertions

Mohamed Nassim Seghir1,�, Andreas Podelski1, and Thomas Wies1,2

1 University of Freiburg, Germany
2 EPFL, Switzerland

Abstract. We present an abstraction refinement technique for the ver-
ification of universally quantified array assertions such as “all elements
in the array are sorted”. Our technique can be seamlessly combined with
existing software model checking algorithms. We implemented our tech-
nique in the ACSAR software model checker and successfully verified
quantified array assertions for both text book examples and real-life ex-
amples taken from the Linux operating system kernel.

1 Introduction

Among the most promising approaches to the verification of software systems
is the combination of predicate abstraction [10] with automated abstraction re-
finement [6]. This approach is commonly referred to as software model checking.
Software model checking offers a high degree of automation and has been suc-
cessfully applied to non-trivial programs such as device drivers. Existing software
model checkers (e.g., SLAM [2], BLAST [13], MAGIC [5], and ARMC [21])
have shown to be suitable for the verification of control-oriented properties, but
they are limited when it comes to richer properties that involve data structures.
A prominent class of such properties are universally quantified assertions over
arrays (e.g., sortedness). We show that careful adaptation of existing software
model checking techniques is sufficient to verify many interesting programs over
arrays.

In order to verify quantified assertions, a program analysis needs to infer
inductive invariants that are itself quantified. This contradicts the basic idea
of predicate abstraction which is to construct an invariant from small pieces,
since quantified assertions cannot be easily split into simpler predicates. In other
words, finding the right predicates for verifying quantified assertions becomes as
difficult as finding an inductive invariant. Recently, various techniques have been
developed that either generalize or extend existing abstract domains (including
the predicate abstraction domain) to abstract domains that can express quanti-
fied properties [3,11,25,17,22]. However, none of these approaches can be easily

� The first author was supported in part by the German Federal Ministry of Education
and Research (BMBF) in the framework of the VerisoftXT project under grant 01
IS 07 008.

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 3–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

4 M.N. Seghir, A. Podelski, and T. Wies

integrated into existing software model checkers without major changes to the
underlying implementation or making the analysis less scalable.

A simpler approach towards verification of quantified assertions is due to
Flanagan and Qadeer [8] and based on ghost variables. A ghost variable is an
auxiliary program variable that is never modified by the program. It is only
used for the purpose of verification. The idea in [8] is to replace each quantified
variable in an assertion by a ghost variable. Thus, the ghost variables fix one
instantiation for each quantified variable throughout the whole execution of the
program. The transformed program can be analyzed using standard predicate
abstraction and the inferred inductive invariant is implicitly universally quanti-
fied. While this approach is strictly weaker than an approach based on quantified
abstract domains, it has shown to be suitable for verifying quantified array as-
sertions with vanilla predicate abstraction, i.e., where all predicates have been
provided by the user [8].

Problems arise when this approach is used together with automated abstrac-
tion refinement. Standard techniques for extracting predicates from spurious
counterexamples such as (weakest) preconditions [6, 1] and interpolants [12] are
insufficient. The reason is that these techniques do not infer predicates that allow
the analysis to perform the necessary widening, i.e., to compute an invariant that
states properties of unbounded intervals in the array. Therefore, the refinement
loop often diverges, establishing the invariant, one by one, for all the individual
entries in the unbounded intervals.

We adapt an existing abstraction refinement method to handle universally
quantified assertions over arrays. Our technique is based on the idea of using
ghost variables to eliminate universal quantifiers in assertions, but overcomes
the limitation of standard abstraction refinement techniques described above.
The technique is tailored towards assertions that quantify over index variables
of arrays. It uses a theorem prover to derive consequences from spurious error
paths. These consequences determine entries in the array that violate the target
property. From these consequences our technique derives predicates that describe
unbounded intervals in the array. These predicates enable the analysis to perform
the necessary widening that results in a sufficiently strong inductive invariant.

Despite its simplicity our technique is surprisingly effective. We have imple-
mented our technique in the ACSAR software model checker [24]. Using our
implementation we successfully verified quantified array assertions for both text
book examples such as sorting algorithms and real-life examples taken from the
Linux operating system kernel and the Xen hypervisor.

2 Related Work

There have been various attempts to account for the verification of quantified
properties including approaches based on predicate abstraction [8, 17, 14], first-
order theorem provers [20,15], templates [3,11,25], and shape analysis [9,22]. Our
approach is able to handle all array related examples that have been analyzed
in [8, 17, 14,20,3, 11, 9]. Some of the examples in [25,15] involve properties with

Abstraction Refinement for Quantified Array Assertions 5

alternating universal and existential quantifiers such as permutation of arrays.
These properties are outside the scope of our approach. In the following, we
make a more detailed comparison.

Range predicates [14] describe properties of unbounded array segments which
enables the verification of universally quantified array assertions using predicate
abstraction with abstraction refinement. In the refinement phase, an axiom-
based algorithm is applied to infer new range predicates as Craig interpolants
for the spurious counterexample. Range predicates refer to an implicitly quan-
tified variable that ranges over array indices. However, this approach does not
handle properties that require quantification over more than one variable, such
as properties of multidimensional arrays. Our approach does not have these re-
strictions.

Lahiri and Bryant proposed an extension of predicate abstraction to infer uni-
versally quantified invariants [17]. Their technique is based on index predicates
which are predicates that contain free index variables. These index variables are
implicitly universally quantified at each program location. Heuristics for infer-
ring index predicates based on counterexample-guided abstraction refinement
are described in [18]. This approach is more general than an approach based on
ghost variables because the index variables occuring in the computed invariant
are quantified per program location rather than globally for the entire program.
However, the computation of abstract transformers is more involved than in
classical predicate abstraction and requires theorem provers that can effectively
deal with quantified formulas.

Several template-based techniques for the generation of quantified invariants
have been developed recently [3, 11, 25]. The common idea behind these ap-
proaches is that the user provides templates that fix the structure of potential
invariants. The analysis then searches for an invariant that instantiates the tem-
plate parameters. These techniques can handle more complex properties than
our approach. In particular, Srivastava and Gulwani [25] have used their ap-
proach to verify properties of arrays with alternating quantifiers. On the other
hand, techniques that can effectively compute these templates and thus provide
the same degree of automation as predicate abstraction refinement have not yet
been developed.

Another interesting direction is the recent deployment of resolution-based
first-order theorem provers for inferring quantified invariants over arrays. Ex-
isting approaches include [20] and [15]. McMillan’s approach is based on the
computation of quantified interpolants. The idea in [15] is to generate a set of
clauses from quantified formulas that encode changes to arrays in the analyzed
program, saturate the set under resolution, and then mine the saturated set for
interesting quantified invariants. Currently these approaches are still limited due
to the missing inbuilt support for arithmetic theories in the underlying theorem
provers.

Abstract domains that are used in shape analyses such as in three-valued
shape analysis [23] and Boolean heaps [22] can express quantified properties
of unbounded data structures (namely, shape analysis constraints [16,26] in the

6 M.N. Seghir, A. Podelski, and T. Wies

case of [23] and their universal fragment in the case of [22]). In particular, Gopan
et al. [9] have used three-valued shape analysis to verify properties of arrays.
However, the abstract domains in these shape analyses are exponentially more
succinct than the one used in predicate abstraction [19]. While this additional
precision is needed for the analysis of programs manipulating linked data struc-
tures, our experience shows that it is not necessarily required for the verification
of array related properties.

3 Experimental Results

Our work gives a positive answer to the question whether existing software model
checking technology can be adapted to effectively verify quantified assertions over
arrays and whether such an approach works well in practice. The most important
contribution of our work are the experimental results confirming this answer. We
start by presenting these results.

Implementation. We integrated our technique into the ACSAR software model
checker [24]. The system implements a backward reachability analysis based on
predicate abstraction refinement with lazy abstraction [13]. The implementa-
tion is done in C++. We performed tests using an X41 Thinkpad laptop with
1 GB of RAM and a 1.6 GHz CPU, running Linux. ACSAR uses the Yices
theorem prover [7] for computing the abstraction and analyzing spurious coun-
terexamples. The communication with Yices is performed through its API Lite.
The input to ACSAR is a C program annotated with assertions to be verified.
The output is either an invariant that implies the correctness of the annotated
assertions or a counterexample trace.

Experiments. The results of our experiments are illustrated in Table 1. The
column “Property” contains an informal description of the universally quantified
assertion that we verified. Column “Iter” refers to the number of refinement steps
performed until a safe invariant is computed. Finally, column “Pred” refers to
the number of inferred predicates. Our tool is based on lazy abstraction [13], we
therefore provide the average number of predicates per location instead of the
total number of predicates. The size of examples varies from 10 to 200 lines of
code. Although scalability is an important issue, the decisive factor here is the
complexity of the property of interest.

Out of all examples, only find, cyber init, perfect copy info, do enoprof op and
selection sort take more than 4 seconds verification time. The time includes all
verification phases (parsing, theorem prover requests, etc.). The checked asser-
tion for cyber init is a conjunction of four assertions. The average time for check-
ing each individual assertion is less than 4 seconds.

We divide our tests into two classes. The first class concerns academic exam-
ples taken from literature, their names appear without superscript. The example
find was proposed by Qadeer and Flanagan [8]. Our tool automatically proves
the postcondition specified in their paper. The example array init is a simple

Abstraction Refinement for Quantified Array Assertions 7

Table 1. Experimental results for academic and industrial examples. The upper half
of the table refers to examples taken from literature. The lower half refers to examples
taken from system code. Examples marked with superscript ∗ are from the Linux kernel
and driver code. Examples marked with ∗∗ are taken from the Xen hypervisor code.

Program Property Iter. Pred. Time (s)
string copy 0 terminal string s1 2 4 0.63

is copied to s2
scan array entries before 3 3 0.54

actual entry are not null
array init array entries are initialized 3 6 0.83

loop1 each array entry is 3 5 0.71
initialized with its index

copy1 array a is copied to array b 2 6 0.84
partition array a contains positive entries and 8 7 1.94

array b contains negative ones
num index for every array entry i of array a 2 6 0.89

we have a[i] = 2 ∗ i+ 3
part init all array entries are initialized 5 9 3.17

to values between 0 and n− 1
find every array entry whose index is less 8 13 8.81

than the returned value contains false

insertion sort entry a[j] is less or equal than 2 14 2.45
(inner loop) all entries of the segment a[j . . . i]
selection sort array is sorted 3 39 409.87
cyber init∗ for every i, if i modulo 4 is equal to 8 13 10.36

0, 1, 2 or 3 then a[i] is initialized
to v0, v1, v2 or v3 respectively

i2o device parse lct∗ entries preceding the actual entry 5 4 1.64
are different from a given value

ixj pad fsk∗ after the execution of 2 loops 6 7 1.53
entries in a given range are initialized

ixj daa cid read∗ all entries with odd index are equal to v1 5 14 3.81
all entries with even index are equal to v2

snd atiixp mixer new∗ entries having property p 3 4 1.25
in their pre-state are set to NULL

dvb net feed stop∗ entries different from 0 in 3 7 3.41
their pre-state are set to 0

perfc copy info∗∗ for each entry i of array a 4 12 10.57
if a[i] has some property

then b[i] and c[i] should be equal
do enoprof op∗∗ if variable op has value v1 26 3 34.17

and variable s has value v2
then array a is copied to array b

8 M.N. Seghir, A. Podelski, and T. Wies

array initialization program which is considered in most papers on array verifi-
cation [14, 11, 3]. Programs num index and part init were proposed by Gopan et
al. [9]. The first one illustrates numeric constraints on the value of array ele-
ments. The second one aims to show the handling of multiple arrays as well as
partial array initialization. Finally, partition was proposed by Henzinger et al [4].
It partitions a given array into two arrays a and b by copying the positive array
entries into a and negative ones into b.

The second class of examples covers typical uses of arrays in real world system
code. The programs are code fragments taken from the Linux kernel and driver
code as well as the Xen hypervisor1 code.

Selection sort. The most challenging benchmark that we considered is the
selection sort example. We refer to Section 4.2, for the source code and a detailed
description of this example. We verified that upon termination the array a is
sorted in ascending order. The sortedness property was stated in the form

∀x, y ∈ [0, n− 1]. x < y ⇒ a[x] ≤ a[y]

ACSAR successfully verifies this property. The verification time is significantly
larger than in our remaining benchmarks (∼7 minutes). Inspection of the gen-
erated predicates revealed that the refinement loop generates many redundant
predicates. We therefore believe that the verification time can be significantly
reduced by implementing certain redundancy checks.

4 Examples

We now explain our approach and discuss two of the examples from the previous
section in more detail: array initialization and selection sort. The first example
illustrates the basic idea of our approach. The second example shows that it also
works for challenging examples.

4.1 Array Initialization

Our first example is the simple procedure array init shown in Figure 1. The
procedure takes two arguments, an integer array a and an integer n denoting the
length of a. The procedure initializes all entries of a to 0. We prove the assertion
stating that after termination of the loop all array entries are indeed properly
initialized. We use standard notation and formally represent programs in terms
of transition constraints over primed and unprimed program variables. Figure 2
shows the corresponding transition constraints for procedure array init. The
program counter is modeled explicitly using the variable pc that ranges over
control locations (�0 stands for the initial location and �E for the error loca-
tion). Array a is represented by an uninterpreted function symbol. The notation
1 A hypervisor is a software that permits hardware virtualization. It allows multiple

operating systems to run in parallel on a computer. The Xen hypervisor is available
at http://www.xen.org/

http://www.xen.org/

Abstraction Refinement for Quantified Array Assertions 9

void array init (int a[], int n)
{
int i;

�0:
�1: for(i = 0; i < n; ++i)

{
a[i] = 0;

}

�2: assert(∀ x. x ≥ 0 ∧ x < n ⇒ a[x] = 0);
}

Fig. 1. Array initialization

a[x := e] stands for a function update. The set of initial states of the program is
described by the formula pc = �0 and the set of error locations by the formula
pc = �E.

τ0 : pc = �0 ∧ pc′ = �1 ∧ a′ = a ∧ i′ = 0 ∧ k′ = k

τ1 : pc = �1 ∧ i < n ∧ pc′ = �1 ∧ a′ = a[i := 0] ∧ i′ = i+ 1 ∧ k′ = k

τ2 : pc = �1 ∧ i ≥ n ∧ pc′ = �2 ∧ a′ = a ∧ i′ = i ∧ k′ = k

τ3 : pc = �2 ∧ 0 ≤ k ∧ k < n ∧ a(k) �= 0 ∧ pc′ = �E ∧ a′ = a ∧ i′ = i ∧ k′ = k

Fig. 2. Transition constraints for array initialization

Transition τ0 models the initialization of the loop counter in the for loop of
procedure array init, transition τ1 models the loop body, and τ2 the loop exit.
The assert statement is reflected by transition τ3 that goes from the loop exit
location �2 to the error location �E . We use the idea from [8] and replace the
quantified variable x in the original assertion by a ghost variable k. Our goal is
to prove that the program represented by the transition constraints is safe, i.e.,
that no error state is reachable from an initial state by consecutive execution
of the transitions represented by the transition constraints. If no error state is
reachable then the assertion in procedure array init is never violated.

Our algorithm performs a backward reachability analysis starting from the
error states and computes an inductive backward invariant, i.e., an overapprox-
imation of the set of states that are backward-reachable from an error state. If
the computed invariant is disjoint from the initial states then the program is
safe. An inductive backward invariant for the array initialization program that
is disjoint from the initial states is given by the following formula ϕ:

ϕ
def= pc �= �0 ∧ (pc = �1 ⇒ 0 ≤ k ∧ k < n ∧ a(k) �= 0 ∧ k < i)

Note that due to the fact that ϕ is a backward invariant the ghost variable k is
implicitly existentially quantified. Our analysis is based on predicate abstraction

10 M.N. Seghir, A. Podelski, and T. Wies

with counterexample guided abstraction refinement. Thus, if the refinement loop
is able to infer predicates whose Boolean combination can express ϕ then the
backward analysis will construct a sufficiently strong invariant.

The basis of our refinement procedure is a predicate extraction function that
syntactically extracts predicates from preconditions that are computed from spu-
rious error paths. For instance, if we start with an empty set of predicates
then the first iteration of the refinement process that goes through the pro-
gram loop produces the spurious error path τ0; τ1; τ2; τ3. It then extracts all
atomic subformulas from the precondition of the feasible part of the error path:
pre(τ1; τ2; τ3, pc = �E). This formula is given by

pc = �1 ∧ 0 ≤ k ∧ k < n ∧ a[i := 0](k) �= 0 ∧ i < n ∧ i+ 1 ≥ n (1)

Note that function updates such as a[x := 0] can be eliminated via case splits. If
we only extracted atomic formulas from preconditions then the analysis would
unroll the loop in procedure array init and enumerate all predicates that occur
in preconditions of the form

pre((τ1)+; τ2; τ3, pc = �E)

but never infer the predicate k < i. The refinement would fail to perform the
necessary widening that ensures termination of the analysis. We developed a
simple technique that realizes this kind of widening.

First, our technique extracts all ghost variables and index expressions that oc-
cur as indices of arrays in the precondition (1) of the counterexample path. Then
it determines all disjunctions of inequalities si �= ti over pairs (si, ti) of index
expressions that are consequences of the formula (1). The individual disjuncts
si �= ti of such consequences are then split into inequalities si < ti, si > ti and
added as additional abstraction predicates. The intuition behind this technique
is that the considered disequalities determine the boundaries of intervals in the
array that violate the target property. Splitting the disequality into inequali-
ties allows the analysis to perform the necessary widening to infer a sufficiently
strong invariant.

In our example the only candidate disequality is given by k �= i which is
indeed a consequence of the formula (1). We therefore add the inequalities k < i
and k > i to the set of abstraction predicates which ensures that the refinement
loop terminates.

4.2 Selection Sort

Our second example is the procedure selection sort shown in Figure 3. This
example is more challenging because it has the so-called write-many property,
i.e., an array entry can be updated more than once. We show that upon termi-
nation of the outer loop, all elements of array a are sorted in ascending order.

The set of transition constraints encoding procedure selection sort is given
in Figure 4. Constraint τ0 models the initialization of the outer for loop, τ1
models the statement before location �2 and the initialization of the inner for

Abstraction Refinement for Quantified Array Assertions 11

void selection sort (int a[], int n)
{

int i, j, s;
�0:
�1: for(i = 0; i < n; ++i)

{
s = i;

�2: for(j = i+1; j < n; ++j)
{

if(a[j] < a[s])
{
s = j;

}
}
t = a[i];
a[i] = a[s];
a[s] = t;

}

�3: assert(∀ x y. 0 ≤ x < n ∧ 0 ≤ y < n ∧ x < y ⇒ a[x] ≤ a[y]);
}

Fig. 3. Selection sort

τ0 : pc = �0 ∧ pc
′ = �1 ∧ i

′ = 0 ∧ j
′ = j ∧ s

′ = s ∧ k
′ = k

τ1 : pc = �1 ∧ i < n ∧ pc
′ = �2 ∧ s

′ = i ∧ j
′ = i + 1 ∧ i

′ = i ∧ k
′ = k

τ2 : pc = �2 ∧ j < n ∧ a(j) ≥ a(s) ∧ pc
′ = �2 ∧ a

′ = a ∧ i
′ = i ∧ j

′ = j + 1 ∧ s
′ = s ∧ k

′ = k

τ3 : pc = �2 ∧ j < n ∧ a(j) < a(s) ∧ pc
′ = �2 ∧ a

′ = a ∧ i
′ = i ∧ j

′ = j + 1 ∧ s
′ = j ∧ k

′ = k

τ4 : pc = �2 ∧ j ≥ n ∧ pc
′ = �1 ∧ a

′ = a[i := a(s), s := a(i)] ∧ i
′ = i + 1 ∧ k

′ = k

τ5 : pc = �1 ∧ i ≥ n ∧ pc
′ = �3 ∧ a

′ = a ∧ k
′ = k

τ6 : pc = �3 ∧ 0 ≤ k < n ∧ 0 ≤ l < n ∧ l < k ∧ a(k) < a(l) ∧ pc
′ = �E ∧ a

′ = a ∧ k
′ = k

Fig. 4. Transition constraints for selection sort

loop, τ2 and τ3 model the body of the inner loop, τ4 the exit of the inner loop and
the remaining body of the outer loop, and τ5 the exit of the outer loop. The assert
statement checking the sortedness property in the original program is modeled
by τ6. We introduce the two ghost variables k and l for the universally quantified
variables x and y in the original assertion. The following formula shows one of
the disjuncts of a safe inductive backward invariant. The shown disjunct covers
all backward-reachable states at program location �1, i.e., the loop cut point of
the outer loop in procedure selection sort:

pc = �1 ∧ 0 ≤ l ∧ l < i ∧ l < k ∧ k < n ∧ a(k) < a(l)

We sketch how the analysis infers the predicate l < i. After several iterations
our analysis returns the spurious counterexample τ0;π where

12 M.N. Seghir, A. Podelski, and T. Wies

π
def= τ1; τ2; τ4; τ1; τ4; τ5; τ6

Again we extract atomic predicates from the preconditions of the error path
and infer additional predicates by checking disequalities that are implied by
preconditions of the feasible part of the counterexample. For instance, consider
the precondition pre(π, pc = �E) which is given by

0 ≤ k < n ∧ 0 ≤ l < n ∧ l < k ∧ i+ 1 < n ∧ a(i) ≤ a(i+ 1) ∧
n ≤ i+ 2 ∧ a[i := a(i), i := a(i)](k) < a[i := a(i), i := a(i)](l)

(2)

Note that the updated function a[i := a(i), i := a(i)] is equal to a. Furthermore,
it is easy to see that the implication

k = i+ 1 ∧ l = i ⇒ a(i) > a(i+ 1) ∨ a(k) ≥ a(l)

is valid. Thus, by contraposition (2) implies the disjunction of inequalities

k �= i+ 1 ∨ l �= i

From this disjunction we extract the predicates

l < i, l > i, i+ 1 > k, and i+ 1 < k .

5 Predicate Abstraction Refinement

In this section, we describe the by now classical setting of predicate abstraction
refinement. The method is parameterized by the procedure extract that takes
a formula and returns a set of predicates. We use a minimal notational setting
(following, e.g., [1]) and ignore details (in particular, the concrete programming
language and the use of concrete counterexamples for refinement). These details
are irrelevant for our main purpose, which is to introduce the specific procedure
extract used in our analysis of array programs (in the next section). Everything
in this setting is standard up to the syntax of the formulas that we use to denote
sets of states, in the concrete as well as in the abstract domain.

Concrete domain of formulas. We assume a (generally infinite) set of quanti-
fier-free formulas which we call base formulas. We represent an (in general infi-
nite) set of states by a first-order formula ϕ built up from such base formulas.
In our setting, ϕ is of the form

ϕ ≡
∨
i∈I

∧
j∈Ji

ϕij (3)

where the ϕij ’s are base formulas.
We assume a partial order on formulas ϕ′ ≤ ϕ. The partial order is usually

a sound but possibly incomplete implementation (by a theorem prover) of the
test of validity of implication.

Abstraction Refinement for Quantified Array Assertions 13

Pre. A program is a set P of statements st. For the purpose of the formal
presentation, we assume that a statement comes as a transition constraint

st ≡ ψ ∧ x′1 = e1 ∧ . . . ∧ x′m = em

where x1, x2, . . . , xm are variables (including a program counter pc); as usual,
the variable x′ stands for the value of x in the successor state. The guard ψ
is a conjunction of base formulas. The update formula comes as a conjunction
of logical equalities between primed variables and expressions over unprimed
variables.

For a statement st, the application of the operator prest on a formula ϕ re-
turns a formula representing the set of all predecessor states of ϕ under the
statement st. The definition extends canonically to a sequence of statements.
For a statement st as above, the application of the operator prest to the formula
ϕ is implemented by the projection (on unprimed variables) of the conjunction
of the transition constraint with the renaming of ϕ (from unprimed to primed
variables). The operator pre for a program (a set of statements) is simply the
disjunction of the prest over all statements.

prest(ϕ) ≡ ∃x′1 . . . ∃x′m(ϕ[x′1/x1, . . . , x
′
m/xm] ∧ ψ ∧ x′1 = e1 ∧ . . . ∧ x′m = em)

pre(ϕ) ≡
∨

st∈P prec(ϕ)

Invariants. In order to specify correctness, we fix formulas nonInit and unsafe
denoting the complement of the set of initial and safe states, respectively. We
define the given program to be correct if no unsafe state is reachable from an
initial state. In our setting, nonInit is quantifier-free (but unsafe is not).

The correctness can be proven by showing the condition below. Here,
lfp(pre, ϕ) stands for the least fixpoint of the operator pre above ϕ.

lfp(pre, unsafe) ≤ nonInit

A backward invariant is an invariant that is inductive under pre and implies
nonInit, i.e. a formula ψ such that

– unsafe ≤ ψ,
– pre(ψ) ≤ ψ,
– ψ ≤ nonInit.

Predicate abstraction. A possible approach to establish correctness is to find
an upper abstraction pre# of the operator pre (i.e. where pre(ϕ) ≤ pre#(ϕ)
holds for all formulas ϕ) such that lfp(pre#, unsafe), the least fixpoint of pre#

above unsafe, can be computed and is contained in nonInit. Then, lfp(pre#, unsafe)
is a backward invariant because of the simple fact that pre#(ϕ) ≤ ϕ entails
pre(ϕ) ≤ ϕ. We use predicate abstraction with abstraction refinement to find
such an upper abstraction pre#.

The method generates a sequence of finite sets Pn of predicates over states
(for n = 0, 1, . . .). Since we identify a predicate with the base formula ϕ defining
it, we have that Pn is a finite subset of the given set of base formulas.

14 M.N. Seghir, A. Podelski, and T. Wies

We write L(Pn) for the (finite!) sublattice of L that is generated by the set
of predicates Pn. We sometimes refer to conjunctions of predicates as ”abstract
states” (thus, abstract states are exactly the symbolic states in L(Pn)). We have
that L(Pn) contains unsafe, but generally L(Pn) is not closed with respect to
the operator pre. We define the operator pre#

n over L(Pn) as an abstraction
of pre.

The ‘best’ abstraction pre#
n of pre with respect to Pn is defined in terms of a

Galois connection,

pre#
n ≡ αn ◦ pre ◦ γ

where the composition f ◦ g of two functions f and g is defined from right to
left: f ◦ g(x) = f(g(x)). The abstraction function αn maps a formula ϕ to the
smallest formula ϕ′ in L(Pn) that is larger (wrt. “≤”) than ϕ, formally

αn(ϕ) ≡ μϕ′ ∈ L(Pn)�. ϕ ≤ ϕ′.

The meaning function γ is the identity.
The construction of the best abstraction is not practical. Hence, one uses a

weaker abstraction of pre and one defines pre#
n not as the function above but,

instead, as follows.

pre#
n (
∨
i∈I

∧
j∈Ji

ϕij) =
∨
i∈I

pre#
n (
∧

j∈Ji

ϕij)

and
pre#

n (
∧

j∈Ji

ϕij) =
∧

{p ∈ Pn | pre(
∧

j∈Ji

ϕij) ≤ p}.

Thus, the image of an abstract state (i.e., a conjunction of predicates) under
pre#

n yields the smallest abstract state above its image under pre.
We will have that P0 ⊂ P1 ⊂ . . . and hence L(P0) ⊂ L(P1) ⊂ . . . which means

an increasing precision of the abstraction αn for increasing n.

The iterative abstraction refinement method. The method in Figure 5 is
parameterized by the refinement procedure extract which takes a formula and
returns a finite set of base formulas (”the new predicates”). In each iteration,
the method

– constructs the abstract operator pre#
n defined by Pn,

– computes the abstract fixpoint lfp(pre#
n , start),

– generates a new set of predicates Pn+1

until the abstract proof succeeds, i.e., lfp(pre#
n , unsafe) ≤ nonInit for some n.

If the method terminates for some n, then lfp(pre#
n , unsafe) is a backward

invariant computed over a finite lattice.

Abstraction Refinement for Quantified Array Assertions 15

ϕ0 := unsafe

n := 0
loop
Pn := extract(ϕn)
construct abstract operator pre#

n defined by Pn

ψ := lfp(pre#
n , unsafe)

if (ψ ≤ nonInit) then
STOP with “Success”

ϕn+1 := ϕn ∨ pre(ϕn)
n := n+1

endloop

Fig. 5. Abstract fixpoint checking with iterative abstraction refinement, where extract

is a parameterized procedure that infers a finite set of predicates from a formula and
pre#

n is a predicate abstraction of pre for the set of predicates Pn

6 Refinement for Arrays

The refinement scheme defined in Figure 5 is parameterized by the procedure
extract. This procedure takes a conjunction ϕ of base formulas and returns a set
of base formulas (which are then used to define a set of new predicates). In its
most basic version, the procedure extract0 returns the set of conjuncts.

extract0(ϕ1 ∧ . . . ∧ ϕn) = {ϕ1, . . . , ϕn}

The rationale for our extension of the procedure extract0 stems from a result
in [1]. This result formally evaluates the power of the refinement scheme with
the procedure extract0 above (the power as a proof method for program correct-
ness). The evaluation uses an idealized oracle-based proof method for compar-
ison. This method works by backward iteration of the (concrete) pre operator;
i.e., it starts with the formula unsafe and iteratively applies the operator pre. In
order to accelerate the convergence towards a fixpoint, it judiciously applies a
syntactic widening on the formula obtained. The syntactic widening applied to
a conjunction ϕ drops one or more of its conjuncts in ϕ (for example, applied
to the interval constraint 0 < x ∧ x < 1 it may result in 0 < x). It is the oracle
which judiciously chooses what conjuncts to drop and what conjuncts to keep.
The result in [1] states that the (realistic) refinement scheme with the proce-
dure extract0 achieves the same power as the idealized oracle-based method with
syntactic widening.

In our setting, with programs over arrays, the backward invariants used in cor-
rectness proofs contain conjuncts that do not syntactically appear in the iterates
of the backward iteration procedure. This means that the syntactic widening is not
sufficient (even in the idealized proof method above); we need to combine it with
a semantic analysis in order to obtain a greater choice for the possible widening

16 M.N. Seghir, A. Podelski, and T. Wies

results. The semantic widening applied to a conjunction ϕ first saturates the con-
junction, i.e., adds redundant conjuncts (logical consequences of a certain form),
and then applies the syntactic widening to the resulting conjunction.

The saturation consists of adding each disjunction of strict inequalities be-
tween index variables xi and yi that is entailed (in the theory of linear arithmetic
with uninterpreted function symbols) by ϕ.

saturate(ϕ) = ϕ ∧
∧

{
∨
i∈I

xi < yi | ϕ |=
∨
i∈I

xi < yi}

If a disjunction of disequalities
∨

i∈I xi �= yi is entailed by ϕ, as, for example, in

a[x] > a[y] ∧ a[z] > a[t] |= (x �= t) ∨ (z �= y)

then one obtains the corresponding entailed disjunction of inequalities by re-
placing each of the disequalities by the disjunction of the two corresponding
inequalities.

This leads us to define the predicate extraction procedure extract1 as the
composition of the saturation with the syntactic widening.

extract1(ϕ) = extract0(saturate(ϕ))

Our proof method is the instantiation of the refinement scheme of Figure 5
with the predicate extraction procedure extract1. By the above-mentioned result
in [1], this proof method has the same power as the idealized oracle-based method
with semantic widening. I.e., if the unrealistic oracle-based method succeeds in
proving that a program is correct, then so does our method.

Practical optimizations. A naive implementation of the procedure saturate,
which consists of enumerating all possible disjunctions of inequalities over all in-
dex expressions, requires exponentially many (in the number of occuring index
expressions) theorem prover queries. In practice we can impose a polynomial
bound by considering only disjunctions up to a fixed length. For further op-
timization, we only consider inequalities between index expressions associated
with the same array (not blindly any pair of index expressions). Finally, we
construct the checked disjunctions incrementally starting from disjunctions of
length one and if a disjunction is entailed, do not check any longer disjunction
that includes it.

7 Conclusion

We presented an abstraction refinement technique for verifying quantified as-
sertions over arrays that can be easily integrated into existing software model
checkers. Using this technique we were able to verify almost all array related
examples in the literature that have been verified using quantified abstract do-
mains. Furthermore, we were able to verify various real-life examples taken
from system code. Our results indicate that, at least for quantified assertions

Abstraction Refinement for Quantified Array Assertions 17

over arrays, the use of sophisticated techniques for dealing with quantified as-
sertions can often be avoided if one instead carefully adapts existing techniques
for quantifier-free assertions by using domain specific knowledge.

References

1. Ball, T., Podelski, A., Rajamani, S.K.: Relative completeness of abstraction re-
finement for software model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS
2002. LNCS, vol. 2280, pp. 158–172. Springer, Heidelberg (2002)

2. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL, pp. 1–3 (2002)

3. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis for
combined theories. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349,
pp. 378–394. Springer, Heidelberg (2007)

4. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
PLDI, pp. 300–309 (2007)

5. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. In: ICSE, pp. 385–395 (2003)

6. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

7. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

8. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL,
pp. 191–202 (2002)

9. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array
operations. In: POPL, pp. 338–350 (2005)

10. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In:
Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg
(1997)

11. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: POPL, pp. 235–246 (2008)

12. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL, pp. 232–244 (2004)

13. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70 (2002)

14. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg
(2007)

15. Kovacs, L., Voronkov, A.: Finding loop invariants for programs over arrays using a
theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503,
pp. 470–486. Springer, Heidelberg (2009)

16. Kuncak, V., Rinard, M.: Boolean Algebra of Shape Analysis Constraints. In:
Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 59–72. Springer,
Heidelberg (2004)

17. Lahiri, S.K., Bryant, R.E.: Constructing quantified invariants via predicate abstrac-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 267–281.
Springer, Heidelberg (2004)

18 M.N. Seghir, A. Podelski, and T. Wies

18. Lahiri, S.K., Bryant, R.E.: Indexed predicate discovery for unbounded system ver-
ification. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 135–147.
Springer, Heidelberg (2004)

19. Manevich, R., Yahav, E., Ramalingam, G., Sagiv, M.: Predicate Abstraction and
Canonical Abstraction for Singly-Linked Lists. In: Cousot, R. (ed.) VMCAI 2005.
LNCS, vol. 3385, pp. 181–198. Springer, Heidelberg (2005)

20. McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008)

21. Podelski, A., Rybalchenko, A.: ARMC: the logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
pp. 245–259. Springer, Heidelberg (2006)

22. Podelski, A., Wies, T.: Boolean heaps. In: Hankin, C., Siveroni, I. (eds.) SAS 2005.
LNCS, vol. 3672, pp. 268–283. Springer, Heidelberg (2005)

23. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM TOPLAS (2002)

24. Seghir, M.N., Podelski, A.: ACSAR: Software model checking with transfinite re-
finement. In: SPIN, pp. 274–278 (2007)

25. Srivastava, S., Gulwani, S.: Program verification using templates over predicate
abstraction. In: PLDI (to appear, 2009)

26. Yorsh, G., Reps, T.W., Sagiv, M., Wilhelm, R.: Logical Characterizations of Heap
Abstractions. ACM Transactions on Computational Logic 8(1) (2007)

Inferring Dataflow Properties of User Defined
Table Processors

Songtao Xia, Manuel Fähndrich, and Francesco Logozzo

Microsoft Research, Redmond, WA (USA)
{sxia,maf,logozzo}@microsoft.com

Abstract. In SCOPE, a SQL style cloud-level data-mining scripting
language, table processing capabilities are often provided by user de-
fined .NET methods. The SCOPE compiler can optimize a query plan
if it knows certain dataflow relations between the input and output ta-
bles, such as column independence, column equality, or that a column’s
values are non-null. This paper presents an automated analysis for in-
ferring such relations from implementations of SCOPE table processing
methods. Since most table processing methods are written as .NET iter-
ators, our analysis must accurately deal with the resulting state-machine
implementing such iterators. Other complications addressed are naming
and estimating column numbers, aliasing and escaping, and the inference
of universally quantified loop invariants.

We prototyped the analysis as Scooby, a static analyzer for .NET
iterators. Scooby is able to discover useful properties for typical SCOPE
programs automatically and efficiently.

1 Introduction

SCOPE [7] is an extensible language used by Live Search for cloud-scale data
mining, where peta-byte data files are stored over thousands of distributed
servers. A SCOPE script contains declarative table processing commands and
procedural assignments to variables that hold intermediate tables. In a table
processing command, SCOPE allows user defined table operators, which are im-
plemented as .NET methods, to be used alongside system-provided ones. The
SCOPE compiler will transform both the script and the .NET assemblies into
efficient, parallel execution plans that will be executed on a cloud-scale storage
and job execution environment called Cosmos [7,18] so that programmers can
focus on data-mining tasks without worrying about parallel computing details.

Because the amount of computational resources required to execute a SCOPE
job is huge, and because SCOPE scripts are used by Live Search on a daily
basis, optimization is unquestionably important. There are many optimization
opportunities that hinge on knowing domain specific dataflow properties of the
.NET methods. For example, if the SCOPE compiler knows that a certain table
column is not used by the user-defined operator in generating its output, then
there is a chance that the column can be removed. Our goal is to provide a
static analyzer whose output informs the SCOPE compiler about optimization

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 19–35, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

20 S. Xia, M. Fähndrich, and F. Logozzo

opportunities. In particular, the analyzer produces: (1) a dependence relation
that describes which output columns (may) depend on which input columns,
(2) a non-null relation that describes which output columns are (definitely) non-
null, and (3) an equality relation that describes which output column equals (in
a sense that will be explained later) which input column.

In writing this dataflow analyzer, we faced many technical challenges. First,
all these user-defined operators are methods that return an IEnumerable<Row>

object (called an iterator method). C# compilers compile an iterator method
into a closure class. Since source code is not always available to SCOPE’s opti-
mizer, we have to analyze compiled code. An ordinary analysis is imprecise and
in general useless on a closure class method, since such methods implement state
machines. Second, designing a sound and accurate dependence analysis is chal-
lenging. We not only need an accurate way to estimate which input columns are
involved, but also have to consider aliasing between references and side effects of
method calls. Thirdly, if the method of interest has a loop which sets consecutive
output columns to consecutive input columns, the equality analysis has to infer
a universally quantified loop invariant [16,15], which is a hard problem.
The technical contributions of this paper are in the answers to these challenges:

– In Section 4, we show how we extend the existing analysis infrastructure [21]
from the Clousot [22] project so that an analysis designed for a normal .NET
method can be easily transformed into one that handles an iterator method
with little or no change. Such a semi-automatic transformation is new.

– In Section 6, we describe in detail how we compute a conservative yet rela-
tively accurate dependence relation. The approach involves an escape anal-
ysis that traces aliasing and side effects and a numerical domain to estimate
the range of variables that denote column numbers.

– In Section 7, we describe how we use a reduced product [9] of a symbolic
range domain, a numerical domain, and a index set domain to infer a re-
stricted form of quantified invariants in typical user defined table operations.
This is a new application of the state-of-the-art quantified invariants infer-
ence approaches[16,15] augmented with a novel index set abstraction.

We prototyped our analysis as Scooby: a static analyzer that infers useful prop-
erties automatically from .NET assemblies. It does so accurately (able to give
best or near best possible answers for over 100 test cases and real-life examples)
and efficiently (finishing in at most a few seconds for real life examples). We
report our experience in developing and applying Scooby in Section 8.

2 Motivation: SCOPE and Its Optimization

A SCOPE script describes queries over cloud-level databases. Its syntax is a
mixture of SQL and procedural statements. The result of a select operation can
be assigned to a table variable and referred to later, as shown in Listing 1.1.

At one step of table processing, a SCOPE programmer can use select and
join operations provided by SCOPE, or custom defined table operations. In this

Inferring Dataflow Properties of User Defined Table Processors 21

1 T1 = extract ∗ from
2 ” clicktimes . log”

3 using MyExtractor

4

5 T2 = select sum from
6 process T1

7 using MyProcessor;

Listing 1.1: SCOPE
script with a

user-defined processor

1 public override IEnumerable<Row> Process

2 (IEnumerable<Row> input, Row outputRow) {
3 foreach (Row row in input) {
4 int sum =0;

5 for (int i =0; i<5; i++) sum += row[i];

6 outputRow[0].Set(sum);

7 yield return outputRow;

8 }
9 }

Listing 1.2: Process method for MyProcessor

paper we look at three forms of user defined operations: (1) processors, which
transform one table into another; (2) reducers, which transform a sub-table
(typically from a group-by operation) into another sub-table; or (3) combiners,
which combine two sub-tables into one. To SCOPE, these operations are .NET
methods stored in a .NET assembly, though programmers typically use C# to
define these operators. The code snippet in Listing 1.2 is the C# code for the
Process method of the MyProcessor class, which is used in the process command in
Listing 1.1. The C# statement yield return returns one element in the resulting
IEnumerable<Row> collection. The elements of a collection are accessed through a
foreach statement. The SCOPE compiler is targeting the following optimizations:

– Removal of unnecessary columns: An input column is unnecessary if no out-
put table of the script relies on this column.

– Elimination of redundant selection conditions: When the values of an output
column are a subset of an input column, then any constraint satisfied by the
input column is also satisfied by the output column.

– Elimination of unnecessary runtime non-null checks: If a column is known
to be non-null, then code inserted to check non-nullness may be skipped.

The next section describes what analysis problems need to be solved to enable
each of these optimizations.

3 Problem Description

For the methods of interest, i.e., processors, reducers and combiners, we know
which parameters represent which input tables and their respective schemas. We
refer to an input table as I and its schema SI , with O and SO for an output
table and its schema, respectively. For a schema S, S.Count is the number of its
columns. A table is viewed as a sequence of rows. We use r for a row and rT for
a row from table T . The i-th column of row r is r[i]. For a table T , we write T [i]
for the projection of T onto the i-th column, which is interpreted as a table of
one column.

Corresponding to the optimization opportunities listed previously, we are in-
terested in the following analyses.

– Column-column (in)dependence: Suppose that O[i] = f(I[1], ..., I[n]) for
some function f . If f(...I1[j], ...) = f(...I2[j]...), for any two possible values

22 S. Xia, M. Fähndrich, and F. Logozzo

of the j-th column in the input, I1[j] and I2[j], we say Ind(i, j), meaning
that the i-th column of output does not depend on the j-th column of input.
In this paper, we conservatively compute a may-depend-on relation with Ind
its negation.

– (Existential) equality: Eq(i, I, j) is defined as ∀rO ∈ O.∃rI ∈ I.rO[i] = rI [j].
Intuitively, this means that every value of the i-th output column equals
some value from the j-th input column of input table I.

– Non-null columns: For an output table column i this property is defined as:
∀rO ∈ O.rO [i] �= null.

In order to use our analyses as optimization enablers, they must be conser-
vative, meaning the dependence analysis must overestimate dependencies, the
equality analysis must underapproximate equalities, and the non-null analysis
must underapproximate non-nullness. The next subsections describe challenges
our analyses must address.

3.1 Challenge 1: Analyzing .NET Iterators

The SCOPE optimizer has only access to the compiled (.NET) version of user-
defined operators. Thus, we analyze the .NET MSIL (intermediate language)
instead of source code. The way an iterator method is compiled to the .NET
platform constitutes a major challenge for the analyzer.

Compilation of an iterator method is best explained by how the elements of
an IEnumerable collection are accessed. In C#, one uses a foreach statement (see
the comments in Listing 1.3). The foreach statement is compiled to the pseudo
code in Listing 1.3, where the MoveNext method will be called repeatedly to test
if the iterator has any element left. If so, the current element can be fetched.

An iterator method is compiled to a closure class implementing IEnumerator.
Parameters of the iterator method and local variables become fields of the closure
class. The closure class implements the MoveNext method, which contains the
iterator method code interspersed with state machine management code. There is
one initial state (when MoveNext has not been called), possibly several continuing
states (when there are some items remaining), and one end state (when no item is
left). In the remaining part of the paper, we will refer to these states as M−states.
If a call to MoveNext returns true, then the next call to MoveNext will resume from
a continuing state: the control jumps right back to where the computation paused
last time (Line 19 in Listing 1.4).

An ordinary analyzer is ineffective if applied directly to a MoveNext method, as
the analyzer has no knowledge of the state machine. For example, going through
lines 2-6-19-16 in Listing 1.4, the analyzer does not know any of the dataflow
facts (such as “var itor is an iterator of the input table”) that hold before the
return on Line 15. It does not know that this path is handling a continuing
state, where ideally we should inherit knowledge from the previous return. In
Section 4, we present a way to transform an ordinary analysis into one that
works for iterators.

Inferring Dataflow Properties of User Defined Table Processors 23

1 // foreach Row r in p.Process(input , outputRow) {
2 it = p.Process(input , outputRow).GetEnumerator();

3 while (it .MoveNext()) {
4 // Console.WriteLine(r);
5 t = it .Current;

6 Console.WriteLine(r);

7 //}
8 }

Listing 1.3: Using foreach

1 class closure C {
2 C this ; IEnumerable<Row> input;

3 Row current; Row outputRow;

4 Row row; int sum;

5 IEnumerator<Row> itor;

6 bool MoveNext() {
7 switch (state) {
8 case Initial :

9 itor = input.GetEnumerator();

10 while (itor .MoveNext()) {
11 row = itor .Current;

12 for (int i=0; i<5; i++)

13 sum += row[i];

14 outputRow[0].Set(sum);

15 current = outputRow;

16 state = Continuing 1;

17 return true ;

18 Resume Point1:

19 }
20 state = End; return false ;

21 case Continuing 1:

22 goto Resume Point1;

23 default : return false ;

24 }
25 }

Listing 1.4: Closure Class

1 ...

2 // sv0 is this . input
3 // sv100 is this .
4 // [itor = input.GetEnumerator]
5 sv1 := call GetEnumerator sv0;

6 stfld sv100 itor sv1;

7

8 // [while (itor .MoveNext())]
9 sv2 := call MoveNext sv1;

10 goto L1 L2;

11

12 L1: assume (sv2);

13 // [row = itor .Current]
14 sv8:= ldfld sv100 itor ;

15 sv9:= call getCurrent sv8;

16 stfld sv100 row sv9;

17 ...

18 // [sum += row[i]]
19 sv10 := ldfld sv100 row

20 sv12 := ldfld sv100 i

21 sv11 := call GetItem sv10 sv12

22 sv14 := ldfld sv100 sum

23 sv13 := add sv14 sv11

24 stfld sv100 sum sv13

25 ...

26 sv16:= ldfld sv100 sum

27 sv18:= call Column.Set sv17 sv16; //
28

29 L2: assume (!sv2);

Listing 1.5: Compiled MoveNext
Fragments

Fig. 1. Compilation of .NET Iterators

3.2 Challenge 2: Accurate and Conservative Dependence Analysis

The dependence analysis needs to be both conservative and accurate. For ac-
curacy, there are two issues. First, we need a finer distinction between different
parts of the input table. A naive approach introduces too many dependencies.
For example, if we use the standard control dependence computation [24] for
lines 9 to 16 of Listing 1.4, then every output column depends on the input
table itself, due to the call to itor .MoveNext on line 10. Depending on the input
table itself implies depending on every column of it, which is overly inaccurate.

24 S. Xia, M. Fähndrich, and F. Logozzo

Second, to perform unused column elimination transitively (columns solely used
to compute other unused column are also unused) we want to compute precisely
which input column (represented by its number) a particular output column de-
pends on. When the input column number of concern is a variable, we estimate
the set of its possible values. A convenient way is to compute the upper and
lower bounds of variables. For example, in Listing 1.2, output column 0 depends
on input column 0 (the lower bound of i) to 4 (the upper bound).

Aliasing and side effects are a major concern to a conservative analysis. When
we store a value from the input table to a field of an object, we want to know if
other objects will be affected as well. When we call a method, we want to know
if the result will in addition depend on a column of the input that may have been
previously stored and referenced by the method body. In general, aggressive and
accurate aliasing analysis is expensive. But in the user defined operators, there
is no input aliasing (that is, the input tables and the fields in the classes that
implement the operations are not aliased). This fact allows us to have a coarse
grained, inexpensive alias analysis.

3.3 Challenge 3: Quantified Invariants for Equality Analysis

To infer equalities between input and output columns when columns are indexed
by loop variables, our analysis has to compute quantified invariants, as shown by
the examples below. For both examples, we would like to say that output columns

1 for (int i=0; i<6; i++)

2 orow[i] = irow[i];

1 int i = 0;

2 while (i<6) {
3 if (∗) { i++; orow[i−1] = irow[i−1];}
4 else { orow[i] = irow[i]; i++; }
5 }

Fig. 2. Copying multiple input columns into the output

0 to 5 equal to the input columns 0 to 5, respectively. This requires us to infer
formulas of the form: ∀j ∈ [0, i), rO[j] = rI [j] as a loop invariant. In Section 7,
we will describe a simple approach to generate such loop invariants. It applies
well to typical SCOPE programs. In addition, we shall handle the general case
when the loop increment is not necessarily 1, or the assignment happens possibly
on different indices in different paths through the loop body, as shown by the
example on the right side of the code snippet above. Our proposed solution is to
determine a range [i, i+ k) of indices such that rO[j] = rI [j] holds ∀j ∈ [i, i+ k)
along all paths through the loop body. If k is the loop increment, then this
constitutes a proof of the induction step for proving the invariant.

Deciding whether two instances (of indices) are the same (used at the join
point), whether an instance is in between i and i+ k, or whether two instances
are distinct, all need reasoning about integer (in)equality. We use a numer-
ical abstract domain for this reasoning. In Section 7, we describe a quantified

Inferring Dataflow Properties of User Defined Table Processors 25

invariant inference approach that combines an index set and a numerical domain,
based on the intuition introduced above.

4 Analysis Infrastructure

We built our analyzer on top of a generic abstract interpretation based anal-
ysis infrastructure [22]. This infrastructure reads MSIL instructions of a .NET
assembly and transforms them to a form that is suitable for static analysis. In
this section, we first give basic definitions of abstract interpretation, then we
describe the program representation provided by the infrastructure.

4.1 Abstract Interpretation

An abstract domainD is (E,≤,�,�,∇), whereE is a partial order set of abstract
values, ≤ is the partial order, and �, � and ∇ are the join, meet and widening
operators, respectively.

A transfer function F : I × E → E, where I is the instruction set, defines
the abstract transfer for an instruction. The infrastructure provides an analysis
driver δ, which, when given a transfer function F , returns a method analysis
that yields an abstract state for every program location in the method. In other
words, δ(D,F)(m : M, e : E) : L → E, where L is the set of program locations
in m, and e is the initial abstract state.

Clousot, a contract checker for .NET programs, includes a library of abstract
domains. Of interest are several numerical domains, such as Linear (in)equality
[19], Octagon[23], Polyhedra[10], SubPolyhedra[22], etc. Details of these domains
are beyond the scope of this paper. It suffices to know that they support the
following operations: (1) testing of predicates, for which we write n � P for the
numerical domain n and a predicate P ; (2) finding the lower and upper bounds
of a variable. We write lb for the lower bound and ub for the upper bound;
and (3) adding facts: we will write n; v for adding the condition represented by
symbolic value v to the domain.

4.2 Program Representation

A program is a control flow graph of basic blocks connected with edges. A basic
block has a single entrance and a single exit and is made up of instructions. A
basic block has multiple successors when it ends with a conditional jump. An
assume statement is introduced at the targets of the conditional jump so that we
can handle conditional jumps as ordinary control transfers. The infrastructure
labels back edges to identify loops.

Inside a basic block, the (pseudo) instructions are similar to Single Statement
Assignment (SSA). The infrastructure abstracts the heap into a correspondence
between symbolic values and access paths. An access path, which represents heap
locations, can be viewed as an expression formed by either a parameter or a local
variable, or operations such as field access on another access path, for example,
this . f. We refer to the set of heap locations as Mloc. At any given program

26 S. Xia, M. Fähndrich, and F. Logozzo

point, a symbolic value is used to denote the content of an access path. Function
ap(v, pc) returns an access path that holds symbolic value v at program point
pc. Instructions make the symbolic value representing the result explicit. For
example, a load constant instruction is represented as sv100 := ldconst 1. In a
sense, this is equivalent to assume(sv100 == 1). An abstract domain used with
this infrastructure refers to symbolic values instead of program variables.

At join points of the control flow, the set of symbolic values used on the
incoming branches must be normalized to a common set (similar to SSA phi-
nodes) [14,20]. For this reason, the infrastructure inserts explicit rebinding opera-
tions rebind(f) on branches to join points. The rebinding function f : SV → SV
represents the following parallel assignments {sv := f(sv) | sv ∈ dom(f)}1.
To handle rebinding, an abstract domain must provide a rebinding operation
β : E × (SV → SV) → E which computes the abstraction value under the new
binding. For example, if sv1 is assigned to sv0, and sv1 > 0 is part of the abstract
state, the new abstract state should contain sv0 > 0.

The instructions used in this paper, together with rebind and assume, are
listed in Figure 3. In Listing 1.5, we list the pseudo code fragments that represent
the IL form for several important statements from Listing 1.4.

Instruction Comment
v := ldconst c load const
v1 := ldfld v2 field load a field
stfld v1 field v2 store v2 to v1.f
v0 = call m (v1, . . . , vn) method call, v1 is receiver if not static
v0 := bop v1 v2 binary operation
assume(v) assume statement
rebind (f) rebinding, where f : SV → SV .

Fig. 3. Pseudo-instructions provided by the infrastructure

5 Iterator Analysis

In this section, we show how to automatically turn an ordinary method abstract
interpretation A = (e,D, F) into an iterator analysis AI = (eI , DI , FI) that
works on an iterator method, such as MoveNext. The main idea is to split the
abstract states computed by A based on the M-state and to compute an iterator
invariant that holds between iterator invocations. We can abstract from the exact
M-state as we only need to know if the iterator is in the initial state (class 0),
the final state (class 2), or any other state where there is a valid current element
(class 1).

Thus, if D = (E,≤,�,�,∇), the domain of the iterator analysis is EI = S →
N × E, where S = {0, 1, 2} is the iterator state abstraction. For each iterator
1 It is important to view these assignments as a parallel assignment, for on back-edges,

the same symbolic value may appear on both sides of the assignments.

Inferring Dataflow Properties of User Defined Table Processors 27

state class, we form a product domain consisting of a numerical domain N (e.g.
intervals) and the original domain D. We use N to constrain the actual iterator
state variable this.istate to the proper class.2 The operations ≤I , �I , �I and
∇I over EI are simply extending ≤, �, � and ∇ in the codomain of EI in the
natural way.

Abstract states eI in EI maintain the invariant that eI(s) � this.istate ∈
class(s) where class(s) is simply the set of iterator states in our abstract iterator
state class s. Thus, at program points where the iterator state definitely falls
into one particular class, the other classes map to ⊥. At program points where
the iterator state is ambiguous, the classes map to the program state that is
known to hold, provided the actual iterator state falls into a particular class.

The transfer function FI operating over EI is defined as follows:

FI(i, eI)(s) =
⊔

j=0,1,2

F (i, eI(j)) � this.istate ∈ class(s)

The transfer function applies the effect of instruction i to each class and then
redistributes the results among the classes while filtering for the proper iterator
state. The redistribution is necessary when i is updating the iterator state.

To compute the iterator invariant that holds between invocations, we compute
the minimal fixpoint of the sequence of method start states

eIk+1 = eIk∇Iβ(δ(DI , FI)(m, eIk)(lexit), Mp)

starting with the initial state

eI0(s) =
{
e � this.istate = 0 if s = 0
⊥ otherwise

We assume that there is only one exit point in the method, lexit. The parallel
assignment operation based on Mp translates the symbolic variables representing
the state on exit of the method back to the symbolic variables representing the
state on entry to the method: Mp(v1) = {v|ap(v) = ap(v1)}.

Since we are effectively analyzing a loop, we need to use widening ∇I to
guarantee that the sequence converges.

Using this approach, we can transform the non-null analysis (based on [12])
implemented by Clousot to one that can analyze iterators. The only change we
had to make to the original non-null analysis is to encode the fact that the field
of the closure class that corresponds to “this” in the original method is non-null
(the field this at Line 2, Listing 1.4).

For the dependence and equality analyses, we only present the ordinary ab-
stract interpretation, with the understanding that the analyses performed by
Scooby are iterator analyses, obtained using the approach described in this
section.
2 If D is able to handle numerical constraints, then the produce with N could be

avoided as an optimization.

28 S. Xia, M. Fähndrich, and F. Logozzo

6 Dependence Analysis

Our dependence analysis is performed in two stages: first, a symbolic dependence
analysis computes dependence between column numbers represented as symbolic
expressions. Second, based on a numerical analysis, an estimation stage fur-
ther approximates the symbolic dependence with a relation over integer column
numbers.

6.1 Symbolic Dependence Analysis

The goal of the dependence analysis is to compute for each output column O[v],
which parts of the input tables it depends on.

Traceables. We express dependencies in terms of a set of traceables tr ∈ Tr.
A traceable is a symbolic representation of a part of an input table. A table
traceable Table(i) represents an entire input table corresponding to a method
parameter i. A column traceable Col(i, v) represents a column of input table i,
where the symbolic value v is the column index. Finally, a row count traceable
RC(i) refers to the number of rows in table i. If the output row depends only on
the row count of input table i but not any other part of the table, then the input
table can be optimized to have just the right number of rows, but no data.

Overview. We track the set of traceables stored in a set of non-aliased loca-
tions CF, consisting of the iterator closure fields corresponding to the original it-
erator method locals (all remaining local loads and stores are eliminated in our
SSA form). Traceables stored to any other location are considered escaping. For
method calls, we distinguish three groups: 1) pure methods, 2) well-known meth-
ods operating on the tables and rows, and 3) unknown methods. Traceables passed
to unknown methods are considered escaped. The well-known methods consist of

GetRows called on a table to get an IEnumerable<Row>

GetEnumerator called on an IEnumerable to get an IEnumerator

GetCurrent called on an IEnumerator to get the current enumeration value
GetItem called on a Row to index into a particular column
MoveNext called on an IEnumerator to advance it and test if exhausted
Column.Set called to assign an output row column at a particular index

A standard fixpoint computes data dependencies between all symbolic variables
appearing in the method and the set of traceables, as well as the set of escaped
values.

After computing the direct dependencies of each output column, we add all
escaped traceables to all output columns to obtain a conservative analysis result.

Control Dependencies. Besides data dependencies, we have to worry about
control dependencies as well. For example, a processor that counts the number
of rows in an input table does not have any direct data dependencies on any
input columns, yet depends on the number of rows passed in. Such dependencies

Inferring Dataflow Properties of User Defined Table Processors 29

only show up as control dependencies on the enumerator enumerating through
the table rows. We thus need to compute a control dependence between program
points as well as the symbolic value representing the conditions. The former is a
textbook exercise of computing the dominance frontier on a reversed control flow
graph [24]. The later is readily available from the infrastructure. Thus, given a
program point p, we have a set of symbolic values C(p) for the conditions that
may affect the program control leading to p. Note that we don’t include control
dependencies on entire Table(i) traceables as these represent false dependencies
arising from testing if the input table is null or if an iterator over an input table
is null. We will omit further details of including these control dependencies in
the transfer functions below.

Abstract Domain. We use an abstract domain (A1, A2, A3, A4) consisting
of: A1 = 2Tr is the set of escaped traceables, A2 = SV → 2Tr tracks the
set of traceables a symbolic variable depends on, A3 = CF → 2Tr tracks the
dependencies of the contents of the closure fields, and A4 = SV → 2Tr keeps
track of which output columns were assigned which dependencies. The domain
operations are component-wise and standard, so we omit them.

The initial state for the analysis is (∅, ∅, tpar, ∅), where tpar primes the closure
fields corresponding to the original table input parameters tpar(loc(this. I)) =
{Table(I)} for all table input parameters I.

Transfer Function. The transfer function is defined in Figure 4 for all relevant
instructions. The auxiliary function InOut(a2, args,m) is used to compute the
union of all dependencies carried by m’s input parameters and to assign them
to all of m’s outputs.

Instruction Next State (Pre-State:(a1, a2, a3, a4))

v=ldfld o f a2 :=
{
a2[v := a2[o] ∪ a3[loc(o.f)]] if loc(o.f) ∈ CF

a2[v := a2[o]] otherwise
stfld o f v a3 := a3[loc(o.f) := a2[v]] if loc(o.f) ∈ CF.
v=op v1 v2 a2 := a2[v := a2[v1] ∪ a2[v2]]
v=call m args a2 := InOut(a2, args,m) if m is a pure method

a2 := a2[v := a2[args[0]]] if m is GetRows or GetEnumerator

a2 := a2[v := Table(i)] if m is GetCurrent and Table(i) ∈ a2[args[0]]
a2 := a2[v := Col(i, args[1])] if m is GetItem and Table(i) ∈ a2[args[0]]
a2 := a2[v := RC(i)] if m is MoveNext and Table(i) ∈ a2[args[0]]
a4 := a4[args[0] := a4[args[0]] ∪ a2[args[1]]] if m is Column.Set

a1 := a1

⋃
j a2[args[j]] otherwise

Fig. 4. Transfer function for dependency analysis. Control dependences omitted.

6.2 Estimation

The iterator analysis applied to the dependence analysis of the previous sec-
tion produces a fixpoint (a1, a2, a3, a4) from which we extract the final column

30 S. Xia, M. Fähndrich, and F. Logozzo

dependencies as follows. We use the numeric domain of the iterator analysis to
compute lower lb(v) and upper ub(v) bounds for any symbolic variable v. Then
O[i] depends on I[j], provided

∃v ∈ dom(a4) such that lb(v) ≤ i ∧ i ≤ ub(v) and j ∈ allcols(I, a4[v] ∪ a1)

Auxiliary function allcols(I, T) is the set of column indices of input table I
included in the set of traceables T :

– If Table(I) ∈ T , then the set of all column numbers in the table [0, SI .Count)
is in allcols(I, T), where SI is the schema for I.

– If Col(I, v) ∈ T , then the set of all column numbers [lb(v), ub(v)] is in
allcols(I, T).

Example. In Listing 1.5, we find that sv1 depends on Table(input), sv2 depends
on RC(input); this dependence is control-dependent on in the loop body and does
not introduce column-column dependency on the final output. Inside the loop,
sv8 depends on Table(input) via itor ’s dependence; sv9 depends on Table(input)
via GetCurrent, which is propagated to sv10 via closure field row. sv11 depends on
Col(input, sv12), where sv12 is the symbolic value for i at line 20. sv13 and sum

all inherit the same dependence Col(input,sv12) and propagate it to the output
column index sv17. Our implementation is able to figure out sv17 is output
column number 0 (not shown). The estimation stage further finds the bounds
for sv12 to be [0, 4].

7 Equality Analysis

The goal of the equality analysis is to find relations Eq(i, I, j), stating that all
elements in column i of the output are equal to some value of column j of input
table I.

If the user defined code sets output columns to input columns using constant
indices, such relations are not difficult to discover. This section deals only with
the more difficult case where the user code consists of a loop, copying several
input columns to several output columns, and the column indices are symbolic
(see Fig 2).

We use a “guess and verify” approach by finding a candidate loop and a
guessed invariant and checking that the invariant holds by performing an ab-
stract interpretation over the loop body. A candidate loop satisfies the following
conditions:

– The loop variable v ranges over [i, j)
– The loop increment is a constant k
– All output row assignment in the loop body are semantically of the form

orow[v + e] = inputrow[v + e+ o], where o is a loop constant
– All output row assignments after the loop are to indices provably disjoint

from [i, j).

Inferring Dataflow Properties of User Defined Table Processors 31

Such loops are identified by using a numerical analysis N and custom code to
identify the output row assignments. If we find such a loop, we try to prove the
following loop invariant ∀l ∈ [i, v).orow[l] = inputrow[l + o] which is equivalent
to Eq(l, input, l+ o) for l ∈ [i, v).

We analyze the loop body using an abstract domain (N,C), where N is a
numeric domain we use to answer questions about index (in)equality, and C =
2SV is an index set of symbolic variables. An abstract state (n, c) satisfies the
following invariant at every program point:

∀sv ∈ c. n � v ≤ sv < v + k ∧ ∀sv′ ∈ c. sv �= sv′ ⇒ n � sv �= sv′

In words, this means that the set of indices in the index set are semantically dis-
joint in the range [v, v+ k). The transfer function makes sure that this invariant
is maintained, or it sets the index set to the empty set. An abstract state (n, c)
models the following set of equalities:

∀l.(i ≤ l ∧ n � l < v ∨ ∃sv ∈ c. n � sv = l) ⇒ orow[l] = inputrow[l + o]

which extends the range [i, v) of equalities with the discrete indices in the index
set. The initial abstract value entering the loop is (n, ∅), where n is obtained
from any prior computed numeric analysis over the code. This abstract state
is trivially true on loop entry, as the index variable v must start at i and thus
represents the empty set of equalities.

At loop back edges, we check that the cardinality of the index set c is equal
to the loop increment k. If it holds, then we prove the loop invariant, otherwise,
we reject the candidate equality relation.

An interesting problem is how to compute the join of index sets. Given (n1, c1)
and (n2, c2), the join is (n, c), where n = n1 �n2, and c = {v1|v1 ∈ c1 ∧ (∃v2.v2 ∈
c2 ∧n � v1 = v2)}. In words, we perform a semantic intersection of indices based
on the knowledge that they are all disjoint.

We summarize the analysis by showing the relevant part of the transfer
function:

Instruction Condition New Abstract State
Old state is (n, c)

Rebind(f) enter loop (β(n, f), {})
loop back edge (β(n, f), {}) if |c| = k and n � f(v) = v + k

reject candidate otherwise
oRow[v1] := inputRow[v2] (n, c ∪ {v1}) if n � v1 = v + e

and n � v2 = v + e+ o
and n � 0 ≤ e < k and ∀sv ∈ c.n � sv 	= v1

8 Implementation

We implemented the analyses described in this paper as part of Scooby using C#
(about 10 KLocs). Scooby can be used as both a standalone tool and a library. It

32 S. Xia, M. Fähndrich, and F. Logozzo

has been tested using more than 100 test cases and examples. The effectiveness
of Scooby is demonstrated by the accuracy with which it infers dependency and
equality relations for real, practical examples. These examples are from programs
that are run by the Live Search team on a daily basis. We compared the results
of Scooby against the dependence/equality relation discovered manually.

In the table below, we show measurements of Scooby’s analysis accuracy for
some representative examples. The core processing methods of these examples
range from dozens to hundreds lines of C# code. We also list the number of
symbolic values involved in the analysis: we can handle with no difficulty hun-
dreds of symbolic values. The execution time is typically below one second,
though there are cases a few seconds are recorded. Since such execution time is
already satisfactory, and our tool is not specially optimized for efficiency, exe-
cution time is not listed in the table. For all the examples, the analyses results
are correct, meaning that no dependence pairs are missed, or false equality pairs
are reported. We measure the accuracy of dependence analysis by counting the
number of total necessary dependence pairs and the number of false dependence
pairs reported by our analysis. The accuracy of equality analysis is measured by
counting the total number of actual equalities and the number of equality pairs
missed by our analysis. Missing equality is rare but there are a small number
of false dependencies, mainly due to false escaped values. For example, the link-
data and clickboost examples below report escaped values, one due to storing
into an array and the other due to a function call that is not recognized to be
pure. In linkdata, the false escaped value does not matter because the equality
analysis results supersede the dependence analysis. In the clickboost example
however, the inaccuracy causes every output column to depend on one extra
input column. Often, we can improve accuracy by detecting the purity of li-
brary methods. We are automating this detection using a purity checker based
on [5].

Escaped Value Dependencies EqualitiesProgram Loc #SV
Kind Cause Total False Cause Total Missed

multivalue 24 80 n/a n/a 14 182 Numerical 14 0
multiedits 80 257 n/a n/a 10 0 n/a 0 0
linkdata 85 225 Col Array 6 78 Escaped val. 6 0
urlpairs 101 269 n/a n/a 9 0 n/a 0 0
querypairs 175 326 n/a n/a 36 0 n/a 0 0
clickboost 249 720 Col Call 50 6 Escaped val 1 0

Apart from the experiments above, we designed many test cases to expose inac-
curacies in our analysis. The common sources of inaccuracy are: (1) we analyze
only the method that implements the user defined operator; (2) our handling
of aliasing and side effects is coarse-grained; (3) disjunctive loop invariants are
required; (4) more complicated loop patterns than we discussed in the paper are
used, and (5) limitations of our numerical domains.

Inferring Dataflow Properties of User Defined Table Processors 33

9 Related Work

The dependence analysis discussed in this paper is a unique problem. It is
different than the functional dependency concept in relational databases [8],
which talks about attributes in one relation. The dependence analysis is close
to the control and data dependence studied by the compiler optimization com-
munity [2,24], particularly for vector optimization (for example [3]). Yet our
problem requires a much refined analysis on the input table columns, which
involves reasoning about numerical (in)equalities. In many ways, our analysis
resembles analyses that monitor information flow in computer security (for ex-
ample [1,29,25]).

Customer defined type systems/analyses are used to assist in the correctness
of cluster scale distributed system (for example [28]). It is possible to use or
extend our analyses for static correctness guarantees, non-null analysis being one
such example. There are several works on inferring loop invariants (for example
[13,11]).

The escape analysis used here is a simple one, but sufficient for our purposes.
Much work on points-to/alias/escape analyses (for example [30,6]) exists in the
literature. In comparison, those analyses provide more accurate answers to more
challenging questions. As mentioned, automatic purity checking is part of our
future work.

10 Conclusion

This paper investigates a number of analyses for embedded .NET programs in
the context of database table processing. We designed and implemented novel al-
gorithms to compute input-output column dependencies and equalities. Since we
had to analyze .NET iterators, we also produced an automated way to transform
an ordinary method abstract interpretation into one that computes invariants for
.NET iterators. We adopt numerical domains to reason about the column num-
bers and we extend quantified loop invariant inference techniques with index sets.
All these are implemented in Scooby. Although there is room for improvement,
especially in the area of automatic purity checking, Scooby has been proven ef-
fective in practice. Ideas introduced in this paper, in particular the analysis of
iterators and the use of index sets in quantified invariant inference, should be
useful in other settings.

References

1. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A core calculus of dependency.
In: Proc. 26th ACM Symp. on Principles of Programming Languages (POPL),
pp. 147–160. ACM Press, New York (1999)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison Wesley, Reading (1986)

3. Allen, R., Kennedy, K.: Compiler Optimization for Modern Architectures:
a Dependence-based Approach. Morgan Kaufmann, San Francisco (2001)

34 S. Xia, M. Fähndrich, and F. Logozzo

4. Ball, T., Rajamani, S.K.: The slam project: debugging system software via static
analysis. In: POPL 2002: Proceedings of the 29th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pp. 1–3. ACM, New York (2002)

5. Barnett, M., Fändrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more)
precise points-to analysis. In: IWACO 2007: ECOOP International Workshop on
Aliasing, Confinement and Ownership in object-oriented programming (July 2007)

6. Blanchet, B.: Escape analysis: correctness proof, implementation and experimental
results. In: POPL 1998: Proceedings of the 25th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pp. 25–37. ACM, New York (1998)

7. Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D., Weaver, S., Zhou,
J.: Scope: easy and efficient parallel processing of massive data sets. PVLDB 1(2),
1265–1276 (2008)

8. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 26(1), 64–69 (1983)

9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of POPL 1979 (1979)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL 1978 (1978)

11. Ernst, M.D.: Dynamically Discovering Likely Program Invariants. Ph.D thesis,
University of Washington (2000)

12. Fähndrich, M.A., Leino, K.R.M.: Declaring and checking non-null types in an
Object-Oriented language. In: OOPSLA 2003, pp. 302–312. ACM Press, New York
(2003)

13. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001)

14. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact ver-
ification conditions. In: Proceedings of POPL 2001, pp. 193–205. ACM, New York
(2001)

15. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: POPL 2008. ACM Press, New York (2008)

16. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
SIGPLAN Not. 43(6), 339–348 (2008)

17. ECMA Int. Standard ECMA-355, Common Language Infrastructure (June 2006)
18. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-

parallel programs from sequential building blocks. In: European Conference on
Computer Systems (EuroSys), Lisbon, Portugal, March 21-23. Microsoft Research,
Silicon Valley (2007)

19. Karr, M.: On affine relationships among variables of a program. Acta Informat-
ica 6(2), 133–151 (1976)

20. Rustan, K., Leino, M.: Efficient weakest preconditions. Inf. Process. Lett. 93(6),
281–288 (2005)

21. Logozzo, F., Fähndrich, M.A.: On the relative completeness of bytecode analy-
sis versus source code analysis. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959,
pp. 197–212. Springer, Heidelberg (2008)

22. Logozzo, F., Fähndrich, M.A.: Pentagons: A weakly relational abstract domain for
the efficient validation of array accesses. In: SAC 2008 (2008)

23. Miné, A.: Weakly Relational Numerical Abstract Domains. Ph.D thesis, École Poly-
thechnique (2004)

24. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan
Kaufmann, San Francisco (1997)

Inferring Dataflow Properties of User Defined Table Processors 35

25. Myers, A.C.: Jflow: practical mostly-static information flow control. In: POPL
1999: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pp. 228–241. ACM, New York (1999)

26. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0, 1, infty)-counter abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122.
Springer, Heidelberg (2002)

27. Sankaranarayanan, S., Ivancic, F., Gupta, A.: Program analysis using symbolic
ranges. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 366–383.
Springer, Heidelberg (2007)

28. Saraswat, V., Nystrom, N., Palsberg, J., Grothoff, C.: Constraint types for object
oriented languages. In: Proceedings of of OOPSLA 2008, ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages and Applications
(2008)

29. Smith, G.: A new type system for secure information flow. In: CSFW14,
pp. 115–125. IEEE Computer Society Press, Los Alamitos (2001)

30. Steensgaard, B.: Points-to analysis in almost linear time. In: POPL 1996: Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pp. 32–41. ACM, New York (1996)

Polymorphic Fractional Capabilities

Hirotoshi Yasuoka and Tachio Terauchi

Tohoku University
{yasuoka,terauchi}@kb.ecei.tohoku.ac.jp

Abstract. The capability calculus is a framework for statically rea-
soning about program resources such as deallocatable memory regions.
Fractional capabilities, originally proposed by Boyland for checking the
determinism of parallel reads in multi-thread programs, extend the ca-
pability calculus by extending the capabilities to range over the rational
numbers. Fractional capabilities have since found numerous applications,
including race detection, buffer bound inference, security analyses, and
separation logic. However, previous work on fractional capability systems
either lacked polymorphism or lacked an efficient inference procedure.
Automated inference is important for the application of the calculus to
static analysis. This paper addresses the issue by presenting a polymor-
phic fractional capability calculus that allows polynomial-time inference
via a reduction to rational linear programming.

1 Introduction

The capability calculus [5] was originally proposed as a framework for region-
based memory management, that is, a system for guaranteeing that a deallo-
cated region is never accessed. The capability calculus is a good framework for
statically reasoning about properties of general program resources such as mem-
ory regions [5], reference cells [4], and communication channels [14]. Researchers
[4,13] extended the framework to fractional capabilities ([4] called them fractional
permissions), allowing (1) more flexibility by letting the capabilities range over
rational numbers, which allows reasoning about concurrent reads and writes, and
(2) efficient inference via a reduction to (rational) linear programming, whereas
no efficient inference is known for the non-fractional calculi1. Fractional capabil-
ities have found applications in many areas of program verification and program
logic, including determinism checking [4,12,13], separation logic [3], security pro-
tocol analysis [2,7], buffer bound inference [14], race detection [10], and secure
information flow [11].

Previous work on capability calculus either lacked parametric polymorphism
[14,10,11] or lacked an efficient inference procedure [4,3]. By parametric poly-
morphism, we mean allowing capabilities appearing in the function types to
be parametrized by resource variables2. The issue turns out to be surprisingly
non-trivial as “obvious” approaches result in an overly conservative system.
1 Indeed, some of them are proven to be NP-hard [13,7].
2 Resource variables range over program resources to be reasoned by the calculus such

as memory locations or communication channels, depending on the application.

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 36–51, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Polymorphic Fractional Capabilities 37

The rest of the paper is organized as follows. In the next section, we give an
overview of the main issues, highlighting the problems with naive approaches,
and presenting our solution informally. Section 3 formally presents the solution
and proves its soundness. Section 4 shows the type inference algorithm. The
inference algorithm utilizes linear programming and runs in time polynomial in
the size of the underlying Hindley-Milner types. To present the idea assuming
little prior background in fractional capabilities, we focus on the application of
the capability calculus to the problem of region-based memory management [5].
But, our idea can also be applied to other fractional capability calculi. Section 5
discusses how the idea can be transferred to the capability calculus for race
detection [10]. Section 6 discusses related work and concludes. The proofs and
the figures omitted from the main body of the paper are in the long version [16].

2 Informal Overview

We informally present the idea by showing how the capability calculus guarantees
region-based memory safety. A program is said to be memory safe if it does not
access a deleted region. Consider the following program fragment.

let a = ref 0@ρa in
let b = ref 0@ρb in
let f = fun f [ρ] (x : ref (int)@ρ) = !x; free ρ in

f [ρa] (a); f [ρb] (b)

The program allocates two reference cells a and b, hopefully in separate regions
ρa and ρb. The function f is called with each cell, dereferencing the given cell and
deleting its region. Here, ρ is a region parameter that is passed from the caller.
Unlike in the traditional stack-discipline of the Tofte-Talpin region calculus [15],
the capability calculus allows non-scoped region deletion, which introduces more
opportunities for dangling pointers. Here, ; is the sequential composition, !e reads
the reference cell e, and free ρ deletes the region ρ.

Note that we need f to be polymorphic in ρ because otherwise, the regions
ρa and ρb would be equated, and so the program becomes memory unsafe (as
the second call to f would try to read from the deleted region). Therefore, we
would like to assign f the following polymorphic type.

∀ρ.({ρ �→ 1}, ref (int)@ρ) → ({ρ �→ 0}, int)

The type says that the function takes a region ρ and an argument of the type
ref (int)@ρ (i.e., an integer reference allocated in the region ρ) and returns an
integer. It also says that the caller is required to have the capability {ρ �→ 1}.
(Any capability greater than 0 is sufficient for dereferencing or writing to the
region whereas the capability greater than or equal to 1 is needed to delete the
region). The function returns to the caller the capability {ρ �→ 0} indicating that
ρ is deleted and cannot be accessed or deleted after the call.

38 H. Yasuoka and T. Terauchi

letreg ρa in

let a = ref 0@ρa in

let f = fun f [ρx, ρy] (x : ref (int)@ρx, y : ref (int)@ρy) = !x;free ρx; !y
in

f [ρa, ρa] (a, a)

Fig. 1. A memory unsafe program

Instantiating the polymorphic type at the calls, we get the types

({ρa �→ 1}, ref (int)@ρa) → ({ρa �→ 0}, int)
({ρb �→ 1}, ref (int)@ρb) → ({ρb �→ 0}, int)

and we are able to type check the program as memory safe, assuming that
the capability before the code fragment is {ρa �→ 1, ρb �→ 1}, indicating that the
code may access and delete the regions ρa and ρb. The capability for a region ρ
is initialized to 1 when the region is created.

Formally, a capability is a mapping from region variables (ρ’s) to non-negative
rationals [0,∞) (e.g., {ρa �→ 1} is a shorthand for a function that maps ρa to
1 and all other region variables to 0). Note that instantiating the type of f by
ρa and ρb involve substitutions {ρ �→ 1}[ρa/ρ] = {ρa �→ 1} and {ρ �→ 1}[ρb/ρ] =
{ρb �→ 1}. Given a capability Ψ , the naive instantiation Ψ [ρ1/ρ2] syntactically
replaces ρ2 in the capability Ψ by ρ1.

2.1 Additive Instantiation

Unfortunately, the naive instantiation is inadequate. Consider the program
shown in Figure 1. Now, f takes two cells, x and y, accesses x, deletes the
region in which x is allocated (i.e., ρx), and then accesses y. Here, letreg ρa

allocates a new region named ρa. Note that the program is unsafe because f is
called with both arguments set to a, and therefore, deletes the region where a is
allocated (i.e., ρa) before accessing a for the second time.

The function f can be given the type

∀ρx.∀ρy.(Ψin , ref (int)@ρx, ref (int)@ρy) → (Ψout , int)

where Ψin = {ρx �→ 1, ρy �→ q} and Ψout = {ρx �→ 0, ρy �→ q} for some q > 0.
When we instantiate the type via the substitution θ = [ρa/ρx][ρa/ρy] naively, the
capability required before the call is Ψinθ = {ρa �→ 1, ρa �→ q} and the capability
required after the call is Ψoutθ = {ρa �→ 0, ρa �→ q}. The capabilities are not
mappings. To overcome the issue, the existing polymorphic fractional capability
calculi (e.g. [4]) performs additive instantiation, defined as follows.

Ψ [ρ1/ρ2]⊕ = {ρ1 �→ Ψ(ρ2) + Ψ(ρ1)} ∪ {ρ2 �→ 0} ∪ {ρ �→ Ψ(ρ) | ρ /∈ {ρ1, ρ2}}

Then,

Ψin [ρa/ρx]⊕[ρa/ρy]⊕ = {ρa �→ 1, ρy �→ q}[ρa/ρy]⊕ = {ρa �→ 1 + q}

Polymorphic Fractional Capabilities 39

With this instantiation scheme, we are able to safely reject the program in
Figure 1, because now the call f [ρa, ρa] (a, a) requires {ρa �→ 1 + q} where q > 0,
but the caller only has {ρa �→ 1}.

2.2 Down Instantiation

The additive instantiation scheme discussed above, while sound, is somewhat
conservative in the presence of recursive calls. Consider the following program.

letreg ρa in
let a = ref 0@ρa in
let f =

fun f [ρx, ρy] (x : ref (int)@ρx, y : ref (int)@ρy) = !x; !y; f [ρx, ρx] (x, x)
in f [ρa, ρa] (a, a)

This program is obviously safe (because no region is deleted). However it is not
typable with the additive instantiation scheme. To see this, note that f must
have a type of form ∀ρx, ρy.(Ψin , ref (int)@ρx, ref (int)@ρy) → (Ψout , int) with
Ψin(ρx) > 0 and Ψin(ρy) > 0 because f accesses both x and y. But, the capability

Ψrec = Ψin [ρx/ρx]⊕[ρy/ρx]⊕ = Ψin [ρy/ρx]⊕

is required before the recursive call f [ρx, ρx] (x, x). Thus, Ψrec(ρx) = Ψin(ρx) +
Ψin(ρy). But because Ψin = Ψrec (or Ψin ≥ Ψrec

3), we have

Ψin(ρx) ≥ Ψin(ρx) + Ψin(ρy) Ψin(ρx) > 0 Ψin(ρy) > 0

It is easy to see that there exists no non-negative rational number that can
be assigned to Ψin(ρx) to satisfy these inequalities. Therefore, the type system
rejects the program as untypable.

One way to overcome the issue is to allow polymorphism over the fractions
as done in some fractional capability calculi [4,3]. Unfortunately, it is unclear
whether an efficient inference exists for such systems.

Instead, we propose to relax the caller’s requirement when the function does
not delete the region. Specifically, when a function requests a positive capability
for some ρ, we allow a call to the function to be type checked with a positive
capability for ρ that is lower than the actual capability requested by the callee,
provided that the call does not delete ρ. The rationale for this is that any positive
capability is sufficient for a region access (but not region deletion). To this end,
we introduce a new instantiation scheme called down instantiation, defined as
follows.

Ψ [ρ1/ρ2]⇓ = {ρ1 �→ 1
2
(Ψ(ρ2) + Ψ(ρ1))} ∪ {ρ �→ Ψ(ρ) | ρ /∈ {ρ1, ρ2}}

Note that the down instantiation lowers the capability by one half for the region
being instantiated.
3 This constraint is from the fact that a sequential composition passes capabilities

along the sequence.

40 H. Yasuoka and T. Terauchi

ρ ∈ Regvar
Ψ ∈ Regvar → [0,∞)
L ::= ∅ | L ∪ {ρ}
τ ::= int | ref (τ)@ρ | (Ψin , τin) L→ (Ψout , τout) | ∀ρ.τ

v ::= λx : τ .e | Λρ.v
e ::= n | x | v | fix x : τ.v | e (e′) | e[ρ]

| ref e@ρ | !e | e := e′ | letreg ρ in e | free ρ

Fig. 2. The syntax of the region language

Using the down instantiation in the running example, linear inequalities to be
solved becomes as follows.

Ψin(ρx) ≥ 1
2
(Ψin(ρx) + Ψin(ρy)) Ψin(ρx) > 0 Ψin(ρy) > 0

These inequalities are solvable (e.g., by assigning 1 to both Ψin(ρx) and Ψin(ρy)),
and hence, the program becomes typable.

For soundness, we may only apply the down instantiation to regions that are
not deleted by the call because it would be unsafe to lower a capability required
for a region deletion to some positive number less than 1. Therefore, we select
the instantiation scheme based on which region a function call may delete. We
use the additive instantiation when instantiating regions that are deleted, and
use the down instantiation for those that are not. We use effects to infer the
deleted regions. In the example above, the effect analysis detects that f frees
neither ρx nor ρy, and therefore, that the down instantiation can be used for ρx

and ρy.

3 Polymorphic Fractional Capability Calculus

We now formally define the polymorphic fractional capability calculus. We focus
on the simple region language shown in Figure 2. The language is essentially the
standard Tofte-Talpin region language [15] extended with free ρ and function
types containing capabilities. Note that freeρ can be used to free a region before
its scope expires (i.e., before e is fully evaluated in letreg ρ in e), thus possibly
creating a dangling pointer.

We briefly describe the syntax of expressions (e). Expressions include integer
constants n, variables x, functions λx : τ .e, region variable abstractions Λρ.v,
recursive definitions fix x : τ .v, function applications e (e′), region applications
e[ρ], reference allocations ref e@ρ, reference reads !e, reference writes e := e′,
region allocations letreg ρ in e, and region deallocations free ρ. Region ab-
straction and recursive definition are restricted to values v, which, for now, are
just functions (and their region abstractions). For simplicity, the region language
only allocates reference cells in regions, but it is easy to extend the language so
that function closures are also allocated in regions. We write let x : τ = e1 in e2
for (λx : τ .e2) (e1), and e1; e2 for let x : τ = e1 in e2 where x is not free in e2.

Polymorphic Fractional Capabilities 41

Each function takes a single argument, but a multi-argument function can be
encoded via currying. Instead of letting functions directly take region arguments
as in Section 2, we use separate syntax for region variable abstraction and region
instantiation. We also use separate syntax for recursive definition. For example,
fun f [ρ] (x : τ) = e from Section 2 can be expressed as fix f : τ ′.Λρ.λx : τ .e.
Multi-region arguments can also be encoded by currying.

Next, we describe the grammar of the types. The types include integer types
int , reference types ref (τ)@ρ, region polymorphic types ∀ρ.τ , and function types
(Ψin , τin) L→ (Ψout , τout) where L denotes the latent effect. Unlike in the Tofte-
Talpin region system, we do not use effects to control the access to regions. As
explained in Section 2, the latent effect overapproximates the regions that may
be deleted by calling the function.
Ψ denotes a capability, which as discussed above, is a function from region

variables Regvar to non-negative rational numbers in the range [0,∞). As dis-
cussed in Section 2, a capability represents the access rights over the regions.
Informally, having Ψ such that Ψ(ρ) > 0 means that the region ρ can be accessed
(i.e., allocated, read, or written). In addition, Ψ(ρ) ≥ 1 means that the region
ρ can also be deleted. Deleting a region consumes the capability, that is, the
capability for ρ after free ρ becomes 0. The capability for a region is initialized
to 1 when the region is created.

3.1 Dynamic Semantics

We define the operational semantics of the region language. The semantics is
defined as small step reductions from states to states, where a state is a triple
(R, h, e) consisting of a region environment R, a store h, and a run-time expres-
sion e. A region environment maps region variables to {0, 1} where 0 indicates
that the region has been deleted, and 1 indicates that the region is alive. A store
is a mapping from locations � to values. We extend values to include integers
and locations as follows: v ::= · · · | n | �@ρ.

Here, �@ρ is a location � allocated in the region ρ. The semantics trivially
guarantees that for any �, there is a unique ρ such that �@ρ appears as a value
in the semantics. Also, the semantics guarantees that if �@ρ appears somewhere
in the reduction, then ρ ∈ dom (R) at that point, and that � in dom (h). However,
it does not guarantee that R(ρ) = 1 at such a point, which, importantly, allows
dangling pointers, and therefore, memory unsafe programs. It is the job of the
static system to reject such unsafe programs (cf. Section 3.2).

Figure 3 shows a few representative reduction rules (see the long version [16]
for the complete set of rules). App handles function calls and TyApp han-
dles region parameter passing. Here, the substitution e[ρ1/ρ2] is defined in the
standard capture-avoiding way. We defer the definition of substitution for types
τ [ρ1/ρ2] to Section 3.2, which is also capture avoiding. We let expressions and
types equivalent up to renaming of bound variables and region variables.

Ref handles reference allocations, and requires the region where the reference
is allocated to be alive. The reduction gets stuck when trying to access a deleted
region. The reduction rules for other reference accesses (i.e., reads and writes)

42 H. Yasuoka and T. Terauchi

(R, h, (λx : τ .e) (v)) → (R,h, e[v/x]) App

(R, h, (Λρ.v)[ρ′]) → (R, h, v[ρ′/ρ]) TyApp

R(ρ) = 1 � /∈ dom(h)
(R, h, ref v@ρ) → (R, h[� �→ v], �@ρ)

Ref

ρ /∈ dom(R)
(R,h, letreg ρ in e) → (R[ρ �→ 1], h, e)

Letreg

R(ρ) = 1
(R,h, free ρ) → (R[ρ �→ 0], h, 0)

Free

e→ e′

E[e] → E[e′]
Context

Fig. 3. Representative reduction rules

are similar. Here, the notation f [u �→ v] denotes the extension of f by u mapping
to v. That is, f [u �→ v] = f ∪ {u �→ v} for u /∈ dom(f). Letreg creates a fresh
region, and Free frees a live region. Reduction gets stuck when trying to free
an already freed region. Context is the usual rule to allow reduction in an
evaluation context. The evaluation contexts are defined as follows.

E ::= [] | E (e) | v (E) | E[ρ] | refE@ρ | E := e | v := E | !E

Let us write (R, h, e) →∗ (R′, h′, e′) for zero or more reduction steps from
the state (R, h, e) to (R′, h′, e′). We say that the program e is memory safe if
reducing from the initial state (∅, ∅, e) does not get stuck. More formally,

Definition 1 (Safety). We say that e is memory safe if for any state (R1, h1, e1)
such that (∅, ∅, e) →∗ (R1, h1, e1), either e1 is a value or there exists a state
(R2, h2, e2) such that (R1, h1, e1) → (R2, h2, e2).

3.2 Static Semantics

A capability calculus is a type system, and consists of a set of deductive typing
rules. We present the polymorphic fractional capability calculus that guarantees
that a typable program is memory safe.

Figure 4 presents the typing rules. The typing judgements are of the form
Γ, Ψ � e : τ, Ψ ′, L. Here, the type environment Γ maps variables to types, pre-
capability Ψ is the capability of the program before the evaluation of e, post-
capability Ψ ′ is the capability after evaluating e, τ is the type of e, and L is the
effect of e.

We briefly describe the typing rules. Int and Var are self-explanatory. In
Fun, we type check the body starting with the pre-capability of the function

Polymorphic Fractional Capabilities 43

Γ, Ψ � n : int , Ψ, ∅ Int
Γ, Ψ � x : Γ (x), Ψ, ∅ Var

Γ [x �→ τin], Ψin � e : τout , Ψout , L ∀ρ /∈ L.Ψin (ρ) = Ψout(ρ)

Γ, Ψ � λx : τin .e : (Ψin , τin) L→ (Ψout , τout), Ψ, ∅
Fun

Γ, Ψ � �@ρ : ref (Γ (�))@ρ, Ψ, ∅ Loc
Γ [x �→ τ], Ψ � v : τ, Ψ, ∅
Γ, Ψ � fix x : τ.v : τ, Ψ, ∅ Fix

Γ, Ψ � e1 : (Ψin , τin) L→ (Ψout , τout), Ψ1, L1 Γ, Ψ1 � e2 : τin , Ψkeep + Ψin , L2

Γ, Ψ � e1 (e2) : τout , Ψkeep + Ψout , L1 ∪ L2 ∪ L App

Γ, Ψ � v : τ, Ψ ′, ∅ ρ /∈ free(Γ)

Γ, Ψ � Λρ.v : ∀ρ.τ, Ψ ′, ∅ RegAbs
Γ, Ψ � e : ∀ρ.τ, Ψ ′, L

Γ, Ψ � e[ρ′] : τ [ρ′/ρ], Ψ ′, L
TyApp

Γ, Ψ � e : τ, Ψ ′, L Ψ ′(ρ) > 0

Γ, Ψ � ref e@ρ : ref (τ)@ρ,Ψ ′, L
Ref

Γ, Ψ � e : ref (τ)@ρ, Ψ ′, L Ψ ′(ρ) > 0

Γ, Ψ � !e : τ, Ψ ′, L
Deref

Γ, Ψ � e : ref (τ)@ρ,Ψ1, L1 Γ, Ψ1 � e′ : τ, Ψ ′, L2 Ψ ′(ρ) > 0

Γ, Ψ � e := e′ : int , Ψ ′, L1 ∪ L2
Write

Γ, Ψ + {ρ �→ 1} � e : τ, Ψ ′, L ρ /∈ free(Γ) ∪ free(τ) Ψ(ρ) = Ψ ′(ρ) = 0

Γ, Ψ � letreg ρ in e : τ, Ψ ′, L \ {ρ} Letreg

Γ, Ψ + {ρ �→ 1} � free ρ : int , Ψ, {ρ} Free

Fig. 4. The type checking rules

Ψin and ending in the post-capability Ψout . We also record L as the latent effect
of the function. The condition ∀ρ /∈ L.Ψin(ρ) = Ψout(ρ) becomes handy when
proving the soundness of the type system4.

RegAbs, Fix, and Loc are self-explanatory. Here, free(Γ) is defined to be
{free(τ) | τ ∈ ran(Γ)} where free(τ) is defined as follows.

free(int) = ∅
free(ref (τ)@ρ) = free(τ) ∪ {ρ}
free((Ψin , τin) L→ (Ψout , τout)) = free(τin) ∪ free(τout) ∪ L
free(∀ρ.τ) = free(τ) \ {ρ}

App types function applications. The rule takes care of the left-to-write reduc-
tion order by connecting the post-capability of e1 (i.e., Ψ1) to the pre-capability of
e2. Here the capability addition Ψ1+Ψ2 is defined point-wise as λρ.Ψ1(ρ)+Ψ2(ρ).
Note that the post-capability of e2, is “split” into Ψkeep and Ψin so that only Ψin

needs to be given to the function and Ψkeep is kept by the caller and combined

4 It is actually redundant for closed programs as it can be derived as a lemma.

44 H. Yasuoka and T. Terauchi

int [ρ1/ρ2] = int

(ref (τ)@ρ′1)[ρ1/ρ2] = ref (τ [ρ1/ρ2])@ρ′1[ρ1/ρ2]

(∀ρ′1.τ)[ρ1/ρ2] = ∀ρ′1.(τ [ρ1/ρ2]) where ρ′1 	= ρ2

((Ψin , τ)
L→ (Ψout , τ

′))[ρ1/ρ2] =

(Ψin [ρ1/ρ2]L, τ [ρ1/ρ2])
L[ρ1/ρ2]→ (Ψout [ρ1/ρ2]L, τ ′[ρ1/ρ2])

Fig. 5. τ [ρ1/ρ2]

Ψ [ρ1/ρ2]L =

{
Ψ [ρ1/ρ2]⇓ if ρ1 /∈ L[ρ1/ρ2]
Ψ [ρ1/ρ2]⊕ if ρ1 ∈ L[ρ1/ρ2]

Fig. 6. Ψ [ρ1/ρ2]L (see Section 2 for the definitions of Ψ [ρ1/ρ2]⊕ and Ψ [ρ1/ρ2]⇓)

with the post-capability of the function. This capability “flow around” technique
provides context sensitivity as each call site can use a different Ψkeep to avoid
conflating capabilities. (Note, however, that this context sensitivity is orthogonal
to parametric region polymorphism.) The flow around technique is inspired by
similar ideas used in Cqual [6] and Locksmith [8], and has also been used in the
fractional capability calculus for race detection [10].

TyApp handles region instantiation. The type substitution τ [ρ′/ρ] is non-
standard and is defined in Figure 5. The substitution rules for integer types,
reference types, and region polymorphic types are self-explanatory (recall that
the substitution is capture avoiding). For function types, we instantiate its
pre-capability and the post-capability via the special substitution of the form
Ψ [ρ1/ρ2]L. Figure 6 defines the substitution. Note that it only does the addi-
tive instantiation for region variables in L, and does the down instantiation for
other regions. This formally implements the controlled additive instantiation
discussed in Section 2. We explain the down instantiation in further detail. The
down instantiation is applied for regions that are only accessed but not deleted
in the function. Since accessing these regions needs capabilities greater than 0,
a function caller needs a capability that satisfies the constraint

Ψcaller(ρ) > 0 if Ψpre(ρ) > 0

where Ψcaller is the capability necessary to call the function, and Ψpre is the pre-
capability of the function. However, because linear programming cannot deal
with the logical implication, we transform the constraint into the following con-
straint5:

Ψcaller(ρ) ≥ 1
2Ψpre(ρ)

5 Dividing capabilities by a number greater than 2 is still sound. For now, we adopt 2,
because choosing a greater number does not contribute to the precision of the analysis.

Polymorphic Fractional Capabilities 45

Ref , Deref , and Write type check reference accesses by checking that the
program has enough capability for the accesses. Unlike in the usual effect-based
region calculus, the rules do not add the accessed regions to the effect.

Letreg creates a new region and adds the capability to access the region
to the pre-capability of e. Free frees a region. Note that the pre-capability is
required to have the full capability to access the region and deletes it from the
post-capability. Free also adds ρ to the effect to record that the expression
deletes ρ.

Next, we define the notion of a well-typed state. Let 0 = λρ.0, that is, a
capability that maps all regions to 0. We write Γ � h if for each � ∈ dom (h),
Γ, 0 � h(�) : Γ (�), 0 , ∅. We write � Γ if for all function types (τ, Ψin) →L

(τ ′, Ψout) appearing in Γ , ρ �∈ L implies Ψin(ρ) = Ψout (ρ).

Definition 2 (Well-typed State). We write Γ � (R, h, e, τ, Ψ ′) if there exist
Ψ and L such that (1) Γ � h, (2) Γ, Ψ � e : τ, Ψ ′, L, (3) R(ρ) ≥ Ψ(ρ) for all
ρ ∈ dom (R), and (4) � Γ .

We prove that typability is preserved under region instantiations, with a “large
enough” effect. The proofs appear in the long version [16].

Lemma 1 (Region Variable Substitution). Suppose Γ, Ψ � e : τ, Ψ ′, L′ and
L′ ⊆ L. Then, Γ [ρ′/ρ], Ψ [ρ′/ρ]L � e[ρ′/ρ] : τ [ρ′/ρ], Ψ ′[ρ′/ρ]L, L′[ρ′/ρ].

Using the lemma, we show that typability is preserved across reductions.

Lemma 2 (Preservation). Suppose Γ � (R, h, e, τ, Ψ ′) and (R, h, e) →
(R′, h′, e′). Then, there exists Γ ′ ⊇ Γ such that Γ ′ � (R′, h′, e′, τ, Ψ ′).

Lemma 3 (Progress). Suppose Γ � (R, h, e, τ, Ψ ′) and e is a closed term.
Then, either e is a value or there exist R′, h′, and e′ such that (R, h, e) →
(R′, h′, e′).

From Lemma 2 and Lemma 3, it follows that if e is well-typed then e is memory
safe.

Theorem 1. Suppose ∅ � (∅, ∅, e, τ, Ψ ′). Then, e is memory safe.

4 Capability Inference

We now give a polynomial time capability inference algorithm for the capability
calculus. Note that the focus of the paper is not region inference, and therefore,
the input program is an expression in the source syntax (cf. Figure 2) that
already contains region commands (i.e., region creations, region deletions, and
region abstractions). In addition, the algorithm assumes that it is given types for
the bound variables, including the effects, except for the capabilities (i.e., Ψ ’s).
Such region and effect annotations may be provided externally as in the original
capability calculus [5], or inferred by known techniques [15,9]. We note that there
can be more than one valid region and effect annotations for a program. For

46 H. Yasuoka and T. Terauchi

example, using [9], polymorphism is restricted to only over let and fix bound
variables (i.e., not λ-bound variables). But, our algorithm can infer capabilities
given any valid annotation, in time polynomial in the size of the annotation.

More formally, we assume that every variable binding in the program is an-
notated by the following signature σ.

ψ ∈ Capvar
ϕ ::= ψ | ϕ[ρ′/ρ]L

σ ::= int | ref (σ)@ρ | (ϕin , σin) L→ (ϕout , σout) | ∀ρ.σ

Here, capability variables ψ are place holders for the actual capabilities to be
inferred by the algorithm (we use the lower-case “psi” for the variables). Each
ϕ appearing in the annotation is a distinct capability variable (i.e., some ψ).
The form ϕ[ρ′/ρ]L appears during the constraint generation. Unless specified
otherwise, we overload e to expressions with σ annotations. Without loss of
generality, we assume that bound variables and region variables are distinct in
the given program.

The inference judgements are of the form Δ,ψ � e : σ, ψ′, L ⇒ C, which
is read “given environment Δ, e is inferred to have the signature σ, the pre-
capability variable ψ, the post-capability variable ψ′, and the effect L with the
set of capability constraints C”. A capability constraint is of the following forms.

ψ(ρ) = ψ′(ρ) ψ(ρ) > 0 ϕ = ϕ′

ψ = ψ′ + {ρ �→ 1} ψ(ρ) = 0 ϕ0 = ϕ1 + ϕ2

To generate constraints, we initializeΔ such that for each variable x,Δ(x) = σ
where σ is the signature of x given in the annotation, that is, either fix x : σ.v
or λx : σ.e appears in the program (recall that bound variables are distinct).
We also pick distinct capability variables ψstart and ψend , and we generate con-
straints C by Δ,ψstart � e : σ, ψend , L ⇒ C where e is the input program, and
ψstart , ψend are distinct capability variables.

Figure 7 shows a few representative constraint generation rules (see the long
version [16] for the complete set of rules). Each rule is a straightforward syntax-
directed constraint generation rule for the type checking rules from Figure 4. The
rules use the relation � σ =u σ

′ ⇒ C to generate capability equality constraints
of the form ϕ = ϕ′. The relation is defined inductively on the structure of the
types, and is straightforward (see the long version [16]). We assume that the type
annotations in the input program are correct in the sense that the instances of
the rules are all well-defined in the constraint generation.

The substitution σ[ρ′/ρ] is defined exactly like τ [ρ′/ρ] from Figure 5 (i.e.,
inductively on the structure of σ) with the substitution ϕ[ρ′/ρ]L just interpreted
syntactically.

Let L be the set of regions occurring in the program. For each capability vari-
able ψ and a region ρ ∈ L, we associate a distinct linear programming variable

Polymorphic Fractional Capabilities 47

ψ fresh Δ,ψin � e : σout , ψout , L⇒ C

Δ,ψ � (λx : σin .e) : (ψin , σin) L→ (ψout , σout), ψ, ∅ ⇒
C ∪ {ψin (ρ) = ψout(ρ) | ρ ∈ L \ L}

cFun

ψ,ψ′ fresh
Δ,ψ � free ρ : int , ψ′, {ρ} ⇒ {ψ = ψ′ + {ρ �→ 1}} cFree

Δ,ψ � e1 : (ϕin , σin) L→ (ϕout , σout), ψ1, L1 ⇒ C1

Δ,ψ2 � e3 : σ′, ψ3, L2 ⇒ C2 � σin =u σ
′ ⇒ C3 ψkeep fresh

Δ,ψ � e1 (e2) : σout , ψ
′, L1 ∪ L2 ∪ L⇒

C1 ∪ C2 ∪ C3 ∪ {ψ1 = ψ2, ψ3 = ϕin + ψkeep , ψ
′ = ψkeep + ϕout}

cApp

Fig. 7. Representative constraint generation rules

ξψ,ρ to denote ψ(ρ). We reduce the capability constraints to linear inequality
constraints by applying the following rules.

ψ(ρ) = ψ′(ρ) ⇒ {ξψ,ρ = ξψ′,ρ}
ψ(ρ) > 0 ⇒ {ξψ,ρ > 0}
ϕ = ϕ′ ⇒ {S(ϕ, ρ) = S(ϕ′, ρ) | ρ ∈ L}
ψ = ψ′ + {ρf �→ 1} ⇒ {ξψ,ρ = ξψ′,ρ | ρ ∈ L \ {ρf}} ∪ {ξψ,ρf

= ξψ′,ρf
+ 1}

ψ(ρ) = 0 ⇒ {ξψ,ρ = 0}
ϕ0 = ϕ1 + ϕ2 ⇒ {S(ϕ0, ρ) = S(ϕ1, ρ) + S(ϕ2, ρ) | ρ ∈ L}

where S(ϕ, ρ) is defined as follows.

S(ψ, ρ) = ξψ,ρ

S(ϕ[ρa/ρx]L, ρ) = if ρ = ρx then 0
else if ρ �= ρa then S(ϕ, ρ)
else if ρx �∈ L then 1

2 (S(ϕ, ρx) + S(ϕ, ρa))
else S(ϕ, ρx) + S(ϕ, ρa)

We also add the inequality ξψ,ρ ≥ 0 for each ξψ,ρ to ensure that capabilities
are within the range [0,∞). Then, we check whether there exists a solution to the
set of these inequalities, and if so, we accept the program as safe, and otherwise,
we reject the program.

To apply linear programing algorithms that can only take non-strict inequali-
ties such as GLPK [1], we add a fresh linear programming variable ξs and replace
each ξψ,ρ > 0 with ξψ,ρ ≥ ξs, and set the objective function to be ξs. We then ask
the linear programming solver to find a solution that maximizes ξs and accept
if and only if the solver returns a solution with ξs > 0.

The soundness and the completeness of the inference is stated and proven in
the long version [16].

48 H. Yasuoka and T. Terauchi

4.1 Time Complexity

We discuss the time complexity of the capability inference algorithm. Recall that
we assume that region and effect annotations are provided6. The complexity of
the constraint generation is polynomial in the size of the given region and effect
annotations, and so is the size of the generated set of linear inequalities. The
complexity of (rational) linear programming is polynomial in the size of the linear
inequalities. Therefore, the complexity of our inference algorithm is polynomial
in the size of the provided types.

NP-hardness of non-fractional capability calculus: It is possible to show that re-
stricting capabilities to range only over the set {0, 1} instead of the range [0,∞)
renders the capability inference NP-hard, even without polymorphism [13,7].
Therefore, not only is the fractional capability calculus able to prove more pro-
grams memory safe than the non-fractional variant, it is actually more compu-
tationally tractable, assuming that P �= NP.

5 Adding Polymorphism to Other Fractional Capability
Calculi

Our approach can be used to add parametric polymorphism to other fractional
capability calculus applications. We take race detection [10] for instance and
discuss the methodology.

Recall that, for the region calculus, we may use the down instantiation for
regions that are only accessed (i.e., read, written, or allocated) but not deleted
in the function. Because the race detection calculus needs to distinguish reads
from writes7, we use the down instantiation for abstract locations8 that are only
read but not written. In the race calculus, writes and reads are distinguished by
requiring the capability greater or equal to 1 for writes and capability greater
than 0 for reads. We define a new instantiation scheme, called 1-instantiation,
to instantiate abstract locations that may be written in functions:

Ψ [ρ1/ρ2]1 = {ρ1 �→ 1} ∪ {ρ �→ Ψ(ρ) | ρ �∈ {ρ1, ρ2}}

Note that this scheme lowers the capability for ρ2 to 1. We use effects to track
the abstract locations that may be written.

To prove Lemma 1, it is important that the effect L contains the regions where
pre-capability (i.e., Ψ) and post-capability (i.e., Ψ ′) are different (cf. proof in
the long version [16]). For the region calculus, this occurs only when the Free

6 They may be inferred in time polynomial in the size of the underlying Hindley-Milner
type under certain restrictions (e.g., rank-1 restriction) via methods like [9].

7 Formally, a race occurs when two accesses to a memory location happens concur-
rently such that one of them is a write, and so a concurrent read is not a race.

8 Abstract locations soundly approximates the actual locations. They serve the role
similar to region variables in the region calculus, and we overload ρ to range over
abstract locations in this section.

Polymorphic Fractional Capabilities 49

Γ, Ψ � e1 : ref (τ)@ρ, Ψ1, L1, L2 Γ, Ψ1 � e2 : τ, Ψ2, L
′
1, L

′
2 Ψ2(ρ) ≥ 1

Γ, Ψ � e1 := e2 : int , Ψ2, L1 ∪ L′
1, L2 ∪ L′

2 ∪ {ρ} WRITE

Γ, Ψ + Ψ1 � newlock : lock(Ψ1), Ψ, positive(Ψ1), ∅ NEWL

where positive(Ψ) = {ρ ∈ dom (Ψ) | Ψ(ρ) > 0}

Fig. 8. Representative polymorphic fractional race typing rules

type rule is applied (see Figure 4). In the race detection calculus, this occurs
when capabilities are passed across threads via operations like lock creation,
lock acquisition, and lock release. For example, the following rule is applied for
lock creation.

Γ, Ψ + Ψ1 � newlock : lock(Ψ1), Ψ

Note that pre-capability, Ψ + Ψ1, may differ from the post-capability, Ψ , and so
we need to track the abstract locations where the capabilities differ as effects.
Like in the region calculus, we use additive instantiation for such abstraction
locations.

To summarize, we have three instantiation schemes for the race detection
calculus: the down instantiation for read-only locations, 1-instantiation for read-
or-write-only locations, and the additive instantiation for the rest (i.e., ones that
may be possibly passed across threads).

As in the region calculus, we use effects to select the instantiation schemes.
We now have two kinds of effects, one for abstract locations that change their
capabilities (L1 in the definition below), and one for abstract locations that are
written (L2 in the definition below). The new instantiation rule is defined as
follows.

Ψ [ρ1/ρ2]L1,L2 =

⎧⎪⎨⎪⎩
Ψ [ρ1/ρ2]⇓ if ρ1 �∈ (L1 ∪ L2)[ρ1/ρ2]
Ψ [ρ1/ρ2]⊕ if ρ1 ∈ L1[ρ1/ρ2]
Ψ [ρ1/ρ2]1 if ρ1 ∈ (L2 \ L1)[ρ1/ρ2]

We modify the type checking rules to track effects. Judgements are of the form
Γ, Ψ � e : τ, Ψ ′, L1, L2 where L1 overapproximates abstract locations that may
change in e, and L2 overapproximates abstract locations that are written in e.

Figure 8 shows a few representative type checking rules. WRITE rule adds
the written abstract location in the effect L2. In NEWL rule, we add the ab-
stract locations that are passed by the lock creation, that is, positive(Ψ1). Infer-
ring positive(Ψ1) requires solving linear inequalities, inducing cyclic dependencies
between capability constraint generation and capability constraint solving. For-
tunately, it is sound to overapproximate effects, and so a tractable approach is to
use all abstract locations (i.e., L) in place of positive(Ψ1) at NEWL (and other
type rules that also change capabilities). By an argument analogous to the one
in Section 4.1, it can be shown that the capability inference for such a system is
polynomial time computable.

50 H. Yasuoka and T. Terauchi

6 Related Work and Conclusion

Fractional capabilities were originally proposed by Boyland to guarantee deter-
minism of multi-thread programs while permitting parallel reads [4]. For the
monomorphic fragment, it has been shown that the type inference can be solved
efficiently by a reduction to linear programming [12,13], and later work has ex-
ploited this observation to create efficient fractional-capability-based program
analyses, ranging from race detection to security analyses [7,14,10,11].

While extending these calculi to parametric polymorphism is discussed in
some of the papers (e.g., [4,13,10]), none has shown how to do type inference
efficiently in the presence of polymorphism. This paper addresses the issue by
presenting a general methodology to extend a fractional capability calculus to
parametric polymorphism while preserving soundness and the ability to do effi-
cient type inference.

Acknowledgement

We would like to thank Naoki Kobayashi and anonymous reviewers for useful
comments.

References

1. GNU Linear Programming Kit, http://www.gnu.org/software/glpk/glpk.html
2. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: Pro-

ceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA, pp. 301–320 (2007)

3. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL, pp. 259–270 (2005)

4. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

5. Crary, K., Walker, D., Morrisett, G.: Typed memory management in a calculus of
capabilities. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL, pp. 262–275 (1999)

6. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI, pp. 1–12 (2002)

7. Kikuchi, D., Kobayashi, N.: Type-based verification of correspondence assertions
for communication protocols. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807,
pp. 191–205. Springer, Heidelberg (2007)

8. Pratikakis, P., Foster, J.S., Hicks, M.: Locksmith: context-sensitive correlation anal-
ysis for race detection. In: Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI, pp. 320–331 (2006)

9. Rehof, J., Fähndrich, M.: Type-base flow analysis: from polymorphic subtyping to
cfl-reachability. In: Proceedings of the 23th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL, pp. 54–66 (2001)

http://www.gnu.org/software/glpk/glpk.html

Polymorphic Fractional Capabilities 51

10. Terauchi, T.: Checking race freedom via linear programming. In: Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI, pp. 1–10 (2008)

11. Terauchi, T.: A type system for observational determinism. In: Proceedings of the
21st IEEE Computer Security Foundations Symposium, CSF, pp. 287–300 (2008)

12. Terauchi, T., Aiken, A.: Witnessing side-effects. In: Proceedings of the 10th ACM
SIGPLANInternational Conference on Functional Programming, ICFP, pp. 105–115
(2005)

13. Terauchi, T., Aiken, A.: A capability calculus for concurrency and determinism.
ACM Trans. Program. Lang. Syst. (2008)

14. Terauchi, T., Megacz, A.: Inferring channel buffer bounds via linear programming.
In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 284–298. Springer,
Heidelberg (2008)

15. Tofte, M., Talpin, J.P.: Implementation of the typed call-by-value λ-calculus using a
stack of regions. In: Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL, pp. 188–201 (1994)

16. Yasuoka, H., Terauchi, T.: Polymorphic fractional capabilities(long version) (2008),
http://www.kb.ecei.tohoku.ac.jp/~yasuoka/papers/polyfrac.pdf

http://www.kb.ecei.tohoku.ac.jp/~yasuoka/papers/polyfrac.pdf

Automatic Parallelization and Optimization of
Programs by Proof Rewriting

Clément Hurlin

INRIA Sophia Antipolis – Méditerranée and University of Twente

Abstract. We show how, given a program and its separation logic proof,
one can parallelize and optimize this program and transform its proof
simultaneously to obtain a proven parallelized and optimized program.
To achieve this goal, we present new proof rules for generating proof
trees and a rewrite system on proof trees.

1 Introduction

As the trend towards multi-core processors is growing, software developers must
write parallel code. Because writing parallel software is notoriously harder than
writing sequential software, inferring parallelism automatically is a possible so-
lution to the challenges faced by software developers. A well-known technique
for inferring parallelism is to detect pieces of programs that access disjoint parts
of the heap. Previously [19,21,24], various pointer analysis have been used to
achieve this goal for programs manipulating simple data structures and arrays.

In this paper, we describe a new technique to infer parallelism from proven
programs. Instead of designing ad-hoc analysis techniques, we use separation
logic [34] to analyze programs before parallelizing them. We use separation logic’s
� operator – which expresses disjointness of parts of the heap – to detect poten-
tial parallelism. Compared to [19,21,24], using the � operator avoids relying on
reachabality properties. This permits to discover disjointness of arbitrary data
structures, paving the way to parallelize and optimize object-oriented programs
proven with separation logic [32].

Contrary to most previous works that manipulate proofs [5,29,33], our algo-
rithms manipulate proof trees representing derivations of Hoare triplets. The
overall procedure is as follows: we generate a proof tree P of a program C, then
we rewrite P , C into P ′, C′ such that P ′ is a proof of C′ and C′ is a parallelized
and optimized version of C. The generation of proof trees is done with a modified
version of smallfoot [8] and the rewrite system is implemented in tom [4].

Our algorithm for rewriting proof trees focuses on two rules of separation
logic: the (Frame) and the (Parallel) rules. First, the (Frame) rule [34] allows
reasoning about a program in isolation from its environment, by focusing only on
the part of the heap that this program accesses. Second, the (Parallel) rule [30]
allows reasoning about parallel programs that access disjoint parts of the heap.

{Ξ}C{Ξ ′}
(Frame)

{Ξ � Θ}C{Ξ ′ � Θ}
{Ξ}C{Θ} {Ξ ′}C′{Θ′}

(Parallel)
{Ξ � Ξ ′}C‖C′{Θ � Θ′}

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 52–68, 2009.
� Springer-Verlag Berlin Heidelberg 2009

Automatic Parallelization and Optimization of Programs by Proof Rewriting 53

The basic idea of our reasoning is depicted by the following rewrite rule:

{Ξ}C{Θ}
(Frame)

{Ξ � Ξ ′}C{Θ � Ξ ′}
{Ξ ′}C′{Θ′}

(Frame)
{Θ � Ξ ′}C′{Θ � Θ′}

(Seq)
{Ξ � Ξ ′}C; C′{Θ � Θ′}

↓Parallelize1

{Ξ}C{Θ} {Ξ ′}C′{Θ′}
(Parallel)

{Ξ � Ξ ′}C‖C′{Θ � Θ′}

The diagram above should be read as follows: Given a proof of the sequential
program C; C′ we rewrite this proof into a proof of the parallel program C‖C′.
If the initial proof tree is valid, this rewriting yields a valid proof tree because
the leaves of the rewritten proof tree are included in the leaves of the initial
proof tree.

Our procedure differs from recent and concurrent work [33] on three main
points: (1) instead of attaching labels to heaps, we use the (Frame) rule to stat-
ically detect independent parts of the program, leading to a technically simpler
procedure; (2) we express optimizations by rewrite rules on proof trees, allow-
ing us to feature other optimizations than parallelization and to use different
optimization strategies; and (3) we have an implementation. Having said these
differences, both our work and Raza et al.’s work [33] build upon the insight
that separation logic proofs are a convenient tool to detect parallelism.

Contributions. We present the careful design of proof rules adapted for our
rewrite rules (Section 3). These proof rules are derived from [8]’s proof rules.
We present sound rewrite rules from proof trees to proof trees that yield opti-
mized programs (Section 4). Considered optimizations are parallelization, early
disposal, late allocation, early lock releasing, and late lock acquirement. We
present an implementation of our algorithms that uses smallfoot [7] as the proof
tree generator and tom [4] as the rewrite engine (Section 5). We illustrate our
algorithms by two examples (Section 6).

Outline. The rest of the paper is organized as follows: we present the formal
language we use throughout the paper in Section 2, we show how our technique
will benefit from the recent advances of separation logic in Section 7, we discuss
related work in Section 8, and we conclude in Section 9.

2 Background

This section recalls the relevant parts of [8]’s framework that we use in our work.
Our assertion language distinguishes between pure (heap independent) and

spatial (heap dependent) assertions:
1 To disambiguate between Hoare rules (enclosed in parentheses) and rewrite rules,

we underline rewrite rules.

54 C. Hurlin

x, y, z ∈ Var variables
E,F,G ::= nil | x expressions

b ::= E = E | E �= E boolean expressions
Π ::= b | Π ∧Π pure formulas

f, g, fi, l, r, . . . ∈ Fields fields
ρ ::= f1 : E1, . . . , fn : En record expressions
S ::= E �→ [ρ] | ls(E,F) | tree(E) simple spatial formulas
Σ ::= emp | S | Σ � Σ spatial formulas

Ξ,Θ ∈ Π � Σ formulas

The meaning of simple spatial formulas is as follows: E �→ [ρ] represents a
heap containing one cell at address E with content ρ, ls(E,F) represents a
heap containing a linked list segment from address E to address F , and tree(E)
represents a heap containing a tree whose root is at address E and whose left
and right subtrees can be dereferenced with fields l and r. The formula E �→ [ρ]
can mention any number of fields in ρ: the values of omitted fields are implicitly
existentially quantified. Top-level formulas are pairs Π � Σ where Π is a ∧-
separated sequence of pure formulas (indicating equalities/inequalities between
expressions) and Σ is a �-separated sequence of spatial formulas (indicating facts
about the heap). The semantics of formulas is omitted and can be found in [8].

Entailment between formulas is written Ξ � Θ. We lift � to pure formulas
and � to formulas (note that � binds tighter than �) as follows:

Π � Π ′ Δ= Π � emp � Π ′ � emp Π � Σ � Π ′ � Σ′ Δ= (Π ∧Π ′) � (Σ � Σ′)

We use σ to range over substitutions of the form x0/y0, . . . , xn/yn. Below we
abusively write Π � x0/y0, . . . , xn/yn to denote Π � x0 = y0 ∧ · · · ∧ xn = yn.
We define a syntactical equivalence relation between formulas as follows:

Π � Σ ⇔ Π ′ � Σ′ iff
{
Π is a permutation of Π ′

∃σ,Π � σ and Σ[σ] is a permutation of Σ′

Hoare triplets have the form {Ξ}C{Θ} where C is a command. Atomic com-
mands A and commands C are defined by the following grammar (where p ranges
over procedure names):

A ::= x := E | x := E→f | E→f := F | x := new() | dispose(E)
C ::= A | empty | if b then C else C | while(b){C}

| lock(r) | unlock(r) | p(E1;E2) | C; C | C‖C′

Atomic command x := E→f looks up the content of field f of cell at address
E, while E →f := F mutates the content of field f of cell at address E. In
lock(r) and unlock(r)2, r is a lock or a resource [30]. Resources are declared

2 To smallfoot’s experts: smallfoot uses conditional critical regions with do endwith

instead of lock/unlock commands. However, because smallfoot generates verifica-
tion conditions [8], conditional critical regions are treated like lock/unlock com-
mands in smallfoot’s implementation. That is why we use lock/unlock commands.

Automatic Parallelization and Optimization of Programs by Proof Rewriting 55

in the (omitted) program’s header and come with a resource invariant, i.e., a
formula describing the part of the heap guarded by the resource. Intuitively, when
a resource is locked by a process, the resource’s invariant is transferred to the
process; while when a resource is unlocked, the resource’s invariant is transferred
from the process back to the resource. In procedure calls p(E1;E2), E1 are the
parameters that are unchanged in p’s body, while E2 are the parameters that
are assigned in p’s body.

To mutate and lookup the content of records, we use the following notations:

mutate(ρ, f, F)=
{
f : F, ρ′ if ρ = f : E, ρ′

f : F, ρ if f �∈ ρ
lkp(ρ, f) =

{
E if ρ = f : E, ρ′

x fresh if f �∈ ρ

3 Derived Rules with Explicit Antiframes and Frames

In this section we show how to generate proof trees where antiframes [13] (por-
tions of the state needed to execute a command) and frames (portions of the
state useless to execute a command) are made explicit. Making antiframes and
frames explicit will be needed in Section 4 for our rewrite rules to work.

The (Frame) rule is one of the central ingredients of separation logic’s success.
It allows reasoning with small axioms [31] about atomic commands. In practice,
however, the small axioms are not used and frames are not computed at each
atomic command. Consider, for example, the rule for field lookup used in [8]3:

Π � F = E x′ fresh lkp(ρ, f) = G

{Π � Σ � F �→ [ρ]}x := E→f{x = G[x′/x] ∧Π [x′/x] � (Σ � F �→ [ρ])[x′/x]}

This rule does not frame the precondition: the whole pure part of the pre-
condition (Π) is used to show F = E and the substitution x′/x is applied to
the whole precondition (Π � Σ � F �→ [ρ]). In other words, this rule does not
exhibit the part of the precondition that is framed i.e., (1) the pure part of the
precondition that is useless to show F = E and (2) the part of the precondition
that is left unaffected by the substitution x′/x.

Fig. 1 shows rules (derived from [8]) for each atomic command where an-
tiframes and frames are made explicit. In these rules, we subscript formulas
representing antiframes by a and formulas representing frames by f . We indi-
cate on the right-hand side of applications of (Frame) the formula being framed.
Finally, extra side conditions of (Frame) are indicated as additional premises.

To help the reader understand these rules, we detail the rule exhibiting the
antiframe and frame at a field lookup command (the second rule). The antiframe
consists of (1) the pure part of the precondition which is necessary to show
F = E: it is Πa and of (2) the spatial part of the precondition asserting that
the cell at E exists (F �→ [ρ]) and the spatial part of the precondition affected
by the substitution x′/x (Σa). The frame is the antiframe’s complement (Ξf).

3 Where, for clarity, we do the following modifications to [8]’s presentation: we include
the “rearrangement” step and we omit the continuation.

56 C. Hurlin

x′ fresh (Assign){Ξa}x := E{Ξa[x′/x]} x 	∈ Ξf
(Frame Ξf){Ξa � Ξf}x := E{Ξa[x′/x] � Ξf}

Πa � F = E x′ fresh lkp(ρ, f) = G
Ξ = Πa[x′/x] ∧ x = G[x′/x] � (Σa � F �→ [ρ])[x′/x]

(Lookup){Πa � Σa � F �→ [ρ]}x := E→f{Ξ} x 	∈ Ξf
(Frame Ξf){(Πa � Σa � F �→ [ρ]) � Ξf}x := E→f{Ξ � Ξf}

Πa � F = E mutate(ρ, f,G) = ρ′
(Mutate){Πa � F �→ [ρ]}E→f := G{Πa � F �→ [ρ′]}

(Frame Ξf){Πa � F �→ [ρ] � Ξf}E→f := G{Πa � F �→ [ρ′] � Ξf}

x′ fresh (New){Ξa}x := new(){Ξa[x′/x] � x �→ []} x 	∈ Ξf
(Frame Ξf){Ξa � Ξf}x := new(){Ξa[x′/x] � x �→ [] � Ξf}

Πa � F = E (Dispose){Πa � F �→ [ρ]}dispose(E){Πa � emp}
(Frame Ξf){Πa � F �→ [ρ] � Ξf}dispose(E){Πa � emp � Ξf}

Fig. 1. Derived rules for atomic commands with explicit antiframes and frames

Theorem 1. The rules in Fig. 1 are sound.

Sketch of the proof. Observe that the restrictions imposed on explicit frames
(x �∈ Ξf) make explicit frames immune to substitutions x′/x (cases (Assign),
(Lookup), and (New)). Then, further observe that these rules derive from [8]’s
rules (which are sound). ��

We have not discussed the rule for method calls. That is intentional: existing
proof rules for method calls [34,7] already compute frames and antiframes at
procedure calls. Similarly, we use standard rules for loops and conditionals. There
is a caveat though: because smallfoot generates verification conditions [7], proofs
for while loops are “separated” from the enclosing method. This forbids to move
code from within a loop outside of the loop (and conversely).

4 Automatic Optimizations by Proof Rewriting

In this section, we show rewrite rules for proof trees (ranged over by the meta-
variable P). The proof trees we consider are built using [8]’s framework but we
use Fig. 1’s rules for atomic commands. This is crucial because all our rewrite
rules mention the (Frame) rule on their left hand side i.e., they cannot fire if
frames are not explicit.

Automatic Parallelization and Optimization of Programs by Proof Rewriting 57

(Mutate)
{Λx}x→f := E{ΛE

x }
(Fr Λ ,

y,z)
{Λ , ,

x,y,z}x→f := E{ΛE, ,
x,y,z}

(Mutate)
{Λy}y→f := F{ΛF

y }
(Fr ΛE,

x,z)
{ΛE, ,

x,y,z}y→f := F{ΛE,F,
x,y,z }

(Mutate)
{Λz}z→f := G{ΛG

z }
(Fr ΛE,F

x,y)
{ΛE,F,

x,y,z }z→f := G{ΛE,F,G
x,y,z }

(Seq)
{ΛE, ,

x,y,z}y→f := F ; z→f := G{ΛE,F,G
x,y,z }

(Seq)
{Λ , ,

x,y,z}x→f := E; y→f := F ; z→f := G{ΛE,F,G
x,y,z }

Fig. 2. A proof tree obtained by applying Fig. 1’s rules

A proof tree is valid if each inference is an instance of the proof rules. A
rewrite rule P → P ′ takes an input proof tree P and yields an output proof tree
P ′.

Definition 1. A rewrite rule → is sound iff for all valid proof trees P such that
P → P ′, P ′ is valid.

The rewrite rules we present in the paper satisfy the following properties: (1) the
rewrite rules are sound and (2) the rewrite rules preserve specifications i.e., given
a proof tree whose root is {Ξ} {Θ}, any tree returned by the rewrite system will
have {Ξ} {Θ} as its root. This holds simply because all our rewrite rules leave
the pre/postcondition of the root of the input proof tree untouched.

We conjecture that our rewrite system actually provides a stronger guaran-
tee than preserving specifications. Plausibly, the set of final states of an input
program and the set of final states of the corresponding optimized program are
related. We leave this study, however, as future work.

4.1 Generated Proof Trees Have a Particular Shape

Most proof trees generated by Fig. 1’s rules do not match the left-hand side of the
rewrite rule Parallelize shown in the introduction. To exemplify this statement,
we define the following abbreviation:

ΛE0,...,Em
x0,...,xm

Δ= x0 �→ [f : E0] � · · · � xm �→ [f : Em]

Note that this abbreviation enjoys the following equivalence:

Λ
E0,...,Em,Em+1,...,Em+k
x0,...,xm,xm+1,...,xm+k ⇔ ΛE0,...,Em

x0,...,xm
� Λ

Em+1,...,Em+k
xm+1,...,xm+k

Now, to see why proof trees generated by Fig. 1’s rules do not match the
left-hand side of the rewrite rule Parallelize, consider the proof tree shown in
Fig. 2 (where pure formulas are omitted, (Fr) abbreviates (Frame), and denotes
existentially quantified values). The rewrite rule Parallelize cannot fire on Fig. 2’s
proof tree because this proof tree contains applications of (Frame) at each atomic
command. Generally, given a program A0; A1; . . . , the proof rules with explicit
frames generate a proof tree with the following shape:

. . . (Frame){. . . }A0{. . . }

. . . (Frame){. . . }A1{. . . } . . .
(Seq){. . . }A1; . . . {. . . }

(Seq){. . . }A0; A1; . . . {. . . }

58 C. Hurlin

Proof trees with the shape above are inappropriate for the rewrite rule
Parallelize. Intuitively, the problem lies in the successive applications of (Frame)
being redundant: the same formula is framed multiple times. For example, in the
proof tree shown in Fig. 2, the formula ΛE

x is framed twice: once in the center
(Frame) and once in the right (Frame).

More generally, the presence of redundant frames means that applications of
(Frame) are on short commands. However, as the left-hand side of the rewrite
rule for parallelization described in the introduction shows, to parallelize long
commands, applications of (Frame) have to be on long commands. Hence, re-
moving redundant frames is a mandatory step before parallelizing. The next
section shows how to remove redundancy by inferring applications of (Frame)
on long commands from application of (Frame) on short commands.

4.2 Removing Redundancy in Frames

The redundancy in applications of (Frame) originally comes from the symbolic
execution algorithm. Because symbolic execution mimics an operational update
of the state at each atomic command, it cannot reason about a succession of
commands: each atomic command is treated independently. To fix this issue, two
solutions are available. The first solution is to build a new program verifier that
infers frames for non-atomic commands. We think this solution is inadequate
because it requires to design a program verifier with proof rewriting in mind
(breaking separation of concerns). The second solution, chosen in this paper, is
to minimize the modifications of the program verifier and to do as much work
as possible on the proof rewriting side.

{Ξa}C{Ξp}
(Frame Ξf){Ξa � Ξf}C{Ξp � Ξf}

{Θa}C′{Θp}
(Frame Θf){Θa � Θf}C′{Θp � Θf} {Θp � Θf}C′′{Ξ ′}

(Seq){Θa � Θf}C′; C′′{Ξ ′}
(Seq){Ξa � Ξf}C; C′; C′′{Ξ ′}

↓ FactorizeFrames

{Ξa}C{Ξp}
(Frame Ξf0){Ξa � Ξf0}C{Ξp � Ξf0}

{Θa}C′{Θp}
(Frame Θf0){Θa � Θf0}C′{Θp � Θf0} (Seq){Ξa � Ξf0}C; C′{Θp � Θf0} (Frame Ξc){Ξa � Ξf}C; C′{Θp � Θf} {Θp � Θf}C′′{Ξ ′}

(Seq){Ξa � Ξf}C; C′; C′′{Ξ ′}
Guard: Ξf ⇔ Ξf0 � Ξc and Θf ⇔ Θf0 � Ξc

Fig. 3. Rewrite rule to factorize applications of (Frame)

Fig. 3 shows the rewrite rule FactorizeFrames that removes redundancy in
applications of (Frame). FactorizeFrames fires if C and C′ are two consecutive
commands that both frame a part of the state (Ξf and Θf respectively) such
that the two parts of the state share a common part (Ξc as imposed by the
guard). In FactorizeFrames’s right-hand side, the common part of the state is
framed once, below the application of (Seq).

Automatic Parallelization and Optimization of Programs by Proof Rewriting 59

Both the left-hand side of FactorizeFrames (abbreviated by lhs below) and
the right-hand side of FactorizeFrames (abbreviated by rhs below) include the
proof tree of the triplet {Θp �Θf}C′′{Ξ ′}. We need to include such a proof tree
to match two possible cases: C′′ can be a dummy “continuation” (represented
by the empty command) or a “normal” continuation. In the implementation, all
rewrite rules use this “possible continuation” trick.

Fig. 4 exemplifies an application of FactorizeFrames to Fig. 2’s proof tree: the
redundancy of ΛE

x in the center and the right (Frame)s is factorized in a single
(Frame).

(Mutate)
{Λx}x→f := E{ΛE

x } (Fr Λ ,
y,z){Λ , ,

x,y,z}x→f := E{ΛE, ,
x,y,z}

(Mutate)
{Λy}y→f := F{ΛF

y }
(Fr Λz){Λ ,

y,z}y→f := F{ΛF,
y,z}

(Mutate)
{Λz}z→f := G{ΛG

z } (Fr ΛF
y){ΛF,

y,z}z→f := G{ΛF,G
y,z }

(Seq)
{Λ ,

y,z}y→f := F ; z→f := G{ΛF,G
y,z }

(Fr ΛE
x){ΛE, ,

x,y,z}y→f := F ; z→f := G{ΛE,F,G
x,y,z }

(Seq)
{Λ , ,

x,y,z}x→f := E; y→f := F ; z→f := G{ΛE,F,G
x,y,z }

Fig. 4. Fig. 2’s proof tree after applying FactorizeFrames once

Theorem 2. The rewrite rule FactorizeFrames is sound.

Proof. Suppose the left-hand side of FactorizeFrames is valid. The goal is to
show that the right-hand side of FactorizeFrames rhs is valid.

For the application of (Frame Ξc) to be valid, we must show the two following
equivalences: Ξa � Ξf ⇔ Ξa � Ξf0 � Ξc and Θp � Θf ⇔ Θp � Θf0 � Ξc. But these
two equivalences follow directly from FactorizeFrames’s guard.

For the application of (Frame Θf0) to be valid, we must show the following
equivalence:

Ξp � Ξf0 ⇔ Θa � Θf0 (goal)

From FactorizeFrames’s first guard, we obtain:

Ξp � Ξf ⇔ Ξp � Ξf0 � Ξc (1)

From the validity of the application of (Seq) in FactorizeFrames’s lhs, we obtain:
Ξp � Ξf ⇔ Θa � Θf . Then, from FactorizeFrames’s second guard, we obtain:

Ξp � Ξf ⇔ Θa � Θf0 � Ξc (2)

By simplifying Ξc on the right hand sides of (1) and (2), we obtain the desired
goal. Now FactorizeFrames’s validity is deduced as follows: (1) each inference in
FactorizeFrames’s rhs is a valid instance of the proof rules and (2) the leaves of
FactorizeFrames’s rhs are identical to the leaves of FactorizeFrames’s lhs (which
are valid by hypothesis). ��

Because FactorizeFrames’s guard uses the syntactical equivalence ⇔, it might
miss some semantical equivalences. Using an entailment relation � would be more

60 C. Hurlin

powerful. However, we leave open the problem of finding common frames with
a semantical equivalence for the following reason: finding a common frame (i.e.,
given Ξ and Θ; find Ξc, Ξr, and Θr such that Ξ � Ξr � Ξc and Θ � Θr � Ξc)
cannot be expressed efficiently in terms of known problems; such as a frame
problem [8] (given Ξ and Θ, find Ξf such that Ξ � Ξf � Θ), or a bi-abduction
problem [13] (given Ξ and Θ, find Ξa and Θf such that Ξ � Ξa � Θ � Θf).

4.3 Parallelization

In practice, factorizing frames is a mandatory step before applying the Parallelize
rewrite rule shown in the introduction. For example, applying Parallelize to the
proof tree shown in Fig. 4 yields a proof of the following Hoare triplet:

{Λ , ,
x,y,z}x→f := E ‖ (y→f := F ‖ z→f := G){ΛE,F,G

x,y,z }

For the Parallelize rewrite rule to be sound, we add the guard that C does
not modify variables in Ξ ′, C′, and Θ′ (and conversely). Note that, for clarity of
presentation, the Parallelize rule shown in the introduction does not include the
“possible continuation” trick mentioned above. We refer the interested reader to
our companion report [25] for the complete rule.

4.4 Generic Optimizations

In this subsection, we present an optimization that changes the program’s execu-
tion order. This optimization has four concrete applications: (1) dispose memory
as soon as possible to avoid out of memory errors, (2) allocate memory as late
as possible to leave more allocatable memory, (3) release locks as soon as possi-
ble to increase parallelism, and (4) acquire locks as late as possible to increase
parallelism. Fig. 5 shows the rewrite rule for changing the program’s execution
order.

GenericOptimization fires if the program has the shape C; C′; C′′ such that
C′ frames the postcondition of C (as imposed by the guard). Then, the program’s
order is changed so that C′ executes before C. It should be noted that this rule
imposes that C frames the precondition of C′ by the following reasoning: for
the first application of (Seq) to be valid in GenericOptimizations’s lhs, we have
Ξp �Ξf ⇔ Θa �Θf . From the guard, it follows that Ξp � Ξf ⇔ Θa �Ξp � Ξr. By
simplifying Ξp on both sides, we obtain: Ξf ⇔ Θa � Ξr. We can conclude that
C frames the precondition of C′ (Θa).

We now detail GenericOptimization’s four concrete applications. (1) If C′ is
a dispose command, because C frames the precondition of C′, it means that
C does not access the state disposed by C′: better execute C′ first to dispose
memory as soon as possible. (2) If C is a new command, because C′ frames
the postcondition of C, it means that C′ does not access the state allocated
by C: better execute C after C′ to leave C′ more allocatable memory. (3) If
C′ is an unlock command, because C frames the precondition of C′ (i.e. the
lock’s resource invariant), it means that C does not access the part of the heap
represented by the lock’s resource invariant: better execute C′ to release the lock

Automatic Parallelization and Optimization of Programs by Proof Rewriting 61

{Ξa}C{Ξp}
(Fr Ξf)

{Ξa � Ξf}C{Ξp � Ξf}

{Θa}C′{Θp}
(Fr Θf)

{Θa � Θf}C′{Θp � Θf} {Θp � Θf}C′′{Ξ′}
(Seq)

{Θa � Θf}C′; C′′{Ξ′}
(Seq)

{Ξa � Ξf}C; C′; C′′{Ξ′}

↓ GenericOptimization

{Θa}C′{Θp}
(Fr Ξr � Ξa)

{Ξa � Θa � Ξr}C′{Ξa � Θp � Ξr}

{Ξa}C{Ξp}
(Fr Θp � Ξr)

{Ξa � Θp � Ξr}C{Ξp � Θp � Ξr} {Ξp � Θp � Ξr}C′′{Ξ′}
(Seq)

{Ξa � Θp � Ξr}C; C′′{Ξ′}
(Seq)

{Ξa � Ξf}C′; C; C′′{Ξ′}
Guard: Θf ⇔ Ξp � Ξr

Fig. 5. Rewrite rule to change the program’s execution order

first. (4) If C is a lock command, because C′ frames the postcondition of C (i.e.
the lock’s resource invariant), it means that C′ does not access the part of the
heap represented by the lock’s resource invariant: better execute C after C′ to
acquire the lock as late as possible.

Theorem 3. The rewrite rule GenericOptimization is sound.

Proof. Apply the guard’s equivalence in the right places and observe that (1)
each inference in GenericOptimization’s rhs is a valid instance of the proof rules
and (2) the leaves of GenericOptimization’s rhs are identical to the leaves of
GenericOptimization’s lhs (which are valid by hypothesis). ��

5 Implementation

The techniques described in the previous sections have been implemented in a
tool called éterlou. Éterlou consists of two distinct modules:

A proof tree generator which is an extended version of smallfoot [7]. The proof
tree generator generates proof trees using Fig. 1’s rules. Our extension does not
interfere with the algorithms already present in smallfoot: it only computes an-
tiframes and frames at each atomic command (by using both smallfoot’s built-in
algorithms and dedicated algorithms).

Because the (Frame) rule is the central ingredient of our procedure, it is
crucial that the implementation of Fig 1’s rules computes the biggest frames
(formulas Ξf) possible. As an example, our implementation of the rule for field
lookup (Fig 1’s second rule) computes the smallest antiframe Πa that suffices
to show F = E. By computing the smallest antiframes, our implementation also
computes the biggest frames.

A proof tree rewriter which implements the various rewrite rules shown in this
paper. The proof tree rewriter is written in tom [4], an extension of Java that adds
constructs for pattern matching. We make extensive use of tom’s mapping facility
to pattern match against user-defined Java objects. Another crucial feature is
the possibility to define rewriting strategies.

62 C. Hurlin

All the examples of this paper have been generated with éterlou. We have
tested éterlou against several example programs provided in smallfoot’s distri-
bution and pointer programs of our own. Our experiments revealed that to obtain
the best optimizations possible, the rewrite rules must usually be applied in a
given order and/or with specific strategies. For example, FactorizeFrames must
be applied before Parallelize for the latter rewrite rule to fire. In addition, ap-
plying rewrite rules from top to bottom (i.e., rewriting at the root before trying
to rewrite in subtrees) generally yields programs where parallelized commands
are longer (compared to other strategies such as bottom to top).

6 Examples

Fig. 6 shows procedure rotate tree (borrowed from [33]) that takes a tree at
x and rotates it by recursively swapping its left and right subtrees. Applying
FactorizeFrames and Parallelize to rotate tree yields a program where the field
assignments and the recursive calls are executed in parallel. We achieve better
parallelism than [33] by parallelizing the field assignments and the recursive calls.

requires tree(x);
ensures tree(x);
rotate tree(x;){
local x1, x2;
if(x = nil){}
else{
x1 := x→ l;
x2 := x→r;
x→l := x2;

x→r := x1;

rotate tree(x1;);
rotate tree(x2;); }}

→

requires tree(x);
ensures tree(x);
rotate tree(x;){
local x1, x2;
if(x = nil){}
else{
x1 := x→ l;
x2 := x→r;
(x→l := x2; x→r := x1) ||
rotate tree(x1;) ‖ rotate tree(x2;); }}

Fig. 6. Parallelization of a recursive procedure

requires x �→ [val :];
ensures emp;
copy and dispose(x;){
local v;
lock(rc �→[val:]);
v := x→val;
c→val := v;
dispose(x);

unlock(rc �→[val:]); }

→

requires x �→ [val :];
ensures emp;
copy and dispose(x;){
local v;
v := x→val;
dispose(x);
lock(rc �→[val:]);
c→val := v;

unlock(rc �→[val:]); }

Fig. 7. Optimization of a critical region

Automatic Parallelization and Optimization of Programs by Proof Rewriting 63

Fig. 7 shows procedure copy and dispose (where resource r is subscripted by
its invariant) that copies the content of field val of cell x to field val of cell c (r’s
resource invariant). Applying GenericOptimization optimizes copy and dispose
in two ways: the critical region is shortened and cell x is disposed earlier.

The proof trees corresponding to Fig. 6 and Fig. 7’s transformations as well
as éterlou’s implementation are available [1].

7 Benefits from Separation Logic’s Advances

In this section, we review advances of separation logic that have not been im-
plemented in smallfoot and we describe how our technique would benefit from
these advances. As we use features from other papers, we are sometimes sloppy
on definitions and appeal to the reader’s intuition to understand the notations.

7.1 Object-Orientation

[32] applied separation logic to object-oriented programs. In Parkinson’s work,
separation logic’s � splits objects per field. With our notations, this means that
p �→ [x :] � p �→ [y :] represents a point with two fields x and y (and omitted
fields are not existentially quantified). Splitting on a per-field basis provides
fine-grained parallelism which allows to build such a proof:

{p �→ [x :] � p �→ [y :]}
p→x := E ‖ p→y := F

{p �→ [x : E] � p �→ [y : F]}
Integrating Parkinson’s semantics of � in the proof tree generator would allow

Parallelize to fire more often. For example, in rotate tree, x→l := x2;x→r := x1
would be parallelized to x→l := x2 ‖ x→r := x1.

In addition, we highlight that lifting our technique to object-oriented programs
is straightforward since our procedure’s key mechanism is the (Frame) rule which
is supported by object-oriented separation logic [32,23,22].

7.2 Permission Accounting

[10]4 gave an alternative reading of the points-to predicate �→ by adding an extra
parameter (called a permission π) to it. Permissions are fractions in (0, 1]. Now,
the points-to predicate x π�→ [ρ] has the following meaning: (1) it asserts that x
points to the record ρ and (2) if π = 1, it asserts write and read permission to
the record pointed to by x; if π < 1, it asserts readonly permission to the record
pointed to by x. The following property holds:

x
π�→ [ρ] ⇔ x

π
2�→ [ρ] � x

π
2�→ [ρ]

Integrating permission accounting in the proof tree generator would allow
Parallelize to fire more often.
4 In this paragraph, we consider only fractional permissions [12] but our remarks also

apply for the counting model and the combined model.

64 C. Hurlin

7.3 Fork/Join Parallelism

[23,20] lifted the (Parallel) rule to Java’s fork/join style of parallelism. Calling
fork(t) starts a new thread t that executes in parallel with the rest of the
program. Calling join(t) stops the calling thread until thread t finishes: when t
finishes the calling thread is resumed.

When a parent thread forks a new thread, a part of the parent’s state is
transferred to the new thread. This is formalized by the following rule:

Ξ is t’s precondition
(Fork)

{Ξ}fork(t){emp}

Dually, when a thread joins another thread, the former “takes back” a part of
the latter’s state. To formalize this behavior, [23]’s assertion language contains
a new predicate Join(t, π) which asserts that the thread in which it appears can
take back part π of thread t’s state (like in Bornat’s work, π is a permission).
In addition, the assertion language allows to multiply formulas by a permission,
written π ·Ξ. To give the reader an intuition of the meaning of multiplication, we
note that integrating multiplication in our framework would make the following
property true:

π · (Π � x
1�→ [ρ]) ⇔ Π � x

π�→ [ρ]

With the Join predicate and formula multiplication, one can formalize join’s
behavior. The rule below expresses that a thread joining another thread t can
take back a part of t’s state:

Ξ is t’s postcondition
(Join)

{Join(t, π)}join(t){π · Ξ}

Integrating (Fork) and (Join) in our framework would add two concrete appli-
cations to the rewrite rule GenericOptimization. (1) If C′ is a fork command,
GenericOptimization would rewrite proofs so that new threads are forked as soon
as possible (increasing parallelism). (2) If C is a join command, GenericOptimiz-
ation would rewrite proofs so that threads join other processes as late as possible
(increasing parallelism and reducing joining time).

7.4 Variable as Resources

[10] showed how to treat variables like resources (heap cells in our terminology).
This allows to get rid of the side condition in the (Parallel) rule resulting in a
more uniform proof system. The assertion language contains a new predicate
Ownπ(x) that asserts ownership π of variable x.

Roughly, writing a variable requires permission 1 while reading a variable
requires some permission π (in analogy with the permission-accounting model).
This rules out programs with races on shared variables:

Automatic Parallelization and Optimization of Programs by Proof Rewriting 65

{Own1(x) � ?}
x = y ‖ x = z

Above, ? cannot be filled with a predicate asserting ownership of x (needed
for verifying the parallel statement’s rhs) because Own1(x) is already needed
to verify the parallel statement’s lhs (and Own1(x) cannot be �-combined with
Ownπ(x) for any π).

The variable as resources technique would fit perfectly in our framework be-
cause variables that are not accessed by commands would be made explicit:
Ownπ() predicates would appear in frames. In other words, program verifiers
implementing the variable as resources technique would compute explicit frames
and antiframes for atomic commands like Fig. 1’s rules do.

8 Related Work

Separation logic was discovered by Reynolds [34]. O’Hearn [30] extended sep-
aration logic to deal with disjoint and lock-based concurrency. Parkinson [32]
adapted separation logic to object-oriented programs. Program verifiers in sepa-
ration logic include smallfoot [7], a tool for C [26], and tools for object-oriented
programs [17,14].

The closest (and concurrent) related work is [33] which uses separation logic
to parallelize programs. Our work differs in four ways: (1) [33] attaches labels
to heaps and uses disjointness of labels to detect possible parallelism, while we
use the (Frame) rule to statically detect possible parallelism, leading to a techni-
cally simpler procedure; (2) we express optimizations by rewrite rules on proof
trees, allowing us to feature other optimizations than parallelization and to use
different optimization strategies; (3) [33] is applied after a shape analysis [16,6],
while our analysis is applied after verification with a program verifier; and (4)
contrary to [33], we have an implementation.

Practical approaches for parallelizing programs include parallelizing compilers
[9,3]. Parallelizing compilers focuses on loop parallelization and do not consider
arbitrary pieces of code. Parallelizing compilers can yield code that executes an
order of magnitude faster than classical compilers. Loop parallelization has been
actively studied [27,2,36].

Formal approaches for optimizing programs include certified compilers [35,28]
and certifying compilers [5,29]. Certified compilers include optimizations that we
do not consider and provide fully machine-checked proofs. Certifying compilers
manipulate formulas representing proof obligations whereas we manipulate proof
trees representing derivation of Hoare triplets. For this reason, we can consider
high-level optimizations such as parallelization whereas we cannot consider the
low-level optimizations described in [5,29].

Techniques to dispose memory as soon as possible have been studied for ma-
chine registers [18] where the goal is to use as few registers as possible. Works
on atomicity [15,11] include techniques to release locks as soon as possible.

66 C. Hurlin

9 Conclusion and Future Work

We show a new technique to optimize programs proven correct in separation
logic. Optimizations are done by rewriting proofs represented as derivation of
Hoare triplets. The core of the procedure uses separation logic’s (Frame) rule to
statically detect parts of the state which are useless for a command to execute.
Considered optimizations are parallelization, early disposal, late allocation, early
lock releasing, and late lock acquirement. Optimizations are expressed as rewrite
rules between proof trees and are performed automatically.

The procedure has been implemented in the éterlou tool. Éterlou consists of
a proof tree generator (a modified version of the smallfoot program verifier [7])
and a proof tree rewriter written in tom [4]. Small-scale experiments show that
the approach is practical.

Future work includes extension to permission-accounting separation logic and
object-oriented programs. The extension to permission-accounting is expected
to increase the efficiency of the Parallelize rewrite rule. The extension to object-
oriented programs will allow us to do larger scale experiments and to study
how abstraction [32] behaves w.r.t. to our technique. For this, we plan to use
recent implementations of program verifiers for object-oriented programs anno-
tated with separation logic [17,14]. On a practical side, future work includes
study of the different rewriting strategies and their impact on the efficiency of
optimizations.

Acknowledgments. I thank Gilles Barthe, Radu Grigore, Christian Haack,
Marieke Huisman, and Tamara Rezk for their very useful comments that helped
crafting this paper. I have been supported in part by IST-FET-2005-015905
Mobius project and in part by ANR-06-SETIN-010 ParSec project.

References

1. Proof trees of the examples, additional examples, and open source implementation,
http://www-sop.inria.fr/everest/Clement.Hurlin/eterlou/eterlou.shtml

2. Aiken, A., Nicolau, A.: Optimal loop parallelization. ACM SIGPLAN Notices 23(7)
(1988)

3. Artigas, P., Gupta, M., Midkiff, S., Moreira, J.: Automatic loop transformations
and parallelization for Java. In: International Conference on Supercomputing. ACM
Press, New York (2000)

4. Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E., Reilles, A.: Tom: Piggybacking
rewriting on Java. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 36–47.
Springer, Heidelberg (2007)

5. Barthe, G., Grégoire, B., Kunz, C., Rezk, T.: Certificate translation for optimizing
compilers. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 301–317. Springer,
Heidelberg (2006)

6. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang,
H.: Shape analysis for composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

http://www-sop.inria.fr/everest/Clement.Hurlin/eterlou/eterlou.shtml

Automatic Parallelization and Optimization of Programs by Proof Rewriting 67

7. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion
checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de
Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111. Springer, Heidelberg (2006)

8. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer,
Heidelberg (2005)

9. Bik, A., Gannon, D.: Automatically exploiting implicit parallelism in Java. Con-
currency: Practice and Experience 9 (1997)

10. Bornat, R., Calcagno, C., Yang, H.: Variables as resource in separation logic. In:
Mathematical Foundations of Programming Semantics. Electronic Notes in Theo-
retical Computer Science, vol. 155. Elsevier, Amsterdam (2005)

11. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Pre-
venting data races and deadlocks. In: ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications. ACM Press, New York (2002)

12. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694. Springer, Heidelberg (2003)

13. Calcagno, C., Distefano, D., OHearn, P., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: Shao, Z., Pierce, B.C. (eds.) Principles of Programming
Languages. ACM Press, New York (to appear, 2009)

14. Chin, W., David, C., Nguyen, H., Qin, S.: Enhancing modular OO verification with
separation logic. In: Necula, G.C., Wadler, P. (eds.) Principles of Programming
Languages. ACM Press, New York (2008)

15. Cunningham, D., Gudka, K., Eisenbach, S.: Keep off the grass: Locking the right
path for atomicity. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 276–290.
Springer, Heidelberg (2008)

16. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separa-
tion logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 287–302. Springer, Heidelberg (2006)

17. DiStefano, D., Parkinson, M.: jStar: Towards practical verification for Java. In:
ACM Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications, vol. 43. ACM Press, New York (2008)

18. Ergin, O., Balkan, D., Ponomarev, D., Ghose, K.: Early register deallocation mech-
anisms using checkpointed register files. IEEE Computer 55 (2006)

19. Ghiya, R., Hendren, L.J., Zhu, Y.: Detecting parallelism in c programs with re-
cursive data structures. In: Koskimies, K. (ed.) CC 1998, vol. 1383. Springer,
Heidelberg (1998)

20. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local reasoning for
storable locks and threads. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807,
pp. 19–37. Springer, Heidelberg (2007)

21. Gupta, R., Pande, S., Psarris, K., Sarkar, V.: Compilation techniques for parallel
systems. Parallel Computing 25(13) (1999)

22. Haack, C., Huisman, M., Hurlin, C.: Reasoning about Java’s reentrant locks. In:
Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 171–187. Springer,
Heidelberg (2008)

23. Haack, C., Hurlin, C.: Separation logic contracts for a Java-like language with
fork/join. In: Meseguer, J., Rosu, G. (eds.) AMAST 2008. LNCS, vol. 5140,
pp. 199–215. Springer, Heidelberg (2008)

24. Hendren, L.J., Nicolau, A.: Parallelizing programs with recursive data structures.
IEEE Transactions on Parallel and Distributed Systems 1 (1990)

68 C. Hurlin

25. Hurlin, C.: Automatic parallelization and optimization of programs by proof rewrit-
ing. Technical Report 6806, INRIA. Initial version: January 2009, revised version:
April 2009

26. Jacobs, B., Piessens, F.: The verifast program verifier. Technical Report CW520,
Katholieke Universiteit Leuven (2008)

27. Lamport, L.: The parallel execution of do loops. Communications of the ACM 17(2)
(1974)

28. Leroy, X.: Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In: Morrisett, J.G., Jones, S.L.P. (eds.) Principles of
Programming Languages. ACM Press, New York (2006)

29. Necula, G.C.: Translation validation for an optimizing compiler. ACM SIGPLAN
Notices 35(5) (2000)

30. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical Computer
Science 375(1-3) (2007)

31. O’Hearn, P.W., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142,
p. 1. Springer, Heidelberg (2001) (invited paper)

32. Parkinson, M.: Local Reasoning for Java. Ph.D thesis, University of Cambridge
(2005)

33. Raza, M., Calcagno, C., Gardner, P.: Automatic parallelization with separation
logic. In: European Symposium on Programming (to appear, 2009)

34. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Logic in Computer Science. IEEE Press, Los Alamitos (2002)

35. Strecker, M.: Formal Verification of a Java Compiler in Isabelle. In: Voronkov, A.
(ed.) CADE 2002. LNCS, vol. 2392, p. 63. Springer, Heidelberg (2002)

36. Xue, C., Shao, Z., Sha, E.-M.: Maximize parallelism minimize overhead for nested
loops via loop striping. Journal of VLSI Signal Processing Systems 47(2) (2007)

Refinement of Trace Abstraction

Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski

University of Freiburg, Germany

Abstract. We present a new counterexample-guided abstraction refine-
ment scheme. The scheme refines an over-approximation of the set of
possible traces. Each refinement step introduces a finite automaton that
recognizes a set of infeasible traces. A central idea enabling our approach
is to use interpolants (assertions generated, e.g., by the infeasibility proof
for an error trace) in order to automatically construct such an automa-
ton. A data base of interpolant automata has an interesting potential for
reuse of theorem proving work (from one program to another).

1 Introduction

The automatic refinement of abstraction is an active research topic in static
analysis [1,3,4,5,6,7,8,9,10,11,13,12,15,16,18]. It is widely agreed that the calls to
a theorem prover, as used in existing methods for the construction of a sequence
of increasingly precise abstractions, represent an obstacle to scalability. The
problem is accentuated when costly decision procedures are employed to deal
with arrays and heaps [19,20,23]. One way to address this obstacle is to increase
the reuse of theorem work [11,13,12,18]. The question is in what form one should
combine the results of theorem prover calls, and in what form they should be
presented and stored.

Let us informally investigate the shortcomings inherent to the usage of
theorem provers in the classical counterexample-guided abstraction refinement
scheme (as, e.g., in [1,2,5,12,13,15]).

– In a first step, the theorem prover is called to prove the infeasibility of an
error trace (in case it is a spurious counterexample). The corresponding
unsatisfiability proof is then used for nothing but guessing the constituents
of the new abstraction. If, as in [12,15], the unsatisfiability proof is used to
generate interpolants which contain valuable information about the reason
of infeasibility, then these are cannibalized for their atomic conjuncts.

– In a second step, the theorem prover is called to construct the transformer
for the new abstraction; this step does not exploit the theorem proving work
invested in the first step; in fact, the subsequent analysis of the new abstrac-
tion realizes a second proof of the infeasibility of the previous error trace.

– The theorem prover constructs the transformer for each new abstraction from
scratch (at least on the part of the transformer’s domain that has changed).

– The theorem proving work starts for each new program from scratch. This
means all theorem proving work is done on-line, whereas ideally, most if not
all of it should be done off-line, i.e., in a pre-processing step.

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 69–85, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

70 M. Heizmann, J. Hoenicke, and A. Podelski

In this paper, we present a new counterexample-guided abstraction refinement
scheme. The scheme refines an over-approximation of the set of possible traces
(in contrast to existing schemes which refine an over-approximation of the set
of possible states). Each refinement step introduces a finite automaton that
recognizes a set of infeasible traces. Such a trace automaton uses the alphabet of
statements ; each word over this alphabet is a trace. A central idea enabling our
approach is to use interpolants (assertions generated, e.g., by the infeasibility
proof for an error trace) in order to automatically construct such an automaton.
The resulting interpolant automaton accepts not only the given error trace but
many other (in general infinitely many) infeasible traces of varying shape and
length.

The idea of using interpolants for the construction of an automaton overcomes
a major difficulty in the construction of automata for the approximation of pos-
sible traces. Existing constructions (e.g., in [14,21] for hybrid systems) are based
on ad hoc criteria; while the resulting methods succeed on several interesting ex-
amples, they are not general or complete. We also note a difference in the kind of
alphabets used. In [14,21], the alphabet consists of action labels (or edge labels)
defined by the input program (hybrid system), and the infeasibility property is
specific to that program. In contrast, our notion of infeasibility depends solely
on the programming language semantics.

One perspective opened by our work is a refinement loop that queries a
database of interpolant automata; if there exists one that accepts the submitted
error trace (which means that the error trace is not feasible), then the interpolant
automaton gets added as another component to the trace abstraction. In this
scenario, the interpolant automata can be constructed off-line (automatically, or
manually using interactive verification methods).

2 Example

The correctness of the annotated program P in Fig. 1 is defined by the validity
of its assertions. The correctness can be stated equivalently with the help of the
automaton AP depicted in Fig. 2, the so-called program automaton. The tran-
sition graph of AP is the control flow graph of P where assertions are translated
to edges to an error state.

The program automaton recognizes a set of words over the alphabet of state-
ments (statements are framed in order to stress that they are used as letters of
an alphabet). Each accepted word is a trace along a path in the control flow
graph. The correctness of the annotated program P is expressed by the fact
that all such traces are infeasible (which means that there is no valid execution
leading from the initial location to the error location).

We next describe how our refinement scheme will generate a sequence of trace
abstractions and, finally, prove the correctness of P . Generally, each trace ab-
straction is a tuple of automata (A1 . . .An) over the alphabet of statements. An
automaton in the tuple recognizes a subset of infeasible traces. This subset is
used to restrict the set of traces recognized by the program automaton.

Refinement of Trace Abstraction 71

�0: x=0

�1: y=0

�2: while(nondet) {x++}
assert(x!=-1)

assert(y!=-1)

Fig. 1. Annotated program P . The program P is correct if the assertions are valid.

�0 �1 �2 �err
x:=0 y:=0

x++

x==-1

y==-1

Fig. 2. Program automaton AP encoding the correctness of P . The program P is
correct iff every word accepted by AP is an infeasible trace.

First Iteration of Refinement Loop. The initial trace abstraction (for the
first iteration of the refinement loop) is the empty tuple. The resulting restriction
of the program automaton is the program automaton itself. In our example, the
program automaton is not empty; it accepts, e.g., the trace π1.

π1 = x:=0 . y:=0 . x++ . y==-1

The trace π1 is returned as the counterexample of the first iteration of the re-
finement loop. A theorem prover is called to analyze the counterexample. The
trace π1 is infeasible. The unsatisfiability proof showing this, is used to con-
struct the automaton A1 depicted in Fig. 3. This automaton accepts not only
the trace π1 but all traces that are infeasible for the same reason as π1. In more
detail: the unsatisfiability proof returns a sequence of interpolants. Each trace
accepted by A1 has the same sequence of interpolants as π1, up to repetition
of subsequences of interpolants, and it is in this precise sense that it has the
same “reason of infeasibility” as π1. As explained later, the states qi are in bi-
jection with interpolants in the sequence, which is why we call A1 an interpolant
automaton.

Second Iteration of Refinement Loop. The second abstraction (obtained
from refining the initial abstraction) is the tuple (A1) consisting of one compo-
nent, the automaton derived in the previous refinement. The resulting restriction
of the program automaton is the intersection of the program automaton with
the complement of A1. In our example, the resulting automaton does not accept
the trace π1, the counterexample in the first refinement. Still, it is not empty; it
accepts, e.g., the trace π2.

π2 = x:=0 . y:=0 . x++ . x==-1

72 M. Heizmann, J. Hoenicke, and A. Podelski

q0 q1 q2

x:=0

y:=0

x++

y==-1

Fig. 3. Interpolant automaton A1, constructed from the unsatisfiability proof for the
error trace π1 = x:=0 . y:=0 . x++ . y==-1 . It recognizes the set of traces that are infea-
sible for the same reason as π1.

The trace π2 is returned as the counterexample of the second iteration of the
refinement loop. Again, a theorem prover is called to analyze the counterexample.
The trace π2 is infeasible as well. Again, the unsatisfiability proof showing this,
is used to construct an automaton, A2 depicted in Fig. 4.

q0 q1 q2
x:=0

y:=0

x++

x==-1

Fig. 4. Interpolant automaton A2 which is constructed from the unsatisfiability proof
for the counterexample π2 = x:=0 . y:=0 . x++ . x==-1

Third and Final Iteration of the Refinement Loop. The third abstraction
(obtained from refining the second abstraction) is the tuple (A1,A2) constructed
by extending the previous tuple with another component, the automaton derived
in the previous refinement. The resulting restriction of the program automaton is
the intersection of the program automaton with the complement of A1 and with
the complement of A2. In our example, the resulting automaton AP ∩ A1 ∩ A2
does not accept the trace π2, the counterexample in the first refinement. In fact,
it does not accept any word; it is empty. The emptiness of AP ∩A1 ∩A2 proves
the correctness of the annotated program P .

3 Traces

We assume a fixed set of statements Σ. We will consider Σ as an alphabet and
statements as its letters. A trace π = st1 . . . stn is a word over this alphabet; i.e.,
π ∈ Σ∗.

It is important to realize that the notion of a trace is independent of a pro-
gram (a trace may not correspond to a path in the program’s control flow graph)
and independent of the programming language semantics (a trace may not cor-
respond to any possible execution). In order to stress the usage of statements as

Refinement of Trace Abstraction 73

letters of an alphabet, we sometimes frame each statement/letter. For example,
we can write the alphabet of the example program in Section 2 as

Σex = { x:=0 , y:=0 , x++ , x==-1 , y==-1 }

and
π = x++ . x:=0 . x:=0 . y==-1 . x==-1

is a possible trace. All automata that we consider in this work are automata over
the given alphabet Σ; i.e., they recognize sets of traces.

Program Automaton AP . We present an annotated program P directly as a
trace automaton AP which we call the program automaton. We can obtain the
program automaton in two ways. If we start with an annotated program as in
Fig. 1 then we translate the assertions to edges to an error location in the control
flow graph. In the resulting program automaton

AP = 〈LOC, δP , {�init}, {�err}〉,

– the automaton states are program locations,
– the transition relation δP contains exactly the edges (�, st, �′) of the control

flow graph,
– the (unique) initial state is the (unique) initial location,
– the (unique) final state is the (unique) error location.

Alternatively, we may follow the automata-theoretic approach to program
verification [22]. We use an LTL formula ϕ to specify a safety property (e.g., a
second lock statement is not executed before an unlock statement). Let A¬ϕ be
the automaton that accepts all bad prefixes, i.e., traces that witness the violation
of the safety property specified by ϕ. Let ACFG be the automaton whose states
are the program locations of P , whose transition graph is the control flow graph
of P , and each state is accepting. We construct the program automaton AP as
the intersection of ACFG and A¬ϕ. It accepts all traces that violate the safety
property ϕ and follow a path in the control flow graph of P .

Error Trace. We call a trace accepted by the program automaton AP an error
trace. An error trace corresponds to a path from the initial location to the error
location. In order to determine if such a path corresponds to a possible execution,
the semantics of the statements has to be taken into account.

Infeasibility. We assume that the semantics of statements is given by
the (strongest) postcondition operator post. The predicate post(st, ϕ) is the
(strongest) postcondition of the predicate ϕ under the statement st. The ex-
tension of the postcondition from a statement to a trace is straightforward.

We define that the trace π = st1 . . . stn is infeasible if

post(π,!) ⊆ ⊥

which expresses that the trace π has no possible execution.

74 M. Heizmann, J. Hoenicke, and A. Podelski

Alternatively, infeasibility can be stated in terms of the (weakest) precondition
operator. We use wp(st, ϕ) to denote the (weakest) precondition of the predicate
ϕ under the statement st. A trace π is infeasible if

! ⊆ wp(π,⊥)

It is important to realize that the notion of feasibility is independent from the
control flow graph (i.e., a feasible trace may not correspond to any path in the
control flow graph).

Correctness. Having defined the notion of infeasibility, we can use the program
automaton AP to define correctness. The annotated program P is correct if
every trace accepted by AP is infeasible, formally

L(AP) ⊆ INFEASIBLE.

4 Trace Abstraction

The program automaton AP encodes what trace is a path according to the
control flow graph of the program. We will use a trace abstraction to encode a
sufficient condition for when a trace is infeasible according to the semantics of
the programming language.

Definition 1 (Trace Abstraction (A1, . . . ,An)). A trace abstraction is given
by a tuple of automata (A1, . . . ,An) such that each Ai recognizes a subset of
infeasible traces, for i = 1 . . .n.

Having separated the program-specific information and the programming
language-specific information by the program automaton AP and a trace ab-
straction (A1, . . . ,An), we need to combine the two in order to reason about
correctness. This combination comes again in the form of an automaton; we de-
fine it as the intersection of the program automaton with the complements of
A1, . . . ,An, which we write

AP ∩ A1 ∩ . . . ∩ An

where we use the symbol ∩ for the intersection of automata and A for the com-
plement of the automaton A (and assume that these two operations on automata
implement the corresponding two operations on the recognized languages).

Proof Method Based on Trace Abstraction. Given the program automaton AP ,
we say that the trace abstraction (A1, . . . , An) does not admit an error trace if
the language recognized by the automaton AP ∩ A1 ∩ . . . ∩ An is empty.

L(AP ∩ A1 ∩ . . . ∩ An) = ∅

In this presentation we do not investigate how one can implement the empti-
ness test efficiently. Let us mention however, that the emptiness test can be

Refinement of Trace Abstraction 75

done on the fly; only the reachable part of this abstraction has to be computed
and not all components qi in a state of the product (q1, . . . qn) have to be made
explicit.

The next two theorems state that a sound and complete proof method can
be based on trace abstraction. By the algebraic properties of the intersection
operation, the proof method based on trace abstraction is modular; i.e., the
components Ai can be constructed independently one from another and their
order does not matter.

Theorem 1 (Soundness). If a trace abstraction (A1, . . . ,An) does not admit
an error trace, i.e., L(AP ∩ A1 ∩ . . . ∩ An) = ∅, then the program P is correct.

Proof. The assumption L(AP ∩ A1 ∩ . . . ∩ An) = ∅ means that every trace
accepted by AP is accepted by one of A1, . . . ,An.

L(AP) ⊆ L(A1) ∪ · · · ∪ L(An)

By definition of trace abstraction, each Ai recognizes a subset of infeasible traces.

L(A1) ∪ · · · ∪ L(An) ⊆ INFEASIBLE

Hence, every trace accepted by AP is infeasible, which is how the correctness of
the program P is defined. ��

According to folklore wisdom, if completeness holds, then it does for a trivial
reason which does not provide any further insight. The proof method based on
trace abstraction is no exception.

Theorem 2 (Completeness). If the program P is correct, then there exists a
trace abstraction (A1, . . . ,An) that does not admit an error trace, i.e., L(AP ∩
A1 ∩ . . . ∩ An) = ∅.

Proof. Assume P is correct. Then, by definition, AP does not accept any trace,
which is equivalent to L(AP) ⊆ INFEASIBLE. We set n = 1 and choose the trace
abstraction (A1) where A1 = AP . If we “implement” this abstraction we get
the automaton AP ∩ AP which recognizes the empty set. Hence (A1) does not
admit an error trace. ��

5 CEGAR for Trace Abstraction

In the iterated refinement scheme depicted in Fig. 5, we transfer the classical
check-analyze-refine loop to trace abstraction. The initial trace abstraction is the
empty tuple of automata (n = 0). If the trace abstraction (A1, . . . ,An) admits
an error trace, say π, we check whether π is infeasible. If this is the case, we
extend the trace abstraction with an automaton An+1 that accepts (at least)
the infeasible trace π.

76 M. Heizmann, J. Hoenicke, and A. Podelski

annotated program P

P is correct P is incorrect

L(AP ∩A1 ∩ . . . ∩An) = ∅ ? π ∈ INFEASIBLE ?

no

return error trace π
such that

π ∈ L(AP ∩A1 ∩ . . . ∩An)

yes

return trace automaton An+1

such that
π ∈ L(An+1) and

L(An+1) ⊆ INFEASIBLE

yes no

n := 0

Fig. 5. Counterexample-guided abstraction refinement scheme for trace abstraction.
The program P is correct if L(AP) ⊆ INFEASIBLE.

Incrementality. If the trace abstraction (A1, . . . ,An) does not admit an error
trace then it still does not when we add any number of components to the
tuple. As a consequence, in a series of successive refinements, one never has to
withdraw a previously added component (“superfluous components in a tuple
do not hurt”).

Progress. The infeasible error trace π returned in the n-th iteration of the refine-
ment loop gets eliminated by the refined abstraction; i.e., the trace abstraction
(A1, . . . ,An,An+1) does not admit the error trace π.

6 Interpolant Automata

In the setting of iterated refinement for trace abstraction (Fig. 5) in the previous
section, it is trivial to construct an automaton An+1 that accepts exactly the
infeasible error trace π. The corresponding trivial refinement excludes one and
only one infeasible error trace. The question is how one can generalize the coun-
terexample, i.e., construct an automaton An+1 that recognizes a set consisting
of π and more infeasible traces. Ideally, those traces share with π the ‘reason of
infeasibility’.

An immediate idea is to augment the trivial automaton (which accepts ex-
actly the infeasible error trace π) with transitions that are labeled by “irrelevant

Refinement of Trace Abstraction 77

statements” and that are self-loops (transitions from and to the same automa-
ton state). A statement is irrelevant if it does not modify a variable whose value
determines the infeasibility. In our example from Section 2, in the construction
of the automaton A1 for the error trace π1 (see Fig. 3), one would thus obtain
the self-loop labeled x++ . One would, however, fail to add the self-loop labeled
x++ in the construction of the automaton A2. One would also fail to introduce
general loops in the construction of the automaton.

The first step towards a generally applicable construction is to consider a se-
quence of predicates I0, I1, . . . , In (to which we refer as interpolants for reasons
that will become apparent later). In many settings that we consider, this se-
quence is related to the error trace π; it may be generated, for example, by the
proof of the infeasibility of π.

The general notion of an interpolant automaton that we introduce below,
however, does not refer to an error trace. It refers to an arbitrary sequence of
predicates I0, I1, . . . , In. Given such a sequence, we will associate each predicate
Ii with an automaton state qi. The automaton states are not necessarily pairwise
distinct; i.e., we may associate two different predicates Ii and Ij with the same
automaton state, and we may associate the same predicate with two different
states (i.e., we may have Ii �= Ij , qi = qj and we may have Ii = Ij , qi �= qj).
The non-constructive definition below accommodates a wide range of possible
constructions. The definition of a canonical interpolant automaton further below
is constructive.

Definition 2 (Interpolant Automaton AI). Given a sequence of predicates
I = I0, I1, . . . , In (to which we will refer as “interpolants”), we call a trace
automaton

AI = 〈QI , δI , Q
init
I , Qfin

I 〉

an interpolant automaton if we can index its set of states QI with the set of
indices of the sequence {0, . . . , n},

QI = {q0, . . . , qn}

and thus associate each interpolant Ii with a state qi, such that the following
three conditions hold.

– Each pair of interpolants associated with a state transition is inductive.

(qi, st, qj) ∈ δI implies post(st, Ii) ⊆ Ij

– Each interpolant associated with an initial state is the true predicate.

qi ∈ Qinit
I implies Ii = !

– Each interpolant associated with a final state is the false predicate.

qi ∈ Qfin
I implies Ii = ⊥

78 M. Heizmann, J. Hoenicke, and A. Podelski

Theorem 3. An interpolant automaton AI recognizes a subset of infeasible
traces.

L(AI) ⊆ INFEASIBLE

Proof. We show (by induction on the length of a trace π) that if qj ∈ δ(π, qi)
then the inclusion post(π, Ii) ⊆ Ij holds. Thus, for every trace π accepted by AI
the inclusion

post(π,!) ⊆ ⊥,
holds, which means that π is infeasible. ��

Completeness. We may ask whether a proof method based on trace abstrac-
tion is still complete if the automata Ai of a trace abstraction (A1, . . . ,An)
are restricted to be interpolant automata. Again, the completeness argument is
disappointingly simple. If the program is correct, the program automaton AP
is an interpolant automaton. To see this, define Ii to be the set of states at
the location �i reachable from any state at location �0 (assuming the locations
of the program automaton AP are exactly �0, . . . , �n). We associate Ii with the
state �i of the program automaton. Since we assume that the program is correct,
we know that the interpolant associated with the error location �err is the false
predicate ⊥.

Interpolant Automata and Floyd-Hoare style Proofs of Program Correctness. In
the discussion of completeness above, we can more generally define Ii to be any
invariant assertion associated with the location �i in a Floyd-Hoare style proof of
the partial correctness of the program P . This is because, when we transfer the
partial-correctness statement to the control flow graph with the error location
�err, we will label the error location �err with the false predicate ⊥. The condition
on each pair of interpolants associated with a transition (in Definition 2) is
exactly the inductiveness of the invariant assertions in the Floyd-Hoare style
proof.

The proof of partial-correctness may refer to the full program or just a pro-
gram fragment, constituted, e.g., by the slice of the control flow graph which
is executed by the error trace π. In a concrete setting, there are many ways in
which one may obtain such a proof: manually, or by a constraint solving method
as, e.g., in [3], or by one of the methods based on (counterexample-guided ab-
straction refinement of) state abstraction, e.g., [1,3,4,11,13,15,18].

Once the interpolant automaton is formed, it no longer carries any reference to
program states (or invariant assertions and such). A trace automaton is a graph;
it is detached from both the original program and the semantics of statements (as
predicate transformers). As a consequence, refinement of trace abstraction does
not involve logical conjunction and theorem prover calls; it is a graph operation.

Determinism. The general setting of non-deterministic trace automata is poten-
tially useful for a compact representation of infeasibility. If the trace automaton
is deterministic then its complement can have the same transition graph (up to
sink states which are introduced to obtain a total transition relation). This is

Refinement of Trace Abstraction 79

the case, e.g., when the trace automaton is the program automaton AP or, more
generally, when the transition graph of the trace automaton is a subgraph of the
(possibly partially unfolded) control flow graph (since a statement cannot lead
to different locations).

Canonical Interpolant Automaton. Next, we will introduce the notion of a
sequence of interpolants for the error trace π and use it to give a constructive
definition of a special case of an interpolant automaton.

Sequence of Interpolants for an Error Trace. Given an infeasible error trace π =
st1, . . . , stn, we call a sequence of predicates I = I0, I1, . . . , In a corresponding
sequence of interpolants (corresponding to π) if the following conditions hold
(where ! is the true predicate and ⊥ is the false predicate).

– I0 = !

– post(sti+1, Ii) ⊆ Ii+1, for i = 0 . . .n− 1

– In = ⊥

If we split the trace π at any position i into a prefix st1 . . . sti and suffix sti+1 . . . stn
then every state reached under a possible execution of the prefix st1 . . . sti satisfies
Ii and no state satisfying Ii has a possible execution under the suffix sti+1 . . . stn.
In other words, the interpolant Ii is an overapproximation of the postcondition
of true under the prefix and an underapproximation of the weakest precondition
false under the suffix, formally

post(st1 . . . sti,!) ⊆ Ii ⊆ wp(sti+1 . . . stn,⊥).

A sequence of interpolants may be, but is not necessarily a sequence of Craig
interpolants generated from the proof of infeasibility of a counterexample (in the
spirit of [13,15,17,18]). A sequence of interpolants may also arise as the sequence
of invariant assertions along the sequence of program locations in a Hoare-style
proof (for the correctness of the program fragment corresponding to the spurious
counterexample).

In order to motivate the definition of the canonical interpolant automaton,
we will give a schematic example of its construction.

Example. In the schematic setting depicted in Fig. 6, we assume that

– π = st1 . . . stn is an infeasible error trace along the locations �0, . . . , �n,
– I = I0, . . . , In is a corresponding sequence of interpolants,
– i and j are two positions such that j < i, �i = �j , and post(stj+1, Ii) ⊆ Ij+1.

To make the example simple, let us assume that �j is the only repeated location
in π. The assumption that �i is the same location as �j implies the existence of
a loop in the control flow graph that goes from �j via �j+1 . . . �i−1 back to �j .
The error trace π executes this loop exactly once.

80 M. Heizmann, J. Hoenicke, and A. Podelski

We now construct the automaton Aπ
I depicted in Fig. 6 by taking the trivial

automaton (which accepts exactly only the one infeasible error trace π) and add
exactly one ‘back edge’, namely the transition (qi, stj+1, qj). The automaton Aπ

I
accepts all traces that follow the same path in the control flow graph as π (and
that execute the loop through �j at least once).

L(Aπ
I) = st1 . . . stjstj+1 . . . sti

(
stj+1 . . . sti

)�
sti+1 . . . stn

To see that the trace πk = st1 . . . stjstj+1 . . . sti(stj+1 . . . sti)ksti+1 . . . stn is infea-
sible for k ≥ 0, we first observe that the inclusion post(stj+2 . . . sti, Ij+1) ⊆ Ii
holds by the definition of a sequence of interpolants for π. This together with
the assumption post(stj+1, Ii) ⊆ Ij+1 implies post(stj+1 . . . sti, Ii) ⊆ Ii. Thus,
the inclusion

post(stj+1 . . . sti(stj+1 . . . sti)k, Ij) ⊆ Ii

holds for k ≥ 0. This implies post(πk,!) ⊆ ⊥, the infeasibility of πk. ��

�0 �1 �j−1 �j

�j+1 �i−1

�i+1 �n−1 �n
st1 stj

stj+1 sti

sti+1 stn

q0 q1 qj−1 qj

qj+1 qi−1

qi qi+1 qn−1 qn
st1 stj

stj+1 sti

sti+1 stn

stj+1

Fig. 6. The infeasible error trace π = st1 . . . stn follows the path with the loca-
tions �0, . . . , �n in the control flow with a loop through �j (�i = �j). We assume that
I = I0, . . . , In is a corresponding sequence of interpolants with post(stj+1, Ii) ⊆ Ij+1.
Adding the transition (qi, stj+1, qj) to the trivial automaton (which accepts only π)
results in the automaton Aπ

I .

Definition 3 (Canonical Interpolant Automaton Aπ
I). Given a sequence

of interpolants I = I0, I1, . . . , In corresponding to the infeasible error trace
π = st1, . . . , stn along the sequence of locations �0, . . . , �n, we introduce pair-
wise different states q0, . . . , qn and define the canonical interpolant automaton
Aπ
I for π and I as follows.

Aπ
I = 〈QI , δI , Q

init
I , Qfin

I 〉

Refinement of Trace Abstraction 81

– QI = {q0, . . . , qn}

– δI = {(qi, stj+1, qj+1) | i, j = 0, ..., n−1, j ≤ i, �i = �j,
post(stj+1, Ii) ⊆ Ij+1}

– Qinit
I = {q0}

– Qfin
I = {qn}

The canonical interpolant automaton Aπ
I accepts the error trace π. This follows

from the definition of the sequence of interpolants. In general Aπ
I accepts an

infinite set of traces. In a sense, Aπ
I accepts exactly the traces that are infeasible

for the same reason as π. More precisely, in order to prove the infeasibility of
a trace accepted by Aπ

I , we can use the same sequence of interpolants (up to
repetition of subsequences) as in the proof of infeasibility of π.

The inclusions post(sti+1, Ii) ⊆ Ii+1 hold by the definition of sequence of
interpolants. Thus, after having generated the sequence of interpolants I (for the
proof of the infeasibility of the trace π), one needs additional theorem prover
calls only for each inclusion post(stj+1, Ii) ⊆ Ij+1 where j < i and �i = �j .
Thus, the number of additional theorem prover calls is bounded by the number
of repeated locations in the sequence of locations along the error trace π.

Speculative Computation of Infeasibility. The general definition of interpolant
automata accommodates optimizations where one invests theorem proving work
speculatively. That is, one checks the validity of inclusion other than the ones
required in the construction of the canonical interpolant automaton. The goal
is to add more edges to the transition graph, and thus obtain an interpolant
automaton that recognizes a larger set of infeasible traces. One possibility is to
remove the side-condition for i, j from the definition of δI , i.e., one checks the
inclusions post(stj+1, Ii) ⊆ Ij+1 for all pairs of locations. If the interpolant Ii is
subsumed by the interpolant Ij we may add a transition (q, st, qj) to the state
qj if the corresponding transition (q, st, qi) to the state qi exists. Yet another
possibility is to check the validity of inclusions post(st, Ii) ⊆ Ij where st is not
necessarily a statement in the error trace π. This leads to, e.g., exploring both
branches of a conditional statement and thus adding a branching structure to
the interpolant automaton.

Caching Infeasibility. When verifying many programs or program parts, similar
patterns of infeasible error traces may occur several times. Our notion of infea-
sibility is independent of a particular program. It allows the reuse of interpolant
automata for the verification of other programs. One can imagine a refinement
scheme based on a database of interpolant automata. If the trace abstraction
(A1, . . . ,An) admits an error trace π then the database can be queried for an
automaton that accepts π (modulo variable renaming). If such an automaton
exists, then π is infeasible and the abstraction is refined to (A1, . . . ,An,An+1)
by adding the new automaton to the tuple.

Example. Reconsider the example of Section 2. The automata A1 (depicted in
Fig. 3) and A2 (depicted in Fig. 4) are interpolant automata resulting from a

82 M. Heizmann, J. Hoenicke, and A. Podelski

construction similar to the canonical interpolant automaton where states qi and
qj are merged if the interpolants Ii and Ij are equal. (The test of equality of
predicates requires in general a call to the theorem prover.)

The automaton A1 is obtained from the corresponding sequence of inter-
polants

!, !, y = 0, y = 0, ⊥

given the error trace

π1 = x:=0 . y:=0 . x++ . y==-1 .

The automaton A2 is obtained from the corresponding sequence of interpolants

!, x ≥ 0, x ≥ 0, x ≥ 0, ⊥

given the error trace

π2 = x:=0 . y:=0 . x++ . x==-1 . ��

7 Predicate Abstraction

In this section we compare predicate abstraction as in [1,3,4,5,13,12,15,16]) with
trace abstraction. We start by formalizing predicate abstraction. Given a finite
set of predicates, say

Pred = {p1, . . . , pm}

we call an m-tuple 〈b1, ..., bm〉 of possibly negated predicates a a bitvector (we
assume a fixed order on the predicates).

〈b1, ..., bm〉 where bj is either pj for ¬pj , for j = 1, . . . ,m

Given a program P with the post operator post, we construct the relation δ#
between bitvectors (in principle by calling a theorem prover for each pair of
bitvectors and each statement).

δ# = {(〈b1, ..., bm〉, st, 〈b′1, ..., b′m〉 | post(st, b1 ∧ ... ∧ bm) ∩ b′1 ∧ ... ∧ b′m �= ⊥}

The predicate abstraction of the program P wrt. Pred can be defined as the
finite-state abstract program P#

Pred, whose states are pairs of a program location
and a bitvector, and whose transitions are induced by the relation δ# between
bitvectors.

Theorem 4. Predicate abstraction is a special case of trace abstraction: the
abstraction defined by a tuple of predicates can be expressed by a tuple consisting
of one single trace automaton.

Refinement of Trace Abstraction 83

Proof. We define the trace automaton A# whose states are the bitvectors, the
transition relation is δ#, and each state is an initial and a final state.

A# = 〈Q#, δ#, Q#, Q#〉

This automaton recognizes a superset of all feasible traces (and not just feasi-
ble traces of AP ; note that the transition relation δ# is total). We define the
automaton APred as the complement of A#. Since APred recognizes a subset of
infeasible traces, the 1-tuple (APred) is a trace abstraction.

APred = A#

The product of the program automaton AP with the complement of APred, i.e.,
with A#, is exactly the abstract program P#

Pred, the predicate abstraction of the
concrete annotated program P wrt. the set of predicates Pred.

P#
Pred = AP ∩ APred

Thus, the trace abstraction (APred) expresses the predicate abstraction of the
program P wrt. Pred. ��

Trace abstraction is strictly more expressive than predicate abstraction, since it
is not possible to derive predicates from trace automata (as explained above, a
trace automaton is detached from the original program and in particular it does
not convey the semantics of its statements as predicate transformers).

Refinement, Combination of Abstractions. Trace abstraction allows one to com-
bine abstractions with a minimal investment of theorem proving work. In order
to explicate this point, we will build on the fact (established above) that one can
use predicate abstraction to construct one or more of the component automata
Ai in a trace abstraction (A1, . . . ,An).

We now consider the combination of the two predicate abstractions defined
by the sets of predicates Pred1 and Pred2, once as the trace abstraction defined
by the 2-tuple of the two predicate abstractions, i.e.,

(APred1 ,APred2),

and once as the predicate abstraction for the set of predicates Pred defined by
the union of the two sets of predicates, Pred = Pred1 ∪ Pred2. As seen above,
this predicate abstraction can be expressed equivalently as the trace abstraction
defined by the 1-tuple with the automaton APred, i.e.,

(APred1∪Pred2).

The combination as a trace abstraction (APred1 ,APred2) is coarser (in general
strictly coarser) than the combination as a predicate abstraction (APred1∪Pred2),
but it can be computed without additional theorem proving work. It is
possible to formally account for this phenomenon in terms of products of ab-
stract domains [6,7].

84 M. Heizmann, J. Hoenicke, and A. Podelski

8 Conclusion

We have presented a refinement scheme whose novelty lies in the following points.

– Trace abstraction instead of state abstraction. The goal of the iterated refine-
ment is the successive restriction of the approximation of the set of execution
traces (and not of the set of reachable states).

– Compositionality of refinement. The refinement is decomposed into inde-
pendent steps (the construction of one automaton does not build on another
automaton). The results of the individual steps are composed by a graph
operation (the intersection of automata).

– Interpolant automata. We use interpolants in order to construct an automa-
ton (which recognizes a set of infeasible traces). Interpolants can be Craig
interpolants, or any other inductive assertions in a Floyd-Hoare style proof.

– Coarse-grained caching. Each trace automaton represents the macro result
of a coherent set of theorem prover calls.

– Reuse from one program to another. The notion of an infeasible trace refers to
the programming language semantics. The refinement through an automaton
is applicable beyond one specific program.

The scope of this paper is to introduce the principles of the refinement scheme
for trace abstraction. Hence, we have aimed at the most general formulation pos-
sible. The question of the most practical instantiation of the refinement scheme
remains a topic of future work. In particular, the realization of a data base of
interpolant automata which accounts for common programming patterns raises
a number of interesting research issues.

Acknowledgements. We thank Ahmed Bouajjani, Ken McMillan, Natarajan
Shankar, and Ashish Tiwari for fruitful discussions. This work was partly sup-
ported in part by the German Research Foundation (DFG) as part of the Tran-
sregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS) and by NSF grant CNS-0749931
while the third author visited SRI International.

References

1. Ball, T., Podelski, A., Rajamani, S.K.: Relative completeness of abstraction re-
finement for software model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS
2002. LNCS, vol. 2280, pp. 158–172. Springer, Heidelberg (2002)

2. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL 2002, pp. 1–3. ACM, New York (2002)

3. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
PLDI 2007, pp. 300–309. ACM, New York (2007)

4. Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 17–32. Springer,
Heidelberg (2007)

Refinement of Trace Abstraction 85

5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

6. Cousot, P.: Méthodes itératives de construction et d’approximation de points
fixes d’opérateurs monotones sur un treillis, analyse sémantique de programmes
(in French). Thèse d’État ès sciences mathématiques, Université Joseph Fourier,
Grenoble, France, March 21 (1978)

7. Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones,
N. (eds.) Program Flow Analysis: Theory and Applications, ch. 10, pp. 303–342.
Prentice-Hall, Englewood Cliffs (1981)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
pp. 238–252. ACM, New York (1977)

9. Cousot, P., Cousot, R.: Refining model checking by abstract interpretation. Auto-
mated Software Engineering 6(1), 69–95 (1999)

10. Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements
in abstract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126,
pp. 356–373. Springer, Heidelberg (2001)

11. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically re-
fining abstract interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

12. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL 2004, pp. 232–244. ACM, New York (2004)

13. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
2002, pp. 58–70. ACM, New York (2002)

14. Jha, S.K.,Krogh,B.H.,Weimer, J.E., Clarke, E.M.: Reachability for linear hybrid au-
tomatausing iterative relaxationabstraction. In:Bemporad,A.,Bicchi,A.,Buttazzo,
G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg (2007)

15. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate re-
finement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 459–473. Springer, Heidelberg (2006)

16. Lakhnech, Y., Bensalem, S., Berezin, S., Owre, S.: Incremental verification by
abstraction. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 98–112. Springer, Heidelberg (2001)

17. McMillan, K.L.: Interpolation and sat-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

18. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

19. McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008)

20. Podelski, A., Wies, T.: Boolean heaps. In: Hankin, C., Siveroni, I. (eds.) SAS 2005.
LNCS, vol. 3672, pp. 268–283. Springer, Heidelberg (2005)

21. Segelken, M.: Abstraction and counterexample-guided construction of omega -
automata for model checking of step-discrete linear hybrid models. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 433–448. Springer,
Heidelberg (2007)

22. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program ver-
ification. In: LICS 1986, pp. 332–344. IEEE Computer Society, Los Alamitos (1986)

23. Wies, T.: Symbolic Shape Analysis. Ph.D Thesis, Albert-Ludwigs-Universität,
Freiburg, Germany (2009)

The Causal Graph Revisited
for Directed Model Checking

Martin Wehrle and Malte Helmert

University of Freiburg, Germany
{mwehrle,helmert}@informatik.uni-freiburg.de

Abstract. Directed model checking is a well-established technique to tackle the
state explosion problem when the aim is to find error states in large systems.
In this approach, the state space traversal is guided through a function that esti-
mates the distance to nearest error states. States with lower estimates are prefer-
ably expanded during the search. Obviously, the challenge is to develop distance
functions that are efficiently computable on the one hand and as informative as
possible on the other hand. In this paper, we introduce the causal graph struc-
ture to the context of directed model checking. Based on causal graph analysis,
we first adapt a distance estimation function from AI planning to directed model
checking. Furthermore, we investigate an abstraction that is guaranteed to pre-
serve error states. The experimental evaluation shows the practical potential of
these techniques.

1 Introduction

Directed model checking is a well-established technique to efficiently detect error states
in large systems. In this approach, a distance heuristic is used to estimate the distance
of each state encountered during the state space traversal to a nearest error state. The
search then prefers states with lower estimated error distance. Obviously, the success
of this approach crucially depends on the quality of this distance function. On the one
hand, it should be as informative as possible to only explore a relatively low number
of states until an error state is found. On the other hand, it should also be efficient to
compute such that the overall performance of the model checking process is increased.

The area of directed model checking has recently found much attention, and various
distance estimation functions have been proposed in this context [4,6,10,13,14,18]. The
basic principle to construct such functions is to first abstract the system under consid-
eration, and then to use the length of an abstract error trace in this abstraction as an
estimation for the actual length in the concrete. There are different strategies to define
such distance functions. One way is to define abstractions that are coarse enough to
find shortest abstract error traces in polynomial time (see, e. g., [4]). A different strat-
egy is to choose an abstraction that is more fine-grained and does not admit polynomial
algorithms for computing shortest abstract error traces. The distance estimate is then
computed by approximating such error traces (see, e. g., [13]). Both strategies have
proved to be successful for directed model checking.

In this paper, we introduce the causal graph structure to the context of directed model
checking. For a given system Ξ , the causal graph is a dependency graph on the compo-
nent processes of Ξ that reflects how state changes in certain processes depend on state

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 86–101, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Causal Graph Revisited for Directed Model Checking 87

changes in others. Based on causal graph analysis, we first propose an adaptation of a
distance function that has originally been introduced in the area of AI planning [7,8].
We will see that this distance function follows the second strategy as outlined above.
Furthermore, we propose a simple abstraction based on causal graph properties called
safe abstraction, which is guaranteed not to introduce spurious error states (i. e., error
traces found in this abstraction are guaranteed to correspond to error traces in the con-
crete system). We demonstrate that error detection is often significantly easier in this
abstraction compared to the original system.

The structure of this paper is as follows. In Section 2, we give the basic notations and
background needed for this work. Our contributions based on the causal graph are given
in Sections 3 and 4, followed by an empirical experimental evaluation in Section 5. We
conclude the paper and give an outlook on future work in Section 6.

2 Preliminaries

In this section, we define the notation and semantics for the systems considered in this
paper, followed by an introduction to directed model checking.

2.1 Processes and Systems

We model systems as parallel processes running in lockstep using global synchroniza-
tion labels. Throughout the paper, let Σ be a finite set of synchronization labels (sym-
bols). To distinguish between local states of an atomic process and the global state of
the overall system, we use the term location for the former and state for the latter.

Definition 1 (process). A process p is a labeled directed graph (L, T), where L �= ∅ is
the finite set of locations of p and T ⊆ L×Σ × L is the set of local transitions of p.

Whenever a given process performs a local transition from location l to l′ with associ-
ated label a ∈ Σ, then all other processes must simultaneously perform a local transi-
tion with the same label a, or else the transition is not permitted. This gives rise to the
following definition of the parallel composition of two processes. Parallel composition
is an associative and commutative operation, up to isomorphism. For example, we can
obtain p2 ‖ p1 from p1 ‖ p2 by renaming locations (l1, l2) to (l2, l1).

Definition 2 (parallel composition). Let p1 = (L1, T1) and p2 = (L2, T2) be pro-
cesses. The parallel composition of p1 ‖ p2 of p1 and p2 is the process (L, T) with
L = L1 × L2 and T = {((l1, l2), a, (l′1, l′2)) | (l1, a, l′1) ∈ T1 ∧ (l2, a, l′2) ∈ T2}.

A system is simply the parallel composition of one or more processes. We choose this
particular system model for ease of presentation; our basic ideas equally apply to other
process models, such as ones involving internal transitions of processes or binary (rather
than global) synchronization. Alternatively, such synchronization behaviour can also
be modelled directly with our semantics. For example, to model asynchronous internal
transitions of a process p, we can use a dedicated synchronization label ap ∈ Σ such
that all internal transitions of p are labeled with ap and all locations l of all other pro-
cesses have transitions looping from l to l labeled with ap. (More generally, such sets
of loops can be used to model synchronization labels irrelevant to certain processes.)

88 M. Wehrle and M. Helmert

Definition 3 (system). A system is a pair Ξ = ((p1, . . . , pn), s0), where p1, . . . , pn

(n ≥ 1) are processes called the components of Ξ . The parallel composition P (Ξ) =
p1 ‖ . . . ‖ pn of the components is called the composite process of Ξ . Locations of
P (Ξ) are called states; we denote the states and transitions of P (Ξ) by S(Ξ) and
T (Ξ), respectively. The state s0 ∈ S(Ξ) is called the initial state of the system.

A trace π = s0, a0, s1, a1, . . . , an−1, sn ofΞ is an alternating sequence of states and
synchronization labels starting from the initial state such that (si−1, ai−1, si) ∈ T (Ξ)
for all i ∈ {1, . . . , n}. The length of a trace, |π|, is its number of transitions, i. e.,
|π| = n for the given trace.

The problem we address in this paper, as in most work on directed model checking,
is the detection of error states of a system, i. e., states reachable from the initial state
which have an undesirable property. In CTL terms, this corresponds to proving the
formula E Fϕ where ϕ is a non-temporal formula that describes undesirable states.
This is equivalent to the falsification of invariants of a system, i. e., to disproving the
CTL formula A G¬ϕ. In this paper, we consider the common situation where ϕ =
ϕ1 ∧ · · · ∧ ϕn is a conjunction of formulae where each formula ϕi describes properties
of an individual component process pi of the system. In this case, we can represent each
conjunct ϕi by the set of locations of pi that satisfy it.

Definition 4 (model checking task). A model checking task is a pair Θ = (Ξ,L∗),
where Ξ = (((L1, T1), . . . , (Ln, Tn)), s0) is a system and L∗ = (L∗

1, . . . , L
∗
n) with

L∗
i ⊆ Li for all i ∈ {1, . . . , n} denotes the target locations for each process of Ξ .
An error trace of Θ is a trace of Ξ that ends in a state s ∈ L∗

1 × · · · × L∗
n.

To conclude this background section, we briefly remark that there is a close corre-
spondence between finding error traces in our process model on the one hand and the
nonemptiness problem for intersections of regular automata on the other hand. In this
view, processes correspond to regular automata, the L∗

i sets correspond to accepting
states, and parallel composition corresponds to language intersection. While this view
is not necessarily useful for efficiently determining error traces in practical systems, it
does show that deciding existence of error traces in a system is PSPACE-complete [11].

2.2 Directed Model Checking

Directed model checking is the approach of finding error states through an explicit state-
space traversal guided by a distance estimation function d#. This function is computed
fully automatically based on the declarative description of the system. In a nutshell, d#

is a function that maps states to natural numbers, reflecting an estimate of the shortest
error distance. Typically, this estimate is the length of a corresponding abstract error
trace. Each state encountered during a forward state-space traversal starting from the
initial state is evaluated with d#, and states with lower values are preferred. Note that
abstract distance functions only influence the order in which the states are explored,
and hence completeness is not affected. On the one hand, it is desirable to have distance
functions that are as informative as possible, so that only few states need to be explored
until an error state is found. On the other hand, the computation of the distance estimate
must not be too expensive.

The Causal Graph Revisited for Directed Model Checking 89

1 function verify(Ξ , L∗, d#):
2 s0 = initial state of Ξ
3 open = empty priority queue
4 closed = ∅
5 priority = d#(s0)
6 open.insert(s0, priority)
7 while open is not empty:
8 s = open.pop-minimum()
9 if s satisfies ϕ(L∗):

10 return False
11 closed = closed ∪ {s}
12 for each transition (s, a, s′) ∈ T (Ξ):
13 if s′ /∈ closed and s′ /∈ open:
14 priority = d#(s′)
15 open.insert(s′, priority)
16 return True

Fig. 1. A basic directed model checking algorithm

Figure 1 shows a basic directed model checking algorithm. Given a model checking
task (Ξ,L∗) and distance function d#, the algorithm returns False if there is a state that
satisfies the error condition represented byL∗; otherwise it returns True. The initial state
ofΞ is s0. The algorithm maintains a priority queue open which contains visited, but not
yet explored states. Through the method open.pop-minimum, the algorithm determines
one such state s with minimum priority value (i. e., minimum estimated error distance)
and removes it from the priority queue. This state s is then expanded, which is a three-
step process. First, check if it is an error state; if so, we are done. Second, mark the
state as explored by adding it to the closed set, so it will not be considered again later.
Finally, determine the successor states of s and add them to the priority queue unless
they have been encountered before. After expanding s, the process iterates with the new
minimal element of open, until an error state is encountered or there remain no further
states to check, at which point we can conclude that no error state can be reached.

This algorithm is known as greedy search (there are other algorithms like A∗ for
optimal search [17]; these are not considered in this paper). In a practical implementa-
tion of the algorithm, every state additionally stores information about how it has been
reached, i. e., its immediate predecessor state and synchronization label at the time it
was added to open. Therefore, if an error state s is finally reached, an error trace can
be generated by back-tracing from s. Clearly, the efficiency of greedy search crucially
depends on the quality of the estimates provided by d#. If these are perfect, the number
of expansion steps of the algorithm is n+ 1 where n is the length of the shortest error
trace. On the other hand, if the estimates are completely uninformative, the algorithm
degenerates to an unguided search algorithm such as depth-first search.

3 The Causal Graph

In this section, we introduce the central concepts of the causal graph heuristic, namely
the causal graph and the local subsystems it induces. To provide some intuition for our

90 M. Wehrle and M. Helmert

0

1

2

3

t1 t1

t1 t1

p1 p2

p3

t2, b, c

t2, b

t2, a, b

t2, b

0

1

2

3

t2 t2

t2 t2

t1, a, c

t1, a

t1, a, b

t1, a

0 1 2 3
a b c

t1, t2 t1, t2 t1, t2 t1, t2

000 100 200 201 211 221 222 322 022 032 002 003
t1 t1 a t2 t2 b t1 t1 t2 t2 c

Fig. 2. An example system with three processes and a corresponding error trace. A transition with
more than one label is an abbreviation for several parallel transitions, one for each label.

definitions, we illustrate them with a running example (Fig. 2). The example system
consists of three processes p1, p2 and p3, each with locations {0, 1, 2, 3} and transi-
tions as shown in the figure. We assume that all processes are initially in location 0
and that we consider a state to be an error state iff process p3 is in location 3 (i. e.,
L∗

1 = L∗
2 = {0, 1, 2, 3} and L∗

3 = {3}). The shortest error traces for this example have
length 11 (one such error trace is also shown in Fig. 2), and indeed this is the distance
estimate that the causal graph heuristic will assign in this case. However, other distance
estimators considered in the directed model checking literature underestimate the true
error distance:

– The dL and dU estimators [6,5] measure the graph-theoretic distance to the near-
est location L∗

i in each automaton pi without taking into account synchroniza-
tion labels. The dL estimator maximizes over the individual distances, whereas
dU sums these values. In this case, we obtain dL(s0) = max {0, 0, 3} = 3 and
dU(s0) = 0 + 0 + 3 = 3 because only p3 needs to move to a different location (3),
which can be reached from location 0 in three steps.

– The hL and hU estimators [13] compute abstract error traces under the monotonic-
ity abstraction. In the context of our running example, hU considers an abstracted
problem where each process can “jump back to” a previously visited location at ev-
ery step free of cost. In this case, we obtain hU(s0) = 7 because hU fails to take into
account that processes p1 and p2 must return to location 0 from location 2 in order
to support the transition of p3 from 2 to 3 via synchronization label c. The hL esti-
mator has the same weakness as hU but additionally assumes in its abstraction that

The Causal Graph Revisited for Directed Model Checking 91

the required transitions of p1 and p2 from 0 to 2 can be performed simultaneously,
leading to an estimate of hL(s0) = 5.

A common weakness of all these estimators, which causes the imperfect distance
estimates, is that they fail to take into account that reaching a certain location of p3 has
a side effect on p1 and p2. In particular, they assume that as soon as p3 has reached
location 2, the error location 3 can be reached immediately in a single transition. The
transition of p3 from 2 to 3 requires p1 and p2 to follow a transition with label c, and
the initial locations of p1 and p2 have outgoing transitions with this label from their
locations in s0, which is good enough for hU and hL (dL and dU do not care about
synchronization at all). The estimators do not recognize that p1 and p2 must initially
move away from location 0 (to location 2) before p3 reaches location 2 in order to
synchronize on the labels a (for p1) and b (for p2).

The causal graph heuristic overcomes this limitation by finding error traces in simple
cases like this example directly, without further abstraction, while distances in “larger”
systems are computed by combining information from smaller subsystems. To make
this more precise, we must introduce the notion of causal graph. To motivate the fol-
lowing definition, observe that the labels {t1, t2, a, b, c} play very different roles for the
three processes in the example system:

– Label t1 is very important for process p1 because all proper (non-looping) transi-
tions between locations of p1 must synchronize on this label. We say that a label
a ∈ Σ affects a process (L, T) if (l, a, l′) ∈ T for some l �= l′. In the example, t1
affects p1, t2 affects p2 and a, b and c affect p3.

– Labels a and c do not cause non-looping transitions in p1, but they are still relevant
for the process because the current location of p1 influences whether or not the
overall system can synchronize on these labels. For example, the system cannot
synchronize on a unless p1 is in location 2. We say that a label a ∈ Σ restricts a
process (L, T) if there exists a location l ∈ L such that for all l′ ∈ L, (l, a, l′) /∈
T . In the example, a restricts p1 and p3, b restricts p2 and p3, and c restricts all
processes.

– Finally, labels t2 and b are completely irrelevant for process p1: no matter in which
location the process is, it can synchronize on these labels, and they cannot cause a
change in location. We say that a label a ∈ Σ is irrelevant for a process (L, T) if it
does not affect or restrict the process. In the example, t1 is irrelevant for p2 and p3,
t2 is irrelevant for p1 and p3, a is irrelevant for p2, and b is irrelevant for p1.

Using these different roles for labels and processes, we define the causal graph of a
system Ξ as follows.

Definition 5 (causal graph). The causal graph CG(Ξ) of a system Ξ is the directed
graph whose vertices are the component processes p1, . . . , pn of Ξ and which contains
an arc from pi to pj iff i �= j and there exists a label a ∈ Σ that restricts or affects pi

and affects pj .

The causal graph of the running example is shown in Fig. 3. Intuitively, the causal graph
contains an arc from process pi to pj if there may be a need to change the location of
pi in order to change the location of pj . To translate this intuition into a formal result,
we first introduce the notion of subsystems.

92 M. Wehrle and M. Helmert

p1 p2

p3

Fig. 3. The causal graph for the running example system

Definition 6 (subsystem). Let Ξ = ((p1, . . . , pn), s0) be a system, let Θ = (Ξ, (L∗
1,

. . . , L∗
n)) be a model checking task for Ξ , and let P = {pi1 , . . . , pik

}, 1 ≤ i1 < · · · <
ik ≤ n be a subset of the component processes of Ξ .

The system Ξ[P] := ((pi1 , . . . , pik
), (s0i1 , . . . , s0ik

)) is called the subsystem of Ξ
induced by P , and the model checking task Θ[P] := (Ξ[P], (L∗

i1
, . . . , L∗

ik
)) is called

the subtask of Θ induced by P .

It is easy to see that for any choice of P , Ξ[P] is an over-approximation of Ξ: every
trace π of Ξ induces a corresponding trace of Ξ[P], which can be obtained from π by
projecting all states to the components in P . Moreover, every error trace for Θ is an
error trace for Θ[P]. Of course, the converse is not true in general, and the existence of
error traces for Θ[P] does not imply that there are error traces for Θ. However, there is
a simple sufficient criterion under which all error traces of Θ[P] do correspond to error
traces ofΘ with the same synchronization sequence: namely, if P includes all processes
with a non-trivial target location set (i. e., processes pi for which not all locations are in
the set L∗

i), as well as all causal graph ancestors of such processes. This is essentially
the idea of cone-of-influence reduction [2].

In fact, cone-of-influence reduction is still error-preserving if we consider an alter-
native definition of causal graphs where we only introduce an arc from pi to pj if some
label restricts pi and affects pj . The reason why we also include arcs from pi to pj if
some common label affects both of them is that this gives an additional decomposition
result, which we will discuss in Section 4.1.

As a side remark, under our definition, if the causal graph consists of more than one
weakly connected component, then there exists an error trace iff each subtask induced
by a weakly connected component has an error trace. (The overall error trace is then
essentially the concatenation of these “subtraces”.) The intuitive reason for this prop-
erty is that if two sets of processes P and P ′ are causally disconnected, then all state
transitions that affect the locations of processes in P are not restricted by or affect the
locations of processes in P ′ (and vice versa), and hence the corresponding subtasks can
be addressed independently. A similar decomposition result does not hold under the
alternative definition of causal graphs, where traces that affect the processes P are not
restricted by the processes P ′, but can still change the locations of P ′ as a side effect.

4 The Causal Graph Heuristic

The causal graph heuristic estimates the cost of reaching an error state by comput-
ing distance estimates for a number of subtasks which are derived by looking at small

The Causal Graph Revisited for Directed Model Checking 93

“windows” of the causal graph. In this section, we describe this procedure conceptually
as a bottom-up computation along a topological sorting of the causal graph. (In a prac-
tical implementation, a top-down implementation is more efficient, but both approaches
lead to the same distance estimates.) Since we require a topological sorting of the causal
graph, the procedure only works for acyclic causal graphs; we will later explain how to
deal with the cyclic case. For now, let us just remark that deciding the existence of error
traces is already PSPACE-complete for systems with acyclic causal graphs, even under
the further restriction that all processes have only two locations [1].

Throughout this section, we assume that we are given a model checking task Θ =
(Ξ, (L∗

1, . . . , L
∗
n)) for a system Ξ = ((p1, . . . , pn), s0), and that our objective is to

compute a distance estimate for a given state s of Ξ , which we denote as hCG(s).
For each process pi = (Li, Ti) and each pair of locations li, l′i ∈ Li, the causal
graph heuristic computes a distance estimate costpi(li, l′i) for the cost of changing
the location of pi from li to l′i. The overall distance estimate of s is then defined
as the sum of the costs of reaching the nearest error location in each process, i. e.,
hCG(s) =

∑n
i=1 minl∗i ∈L∗

i
costpi(li, l∗i) for s = (l1, . . . , ln). Note that the dU estimate,

due to Edelkamp et al. [6,5], is defined by the same equation, but using a different es-
timate for costpi(li, l∗i), which is simply the graph-theoretic distance from li to l∗i . In
contrast, the cost estimates for hCG take synchronization labels into account and usually
provide larger (and, as we shall see in the experimental evaluation in Section 5, more
accurate) estimates than the graph-theoretic distance.

4.1 Independent Processes

In this section and the following, we describe how the costp(l, l′) estimates are com-
puted. We begin with the case where process p has no predecessors in the causal graph.
We call such a process independent because (by the definition of causal graphs) it can
change location independently of and without affecting the locations of other processes.

Let p = (L, T) be an independent process. In this case, like in the case of the dU

heuristic, we define costp(l, l′) as the graph-theoretic distance from l to l′ in p. For
independent processes, this is an appropriate definition because local transitions are
not restricted by any other processes. Hence, in any state of the system, a sequence of
synchronization labels leading from l to l′ does correspond to an executable trace that
changes the location of p from l to l′, without affecting the locations of other processes.

In our running example, Fig. 3 shows that processes p1 and p2 do not have predeces-
sors in the causal graph, and indeed, Fig. 2 shows that these are independent processes,
as the only labels affecting them – t1 for p1, t2 for p2 – are irrelevant for the other
processes. Therefore, the cost estimates for these processes equal the graph distances
(e. g., costp1(0, 2) = 2 and costp2(2, 3) = 1).

Safe Abstraction. For some independent processes, there is actually no need to com-
pute any cost estimates at all. Consider the case where p is independent and all cost
estimates for p are finite (or, equivalently, p is strongly connected). Without loss of
generality, we assume that

94 M. Wehrle and M. Helmert

– the target location set for p is not empty (otherwise, trivially there exist no error
states, since the error states are formed as the Cartesian product of the target loca-
tion sets of the processes), and

– each label a that occurs in a transition of any process also occurs in a transition of p
(otherwise transitions with label a can never be synchronized, and we can remove
all such transitions in a preprocessing step).

In this case, it is possible to separate the local transitions for p from the rest of the
model checking task completely. Let Ξ[P ′] be the subsystem induced by all processes
of Ξ except p, i. e., P ′ = {p1, . . . , pn} \ {p}. Given a state s of Ξ and an error trace π′

for Ξ[P ′] that starts in the projection of s to P ′, we can compute an error trace for Ξ
starting from s with a simple polynomial algorithm:

– If |π′| = 0 (i. e., π′ is the empty trace), then s′ is already an error state for Ξ[P ′],
and hence all processes except possibly p are in a target location in state s. Because
p is strongly connected and has at least one target location, we can find a sequence
of local transitions of p that lead from its location in s to a target location of p.
Because p is independent, these transitions are not restricted by the other processes
and do not affect their locations. By following these local transitions, we can go
from state s to a global error state.

– If |π′| = n ≥ 1, then the trace starts with some global transition (s′, a, t′) ofΞ[P ′].
Because p is strongly connected and has at least one location with an outgoing tran-
sition labeled a, we can find a sequence of local transitions of p that lead from its
location in s to a location in which p can synchronize on a. Because p is indepen-
dent, these transitions are not restricted by the other processes and do not affect
their locations. By following these local transitions, we can go from state s to a
state s̃ whose projection to P ′ is s′ and in which all processes can synchronize on
a, and from there to a state t whose projection to P ′ is t′. Since t′ starts an error
trace of length n− 1 in Ξ[P ′], we can reach an error state of Ξ from t (and hence,
from s) by an inductive argument.

The analysis shows that if the independent process p is strongly connected, there
exists a safe abstraction of Ξ to P ′: any error trace of Ξ[P ′] induces an error trace
of Ξ , and of course the converse is also true because subsystems are always over-
approximations.

Under these circumstances, we can run the directed model checking algorithm di-
rectly on Ξ[P ′] instead of Ξ , and then apply the above procedure to convert the error
trace for the abstracted problem into a concrete one. Of course, the abstraction may
cascade, as Ξ[P ′] may admit further safe abstractions, even for processes that were not
originally independent in P . In our experimental analysis (Section 5), we will present
results for the causal graph heuristic both with and without safe abstraction.

We briefly remark that in our running example, we could safely abstract away p1 and
p2 since these processes are independent and strongly connected. However, as we will
now turn to the question of computing cost estimates for non-independent processes,
we will assume for the rest of this section that safe abstraction is not performed on the
running example.

The Causal Graph Revisited for Directed Model Checking 95

1 function compute-costs(Ξ , s, p, l):
2 Let pred(p) be the set of immediate predecessors of p in CG(Ξ).
3 (L, T) := p
4 costp(l, l) := 0
5 costp(l, l′) := ∞ for all l′ ∈ L \ {l}
6 context(l, pi) := location of pi in s, for all pi ∈ pred(p)
7 unreached := L
8 while unreached contains a location l′ ∈ L with costp(l, l′) <∞:
9 Choose such a location l′ ∈ unreached minimizing costp(l, l′).

10 unreached := unreached \ {l′}
11 for each transition (l′, a, l′′) ∈ T from l′ to some l′′ ∈ unreached:
12 target-cost := costp(l, l′) + 1
13 target-context := ∅
14 for each process pi = (Li, Ti) ∈ pred(p):
15 m := context(l′, pi)
16 Choose (m′,m′′) ∈ Li × Li such that (m′, a,m′′) ∈ Ti

and costpi(m,m
′) is minimized.

17 target-cost := target-cost + costpi(m,m
′)

18 target-context(pi) := m′′

19 if target-cost < costp(l, l′′):
20 costp(l, l′′) := target-cost
21 context(l′′, pi) := target-context(pi) for all pi ∈ pred(p)
22 return costp(l, l′) for all l′ ∈ L

Fig. 4. Modified Dijkstra algorithm for computing costp(l, l′)

4.2 Processes with Causal Predecessors

For processes p which do have predecessors in the causal graph, cost estimates are also
computed by searching for paths in the labeled directed graph defined by the process.
However, here we improve on the dU approach by taking into account the synchro-
nization labels on the local transitions: in addition to counting the number of local
transitions of p required to reach a given location, we also consider the costs for mov-
ing the other processes of the system into locations which can synchronize with these
transitions. Note that by the definition of causal graphs, the only processes which can
potentially restrict the non-looping local transitions of p are its causal predecessors,
which we denote as pred(p). Because we compute costs in a bottom-up order along a
topological sorting of the causal graph, we have already computed all cost estimates for
these processes. Hence, the computation of costp(l, l′) is based on finding traces from
l to l′ in the subsystem of Ξ induced by {p} ∪ pred(p), taking into account the known
cost estimates for the processes pred(p).

The algorithm for computing the cost values costp(l, l′) is shown in Fig. 4. It is
a modification of Dijkstra’s algorithm for finding shortest paths in weighted directed
graphs, applied to the process p = (L, T). Like Dijkstra’s algorithm, it is a one-to-all
procedure, i. e., for a given start location l, it computes costp(l, l′) for all l′ ∈ L. The
only difference to Dijkstra’s algorithm is that we do not define the cost of a transition
(l′, a, l′′) ∈ T before applying the algorithm. Instead, the transition cost is computed as

96 M. Wehrle and M. Helmert

soon as location l′ is expanded by the algorithm, and it depends on the current locations
of pred(p) in the situation where l′ is reached.

In detail, the cost of reaching l′′ ∈ L through transition (l′, a, l′′) ∈ T is computed
as the cost of reaching l′ plus the setup cost required to take pred(p) into locations that
allow synchronization on the label a, plus 1 for taking the actual transition with label a
that takes p from l′ to l′′ (lines 12–18). To estimate the setup cost for each predecessor
pi ∈ pred(p), we associate each location l′ ∈ L with locations context(l′, pi) for each
pi ∈ pred(p), with the interpretation that when l′ ∈ L is first reached, we assume that
process pi is in location m = context(l′, pi). The setup cost for a given process is then
the cheapest cost, according to the previously computed costpi values, for taking process
pi from m to a location m′ where it can synchronize on the label a (lines 15–17).

If it turns out that (l′, a, l′′) ∈ T reaches l′′ more cheaply than the previously con-
sidered transitions (line 19), then the cost of l′′ is updated accordingly (line 20, as in
Dijkstra’s algorithm). At the same time, the context of l′′ is set so that it reflects the way
in which we have reached the location: by performing appropriate setup transitions for
pred(p) and then synchronizing on label a (lines 16, 18, 21).

We remark that the algorithm is not guaranteed to find a globally shortest trace in
the subsystem induced by {p} ∪ pred(p). Indeed, it may fail to find any path to a given
location l′ ∈ L even though it is reachable. The reason for this is that the setup for each
transition (l′, a, l′′) is performed greedily, without backtracking on the choice of how to
modify the current context in order to allow synchronization on label a: we always pick
a locally cheapest setup sequence. While it would of course be preferable to guarantee
the success of the compute-costs algorithm, unfortunately this is not possible to do
in polynomial time if P �= NP: if we could, this would decide the existence of error
traces in the model checking task induced by {p} ∪ pred(p). However, it is known that
error detection for the subtask induced by a single process and its direct causal graph
predecessors is NP-complete [7].

Returning to our running example, the algorithm computes the following cost esti-
mates costp3(0, l′) for the state (0, 0, 0):

– cost(p3)(0, 0) = 0: This is due to the initialization step (line 4).
– cost(p3)(0, 1) = 0 + 1 + 2 = 3: the three terms correspond to the cost of location

0, the constant term 1, and the setup cost to reach locations of p1 and p2 in which
we can synchronize on label a. In this case, we need to change p1 from location 0
to 2, for a setup cost of 2.

– cost(p3)(0, 2) = 3 + 1 + 2 = 6: cost of location 1, constant term 1, setup cost to
reach locations of p1 and p2 in which we can synchronize on label b. In this case,
we need to change p2 from location 0 to 2, for a setup cost of 2.

– cost(p3)(0, 3) = 6 + 1 + 4 = 11: cost of location 2, constant term 1, setup cost to
reach locations of p1 and p2 in which we can synchronize on label c. In this case,
we need to change both processes from location 2 to 0, for a setup cost of 2 + 2.

4.3 Causal Graphs with Cycles

Up to this point, we have given a complete description of how to compute hCG(s) for
systems with acyclic causal graphs. Unfortunately, many practical systems tend to have

The Causal Graph Revisited for Directed Model Checking 97

causal graphs with cycles. In this work, we use a rather simple idea to extend the defi-
nition of the heuristic to the general case (for an alternative approach, see Section 6).

If CG(Ξ) is not acyclic, we impose a total order p′1 ≺ · · · ≺ p′n on the processes of
Ξ . The computation of cost values then proceeds as previously described, except that
for process p′i, the compute-costs function does not consider all causal predecessors
pred(p′i) of p′i, but only those which are ordered before p′i in the ordering. Semantically,
this means that we do not consider the synchronization costs for all processes, but only a
subset of them. Of course, different total orders lead to different synchronization aspects
being respected by this abstraction, so in practice one would prefer an order which is
“close” to a topological sorting in some sense (e. g., loses as few arcs of the causal
graph as possible). In our experiments, we use some simple greedy criteria to compute
a reasonable ordering (see Section 5.1).

5 Evaluation

We implemented the causal graph heuristic and the safe abstraction technique from
Section 4 in the model checker MCTA [15] and evaluated it on a number of academic
and industrial benchmarks. The experimental results were obtained on a system with a
3 GHz Intel Pentium 4 CPU, using a memory bound of 1 GB. We compare hCG with
the other distance functions dL, dU [6,5], hL and hU [13] as implemented in MCTA.

5.1 Implementation Details

Our benchmark models consist of parallel automata with interleaving and binary syn-
chronization semantics. This easily fits into the process model used throughout this pa-
per. In addition, some benchmarks feature bounded integer variables and (unbounded)
clock variables. Edges in the automata can be guarded by integer or clock constraints,
and edges can also reset clock variables and set integers to new values as effects.

The hCG heuristic as implemented in MCTA directly reflects integer and location
variables, whereas clocks are ignored for the distance computation. (In fact, abstract-
ing clocks away is the easiest way to deal with them for the computation of distance
functions and has already successfully been done in other approaches [4,13].) Essen-
tially, each automaton and each bounded integer variable is identified with a process p
in the sense of Definition 1. Both kinds of processes can be subject to safe abstraction
as described in Section 4.1; however, as clocks are ignored by the distance computa-
tion, to ensure safety we additionally check that these processes do not affect clock
variables.

For systems with cyclic causal graphs, we greedily impose an ordering on the pro-
cesses such that as much as possible of the important synchronization behaviour is re-
spected. Essentially, arcs in the causal graph are preferably ignored if they are induced
by as few system transitions as possible. Furthermore, as processes that correspond to
automata play a dedicated role in the system, we order them after processes that cor-
respond to integer variables. In more detail, we require for all processes p, p′ that if p
corresponds to an automaton and p ≺ p′, then p′ also corresponds to an automaton.

98 M. Wehrle and M. Helmert

Table 1. Experimental results in terms of number of explored states and search time for the
heuristics dL, dU, hL, hU in comparison to hCG and hCG with safe abstraction (denoted with
hCG

safe). Dashes indicate exhaustion of memory (> 1 GB).

explored states search time in seconds
Inst. dL dU hL hU hCG hCG

safe dL dU hL hU hCG hCG
safe

C1 18796 16817 1928 715 5129 5129 0.1 0.1 0.1 0.0 0.5 0.5
C2 66389 61229 4566 1612 6268 2721 0.4 0.4 0.1 0.1 0.6 0.4
C3 94536 85332 6002 734 6943 3241 0.6 0.6 0.2 0.1 0.6 0.4
C4 1.11e+6 1.04e+6 81131 9120 57493 6201 6.8 6.3 1.7 0.3 1.1 0.3
C5 1.27e+7 1.21e+7 430494 83911 494778 13675 76.3 74.7 9.2 2.1 9.3 0.5
C6 – – 4.56e+6 718015 5.54e+6 24125 – – 83.1 12.4 68.4 0.9
C7 – – – 2.55e+6 – 57595 – – – 41.4 – 2.3
C8 – – – – – 122880 – – – – – 6.5
C9 – – – – – 379981 – – – – – 24.2
M1 12277 185416 4581 7668 6245 6245 0.3 6.1 0.1 0.1 0.1 0.1
M2 43784 56240 15832 18847 18988 8472 0.6 0.8 0.2 0.2 0.2 0.2
M3 54742 869159 7655 19597 27365 10632 0.8 398.0 0.1 0.2 0.4 0.2
M4 202924 726691 71033 46170 96418 18574 3.4 110.5 0.8 0.5 1.4 0.4
N1 15732 10215 50869 9117 8171 8171 0.4 0.2 2.7 0.1 0.2 0.2
N2 102909 642660 30476 23462 30540 30540 3.0 239.6 0.6 0.5 0.8 0.8
N3 131202 1.16e+6 11576 43767 40786 40786 4.1 2342.2 0.2 0.9 1.1 1.1
N4 551091 330753 100336 152163 252558 252558 24.0 11.7 2.1 3.7 9.5 9.5
FA

5 271 271 9 9 11 11 0.0 0.0 0.0 0.0 0.0 0.0
FA

10 271 271 9 9 11 11 0.0 0.0 0.0 0.0 0.0 0.0
FA

15 271 271 9 9 11 11 0.0 0.0 0.0 0.0 0.0 0.0
FB

5 496 9 179 7 9 9 0.0 0.0 0.0 0.0 0.0 0.0
FB

10 – 9 86378 7 9 9 – 0.0 2.1 0.0 0.0 0.0
FB

15 – 9 – 7 9 9 – 0.0 – 0.0 0.0 0.0
A2 27 23 36 25 13 13 0.0 0.0 0.0 0.0 0.0 0.0
A3 344 296 206 82 199 199 0.0 0.0 0.0 0.0 0.0 0.0
A4 38209 19034 76811 39 179 179 0.5 0.3 12.9 0.1 0.1 0.1
A5 – – 263346 4027 188499 188499 – – 90.8 3.1 90.8 90.7
A6 – – – – – – – – – – – –

5.2 Benchmarks

Our benchmarks stem from the AVACS1 benchmark suite. The M and N examples
(“Mutual Exclusion”) are industrial benchmarks which come from a case study that
models a real-time protocol to ensure mutual exclusion of a state in a distributed sys-
tem via asynchronous communication. The protocol is described in full detail by Dierks
[3]. The C examples (“Single-tracked Line Segment”) stem from a case study from an
industrial project partner of the UniForM project [12] where the problem is to design
a distributed real-time controller for a segment of tracks where trams share a piece of
track. For the evaluation of our approach we chose the property that both directions
are never given simultaneous permission to enter the shared segment. In both case

1 http://www.avacs.org/

http://www.avacs.org/

The Causal Graph Revisited for Directed Model Checking 99

Table 2. Experimental results in terms of error trace length for the heuristics dL, dU, hL, hU in
comparison to hCG and hCG with safe abstraction (denoted with hCG

safe). Dashes indicate exhaustion
of memory (> 1 GB). Abbreviations: #a: number of parallel automata, #vars: number of integer
and clock variables, #safe: number of variables removed by safe abstraction. For hCG

safe , trace
lengths reported as x + y denote trace length x for the abstract error trace and x + y for the
concrete error trace.

error trace length
Instance #a #vars #safe dL dU hL hU hCG hCG

safe

C1 5 15 0 1167 1058 100 73 118 118
C2 6 17 1 1847 1674 132 99 169 118 + 0
C3 6 18 1 2153 1214 128 86 167 118 + 0
C4 7 20 2 6805 2949 344 139 354 125 + 5
C5 8 22 3 35067 11696 1057 300 1034 125 + 9
C6 9 24 4 – – 3217 864 4167 132 + 14
C7 10 26 5 – – – 2412 – 139 + 19
C8 10 27 5 – – – – – 132 + 16
C9 10 28 5 – – – – – 192 + 30
M1 3 15 0 2779 106224 457 71 231 231
M2 4 17 1 11739 13952 1124 119 395 240 + 3
M3 4 17 1 12701 337857 748 124 361 205 + 4
M4 5 19 2 51402 290937 3381 160 642 219 + 7
N1 3 18 0 3565 2669 26053 99 243 243
N2 4 20 0 18180 415585 1679 154 376 376
N3 4 20 0 20021 262642 799 147 232 232
N4 5 22 0 90467 51642 2455 314 478 478
FA

5 6 6 0 218 218 8 8 8 8
FA

10 11 11 0 218 218 8 8 8 8
FA

15 16 16 0 218 218 8 8 8 8
FB

5 5 6 0 79 6 12 6 6 6
FB

10 10 11 0 – 6 22 6 6 6
FB

15 15 16 0 – 6 – 6 6 6
A2 8 0 0 22 13 21 21 12 12
A3 16 0 0 169 39 24 18 24 24
A4 32 0 0 867 129 42 28 36 36
A5 64 0 0 – – 112 47 56 56
A6 128 0 0 – – – – – –

studies, a subtle error has been inserted by manipulating a delay so that the asyn-
chronous communication between these automata is faulty.

The FA and FB examples are flawed versions of the Fischer protocol for mutual
exclusion (cf. [16]). The difference between FA and FB is in the way they encode the
error condition.

As a final set of benchmarks, we use the arbiter trees case study, which models a
mutual exclusion protocol based on a tree of binary arbiters [19]. Client processes are
situated at the leaves of the tree. The benchmarksA2–A6 contain arbiter trees of height
2–6, with an exponentially growing number of processes.

100 M. Wehrle and M. Helmert

5.3 Results

We compare the hCG heuristic and the safe abstraction technique based on causal graph
analysis with the heuristics dL, dU [6,5], hL and hU [13] as implemented in MCTA. We
compare the number of explored states, the search time in seconds (Table 1) and the
length of the found error traces (Table 2). Table 2 also gives additional information
about the benchmark models, such as the number of parallel processes and the number
of processes removed by safe abstraction.

The results show that our distance function is competitive with the previous ap-
proaches. In addition, safe abstraction leads to significantly better performance when
applicable. We observe that the hCG heuristic is much more accurate than the dL and dU

heuristics. Due to better guidance, significantly fewer states are explored until an error
state is found, leading to much better overall performance in most cases. Moreover, the
error traces found by hCG are significantly shorter than those obtained by dL and dU.
This significant improvement is particularly interesting because of the connection be-
tween hCG and dU (recall that for independent processes, the cost estimates of hCG and
dU are equal). The experimental results further show that hCG is competitive with hL,
although somewhat less informed than hU.

Considering the results for safe abstraction, we observe that in models that contain
independent variables, the model reduction obtained by safe abstraction leads to a sig-
nificant performance gain with hCG. Moreover, the computational overhead to find such
variables is low (a fraction of a second).

6 Conclusions

We have introduced the causal graph structure to directed model checking and demon-
strated it to be a useful concept for error detection. We have adapted a distance estima-
tion function from AI planning based on causal graph analysis, which is competitive
with other distance heuristics in MCTA. Further, we presented an abstraction with the
property that reachable abstract error states are guaranteed to correspond to reachable
error states in the original system. We have shown that such safe abstractions can signif-
icantly improve the overall performance of a directed model checking algorithm when
applicable, while requiring very little preprocessing overhead when not applicable.

In the future, it will be interesting to consider further extensions of the causal graph
concept, in particular the question of how to deal with cycles in the causal graph more
directly (see also [9]). In contrast to the approach presented in this paper, where cycles
are resolved through a statically imposed ordering of processes, this could also be done
dynamically during search. Furthermore, there seems to be potential to consider “larger”
local subproblems than we have done, in order to improve the precision of the hCG

estimator. We expect that these approaches will allow further advances in the practical
performance of directed model checking approaches.

Acknowledgments

This work was partly supported by the German Research Foundation (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

http://www.avacs.org/

The Causal Graph Revisited for Directed Model Checking 101

References

1. Brafman, R.I., Domshlak, C.: Structure and complexity in planning with unary operators.
Journal of Artificial Intelligence Research 18, 315–349 (2003)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge
(2000)

3. Dierks, H.: Comparing model-checking and logical reasoning for real-time systems. Formal
Aspects of Computing 16(2), 104–120 (2004)

4. Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-preserving
abstractions. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 19–34. Springer,
Heidelberg (2006)

5. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the
validation of communication protocols. International Journal on Software Tools for Technol-
ogy Transfer 5(2), 247–267 (2004)

6. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit model checking with HSF-
SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer, Heidelberg
(2001)

7. Helmert, M.: A planning heuristic based on causal graph analysis. In: Zilberstein, S., Koehler,
J., Koenig, S. (eds.) Proceedings of the 14th International Conference on Automated Plan-
ning and Scheduling (ICAPS 2004), pp. 161–170. AAAI Press, Menlo Park (2004)

8. Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelligence Re-
search 26, 191–246 (2006)

9. Helmert, M., Geffner, H.: Unifying the causal graph and additive heuristics. In: Rintanen, J.,
Nebel, B., Beck, J.C., Hansen, E. (eds.) Proceedings of the 18th International Conference on
Automated Planning and Scheduling (ICAPS 2008). AAAI Press, Menlo Park (2008)

10. Hoffmann, J., Smaus, J.-G., Rybalchenko, A., Kupferschmid, S., Podelski, A.: Using pred-
icate abstraction to generate heuristic functions in Uppaal. In: Edelkamp, S., Lomuscio, A.
(eds.) MoChArt IV. LNCS, vol. 4428, pp. 51–66. Springer, Heidelberg (2007)

11. Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of the 18th Annual Sym-
posium on Foundations of Computer Science (FOCS 1977), pp. 254–266. IEEE Computer
Society, Los Alamitos (1977)

12. Krieg-Brückner, B., Peleska, J., Olderog, E.-R., Baer, A.: The UniForM workbench, a uni-
versal development environment for formal methods. In: Woodcock, J.C.P., Davies, J., Wing,
J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 1186–1205. Springer, Heidelberg (1999)

13. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI planning
heuristic for directed model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925,
pp. 35–52. Springer, Heidelberg (2006)

14. Kupferschmid, S., Hoffmann, J., Larsen, K.G.: Fast directed model checking via russian
doll abstraction. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 203–217. Springer, Heidelberg (2008)

15. Kupferschmid, S., Wehrle, M., Nebel, B., Podelski, A.: Faster than UPPAAL? In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 552–555. Springer, Heidelberg (2008)

16. Lamport, L.: A fast mutual exclusion algorithm. ACM Transactions on Computer Sys-
tems 5(1), 1–11 (1987)

17. Pearl, J.: Heuristics: Intelligent search strategies for computer problem solving.
Addison-Wesley, Reading (1984)

18. Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction and sym-
bolic pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988,
pp. 497–511. Springer, Heidelberg (2004)

19. Seitz, C.L.: Ideas about arbiters. Lambda 1, 10–14 (1980)

Proving the Correctness of the Implementation
of a Control-Command Algorithm

Olivier Bouissou

CEA LIST, Laboratory of Modelling and Analysis of Systems in Interaction,
Point Courrier 94, Gif-sur-Yvette, F-91191 France

Olivier.Bouissou@cea.fr

Abstract. In this article, we study the interactions between a control-
command program and its physical environment via sensors and actua-
tors. We are interested in finding invariants on the continuous trajectories
of the physical values that the program is supposed to control. The in-
variants we are looking for are periodic sequences of intervals that are
abstractions of the values read by the program. To compute them, we
first build octrees that abstract the impact of the program on its environ-
ment. Then, we compute a period of the abstract periodic sequence and
we finally define the values of this sequence as the fixpoint of a monotone
map. We present a prototype analyzer that computes such invariants for
C programs using a simple specification language for describing the con-
tinuous environment. It shows good results on classical benchmarks for
hybrid systems verification.

1 Introduction

The behavior of an embedded, control-command program depends on both a
discrete system (the program) and a continuous system (the physical environ-
ment). The program constantly interacts with the environment, picking up phys-
ical values by means of sensors and modifying them via actuators. The goal of
the program is usually to control its environment, i.e. it must ensure that some
physical values remain stable by activating the right actuator at the right time.
The correctness of a control-command program thus relies on two properties.
First, we must prove that the program does not induce any bad behaviors, i.e.
that no bugs were introduced by the developer. Formal methods, and in partic-
ular abstract interpretation techniques [8,9], are widely used to prove this for
some kinds of bugs (either run-time error [1], errors due to the precision of float-
ing point computations [25] or execution time validation [12]). Then, we must
prove that the program correctly controls its environment. This is usually done
on high level models like Simulink, via numerical simulations. Sometimes, formal
methods are used on equivalent models like hybrid automata [10,17,18], but this
has not been done on the program itself. We leave the notion of “a program
correctly controlling its environment” voluntarily vague as it may cover many
properties. For example, one may want to prove the stability of the continuous
trajectories under the influence of the program (which was mainly studied for

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 102–119, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Proving the Correctness of the Implementation 103

switched dynamical systems [19,29]), or one may try to prove that some region
of the continuous state space is reached (which is the main goal of the existing
analysis techniques on hybrid automata or equivalent models [18,23]).

In this article, we focus on proving the correctness of the control-command
program, without having a particular property in mind. Actually, we provide an
abstract interpretation based method to compute invariants on the trajectories of
the continuous environment that are sufficient to check the properties of interest.
These invariants, that hold for every execution of the program, are defined in
Section 1.2. They allow us to prove that the implementation choices (frequency
of the sensors, format of floating point numbers, . . .) do not modify the behavior
of the control algorithm. We extend the work from [3], where we considered open
loop programs, as we now take into account the action of the program on its
environment. In the rest of this introduction, we present an example of the kind
of programs that we consider (Section 1.1) and we recall the concrete model that
we developed in [4] for such hybrid discrete-continuous systems (Section 1.2).

1.1 Introductory Example

We consider the so-called “two tanks system”, well known from the hybrid system
community [21]. It consists of two water tanks linked together by an horizontal
tube (see Figure 1(a)). There is a constant input of water in the first tank, and
a tube at the bottom of the second tank lets the water leave the system. At each
instant, a controller monitors the water levels in both tanks and must keep them
between safe bounds. To do so, it may act on two valves (v1 and v2 on Figure
1(a)) that control the flow of water in the horizontal tubes. The evolution of
the water levels is governed by the differential equations of Figure 1(b), where
vi = 0 if the valve i is closed, and vi = 1 otherwise.

A controller for this system is a synchronous, control-command program: at
each time stamp, it reads values from sensors (the water levels), computes an
answer (open or close each valve) and writes this answer to actually modify the
physical system. This read-compute-write loop is well cadenced as the program
is synchronous. An execution of this system typically runs as follows: the initial
state consists of initial water levels in both tanks and an initial mode (open or
close) for each valve. After an initialization period in which the system reaches
its stable state, we observe a cyclic behavior: the water level in each tank follows
a periodic evolution while the decisions made by the program (open or close
the valves) are the same from one period to the other. This kind of behavior
(an initialization phase followed by a periodic evolution) is typical of control-
command systems and it is what we try to automatically exhibit in this article.

1.2 Concrete Model

We consider hybrid systems made of a pair (P, κ) where P is a program written
in an extension of an imperative programming language and κ contains a set
{Fc : c ∈ Bm} of ordinary differential equations (ODEs). Here B = {0, 1} is the
concrete domain of boolean values and m is the number of (binary) actuators of

104 O. Bouissou

i

v1

v2

h1

h2

(a) Scheme of the physical system

ḣ1 = i− v1 × k1 ×
√
h1

ḣ2 = v1 × k1 ×
√
h1 − v2 × k2 ×

√
h2

(b) The differential equations

1 int main () {
2 double x , y ;
3 double l 1 =2.5 ,L1=8;
4 double l 2 =2,L2=9;
5 while (1) {
6 sens . x?h1 ; sens . y?h2 ;
7 i f (h1 > L1)
8 act . 1 ! 1 ;
9 else i f (h1 < l 1)

10 act . 1 ! 0 ;
11 i f (h2 > L2)
12 act . 2 ! 1 ;
13 else i f (h2 < l 2)
14 act . 2 ! 0 ;
15 wait (0 . 1) ;
16 }}

(c) The controller

Fig. 1. The two tanks system

the system. Each c ∈ Bm is a continuous mode, one dimension of c indicates the
state of one actuator of the system. For each c ∈ Bm, the function Fc defines an
ODE that can govern the way the continuous environment behaves: the program
chooses between these continuous modes via the actuators. At each instant, the
state of the system thus consists of a state of the program P , a value for each
continuous variable and a continuous mode c ∈ Bm.

The extension of imperative programming languages that is used for P con-
tains standard imperative statements plus three hybrid statements. The sens.x?y
statement lets the program read values from the environment via sensors: it binds
the value of the discrete variable x with the current value of the continuous vari-
able y. The act.i!b statement (with i ∈ [1,m], m being the number of actuators
of the system, and b ∈ B) lets the program change the upcoming continuous
mode: it sets the ith dimension of the current continuous mode to b. Finally, the
wait statement lets the program measure the continuous time.

The execution model is the following. The continuous and the discrete sys-
tems are processes that run in parallel and, from time to time, communicate. The
time is governed by the program: we assume that all statements except wait are
instantaneous so that the program computes the execution time. The communi-
cation from the environment to the program P is done via the sens statement: P
reads the values v ∈ Rn of the continuous variables1 at the time t the statement
is executed. We write it v t−→ P . The communication from P to the environment
is done via the act statement: P changes the ODE governing the dynamics from
the time the statement is executed. When the act.i!b statement is executed, the
ith dimension of the mode is changed to b, we write that: P t−→ (i, b). The new
continuous mode is then c′ ∈ Bm such that c′ is the vector c where the ith

1 In this article, R (resp. R+) denotes the set of real (resp. non-negative real) numbers.

Proving the Correctness of the Implementation 105

coordinate is changed to b. We write that c′ = c ⊕ (i, b). If we apply various
changes at once, we write c⊕{(i1, b1), . . . , (ij , bj)}. For example, if c = [0; 1] and
c′ = c ⊕

{
(1, 1), (2, 0)

}
, then c′ = [1; 0]. This corresponds to executing, at the

same time stamp, the lines 8 and 14 of the program of Figure 1(c).
In this article, we are interested in the semantics of the continuous part of

a hybrid system (P, κ), we will compute abstractions of it. We note �P �c its
continuous semantics: �P �c is a function from R+ to Bm × Rn associating at
each instant a continuous mode and a value such that:

∀t ∈ R+, �P �c(t) =
(
c(t), y(t)

)
with ẏ(t) = Fc(t)

(
(y(t)

)
.

We only consider synchronous control-command programs that read values at
the beginning of each cycle and act on its environment at the end of this cycle.
If h is the duration of one cycle, we note Fh : Bm × Rn → Bm × Rn the concrete
transition function defined as, with (c, v) ∈ Bm × Rn:

Fh(c, v) = (c′, v′) : ∃t ∈ R+, �P �c(t) = (c, v) and �P �c(t+ h) = (c′, v′) . (1)

In other words, the concrete transition function maps the state of the continuous
system at the beginning of a cycle with the state of system at the beginning of the
next cycle. On such hybrid systems, we look for invariants that overapproximate
the continuous semantics �P �c, as defined in Definition 1. In this definition, as
in the rest of this article, I denotes the complete lattice of n-dimensional boxes.

Definition 1 (Trajectory invariants). A trajectory invariant of a control-
command system (P, κ) is function φ : R+ → I, such that:
∀t ∈ R+, �P �c(t) =

(
c(t), y(t)

)
with y(t) ∈ φ(t).

A discrete trajectory invariant is a sequence φ̃ : N → I such that, if h is the
duration of one cycle of P : ∀k ∈ N, �P �c(k×h) =

(
c(k), y(k)

)
with y(k) ∈ φ̃(k).

The main contribution of this paper is to provide a method for computing dis-
crete trajectory invariants for control-command program given in the formalism
presented in this section. While existing analysis techniques for hybrid systems
are specialized for proving a certain kind of property on high-level models, this
work focuses on inferring the most general invariants on code-level models.

Example 1. Figure 1(c) shows a program P for the two-tanks system written in
this language. The whole system is then

(
P, {F0,0, F0,1, F1,0, F1,1}

)
where Fi,j

corresponds to the ODE of Figure 1(b) with v1 = i and v2 = j. For example,
line 8 in the program represents the action of opening the valve v1.

Outline of the paper. In Section 2, we informally explain the main ideas of our
analysis. In Section 3, we present the domains that we use and we study their
properties. In Sections 4 and 5, we present our three-steps analysis. Section 6
presents our implementation while Section 7 presents concluding remarks.

2 Informal Presentation of the Analysis

We thus consider a control-command program together with a specification of
its environment encoded in the model presented in Section 1.2, and try to derive

106 O. Bouissou

discrete trajectory invariants of it. Our analysis proceeds in three steps. First, we
compute an abstraction of Fh. To do that, we use an abstraction of the program
(see Section 4) as a set of boolean functions that answer the following questions:
given an input v, will the jth act statement be activated ? Then, we look for an
overapproximation of the sequence of values read by the program. In order to
finitely represent this infinite sequence, we try to exhibit an abstract periodic
behavior, i.e. an ultimately periodic sequence of intervals that contains all the
values read by the sensors. We first look for a period in this abstract sequence
(see Section 5.2). Note that if there is no periodic behavior in the concrete
sequence, we will obtain a period of 1 in the abstract sequence, meaning that we
only bind the values by an interval. So, our analysis always terminates, even if
there is no periodic evolution in the first place. On the other hand, if there is a
periodic behavior in the system, we will exhibit it. Once we have the period for
the abstract sequence, we compute the values of that sequence (see Section 5.3)
as the fixpoint of a monotone map on a complete lattice.

In the rest of the article, n will denote the number of sensors, m the number
of binary actuators and h the period of one cycle of the system, i.e. the program
reads values at time tk = k × h, ∀k ∈ N. We also note ma the number of
act statements in the program, and for each j ∈ [1,ma], we note ij ∈ [1,m]
the dimension and bj ∈ B the boolean value such that the jth act statement is
act.ij!bj . So, for each j ∈ [1,ma], if the jth statement is executed at time tk, we
have P tk−→ (ij , bj). For example, if the second act statement in Figure 1(c) is
executed, we have P tk−→ (1, 0). If this comes in response to an input v ∈ Rn (i.e.
if at time tk, the program also read v), we write:

(
v

tk−→ P
)
⇒
(
P

tk−→ (ij , bj)
)
.

In order to reduce the complexity of defining an abstraction of the transition
function Fh, we will assume in the rest of this article that the program is time-
invariant, i.e. the action it takes in response to a read value v does not depend
on the time this value was read. In other words, if at some time tk the program
reads the value v and then activates an act statement, it will activate it again if
the same value v is read at time tk′ �= tk. This is formally stated in Definition 2.

Definition 2 (Time-invariant program). We say that a program P is time-
invariant if it holds, for all v ∈ Rn and for all j ∈ [1,ma], that:(∃k ∈ N : (v

tk−→ P ⇒ P
tk−→ (ij , bj))

)
=⇒ (∀k′ ∈ N : (v

tk′−−→ P ⇒ P
tk′−−→ (ij , bj))

)
.

We recall that ma is the number of act statements in the program and that for
j ∈ [1,ma], the jth act statement is act.ij !bj.

This assumption may be restrictive as it excludes, for example, a program that
integrates its input values and activates the actuators based on this computation.
However, many safety critical control-command programs are time-invariant.

3 Domains

The abstract boolean lattice is B = {⊥B,0,1,!B}, with γb : B → P(B) be-
ing the canonical concretization. More generally, bold typed symbols represent

Proving the Correctness of the Implementation 107

abstract values while normal symbols represent concrete values. The symbol v
(resp. v) refers to the concrete (resp. abstract) state for the continuous vari-
ables, i.e. v ∈ Rn and v ∈ I. The symbol c (resp. c) refers to the concrete (resp.
abstract) continuous mode, i.e. c ∈ Bm and c ∈ Bm.

3.1 Abstract Continuous State

The state of the continuous environment is given by a vector of real values (for
the continuous variables) and the continuous mode that governs its evolution.
Continuous variables are abstracted by boxes. Continuous modes are elements
of Bm, we abstract them by elements of Bm and define M = Bm. We note
γ

M
: M → P

(
Bm
)

the canonical concretization function. The set M is a complete
lattice with order $

M
, supremum !

M
, infimum ⊥

M
, join �

M
and meet �

M
.

Definition 3 (Abstract continuous states). The domain of abstract contin-
uous states is S = M × I. The concretization function γ

S
is defined component-

wise and the order $
S

is defined as:

∀(c,v), (c′,v′) ∈ S, (c,v) �S (c′,v′) ⇔ (
(c �M c′) ∧ (v ⊆ v′)

)
.

We also introduce a notion of distance between abstract states, based on the
Hausdorff distance dH : I × I → R+ defined by:

dH(v,v′) = max
(
max
x∈v

{
min
y∈v′ |x− y|},max

x∈v′

{
min
y∈v

|x− y|}) .
Definition 4 (Distance on continuous states). The distance between two
abstract states (c,v) and (c′,v′) is:

dS

(
(c,v), (c′,v′)

)
=
{∞ if c ��M c′ and c′ ��M c
dH(v,v′) otherwise

.

Intuitively, if two states (c1,v1) and (c2,v2) are close enough, then the possible
evolutions of the dynamical system starting from two points within γ

S
(c1,v1)

and γ
S
(c2,v2) remain close. This is the reason for the first condition in the def-

inition of d
S
: if two states have incomparable modes, then their future evolution

may be completely different, as different modes represent significantly different
dynamics (for example, in Figure 1(b), the various modes represent the fact that
the two valves are closed or open, leading to an increase or a decrease in the
water levels). Their distance is thus set to ∞ to notice that they may lead to
significantly different trajectories.

3.2 Cyclic Sequences of States

We abstract infinite sequences of states by cyclic sequences. A cyclic sequence
is a pair made of a lasso shaped graph and a function linking each vertex of the
graph to an abstract continuous state. A lasso shaped graph (also used in [16]
to prove non-termination of programs) is a finite, directed graph G composed of
two linked subgraphs: a stem and a loop. The size of the graph G, noted |G|,

108 O. Bouissou

is the number of vertices. The loop size (resp. stem size) of the graph is the
number of vertices in the loop (resp. stem): we note it |G|l (resp. |G|s). For a
graph G, VG denotes its vertices and Eg its edges.

Definition 5 (Cyclic sequences). A cyclic sequence over the domain S is a
pair s = (G, f) where G is a lasso shaped graph and f : VG → S maps vertices
of G with abstract states. We note S� the set of all cyclic sequences over S.

Cyclic sequences are finite representations of infinite sequences of abstract states.
Let s = (G, f) ∈ S�, with VG = {w0, . . . , wp−1}, and let i be the index of the
first vertex within the loop: i = |G|s. We note ŝ : N → S the function defined
by:

∀k ∈ N, ŝ(k) =

⎧⎨⎩
f
(
wk

)
if k < |G|

⊥S if k ≥ |G| and |G|l = 0
f
(
w(p+(k−i mod |G|l)

)
otherwise

.

Example 2. Figure 4 in Section 6 shows an example of a cyclic sequence: it is
the invariant computed on the trajectories of the heater problem (see Section 6).

Definition 6 (Order on cyclic sequences). The order $� is the point-wise
extension of the order on abstract states, if the sequences have the same graph.
Formally, we have, for s1 = (G1, f1) ∈ S� and s2 = (G2, f2) ∈ S�:

s1 �� s2 ⇔ G1 = G2 and ∀w ∈ G1, f1(w) �S f2(w) .

Note that this definition implies, in particular, that ∀k ∈ N, ŝ1(k) $
S

ŝ2(k). To
define the join of two cyclic sequences, we introduce a new element !� ∈ S�

such that ∀s ∈ S, s $� !�. The join of two cyclic sequences s1, s2 ∈ S� is then
defined as follows: if s1 and s2 share the same graph, we make the union of the
states associated to each vertex, otherwise, we return !�. Formally we have:

∀s1, s2 ∈ S� , s1��s2 =
{�� if G1 �= G2

(G1, f) : ∀w ∈ G1, f(w) = f1(w) �S f2(w) otherwise . (2)

Let us remark that if s = s1 �� s2, s �= !�, then ∀k ∈ N, ŝ(k) = ŝ1(k)�
S
ŝ1(k).

We define in the same way the intersection of s1 and s2: if they share the same
graph, we compute the meet of the values associated to each vertex. Otherwise,
we set the meet to be the ⊥�, a new element of S� such that ∀s ∈ S�, ⊥� $� s.

Property 1. The domain
(
S�,$�,��,��) is a complete lattice.

Proof. As S is a complete lattice, so is the domain of functions VG → S for some
lasso graph G = (VG, EG). As two elements of S� are comparable if and only if
they share the same graph, this proves that S� is a complete lattice. �

Definition 7 (Concretization γ�). The concretization γ� : S� → P(N → Rn)
maps a cyclic sequence with infinitely many concrete sequences:

∀s ∈ S� , γ�(s) =
{
s : N → R

n : ∀k ∈ N, ∃b ∈ B
m, (b, s(k)) ∈ γS(ŝ(k))

}
.

Property 2. The function γ� is monotone.

Proving the Correctness of the Implementation 109

4 Abstraction of the Program

We now explain how, with the assumption of Section 2, we compute an ab-
straction of the program that is sufficient for computing the abstraction of the
iteration function. In this way, we split our analysis of the hybrid system in two
steps: first (in this section) we focus on the discrete program, then (in Section 5)
we use this program abstraction and we focus on the continuous environment.

4.1 Definition of a Program Abstraction

To build the program abstraction, we see a program as a decision function that,
given an input (the value read by the sensor), decides whether or not each
actuator must be activated. In other words, we are only interested in the impact
a program has on its environment and not in its intern evolution. For the jth

act statement in the program, we consider the boolean function Φj : Rn → B

defined by Φj(v) = 1 if
(
(v tk−→ P) ⇒ (P tk−→ (ij, bj))

)
, and Φj(v) = 0 otherwise.

In other words, Φj returns 1 if, when the program reads the value v, it activates
the jth act statement, and 0 otherwise. A program abstraction (see Definition 8)
is a collection of boolean inclusion functions that safely abstract these functions.

Definition 8 (Program abstraction). Let (P, κ) be a system of our concrete
model with ma binary actuators. An abstraction of the program consists of ma

inclusion boolean functions [Φ1], . . . , [Φma] : I → B, such that:

∀v ∈ I, j ∈ [1, ma],

⎧⎪⎨⎪⎩
[Φj](v) = 1 if

(∀v ∈ v, v
tk−→ P ⇒ P

tk−→ (ij , bj)
)

[Φj](v) = 0 if
(∀v ∈ v, v

tk−→ P ⇒ P � tk−→ (ij , bj)
)

[Φj](v) = �B otherwise

.

With the assumption that the program is time-invariant (see Section 2), we
can compute such program abstractions using standard reachability analysis for
imperative programs. It suffices to check if, with an input v ∈ I, the program
reaches the jth act statement (for example, [6,7] or even [5] can be used to do
that). We can thus compute, for each act statement of the program, the function
[Φj]. However, the computation of [Φj](v) can be computationally expensive for
large programs, and we will need to compute that often. Thus, we chose to
partition, for each j ∈ [1,ma], the input state space into three regions Rj

0,
Rj

1 and Rj
 in such a way that, if v ⊆ Rj

b, then [Φj](v) = b for all b ∈ B.
These regions serve as a program abstraction: to decide whether an actuator is
activated, we just need to check in which region the input lies.

4.2 Representation as Octrees

A n-dimension octree2 is a directed, acyclic graph with a unique root and two
kinds of nodes: non terminal nodes N(v), with v ∈ I and terminal nodes V (b)
2 The term octree is generally used for 3-dimension trees only (i.e. trees with 8 children

for each node). We here use it for the more general case of n-dimension trees.

110 O. Bouissou

[0, 10]; [0, 10]

[0, 5]; [0, 5] 1

[0, 5]; [5, 10] 0

[5, 10]; [0, 5]

[5, 7.5]; [0, 2.5] 0

[5, 7.5]; [2.5, 5] 0

[7.5, 10]; [0, 2.5]

[7.5, 8.75]; [0, 1.25] �

[8.75, 10]; [0, 1.25] 1

[7.5, 8.75]; [1.25, 2.5] �

[8.75, 10]; [1.25, 2.5] 1
[7.5, 10]; [2.5, 5] �[5, 10]; [5, 10] �

Fig. 2. A 2-dimension octree T with domain [0, 10]× [0, 10]. It verifies T
(
[1, 3]; [2; 4]

)
=

1 and T
(
[1, 3]; [4; 6])

)
= �B.

with b ∈ B. Each non terminal node N(v) has either one terminal child or 2n

non terminal children Ni(vi), i ∈ [1, 2n], with: ∀i, j ∈ [1, 2n], vi ∩ vj = ∅ and⊔
i∈[1,2n] vi = v. We note T the set of all n-dimension octrees. The root of an

octree T must be a non terminal node N(v), and we say that v is the domain
of T , denoted v = dom(T). Figure 2 shows an example of a 2-dimension octree.

An octree T ∈ T represents a partition of the state space into the three
regions R0, R1 and R mentioned before. Now, for an input v ∈ dom(T), we
check efficiently in which region it is included by computing T (v) defined by
T (v) =

⊔{
b : ∃ N(v′) ∈ T, v ∩ v′ �= ∅ and N(v′) has a child V (b)

}
. The value

T (v) is thus the join of all b ∈ B such that v intersects the region Rb.

Property 3. For every octree T , the function FT : dom(T) → B defined by
∀v ∈ dom(T), FT (v) = T (v) is monotone.

Proof. Let v1, v2 ∈ dom(T) with v1 ⊆ v2. Let S be the set of non terminal
nodes N(vk) of T with a child V (bk) such that vk ∩ v1 �= ∅. Then, T (v1) =
�{bk : N(vk) ∈ S}. Let now N(vk) ∈ S. As v1 ⊆ v2, it holds that vk∩v2 �= ∅,
so that bk $

B
T (v2). This implies that T (v1) $

B
T (v2). �

We use Algorithm 1 to compute an octree that represents the regions R0, R1 and
R for one act statement of the program. Theorem 1 shows that these octrees
are sound program abstractions.

Theorem 1. For every time-invariant program P with ma act statement, and
for every j ∈ [1,ma], the octree Tj = BuildOctree(P, j) verifies that:

∀v ⊆ dom(Tj), ∀v ∈ v, Φj(v) ∈ γb

(
Tj(v)

)
.

We recall that Φj is the concrete function deciding whether the jth act statement
is activated given some input values, see Section 4.1.

Remark 1. The maximal depth of the octrees computed in Algorithm 1 is a
time-precision trade-off: deeper octrees are more precise but the computation
time is exponential in this maximal depth.

Proving the Correctness of the Implementation 111

Input: P ; /* A time-invariant program */

Input: D ∈ I; /* Range for the input variables of P */

Input: j,Nmax ∈ N; /* The actuator to reach and the maximal depth */

Result: An octree T of maximal depth Nmax

start
T = N(D); /* Initialize the octree and set its root */

b = [Φj](D);
if b = �B ∧Nmax �= 0 then

Find v1, . . . ,v2n such that D = v1 � v2 � · · · � v2n ;
for every v ∈ {v1, . . . ,v2n} do

aux = BuildOctree(P,v, j,Nmax − 1); Add aux as a child of T ;
done

else
Add V (b) as a child of T ;

endif
return T ;

end

Algorithm 1. BuildOctree(P,D,j,Nmax): construction of an octree of domain D and
depth Nmax that represents the function [Φj]

5 Abstraction of the Continuous Evolution

In this section, we explain how, given an abstraction of the program as a set
of octrees, we compute an abstraction of the evolution of the continuous envi-
ronment as a cyclic sequence (see Section 3). This cyclic sequence is computed
in two steps: first, we compute the lasso shaped graph and an initial guess for
the values of the vertices, then we compute the values of each vertex of the
graph. Both steps are based on an iteration of an abstract transition function
that overapproximates the concrete transition function (see Section 1.2).

5.1 The Abstract Transition Function

For each continuous mode c ∈ Bm, the environment evolves according to an
ODE ẏ = Fc(y) (see Section 1.2). So, if at some time t we have �P �c(t) = (c, yt)
for c ∈ Bm and yt ∈ Rn, and if the program does not change the continuous
mode between t and t+h, then we have �P �c(t+h) = (c, y∞(h)), i.e. Fh(c, yt) =
(c, y∞(h)), where y∞ is the solution of the ODE ẏ = Fc(y) with initial state
y∞(0) = yt. The theory of guaranteed integration [24] shows that it is possible to
overapproximate y∞. In particular, the library GRKLib [2] proposes a systematic
way to compute a monotone function [Fc] : I × R+ → I such that3:

∀v ∈ I, ∀t, h ∈ R+, y∞(t) ∈ v ⇒ y∞(t+ h) ∈ [Fc](v, h) .

Let us now define the abstract transition function Fh that overapproximates the
concrete transition function Fh defined Section 1.2.
3 Remark that there is no limitation on Fc: we consider linear and non-linear dynamics.

112 O. Bouissou

Definition 9 (Abstract transition function). Let (P, κ) be a system of our
concrete model, with κ = {Fc : c ∈ Bm}, and let ma be the number of act
statements in P . Let {Ti : i ∈ [1,ma]} be a program abstraction as defined
in Section 4. The abstract transition function Fh is a function between abstract
states, Fh : S → S, defined by ∀(c,v) ∈ S, Fh(c,v) = (c′,v′) with:{

v′ =
⊔

I

{
[Fc](v, h) : c ∈ γm(c)

}
c′ = c ⊕ {(ij , bj) : j ∈ [1,ma] ∧ 1 �B Tj(v′)

} .

We recall (see Section 1.2) that for a continuous mode c ∈ Bm, an integer
i ∈ [1,m] and a boolean value b ∈ B, c⊕ (i, b) is the continuous mode c where the
ith dimension is set to b. We use the same notation for abstract modes c ∈ M.

The abstract transition function Fh thus transforms an abstract state (c,v) ∈ S
as follows: we compute the effect of every possible continuous modes c ∈ γm(c)
on v using the guaranteed integration function [Fc], and then compute the join
of all these evolutions to form the new abstract continuous state v′. Then, for
each act statement (i.e. for each j ∈ [1,ma]) we check if it is activated under
the input v′ by computing Tj(v′). For all those statements that are potentially
activated (i.e. such that 1 $B Tj(v′)), we compute their effect on the continuous
mode c by computing c ⊕ (ij , bj).

Property 4. The abstract continuous function Fh is monotone over the complete
lattice of continuous states (its monotonicity relies on the monotonicity of all
the functions [Fc] and Tj for c ∈ Bm and j ∈ [1,ma], see Property 3).

We can now state our main theorem for this section that proves that the
abstract transition function is an abstraction of the concrete transition function.

Theorem 2. Let (P, κ) be a control-command system, and let Fh be the function
given at Definition 9. For all (c,v) ∈ S, it holds that Fh◦γ

S
(c,v) ⊆ γ

S
◦Fh(c,v).

5.2 Constructing the Graph

The computation of the cyclic sequence that serves as a discrete trajectory in-
variant (see Definition 1) requires two steps: first, we need to compute the lasso-
shaped graph, and then we need to compute the abstract values associated to
each vertex. In this section, we focus on the first task. To build the graph, we
use Algorithm 2 that we here explain. Starting from an initial cyclic sequence
(G0, f0) whose graph contains only one vertex w with f(w) = s0, where s0 is the
initial abstract continuous state, we iterate the following process. We first com-
pute s = Fh

(
f(v)

)
, i.e. the abstract continuous state at the next time stamp.

If we find a vertex w′ in the graph such that s $
S
f(w′), then we make a loop

between w and w′ – this case means that the we already overapproximated the
evolution of the environment up to t = ∞. If there is no such vertex w′, then
we compute the minimal distance between s and f(w′) for all vertices w′. If this
distance is smaller than some threshold α, we make a loop between w and w′ –
this case means that we have computed the evolution of the continuous system

Proving the Correctness of the Implementation 113

Input: (G0, f0), α ; /* Initial sequence and distance threshold */

Input: Fh ; /* Abstract transition function */

Result: A cyclic sequence (G, f)

start
(G, f) = (G0, f0); w = w0 ; // w is the last added vertex

while |G|l = 0 do
s = Fh(f(v));
if ∃w′ ∈ VG : s �S f(w′) then

Eg = EG ∪ {(w,w′)}; // The graph now contains a loop

else
d = min{dS

`
s, f(w′)

´
: w′ ∈ Vg};

if d > α then
VG = VG ∪ {w∗} ; // w∗ is a new, fresh state

f(w∗) = s; Eg = EG ∪ {(w,w∗)}; w = w∗;
else

Choose w′ ∈ VG such that dS(f(w′), s) < α;
Eg = EG ∪ {(w,w′)}; // The graph now contains a loop

endif

endif

done
return (G, f);

end

Algorithm 2. BuildLassoGraph: construction of the initial lasso graph

from a state “close to” w. Otherwise, we add a new vertex to the graph and
start over from this vertex.

Of course, this algorithm may not terminate or take a very long time before
creating a loop. We enforce the termination by using a widening strategy on the
threshold α: at each iteration (or every K iterations, where K is a predefined
number), we increase α to capture more abstract periodic behaviors. The cyclic
sequence we compute is always a safe abstraction of the beginning of the con-
tinuous evolution, as stated by Theorem 3 (a direct consequence of Theorem 2).

Theorem 3. Let s = (G, f) be the cyclic sequence returned by the algorithm
BuildLassoGraph. Then for all k ∈ [0, |G|−1], we have �P �c(k×h) ∈ γ

S

(
ŝ(k)

)
.

Remark 2. At this point, we only have an overapproximation of �P �c(k× h) for
all k < |G| as, when we created the loop, we may have changed the value of one
vertex without propagating it to its successors. This is done in Section 5.3.

Remark 3. Parameter α in Algorithm 2 is a time-precision trade-off: the larger
α, the faster the algorithm terminates, and the larger the overapproximation is.

5.3 Computing the Values

We now explain how, starting from the initial cyclic sequence so computed by
the Algorithm 2, we compute an overapproximation of the continuous evolution

114 O. Bouissou

up to time ∞. To do so, we see the graph of the cyclic sequence as a control
flow graph as used for the static analysis of programs. The transition function
between two vertices of the graph is the abstract transition function Fh. Thus,
we define the function FS : S� → S� that updates the cyclic sequence as:

FS :

⎧⎨⎩
S� → S�

(G, f) �→ (G, f ′) with ∀w ∈ VG, f
′(w) =

⊔
(w′,w)∈EG

Fh(f(w′)) .

Property 5. The function FS is monotone over the complete lattice S�.

As FS is a monotone function over a complete lattice, it has a least fixpoint
greater than s0 (the cyclic sequence computed by Algorithm 2). We can compute
it using Kleene’s iteration. Theorem 4 shows that this fixpoint is an overapprox-
imation of the concrete sequence of values read by the program.

Theorem 4. Let s ∈ S� be the least fixpoint of FS greater than s0, and let
�P �c(t) = (c(t), y(t)) for all t ∈ R+. Then, the sequence

(
y(k × h)

)
k∈N

verifies(
y(k × h)

)
k∈N

∈ γ�(s), i.e. we have: ∀k ∈ N, �P �c(k × h) ∈ γS

(
ŝ(k)

)
.

Theorem 4 states that the computed cyclic sequence is a discrete trajectory
invariant of the program P , as defined in Definition 1. It may thus be used to
prove more complex properties like stability or reachability.

Remark 4. To accelerate Kleene’s iteration for computing the fixpoint of FS, we
use standard widening techniques on abstract continuous states. The widening
naturally occurs on the first vertex of the loop of the cyclic sequence.

5.4 Discussion about the Method

During the analysis, several operations may lead to a coarse approximation of
the continuous trajectory. It is particularly the case if, during the iterations of
Fh, we obtain a state with the abstract mode !

M
(or !B in some direction).

Then, as we don’t know the continuous mode of the future evolution, we need to
follow several modes. In the case of a control-command program, the different
modes correspond to significantly different dynamics, so that following several of
them lead to a huge overapproximation. There are various reasons for obtaining
an imprecise abstract mode, we now explain them and we give some solutions on
how to avoid them. Let thus (c,v) ∈ S be such that Fh(c,v) = (c′,v′), where
c′ contains !B in at least one dimension.

Problems due to the program abstraction. We may obtain !B because the box
v′ lies within the region Rj

 for some j ∈ [1,ma]. This means that the program
abstraction is too coarse. We can then locally increase the precision of the pro-
gram abstractions by increasing the maximal depth we allow for the octrees. In
this way, we will eventually enter the Rj

1 or Rj
2 regions. However, we might also

enter both, which gives us another issue: if we have v′∩Rj
1 �= ∅ and v′∩Rj

0 �= ∅,
then Tj(v) = !B, so c′ contains !B in the jth coordinate. To reduce the loss of

Proving the Correctness of the Implementation 115

precision in this case, we can follow separately the possible dynamics, and try
to collect them later. This is very similar to the disjunctive analysis used in the
static analysis of programs [27]. We use our notion of distance for joining the
different paths. Of course, this technique may lead to a combinatorial explosion
in the number of states of the system, so in practice we limit the number of steps
we make within each dynamics.

Problems due to the guaranteed integration. Another source of imprecision comes
from the overapproximation of the continuous dynamics due to the guaranteed
integration, that may compute a too large box v′. To reduce it, a solution con-
sists in using local subdivisions: we split v into smaller boxes, compute Fh on
each of them and then join the results. This is not guaranteed to reduce the
imprecision, but it has good results when the continuous dynamics is stiff.

Some remarks on our notion of distance. The distance d
S

indicates how close
the evolutions of the system starting from two abstract states will be. Of course,
it is difficult to know if two states will remain close with only the informa-
tion of their distance at some instant tk. If the states are close to a region
where the mode must change, their evolutions might diverge, and we should not
merge them. Another heuristic considering more than one time stamp could de-
tect such situations. However, on contracting systems (i.e. systems in which the
distance between two trajectories decreases with time), our method has good
results.

Comparison with other techniques. Finally, we would like to make an informal
comparison between our method for computing invariants on control-command
systems and the existing analysis techniques for hybrid systems [13,15,18,26].
First, we consider linear and non-linear dynamics, which is almost never the
case for the reachability analysis on hybrid automata. We also consider compli-
cated discrete dynamics, as the only limitation on the program is that it must
be time-invariant. Thus, the regions where there is a mode change may be very
complicated: for example, in some control-command programs we analyzed, the
decision for activating the actuator depends on the result of a Runge-Kutta in-
tegration predicting the value of the continuous variables one second later. The
regions represented by the octree were then non convex and very irregular. Mod-
eling such systems (frequent in industrial systems) with hybrid automata would
be a very difficult task in its own. Finally, as we consider code-level models, we
can focus on computing discrete trajectory invariants as the mode changes only
occur at time tk for some k ∈ N, while analysis techniques on high-level models
need to enclose the trajectories for all t ∈ R+ to detect the mode changes. Our
task is thus simplified because we consider more realistic models. Let us remark
that this approach is also used in [28] where the authors start from the very
general model of hybrid automata and impose a periodicity condition for the
control actions. We, at the opposite, start from a new model which is especially
designed for such perdiodically controlled hybrid systems.

116 O. Bouissou

6 Experimentation

We implemented the techniques presented in this article in a prototype analyzer
named HyPrA (for Hybrid Programs Analyzer). HyPrA is based on Newspeak
[20] for parsing the C files and it uses a specification language for specifying the
actuators, sensors and continuous modes of the system. The specifications are
special C comments understood by Newspeak, so our framework can be easily
integrated into a development cycle. The user may provide plugins that compute
the overapproximations of the continuous dynamics, or HyPrA may build them
automatically using the specifications and an OCAML version of GRKLib.

Problem
Initial Width Graph size/ Computation
state in the loop Loop size time (s)

Heater [0, 5] 0.19 11/3 0.071
Navigation [3.5, 3.6] × [3.5, 3.6] 0.2 16/1 5.456
Two-tanks [5, 5] × [6, 6] 0.8 96/96 32.9

Fig. 3. Results of HyPrA on classical hybrid systems benchmarks

[0, 3.5] [8.2, 10.7] [14.0, 15.7] [18.0, 19.2]

[20.7, 21.6] [14.3, 15.0] [18.2, 18.7] [20.9, 21.3] [14.5, 14.8] [18.3, 18.5]

[21.0, 21.1]

Fig. 4. Result of HyPrA on the heater problem. The figure shows the computed invari-
ant as a cyclic sequence. In the bolded vertices, the continuous mode is 0, meaning the
heater is off. In the normal vertices, the continuous mode is 1, meaning the heater is
on. The labels represent the value of the continuous variable associated to the vertices
of the graph.

We tested our analyzer on various benchmarks from the hybrid systems liter-
ature: the two-tanks system, the heater and the navigation problems [11]. In the
heater problem, the dynamics are strongly contracting thus making our tool con-
verge quickly. The navigation problem shows that HyPrA can be used to prove
reachability of some region: to do that, we associated to this region a special con-
tinuous mode where all derivatives are equal to 0: if the trajectory enters this
mode, it stops here, and we immediately obtain a loop of size 1 and a fixpoint.
Finally the two-tanks problem shows that our tool can deal with non-linear dy-
namics. The table on Figure 3 shows for each problem the chosen initial state,
the size of the computed cyclic sequence, the size of its loop and the computation
time. Figure 4 shows the cyclic sequence computed for the heater problem. We
also indicate in the table the width of the abstract state of the first vertex within
the loop (column “Width in the loop”). Actually, it should be noted that when

Proving the Correctness of the Implementation 117

we find such a loop, not only do we prove that the trajectories starting from the
initial state remain within the loop, but also that any trajectory starting from
a point within a vertex of the loop remains in the loop. For example, in the two
tanks system, we chose a point as initial state, but the width of the first loop
vertex is large, thus proving the correctness of the control-command program
for a set of initial configurations.

7 Conclusion and Future Works

In this article, we presented a method for the static analysis, using the ab-
straction interpretation framework, of the physical environment of embedded
control-command programs. Using the fact that the program is time-invariant,
we transform the control-command system into a system of switched ordinary
differential equations [22] where the switching function is given by a program
abstraction. Then, we look for a discretized overapproximation of the solution
of this system as a ultimately periodic sequence of intervals. We use a notion of
distance between abstract states to detect the periodic behavior. Our implemen-
tation shows that our method is efficient, in particular for non-linear dynamics:
we can derive precise invariants on such systems.

Our analysis relies on the domain of intervals: we use them as the abstrac-
tion of the physical environment and we use interval analysis techniques for
computing the octrees that serve as a program abstraction. Of course, using
relational domains can improve the precision of the analysis: we plan to investi-
gate the guaranteed integration of ODEs using zonotopes. They are already used
for the verification of hybrid systems [15] and the static analysis of numerical
programs [14], we believe they are well suited for our framework. We will also
investigate methods to improve the precision of our analysis. For now, we did
not implement any of the ideas mentioned in Section 5.4. The disjunctive anal-
ysis is probably the best way to improve the precision, and we can control the
combinatorial explosion inherent by choosing a large threshold on the minimum
distance for joining two states. Finally, removing the time invariant assumption
will be a more complex task: defining a safe program abstraction is more com-
plex as the action of the program on its environment depends on all the sensed
values. To do so, we would probably need to analyze both the programs and the
environment at the same time, and not one after the other as it is the case now.

References

1. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI 2003,
pp. 196–207. ACM, New York (2003)

2. Bouissou, O., Martel, M.: GRKLib: a guaranteed runge-kutta library. In: Follow-up
of International Symposium on Scientific Computing, Computer Arithmetic and
Validated Numerics. IEEE Press, Los Alamitos (2007)

118 O. Bouissou

3. Bouissou, O., Martel, M.: Abstract interpretation of the physical inputs of embed-
ded programs. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS,
vol. 4905, pp. 37–51. Springer, Heidelberg (2008)

4. Bouissou, O., Martel, M.: A hybrid denotational semantics of hybrid systems. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 63–77. Springer, Heidelberg
(2008)

5. Chen, Y., Gansner, E., Koutsofios, E.: A C++ data model supporting reachability
analysis and dead code detection. In: Jazayeri, M. (ed.) ESEC 1997 and ESEC-FSE
1997. LNCS, vol. 1301, pp. 414–431. Springer, Heidelberg (1997)

6. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.: Proving that
programs eventually do something good. SIGPLAN Notices 42(1), 265–276 (2007)

7. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI 2006, pp. 415–426. ACM, New York (2006)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
pp. 238–252. ACM Press, New York (1977)

9. Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and
Computation 2(4), 511–547 (1992)

10. de Oliveira, I.R., Cugnasca, P.S.: Checking safe trajectories of aircraft using hybrid
automata. In: SAFECOMPK 2002, pp. 224–235. Springer, Heidelberg (2002)

11. Fehnker, A., Ivancic, F.: Benchmarks for hybrid systems verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidel-
berg (2004)

12. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a
real-life processor. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS,
vol. 2211, pp. 469–485. Springer, Heidelberg (2001)

13. Frehse, G.: Phaver: Algorithmic verification of hybrid systems past hytech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

14. Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)

15. Le Guernic, C., Girard, A.: Zonotope-hyperplane intersection for hybrid systems
reachability analysis. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS,
vol. 4981, pp. 215–228. Springer, Heidelberg (2008)

16. Gupta, A., Henzinger, T., Majumdar, R., Rybalchenko, A., Xu, R.: Proving non-
termination. In: POPL 2008, pp. 147–158. ACM Press, New York (2008)

17. Henzinger, T.A.: The theory of hybrid automata. In: Symposium on Logic in Com-
puter Science, pp. 278–292. IEEE Computer Society Press, Los Alamitos (1996)

18. Henzinger, T.A., Rusu, V.: Reachability verification for hybrid automata. In:
Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 190–204.
Springer, Heidelberg (1998)

19. Hespanha, J.: Uniform stability of switched linear systems: Extensions of LaSalle’s
invariance principle. IEEETAC 49(4), 470–482 (2004)

20. Hymans, C., Levillain, O.: Newspeak, Doubleplussimple Minilang for Goodthinkful
Static Analysis of C. Technical Note 2008-IW-SE-00010-1, EADS IW/SE (2008)

21. Kowalewski, S., Stursberg, O., Fritz, M., Graf, H., Hoffmann, I., Preußig, J., et
al.: A case study in tool-aided analysis of discretely controlled continuous systems:
the two tanks problem. In: Antsaklis, P.J., Kohn, W., Lemmon, M.D., Nerode, A.,
Sastry, S.S. (eds.) HS 1997. LNCS, vol. 1567, p. 163. Springer, Heidelberg (1999)

Proving the Correctness of the Implementation 119

22. Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston (2003)
23. Ben Makhlouf, I., Kowalewski, S.: An evaluation of two recent reachability analysis

tools for hybrid systems. In: Second IFAC Conference on Analysis and Design of
Hybrid Systems, pp. 377–382. Elsevier, Amsterdam (2006)

24. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value
problems for ordinary differential equations. Applied Mathematics and Computa-
tion 105(1), 21–68 (1999)

25. Putot, S., Goubault, E., Martel, M.: Static analysis-based validation of floating-
point computations. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.)
Dagstuhl Seminar 2003. LNCS, vol. 2991, pp. 306–313. Springer, Heidelberg (2004)

26. Ramdani, N., Meslem, N., Candau, Y.: Reachability of uncertain nonlinear systems
using a nonlinear hybridization. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008.
LNCS, vol. 4981, pp. 415–428. Springer, Heidelberg (2008)

27. Sankaranarayanan, S., Ivančić, F., Shlyakhter, I., Gupta, A.: Static analysis in
disjunctive numerical domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
pp. 3–17. Springer, Heidelberg (2006)

28. Wongpiromsarn, T., Mitra, S., Murray, R.M., Lamperski, A.G.: Periodically con-
trolled hybrid systems. In: HSCC 2009. LNCS, vol. 5469, pp. 396–410. Springer,
Heidelberg (2009)

29. Yfoulis, C., Shorten, R.: A numerical technique for stability analysis of linear
switched systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993,
pp. 631–645. Springer, Heidelberg (2004)

Abstract Interpretation of FIFO Replacement

Daniel Grund and Jan Reineke

Saarland University, Saarbrücken, Germany

Abstract. In hard real-time systems, the execution time of programs
must be bounded by static timing analysis. For today’s embedded
systems featuring caches, static analyses must predict cache hits and
misses with high precision to obtain useful bounds. For caches with
least-recently-used (LRU) replacement policy, efficient and precise cache
analyses exist. However, for other widely-used policies like first-in first-
out (FIFO), current cache analyses are much less precise.

This paper discusses challenges in FIFO cache analysis and advances
the state of the art. We identify a generic framework for cache analy-
sis that couples may- and must-analyses by means of domain coopera-
tion. Our main contribution is a more precise may-analysis for FIFO.
It not only increases the number of predicted misses, but also—due to
the domain cooperation—the number of predicted hits. We instantiate
the framework with a canonical must-analysis and three different may-
analyses, including our new one, and compare the resulting three anal-
yses to the collecting semantics. Our evaluation results characterize the
progress achieved by our new may-analysis and reveal room for further
improvement.

Keywords: Cache Analysis, FIFO Replacement, Domain Cooperation,
May/Must Reasoning.

1 Introduction

In hard real-time systems, one needs to derive off-line guarantees for the timeli-
ness of reactions. Thereby, one fundamental problem is to bound the worst-case
execution time (WCET) of programs [1]. To obtain tight and thus useful bounds
on the execution times, timing analyses must take into account the cache archi-
tecture of the employed CPUs. However, developing cache analyses—analyses
that statically determine whether a memory access associated with an instruc-
tion will always be a hit or a miss—is a challenging problem.

Precise and efficient analyses have been developed for set-associative caches
that employ the least-recently-used (LRU) replacement policy [2,3,4,5,6]. Gen-
erally, research in the field of embedded real-time systems assumes LRU re-
placement. In practice however, other policies like first-in first-out (FIFO) or
pseudo-LRU (PLRU) are also commonly used, e.g., in the Intel XScale, some
ARM9 and ARM11, and the PowerPC 75x series.

As Section 2.3 explains, two kinds of information can be naturally distin-
guished in cache analysis: must-information that allows for predicting hits, and

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 120–136, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Abstract Interpretation of FIFO Replacement 121

may-information that allows for predicting misses. Previous work showed that it
is inherently more difficult to obtain may-information for FIFO than for LRU;
see [7] and Section 3. A first step towards the analysis of those policies was the
general concept of relative competitiveness; see [8] and Section 5. Depending on
the particular policy, however, a cache analysis based on relative competitiveness
may be anything from very precise to ineffective.

In Section 4, we describe a generic policy-independent framework for cache
analysis. It allows for cooperation of may- and must-analyses through a minimal
interface, which improves their precision.

Then, we present our main contributions: a may- and a must-analysis for
FIFO. The must-analysis borrows basic ideas from LRU-analysis [3]. To predict
cache hits, it infers upper bounds on cache misses to prove containedness of
memory blocks. To predict cache misses, the may-analysis infers lower bounds
on cache misses to prove eviction. By taking into account the order in which hits
and misses happen, we improve the may-analysis, thereby increasing the number
of predicted cache misses. Through the cooperation of the two analyses in the
generic framework, this also improves the precision of the must-analysis.

After describing related work in Section 5, we report on our evaluation in
Section 6. Using the generic framework, we compare three may-analyses with
each other and to the collecting semantics of FIFO. We show that our analysis
yields better results than the generic approach using relative competitiveness.
Additionally, using the collecting semantics, we illustrate the limits for any static
analysis. This supplements analytical bounds derived in [7] and reveals oppor-
tunities of how to improve abstract domains for FIFO.

2 Foundations

2.1 Caches

Caches are fast but small memories that store a subset of the main memory’s
contents to bridge the latency gap between CPU and main memory. To profit
from spatial locality and to reduce management overhead, main memory is logi-
cally partitioned into a set of memory blocks B of size b bytes. Blocks are cached
as a whole in cache lines of equal size. Usually, b is a power of two. This way, the
block number is determined by the most significant bits of a memory address.

When accessing a memory block, the cache logic has to determine whether
the block is stored in the cache (“cache hit”) or not (“cache miss”). To enable
an efficient look-up, each block can only be stored in a small number of cache
lines. For this purpose, caches are partitioned into equally-sized cache sets S.
The size of a cache set is called the associativity k of the cache. A cache with
associativity k is often called k-way set-associative. It consists of k ways, each of
which consists of one cache line in each cache set. In the context of a cache set,
the term way thus refers to a single cache line. The number of such equally-sized
cache sets s is usually a power of two such that the set number, also called index,
is determined by the least significant bits of the block number. The remaining

122 D. Grund and J. Reineke

bits of an address are known as the tag. To finally decide whether and where a
block is cached within a set, tags ti ∈ T are stored along with the data.

Since the number of memory blocks that map to a set is usually far greater
than the associativity of the cache, a so-called replacement policy must decide
which memory block to replace upon a cache miss. Replacement policies try
to exploit temporal locality and base their decisions on the history of memory
accesses. Usually, cache sets are treated independently of each other such that
accesses to one set do not influence replacement decisions in other sets.

Well-known policies for individual cache sets are least-recently used (LRU),
a more cost-efficient variant of it (PLRU), and first-in first-out (FIFO). For
details on the implementation of caches in hardware refer to Jacob [9].

2.2 Static Analysis

The goal of static analysis is to automatically determine properties of programs
without actually executing the programs. Since the properties to determine are
commonly incomputable, abstraction has to be employed. In general, there is
a trade-off between analysis precision on the one hand and computability and
analysis complexity on the other hand.

One formal method in static analysis, which our work is based on, is ab-
stract interpretation. Instead of representing concrete semantic information in
a concrete domain D, one represents more abstract information in an abstract
domain D̂. The relation between concrete and abstract can be given by an ab-
straction function α : P(D) → D̂ and a concretization function γ : D̂ → P(D).

To determine the properties, a data-flow analysis computes invariants for each
program point, which are represented by values of D̂. A transfer function U :
D̂ × I → D̂ models the effect of instructions I on abstract values. With the
transfer function it is possible to set up a system of data-flow equations that
correlates values before and after each instruction. If an instruction has multiple
predecessors, a join function J : D̂×D̂ → D̂ combines all incoming values into a
single one. If a data-flow framework meets certain conditions, the induced system
of equations for a given program has a least solution, which can be obtained by
a fixed-point computation. If the transfer- and the join-function satisfy certain
conditions, the analysis is sound with respect to α and γ: True properties in the
abstract map to true properties in the concrete. For an overview article with
pointers to details on abstract interpretation refer to Cousot and Cousot [10].

2.3 Static Cache Analysis

Static cache analysis by abstract interpretation computes may- and must -cache
information at program points: may- and must-cache information are used to
derive upper and lower approximations, respectively, to the contents of all con-
crete cache states that will occur whenever program execution reaches a program
point.

Must-cache information is used to derive safe information about cache hits.
The more cache hits can be predicted, the better the upper bound on the ex-
ecution times. May-cache information is used to safely predict cache misses.

Abstract Interpretation of FIFO Replacement 123

Predicting more cache misses will result in a better lower bound on the execu-
tion times. Generally, the lower the number of unclassified accesses (neither hit
nor miss can be predicted), the lower the runtime of a WCET analysis is because
it has to consider fewer cases.

As most cache architectures manage their cache sets independently from each
other, cache analyses can analyze them independently as well. Thus, we limit
ourselves to the analysis of a single cache set. For details on (LRU-)cache analysis
refer to Ferdinand et al. [11,3].

3 The FIFO Policy

The policy. Conceptually, a FIFO cache set maintains a fixed-size queue of
tags T . A concrete k-way FIFO cache set s can therefore be modeled as a
k-tuple of cache tags, which are ordered from last-in to first-in from left to right:

s = [t0, . . . , tk−1] ∈ S := T k

A cache hit does not change the cache set. A cache miss inserts the new tag at
position 0, shifting the others to the right and evicting the one at the rightmost
position. The update function US : S × T → S models the effect on a cache set
when accessing a memory block with tag t:

US([t0, . . . , tk−1], t) :=
{

[t0, . . . , tk−1] : ∃i : t = ti “cache hit”
[t, t0, . . . , tk−2] : otherwise “cache miss”

In hardware, the FIFO-update can be implemented more efficiently than the
LRU-update and the resulting circuit has a lower latency.

Challenges for static analysis. For FIFO, it is difficult to obtain may-informa-
tion. At the same time, may-information is necessary to obtain precise must-
information. Consider a FIFO cache set with unknown contents. After observing
a cache access to a block a, one knows that a must be cached—trivial must-
information is available. If one cannot classify the access to a as a miss, another
access to a different block b may immediately evict a. This is the case if the
access to a is a hit on the first-in, i.e., right-most, position and the access to
b is a miss. Thus, without (implicitly or explicitly) classifying some accesses as
misses, it is not possible to infer that two or more blocks are cached.

Hence, may-information is important to obtain precise must-information, and
thus to be able to classify a significant amount of accesses as hits. However,
Reineke et al. [7] give the following bound for a k-way FIFO cache set. Assuming
accesses to pairwise different blocks, it is impossible to classify an individual
access as a miss before 2k − 1 accesses have been observed.

One way to attenuate the lack of FIFO may-information is to invalidate
the cache contents at the start of the program. This way, one can safely as-
sume an empty cache, i.e., at program start one gets complete may- and must-
information. However, cache information can be lost during the analysis, e.g.,
due to control-flow joins. Furthermore, an architecture might not support cache
invalidation.

124 D. Grund and J. Reineke

4 The FIFO Cache Analysis

Our analysis is an instance of a generic framework for cache analysis that allows
several cache analyses to cooperate by exchanging classifications of memory
accesses. Instead of first describing the framework itself, we immediately describe
our instance for FIFO that composes two analyses. Then, we present our main
contribution: a may- and a must-analysis for FIFO used in this instance of the
framework. In our case, the framework is instantiated with one must- and one
may-analysis; its abstract domain is:

Fifo := Must × May

Cache accesses are classified as hit (H), miss (M), or unclassified (!). See
Figure 1 for the definition of the classification semi-lattice Class := {H,M}. To
classify an access to some block with tag t ∈ T , the classification function of the
framework combines the classifications of the may- and the must-analysis. Since
these two classifications are sound, they cannot contradict each other. Thus,
their meet (�) is always defined.

CFifo : Fifo × T → Class
CFifo((mst ,may), t) := CMust(mst , t) � CMay(may , t)

The goal of our analysis is to gain better may-information and leverage it more
than existing analyses. To enable these synergies, one has to introduce some in-
formation flow between the may- and the must-analysis. To this end, the update
functions of may- and must-information are refined by an additional parameter
that is used to pass the classification of the current access. This classification
depends on both analyses, may and must. The main update function hence is
defined as:

UFifo : Fifo × T → Fifo
UFifo((mst ,may), t) := (UMust (mst , t, cl),UMay(may , t, cl)),

where cl = CFifo((mst ,may), t), and UMust and UMay are the update functions
of the must- and the may-analysis. This is a form of domain cooperation as
described in Cousot et al. [12]. In our case, the additional information allows to
define more precise update functions for both analyses.

The main join function is simply defined component-wise:

JFifo : Fifo × Fifo → Fifo
JFifo ((mst1,may1), (mst2,may2)) := (JMust (mst1,mst2),JMay(may1,may2))

�

H M

H : cache hit
M : cache miss
� : unclassified

� H M �
H H � �
M � M �
� � � �

� H M �
H H H
M M M
� H M �

Fig. 1. Classification join semi-lattice Class and induced join (�) and meet (�)

Abstract Interpretation of FIFO Replacement 125

The remainder of this section details the must- and the may-analysis and de-
fines their classification-, update-, and join-functions, which we have used above.

4.1 Must Analysis

In a concrete k-way cache set, k misses must happen to evict a newly inserted
memory block. To predict hits, our must-analysis approximates this number from
above, it counts potential misses. We define the abstract domain as follows:

Must := MustFifok
:= [T0, . . . , Tk−1] ,

where Ti ⊆ T , ∀i �= j : Ti ∩ Tj = ∅, and ∀j ≤ k :
∑j−1

i=0 |Ti| ≤ j. The position
of a tag in the tuple is an upper bound on the number of misses that happened
since the insertion of the block with that tag. If a tag t ∈ Ti, there have been at
most i misses since the block with t was inserted into the cache set. It will not
be evicted before at least k − i further misses have happened. One must allow
for sets of tags because multiple tags may have the same upper bound. However,
at most j tags may have an upper bound ≤ j− 1. Since it is senseless to specify
multiple bounds for one tag, all k sets are defined to be disjoint. Otherwise, all
but the least bound would be redundant.

The set of concrete cache sets represented by an abstract must cache set is
given by the concretization function:

γMust : Must → P(S)
γMust([T0, . . . , Tk−1]) := {[t0, . . . , tk−1] ∈ S | ∀i ∀t ∈ Ti ∃j ≤ i : tj = t}

In other words: If a tag t is contained in some Ti in an abstract must cache set,
the block with tag t must be located at one of the first i positions in the concrete
cache set. Consider mst1 := [{f}, {}, {a, c}, {b}] and mst2 := [{}, {d}, {b, c}, {a}]
as an example. Their concretizations are γMust(mst1) = {[f, c, a, b] , [f, a, c, b]}
and γMust(mst2) = {[c, d, b, a] , [b, d, c, a] , [d, c, b, a] , [d, b, c, a]}.

The classification function is straightforward. If the accessed tag is contained
in any of the Ti-sets, the analysis can predict a hit. If k tags must be cached, no
other tag may be cached; in this case, the analysis can predict a miss.

CMust : Must × T → Class

CMust([T0, . . . , Tk−1] , t) :=

⎧⎨⎩
H : t ∈ ∪iTi

M : t �∈ ∪iTi =: C, |C| = k
! : otherwise

The update function has three cases. If the analysis can predict a hit, the
must-information remains unchanged as FIFO does not change its state upon
a hit. If, with the help of may-information, the analysis can predict a miss, one
can update the must-information similarly to the concrete semantics. If neither
hit nor miss can be predicted, the analysis has to account for both possibilities:

126 D. Grund and J. Reineke

Since the access might be a miss, all sets are shifted to the right. Since it might
be a hit on the first-in position, the tag can only be added to the rightmost
position. This results in:

UMust : Must × T × Class → Must

UMust([T0, . . . , Tk−1] , t, cl) :=

⎧⎨⎩
[T0, . . . , Tk−1] : cl = H
[{t}, T0, . . . , Tk−2] : cl = M
[∅, T0, . . . , Tk−2 ∪ {t}] : otherwise

If a cache access is not a hit, either the second or the third case of the update
applies. They are identical, except for the position where t is inserted. Predicting
a miss on the block with tag t allows to predict hits for t until k further misses
might have happened. In contrast, the third case only allows to predict hits for
t until the next miss might have happened.

The join function has to be sound w.r.t. the concretization function. Therefore,
a tag may only be contained in the result if it is present in both operands. The
position of such a tag must be the maximum of the two positions in the operands.
The best possible join function for our domain is:

JMust : Must × Must → Must
JMust ([X0, . . . , Xk−1] , [Y0, . . . , Yk−1]) := [Z0, . . . , Zk−1] ,

with Zl := {t ∈ T | ∃i, j : t ∈ Xi ∩ Yj , l = max{i, j}}. As an example consider
the join of the two must cache sets from above. mst3 := JMust(mst1,mst2) =
[{}, {}, {c}, {a, b}]. The concretization of mst3 is “infinite”, i.e., |γMust(mst3)| =
18 ∗ (|T | − 3): if less than k tags are contained in

⋃
i Ti, any of the other |T | −

|
⋃

i Ti| tags may also be contained in the cache set.

4.2 May Analysis

The goal of the may-analysis is to infer information that allows for classifying
accesses as misses. Our may-analysis associates information with each cache tag.
This results in the abstract domain:

May := MayFifok
:= T → TInfok

In the following paragraphs, we will motivate and describe all parts of TInfok.
After describing TInfok, we define the classification-, update-, and join-functions.

Consider a k-way associative FIFO cache set s and a block with tag t that
has just been inserted into s. If k misses happen, the block with t is evicted
from s and the next access to that block can be predicted to be a miss. Hence,
the may-analysis approximates the number of misses from below.1 Thus, one
constituent of TInfok is the number of definite misses :

DMk := {0, . . . , k − 1}
1 This is analogous to must-information: May-information gives a lower bound on

the number of misses (definite misses) while must-information gives an upper bound
(potential misses). Must-information can also be represented as a mapping T → PM .

Abstract Interpretation of FIFO Replacement 127

Before an analysis can predict a miss for a block, it must predict its eviction,
i.e., it must prove that k misses have happened since the insertion of that block.
Hence, there is a “bootstrapping problem” if the analysis starts with the worst
may-information (i.e., any block could be cached). Similar problems arise if may-
information is (partially) lost during the analysis, e.g., due to joins. To solve this
problem, a may-analysis must infer and maintain additional information.

The only solution to this bootstrapping problem are amortizing observations
like “k of a ≥ k accesses must have been misses”. Consider the following lemma,
which holds independently of the replacement policy.

Lemma 1. Let s be a k-way cache set. Furthermore, let (tn) be an access se-
quence (finite series of tags). If (tn) contains p ≥ k pairwise different tags, at
least p− k misses must happen if (tn) is carried out on s.

Proof. Initially, s can contain at most k pairwise different blocks. Since only
accessed blocks are inserted into the set, at most k of the p pairwise different
accesses may therefore be hits. ��

With FIFO, a block is replaced after k misses.2 Together with Lemma 1, this
means that after at most 2k−1 accesses to pairwise different blocks, blocks that
are not contained in this access sequence cannot be cached. Subsequent accesses
to them can be predicted as misses.

To prove that k misses have happened, a FIFO may-analysis must be able to
distinguish repeating accesses from pairwise different ones. For each tag t, our
analysis maintains a set of tags that may have been accessed since the insertion
of t. Hence, another constituent of TInfok is the set of possibly accessed tags :

PAT := P(T)

Note that the lower bound on the number of misses provided by Lemma 1 is
implicitly based on an upper bound on the number of hits. If one could improve
the upper bound on hits, one could predict misses earlier.

Example 1. Consider the FIFO cache set s = [x, c, b, a] and the four access
sequences 〈a, b, c, e, f, g, h〉, 〈a, e, b, f, c, g, h〉, 〈e, f, g, h〉, and 〈a, e, f, c, g, h〉. Al-
though being of different length, carrying out any of the sequences results in the
final cache set state [h, g, f, e]. In case of the first two sequences, it takes exactly
2k− 1 = 7 accesses to pairwise different blocks to evict all blocks not contained
in the sequence. This is because all of the original contents of s, except x, are
accessed before their eviction. The third sequence evicts the original contents
without accessing them. Sequence four lies in between the two extremes. Note
that after accessing a, e, f , it is not possible to access more than three pairwise
different blocks without evicting x because a hit on b is impossible.

As Example 1 shows and Figure 2(a) depicts, the order in which hits and misses
happen matters. “Early misses”, as in 〈a, e, f, c, g, h〉, preclude hits and reduce
2 For other replacement policies, this does not necessarily hold, e.g., for PLRU.

128 D. Grund and J. Reineke

m

0 h1

1

2

2

3

3

insertion

eviction

M

M

M

H H

M

H

H

M

H

M

H

M

M

M

(a)

d

0 c1

1

2

2

3

3

M

M

M

H,� H,�
M

H,�

H,�
M

H,�
M

H,�

H,M,�

H,M,�

H,M,�

(b)

Fig. 2. (a) The paths illustrate all possible sequences of hits (H) and misses (M) be-
tween the insertion and eviction of a block in a 4-way associative FIFO cache set.
Thereby, only accesses on pairwise different blocks trigger a transition. A block “en-
ters” the cache set at (0, 0). At (h, m), m misses and at most h hits have happened.
At (3, 3), the next accesses on a furthermore pairwise different block must be a miss;
the block is evicted. (b) Evolution of the number of definite misses d and covered
ways c depending on the classifications of accesses. � denotes the transition upon an
unclassified access.

the overall number of accesses to pairwise different blocks until x’s eviction. Our
analysis exploits that by maintaining a lower bound on the number of covered
ways, which is the last constituent of TInfok:

CWk := {0, . . . , k − 1}

A way is covered if it is occupied by a block whose tag is also contained in the
set of potentially accessed tags A ∈ PAT . For each tag t, covered ways c ∈ CWk

is a lower bound on the number of covered ways, assuming that all unclassified
accesses were hits. Eventually, c reaches k − 1, i.e., the cache set would have to
be filled with blocks whose tags are in A. Then, there are two possibilities for
further accesses to tags not contained in A. Either such an access is a miss. Or the
access is a hit, which indicates that one of the previously unclassified accesses
must have been a miss. In either case, the lower bound d on the number of
definite misses can be incremented.

Figure 2(b) illustrates the evolution of the lower bounds d ∈ DMk and c ∈
CWk. Accesses that are classified as hit (H) or as unclassified (!) increase c
(arrows from left to right). Although misses (M) insert a block into the cache set
(cover a way), c is usually not incremented (upwards arrows). This is because
the miss might evict a block whose tag is contained in A. Still, the number of
definite misses is a lower bound on the number of covered ways. Thus, c can be
incremented if d = c (diagonal arrows). As explained above, the analysis can
increase the number of definite misses if c = k − 1, even if the current access
cannot be classified as a miss (the upwards arrows at c = 3 = 4 − 1).

Abstract Interpretation of FIFO Replacement 129

In summary, the domain for the information maintained per cache tag t ∈ T
is CWk ×DMk ×PAT . Adding ⊥ to indicate that a tag is definitely not cached
yields TInfok := (CWk × DMk × PAT)⊥. Substituting this in the definition of
our abstract may cache sets results in:

May = T → (CWk × DMk × PAT)⊥

t �→ ⊥ indicates that t cannot be cached. Otherwise, t �→ (c, d, A), where:

– A, potentially accessed tags, is an upper approximation of the set of tags
that have been accessed since the last insertion of t.

– d , definite misses, is a lower bound on the number of misses that happened
since the insertion of t into s.

– c, covered ways, is a lower bound on the number of ways that are occupied
by tags in A, assuming that all unclassified accesses were hits.

The concretization function for May is:

γMay : May → P(S)

γMay(may) :=
⋂
t∈T

γTInfok
(t,may(t))

The TInfok of each tag constrains the set of possible cache sets. γTInfok
defines

such a constraint for one tag. Hence, the concretization function of May is the
conjunction (intersection) of all these constraints (sets). Let Cn([t0, . . . , tk−1]) :=⋃

0≤i<n{ti}, i.e., the cache contents of the n leftmost positions in a cache set. If
may(t) = ⊥, tag t is evicted and cannot be contained in a cache set represented
by may . Hence,

γ⊥TInfok
(t) := {s ∈ S | t �∈ Ck(s)}

Otherwise,

γ �⊥TInfok
(t, (c, d, A)) :=

{
s ∈ S | o := |Ck(s) ∩A| , Cmax{d,d+c−o}(s) ⊆ A

}
Here, o is the number of ways actually covered by A in a particular concrete cache
set state s. c was defined to be the number of ways covered by A, given that all
unclassified accesses were hits. Hence, if c > o, c − o unclassified accesses must
have been misses. Together with the d definite misses, at least max{d , d +c−o}
of the tags in A must occupy the leftmost positions of s (Cmax{...}(s) ⊆ A).3 As
t �∈ A by construction, this also constrains t’s position in s. The concretization
function for TInfok is:

γTInfok
(t,⊥) := γ⊥TInfok

(t)
γTInfok

(t, (c, d, A)) := γ⊥TInfok
(t) ∪ γ �⊥TInfok

(t, (c, d, A))

In the latter case, γ⊥TInfok
(t) reflects that t might not be cached, and the second

part defines constraints for the case that t is cached.
3 Recall that tags are inserted in the leftmost position upon a miss.

130 D. Grund and J. Reineke

In the remaining part of this section, we will describe the classification-,
update-, and join-functions for May . The classification function is straightfor-
ward:

CMay : May × T → Class

CMay(may , t) :=
{

M : may(t) = ⊥
! : otherwise

The update function is defined separately for each of the three possible cases (H,
M, !) of the classification parameter.

UMay : May × T × Class → May
UMay(may , t,H) := λx.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

may(x) :

⎧⎨⎩
x = t
x �= t,may(x) = ⊥
x �= t,may(x) = (c, d, A), t ∈ A

(c + 1, d , A ∪ {t}) : x �= t,may(x) = (c, d, A), t �∈ A, c < k − 1
(c, d + 1, A ∪ {t}) : x �= t,may(x) = (c, d, A), t �∈ A, c = k − 1, d < k − 1
⊥ : x �= t,may(x) = (c, d, A), t �∈ A, c = k − 1, d = k − 1

FIFO does not change its state upon a hit. Furthermore, the TInfok of a tag is
only updated if the accessed tag is not contained in A. This explains the first case
where nothing is changed. The remaining three cases update the TInfok of tags
different from the accessed one (x �= t), that may be cached (may(x) = (c, d, A)),
and t has definitely not been accessed since the insertion of x (t �∈ A). If c < k−1,
the number of covered ways is incremented. If c = k − 1 and a hit happens, the
number of definite misses is soundly incremented: Since no more than k − 1
hits on pairwise different elements can happen, a previous access, which also
incremented c, must have been a miss though the analysis could not classify it
as a miss. In the last case, the number of definite misses reaches k; the block
with tag x is definitely evicted.

UMay(may , t,M) := λx.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(0, 0, ∅) : x = t

may(x) :
{
x �= t,may(x) = ⊥
x �= t,may(x) = (c, d, A), t ∈ A

(max{c, d + 1}, d + 1, A ∪ {t}) : x �= t,may(x) = (c, d, A), t �∈ A, d < k − 1
⊥ : x �= t,may(x) = (c, d, A), t �∈ A, d = k − 1

The first case resets the information associated with a tag to (0, 0, ∅) if a miss
on this tag happens. The TInfok of a tag is not updated if it is already evicted
or if the accessed tag is contained in A (second case). In the third case, the
number of definite misses is incremented. Furthermore, as explained above (“the
diagonal”), c can be incremented if d = c. This can be abbreviated by the max
expression. In the last case, the analysis can prove eviction of the tag.

The update for an unclassified access is defined as the join of the hit- and
miss-update.

UMay(may , t,!) := JMay(UMay(may , t,H),UMay(may , t,M))

Abstract Interpretation of FIFO Replacement 131

The most interesting cases when spelling this out are
(c + 1, d , A ∪ {t}) : x �= t,may(x) = (c, d, A), t �∈ A, c < k − 1
(c, d + 1, A ∪ {t}) : x �= t,may(x) = (c, d, A), t �∈ A, c = k − 1, d < k − 1
⊥ : x �= t,may(x) = (c, d, A), t �∈ A, c = k − 1, d = k − 1

This shows that the analysis can “bootstrap”; i.e., it can prove eviction of mem-
ory blocks without relying on explicit miss-classifications.

Finally, the join of may-information is defined as the component-wise join of
the TInfok for each tag:

JMay : May × May → May

JMay(may1,may2) := λx.

⎧⎨⎩
may1(x) : may2(x) = ⊥
may2(x) : may1(x) = ⊥
(c′, d ′, A1 ∪A2) : may i(x) = (ci, di, Ai)

where d ′ := min{d1, d2} and c′ := min{c1 + d1, c2 + d2} − d ′. In the first two
cases, one of the operands maps x �→ ⊥. Since ∀I ∈ TInfok : γTInfok

(t,⊥) ⊆
γTInfok

(t, I), the other operand must be the least upper bound of the two. In
the last case, the TInfok of x of both operands is �= ⊥. As the set of potentially
accessed tags must be an overapproximation, the join of A1 and A2 is the set
union A1 ∪A2. The number of definite misses is an underapproximation. Hence,
the join is the minimum min{d1, d2}. For c one would also expect min{c1, c2}.
However, note that γTInfok

(t, (c, d , A)) ⊆ γTInfok
(t, (c+δ, d −δ, A)), i.e., one can

“trade misses for hits”. The join may result in a loss of precision for the definite
misses, i.e., the difference di − d ′. Due to the relation above, one can add di − d ′

to ci before taking the minimum, i.e., c′ = min{c1 + (d1 − d ′), c2 + (d2 − d ′)}.

Theorem 1 (Soundness). The abstract interpretation (Fifo,JFifo ,UFifo , γFifo)
is a sound abstraction of the concrete FIFO semantics.

Theorem 2 (Termination). The update function UFifo is monotone and the
abstract domain Fifo satisfies the ascending-chain condition.

5 Related Work

There are different types of static cache analysis. Cache analyses directed at
compiler optimizations compute bounds on the number of misses for larger pro-
gram fragments, e.g., loop nests, whereas analyses directed at WCET analyses
classify individual cache accesses as hits or misses.

Representatives of the first class are Ghosh et al. [13] and Chatterjee et al. [6].
Ghosh et al. [13] introduce Cache Miss Equations that characterize the cache
behavior of loop-nests in direct-mapped caches by Diophantine equations. In
subsequent work [5,14], they generalize their approach to set-associative caches
with LRU replacement. Chatterjee et al. [6] propose an exact model of cache
behavior of loop nests. It can handle imperfect loop nests and modest levels of
associativity with LRU replacement.

Representatives of the second class include Mueller et al. [15], White et al. [4],
Li et al. [16], and Ferdinand et al. [11,3]. Mueller et al. [15] present a static

132 D. Grund and J. Reineke

cache simulation for direct-mapped instruction caches. It classifies instructions
as always-miss, always-hit, first-miss, or conflict. White et al. [4] extend this
work to data caches, where the main challenges lie in the analysis of accessed
addresses. Furthermore, an instruction cache analysis for set-associative LRU
caches is sketched. Li et al. [16] present a timing analysis based on integer lin-
ear programming (ILP) formulations. It can handle set-associative caches by
encoding their concrete semantics using linear constraints. However, since this
approach integrates pipeline, cache, and path analysis into one ILP, it suffers
from complexity problems. In practice it is limited to direct-mapped caches and
simple pipelines. Ferdinand et al. [11,3] introduce the concepts of may- and must-
caches and present an LRU analysis that is based on abstract interpretation.

Almost all cache analyses assume LRU replacement. As explained in Section 3
statically analyzing FIFO is inherently more difficult than LRU. In contrast to
FIFO, it is possible to obtain precise must-information for LRU replacement
without any may-analysis.

The concept of relative competitiveness [8] bounds the performance of one
replacement policy relative to the performance of another one. This allows to
use cache analyses for one policy as cache analyses for other policies. This implies
that all of the existing analyses for LRU can be used as either may- or must-
analyses for FIFO and PLRU. For instance, an LRU may-analysis for a 2k−1-
way associative cache can be reused as a may-analysis for a k-way FIFO. Due
to the generic nature of this approach, however, the resulting analyses may be
rather imprecise. In the case of FIFO, one would expect that a 2k−1-way LRU
performs much better than a k-way FIFO, i.e., the number of misses is much
lower. Hence, the gap between actual and predicted number of misses might be
large. The analysis presented in this work is tailored precisely to FIFO behavior
and can therefore deliver more precise results.

Finally, our work is different from the analysis of so-called FIFO channels
[17,18,19]. Such channels mostly model communication and have different char-
acteristics than caches with FIFO replacement.

6 Evaluation

In the following, we compare three FIFO analyses with each other and to the
collecting semantics. The collecting semantics is computed using a powerset do-
main of concrete cache set states and is denoted by CollSem. The three analy-
ses are different instantiations of our framework. All analyses use the canonical
must-analysis CM presented in this paper and only differ in their may-analysis.

– No+CM: An analysis that uses no may-analysis at all, i.e., the classification
returned by the may-analysis is always !.

– RC+CM: An analysis that uses a may-analysis based on relative competi-
tiveness, as explained in Section 5, and the canonical must-analysis given in
Section 4.1.

– EMX+CM: “Early Miss eXploitation”; the analysis proposed in this paper.

Abstract Interpretation of FIFO Replacement 133

The analyses can be partially ordered according to their precision. Let A � B
denote that analysis A is at least as precise as B for all programs. More precisely,
A � B if for each access to be classified, the classification by A is equal or better
than the respective classification of B. A ≺ B if A � B and B �� A.

Theorem 3 (Relative Precision)

CollSem

EMX+CM

RC+CM

No+CM
≺
≺

≺
≺��

��

To quantify the precision of the analyses, we analyzed random access sequences
and program fragments. In a first experiment, for each 1 ≤ n ≤ 31, we generated
100 random access sequences that contain 500 accesses to n pairwise different
tags. The parameter n controls the locality in the sequences: the greater the n,
the lower is the locality.

Figure 3 shows the results; i.e., hit- and miss-rates guaranteed by the four anal-
yses. The shape of the plot marks identify the analysis, e.g., circles for No+CM.
The number of different tags (n) in the generated access sequences is plotted
against the x-axis. The percentage of classifications (H, !, M) is plotted against
the y-axis. For each analysis there are two curves, which partition the 100%. The
lower curve, with filled plot marks, shows the guaranteed hit-rate. The upper
one, with empty plot marks, is plotted bottom-up (from 100% downwards) and
shows the guaranteed miss-rate. The difference between the upper and the lower
curve gives the percentage of unclassified accesses.

For example consider the squares at n = 24. For 100 access sequences, each
500 accesses long and containing n = 24 different tags, the average guaranteed
hit-rate obtained by RC+CM was 20%. The average guaranteed miss-rate was
42%, and on average 38% could not be classified.

Discussion: No+CM cannot predict any misses, hence the upper curve is con-
stantly at 100%. As explained in Section 3, without may-information, it is im-
possible to infer that more than one memory block must be cached. Thus, with
increasing n, the lower curve decreases as it gets more unlikely to access the
same tag twice in a row.

Both, RC+CM and EMX+CM cannot predict any misses until 15 pairwise
different tags have been accessed. This is in line with the “evict” bound 2k−1 =
15 determined in [7]. Hence, the curves of RC+CM and EMX+CM coincide
with the one of No+CM up to n = 15. For larger n, both analyses predict
misses, which in turn allows to predict more hits.

EMX+CM predicts more misses than RC+CM. For n = 16, 17 the differ-
ence is relatively small. This is because the benefit of predicting “early misses”
is self-energizing. The more misses are predicted, the more does the “diagonal”
in Figure 2(b) help, the more misses are predicted. . . . Due to the domain coop-
eration, the must-analysis also profits from the prediction of misses, i.e., more
hits can be predicted. Put simply, RC+CM “takes the long way” and always
takes the !-transitions in Figure 2(b).

134 D. Grund and J. Reineke

0

10

20

30

40

50

60

70

80

90

100
%

n1 5 10 15 20 25 308

No+CM
RC+CM
EMX+CM
CollSem

0%

100%

}
Hits

}
Unknown

}
Misses

Fig. 3. Average guaranteed hit- and miss-rates for an 8-way cache set

Interestingly, CollSem shows that one could statically predict misses with
accesses to less than 2k− 1 pairwise different blocks. EMX+CM and RC+CM
require at least 2k − 1 pairwise different blocks because they do not gain in-
formation from repeating accesses. For n ≤ k, CollSem shows that one could
predict a large fraction of the accesses as hits. This is due to the fact that in any
concrete cache set at most n misses might occur if n ≤ k. However, one cannot
predict all but those n misses as hits since one has to account for all initial cache
set states. Depending on the initial position of a tag within a cache set, what
is a hit in one concrete cache set is a miss in another. Hence, the lower curve
decreases super-linearly. At n = 9 = k + 1, the percentage of predictable hits
drops extremely. Since n > k, the cache cannot hold all accessed blocks. At the
same time, almost no may-information is available in the collecting semantics.

0

10

20

30

40

50

60

70

80

90

100
%

n1 5 10 15 20 25 308

Fig. 4. Results of the join experiment

Similarly to static analyses, which can-
not gain precise must-information with-
out may-information, there are not
many guaranteed hits in the collect-
ing semantics. For larger n, the number
of predictable (and actually occurring)
misses increases, causing initially differ-
ent cache set states to converge more
quickly. This allows to predict more ac-
cesses as hits.

In a second experiment, we generated
program fragments with a large number
of control-flow join points to evaluate
the join functions of the analyses.

Abstract Interpretation of FIFO Replacement 135

We generated recursively nested if-then-else patterns, i.e., → . All
nodes of the flow-graph contain 10 random memory accesses. This way, we tested
the ability of the analyses to recover from (partially) lost information before the
next join point was reached. 4 shows the results. Generally, the relative evolu-
tion of the curves are the same as in Figure 3. The main difference is that all
guarantees are worse since even in the collecting semantics the uncertainty is
large.

7 Conclusions and Future Work

We presented the first abstract domain specifically tailored to the analysis of
caches with FIFO replacement. With information about the order in which hits
and misses have happened, our analysis can predict more misses than previous
approaches. Due to an effective cooperation between our may- and must-analysis,
this also improves the number of predicted hits.

Our evaluation clearly showed the characteristics of three different analyses,
i.e., when and why an analysis is better than another one. Additionally, the
illustration of the collecting semantics revealed characteristics of FIFO itself:
While EMX+CM and RC+CM need to observe accesses to at least 2k − 1
pairwise different blocks to obtain may-information, may-information may be
available after accessing fewer pairwise different blocks. How to exploit this in
an abstract domain? Furthermore, there is room for a better must-analysis for
n ≤ k, which, however, would have to rely on implicit miss-classifications.

Acknowledgements. We want to express our gratitude to Sebastian Hack for
his helpful remarks on drafts of this paper. We also thank the anonymous re-
viewers for their fair and thorough reviews. The research leading to these results
has received funding from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement n◦ 216008 (Predator). This work
was supported by the DFG as part of the Transregional Collaborative Research
Center SFB/TR 14 (AVACS).

References

1. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley,
D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut,
I., Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time
problem—overview of methods and survey of tools. Transactions on Embedded
Computing Systems 7(3), 1–53 (2008)

2. Alt, M., Ferdinand, C., Martin, F., Wilhelm, R.: Cache behavior prediction by
abstract interpretation. In: Cousot, R., Schmidt, D.A. (eds.) SAS 1996. LNCS,
vol. 1145, pp. 52–66. Springer, Heidelberg (1996)

3. Ferdinand, C., Wilhelm, R.: Efficient and precise cache behavior prediction for
real-time systems. Real-Time Systems 17(2-3), 131–181 (1999)

136 D. Grund and J. Reineke

4. White, R.T., Healy, C.A., Whalley, D.B., Mueller, F., Harmon, M.G.: Timing anal-
ysis for data caches and set-associative caches. In: RTAS 1997: Proceedings of the
3rd IEEE Real-Time Technology and Applications Symposium, Washington, DC,
USA, p. 192. IEEE Computer Society, Los Alamitos (1997)

5. Ghosh, S., Martonosi, M., Malik, S.: Precise miss analysis for program transfor-
mations with caches of arbitrary associativity. In: ASPLOS-VIII: Proceedings of
the Eighth International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 228–239. ACM Press, New York (1998)

6. Chatterjee, S., Parker, E., Hanlon, P.J., Lebeck, A.R.: Exact analysis of the cache
behavior of nested loops. In: PLDI 2001: Proceedings of the ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation, pp. 286–297.
ACM Press, New York (2001)

7. Reineke, J., Grund, D., Berg, C., Wilhelm, R.: Timing predictability of cache re-
placement policies. Real-Time Systems 37(2), 99–122 (2007)

8. Reineke, J., Grund, D.: Relative competitive analysis of cache replacement policies.
In: LCTES 2008: Proceedings of the 2008 ACM SIGPLAN-SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems, pp. 51–60. ACM Press,
New York (2008)

9. Jacob, B., Ng, S.W., Wang, D.T.: Memory Systems: Cache, DRAM, Disk. Morgan
Kaufmann Publishers, San Francisco (2008)

10. Cousot, P., Cousot, R.: Basic Concepts of Abstract Interpretation. In: Building the
Information Society, pp. 359–366. Kluwer Academic Publishers, Dordrecht (2004)

11. Ferdinand, C.: Cache Behaviour Prediction for Real-Time Systems. PhD thesis,
Saarland University (1997)

12. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.:
Combination of abstractions in the ASTRÉE static analyzer. In: Okada, M., Satoh,
I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 272–300. Springer, Heidelberg (2008)

13. Ghosh, S., Martonosi, M., Malik, S.: Cache miss equations: An analytical rep-
resentation of cache misses. In: ICS 1997: Proceedings of the 11th International
Conference on Supercomputing, pp. 317–324. ACM Press, New York (1997)

14. Ghosh, S., Martonosi, M., Malik, S.: Cache miss equations: A compiler framework
for analyzing and tuning memory behavior. ACM Transactions on Programming
Languages and Systems 21(4), 703–746 (1999)

15. Mueller, F., Whalley, D.B., Harmon, M.: Predicting instruction cache behavior.
In: LCTRTS 1994: Proceedings of the ACM SIGPLAN Workshop on Language,
Compiler, and Tool Support for Real-Time Systems (1994)

16. Li, Y.T.S., Malik, S., Wolfe, A.: Cache modeling for real-time software: Beyond
direct mapped instruction caches. In: RTSS 1996: Proceedings of the 17th IEEE
Real-Time Systems Symposium, Washington, DC, USA, p. 254. IEEE Computer
Society, Los Alamitos (1996)

17. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30(2), 323–342 (1983)

18. Peng, W., Iyer, S.P.: Data flow analysis of communicating finite-state machines.
ACM Transactions on Programming Languages and Systems 13(3), 399–442 (1991)

19. Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel sys-
tems with nonregular sets of configurations. Theoretical Computer Science 221(1-2),
211–250 (1999)

A Verifiable, Control Flow Aware Constraint
Analyzer for Bounds Check Elimination�

David Niedzielski, Jeffery von Ronne, Andreas Gampe, and Kleanthis Psarris

The University of Texas, San Antonio
{dniedzie,vonronne,agampe,psarris}@cs.utsa.edu

Abstract. The Java platform requires that out-of-bounds array accesses
produce runtime exceptions. In general, this requires a dynamic bounds
check each time an array element is accessed. However, if it can be proven
that the array index is within the bounds of the array, the check can be
eliminated. We present a new algorithm based on extended Static Single
Assignment (eSSA) form that builds a constraint system representing
control flow qualified, linear constraints among program variables de-
rived from program statements. Our system then derives relationships
among variables, and provides a verifiable proof of its conclusions. This
proof can be verified by a runtime system to minimize the analysis’s
performance impact. Our system simultaneously considers both control
flow and data flow when analyzing the constraint system, handles general
linear inequalities instead of simple difference constraints, and provides
verifiable proofs for its claims. We present experimental results demon-
strating that this method eliminates more bounds checks, and when com-
bined with runtime verification, results in a lower runtime cost than prior
work. Our algorithm improves benchmark performance by up to nearly
10% over the baseline SafeTSA system.

1 Introduction

The Java Virtual Machine specification requires all array accesses to be checked
at run time and that each out-of-bounds reference cause an ArrayIndexOutOf-
BoundsException to be thrown. However, these run time checks (especially those
occurring in nested loops) degrade performance, and so eliminating redundant
checks can significantly increase the the performance of Java programs.

Redundant bounds check elimination for Java programs relies on the opti-
mizer’s ability to determine that the index used to access an array element is
always both strictly less than the array’s length and also non-negative. If the
optimizer is able to make that determination, then the bounds check can be
safely eliminated. If this analysis is performed at run-time, then it must be done
as efficiently as possible so as not to degrade performance. However, techniques
that sacrifice precision for efficiency detect fewer redundant checks with resulting

� Supported in part by AFRL grant F30602-02-1-001, and NSF grants EIA-0117255
and CCF-0702527.

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 137–153, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

138 D. Niedzielski et al.

sub-optimal run time performance. Alternatively, if optimization is performed
at compile time, then it is possible to devote more time to the analysis in an
attempt to locate more redundant checks. However, any system that relies solely
on compile time analysis is susceptible to a malicious optimizer that claims that
an unsafe access is actually safe, thereby compromising system integrity. There-
fore, the results of the compile time analysis must be encoded, communicated to
the run time system, decoded, and verified at run time.

Optimization techniques generally sacrifice performance for precision, or vice
versa. For example, in an attempt to reduce the cost of the analysis, some sys-
tems [4,14] restrict the relationship among the variables to simple difference
constraints of the form x− y+ c ≤ 0, where x and y are program variables, and
c is a constant. Other more precise techniques [9,3] are neither efficient enough
to be used at run time, nor are capable of producing verifiable proofs.

We have previously described how proofs of the redundancy of a check can
be efficiently represented and verified [16]. This paper describes the Constraint
Analysis System (CAS), a symbolic program constraint analyzer that can be
used to detect redundant checks and provides a proof of its redundancy claims
that can be passed to and verified by a run time system. As described here, CAS
is intraprocedural, but in Gampe et al. [11], we describe how many bounds-
checks that would otherwise require inter-procedural analysis, can be eliminated
by combining CAS with a technique similar to that of Würthinger et al. [17].
This technique removes expensive bounds checks (such as those inside loops) by
inserting dynamic tests which guarantee sufficient conditions for the removed
bounds check to be redundant at program locations which minimize the cost of
the tests (such as the entry of methods).

CAS builds a Constraint System (CS) out of general linear relationships
among program variables. These have the form:∑

1≤i≤n

aixi + c ≤ 0 (1)

The CS is populated with linear constraints known as program constraints that
are known to hold because they are derived directly from the statements in
the program. CAS then determines if a proposed inequality constraint (a conjec-
tured relationship among program variables) is consistent with those program
constraints. That is, CAS attempts to determine if the proposed constraint is
plausible in the context of a particular program. CAS does so using negative
logic: it tries to find sequences of program constraint combinations that are con-
sistent with valid program control flow and which produce an inconsistent result
(i.e., c ≤ 0, where c is a positive constant) when combined with the proposed
constraint. Constraints are combined via elementary row operations to produce
an equivalent constraint with fewer variables. If CAS can determine that, re-
gardless of the control path taken to reach the variables in a constraint, there is
a corresponding set of program constraint combinations that can be combined
with the proposed constraint to produce an inconsistency, then the proposed
constraint can be rejected. Specifically, in the case where the rejected constraint

A Verifiable, Control Flow Aware Constraint Analyzer 139

states that an index is out of bounds, the array access using that index will
be safe and its runtime bounds check can be eliminated. CAS records the se-
quence of constraint combinations from which an inconsistency or consistency
was derived, enabling its reasoning to be later checked by verification systems.

The contribution of CAS is two fold. First, CAS specializes Fourier-Motzkin
Variable Elimination for use with eSSA program representations so that only
those constraint pairs corresponding to valid control flow (CF) paths are com-
bined to eliminate a variable. Additionally, φ-function variables are summarized
to obtain constraints that apply to all relevent control flow paths in the pro-
gram. Second, in CAS, the sequence of constraint combinations leading to a
inconsistency can be recorded so as to be quickly validated as authentic by a
properly-equipped run time system. Lastly, CAS is more general than runtime
algorithm based on difference constraints such as ABCD [4], which also operates
on eSSA but only considers a limited set of difference constraints.

1.1 eSSA Representation

Our system simultaneously considers program control and data flow to make
meaningful conclusions about how program variables relate to one another be-
cause the CS used by our system is derived from the program’s eSSA [4] represen-
tation. eSSA extends traditional SSA [10] representation with “π-assignments”,
which reflect constraints resulting from control flow paths taken subsequent to
conditional statements. These π-assignments create new variables (aliases) along
control flow paths that are dominated by the outcome of a conditional expres-
sion. The π-variables referenced in constraints implicitly identify a particular
control flow path within the program, and are later combined via an SSA φ-
assignment at a control flow merge point. The SSA code fragment in Figure 1
would be transformed into the equivalent eSSA fragment shown in Figure 2.

read(a);

read(b);

if (a < b) then

{Block A}

else

{Block B}

end

{Rest of program}

Fig. 1. SSA Example

read(a)

read(b)

if (a < b) then

a_1 = pi(a)

b_1 = pi(b) /* a_1 + 1 <= b_1 */

{Block A} /* a,b replaced with a_1, b_1 */

else

a_2 = pi(a)

b_2 = pi(b) /* b_2 <= a_2 */

{Block B} /* a,b replaced with a_2, b_2 */

end

a_3 = phi(a_1, a_2)

b_3 = phi(b_1, b_2)

{Rest of program} /* a,b replaced with a_3, b_3 */

Fig. 2. eSSA Example

140 D. Niedzielski et al.

1.2 Elementary Row Operations

CAS reduces the problem of determining whether a proposed constraint holds
in the context of a program to deciding whether a system of linear inequalities
is consistent. Several of the techniques used to solve this and related problems
(such as Gaussian, Gauss-Jordan, and Fourier-Motzkin elimination) operate on
the principle of iteratively reducing the original system to simpler but equivalent
forms until it is able to determine consistency (or solutions). One of the funda-
mental concepts underlying such techniques is that of elementary row operations,
which are transformations to the set of linear inequalities which do not change
the solution set of the system. Techniques such as Gaussian and Gauss-Jordan
elimination reduce a matrix representing a system of linear equations into an
equivalent but simpler form by performing only the following row operations:

Row Switching. A row within the matrix can be switched with another row
Row Multiplication. A row can be multiplied by a positive constant
Row Addition. A row can be replaced by the sum of that row and a multiple

of another row

A related technique to determine the consistency of a system of linear in-
equalities via elementary row operations is Fourier-Motzkin Variable Elimination
(FMVE) [15]. FMVE applies elementary row operations to eliminate variables
from the system until its consistency is readily decidable. It eliminates a vari-
able by combining all upper bounds on a variable x with all lower bounds on
x. Whenever a lower bound on x is paired with an upper bound on x, a new
inequality constraint is produced in which x does not appear. After all variables
have been eliminated, the system contains constraints of the form c ≤ 0. If all
such constraints are valid (that is, c is negative or zero), then the original system
is consistent. Otherwise, the original system is inconsistent.

2 The Constraint Analysis System (CAS)

CAS’s approach is based on FMVE: it eliminates a variable from all constraints
in a single step. CAS constructs a Constraint System (CS) and combines con-
straints within it to reason about relationships among program variables. We
now describe these two facets of CAS: representation via the CS and reasoning
via constraint combination.

2.1 The CAS Constraint System

CAS builds and manipulates a Constraint System (CS = (V,C)) to represent re-
lationships among program variables. V contains representations of the variables
in the program, while C contains linear inequalities that represent constraints
over those variables. These elements of CS are derived from the program’s as-
signment and conditional statements. CAS continually reduces CS by elimi-
nating variables in V until it is able to determine consistency. To eliminate a

A Verifiable, Control Flow Aware Constraint Analyzer 141

variable xn in V, CAS combines each lower bound (LB) on xn in C (i.e., con-
straint in which xn’s coefficient is negative) with every upper bound (UB) on xn

(i.e., constraints in which xn’s coefficient is positive) in C via elementary row
operations that produce a zero coefficient for xn in the result. At the conclusion
of this step, xn is removed from V, all new constraints formed by these com-
binations are added to C, and all former bounds on xn are removed from C.
Thus, as processing continues, the set V becomes progressively smaller, while C
(potentially) becomes larger. Note that C does not increase if all constraints are
difference constraints, whereas the elimination of variables involved in general
linear constrains causes the number of edges to increase.

Vertices in CS and their Properties CS contains a vertex for each variable
in the eSSA representation of the program (including π and φ variables). Each
vertex v ∈ V has several properties, including:

v.LB the set of constraints e ∈ C representing lower bounds on xn.
v.UB the set of constraints e ∈ C representing upper bounds on xn.
v.PHI a boolean indicating whether v is a φ variable

Constraints in CS and their Properties. The constraints in C represent lin-
ear constraints over the program’s variables. CAS deals generally with two kinds
of constraints: the constraints in C that are derived from program statements are
called program constraints, and are known to be mutually consistent if they all
lie on a non-cyclic feasible control flow path, whereas a proposed constraint rep-
resents a linear constraint over variables that CAS attempts to disprove. In our
work, a proposed constraint represents an unsafe condition that would lead to an
array-out-of-bounds exception (either upper or lower bound). Since the program
constraints are self-consistent (arising directly from program logic), and since a
proposed constraint states an access is unsafe (exceeds array bounds), an incon-
sistent system means that the array access is actually safe. Since all constraints
represent less-than-or-equal relationships, assignments and equalities are repre-
sented by a pair of inverted edges. That is, if the assignment statement x = y
or equality statement x == y occurs in the program, then two constraints are
added to C: x − y ≤ 0 and y − x ≤ 0. In order to ensure combined constraints
lie on consistent control-flow paths, constraints in C have a “direction” flag as-
sociated with them to distinguish whether the assigned variable has a negative
coefficient (“forward” direction) or a positive coefficient (“reverse” direction).
For example, the constraint −x+y ≤ 0 resulting from the assignment statement
x = y is assigned a “forward” direction, since the variable being assigned to x
has a negative coefficient. The other constraint resulting from this assignment
(x− y ≤ 0) is assigned a “reverse” direction since the assigned variable carries a
positive coefficient. Constraints arising from equality and inequality statements
are assigned an “independent” direction, but as we shall see later, if an “inde-
pendent” constraint is combined with a constraint from an assignment, the new
constraint will carry the direction of the assignment. Additionally, proposed con-
straints are initially assigned an “independent” direction as well. Another flag

142 D. Niedzielski et al.

associated with a constraint is the proposed flag, which is a binary indication
of whether a constraint is a program or proposed constraint. If a proposed con-
straint is combined with a non-proposed constraint, the proposed attribute is set
to true on the result.

Any constraint in which xn’s coefficient is negative is a lower bound on xn,
and is added to the collection xn.LB, while those with positive coefficients for
xn are upper bounds and are added to xn.UB. Since a single constraint can
contain terms for multiple variables, the same constraint can simultaneously be
in multiple UB or LB collections.

As an example, consider a simple program that allocates an integer array of y
elements, and then assigns to each element in ascending order. The eSSA listing
is shown in Figure 3, and the resulting CS is shown in Figure 4.

int A[] = new int[y0];

/* y0 == A.length */

x0 = 0

L: x1 = phi(x0, x3)

if (x1 >= y0) goto E:

x2 = pi(x1)

y1 = pi(y0)

/* x2 < y2 */

A[x2] = ...

x3 = x2 + 1

goto L:

E: x4 = pi(x1)

y2 = pi(y0)

/* y2 <= x4 */

...

Fig. 3. eSSA Version

Constraint Direction

x0 + 0 ≤ 0 Rev
−x0 + 0 ≤ 0 Fwd

A.length− y0 + 0 ≤ 0 Ind
−A.length+ y0 + 0 ≤ 0 Ind

x0 − x1 + 0 ≤ 0 Fwd
−x0 + x1 + 0 ≤ 0 Rev
x2 − x1 + 0 ≤ 0 Rev

−x2 + x1 + 0 ≤ 0 Fwd
y1 − y0 + 0 ≤ 0 Rev
−y1 + y + 0 ≤ 0 Fwd
x2 − y1 + 1 ≤ 0 Ind

x2 − x3 + 1 + 0 ≤ 0 Fwd
−x2 + x3 − 1 − 0 ≤ 0 Rev

x3 − x1 + 0 ≤ 0 Fwd
−x3 + x1 + 0 ≤ 0 Rev
x4 − x1 + 0 ≤ 0 Rev

−x4 + x1 + 0 ≤ 0 Fwd
y2 − y0 + 0 ≤ 0 Rev
−y2 + y + 0 ≤ 0 Fwd
y2 − x4 + 0 ≤ 0 Ind

Fig. 4. Constraint System (CS)

2.2 Constraint Combination in CAS

Once all program constraints and the proposed constraint are added to CS, CAS
determines the plausibility of the proposed constraint by eliminating variables.
Unlike conventional FMVE where each upper bound on a variable is indiscrim-
inately combined with each lower bound on a variable to eliminate it from the
system, CAS restricts which constraints can be combined in order to ensure the
resulting constraint corresponds to a valid control flow path in the program.

A Verifiable, Control Flow Aware Constraint Analyzer 143

Direction Compatibility. Some constraints, in particular, the ‘coupling’ of a
φ result variable with each of its operand variables, are only valid when certain
control flow graph edges are traversed. An example of this can be seen in the
case of the coupling constraints derived from the instruction x1 = φ(x0, x3) in
Figure 3: x1 − x0 + 0 ≤ 0, −x1 + x0 ≤ 0, −x1 + x3 ≤ 0, and x1 − x3 ≤ 0. If the
lower and upper bounds on x1 in these constraints were allowed to be combined
arbitrarily, it would yield 0 ≤ 0, 0 ≤ 0, x0 − x3 ≤ 0 and −x0 + x3 ≤ 0. The
first two of these constraints are consistent but redundant, whereas the second
two are together equivalent to x0 == x3. If this were true, then the value of x4
at the loop exit in Figure 3 would always be 0, but this relationship does not
follow from the code, since the coupling between x0 and x1 and between x1 and
x3 exist on different loop iterations.

CAS avoids this by flagging these ‘φ-coupling’ constraints (like−x1+x0+0 ≤ 0)
where the φ-variable is negative as “forward” and those where the φ-variable is
positive as “reverse.” CAS then prohibits the combination of bounds with oppos-
ing directions. That is, CAS will generally never combine a forward constraint
with a reverse constraint. If a forward or reverse constraint is combined with an-
other constraint, then the resulting constraint will carry the forward or reverse
direction, respectively. In this way, combined constraints derived from at least
one non-independent constraint inherit the direction of the non-independent
constraint, while a combined constraint is “independent” only if both “parent”
constraints were “independent.”

In the case of the φ-function in Figure 3, the constraint −x1 + x0 ≤ 0
has forward direction and the constraint x1 − x3 ≤ 0 has reverse direction.
Combining them to eliminate x1 is therefore not allowed. This will always be
true for φ-coupling constraints. Since the φ-variable (x1, in the example) is the
variable being assigned, it will always have a coefficient of −1 in the forward
φ-coupling constraints. Conversely, it will always have a coefficient of +1 in
reverse φ-coupling constraints. For two constraints to be combined, they need
to have opposite signs on the coefficient of the variable being eliminated, so
because coupling constraints with opposite signs will also also have opposite di-
rections, the direction compatibility test effectively prevents CAS from using the
φ-coupling constraints to inappropriately combine the constraints on the differ-
ent φ operands. (They can, however, still be combined in the case of loops as
described in the section of Sub-Cycle Elimination below).

In addition, direction flags on “π-coupling” constraints (such as x2−x1+0 ≤ 0)
play a role in ensuring that constraints derived from conditional branches are
only applied on the control flow path dependent on that conditional branch. An
example of this is the constraint x2 − y1 + 1 ≤ 0 in Figure 4 which is derived
from the conditional branch in Figure 3. In general, constraints are presumed
to hold wherever all of the variables involved in the constraint are in scope;
eSSA π-variables are introduced for variables involved in conditionals, so that
constraints for control-conditions are implicitly scoped to the control-dependent
region. The direction rules ensure that a constraint obtained by combining con-
dition constraints with constraints that are neither φ-coupling constraints nor

144 D. Niedzielski et al.

proposed constraints will always contain at least one variable that is control
dependent on the condition. As a result, those variables can only be eliminated
from the constraint if it is combined with a constraint derived from the coupling
of a φ-function operand that is control-dependent on the condition or from an
original proposed constraint that contained a variable that is control dependent
on the condition; in either case, it is appropriate to include the condition-derived
constraint. Otherwise, if it is inappropriate, the variable will be left unbounded
at will not be able to be used to show an inconsistency.

Sub-Cycle Elimination. CAS detects (in)consistencies through the formation
of inequalities in which all variables have been eliminated, leaving only the con-
stant term (we refer to these as ‘reduced’ constraints). This can be viewed as a
‘cycle’ in which each term with a positive coefficient is paired with a term with an
negative coefficient. In the example program (Figure 3 and 4), this would occur if
the proposed constraint for the upper-bound being violated −x2+A.length ≤ 0 is
combined with x2−y1+1 ≤ 0 by eliminating x2 to produce A.length−y1+1 ≤ 0
which combines with y1 − y + 0 ≤ 0 to produce A.length − y + 1 ≤ 0, which
combines with -A.length + y + 0 ≤ 0 to produce the inconsistency 1 ≤ 0. (Note
how the final constraint completed the cycle A.length ← x2 ← y1 ← A.length
eliminating all of the variables.)

Smaller sub-cycles can also be formed if there are constraints derived from
equality relationships (i.e., x − y ≤ 0 and y − x ≤ 0) which are not qualified
with direction flags or in the case of loops. To handle the former situation, CAS
keeps track of variables that were eliminated to derive each constraint and does
not allowing constraints to be combined if the same variable was eliminated
from both sides of the inequality. The latter case is handled by eliminating phi-
variables last and detecting cycles during phi-variable elimination. In such cases,
CAS summarizes the loop under the assumption that the back edge is traversed
either an infinite number of times, or else not taken at all, depending on which
gives the most conservative (safest) summary for that constraint.

Phi nodes. CAS uses a map to compare multiple constraints with the same
set of terms and propagates only the “best” one. The definition of “best” affects
precision as well as safety decisions and depends upon whether the variable be-
ing eliminated is a φ node. As described in [4], φ nodes are “maximum” nodes,
whereas other nodes are “minimum” nodes. We ensure that only the weakest
constraints are propagated when a φ node is eliminated, and the strongest con-
straint otherwise. To achieve this, CAS maintains a map effectively keyed by
a set of terms (excluding a constant), combined with a direction. The value of
the entry is the “best” constraint with those terms and direction. This map ini-
tially is populated by program and proposed constraints as they are added to
the system. Thereafter, when a new constraint is produced via LB-UB combina-
tions, the map is consulted to see if a ‘better’ value (depending on the type of
eliminated variable) has already been produced. This is done by comparing the
constant in the new constraint with the constant in the map entry corresponding
to the new constraints terms and direction. If the new constraint and mapped

A Verifiable, Control Flow Aware Constraint Analyzer 145

constraint are of equal strength, a constraint carrying the “proposed” indicator
takes preference. If not, the map is updated and the old constraint is deleted.

Mapping a reduced result requires explanation. Consider the combination of
z− y ≤ 0 (Forward) and y− z ≤ 0 (Forward) to eliminate y. The reduced result
(0 ≤ 0) (Forward) has no terms, and the map key cannot directly be derived.
In this case, CAS constructs a key constraint to be used as a map key. The key
constraint is of the the form (α, direction), where α is the set of all terms in the
LB, excluding the variable being eliminated, and direction is the direction of the
reduced constraint. For example, suppose we wish to combine 3x+4y−2z <= 0
(Forward) with −3x− 4y + 2z ≤ 0 (Forward) to eliminate z. Since the result is
reduced, our key constraint is (3x+ 4y, Forward). Furthermore, if the constant
in the reduced constraint is negative and composed from the combination of
exclusively assignment statements, then the constant in the key constraint is set
to −∞ to reflect the fact that the loop is unsafe when taken in this direction and
must be assumed to be taken an arbitrary number of times (since each iteration
weakens the constraint). Alternatively, since taking a safe (incrementing) loop
in a particular direction makes the constraint stronger (by incrementing the
constant), we assume the loop is never executed by setting the constant in the
the key constraint to the constant in the reduced constraint.

Unbound Variables. When a proposed LB is selected for pairing, a check is
done to see if the variable being eliminated is unbound. If so, CAS conservatively
reports that the proposed constraint holds. Equivalently, the unbound variable
will remain after all other variables are eliminated, but this approach allows us
to terminate the algorithm quickly. In future work, we plan to extend CAS with
the ability to generate run-time checks that resolve unbound variables during
program execution.

Initialization. CAS processing begins by initializing an empty CS, and pro-
gram constraints are added as the program is being parsed. CAS creates the
internal representations of the constraint and referenced variables, adds new
variables to V, sets the direction vector in the new constraint, ands adds the
new constraint to the appropriate variable’s LB and UB sets, and adds the con-
straint to the map. Additionally, if the constraint arises from an assignment or
equality, the constraint is copied, the coefficients and directions inverted in the
copy, and the copy is added to UB and LB sets as well as the map. Once all the
program constraints are added, a proposed constraint is formulated and passed
to the propose() method. This routine creates and initializes a new constraint,
sets it’s proposed flag, and adds it to appropriate UB and LB collections and
the map. Next, assignments in the program are examined. For each assignment
constraint where none of the variables are φ or π variables, the direction of the
constraint is changed to “independent.” This enables CAS to infer relationships
between x and y in cases such as x = 5; y = 6 where there is no intermediate
variable to eliminate and direction incompatibility would otherwise prevent the
necessary constraint combinations.

146 D. Niedzielski et al.

Processing. Next, propose() calls eliminate() to remove a variables from
the constraint system. This method combines each LB on a variable with all
compatible UBs on the variable, checks for unbound variables, and invokes the
method update map() to manage the map of “best” constraints. As part of
the combination, a new direction is computed, and the parent UB, parent LB,
and the eliminated variable are recorded in the result, so they can be used to
generate a proof. Importantly, update map() checks that the proposed constraint
is not equal to or weaker than a program constraint that arises either through
combinations or from the original set of constraints from the program. If that is
the case, then update map() immediately returns “true” to indicate the proposed
constraint is consistent with the program constraints. If a cycle is detected, this
is recorded by calling update map() after first generating the appropriate key
constraint as described previously.

CAS first eliminates all non-φ variables, leaving only the strongest constraints
linking the φ variables. Thereafter, the φ variables are eliminated taking only
the weakest results at each intermediate stage. After CAS eliminates a variable
v, it checks the map with key (v, Independent), (v, Forward), and (v, Reverse)
for a non-negative proposed cycle. If one is found, it immediately returns ‘true’
meaning that the unsafe proposed constraint may hold. Otherwise, if a negative
proposed constraint is found, a counter is updated that reflects the number of
proposed inconsistencies encountered.

Termination. Once all variables have been eliminated without discovering a
proposed consistency, propose() returns ‘false’ if at least one proposed incon-
sistency was discovered. Otherwise, propose() conservatively returns ‘true.’

2.3 Arithmetic Overflow

The algorithm described above finds symbolic solutions in the integer domain Z.
Java’s integer type int, however, is restricted to integers representable in 2’s com-
plement 32-bit words and “wrap around” when operations underflow/overflow.
Thus, the verification system requires supplementary proofs that the arithmetic
operations from which constraints are drawn do not invalidate those constraints
through arithmetic underflow or overflow. These are generated by examining the
eliminations used by CAS, identifying the constraints derived from arithmetic
operations, and invoking the CAS algorithm on a proposed constraint represent-
ing the underflow or overflow condition. Proving these constraints may, in turn,
require further invocations to check for underflow or overflow in the arithmetic
instructions providing constraints used in those proofs and so on.

3 Experimental Results

CAS was implemented in the SafeTSA compiler [1] and was used to identify
redundant bound checks and produce verifiable proofs of its redundancy claims.
These proofs were encoded in the form of annotations and were passed to a run-
time system for verification. Additionally, we added an annotation verifier and

A Verifiable, Control Flow Aware Constraint Analyzer 147

Procedure propose(pc)

/* Check if the proposed constraint pc is provably inconsistent with the program
constraints in this CS */

proposed inconsistencies = 0 ;
/* Add the proposed constraints to the UB and LB collections of the variables it

references */
foreach v in pc’s terms do

if v’s coefficient is negative then
Add pc to v.LB;

else
Add pc to v.UB;

end
end
update map(pc, null);
/* Convert assignments into inequalities where safe to do so */
foreach non-φ v in V do

if v is assigned in constraint c, c has no φs, and c is not a Pi-Assignment then
c.direction = Independent;

end
end
/* Eliminate all variables in the system. We’ll return early if we see a proposed

consistency preventing us from disproving the proposed constraint */
foreach non-φ v in CS do

eliminate(v);
end
foreach φ v in CS do

eliminate(v);
end
/* No proposed inconsistencies -- check if proposed inconsistencies detected */
if proposed inconsistencies > 0 then

return FALSE;
else

return TRUE;
end

annotation directed optimization into the SafeTSA class loader and JIT compiler
of the SafeTSA virtual machine (which is based on Jikes RVM 2.2.0).

For comparison, we also took the implementation of ABCD [4] found in the
Jikes RVM Optimizing compiler [6] and ported it to work with the SafeTSA
data structures. Several features of SafeTSA required extensions to the origi-
nal algorithm, most notably, SafeTSA’s type infrastructure. SafeTSA includes
several explicit type coercion instructions to simplify type-checking; these were
accommodated in ABCD by extending ABCD’s existing Global Value Number-
ing system. In addition, since the existing ABCD implementation analyzed only
upper-bounds checks, we extended ABCD to support lower-bounds checks.

We evaluated our prototype system using the Java Grande Forum bench-
marks [5]. The benchmarks were modified to express some of the array bounds
limits as symbolic constants rather than passed in as parameters so that more
array bounds could be eliminated with conservative, intraprocedural analysis.
These benchmarks were compiled into SafeTSA and then optimized using com-
mon subexpression elimination, which eliminates duplicate bounds checks us-
ing SafeTSA’s safe-element-reference type. This version of each class was used
as the baseline to which CAS and ABCD were applied. All of the experi-
ments were conducted on a 1.5GHz G4 PowerMac with 1GB of RAM running

148 D. Niedzielski et al.

Procedure eliminate(v)

foreach LB in v.LB do
if LB.proposed AND v has no upper bounds then

/* Unbound variable detected */
EXIT(TRUE);

end
foreach UB in v.UB do

if LB and UB have compatible directions AND do not form a sub-cycle then
/* Combine the constraints to eliminate v */
new con = combine(LB,v,UB);
if new con is reduced then

/* All variables have been eliminated, leaving only a constant term.
If this is a proposed constraint or is not a harmless cycle, then
create a key constraint from the terms eliminated terms (excluding
v) so we can consult the map */

if (new con.constant ¡ 0 AND new constant.isAssignmentCycle) OR
new con.proposed then

calculate key constraint from LB and UB;
if new con.proposed then

/* Assume a proposed constraint is not strengthened by safe
loop traversals */

key constraint.constant = new con.constant;
else

/* Assume unsafe loops are taken indefinitely */
key constraint.constant = −∞;

end
key constraint.direction = new con.direction;
update map(key constraint, v);

end
else

/* There are more variables to eliminate -- see if this new constraint
is ‘‘better’’ than one we’ve already seen */

if (update map(new con, v) == true then
Add new con to the UB and LB sets of remaining variables;

else
Discard new con;

end
end

end
end

end
delete all bounds in v.UB and v.LB;
if map[v, *].constant ≤ 0 and is proposed then

/* A consistency exists -- indicate we cannot disprove proposed constraint */
EXIT(TRUE)

end
if map[v, *].constant ¿ 0 and is proposed then

/* Inconsistent proposed cycle -- increment counter and keep checking */
proposed constraints += 1

end

a Linux 2.6.15 kernel. All timing measurements were made by repeatedly running
the benchmark program in a fresh virtual machine at least 200 times. The first
fifty runs were discarded and the mean of the subsequent runs reported.

Figure 5 shows the number of bounds checks (beyond those eliminated by
common subexpression elimination) that were eliminated by CAS and ABCD,
respectively, in each of the benchmark classes. Since CAS can reason about
a more general class of linear constraints while ABCD is limited to a sub-
class of difference constraints, one would expect CAS to eliminate more bounds

A Verifiable, Control Flow Aware Constraint Analyzer 149

Procedure update map(con, v)

/* Manage a map of the ‘‘best’’ constraints seen thus far. The definition of ‘‘best’’
depends on whether the term just eliminated to create a new constraint is a φ node
or not */

if map[(con.terms,con.direction)] exists then
/* A constraint with the same terms and direction as the new constraint has already

been processed. See if the new constraint is ‘‘better’’ */
old con = map[(con.terms,con.direction)];
/* If old con is proposed and con is a program constraint (or vice versa) verify

that the proposed constraint is not the original proposed constraint and equal
to or weaker than the program constraint. If so, return ‘‘true’’ */

if v is non-φ then
/* Test the constant in the old constraint to see if the new constraint is

stronger. Replace and delete the old constraint if it is weaker, or if it is
not proposed while the new constraint is proposed (to be conservative).
Return ‘‘true’’ if we updated the map, ‘‘false’’ otherwise */

else
/* Test the constant in the old constraint to see if the new constraint is

weaker, or if the new constraint is proposed and is the same strength as the
old constraint. If so, replace and delete the old constraint. Return
‘‘true’’ if we updated the map, ‘‘false’’ otherwise */

end
else

/* This is a new map entry */
map[(con.terms,con.direction)] = con;
return “true”;

end

Series LUF SOR HS Crypt FFT SMM S/G S/TG S/SG MD MC/MC MC/RP RT
0

5

10

15

20

#
 C

he
ck

s
El

im
in

at
ed

CAS
ABCD

Fig. 5. Precision of CAS and ABCD

checks than ABCD. For our benchmarks, all of the bounds checks removed by
ABCD were also eliminated by CAS, and in nearly three-quarters of the classes,
CAS’s extra precision enabled it to eliminate more bounds checks. Notably, for
the the Moldyn benchmark, CAS was able to eliminate 15 bounds checks where
ABCD could only remove 5. Manual inspection of several bounds checks re-
vealed that these were bounds checks that the ABCD is unable to prove because
ABCD can only reason about difference constraints constraining the variable
being defined relative to the variables being used in that definition. This re-
striction speeds up ABCD significantly (since it allows ABCD to piggy back on
the existing compiler data structures) but does so at the cost of precision. The
following code fragment from MolDyn is typical:

150 D. Niedzielski et al.

particle[] one = new particle [mdsize];
for(i=0;i<mdsize;i++) {

sp = sp + one[i].xvelocity;
}

ABCD cannot infer that the access is safe in this case because particle is
defined in terms of mdsize instead of mdsize being defined in terms of a.length,
but CAS can prove such accesses safe.

Figure 6 shows the cost of the runtime verification of CAS’s proofs vs. the
runtime use of ABCD as a percentage of baseline JIT compilation time. For CAS
this is primarily the time required to verify annotations at run-time, whereas for
ABCD this is the time required to carry out the analysis. With one exception
(RayTracer), verification has a lower runtime cost than ABCD. For some of
the benchmarks (notably Crypt, Search, and LUFact), verification is several
times faster. For bounds checks both ABCD and CAS can eliminate (chains of
difference constraints), CAS verification and ABCD take about the same time.
The primary reason that verification outperforms ABCD is because verification
only needs to verify those bounds checks that are actually unnecessary, whereas

Series LUF SOR HS Crypt FFT SMM Search MD MC RT
0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

Pe
rc

en
ta

ge
 o

f J
IT

 C
om

pi
la

tio
n

Ti
m

e

VBCE
ABCD

Fig. 6. Runtime Cost of CAS and ABCD

Series LUF SOR HS Crypt FFT SMM Search MD MC RT
0

0.02

0.04

0.06

0.08

0.1

Sp
ee

du
p

Fig. 7. Overall Execution Speedup with CAS

A Verifiable, Control Flow Aware Constraint Analyzer 151

ABCD analyzes all bounds checks. Compared to the total JIT compilation time,
both methods impose a very small runtime cost (up to about 0.2% for CAS
verification and up to about 2.0% for ABCD).

Figure 7 shows the speedup in total benchmark execution time resulting from
the use of verification compared to the baseline SafeTSA version of the bench-
mark. The bounds check elimination resulted in improvements of nearly 10% on
the SOR benchmark and over 3% on the SparseMatMult and MolDyn bench-
marks. On the other benchmarks the speedup was small or negligible; this is
because most of the bounds checks that could be eliminated in those bench-
marks were not in the benchmark’s inner loop. Since time spent in verification
was relatively small (a couple of milliseconds) compared to the total execution
time (15s–200s), the effect of verification cost was negligible.

4 Related Work

There have been several works addressing the array bounds check problems
in Java. Moreira et al. [13] used heavy-weight loop-based transformations and
optimizations to optimize bounds checks in scientific applications; their goal
was to provide a traditional static compiler for Java programs that provides
performance approaching that of traditional optimizing compilers for Fortran,
so their approach does not support just-in-time compilation and is not a general
solution to the Java bounds check problem.

The ABCD algorithm [4] provides a runtime global bounds check elimination
based on extended-SSA (eSSA) form and difference constraints, it is quite effi-
cient but has some limitations since it can only obtain difference constraints that
can be overlayed onto the eSSA graph. Menon et al. [12] extended the ABCD
algorithm to produce optimized programs augmented with verifiable proof vari-
ables. Like ABCD, CAS represents programs using eSSA, but CAS’s constraint
system is more general allowing it to reason about linear inequalities. Linear
programming techniques such as Fourier-Motzkin Variable Elimination [15] also
handle such inequalities, but CAS is adapted to simultaneously consider restric-
tions arising from control flow.

Qian et al.[14] use an iterative dataflow analysis based on difference con-
straints to annotate bytecode with an indication of which bounds checks are
unnecessary, but it does not provide verifiable proofs of its claims. Chen and
Kandemir [7] describe a method for annotating the fixed point of a iterative
dataflow analysis of integer variable ranges which can then be verified using a
single iteration of the same algorithm, but their constraints are limited to a
subset of difference constraints.

Zhao et al.’s [18] optimization is restricted to limited loop forms (and is,
therefore, less comprehensive than our approach) but is quite efficient during JIT
compilation. Würthinger et al. [17] have developed a bounds check elimination
for use in the HotSpot JIT compiler, which similarly identifies simple patterns
in the source code but adds speculation to reduce the overhead of some of the
bounds checks that cannot be completely eliminated statically.

152 D. Niedzielski et al.

Besson et al.’s [2] proof-carrying code architecture is based on Cousot’s ab-
stract interpretation [8] and produces a certificate at analysis time that is passed
to a consumer for certified verification. Their system checks if all accesses within
a program are safe, rather than testing the safety of individual array accesses.

5 Conclusion

We present in this paper a static analysis for determining whether a proposed
constraint over variables is consistent with the semantics of a particular code
fragment. CAS uses eSSA representation to form a constraint system expressing
relationships among variables with sufficient control flow information to ensure
semantically meaningful conclusions. It then simplifies the system until it can
determine whether the proposed constraint is consistent with the system. This
information can be used to determine that array bounds checking is not neces-
sary along particular control flow paths. We present experimental results that
demonstrate that CAS finds more redundant checks than previous work, and
improves the runtime of JAVA benchmarks up to 10%. Our results show how
CAS is useful when used at compile time to identify fully redundant bounds
checks and having its conclusions encoded in the form of annotations which are
efficiently verified at run-time.

References

1. Amme, W., von Ronne, J., Franz, M.: Ssa-based mobile code: Implementation and
empirical evaluation. ACM Trans. Archit. Code Optim. 4(2), Article 13 (2007)

2. Besson, F., Jensen, T., Pichardie, D.: Proof-carrying code from certified abstract
interpretation and fixpoint compression. Theoretical Computer Science 364(3),
273–291 (2006); Applied Semantics

3. Blume, W., Eigenmann, R.: Demand-driven, symbolic range propagation. In:
Huang, C.-H., Sadayappan, P., Banerjee, U., Gelernter, D., Nicolau, A., Padua,
D.A. (eds.) LCPC 1995. LNCS, vol. 1033, pp. 141–160. Springer, Heidelberg (1996)

4. Bod́ık, R., Gupta, R., Sarkar, V.: Abcd: eliminating array bounds checks on de-
mand. In: PLDI 2000: Proceedings of the ACM SIGPLAN 2000 conference on
Programming language design and implementation, pp. 321–333. ACM Press,
New York (2000)

5. Bull, J.M., Smith, L.A., Westhead, M.D., Henty, D.S., Davey, R.A.: A bench-
mark suite for high performance Java. Concurrency: Practice and Experience 12(6),
375–388 (2000)

6. Burke, M.G., Choi, J.-D., Fink, S., Grove, D., Hind, M., Sarkar, V., Serrano, M.J.,
Sreedhar, V.C., Srinivasan, H., Whaley, J.: The jalapeño dynamic optimizing com-
piler for java. In: JAVA 1999: Proceedings of the ACM 1999 conference on Java
Grande, pp. 129–141. ACM, New York (1999)

7. Chen, G., Kandemir, M.: Verifiable annotations for embedded java environments.
In: CASES 2005: Proceedings of the 2005 international conference on Compil-
ers, architectures and synthesis for embedded systems, pp. 105–114. ACM Press,
New York (2005)

A Verifiable, Control Flow Aware Constraint Analyzer 153

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
1977: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pp. 238–252. ACM, New York (1977)

9. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL 1978: Proceedings of the 5th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pp. 84–96. ACM Press,
New York (1978)

10. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems (TOPLAS) 13(4), 451–490
(1991)

11. Gampe, A., von Ronne, J., Niedzielski, D., Psarris, K.: Speculative improvements to
verifiable bounds check elimination. In: Proceedings of the International Conference
on Principles and Practice of Programming In Java (PPPJ 2008). ACM Press,
New York (2008)

12. Menon, V.S., Glew, N., Murphy, B.R., McCreight, A., Shpeisman, T.,
Adl-Tabatabai, A.-R., Petersen, L.: A verifiable ssa program representation for
aggressive compiler optimization. In: POPL 2006: Conference record of the 33rd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pp. 397–408. ACM Press, New York (2006)

13. Moreira, J.E., Midkiff, S.P., Gupta, M.: From flop to megaflops: Java for technical
computing. ACM Trans. Program. Lang. Syst. 22(2), 265–295 (2000)

14. Qian, F., Hendren, L.J., Verbrugge, C.: A comprehensive approach to array bounds
check elimination for java. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304,
pp. 325–342. Springer, Heidelberg (2002)

15. Schrijver, A.: Theory of Linear and Integer Programming. Wiley and Sons, Chich-
ester (1986)

16. von Ronne, J., Gampe, A., Niedzielski, D., Psarris, K.: Safe bounds check
annotations. Concurrency and Computations: Practice and Experience (2008),
doi:10.1002/cpe.1341

17. Würthinger, T., Wimmer, C., Mössenböck, H.: Array bounds check elimination for
the java hotspot client compiler. In: PPPJ 2007: Proceedings of the 5th interna-
tional symposium on Principles and practice of programming in Java, pp. 125–133.
ACM, New York (2007)

18. Zhao, J., Rogers, I., Kirkham, C., Watson, I.: Loop parallelisation for the jikes
rvm. In: Proceedings of the Sixth International Conference on Parallel and Dis-
tributed Computing (PDCAT 2005), pp. 35–39. IEEE Computer Society Press,
Los Alamitos (2005)

Increasing the Scope and Resolution of
Interprocedural Static Single Assignment

Silvian Calman and Jianwen Zhu

Department of Electrical and Computer Engineering
University of Toronto, Toronto, Ontario, Canada

{calman,jzhu}@eecg.toronto.edu

Abstract. While intraprocedural Static Single Assignment (SSA) is
ubiquitous in modern compilers, the use of interprocedural SSA, although
seemingly a natural extension, is limited. We find that part of the im-
pediment is due to the narrow scope of variables handled by previously
reported approaches, leading to limited benefits in optimization.

In this study, we increase the scope of Interprocedural SSA (ISSA) to
record elements and singleton heap variables. We show that ISSA scales
reasonably well (to all MediaBench and most of the SPEC2K), while
resolving on average 1.72 times more loads to their definition. We propose
and evaluate an interprocedural copy propagation and an interprocedural
liveness analysis and demonstrate their effectiveness on reducing input
and output instructions by 44.5% and 23.3%, respectively. ISSA is then
leveraged for constant propagation and dead code removal, where 11.8%
additional expressions are folded.

Keywords: SSA, interprocedural, dataflow, constant propagation.

1 Introduction

When the Intermediate Representation (IR) is in Static Single Assignment (SSA)
form, each use of a variable is associated with the point where it is defined. To
convert the IR into SSA form an algorithm based on Cytron [1] can be used to
replace loads and stores for a set of program variables, which we refer to as SSA
variables and insert φ instructions at control flow merge points.

Not all program variables are SSA variables. Usually, they are limited to scalar
stack variables, whose address is never taken. This scope can be extended to
other stack variables, global variables, and variables allocated on the heap. This
extension is usually referred to as Interprocedural SSA (ISSA) as it is required
to trace the dataflow for SSA variables across procedure boundaries.

SSA form can simplify analysis and optimization algorithms. Due to φ in-
structions, we can distinguish values associated with incoming edges, a property
utilized to apply constant propagation, dead code removal [2], and other trans-
formations [3, 4]. Moreover, φ instructions can also be used to analyze cyclical
dataflow, such as in induction variable analysis [5]. Beyond this, SSA is also
used to simplify other client applications [6, 7, 8] by decoupling the dataflow

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 154–170, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Increasing the Scope and Resolution of ISSA 155

analysis from the implementation. Naturally, it can be expected that ISSA form
can help extend these intraprocedural analysis and optimization algorithms to
their interprocedural counterparts.

We review two recent ISSA construction algorithms. Liao [9] applied a unifica-
tion based pointer analysis (Steensgaard’s [10]), and renamed memory accesses
to the corresponding alias set. Staiger et al. [11] used symbolic variables, called
locators, to represent program variables at each procedure. In this work, values
are passed interprocedurally by mapping locators to one another and SSA is
generated in a traditional way [1], after a pointer analysis step maps all loads
and stores to the corresponding locator. Staiger showed that an inclusion-based
pointer analysis (Andersen’s [12]) reduces memory consumption and consider-
ably speeds up the formation of ISSA, compared to the unification-based pointer
analysis (Steensgaard).

The ISSA construction described by Liao [9] and Staiger [11] has a number of
shortfalls. First, their ISSA has limited resolution, as some SSA variables rep-
resent more than one program variable, creating may def-use relations. More
specifically, full resolution was only available for scalar globals and as such, copy
propagation (and strong updates, etc.) could only be applied to scalar globals.
Furthermore, in contrast to traditional SSA form, client applications would have
to distinguish between must def-use and may def-use relations. Second, neither
Liao [9], nor Staiger [11] applied interprocedural copy propagation, which can
fold false merge points or liveness analysis to reduce unnecessary dataflow propa-
gation. The lack of a mechanism to remove redundant φ instructions and unused
expressions during ISSA construction results in a much greater code size and
less precise dataflow.

We propose and evaluate an ISSA form without may def-use relations, imple-
mented in the compiler IR by extending the instruction set. Our implementation
considers both scalars as well as scalar elements of records. We handle global and
stack variables, as well as variables corresponding to a single dynamic memory
location. Using this implementation, we contrast ourselves with previous work
and make the following contributions:

– We quantify why the previous approach, in which a flow-insensitive pointer
analysis is used and only strong updates to scalars globals are handled
(similar to Staiger [11]), is less effective. By handling record elements and
singleton heap locations, we replace 1.72 times (on average) more load in-
structions with their definition. In addition, we observed that the field-
insensitive pointer analysis increases the input into procedures by a factor
of 12.2, on average.

– We define the value of an instruction in terms of its parent’s last invoca-
tion and we propose an interprocedural copy propagation algorithm, which
reduces input and output instructions by 44.5%, on average. To the best of
our knowledge, this is the first paper describing the challenges involved as
well as proposing a solution.

156 S. Calman and J. Zhu

– We incorporate a revised interprocedural liveness analysis to limit the vari-
ables propagated into and out of procedures, which reduces the input and
output instructions by 23.3%, on average.

– We evaluate the benefit of ISSA by applying constant-folding and dead code
elimination on the IR (ISSA form) and fold on average 11.8% more instruc-
tions than what was provided by the LLVM infrastructure.

In Section 2, we describe the IR extensions for ISSA and the challenges in-
volved in copy propagation. In Section 3, we provide details regarding the im-
plementation and present the algorithms used to identify heap allocated SSA
variables, compute liveness analysis, and apply copy propagation. In Section 4,
we provide experimental data for the performance and precision of our ISSA
form and the improvement observed in constant propagation. Section 5 discusses
related work and Section 6 summarizes the major conclusions.

2 Interprocedural SSA

In this section, we present the IR extensions used to handle dereferences and in-
terprocedural value propagation and demonstrate ISSA form construction using
an example. In Section 2.1, we describe the difference between intraprocedural
and interprocedural copy propagation and outline our algorithm.

In ISSA, dereferences might correspond to multiple locations, including SSA
variables. Similar to previous work [13, 6, 14, 15], we extend the IR with the
conditional load and store instructions (φL and φS , respectively). Another issue
is value passing at call instructions; we introduce two new instructions, φV and
φC , to pass the value of a variable across procedure boundaries. These new
instructions are discussed in more detail below:

φS : pExpr.φS(var, curr, val) is used to handle store instructions, where pExpr
is the pointer expression. If pExpr is equal to var, then the value of this
instruction becomes val, otherwise, the value is curr.

φL: pExpr.φL(〈var1, val1〉, . . . , 〈varn, valn〉) is used to handle load instructions,
where pExpr is the pointer expression. If pExpr is equal to vari, then the
value of this instruction will be vali.

φV : φV
〈var,p〉(〈ci1, val1〉, 〈ci2, val2〉, . . .) is used to pass the value of variable var

to the entry of procedure p, from a call instruction ci. When entering p
from cii, the value of this instruction is vali.

φC : pExpr.φC
〈var,ci〉(〈func1, val1〉, 〈func2, val2〉, . . .) is used to pass the value of

variable var, at the exit from a call instruction ci, where pExpr is the
pointer expression for ci, if ci is an indirect call. If pExpr is equal to funci,
then the value of this instruction will be vali. For direct calls, we omit the
pointer expression.

In Example 1(d), we show the ISSA form of Example 1(a). The ISSA form is
derived by leveraging the pointer analysis result along with the new instructions

Increasing the Scope and Resolution of ISSA 157

Example 1. Interprocedural SSA Example

int y = 5, z = 10, *x, **g; 1
C() { print(**g); } 2
B() { *g = &z; } 3
main() { 4
g = &x; 5
x = &y; 6

S1: B(); 7
**g = 20; 8

S2: C(); 9

}

(a) Code before SSA is applied.
Point-to graph is shown in
Example 1(b).

int y = 5, z = 10, 1
*x, **g; 2

C() { 3
print(20); 4
} 5
main() { 6
C(); 7

}

(c) Code after copy propagation

(b) Point-to
graph for
Example 1(a)

g x

y

z

int y = 5, z = 10, *x, **g; 1
C() { 2

x2 = φV
〈x,C〉(CI2, x1); 3

y2 = φV
〈y,C〉(CI2, y1); 4

z2 = φV
〈z,C〉(CI2, z1); 5

print(x2.φL(〈&y, y2〉, 〈&z, z2〉)); 6
} 7
B() { } 8
main() { 9

CI1: B(); 10

x1 = φC
〈x,CI1〉(B, &z) 11

y1 = x1.φS(&y, 5, 20); 12

z1 = x1.φS(&z, 10, 20); 13
CI2: C(); 14

}

(d) Code after φS, φL, φV , and φC instructions are
inserted

(φL, φS , φV , φC). In Example 1(a), all four global variables g, x, y, and z are SSA
variables. A flow-insensitive pointer analysis indicates that x points to either y or
z, and g points to x. Since the dereference in Example 1(a) on Line 8 corresponds
to either y or z, we need to insert two φS instructions to handle the store, as
illustrated in Example 1(d) on Lines 12–13. Similarly, due to the dereference in
Example 1(a) on Line 2, we need to insert a φL instruction in Example 1(d)
on Line 6. Note that procedure B produces the variable x, whereas procedure
C uses the variable x and possibly the variables y or z. Hence, we generate
the appropriate input and output mappings for procedure B on Line 11 and
procedure C on Lines 3–5.

2.1 Copy Propagation

Copy propagation simplifies the IR, as we remove and fold φ, φS , φL, φV , and
φC instructions. For instance, by applying copy propagation, we determine the
value of x1 (Line 11 in Example 1(d)) to be &z and by folding the φS and φL

instructions, we produce the code in Example 1(c).
The scope of a value in our framework is the whole program, enabling us to

fold φV and φC instructions. The benefit of this approach is IR size reduction
and the simplification of the def-use relation, as values passed in and out of
procedures are masked by φV and φC instructions. To this end, we define the
value of instruction I in procedure P as the value of I in the last call frame of

158 S. Calman and J. Zhu

P , or otherwise (P is not on the stack) as the value of I in the last invocation of
P . Under this definition, the value of I varies with its usage points, but at any
program point in P , it is identical in both SSA and ISSA, and as such, ISSA can
be constructed on IR in SSA form. Copy propagation is straight forward with
the exception of φV and φC instructions, which we discuss in the rest of this
section.

Let us consider a φV instruction IV used in procedure P , merging a single
value V . Under our definition, replacing IV with V is legal as long as V is not
located in P . However, V cannot be located in P since V must dominate IV , and
IV dominates all instructions inside procedure P . Hence, under our definition,
φV instructions merging a single value V , can always be substituted with V .

Example 2. Examples for invalid φC copy propagation

int Sum(1
int a, int b, int c) { 2

S1: return a + b + c; } 3
void main() { 4
int e, f; 5

6
e=Sum(1,2,3); 7
f=Sum(20,21,315); 8
printf(”%d,%d\n”, f, e); 9
}

(a) Interprocedural copy propaga-
tion

StructPtr recursiveProc(1
StructPtr a, StructPtr b) { 2
resA = recursiveProc(3

a->right, b->right); 4
resB = recursiveProc(5

a->left, b->left); 6
. . . 7
if(resA == resB) 8

. . . ; 9
}

(b) Recursive procedure dataflow

Let us consider a φC instruction IC merging a single value V located in pro-
cedure PV . Replacing IC with V is not always legal, as the invocation of PV

which V corresponds to depends on the usage point of IC . This is illustrated
in Example 2, where we present two cases in which the same value can corre-
spond to different instances of an instruction. In Example 2(a), both the first
and second return values from procedure Sum would correspond to S1. If we
propagate S1 through both φC instructions corresponding to it, then we would
lose the reference to S1 returned from the first call. To further emphasize this,
in Example 2(b), the values produced in two previous invocation of a recursive
procedure are compared. Without distinguishing between such instances, we will
erroneously conclude that the branch is always taken.

To discuss a solution for the substitution of φC instructions, let us assume
IC is in procedure PIC and defined at call instruction ci. First, if the value
IC merged was a constant (i.e. not V), then it could be substituted at all usage
points of IC . Otherwise, to prevent the propagation of values whose parent might
still be on the stack, we make sure that PIC and PV do not belong to the
same maximal Strongly Connected Component. Then, we can substitute
IC with V if no other call to PV is reachable between ci and the usage program
point (V not redefined – thus it corresponds to value at ci). Note that our copy
propagation algorithm must be flow-sensitive, since we need to determine the
last instance of values substituted for φC instructions.

Increasing the Scope and Resolution of ISSA 159

3 Interprocedural SSA Generation

ISSA is generated in a stepwise procedure, as is illustrated in Figure 1. First,
in Section 3.1, we discuss the field-sensitive pointer analysis. In Section 3.2, we
describe the SSA variables handled and present the algorithm used to identify
singleton heap variables. Similar to Staiger [11], we convert load and store in-
structions as described in Section 3.3 and map input and output values at call
instructions, as detailed in Section 3.4. In Section 3.4, we also describe the in-
terprocedural liveness analysis used to constrain the variables propagated across
procedures. Next, we place φ instructions to merge values, both interprocedurally
and intraprocedurally. We treat the newly inserted φS , φV , and φC as storage
instructions; φL as a load instruction; and we use Cytron’s [1] algorithm, un-
modified. Lastly, we apply interprocedural copy propagation, as described in
Section 3.5.

StaigerField-Sensitive
Pointer

Analysis
Dereference
Conversion

Choose
SSA

Variables

Procedure
In and Out
Mapping

Liveness Analysis

φ
Placement

Copy
Propagation

φS,φL φV ,φC φ

Fig. 1. Overall procedure for ISSA generation

3.1 Pointer Analysis

Pointer analysis is used to update the call graph and to resolve pointer deref-
erences into loads, stores, φS , and φL instructions (Section 3.3). From practical
experimentation on a large number of C benchmarks, we observed that field-
insensitivity results in a large number of spurious point-to edges and an increase
in the number of variables passed across procedures.

We observed that distinguishing between heap objects reduced the number
of spurious point-to edges and therefore, false loads and assignments. Moreover,
many benchmarks use memory managers, and distinguishing between heap loca-
tions, allocated using interface functions, reduced both the runtime of the pointer
analysis and spurious point-to edges (and hence, spurious memory accesses).

3.2 Choosing SSA Variables

Currently, we consider scalar variables and fields of aggregates as potential SSA
variables. We handle local variables in non-recursive procedures and in addition
to previous work on ISSA, we also handle SSA variables residing in allocation
sites, executed at most once in a program, which we refer to as singular. If an

160 S. Calman and J. Zhu

allocation site Ai is executed at most once, then each dereference resolved to
Ai corresponds to the same memory location. Furthermore, since only a single
instance of this instruction exists, each variable v, allocated at Ai, can be an
SSA variable.

Singular allocation sites are identified by using the maximal Strongly Con-
nected Component (SCC) partitioned call graph and control flow graph. Singu-
lar allocations can occur on mutually exclusive paths in the program. As such,
we propose an algorithm called Exclusive Path Singular Allocation Site Iden-
tifier (EPSASI). Initially, EPSASI excludes from consideration all procedures
in a SCC, or procedures called from a control flow graph SCC, as well as their
descendants. In EPSASI, the procedures reached from every call instruction in
non-excluded procedures are summed up (using bottom-up traversal). The rest
of the algorithm is formulated as an intraprocedural dataflow analysis, identi-
fying procedures invoked more than once on a given path. In the analysis, the
domain is a mapping between every procedure p and the maximum number of
times p can be invoked, at the entry to a basic block. Initially, at the entry block
for a procedure, we initialize the map to 0. When encountering a call instruction
ci, 1 is added to the number of possible invocations for each reachable procedure
from ci (transfer function). The number of times a procedure p can be invoked
at the entry to a basic block bb is the maximum number of invocations p can
have in the predecessors of bb (meet operator). We exclude all procedures which
have more than one path executing them, as well as their descendants.

When a fixed point is reached, all allocation sites in non-excluded procedures,
not located in control flow graph SCCs, are singular.

3.3 Dereference Conversion

We convert dereferences to load and store instructions, which can reference SSA
variables. If pExpr is the pointer expression for a load or store instruction and
it references a single memory location (according to pointer analysis) for SSA
variable var, then we replace pExpr with var.

Let us consider a store instruction, assigning value val, that references
more than one memory location, including at least one SSA variable. We
will replace this instruction with a series of φS instructions, with the form
pExpr.φS(var, curr, val), for each SSA variable var, with current value curr. If
pExpr can also reference a non-SSA variable, we also insert a default φS instruc-
tion, which is executed if none of the other φS instructions have pExpr == var.

In the case of a load instruction that can reference SSA variables
var0 . . . varn, and non-SSA variables varn+1 . . . varn+1+m, where n + m > 1,
we insert a φL instruction. If m == 0, then the load is replaced with
pExpr.φL(〈var0, val0〉, . . . 〈varn, valn〉). If m �= 0, then we also add a default
value to the φL instruction, which is taken if none of the other addresses match.

The effect of external call instructions is captured by replacing the call using
the load, store, φL, and φS instructions. In cases where this can’t be done, we
commit the value of the variable prior to the call and assign it afterwards.

Increasing the Scope and Resolution of ISSA 161

Note that during copy propagation and constant folding, the pointer expres-
sion, pExpr, for various φL or φS instructions, is resolved. We can then fold
these instructions to their corresponding value.

3.4 Procedure Input and Output Mapping

In the rest of this section (and in Section 3.5), we use the following terms:

– PR ⊂ [0,∞) is the set of procedures in the program.
– BB ⊂ [0,∞) is the set of basic blocks in the program.
– INS ⊂ [0,∞) is the set of instructions in the program.
– VR ⊂ [0,∞) is the set of SSA variables in the program.
– RV : PR �→ 2VR is a mapping between a given procedure p ∈ PR and the

set of variables V ⊆ VR possibly read in p or its descendants.
– WV : PR �→ 2VR is a mapping between a given procedure p ∈ PR and the

set of variables V ⊆ VR possibly written in p or its descendants.

We use the load, store, φS , and φL instructions to determine the initial values
of RV and WV , for each procedure. We then partition the call graph into SCCs
and traverse the partitioned call graph using a postorder traversal (bottom-up
pass), adding up the read and write sets in the program. The computation of RV
and WV using this approach is very coarse and we refine it by using a revised
liveness analysis. For every procedure p ∈ PR, we compute ARV(p), which is
the set of variables read after p exits. In addition, we compute the set of variables
written before p is first invoked, BWV(p). Then, we constrain the set of variables
passed in and out of procedure p using BWV(p) and ARV(p), respectively.

We compute these two sets by using the SCC partitioned call graph to de-
rive a topological visitation order, TopCG : Z �→ 2PR. Likewise, for each pro-
cedure p ∈ PR, we derive a topological control flow graph visitation order
TopCFG : Z �→ 2BB. Next, we apply procedure deriveLimitSets, presented in
Algorithm 1, which visits the call graph in topological order. When TopCG(i) is
a SCC, then RV and WV are added to ARV and BWV , respectively, since each
procedure in TopCG(i) might be executed multiple times (Lines 9–15). Oth-
erwise, a topological traversal over the SCC partitioned control flow graph of
TopCG(i) is applied, using TopCFG. During the pass, the set of variables writ-
ten so far, WritesSoFar (Line 28), and the set of procedures invoked so far,
ProcsSoFar (Line 29), are maintained. Conceptually, when visiting a call in-
struction where the callee is cp ∈ PR, WritesSoFar are added to BWV(cp),
and when encountering a read to variable var, then var is added to ARV for each
procedure in ProcsSoFar. In Algorithm 1, on Line 30, the routine Summarize is
used to retrieve the set of procedures called in TopCFG(i), along with the set of
variables read and written. If TopCFG(i) is not a SCC, then Summarize excludes
variables written in procedures called from TopCFG(i) and their descendants.
In our algorithm BWV is updated for each called procedure cp ∈ Callees with
WritesSoFar, and ARV is updated for each procedure psf ∈ ProcsSoFar with
the current reads (currR). Lastly, if TopCFG(i) is a SCC, then we also update
ARV for psf (Line 35).

162 S. Calman and J. Zhu

Algorithm 1. Top-down computation of BWV and ARV

updateComp = func(1

Uset : PR �→ 2VR, 2
update : 2VR, callee : PR) { 3
if(∃i, callee ∈ TopCG(i)) 4

forall(p ∈ TopCG(i)) 5
Uset(p) = Uset(p) ∪ update; 6

} 7
deriveLimitSetsSCC = func(i : Z) {8
forall(p ∈ TopCG(i)) { 9

forall(q ∈ TopCG(i)) { 10
BWV(p) = BWV(q) ∪WV(q); 11
ARV(p) = ARV(q) ∪RV(q);} 12

forall(callee of p, cp) { 13
updateComp(BWV, BWV(p), cp);14
updateComp(ARV, ARV(p), cp); 15
} } 16

} 17
deriveLimitSets = func() { 18

for(i = 0; i < |TopCG|; i + +) { 19
if(|TopCG(i)| > 1 ∨

TopCG(i) recursive) 20
deriveLimitSetsSCC(i); 21

else 22
deriveLimitSetsNormal(i); 23

} }

deriveLimitSetsNormal = func(i : Z) { 24

ProcsSoFar : 2PR = � 25
WritesSoFar : 2VR = BWV(TopCG(i)) 26

for(j = 0; j < |TopCFG|; j + +) { 27

CurrW, CurrR : 2VR; 28
Callees : 2PR; 29
〈CurrW, CurrR, Callees〉 =

Summarize(TopCFG(j)); 30
WritesSoFar =

WritesSoFar ∪ CurrW ; 31
forall(cp ∈ Callees) { 32
updateComp(BWV, WritesSoFar, cp);33
if(TopCFG(i) recursive) 34

updateComp(ARV, CurrR, psf); 35
} 36

forall(psf ∈ ProcsSoFar) 37
updateComp(ARV, CurrR, psf); 38

ProcsSoFar
⋃

= Callees; 39
WritesSoFar

⋃
=
⋃

cp∈Callees WV(cp);40
} 41

forall(psf ∈ ProcsSoFar) 42
updateComp(

ARV, ARV(TopCG(i)), psf); 43
} 44

After WV and RV are computed, we insert φV and φC instructions. Let
us assume that ci ∈ INS is the call instruction, p ∈ PR is the caller, and
ProcCallees ∈ 2PR is the set of callees. First, we compute the set of variables
propagated to cle ∈ ProcCallees, which we refer to as PropTo = RV(cle) ∪
WV(cle). Then, for each variable var ∈ PropTo, we add the tuple 〈ci, val〉
to φV

〈var,cle〉, where val is the value of var prior to ci. Next, we compute the
set of variables written in ProcCallees, which we refer to as PropFrom =⊔

cle∈ProcCallees WV(cle). Afterwards, for each variable var ∈ PropFrom, and
each cle ∈ ProcCallees, we add the tuple 〈cle, val〉 to φC

〈var,ci〉, where val is the
value of var at the exit from cle.

3.5 Interprocedural Copy Propagation

During φ-placement, the φV instructions merging a single value are substituted
and we follow up by applying copy propagation to φC instructions. As described
in Section 2.1, we substitute a φC

〈var,ci〉(cle, val) instruction merging a single
value val ∈ INS defined in procedure pval ∈ PR, as long as pval cannot be
called on any path from the φC instruction, up to the respective use. In basic
cases, where val is either a constant or if pval is equal to cle and is called from
only one call instruction (not in a SCC), we replace φC with val.

Otherwise, in order to determine where a φC can be replaced by val, we
identify the call instruction corresponding to the last instance of pval, for each
procedure at every basic block. To this end, in our implementation, described in
2 (and illustrated, using an example in Appendix A), we construct a virtual SSA

Increasing the Scope and Resolution of ISSA 163

form, using a quasi variable pv for each procedure p ∈ PR, in the program. The
value of pv will be the call instruction corresponding to the last invocation of p, or
' otherwise. Prior to calling procedure interCopyProp, we use a bottom-up pass
over the SCC partitioned call graph to summarize the set of procedures reached
(in ReachedProcedures) from every call instruction, ci ∈ INS. When visiting
a procedure, we compute the iterated dominance frontier, IDF ⊂ BB, for each
call instruction, ci. We then add to the VID relation a mapping from each basic
block bb ∈ IDF , to each procedure reached from ci (ReachedProcedures(ci)).

Algorithm 2. Interprocedural Copy Propagation

SCC : PR �→ Z; 1
ReachedProcedures : INS �→ 2PR; 2
VID : BB �→ 2PR; 3
Vals : Z �→ BB × (PR �→ INS); 4
SP : Z; 5
replOuts = func(6

p : PR, ci : INS, 7
currV : PR �→ INS) { 8

forall(φC
〈var,ci〉(〈pval, val〉)) { 9

if(IsAConstant(val)) 10

replWithVal(φC
〈var,ci〉, val); 11

else if(SCC(pval) �= SCC(p)) { 12
if(IsCalledOnce(pval)) 13

replWithVal(φC
〈var,ci〉,val); 14

else if(currV (pval) == ci) 15

replWithVal(φC
〈var,ci〉,val); 16

} } 17
forall(rp ∈ ReachedProcedures(ci)) 18

currV (rp) = ci; 19
}

depthFirstVisit = func (20
p : PR, bb : BB, 21
currV : PR �→ INS) { 22
forall(pdef ∈ VID(bb)) 23

currV (pdef) = �; 24
forall(ins ∈ bb.INS) 25

replOuts(p, ci, currV); 26
forall(succ ∈ getSuccs(bb)) 27

V als(SP + +) = 〈succ, currV 〉;28
} 29

interCopyProp = func () { 30
forall(p ∈ PR) { 31

SP = 0; 32
deriveVID(); 33
V als(SP + +) = 〈p.entry,�〉 34
while(SP ! = 0) { 35
〈bb, currV 〉 = V als(− − SP); 36
depthFirstVisit(p, bb, currV); 37
} 38

} 39
}

After VID is computed, we begin a depth-first traversal of the control flow
graph for p, to perform copy propagation for the quasi variables. We treat
a call instruction ci as an assignment to each reachable procedure’s (pv ∈
ReachedProcedures(ci)) quasi variable, indicating ci was the last call instruc-
tion to reach pv. We use VID to identify basic blocks where a procedure pv might
be reached through more than one call instruction and we invalidate the value
stored in the quasi variable for pv (on Line 24). Through the copy propagation
of the quasi variables, we identify the call instruction associated with the last
invocation of each reachable procedure. We can substitute a reference to φC

〈...,ci〉
(passed out at call instruction ci), with its value val (derived in procedure p), if
V als(p) == ci, at the site of the use (see procedure replOuts in Algorithm 2).

4 Experiment

In this study, we report on the performance of the interprocedural SSA con-
struction algorithm and we contrast the design choices to previous work. Aside
from the runtime, we present and discuss the impact of increasing the scope

164 S. Calman and J. Zhu

and resolution of ISSA, applying copy propagation and liveness analysis, pointer
analysis, and lastly, the impact on constant propagation.

4.1 Setup, Benchmarks, and Runtime

We implemented the interprocedural SSA in the LLVM [16] compiler infras-
tructure. The experiments were performed on an Intel CORE 2 Duo 1.66 GHz
processor, with 4 GB memory, and running 64-bit ubuntu. These results were
collected on IR in intraprocedural SSA form, with constant propagation and
dead code removal already applied.

We evaluated our work on a set of MediaBench [17] and SPEC2K [18] bench-
marks. In Table 1, we list the various benchmarks used and their lines of code,
along with the number of call sites present in the benchmarks.

Table 1. Benchmark characteristics and the runtime (column labeled T(s)), in seconds

MediaBench SPEC2K SPEC2K

Name Lines
Call

T(s) Name Lines
Call

T(s) Name Lines
Call

T(s)Sites Sites Sites

GSM 4626 258 1.4 164.gzip 8218 306 0.95 197.parser 10932 1691 21.52
JPEG 26173 942 10.8 175.vpr 16984 1902 5.88 254.gap 59493 9773 91.17

MPEG21 7283 654 2.3 181.mcf 1913 81 1.02 256.bzip2 4665 299 0.74
G721 1476 53 0.3 186.crafty 19478 2252 8.32 300.twolf 19756 1883 38.63

In Table 1, we also present the runtime for ISSA generation (does not include
pointer analysis runtime). All the MediaBench [17] benchmarks complete within
a few seconds and we handle a very large number of variables in them. In com-
parison, the runtime takes longer for the SPEC2K [18] benchmarks, which is
understandable as the benchmarks have more lines of code and more call sites.
Furthermore, SPEC2K benchmarks use a greater set of the C language features,
including recursion, indirect calls, and cast accesses, which increase the number
of inputs and output across call sites.

4.2 Impact of Increasing Scope and Resolution

We evaluate the impact of increasing the scope and resolution of ISSA using
the number of SSA variables and the number of load instructions resolved to
the corresponding definition. A greater number can provide a higher benefit to
clients of ISSA.

In Table 2 we compare our ISSA construction algorithm (columns labeled All)
to an algorithm which is similar to Staiger [11] as it only considers scalar globals
(columns labeled Globals), and provide the ratio between them (columns labeled
X).

1 Decoder.

Increasing the Scope and Resolution of ISSA 165

Table 2. Number of variables handled, load instructions replaced, and singular allo-
cation sites identified

Benchmark
SSA Variables Loads Replaced Allocation Sites

All Globals X All Globals X Singular %
GSM 73 20 3.65 191 164 1.16 0 0.0
JPEG 249 7 35.57 1564 588 2.66 33 55.0

MPEG2 186 133 1.4 814 650 1.25 1 7.1
G721 14 5 2.8 43 15 2.87 0 0.0

164.gzip 151 100 1.51 575 530 1.08 1 20.0
175.vpr 280 96 2.92 2471 2008 1.23 31 30.4
181.mcf 39 6 6.5 140 15 9.33 3 100.0

186.crafty 403 266 1.52 3406 1501 2.27 5 41.7
197.parser 229 82 2.79 570 520 1.10 2 1.8
254.gap 222 207 1.07 1412 1409 1.00 1 50.0

256.bzip2 41 41 1 478 478 1.00 5 50.0
300.twolf 378 293 1.29 6808 6669 1.02 0 0.0

Average 5.17 1.72

We first present the number of SSA variables (heading) for the two algorithm
in Table 2. As indicated, we are handling on average 5.17 times more variables
than an ISSA formation similar to Staiger [11]. Second, this shows a precise
field-sensitive analysis is useful in increasing the scope of ISSA, making it more
useful for structure intensive benchmarks.

Furthermore, in Table 2, we also illustrate the impact of increasing the scope
and resolution of ISSA construction on the number of load instructions sub-
stituted with their definition (columns underneath Loads Replaced). On av-
erage, we substituted 1.72 times more load instructions with their definition,
than Staiger [11], increasing the scope of the dataflow analysis and its potential
benefit.

Lastly, we present the number of singular allocation sites and their percentage
(of total allocation sites), in the last two columns (Allocation Sites heading).
While a large percentage of singular allocation sites were identified in a number
of benchmarks, only in JPEG this translated to a substantial increase in SSA
variables. In other benchmarks, such memory was primarily used for arrays,
which we currently do not handle.

4.3 Impact of Copy Propagation and Liveness Analysis

To evaluate the impact of copy propagation and liveness analysis we compute the
the sum of φV and φC instructions. A lower number indicates both performance
(less instructions) and precision improvement, as a lower number results from
folding various instructions (i.e. propagation through φV or φC instructions),
associating additional uses with the corresponding definition.

166 S. Calman and J. Zhu

Table 3. Impact of liveness analysis and copy propagation measured by the reduction
of the read and write sets, along with the effectiveness of constant propagation

Benchmark

Liveness Analysis Copy Propagation Constant Propagation
Total

Δ
Total

Δ
Extra

Δ
Extra

φV ,φC φV ,φC Folded Dead
Before After Before After Blocks

GSM 494 319 35.4 % 319 136 57.4% 9 2.23 % 1
JPEG 10261 9115 11.2 % 9115 4600 49.5% 35 13.01 % 15

MPEG2 6279 5408 13.9 % 5408 3418 36.8% 9 3.59 % 11
G721 133 100 24.8 % 100 66 34.0% 0 0 % 1

164.gzip 2606 2074 20.4 % 2074 1037 50.0% 105 23.6 % 4
175.vpr 5702 4457 21.8 % 4457 2412 45.9% 15 1.81 % 10
181.mcf 262 181 30.9 % 181 12 93.4% 3 7.32 % 2

186.crafty 20935 16373 21.8 % 16373 13276 18.9% 119 2.13 % 3
197.parser 23037 22015 4.4 % 22015 17109 22.3% 133 19.97 % 0
254.gap 100678 61684 38.7 % 61684 48332 21.6% 29 0.55 % 5

256.bzip2 942 614 34.8 % 614 269 56.2% 115 59.28 % 7
300.twolf 5211 4106 21.2 % 4106 2130 48.1% 113 8.67 % 10

Average 23.3 % 44.5% 11.8 %

We apply copy propagation as described in Section 3.5, and fold φV and φC

instructions. As shown in Table 3, copy propagation reduced the number of φV

and φC instructions at call sites, and procedure entries, by 44.5% on average. In
addition, during copy propagation we folded 30% of the φV instructions merging
values from multiple call sites, as well as a number of φL and φS instructions. This
demonstrates a significant improvement over previous work, as copy propagation
reduced both the size of the IR as well as the number of spurious merge points.

In Table 3, we detail the impact of the liveness analysis, presented in Sec-
tion 3.4, on reducing the read and write sets into various procedures. The second
and third columns contain the sum of φV and φC instructions before and after
liveness analysis, respectively. The average number of φV and φC instructions
removed was 23.3%, demonstrating the benefit of liveness analysis in reducing
the size of the IR, thus making ISSA construction more efficient.

4.4 Impact of Pointer Analysis

In Table 4, we illustrate the difference between the input sets derived using the
field-insensitive pointer analysis available in LLVM and our field-sensitive pointer
analysis. The size of the input sets is on average 12.2 times higher in the field-
insensitive version, mainly because of the greater point-to set size. Furthermore,
since the pointer analysis is used to resolve indirect calls, the field-insensitive
version usually contains spurious paths in the call graph. This increases the size
of the input sets, as data must be propagated to various unreachable destinations.

Increasing the Scope and Resolution of ISSA 167

Table 4. Size of input and output sets for a field-insensitive and field-sensitive pointer
analysis

Benchmark Field-Sensitive Field-Insensitive X
GSM 214 818 3.82
JPEG 330 2480 7.52

MPEG2 1256 12185 9.7
G721 10 83 8.3

164.gzip 1024 4348 4.25
175.vpr 2265 18341 8.1
181.mcf 49 136 2.78

186.crafty 2660 11236 4.22
197.vpr 8239 21398 2.6

300.twolf 581 40806 70.23

Average 12.15

Larger sets result in increased code size and runtime and hence, by using the
field-sensitive pointer analysis, we are able to reduce code size and runtime, in
addition to handling more variables.

4.5 Impact on Constant Propagation

We implemented a pass that performs constant propagation and dead code
removal using ISSA, based on the Wegman and Zadeck algorithm [19]. In
Table 3 we show the effectiveness of ISSA based constant propagation in com-
parison to the LLVM [16] constant propagation and dead code removal passes
(-instcombine, -adce, -ipconstprop). In the last three columns, we present the
number of additional constant folded expressions (and their percentage in rela-
tion to LLVM), along with the number of dead basic blocks in the benchmarks.
On average, excluding all expressions folded during dereference conversion and
copy propagation, we fold an additional 11.8% of instructions, on top of the
LLVM passes.

5 Related Work

The challenge in handling pointers in SSA form is that pointer dereferences are
not always resolved to a singular memory location and as such, merge points
have to sometimes be inserted for pointer dereferences. One way to handle this
challenge is to use an aliasing query, as was done by Cytron [13] and others
[14, 15].

For interprocedural SSA, dereferences must be handled. In Liao’s [20] ISSA
form, SSA variables are alias sets (equivalence classes) computed by applying
Steensgaard’s unification-based pointer analysis [10]. Such derivation creates
more merge points than an inclusion-based pointer analysis [11], due to the rel-
atively lower precision which impacts the construction in two ways. First, more

168 S. Calman and J. Zhu

spurious assignments are inserted due to a greater point-to set size, and second,
the call graph which is used to propagate definitions and uses is less precise
as well (in programs with indirect calls). Staiger [11] considered each variable
individually, in a manner similar to Horwitz [21]. When encountering unresolv-
able dereferences, Staiger merged dataflow by assigning a common allocator to
aliased objects. Staiger showed that using more precise pointer analysis would
result in a drastically lower number of φ instructions; Andersen’s pointer analysis
had 20× less φ instructions than Steensgaard’s in some benchmarks. However,
Staiger does not apply copy propagation and the analysis outputs its results in
graph form – making it harder to directly apply traditional clients of SSA. Along
the same lines, the representation is may def-use (e.g. locators correspond to re-
cursive data structures), where only accesses to scalar globals are marked with
must use edges. Lastly, Staiger did not evaluate ISSA using a target application.

As shown in Section 4, our approach reduces input and output instructions,
while we handle more SSA Variables and replace more load instructions than
Staiger [11]. In addition, we demonstrate the benefit of ISSA to constant
propagation.

6 Conclusion

SSA can be used for various analysis and optimization algorithms and this paper
presents an extension of SSA to the scope of a whole program. We have shown
that while handling a large number of variables, we are still able to construct
ISSA in seconds. ISSA improves precision by handling a large percentage of load
instructions, and by resolving a few pointer dereferences. We have also demon-
strated the benefit of liveness analysis and interprocedural copy propagation on
ISSA, as well as an improvement in constant propagation and dead code removal,
due to ISSA.

From our experiment, ISSA usually performed better in the MediaBench [17]
benchmarks, in terms of runtime and precision improvement. This occurred be-
cause there was little use of recursive data structures, recursive procedures, and
hashtables in MediaBench. Such features make it difficult to resolve dereferences
to singular objects and propagate values interprocedurally.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments.

References

[1] Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems 13(4), 451–490 (1991)

Increasing the Scope and Resolution of ISSA 169

[2] Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Transactions on Programming Languages and Systems 13(2), 181–210
(1991)

[3] Gal, A., Probst, C.W., Franz, M.: HotpathVM: an effective JIT compiler for
resource-constrained devices. In: VEE 2006: Proceedings of the 2nd international
conference on Virtual execution environments, pp. 144–153. ACM, New York
(2006)

[4] Stoutchinin, A., Gao, G.: If-conversion in SSA form. In: Danelutto, M., Vanneschi,
M., Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 336–345. Springer,
Heidelberg (2004)

[5] Wolfe, M.: Beyond induction variables. In: Proceedings of the Conference on Pro-
gramming Language Design and Implementation (PLDI), vol. 7(27), pp. 162–174.
ACM Press, New York (1992)

[6] Hasti, R., Horwitz, S.: Using static single assignment form to improve flow-
insensitive pointer analysis. In: Proceedings of SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 97–105 (1998)

[7] Kennedy, R., Chan, S., Liu, S.M., Lo, R., Tu, P., Chow, F.: Partial redundancy
elimination in SSA form. ACM Trans. Program. Lang. Syst. 21(3), 627–676 (1999)

[8] Brisk, P., Verma, A.K., Ienne, P.: Optimal polynomial-time interprocedural regis-
ter allocation for high-level synthesis and asip design. In: ICCAD 2007: Proceed-
ings of the 2007 IEEE/ACM international conference on Computer-aided design,
Piscataway, NJ, USA, pp. 172–179. IEEE Press, Los Alamitos (2007)

[9] Liao, S.W.: SUIF Explorer: An interactive and interprocedural parallelizer. PhD
thesis, Stanford University, CA, USA, Adviser-Monica S. Lam (2000)

[10] Steensgaard, B.: Efficient context-sensitive pointer analysis for C programs. In:
Proceedings of the 1996 International Conference on Compiler Construction, April
1996, pp. 136–150 (1996)

[11] Staiger, S., Vogel, G., Keul, S., Wiebe, E.: Interprocedural Static Single Assign-
ment Form. In: Proceedings of the 14th Working Conference on Reverse Engineer-
ing, pp. 1–10 (2007)

[12] Andersen, O.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, Computer Science Department, University of Copenhagen
(1994)

[13] Cytron, R., Gershbein, R.: Efficient accommodation of alias information in SSA
form. In: Proceedings of the ACM SIGPLAN 1993 Conference on Programming
Language Design and Implementation, pp. 36–45 (1993)

[14] Chow, F.C., Chan, S., Liu, S.M., Lo, R., Streich, M.: Effective representation of
aliases and indirect memory operations in SSA form. In: Gyimóthy, T. (ed.) CC
1996. LNCS, vol. 1060, pp. 253–267. Springer, Heidelberg (1996)

[15] Choi, J.D., Cytron, R., Ferrante, J.: On the efficient engineering of ambitious
program analysis. IEEE Trans. Softw. Eng. 20(2), 105–114 (1994)

[16] Lattner, C.: LLVM: An infrastructure for multi-stage optimization. Master’s the-
sis, Computer Science Dept., University of Illinois at Urbana-Champaign (Decem-
ber 2002)

[17] Lee, C., Potkonjak, M., Mangione-Smith, W.H.: Mediabench: A tool for evaluating
and synthesizing multimedia and communications systems. In: Micro 30 (1997)

[18] Standard Performance Evaluation Corporation: SPEC CPU2000 benchmarks,
http://www.specbench.org/cpu2000/

[19] Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst. 13(2), 181–210 (1991)

http://www.specbench.org/cpu2000/

170 S. Calman and J. Zhu

[20] Liao, S.W., Diwan, A., Bosch Jr., R.P., Ghuloum, A., Lam, M.S.: SUIF Ex-
plorer: An interactive and interprocedural parallelizer. In: Proceedings of the 7th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pp. 37–48 (1999)

[21] Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence
graphs. In: PLDI 1988: Proceedings of the ACM SIGPLAN 1988 conference on
Programming Language design and Implementation, pp. 35–46. ACM, New York
(1988)

A Example for Copy Propagation Algorithm

In this section, we illustrate the solution process for Algorithm 2, shown in
Section 3.5. Let us consider the example shown in Figure 2 (a). First, we assign
identifiers for functions starting at 0 and call sites, starting at 1. For each call site
CI, we compute its reachable functions, shown in Figure 2 (b), in the fifth column
and add it to VID(bb), where bb is a basic block in CI’s iterated dominance
frontier (eighth column).

The reference solution for Figure 2 (a) is shown in the sixth and ninth columns
of Figure 2 (b), where the vector index corresponds to the function. After CI1
the latest call to X and Z is CI1 and to Y is undefined (similar reasoning applies
to CI2,CI3 with different functions). Since functions Y and Z are in VID(BB2),
their value gets invalidated when entering BB2. The actual replacement of φC

instructions occurs during the traversal, as we query the table to determine
whether substitution is possible at various program points.

(a) Structure for cur-
rently analyzed pro-
cedure.

Function ID Call ID Reachable Values Basic VID Values
Site Functions Block

X 0 C1 1 X,Z [1,0,1] BB0 � [0,0,0]
Y 1 C2 2 Y,Z [1,2,2] BB1 � [1,0,1]
Z 2 C3 3 Z [1,2,3] BB2 Y,Z [1,0,0]

(b) Table with data computed prior and during the algo-
rithm. It shows the identifiers for call sites and procedures,
as well as the values of quasi variables.

Fig. 2. Example illustrating Algorithm 2, from Section 3.5

Region Analysis for Race Detection

Helmut Seidl and Vesal Vojdani

Lehrstuhl für Informatik II, Technische Universität München
Boltzmannstraße 3, D-85748 Garching b. München, Germany

{seidl,vojdanig}@in.tum.de

Abstract. Automatic race detection of C programs requires fast, yet
sufficiently precise analysis of dynamic memory. Therefore, we present
a region-based pointer analysis which seeks to identify disjoint regions
of dynamically allocated objects to ensure that write accesses to the
same region are always protected by the same mutexes. Our approach
has been implemented within the interprocedural analyzer of concurrent
C programs GobLint and we have successfully applied it on code from
the Linux kernel, such as the access vector cache. This code relies on a
synchronized hash table where an array of doubly linked lists is protected
by an array of locks.

1 Introduction

locks slots t

Fig. 1. Memory regions

Writing multi-threaded code which both is cor-
rect and manipulates complicated data-structures
can be cumbersome. Programmers of low-level
software therefore mostly adhere to simple and
conservative programming styles. Accordingly, dy-
namic shared data-structures are avoided when-
ever possible, and when dynamic allocation of
memory is inevitable, one common idiom is to rely
on non-overlapping data-structures and protect
each of these memory regions by a dedicated lock.
This occurs naturally when resources are main-
tained in hash-table-like data-structures, i.e., arrays of linked lists where each
list is protected by its own lock as illustrated in Figure 1.

There are different levels of granularity at which locking schemes for shared
data-structures operate: at one extreme, an individual mutex is maintained for
each data element separately, known as per-element locking [20]; at the other
extreme, coarse-grained locking schemes use a single mutex to protect all data
nodes allocated at a given point in the program. In between, there are subtler
cases of medium-grained locking where certain dynamically allocated elements
protect a bunch of other elements (not quite per-element), or elements allocated
at a given point are not all protected by the same mutex (not quite coarse-
grained). Here, we are concerned with the latter case. In many applications, we
found that the dynamic data-structures protected by one mutex are disjoint from

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 171–187, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

172 H. Seidl and V. Vojdani

typedef struct node { int data; struct node *next; } node;
node *even_list, *odd_list;

void insert(int data) {
node *t = new(data);
if (even(data)) { t→next = even_list; even_list = t; }
else { t→next = odd_list; odd_list = t; } }

void even_worker() { void odd_worker() {
node *t1 = even_list; node *t2 = odd_list;
while (t1 != NULL) { while (t2 != NULL) {

lock(even_mutex); lock(odd_mutex);
t1 = even_list; t2 = odd_list;
access(t1→data); access(t2→data);
t1 = t1→next; t2 = t2→next;
unlock(even_mutex); } } unlock(odd_mutex); } }

Fig. 2. Elements placed into linked lists

the data-structures protected by other mutexes. The number of protected disjoint
data-structures, however, can be large. This is the case, e.g., for synchronized
hash-tables where each bucket is protected by an individual mutex.

Consider the two-bucket hash-table in Figure 2 where elements allocated by
the insert function end up in two distinct lists. The correctness of the locking
scheme in this program hinges on the fact that the expressions t1→data and
t2→data can never evaluate to the same address, i.e., they can never alias. We
can be sure of this, because the two lists are disjoint and thus closed under
pointer reachability.

We call an analysis a region analysis if it infers a safe partitioning of the heap
into disjoint regions. For region analysis, one could use sophisticated analyses
to infer shapes of data-structures. Another approach would be to summarize
dynamically allocated objects as blobs of memory associated with finitely many
abstract locations such as allocation sites. While the first approach has difficulties
scaling to larger programs, the second approach fails when elements allocated at
the same program point end up in distinct data-structures protected by distinct
mutexes, as in the above example.

We present a region analysis which is reasonably fast, yet sufficiently precise
to deal with programs that manipulate disjoint heap regions. It identifies the
set of static globals within the region accessed by local pointers. It also deals
with arrays of regions by allowing regions to be indexed with symbolic index
expressions. For the example above, the analysis would maintain that the two
lists are disjoint, t1 is pointing into the region of even_list, and t2 is pointing
into the region of odd_list.

Our region analysis can be extended to a race detection method by adding
two components. First, a must alias analysis which provides information on which

Region Analysis for Race Detection 173

global address are definitely pointed to by a pointer variable, e.g., provided
by [17]. Second, a symbolic lock set analysis which determines for every program
point a representation, which may involve symbolic address expressions, of the
set of definitely held locks when reaching this program point.

2 Region Inference

For the purpose of this paper, we spell out our approach for a minimalistic
programming model which is just rich enough to exhibit the key ideas of our
analysis of multi-threaded programs using dynamic data-structures and arrays.
At first, we restrict ourselves to programs which consist of only a single procedure
represented by a finite control-flow graph where each edge is labeled with a basic
operation s; in Section 3, we will extend to an interprocedural setting. We only
track the values of local variables pointing into the global memory. The global
memory is shared between different processes and consists of blocks, which either
may be statically allocated at program start or dynamically allocated during
program execution through some operator new τ (for some type τ). For the
moment, we rule out pointers into the stack as well as pointer arithmetic and
assume that pointers always point to the beginning of blocks. In Section 5, we
will add global arrays, and in Section 6, we indicate how the basic approach
can be extended to work also in presence of (well-behaved) pointer-arithmetic
as required for the analysis of, e.g., the Linux kernel API for doubly linked lists.

We assume that the frontend provides us with a normalized representation of
assignments. For the beginning, we consider the following forms of expressions
and assignments:

adr ::= y local pointer variable
| &a static global address

pexp ::= y → b dereferencing of pointers
val ::= adr | null pointer value

| new(τ) memory allocation
pass ::= pexp = val ; memory write

| y= val ; | y = pexp; variable assignment

Let L and G denote the set of local pointer variables and the set of addresses
of static global memory cells, respectively. Region analysis aims at inferring
potential reachability between elements from G ∪ L. Our analyzer therefore
maintains for every program point an equivalence relation π on globals. Two
elements x1, x2 ∈ G are put into the same equivalence class when some mem-
ory cell is jointly reachable from both x1 and x2 through iterated field selection
and dereferencing. Additionally, we maintain for every program point a function
ρ : L → 2G∪{•} mapping each local y to a set of globals identifying the region
into which y may possibly point. The bullet • identifies the region of all thread-
local dynamically allocated memory cells. When a thread allocates an object
and initializes its fields, the object is seen as residing within this thread-local
region until it is reachable from, or can itself reach, one of the global regions.

174 H. Seidl and V. Vojdani

Equivalence relations have also been used for may-alias analysis [12]. There,
two expressions are considered equivalent if they may denote the same address.
May-alias equivalence classes do not collapse when one is reachable from the
other. On the other hand, while non-reachability implies non-equality, we cannot
extract definite non-reachability information from non-equality. Thus, ensuring
that pointers which traverse complicated structures may not alias is extremely
difficult without the explicit notion of disjointness: one must precisely express
the aliasing relationship, or all information about non-reachability is lost.

Here, an equivalence relation π is represented by the set of two-element sub-
sets {x, y} with (x, y) ∈ π — implying that the trivial equivalence relation is
represented by the empty set. Let P and R denote the set of all equivalence rela-
tions on G and the set of all maps from L to 2G∪{•}, respectively. Both sets form
complete lattices for the orderings induced by the subset orderings on the set of
two-element subsets of G and G∪{•}, respectively. In particular, for equivalence
relations π1, π2 ∈ P, the greatest lower bound π1�π2 is given by the intersection
of the sets of unordered pairs corresponding to π1 and π2, respectively; whereas
the least upper bound π1 � π2 is the least equivalence relation containing all
pairs from π1 and π2.

Using a suitable data-structure for partitions, the operations “�”, “�” in P
can be executed in polynomial time. Consider a pair T = 〈π, ρ〉 describing the
current program state. We assume that all sets ρ(y) are closed under π. We call
a set X closed under the equivalence relation π, if x ∈ X and {x, x′} ∈ π implies
that also x′ ∈ X . For an arbitrary pair 〈π, ρ〉, let clπX denote the least set X ′

with X ⊆ X ′ which is closed under π.
We now specify how a pair T = 〈π, ρ〉 describing the program state before

an assignment s is transformed into a pair 〈π′, ρ′〉 describing the program state
after the assignment, i.e., we define the abstract meaning �s�	 of the statement
s. First, consider statements where local pointers are set:

�y = &a�	
T = 〈π, ρ⊕ {y �→ clπ{&a}}〉

�y = y′�
	
T = �y = y′ → b�

	
T = 〈π, ρ⊕ {y �→ ρ(y′)}〉

�y = null�
	
T = 〈π, ρ⊕ {y �→ ∅}〉

�y = new(τ)�	
T = 〈π, ρ⊕ {y �→ {•}}〉

where ρ ⊕ {yi �→ Xi | i ∈ I} is the function obtained from ρ by updating the
image of yi to Xi for all i ∈ I. Now, consider a write to memory through local
pointers. In case either null or a pointer to a fresh memory block is written, the
abstract state does not change:

�y → b = null�	 T = �y → b = new(τ)�	 T = T

Finally, consider a write to memory of the form y → b = y′. If neither ρ(y) nor
ρ(y′) contain •, then we join the equivalence classes of y and y′:

�y → b = y′�
	
T = 〈π′, {y �→ clπ′(ρ(y)) | y ∈ L}〉 where

π′ = π � {{x, x′} | x �= x′, x, x′ ∈ ρ(y) ∪ ρ(y′)}

Region Analysis for Race Detection 175

If the bullet is involved, but ρ(y), ρ(y′) ⊆ {•}, then simply �y → b = y′�	 T = T ;
however, when • ∈ ρ(y)∪ρ(y′) �⊆ {•}, we additionally consider all pointers that
may point into the thread-local region denoted by •. Let Y = {y,y′} ∪ {y′′ ∈
L | • ∈ ρ(y′′)} and X =

⋃
{ρ(y′′) | y′′ ∈ Y }\{•}. We join all globals from X

into one equivalence class to which all variables from Y may now point:

�y → b = y′�
	
T = 〈π′, ρ′〉 where
π′ = π � {{x, x′} | x �= x′, x, x′ ∈ X}
ρ′ = {y �→ clπ′(ρ(y)) | y �∈ Y } ∪ {y′′ �→ clπ′X | y′′ ∈ Y }

For proving the soundness of the analysis, we rely on a small-step operational
semantics of heap-manipulating programs. Since we have currently ruled out
procedures, the concrete program state when reaching a program point u consists
of a pair σ = 〈μ, λ〉 where λ maps the local pointers to the start addresses of
blocks and μ describes the current global memory. We represent the memory
μ by a map which assigns a value to every address-field pair (l, b). Type-safety
requires that l is the address of a block in the global memory of struct type τ
which has a field b. For convenience, we assume that every field of pointer type
which has not yet been initialized, holds the value null.

In μ, the address l1 is reachable from the address l2 iff l2 can be obtained
from l1 by repeated field selection and dereferencing. A region in μ is a set R of
addresses in μ such that every l1 ∈ R satisfies the condition: l2 ∈ R whenever
μ(l1, b) = l2 for some field name b of the struct at address l1. This definition
implies that the set of regions of μ form a partition of the addresses in μ. In
particular, no address in the region R is reachable from any address outside the
region R.

Assume that the concrete program state σ = 〈μ, λ〉 induces a partition Π =
{R1, . . . , Rm} of the addresses in μ. Then σ is in the concretization of the abstract
state T = 〈π, ρ〉, i.e., σ ∈ γ(T), iff the following holds:

1. Whenever {x, x′} �∈ π for global static addresses x �= x′, then x and x′ are
not in the same region of μ.

2. Whenever x �∈ ρ(y), then x and λ(y) are not in the same region of μ.
3. Whenever ρ(y) = ∅, then λ(y) equals null.

This implies that if ρ(y) = {•}, then all memory cells reachable from λ(y) are
definitely not reachable from globals and thus not accessible from other threads.
Accordingly, write accesses through y need not be protected. If on the other
hand, ρ(y) contains a global static address, the address of y must be considered
as published, i.e., possibly accessible for other threads. The set of static global
addresses occurring in ρ (and π) can be considered as the set of possible owners
of a region for which locks should be provided. The following theorem states
that our definitions of the abstract transformers for basic program statements
are sound.

Theorem 1 (Soundness of Transfer Functions). Let s denote a program
statement and T denote an abstract state. If σ ∈ γ(T) and σ′ denotes the concrete
program state obtained from σ by the execution of s, then σ′ ∈ γ(�s�	

T). ��

176 H. Seidl and V. Vojdani

3 Interprocedural Analysis

In this section we present an interprocedural formulation of the region analysis.
We model communication between procedures by assuming that every function
has the same set L of local variables and that all locals of the caller are passed
by value to the callee; however, in our simplified setting, we only pass locals into
procedures but do not return them back. Thus, the effect of a procedure call
is limited to possible collapses within the partition of globals and the possible
joining of thread-local data structures with some global regions. In order to deal
with the latter, we extend the points-into map ρ for local pointer variables with
an extra variable (representing the thread-local data structures before the call.
The abstract transformer enter	 initializes the abstract state at procedure entry
based on the abstract state before the call:

enter	(〈π, ρ〉) = 〈π, ρ⊕ {(�→ {•}}〉

While analyzing a procedure q, updates through pointers into thread-local mem-
ory may result in globals being added to the region tracked by ((just as for any
other variable with • in its points-into set). At procedure exit, the local variables
of the called procedure q are removed, while the points-into information accumu-
lated by (are added to every local y of the caller which before the call may have
pointed into the thread-local region. Assume that T1 = 〈π1, ρ1〉, T2 = 〈π2, ρ2〉
are the abstract states before the call and at procedure exit, respectively. Then
this combination is achieved by the function combine	:

combine	(T1, T2) = 〈π2, ρ〉 where
ρ = {z �→ clπ2(ρ1(z)) | z ∈ L ∪ {(}, • �∈ ρ1(z)} ∪

{z �→ clπ2(ρ1(z) ∪ ρ2(()) | z ∈ L ∪ {(}, • ∈ ρ1(z)}

The abstract functions enter	 and combine	 allow us to apply general frameworks
for interprocedural analysis [26]. Here, we follow the approach advocated, e.g., by
Cousot [5], which relies on partially tabulating the abstract value tables of called
procedures. A multi-threaded variant of this approach [25] has been implemented
by the analyzer Goblint [28]. The analyzer solves a constraint system for the
abstract values returned by the summary function for f when called on abstract
values a. Given a complete lattice L of abstract values, abstract transformers
�s�	 for basic statements, and abstract transformers enter	 and combine	 for
parameter passing and function return, the constraint system is set up as follows:

〈v, a〉) a for a function entry point v
〈v, a〉) �s�

	 (〈u, a〉) for edge (u, v) with statement s
〈v, a〉) combine	(〈u, a〉, 〈retf , enter	(〈u, a〉)〉) for edge (u, v) calling f()

where a ∈ L, f denotes functions with return point retf , and u, v are program
points. For a program point v of a function g, the variable 〈v, a〉 of the constraint
system represents the abstract value attained at v in a call to g where evaluation
of the body of g starts with the abstract value a. The soundness of the least

Region Analysis for Race Detection 177

solution of this constraint system instantiated to our region analysis follows
from Theorem 1 and [5, 14]:

Theorem 2 (Soundness of Region Analysis). Assume that ϕ〈v, a〉, for pro-
gram point v of a procedure f and abstract state a, is the least solution of the
constraint system over the complete lattice L. Let ϕ〈v, ae〉 = 〈π, ρ〉, and assume
that the pair σe = 〈μe, λe〉 of a heap μe and assignment λe of locals is in the
concretization of ae, i.e., σe ∈ γ(ae). Moreover, assume that Re is the set of
thread-local memory cells at procedure entry, i.e., the set of addresses which can
only be reached from the locals in σe.

Then every same-level execution starting in σe at the entry point of f and
reaching program point v in state σ = 〈μ, λ〉 satisfies the following properties:

– σ ∈ γ(〈π, ρ〉);
– For every global x, if x is reachable from an address in Re (w.r.t. μ), or an

address in Re is reachable from x (w.r.t. μ), then &x ∈ ρ((). ��

The given constraint system may be huge depending on the complete lattice of
the analysis. Local fixpoint iteration is a general technique to partially explore
large (or possibly infinite) systems of constraints [7]. Starting from a subset Y
of interesting unknowns, local fixpoint iteration explores only those other un-
knowns which may contribute to the values of unknowns from Y . This tech-
nique is well-suited if the interesting values can be computed by consulting
only a small (though possibly unknown) fraction of the constraint variables.
This is the case in our application. Here, fixpoint iteration starts with the set
Y = {〈retmain, enter	 a〉} if main is the start function of the thread currently un-
der consideration, and the abstract value a describes the program state before
program execution [7]. Local fixpoint iteration then will trigger the evaluation of
all pairs 〈v, enter	a′〉 where v is the program point of a procedure which (during
fixpoint iteration) is called for the abstract program state a′. In our experiments
with the analyzer Goblint, we found that the number of different calls of the
same procedure is mostly quite small.

4 Relating Locks and Regions

In order to relate accessed regions of the global memory with acquired locks,
we can rely on any analysis providing must-alias information for static global
addresses. For clarity of presentation, we just consider the simplest instance of
such an analysis, which tracks conjunctions of equalities of the form y =̇ x where
y ∈ L is a local pointer variable and x ∈ L∪G is either a local pointer variable or
a global static address. Such a domain has been suggested in [17] where efficient
algorithms for the basic operations have been presented.

Let E denote the lattice of equalities. Technically, each element φ ∈ E either
is equivalent to false or is equivalent to a satisfiable finite conjunction of equali-
ties. We write φ |= (x =̇ x′) if the equality x =̇ x′ is logically implied by φ. The

178 H. Seidl and V. Vojdani

ordering on E is given by logical implication, i.e., φ $ φ′ iff either φ = false or
both φ and φ′ are different from false, and φ |= (x =̇ x′) for every equality x =̇ x′

in φ′. Thus, the greatest lower bound of φ1, φ2 is given by their conjunction
φ1 ∧ φ2, whereas the least upper bound of two satisfiable conjunctions φ1, φ2 is
equivalent to the conjunction of all equalities x =̇ x′ which are both implied by φ1
and φ2. Here, we consider the abstract functions for procedure calls. According to
our assumption, all locals are passed as actual parameters to called procedures.
The locals of the caller, on the other hand, are not affected by the changes to
locals of the callee. This means that the abstract functions enter	E , combine	

E for
procedure calls are defined by:

enter	E φ = φ combine	
E(φ1,) = φ1

As a third component, our analysis requires information about the set of locks
which are definitely held when reaching a program point. For the moment, every
lock is identified by static addresses or addresses pointed at by local pointers. For
every reachable program point u (in every analyzed invocation of a procedure),
our analysis therefore identifies a finite subset S of descriptions of locks which
are definitely held when reaching u (in the given invocation). Let S denote the
set of finite subsets of global static addresses of locks. Since we are interested
in definite information, finite sets of lock address expressions are ordered by the
superset relation.

While region and must-alias analysis are independent, the analysis of sets of
definitely held locks may profit from the results of both. The must-alias analysis
is applied to identify all address expressions which denote the acquired lock,
the may-alias information which we infer from the region information, helps
to narrow down the set of locks which may no longer be held after releasing
a lock. More precisely, assume that T = 〈π, ρ〉 is an abstract description of
memory regions. We infer non-equality information as follows. If {x, x′} �∈ π
for two pointer expressions x, x′, then x �= x′ for every program state 〈μ, λ〉 in
the concretization of π. Likewise, if x �∈ ρ(y), then also λ(y) �= x. Finally, if
ρ(y)∩ρ(y′) = ∅ while ρ(y)∪ρ(y′) �= ∅, then also λ(y) �= λ(y′). We denote these
facts by T |= (x �= x′), T |= (y �= x) and T |= (y �= y′), respectively.

Assume that the current program state T = 〈π, ρ, φ, S〉 consists of the parti-
tion of globals π, the points-into information ρ, the conjunction of must-equalities
φ, and the lock set S. Then the sets of definitely held locks after operations lock
and unlock for locks inside static structs are defined by:

�lock(&(z → b)�	
ST = S ∪ {&(x → b) | x ∈ G,φ |= z =̇ x}

�unlock(&(z → b))�	
ST = S \ {&(x → b) | ¬(π |= z �= x)}

for z ∈ L ∪ G, respectively. When entering or leaving a procedure, the set of
definitely held locks does not change. Therefore, we have:

enter	L S = S combine	
L(, S2) = S2

Region Analysis for Race Detection 179

struct list { int key; int data; struct list *next; };
struct list *slots[512];
spinlock_t locks[512];

struct list *insert(int key, int data) {
struct list *t; int hv = hash(key);
spin_lock(&locks[hv]);
t = slots[hv];
if (t == NULL) {

slots[hv] = new_list(key, data); goto fd; }
while(1) {

if (t→key == key) {
t→data = data; goto fd; }

if (t→next == NULL) {
t→next = new_list(key, data); goto fd; }

t = t→next; }
fd: spin_unlock(&locks[hv]);

return t; }

Fig. 3. Simplified insert-function

5 Extension with Arrays

So far, our analysis is able to deal with dynamic data structures and a fixed
finite set of mutexes. In the next step, we extend this base approach to global
data structures which may contain arrays and thus also arrays of mutexes.

Example 1. Figure 3 shows a simplified version of the insert-function from the
access vector cache of Security Enhanced Linux.1 At every program point, at
most one lock is held which is taken from a possibly large set of locks contained
in the array locks. For a sound data-race analysis of the function insert, it
does not suffice to verify that some lock from this array is held when the hash
map is modified. Instead, it also must check the (statically unknown) index of
the lock coincides with the index of the list in slots. ��

We now extend our core language by additionally allowing arrays within global
shared data structures. Here, we consider non-nested arrays only. The address
of a memory cell from a static global data structure with arrays is identified
by &a[i] where i is an index. Accordingly, we consider address expressions of
the form &a[e] where e is a side-effect free index expression depending on int-
variables only. Furthermore, we extend our notion of abstract heap partitions
π and points-into maps ρ. Besides sets of two-element sets, we now also allow
singleton sets {&a} in partitions. Such a singleton indicates that different entries
1 The most notable simplification is the use of singly linked lists instead of the doubly

linked lists from the Linux kernel; however, since our technique is based on a conser-
vative partitioning of the heap into disjoint regions, dealing with doubly linked lists
and even structured use of pointer arithmetic posed no significant further challenge.

180 H. Seidl and V. Vojdani

of the array &a may belong to the same memory region. We thus consider the
set P of abstract heap partitions π with the following properties:

1. If {x, y}, {y, z} ∈ π for x �= z, then {x, z} ∈ π.
2. If {&a, x} ∈ π, then also {&a} ∈ π.
3. If {&a} ∈ π, then &a[e] does not occur in π.
4. For the same array &a, π may have at most one address expression e with

&a[e] occurring in π.

We could have allowed multiple index expressions ei referring to the same array
&a as long as all ei definitely evaluate to distinct values. In our experiments,
the restriction to a single expression, however, has always been sufficient. The
partial ordering on P is given by π1 $ π2 iff the following holds:

1. If {&a[e], x} ∈ π1 then {&a[e], x} ∈ π2 or {&a}, {&a, x} ∈ π2.
2. If {x, y} ∈ π1 where neither x nor y contains an index expression, then also

{x, y} ∈ π2.

Thus, e.g., for π1 = ∅, π2 = {{p,&a[i]}}, π3 = {{&a}, {p,&a}}, π1 $ π2 $ π3.
Accordingly, we now consider points-into maps ρ where a set X occurring as

the image of a local (or () satisfies the following additional restrictions:

1. If &a[e],&a[e′] ∈ X , then e ≡ e′;
2. If &a ∈ X then for every e, &a[e] �∈ X

where the ordering on two such sets is the natural extension of ∅ $ {x} for all
x, and {&a[e]} $ {&a}.

Also, we extend the closure operation clπ such that clπX for a set X of global
static address expressions or •, now additionally replaces an indexed expres-
sion &a[e] with &a whenever {&a} ∈ π. Likewise, we extend the domain of must
equalities and finite lock sets to address expressions containing indexing. The oc-
curring index expressions may depend on int-variables; however, we here ignore
definite equalities between int-variables. Thus, we consider two index expres-
sions e1, e2 as definitely equal only if they are syntactically equal. Technically,
this allows us to use a similar domain for must equalities and lock sets as in sec-
tion 4 — only that we now additionally consider indexed static addresses &a[e]
instead of static addresses &a alone.

This simplistic setting is still able to deal with increments or decrements of int-
variables. Accordingly, our analysis will track assignments to int-variables i of
the form i= i+c for c ∈ Z whereas all other assignments to i are approximated by
the non-deterministic assignment i=? which is meant to assign to i an unknown
value. The effect of the assignment i= i + c on a triple T = 〈π, φ, S〉 consists in
substituting i in all index expressions occurring in T with i− c. The effect of the
assignment i=? on the other hand, assigns an unknown value to i and thus must
remove all occurrences of xi from T . For a partition π, delete(π, i) replaces all
expressions &a[e] where i occurs in e with &a (if there are any) and adds the set
{&a} (given that there are any). For a points-into map ρ, delete(π, i) replaces in
every image ρ(z) elements &a[e] where i occurs in e with &a. For component φ,

Region Analysis for Race Detection 181

delete(φ, i) removes all equalities involving i. Likewise for S, delete(S, i) removes
all lock expressions &a[e].b where i occurs in e.

�i= i + c�	T = T [i − c/i]
�i=?�	T = 〈delete(π, i), delete(ρ, i), delete(φ, i), delete(S, i)〉

The effects of assignments involving local pointers and global memory, are de-
fined componentwise on the first three components, while the set of definitely
held locks remains unchanged. We omit the details but instead apply the tech-
nique to a typical example.

Example 2. Assume we start the execution of the insert-function from Figure 3
with the abstract value T0 = 〈∅, {(�→ {•}, t �→ ∅}, true, ∅〉. After having called
spin_lock() and reaching the while-loop, we have:

T1 = 〈∅, ρ1, φ1, S1〉 where
ρ1 = {(�→ {•}, t �→ {&slots[hv]}}
φ1 = t =̇ &slots[hv]
S1 = {&locks[hv]}

although the precise value of hv is unknown. Inside the loop the must-equality
t =̇ &slots[hv] is lost, while the region information as well as the lock set are
preserved. Unlocking resets the set of held locks to ∅. ��

Our analysis can be enhanced by jointly performing constant propagation or,
more generally, any analysis of int variables which provides us with more precise
information about how index expressions are related. Such information could be
provided, e.g., by Karr’s analysis of affine equalities [13, 16].

While the complete lattice for the combined analysis of regions, must equalities
and abstract lock sets in presence of arrays is no longer finite, it still satisfies
the ascending chain condition. In order to apply the interprocedural framework
from Section 3, we generalize the functions enter	 and combine	 for abstract
parameter passing and procedure return from the last sections. Additionally, we
now must track the values of local int variables. We could do so by additionally
maintaining, e.g., affine must equalities between these. Here, we prefer a simpler
analysis which just tracks the set of local int variables which may have changed
their values since procedure entry. Assume that before the call, we have the
abstract state T = 〈π, ρ, I, φ, S〉 where π, ρ, φ, and S are as before and I now
denotes a set of int variables whose value possibly has changed since procedure
entry. When entering a newly called procedure, we initialize this set to ∅. We
define:

enter	〈π, ρ, I, φ, S〉 = 〈π, ρ1, ∅, φ, S〉 where
ρ1 = ρ⊕ {(�→ {•}}

Likewise, at procedure exit, the local variables of the called procedure q must
be removed. Also all equivalences {x,&a[e]} in the returned must be collapsed to

182 H. Seidl and V. Vojdani

{x,&a} for index expressions e depending on int-variables which have changed
their values. This is achieved by:

combine	(〈π1, ρ1, I1, φ1, S1〉, 〈π2, ρ2, I2, , S2〉) = 〈π, ρ, I1, φ1, S〉 where
π = delete(π2, I2)
ρ = {z �→ clπ(ρ1(z)) | z ∈ L ∪ {(}, • �∈ ρ1(z)} ∪

{z �→ clπ(ρ1(z) ∪ ρ2(()) | z ∈ L ∪ {(}, • ∈ ρ1(z)}
S = delete(S2, I2)

Here, the calls to delete() for a set I of int variables abbreviate repeated appli-
cation of delete() for each element i ∈ I.

Example 3. Consider the insert-function from Figure 3. Assume that at the pro-
gram point before the call to this function we have the abstract state: T0 =
〈∅, {(, t �→ {•}}, ∅, true, ∅〉. Then enter	(T0) = T1 is the abstract value for the
start point of the corresponding abstract call to the function insert() where:

T1 = 〈∅, ρ1, ∅, φ1, ∅〉 where
ρ1 = {(�→ {•}, t �→ {&slots[hv]}}
φ1 = t =̇ &slots[hv]

At the program point before the lock operation, we have T2 = 〈∅, ρ1, {hv}, φ1, ∅〉.
After locking, we thus have T3 = 〈∅, ρ1, {hv}, φ1, {&locks[hv]}〉 — implying
that the elements accessed through the pointer t belong to the region slots[hv]
and that these accesses are protected by the corresponding lock locks[hv]. At
function exit, we finally arrive at T4 = 〈∅, ρ1, {hv}, φ1, ∅〉. Combining this state
with the state T0 before the call will recover the set of possibly modified int
variables as well as the must equalities before the call. In the example, we just
recover the abstract state T0. ��

6 Analyzing the Linux Kernel

We have implemented our analysis in the Goblint analyser and applied it to
Linux kernel modules such as device drivers. One challenge in analyzing device
drivers is how to model the rest of the kernel. Goblint uses a driver harness
that assumes the worst possible interleavings of the device’s file operations and
interrupt handlers. Starting from the module initialization code, we track func-
tion pointers that are held in structs. Pointers passed to library functions are
assumed to be potential call-backs and are analyzed as separate threads. These
may interleave with each other as well as with the rest of the initialization code.

In the implementation, we also extended the basic approach to deal with
nested static global data-structures such as structs containing arrays as well as
well-behaved pointer arithmetic within structs. This is necessary for the analysis
of the Linux API for doubly linked lists. This API provides macros which, e.g.,
calculate the start address of a struct from the address of a component. While
these macros have a clean semantics, their implementation makes extensive use

Region Analysis for Race Detection 183

Table 1. Result of analysing kernel modules

File Size (merged) Time Verified Warnings
atmel tclib 1317 lines 0,07 s 1 0
hwmon 1434 lines 0,23 s 1 0
enclosure 1510 lines 0,19 s 1 1
scsi dh 4370 lines 0,57 s 2 0
dmaengine 4449 lines 0,83 s 3 0
scsi rdac 4744 lines 0,81 s 1 0
usb hcd 7340 lines 3,32 s 3 2
avc 7466 lines 1,68 s 2 1
ppp generic 10818 lines 4,70 s 4 1

of type casts, and addition and subtraction of pointers. Therefore, our imple-
mentation allows application of the address operator to arbitrary expressions
evaluating to global addresses. Thus, pointers may no longer point to the begin-
nings of blocks. Moreover, a pointer variable whose value is obtained from the
value of the pointer variable q by means of such kind of pointer arithmetic is
put into the same region as q.

The results of running our analyzer on a number of different modules from
the kernel is summarized in Table 1. We use the CIL analysis framework [19] as
a front-end to parse and process these files. The sizes of the files in the table
are the sizes of CIL’s outputs after merging the modules with included headers
and removing unused definitions. We ran these experiments on an Athlon 64 X2
3800+ machine under Kubuntu.2

For all these benchmarks, we are successful in automatically inferring the cor-
relations between elements of lists and their corresponding locks and to verify
that all accesses are protected. The numbers of shared variables for which we
could verify a consistent locking scheme as well those for which conflicting ac-
cesses were found are listed in the table. The analyzer registers accesses to each
element in a region separately; thus, if k linked lists have collapsed into a single
region and there is a conflicting access through a pointer into this region, the
number of warnings would be k and not one. The false alarms for these bench-
makrs are mostly due to our imprecise harness. We will comment here only on
two interesting benchmarks. The file avc is the access vector cache code of Se-
curity Enhanced Linux which served as the inspiration for the examples in this
paper. The analyzer’s output is the following:

Found correlation: avc_cache.latest_notif is guarded by
lockset {notif_lock}

Found correlation: avc_cache.slots is guarded by
lockset {avc_cache.slots_lock[*]}

Datarace over avc_callbacks:
write in some thread with lockset: {} (avc.c:6953)

2 The goblint website, http://goblint.at.mt.ut.ee, has detailed instructions
on reproducing these benchmarks.

http://goblint.at.mt.ut.ee

184 H. Seidl and V. Vojdani

The asterisk in the second lockset is the analyzer’s modest way of indicating
that it has verified the correlation between the index expressions used when
accessing list elements in the array of slots and the index expressions used to
acquire a mutex from the array of locks. The analyzer warns about a “race”
for avc_callbacks. While this is indeed a race in the context of this module
alone, the function for registering callbacks are only used in the initialization
code by the files using this module.

The file dmaengine is part of the hardware-neutral interface to the DMA
subsystem. The programmers have commented in the source file: “The subsystem
keeps two global lists, dma_device_list and dma_client_list. Both of
these are protected by a mutex, dma_list_mutex.” Our analyzer succeeds in
verifying this.

7 Related Work

Regions and ownership types have been used for compile-time garbage collec-
tion [27] or to ensure encapsulation in object-oriented languages [4]. More re-
cently, analyzers have been developed for checking correct usage of region-based
memory management APIs [1, 29]. Note, however, that the regions there need
not be closed under reachability. For analyzing pointers, Gulwani and Tiwari [10]
present a domain of quantified may- and must-equality pairs which can express
similar invariants to ours. This analysis, while being extremely precise, has prob-
lems with dealing with doubly linked lists. Reachability in the presence of pointer
arithmetic has been studied by Chatterjee et al. [3] who provide an annotation
language for reasoning about the linked list API of Windows device drivers.

Precise abstractions of the heap have been provided by separation logic [22]
and shape analysis [24]. Gopan et al. [8] present a shape analysis which allows
reasoning about dynamic memory and the values of array elements, Gulwani
et al. [9] present a set cardinality analysis which combines shape and numeric
abstractions to reason about sizes of data-structures. Hackett and Rugina [11]
present a shape analysis which is built on top of a partitioning of the heap into
disjoint regions. These regions are derived from a standard points-to analysis and
again not necessarily closed under reachability. Recent work has also provided
methods for making shape analysis scale better [31,2, 15] — at a certain loss in
precision, e.g., by no longer tracking arrays.

Our main interest has been to provide efficient methods which are precise
enough for analyzing data races in presence of dynamic data-structures and ar-
rays. Rugina and Rinard [23] present techniques to avoid races by analyzing
disjointness of accessed memory blocks. Naik and Aiken [18] propose condi-
tional must-not aliasing to deal with locking schemes of various levels of gran-
ularity in Java. They introduce disjoint reachability analysis for dealing with
medium-grained locking; however, their notion of disjointness is based on alloca-
tion sites, which is not helpful in cases such as Figure 2. We have experimented
with some analyzers that perform race detection for C. We compared the fol-
lowing analyzers: Locksmith, a sound race detection tool based on type-based

Region Analysis for Race Detection 185

Table 2. Summary of comparison. For each idiom, “+” indicates success, while “–”
indicates the existence of a False Negative / False Positive

Test Goblint Locksmith Coverity DDVerify
static +/+ +/+ +/+ −/+
single list +/+ +/− −/+
shared lists +/+ +/− −/+
simple array +/+ +/− −/+
shared array +/+ +/− −/+

label-flow [21]; Coverity Prevent, a commercial bug-detection tool based on meta-
compilation techniques [6]; and DDVerify, a device driver model-checker that
checks for proper use of the kernel API [30].

We compared the tools on small test programs. For each test, there is a version
with a race and one without races. The test static is the simplest possible race
example, has a static global variable that should be protected by a static lock;
single list contains a linked list where access to its nodes are protected by a
single lock; shared lists has two lists that are protected by their own locks; still,
there might be races due to sharing between elements in the lists; simple array
contains an array of locks and an array of linked lists where the accesses should
be properly correlated as in the examples of this paper; shared array is like the
previous test, except there might be sharing between the linked lists of different
array elements, hence there may a race although the correct lock is acquired.
The summary of this comparison is shown in Table 2.

It seems that DDVerify checks other properties related to mutexes, e.g.,
double-acquisition of locks, but not whether accesses to globals are protected
by the same locks. Locksmith and Coverity Prevent pass the first test, but al-
ready the simple linked list example is beyond their current capabilities. Lock-
smith complains on all tests, even when the program is perfectly safe; Coverity
remains completely silent, even in the presence of races. Naturally, these ana-
lyzers have their advantages: Coverity checks a host of other properties, Lock-
smith deals with per-element locking, and DDVerify has an extremely precise
automatic device driver harness mechanism; nevertheless, for medium-grained
locking, Goblint is the clear winner.

8 Conclusion

We have presented a general approach to certify absence of data-races in C. In
order to deal with dynamic data-structures, we provided a simple region analysis
which allows to analyze reachability through field selection and dereferencing.
We also indicated how this method can be extended to deal with arrays of regions
and (well-behaved) pointer arithmetic. Our methods have been implemented in
the efficient interprocedural data-race analyzer Goblint allowing us to verify
locking schemes for dynamic data structures and arrays in the Linux kernel.

While we have analyzed benchmarks without modifying the original kernel
code, in four of the benchmarks we only considered conflicts between write

186 H. Seidl and V. Vojdani

accesses. Read accesses are often protected by reader/writer locks, or more re-
cently, the Read-Copy-Update mechanism. This poses a problem when the read
accesses are protected at a coarser level of granularity than that of the write
accesses. Thus, our failure to distinguish these would generate false alarms. An-
other challenge is to combine our technique here with methods dealing with
per-element locking [20] in order to verify programs where some dynamically
allocated structures, such as the per-device structure, contain linked lists and
associated mutexes.

Acknowledgments. We thank Kalmer Apinis for assistance with the program-
ming. Development of the analyzer is partially supported by the Estonian Science
Foundation under grant no. 6713.

References

1. Boyapati, C., Salcianu, A., Beebee, W., Rinard, M.: Ownership types for safe
region-based memory management in real-time java. In: PLDI 2003, pp. 324–337.
ACM Press, New York (2003)

2. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: POPL 2009, pp. 289–300. ACM Press, New York
(2009)

3. Chatterjee, S., Lahiri, S., Qadeer, S., Rakamarić, Z.: A reachability predicate for
analyzing Low-Level software. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 19–33. Springer, Heidelberg (2007)

4. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: OOPSLA 1998, pp. 48–64. ACM Press, New York (1998)

5. Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Recursive
Programs. In: Neuhold, E. (ed.) Formal Descriptions of Programming Concepts,
pp. 237–277. North-Holland Publishing Company, Amsterdam (1977)

6. Engler, D., Chelf, B., Chou, A., Hallem, S.: Checking system rules using system-
specific, programmer-written compiler extensions. In: OSDI 2000, pp. 1–16.
USENIX Association (2000)

7. Fecht, C., Seidl, H.: A Faster Solver for General Systems of Equations. Sci. Comput.
Programming 35(2), 137–161 (1999)

8. Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array opera-
tions. In: POPL 2005, pp. 338–350. ACM Press, New York (2005)

9. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking par-
tition sizes. In: POPL 2009, pp. 239–251. ACM Press, New York (2009)

10. Gulwani, S., Tiwari, A.: An abstract domain for analyzing heap-manipulating low-
level software. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 379–392. Springer, Heidelberg (2007)

11. Hackett, B., Rugina, R.: Region-based shape analysis with tracked locations. In:
POPL 2005, pp. 310–323. ACM Press, New York (2005)

12. Hind, M., Burke, M., Carini, P., Choi, J.-D.: Interprocedural pointer alias analysis.
ACM Trans. Prog. Lang. Syst. 21(4), 848–894 (1999)

13. Karr, M.: Affine relationships among variables of a program. Acta Inf. 6(2),
133–151 (1976)

Region Analysis for Race Detection 187

14. Knoop, J., Steffen, B.: The Interprocedural Coincidence Theorem. In: Pfahler, P.,
Kastens, U. (eds.) CC 1992. LNCS, vol. 641, pp. 125–140. Springer, Heidelberg
(1992)

15. Manevich, R., Lev-Ami, T., Sagiv, M., Ramalingam, G., Berdine, J.: Heap decom-
position for concurrent shape analysis. In: Alpuente, M., Vidal, G. (eds.) SAS 2008.
LNCS, vol. 5079, pp. 363–377. Springer, Heidelberg (2008)

16. Müller-Olm, M., Seidl, H.: A note on Karr’s algorithm. In: Dı́az, J., Karhumäki,
J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1016–1028.
Springer, Heidelberg (2004)

17. Müller-Olm, M., Seidl, H.: Upper adjoints for fast inter-procedural variable equali-
ties. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 178–192. Springer,
Heidelberg (2008)

18. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In:
POPL 2007, pp. 327–338. ACM Press, New York (2007)

19. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: Cil: An infrastructure for C
program analysis and transformation. In: Horspool, R.N. (ed.) CC 2002. LNCS,
vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

20. Pratikakis, P., Foster, J.S., Hicks, M.: Existential label flow inference via CFL
reachability. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 88–106. Springer,
Heidelberg (2006)

21. Pratikakis, P., Foster, J.S., Hicks, M.: Locksmith: Context-sensitive correlation
analysis for detecting races. In: PLDI 2006, pp. 320–331. ACM Press, New York
(2006)

22. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS 2002, pp. 55–74. IEEE Computer Society Press, Los Alamitos (2002)

23. Rugina, R., Rinard, M.C.: Symbolic bounds analysis of pointers, array indices, and
accessed memory regions. ACM Trans. Prog. Lang. Syst. 27(2), 185–235 (2005)

24. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Prog. Lang. Syst. 24(3), 217–298 (2002)

25. Seidl, H., Vene, V., Müller-Olm, M.: Global invariants for analyzing multithreaded
applications. Proc. of the Estonian Academy of Sciences: Phys., Math. 52(4),
413–436 (2003)

26. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications, pp. 189–234 (1981)

27. Tofte, M., Birkedal, L.: A region inference algorithm. ACM Trans. Prog. Lang.
Syst. 20(4), 724–767 (1998)

28. Vojdani, V., Vene, V.: Goblint: Path-sensitive data race analysis. Annales Univ.
Sci. Budapest., Sect. Comp. 30, 141–155 (2009)

29. Wang, X., Xu, Z., Liu, X., Guo, Z., Wang, X., Zhang, Z.: Conditional correlation
analysis for safe region-based memory management. In: PLDI 2008, pp. 45–55.
ACM Press, New York (2008)

30. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking con-
current linux device drivers. In: ASE 2007, pp. 501–504. ACM Press, New York
(2007)

31. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

Bottom-Up Shape Analysis

Bhargav S. Gulavani1, Supratik Chakraborty1, Ganesan Ramalingam2,
and Aditya V. Nori2

1 IIT Bombay
2 Microsoft Research Bangalore

Abstract. In this paper we present a new shape analysis algorithm.
The key distinguishing aspect of our algorithm is that it is completely
compositional, bottom-up and non-iterative. We present our algorithm
as an inference system for computing Hoare triples summarizing heap
manipulating programs. Our inference rules are compositional: Hoare
triples for a compound statement are computed from the Hoare triples
of its component statements. These inference rules are used as the basis
for a bottom-up shape analysis of programs.

Specifically, we present a logic of iterated separation formula (LISF)
which uses the iterated separating conjunct of Reynolds [17] to represent
program states. A key ingredient of our inference rules is a strong bi-
abduction operation between two logical formulas. We describe sound
strong bi-abduction and satisfiability decision procedures for LISF.

We have built a prototype tool that implements these inference rules
and have evaluated it on standard shape analysis benchmark programs.
Preliminary results show that our tool can generate expressive sum-
maries, which are complete functional specifications in many cases.

1 Introduction

In this paper we present a new shape analysis algorithm: an algorithm for an-
alyzing programs that manipulate dynamic data structures such as lists. The
key distinguishing aspect of our algorithm is that it is completely bottom-up
and non-iterative. It computes summaries describing the effect of a statement
or procedure in a modular, compositional, non-iterative way: the summary for a
compound statement is computed from the summaries of the simpler statements
that make up the compound statement.

Shape analysis is intrinsically challenging. Bottom-up shape analysis is partic-
ularly challenging because it requires analyzing complex pointer manipulations
when nothing is known about the initial state. Hence, traditional shape analy-
ses are based on an iterative top-down (forward) analysis, where the statements
are analyzed in the context of a particular (abstract) state. Though challenging,
a bottom-up shape analysis appears worth pursuing because the compositional
nature of the analysis promises much better scalability, as illustrated by the
recent work of Calcagno et al. [8]. The algorithm we present is based on ideas
introduced by Calcagno et al. [8].

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 188–204, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Bottom-Up Shape Analysis 189

Motivating Example. Consider the procedure shown in Figure 1. Given a list,
pointed to by parameter h, this procedure deletes the fragment of the list de-
marcated by parameters a and b. Our goal is an analysis that, given a procedure
S such as this, computes a set of Hoare triples [ϕ] S [ϕ̂] that summarize the
procedure. We use the above notation to indicate that the Hoare triples inferred
are total : the triple [ϕ] S [ϕ̂] indicates that, given an initial state satisfying ϕ,
the execution of S will terminate safely (with no memory errors) in a state
satisfying ϕ̂.

delete(struct node *h, *a, *b)
1. y=h;
2. while (y!=a && y!=0) {
3. y=y->next;

}
4. x=y;
5. if (y!=0) {y=y->next;}
6. while (y!=b && y!=0) {
7. t=y;
8. y=y->next;
9. delete(t);

}
10. if (x !=0) {
11. x->next=y;
12. if (y!=0) y->prev=x;

}

Fig. 1. Motivating exam-
ple – deletion of the list
segment

Inferring Preconditions. There are several challenges
in meeting our goal. First, note that there are a num-
ber of interesting cases to consider: the list pointed to
by h may be an acyclic list, or a complete cyclic list,
or a lasso (an acyclic fragment followed by a cycle).
The behavior of the code also depends on whether
the pointers a and b point to an element in the list or
not. Furthermore, the behavior of the procedure also
depends on the order in which the elements pointed
to by a and b occur in the list.

With traditional shape analyses, a user would have
to supply a precondition describing the input to en-
able the analysis of the procedure delete. Alter-
natively, an analysis of the calling procedure would
identify the abstract state σ in which the procedure
delete is called, and delete would be analyzed in an
initial state σ. In contrast, a bottom-up shape anal-

ysis automatically infers relevant preconditions and computes a set of Hoare
triples, each triple describing the procedure’s behavior for a particular case (such
as the cases described in the previous paragraph).

Inferring Postconditions. However, even for a given ϕ, many different correct
Hoare triples can be produced, differing in the information captured by the
postcondition ϕ̂. As an example consider the case where h points to an acyclic
list, and a and b point to elements in the list, with a pointing to an element
that occurs before the element that b points to. In this case, the following are
all valid properties that can be expressed as suitable Hoare triples: (a) The
procedure is memory-safe: it causes no pointer error such as dereferencing a
null pointer. (b) Finally, h points to an acyclic list. (c) Finally, h points to an
acyclic list, which is the same as the list h pointed to at procedure entry, with
the fragment from a to b deleted. Clearly, these triples provide increasingly more
information.

A distinguishing feature of our inference algorithm is that it seeks to infer triples
describing properties similar to (c) above, which yield a functional specification
for the analyzed procedure. One of the key challenges in shape analysis is relating

190 B.S. Gulavani et al.

the value of the final data-structure to the value of the initial data-structure. We
utilize an extension of separation logic, described later, to achieve this.

Composition via Strong Bi-Abduction. We now informally describe how sum-
maries [ϕ1] S1 [ϕ̂1] and [ϕ2] S2 [ϕ̂2], in separation logic, can be composed to
obtain summaries for S1;S2. The intuition behind the composition rule, which
is similar to the composition rule in [8], is as follows. Suppose we can identify
ϕpre and ϕpost such that ϕ̂1 ∗ ϕpre and ϕpost ∗ ϕ2 are equivalent. We can then
infer summaries [ϕ1 ∗ ϕpre] S1 [ϕ̂1 ∗ϕpre] and [ϕpost ∗ ϕ2] S2 [ϕpost ∗ ϕ̂2] by ap-
plication of Frame rule [15], where ∗ is the separating conjunction of Separation
Logic [17] (subject to the usual Frame rule conditions: ϕpre and ϕpost should
not involve variables modified by S1 and S2 respectively). We can then compose
these summaries trivially and get [ϕ1 ∗ ϕpre] S1; S2 [ϕpost ∗ ϕ̂2]. Given ϕ̂1 and
ϕ2, we refer to the identification of ϕpre, ϕpost such that ϕ̂1 ∗ ϕpre ⇔ ϕpost ∗ ϕ2
as strong bi-abduction. Strong bi-abduction also allows for existentially quanti-
fying some auxiliary variables from the right hand side of the equivalence. Refer
Section 2 for details.

Iterative Composition. A primary contribution of this paper is to extend the
above intuition to obtain loop summaries. Suppose we have a summary [ϕ] S [ϕ̂],
where S is the body of a loop (including the loop condition). We can apply
strong bi-abduction to compose this summary with itself: for simplicity, suppose
we identify ϕpost and ϕpre such that ϕ̂ ∗ ϕpre ⇔ ϕpost ∗ ϕ. If we now induc-
tively apply the composition rule, we can then infer a summary of the form
[ϕ ∗ϕk

pre] S
k [ϕk

post ∗ ϕ̂] that summarizes k executions of the loop. Here, we have
abused notation to convey the intuition behind the idea. If our logic permits
a representation of the repetition of a structure ϕpre an unspecified number of
times k, we can then directly compute a Hoare triple summarizing the loop from
a Hoare triple summarizing the loop body.

Logic Of Iterated Separation Formulas. In this paper, we introduce LISF, an
extension of separation logic that enables us to meet our goal, and present
sound procedures for strong bi-abduction and satisfiability in LISF. LISF has
two key aspects: (i) It contains a variant of Reynolds’ iterated separating con-
junct construct that allows the computation of a loop summary from a loop
body summary. (ii) It uses an indexed symbolic notation that allows us to give
names to values occurring in a recursive (or iterative) data-structure. This is
key to meeting the goal described earlier of computing functional specifica-
tions that can relate the value of the final data-structure to the value of the
initial data-structure. LISF gives us a generic ability to define recursive pred-
icates useful for describing recursive data-structures. The use of LISF, instead
of specific recursive predicates, such as those describing singly-linked lists or
doubly-linked lists, allows us to compute more precise descriptions of recursive
data-structures in preconditions. Though we use LISF for a bottom-up analy-
sis, it can also be used to represent program states in top down interprocedural
analysis.

Bottom-Up Shape Analysis 191

Empirical Evaluation. We have implemented our inference rules in a prototype
bottom-up analyzer and evaluated it on several shape analysis benchmarks. On
most of the examples we could generate ‘complete’ functional specifications. On
the example program in Figure 1, we could generate several summaries with
cyclic and lasso structures, although a complete specification was not obtained.
This is due to the incompleteness of our strong bi-abduction algorithm.

Related Work. Our work is most closely related to the recent compositional
shape analysis algorithm presented by Calcagno et al. [8], which derives from
the earlier work in [9]. The algorithm described by Calcagno et al. is a hy-
brid algorithm that combines compositional analysis with an iterative forward
analysis. The first phase of this algorithm computes candidate preconditions
for a procedure, and the second phase utilizes a forward analysis to either
discard the precondition, if the precondition is found to potentially lead to a
memory error, or find a corresponding sound postcondition. The key idea in
the Calcagno et al. approach, which we borrow and extend, is the use of bi-
abduction to handle procedure calls compositionally. Given ϕ̂1, the state at
a callsite, and ϕ2, a precondition of a Hoare triple for the called procedure,
Calcagno et al. compute ϕpre and ϕpost such that ϕ̂1 ∗ ϕpre ⇒ ϕpost ∗ ϕ2.
Our approach differs from the Calcagno et al. work in the following ways. We
present a completely bottom-up analysis which does not use any iterative anal-
ysis whatsoever. Instead, it relies on a “stronger” form of bi-abduction (where
we seek equivalence instead of implication but allow some auxiliary variables to
be quantified) to compute the post-condition simultaneously. Furthermore, our
approach extends the composition rule to treat loops in a similar fashion. Our
approach also computes preconditions that guarantee termination. We present
LISF, which serves as the basis for our algorithm, while their work uses a set
of abstract recursive predicates. We also focus on computing more informative
triples that can relate the final value of a data-structure to the initial data-
structure.

Several recent papers [16,2,13] describe techniques to obtain preconditions
by going backwards starting from some bad states. Unlike our approach, these
techniques are not compositional or bottom-up. The work on regular model-
checking [1,6,5,7] represents input-output relations by a transducer, which can
be looked upon as a functional specification. But these works do not provide
compositional techniques to compute the transducer for a loop.

Extrapolation techniques proposed in [18,4] compute sound overapproxima-
tions by identifying the growth in successive applications of transducers and
iterating that growth. Similarly, [12] proposes a technique to guess the recursive
predicates characterizing a data structure by identifying the growth in succes-
sive iterations of the loop and repeating that growth. In contrast, we identify the
growth in both the pre and postconditions by strong bi-abduction and iterate
it to compute Hoare triples that are guaranteed to be sound. Furthermore, our
analysis is bottom-up and compositional in contrast to these top-down (forward)
analyses.

192 B.S. Gulavani et al.

Program Syntax
e ::= v | null
C ::= v = e | v != e
S ::= v.f := e | v := u.f | v := new | dispose v | S; S

| assert(C) | v := e | if(C, S, S) | while(C) S

Assertion Logic Syntax (∼ ∈ {=, �=})
e ::= null | v | . . .
P ::= e ∼ e | false | true | P ∧ P | . . .
S ::= emp | e �→ (f : e) | true | S ∗ S | . . .
SH ::= P ∧ S | ∃v. SH

Fig. 2. Program syntax and assertion logic syntax

Contributions. (i) We present the logic of iterated separation formulas LISF
(Section 3) and give sound algorithms for satisfiability checking and strong bi-
abduction in this logic (Section 5). (ii) We present inference rules to compute
Hoare triples in a compositional bottom-up manner (Section 4). (iii) We have
a prototype implementation of our technique. We discuss its performance on
several challenging programs (Section 6).

2 Composition via Strong Bi-abduction

In this section we introduce the idea of composing Hoare triples using strong
bi-abduction.

2.1 Preliminaries

Programming language. We address a simple language whose syntax appears in
Figure 2. The primitives assert(v = e) and assert(v != e) are used primar-
ily to present inference rules for conditionals and loops (as will be seen later).
Here v, u are program variables, and e is an expression which could either be a
variable or a constant null. This language does not support address arithmetic.

Semantically, we use a value domain Locs (which represents an unbounded set
of locations). Each location in the heap represents a cell with n fields, where n is
statically fixed. A computational state contains two components: a stack, mapping
program variables to their values (Locs ∪ {null}), and a heap, mapping a finite
set of non-null locations to their values, which is a n-tuple of (primitive) values.

Assertion Logic. We illustrate some of the key ideas using standard Separation
Logic, using the syntax shown in Figure 2. The ‘. . . ’ in Figure 2 refer to con-
structs and extensions we will introduce in Section 3. We assume the reader is
familiar with the basic ideas in Separation Logic. An expressions e evaluates
to a location. Given a stack s, a variable v evaluates to a location. A symbolic
heap representation consists of a pure part P and a spatial part S. The pure
part P consists of equalities and disequalities of expressions. The spatial part S
describes the shape of the graph in the heap. emp denotes that the heap has
no allocated cells. x �→ (f : l) denotes a heap consisting of a single allocated cell
pointed to by x, and the f field of this cell has value l. The ∗ operator is called
the separating conjunct; s1 ∗ s2 denotes that s1 and s2 refer to disjoint portions
of the heap and the current heap is the disjoint union of these sub-heaps. The
meaning of pure assertions depends only on the stack, and the meaning of spatial
assertions depends on both the stack and the heap.

Bottom-Up Shape Analysis 193

Table 1. Local reasoning rules for primitive statements

Mutation [v �→ (f : w; . . .)] v.f := e [v �→ (f : e; . . .)]
Deallocation [v �→ (f1 : w1, . . . , fn : wn)] dispose v [v �= null ∧ emp]
Allocation (modifies v) [v = x] v := new [∃ w1 . . . wn. v �→ (f1 : w1, . . . , fn : wn)]
Lookup (modifies v) [v = x ∧ u �→ (f : w; . . .)] v := u.f [v = w ∧ u �→ (f : w; . . .)]

[v = x ∧ v �→ (f : w; . . .)] v := v.f [v = w ∧ x �→ (f : w; . . .)]
Copy (modifies v) [v = x] v := e [v = e〈v → x〉]
Guard [v = e] assert(v = e) [v = e]

[v �= e] assert(v!= e) [v �= e]

Hoare triples. The specification [ϕ] S [ϕ̂] means that when S is run in a state
satisfying ϕ it terminates without any memory error (such as null dereference)
in a state satisfying ϕ̂. Thus, we use total correctness specifications. Additionally,
we call the specification [ϕ] S [ϕ̂] strong if ϕ̂ is the strongest postcondition of ϕ
with respect to S. We use the logical variable v to refer to the value of program
variable v in the pre and postcondition of a statement S. The specification may
refer to auxiliary logical variables, called Aux, that do not correspond to the
value of any program variable. For the present discussion, we prefix all auxiliary
variable names with ‘ ’. A Hoare triple with auxiliary variables is said to be valid
iff it is valid for any value binding for the auxiliary variables occurring in both
the pre and postcondition. The local Hoare triples for reasoning about primitive
program statements are given in Table 1. These are similar to the small axioms
of [15].

We use the following short-hand notations for the remainder of the paper.
Formulae true∧S and P ∧emp in pre or post conditions are represented simply
as S and P respectively. The notation θ : 〈v → x〉 refers to a renaming θ that
replaces variable v with x, and eθ refers to the expression obtained by applying
renaming θ to e. For sets A and B of variables, we write θ : 〈A ↪→ B〉 to denote
renaming of a subset of variables in A by variables in B. We use free(ϕ) to
refer to the set of free variables in ϕ. Similarly, mod(S) denotes the set of logical
variables corresponding to program variables modified by S. We denote sets of
variables by upper-case letters like V,W,X, Y, Z, For every such set V , Vi

denotes the set of i subscripted versions of variables in V . We use ϕs and ϕp to
refer to the pure and spatial parts, respectively, of ϕ. The notation ∃X.ϕ ∗ ∃Y.ψ
is used to denote ∃X,Y. ϕp ∧ψp ∧ϕs ∗ψs, when ϕ and ψ are quantifier free and
do not have free Y and X variables, respectively.

2.2 Composing Hoare Triples

Given two summaries [ϕ1] S1 [ϕ̂1] and [ϕ2] S2 [ϕ̂2], we wish to compute a sum-
mary for the composite statement S1;S2. If we can compute formulas ϕpre and
ϕpost that are independent of mod(S1) and mod(S2), respectively, such that
ϕ̂1 ∗ ϕpre ⇔ ϕpost ∗ ϕ2, then by application of Frame rule we can infer the sum-
mary [ϕ1∗ϕpre] S1; S2 [ϕpost∗ϕ̂2]. We can compose the two given summaries even
under the slightly modified condition ϕ̂1 ∗ ϕpre ⇔ ∃Z. (ϕpost ∗ ϕ2), if Z ⊆ Aux.
The summary inferred in this case is [ϕ1 ∗ ϕpre] S1; S2 [∃Z. (ϕpost ∗ ϕ̂2)].

194 B.S. Gulavani et al.

Compose
[ϕ1] S1 [ϕ̂1]
[ϕ2] S2 [ϕ̂2]

ϕ̂1 ∗ ϕpre ⇔ ∃Z. (ϕpost ∗ ϕ2)
[ϕ1 ∗ ϕpre] S1; S2 [∃Z. (ϕpost ∗ ϕ̂2)]

free(ϕpre) ∩ mod(S1) = ∅
free(ϕpost) ∩ mod(S2) = ∅
Z ⊆ Aux

Branch
[ϕ ∧ B] S1 [ϕ̂]
[ϕ∧!B] S2 [ϕ̂]

[ϕ] if(B, S1, S2) [ϕ̂]

Exit While Then Else
[ϕ] assert(!B) [ϕ̂]
[ϕ] while(B) S [ϕ̂]

[ϕ] (assert(B); S)+; assert(!B) [ϕ̂],
[ϕ] while(B) S [ϕ̂]

[ϕ] assert(B); S1 [ϕ̂]
[ϕ] if(B, S1, S2) [ϕ̂]

[ϕ] assert(!B); S2 [ϕ̂]
[ϕ] if(B, S1, S2) [ϕ̂]

Fig. 3. Inference rules for sequential composition, loops, and branch statements

Given ϕ̂1 and ϕ2, we refer to the determination of ϕpre, ϕpost and a set Z
of variables such that ϕ̂1 ∗ ϕpre ⇔ ∃Z. (ϕpost ∗ ϕ2) as strong bi-abduction. The
concept of strong bi-abduction is similar to that of bi-abduction presented in [8]
(in the context of using a Hoare triple computed for a procedure at a particular
callsite to the procedure). Key differences are that bi-abduction requires the con-
dition ϕ̂2 ∗ϕpre ⇒ ϕpost ∗ϕ2, whereas we seek equivalence instead of implication
while allowing some auxiliary variables to be existentially quantified in the right
hand side of the equivalence. While the above composition rule is sound even if we
use bi-abduction, bi-abduction may not yield good post-conditions. Specifically,
‘total’ and ‘strong’ properties of specifications are preserved under composition
using strong bi-abduction. The ‘strong’ property is not preserved under compo-
sition using bi-abduction, although composition is sound. A drawback of using
strong bi-abduction, though, is that there exist Hoare triples which cannot be
composed using strong bi-abduction but can be composed using bi-abduction.
However, even with this drawback our tool could generate complete functional
specification for most of the benchmark programs using strong bi-abduction in
a bottom-up analysis.

Example 1. In this and subsequent examples, we use v �→ w as a short-hand for
v �→ (next : w). Let us compose two summaries, [v = a] v := new [∃ b. v �→ b] and
[v = c ∧ c �→ d] v := v.next [v = d ∧ c �→ d]. Note that all variables other than
v are distinct in the two summaries, as they represent implicitly existentially
quantified auxiliary variables in each of the two summaries. Since (∃ b. v �→ b) ∗
emp ⇔ ∃ c d. emp ∗ (v = c ∧ c �→ d) we can compose the two summaries and deduce
[v = a] v := new; v := v.next [∃ c d. v = d ∧ c �→ d].

We now present a set of Hoare inference rules in Separation Logic for our
programming language. The rules are formally presented in Figure 3. The Com-
pose rule captures the above idea of using strong bi-abduction for the sequential
composition of statements. The rules While, Then and Else use the Compose
rule to derive the fact in their antecedent.

The rules Exit and While are straightforward rules that decompose analysis
of loops into two cases. Rule Exit handles the case where the loop executes zero
times, while rule While applies when the loop executes one or more times. Rule
While leaves the bulk of the work to the computation of triples of the form
[ϕ] S+ [ϕ̂]. The triple [ϕ] S+ [ϕ̂] means that for every initial state satisfying ϕ,

Bottom-Up Shape Analysis 195

there exists a k ≥ 1 such that the state resulting after k executions of S satisfies
ϕ̂. In next two sections we present a technique for computing triples of this form.

3 Logic of Iterated Separation Formulae: LISF

Let S be the loop: while (v!=null) v := v.next. Let us use *k
i=0 ψi infor-

mally to represent the iterated separating conjunction ψ0 ∗ · · · ∗ ψk [17]. We
would like to infer the following summary for S: [v = x0 ∧ xk = null ∧ �k−1

i=0 xi �→
xi+1] S [v = xk ∧ xk = null ∧ �k−1

i=0 xi �→ xi+1]. In this section, we present a formal
extension of Separation Logic that lets us express such triples involving iterated
separating conjunction, in a restricted form. We first motivate this restricted
form of iteration by informally explaining how we plan to infer summaries such
as the one above.

Assume that we have a Hoare triple [ϕ] S [ϕ̂] where ϕ and ϕ̂ are quantifier free
formulas. We can compute a Hoare triple for k executions of S by repeated appli-
cations of the Compose rule as follows. Let ϕi (resp. ϕ̂i) denote ϕ (resp. ϕ̂) with
every variable x ∈ Aux replaced by an indexed variable xi. Consider the following
valid Hoare triples with variables renamed, [ϕi] S [ϕ̂i] and [ϕi+1] S [ϕ̂i+1]. Let
ϕi

pre and ϕi
post be such that, free(ϕi

pre) ∩mod(S) = free(ϕi
post) ∩mod(S) = ∅,

and ϕ̂i ∗ϕi
pre ⇔ ϕi

post ∗ϕi+1. Note that unlike ϕi or ϕ̂i, ϕi
pre and ϕi

post may have
free variables with index i as well as i + 1. We can now inductively apply the
compose rule and conclude the following Hoare triple.

[ϕ0 ∗ (*k−1
i=0 ϕi

pre)]S
k+1[(*k−1

i=0 ϕi
post) ∗ ϕ̂k] (3.1)

Example 2. Let S be the statement: assert(v! = null); v := v.next. Let us com-
pose the two summaries [v = x0 ∧ x0 �→ y0] S [v = y0 ∧ x0 �→ y0] and [v = x1 ∧ x1 �→
y1] S [v = y1 ∧ x1 �→ y1], which are identical, except for renaming of auxiliary
variables. Let ϕpre ≡ x1 = y0∧ x1 �→ y1 and ϕpost ≡ x1 = y0 ∧ x0 �→ y0. Application
of the Compose rule results in the following summary. [(v = x0∧ x0 �→ y0)∗ (x1 =

y0 ∧ x1 �→ y1)] S; S [(x1 = y0 ∧ x0 �→ y0) ∗ (v = y1 ∧ x1 �→ y1)]. Iterative application
of compose gives the summary: [v = x0 ∧ x0 �→ y0 ∗ �k−1

i=0 (xi+1 = yi ∧ xi+1 �→ yi+1)]

S+ [�k−1
i=0 (xi+1 = yi ∧ xi �→ yi) ∗ (v = yk ∧ xk �→ yk)].

ae ::= arr | ae[·] | ae[· + 1] | ae[c] | ae[$c]

e ::= . . . | ae[·] | ae[· + 1] | ae[c] | ae[$c]

P ::= . . . | RP(P, l, u)

S ::= . . . | RS(S, l, u)

SH ::= P ∧ S | ∃v. SH | ∃arr. SH

Fig. 4. LISF assertion syntax

LISF Syntax and Informal Semantics:
We now formally introduce a restricted
form of the iterated separating conjunct
illustrated above. Fig. 4 presents the
syntax of LISF, where “. . .” represents
standard constructs of Separation Logic
from Figure 2.We first illustrate the syn-
tax with an example relating the infor-

mal notation introduced earlier to the formal syntax. The informal notation
v = x0 ∧ xk = null ∧ *k−1

i=0 xi �→ xi+1 is represented in LISF as v = A[0]∧A[$0] =

null ∧ RS(A[·] �→ A[· + 1], 0, 0). This represents an acyclic singly linked list pointed to
by v.

196 B.S. Gulavani et al.

m |= e1 ∼ e2 iff E(e1, L, s,V) ∼ E(e2, L, s,V)

m |= RP(P, l, u) iff ∃k. k + 1 = len(V, L, P) ∧ ∀l ≤ i ≤ k − 1 − u. (s, h,V, i :: L) |= P

m |= e1 �→ (f : e2) iff h(E(e1, L, s,V)) = (f : E(e2, L, s,V)) ∧ dom(h) = {E(e1, L, s,V)}

m |= RS(S, l, u) iff ∃k, u′, hl, . . . , hu′ . k + 1 = len(V, L, S) ∧ u′ = k − 1 − u ∧ h =
⊔u′

i=l hi ∧
∀l ≤ i, j ≤ u′. i �= j ⇒ hi#hj ∧ ∀l ≤ i ≤ u′. (s, hi,V, i :: L) |= S

Fig. 5. Subset of semantics of LISF. m is (s, h,V, L), len is as explained in text.

A LISF formula may reference a new type of logical variable such as A, which we
call an array variable. We will denote array variable names with bold-faced upper
case letters, as a convention. As we will see later, the semantics of LISF will uti-
lize a mapping from such array variables to a sequence of values (v0, · · · , vk). LISF
also utilizes multi-dimensional arrays to handle nested recursive data-structures.
In such cases, the values vi may themselves be sequences.

Expressions are extended in LISF to permit indexed variable references, which
consist of an array variable name followed by a sequence of one or more indices. An
index can take one of the following four forms: (i) arr[c], (ii) arr[$c], (iii) arr[·], or
(iv) arr[· + 1]. Fixed indices arr[c] and arr[$c] refer to the element at an offset c
from the beginning or end of the sequence that arr denotes, respectively. E.g., if
A is bound to (v0, · · · , vk), then A[0] and A[$0] evaluate to v0 and vk respectively.
Iterated indices arr[·] and arr[· + 1] will be explained soon.

We extend the pure and spatial formulas with predicates RP(P, l, u) and RS(S, l, u),
respectively, to capture repeated structures. Loosely speaking, RS(S, l, u) corre-
sponds to our informal notation *k−1−u

i=l S, except that there is no explicit repre-
sentation of the index variable i or the bound k. The values of i and k are actually
provided by the evaluation context in the semantics. The dot in the iterated in-
dices arr[·] and arr[· + 1] is used to refer to the implicit index variable i. Thus,
arr[·] refers to the element at offset i, and arr[·+ 1] refers to the element at offset
i+1. Expressions with iterated indices are used within RP or RS predicates. For ex-
ample, consider the predicate RS(A[·] �→ A[·+1], 0, 0), where A is bound to a sequence
of length k+ 1. This predicate asserts that for all i ∈ [0, k− 1], the ith element of
A is the location of a cell in the heap whose next field has the same value as the
i+ 1th element of A. Further, the predicate also asserts that the elements A[0] to
A[k − 1] are distinct. For notational convenience we denote the formulas RP(P, l, u)

and RS(S, l, u) by RP(P) and RS(S), respectively, when both l and u are 0.

LISF Semantics Expression evaluation semantics is extended in a straightforward
fashion to evaluate indexed variable references. Expressions involving array vari-
able with multiple indices require the value of that array and a list of indices, one
for every iterated index, for their evaluation. The semantics of an expression e,
which evaluates to a location, is given by the function E(e, L, s,V) where L is the
index list (provided by the evaluation context), s is the stack, and V is the mapping
of array names to their values (uni or multi-dimensional sequences of locations).
Definition of E and detailed semantics are provided in the extended version [11].

The structures modeling LISF formulas are (s, h,V) where s is the stack, h is
the heap, and V is the mapping of array names to their values. The semantics of
assertions is given by the satisfaction relation (|=) between a structure extended

Bottom-Up Shape Analysis 197

with a list of indicesL, andan assertionϕ. The list of indicesL facilitates evaluation
of expressions by the function E . The structure (s, h,V) models ϕ iff (s, h,V , []) |=
ϕ. Semantics of constructs novel to LISF are given in Figure 5. We assume that ϕ
is a well formed formula (wff) and (s, h,V) is a well formed structure for ϕ (wfsϕ).
Intuitively, wff and wf sϕ avoid indexing error in the evaluation of ϕ. We write
h1#h2 to indicate that h1 and h2 have disjoint domains, and h1 � h2 to indicate
the disjoint union of such heaps.

Consider a RP(P, l, u) (or RS(S, l, u)) predicate nested inside n− 1 other RP (or RS)
predicates. The length of the array accessed by the nth iterated index of every
expression in P (or S) is guaranteed to be identical by the requirement of well
formed structures of a formula. Given a list L of n − 1 index values correspond-
ing to the evaluation context arising from the outer RP (or RS) predicates, function
len(V , L, P) (or len(V , L, S)) determines the length, say k + 1, of the array ac-
cessed by the nth iterated index of any expression in P (or S). The semantics of
RP(P, l, u) requires that P holds for each array index i ranging from l to k − 1 − u.
Similarly, the semantics of RS(S, l, u) requires that S holds over a sub-heap hi of h
for each array index i ranging from l to k − 1 − u, with the additional constraint
that the his are pair-wise disjoint.

4 Inductive Composition

Induct

Given
1. [ϕ] S [∃X. ϕ̂]
2. ϕ̂0 : ϕ̂ with every w ∈ W replaced by w0

3. ϕ1 : ϕ with every w ∈ W replaced by w1

4. free(ϕ0
pre) ∩ mod(S) = ∅

5. free(ϕ0
post) ∩ mod(S) = ∅

6. (∃X. ϕ̂0) ∗ ϕ0
pre ⇔ ϕ0

post ∗ ϕ1

7. α : 〈x → X[0]〉, for each x in W

8. β : 〈x → X[$0]〉, for each x in W

9. Function Iter as explained in following text
Infer

[ϕα ∗ Iter(ϕ0
pre)] S+ [∃X. Iter(ϕ0

post) ∗ ϕ̂β]

Fig. 6. Inference rule for acceleration

The rules introduced in Figure 3 are
valid even with LISF extension of Sep-
aration Logic. The set of auxiliary
variables,Aux, includes the arrayvari-
ables in this extension. For clarity, we
adopt the following convention in the
remainder of the paper: (i) unless ex-
plicitly stated, all formulas in LISF are
quantifier free, (ii) Hoare triples are
always expressed as [ϕ] S [∃X. ϕ̂], (iii)
free(ϕ) = V ∪ W and free(ϕ̂) =
V ∪W ∪X , where V denotes the set of
logical variables representing values of
program variables, and W,X are sets
of auxiliary variables, including array

variables1. ThusW is the set of free auxiliary variables occurring inϕ and in ∃X. ϕ̂.
Let [ϕ] S [∃X. ϕ̂] be a Hoare triple. We wish to compute a strong summary for

S+. Figure 6 presents the rule Induct to compute such a summary. As in the previ-
ous Section, we useϕi (resp. ϕ̂i) to denoteϕ (resp. ϕ̂) with every free auxiliary vari-
able w ∈ W replaced by an indexed variable wi. Let ϕ0

pre, ϕ0
post be formulas such

1 By restricting preconditions to quantifier free formulas we do not sacrifice ex-
pressiveness. Indeed, the Hoare triple [∃Y. ψ(V, W, Y)] S [∃X. ψ̂(V, W, X)] is valid iff
[ψ(V, W, Y)] S [∃X. ψ̂(V, W, X)] is valid, where W,X, Y are disjoint sets of auxiliary vari-
ables (see defn. 124 in [10]).

198 B.S. Gulavani et al.

that free(ϕ0
pre) and free(ϕ0

post) are disjoint from mod(S) and (∃X. ϕ̂0) ∗ ϕ0
pre ⇔

ϕ0
post ∗ ϕ1. Note that the premises 4, 5, and 6 of Induct imply that free(ϕi

pre)
and free(ϕi

post) are disjoint frommod(S), and that (∃X. ϕ̂i)∗ϕi
pre ⇔ ϕi

post ∗ϕi+1

for any i. Given these conditions, the Compose rule can be iteratively applied to
obtain an accelerated summary similar to that in (3.1).

We use α, β, and Iter to express ϕ0, ϕ̂k and the iterated separating conjunct of
accelerated summary (3.1) in LISF. The renamingα replaces every variable x ∈ W
in ϕ by X[0]. Similarly β replaces every x ∈ W in ϕ̂ by X[$0].

Inductq

Given
1. [ϕ] S [∃X. ϕ̂]
2. ϕ̂0 : ϕ̂ with every w ∈ W and x ∈ X

replaced by w0 and x1, resp.
3. ϕ1 : ϕ with every w ∈ W replaced by w1

4. free(ϕ0
pre) ∩ mod(S) = ∅

5. free(ϕ0
post) ∩ mod(S) = ∅

6. (∃X. ϕ̂0) ∗ ϕ0
pre ⇔ ∃Z1. (ϕ0

post ∗ ϕ1)
7. Z1 ⊆ W1 ∪ X1 ⊆ Aux and |Z1| = r

8. free(ϕ0
pre) ∩ Z0 = ∅

9. α, β, Iter, same as described in Induct

Infer
[ϕα ∗ Iter(ϕ0

pre)]
S+

[∃X,Z1, . . . ,Zr. Iter(ϕ0
post) ∗ ϕ̂β]

Fig. 7. Inference rule Inductq

The function Iter in premise 9 takes
an LISF formula ψ, computes an in-
termediate formula ψren, and returns
RP(ψp

ren) ∧ RS(ψs
ren). The formula ψren

is computed by applying a function
called warp to ψ. warp makes at most
two passes over the syntax tree of ψ
in a bottom-up manner. In the first
pass it renames every indexed auxil-
iary variable w0 (resp. w1) by a fresh
array with iterated index W[·] (resp.
W[· + 1]). If ψp

ren and ψs
ren do not

have any common array variable, it
performs a second pass in which ev-
ery sub-formula e1 �→ e2 in ψs

ren is
replaced by e1 �= null ∧ e1 �→ e2. All
resulting sub-formulas of the form
RS(P ∧ S, l, u) are finally replaced by
RP(P, l, u) ∧ RS(S, l, u). This ensures that

ψp
ren and ψs

ren always have at least one common array variable, unless ψs is emp.
The length of these common arrays determines the implicit upper bound in the
universal quantifier of RP and RS predicates in Iter(ψ).

In general, the strong bi-abduction of ∃X. ϕ̂0 and ϕ1 in premise 6 may require
variables to be existentially quantified on the right hand side. The Induct rule
needs to be slightly modified in this case. The modified rule Inductq is presented
in Figure 7. We use a refined notation in Inductq where ϕi (resp. ϕ̂i) denotes
ϕ (resp. ϕ̂) with every variable w ∈ W replaced by an indexed variable wi and
every variable x ∈ X replaced by xi+1. Let the bi-abduction between ϕ̂0 and ϕ1

be (∃X1. ϕ̂
0)∗ϕ0

pre ⇔ ∃Z1. (ϕ0
post ∗ϕ1), whereZ1 ⊆ W1∪X1 is the set of auxiliary

variables. If the additional side-condition free(ϕ0
pre) ∩Z0 = ∅ holds, we can infer

the accelerated summary in the conclusion of Inductq.
Let Zi be the set of variables {z1

i , . . . , z
r
i }. The values of variables in Z0 =

{z1
0 , . . . z

r
0}, . . . , Zk = {z1

k, . . . z
r
k} are represented as elements of r arrays Z1=

{z1
0 , . . . , z

1
k}, . . . ,Zr= {zr

0 , . . . , z
r
k} in the postcondition of conclusion of Inductq.

These two representations are analogous to representing elements of the same ma-
trix row-wise and column-wise. The variables representing the values of variables
in Z1 ∪ . . . ∪ Zk need to be existentially quantified in the postcondition of the

Bottom-Up Shape Analysis 199

conclusion of Inductq because of the existential quantification of Z1 in strong
bi-abduction. Hence we existentially quantify the array variables Z1, . . . ,Zr in the
conclusion of Inductq. As a technical subtlety, the variables in Z0 need not be
quantified. This is taken care of by adding extra equalities in Iter(ϕ0

post) (see [11]
for details).

Soundness of Induct and Inductq can be proved by appealing to the sound-
ness of the Compose rule, and by using structural induction. Note that if any
Hoare triple in the premise of an inference rule in Figure 3, 6, or 7 is partial (i.e.,
termination is not guaranteed starting from a state satisfying precondition), then
the Hoare triple in the conclusion will also be partial.

Lemma 1. Inference rules Induct and Inductq are sound.

Example 3. Recall Example 2 where two instances of the summary [v = x ∧ x �→
y] S [v = y ∧ x �→ y] are composed using ϕ0

pre : (x1 = y0 ∧ x1 �→ y1) and
ϕ0

post : (x1 = y0 ∧ x0 �→ y0). For this example, Iter(ϕ0
pre) generates the LISF for-

mula RP(X[· + 1] = Y[·]) ∧ RS(X[· + 1] �→ Y[· + 1]), and Iter(ϕ0
post) generates the for-

mula RP(X[· + 1] = Y[·]) ∧ RS(X[·] �→ Y[·]). In this representation, the arrays X and
Y represent the sequences x0, . . . , xk and y0, . . . , yk, respectively. The renamed
formulas ϕα and ϕ̂β correspond to the formulas v = X[0] ∧ X[0] �→ Y[0] and v =

Y[$0] ∧ X[$0] �→ Y[$0] respectively. The application of Induct thus generates the
summary: [v = X[0] ∧ RP(X[· + 1] = Y[·]) ∧ X[0] �→ Y[0] ∗ RS(X[· + 1] �→ Y[· + 1])] S+

[v = Y[$0] ∧ RP(X[· + 1] = Y[·]) ∧ RS(X[·] �→ Y[·]) ∗ X[$0] �→ Y[$0]].

Discussion. In the above example, the equality x1 = y0 in ϕ0
pre and ϕ0

post iden-
tifies folding points of the repeated sub-heaps. Hence we can rewrite the pre and
postcondition as v = x0 ∧�k−1

i=0 xi �→ xi+1 and v = xk ∧�k−1
i=0 xi �→ xi+1, respectively,

using the equality y0 = x1 to eliminate y0 in both the formulas. The corresponding
summary in LISF is: [v = X[0] ∧ RS(X[·] �→ X[· + 1])] S+ [v = X[$0] ∧ RS(X[·] �→ X[· + 1])].

Instead of translating a recurrence into a LISF formula, one could also translate
it into a recursive predicate. For example, the recurrence �k−1

i=0 xi �→ xi+1 obtained
above can be translated into a recursive predicate Rec(x0, xk), where Rec(x0, xk) ≡
x0 �→ xk ∨∃ x1. x0 �→ x1 ∗Rec(x1, xk). We choose to represent the values of variables
in successive instances of a repeated formula by an array rather than hiding them
under an existential quantifier of a recursive predicate. This enables us to relate the
data-structures before and after the execution of a loop. For example, this enables
our analysis to establish the fact that traversing a list using next field does not
modify contents of the cells or the relative links between them.

The Compose and Exit rules can be used to obtain summaries of loop free
code fragments and trivial summaries of loops, respectively. Given a loop body
summary, the Induct and Inductq rules generate an accelerated summary for
use in the While rule. Any pair of accelerated summaries can also be composed
to obtain new accelerated summaries. In general, determining the sequence of ap-
plication of the rules Compose, Inductq, Exit and While to obtain useful loop
summaries is an important but orthogonal issue and needs to be guided by heuris-
tics. Heuristics used for acceleration in [3] can be adapted to guide the application
of these rules for synthesizing useful loop summaries. Given procedure summaries,

200 B.S. Gulavani et al.

non-recursive procedure calls can be analyzed by the Compose rule, as in [8]. The
Inductq rule can also be used to compute accelerated summaries of tail recursive
procedures having at most one self-recursive call.

5 A Strong Bi-abduction Algorithm for LISF

BiAbduct(ϕ, ψ, mod1, mod2)
1: res ← {}
2: for all (M, C, L1, L2) ∈ Match(ϕs, ψs) do
3: Δ ← (ϕp ∧ L1) ∗ (M ∧ C) ∗ (ψp ∧ L2)
4: if sat(Δ) then
5: δ1 ← RemoveVar(M∧ψp∧L2, ϕ, mod1, V ∪W)

6: δ2 ← RemoveVar(M∧ϕp∧L1, ψ, mod2, V ∪Y)

7: γ ← ComputeRenaming(δ1, mod1, Y)
8: κ1 ← δ1γ
9: Ẑ ← Range(γ)

10: if IsIndep(κ1, mod1) and IsIndep(δ2, mod2)
then

11: θ ← ComputeRenaming(κ1, X ∪ Y, X)
12: Z̃ ← Domain(θ)
13: if IsIndep(κ1θ, X) then
14: res ← res ∪ (κ1θ, δ2θ̄, Ẑ ∪ Z̃)
15: return res

Fig. 8. Algorithm BiAbduct

We now present a sound algorithm
for computing ϕpre, ϕpost and Z in
the equivalence (∃X. ϕ̂) ∗ ϕpre ⇔
∃Z. (ϕpost ∗ ϕ) in the premise of
the Compose and Inductq rules.
Simplifying notation, the problem
can be stated as follows: given vari-
able sets mod1 and mod2, and two
LISF formulas ∃X. ϕ(V,W,X) and
ψ(V, Y) where V,W,X, Y are dis-
joint sets of variables, we wish to
computeϕpre,ϕpost, and a setZ ⊆
X ∪ Y such that (i) (∃X. ϕ) ∗
ϕpre ⇔ ∃Z. (ϕpost ∗ ψ), (ii)
free(ϕpre) ∩ mod1 = ∅, and (iii)
free(ϕpost) ∩mod2 = ∅.

Our strong bi-abduction algo-
rithm, BiAbduct, is presented in Figure 8. We illustrate the algorithm through the
following example: ϕ ≡ v �→ x0, ψ ≡ v = y0 ∧ y0 �→ y1, V = {v},W = {}, X =
{ x0}, Y = { y0, y1} and mod1 = mod2 = {v}.

The key step in bi-abduction is the Match procedure used in line 2. Match
takes as input two spatial formulas ϕs and ψs and returns a set of four tuples
(M,C,L1, L2) where M is a pure formula and C,L1, L2 are spatial formulas. For
each such tuple,M describes a constraint under which the heaps defined byϕs and
ψs can be decomposed into an overlapping part defined by C and non-overlapping
parts defined by L1 and L2 respectively.

We present procedure Match as a set of inference rules in Figure 9. In these in-
ference rules we use a set of spatial facts and a star conjunction of spatial facts
interchangeably. The function unrollf RS(S, l, u) required by rule MIII unrolls RS

once from the beginning. This is done by instantiating that iterated index [·] (resp.
[·+1]) of every array expression in S corresponding to the nesting depth of S with
fixed index [l] (resp. [l+1]). Similarly unrollb RS(S, l, u) unrolls RS once from the end.
These rules can be easily implemented as a recursive algorithm. Note that in rules
MIII and MIV, the size of the formula L1 ∗RS(, ,) in the conclusion may be larger
than the size of formula k1 in the premise. This may lead to non-termination of
the recursion. In practice we circumvent this problem by limiting the number of
applications of these rules.

Lemma 2. Every (M,C,L1, L2) computed in line 2 of BiAbduct satisfies (i) M ∧
ϕs ⇔ (M ∧ C) ∗ L1, and (ii) M ∧ ψs ⇔ (M ∧ C) ∗ L2.

Bottom-Up Shape Analysis 201

M0 (true, emp, S1, S2) ∈ Match(S1, S2)

MI

k1 ∈ S1, k2 ∈ S2, S′

1 = S1 \ k1, S′

2 = S2 \ k2
(M, C, L1, L2) ∈ Match(k1, k2)

(N, C′, L′

1, L′

2) ∈ Match(S′

1 ∪ L1, S′

2 ∪ L2)
(M ∧ N, C ∗ C′, L′

1, L′

2) ∈ Match(S1, S2)

MII
k1 ≡ x �→ (fi : xi), k2 ≡ y �→ (fi : yi)

M ≡ x = y ∧
∧
{xi = yi}

(M, x �→ (fi : yi), {}, {}) ∈ Match(k1, k2)

MIII

k1 : RS(S, l, u), k2 : x �→ (f : y),
S1 : unrollf RS(S, l, u)

(M, C, L1, L2) ∈ Match(S1, k2)
(M, C, L1 ∗ RS(S, l + 1, u), L2) ∈ Match(k1, k2)

MIV

k1 : RS(S, l, u), k2 : x �→ (f : y),
S1 : unrollb RS(S, l, u)

(M, C, L1, L2) ∈ Match(S1, k2)
(M, C, L1 ∗ RS(S, l, u + 1), L2) ∈ Match(k1, k2)

MV
k1 : RS(S1, l, u), k2 : RS(S2, l, u),

(M, C, {}, {}) ∈ Match(S1, S2)
(RP(M, l, u), RS(C, l, u), {}, {}) ∈ Match(k1, k2)

Fig. 9. Rules for procedure Match

Given a possible decomposition (M,C,L1, L2) of ϕs and ψs, line 4 checks whether
this decomposition is consistent with ϕp and ψp. This is done by checking the sat-
isfiability of (ϕp∧L1)∗(M∧C)∗(ψp∧L2). If this formula is found to be satisfiable,
δ1 and δ2 are computed fromM∧ψp∧L2 andM∧ϕp∧L1, respectively, using func-
tion RemoveVar (lines 5, 6). The function RemoveVar(φ1, φ2, A,B) replaces every
free variable v ∈ A in φ1 by e if φ2 implies v = e and free(e) ∈ B \ A. For our
running example δ1 ≡ v = y0 ∧ x0 = y1 and δ2 ≡ x0 = y1 is one such pair.

Lemma 3. Every (δ1,δ2) pair computed in lines 5 and 6 of BiAbduct satisfies ϕ ∗
δ1 ⇔ δ2 ∗ ψ.

Next, we process the formula δ1 so as to make it independent ofmod1. In line 7, we
compute a renaming γ : 〈mod1 ↪→ Y 〉 such that if κ1 represents δ1γ and Ẑ equals
the range of γ, then ϕ ∗ κ1 ⇔ ∃Ẑ. (δ2 ∗ ψ). This is done by invoking function
ComputeRenaming. The function ComputeRenaming(φ,A,B) renames a variable
a ∈ A by b ∈ B if φp implies the equality a = b. If δ1γ is not independent of mod1
or δ2 is not independent of mod2, we discard the pair (δ1, δ2) (line 10). Note the
asymmetry in dealing with δ1 and δ2, which stems from the asymmetric structure
(∃Z only on right side) of the required solution (∃X. ϕ) ∗ ϕpre ⇔ ∃Z. (ϕpost ∗ ψ).
For our running example, Ẑ = { y0} and γ : 〈 y0 → v〉 gives a valid renaming,
since δ1γ ≡ x0 = y1 is independent of v.

Lemma 4. Every κ1 and Ẑ computed in lines 8 and 9 of BiAbduct satisfy ϕ∗κ1 ⇔
∃Ẑ. (δ2 ∗ ψ).

For every κ1 at line 11 we compute a renaming θ : 〈Z̃ ↪→ X〉, where Z̃ ⊆
X ∪ Y , so as to render κ1θ independent of X (lines 11, 12, 13). The function
ComputeRenaming(κ1, X ∪ Y,X) computes the renaming θ. Let θ̄ : 〈X ↪→ Z̃〉
be a renaming such that θ̄(x) = z only if θ(z) = x. If κ1θ is independent of X ,
then algorithm BiAbduct returns (κ1θ, δ2θ̄, Z̃ ∪ Ẑ) as one of the solutions of strong
bi-abduction.

The invocations of ComputeRenaming in lines 7 and 11 have one important
difference: in line 7 only non-array variables in mod1 are renamed, whereas
in line 11 array variables in X ∪ Y may be renamed. The function
ComputeRenaming(φ,A,B) renames array variables as follows. An array variable

202 B.S. Gulavani et al.

Table 2. Experimental results on (a) list manipulating example, (b) functions from
Firewire Windows Device Drivers, and (c) examples from [2,14]. Experiments performed
on Pentium 4 CPU, 2.66GHz, 1 GB RAM. All programs are available at [11].

Progs LOC Time (s) # triples Complete?
discovered

init 16 0.010 2 Yes
del-all 21 0.009 2 Yes
del-circ 23 0.013 2 Yes
delete 42 0.090 * 19 No
append 23 0.013 3 Yes
ap-disp 52 0.047 6 Yes
copy 33 0.532 3 Yes
find 28 0.023 4 Yes
insert 53 1.270 6 Yes
merge 60 0.880 12 No
reverse 20 0.015 * 3 No

Progs LOC Time (s) # triples Complete?
discovered

BusReset 145 0.080 * 3 Yes
CancelIrp 87 1.060 * 32 Yes
SetAddress 96 0.185 * 6 Yes
GetAddress 94 0.185 * 6 Yes
PnpRemove 460 75.321 34 No

(b)
Progs LOC Time (s) # triples Complete?

discovered
dll-reverse 23 0.130 3 No
fumble 20 0.017 2 Yes
zip 37 0.650 4 No
nested 20 0.130 10 Yes

(a) (c)

a ∈ A is renamed to another array variable b ∈ B if φp implies one of the following
facts: (i) RP(a[·] = b[·]) ∧ a[$0] = b[$0], or (ii) RP(a[· + 1] = b[· + 1]) ∧ a[0] = b[0], or
(iii) RP(a[·] = b[·] ∧ a[· + 1] = b[· + 1]). Higher dimensional arrays can be renamed
by performing similar checks for each dimension. For our running example,
we have X = { x0}, Z̃ = { y1} and θ : 〈 y1 → x0〉. It is evident that
(∃ x0. v �→ x0) ∗ (true) ⇔ ∃ y0, y1. (true) ∗ (v = y0 ∧ y0 �→ y1). Thus ϕpre ≡ κ1θ ≡ true,
ϕpost ≡ δ2θ̄ ≡ true, and and Z = { y0, y1} is a solution of strong bi-abduction
between ∃ x0. ϕ ≡ ∃ x0. v �→ x0 and ψ ≡ v = y0 ∧ y0 �→ y1.

Lemma 5. Every θ and Z̃ at line 14 of BiAbduct satisfy (∃X. ϕ) ∗ κ1θ ⇔
∃Ẑ, Z̃. (δ2θ̄ ∗ ψ).

Satisfiability checking. We provide a sound algorithm for checking satisfiability of
LISF formulas. The basic idea is to convert aLISF formula to a formula in separation
logic without iterated predicates. This is achieved by instantiating the lengths of
all dimensions of all arrays to fixed constants, and by soundly unrolling the RP and
RS predicates. The array lengths are so chosen that the offsets specified in the fixed
indices of all expressions in the formula are within the respective array bounds. See
[11] for details.

6 Experimental Evaluation

We have implemented our inference rules to generate specifications of programs in
a bottom-up and compositional manner. Our implementation takes as input a C
program and outputs summaries for each procedure in the program. We currently
do not handle pointer arithmetic.

Bottom-Up Shape Analysis 203

The results of running our tool on a set of challenging programs are tabulated in
Table 2. Programs in Table 2(a) are adopted from [9]. Program delete is the same
as the motivating example in Section 1. All programs in Table 2 (c) except nested
are adopted from [2,14]. These programs manipulate singly or doubly linked lists.
Program nested traverses nested linked lists. In each of these tables, the fourth
column indicates the number of summaries inferred by our tool. The last column
indicates whether the inferred summaries provide a complete specification for the
corresponding program. Our tool inferred richer summaries than those inferred by
the tool in [9]. For example, for the programs delete and reverse, our tool infers
preconditions with cyclic lists (indicated by * in fourth column). For the program
delete some of the inferred preconditions even have a lasso structure.

The examples in Table 2(b) are program fragments modifying linked structures
in the Firewire Windows Device Driver. We report only the summaries discovered
for the main procedures in these programs. A complete set of summaries is dis-
covered for all the other procedures in these programs. The original programs and
data structures have been modified slightly so as to remove pointer arithmetic.
These programs perform selective deletion or search through doubly linked lists.
The program PnpRemove iterates over five different cyclic lists and deletes all of
them; it has significant branching structure. All programs except CancelIrp refer
to only the next field of listnodes. The programCancelIrpalso refers the prev field
of list nodes. The increased number of inferred summaries for CancelIrp is due
to the exploration of different combinations of prev and next fields in the the pre
and postconditions. The summaries inferred for all programs except for PnpRemove
have been manually checked and found to be complete. These summaries capture
the transformations on an unbounded number of heap cells, although they con-
strain only the next fields of list nodes. Hence these summaries can be plugged in
contexts where richer structural invariants involving both next and prev fields are
desired.

7 Conclusion

We have presented inference rules for bottom-up and compositional shape analy-
sis. Strong bi-abduction forms the basis of our inference rules. We have introduced
a new logic, LISF, along with sound procedures for strong bi-abduction and satis-
fiability checking in LISF.

In future we would like to (i) enrich the Match procedure by additional lemmas
so that our tool can generate more expressive summaries, (ii) extend strong bi-
abduction procedure to operate over disjunctions of LISF formulas, and (iii) extend
our technique to analyze programs manipulating tree-like structures.

Acknowledgment.We thank Hongseok Yang and Dino Distefano for introducing
us to the idea of abduction and for providing us with benchmark programs. The
first author was supported by Microsoft Corporationand Microsoft Research India
under the Microsoft Research India PhD Fellowship Award.

204 B.S. Gulavani et al.

References

1. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170,
pp. 35–48. Springer, Heidelberg (2004)

2. Abdulla, P.A., Bouajjani, A., Cederberg, J., Haziza, F., Rezine, A.: Monotonic ab-
straction for programs with dynamic memory heaps. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 341–354. Springer, Heidelberg (2008)

3. Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic
model checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707,
pp. 474–488. Springer, Heidelberg (2005)

4. Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: Hunt
Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer,
Heidelberg (2003)

5. Bouajjani, A., Habermehl, P., Moro, P., Vojnar, T.: Verifying programs with dy-
namic 1-selector-linked structures in reg ular model checking. In: Halbwachs, N.,
Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 13–29. Springer, Heidelberg
(2005)

6. Bouajjani, A., Habermehl, P., Rogalewicz, A.: Abstract regular tree model checking
of complex dynamic data structures. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
pp. 52–70. Springer, Heidelberg (2006)

7. Bouajjani, A., Habermehl, P., Tomas, V.: Abstract regular model checking. In: Alur,
R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg
(2004)

8. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: Proc. of POPL (2009)

9. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Footprint analysis: A shape
analysis that discovers preconditions. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007.
LNCS, vol. 4634, pp. 402–418. Springer, Heidelberg (2007)

10. Cousot, P.: Methods and logics for proving programs. In: van Leeuwen, J. (ed.) For-
mal Models and Semantics. Handbook of Theoretical Computer Science, vol. B, Ch.
15., pp. 843–993. Elsevier Science Publishers B.V., Amsterdam (1990)

11. Gulavani, B.S., Chakraborty, S., Ramalingam, G., Nori, A.V.: Bottom-up shape
analysis. Technical Report TR-09-27, CFDVS, IIT Bombay (2009),
www.cfdvs.iitb.ac.in/~bhargav/shape-analysis.html

12. Guo, B., Vachharajani, N., August, D.I.: Shape analysis with inductive recursion
synthesis. In: Proc. of PLDI, pp. 256–265 (2007)

13. Lev-Ami, T., Sagiv, M., Reps, T., Gulwani, S.: Backward analysis for inferring quan-
tified preconditions. Technical Report TR-2007-12-01, Tel Aviv University (2007)

14. Møller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: Proc. of PLDI
(June 2001); also in SIGPLAN Notices 36(5) (May 2001)

15. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142,
pp. 1–19. Springer, Heidelberg (2001)

16. Podelski, A., Rybalchenko, A., Wies, T.: Heap assumptions on demand. In: Gupta,
A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 314–327. Springer, Heidelberg
(2008)

17. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proc. of LICS, pp. 55–74 (2002)

18. Touili, T.: Regular model checking using widening techniques. In: Proc. of VEPAS
2001 (2001)

www.cfdvs.iitb.ac.in/~bhargav/shape-analysis.html

The Complexity of Andersen’s Analysis in
Practice

Manu Sridharan and Stephen J. Fink

IBM T.J. Watson Research Center
{msridhar,sjfink}@us.ibm.com

Abstract. While the tightest proven worst-case complexity for Ander-
sen’s points-to analysis is nearly cubic, the analysis seems to scale better
on real-world codes. We examine algorithmic factors that help account
for this gap. In particular, we show that a simple algorithm can com-
pute Andersen’s analysis in worst-case quadratic time as long as the
input program is k-sparse, i.e., it has at most k statements dereferencing
each variable and a sparse flow graph. We then argue that for strongly-
typed languages like Java, typical structure makes programs likely to be
k-sparse, and we give empirical measurements across a suite of Java pro-
grams that confirm this hypothesis. We also discuss how various standard
implementation techniques yield further constant-factor speedups.

1 Introduction

The scalability of Andersen’s points-to analysis [1] has received much attention,
as scalable points-to analysis lies on the critical path for many static analyses.
Andersen’s analysis implementations [6, 9, 13, 16, 20, 22, 27, 29] have scaled to
increasingly large programs through clever algorithms and careful engineering.
Despite this progress, the best known worst-case complexity bound for Ander-
sen’s analysis remains (nearly) cubic.1

If Andersen’s analysis required time cubic in program size for typical inputs,
implementations would not scale as well as the literature reports. On the con-
trary, experiences from real implementations suggest that the worst-case bound
rarely governs performance in practice. For example, Heintze and McAllester sug-
gested that a standard algorithm for 0-CFA [23], similar to Andersen’s analysis,
“rarely exhibit[s] cubic behavior” [10]. Similarly, Goldsmith et al. [8] observed
no worse than quadratic scaling for an implementation of Andersen’s analysis
for C [14].

In this paper, we show that (1) Andersen’s analysis can be computed in worst-
case quadratic time for a restricted class of inputs and that (2) realistic Java
programs usually belong to this class.

Andersen’s analysis can be formulated as a dynamic transitive closure problem
over a flow graph representing the flow of pointers in the program, where the
1 One can reduce Andersen’s analysis to CFL-reachability [21, 25], for which Chaud-

huri’s algorithm is slightly sub-cubic [5].

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 205–221, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

206 M. Sridharan and S.J. Fink

flow graph grows dynamically to capture value flow through pointer dereferences
(details in §3). We show that when the input program is k-sparse, Andersen’s
analysis can be computed in quadratic time. A k-sparse program must have (1)
at most k statements dereferencing each variable and (2) a sparse flow graph
at analysis termination, i.e., including all dynamically inserted edges. The key
insight behind the bound is that difference propagation [7, 20] limits both the
closure work and edge insertion work to quadratic time for k-sparse programs
(details in §4).

For strongly-typed languages like Java, program structure typically constrains
programs to be k-sparse and hence analyzable in quadratic time. In particular,
types associated with heap allocated data in Java limit flow analysis to a small
number of named instance fields per object. Furthermore, modularity of typical
Java programs—in particular, the common use of “getter” and “setter” methods
to encapsulate field accesses—limits the number of statements accessing any
particular field. We show that programs with no arrays or dynamic dispatch that
use fields in this manner must be k-sparse, and we argue that dispatch and arrays
usually do not materially compromise k-sparseness in practice. Furthermore, we
present empirical evidence of k-sparseness across a suite of large Java programs.

Perhaps surprisingly, our quadratic complexity bound does not rely on many
engineering details that have been shown to have a significant impact on the
real-world performance of Andersen’s analysis. We include a discussion of many
of these issues (set implementation, worklist ordering, cycle elimination, etc.),
describing potential constant-factor speedups, space consumption, and the rel-
ative importance of the techniques for strongly-typed languages like Java vs.
weakly-typed languages like C.

Contributions. This paper makes the following contributions:

– We show that a simple algorithm for Andersen’s analysis runs in worst-case
quadratic time for k-sparse programs.

– We show that Java’s type system and typical program structure suggest that
realistic programs will be k-sparse.

– We present measurements across a suite of large Java programs that show
they are k-sparse, with the number of flow graph edges being at most 4.5X
the number of nodes. We also show that the implementation we tested [28]
scales roughly quadratically.

2 Andersen’s Analysis for Java

Here, we briefly review Andersen’s points-to analysis [1] for Java, as treated
in detail in previous work [16, 22, 25, 29]. A points-to analysis computes an
overapproximation of the heap locations that program variables may point to,
where a finite heap abstraction represents configurations of the runtime heap.
The analysis result is typically represented as a points-to set pt(x) for each
variable x. Andersen’s points-to analysis has the following properties:

The Complexity of Andersen’s Analysis in Practice 207

Table 1. Canonical statements for Java points-to analysis and the corresponding
points-to set constraints

Statement Constraint
i: x = new T() {oi} ⊆ pt(x) [New]

x = y pt(y) ⊆ pt(x) [Assign]

x = y.f
oi ∈ pt(y)

pt(oi.f) ⊆ pt(x)
[Load]

x.f = y
oi ∈ pt(x)

pt(y) ⊆ pt(oi.f)
[Store]

– Abstract location per allocation: The heap abstraction represents all objects
potentially allocated by a statement with a single abstract location.

– Flow insensitive: The analysis assumes statements in a procedure can exe-
cute in any order and any number of times.

– Subset based : The analysis models directionality of assignments; i.e., a state-
ment x = y implies pt(y) ⊆ pt(x). In contrast, an equality-based analysis
(e.g., [26]) would require pt(y) = pt(x) for the same statement, a coarser
approximation.

As is typical for Java points-to analyses, we also desire field sensitivity, which
requires separate reasoning about each abstract location instance field. Finally,
we restrict our attention to context-insensitive analysis, which computes a single
result for each procedure, merging the behaviors from all call sites.

Table 1 presents the canonical statements for Java points-to analysis and the
corresponding points-to set constraints, as seen previously (e.g., in [16]). More
complex statements (e.g., x.f = y.g.h) are handled through suitable introduc-
tion of temporary variables. We assume that all accesses to global variables
(static fields in Java) occur via a copy assignment to a local, implying that load
and store statements do not directly dereference globals; this model matches Java
putstatic and getstatic bytecodes. Since we focus on context-insensitive anal-
ysis, we elide method calls and assume copy statements for parameter passing
and return values via some precomputed call graph. (§5.2 discusses on-the-fly
call graph construction.) Arrays are modeled with a single field representing the
contents of all array indices. For simplicity, we ignore the effects of reflection and
native code in this exposition.

3 Algorithm

Here we present an algorithm for Andersen’s analysis for Java, as specified in
§2. The algorithm is most similar to Pearce et al.’s algorithm for C [20] and also
resembles existing algorithms for Java (e.g., [16]).

208 M. Sridharan and S.J. Fink

The algorithm constructs a flow graph G representing the pointer flow for
a program and computes its (partial) transitive closure, a standard points-to
analysis technique (e.g., see [6, 10, 13]). G has nodes for variables, abstract
locations, and fields of abstract locations. At algorithm termination, G has an
edge n → n′ iff one of the following two conditions holds:

1. n is an abstract location oi representing a statement x = new T(), and n′

is x.
2. pt(n) ⊆ pt(n′) according to some rule in Table 1.

Given a graph G satisfying these conditions, it is clear that oi ∈ pt(x) iff x is
reachable from oi in G. Hence, the transitive closure of G—where only abstract
location nodes are considered sources—yields the desired points-to analysis result.

Since flow relationships for abstract location fields depend on the points-to sets
of base pointers for field accesses (see [Load] and [Store] rules referencing pt(oi.f)
in Table 1), certain edges in G can only be inserted after some reachability has
been determined, yielding a dynamic transitive closure (DTC) problem. Note
that Andersen’s analysis differs from a general DTC problem in two key ways.
First, unlike general DTC, edge deletions from G need not be handled. Second, as
observed in [10], adding new edges to G is part of the points-to analysis work—
edge insertion work is typically not considered in discussions of DTC algorithms.
The second point is important, as we must consider edge insertion work when
reasoning about analysis complexity.

Pseudocode for the analysis algorithm appears in Figure 1. The DoAnalysis
routine takes a set of program statements of the forms shown in Table 1 as in-
put. (We assume suitable data structures that, given a variable x, yield all load
statements y = x.f and store statements x.f = y in constant time per state-
ment.) The algorithm maintains a flow graph G as just described and computes
a points-to set pt(x) for each variable x, representing the transitive closure in
G from abstract locations. Note that abstract location nodes are eschewed, and
instead the relevant points-to sets are initialized appropriately (line 2).

The algorithm employs difference propagation [7, 16, 20] to reduce the work of
propagating reachability facts. For each node n in G, ptΔ(n) holds those abstract
locations oi such that (1) the algorithm has discovered that n is reachable from
oi and (2) this reachability information has not yet propagated to n’s successors
in G. pt(n) holds those abstract locations for which (1) holds and propagation
to successors of n is complete. The DiffProp routine updates a difference set
ptΔ(n) with those values from srcSet not already contained in pt(n). After a node
n has been removed from the worklist and processed, all current reachability
information has been propagated to n’s successors, so ptΔ(n) is added to pt(n)
and emptied (lines 21 and 22).

Theorem 1. DoAnalysis terminates and computes the points-to analysis re-
sult specified in Table 1.

Proof. (Sketch) DoAnalysis terminates since (1) the constructed graph is finite
and (2) a node n is only added to the worklist when ptΔ(n) changes (line 2 of

The Complexity of Andersen’s Analysis in Practice 209

DoAnalysis()
1 for each statement i: x = new T() do
2 ptΔ(x) ← ptΔ(x) ∪ {oi}, oi fresh
3 add x to worklist
4 for each statement x = y do
5 add edge y → x to G
6 while worklist �= ∅ do
7 remove n from worklist
8 for each edge n→ n′ ∈ G do
9 DiffProp(ptΔ(n), n′)

10 if n represents a local x
11 then for each statement x.f = y do
12 for each oi ∈ ptΔ(n) do
13 if y → oi.f �∈ G
14 then add edge y → oi.f to G
15 DiffProp(pt(y), oi.f)
16 for each statement y = x.f do
17 for each oi ∈ ptΔ(n) do
18 if oi.f → y �∈ G
19 then add edge oi.f → y to G
20 DiffProp(pt(oi.f), y)
21 pt(n) ← pt(n) ∪ ptΔ(n)
22 ptΔ(n) ← ∅

DiffProp(srcSet ,n)
1 ptΔ(n) ← ptΔ(n) ∪ (srcSet −pt(n))
2 if ptΔ(n) changed then add n to worklist

Fig. 1. Pseudocode for the points-to analysis algorithm

DiffProp), which can only occur a finite number of times. For the most part, the
correspondence of the computed result to the rules of Table 1 is straightforward.
One subtlety is the handling of the addition of new graph edges due to field
accesses. When an edge y → oi.f is added to G to handle a putfield statement
(line 14), only pt(y) is propagated across the edge, not ptΔ(y) (line 15). This
operation is correct because if ptΔ(y) �= ∅, then y must be on the worklist, and
hence ptΔ(y) will be propagated across the edge when y is removed from the
worklist. A similar argument holds for the propagation of pt(oi.f) at line 20. ��

4 Complexity for k-Sparse Programs

Here, we show that the algorithm of Figure 1 has quadratic worst-case time
complexity for k-sparse input programs (§4.1). We then argue that, due to strong
types and typical program structure, realistic Java programs are likely to be k-
sparse (§4.2).

210 M. Sridharan and S.J. Fink

4.1 Quadratic Bound

Let N be the number of variables in an input program plus the number of new
statements in the program (i.e., the number of abstract locations in the heap
abstraction).2 Also, let D(x) be the number of statements dereferencing variable
x, and let E be the number of edges in G at analysis termination. We show that
DoAnalysis from Figure 1 runs in worst-case O(N2 maxxD(x) +NE) time.

Definition 1. A program is k-sparse if (1) maxx D(x) ≤ k and (2) E ≤ kN .

For k-sparse programs with k being constant, DoAnalysis runs in worst-case
O(N2) time.

Note that our definition of k-sparsity depends on both the input program
and the analysis computing its flow graph. In particular, variants of Andersen’s
analysis with different levels of context sensitivity may compute different flow
graphs for the same input program, yielding different values of k. When dis-
cussing k-sparsity in this paper, we assume flow graphs are constructed with the
context-insensitive analysis described in §2.3

We begin with a key lemma characterizing the effect of difference propagation.

Lemma 1. For each abstract location oi and node p in G, there is at most one
execution of the loop at lines 6-22 of DoAnalysis for which n = p∧oi ∈ ptΔ(p).

Proof. If there exists a loop execution where n = p ∧ oi ∈ ptΔ(p), line 21 of
DoAnalysis adds oi to pt(p) and line 22 removes oi from ptΔ(p). Subsequently,
ptΔ(p) may only be modified by line 1 of DiffProp, which ensures that elements
of pt(p) cannot be re-added to ptΔ(p). ��

DoAnalysis does four kinds of work:

1. Initialization: Lines 1 through 5, which handle new statements and add the
initial edges to G.

2. Edge Adding: Lines 13, 14, 18, and 19, which add new edges to or from
abstract location field nodes in G as needed.

3. Propagation: All calls to the DiffProp routine.
4. Flushing Difference Sets : Lines 21 and 22.

The cost of the algorithm is the sum of the costs of these four types of work,
which we analyze in turn. In this sub-section, we assume a points-to set data
structure which allows for (1) constant time membership checks, (2) constant
time addition of a single element, and (3) iteration in constant time per set ele-
ment, e.g., an array of bits (for (1) and (2)) combined with a linked list (for (3)).
(Note that this is not a space-efficient data structure; we discuss space / time

2 Note that N must be no greater than the number of statements in a program, since
each statement can introduce at most one variable.

3 Alternately, k-sparsity could be defined in terms of the possible value flow in the
input program with a dynamic semantics that matches the pointer analysis model;
we include the flow graph in the definition for clarity.

The Complexity of Andersen’s Analysis in Practice 211

tradeoffs in §5.1 and §5.4.) We also assume a worklist data structure that pre-
vents duplicate worklist entries and allows for constant-time removal of a node.

Initialization. The loop from lines 1 to 3 clearly takes O(N) time. The loop on
lines 4 and 5 takes time proportional to the number of copy assignments in the
program, which could be O(N2) in the worst case. Hence, we have an O(N2)
bound for initialization.4

Edge Adding. We assume a suitable graph data structure so that lines 13, 14, 18,
and 19 each execute in constant time. For each statement dereferencing a given
variable x, the algorithm performs at most |pt(x)| edge adding work, since by
Lemma 1 the loops headed at lines 12 and 17 can execute at most |pt(x)| times
per such statement. Since |pt(x)| is O(N) and we have O(N) variables, the edge
adding work is bounded by O(N2 maxx D(x)).

Propagation. To reason about propagation work, we first prove the following
lemmas.

Lemma 2. For each graph node p, at any time during execution of DoAnalysis
except between lines 21 and 22, ptΔ(p) ∩ pt(p) = ∅.

Proof. The condition clearly holds before the first iteration of the loop starting
at line 6. Afterward, for any node p, ptΔ(p) can only be changed by line 22 or
by a call to DiffProp. The condition clearly holds after line 22 since ptΔ(n)
is emptied. DiffProp also preserves the condition, since it only adds abstract
locations to ptΔ(n) that are not contained in pt(n). ��

Lemma 3. For each abstract location oi and each edge e = n → n′ in G, oi is
propagated across e at most once during execution of DoAnalysis.

Proof. Propagation across edges occurs via the DiffProp calls at lines 9, 15,
and 20. By Lemma 1, line 9 can propagate oi across e at most once. By Lemma 2,
we know that ptΔ(y)∩pt(y) = ∅ at line 15 and that elements from pt(y) cannot
later be re-added to ptΔ(y). Hence, if an abstract location is propagated across
y → oi.f at line 15, it cannot again be propagated across the same edge by
line 9 in a later loop iteration. Similar reasoning holds for the propagation at
line 20. ��

By Lemma 3, propagation work is bounded by O(NE), where E is the final
number of edges in G.

Flushing Difference Sets. By Lemma 1, each abstract location can be flushed
from a difference set at most once per variable, immediately yielding an O(N2)
bound for this work.

4 A tighter bound would be the number of statements, which we expect to be O(N)
in practice. This is irrelevant to our proof since initialization costs are dominated by
edge adding.

212 M. Sridharan and S.J. Fink

In the worst case, the work of initialization and flushing difference sets will
be dominated by edge adding and propagation. So, we have a worst-case bound
of O(N2 maxx D(x) + NE) for the algorithm, or O(N2) for k-sparse programs
(see Definition 1), as desired.

We note that if the average points-to set size is O(N), the O(N2) bound for
k-sparse programs is tight, as the result itself would be quadratic in the size of
the program. In §6, we give evidence that average points-to set size grows with
the size of the program (see Figure 3(a)). Sub-quadratic bounds may be possible
in practice for clients that do not require all points-to sets [10].

4.2 Realistic Java Programs

Here, we argue that the Java type system and typical program structure imply
that realistic Java programs are likely to be k-sparse. In particular, we show that
method size limits imply that maxxD(x) is bounded and that the type system
and modular programming imply that G will most likely be sparse.

The structure of Java methods ensures that maxxD(x) does not grow with
program size. For maxx D(x) to grow with program size, methods would have
to become larger in bigger programs.5 In practice, Java programs tend to have
many small methods, and in fact the Java virtual machine enforces a fixed bound
on method size.

Java programs must have E = O(N) if they exclusively use “getters” and
“setters” to access fields and do not use arrays or dynamic dispatch. Edges in G
correspond to either (1) copy assignments or (2) flow through abstract location
fields. For (1), the number of intraprocedural copy assignments in a program can
only grow linearly (due to limited method size), and without dynamic dispatch,
the number of interprocedural copies must grow linearly as well. For (2), we can
bound the number of inserted edges for abstract location fields as follows. Let
K be the maximum number of accesses of any field, and let F be the maximum
number of instance fields in any class. The maximum number of field edges is
O(NFK): there are at most NF abstract location field nodes, and each such
node can have at most K incident edges. Java enforces a bound on class size,
which yields a constant limit for F . Furthermore, if all fields are only accessed via
“getter” and “setter” methods, then K = 2 for all fields.6 Hence, the number
of edge insertions for abstract location fields must be O(N) for this class of
programs.

In practice, the number of statements accessing any given field tends to be
small due to encapsulation. However, the synthetic field arr used to model array
contents is an exception: the number of array access statements (i.e., accesses of
arr) increases with the size of the program, potentially leading to a quadratic
number of flow graph edges. If the base pointers of array accesses have points-to
sets of bounded size, then only a linear number of inserted edges will be required
5 This assumes that static fields cannot be directly dereferenced, which holds for Java

bytecode.
6 Note that this bound relies on the context-insensitive analysis of the these methods,

i.e., it is independent of the number of calls to the methods.

The Complexity of Andersen’s Analysis in Practice 213

for these accesses, maintaining flow graph sparseness. While array base pointers
usually have small points-to sets (again due to encapsulation), exceptions can
occur due to context-insensitive analysis of frequently used library methods; we
discuss this issue further in §6.

Hypothetically, dynamic dispatch could also cause a quadratic number of flow
graph edges, in the case where there were O(N) call sites of a method, each of
which could dispatch to O(N) possible targets. In practice, this phenomenon
could only occur for methods defined in the root java.lang.Object class like
toString(), and its likelihood is mitigated by on-the-fly call graph construction
(see §5.2); we have not observed such a blowup in practice.

5 Other Factors

The literature presents myriad other implementation techniques that, at the
least, yield significant constant-factor time improvements. Furthermore, when
performing points-to analysis on large programs, space concerns often dominate,
necessitating space-saving techniques that complicate analysis of running time.
In this section, we briefly discuss several other factors relevant to Andersen’s
analysis performance and relate them to our complexity result.

5.1 Bit-Vector Parallelism and Worklist Ordering

The use of bit-wise operations for propagation can yield significant constant-
factor speedups in practice. The complexity proof of §4 assumes that abstract
locations are propagated across edges one at a time. With an appropriate set
representation, bit-wise operators can effectively propagate up to k abstract
locations across an edge in constant time, where k is the machine word size
(e.g., 64). When using such operations, our proof of a quadratic bound no longer
applies, since propagation across an edge becomes proportional to the total num-
ber of abstract locations instead of the size of the source set. Nevertheless, us-
ing bit-wise operations usually improves performance in practice, since the cost
model on real machines usually depends more on cache locality than the number
of register-level arithmetic instructions.

The speedup due to bit-wise operations depends on an effective worklist or-
dering [19]. For a node n, the analysis would ideally complete all propagation
to n before removing n from the worklist, since this maximizes the benefits of
using bit-wise operations when propagating to n’s successors. If the analysis only
required computing standard transitive closure over a DAG, the best worklist or-
dering would be topological, in which case the algorithm would propagate across
each edge at most once.

With dynamic transitive closure, even if the final flow graph G is a DAG, it
may not be possible to do propagation in topological order due to cyclic data
dependences. Consider the following example program:

x = new Obj(); // o1
z = new Obj(); // o2
y = x; y.f = z; x = y.f;

214 M. Sridharan and S.J. Fink

Note that y = x and x = y.f are cyclically data dependent on each other. Ini-
tially, G only contains the edge e = x → y. After o1 is propagated across e, the
analysis can add incident edges for o1.f , yielding the graph z → o1.f → x → y.
After these edge insertions, the analysis must repeat propagation across e to add
o2 to pt(y). Hence, repeated work across edges may be required even when G is a
DAG. It would be interesting to characterize how much cyclic data dependences
affect performance in practice.

In real programs, cycles in the flow graph G further complicate matters. On-
line cycle elimination can lessen the impact of flow graph cycles, as we shall
discuss further in §5.5. In WALA [28], the analysis implementation used for our
measurements, worklist order is determined by a pseudo-topological ordering of
the flow graph, periodically updated as edges are added. Further discussion of
worklist ordering heuristics appears in [19].

5.2 Function Calls

Direct handling of higher-order functions, i.e., on-the-fly call graph construction,
does not affect the O(N2) bound for k-sparse programs. For Java, on-the-fly
call graph construction requires (1) reasoning about possible virtual call targets
using receiver points-to sets and (2) incorporating constraints for discovered call
targets, as described previously [16, 22, 29]. Both of these operations can be
performed for all relevant call sites in quadratic time, and the core propagation
and edge adding operations of the analysis are unaffected.

Though it does not affect our worst-case bound, on-the-fly call graph build-
ing has a significant impact on real-world performance. If constraint generation
costs are ignored, on-the-fly call graph reasoning can slow down analysis, as more
iterations are required to reach a fixed point [29]. However, if the costs of con-
straint generation are considered (which we believe is a more realistic model),
on-the-fly call graph building improves performance, since constraints need not
be generated for unreachable library code. Also, as suggested in §4.2, on-the-
fly call graph reasoning can make the flow graph for a program more sparse,
improving performance.

Much recent work on Java points-to analysis employs some context-sensitive
handling of method calls [17, 18, 29]. Cloning-based context sensitivity causes
a blowup in input size; an m-limited call-string or m-object-sensitive analysis
may require O(Nm) clones. Our bound implies that Andersen’s analysis can
run in time quadratic in the size of the program after cloning, assuming the
program with clones is still k-sparse. In some cases selective cloning can yield a
significantly sparser flow graph, thereby improving both precision and running
time (further discussion in §6). BDDs have been employed to make the space
explosion from cloning more manageable, as we shall discuss in §5.4.

5.3 Exploiting Types

Type filters [3, 16], which ensure that points-to sets for variables are consistent
with their declared types, are critical to good performance for Java points-to

The Complexity of Andersen’s Analysis in Practice 215

analysis. Type filters do not affect our worst-case bound for sparse programs: a
quadratic pre-processing step can create an appropriate mask for each type to use
during propagation. The filters improve performance by dramatically reducing
the size of points-to sets and hence the amount of propagation work [16].

We remark that only applying type filters at propagation for downcasting
operations, whether explicit (a JVM checkcast bytecode) or implicit (passing
the receiver parameter at a virtual call site), yields the same precision benefit as
applying them for all propagation operations (as was formulated in some previous
work [3, 29]). Reducing the use of type filters without affecting precision can be
a significant performance win, since they make propagation more expensive.

5.4 Space

Space usage often presents a bigger bottleneck for points-to analysis than run-
ning time, especially for context-sensitive analyses. Here, we discuss some space
optimizations performed by points-to analyses and their effects on running time.

Employing difference propagation exhaustively as in Figure 1 may double
space requirements and hence represent an unattractive space-time tradeoff.
Our complexity proof relies on exhaustive use of difference propagation since
it assumes that propagating a single abstract location requires one unit of work.
A set implementation that enables propagation of abstract locations in parallel
(see §5.1) lessens the need for exhaustive difference propagation in practice. In
our experience, the key benefit of difference propagation lies in operations per-
formed for each abstract location in a points-to set, e.g., edge adding (see lines 12
and 17 in Figure 1). To save space, WALA [28] only uses difference propagation
for edge adding and for handling virtual call receivers (since with on-the-fly call
graph construction, each receiver abstract location may yield a new call target).
Also note that the best data structure for the ptΔ(x) sets may differ from the
pt(x) sets to support smaller sets and iteration efficiently; see [16, 19] for further
discussion.

Many points-to analyses use set data structures that exploit redundancy be-
tween points-to sets, like shared bit sets [13] or BDDs [3, 29, 30], to dramatically
reduce space requirements. Their effects on running time are difficult to analyze,
since the propagation cost model is very different: running times for BDD oper-
ations are highly dependent on variable orderings, and shared bit set operations
depend on the current bit set cache state. Further understanding of the use of
these data structures for analyzing k-sparse programs is a topic for future work.

5.5 Other Languages

Our main result of quadratic time complexity for points-to analysis of k-sparse
programs can be adapted to other languages fairly easily. We believe the algo-
rithm of Pearce et al. for C points-to analysis with difference propagation [20,
Figure 7], very similar to the algorithm of Figure 1, would run in quadratic
time for k-sparse C programs. The Figure 1 algorithm could also be adapted

216 M. Sridharan and S.J. Fink

to perform control-flow analysis for functional languages [23] (formulated as
dynamic transitive closure in [10]). For this case the notion of k-sparseness
(see Definition 1) would be slightly transformed: rather than counting the num-
ber of dereferences of a variable D(x), one would count the number of function
applications of a variable / expression.

It is an open question as to whether typical programs in other languages
are k-sparse. Pearce et al. [20] present some evidence that for C, the number
of flow graph edges increases much more quickly with program size than for
Java. They present a benchmark gawk with less than 20,000 LOC where the
number of flow graph edges added during analysis is over 40X the number of
variables; in contrast, our measurements in the next section never saw a factor
more than 4.5X. This increased edge density in C may be due to the use of
the * operator rather than named fields and the weaker type system. It may
also explain the greater importance of projection merging [27] and online cycle
elimination [6, 9, 13] for C.7 In our experience, when respecting declared types
in Java, relatively few cycles are discovered (also observed in [16]).

6 Measurements

We used the Watson Libraries for Analysis (WALA) [28] for our measurements.
The WALA implementation of Andersen’s analysis differs from the algorithm of
Figure 1 in a few ways. WALA employs on-the-fly call graph construction (§5.2)
and type filters (§5.3), both of which reduce the size of the constraint graph
without increasing worst-case complexity. WALA also models some Java reflec-
tive methods (e.g., Class.newInstance()) and native methods with synthetic
code generated during analysis.8 Program sizes for the presented programs may
differ from other published numbers due to variations in library versions and
handling of reflection; we analyzed the IBM Java 1.6.0 libraries.

Table 2 lists the programs used in this study. They include all of the DaCapo
2006-10-MR2 benchmarks [4] and Apache Ant 1.7.1 [2], another large Java pro-
gram. The table reports program sizes as determined by the methods discovered
during on-the-fly call graph construction.

Density of Flow Graphs. The second-to-last column of Table 2 reports the den-
sity of the final flow graph constructed during pointer analysis. The Table shows
that for all programs, the number of edges (E) per node (N) is less than 4.5.
The fop program seems to be an outlier; all other programs have less than 2.2
edges per node in the flow graph.

Figure 2(a) displays the edges in flow graphs as a function of the number of
nodes. The figure shows the best linear fit, which would have E grow as 3.46N .
Figure 2(b) shows the same data on a log-log scale. The best linear fit on a

7 Note that conceptually, cycle elimination is orthogonal to difference propagation;
the former eliminates redundancy across variables with provably equivalent points-
to sets, while the latter prevents redundant propagation of abstract locations.

8 Reflection and native code may still cause the analysis to be unsound.

The Complexity of Andersen’s Analysis in Practice 217

Table 2. Characteristics of programs analyzed

Benchmark Methods Bytecodes Flow Graph Flow Graph Edges / Runtime
(KB) Nodes (K) Edges (K) Nodes (s)

antlr 3381 238 54 101 1.87 20
bloat 6438 456 99 218 2.20 43
chart 19089 1359 310 617 1.99 414
eclipse 17021 1169 275 563 2.05 359
fop 25542 2225 459 2039 4.44 2920
hsqldb 4600 330 79 138 1.75 25
jython 5291 386 85 157 1.85 35
luindex 4114 296 64 113 1.77 15
lusearch 16826 1160 268 530 1.98 312
pmd 18125 1248 286 569 1.99 361
xalan 2691 176 43 79 1.84 9
apache-ant 18404 1449 294 577 1.96 378

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350 400 450 500

T
h

o
u

sa
n

d
s

ThousandsNodes in Flow Graph

E
d

g
es

 in
 F

lo
w

 G
ra

p
h

(a)

15

16

17

18

19

20

21

22

15 16 17 18 19

Log2 (Nodes In Flow Graph)

L
o

g
2

(E
d

g
es

 in
 F

lo
w

 G
ra

p
h

)

(b)

Fig. 2. Sparsity measure for flow graphs. Each data point represents one benchmark
analyzed. We show a standard scale in (a) and a log scale in (b). The lines show the
best fit via linear regression, with a slope of 3.46 in (a) and 1.17 in (b).

log-log scale has slope 1.17, indicating that the best polynomial fit to the data
has E growing as N1.17. If we exclude fop as an outlier, the best polynomial fit
indicates E grows as N1.05. We conclude the flow graphs are mostly sparse. As
discussed in §4.2, we expect E = O(N), with exceptions arising from arrays and
dispatch, and the data support this conclusion.

We examined fop in detail. Most of the edges in the fop flow graph result
from the failure of the pointer analysis to adequately disambiguate the contents
of object arrays passed to library routines, due to context insensitivity. In a
practical pointer analysis client, we would recommend a context-sensitivity pol-
icy designed to clone common library routines that manipulate arrays, such as
the java.util.Arrays utilities. As suggested in §5.2, though such cloning in-
creases the size of the program, it can make the flow graph significantly sparser
(since many infeasible flows are ruled out), improving both performance and
precision. Further study of increased sparsity via context sensitivity would be
an interesting topic for future work.

Size of pointer analysis result. Figure 3(a) shows the total size of the computed
points-to sets, as a function of the node count in the flow graph on a log scale.

218 M. Sridharan and S.J. Fink

20

21

22

23

24

25

26

27

28

29

30

15 16 17 18 19

Log2 (Nodes in Flow Graph)

L
o

g
2

(T
o

ta
l P

o
in

ts
-T

o
 S

et
 S

iz
e)

(a)

10

12

14

16

18

20

22

24

15 16 17 18 19

Log2 (Nodes in Flow Graph)

L
o

g
2

(R
u

n
n

in
g

 T
im

e
(m

s)
)

(b)

Fig. 3. Total size of computed points-to sets in (a) and pointer analysis running time
in (b) on log scales, both as functions of nodes in flow graph. The lines show the best
fit via linear regression, with a slope of 1.79 in (a) and 2.10 in (b).

The figure shows the best linear fit, which has a slope of 1.79, indicating that the
points-to solution size grows roughly as N1.79. As we have defined the pointer
analysis problem, this factor represents a lower bound on complexity of the
Andersen’s analysis in practice, since any algorithm will take at least O(N1.79)
to output the solution. In practice, many clients do not demand the complete
analysis result, instead issuing a targeted set of alias queries. For these clients,
demand-driven pointer analysis [12, 24, 25] may offer a better fit.

Observed analysis performance. Figure 3(b) shows the running time of the
pointer analysis as a function of the node count in the flow graph on a log scale.9

The figure shows the best linear fit, which has a slope of 2.10, indicating that
running time grows roughly as N2.10. If we exclude fop from the regression, run-
ning time grows as N1.92. The running of time of a real implementation depends
on many factors, including those discussed in §4.2 and §5. The results here show
that on this benchmark suite, our implementation scales roughly quadratically
with program size. It remains for future studies to determine whether quadratic
scaling holds for other implementations and benchmarks.

7 Related Work

Our work is most closely related to the studies of points-to analysis complexity of
Pearce et al. [19, 20]. Our algorithm is very similar to that of [20, Figure 7], but
adapted to Java. Pearce was the first to show difference propagation can affect
worst-case complexity, in his case improving a worklist-based algorithm from
quartic to cubic time [19, §4.1.3]. We further improve the bound to quadratic
time for k-sparse programs, which requires additionally reasoning about the
cost of edge-adding work. Difference propagation was first presented by Fecht
and Seidl in [7].
9 We ran the analysis on a Linux machine with an Intel Xeon 3.8GHz CPU and 5GB

RAM, using the Sun 1.5.0 06 virtual machine with a 1.8GB heap.

The Complexity of Andersen’s Analysis in Practice 219

Lhoták and Hendren present a Java points-to analysis algorithm with dif-
ference propagation (there termed an “incremental worklist” algorithm) and
showed its performance benefits [16]. Their algorithm does not fully employ
difference propagation for abstract location fields, as it periodically does full
propagation for field access statements [15, §4.4.3]. Hence, it is not clear if the
quadratic bound for k-sparse programs holds for their algorithm.

Heintze and McAllester present a sub-cubic control-flow analysis algorithm for
bounded-typed programs [10]. They formulate the analysis problem as dynamic
transitive closure and distinguish edge addition work from closure work (in fact,
they occur in separate phases in their algorithm). As their algorithm does not
allow for recursive types, it is not immediately applicable to Java.

Various other work studies points-to analysis complexity. Heintze and
McAllester relate the difficulty of flow analysis to the 2NPDA complexity
class [11]. Melski and Reps formulate Andersen’s analysis for C as a CFL-
reachability problem, immediately yielding a cubic algorithm [21]. Fändrich et
al. use a probability-based analytic model over random graphs to study online
cycle elimination for set constraints in inductive form [6]. Chaudhuri presents a
slightly sub-cubic algorithm for CFL-reachability, thereby breaking the “cubic
bottleneck” for Andersen’s analysis [5].

8 Conclusions

We have proven a quadratic worst-case time bound for computing Andersen’s
analysis for k-sparse input programs, and we have given empirical evidence that
Java programs are usually k-sparse. These results help account for the gap be-
tween the nearly cubic worst-case complexity of Andersen’s analysis and its scal-
ability in practice. The notion of k-sparsity may also be useful in understanding
the real-world performance of other program analyses.

Acknowledgments. We thank the anonymous reviewers for their helpful com-
ments and Ras Bod́ık for input on earlier versions of this work.

References

[1] Andersen, L.O.: Program Analysis and Specialization for the C Programming
Language. PhD thesis, University of Copenhagen, DIKU (1994)

[2] Apache Ant, http://ant.apache.org
[3] Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-to analysis us-

ing BDDs. In: Conference on Programming Language Design and Implementation
(PLDI) (June 2003)

[4] Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M.,
Hosking, A., Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D.,
VanDrunen, T., von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks:
Java benchmarking development and analysis. In: Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA) (2006)

http://ant.apache.org

220 M. Sridharan and S.J. Fink

[5] Chaudhuri, S.: Subcubic algorithms for recursive state machines. In: POPL 2008:
Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pp. 159–169. ACM, New York (2008)

[6] Fändrich, M., Foster, J.S., Su, Z., Aiken, A.: Partial online cycle elimination in
inclusion constraint graphs. In: Conference on Programming Language Design and
Implementation (PLDI), Montreal, Canada (June 1998)

[7] Fecht, C., Seidl, H.: Propagating differences: an efficient new fixpoint algorithm
for distributive constraint systems. Nordic J. of Computing 5(4), 304–329 (1998)

[8] Goldsmith, S.F., Aiken, A.S., Wilkerson, D.S.: Measuring empirical computational
complexity. In: ESEC-FSE 2007: Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering, pp. 395–404. ACM Press, New York
(2007)

[9] Hardekopf, B., Lin, C.: The ant and the grasshopper: fast and accurate pointer
analysis for millions of lines of code. In: PLDI, pp. 290–299 (2007)

[10] Heintze, N., McAllester, D.: Linear-time subtransitive control flow analysis.
SIGPLAN Not. 32(5), 261–272 (1997)

[11] Heintze, N., McAllester, D.: On the cubic bottleneck in subtyping and flow analy-
sis. In: LICS 1997: Proceedings of the 12th Annual IEEE Symposium on Logic in
Computer Science, Washington, DC, USA, 1997, p. 342. IEEE Computer Society,
Los Alamitos (1997)

[12] Heintze, N., Tardieu, O.: Demand-driven pointer analysis. In: Conference on Pro-
gramming Language Design and Implementation (PLDI), Snowbird, Utah (June
2001)

[13] Heintze, N., Tardieu, O.: Ultra-fast aliasing analysis using CLA: A million lines
of C code in a second. In: Conference on Programming Language Design and
Implementation (PLDI), Snowbird, Utah (June 2001)

[14] Kodumal, J., Aiken, A.: Banshee: A scalable constraint-based analysis toolkit. In:
Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 218–234. Springer,
Heidelberg (2005)

[15] Lhoták, O.: Spark: A flexible points-to analysis framework for Java. Master’s the-
sis, McGill University (December 2002)

[16] Lhoták, O., Hendren, L.: Scaling Java points-to analysis using Spark. In:
Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg
(2003)

[17] Lhoták, O., Hendren, L.: Context-sensitive points-to analysis: Is it worth it? In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 47–64. Springer,
Heidelberg (2006)

[18] Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for java. ACM Trans. Softw. Eng. Methodol. 14(1), 1–41 (2005)

[19] Pearce, D.J.: Some directed graph algorithms and their application to pointer
analysis. PhD thesis, Imperial College of Science, Technology and Medicine, Uni-
versity of London (2005)

[20] Pearce, D.J., Kelly, P.H.J., Hankin, C.: Online cycle detection and difference prop-
agation for pointer analysis. In: Proceedings of the third international IEEE Work-
shop on Source Code Analysis and Manipulation (2003)

[21] Reps, T.: Program analysis via graph reachability. Information and Software Tech-
nology 40(11-12), 701–726 (1998)

[22] Rountev, A., Milanova, A., Ryder, B.G.: Points-to analysis for Java using an-
notated constraints. In: Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Tampa Bay, Florida (October 2001)

The Complexity of Andersen’s Analysis in Practice 221

[23] Shivers, O.: Control flow analysis in scheme. In: Conference on Programming
Language Design and Implementation (PLDI) (1988)

[24] Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis
for Java. In: Conference on Programming Language Design and Implementation
(PLDI) (2006)

[25] Sridharan, M., Gopan, D., Shan, L., Bod́ık, R.: Demand-driven points-to analysis
for Java. In: Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA) (2005)

[26] Steensgaard, B.: Points-to analysis in almost linear time. In: ACM Symposium on
Principles of Programming Languages (POPL) (1996)

[27] Su, Z., Fähndrich, M., Aiken, A.: Projection merging: Reducing redundancies in
inclusion constraint graphs. In: ACM Symposium on Principles of Programming
Languages (POPL), Boston, Massachusetts, January 2000, pp. 81–95 (2000)

[28] T.J. Watson Libraries for Analysis (WALA), http://wala.sf.net
[29] Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using

binary decision diagrams. In: Conference on Programming Language Design and
Implementation (PLDI) (2004)

[30] Zhu, J., Calman, S.: Symbolic pointer analysis revisited. In: Conference on Pro-
gramming Language Design and Implementation (PLDI) (2004)

http://wala.sf.net

Optimizing Pointer Analysis Using Bisimilarity

Luke Simon

Metallect Corp.
660 North Central Expressway, Suite 235

Plano, TX 75074, USA
luke.simon@gmail.com

Abstract. We introduce a new technique for dramatically improving
the performance of inclusion-based points-to analysis, by using bisimi-
larity in order to detect pointer equivalences before constraint resolution.
We present the design and correctness proof of this technique, along with
an implementation prototype, and a series of benchmarks. The bench-
marks indicate that our technique dramatically improves the scalability
of inclusion-based points-to analysis, beating the current leading offline
optimizations for inclusion-based points-to analysis.

1 Introduction

Points-to analysis is a static program analysis that computes a conservative
abstraction of the values of pointers. More precise points-to analyses perform
a whole-program inter-procedural data-flow analysis, which causes scalability
issues when analyzing real world programs. Andersen’s points-to analysis [2],
also known as inclusion-based points-to analysis, is a class of the most precise
flow and context-insensitive points-to analyses that have been demonstrated to
scale to programs consisting of millions of lines of code [9].

Inclusion-based points-to analysis can be treated as a constraint resolution
problem. A set of inclusion constraints is extracted from the analyzed program’s
code, and a subsequent resolution of the constraints yields the results of the
analysis. A typical approach for a constraint resolution algorithm is to represent
the extracted set of constraints as a graph. The nodes of this constraint graph
correspond to variables and addresses, and the edges represent the inclusion
constraints on the set of abstract values of each variable. A solution to the
constraint graph is then calculated by determining the set of address nodes
that can reach each variable node, with constraints corresponding to pointer
dereferencing causing new edges to be added to the graph based on the address
nodes that can reach the dereferenced variables. In the worst case, this takes
O(n3) time and O(n2) space.1,2 Hence a small reduction in the size of the input
can dramatically improve the performance of the analysis.
1 In this paper, when discussing worst-case complexity, n denotes the number of vari-

ables in the given points-to analysis constraint graph.
2 Note that it is possible for the initial constraint graph to contain O(n2) edges. For this

reason, discussing worst-case complexity solely in terms of the number of variables
may simplify the discussion, but it does so without hiding nonlinear factors.

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 222–237, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Optimizing Pointer Analysis Using Bisimilarity 223

The most prominent technique for reducing the input size of points-to anal-
ysis constraint resolution involves detecting and contracting equivalence classes
of variables. Online cycle detection is such a technique. Every variable in the
same strongly connected component will have the same points-to set. Since new
cycles can be introduced as constraint resolution approaches equilibrium, it is
worthwhile to perform cycle detection periodically during the progression to
equilibrium.

When and where online cycle detection is performed greatly influences the over-
all performance of inclusion-based points-to analysis. The algorithm of Fahndrich
et al. [7] searches for cycles when a new edge is added to the constraint graph,
while the algorithm of Heintze et al. [11] searches for cycles during reachability
queries. The former approach can unnecessarily prevent certain cycles from be-
ing detected, while the latter approach may perform excessive redundant work. A
more straightforward approach is used by the algorithm described in Pearce et al.
[15], which periodically searches the entire constraint graph for cycles.

In contrast, Hardekopf et al. [9] present an algorithm that uses a heuristic
to efficiently determine when and where a periodic search for cycles should be
performed. While this heuristic may prevent some cycles from being detected,
empirical evidence shows that: (i) the heuristic reduces the overhead of online
cycle detection by preventing some unnecessary searches and (ii) the heuristic
detects cycles more quickly after their introduction than the simple periodic
sweep used by Pearce et al. [15]. Hardekopf et al. further improve upon these
two points by introducing a technique called Hybrid Cycle Detection (HCD).
HCD is an extremely fast pre-processing pass on the input that creates meta-
data for performing a restricted form of online cycle detection with minimal
overhead.

A completely different approach for reducing the size of the constraint graph
was presented by Berndl et al. [3]. They show how reduced, ordered binary
decision diagrams (BDDs) can be used to efficiently perform inclusion-based
points-to analysis. BDDs effectively reduce the size of the constraint graph by
hash-consing binary trie representations of the constraint graph. This results
in the partial contraction of the representations of variables that have similar
points-to sets.

In addition to contracting equivalence classes online, another practical means
of reducing the size of the input is to use a fast pre-processing phase before
running the constraint solver. The pre-processing phase is called an “offline op-
timization” because it reduces the size of the input before performing constraint
resolution.

The first prominent offline optimization for inclusion-based points-to analysis
was presented by Rountev et al. [17]. Their technique, known as Offline Variable
Substitution (OVS), uses offline cycle detection and value numbering in order to
detect and contract pointer equivalent variables. Variables are pointer equivalent
when they have the same points-to set.

Hardekopf et al. [10] introduced HRU+LE, an offline optimization that im-
proves upon OVS by iterating more sophisticated value numbering techniques

224 L. Simon

in order to detect more equivalences. HRU+LE also introduced the notion of
location equivalence as a means of optimizing the input passed to a constraint
solver. Location equivalence equates variables whose addresses appear in the
same points-to sets, which means that location equivalent variables can share
the same symbol when stored in a points-to set of a constraint solver.

In this paper, we identify bisimilarity as a practical basis for developing an
effective offline optimization for points-to analysis, and we make the following
additional contributions:

– In section 4, we present the design and correctness proof of BSM
(BiSiMilarity-based pointer equivalence detection), a new offline optimiza-
tion that improves upon previous offline optimizations by efficiently identi-
fying a coarser partitioning of variables into equivalence classes.

– In section 5, we describe techniques for efficiently implementing BSM, so that
it has a better asymptotic complexity than HRU+LE and lower overhead
for real world benchmarks.

– In section 6, we present empirical results by benchmarking, on several promi-
nent open-source applications, a BSM prototype along with the leading of-
fline optimizations. The results show BSM outperforming the other leading
offline optimizations.

The next two sections cover background material. Section 2 briefly compares and
contrasts the contributions of this paper with related work, and section 3 covers
the salient concepts necessary to understand the remaining sections, which detail
this paper’s contributions.

2 Related Work

Offline Variable Substitution (OVS), introduced by Rountev et al. [17], is an
offline optimization that attempts to collapse pointer equivalent variables by
using a O(n2) time and space algorithm based on cycle detection and value
numbering. OVS is actually linear in the size of initial constraint graph, but
since the constraint graph can have O(n2) edges, OVS’s complexity is quadratic
in the number of constraint variables in the given constraint graph. Even when
taking OVS’s overhead into consideration, the empirical results presented in
section 6 show that OVS significantly improves the total analysis time and the
peak memory usage of points-to analysis.

Before the development of BSM, Hardekopf et al. [10] introduced HRU+LE,
which has a higher worst-case complexity than OVS, using O(n4) time and
O(n2) space, but as demonstrated by Hardekopf et al. [10] and reiterated in
section 6 of this paper, HRU+LE improves the total analysis time and peak
memory usage, when compared to OVS. The fact that HRU+LE’s worst-case
time complexity is greater than the worst-case time complexity of constraint
resolution seems to be a theoretical disadvantage that does not manifest itself in
empirical results. In addition, HRU+LE and BSM use both pointer equivalence
and location equivalence, while OVS only uses pointer equivalence.

Optimizing Pointer Analysis Using Bisimilarity 225

BSM improves upon both OVS and HRU+LE by detecting more pointer
equivalent variables, which allows for a greater reduction in the size of the in-
put fed into the inclusion constraint solver. The empirical evidence presented in
section 6 demonstrates how this dramatically improves the scalability of whole-
program points-to analysis.

In addition to improving upon OVS and HRU+LE in terms of scalability,
BSM also improves upon OVS and HRU+LE in terms of precision. OVS and
HRU+LE assume that a dereference expression *d corresponds to a load or store
of a variable that is pointed to by the variable d. However, it is possible that d
does not point to anything, and so this assumption can reduce the precision of
the points-to analysis.

Example 1. For the following fragment of C source code, OVS and HRU+LE
detect a cycle containing a and c. This false cycle causes them to place variables
a and c in the same pointer equivalence class, even though they are not pointer
equivalent.

// types and order ing o f statements are i r r e l e v a n t
// f o r Andersen ’ s points−to an a l y s i s o f C
a = &c ; a = &d ; b = &c ; b = &d ; c = &b ;
x = &a ; y = &a ; x = ∗x ; y = ∗y ;
c = ∗d ; ∗d = a ; a = c ;

Contracting a small number of pointer inequivalent variables in the input can
have a cascading effect on the precision of individual points-to sets because the
abstract values of these collapsed variables can be propagated throughout the
constraint graph.

Since BSM completely ignores store constraints, it does not suffer from this
problem, and as theoretically demonstrated in section 4, BSM does not decrease
the precision of inclusion-based points-to analysis.

BSM is not the first application of bisimilarity to static program analysis,
and the range of applications from compilers [1] to concurrency analysis [5] to
computer security [8] to model checking [4] is so vast that we will not attempt
to provide an overview of such works. Instead we limit ourselves to works directly
related to BSM’s implementation.

The first algorithm capable of efficiently computing a coarsest partitioning of
a graph into bisimilar equivalence classes was presented by Paige et al. [14].
Their algorithm was presented in terms of the relational coarsest partition prob-
lem, which is effectively synonymous to the problem of determining the coarsest
partitioning of a graph into bisimilar equivalence classes.

The worst-case complexity of Paige et al.’s algorithm hasn’t been improved
upon, but progress has been made on improving the performance of bisimulation
equivalence detection algorithms that are based upon Paige et al.’s algorithm,
when used on real world input. Dovier et al. [6] present several techniques for
improving the performance of coarsest partitioning of a graph into bisimilar
equivalence classes. The most effective technique is to stratify the graph into a
sequence of ranks, so that Paige et al. [14]’s algorithm only needs to be applied to

226 L. Simon

individual subsets of the entire graph. In section 5, we apply a similar technique
in order to efficiently stratify the bisimulation graph into a topologically sorted
sequence of ranks.

3 Inclusion-Based Points-to Analysis

Inclusion-based points-to analysis involves extracting a collection of inclusion
constraints from the analyzed program, and then by iteratively applying infer-
ence rules, the constraints are solved. The solution of these constraints induces
the results of the points-to analysis, which are the points-to sets of each pointer.
Informally, a pointer’s points-to set contains the variables that the pointer may
point to. The specifics of how constraints are extracted from an analyzed pro-
gram’s code is an implementation detail that is not covered in this paper.

Definition 1. We write offset(x, k), where x is a variable and k is a natural
number, to denote the variable at offset k from variable x. It is required that
for every variable x = offset(x, 0), and for some constant c > 0, offset(x, k) is
undefined for every value of k > c.

Variable offsets are used to model fields of structs as well as the formal param-
eters and returns of functions called indirectly through a function pointer.

Definition 2. Inclusion constraints are of the following four forms:

1. A points-to constraint x ⊇ {y} asserts that the points-to set of variable x
contains the variable y.

2. A copy constraint x ⊇ y asserts that the points-to set of variable x is a
superset of the points-to set of y.

3. A load constraint x ⊇ ∗(y+ k) asserts that the points-to set of variable x is
a superset of the points-to sets of every variable z = offset(w, k), where w is
in y’s points-to set.

4. A store constraint ∗(y+k) ⊇ x asserts that the points-to set of every variable
z = offset(w, k) is a superset of the points-to set of x, where w is in y’s
points-to set.

If the offset k = 0, then a load constraint x ⊇ ∗(y + k) can be abbreviated as
x ⊇ ∗y and a store constraint ∗(y + k) ⊇ x can be abbreviated as ∗y ⊇ x.

Note 1. It is a common practice to abuse notation by using the same variable
when referring to a program variable and its corresponding constraint vari-
able [9, 11, 16].

Example 2. The constraints extracted from the code presented in example 1 are:

a ⊇ {c} a ⊇ {d} b ⊇ {c} b ⊇ {d} c ⊇ {b}
x ⊇ {a} y ⊇ {a} x ⊇ ∗x y ⊇ ∗y
c ⊇ ∗d ∗d ⊇ a a ⊇ c

Optimizing Pointer Analysis Using Bisimilarity 227

Definition 3. The solution to a given set of constraints is the set of points-to
constraints of the form x ⊇ {y}, which are either in the given set of constraints
or can be inferred from the given set of constraints by repeated application of the
following inference rules:

x ⊇ y y ⊇ {a}
x ⊇ {a} [copy]

x ⊇ ∗(y + k) y ⊇ {a} z = offset(a, k)
x ⊇ z

[load]

∗(y + k) ⊇ x y ⊇ {a} z = offset(a, k)
z ⊇ x

[store]

Definition 4. The points-to set of a variable x is the set of variables y such
that x ⊇ {y} is in the solution of the given set of constraints. We write P (x) to
denote the points-to set of variable x.

Example 3. The points-to sets of the variables from example 2 are: P (a) =
{b, c, d}, P (b) = {c, d}, P (c) = {b}, P (d) = {}, and P (x) = P (y) = {a, b, c, d}.

3.1 Offline Optimization

As previously mentioned, solving inclusion constraints takes O(n3) time and uses
O(n2) space in the worst case, and so decreasing the size of the constraint graph
can substantially improve performance. The main technique for accomplishing
this is to merge equivalent variables.

Since there are two distinct representations of a variable in a constraint graph,
two kinds of variable equivalence are used to merge the corresponding represen-
tations of equivalent variables. The two mergeable representations of a variable
are: (i) the representation of a variable as a node and (ii) the representation of
a variable as an element of points-to sets.

Definition 5. Two variables are pointer equivalent if they have the same points-
to set.

Example 4. According to example 3, the only two pointer equivalent variables
are x and y.

Constraint graph nodes corresponding to pointer equivalent variables can be col-
lapsed into a single node. Determining the coarsest partitioning of a constraint
graph’s variables into pointer equivalence classes can be performed by calculat-
ing the solution to the given constraints, but since the objective is to optimize
the performance of pointer analysis, such a naive approach provides no benefit.
Instead, more efficient partitioning algorithms are used, which are conservative
in that they never group inequivalent variables into the same class, yet they may
assign equivalent variables to distinct classes.

Definition 6. Two variables are location equivalent if the inclusion of one vari-
able in a points-to set means the other variable is also included in the points-to
set.

228 L. Simon

Example 5. According to example 3, the only two location equivalent variables
are c and d.

Location equivalent variables can be represented as a single symbol in a points-
to set that contains the location equivalent variables. This helps decrease the
size of the representations used to store intermediate points-to sets. Some care
has to be taken when adding new edges to the constraint graph due to load
and store constraints. Exploiting location equivalence requires a pointer analysis
algorithm to translate each element of a points-to set into a set of constraint
graph nodes, when adding edges inferred from load and store constraints.

4 Bisimilarity-Based Pointer Equivalence Detection

Compared to other offline optimizations for inclusion-based points-to analysis,
the novel aspect of BSM is its technique for detecting pointer equivalences. This
section introduces the theory behind this technique, while section 5 describes its
implementation.

4.1 Superset Graphs

Instead of using the kind of constraint graphs used by constraint solvers, BSM
uses two alternative kinds of graphs: superset graphs and simulation graphs.

Definition 7. The superset graph is generated from the input constraint set. It
represents points-to sets as nodes and containment relationships as edges. For
variables x and y, we write x → y to denote that there is an edge in the superset
graph from node x to node y. The superset graph is the smallest graph such that
x → y if and only if x ⊇ y.

Note 2. We further overload our notation such that the same variable is used
to refer to a program variable, a corresponding constraint variable, and a cor-
responding graph node. This helps simplify our notation by making an implicit
correspondence between a program variable, constraint variable, and simulation
graph node.

Note 3. The variables in a strongly connected component (SCC) of the superset
graph are pointer equivalent.

In order to serve as an offline optimization for points-to analysis, BSM must not
attempt to solve the constraints because doing so would be too costly. This is
why BSM does not interpret load and store constraints by adding new edges to
the superset graph. In addition, the points-to sets calculated by BSM are more
abstract than those computed by an actual constraint solver. In a constraint
solver, points-to sets are modeled as sets of constraint variables, while in BSM
they are modeled as unions of abstract points-to subsets.

Definition 8. Constraint variable x is said to be addressed, if there exists vari-
ables y and z such that x = offset(y, k) and z ⊇ {y}.

Optimizing Pointer Analysis Using Bisimilarity 229

The contents of addressed variables can be changed indirectly, and so their con-
tents are modeled more abstractly by BSM than they are by a constraint solver.

Definition 9. The abstract points-to subsets of a superset graph have the fol-
lowing forms:

– x, such that x is addressed. This form of abstract points-to subset denotes
the set of locations that can be copied from x.

– &x, which denotes the singleton set containing the location of variable x.
– ∗(x+ k), which denotes the set of locations that can be loaded from offset k

of the variables that x points to.

A variable’s union of abstract points-to subsets is defined in terms of reachability
in the superset graph.

Definition 10. Let A(x) denote the set of abstract points-to subsets whose
union defines the points-to set of variable x. Formally, A(x) is the smallest set
such that:
– x ∈ A(x) whenever x is addressed.
– &y ∈ A(x) whenever x ⊇ {y}.
– ∗(y + k) ∈ A(x) whenever x ⊇ ∗(y + k).
– A(x) contains every element of A(y) whenever x can reach y in the superset

graph.

Location Equivalence. Note that for any two variables x and y, x is location
equivalent to y if and only if for every z such that &x ∈ A(z), it is also true that
&y ∈ A(z).

Note 4. When it comes to detecting location equivalence, the difference between
BSM and HRU+LE is that HRU+LE treats dereference expressions of the form
∗x as nodes in the superset graph . Since HRU+LE also treats load and store con-
straints as edges in the superset graph, more variables may be determined to be
location equivalent by HRU+LE. However, HRU+LE may incorrectly determine
that two variables are location equivalent for the same reasons that HRU+LE
may incorrectly determine that two variables are pointer equivalent (see exam-
ple 1). So the additional location equivalences discovered by HRU+LE may or
may not be valid equivalences, which means that precision may be adversely
affected by HRU+LE. However, a thorough investigation of the magnitude of
the loss of precision caused by HRU+LE is out of the scope of this paper.

4.2 Simulation Graphs

As previously stated, the novel aspect of BSM is that it uses bisimilarity in
order to detect more pointer equivalences than previous offline optimizations
for inclusion-based points-to analysis. The bisimilarity equivalence relation used
by BSM is defined in terms of the simulation graph corresponding to the given
constraints. This is typical for the definition of a bisimilarity relation, but the
following definition of BSM’s simulation graphs is the most conceptually com-
plicated aspect of BSM.

230 L. Simon

Definition 11. For nodes n and m and label l, we write n
l−→ m to denote

that there is an l-labeled edge in the simulation graph from node n to node m .
For each variable x, the simulation graph contains two kinds of nodes. A node
x represents the points-to set of the variable x, while a node N(x) represents
the subset of x’s points-to set that can be inferred without using the load or store
inference rules. The simulation graph for a given set of constraints is the smallest
graph such that:

– x
sup−→ N(x) for every variable x. This kind of edge is called a superset edge,

and it denotes the fact that N(x) is a subset of x.
– N(x)

&y−→ y whenever &y ∈ A(x). This kind of edge is called an address edge,
and it denotes that x points to the location of variable y.

– x
load(k)−→ y whenever ∗(y+ k) ∈ A(x). This kind of edge is called a load edge,

and it denotes the fact that x’s points-to set may contain values that are
loaded from the dereferencing of y offset by k.

– x
ref−→ N(y) whenever z ∈ A(x) and &z ∈ A(y). This kind of edge is called

a reference edge, and it denotes the fact that x’s points-to set may contain
values copied from a variable which is indirectly modified via the pointer y.

– x
off(k)−→ y whenever k > 0, z ∈ A(x), and z = offset(y, k). This kind of edge

is called an offset edge, and it denotes the fact that x’s points-to set may
contain values copied from a variable which is indirectly modified by stores
involving pointers to y offset by k.

If the offset k = 0, then a load edge x
load(k)−→ y can be abbreviated as x load−→ y.

In addition, note that N(x)
&y−→ z if and only if y and z are the same variable,

and also note that N(x)
&y−→ y if and only if y ref−→ N(x).

Example 6. Figure 1 shows the simulation graph corresponding to the con-
straints in example 2.

4.3 Bisimilarity

Intuitively, the bisimilarity relation used by BSM equates two variables x and
y, whenever their corresponding inclusion constraints have a similar structure.
This can be seen as a generalization of the value numbering techniques used by
OVS and HRU+LE.

Definition 12. The bisimilarity relation ∼ is the largest binary relation between
nodes of the simulation graph, such that whenever x ∼ y, both of the following
are true:

– For every label l, if x l−→ x′ then there exists y′ such that y l−→ y′ and
x′ ∼ y′.

– For every label l, if y l−→ y′ then there exists x′ such that x l−→ x′ and
y′ ∼ x′.

Optimizing Pointer Analysis Using Bisimilarity 231

Fig. 1. The simulation graph described in example 6

Example 7. In the simulation graph described in example 6, the only two pairs
of bisimilar nodes are x ∼ y and N(x) ∼ N(y). Therefore, the set of equivalence
classes is:

{{a}, {b}, {c}, {d}, {x, y}, {N(a)}, {N(b)}, {N(c)}, {N(d)}, {N(x), N(y)}}

Note that this corresponds to the coarsest partitioning of the variables into
pointer equivalence classes, and also note that both OVS and HRU+LE are un-
able to detect the pointer equivalence between variables x and y, while BSM does
detect the equivalence. Theorem 1 states the correctness of using bisimilarity as
a means of detecting pointer equivalence.

Theorem 1. If two variables are bisimilar, then they are pointer equivalent.

Proof. Since the bisimilarity relation is symmetric, it is sufficient to prove that
x1 ∼ x2 and a ∈ P (x1) implies a ∈ P (x2). So in the following, assume x1 ∼ x2
and a ∈ P (x1). The proof proceeds by induction on the size of the derivation of
the inferred points-to constraints.

According to the inference rules specified in definition 3, there are three ways
in which a ∈ P (x1): (i) in the initial constraint set x1 can transitively reach a
points-to constraint of the form y1 ⊇ {a} via zero or more copy constraints, (ii)
in the initial constraint set x1 can transitively reach a load constraint of the form
y1 ⊇ ∗(z1+k) via zero or more copy constraints and there is a variable b ∈ P (z1)
such that a ∈ P (offset(b, k)), or (iii) there is a constraint of the form ∗(y+k) ⊇ z
in the initial constraint set and x1 can transitively reach a variable w1 via zero
or more copy constraints such that a ∈ P (z), b1 ∈ P (y), and w1 = offset(b1, k).

232 L. Simon

For the first case,N(x1)
&a−→ a and since x1 ∼ x2, it must be that N(x2)

&a−→ a.
This is only possible if in the initial constraint set x2 can transitively reach a
points-to constraint of the form y2 ⊇ {a} via zero or more copy constraints.
Therefore a ∈ P (x2).

For the second case, x1
load(k)−→ z1 and since x1 ∼ x2, it must be that x2

load(k)−→
z2 such that z1 ∼ z2. This is only possible if in the initial constraint set x2 can
transitively reach a load constraint of the form y2 ⊇ ∗(z2 + k) via zero or more
copy constraints. Since z1 ∼ z2 and b ∈ P (z1), by induction b ∈ P (z2). Finally,
the fact that a ∈ P (offset(b, k)) implies a ∈ P (x2).

The third case can be broken down into two sub-cases depending on whether
or not k > 0. We only consider the case when k = 0 because the case when
k > 0 is similar. So assume k = 0. According to definition 1 b1 = offset(b1, 0)
and hence w1 = offset(b1, k) = offset(b1, 0) = b1 ∈ P (y). Since w1 ∈ P (y), it
must be that &w1 ∈ A(u1) for some variable u1, and the contents of u1 are
included in y. This means x1

ref−→ N(u1) and N(u1)
&w1−→ w1. The fact that

x1 ∼ x2 implies x2
ref−→ N(u2) such that N(u1) ∼ N(u2). x2

ref−→ N(u2) implies
x2 can transitively reach a variable w2 via zero or more copy constraints and
&w2 ∈ A(u2). This means N(u2)

&w2−→ w2, and since N(u1) ∼ N(u2) we can
conclude that N(u1)

&w2−→ w2, which implies w2 ∈ P (u1) ⊆ P (y). Therefore the
store constraint ∗(y+k) ⊇ z also includes a in the points-to set of w2, and hence
a ∈ P (x2).

In addition to discussing the partitioning of variables into location equivalence
classes, the next section describes how to efficiently calculate the coarsest par-
titioning of variables into bisimilar equivalence classes. According to theorem 1,
such a partitioning is a valid grouping of variables into pointer equivalence
classes.

5 Implementation

The BSM offline optimization uses the bisimilarity relation presented in the
previous section to detect and collapse pointer equivalence classes, and like
HRU+LE, BSM also uses hashing of reference sets in order to detect and collapse
location equivalences. This section outlines the implementation of BSM.

5.1 Preprocess Constraints

The first stage of BSM consists of two preprocessing passes on the input con-
straints. This is done in order to reduce the size of the input that is passed to
the more costly, core part of BSM.

Filter Empty Pointers. BSM first preprocesses the input constraints in order
to filter out pointers that can be efficiently determined to be empty. This is
accomplished by collapsing the SCCs of the superset graph using the algorithm

Optimizing Pointer Analysis Using Bisimilarity 233

presented by Nuutila et al. [13], and augmenting the superset graph with addi-
tional edges of the form x → y whenever x ⊇ {y} or x ⊇ ∗(y + k).

Finally, a depth-first search is performed in order to determine the variables
that can reach addressed variables (see definition 8) in the residual augmented
superset graph. The variables that cannot reach addressed variables are removed
from the constraint set, as their points-to set is empty.

Simplify Constraints. Like HRU+LE, BSM uses hash-based value numbering
(HVN), introduced in by Hardekopf et al. [10], in order to reduce the size of the
input that is fed into the more costly core part of the offline optimization.

5.2 Build Simulation Graph

After BSM has simplified the input constraints using the preprocessing passes
described in section 5.1, a new superset graph is constructed from the prepro-
cessed constraint set. The SCCs of this new superset graph are collapsed, and
then the A(x) sets are calculated by propagating the elements of the sets in re-
verse topological order. These sets are needed for assigning variables to location
equivalence classes and for constructing the simulation graph.

Calculating these sets has a worst-case complexity of O(n3) time and O(n2)
space. Since this is the most costly part of BSM, this establishes BSM’s worst-
case complexity: O(n3) time and O(n2) space, where n is the number of con-
straint variables.

Assign Location Equivalence Classes. The set of variables y such that x ∈ A(y)
is used to identify the location equivalence class to which variable x should be
assigned. This technique was introduced by Hardekopf et al. [10], but since BSM
doesn’t make the precision sacrificing assumptions about dereference expressions
that HRU+LE makes (see note 4 in section 4.1), BSM discovers slightly fewer
location equivalence classes. However, empirical evidence indicates that very few
additional location equivalences are detected by HRU+LE, so this difference has
little impact on scalability.

Create Simulation Graph Nodes. For performance reasons, BSM explicitly cre-
ates a simulation graph that does not contain the N(x) nodes, superset edges,
address edges, reference edges, or offset edges. This is accomplished by assigning
simulation graph nodes to initial partitions, which are potentially split during
a later phase of BSM. A node’s initial partition is identified by a tuple of three
IDs: (i) an address set ID, (ii) a reference set ID, and (iii) an offset set ID.

Address set IDs are assigned by mapping each address set {y | y ∈ A(x)} to
a unique number, and then each node of the form x is mapped to the ID for its
address set {y | y ∈ A(x)}. The reference set ID of a node x is determined in a
similar manner, but this time by using the set of address set IDs of variables y
such that x ref−→ N(y). Finally, the offset set ID of a node x is also determined
in a similar manner, using the set of pairs (k, reference set ID of y) such that

x
load(k)−→ N(y).

234 L. Simon

Add Simulation Graph Edges. Because nodes are initially partitioned based on
the superset, address, reference, and offset edges, the simulation graph created
by BSM only contains nodes of the form x (as opposed to nodes of the form
N(x)), and it only needs to have load edges added to it.

5.3 Partition Nodes

BSM uses a technique similar to the one introduced by Dovier et al. [6], in
order to split the initially partitioned simulation graph into a set of subgraphs
called ranks, and then BSM uses the relational coarsest partitioning algorithm
introduced by Paige et al. [14] in order to partition each rank into bisimilar
equivalence classes.

6 Benchmarks

This section presents empirical results obtained from running an implementa-
tion of the BSM algorithm introduced in this paper against a points-to analysis
benchmark suite introduced by Hardekopf et al. [9, 10]. The benchmark suite
contains implementations of the leading inclusion-based points-to analysis algo-
rithms for analyzing C programs (Heintze et al.’s algorithm “HT” [11], Pearce et
al.’s algorithm “PKH” [15], and Hardekopf et al.’s algorithm “LCD+HCD” [9]).
The benchmark suite also contains implementations of the offline optimizations
OVS and HRU+LE, in addition to sample sets of constraints extracted from six
prominent open-source C programs.

As mentioned in [10], the benchmark constraint sets were generated using
the CIL front-end for the C programming language [12]. Assignments involving
types that are too small to hold a pointer are ignored and standard library
calls are modeled using manually created stubs. The details of the benchmark
constraint sets are listed in the following table:

Application KLOCs Constraints Variables
Emacs-21.4a 169 83,213 43,236

GhostScript-8.15 242 168,312 103,876
Gimp-2.2.8 554 411,783 245,677
Insight-6.5 603 243,404 143,677

Linux-2.4.26 2,172 574,788 414,489
Wine-0.9.21 1,338 713,065 501,214

Originally, the benchmark suite did not implement any means of translating
the results of the analysis back in terms of the original input variables, and so we
augmented the suite with this functionality. This led to the discovery of a bug in
the implementation of HRU+LE, which caused a significant number of variables
to be incorrectly removed from the constraints. Since the implementation was
the source of this bug, as opposed to the design of the HRU+LE algorithm itself,
we used the corrected HRU+LE implementation in our benchmarks.

Optimizing Pointer Analysis Using Bisimilarity 235

Our main addition to the benchmark suite is an implementation of BSM, writ-
ten in C++. The details of the implementation’s design and implementation are
discussed in the previous sections. Our experiments were run using the Fedora 9
(i686) Linux distribution on a Dell XPS M1710 with 4GB of RAM and a “Core
2 Duo T7200” CPU running at 2Ghz, and the prototypes were compiled with
GCC 4.3 using the “-O3” optimization level.

The source code for the BSM prototype and the benchmark suite can be
obtained from the authors upon request.

6.1 Empirical Results

We used all possible pairings of each offline optimization with each of the leading
inclusion-based points-to analysis algorithms, in order to obtain the empirical
results presented in this section.

Figure 2 presents the combined execution time and peak memory usage for
points-to analysis for the LCD+HCD constraint solver paired with each offline
optimization. For every benchmark except the smallest (Emacs), compared to
the other two leading offline optimizations BSM improves the scalability of the
analysis. In the Emacs benchmark, BSM is only marginally one-upped in terms
of speed by HRU+LE.

BSM significantly outperforms the competition in the two largest benchmarks:
Linux and Wine. In the case of Wine, when using BSM, the performance of
points-to analysis is improved by approximately a factor of 3× over the previ-
ously leading offline optimization: HRU+LE. This improvement is due to the

Emacs

Ghostscript

Gimp

Insight

Linux

Wine

0 50 100 150 200 250 300 350 400

2.06

7.52

181.4

20.11

86.22

353.95

1.55

6.35

39.07

13.84

64.63

208.01

1.99

3.72

30.44

6.7

35.34

65.4

OVS HRU+LE BSM

Time (seconds)

Emacs

Ghostscript

Gimp

Insight

Linux

Wine

0 200 400 600 800 1,000

13.53

43.96

179.86

111.33

420.94

907.98

19.1

47.84

113.96

77.83

215.71

371.8

6.13

16.41

27.3

19.63

125.78

130.88

Memory (megabytes)

Fig. 2. Total time and peak memory used by points-to analysis for each offline opti-
mization paired with the LCD+HCD algorithm

236 L. Simon

fact that BSM’s bisimilarity relation generalizes HRU+LE’s value numbering
technique for detecting and collapsing pointer equivalent variables.

With or without offline optimizations, LCD+HCD is currently the fastest,
sound, inclusion-based points-to analysis algorithm for analyzing C programs [9].
Due to space limitations, this section only presents the results obtained when
using LCD+HCD. The results for the other two algorithms HT and PKH are
similar. In fact, BSM outperforms the other leading offline optimizations by an
even greater margin in the cases of HT and PKH.

7 Conclusions and Future Work

We have demonstrated that coarsest partitioning of pointers into bisimilar equiv-
alence classes is an efficient technique for offline optimization of inclusion-based
points-to analysis, without decreasing the precision of the calculated points-to
sets. Our empirical results indicate that BSM, the offline optimization intro-
duced in this paper, outperforms the other leading offline optimizations. How-
ever, greater performance improvements could be obtained by improving BSM’s
equivalence detection.

If the input constraints could be efficiently preprocessed so as to remove every
variable with an empty points-to set, BSM could be augmented to interpret
store constraints in a manner similar to the interpretation used by OVS and
HRU+LE, without adversely affecting precision. This would allow for paths in
the superset graph to traverse dereference expressions, which would result in
detecting more location equivalences and more pointer equivalences. Even more
equivalences could be detected by iterating constraint reduction in the same way
that HRU+LE iterates the HU reduction algorithm.

Another avenue is to adapt BSM for online use. Periodically BSM could be
performed on the residual constraint graph, just like cycle detection is peri-
odically performed on the residual constraint graph. Since BSM has a higher
overhead than cycle detection, it makes sense for online bisimilarity detection
to be performed less frequently than online cycle detection. The additional con-
straints that are inferred online should allow for bisimilarity detection to detect
more pointer equivalences than when restricted to the initial constraint set.

Yet another avenue for improving BSM’s equivalence detection is to devise
an alternative definition for simulation graphs, possibly one that makes use of
store constraints. An alternative definition may allow for the detection of more
pointer equivalences.

References

[1] Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D. (eds.): Compilers: principles, tech-
niques, and tools, 2nd edn. Pearson/Addison Wesley, Boston (2007)

[2] Andersen, L.O.: Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen (DIKU report 94/19)
(May 1994)

Optimizing Pointer Analysis Using Bisimilarity 237

[3] Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-to analysis
using BDDs. ACM SIGPLAN Notices 38(5), 103–114 (2003)

[4] Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

[5] Cleaveland, R.: The concurrency workbench: A semantics-based verification tool
for the verification of concurrent systems. ACM Transactions on Programming
Languages and Systems 15(1), 36–72 (1993)

[6] Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisimu-
lation equivalence. Theor. Comput. Sci. 311(1-3), 221–256 (2004)

[7] Fähndrich, M., Foster, J.S., Su, Z., Aiken, A.: Partial online cycle elimination in
inclusion constraint graphs. ACM SIGPLAN Notices 33(5), 85–96 (1998)

[8] Focardi, R., Gorrieri, R.: The compositional security checker: A tool for the veri-
fication of information flow security properties. IEEE Trans. Software Eng. 23(9),
550–571 (1997)

[9] Hardekopf, B., Lin, C.: The ant and the grasshopper: fast and accurate pointer
analysis for millions of lines of code. In: Ferrante, J., McKinley, K.S. (eds.) PLDI,
pp. 290–299. ACM Press, New York (2007)

[10] Hardekopf, B., Lin, C.: Exploiting pointer and location equivalence to optimize
pointer analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634,
pp. 265–280. Springer, Heidelberg (2007)

[11] Heintze, N., Tardieu, O.: Ultra-fast aliasing analysis using CLA: A million lines
of C code in a second. ACM SIGPLAN Notices 36(5), 254–263 (2001)

[12] Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

[13] Nuutila, E., Soisalon-Soininen, E.: On finding the strongly connected components
in a directed graph. Information Processing Letters 49, 9–14 (1993)

[14] Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Com-
put. 16(6), 973–989 (1987)

[15] Pearce, D.J., Kelly, P.H.J., Hankin, C.: Efficient field-sensitive pointer analysis for
C. In: Flanagan, C., Zeller, A. (eds.) PASTE, pp. 37–42. ACM Press, New York
(2004)

[16] Pearce, D.J., Kelly, P.H.J., Hankin, C.: Efficient field-sensitive pointer analysis of
C. ACM Transactions on Programming Languages and Systems 30(1), 4:1–4:42
(2007)

[17] Rountev, A., Chandra, S.: Off-line variable substitution for scaling points-to anal-
ysis. ACM SIGPLAN Notices 35(5), 47–56 (2000)

Type Analysis for JavaScript

Simon Holm Jensen1,�, Anders Møller1,��, and Peter Thiemann2

1 Aarhus University, Denmark
{simonhj,amoeller}@cs.au.dk

2 Universität Freiburg, Germany
thiemann@informatik.uni-freiburg.de

Abstract. JavaScript is the main scripting language for Web browsers,
and it is essential to modern Web applications. Programmers have started
using it for writing complex applications, but there is still little tool
support available during development.

We present a static program analysis infrastructure that can infer de-
tailed and sound type information for JavaScript programs using abstract
interpretation. The analysis is designed to support the full language as
defined in the ECMAScript standard, including its peculiar object model
and all built-in functions. The analysis results can be used to detect
common programming errors – or rather, prove their absence, and for
producing type information for program comprehension.

Preliminary experiments conducted on real-life JavaScript code indi-
cate that the approach is promising regarding analysis precision on small
and medium size programs, which constitute the majority of JavaScript
applications. With potential for further improvement, we propose
the analysis as a foundation for building tools that can aid JavaScript
programmers.

1 Introduction

In 1995, Netscape announced JavaScript as an “easy-to-use object scripting lan-
guage designed for creating live online applications that link together objects
and resources on both clients and servers” [25]. Since then, it has become the de
facto standard for client-side scripting in Web browsers but many other appli-
cations also include a JavaScript engine. This prevalence has lead developers to
write large programs in a language which has been conceived for scripting, but
not for programming in the large. Hence, tool support is badly needed to help
debug and maintain these programs.

The development of sound programming tools that go beyond checking mere
syntactic properties requires some sort of program analysis. In particular, type
analysis is crucial to catch representation errors, which e.g. confuse numbers
with strings or booleans with functions, early in the development process. Type

� Supported by The Danish Research Council for Technology and Production,
grant no. 274-07-0488.

�� Corresponding author.

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 238–255, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Type Analysis for JavaScript 239

analysis is a valuable tool to a programmer because it rules out this class of
programming errors entirely.

Applying type analysis to JavaScript is a subtle business because, like most
other scripting languages, JavaScript has a weak, dynamic typing discipline
which resolves many representation mismatches by silent type conversions. As
JavaScript supports objects, first-class functions, and exceptions, tracking the
flow of data and control is nontrivial. Moreover, JavaScript’s peculiarities present
a number of challenges that set it apart from most other programming languages:

– JavaScript is an object-based language that uses prototype objects to model
inheritance. As virtually all predefined operations are accessed via prototype
objects, it is imperative that the analysis models these objects precisely.

– Objects are mappings from strings (property names) to values. In general,
properties can be added and removed during execution and property names
may be dynamically computed.

– Undefined results, such as accessing a non-existing property of an object, are
represented by a particular value undefined, but there is a subtle distinction
between an object that lacks a property and an object that has the property
set to undefined.

– Values are freely converted from one type to another type with few excep-
tions. In fact, there are only a few cases where no automatic conversion
applies: the values null and undefined cannot be converted to objects and
only function values can be invoked as functions. Some of the automatic
conversions are non-intuitive and programmers should be aware of them.

– The language distinguishes primitive values and wrapped primitive values,
which behave subtly different in certain circumstances.

– Variables can be created by simple assignments without explicit declara-
tions, but an attempt to read an absent variable results in a runtime error.
JavaScript’s with statement breaks ordinary lexical scoping rules, so even
resolving variable names is a nontrivial task.

– Object properties can have attributes, like ReadOnly. These attributes can-
not be changed by programs but they must be taken into account by the
analysis to maintain soundness and precision.

– Functions can be created and called with variable numbers of parameters.
– Function objects serve as first-class functions, methods, and constructors

with subtly different behavior. An analysis must keep these uses apart and
detect initialization patterns.

– With the eval function, a dynamically constructed string can be interpreted
as a program fragment and executed in the current scope.

– The language includes features that prescribe certain structures (the global
object, activation objects, argument objects) in the implementation of the
runtime system. These structures must be modeled in an analysis to obtain
sufficient precision.

This paper reports on the design and implementation of a program analyzer
for the full JavaScript language. In principle, the design is an application of

240 S.H. Jensen, A. Møller, and P. Thiemann

abstract interpretation using the monotone framework [9,21]. However, the chal-
lenges explained above result in a complicated lattice structure that forms the
basis of our analysis. Starting from a simple type lattice, the lattice has evolved
in a number of steps driven by an observed lack of precision on small test cases.
As the lattice includes precise singleton values, the analyzer duplicates a large
amount of the functionality of a JavaScript interpreter including the implemen-
tation of predefined functions. Operating efficiently on the elements of the lattice
is another non-trivial challenge.

The analyzer is targeted at hand-written programs consisting of a few thou-
sand lines of code. We conjecture that most existing JavaScript programs fit into
this category.

One key requirement of the analysis is soundness. Although several recent
bug finding tools for other languages sacrifice soundness to obtain fewer false
positives [5,12], soundness enables our analysis to guarantee the absence of cer-
tain errors. Moreover, the analysis is fully automatic. It neither requires program
annotations nor formal specifications.

While some programming errors result in exceptions being thrown, other er-
rors are masked by dynamic type conversion and undefined values. Some of
these conversions appear unintuitive in isolation but make sense in certain cir-
cumstances and some programmers may deliberately exploit such behavior, so
there is no clear-cut definition of what constitutes an “error”. Nevertheless, we
choose to draw the programmer’s attention to such potential errors. These situ-
ations include

1. invoking a non-function value (e.g. undefined) as a function,
2. reading an absent variable,
3. accessing a property of null or undefined,
4. reading an absent property of an object,
5. writing to variables or object properties that are never read,
6. implicitly converting a primitive value to an object (as an example, the

primitive value false may be converted into a Boolean object, and later
converting that back to a primitive value results in true, which surprises
many JavaScript programmers),

7. implicitly converting undefined to a number (which yields NaN that often
triggers undesired behavior in arithmetic operations),

8. calling a function object both as a function and as a constructor (i.e. perhaps
forgetting new) or passing function parameters with varying types (e.g. at
one place passing a number and another place passing a string or no value),

9. calling a built-in function with an invalid number of parameters (which may
result in runtime errors, unlike the situation for user defined functions) or
with a parameter of an unexpected type (e.g. the second parameter to the
apply function must be an array).

The first three on this list cause runtime errors (exceptions) if the operation in
concern is ever executed, so these warnings have a higher priority than the others.
In many situations, the analysis can report a warning as a definite error rather
than a potential error. For example, the analysis may detect that a property read

Type Analysis for JavaScript 241

operation will always result in undefined because the given property is never
present, in which case that specific warning gets high priority. As the analysis
is sound, the absence of errors and warnings guarantees that the operations
concerned will not fail. The analysis can also detect dead code.

The following tiny but convoluted program shows one way of using
JavaScript’s prototype mechanism to model inheritance:

function Person(n) {

this.setName(n);

Person.prototype.count++;

}

Person.prototype.count = 0;

Person.prototype.setName = function(n) { this.name = n; }

function Student(n,s) {

this.b = Person;

this.b(n);

delete this.b;

this.studentid = s.toString();

}

Student.prototype = new Person;

The code defines two “classes” with constructors Person and Student. Person
has a static field count and a method setName. Student inherits count and
setName and defines an additional studentid field. The definition and deletion
of b in Student invokes the super class constructor Person. A small test case
illustrates its behavior:

var t = 100026.0;

var x = new Student("Joe Average", t++);

var y = new Student("John Doe", t);

y.setName("John Q. Doe");

assert(x.name === "Joe Average");

assert(y.name === "John Q. Doe");

assert(y.studentid === "100027");

assert(x.count == 3);

Even for a tiny program like this, many things could go wrong – keeping the
different errors discussed above in mind – but our analysis is able to prove that
none of the errors can occur here. Due to the forgiving nature of JavaScript,
errors may surface only as mysterious undefined values. Simple errors, like mis-
spelling prototype or name in just a single place or writing toString instead of
toString(), are detected by the static type analysis instead of causing failure
at runtime. The warning messages being produced by the analysis can help the
programmer not only to detect errors early but also to pinpoint their cause.

Contributions

This work is the first step towards a full-blown JavaScript program analyzer,
which can be incorporated into an IDE to supply on-the-fly error detection

242 S.H. Jensen, A. Møller, and P. Thiemann

as well as support for auto-completion and documentation hints. It focuses on
JavaScript version 1.5, corresponding to ECMAScript 3rd edition [11], which is
currently the most widely used variant of the language and which is a subset of
the upcoming revision of the JavaScript language.

In summary, the contributions of this paper are the following:

– We define a type analysis for JavaScript based on abstract interpretation [9].
Its main contribution is the design of an intricate lattice structure that fits
with the peculiarities of the language. We design the analysis building on
existing techniques, in particular recency abstraction [3].

– We describe our prototype implementation of the analysis, which covers the
full JavaScript language as specified in the ECMAScript standard [11], and
we report on preliminary experiments on real-life benchmark programs and
measure the effectiveness of the various analysis techniques being used.

– We identify opportunities for further improvements of precision and speed
of the analysis, and we discuss the potential for additional applications of
the analysis technique.

Additional information about the project is available online at

http://www.brics.dk/TAJS

2 Related Work

The present work builds on a large body of work and experience in abstract
interpretation and draws inspiration from work on soft typing and dynamic typ-
ing. The main novelty consists of the way it combines known techniques, leading
to the construction of the first full-scale implementation of a high precision pro-
gram analyzer for JavaScript. It thus forms the basis to further investigate the
applicability of techniques in this new domain.

Dolby [10] explains the need for program analysis for scripting languages to
support the interactive completion and error spotting facilities of an IDE. He
sketches the design of the WALA framework [13], which is an adaptable program
analysis framework suitable for a range of languages, including Java, JavaScript,
Python, and PHP. While our first prototype was built on parts of the WALA
framework, we found that the idiosyncrasies of the JavaScript language required
more radical changes than were anticipated in WALA’s design.

Eclipse includes JSDT [7], which mainly focuses on providing instantaneous
documentation and provides many shortcuts for common programming and doc-
umentation patterns as well as some refactoring operations. It also features some
unspecified kind of prototype-aware flow analysis to predict object types and thus
enable primitive completion of property names. JSEclipse [1] is another Eclipse
plugin, which includes built-in knowledge about some popular JavaScript frame-
works and uses the Rhino JavaScript engine to run parts of the code to improve
support for code completion. Neither of these plugins can generate warnings for
unintended conversions or other errors discussed above.

Type Analysis for JavaScript 243

Program analysis for scripting languages has evolved from earlier work on type
analysis for dynamically typed languages like Scheme and Smalltalk [6,31,16].
These works have clarified the need for a type structure involving union types
and recursive types. They issue warnings and insert dynamic tests in programs
that cannot be type checked. MrSpidey [14] is a flow-based implementation of
these ideas with visual feedback about the location of the checks in a program-
ming environment. In contrast, our analysis only reports warnings because the
usefulness of checks is not clear in a weakly typed setting.

Thiemann’s typing framework for JavaScript programs [30] has inspired the
design of the abstract domain for the present work. That work concentrates on
the design and soundness proof, but does not present a typing algorithm. In
later work, Heidegger and Thiemann [17] propose a recency-based type system
for a core language of JavaScript, present its soundness proof, sketch an inference
algorithm, and argue the usefulness of this concept.

Anderson and others [2] present a type system with an inference algorithm
for a primitive subset of JavaScript based on a notion of definite presence and
potential absence of properties in objects. Their system does not model type
change and the transition between presence and absence of a property is harder
to predict than in a recency-based system.

Furr and others [15] have developed a typed dialect of Ruby, a scripting lan-
guage with features very similar to JavaScript. Their approach requires the pro-
grammer to supply type annotations to library functions. Then they employ
standard constraint solving techniques to infer types of user-defined functions.
There is support for universal types and intersection types (to model overload-
ing), but these types can only be declared, not inferred. They aim for simplicity
in favor of precision also to keep the type language manageable, whereas our
design aims for precision. Their paper contains a good overview of further, more
pragmatic approaches to typing for scripting languages like Ruby and Python.

Similar techniques have been applied to the Erlang language by Marlow and
Wadler [24] as well as by Nyström [27]. These ideas have been extended and im-
plemented in a practical tool by Lindahl and Sagonas [23]. Their work builds on
success typings, a notion which seems closely related to abstract interpretation.

One program analysis that has been developed particularly for JavaScript is
points-to analysis [20]. The goal of that analysis is not program understanding,
but enabling program optimization. The paper demonstrates that the results
from the analysis enable partial redundancy elimination. The analysis is flow
and context insensitive and it is limited to a small first-order core language. In
contrast, our analysis framework deals with the entire language and performs
points-to analysis as part of the type analysis. As our analysis is flow and context
sensitive, it yields more precise results than the dedicated points-to analysis.

Balakrishnan and Reps [3] were first to propose the notion of recency in
abstract interpretation. They use it to create a sound points-to analysis with
sufficient precision to resolve the majority of virtual method calls in compiled
C++ code. Like ourselves, they note that context sensitivity is indispensable
in the presence of recency abstraction. However, the rest of their framework

244 S.H. Jensen, A. Møller, and P. Thiemann

is substantially different as it is targeted to analyzing binary code. Its value
representation is based on a stride domain and the interprocedural part uses a
standard k-limited call-chain abstraction.

Shape analysis [28] is yet more powerful than recency abstraction. For ex-
ample, it can recover strongly updatable abstractions for list elements from a
summary description of a list data structure. This capability is beyond recency
abstraction. However, the superior precision of shape analysis requires a much
more resource-intensive implementation.

Finally, our analysis uses abstract garbage collection. This notion has been
investigated in depth in a polyvariant setting by Might and Shivers [26], who
attribute its origin to Jagannathan and others [19]. They, as well as Balakrishnan
and Reps [3], also propose abstract counting which is not integrated in our work
as the pay-off is not yet clear.

3 Flow Graphs for JavaScript

The analysis represents a JavaScript program as a flow graph, in which each node
contains an instruction and each edge represents potential control flow between
instructions in the program. The graph has a designated program entry node
corresponding to the first instruction of the global code in the program. Instruc-
tions refer to temporary variables, which have no counterpart in JavaScript, but
which are introduced by the analyzer when breaking down composite expressions
and statements to instructions. The nodes can have different kinds:

declare-variable[x]: declares a program variable named x with value undefined.
read-variable[x, v]: reads the value of a program variable named x into a tempo-

rary variable v.
write-variable[v, x]: writes the value of a temporary variable v into a program

variable named x.
constant[c, v]: assigns a constant value c to the temporary variable v.
read-property[v1, v2, v3]: performs an object property lookup, where v1 holds the

base object, v2 holds the property name, and v3 gets the resulting value.
write-property[v1, v2, v3]: performs an object property write, where v1 holds the

base object, v2 holds the property name, and v3 holds the value to be written.
delete-property[v1, v2, v3]: deletes an object property, where v1 holds the base

object, v2 holds the property name, and v3 gets the resulting value.
if[v]: represents conditional flow for e.g. if and while statements.
entry[f, x1, . . . , xn], exit, and exit-exc: used for marking the unique entry and

exit (normal/exceptional) of a function body. Here, f is the (optional) func-
tion name, and x1, . . . , xn are formal parameters.

call[w, v0, . . . , vn], construct[w, v0, . . . , vn], and after-call[v]: A function call is
represented by a pair of a call node and an after-call node. For a call node,
w holds the function value and v0, . . . , vn hold the values of this and the
parameters. An after-call node is returned to after the call and contains a
single variable for the returned value. The construct nodes are similar to call
nodes and are used for new expressions.

Type Analysis for JavaScript 245

return[v]: a function return.
throw[v] and catch[x]: represent throw statements and entries of catch blocks.
<op>[v1, v2] and <op>[v1, v2, v3]: represent unary and binary operators, where

the result is stored in v2 or v3, respectively.

This instruction set is reminiscent of the bytecode language used in some in-
terpreters [18] but tailored to program analysis. Due to the limited space, we
here omit the instructions related to for-in and with blocks and settle for this
informal description of the central instructions. They closely correspond to the
ECMAScript specification – for example, read-property is essentially the [[Get]]
operation from the specification.

We distinguish between different kinds of edges. Ordinary edges correspond to
intra-procedural control flow. These edges may be labeled to distinguish branches
at if nodes. Each node that may raise an exception has an exception edge to a
catch node or an exit-exc node. Finally, call and return edges describe flow from
call or construct nodes to entry nodes and from exit nodes to after-call nodes.

All nodes as well as ordinary edges and exception edges are created before the
fixpoint iteration starts, whereas the call and return edges are added on the fly
when data flow is discovered, as explained in Section 4.

4 The Analysis Lattice and Transfer Functions

The classical approach of abstract interpretation [9] and the monotone frame-
work [21] requires a lattice of abstract states. Our lattice structure is similar to
a lattice used for constant propagation with JavaScript’s type structure on top.
Numbers and strings are further refined to recognize array indices. For objects,
the analysis performs a context-sensitive flow analysis that discovers points-to
information.

For a given flow graph, we let N denote the set of nodes, T is the set of tem-
porary variables, and L is the set of object labels corresponding to the possible
allocation sites (including construct nodes, constant nodes for function declara-
tions, and objects defined in the standard library).

Abstract values are described by the lattice Value:

Value = Undef × Null × Bool × Num × String × P(L)

The components of Value describe the different types of values.

Undef =
undef

Null =
null

Bool = falsetrue

bool

Num =
0 ... 4294967295 ...−42 −1.87 1.2 ...

UInt NotUInt

Num

NaN−Inf +Inf

INF
String =

"foo""0"..."4294967295"

string

UIntString

... "bar"

NotUIntString

246 S.H. Jensen, A. Møller, and P. Thiemann

For example, the abstract value (⊥, null,⊥,⊥, baz, ∅) describes a concrete value
that is either null or the string “baz”, and (undef,⊥,⊥,⊥,⊥, {�42, �87}) de-
scribes a value that is undefined or an object originating from �42 or �87.

Objects are modeled as follows:

Obj = (P ↪→ Value × Absent × Attributes × Modified) × P(ScopeChain)

Here, P is the infinite set of property names (i.e. all strings). The partial map
provides an abstract value for every possible property name. There are four spe-
cial property names: [[Prototype]], [[Value]], default index, and default other.
The former two correspond to the internal properties used by ECMAScript; de-
fault index and default other are always in the domain of the map and provide
an abstract value for all property names that are not in the domain of the map
(hence the map is effectively total): default index covers property names that
match UIntString (array indices), and default other covers all other strings. This
distinction is crucial when analyzing programs involving array operations. Sec-
tion 4.3 explains the ScopeChain component, which models the special internal
property [[Scope]].

Each value stored in an object has additional components. Absent models
potentially absent properties, Modified is related to interprocedural analysis as
explained in Section 4.3, and Attributes models the property attributes Read-
Only, DontDelete, and DontEnum.

Absent =
absent

Modified =
modified

Attributes = ReadOnly × DontDelete × DontEnum

ReadOnly = notRORO DontDelete = notDDDD DontEnum = notDEDE

An abstract state consists of an abstract store, which is a partial map from
object labels to abstract objects, together with an abstract stack:

State = (L ↪→ Obj) × Stack × P(L) × P(L)

The last two object label sets in State are explained in Section 4.3.
The stack is modeled as follows:

Stack = (T → Value) × P(ExecutionContext) × P(L)
ExecutionContext = ScopeChain × L × L

ScopeChain = L∗

The first component of Stack provides values for the temporary variables. The
P(ExecutionContext) component models the top-most execution context1 and
the P(L) component contains object labels of all references in the stack. An
1 The ECMAScript standard [11] calls a stack frame an execution context and also

defines the terms scope chain and variable object.

Type Analysis for JavaScript 247

execution context contains a scope chain, which is here a sequence of object
labels, together with two additional object labels that identify the variable object
and the this object.

Finally, we define the analysis lattice, which assigns a set of abstract states
to each node (corresponding to the program points before the nodes):

AnalysisLattice = V ×N → State

V is the set of version names of abstract states for implementing context sen-
sitivity. As a simple heuristic, we currently keep two abstract states separate if
they have different values for this, which we model by V = P(L).

The lattice order is defined as follows: For the components of Value, the Hasse
diagrams define the lattice order for each component. All maps and products
are ordered pointwise, and power sets are ordered by subset inclusion – except
the last P(L) component of State, which uses ⊇ instead of ⊆ (see Section 4.3).

These definitions are the culmination of tedious twiddling and experimenta-
tion. Note, for example, that for two abstract stores σ1 and σ2 where σ1(�) is un-
defined and σ2(�) is defined (i.e. the object � is absent in the former and present in
the latter), the join simply takes the content of � from σ2, i.e. (σ1�σ2)(�) = σ2(�),
as desired. Also, for every abstract store σ and every � where σ(�) = (ω, s) is
defined, we have absent set in ω(default index) and in ω(default other) to reflect
the fact that in every object, some properties are absent. Thereby, joining two
stores where an object � is present in both but some property p is only present
in one (and mapped to the bottom Value in the other) results in a store where
� is present and p is marked as absent (meaning that it is maybe absent).

The analysis proceeds by fixpoint iteration, as in the classical monotone frame-
work, using the transfer functions described in Section 4.1. The initial abstract
state for the program entry node consists of 161 abstract objects (mostly func-
tion objects) defined in the standard library.

We omit a formal description of the abstraction/concretization relation be-
tween the ECMAScript specification and this abstract interpretation lattice.
However, we note that during fixpoint iteration, an abstract state never has
dangling references (i.e. in every abstract state σ, every object label � that ap-
pears anywhere within σ is always in the domain of the store component of σ).
With this invariant in place, it should be clear how every abstract state describes
a set of concrete states.

The detailed models of object structures represented in an abstract state
allows us to perform abstract garbage collection [26]. An object � can safely be
removed from the store unless � is reachable from the abstract call stack. This
technique may improve both performance and precision (see Section 5).

Section 5 contains an illustration of the single abstract state appearing at the
final node of the example program after the fixpoint is reached.

4.1 Transfer Functions

For each kind of node n in the flow graph, a monotone transfer function maps
an abstract state before n to a abstract state after n. In addition, we provide

248 S.H. Jensen, A. Møller, and P. Thiemann

a transfer function for each predefined function in the ECMAScript standard
library. Some edges (in particular, call and return edges) also carry transfer
functions. As usual, the before state of node n is the join of the after states of
all predecessors of n.

The transfer function for read-property[vobj , vprop, vtarget] serves as an illustra-
tive example. If vobj is not an object, it gets converted into one. If vobj abstracts
many objects, then the result is the join of reading all of them. The read op-
eration for a single abstract object descends the prototype chain and joins the
results of looking up the property until the property was definitely present in
a prototype. If vprop is not a specific string, then the default index and de-
fault other fields of the object and its prototypes are also considered. Finally,
the temporary variable vtarget is overwritten with the result; all temporaries can
be strongly updated. As this example indicates, it is essential that the analysis
models all aspects of the JavaScript execution model, including prototype chains
and type coercions.

A special case is the transfer function for the built-in functions eval and
Function that dynamically construct new program code. The analyzer cannot
model such a dynamic extension of the program because the fixpoint solver
requires N and L to be fixed. Hence, the analyzer issues a warning if these
functions are used. This approach is likely satisfactory as these functions are
mostly used in stylized ways, e.g. for JSON data, according to a study of existing
JavaScript code [22].

4.2 Recency Abstraction

A common pattern in JavaScript code is creating an object with a constructor
function that adds properties to the object using write-property operations. In
general, an abstract object may describe multiple concrete objects, so such oper-
ations must be modeled with weak updates of the relevant abstract objects. Sub-
sequent read-property operations then read potentially absent properties, which
quickly leads to a proliferation of undefined values, resulting in poor analysis
precision. Fortunately, a solution exists which fits perfectly with our analysis
framework: recency abstraction [3].

In essence, each allocation site � (in particular, those identified by the con-
struct instructions) is described by two object labels: �@ (called the singleton)
always describes exactly one concrete object (if present in the domain of the
store), and �∗ (the summary) describes an unknown number of concrete ob-
jects. Typically, �@ refers to the most recently allocated object from � (hence the
name of the technique), and �∗ refers to older objects – however the addition of
interprocedural analysis (Section 4.3) changes this slightly.

In an intra-procedural setting, this mechanism is straightforward to incorpo-
rate. Informally, the transfer function for a node n of type construct[v] joins the
n@ object into the n∗ object, redirects all pointers from n@ to n∗, sets n@ to an
empty object, and assigns n@ to v. Henceforth, v refers to a singleton abstract
object, which permits strong updates.

Type Analysis for JavaScript 249

The effect of incorporating recency abstraction on the analysis precision is
substantial, as shown in Section 5.

4.3 Interprocedural Analysis

Function calls have a remarkably complicated semantics in JavaScript, but each
step can be modeled precisely with our lattice definition. The transfer function
for a call node n, call[w, v0, . . .], extracts all function objects from w and then,
as a side-effect, adds call edges to the entry nodes of these functions and return
edges from their exit nodes back to the after-call node n′ of n. To handle exception
flow, return edges are also added from the exit-exc nodes to n′

exc, where n′ has
an exception edge to n′

exc. The call edge transfer function models parameter
passing. It also models the new execution context being pushed onto the call
stack. The base object, v0, is used for setting this and the scope chain of the
new execution context (which is why we need P(ScopeChain) in Obj).

A classical challenge in interprocedural analysis is to avoid flow through infea-
sible paths when a function is called from several sites [29]. Ignoring this effect
may lead to a considerable loss of precision. We use the Modified component of
Obj to keep track of object properties that may have been modified since the
current function was entered. For an abstract state σm at an exit node m with
a return edge to an after-call node n′, which belongs to a call node n, the edge
transfer function checks whether the definitely non-modified parts of σm are in-
consistent with σn, in which case it can safely discard the flow. (A given object
property that is non-modified in σm is consistent with σn if its abstract value
according to σn is less than or equal to its value according to σm.) If consistent,
the transfer function replaces all non-modified parts of σm by the corresponding
potentially more precise information from σn, together with the abstract stack.
When propagating this flow along return edges, we must take into account the
use of recency abstraction to “undo” the shuffling of singleton and summary
objects. To this end, two sets of object labels are part of State to keep track
of those object labels that are definitely/maybe summarized since entering the
current function.

4.4 Termination of the Analysis

The usual termination requirement that the lattice should have finite height
does not apply here, now even for a fixed program. We informally argue that the
analysis nevertheless always terminates by the following observations: (1) The
length of the ScopeChain object label sequences is always bounded by the lexical
nesting depth of the program being analyzed. (2) The number of abstract states
maintained for each node is solely determined by the choice of context sensitivity
criteria. The simple heuristic proposed in Section 4 ensure the sizes of these sets
to be bounded for any program. (3) The partial map in Obj has a potentially
unbounded domain. However, at any point during fixpoint iteration a property
name p can only occur in the domain if it was put in by a write-variable or write-
property instruction. The property name for such an instruction comes from a

250 S.H. Jensen, A. Møller, and P. Thiemann

temporary variable whose value is drawn from Value and coerced to String. In
case that value is not a constant string, the use of default index and default other
ensures that the domain is unmodified, and there are clearly only finitely many
nodes that contain such an instruction. Together, these observations ensure that
a fixpoint will be reached for any input program. The theoretical worst case com-
plexity is obviously high, because of the complex analysis lattice. Nevertheless,
our tool analyzes sizable programs within minutes, as shown in the next section.

5 Experiments

Our prototype is implemented on top of the JavaScript parser from Rhino [4]
with around 17,000 lines of Java code. For testing that the prototype behaves
as expected on the full JavaScript language, we have collected a corpus of more
than 150 programs. These test programs are mostly in the range 5–50 lines of
code and include 28 example programs2 from Anderson et al. [2].

For the Anderson programs, our analysis detects all errors without spurious
warnings and provides type information consistent with that of Anderson [2].
Our own programs were written to exercise various parts of the system and to
provoke certain error messages, so it is not surprising that the analysis handles
these well.

Running the analysis on the example program from Section 1 results in two
warnings. First, the analysis correctly detects that the expression s.toString()
involves a coercion from a primitive type to an object (which was deliberate
by the programmer, in this case). Second, the analysis is able to prove that
y.studentid is a string after the call to y.setName, but not that the string is
a particular string, which results in a warning at the second assert statement.
The reason is that setName is called twice on the same object with different
strings (once through the constructor and once directly). A stronger heuristic
for context sensitivity might resolve this issue.

Figure 1 shows the abstract state for the final program point of the example
program, as obtained by running the prototype implementation. Each box de-
scribes an abstract object. For this simple program, each of them is a singleton
(see Section 4.2). Edges correspond to references. For obvious reasons, only the
used parts of the standard library are included in the illustration. The activation
objects that are used during execution of the function calls have been removed
by the abstract garbage collection. GLOBAL describes the global object, which
also acts as execution context for the top-level code. OBJECT PROTOTYPE
and FUNCTION PROTO model the prototype objects of the central built-in
objects Object and Function, respectively. F Person, F Student, and F 0 cor-
respond to the three functions defined in the program, and F Person PROTO,
F Student PROTO, and F 0 PROTO are their prototype objects. Finally, L0 and
L1 describe the two Student objects being created. The special property names
[[Prototype]], [[Scope]], and [[Value]] are the so-called internal properties. For an
example prototype chain, consider the object referred to by the variable x using
2 http://www.doc.ic.ac.uk/~cla97/js0impl/

Type Analysis for JavaScript 251

OBJECT_PROTO

...

constructor : {F_0}

[[Prototype]]: {OBJECT_PROTO}

[[Value]]: NaN

F_0_PROTO

[[Prototype]]: {FUNCTION_PROTO}

prototype: {F_0_PROTO}

length: 1

[[Scope]]: {(GLOBAL)}

F_0

F_Student

length: 2

prototype: {F_Student_PROTO}

[[Prototype]]: {FUNCTION_PROTO}

[[Scope]]: {(GLOBAL)}

L0

student id: "100026"

name: "Joe Average"

[[Prototype]]: {F_Student_PROTO}

L1

student id: "100027"

name: str ing

[[Prototype]]: {F_Student_PROTO}

F_Student_PROTO

name: undef ined

[[Prototype]]: {F_Person_PROTO}

F_Person_PROTO

count: 3

constructor: {F_Person}

[[Value]]: NaN

FUNCTION_PROTO

[[Prototype]]: {OBJECT_PROTO}

...

GLOBAL

Student: {F_Student}

Person: {F_Person}

t : 100027

x : { L 0 }

y : { L1 }

[[Prototype]]: {OBJECT_PROTO}

...

F_Person

length: 1

prototype: {F_Person_PROTO}

[[Prototype]]: {FUNCTION_PROTO}

[[Scope]]: {(GLOBAL)}

[[Prototype]]: {OBJECT_PROTO}

setName: {F_0}

Fig. 1. Abstract state for the final program point of the example program

the global object as variable object. Its prototype chain consists of L0, followed
by F Student PROTO and F Person PROTO, which reflects the sequence of ob-
jects relevant for resolving the expression x.count. As the illustration shows,
even small JavaScript programs give rise to complex object structures, which
our analysis lattice captures in sufficient detail.

The tool also outputs a call graph for the program in form of the call edges
that are produced during fixpoint iteration, which can be useful for program
comprehension.

The Google V8 benchmark suite3 is our main testbed to evaluate the precision
of the analysis on real code. It consists of four complex, standalone JavaScript
programs. Although developed for testing performance of JavaScript interpreters,
they are also highly demanding subjects for a static type analysis. In addition,
we use the four most complex SunSpider benchmarks4.

Clearly we do not expect to find bugs in such thoroughly tested programs, so
instead we measure precision by counting the number of operations where the
analysis does not produce a warning (for different categories), i.e. is capable of
proving that the error cannot occur at that point.

For the richards.js benchmark (which simulates the task dispatcher of an
operating system), the analysis shows for 95% of the 58 call/construct nodes that
the value being invoked is always a function (i.e. category 1 from Section 1).
Moreover, it detects one location where an absent variable is read (category 2).

3 http://v8.googlecode.com/svn/data/benchmarks/v1/
4 http://www2.webkit.org/perf/sunspider-0.9/sunspider.html

252 S.H. Jensen, A. Møller, and P. Thiemann

(In this case, the absent variable is used for feature detection in browsers.) This
situation definitely occurs if that line is ever executed, and there are no spurious
warnings for this category. Next, it shows for 93% of the 259 read/write/delete-
property operations that they never attempt to coerce null or undefined into
an object (category 3). For 87% of the 156 read-property operations where the
property name is a constant string, the property is guaranteed to be present. As
a bonus, the analysis correctly reports 6 functions to be dead, i.e. unreachable
from program entry. We have not yet implemented checkers for the remaining
categories of errors discussed in the introduction. In most cases, the false posi-
tives appear to be caused by the lack of path sensitivity.

The numbers for the benchpress.js benchmark (which is a collection of
smaller benchmarks running in a test harness) are also encouraging: The analysis
reports that 100% of the 119 call/construct operations always succeed without
coercion errors, 0 warnings are reported about reading absent variables, 89% of
the 113 read/write/delete-property operations have no coercion errors, and for
100% of the 48 read-property operations that have constant property names, the
property being read is always present.

The third benchmark, delta-blue.js (a constraint solving algorithm), is
larger and apparently more challenging for type analysis: 78% of the 182 call and
construct instructions are guaranteed to succeed, 8 absent variables are correctly
detected (all of them are functions that are defined in browser APIs, which we do
not model), 82% of 492 read/write/delete-property instructions are proved safe,
and 61% of 365 read-property with constant names are shown to be safe. For
this benchmark, many of the false positives would likely be eliminated by better
context sensitivity heuristics.

The results for the first three V8 benchmarks and the four SunSpider bench-
marks are summarized in Figure 2. For each of the categories discussed above,
the table shows the ratio between precise answers obtained and the number of
nodes of the relevant kind.

The fourth (and largest) V8 benchmark, cryptobench.js, presently causes
our prototype to run out of memory (with a limit of 512MB). For the other
benchmarks, analysis time is less than 10 seconds, except 3d-raytrace.js and
delta-blue.js which require 30 seconds and 6 minutes, respectively. Although

lines
call / variable property fixed-property

construct read access read
richards.js 529 95% 100% 93% 87%
benchpress.js 463 100% 100% 89% 100%
delta-blue.js 853 78% 100% 82% 61%
3d-cube.js 342 100% 100% 92% 100%
3d-raytrace.js 446 99% 100% 94% 94%
crypto-md5.js 291 100% 100% 100% 100%
access-nbody.js 174 100% 100% 93% 100%

Fig. 2. Analysis precision

Type Analysis for JavaScript 253

analysis speed and memory consumption have not been key objectives for this
prototype, we naturally pursue this matter further. Most likely, the work list
ordering used by the fixpoint solver can be improved.

We can disable various features in the analysis to obtain a rough measure of
their effect. Disabling abstract garbage collection has little consequence on the
precision of the analysis on these programs, however it is cheap to apply and
it generally reduces memory consumption. Using recency abstraction is crucial:
With this technique disabled, the analysis of richards.js can only guarantee
that a constant property is present in 2 of the 156 read-property nodes (i.e. less
than 2%, compared to 87% before) and the number of warnings about potential
dereferences of null or undefined rises from 19 to 90. These numbers confirm
our hypothesis that recency abstraction is essential to the precision of the anal-
ysis. The Modified component of State is important for some benchmarks; for
example, the number of warnings about dereferences of null or undefined in
3d-raytrace.js rises from 21 to 61 if disabling this component. Finally, we
observe that context sensitivity has a significant effect on e.g. delta-blue.js.

6 Conclusion

Scripting languages are a sweet-spot for applying static analysis techniques:
There is yet little tool support for catching errors before code deployment and
the programs are often relatively small. Our type analyzer is the first sound
and detailed tool of this kind for real JavaScript code. The use of the monotone
framework with an elaborate lattice structure, combined with recency abstrac-
tion, results in an analysis with good precision on demanding benchmarks.

We envision an IDE for JavaScript programming with features known from
strongly typed languages, such as highlighting of type-related errors and support
for precise content assists and safe refactorings. This goal requires further work,
especially to improve the analysis speed. Our primary objectives for the proto-
type have been soundness and precision, so there are plenty of opportunities for
improving performance. For example, we currently use a naive work list heuristic
and the representation of abstract states employs little sharing.

In further experiments, we want to investigate if there is a need for even
higher precision. For example, the String component could be replaced by regular
languages obtained using a variant of string analysis [8]. It may also be fruitful
to tune the context sensitivity heuristic or incorporate simple path sensitivity.

Another area is the consideration of the DOM, which is heavily used by most
JavaScript programs. Our work provides a basis for modeling the different DOM
implementations provided by the main browsers and hence for catching browser
specific programming errors. Additionally, it paves the way for analyzing code
that uses libraries (Dojo, Prototype, Yahoo! UI, FBJS, jQuery, etc.). With these
further challenges ahead, the work presented here constitutes a starting point
for developing precise and efficient program analysis techniques and tools that
can detect errors (recall the list from Section 1) and provide type information
for JavaScript programs used in modern Web applications.

254 S.H. Jensen, A. Møller, and P. Thiemann

Acknowledgments. We thank Julian Dolby and Stephen Fink for contributing
the WALA framework to the research community, which helped us in the early
phases of the project. Our work also benefited from inspiring discussions about
JavaScript with Lars Bak and the Google Aarhus team.

References

1. Adobe. JSEclipse, http://labs.adobe.com/technologies/jseclipse/
2. Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for

JavaScript. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 428–452.
Springer, Heidelberg (2005)

3. Balakrishnan, G., Reps, T.W.: Recency-abstraction for heap-allocated storage. In:
Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)

4. Boyd, N., et al.: Rhino: JavaScript for Java, http://www.mozilla.org/rhino/
5. Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for finding dynamic pro-

gramming errors. Software: Practice and Experience 30(7), 775–802 (2000)
6. Cartwright, R., Fagan, M.: Soft typing. In: Proc. ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI 1991 (June 1991)
7. Childs, B.: JavaScript development toolkit (JSDT) features (July 2008),

http://live.eclipse.org/node/569

8. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string ex-
pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. 4th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1977, pp. 238–252 (1977)

10. Dolby, J.: Using static analysis for IDE’s for dynamic languages, 2005. In: The
Eclipse Languages Symposium (2005)

11. ECMA. ECMAScript Language Specification, 3rd edn. ECMA-262
12. Engler, D.R., Chelf, B., Chou, A., Hallem, S.: Checking system rules using system-

specific, programmer-written compiler extensions. In: 4th Symposium on Operating
System Design and Implementation, OSDI 2000, USENIX (October 2000)

13. Fink, S., Dolby, J.: WALA – The T.J. Watson Libraries for Analysis,
http://wala.sourceforge.net/

14. Flanagan, C., Flatt, M., Krishnamurthi, S., Weirich, S., Felleisen, M.: Catching
bugs in the web of program invariants. In: Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 1996, pp. 23–32 (1996)

15. Furr, M., (David) An, J-h., Foster, J.S., Hicks, M.: Static type inference for Ruby.
In: Proc. 24th Annual ACM Symposium on Applied Computing, SAC 2009, Object
Oriented Programming Languages and Systems Track (March 2009)

16. Graver, J.O., Johnson, R.E.: A type system for Smalltalk. In: Proc. 17th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1990, pp. 136–150 (1990)

17. Heidegger, P., Thiemann, P.: Recency types for dynamically-typed object-based
languages. In: Proc. International Workshops on Foundations of Object-Oriented
Languages, FOOL 2009 (January 2009)

18. Apple Inc. Squirrelfish bytecodes,
http://webkit.org/specs/squirrelfish-3bytecode.html

http://labs.adobe.com/technologies/jseclipse/
http://www.mozilla.org/rhino/
http://live.eclipse.org/node/569
http://wala.sourceforge.net/
http://webkit.org/specs/squirrelfish-3bytecode.html

Type Analysis for JavaScript 255

19. Jagannathan, S., Thiemann, P., Weeks, S., Wright, A.: Single and loving it: Must-
alias analysis for higher-order languages. In: Proc. 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 1998, pp. 329–341
(1998)

20. Jang, D., Choe, K.-M.: Points-to analysis for JavaScript. In: Proc. 24th Annual
ACM Symposium on Applied Computing, SAC 2009, Programming Language
Track (March 2009)

21. Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta Informat-
ica 7, 305–317 (1977)

22. Kromann-Larsen, R., Simonsen, R.: Statisk analyse af JavaScript: Indledende arbe-
jde. Master’s thesis, Department of Computer Science, University of Aarhus (2007)
(in Danish)

23. Lindahl, T., Sagonas, K.: Practical type inference based on success typings. In:
Proc. 8th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming, PPDP 2006, pp. 167–178 (2006)

24. Marlow, S., Wadler, P.: A practical subtyping system for Erlang. In: Proc. 2nd
ACM SIGPLAN International Conference on Functional Programming, ICFP 1997,
pp. 136–149 (1997)

25. Sun Microsystems and Netscape Inc. Netscape and Sun announce Javascript(TM),
the open, cross-platform object scripting language for enterprise networks and the
internet (1995), http://sunsite.nus.sg/hotjava/pr951204-03.html

26. Might, M., Shivers, O.: Improving flow analyses via ΓCFA: abstract garbage col-
lection and counting. In: Proc. 11th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2006 (2006)

27. Nyström, S.-O.: A soft-typing system for Erlang. In: Proc. 2nd ACM SIGPLAN
Erlang Workshop, ERLANG 2003, pp. 56–71 (2003)

28. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems 24(3), 217–298 (2002)

29. Sharir, M., Pnueli, A.: Two approaches to interprocedural dataflow analysis. In:
Program Flow Analysis: Theory and Applications, pp. 189–233. Prentice-Hall,
Englewood Cliffs (1981)

30. Thiemann, P.: Towards a type system for analyzing JavaScript programs. In:
Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 408–422. Springer, Heidelberg
(2005)

31. Wright, A.K., Cartwright, R.: A practical soft type system for Scheme. ACM Trans-
actions on Programming Languages and Systems 19(1), 87–152 (1997)

http://sunsite.nus.sg/hotjava/pr951204-03.html

Abstract Parsing:
Static Analysis of Dynamically Generated String

Output Using LR-Parsing Technology

Kyung-Goo Doh1,�, Hyunha Kim1,�, and David A. Schmidt2,��

1 Hanyang University, Ansan, South Korea
2 Kansas State University, Manhattan, Kansas, USA

Abstract. We combine LR(k)-parsing technology and data-flow analy-
sis to analyze, in advance of execution, the documents generated
dynamically by a program. Based on the document language’s context-
free reference grammar and the program’s control structure, the analysis
predicts how the documents will be generated and parses the predicted
documents. Our strategy remembers context-free structure by comput-
ing abstract LR-parse stacks. The technique is implemented in Objective
Caml and has statically validated a suite of PHP programs that dynam-
ically generate HTML documents.

1 Introduction

Scripting languages like PHP, Perl, Ruby, and Python use strings as a “universal
data structure” to communicate values, commands, and programs. For example,
one might write a PHP script that assembles within a string variable an SQL
query or an HTML page or an XML document. Typically, the well-formedness
of the assembled string is verified when the string is supplied as input to its
intended processor (database, web browser, or interpreter), and an incorrectly
assembled string might cause processor failure. Worse still, a malicious user might
deliberately supply misleading input that generates a document that attempts
a cross-site-scripting or injection attack.

As a first step towards preventing failures and attacks, the well-formedness of a
dynamically generated, “grammatically structured” string (document) should be
checked with respect to the document’s context-free reference grammar (for SQL
or HTML or XML) before the document is supplied to its processor. Better still,
the document generator program itself should be analyzed to validate that all
its generated documents are well formed with respect to the reference grammar,
like an application program is type checked in advance of execution. Such an
� Supported in part by grant R01-2006-000-10926-0 from the Basic Research Program

of the Korea Science and Engineering Foundation and in part by the Engineering
Research Center of Excellence Program of Korea Ministry of Education, Science and
Technology(MEST) / Korea Science and Engineering Foundation(KOSEF), R11-
2008-007-01003-0.

�� Supported by NSF ITR-0326577.

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 256–272, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Abstract Parsing: Static Analysis of Dynamically Generated String Output 257

analysis should indicate the grammatical structure of the generated documents
so that there is clear indication of those positions within the document where
unsanitized data or potential attacks might appear. This level of precision goes
further than what is provided by regular-expression-based analysis techniques.

In this paper, we employ LR(k)-parsing technology and data-flow analysis to
analyze statically a program that dynamically generates documents as strings,
and at the same time, parse the dynamically generated strings with the context-
free reference grammar for the document language. We compute abstract parse
stacks that remember the context-free structure of the strings.

Our approach requires that the reference grammar is LR(k) and that the
program analyzed is annotated with “hot spots” (those program points where
critically important strings are generated). Starting from each hot spot, the
static analysis conducts demand-driven abstract parsing of the string assembled
at the hot-spot. We have implemented an abstract-parsing analyzer and applied
it to PHP programs that dynamically generate strings of HTML documents.

The paper is organized as follows: The next section reviews research on string
analysis, and Section 3 summarizes our contributions. Sections 4 and 5 present
a motivating example and the key concepts behind abstract parsing. Section 6
surveys the worklist algorithm that implements the flow analysis, and Sections
7 and 8 discuss technical issues regarding input variables and string-update op-
erations. Section 9 sketches our implementation, and Section 10 concludes.

2 Previous Efforts

Because of the popularity of document generators and the dangers that they
introduce, there exist a variety of approaches for validating document generators
and their generated documents:

Parsing the generated strings: From the perspective of the document proces-
sor, it is important to protect oneself from malicious incoming queries. Wasser-
mann and Su [20] studied the format of command-injection attacks on SQL
servers and devised an SQL reference grammar with annotations that identify in
the grammar the positions where injection attacks might be inserted. A parser
based on the grammar is inserted as a front-end filter to the SQL database —
every incoming query must be parsed before it proceeds to the database.

Document-generation languages: One might limit malformed document gen-
eration by restricting the language used to write document-generator programs.
XDuce [9,10] is an ML-like language for building XML documents that are struct-
like values statically typed with regular-expressions. The typing ensures that
dynamically generated documents conform to “templates” defined by the doc-
ument types. In a similar vein, <bigwig> [3] and JWIG [6] are domain-specific
languages for XHTML-document generation. JWIG, an extension of Java, pro-
vides Java-encoded templates, and an accompanying static analyzer validates
regular-expression well-formedness of the assembled documents.

Thiemann [18] studied the problem of inferring string-data types that are ex-
actly the reference grammar’s nonterminals: His extension of ML’s type checker

258 K.-G. Doh, H. Kim, and D.A. Schmidt

generates a set of typing constraints, expressed as grammar rules, for the strings
generated by a program and checks containment of the constraint-set language
in the reference-grammar language with Early’s parsing algorithm, searching for
grammar nonterminals that are solutions to the constraint set.

Regular-expression-based static analysis: Checking context-free grammar in-
clusion is costly, so analyses based on regular expressions are typically employed.
One example is Christensen, et al.’s string analyzer [5], which extracts from a
Java program a set of data-flow equations for the generated strings, treating the
equations as a context-free grammar. Rather than check for context-free lan-
guage inclusion, the flow equations are overapproximated into a regular gram-
mar, using a conversion due to Mohri and Nederhof. Queries about grammatical
well-formedness are posed as regular expressions, and finite-state machinery de-
cides the answers.

Using Christensen, et al.’s string analyzer and a context-free-language reacha-
bility algorithm, Wasserman, et al.[19] devised a static analysis that type checks
dynamically generated SQL queries in Java database applications. Kirkegaard
and Møller [13] adapted Christensen, et al.’s work and Knuth’s balanced gram-
mars to check whether the approximated regular grammar conforms to a bal-
anced XML grammar, statically predicting generated XML documents to be
well-formed.

Minamide’s analysis [14] also uses Christensen, et al.’s string analyzer and
extracts a flow-equation set for a string expression, treating the equation set as
if it were a context-free grammar. The novelty is the application of finite-state-
automata transducers to revise the flow equations due to string-update opera-
tions embedded in the program. The transducers are also used to sanitize suspect
user input before it is injected into a dynamically generated document. Subse-
quently, Minamide’s group developed exponential-time algorithms that validate
a context-free grammar against a subclass of balanced context-free grammars,
which can be used to validate dynamically generated XML and HTML docu-
ments [15,17].

Choi, et al. [4] used abstract-interpretation with heuristic widening to devise
a string analyzer that handles heap variables and context sensitivity. Its regular-
expression-based machinery shares the same limitations with earlier efforts.

Flow-analysis techniques: When a user supplies malicious input data for in-
clusion into a dynamically generated document, a flow analyzer might track the
input’s flow and determine whether unsanitized input is injected into a dynami-
cally generated document. Xie and Aiken [22] devised and applied an interproce-
dural flow analyzer that detects potential SQL injection errors in PHP programs.
Jovanovich, et al., [12] implemented a tool with similar aims.

Combining the regular-expression and flow-analysis approaches are Wasser-
mann and Su [21], who use Minamide’s approach to extract data-flow equations
from a program. They then annotate the flow equations as to which strings are
untrustworthy so that solving the equations implements a data-flow analysis that
tracks potential injection errors.

Abstract Parsing: Static Analysis of Dynamically Generated String Output 259

x = ’a’

r = ’]’

while ...

x = ’[’ . x . r

print x

X0 = a

R =]

X1 = X0 �X2
X2 = [·X1 · R
X3 = X1

(Read . as an infix string-append operation.)

Fig. 1. Sample program and its data-flow equations

3 Our Contribution

Our work means to complement these approaches by improving their precision:

1. We use the data-flow equations extracted from a program as a higher-order
schema from which we generate first-order flow equations that calculate the
parse stacks generated when the dynamically generated strings are parsed (by
the context-free reference grammar). The solved equations convey context
information more precise than that given by regular-expression techniques.

2. We cannot retain all parse information and ensure termination, so we ”fold”
“repeating” parse stacks into single-entry, single-exit graphs (with cycles).

3. Rather than implement string-update operations as f.s.a.-transductions on
the original flow equation set (cf. [14]), we use an invariance property for
string updates, which means a string can be updated only if the outcome of
the string’s LR-parse is left unaltered.

It is easy to envision how our abstract parsing technique can be augmented by
semantic-processing functions [2] so that a Xie-and-Aiken or Wassermann-and-
Su tainting analysis can be conducted along with the abstract parse.

4 Motivating Example

We can compare the approaches just surveyed with a small example. Say that a
script must generate an output string that conforms to this grammar,

S → a | [S]

where S is the only nonterminal. (HTML, XML, and SQL are such bracket
languages.) The grammar is LR(0), but it can be difficult to enforce even for
simple programs, like the one in Figure 1, left column. Perhaps we require this
program to print only well-formed S-phrases — the occurrence of x at “print x”
is a “hot spot” and we must analyze x’s possible values.

An analysis based on type checking assigns types (reference-grammar nonter-
minals) to the program’s variables. The occurrences of x can indeed be data-
typed as S, but r has no data type that corresponds to a nonterminal.

260 K.-G. Doh, H. Kim, and D.A. Schmidt

[
. S

S .[S]
.aS

s
0 S [.]S

S .[S]
.aS

s
1

.S
s5

S a.
s2

S [S.]
s3

S [S].
s4

[S

S
a

a

]

parse stack (top lies at right) input sequence (front lies at left)
s0 [[a]]

s0 :: s1 [a]] (because goto(s0, [) = s1)
s0 :: s1 :: s1 a]]

s0 :: s1 :: s1 :: s2]] (reduce:S → a)
s0 :: s1 :: s1 S]]

s0 :: s1 :: s1 :: s3]] (because goto(s1, S) = s3)
s0 :: s1 :: s1 :: s3 :: s4] (reduce:S → [S])
s0 :: s1 S]

s0 :: s1 :: s3]

s0 :: s1 :: s3 :: s4 (reduce:S → [S])
s0 S
s0 :: s5 (finished)

Fig. 2. goto controller for S → [S] | a and an example parse of [[a]]

An analysis based on regular expressions solves flow equations shown in Figure
1’s right column in the domain of regular expressions, determining that the hot
spot’s (X3’s) values conform to the regular expression, [∗ · a ·]∗, but this does
not validate the assertion. A grammar-based analysis does not solve the flow
equations, but treats them instead as a set of grammar rules. The “type” of x
at the hot spot is X3. Next, a language-inclusion check tries to prove that all
X3-generated strings are S-generable.

Our approach solves the flow equations in the domain of parse stacks — X3’s
meaning is the set of LR-parses of the strings that might be denoted by x.
Assume that the reference grammar is LR(k); we first calculate its LR-items
and build its parse (“goto”) controller; see Figure 2. (This example, and the
others in this paper, are LR(0) for simplicity.) The Figure displays an example
parse.

We interpret the flow equations in Figure 1 as functions that map an input
parse state to (a set of) output parse stacks. Figure 3 defines the collecting
interpretation, but the informal explanation of Figure 1 conveys the intuitions:

The demand in Figure 1 to analyze the hot spot at X3 generates the func-
tion call, X3(s0), where s0 is the start state for parsing an S-phrase. The flow
equation, X3 = X1, generates the function,

X3(s0) = X1(s0)

Abstract Parsing: Static Analysis of Dynamically Generated String Output 261

Concrete semantics: A source program computes a store that maps variables
to strings. The concrete collecting semantics computes a set of stores for each
program point; the collecting semantics is then abstracted so that it computes, for
each program point, a single store that maps each variable to a set of strings.

The collecting semantics is overapproximated by the data-flow semantics, which
uses flow equations to compute the set of strings denoted by each variable at
each program point. In Figure 1, the data-flow semantics computes these values of
variable x at the program points:

X0 = {a} X2 = {[s1] | s1 ∈ X1} R = {]} X1 = X0 ∪X2 = X3

Let Σ name the states in the parser’s goto-controller. A parse stack, st ∈ Σ+,
models those strings that parse to st. Function γ : P(Σ+) → P(String) concretizes
a set of parse stacks into a set of strings:

γ(S) = {t ∈ String | s0 :: s1 :: · · · :: sk ∈ S and parse(s0, t) = s0 :: s1 :: · · · :: sk}
The abstract collecting interpretation, X , computes the set of parse stacks denoted
by a program variable. For flow equation, Xi = Ei, the function, Xi : Σ → P(Σ∗),
is defined as Xi(s) = [[Ei]](s), where s ∈ Σ and

[[t]]s = {reduce(s, goto(s,t))}, where t is a terminal symbol

[[E1 �E2]]s = [[E1]]s ∪ [[E2]]s

[[Xj]]s = [[Ej]]s, where Xj = Ej is the flow equation for Xj

[[E1 ·E2]]s = {reduce(s, p′) | p′ ∈ ([[E1]]s) ⊕ [[E2]]},
where S ⊕ g = {p :: g(top(p)) | p ∈ S}

where reduce(s, p) reduces the final states within parse stack, s :: p.
reduce(s, p) =
t := top(p)
if t = sm, the final state for item, T → U1U2 · · ·Um·,
then p′ := pop(m,p) // pop m states, corresponding to U1U2 · · ·Um

p′′ := p′ :: goto(top(s :: p′), T)
return reduce(s, p′′) // repeat till finished

else return p // t was not a final state, so nothing to reduce

Fig. 3. Abstract collecting interpretation: Xi(s) = [[Ei]]s denotes the set of parse stacks
generated by parsing the strings denoted by Ei, starting from parse state s

which itself demands a parse of the string generated at point X1 from state s0:

X1(s0) = X0(s0) ∪X2(s0)

The union of the parses from X0 and X2 must be computed.1 Consider X0(s0):

1 As Figure 3 indicates, the functions compute sets of parse stacks; in this motivating
example, all the sets are singletons.

262 K.-G. Doh, H. Kim, and D.A. Schmidt

X0(s0) = goto(s0, a) = s2 (reduce:S → a)
⇒ goto(s0, S) = s5

showing that a parse of string ’a’ from state s0 generates state s2, a final state,
that reduces to nonterminal S, which generates state s5 — an S-phrase has been
parsed. (The ⇒ signifies when the parser makes a reduce step to a nonterminal.)
The completed stack is therefore s0 :: s5. The remaining call, X2(s0), commences
like this (⊕ is explained two lines below):

X2(s0) = ([·X1 ·R)(s0) = goto(s0, [) ⊕ (X1 ·R)
= s1 ⊕ (X1 ·R) = s1 :: (X1(s1) ⊕R)

The ⊕ operator sequences the parse steps: for parse stack, st, and function, E,
st ⊕ E = st :: E(top(st)), that is, the stack made by appending st to the stack
returned by E(top(st)). Then, X1(s1) = X0(s1) ∪X2(s1) computes to s3, and

X2(s0) = s1 :: (X1(s1) ⊕R) = s1 :: (s3 ⊕R) = s1 :: s3 :: R(s3)
= s1 :: s3 :: s4 (reduce:S → [S])
⇒ goto(s0, S) = s5

That is, X2(s0) built the stack, s1 :: s3 :: s4, denoting a parse of [S], which
reduced to S, giving s5. Here is the complete list of solved function calls:

X3(s0) = X1(s0)
X1(s0) = X0(s0) ∪X2(s0) = · · · = s5 ∪ s5 = s5
X0(s0) = goto(s0, a) = s2 ⇒ goto(s0, S) = s5
X2(s0) = goto(s0, [) ⊕ (X1 ·R) = s1 :: X1(s1) ⊕R

= · · · = s1 :: s3 :: R(s3) = s1 :: s3 :: s4 ⇒ goto(s0, S) = s5
R(s3) = goto(s3,]) = s4
X1(s1) = X0(s1) ∪X2(s1) = · · · = s3 ∪ s3 = s3 (see comment below)
X0(s1) = goto(s1, a) = s2 ⇒ goto(s1, S) = s3
X2(s1) = goto(s1, [) ⊕ (X1 ·R)

= s1 :: (X1(s1) ⊕R) = · · · = s1 :: s3 :: R(s3) (see comment below)
= s1 :: s3 :: s4 ⇒ goto(s1, S) = s3

The solution is X3(s0) = s5, validating that the strings printed at the hot spot
must be S-phrases.

Each equation instance, Xi(sj) = Eij , is a first-order data-flow equation. In
the example, X1(s1) and X2(s1) are mutually recursively defined, and their
solutions are obtained by iteration-until-convergence. The flow-equation set is
generated dynamically while the equations are being solved. This is a demand-
driven analysis [1,7,8], called minimal function-graph semantics [11], computed
by a worklist algorithm, described later.

Abstract Parsing: Static Analysis of Dynamically Generated String Output 263

5 Abstract Parse Stacks

In the previous example, the result for each Xi(sj) was a single stack. In general,
a set of parse stacks can result, e.g., for

x = ’[’
while ...
x = x . ’[’

x = x . ’a’ . ’]’

X0 = [
X1 = X0 �X2
X2 = X1 · [
X3 = X1 · a ·]

at conclusion, x holds zero or more left brackets and an S-phrase; X3(s0) is the
infinite set, {s5, s1 :: s3, s1 :: s1 :: s3, s1 :: s1 :: s1 :: s3, · · ·}.

To bound the set, we abstract it by “folding” its stacks so that no parse
state repeats in a stack. Since Σ, the set of parse-state names, is finite, folding
produces a finite set of finite-sized stacks (that contain cycles).

The abstract interpretation based on abstract, folded stacks is defined in Fig-
ure 4. Here is the intuition: A stack segment like p = s1 :: s1 is a linked list, a
graph, 11 ss , where the stack’s top and bottom are marked by pointers;
when we push a state, e.g., p :: s2, we get 1 s1 s2

s . The folded stack is

formed by merging same-state objects and retaining all links: 1 s2s . (This
can be written as the regular expression, s+1 :: s2.) Folding can apply to multiple

states, e.g., 6 s7
s
6 s7

s
6 s8s folds to 6 s7

s8s
.

The abstract interpretation of the loop program that began this section is
defined with abstract stacks in Figure 5. The result, X3(s0) = {s+1 :: s3, s5},
asserts that the string atX3 might be a well-formed S phrase, or it might contain
a surplus of unmatched left brackets.

At the end of the calculation in Figure 5, the reduction of S → [S] is done
on the folded stack segment, s+1 :: s3 :: s4, that is, the complete stack is

0 s1 s3 s4
s , meaning that three states must be popped: we traverse
s4, s3, and s1, and follow the links from the last state, s1, to see what the re-

maining stack might be. There are two possibilities: 10 ss and s0 . We
compute the result for each case, as shown in the Figure.

6 Worklist Algorithm

The algorithm that computes the solution to a hot-spot is a variation of the
conventional worklist algorithm.

In the conventional worklist algorithm, there is a fixed flowgraph that indicates
flows to nodes and a flow equation for each node. The initialization step builds
the entire flowgraph and places demands on the worklist to calculate the value
at every node in the graph. The algorithm then iterates, extracting a demand
from the worklist, computing the value of that demand, and placing into the

264 K.-G. Doh, H. Kim, and D.A. Schmidt

A set of parse stacks can be soundly approximated by a single, abstract stack: For
label set Σ, a Σ-labelled graph, g, is a tuple, 〈nodesg , edgesg , labelg〉, where

– nodesg is a set of nodes,
– edgesg ⊆ nodesg × nodesg is a set of directed edges (at most one per source,

target node pair),
– and labelg : nodesg → Σ assigns a label to each node.

Let GraphΣ be the set of Σ-labelled graphs.

An abstract stack is a triple, (g, bot, top), such that g ∈ GraphΣ and
bot, top ∈ nodesg mark the bottom and top nodes of the stack. Let AbsStackΣ be
the set of abstract stacks labelled with Σ-values.

Example: the stack, s1 :: s1 :: s3, is modeled as (〈{a, b, c}, {(c, b), (b, a)}, [a �→
s1, b �→ s1, c �→ s3]〉, a, c).

An abstract stack, (g, bot, top) ∈ AbsStackΣ, concretizes to a set of parse stacks:

γ(g, bot, top) = {st ∈ P(Σ+) | st is a finite path through g from top to bot}
Two abstract stacks, G1 = (g1, bot1, top1) and G2 = (g2, bot2, top2), are composed
by :: into the disjoint union of g1 and g2 plus one new edge from bot2 to top1:

G1 :: G2 = (〈nodesg1 � nodesg2 ,
edgesg1 ∪ edgesg2 ∪ {(bot2, top1)},
labelg1 + labelg2 〉, bot1, top2)

An abstract stack is folded (widened) by merging all nodes that share the same
label, in effect, equating the nodes with the labels:

fold(g, bot, top) = (〈{s ∈ Σ | ∃n ∈ nodesg , labelg(n) = s},
{(s, s′) | ∃(n, n′) ∈ edgesg , labelg(n) = s, labelg(n′) = s′},
λs.s〉, labelg(bot), labelg(top))

The abstract interpretation of flow equation, Xi = Ei, is the function,
Xi : Σ → Pfin(AbsStackΣ), defined as

Xi(s) = {fold(p) | p ∈ [[Ei]](s)}.
This interpretation is sound for the abstract collecting semantics in Figure 3.

A set of abstract stacks can be further abstracted into a single stack of form,
GraphΣ × P(Σ) × P(Σ), by unioning the stacks’ node sets, edge sets, bot-values
and top-values. The resulting ”stack” is a subgraph of the parser’s goto-controller.

Fig. 4. Abstract interpretation defined in terms of abstract, folded, parse stacks

Abstract Parsing: Static Analysis of Dynamically Generated String Output 265

Flow equation set generated from demand, X3(s0):

X0(s0) = [(s0)
X1(s0) = X0(s0) ∪X2(s0)

X2(s0) = X1(s0) ⊕ [

X3(s0) = X1(s0) ⊕ (a.])

Least fixed-point solution expressed with abstract parse stacks:

X0(s0) = [(s0) = {s1}
Because X1 and X2 are mutually defined, we iterate to a solution,
where Xi’s value at iteration j is denoted Xij :

X11(s0) = {s1} ∪ ∅ = {s1}
X21(s0) = X11(s0) ⊕ [= fold{s1 :: s1} = {s+1 }
X12(s0) = {s1} ∪ {s+1 } = {s1, s+1 }

= {s+1 }. (We can merge the two stack segments since the first
is a prefix of the second and has the same bottom and top states.)

X22(s0) = X12(s0) ⊕ [= {s+1 :: [(s1)} = fold{s+1 :: s1} = {s+1 }
X13(s0) = {s1} ∪ {s+1 } = {s1, s+1 } = {s+1 } = X12(s0)
X23(s0) = {s+1 } = X22(s0)

X3(s0) = {s+1 :: a(s1) ⊕]}
First, s+1 :: a(s1) = s+1 :: s2 ⇒ s+1 :: goto(s1, S) = s+1 :: s3.

= {s+1 :: s3 ::](s3)} = {s+1 :: s3 :: s4}
The reduction, S → [S], splits the stack into two cases:
(i) there are multiple s1s within s+1 ; (ii) there is only one s1:

= (i){s+1 :: goto(s1, S)} ∪ (ii){goto(s0, S)}
= {s+1 :: s3, s5}

Fig. 5. Iterative solution with folded parse stacks, depicted as regular expressions

worklist new demands to evaluate those nodes whose values are affected by the
one just updated. Iteration terminates when the worklist is empty [16].

In our worklist algorithm, the flowgraph is constructed while iteration is un-
dertaken. The algorithm uses three data structures: the worklist of unresolved
calls, Xi(sj); a Cache that maps each call to its current (partial) solution (a
set of abstract parse stacks); and the flowgraph of call dependencies, which is
dynamically constructed.

The algorithm is defined in the Appendix, but here is an overview: The ini-
tialization step places the initial call, X0(s0), into the worklist and into the call
graph and then assigns to the cache the partial solution, Cache[X0(s0)] := ∅.
The iteration step repeats the following until the worklist is empty:

1. Extract a call, X(s), from the worklist, and for the corresponding flow equa-
tion, X = E, compute E(s), folding abstract stacks as necessary. (In the
Appendix, this is done by computeX(s)(s, E)).

2. While computing E(s), if a call, X ′(s′) is encountered, (i) add the depen-
dency, X ′(s′) → X(s), to the call graph (if it is not already present); (ii) if

266 K.-G. Doh, H. Kim, and D.A. Schmidt

Worklist,
added and processed
from top to bottom:

X3(s0)
X1(s0)
X0(s0)
X2(s0)
X1(s0)
X1(s1)
X3(s0)
X0(s1)
X2(s1)
X1(s1)
X2(s0)
X2(s1)
R(s3)
X2(s0)
X2(s1)
X1(s0)
X1(s1)

Cache updates, inserted from top to bottom,
where X(s) �→ P abbreviates Cache[X(s)] := P

X3(s0) �→ ∅
X1(s0) �→ ∅
X0(s0) �→ ∅
X2(s0) �→ ∅
X0(s0) �→ reduce(s0, goto(s0, a)) = reduce(s0, s2)

= reduce(s0, goto(s0, S)) = reduce(s0, s5) = {s5}
X1(s1) �→ ∅
X1(s0) �→ {s5}
X0(s1) �→ ∅
X2(s1) �→ ∅
X3(s0) �→ {s5}
X0(s1) �→ reduce(s1, goto(s1, a)) = {s3}
X1(s1) �→ {s3}
R(s3) �→ ∅
R(s3) �→ reduce(s3, goto(s3,])) = {s4}
X2(s0) �→ ([:: X1 :: R)(s0)

= s1 ⊕ (X1 :: R) = (s1 :: X1(s1)) ⊕R
= s1 :: s3 :: R(s3) = reduce(s0, s1 :: s3 :: s4)
= reduce(s0, goto(s0, S)) = {s5}

X2(s1) �→ ([:: X1 :: R)(s1) = {s3}
Generated call graph:

0X3 ()

s
1X2 ()

s
3

()R
s
0X1 ()

s
0X2 ()

s
0X0 ()

s
1X1 ()

s
1X0 ()

s

Fig. 6. Worklist-algorithm calculation of call, X3(s0), in Figure 1

there is no entry for X ′(s′) in the cache, then assign Cache[X ′(s′)] := ∅ and
place X ′(s′) on the worklist.

3. When E(s) computes to an answer set, P , and P contains an abstract
parse stack not already listed in Cache[X(s)], then assign Cache[X(s)] :=
(Cache[X(s)] ∪ P) and add to the worklist all X ′′(s′′) such that the depen-
dency, X(s) → X ′′(s′′), appears in the flowgraph.

Figure 6 shows the worklist calculation for X3(s0) in Figure 1.

7 Input Variables

Input and nonlocal variables present the usual difficulties for a static analysis.
If we require that such variables hold grammatically well-structured strings as
their values, then we can use the nonterminal symbols of the reference grammar

Abstract Parsing: Static Analysis of Dynamically Generated String Output 267

as “data types.” For example, we might set the type of input variable, x, to be
nonterminal S and use Figure 2 to analyze

readS x
y = ’[’ . x . ’]’

X = S
Y = [·X ·]

We solve the flow equations,

Y (s0) = ([·X ·])(s0) = goto(s0, [) ⊕ (X ·]) = s1 :: (X(s1) ⊕])
X(s1) = goto(s1, S) = {s3}

and compute that Y (s0) = s1 :: s3 :: goto(s3,]) = s1 :: s3 :: s4 ⇒ goto(s0, S)
= {s5}, because we assumed that input variable x denotes a parsed S-phrase.

8 String-Update Operations

String-manipulating languages use operations like replace and substring, which
can be employed foolishly or sensibly on strings that represent well-structured
values. An example of the former is x = ’[[a]]’; replace(’a’, ’[’, x),
which replaces occurrences of ’a’ in x by ’[’, changing x’s value to the gram-
matically ill-formed phrase, ’[[[]]’. A more sensible replacement would be
replace(’[a]’, ’a’, x), which preserves x’s grammatical structure.

To validate an operation, replace(U,V,x), we require that U and V “parse
the same” in every possible context where they might appear (within x): Say
that replace(U,V,x) is update-invariant for x iff for all (nonfinal) parse states,
s ∈ Σ, U(s) = V (s). This means replacing U by V preserves x’s parse.

When we analyze a program, we may first ignore the replace operations,
treating them as “no-ops.” Once the flow equations are solved, we validate the
invariance of each replace(U,V,x) by generating hot-spot requests for strings U
and V for all possible parse states, building on the cached results of the worklist
algorithm. Finally, we compare the results to see if replace(U,V,x) is update-
invariant for x. Here is an example:

y = ’[[[a]]]’
x = ’a’
while ...
x = ’[’. x .’]’

replace(x, ’a’, y)

Y 0 = [· [· [· a ·] ·] ·]
X0 = a
X1 = X0 ∪X2
X2 = [·X1 ·]
Y 1 = replace(X1, a, Y 0)

Say that the program must be analyzed for y’s final value: Y 1(s0). We initially
ignore the replacement operation at Y 1 and solve the simpler equation, Y 1(s0) =
Y 0(s0), instead, which quickly computes to {s5}. Next, we analyze the replace
operation by generating these hot-spot requests for all the nonfinal parse states:

a(s0), X1(s0), a(s1), X1(s1), a(s3), X1(s3)

For example, the first request computes to

a(s0) = goto(s0, a) = s2 ⇒ goto(s0, S) = s5

268 K.-G. Doh, H. Kim, and D.A. Schmidt

PHP program String−flow
Analyzer

Abstract
Parser

ocamlyacc
reference
grammar

data−flow
equations

LALR(1) table

parsed OK

parsing ERR

hot spot

PHP

Fig. 7. Implementation

and the second repeats an earlier example,

X1(s0) = X0(s0) ∪X2(s0)
X2(s0) = · · · = s1 :: s3 :: s4 ⇒ goto(s0, S)) = s5

showing that both strings compute to the same parse-stack segments in starting
context s0. The other hot spots compute this same way. Once all the hot spots are
solved, we confirm that X1 and a have identical outcomes for all possible parse
contexts. This validates the invariance of replace(x,’a’,y) at Y 1, preserving
the original solution.

It is important that we validate update-invariance for all possible contexts.
Consider the reference grammar,

N → a | b | [a]

Although both a and b are N -phrases, replace(’a’,’b’,’[a]’) violates [a]’s
grammatical structure.

9 Implementation and Experiments

The abstract parser, essentially the worklist algorithm, is implemented in Ob-
jective Caml, structured as in Figure 7. The front end of Minamide’s analyzer
for PHP [14] was modified to accept a PHP program with a hot-spot location
and to return data-flow equations with string operations for the hot spot. A
parser generator, ocamlyacc, produces an LALR(1) parsing table for the ref-
erence grammar, and the abstract parser uses the data-flow equations and the
parsing table to parse statically the strings generated by the PHP program.
Since abstract parsing works directly on characters (and not tokens), the refer-
ence grammar is given at the same level, like a grammar for scannerless parsing.
(Our experiment showed that the performance of character-based parsing was
good enough for practical use.) The algorithm in the Appendix is defined for
LR(0) grammars, but its extension to LR(1) required only minor modification.

We applied our abstract parser to publicly available PHP programs that dy-
namically generate HTML documents, the same suite of programs Minamide

Abstract Parsing: Static Analysis of Dynamically Generated String Output 269

used in his paper [14]. Experiments were done on a MacOSX with an Intel Core
2 Duo Processor (2.56GHz) and 4 GByte memory. The table below summarizes
our experiments:

webchess faqforge phpwims timeclock schoolmate
files 21 11 30 6 54
lines 2918 1115 6606 1006 6822

no. of hot spots 6 14 30 7 1
no. of parsings 6 16 36 7 19

parsed OK 5 1 19 0 1
parsed ERR 1 15 17 7 18
no. of alarms 1 31 16 14 20
true positives 1 31 13 14 17
false positives 0 0 3 0 3

time(sec) 0.224 0.155 1.979 0.228 2.077

We manually identified the hot spots and ran our abstract parser for each hot
spot. There were multiple parsings in some hot spots, as expected. Since we do
not yet have parse-error recovery, each time a parse error was identified by our
analyzer, we located the source of the error in the program, fixed it, and tried
again until no parse errors were detected. In the case of phpwims, the number
of alarms is smaller than that of parsing errors because two parsings share the
same parsing error in control flows of this form:

parsed ERR
if ... then parsed OK else parsed OK;

All the false-positive alarms that appeared were caused by ignoring the tests
within conditional commands. The parsing time shown in the table is the sum
of all execution times needed to find all parsing errors for all hot spots. The
reference grammar’s parse table took 1.323 seconds to construct; this is not
included in the analysis times. The alarms are classified below:

classification occurrences
open/close tag syntax error 11

open/close tag missing 45
superfluous tag 5

improperly nested 14
misplaced tag 5

escaped character syntax error 2

All in all, our abstract parser works without limiting the nesting depth of tags,
validates the syntax reasonably fast, and is guaranteed to find all parsing errors
reducing inevitable false alarms to a minimum.

Minamide excluded one PHP application, named tagit, from his experiments
[14], since tagit generates an arbitrary nesting depth of tags. In principle, our
abstract parser should be able to validate tagit, but we also excluded tagit
from our studies because the current version of our abstract parser checks that

270 K.-G. Doh, H. Kim, and D.A. Schmidt

string-update operations satisfy the update-invariance property (cf. Section 8).
Unexpectedly (to us!), so many string updates in tagit violated update invari-
ance that our abstract parser generated too many false-positives to be helpful.

We can reduce false positives due to violation of update invariance by se-
lectively employing Minamide’s f.s.a.-transducer technique [14], where a string
update is analyzed separately from the flow analysis with its own f.s.a. trans-
ducer. For example, the last flow equation in this program,

x = ’a’
while ...
x = ’[[’. x .’]’

replace(’[[’, ’[’, x)

X0 = a
X1 = X0 ∪X2
X2 = [· [·X1 ·]
X3 = replace([[, [, X1)

could be replaced by just X3 = X1, and we would use a separate transducer to
analyze replace([[, [, X1). We leave this as a future work.

On the other hand, one might argue that any string-update operator that
violates update invariance is dubiously employed and deserves closer scrutiny.
In this regard, the abstract parser’s “false positives” are healthy warnings.

10 Conclusion

Injection and cross-site-scripting attacks can be reduced by analyzing the pro-
grams that dynamically generate documents [21]. In this paper, we have im-
proved the precision of such analyses by employing LR-parsing technology to
validate the context-free grammatical structure of generated documents.

A parse tree is but the first stage in calculating a string’s meaning. The
parsed string has a semantics (as enforced by its interpreter), and one can encode
this semantics with semantics-processing functions, like those written for use
with a parser-generator. (Tainting analysis — tracking unsanitized data — is
an example semantic property that can be encoded this way.) The semantics
can then be approximated by the static analysis so that abstract parsing and
abstract semantic processing proceed simultaneously. This is future work.

Acknowledgements. We thank GTOne’s CEO Soo-Yong Lee for inspiration
and support and the anonymous referees for valuable suggestions and comments.

References

1. Agrawal, G.: Simultaneous demand-driven data-flow and call graph analysis. In:
Proc. Int’l. Conf. Software Maintenance, Oxford (1999)

2. Aho, A., Ullman, J.: Principles of Compiler Design. Addison-Wesley, Reading
(1977)

3. Brabrand, C., Møller, A., Schwartzbach, M.I.: The <bigwig> project. ACM Trans.
Internet Technology 2 (2002)

4. Choi, T.-H., Lee, O., Kim, H., Doh, K.-G.: A practical string analyzer by the
widening approach. In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279,
pp. 374–388. Springer, Heidelberg (2006)

Abstract Parsing: Static Analysis of Dynamically Generated String Output 271

5. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Static analysis for dynamic
XML. In: Proc. PLAN-X 2002 (2002)

6. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Extending Java for high-level
web service construction. ACM TOPLAS 25 (2003)

7. Duesterwald, E., Gupta, R., Soffa, M.L.: A practical framework for demand-driven
interprocedural data flow analysis. ACM TOPLAS 19, 992–1030 (1997)

8. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In:
Proc. 3rd ACM SIGSOFT Symp. Foundations of Software Engg. (1995)

9. Hosoya, H.: XDuce: A typed XML processing language. Technical Report (2008),
http://xduce.sourceforge.net/

10. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML. ACM
TOPLAS 27, 46–90 (2005)

11. Jones, N.D., Mycroft, A.: Data flow analysis of applicative programs using minimal
function graphs. In: Proc. 13th Symp. POPL, pp. 296–306. ACM Press, New York
(1986)

12. Jovanovich, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for detecting
web application vulnerabilities. In: Proc. IEEE Symp. on Security and Privacy,
pp. 258–263 (2006)

13. Kirkegaard, C., Møller, A.: Static analysis for Java Servlets and JSP. In: Yi, K.
(ed.) SAS 2006. LNCS, vol. 4134, pp. 336–352. Springer, Heidelberg (2006)

14. Minamide, Y.: Static approximation of dynamically generated web pages. In: Proc.
14th ACM Int’l Conf. on the World Wide Web, pp. 432–441 (2005)

15. Minimide, Y., Tozawa, A.: XML validation for context-free grammars.
In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 357–373. Springer,
Heidelberg (2006)

16. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

17. Nishiyama, T., Minimide, Y.: A translation from the HTML DTD into a regu-
lar hedge grammar. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS,
vol. 5148, pp. 122–131. Springer, Heidelberg (2008)

18. Thiemann, P.: Grammar-based analysis of string expressions. In: Proc. ACM work-
shop Types in languages design and implementation, pp. 59–70 (2005)

19. Wassermann, G., Gould, C., Su, Z., Devanbu, P.: Static checking of dymanically
generated queries in database applications. ACM Trans. Software Engineering and
Methodology 16(4), 1–27 (2007)

20. Wassermann, G., Su, Z.: The essence of command injection attacks in web appli-
cations. In: Proc. 33d ACM POPL, pp. 372–382 (2006)

21. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injection
vulnerabilities. In: Proc. ACM PLDI, pp. 32–41 (2007)

22. Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages.
In: Proc. 15th USENIX Security Symp. (2006)

Appendix: Worklist Algorithm

Input:
– controller (goto function) for parser;
– flow-equation schemes, {Xi = Ei}0<i≤n;
– initial demand, X0(s0).

http://xduce.sourceforge.net/

272 K.-G. Doh, H. Kim, and D.A. Schmidt

Data structures:

– W ∈ Call∗ = worklist of demands (calls) of form, Xj(s), s ∈ ParseState;
– F : dynamically generated call graph, consisting of arcs of form, X(s) → X ′(s′),

read as, “X(s)’s value flows to X ′(s′)”;
– Cache : Call → P(AbsStack): dynamic array mapping calls to sets of abstract

stacks, where
AbsStack = graphs whose nodes are ParseStates, such that one node is marked
the stack bottom and another the stack top.
There is a unique entry, Cache[X(s)] := P , in the cache array iff the node, X(s),
appears in F .

Algorithm:
1. Initialize: W := [X0(s0)]; F := {X0(s0)}; Cache[X0(s0)] := ∅

2. Iterate: while W �= [] do :
X(s) := head(W); W := tail(W);
let X = E be the flow equation that matches X(s);
P := computeX(s)(s,E); (see below)
if P �⊆ Cache[X(s)]
then Cache[X(s)] := Cache[X(s)] ∪ P ;

forall X ′(s′) such that X(s) → X ′(s′) ∈ F,
W := W + [X ′(s′)];

where computeCall : ParseState× F lowExpression→ P(AbsStack) is
computec (s, a) = return reduce(s, goto(s, a))
computec(s,E1 �E2) = return computec(s,E1) ∪ computec(s,E2)
computec (s,X) =

if Cache[X(s)] is undefined (has no entry),
then Cache[X(s)] := ∅;

add the edge, X(s) → c, to F ;
W := W + [X(s)];

if c < X (that is, c→ X(s) is a program back-arc),
then return fold(Cache[X(s)])
else return Cache[X(s)]

computec (s,E1 · E2) =
P :=

⋃{p⊕ E2 | p ∈ computec(s,E1)}
where p⊕ E2 = {p :: p′ | p′ ∈ computec(top(p),E2)}
return

⋃{reduce(s, p′′) | p′′ ∈ P}
Auxiliary function reduce(s, p) reduces parse stack, s :: p, as needed, never popping
stack bottom, s. If the stack needs no reduction, reduce(s, p) = {p}:
reduce : ParseState× AbsStack→ P(AbsStack)
reduce(s, p) = t := top(p);

if t = sm, a final state for item, T → U1U2 · · ·Um,
and the path, s1 ← s2 ← · · · ← sm = top(p) in p matches the item,

then

newTops := {s′ | s′ ← s1 ∈ p} // the predecessor states to s1 in p

if newTops = ∅, // popped stack empty?
then R := {goto(s, T)}
else poppedStacks := {p with s′ marked as top | s′ ∈ newTops}

R := {p′ :: goto(top(p′), T) | p′ ∈ poppedStacks} // “split” the stacks
return

⋃
{reduce(s, p′′) | p′′ ∈ R} // repeat till finished

else return {p} // t not a final state, nothing to reduce

Creating Transformations for Matrix
Obfuscation

Stephen Drape and Irina Voiculescu

Oxford University Computing Laboratory,
Wolfosn Building, Parks Road,

Oxford, UK, OX1 3QD
{sjd,irina}@comlab.ox.ac.uk

Abstract. There are many programming situations where it would be
convenient to conceal the meaning of code, or the meaning of certain
variables. This can be achieved through program transformations which
are grouped under the term obfuscation. Obfuscation is one of a number
of techniques that can be employed to protect sensitive areas of code.
This paper presents obfuscation methods for the purpose of concealing
the meaning of matrices by changing the pattern of the elements.

We give two separate methods: one which, through splitting a matrix,
changes its size and shape, and one which, through a change of basis in
a ring of polynomials, changes the values of the matrix and any patterns
formed by these. Furthermore, the paper illustrates how matrices can
be used in order to obfuscate a scalar value. This is an improvement on
previous methods for matrix obfuscation because we will provide a range
of techniques which can be used in concert.

This paper considers obfuscations as data refinements. Thus we con-
sider obfuscations at a more abstract level without worrying about im-
plementation issues. For our obfuscations, we can construct proofs of
correctness easily. We show how the refinement approach enables us to
generalise and combine existing obfuscations. We then evaluate our meth-
ods by considering how our obfuscations perform under certain relevant
program analysis-based attacks.

Keywords: Obfuscation, Matrix Operations, Information Hiding, Pro-
gram Transformations.

1 Introduction

An obfuscation is a behaviour-preserving program transformation whose aim is
to make an input program “harder to understand”. The landmark paper by Coll-
berg et al. [6] gives a range of transformations which can be used as obfuscating
transformations. The purpose of such transformations is to decrease the oppor-
tunities for a user to reverse engineer a commercially supplied program [1,6]. In
this paper, we interpret “harder to understand” as keeping some information
secret for as long as possible from some set of adversaries.

After the proof of Barak et al. [1], there seems little hope of designing a
perfectly-secure software black-box, for any broad class of programs. To date,

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 273–292, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

274 S. Drape and I. Voiculescu

no one has devised an alternative to Barak’s model, in which we would be able
to derive proofs of security for systems of practical interest. These theoretical
difficulties do not lessen practical interest in obfuscation, nor should they prevent
us from placing appropriate levels of reliance on obfuscated systems in cases
where the alternative of a hardware black-box is infeasible or uneconomic [10].

The view of obfuscation from Collberg et al. [6] concentrates on concrete data
structures such as variables and arrays. However, the thesis of Drape [8] viewed
obfuscations at a more abstract level by considering an abstract data-type and
defining operations for this data-type — thus we should obfuscate the data-
type according to these operations. This work had lead to the development of
the specification of obfuscations for imperative programs [10] and for creating
obfuscations which impede the effectiveness of program slicing [18].

The focus of this paper consists of a data-type for finite matrices having
four operations: scalar multiplication, addition, transposition and multiplica-
tion, specified mathematically. We use data refinement [7] to provide a way of
proving the correctness of our obfuscated operations. Thus we are guaranteed
that our obfuscations are behaviour-preserving. We will review a previous matrix
obfuscation, called matrix splitting [8], and we will discuss problems with this
obfuscation. We will then describe a new technique for matrix obfuscation and
we also show how matrices can be used to obfuscate another data-type. Since
we consider our operations at a more abstract level than program code, we will
be able to discuss how we can generalise our obfuscations.

The notion of “harder to understand” can be a little vague as it is not easy
to measure — the creation of a suitable measure of the quality of an obfuscation
is an open problem. When creating obfuscations we will make reference to an
attack model including what analysis techniques we expect to perform. In the
work of Majumdar et al. [18], the obfuscations were created with the intention
of trying to protect against an attacker armed with a program slicer. In this
paper, we adopt the attack model of Drape [8] in which, when defining data-
types, we also specify a set of assertions which are true for the operations of
that data-type. According to [8], the comparison between the assertions proofs
for unobfuscated and obfuscated operations gives a measure of the effectiveness
of the obfuscation. In this paper, we do not show such proofs but example proofs
for various data-types can be found in [8].

2 Preliminaries

In this section we will discuss how we can prove the correctness of our obfusca-
tions and we will define a data-type for matrices.

2.1 Obfuscation as Data Refinement

In Drape’s thesis [8], data obfuscation was considered as a data refinement [7].
Suppose that a data-type D is obfuscated using an obfuscation O to produce a
data-type E. Under the refinement approach, an abstraction function

af :: E → D

Creating Transformations for Matrix Obfuscation 275

and a data-type invariant dti are needed such that, for x :: D and y :: E:

x � y ⇐⇒ (x = af (y)) ∧ dti(y) (1)

The term x � y is read as “x is obfuscated by y”.
For a function f :: D → D, an obfuscated function fO is correct with respect

to f if it satisfies:

(∀x :: D; y :: E) x � y ⇒ f(x) � fO(y)

Using Equation (1) we can rewrite this as

f · af = af · fO (2)

The abstraction function af is surjective and so we have a function cf :: D → E,
called the conversion function, which satisfies af · cf = id. Thus we can rewrite
Equation (2) to obtain:

f = af · fO · cf (3)

and we can use this equation to prove the correctness of fO.
If we also have that cf · af = id then we can rewrite Equation (2) to obtain:

fO = cf · f · af (4)

Thus when af is bijective then we can use Equation (4) to give us a way of
deriving an obfuscated operation fO from the original operation f .

2.2 Matrices

A matrix is an array of numbers which are arranged in a meaningful tabular
form. It is usually two-dimensional and can have any width and height. It is also
possible to use multi-dimensional matrices and, even though these are harder to
write down, it is fairly easy to manipulate them in a computer program.

The matrix M which has r rows and c columns (for natural numbers r and c)
will be denoted by Mr×c. The element of M that is located at row i and column
j will be written as M(i, j), and, for simplicity, assumed to be rational. The
operation dim (M) returns the dimensions of M.

In Figure 1 we define a data-type for matrices — for the rest of the paper we
will suppose that Matrix α is Qr×c which denotes matrices with r rows and c
columns with rational number elements. From our data-type, we would like to
obfuscate matrices with the following matrix operations: scalar multiplication,
addition, transposition and multiplication. In the lower part of Figure 1 we have
a possible (but not complete) set of assertions. As we stated in Section 1, we
should aim to obfuscate our operations with the intention that they make the
proofs of correctness for assertions harder.

Note that for addition the matrices must have the same size and for multipli-
cation we need the matrices to be conformable, i.e. the number of columns of the
first is equal to the number of rows in the second. We can define the operations

276 S. Drape and I. Voiculescu

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Matrix (α)

scale :: α→Matrix α→Matrix α
add :: Matrix α×Matrix α→Matrix α

transpose :: Matrix α→Matrix α
mult :: Matrix α×Matrix α→Matrix α

transpose · transpose = id
transpose · (scale s) = (scale s) · transpose

transpose (mult(M,N)) = mult (transpose N, transpose M)
add(M,N) = add(N,M)

Fig. 1. A data-type for Matrices

element-wise in the usual way. We assume that basic arithmetic operations take
constant time and so the computational complexities of add(M,N), scale s M
and transpose M are all r×c and the complexity of mult(M,P) is r×c×d where
(r, c) = dim(M) = dim(N) and (c, d) = dim(P).

Matrices are used for a wide variety of applications such as solving systems of
equations, wavelets, graph theory and graphics. There are applications when it is
desirable to hide the meaning of a matrix. One such case is when, in expressing a
rigid body transformation by way of a matrix, the matrix has a particular struc-
ture. For example, the two-dimensional translation of an object by displacements
(dx, dy) is usually written in the form⎛⎝1 0 dx

0 1 dy

0 0 1

⎞⎠
Should somebody wish to hide the fact that a particular matrix is a translation
matrix, they should aim to design an obfuscation method which changes not
only the values, but also the visible pattern of these values.

3 Splitting Method

Now that we have defined our data-type for matrices and given equations for
proving the correctness of matrix obfuscations we are ready to discuss our first
obfuscation technique. Collberg et al. [6] discuss an obfuscation called an array
split. This obfuscation was generalised in Drape [9] and so we can apply the
concept of splitting to other data-types such as matrices.

Creating Transformations for Matrix Obfuscation 277

3.1 Defining a Matrix Split

Suppose that we want to split a matrix Mr×c into n matrices, called the split
components,

M � 〈M0, . . . ,Mn−1〉sp

where Mi has size ri×ci for i : [0..n).
For this characterisation, M is represented by n matrices using a split, called

sp, which consists of a choice function:

ch :: [0..r) × [0..c) → [0..n)

and a family F of injective functions where F = {ft}t:[0..n) such that for each t:

ft :: ch−1{t} � [0..rt) × [0..ct)

We define the relationship between M and the split components element-wise by
using the choice function and the appropriate function from F to decide where
an element is mapped to:

Mt(ft(i, j)) = M(i, j) where t = ch(i, j) (5)

The requirement that we have a family of injective functions ensures that we
can recover a matrix (and thus its properties) from the split components.

Equation (5) can be considered to be the definition of a conversion function
and so for a matrix split

cf (M(i, j)) = Mt(ft(i, j)) where t = ch(i, j) (6)

The corresponding abstraction function for some split component Mt is

af (Mt(i, j)) = M(ft
−1(i, j)) (7)

where ft
−1 · ft = id (which is valid as ft is injective). Using these definitions we

can check that af · cf = id.
As an example, consider how we could define a split in which a matrix Mr×2c

is split vertically into two matrices Mr×c
0 and Mr×c

1 . The choice function is
defined to be

ch(i, j) = j div c

and the family of functions is:

F = {ft = (λ (i, j) . (i, j mod c)) | t = 0 ∨ t = 1}

The process of splitting a matrix is analogous to the concept of a partitioned
(or block) matrix discussed by Horn and Johnson [15] in which a matrix can be
represented by a sequence of smaller submatrices.

278 S. Drape and I. Voiculescu

3.2 Splitting in Squares

We now describe a simple matrix split that splits a square matrix into four
matrices — two of which are square. Suppose that we have a square matrix
Mr×r and choose a positive integer k such that k < r. The choice function
ch(i, j) is defined as

ch(i, j) = 2 sgn (i div k) + sgn (j div k)

where sgn is the signum function. The family of functions F is defined to be

F = {fp = (λ (i, j) . (i− k (p div 2), j − k (p mod 2))) | p ∈ [0..3]}

We call this split the (k×k)-square split since the first component of the split is
a k×k square matrix.

So if
M(i, j) = Mt(ft(i, j)) where t = ch(i, j)

then we can write

Mn×n � 〈Mk×k
0 ,Mk×(n−k)

1 ,M(n−k)×k
2 ,M(n−k)×(n−k)

3 〉sk

where the subscript sk denotes the (k×k)-square split. Using this split, how can
we define our matrix operations given in Figure 1?

The operations for scale and add are fairly straightforward. If

M � 〈M0, . . . ,M3〉sk
and N � 〈N0, . . . ,N3〉sk

then

scale s M � 〈scale s M0, . . . , scale s M3〉sk

add(M,N) � 〈add(M0,N0), . . . , add(M3,N3)〉sk

The proofs for these definitions can be found in [8]. Also in [8] it was shown that

MT � 〈M0
T ,M2

T ,M1
T ,M3

T 〉sk

which corresponds to the following property for partitioned matrices:(
M0 M1
M2 M3

)T

=
(

M0
T M2

T

M1
T M3

T

)
The obfuscated operation has complexity n×n.

Finally let us consider how we can multiply split matrices. Let

Mn×n � 〈M0, M1, M2, M2〉sk

Nn×n � 〈N0, N1, N2, N3 〉sk

By considering the partitioned matrix product(
M0 M1
M2 M3

)
×
(

N0 N1
N2 N3

)

Creating Transformations for Matrix Obfuscation 279

we obtain the following result:

M × N � 〈(M0 × N0) + (M1 × N2), (M0 × N1) + (M1 × N3),
(M2 × N0) + (M3 × N2), (M2 × N1) + (M3 × N3)〉sk

The computation of M×N using normal matrix multiplication requires n3

element multiplications. If we multiply the split matrices, does this calculation
require more multiplications? If we use the definition of split matrices to add up
the number of multiplications required by each component then we find that the
total number of multiplications is still n3.

3.3 Review of Matrix Splitting

Using our matrix split, we have seen that we can easily define obfuscated oper-
ations for our matrix data-type. All of the obfuscated operations have a similar
complexity to the original versions. Since the matrix split is a generalisation of
an array split then we could use matrix splits as obfuscation for arrays. We could
do this by folding an array into a matrix, splitting the matrix and then flattening
the components back into arrays.

For our matrix data-type (defined in Figure 1) we considered four matrix op-
erations. Could we define obfuscations for other matrix operations? Computing
inverses and determinants for dense matrices which have been split can prove
to be difficult. We can, however, define obfuscations of these operations using
results for partitioned matrices — we omit the details here.

4 Using the Bernstein Basis

We have seen that we can obfuscate a matrix by splitting it into many matrices.
We can easily define obfuscations for simple operations but it is harder to define
obfuscations for calculating inverses and determinants. We will now define an
obfuscation that is based on the fact that the elements of a two-dimensional
matrix can be used to define the coefficients of a bivariate polynomial.

We denote by P [x, y] the set of polynomials of variables x and y, with rational
coefficients. For a given n ∈ N, there are several ways to define bases for the
ring of degree-n polynomials (see, for example, Lorentz [17]). One is the power
basis

(
1 x . . . xn

)
and another is the Bernstein basis

(
Bn

0 (x) Bn
1 (x) . . . Bn

n(x)
)

where Bn
k (x) =

(
n
k

)
xk(1 − x)n−k, ∀x ∈ [0, 1], k = 0, . . . , n are the corresponding

Bernstein Polynomials [3].

4.1 Power-Form and Bernstein-Form Polynomials

A power-form polynomial p ∈ P [x, y] of degree m ∈ N in x and n ∈ N in y is
given by:

p(x, y) =
m∑

i=0

n∑
j=0

aijx
iyj , (8)

280 S. Drape and I. Voiculescu

where aij ∈ Q. For given m,n ∈ N there are m+1 univariate degree-m Bernstein
polynomials in x, and n+1 univariate degree-n Bernstein polynomials in y. Any
bivariate power-form polynomial can be represented on the interval [0, 1] using
its equivalent Bernstein form as

pB(x, y) =
m∑

i=0

n∑
j=0

cijB
m
i (x)Bn

j (y) (9)

where cij are the Bernstein coefficients corresponding to the degree-n base. The
two representations p(x, y) and pB(x, y) are equivalent and it is possible to con-
vert one into the other. In the case of bivariate polynomials this conversion
requires some care and is based on the univariate case shown by Farouki and
Rajan [11].

The polynomials in Equations (8) and (9) can also be written as matrix mul-
tiplications:

p(x, y) =
(
1 x . . . xm

)⎛⎜⎝ a00 . . . a0n

...
. . .

...
am0 . . . amn

⎞⎟⎠
⎛⎜⎜⎜⎝

1
y
...
yn

⎞⎟⎟⎟⎠ = XAY

pB(x, y) =
(
Bm

0 (x) Bm
1 (x) . . . Bm

m(x)
)⎛⎜⎝ c00 . . . c0n

...
. . .

...
cm0 . . . cmn

⎞⎟⎠
⎛⎜⎜⎜⎝
Bn

0 (y)
Bn

1 (y)
...

Bn
n(y)

⎞⎟⎟⎟⎠ = BX
m CBY

n

Rewriting the vector BX
m of Bernstein polynomials in terms of matrix multi-

plication gives:

BX
m =

(
Bm

0 (x) Bm
1 (x) . . . Bm

m(x)
)

=
((

m
0

)
(1 − x)m . . .

(
m
m

)
xm
)

=
((

m
0

) (
1 +
(
m
1

)
(−x) + . . . +

(
m
m

)
(−x)m

)
. . .

(
m
m

)
xm
)

=
(
1 x . . . xm

)︸ ︷︷ ︸
X

⎛⎜⎜⎜⎜⎝
1 O(

m
0

)(
m
1

)
(−1)1

(
m
1

)(
m−1

0

)
(−1)0

...
. . .(

m
0

)(
m
m

)
(−1)m

(
m
1

)(
m−1
m−1

)
(−1)m−1 . . .

(
m
m

)(
m−m

0

)
(−1)0

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Um

= X Um, ∀x ∈ [0, 1].

So BX
m = X Um

Similarly BY
n = Vn Y

and pB(x, y) = BX
m C BY

n = X Um C Vn Y

Creating Transformations for Matrix Obfuscation 281

Now we can compute the Bernstein coefficients matrix C:

X A Y = X Um C Vn Y

C = (Um)−1 A (Vn)−1 ∀x, y ∈ [0, 1]

4.2 Bernstein Coefficients and Obfuscation of Matrices

The correspondence shown in Section 4.1 between the matrix of a polynomial’s
power-form coefficients and that of the Bernstein-form coefficients of the same
polynomial is unique, because they represent the same element in the ring of
polynomials. We have also shown that the transformation between the matrix
representations is well-defined.

(∀A ∈ Qα×β) (∃! p ∈ P [x, y] of degree α− 1 in x and β − 1 in y) p = X A Y
Furthermore (∃! C ∈ Qα×β) p = pB = X Uα−1 C Vβ−1 Y

Thus C is the matrix of coefficients of the Bernstein-form polynomial pB. We
will call the operation that transforms A into C the Bernstein Obfuscation of A,
thus A � C. For matrix S the abstraction function af for this obfuscation is:

af (S) = Ua SVb where (a+ 1, b+ 1) = dim(S) (10)

We can also define a conversion function cf as follows:

cf (S) = Ua
−1 S Vb

−1 where (a+ 1, b+ 1) = dim(S) (11)

It is straightforward to show that these functions are bijections.

4.3 Bernstein Example

Using the formulae in Section 4.1, it is possible to work out the Bernstein form
of a polynomial given in power form. Let us take the two-dimensional translation
matrix defined in Section 2.2

A =

⎛⎝1 0 dx

0 1 dy

0 0 1

⎞⎠
The corresponding Bernstein-form matrix is

C = U2
−1AV2

−1 =

⎛⎜⎝1 1 1 + dx

1 5
4

3
2 + dx + 1

2dy

1 3
2 3 + dx + dy

⎞⎟⎠
It is easy to verify that the polynomials corresponding to A and C are the same,
that is X A Y = X U2 C V2 Y. We can see that this obfuscation conceals the
fact that C represents a translation.

282 S. Drape and I. Voiculescu

4.4 Operations for the Bernstein Obfuscation

Now that we have an obfuscation for matrices we can define obfuscations for our
matrix operations (given in Figure 1). If op denotes a matrix operation then opB
will denote the Bernstein obfuscated operation. In the following definitions, for
matrix S we assume dim(S) = (a+ 1, b+ 1).

We can use Equation (4) to derive the Bernstein obfuscated scalar multiplica-
tion (we omit the details). We find that scaleB S = scale S and so the operation
is unchanged by the obfuscation.

In Appendix A.2 we prove that for a matrix S

transposeB(S) = Ub
−1 Vb

T ST Ua
T Va

−1

When performing matrix splits, it was hard to write an obfuscation for matrix
inversion. However using the Bernstein obfuscation we are able to write such an
obfuscation. For some square obfuscated matrix S:

inverseB(S) = Ua
−1 Va

−1 S−1 Ua
−1 Va

−1

We omit the details of the proof.
We also found it difficult, for split matrices, to define a determinant oper-

ation. However, in Appendix A.2, we derive the following obfuscation of the
determinant operation under the Bernstein operation:

detB(S) = det(Ua) × det(S) × det(Vb)

As with scalar multiplication, matrix addition is unchanged under the Bern-
stein obfuscation:

addB(S,T) = S + T

We omit the details of the proof.
Finally, we can derive an obfuscation for matrix multiplication

multB(S,T) = S Vb Ub T

This derivation can be found in Appendix A.3.

4.5 Review of the Bernstein Obfuscation

In Section 4.4 we stated that determinants and inverses of matrices can be com-
puted easily when matrices have been obfuscated using the Bernstein method —
this is an immediate advantage of this method over the matrix splitting method.

One drawback of obfuscating matrices with the Bernstein method is, as shown
in Section 4.4, that when scaling and adding matrices, the operations them-
selves are not obfuscated. This slight disadvantage is clearly outweighed by the
method’s major advantage, namely that the obfuscated matrices have an entirely
different structure from the original entities. Any symmetry or other patterns
are shuffled in the transformation, thus making it difficult for an attacker to
guess their original meaning. This obfuscation technique would work with any

Creating Transformations for Matrix Obfuscation 283

change of basis transformation, which would help to strengthen this technique
by allowing us to create a set of different obfuscations.

We have explained how the bivariate case works because most programs use
two-dimensional matrices. However, conversion between the power form and
the Bernstein representation is possible regardless of the number of variables
(see Geisow [13] and Garloff [12,19]). Berchtold’s thesis [2] and the book [14]
give formulae and algorithms for the computation of the Bernstein form of bi-
variate and trivariate polynomials. Thus we could adapt the method to more (or,
indeed, fewer) variables for use in programs with matrices of higher dimensions
(or with arrays).

The important advantages of this method are obtained at the cost of its
complexity. For each obfuscated matrix there are several matrices to compute,
invert and multiply together. One way in which these computations can be kept
low is by way of storing (rather than calculating) a table of the

(
n
k

)
combinations

(such as in the form of Pascal’s triangle). If the matrices to be obfuscated are of
similar sizes, then it should be possible to store, for significant values of a, the
matrices Ua and U−1

a .

5 Using Matrices to Obfuscate a Number

Up to now we have discussed creating obfuscation for a matrix data-type but we
can use matrices to obfuscate other data-types. As an example, let us see how we
could use matrices to obfuscate rational numbers with three rational operations:
+, × and −1. So, for a number n we want a matrix S such that n � S for some
abstraction function af . We need matrix operations plus, times and recip such
that, if n � S and p � T then

n+ p � plus(S,T) n× p � times(S,T) n−1 � recip(S)

5.1 Using Determinants

We can define the abstraction function to be the determinant of the matrix. So,
for example,

af
(
a b
c d

)
= det

(
a b
c d

)
= a× d− b× c

We now need to define a suitable conversion function — remember that we are
free to choose any conversion function cf such that af ·cf = id. We could choose
the conversion function to be:

cf (n) =
(
n 0
0 1

)
We can immediately see that af (cf (n)) = n (but cf · af = id does not hold).
We can define plus to be

plus(
(
m 0
0 1

)
,

(
n 0
0 1

)
) =
(
m+ n 0

0 1

)

284 S. Drape and I. Voiculescu

However we can only use this definition of plus for matrices that are in a very
specific form — it is fairly easy to understand what the function is doing and
so it is not a good obfuscation. (Referring back to the assertion definition of
obfuscation, any assertions about plus, such as commutativity, can be proved
easily for this matrix version.) Instead we would like a function that can be
applied to more general matrices and so we need a different conversion function.

Let us suppose that to obfuscate a number n we pick a matrix S that has
n as an eigenvalue. If S is a 2 × 2 matrix then S has two eigenvalues (which
may be the same). So that we can recover n from S then we could fix the other
eigenvalue of S and we will suppose that S had the eigenvalues 1 and n. With
these eigenvalues, the trace of the matrix must be n+ 1. Thus, we can define

cf (n) =
(
a b
c d

)
where ad− bc = n ∧ a+ d = n+ 1

This conversion function allows some freedom in choosing the elements of the
matrix that represents n. Suppose that we choose values of a and non-zero b.
We propose the following conversion function:

cf (n) =
(

a b
(a−1)(n−a)

b n+ 1 − a

)
where b �= 0 (12)

We can check that trace(cf (n)) = n+ 1 and det(cf (n)) = af (cf (n)) = n. Thus,
we can define

n �
(
a b
c d

)
⇐⇒ n = af (

(
a b
c d

)
) ∧ a+ d = n+ 1

5.2 Arithmetic Operations

Now let us define arithmetic operations using our obfuscation. We suppose that

n �
(
a b
c d

)
and p �

(
e f
g h

)
using the conversion function. We need to find

definitions for plus, times and recip.
First we want an operation that adds together n and p. We propose

plus(
(
a b
c d

)
,

(
e f
g h

)
) =

⎛⎝ a+ e− 1 bf

(a+e−2)(d+h−1)
bf d+ h

⎞⎠
We can check that the trace of the resulting matrix is

a+ e− 1 + d+ h = (a+ d− 1) + (e+ h− 1) + 1 = n+ p+ 1

as required. We can also check that the determinant is n+ p.
For a multiplication operation, we propose

times(
(
a b
c d

)
,

(
e f
g h

)
) =

⎛⎝ (a+ d)(e+ h) + 1 bf

−(a+d)(e+h)(a+d+e+h)
bf 1 − a− d− e− h

⎞⎠

Creating Transformations for Matrix Obfuscation 285

Finally, for a reciprocal operation, we propose:

recip(
(
a b
c d

)
) =

⎛⎜⎝
d

a+d−1 b

(a−1)(d−1)
b(a+d−1)2

a
a+d−1

⎞⎟⎠
Note that this operation is undefined if a+ d− 1 = 0 i.e. if n = 0.

More details of the development of the definitions for these operations can be
found in Appendix A.4. Note that we are free to create many different defini-
tions for each of these operations since we have some degree of flexibility in our
conversion function.

5.3 Review of Number Obfuscation

Under this obfuscation, several arithmetic operations (on four numbers) are re-
quired, hence the complexity of each operation is increased. Thus this obfuscation
should not be used where an increase of complexity is a concern.

We could use this obfuscation to obfuscate certain constants in a program or
to obfuscate a variable (in a similar way to a variable split that was discussed
in Collberg et al. [6]). If we choose this matrix transformation to obfuscate a
rational variable then we risk adversely affecting the efficiency of a program. If
the variable that we choose is used extensively then the obfuscation will add
many arithmetic operations whenever the variable is used.

6 Evaluation of Techniques

As stated in the Introduction, when creating obfuscations we should make refer-
ence to an attack model and any analyses we expect to run. For a human reader,
our obfuscated operations are harder to understand because the obfuscated op-
erations are not the expected matrix operations. To understand the Bernstein
obfuscated operations, an attacker needs to have familiarity with change of basis
transformations and, more importantly, needs to realise the connection between
matrices and polynomial bases.

Following the assertion attack model of Drape [8], when defining the matrix
data-type (as seen in Figure 1) we stated a number of assertions that we expect
our operations to satisfy. In most cases (except for the Bernstein obfuscations
of add and scale), the proofs of the assertions (which we omit) are more compli-
cated — example assertion proofs can be found in Drape [8]. One way of at least
checking whether the assertions of the obfuscated operations hold is to generate
a large set of random examples. In the case of functional languages (e.g. Haskell),
such a checking exists in the form of QuickCheck [5], which is based precisely on
sets of otherwise difficult to prove assertions.

Majumdar et al. [18] describe another attack model for obfuscation in which
obfuscations were created with the aim of protecting against an adversary armed
with a static program slicer. Majumdar et al. found that adding arrays to code

286 S. Drape and I. Voiculescu

fragments reduces the effectiveness of program slicing. Thus a particularly effec-
tive obfuscation against a slicing attack should be the determinant obfuscation
described in Section 5.1 as it replaces numbers by array-like objects.

The data refinement approach means that we create obfuscations for a set of
defined operations. If we want to obfuscate other operations or data-types then
we may have to use different obfuscations. For instance, the determinant opera-
tion (discussed in Section 5.1) would not be suitable to obfuscate the individual
elements of a matrix as the complexity of the matrix operations would drasti-
cally increase. Future work would be to see whether these obfuscations would be
suitable if we allowed an update operation so that we could change individual
elements of a matrix (rather than by using algebraic matrix operations).

One advantage of specifying obfuscations as data refinements is that we can
easily produce equations which help us to prove the correctness of our obfus-
cations. In the Appendix we give some examples of correctness proofs using
equations given in Section 2.1. Another advantage of using data refinement is
we can compose our obfuscation functions to help us create more complicated
obfuscations. For example, we can create an inverse operation for split matrices
by using the Bernstein obfuscation:

inversesp = cf sp · af B · inverseB · cf B · af sp

In a similar way we can combine our number obfuscation (from Section 5.1)
with our other matrix obfuscations so that we can build a more complicated
obfuscation for numbers and we could also combine different change of basis
transformations.

7 Conclusions

An obfuscation should make a program (or a method within a program) harder
to understand. When obfuscating matrices one ideally aims to change the struc-
ture or the elements within the matrix. Our splitting obfuscation (Section 3.2)
changes the size and shape of the matrix (but not the individual elements),
whereas the Bernstein obfuscation (Section 4.2) does not alter the size and shape
of the matrix, but changes its elements (thus changing their pattern). An ad-
vantage of considering obfuscations as data refinements is that obfuscations can
then be written as functions, which gives us the ability to compose different ob-
fuscations together. Thus, we can create an obfuscation that changes both the
structure and the elements. Obviously, if efficiency is a concern then we have to
restrict how complicated we make our obfuscations — there is usually a trade-off
between how complicated the obfuscations are and efficiency. One way to allevi-
ate the slow-down of a program is, as discussed in Section 4.5, is to pre-compute
and store some of the data used frequently. The trade-off between space and time
complexity will depend on the individual applications for which the obfuscation
method is used.

Evidently, these operations rely on exact arithmetic being available for ratio-
nal numbers. This is not a major inconvenience, though, since multi-precision

Creating Transformations for Matrix Obfuscation 287

rational operations nowadays are either supported by programming languages
(e.g. Java) or through integrated packages (see, for example, MP [4] or LiDIA
[16]).

In this paper we have used a variety of methods, both from number theory and
from previous work in obfuscation. Our methods bring improvements on previous
methods for matrix (and array) obfuscation because, as discussed in Section 6, we
have provided a range of techniques that can be used to create transformations
which provide greater obscurity. We do not give concrete programming details of
our matrix operations, since we considered obfuscation at an appropriate level
of abstraction, such that implementing these operations (and their obfuscations)
is a straightforward exercise.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

2. Berchtold, J.: The Bernstein basis in set-theoretic geometric modelling. PhD thesis,
University of Bath (2000)

3. Bernstein, S.: Démonstration du théorème de Weierstrass fondée sur le calcul des
probabilités. Comm. Kharkov Math. Soc. 13(1-2), 49–194 (1912)

4. Brent, R.P.: A FORTRAN multiple–precision arithmetic package. ACM Transac-
tions on Mathematical Software 4(1), 57–70 (1978)

5. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM SIGPLAN Notices (2000)

6. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transfor-
mations. Technical Report 148, Department of Computer Science, University of
Auckland (July 1997)

7. de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Meth-
ods and their Comparison. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge (1998)

8. Drape, S.: Obfuscation of Abstract Data-Types. DPhil thesis, Oxford University
Computing Laboratory (2004)

9. Drape, S.: Generalising the array split obfuscation. Information Sciences 177(1),
202–219 (2007)

10. Drape, S., Thomborson, C., Majumdar, A.: Specifying imperative data obfus-
cations. In: Garay, J.A., et al. (eds.) ISC 2007. LNCS, vol. 4779, pp. 299–314.
Springer, Heidelberg (2007)

11. Farouki, R.T., Rajan, V.T.: Algorithms for polynomials in Bernstein form. Com-
puter Aided Geometric Design 5, 1–26 (1988)

12. Garloff, J.: Convergent bounds for the range of multivariate polynomials. In:
Nickel, K. (ed.) Interval Mathematics 1985. LNCS, vol. 212, pp. 37–56. Springer,
Heidelberg (1986)

13. Geisow, A.: Surface Interrogations. PhD thesis, University of East Anglia (1983)
14. Gomes, A., Voiculescu, I., Jorge, J., Wyvill, B., Galbraith, C.: Implicit Curves

and Surfaces: Mathematics, Data Structures and Algorithms. Springer, Heidelberg
(2009)

288 S. Drape and I. Voiculescu

15. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cam-
bridge (1985)

16. LiDIA Group, Darmstadt University of Technology,
www.cdc.informatik.tu-darmstadt.de/TI/LiDIA

17. Lorentz, G.G.: Bernstein Polynomials. Chelsea Publishing Company, New York
(1986)

18. Majumdar, A., Drape, S.J., Thomborson, C.D.: Slicing obfuscations: design, cor-
rectness, and evaluation. In: DRM 2007: Proceedings of the 2007 ACM workshop
on Digital Rights Management, pp. 70–81. ACM, New York (2007)

19. Zettler, M., Garloff, J.: Robustness analysis of polynomials with polynomial pa-
rameter dependency using Bernstein expansion. IEEE Transactions on Automatic
Control 43(3), 425–431 (1998)

A Correctness Proofs

In this appendix we outline some proofs of correctness for the various obfusca-
tions given in the main body of the paper. For our proofs we will use the results
of Section 2.1 along with the results of the following section.

A.1 Non-homogeneous Operations

Suppose that we have a operation

f :: B → C

where B and C are the state spaces of two data-types. Let af B and af C be
abstraction functions for some obfuscations of B and C. How do we define a
correct obfuscation fO of f? Suppose x :: B and x � y and consider:

f(x) � fO(y)
≡ {Equation (1) using af C}
f(x) = af C(fO(y))

≡ {Equation (1) using af B}
f(af B(y)) = af C(fO(y))

Thus
f · af B = af C · fO (13)

Some operations, have type:

f :: D ×D → D

for some data-type D. If af is an abstraction function for D then the corre-
sponding abstraction for D ×D is

cross(af , af)

www.cdc.informatik.tu-darmstadt.de/TI/LiDIA

Creating Transformations for Matrix Obfuscation 289

where cross is an operation with type

cross :: (α → γ, β → δ) → (α, β) → (γ, δ)

which satisfies
cross (f, g) (a, b) = (f a, g b) (14)

Thus if fO is an obfuscation of f then using Equation (13) we have that

f · cross(af , af) = af · fO (15)

We will be able to use this equation to prove the correctness of binary matrix
operations such as addition and multiplication.

A.2 Unary Operations under the Bernstein Obfuscation

Let us consider the operation transpose. As a shorthand, we will use the usual T

notation. For a matrix S we propose that if f = T then

fB(S) = Ub
−1 Vb

T ST Ua
T Va

−1 where (a+ 1, b+ 1) = dim(S)

We prove this using Equation (3) for some unobfuscated matrix M:

af (fB(cf (M)))
= {definition of cf }

af (fB(Ua
−1 M Vb

−1))

= {definition of fB with (a+ 1, b+ 1) = dim(Ua
−1 M Vb

−1)}

af (Ub
−1 Vb

T (Ua
−1 M Vb

−1)
T

Ua
T Va

−1)

= {(B C)T = CT BT }
af (Ub

−1 Vb
T Vb

−1T
MT Ua

−1T
Ua

T Va
−1)

= {CT (C−1)T = (C−1 C)
T

= IT = I}
af (Ub

−1 MT Va
−1)

= {definition of af with (b+ 1, a+ 1) = dim(Ub
−1 MT Va

−1)}
Ub(Ub

−1 MT Va
−1)Va

= {associativity of matrix multiplication and inverses}
MT

= {definition of f}
f(M)

The determinant operation det is different to the other matrix operations
we have considered as the output from this operation is a number rather than
another matrix. Thus to derive a determinant operation for Bernstein obfuscated
matrices we consider det · af (since numbers are not obfuscated, the conversion
function is id) as follows:

290 S. Drape and I. Voiculescu

detB(S)
= {deriving equation}

det(af (S))
= {definition of af with (a+ 1, b+ 1) = dim(S)}

det(Ua S Vb)
= {det(B C) = det(B) × detC}

det(Ua) × det(S) × det(Vb)

A.3 Binary Operations under the Bernstein Obfuscation

For a binary matrix operation ⊗, we use the non-homogeneous equations de-
fined in Section A.1. If cross(af , af) is the abstraction function for Matrix α×
Matrix α then the corresponding conversion function is cross(cf , cf) (this fol-
lows from the definition of cross). So, for example, to obfuscate an operation ⊗
we use Equation (15) and multiply by cf to get cf · (⊗) · cross(af , af).

Now we will use this equation to derive a definition for multiplication. Suppose
that we have two matrices S and T with (a+1, b+1) = dim(S) and (b+1, c+1) =
dim(T) (thus the matrices are conformable). Then, writing mult as the prefix
matrix multiplication operator in the place of ⊗ in the equation above (but using
normal matrix multiplication elsewhere), we can use this equation to derive an
obfuscation:

cf (mult(cross(af , af) (S,T)))
= {definition of cross}

cf (mult(af (S), af (T)))
= {definition of af with appropriate dimensions}

cf (mult(Ua S Vb,Ub T Vc))
= {definition of mult}

cf (Ua S Vb Ub T Vc)
= {definition of cf with (a+ 1, c+ 1) = dim(Ua S Vb Ub T Vc)}

Ua
−1 (Ua S Vb Ub T Vc)Vc

−1

= {associativity of matrix multiplication and inverses}
SVb Ub T

Thus, multB(S,T) = SVb Ub T where (a+ 1, b+ 1) = dim(S).

A.4 Arithmetic Operations for the Number Obfuscation

In Section 5.1 we define an obfuscation for numbers by representing a num-
ber as the determinant of a matrix. In this section, we discuss the definitions of

Creating Transformations for Matrix Obfuscation 291

the arithmetic operations in more details. We suppose that n �
(
a b
c d

)
and

p �
(
e f
g h

)
using the conversion function defined in Section 5.1. We need to

find definitions for plus, times and recip.
First we want an operation that adds together n and p. We need to find a

matrix that satisfies (
j k
l m

)
= plus(

(
a b
c d

)
,

(
e f
g h

)
)

Under our obfuscation we know that a + d = n + 1 and e + h = p + 1 and so
the resulting matrix must obfuscate n + p = a + d + e + h − 2. Thus we need
j + m = a + d + e + h− 1 so let us take j = a + e− 1 and m = d + h. We are
free to choose any non-zero value for k so we take k = b × f . Finally, from the
definition of cf we need

l =
(j − 1)(n+ p− j)

k

=
((a+ e− 1) − 1)((a+ d+ e+ h− 2) − (a+ e− 1))

bf

=
(a+ e− 2)(d+ h− 1)

bf

Thus,

plus(
(
a b
c d

)
,

(
e f
g h

)
) =

⎛⎝ a+ e− 1 bf

(a+e−2)(d+h−1)
bf d+ h

⎞⎠
Note that this operation is commutative (as with +) but, as we free to choose
any non-zero value of k, we could easily make this operation non-commutative.

Next, we need to a find a matrix that satisfies(
j k
l m

)
= times(

(
a b
c d

)
,

(
e f
g h

)
)

We know that n = a + d − 1 and p = e + h − 1 and so we need our resulting
matrix to obfuscate n × p = (a + d − 1)(e + h − 1). Expanding this expression
we obtain:

n× p = (a+ d)(e+ h) − (e+ h) − (a+ d) + 1

So we take j = (a+ d)(e+ h) + 1 and m = 1 − (a+ d) − (e+ h). We can choose
any non-zero value for k so (as before) let us take k = b×f . Using the definition
of cf , we have that

l =
(j − 1)(n× p− j)

k

=
(((a+ d)(e+ h) + 1) − 1)((a+ d− 1)(e+ h− 1) − ((a+ d)(e+ h) + 1))

bf

=
−(a+ d)(e+ h)(a+ d+ e+ h)

bf

292 S. Drape and I. Voiculescu

Thus

times(
(
a b
c d

)
,

(
e f
g h

)
) =

⎛⎝ (a+ d)(e+ h) + 1 bf

−(a+d)(e+h)(a+d+e+h)
bf 1 − a− d− e− h

⎞⎠
Finally, we would like to find a matrix that satisfies(

j k
l m

)
= recip(

(
a b
c d

)
)

Under our obfuscation, we know that n = a+ d− 1 and so we need the result of
the operation to obfuscate 1

n = 1
a+d−1 . We need the trace of the result matrix

to be 1 + 1
n and so:

j +m = 1 +
1
n

= 1 +
1

a+ d− 1
=

a+ d

a+ d− 1

So let us take j = d
a+d−1 and m = a

a+d−1 . Again, we have a free choice for
non-zero k so let’s take k = b. From the definition of cf we need

l =
(j − 1)(1

n − j)
k

=
(

1
b

)(
d

a+ d− 1
− 1
)(

1
a+ d− 1

− d

a+ d− 1

)

=
(

1
b

)(
1 − a

a+ d− 1

)(
1 − d

a+ d− 1

)

=
(1 − a)(1 − d)
b(a+ d− 1)2

Hence,

recip(
(
a b
c d

)
) =

⎛⎜⎝
d

a+d−1 b

(a−1)(d−1)
b(a+d−1)2

a
a+d−1

⎞⎟⎠
Note that this operation is undefined if a+ d− 1 = 0 i.e. if n = 0.

We can easily prove that these operations are correct by using Equations (2)
or (15) as appropriate. The proofs of correctness are fairly straightforward (as
we used our conversion function to define our matrices); they essentially check
that the determinants of the matrices are correct.

Abstract Interpretation
from a Topological Perspective

David A. Schmidt�

Kansas State University, Manhattan, Kansas, USA
schmidt@cis.ksu.edu

Abstract. We develop abstract interpretation from topological princi-
ples by relaxing the definitions of open set and continuity; key results
still hold. We study families of closed and open sets and show they gener-
ate post- and pre-condition analyses, respectively. Giacobazzi’s forwards-
and backwards-complete functions are characterized by the topologically
closed and continuous maps, respectively. Finally, we show that Smyth’s
upper and lower topologies for powersets induce the overapproximat-
ing and underapproximating transition functions used for abstract-model
checking.

1 Introduction

Topology is a major force in mathematics — it is the study of properties (open
sets) and functions that behave well (are continuous) regarding the properties.
For example, the real line, IR, has as open sets the open intervals, (a, b). A
number r ∈ IR has property (a, b) when r ∈ (a, b), e.g., π ∈ (3, 4). A function
f : IR → IR is topologically continuous when it maps arguments “close together”
(sharing many open sets) to answers “close together” (sharing equally many open
sets), e.g., area(r) = πr2 is continuous with respect to intervals. The continuous
functions on the real line are exactly the topologically continuous functions.1

One application of topology to computing is Scott-domain theory [19]: To
solve the domain equation, D = D → D, Scott needed to limit the cardinality of
functions on D. Continuity was the appropriate criterion: For complete lattice
L, Scott defined L’s open sets to be those subsets of L that are (i) upwards
closed and (ii) closed under tails of chains.2 Scott proved that the functions that
are topologically continuous for his Scott topology of L are exactly the chain-
continuous functions on L. By restricting D → D to the continuous functions,
Scott limited its cardinality so that the recursive domain equation had a solution.

Smyth [24] suggested that a domain’s Scott topology defines all the computable
properties of the domain, and he established correspondences between “upper,”
� Supported by NSF ITR-0326577.
1 In contrast, g(r) = if r �= 9 then r2 else 0 is discontinuous — the “closeness” of

answers is destroyed at argument 9.
2 That is, for every chain, C = {c0, c1, · · · ci, · · ·} ⊆ L, when �C ∈ U , for open set
U ⊆ L, then there exists some ck ∈ C such that ck ∈ U also. This means C’s tail,
from ck onwards, is in U .

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 293–308, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

294 D.A. Schmidt

“lower,” and “convex” topologies to the three main variants of powerdomains
[15]. Smyth’s observations generated intensive research on the Stone duality
within domain theory, leading to “domain theory in logical form” [1].

Given that topology is the study of computing on properties, one would believe
that it would be central to the theory of abstract interpretation [7], which studies
exactly this topic. There are indeed some precedents.

In [8], Cousot and Cousot employed topology to establish soundness of con-
vergence: They proposed a T0-topology, the �-topology, for complete lattices,
where the basic open sets are up-closed and closed under finite meets. As with
the Scott topology, a function is chain continuous iff it is �-topologically con-
tinuous. (The two topologies coincide for algebraic lattices.) The �-topology
explains how computation on an abstract interpretation preserves properties:
When lattice L’s abstract interpretation is defined by an upper closure opera-
tion, ρ : L → L, the �-topology on ρ[L] is exactly the relative topology on L:
every open U ′ ⊆ ρ[L] equals U ∩ ρ[L], for some open U ⊆ L.

One application where topology has been employed is backwards strictness
analysis. A characterization of a strictness-analysis domain as open-set properties
was made by Hunt [16], who observed that Clack and Peyton Jones’s backwards
strictness analysis employed abstract values called frontiers, which were finite
subsets of a finite lattice, D, that represented up-closed subsets of D. Since up-
closed subsets of a finite lattice are Scott-open, all monotone functions f : D →
D are Scott-continuous, implying f−1 maps frontiers to frontiers, ensuring that
the analysis preserved strictness properties “on the nose.” (In the present paper,
we will show that such functions f are therefore backwards complete [14].)

Dybjer formalized this property for denotational semantics definitions and
domain equations, axiomatizing the Scott topology of the latter as well as the
law that the inverse of a Scott-continuous function maps open sets to open sets.
He then showed strictness analysis is an instance of his axiomatization [12].

The most striking application of topology to abstract domains came from
Jensen [17], who utilized Abramsky’s domain theory in logical form [1]. Recall
that Abramsky applied Stone duality [18] to domain theory, generating a Scott
domain from a set of atomic elements that act as primitive propositions in a
domain logic, closing them under a set of frame axioms. Jensen observed that
one can use a finite subset of the atomic elements with the frame axioms to
generate an abstract domain that approximates the domain generated from all
the atomic elements. Jensen called his methodology abstract interpretation in
logical form and applied it to strictness analysis, as did Benton, who proposed
his own “strictness logic” [2].

The present paper steps back from strictness analysis and frame structures
and poses a general question: “Starting from naive set theory, in what sense
does an abstract domain define a “topology” on the concrete domain that it
approximates?” Based on this “topology,” what does it mean for a function to
preserve and reflect the “open” and “closed” sets? How do these notions define
both forwards and backwards static analyses and how do they ensure soundness
and completeness of the analyses?

Abstract Interpretation from a Topological Perspective 295

f

U

V

r f(r)

Fig. 1. Continuous function, f : When f(r) falls within property (open set) V , then f
maps some property, U , of r within V also

To answer these questions, we develop abstract interpretation from topologi-
cal principles by relaxing the definitions of open set and continuity so that they
apply to arbitrary families of property sets. Surprisingly, key results still hold.
When we study families of closed sets and open sets (induced from closure and
interior operations), we discover that closed families generate postcondition anal-
yses and open families generate precondition analyses (e.g., backwards strictness
analyses). Even more striking, Giacobazzi’s forwards- and backwards-complete
functions [13,14] are characterized as the topologically closed and continuous
maps, respectively. Finally, we show that Smyth’s upper and lower topologies
for powersets [25] induce the overapproximating and underapproximating tran-
sition functions proposed by Cleaveland, et al. [5], and Dams, et al. [11], for
abstract-model checking.

2 Basics of Topology and Abstract Interpretation

We provide here the bare essentials of topology; details appear later as needed.
(Willard [26] is a good reference.) For a set, Σ, a topology, OΣ ⊆ P(Σ), is a
family of property sets, called the open sets, that are closed under union (for all
S ⊆ OΣ ,

⋃
S ∈ OΣ) and binary intersection (U1 ∩U2 ∈ OΣ when U1, U2 ∈ OΣ)

and include Σ (
⋃

OΣ = Σ). The complement, ∼U = Σ−U , of an open set U is
a closed set; define CΣ = {∼U | U ∈ OΣ}. For topology OΣ , a base is a subset,
BΣ ⊆ OΣ , such that every U ∈ OΣ is the union of some members of the base
(for all U ∈ OΣ , there exists S ⊆ BΣ such that ∪S = U). The members of the
base are called basic-open sets. The topology on the real line uses open intervals,
(a, b), for a, b ∈ IR, as its base.

For S ⊆ Σ, its interior, ι(S), is the largest open set within S. Indeed, ι(S) =⋃
{U ∈ OΣ | U ⊆ S}. The smallest closed set enclosing S is its closure, ρ(S) =⋂
{K | S ⊆ K, K ∈ CΣ}.
Given topologies for sets Σ and Δ, there are standard definitions for the

coarsest topologies for Σ ×Δ, Σ → Δ, etc. [26].
A function, f : Σ → Σ, is (topologically) continuous iff for all s ∈ Σ and

V ∈ OΣ , if f(s) ∈ V , then there exists some U ∈ OΣ such that s ∈ U and
f [U] ⊆ V (where lift f to P(Σ) → P(Σ): f [U] = {f(x) | x ∈ U}). See Figure 1.

296 D.A. Schmidt

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−3,−2,−1}

{−4,−1}
{−2}

{0}

{...,−2,−1,0,1,2,...}

{}

{−4,−1,0}

pos

zero

none

any

neg
α

P(Int)
Sign

γ(none) = ∅; γ(neg) = {· · · ,−2,−1}; γ(zero) = {0};
γ(pos) = {1, 2, · · ·}; γ(any) = Int

ρ = γ ◦ α : P(Int) → P(Int) ρ[P(Int)] = {∅, {· · · ,−2,−1}, {0}, {1, 2, · · ·}, Int}
ρ(S) =

⋂{K ∈ ρ[P(Int)] | S ⊆ K}, e.g., ρ{1, 4} = {1, 2, 3, · · ·}

succ(i) = i+ 1
negate(i) = −i
sq(i) = i ∗ i

succ�(none) = none

succ�(neg) = any

succ�(zero) = pos
succ�(pos) = pos

succ�(any) = any

negate�(none) = none

negate�(neg) = pos

negate�(zero) = zero
negate�(pos) = neg

negate�(any) = any

sq�(none) = none

sq�(neg) = pos

sq�(zero) = zero
sq�(pos) = pos

sq�(any) = any

Fig. 2. Abstract domain, Sign, and the properties, ρ[P(Int)], it represents

A crucial result is that f is continuous iff for all U ∈ OΣ , f−1(U) ∈ OΣ also,
where f−1(U) = {x ∈ Σ | f(x) ∈ U}. Function f is an open map iff for all
U ∈ OΣ , f [U] ∈ OΣ and it is a closed map iff for all K ∈ CΣ , f [K] ∈ CΣ .

Abstract interpretation is computational approximation by computation on
properties: For concrete data domain, Σ, select a set of property names, A, such
that each a ∈ A names the set γ(a) ⊆ Σ, for γ : A → P(Σ). γ identifies the
family of properties modelled by A. Order A s.t. a$ a′ iff γ(a) ⊆ γ(a′) — it
should be a partial ordering.

Figure 2 displays an approximation of the integers, Int , by sign properties,Sign .
(Notice how few properties are identified — just {none,neg , zero, pos , any}.)

When γ possesses an adjoint, α : P(Σ) → Sign, then there is a Galois con-
nection3 and ρ = γ ◦ α is an upper closure operator — ρ : P(Σ) → P(Σ) is
monotone, extensive (S ⊆ ρ(S)), and idempotent (ρ◦ρ = ρ). ρ’s range, ρ[P(Σ)],
identifies a family of property sets, but the family is typically not a topology,
although it is closed under intersection (for all S ⊆ ρ[P(Σ)],

⋂
S ∈ ρ[P(Σ)]).

Computation functions, f : Σ → Σ, are soundly approximated by f � : A → A
iff α(f [S])$ f �(α(S)), for all S ∈ P(Σ) (equivalently, iff f [γ(a)] ⊆ γ(f �(a)), for
all a ∈ A) where we “lift” f to f [S] = {f(s) | s ∈ S}. See Figure 2.

The most precise such f � is defined f �
0 = α ◦ f ◦ γ, where again, f is “lifted.”

When f is approximated exactly by f �
0 such that f◦γ = γ◦f �

0 , we say f is forwards

3 That is, S ⊆ γ(a) iff α(S)� a, for all S ∈ P(Σ) and a ∈ A.

Abstract Interpretation from a Topological Perspective 297

For f : P(Σ) → P(Σ), f � : A→ A is sound iff

α ◦ f � f � ◦ α or, equivalently, f ◦ γ � γ ◦ f �

α
#

f # S)α(()α(S)

f(S)S
f

α
f a

(a)

f #
f #(a)

γ (a)()ff

γγ

γ

α and γ act as semi-homomorphisms; f � is a postcondition transformer. The
strongest transformer is f �

0 = α ◦ f ◦ γ. Next, define ρ = γ ◦ α : P(Σ) → P(Σ):

Forwards completeness [13]:

f ◦ γ = γ ◦ f �

γ
#

γ (a)

f #(a)

γ (a)()f
f

a

γ
f

γ is a homomorphism from A to P(Σ).
f is forwards complete (with respect to
f �
0) iff for all K ∈ ρ[P(Σ)], f [K] ∈
ρ[P(Σ)].

Backwards completeness [9,14]:

α ◦ f = f � ◦ α

α
#α(S) f # S)α(()

f(S)S
f

α
f

α is a homomorphism from P(Σ) to A.
f is backwards complete (w.r.t. f �

0) iff
for all S, S′ ∈ P(Σ), ρ(S) = ρ(S′) im-
plies ρ(f [S]) = ρ(f [S′]).

Fig. 3. Sound and complete forms of abstract functions

complete; f is forwards complete iff for all K ∈ ρ[P(Σ)], f [K] ∈ ρ[P(Σ)], that
is, iff f ◦ρ = ρ◦f ◦ρ [13]. That is, f maps properties to properties “on the nose.”
When f is approximated exactly such that α ◦ f = f �

0 ◦α, we say f is backwards
complete; f is backwards complete iff for all S, S′ ∈ P(Σ), ρ(S) = ρ(S′) implies
ρ(f [S]) = ρ(f [S′]), that is, iff ρ◦f = ρ◦f ◦ρ. [14,21]. That is, f maps ρ-equivalent
arguments to ρ-equivalent answers. See Figure 3. In Figure 2, sq is backwards
but not forwards complete; negate is both backwards and forwards complete,
and succ is neither.

Giacobazzi and his colleagues defined iterative refinement methods, called
shell constructions, that add new elements to an abstract domain so that a in-
complete function f becomes forwards or backwards complete, as desired [13,14].
They showed that the shell constructions formalize the CEGAR refinement
method of abstract model checking [3].

This paper’s main result is the equivalence of backwards and forwards com-
pleteness to topological continuity and topologically closed maps, respectively.

3 Property Families, Function Preservation and
Reflection

We now develop abstract interpretation with topological concepts.

298 D.A. Schmidt

For a concrete state set, Σ, choose some FΣ ⊆ P(Σ) as a family of properties.
(In Figure 2, the family SignInt is {∅, {i | i < 0}, {0}, {i | i > 0}, Int}.)

For each U ∈ FΣ , its complement is ∼U = Σ − U ; for FΣ, its complement
family, ∼ FΣ, is {∼U | U ∈ FΣ}. (E.g., ∼ SignInt is {Int, {i | i ≥ 0}, {i | i �=
0}, {i | i ≤ 0}, ∅}.)

When property family OΣ ⊆ P(Σ) is closed under unions, then OΣ is an
open family. Every open family has an interior operation, ι, which computes
the largest property contained within a set: ι : P(Σ) → OΣ is defined ι(S) =
∪{U ∈ OΣ | U ⊆ S}.

Dually, if a property family CΣ is closed under intersections, it is a closed
family (Moore family [9]). Every closed family has a closure operation, ρ, which
computes the smallest property covering a set: ρ : Σ → CΣ is defined ρ(S) =
∩{K ∈ CΣ | S ⊆ K}. (SignInt in Figure 2 is a closed (but not open) family,
whose closure operation is the ρ stated in the Figure.)

If OΣ is an open family, then its complement is a closed family (and vice
versa), where

⋂
i∈I Ki = ∼

⋃
i∈I ∼Ki (where

⋃
i∈I Ui = ∼

⋂
i∈I ∼Ui).

Let f : Σ → Δ be a function; define f : P(Σ) → P(Δ) as f [S] = {f(s) | s ∈
S}. Next, define function inverse, f−1 : P(Δ) → P(Σ), as f−1(T) = {s ∈
Σ | f(s) ∈ T }.

For property families, FΣ and FΔ, f : Σ → Δ is FΣFΔ-preserving iff for all
U ∈ FΣ , f [U] ∈ FΔ. In such a case, f : FΣ → FΔ is well defined. To reduce
notation, we use functions, f : Σ → Σ, with the same domain and codomain (and
we say, “f is FΣ-preserving”), but all results that follow hold for functions with
distinct codomains and domains, too. (In Figure 2, negate is SignInt -preserving.)

Definition 1. For s ∈ Σ and S ⊆ Σ, let Us (respectively, US) denote a member
of FΣ such that s ∈ Us (respectively, S ⊆ US).

(i) For s ∈ Σ, f : Σ → Σ is continuous at s iff for all Vf(s) ∈ FΣ, there exists
some Us ∈ FΣ such that f [Us] ⊆ Vf(s).

(ii) For S ⊆ Σ, f is continuous at S iff for all Vf [S] ∈ FΣ, there exists some
US ∈ FΣ such that f [US] ⊆ Vf [S].

(iii) f is FΣ-reflecting iff for all V ∈ FΣ, f−1(V) ∈ FΣ, that is, f−1 is
FΣ-preserving.

Proposition 2. (i) f is FΣ-reflecting iff f is continuous at S, for all S ⊆ Σ.
(ii) If FΣ is an open family, then f is FΣ-reflecting iff f is continuous at s, for
all s ∈ Σ.

Proof. We prove (i); (ii) is a standard result [26]. Only if: for V ∈ FΣ , consider
f−1(V). Because f is continuous at all S ⊆ Σ, there is some Uf−1(V) ∈ FΣ such
that f [Uf−1(V)] ⊆ V . But Uf−1(V) must equal f−1(V) for this to hold.

If: for S ⊆ Σ, say that VS ∈ FΣ. Since f is reflecting, f−1(VS) ∈ FΣ. Thus,
f [f−1(VS)] ⊆ VS . �

The proofs in this paper rely on naive-set reasoning (cf. Willard [26]) and will
often be omitted. We retain these critical dualities for all f and FΣ :

Abstract Interpretation from a Topological Perspective 299

Proposition 3. f : Σ → Σ is ∼FΣ-reflecting iff f is FΣ-reflecting.
f is FΣ-preserving iff f̃ = ∼ ◦f◦ ∼ is ∼FΣ-preserving.

In Figure 2, negate and square are SignInt -reflecting (but succ is not). This
makes the two functions ∼ SignInt reflecting, where ∼ SignInt = {Int , {i | i ≥
0}, {i | i �= 0}, {i | i ≤ 0}, ∅}. Since negate is SignInt -preserving, ˜negate is
∼ SignInt -preserving, e.g., ˜negate{i | i ≥ 0} = {i | i ≤ 0}. We exploit such
dualities in the next section.

4 Applications: Logics, Postconditions, Preconditions

A property family lists the properties that can be computed by an abstract
interpretation. To implement it, we name each of the sets in the family, e.g.,
Figure 2 shows that Sign = {none,neg, zero, pos , any} are the names for SignInt

and γ : Sign → SignInt concretizes each name to its property set. Within Sign ,
a $ a′ iff γ(a) ⊆ γ(a′). To reduce notation, the abstract interpretations in this
paper are defined directly upon the property sets rather upon than the names
of the sets [6,14]. For example, we write succ�{0} = {i | i > 0} rather than
succ�(zero) = pos .

There is a weakened form of Stone duality here [1,18]: a property family FΣ

has a frame-like “logic” whose “primitive propositions” are the U ∈ FΣ and
“connectives” are the functions that are FΣ-preserving. Based on Figure 2, we
know that SignInt ’s logic includes

φ ::= U | φ1 ∩ φ2 | negate φ

where U ∈ SignInt . ∩ appears because the family is closed; negate appears
because it is SignInt -preserving. A set S has property φ iff S ⊆ φ, e.g., {1, 3} has
property negate{i | i < 0}. (When FΣ is a topology, its logic is a frame [18]
and includes false (empty set), true (Σ), disjunction (union), and conjunction
(intersection).)

Ideally, for conducting an abstract interpretation, a program’s transition func-
tions, f : Σ → Σ, are A-preserving — fall within the logic (cf. [16]). This
rarely happens, e.g., a program that counts by ones uses the transition function,
succ : Int → Int , succ(i) = i + 1, which is not SignInt -preserving. In this case,
we must define a succ� : SignInt → SignInt to soundly approximate succ.

If property family CΣ is closed, we use its closure operator, ρ, to define from f :
Σ → Σ its overapproximation f � : CΣ → CΣ as f � = ρ◦f . Function f � generates
sound postconditions, because this relational assertion (“Hoare triple”),

{φ}f{f �(φ)}

holds true (where {φ}f{ψ} asserts f [φ] ⊆ ψ, for φ, ψ ∈ CΣ). Because f �(φ) =
ρ(f [φ]) is the smallest set in CΣ that contains f [φ], it is the strongest postcondi-
tion of f and φ expressible in CΣ: {φ}f{ψ} implies {φ}f{f �(φ)} and f �(φ) ⊆ ψ.4

4 If FΣ is not closed, then the f : Σ → Σ must be approximated by some f � : FΣ →
FΣ such that {U}f{f �(U)} holds for all U ∈ FΣ .

300 D.A. Schmidt

{ }

{1,2,3,...}{0}

{...,−1,0,1,...}

{...,−2,−1,0}

{...,−2,−1}

{...,−2,−1,1,2,...}
{0,1,2,3,...}

IntSignO ρ∪(S) = ∪{ρ{s} | s ∈ S}
f � = ρ∪ ◦ f
p̃ref�(U) = ∪{V ∈ SignOInt | f �(V) ⊆
U}
For succ(i) = i+ 1,

succ�{i | i < 0} = {i | i ≤ 0}
succ�{0} = {i | i > 0}
succ�{i | i > 0} = {i | i > 0}
succ�{i | i ≤ 0} = Int
succ�{i | i �= 0} = Int , etc.

p̃resucc�{i | i > 0} = {i | i ≥ 0}
p̃resucc�{0} = ∅
p̃resucc�{i | i < 0} = ∅
p̃resucc�{i | i ≤ 0} = {i | i < 0}, etc.

Fig. 4. Using SignInt = {∅, {i | i < 0}, {0}, {i | i > 0}, Int} as a base for a topology

(For example, for SignInt , succ� = ρ ◦ succ, so that succ�{0} = ρ(succ{0}) =
ρ{1} = {i | i ≥ 0}, etc.)

When f is forwards complete (cf. Figure 3), we have completeness in the entire
codomain: for every S ⊆ P(Σ), {φ}f{S} implies {φ}f{f �(φ)} and f �(φ) ⊆ S.
When f is backwards complete, completeness extends to the entire domain: for
every S ⊆ P(Σ), {S}f{ψ} implies {S}f{f �(ρ(S))} and f �(ρ(S)) ⊆ ψ. But
each completeness notion yields nothing more in the logic than the strongest
postcondition — what deeper property is hiding here? (See the next section.)

In summary, a forwards static analysis calculates postconditions [6,7], and the
development suggests this moral:

Use a closed family of properties to generate a postcondition analysis.

What if we desire preconditions from a forwards analysis? We must first define
f �’s inverse, f �−

CΣ
: CΣ → P(CΣ), as

(�) f �−
CΣ

(U) = {V ∈ CΣ | f �(V) ⊆ U}

We have, for all V ∈ f �−
CΣ

(φ), that {V }f{φ} holds true, but ∪f �−
CΣ

(U) itself is
not necessarily expressible in the closed family, CΣ.

To repair the flaw, we close CΣ under unions, that is, we use it as a base for
a topology on Σ, namely, COΣ = {∪T | T ⊆ CΣ}, which is both an open and a
closed family. (The closure map ρ∪ : COΣ → COΣ equals ρ∪(S) = ∪{ρ{s} | s ∈
S}.) Now, we approximate with COΣ: for f : Σ → Σ, we define f � : COΣ →
COΣ as f � = ρ∪ ◦ f ; we define f �−

COΣ
: COΣ → P(COΣ) as f �−

COΣ
(U) =

{V ∈ COΣ | f �(V) ⊆ U}, like before; and this makes f �’s weakest precondition,
p̃ref� : COΣ → COΣ , well defined: p̃ref�(U) = ∪f �−

COΣ
(U).5

5 Since COΣ possesses an interior operation, ι, we can define the precondition as
merely ι ◦ f−1, and one can prove that p̃ref� = ι ◦ f−1 [22].

Abstract Interpretation from a Topological Perspective 301

{0}

{0,1}

{ }

{0,1,2,3,...}

{1,2,3,...}

Count
Nat For Nat = {0, 1, 2, · · ·},

CountNat = {∅, {0}, {0, 1}, {1, 2, 3, · · ·},Nat}

ι(S) = ∪{U | U ⊆ S}, e.g.,
ι{0, 1, 2} = {0, 1}
ι{2, 4, 6, 8, · · ·} = ∅

For succ(n) = n+ 1,
succ−o = ι ◦ succ−1, e.g.,

succ−o{0, 1} = {0}
succ−o{0} = ∅ = succ−o(∅)
succ−o{1, 2, 3, · · ·} = Nat = succ−o(Nat)

Fig. 5. Open family for counting analysis

In lattice theory, closure under unions is called disjunctive completion [10].
Figure 4 shows the disjunctive completion of SignInt to SignOInt and the pre-
condition function for succ�. Now, we have preconditions, but the extra sets gen-
erated by the disjunctive completion may make the abstract domain too large
for a practical static analysis.

If we are primarily interested in preconditions, we should start with an open
family of properties (one closed under unions), OΣ ⊆ P(Σ), so that we have
straightaway an interior operation, ι : Σ → OΣ . An open family’s logic includes
disjunction as well as the inverses of those functions that are OΣ-reflecting.

We underapproximate the inverses of transition functions: For f : Σ → Σ,
define f−o : OΣ → OΣ as f−o = ι ◦ f−1. This implies

{f−o(ψ)}f{ψ}

holds true and f−o(ψ) is the weakest precondition of f and ψ expressible in OΣ:
{φ}f{ψ} implies {f−o(ψ)}f{ψ} and φ ⊆ f−o(ψ). Further, we can formalize the
two forms of completeness with respect to ι, but we see in the next section a
topological characterization.

Figure 5 defines an open (but not closed) family, CountNat , for a backwards
counting analysis. The successor operation, succ : Nat → Nat , is CountNat -
reflecting, so succ−1 lives in the family’s logic and succ−o = succ−1. (See the
Figure.) Predecessor (pred(n) = n − 1) is not reflecting, and pred−o = ι ◦
pred−1 yields pred−o{0, 1} = ι{0, 1, 2} = {1}, etc. Abstract domain CountNat is
imperfect, e.g., it cannot prove the assertion, {{0}}succ; pred{{0}}. As indicated
by research on backwards strictness analysis [2,12,16,17], the moral is:

Use an open family of properties to generate a precondition analysis.

There is no need to work from a closed property family.6

Because the complement of a closed family is open (and vice versa), we can
move from a postcondition analysis to a precondition one: Say that CΣ is closed
6 But there is an adjoint here, P(Σ)op〈ι, id〉Oop

Σ — ⊆ becomes ⊇.

302 D.A. Schmidt

so that OΣ = ∼CΣ is open. First, every CΣ-reflecting f is OΣ-reflecting, and for
every CΣ-preserving f : Σ → Σ, f̃ is OΣ-preserving, by Proposition 3. (So, CΣ ’s
conjunction operation is preserved in OΣ ’s logic as disjunction.) We have

Lemma 4. For all f : Σ → Σ and S ⊆ Σ, ∼f−1(S) = f−1(∼S).
For closed family CΣ and OΣ = ∼CΣ, ∼ ◦ ρ = ι ◦ ∼.

Proposition 5. For all S ⊆ Σ, f̃−1(S) = f−1(S).˜(f−1)�(U) = f−o(U), for all U ∈ OΣ. (Note: ˜(f−1)� = ∼ ◦(f−1)�◦ ∼.)

Proof. We prove the second claim, ˜(f−1)�(U) = ∼ ◦ρ◦f−1◦ ∼ (∼K), where U =
∼K. This equals ∼ ρ(f−1(K)) = ι(∼ f−1(K)), by the previous lemma, which
equals ι(f−1(∼K)), by the lemma, which equals f−o(U). �

The last result says that, by using CΣ’s closure operator to define the overapprox-
imating (f−1)�, we can compute an underapproximating, weakest-precondition
analysis on OΣ = ∼CΣ defined as ˜(f−1)�.

As an example, consider ∼ SignInt = {Int , {i | i ≥ 0}, {i | i �= 0}, {i | i ≤
0}, ∅}, based on Figure 2. This open family’s logic includes

ψ ::= ∼U | ψ1 ∪ ψ2 | negate−1ψ | sq−1ψ, for U ∈ SignInt

Because succ is not SignInt -reflecting, we underapproximate it by succ−o =˜(succ−1)�. We have succ−o{i | i �= 0} = {i | i ≥ 0}; succ−oInt = Int ; and
succ−o(U) = ∅, otherwise. In this fashion, a postcondition analysis based on CΣ

defines a precondition analysis on ∼CΣ.
Finally, every FΣ possesses both a logic for validation (viz., FΣ ’s sets and its

preserving operators) as well as a dual, refutation logic: ∼ FΣ’s logic. We say
that S has property ¬φ if S ⊆ ∼ φ, for ∼ φ ∈ ∼ FΣ. This is the foundation
for three-valued static analyses [20], where one uses a single abstract domain to
compute validation, refutation, and “don’t know” judgements.

5 From Continuity to Completeness

As stated earlier, there is a correspondence between functions that preserve and
reflect property sets and abstract-interpretation-complete functions:

Recall that f : Σ → Σ is FΣ-preserving iff for all S ∈ FΣ , f [S] ∈ FΣ . But this
is exactly the definition of abstract-interpretation forwards completeness when
FΣ is a closed family. In topological terms, f is a closed map.

We now prove that FΣ-reflection is exactly backwards completeness when FΣ

is a closed family. For S, S′ ⊆ Σ, write S ≤FΣ S′ iff for all K ∈ FΣ , S ⊆ K
implies S′ ⊆ K. This is called the specialization ordering in topology. Write
S ≡FΣ S′ iff S ≤FΣ S′ and S′ ≤FΣ S. The following definition is the usual one
for abstract-interpretation backwards completeness:

Definition 6. For property family, FΣ, f : Σ → Σ is BFΣ -complete iff for all
S, S′ ⊆ Σ, S ≡FΣ S′ implies f [S] ≡FΣ f [S′].

Abstract Interpretation from a Topological Perspective 303

Proposition 7. If f is FΣ-reflecting, then it is BFΣ -complete.

Proof. Assume S ≤Σ S′ and show f [S] ≤Σ f [S′]: Say that f [S] ⊆ K ∈ FΣ ;
since f is reflecting, f−1(K) ∈ FΣ, too, and S ⊆ f−1(K). Because S ≤Σ S′,
S′ ⊆ f−1(K), implying f [S′] ⊆ K. �

The converse of the above might not hold, but say that CΣ is a closed family so
that ρ(S) = ∩{K ∈ CΣ | S ⊆ K}; we can prove the converse:

Lemma 8. For all S ⊆ Σ, S ≡CΣ ρ(S).
For all S, S′ ⊆ Σ, S ≡CΣ S′ iff ρ(S) = ρ(S′).

Lemma 9. The following are equivalent for closed family, CΣ:
(i) f is BCΣ -complete;
(ii) for all S ⊆ Σ, f [S] ≡CΣ f [ρ(S)];
(iii) ρ ◦ f = ρ ◦ f ◦ ρ.

For a closed family, reflection (topological continuity) is backwards completeness:

Theorem 10. For CΣ, f : Σ → Σ is BCΣ -complete iff f is CΣ-reflecting.

Proof. The if-part is already proved. For the only-if part, assume f [S] ⊆ K ∈ CΣ

and show there is some LS ∈ CΣ such that f [LS] ⊆ K. Let ρ(S) be the LS: we
have f [ρ(S)] ≡CΣ f [S] which implies f [ρ(S)] ⊆ K. Use the Lemma above. �

Corollary 11. (i) if f is backwards complete for CΣ, then f−1 is forwards com-
plete for both CΣ and ∼CΣ.

(ii) f is forwards complete for CΣ iff f̃ is forwards complete for ∼CΣ.

Proof. By Proposition 3 and the previous Theorem.

The characterizations of forwards completeness as property preservation and
backwards completeness as property reflection (continuity) apply to open fam-
ilies as well. They also link the shell constructions of Giacobazzi, et al. [13,14],
to refinements of topologies and the characterization of function continuity to
convergence of nets [26].

6 Relation to Partial-Order Backwards Completeness

The crucial characterization of backwards completeness by Giacobazzi, et al. [14]
is made in a “frame-theory” presentation [18], where (P(Σ),⊆) is abstracted to
a complete lattice, (D,$), and CΣ is abstracted to ρ[D] ⊆ D, namely, the fixed
points of upper closure map, ρ : D → D. We can rephrase their work in terms
of our development:

First, define f− : D → P(D) as f−(d) = {e ∈ D | f(e) $ d}. When
f− is chain-continuous, then f−(d) has a set of maximal points, denoted by
max(f−(d)). When f is an additive function, that is, f(�S) = �d∈Sf(d), for all

304 D.A. Schmidt

S ⊆ D, then max(f−(d)) is a singleton set. This is the case for the point-set
topology used in the previous section.

Let ρ[D] define D’s closed family of “properties” and let f : D → D be chain-
continuous. First, (i) f is continuous at d ∈ D iff for all e ∈ ρ[D], if f(d) $ e, then
there exists d′ ∈ ρ[D] such that d $ d′ and f(d′) $ e. Next, (ii) f is ρ-reflecting
iff for all e ∈ ρ[D], max((f−(d)) ⊆ ρ[D] (that is, the maximum elements of
f−(d) are in ρ[D]). It is easy to prove that (i) and (ii) are equivalent.

We define d ≡ρ[D] d
′ iff for all e ∈ ρ[D], d $ e iff d′ $ e, that is, iff ρ(d) = ρ(d′).

This yields the definition of backwards completeness: f is backwards-ρ-complete
if d ≡ρ[D] d

′ implies f(d) ≡ρ[D] f(d′) for all d, d′ ∈ D, that is, ρ ◦ f = ρ ◦ f ◦ ρ.
We have immediately the main result of Giacobazzi, et al. [14] in the “frame
theory”: f : D → D is backwards-ρ-complete iff it is ρ-reflecting.

7 Nondeterminism and semicontinuity

Model-checking applications of abstract interpretation commence with transition
relations on Σ×Σ, which we will treat as functions of arity, f : Σ → P(Σ). The
property family for P(Σ) is different from Σ’s and depends on how we define
f ’s preimage, a map, P(Σ) → P(Σ). We have two choices: for S ⊆ Σ,

pref (S) = {c ∈ Σ | f(c) ∩ S �= ∅}
p̃ref (S) = {c ∈ Σ | f(c) ⊆ S}

The following definitions come from Vietoris [25]:

Definition 12. For property family, FΣ ⊆ Σ,
f : Σ → P(Σ) is lower semicontinuous for FΣ iff pref is FΣ-preserving.
f : Σ → P(Σ) is upper semicontinuous for FΣ iff p̃ref is FΣ-preserving.

Say we want pref in the logic for FΣ; what property family for P(Σ) is
appropriate? The answer was found by Smyth [25]: define OL

FΣ
⊆ P(P(Σ)) to

be the open family generated by taking all unions of the base, BL
FΣ

= {∃U | U ∈
FΣ}, where ∃U = {S ⊆ Σ | S ∩ U �= ∅}. (Read ∃U as “all the sets that meet
property U”). Indeed, for all U ∈ FΣ , f−1(∃U) = pref (U). OL

FΣ
is called the

lower topology based on FΣ . This result is due to Smyth [25]:

Proposition 13. If OΣ ⊆ Σ is an open family for Σ, then f : Σ → P(Σ) is
lower semicontinuous for OΣ iff f is OΣOL

OΣ
-reflecting.

That is, pref lies in the logic for OΣ iff f is OΣOL
OΣ

-reflecting. When f : Σ →
P(Σ) is not lower semicontinuous, we simply use OΣ ’s interior operator, ι, to
approximate pref by ι ◦ pref : OΣ → OΣ , like in Section 4.

We can rephrase the previous Proposition in terms of its dual, closed family
and discover a well-travelled path: For open family, OΣ , and CΣ =∼OΣ, we have
that ∼ OL

OΣ
is a closed family whose members are all the intersections of sets

taken from the (co)base, BU
CΣ

= {∀K | K ∈ CΣ}, where ∀K = {S ⊆ Σ | S ⊆ K}.
(Read ∀K as “all the sets covered by property K.”) Indeed, for all K ∈ CΣ ,
f−1(∀K) = p̃ref (K). We name the closed family: CU

CΣ
= ∼OL

OΣ
.

Abstract Interpretation from a Topological Perspective 305

Let zero = {0}
neg = {i | i < 0}
pos = {i | i > 0}

Let ∀K = {S ⊆ Int | S ⊆ K}
Let K ∨K′ denote K ∪K′

{ }∀

(neg v pos)∀ (zero v pos)∀∀(neg v zero)

neg∀ pos∀

Int∀
U
SignO Int

zero

C

∀

sqrt : Int → P(Int)
sqrt(0) = {0}
sqrt(1) = {−1, 1} = sqrt(2) = sqrt(3)
sqrt(4) = {−2, 2} = sqrt(5), etc.
sqrt(−1) = ∅, etc.

p̃resqrt : P(Int) → P(Int)
p̃resqrt{0, 1} = {0}
p̃resqrt{−1, 0, 1} = {0, 1, 2, 3}
p̃resqrt{i | i �= 0} = {i | i �= 0}, etc.

sqrt� : CU
SignOInt

→ CU
SignOInt

sqrt�(zero) = ∀zero
sqrt�(pos) = ∀(neg ∨ pos)
sqrt�(neg) = ∀∅
sqrt�(Int) = ∀Int

sqrt�(neg ∨ pos) = ∀(neg ∨ pos)
sqrt�(zero ∨ neg) = ∀zero
sqrt�(zero ∨ pos) = ∀Int , etc.

p̃resqrt� : SignOInt → SignOInt

p̃resqrt�(neg ∨ pos) = neg ∨ pos
p̃resqrt�(pos) = ∅
p̃resqrt�(zero ∨ neg) = zero
p̃resqrt�(Int) = Int , etc.

Fig. 6. sqrt, upper topology on SignOInt , and sqrt�

Corollary 14. Let CΣ be a closed family and define OΣ = ∼CΣ.
pref is OΣ-preserving iff p̃ref is CΣ-preserving.
f is OΣOL

OΣ
-reflecting iff it is CΣCU

CΣ
-reflecting.

Hence, p̃ref is CΣ-preserving iff f is CΣCU
CΣ

-reflecting iff f is upper semicon-
tinuous for CΣ.

Proof. By Propositions 3 and 13. �

The corollary tells us p̃ref lies in CΣ ’s logic when f : Σ → P(Σ) is upper
semicontinuous. But what if f is not? Then we must approximate it by some
f � : CΣ → CU

CΣ
from which we induce a CΣ-preserving p̃ref� . (Alas, we have no

interior map to aid us, only a closure map.)
To do this, we need some insight: First, each M ∈ CU

CΣ
is a set of sets formed

as M =
⋂

i∈I{∀Ki | Ki ∈ CΣ}. Read property M as “∀K1∧∀K2∧· · ·∧∀Ki∧· · ·”
— M ’s members are sets covered by property K1 and covered by property K2
and ... covered by property Ki and so on. For f : Σ → P(Σ), we express its
relational assertions in the form,

{φ}f{∀ψ1 ∧ ∀ψ2 ∧ · · · ∧ ∀ψi ∧ · · ·}
By pointwise reasoning, the M defined above equals ∀

⋂
{Ki | Ki ∈ CΣ}, read as

“∀(K1 ∧ K2 ∧ · · · ∧ Ki ∧ · · ·).” But
⋂

{Ki | Ki ∈ CΣ} ∈ CΣ, meaning that the
relational assertion reverts to this benign format:

{φ}f{∀ψ}

306 D.A. Schmidt

for φ, ψ ∈ CΣ. (You can write it as “φ |= [f]ψ.”) The quantifier reminds us that
f ’s answer is a set of Σ-values, covered by ψ. And, φ ⊆ p̃ref (ψ) = f−1(∀ψ).

Say we approximate f : Σ → P(Σ) by f �(K) = ρU (f [K]), where ρU is the
closure operation for CU

CΣ
: ρU (T) =

⋂
{∀K | T ⊆ ∀K,K ∈ CΣ}. That is, ρU (T)

computes the conjunction of all properties K that cover all the sets in T . We
have, as usual, that {φ}f{f �(φ)}. Next, the approximation of p̃ref must be made
sound: p̃ref�(K) ⊆ p̃ref (K) = f−1(∀K), for all K ∈ CΣ. We work from Equation
(�) in Section 4; f �’s inverse image is

f �−
CΣ

(K) = {K ′ ∈ CΣ | f �(K ′) ⊆ ∀K}

We wish to define p̃ref�(K) = ∪f �−(K), but p̃ref� ’s image might fall outside
of CΣ . This issue arose in Section 4, and we repeat the development there:
build the disjunctive completion of CΣ (closure under unions), COΣ ; redefine
f � : COΣ → CU

COΣ
; and define p̃ref� : COΣ → COΣ as p̃ref�(K) = ∪f �−

COΣ
(K).

Figure 6 displays an integer square-root function, sqrt : Int → P(Int). The
disjunctive completion of SignInt produces the topology, SignOInt , in Figure 4,
from which we generate CU

SignOInt
, illustrated in Figure 6. This form of abstract

domain is used for checking the box-modality of modal-mu calculus.
There is a dual development. Starting again with Σ and its property family,

FΣ, define the property family for P(Σ), namely, OU
FΣ

⊆ P(P(Σ)), as the open
family generated by taking all unions of the base, BU

FΣ
= {∀U | U ∈ FΣ}, where

∀U = {S ⊆ Σ | S ⊆ U}. This is the upper topology based on FΣ . (Recall, for all
U ∈ FΣ , that f−1(∀U) = p̃ref (U).)

Proposition 15. [25] Let OΣ ⊆ Σ be an open family. f : Σ → P(Σ) is upper
semicontinuous for OΣ iff f is OΣOU

OΣ
-reflecting.

When f is not upper semicontinuous, we may use ι◦ p̃ref : OΣ → OΣ , where ι is
OΣ ’s interior operator. The dual goes as follows: CL

CΣ
= ∼OU

OΣ
, whose members

are all intersections of sets from the (co)base, BL
CΣ

= {∃K | K ∈ CΣ}, where
∃K = {S ⊆ Σ | S ∩K �= ∅}. For all K ∈ CΣ, f−1(∃K) = pref (K).

Corollary 16. p̃ref is OΣ-preserving iff pref is CΣ-preserving.
f is OΣOU

OΣ
-reflecting iff it is CΣCL

CΣ
-reflecting.

Hence, pref is CΣ-preserving iff f is CΣCL
CΣ

-reflecting iff f is lower semicon-
tinuous for CΣ.

Say that f : Σ → P(Σ) is not lower semicontinuous. When we approximate
it by f 	 : CΣ → CL

CΣ
, what is the result? What is pref�? The answer summarizes

significant research on underapproximation [5,11,23].
Each M ∈ CL

CΣ
is a set of sets of form M =

⋂
i∈I{∃Ki | Ki ∈ CΣ}. Read M

as “∃K1 ∧ ∃K2 ∧ · · · ∧ ∃Ki ∧ · · ·” — each of M ’s members is a set that meets
(witnesses) K1 and K2 and ... Ki and so on. For f : Σ → P(Σ), we express its
relational assertions in the form,

{φ}f{∃ψ1 ∧ ∃ψ2 ∧ · · · ∧ ∃ψi ∧ · · ·}

Abstract Interpretation from a Topological Perspective 307

Let K ∧K′ denote K ∩K′

presqrt : P(Int) → P(Int)
presqrt{0, 1} = {0, 1, 2, 3}
presqrtInt = {i | i ≥ 0}
presqrt{i | i < 0} = {i | i > 0}
etc. { }

∃neg v pos

v

pos∃zero∃neg∃
∃neg v pos zero∃ vpos∃neg zerov

Int∃

pos∃∃neg

v

zero∃ pos∃

v∃neg zero∃v

zero∃ pos∃∃neg

v v

∃

zero∃ vpos neg∃v∃neg zerov pos∃

v

P(P(Int)) "true"

"false"

C L
SignO

zero

Int

∃

sqrt� : SignInt → CL
SignOInt

sqrt�(pos) = ∃neg ∧ ∃pos
sqrt�(zero) = ∃zero
sqrt�(Int) = true

sqrt�(neg) = true

sqrt�(pos ∨ zero) = ∃Int

sqrt�(pos ∨ neg) = true

presqrt� : SignOInt → SignOInt

presqrt�(pos) = pos
presqrt�(neg) = pos

presqrt�(zero) = zero
presqrt�(Int) = zero ∨ pos
presqrt�(∅) = ∅
presqrt�(zero ∨ neg) = zero ∨ pos , etc.

Fig. 7. Lower topology on SignOInt and sqrt�

for ψi ∈ CΣ. (In the case of {φ}f{∃ψ} you can write “φ |= 〈f〉ψ.” And, φ ⊆
pref (ψ) = f−1(∃ψ).)

We approximate f : Σ → P(Σ) by f 	(K) = ρL(f [K]), where ρL is the closure
operation for CL

CΣ
: ρL(T) =

⋂
{∃K | T ⊆ ∃K, K ∈ CΣ}. That is, ρL(T) collects

all the properties, K, that are witnessed (met) by each of the sets in T . We have
{φ}f{f 	(φ)}, and f 	(φ) is the strongest postcondition in the logic associated
with CL

CΣ
, the “language of witnesses.” Once again, we define f 	−

CΣ
(K) = {K ′ ∈

CΣ | f 	(K ′) ⊆ ∃K} and pref�(K) = ∪f 	−
CΣ

(K). This is the definition used by
Cleaveland [5], Dams [11], and Schmidt [23] to prove that pref� computes weakest
preconditions for f within the logics for CΣ and CL

CΣ
. When pref� ’s image does

not fall within CΣ — see presqrt�(Int) in Figure 7, for example — disjunctive
completion of CΣ to a topology again saves the day. The final moral, contained
in Cousot and Cousot’s use of topology in 1977 [8], is:

Every abstract domain defines a base for a topology on the corresponding
concrete domain.

Acknowledgements. This paper was inspired by a presentation Mike Smyth
gave in Edinburgh in December 1982; I thank Mike for his clear, intuitive papers
and explanations. The trailblazing works of Radhia and Patrick Cousot and
Roberto Giacobazzi and his colleagues are also greatly appreciated. I also thank
the referees for their detailed comments and many helpful suggestions.

References

1. Abramsky, S.: Domain theory in logical form. Ann. Pure Appl. Logic 51, 1–77 (1991)
2. Benton, N.: Strictness logic and polymorphic invariance. In: Proc. Logical Found.

Comp. Sci, pp. 33–44 (1992)

308 D.A. Schmidt

3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

5. Cleaveland, R., Iyer, P., Yankelevich, D.: Optimality in abstractions of model check-
ing. In: Mycroft, A. (ed.) SAS 1995. LNCS, vol. 983. Springer, Heidelberg (1995)

6. Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N.
(eds.) Program Flow Analysis, pp. 303–342. Prentice-Hall, Englewood Cliffs (1981)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs. In: Proc. 4th ACM Symp. POPL, pp. 238–252 (1977)

8. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive
procedures. In: Neuhold, E.J. (ed.) Formal Description of Programming Concepts,
pp. 238–277. North-Holland, Amsterdam (1978)

9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proc. 6th ACM Symp. POPL, pp. 269–282 (1979)

10. Cousot, P., Cousot, R.: Higher-order abstract interpretation. In: Proceedings IEEE
Int. Conf. Computer Lang. (1994)

11. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems.
ACM Trans. Prog. Lang. Systems 19, 253–291 (1997)

12. Dybjer, P.: Inverse image analysis generalises strictness analysis. Information and
Computation 90, 194–216 (1991)

13. Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements
in abstract model checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126,
pp. 356–373. Springer, Heidelberg (2001)

14. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. J. ACM 47, 361–416 (2000)

15. Gunter, C., Scott, D.S.: Semantic domains. In: Handbook of Theoretical Computer
Science, vol. B, pp. 633–674. MIT Press, Cambridge (1991)

16. Hunt, S.: Frontiers and open sets in abstract intepretation. In: Proc. ACM Symp.
Functional Prog. and Comp. Architecture, pp. 194–216 (1989)

17. Jensen, T.: Abstract Interpretation in Logical Form. PhD thesis, Imperial College,
London (1992)

18. Johnstone, P.: Stone Spaces. Cambridge University Press, Cambridge (1986)
19. Reynolds, J.C.: Notes on a lattice-theoretic approach to the theory of computation.

Technical report, Computer Science, Syracuse University (1972)
20. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.

ACM TOPLAS 24, 217–298 (2002)
21. Schmidt, D.A.: Comparing completeness properties of static analyses and their log-

ics. In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 183–199. Springer,
Heidelberg (2006)

22. Schmidt, D.A.: Underapproximating predicate transformers. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 127–143. Springer, Heidelberg (2006)

23. Schmidt, D.A.: A calculus of logical relations for over- and underapproximating
static analyses. Science of Computer Programming 64, 29–53 (2007)

24. Smyth, M.B.: Effectively given domains. Theoretical Comp. Sci. 5, 257–274 (1977)
25. Smyth, M.B.: Powerdomains and predicate transformers: a topological view. In:

Dı́az, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 662–675. Springer, Heidelberg (1983)
26. Willard, S.: General Topology. Dover Publications (2004)

Interval Polyhedra: An Abstract Domain to Infer
Interval Linear Relationships�

Liqian Chen1,2, Antoine Miné2,3, Ji Wang1, and Patrick Cousot2,4

1 National Laboratory for Parallel and Distributed Processing, Changsha, P.R.China
wj@nudt.edu.cn

2 École Normale Supérieure, Paris, France
{chen,mine,cousot}@di.ens.fr

3 CNRS, France
4 CIMS, New York University, New York, NY, USA

Abstract. We introduce a new numerical abstract domain, so-called interval
polyhedra (itvPol), to infer and propagate interval linear constraints over program
variables. itvPol, which allows to represent constraints of the form

∑
k[ak , bk]xk ≤

c, is more expressive than the classic convex polyhedra domain and allows to
express certain non-convex (even unconnected) properties. The implementation
of itvPol can be constructed based on interval linear programming and an inter-
val variant of Fourier-Motzkin elimination. The preliminary experimental results
of our prototype are encouraging, especially for programs affected by interval
uncertainty, e.g., due to uncertain input data or interval-based abstractions of dis-
junctive, non-linear, or floating-point expressions. To our knowledge, this is the
first application of interval linear algebra to static analysis.

1 Introduction

Abstract interpretation [7] is a theory of semantics approximation. One application is
to design computable abstractions and achieve a trade-off between efficiency and pre-
cision. Abstract interpretation provides a generic framework for devising static analy-
ses to automatically infer dynamic properties of programs. The notion of an abstract
domain is a core concept in this framework, and is used to denote a specific kind of
computer-representable properties (such as a family of constraints) together with effi-
cient manipulation algorithms to perform abstract operations (such as join, meet, widen-
ing, etc.). In particular, numerical abstract domains focus on numerical relationships
among program variables. There exists a wide variety of numerical abstract domains
with different expressiveness and complexity, such as intervals (a ≤ x ≤ b) [6], oc-
tagons (±x ± y ≤ c) [20], convex polyhedra (Σkak xk ≤ b) [10].

In the analysis and verification of hardware and software systems, after modeling or
abstraction, the given application data may be inexact or affected by uncertainty, that
is, they are only known to lie in certain intervals. Particularly, to analyze programs in-
volving non-linear operations (e.g., multiplication or division of two expressions) or

� This work is supported by the INRIA project “Abstraction” common to CNRS and ENS in
France, and by the National Natural Science Foundation of China under Grant No.60725206.

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 309–325, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

310 L. Chen et al.

floating-point arithmetic, one may resort to a so-called linearization technique to ab-
stract non-linear or floating-point expressions into linear expressions with interval coef-
ficients (

∑
k[ak, bk]xk+[c, d]) [19,21]. Furthermore, when analyzing numerical programs

using a floating-point implementation (e.g., [4]) of a numerical abstract domain, a real
number in the analyzed program might be abstracted as an interval of two neighboring
floating-point numbers for soundness. Moreover, many floating-point algorithms can
only output safe bounds, even when the input is an exact singleton value (e.g., adding
two floating-point numbers in the floating-point interval domain). In other words, in-
tervals appear naturally in practice. Hence, it is useful to have a numerical abstract
domain that allows interval linear relationships among numerical program quantities to
be maintained during the analysis.

This paper presents a new abstract domain, interval polyhedra (itvPol), to infer rela-
tionships of the form Σk[ak, bk]× xk ≤ b over program variables xk (k = 1, . . . , n), where
constants ak, bk, c ∈ R are automatically inferred by the analysis. Intuitively, itvPol is
an interval version of the classic convex polyhedra domain. In general, an interval poly-
hedron is non-convex (even unconnected); it is the union of a family of convex polyhe-
dra. Thus, itvPol can naturally encode certain disjunctive information. In this paper, we
propose a method to abstract disjunctions using interval linear constraints. The itvPol
domain is implemented based on interval linear programming and an interval variant
of Fourier-Motzkin variable elimination. The preliminary experimental results of the
prototype implementation are promising on benchmark programs; itvPol can find more
precise invariants than the convex polyhedra domain without too much overhead.

The rest of the paper is organized as follows. Section 2 discusses some related work.
Section 3 reviews the basic theory of interval linear systems and interval linear program-
ming. Section 4 defines our numerical abstract domain itvPol. Section 5 describes the
domain operations of itvPol. In Section 6, possible applications of the itvPol domain are
discussed. Section 7 presents our prototype implementation together with preliminary
experimental results before Section 8 concludes.

2 Related Work

Numerical Abstract Domains. Most of the current numerical abstract domains can
only represent convex properties using a subset of standard linear constraints, which
makes the analysis tractable. Examples include intervals [6], octagons [20], convex
polyhedra [10], SubPolyhedra [17], etc. Few abstract domains natively allow repre-
senting non-convex sets (i.e., that are not disjunctive completion of known convex
domains), e.g., congruences [12], max-plus polyhedra [2], domain lifting by max ex-
pressions [13]. To deal with disjunctions, a well-known solution is to use disjunctive
completion [8,9,11] or reduced cardinal power [8]. Unfortunately, it can be very costly
and also the widening operators for such domains are difficult to design (e.g., as dis-
cussed in [3]).

The itvPol domain that we introduce in this article is closest to the classic domain of
convex polyhedra [10] but is strictly more expressive, since the coefficients of variables
are generalized to intervals. Our domain is orthogonal to max-plus polyhedra [2] in that

Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships 311

itvPol generalizes convex polyhedra [10] while max-plus polyhedra generalize octagons
[20]1. Moreover, itvPol can describe even some unconnected sets.

Interval Linear Systems. Solving interval linear systems is a challenging problem in
the community of interval analysis and interval linear algebra. This problem was first
considered by Oettli and Prager [22] in the middle of the 1960s. And since then, this
problem has received much attention [23,24]. A deep insight of the topological and
graph theoretical properties of the solution set was given in [14]. However, both check-
ing the solvability and finding the solution set of an interval linear system are NP-hard
[24]. Some algorithms have also been proposed for interval linear programming [5,15].

In contrast to the above community, we are interested in designing an abstract do-
main, and thus, need to design new operators tailored to the semantics of programs.

3 Preliminaries

In this section we briefly recall the basic theory and results on interval linear systems,
most of which can be found in [23,24]. We use the following notations. Let A ∈ Rm×n

be a matrix. Intervals are denoted using boldface letters, such as x, and their bounds are
denoted as x and x so that x = [x, x]. This notation is extended to linear algebra over
intervals. Let IR be the set of all intervals on R. Throughout the paper, intervals and
other interval objects in interval algebra are typeset in boldface letters.

3.1 Interval Linear System

Let A, A ∈ Rm×n be two matrices with A ≤ A, where comparison operators are defined
element-wise, then the set of matrices

A = [A, A] = {A ∈ Rm×n: A ≤ A ≤ A}
is called an interval matrix, and the matrices A, A are called its bounds. Let us define
the center matrix of A as Ac =

1
2 (A+ A) and the radius matrix as �A =

1
2 (A − A). Then,

A = [A, A] = [Ac − �A, Ac + �A]. An interval vector is a one-column interval matrix
d = [d, d] = {d ∈ Rm: d ≤ d ≤ d}, where d, d ∈ Rm and d ≤ d.

Let A be an m × n interval matrix and b be a vector of size m. The following system
of interval linear inequalities

Ax ≤ b

denotes an interval linear system, that is, the family of all systems of linear inequalities
Ax ≤ b such that A ∈ A.

Definition 1 (Weak solution). A vector x ∈ Rn is called a weak solution of the interval
linear system Ax ≤ b, if it satisfies Ax ≤ b for some A ∈ A. Furthermore, the set

Σ∃(A, b) = {x ∈ Rn:∃A ∈ A. Ax ≤ b}
is said to be the weak solution set of the system Ax ≤ b.

1 As an example, Fig. 1(1.a) depicts an itvPol element which cannot be represented by max-plus
polyhedra while Fig. 1(2.b) shows a max-plus polyhedron that is not in itvPol.

312 L. Chen et al.

The weak solution set of an interval linear system is characterized by the following
theorem [24].

Theorem 1. A vector x ∈ Rn is a weak solution of Ax ≤ b iff it satisfies Acx−�A|x| ≤ b.

In general, the weak solution set can be non-convex, and even unconnected (Fig. 1(1)).
The non-convexity can be derived from the non-linear factor |x| in Theorem 1.
A (closed) orthant is one of the 2n subsets of an n-dimensional Euclidean space defined
by constraining each Cartesian coordinate axis to be either nonnegative or nonpositive.
Note that, in a given orthant, each component of x keeps a constant sign, so the intersec-
tion of the weak solution set with each orthant can be described as a (possibly empty)
convex polyhedron. However, not all unions of convex polyhedra with at most one in
each orthant can be exactly encoded as interval linear systems (e.g., Fig. 1(2.c)).

The narrowest interval vector xH containing the weak solution set Σ∃(A, b), is called
the interval hull of Σ∃(A, b), i.e., xH

k = [xH
k , x

H
k], where xH

k = min{xk: x ∈ Σ∃(A, b)},
xH

k = max{xk: x ∈ Σ∃(A, b)}, for k = 1, . . . , n. Computing the interval hull of the solution
set Σ∃(A, b) is an NP-hard problem [23].

3.2 Interval Linear Programming

Let A ∈ IRm×n be an m × n interval matrix, b ∈ Rm be an m-dimensional vector, and
c ∈ IRn be an n-dimensional interval vector. The family of linear programming (LP)
problems

f (A, b, c) = min{cT x: Ax ≤ b}
with data satisfying

A ∈ A, c ∈ c
is called an interval linear programming (ILP) problem.

The interval [f (A, b, c), f (A, b, c)], where f (A, b, c) = inf{ f (A, b, c): A ∈ A, c ∈ c},
and f (A, b, c) = sup{ f (A, b, c): A ∈ A, c ∈ c}, is called the range of the optimal value of
the above ILP problem.

In this paper, we are only interested in computing the lower bound f (A, b, c). How-
ever, in general, to compute the exact f (A, b, c), in the worst case up to 2n LP problems
have to be solved, one for each orthant. In practice, [5] proposed an enumerative ap-
proach which can considerably reduce the number of LPs in many cases. Recently,
Jansson [15] proposed an iterative method to compute a safe lower bound for f (A, b, c)
by solving a sequence of midpoint problems, and in many cases, only a small compu-
tational effort is required. In the following sections, we use ILP as a black box.

4 The Interval Polyhedra Domain

We now introduce the interval polyhedra abstract domain (itvPol). The main idea is to
use interval linear inequality constraints in the representation of the new domain. An
important similarity between the itvPol domain and most existing numerical abstract
domains is that their elements can be defined as the solutions of systems of finitely
many constraints from a certain family. To some extent, one may consider the itvPol
domain as an interval version of the classic convex polyhedra domain which only sup-
ports standard (non-interval) linear constraints.

Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships 313

4.1 Representation

An interval polyhedron P is described as an interval linear system Ax ≤ b, where A ∈
IR

m×n is an interval matrix and b ∈ Rm is a plain vector of real numbers. It represents
the set γ(P) = Σ∃(A, b), and each point x ∈ γ(P) is a possible program environment (or
state), i.e., an assignment of numerical/real values to program variables. Note that with
respect to the weak solution set, an interval linear equation ϕ:

∑
k [ak, ak] × xk = [b, b]

can be represented as a pair of interval linear inequalities ϕ′:
∑

k [ak, ak] × xk ≤ b and
ϕ′′:

∑
k [−ak,−ak] × xk ≤ −b. The set of interval polyhedra has the following properties:

– Non-convexity: an interval polyhedron is non-convex in general, but its intersection
with each orthant in Rn gives a (possibly empty) convex polyhedron.

– Closed for intersection: the intersection of two interval polyhedra is also an interval
polyhedron.

– Non-closed for union: the union of two interval polyhedra may not be an interval
polyhedron.

In general, an interval polyhedron has a complicated shape. Fig. 1 shows some ex-
amples of interval polyhedra (1) as well as examples that are not interval polyhedra
(2). Specifically, (2.a), (2.b), (2.d) are not interval polyhedra because their intersection
with some orthant (e.g., the (+,+)-orthant) is not convex. (2.c) and (2.e) are not interval
polyhedra as they do not satisfy the topological properties described in [14].

(1)

x

y y

x x

y

x

y

x

y

(2)

x

y

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

Fig. 1. Examples that are (1) or are not (2) interval polyhedra in two dimensions. The examples
(1) correspond to the following interval linear systems: (1.a) {[−1, 1]x+y = 0, [−1, 1]y = 1}, (1.b)
{[−1, 0]x+y = [0, 1]}, (1.c) {[1, 2]x+[1, 2]y = [1, 2]}, (1.d) {[−1, 1]x+2y = [−2, 2], 2x+[−2, 1]y =
[−2, 2]}, (1.e) {[−1, 1]x = 1, [−1, 1]y = 1, x = [−2, 2], y = [−2, 2], x + y = [−1, 1]}.

An interval linear inequality ϕ is entailed by an interval polyhedron P, denoted as
P |= ϕ, iff γ(P) ⊆ γ(ϕ). The order relation 	 on interval polyhedra is defined as P1 	 P2

iff γ(P1) ⊆ γ(P2), i.e., ∀ϕ ∈ P2.P1 |= ϕ, which can be implemented using ILP. The
inclusion P1 	 P2 holds iff for all (

∑
k [ak, ak] × xk ≤ b) ∈ P2, μ ≤ b holds where

μ=max
∑

k [ak, ak] × xk subject to P1. However,	may be too expensive to compute. We
define an approximate order relation 	s on interval polyhedra based on syntactic repre-
sentations. Given ϕ:Σk[ak, ak]×xk ≤ b and ϕ′:Σk[a′k, a

′
k]×xk ≤ b′, ϕ 	s ϕ

′ iff b ≤ b′ and

314 L. Chen et al.

∀k.[ak, ak] ⊆ [a′k, a
′
k]. And P1 	s P2 iff for all ϕ2 ∈ P2 there exists some ϕ1 ∈ P1 such

that ϕ1 	s ϕ2. Then, P1 	s P2 implies P1 	 P2, while the converse does not hold. The
intersection of P1 and P2, denoted as P1�P2, is an interval polyhedron whose constraint
system is the conjunction of those of P1 and P2, thus γ(P1 � P2) = γ(P1)∩ γ(P2). Also,
we use the term bounding box of an interval polyhedron P, denoted as BB(P), to refer to
the interval hull xH of Σ∃(A, b). BB(P) can be computed by ILP, namely by calculating
max(min) xk subject to P, which is NP-hard (Sect. 3.1). In practice, BB(P) is updated
on-the-fly, and an over-approximated bounding box which is sound can be obtained by
cheaper methods, as in [4].

As in the classic convex polyhedra abstract domain, the constraint representation of
an interval polyhedron is not unique. E.g., the interval linear equation [−1, 1]x = 1 and
the inequality [−1, 1]x ≤ −1 have the same weak solution set {x ∈ [−∞,−1]∪ [1,+∞]}.
For efficiency reasons, it is desirable to have as few and simple constraints as possible.

Reduction. According to Theorem 1, an interval linear inequality ϕ:
∑

k [ak, ak] × xk ≤
b can be reduced to ϕ′:

∑
k [a′k, a

′
k] × xk ≤ b, where xk ∈ [xH

k , x
H
k] and

[a′k, a
′
k] =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[ak, ak] if xH
k ≥ 0,

[ak, ak] if xH
k ≤ 0,

[ak, ak] otherwise.
The reduction is useful in practice, since ϕ′ will cause less precision loss in the subse-
quent computations, e.g., in the interval combination operation (see Sect. 5.2.1).

Redundancy Removal. An interval linear inequality ϕ ∈ P is said to be redun-
dant when ϕ is entailed by the other constraints in P, that is, P \ {ϕ} |= ϕ. Given
ϕ: (

∑
k [ak, ak] × xk ≤ b) ∈ P, we can check whether ϕ is redundant by solving the

ILP problem: μ= max
∑

k [ak, ak] × xk subject to P \ {ϕ}. If μ ≤ b, then ϕ is redundant
and can be eliminated from P. This process is repeated for all inequalities in P. To be
more efficient, it is worth using lightweight methods first and resorting to the expen-
sive ILP-based method only when necessary. For example, given ϕ ∈ P, if there exists
another interval linear inequality ϕ′ ∈ P such that ϕ′ 	s ϕ, then ϕ is redundant in P.
Secondly, given ϕ: (

∑
k [ak, ak] × xk ≤ b) ∈ P, if ∀k.0 ∈ [ak, ak] and b ≥ 0, then ϕ defines

the universe space and can be removed from P.

4.2 itvPol as an (Abstracted) Reduced Cardinal Power of Convex Polyhedra

In this section we consider itvPol as a reduced cardinal power (see Sect. 10.2 of [8]) that
maps each orthant to a convex polyhedron, by exploiting the fact that the intersection
of an interval polyhedron with an orthant is a (possibly empty) convex polyhedron.
An n-dimensional interval polyhedron is at worst a set of 2n convex polyhedra. More
precisely, let p be the number of variables in an interval polyhedron that are unrestricted
in sign and are associated with at least one (non-singleton) interval coefficient, then the
interval polyhedron is partitioned into a set of at most 2p convex polyhedra.

In the general case, we maintain one (possibly empty) convex polyhedron in each
orthant. Each operation on the itvPol domain is obtained by “lifting” the corresponding
operation from the convex polyhedra domain. E.g., to join two interval polyhedra, one
would compute pair-wisely the convex hull of the convex polyhedra in each orthant. The
assignment transfer function needs more care, since applying an assignment transfer

Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships 315

function on a convex polyhedron in one orthant may cause it to “enter” other orthants. In
such a case, the result in each orthant is then updated to be the polyhedral convex hull of
the regions which belong to that orthant after the transfer operation. Thus, this domain
is not simply equivalent to a finite disjunctive completion of convex polyhedra. In our
case, it is perhaps better called an orthant partitioning domain of convex polyhedra.

In order to enjoy the benefits of the compact representation of interval polyhedra,
one may abstract further a set of convex polyhedra with at most one in each orthant
back to an interval polyhedron after each operation. However, there may not exist an
interval polyhedron that exactly defines the union of those convex polyhedra, e.g., by
referring to Fig. 1(2.c). And, to our knowledge, up to now there exists no method to
compute the smallest interval polyhedron that encloses those convex polyhedra.

We propose an algorithm to calculate a (not necessarily smallest) interval polyhe-
dron that soundly encloses those convex polyhedra. Given a variable ordering, an n-
dimensional space is described by a binary tree with variables at internal nodes and
convex polyhedra at leaves. Each node represents a variable x, and its left (right) branch
specifies the subspace in which x ≤ 0 (x ≥ 0). Thus the path from the root to a leaf (in-
volving all variables with respect to the given ordering) defines an orthant, and the
convex polyhedron attached at the leaf corresponds to the convex polyhedron in that or-
thant. At each internal node Nodex, an interval polyhedron is constructed in a bottom-up
manner, to enclose all the convex polyhedra within the subtree rooted at Nodex, using
the weak join operation �w defined in Sect. 5.2.2. When a variable has a fixed sign, one
of its subtrees is empty, which speeds up the computation. Finally, the interval polyhe-
dron at the root of the whole binary tree is an interval polyhedron that encloses all the
convex polyhedra in each orthant.

Example 1. Given the interval polyhedron P = {[−1, 0]x + y = [0, 1]} shown in
Fig. 1(1.b), after performing the assignment transfer function [[x := x + 1]]# on P in the
powerset domain of convex polyhedra, we obtain the region shown in Fig. 1(2.b), which
cannot be exactly encoded by any interval polyhedron. Then, by computing the polyhe-
dral convex hull in each orthant, we get the convex polyhedra {x ≥ 0, y ≥ 0,−x+ y ≤ 1}
in the (+,+)-orthant and {x ≥ 0,−1 ≤ y ≤ 0} in the (+,−)-orthant. Finally, we obtain
the interval polyhedron {[−1, 0]x + y = [−1, 1]} using the above algorithm.

As an abstracted reduced cardinal power of convex polyhedra, itvPol is at worst expo-
nentially more complex than the convex polyhedra domain. However, in some real-life
applications, many of the variables do not change their signs, that is, the weak solution
set intersects only a few orthants. In such situations, itvPol as an abstracted reduced
cardinal power of convex polyhedra has a reasonable complexity.

5 itvPol as a New Abstract Domain

In general, itvPol as an abstracted reduced cardinal power of convex polyhedra may
be too complex to be applied to program analysis. To solve this problem, we present
an alternative construction based on faster approximate algorithms. Similarly to the
constraint-based convex polyhedra abstract domain [4], this construction is based on
two main operations: projection and (interval) linear programming. We will now briefly
describe the implementation of the most common domain operations.

316 L. Chen et al.

5.1 Projection

The projection operation is used to remove all information pertaining to a variable xi

while preserving the relational information between other variables. It can be computed
by eliminating all occurrences of xi in the constraints defining P, using an Interval
Fourier-Motzkin Elimination (IFME) algorithm defined below, which is an adaptation
of the classic Fourier-Motzkin elimination algorithm to interval arithmetic.

Let P = {Ax ≤ b} be an interval polyhedron and xi be a variable to be eliminated.
If all non-zero interval coefficients of xi in P do not contain zero, the classic Fourier-
Motzkin elimination algorithm can be easily adapted to interval arithmetic. However, in
general, the constraint ϕ: (

∑
k[ak, ak]xk ≤ b) ∈ P in which [ai, ai] � [0, 0] but 0 ∈ [ai, ai],

will break the algorithm due to division by an interval containing zero. To avoid this,
we apply the following linearization operator ζ(ϕ, xi) beforehand.

Definition 2 (Linearization operator). Let ϕ:
∑

k [ak, ak] × xk ≤ b be an interval lin-
ear inequality and xi ∈ [xH

i , x
H
i].

ζ(ϕ, xi)
def
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai × xi +
∑

k�i
[ak, ak] × xk ≤ b if xH

i ≥ 0

ai × xi +
∑

k�i
[ak, ak] × xk ≤ b if xH

i ≤ 0

c × xi +
∑

k�i
[ak, ak] × xk ≤ sup(b − [ai − c, ai − c] × [xH

i , x
H
i]) otherwise

where c can be any real number.

In practice, we often choose c = (ai + ai)/2 that is the midpoint of the interval [ai, ai],
which causes the least loss of precision (minimizing sup(b− [ai− c, ai − c]× [xH

i , x
H
i])).

Example 2. Consider the interval linear inequality [0, 2]x + y ≤ 2 with respect to the
bounds x, y ∈ [−2, 4]. If we choose the midpoint of [0, 2] as c, ζ(ϕ, x) will give x+y ≤ 6.
Note that some loss of precision happens here, e.g., the point (0,4) satisfies the result
inequality x + y ≤ 6 but does not satisfy the original interval inequality [0, 2]x+ y ≤ 2.

Theorem 2 (Soundness of the linearization operator). Given an interval linear in-
equality ϕ and a variable xi ∈ [xH

i , x
H
i], ζ(ϕ, xi) soundly over-approximates ϕ, that is,

∀x.(xi ∈ [xH
i , x

H
i] ∧ x ∈ γ(ϕ))⇒ x ∈ γ(ζ(ϕ, xi)).

By falling back to the above linearization technique, IFME can be applied to general
interval polyhedra. Given an inequality ϕ:

∑
k[ak, ak]xk ≤ b, we define ι(ϕ, xi) as

ι(ϕ, xi)
def
=

{
ζ(ϕ, xi) if 0 ∈ [ai, ai] ∧ [ai, ai] � [0, 0],
ϕ otherwise.

Then, the Interval Fourier-Motzkin Elimination algorithm can be defined as

IFME(P, xi)
def
= { (

∑
k[ak, ak]xk ≤ b) ∈ P′ | [ai, ai] = [0, 0] }

∪
{
∑

k�i

(
[a+k , a

+
k]

[a+i , a
+
i]
+

[a−k , a
−
k]

[−a−i ,−a−i]

)

xk ≤ b′
∣∣∣∣∣∣

(
∑

k[a+k , a
+
k]xk ≤ b+) ∈ P′, a+i > 0

(
∑

k[a−k , a
−
k]xk ≤ b−) ∈ P′, a−i < 0

}

where P′ = {ι(ϕ, xi) | ϕ ∈ P} and b′ = sup

(
b+

[a+i , a
+
i]
+ b−

[−a−i ,−a−i]

)

.

Theorem 3 (Soundness of the Interval Fourier-Motzkin Elimination). Given an in-
terval polyhedron P and a variable xi, any point satisfying P also satisfies IFME(P, xi),
that is, ∀x ∈ γ(P)⇒ x ∈ γ(IFME(P, xi)).

Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships 317

5.2 Join

In order to abstract the control-flow join, we need to compute the union of environments
of program variables. However, to our knowledge, no existing method is available to
compute the smallest interval polyhedron enclosing this union. We propose to compute
an overapproximation of this union cheaply using an operation that we call weak join.

The main idea is as follows. We first define an operation � on constraints that over-
approximates the set union ∪ such that γ(ϕ′) ∪ γ(ϕ′′) ⊆ γ(ϕ′ � ϕ′′). Given two interval
polyhedra P′ and P′′, by distributivity

γ(P′)∪ γ(P′′)= (
⋂

ϕ′∈P′
γ(ϕ′))∪ (

⋂

ϕ′′∈P′′
γ(ϕ′′))=

⋂

ϕ′∈P′
ϕ′′∈P′′

(γ(ϕ′) ∪ γ(ϕ′′)) ⊆ ⋂

ϕ′∈P′
ϕ′′∈P′′

(γ(ϕ′ � ϕ′′)) .

Our weak join can be constructed basically by pairwise combinations of inequalities
from P1 with those from P2 using the � operation.

5.2.1 Interval Combination

Definition 3 (Interval Combination). Given two interval linear inequalities ϕ′:
∑

k [a′k, a
′
k] × xk ≤ b′ and ϕ′′:

∑
k [a′′k , a

′′
k] × xk ≤ b′′, the interval combination of ϕ′ and

ϕ′′ is defined as

ϕ′ � ϕ′′ def
=

(∑
k [ak, ak] × xk ≤ b

)
,

where b = max(b′, b′′) and [ak, ak] = [min(a′k, a
′′
k),max(a′k, a

′′
k)].

This definition straightforwardly lifts to interval polyhedra. Given two interval polyhe-

dra P′ and P′′, P′ � P′′ def
= {ϕ′ � ϕ′′ | ϕ′ ∈ P′ ∧ ϕ′′ ∈ P′′}.

Example 3. Consider two interval polyhedra P′ = {y ≤ 1,−y ≤ −1} and P′′ = {−x + y ≤
0, x − y ≤ 0}. By interval combination, we obtain P = P′ � P′′ = {[−1, 0]x+ y = [0, 1]},
whose weak solution set is depicted in Fig. 1(1.b). Note that some loss of precision
happens here, e.g., the point (1,0) satisfies the result P but satisfies neither P′ nor P′′.

Theorem 4 (Soundness of the interval combination). Given two interval linear in-
equalities ϕ′ and ϕ′′, their interval combination ϕ′ �ϕ′′ soundly over-approximates the
union of ϕ′ and ϕ′′, that is, ∀x.(x ∈ γ(ϕ′) ∨ x ∈ γ(ϕ′′))⇒ x ∈ γ(ϕ′ � ϕ′′).
The above theorem implies the soundness of � on interval polyhedra, i.e., ∀x.(x ∈
γ(P′) ∨ x ∈ γ(P′′)) ⇒ x ∈ γ(P′ � P′′). However, the result of ϕ′ � ϕ′′ may not be
the tightest interval linear inequality whose weak solution set encloses the union of the
weak solution sets of ϕ′ and ϕ′′. Moreover, the precision of the interval combination
depends on the representation of the input. The tighter the input coefficient intervals
are, the more precise the result will be. Hence, the reduction operation (in Sect. 4.1) is
often used before performing interval combinations.

In some cases, the interval combination can be improved. Givenϕ′:
∑

k [a′k, a
′
k] × xk ≤

b′ and ϕ′′:
∑

k [a′′k , a
′′
k] × xk ≤ b′′, if there exists a positive multiplier λ such that λ ×

[a′i , a
′
i]= [a′′i , a

′′
i] (i.e., λa′i = a′′i and λa′i = a′′i) for some i, then the interval combination

318 L. Chen et al.

of ϕ′ and ϕ′′ can be computed as ϕ′ � ϕ′′ = (
∑

k [ak, ak] × xk ≤ b),
where b = max(λb′, b′′) and [ak, ak] = [min(λa′k, a

′′
k),max(λa′k, a

′′
k)]. In most cases, the

interval combination with multiplier is more precise than the general one. E.g., given
ϕ1: x + y ≤ 2 and ϕ2:−x + 2y ≤ 2, ϕ1 � ϕ2 gives ϕ: [−1, 1]x + [1, 2]y ≤ 2. However, if
we use a version with multiplier (i.e., rewrite ϕ1: x + y ≤ 2 as ϕ′1: 2x + 2y ≤ 4), ϕ′1 � ϕ2

will give ϕ′: [−1, 2]x+2y ≤ 4, and the result ϕ′ is more precise than the previous one ϕ.

5.2.2 Weak Join

Definition 4 (Envelope). Given two interval polyhedra P1 and P2, the envelope of P1

and P2 is defined as

env(P1,P2)
def
= S1 ∪ S2

where S1 = { ϕ1 ∈ P1 | P2 |= ϕ1 },S2 = { ϕ2 ∈ P2 | P1 |= ϕ2 }.
Let i ∈ {1, 2}, for any ϕ ∈ Pi, if ϕ ∈ env(P1,P2), we say that ϕ is an envelope con-
straint in Pi, otherwise ϕ is a nonenvelope constraint in Pi. We denote the set of
nonenvelope constraints in Pi as env(Pi). Given two boxes B′ = [b′, b′] and B′′ =
[b′′, b′′], their join in the interval abstract domain is defined as B′ �I B′′ = [min(b′, b′′),
max(b′, b′′)]. Note that BB(γ(P1) ∪ γ(P2)) = BB(P1) �I BB(P2).

Definition 5 (Weak Join). Given two interval polyhedra P1 and P2, we define a weak
join operation for the itvPol domain as

P1 �w P2
def
= env(P1,P2) � (env(P1) � env(P2)) � (BB(P1) �I BB(P2)).

Note that the weak join operation may introduce redundant constraints in the result, but
most of them can be eliminated by syntactic means (see Sect. 4.1).

Example 4. Consider two interval polyhedra P1 = {[−1, 1]x+2y ≤ 2,−2x−y ≤ 2, x−y ≤
1,−y ≤ 0} (i.e., the region above the x-axis in Fig. 1(1.d)) and P2 = {[−1, 1]x − 2y ≤
2, 2x + y ≤ 2,−x + y ≤ 1, y ≤ 0} (i.e., the region below the x-axis in Fig. 1(1.d)).
env(P1,P2) = {[−1, 1]x + 2y ≤ 2, [−1, 1]x − 2y ≤ 2} = {[−1, 1]x + 2y = [−2, 2]}.
env(P1)� env(P2) = {−2x− y ≤ 2, x− y ≤ 1,−y ≤ 0} � {2x+ y ≤ 2,−x+ y ≤ 1, y ≤ 0} =
{2x + [−2, 1]y = [−2, 2]}. Thus, P1 �w P2 = {[−1, 1]x + 2y = [−2, 2], 2x + [−2, 1]y =
[−2, 2]}, whose weak solution set is depicted in Fig. 1(1.d).

Theorem 5 (Soundness of the Weak Join). Given two interval polyhedra P1 and P2,
the weak join P1 �w P2 is an overapproximation of both P1 and P2, that is, ∀x.(x ∈
γ(P1) ∨ x ∈ γ(P2))⇒ x ∈ γ(P1 �w P2).

The above weak join can construct constraints that are satisfied by the set-union of
the input interval polyhedra but not satisfied by their convex hull (e.g., γ(P1 �w P2) =
γ(P1) ∪ γ(P2) holds in Example 4). However, when both interval polyhedra P1 and
P2 are convex polyhedra and in the same orthant, P1 �w P2 is less precise than their
polyhedral convex hull. In such a case, one may use the polyhedral convex hull instead.
E.g., given two points (0, 0) and (1, 1) in the (+,+)-orthant of the x-y plane, �w can only
give {0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, which is less precise than the result of their polyhedral
convex hull (i.e., {0 ≤ x ≤ 1, y = x}).

Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships 319

5.3 Emptiness Test

An interval polyhedron P is empty iff its constraint set is not weakly solvable, that is,
γ(P) = ∅. Theorem 1 shows that checking weak solvability of interval linear systems
can be in principle performed by checking solvability of one linear system per orthant,
by some finite procedure (e.g., linear programming). During program analysis, con-
straints are often added one by one. Thus, the emptiness test can be done incrementally.
When adding a new constraint

∑
k [ak, bk] × xk ≤ b to a nonempty interval polyhedron

P, we solve the ILP problem: μ= min
∑

k [ak, bk] × xk subject to P. If μ > b, the new
interval polyhedron is indeed empty.

5.4 Transfer Functions

Test Transfer Function. The result of a test [[
∑

k [ak, ak] × xk ≤ b]]#(P) is simply the
interval polyhedron P with the constraint

∑
k [ak, ak] × xk ≤ b added, where [[·]]# (P) de-

notes the effect of a program statement on the interval polyhedron P. More complicated
cases, such as tests involving disjunctive, non-linear or floating-point expressions can
be soundly abstracted to the form

∑
k [ak, ak] × xk ≤ b, as discussed in Sect. 6.

Assignment Transfer Function. The assignment of a certain expression e to the vari-
able x j can be modeled using test, projection and variable renaming as follows:

[[x j:= e]]#(P)
def
= (IFME([[x′j − e = 0]]#(P), x j))[x′j/x j] . (1)

The fresh variable x′j, introduced to hold the value of the expression e, is necessary
when x j also appears on the right hand of the assignment, e.g., x := [−1, 2]x + [2, 3].

Alternatively, the assignment transfer function can be implemented by substitution,
when the coefficient of x j in e does not contain zero. Let e =

∑
k[dk, dk]xk+ [c, c], where

0 � [d j, d j]. Then the assignment transfer function by substitution is defined as

[[x j:= e]]#(P)
def
=

{
[a′j, a

′
j]x j +

∑
k� j[a

′
k, a
′
k]xk ≤ b′ | (∑k[ak, ak]xk ≤ b) ∈ P

}
(2)

where [a′j, a
′
j] =

[aj, aj]

[d j, d j]
, [a′k, a

′
k] =

⎛
⎜⎜⎜⎜⎜⎝[ak, ak] − [dk, dk]

[d j, d j]

⎞
⎟⎟⎟⎟⎟⎠ and b′ = sup

⎛
⎜⎜⎜⎜⎜⎝b +

[c, c]

[d j, d j]

⎞
⎟⎟⎟⎟⎟⎠.

Note that unlike the case of convex polyhedra, neither (1) nor (2) is an exact or best
abstraction for interval polyhedra. In most cases, (2) gives more precise results than (1).
E.g., given an interval polyhedron P = {[−1, 1]x ≤ −1}, for the assignment x := −x,
(1) will give the whole space as the result while (2) will result in P′ = {[−1, 1]x ≤ −1}
which is exact.

5.5 Widening

itvPol does not satisfy the ascending chain condition. Thus, a widening [7] operator
is needed to ensure convergence of fixpoint computations (used to analyze loops). We
define the widening in the itvPol domain as follows:

320 L. Chen et al.

Definition 6 (Widening). Given a threshold k and two interval polyhedra P1 	 P2 in
the i-th iteration, we define the widening in the i-th iteration as

P1 �[k]
i P2

def
=

{ S1 ∪ S2 if i ≤ k
S1 otherwise

where S1 = {ϕ1 ∈ P1 |P2 |= ϕ1},S2 = {ϕ2 ∈ P2 | ∃ϕ1 ∈ P1, γ(P1) = γ((P1 \{ϕ1})∪{ϕ2})}.
S1 keeps stable inequalities from P1. S2 recovers precision by adding those inequalities
from P2 that are mutually redundant with an inequality of P1 with respect to P1. Unlike
the classic convex polyhedra domain where the widening is defined as S1 ∪ S2 in all
cases, itvPol needs a threshold k to guarantee convergence of the above widening by
disabling S2 after the k-th iteration. Given a chain (Xi)i∈N, the increasing chain (Yi)i∈N
defined by Y0=X0 and Yi+1=Yi �[k]

i Xi+1, is stable after a finite time, since after the k-th
iteration, the set of constraints in Y j+1 is a subset of the constraints in Y j (j > k).

6 Applications of the Interval Polyhedra Domain

6.1 Handling Disjunctions

We propose to apply the technique of interval combination to abstract disjunctions of
linear constraints by interval linear inequalities. In general, given a DNF (Disjunctive
Normal Form) formula, each DNF-term can be considered as a convex polyhedron. The
disjunction of those convex polyhedra can be abstracted as an interval polyhedron using
the join operation of itvPol (Sect. 5.2). On the other hand, given a CNF (Conjunctive
Normal Form) formula, each CNF-term can be abstracted as one interval linear inequal-
ity by interval combination (Sect. 5.2.1), thus the whole CNF formula can be abstracted
as an interval polyhedron.

For example, consider the program in Fig. 2. At ②, the negation of −1 ≤ x ≤ 1 on
integers gives x ≤ −2 ∨ −x ≤ −2, which can be exactly encoded as an interval linear
inequality [−1, 1]x ≤ −2. And, using itvPol, we can obtain the exact information at ⑤,
i.e., y = −1, which implies y � 0. However, the convex polyhedra domain can only
obtain −1 ≤ y ≤ 0 at ⑤ which fails to prove the assertion y � 0.

int x, y;
if (x ≥ −1 and x ≤ 1) then

y := x − 1; ①

else ②

y := x; ③

endif; ④

if(x == 0) then
⑤ assert(y � 0);
endif;

Loc Convex Polyhedra Interval Polyhedra
① x − y = 1 ∧ −1 ≤ x ≤ 1 x − y = 1 ∧ −1 ≤ x ≤ 1
② � (no information) [−1, 1]x ≤ −2
③ y = x y = x ∧ [−1, 1]x ≤ −2
④ 0 ≤ x − y ≤ 1 0 ≤ x − y ≤ 1

∧[−1, 1]x + [0, 1]y ≤ −1
∧x + [−1, 0]y ≤ 1

⑤ x = 0 ∧ −1 ≤ y ≤ 0 x = 0 ∧ y = −1

Fig. 2. Example program1 (left) and the generated invariants (right)

Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships 321

6.2 Handling Non-linear Expressions

Miné has proposed a so-called linearization algorithm able to abstract arbitrary ex-
pressions into interval linear form Σk[ak, ak] × xk + [c, c] [21]. However, most current
numerical abstract domains, such as the convex polyhedra domain, cannot deal with
interval linear forms directly. Thus, one has to employ a so-called quasi-linearization
technique to convert the interval linear form Σk[ak, ak] × xk + [c, c] into quasi-linear
form Σka′k × xk + [c′, c′] [19]. The quasi-linearization process may cause precision loss.
However, using itvPol, one can avoid (at least delay) such precision loss, since itvPol
directly supports the representation of interval linear forms.

Given the program in Fig. 3, after the linearization of the non-linear expression z ×
x + 1, we obtain [−5, 5]x + y = 1 at ①. When using the convex polyhedra domain, we
have to apply quasi-linearization to [−5, 5]x + y = 1. And the best quasi-linearization
will be −5x + y ≤ 21 ∧ −5x − y ≤ 19. Note that some precision loss happens here, e.g.,
the point (0, 0) satisfies −5x+y ≤ 21∧−5x−y ≤ 19 but does not satisfy [−5, 5]x+y = 1.
Finally, the convex polyhedra domain can only obtain x ≥ −1 at ② while using itvPol
we can prove x ≥ 3 at ②.

int x, y, z;
assume −5 ≤ z ≤ 5;
assume x ≥ −2;
y := z × x + 1; ①

assume y == −14; ②

Loc Convex Polyhedra Interval Polyhedra
① −5 ≤ z ≤ 5 ∧ x ≥ −2 −5 ≤ z ≤ 5 ∧ x ≥ −2
∧ − 5x + y ≤ 21 ∧ −5x − y ≤ 19 ∧[−5, 5]x + y = 1

② y = −14 ∧ −5 ≤ z ≤ 5 y = −14 ∧ −5 ≤ z ≤ 5
∧x ≥ −1 ∧x ≥ 3

Fig. 3. Example program2 (left) and the generated invariants (right)

6.3 Handling Floating-Point Arithmetic

Real-life programming languages do not manipulate rationals or reals, but floating-point
numbers, which are much more difficult to abstract. One solution is to approximate
floating-point expressions as linear expressions in the real field with interval coefficients
by making rounding explicit [19]. Rounding is highly non-linear but can be abstracted
using intervals. For instance, X + Y in the floating-point world can be abstracted into
[1 − p, 1 + p] × X + [1 − p, 1 + p] × Y + [−m f ,m f] with the relative error p and the
absolute error m f (the smallest non-zero positive value in the floating-point format),
e.g., p = 2−23 and m f = 2−149 in the single precision floating-point format. This fits
the linearization framework which can be extended to treat floating-point arithmetic
soundly. Thus, floating-point programs can be directly analyzed using itvPol after ap-
plying floating-point abstractions.

Let us consider the program in Fig. 4. The quasi-linearization of both floating-point
assignments y :=−2 ⊗r x ⊕r 1 and y :=−x ⊕r 1 will give y ← [−∞,+∞], since x is un-
bounded. Thus, the convex polyhedra domain will obtain no useful information, while
itvPol can prove 0.4999998 ≤ x ≤ 1.0000002 at ②, which indicates that x is bounded
and thus there is no overflow exception in the last statement (i.e., x := x ⊕r 1).

322 L. Chen et al.

real x, y;
if random() then

y := −2 ⊗r x ⊕r 1;
else

y := −x ⊕r 1;
endif; ①

assume y == 0; ②

x := x ⊕r 1;

Loc Convex Polyhedra Interval Polyhedra
① �(no information) [0.9999999, 2.0000005]x + y ≤ 1.0000001

∧[0.9999999, 2.0000005]x + y ≥ 0.9999999
② y = 0 y = 0 ∧ 0.4999998 ≤ x ≤ 1.0000002

Fig. 4. Example program3 (left) and the generated invariants (right). �r denotes single precision
floating-point semantics with arbitrary rounding mode (� ∈ {⊗,⊕}, r ∈ {+∞,−∞}).

7 Implementation and Experimental Results

Our prototype domain, itvPol, is developed based on Sect. 5 using double precision
floating-point numbers. It makes use of GLPK (GNU Linear Programming Kit) [18]
which implements the simplex algorithm for linear programming. We implemented an
interval linear programming solver based on GLPK following the methods from [5,15].
The soundness of the floating-point LP/ILP solver is guaranteed by rigorous linear pro-
gramming [4,15]. The whole itvPol domain is implemented based on interval arithmetic
with outward rounding (i.e., rounding upper bounds upward and lower bounds down-
ward), which guarantees the soundness of the floating-point implementation.

itvPol is interfaced to the APRON [1] numerical abstract domain library. Our exper-
iments were conducted using the Interproc [16] static analyzer. We extended Interproc
to support input data with intervals (such as expressions and constraints with interval
coefficients). In order to assess the precision and efficiency of itvPol, we compare the
obtained invariants as well as the performance of itvPol with our previous work FPPol
[4] which is a sound floating-point implementation of the convex polyhedra domain.

To demonstrate the expressiveness of itvPol, two simple typical loops are shown in
Fig. 5 and Fig. 6, together with the invariants generated by the analyzer. program4 is a
loop that reverses the sign of variable x at each iteration, and program5 consists of two
stages, increasing y in the inner loop first and then increasing x in the outer loop. For
program4 in Fig. 5, itvPol can prove that x = −1 ∨ x = 1 at ①, which is exact and more
precise than the invariant −1 ≤ x ≤ 1 given by FPPol. For program5 in Fig. 6, itvPol
can prove that −20 ≤ y ≤ −10 ∨ y ≥ 10 at ②, while FPPol can only prove y ≥ −20.

Fig. 7 shows the comparison of performance and result invariants for a selection of
benchmark examples2. The first set of benchmark programs, program1-5, corresponds
to examples shown in Fig. 2-6. The second set of examples is reused from our previous
work [4], most of which come from Interproc. For each program, “#vars” indicates the
total number of program variables, and “#±” indicates the number of variables which
have unrestricted sign. The column “#∇delay” specifies the value of the widening delay
parameter for Interproc (i.e., the number of loop iterations performed before applying

2 We also analyzed the benchmark programs using NewPolka which is implemented in exact
arithmetic, and the result invariants are almost the same as those by FPPol. itvPol performs 2
times faster than NewPolka on ratelimiter f and at worst 4 times slower on other programs.

Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships 323

real x, y;
x := −1;
while (true) do
① x := −x;
done;

Loc Convex Polyhedra Interval Polyhedra
① −1 ≤ x ≤ 1 −1 ≤ x ≤ 1 ∧ [−1, 1]x ≤ −1

Fig. 5. program4 (left) and the generated invariants (right)

int x, y;
x := 1;
y := −20;
while (x ≤ 9) do
① x := x + 1;

while (y ≤ 9) do
y := y + 1;

done;
done; ②

Loc Convex Polyhedra Interval Polyhedra
① y ≥ −20 y ≥ −20
∧1 ≤ x ≤ 9 ∧1 ≤ x ≤ 9

∧ − x + [0, 1]y ≤ −2
∧[−1, 1]y ≤ −10

② y ≥ −20 ∧ x ≥ 10 y ≥ −20 ∧ x ≥ 10
∧[−1, 1]y ≤ −10

Fig. 6. program5 (left) and the generated invariants (right)

Program Analyzer itvPol FPPol Result
name #vars(#±) #∇delay #iterat. #lp time(ms) #iterat. #lp time(ms) Invar.

program1 2(2) 1 1 256 31 1 138 24 >

program2 3(3) 1 1 78 12 1 54 11 >

program3 2(2) 1 1 68 13 1 0 6 >

program4 1(1) 3 4 19 10 4 8 7 >

program5 2(1) 1 5 270 49 6 187 35 >

sequencewhiles 3(1) 1 9 368 61 9 237 46 >

ratelimiter f 5(4) 4 4 5846 792 5 2966 1425 >

bubblesort 4(4) 1 8 845 123 8 646 101 >

maccarthy91 3(2) 1 4 609 83 4 442 63 >

heapsort 7(7) 1 4 1534 273 4 1929 374 <

symmetricalstairs 2(1) 1 5 245 45 6 469 78 <

ackerman 4(2) 1 4 883 127 6 1477 298 <

Fig. 7. Experimental results for benchmark examples

the widening operator with the fixed threshold k = 10 in Def. 6). “#iterat.” gives the
number of increasing iterations during the analysis.

Invariants. The column “Result Invar.” compares the invariants obtained. A “>” (“<”)
indicates that itvPol outputs stronger (weaker) invariants than FPPol. For programs in-
volving variables unrestricted in sign, itvPol can often find some interesting non-convex
invariants. When all variables in the program are restricted in sign, in most cases itvPol
generates no better invariants than FPPol, since itvPol uses the weak join �w which is
weaker than the polyhedral convex hull of FPPol in such a case.

324 L. Chen et al.

Performance. “time(ms)” presents the analysis times in milliseconds when the analyzer
is run on a 1.6GHz PC with 768MB of RAM running Fedora 9. Fig. 7 shows that the
overall computation cost of itvPol is not so high compared with FPPol. The reason can
be derived mainly from the fact that itvPol uses the weak join �w. In some cases, e.g.,
ratelimiter f and heapsort, itvPol even outperforms FPPol. “#lp” shows the number of
LP queries issued to GLPK. During our experiments, we found that the time spent in
the LP solver frequently takes at least half of the total analysis time when using itvPol.

8 Conclusion

In this paper, a new numerical abstract domain called interval polyhedra (itvPol) was
presented, which introduces interval linear algebra to static analysis. This domain can
represent and manipulate linear constraints with interval coefficients. itvPol has some
attractive features in that it natively allows expressing certain non-convex (even uncon-
nected) properties without any explicit disjunctive representations. The domain opera-
tions can be constructed by interval linear programming and interval Fourier-Motzkin
elimination. Possible applications of itvPol are described, e.g., to handle programs in-
volving disjunctive, non-linear, or floating-point expressions. itvPol can discover inter-
esting non-convex properties for programs involving variables unrestricted in sign.

It remains for future work to design more precise or even optimal abstractions for
the join of the itvPol domain, and to test itvPol on large realistic programs. We also plan
to improve the efficiency of itvPol, e.g., by reducing the number of LP queries.

Acknowledgements. We would like to thank Axel Simon and Jiri Rohn for useful dis-
cussions, and the anonymous reviewers for their helpful comments and suggestions.

References

1. APRON numerical abstract domain library, http://apron.cri.ensmp.fr/library/
2. Allamigeon, X., Gaubert, S., Goubault, E.: Inferring min and max invariants using max-plus

polyhedra. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 189–204.
Springer, Heidelberg (2008)

3. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains. In: Steffen,
B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 135–148. Springer, Heidelberg (2004)

4. Chen, L., Miné, A., Cousot, P.: A sound floating-point polyhedra abstract domain. In:
Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer, Heidelberg (2008)

5. Chineck, J.W., Ramadan, K.: Linear programming with interval coefficients. Journal of the
Operational Research Society 51(2), 209–220 (2000)

6. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Proc. of
the 2nd International Symposium on Programming, Dunod, Paris, pp. 106–130 (1976)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: ACM POPL 1977, pp. 238–252.
ACM Press, New York (1977)

8. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: ACM POPL
1979, pp. 269–282. ACM Press, New York (1979)

http://apron.cri.ensmp.fr/library/

Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships 325

9. Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application to comportment
analysis generalizing strictness, termination, projection and PER analysis of functional lan-
guages). In: ICCL 1994, pp. 95–112. IEEE Computer Society Press, Los Alamitos (1994)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: ACM POPL 1978, pp. 84–96. ACM Press, New York (1978)

11. Giacobazzi, R., Ranzato, F.: Optimal domains for disjunctive abstract interpretation. Sci.
Comput. Program 32(1-3), 177–210 (1998)

12. Granger, P.: Static analysis of arithmetical congruences. International Journal of Computer
Mathematics 30, 165–199 (1989)

13. Gulavani, B.S., Gulwani, S.: A numerical abstract domain based on expression abstraction
and max operator with application in timing analysis. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 370–384. Springer, Heidelberg (2008)

14. Jansson, C.: Calculation of exact bounds for the solution set of linear interval systems. Linear
Algebra and Its Applications 251, 321–340 (1997)

15. Jansson, C.: Rigorous lower and upper bounds in linear programming. SIAM Journal on
Optimization 14(3), 914–935 (2004)

16. Lalire, G., Argoud, M., Jeannet, B.: Interproc,
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/

17. Laviron, V., Logozzo, F.: Subpolyhedra: A (more) scalable approach to infer linear inequal-
ities. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 229–244.
Springer, Heidelberg (2009)

18. Makhorin, A.: The GNU Linear Programming Kit (2000),
http://www.gnu.org/software/glpk/

19. Miné, A.: Relational abstract domains for the detection of floating-point run-time errors. In:
Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer, Heidelberg (2004)

20. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1),
31–100 (2006)

21. Miné, A.: Symbolic methods to enhance the precision of numerical abstract domains.
In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 348–363.
Springer, Heidelberg (2005)

22. Oettli, W., Prager, W.: Compatibility of approximate solution of linear equations with given
error bounds for coefficients and right-hand sides. Numer. Math. 6, 405–409 (1964)

23. Rohn, J.: A handbook of results on interval linear problems. Technical report, Czech
Academy of Sciences, Prague, Czech Republic (April 2005)

24. Rohn, J.: Solvability of systems of interval linear equations and inequalities. In: Linear Op-
timization Problems with Inexact Data, pp. 35–77. Springer, US (2006)

http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/
http://www.gnu.org/software/glpk/

Invariant Checking for Programs with Procedure
Calls�

Guillem Godoy1 and Ashish Tiwari2

1 LSI Department, Technical University of Catalonia
Jordi Girona, 1-3 08034 Barcelona, Spain

ggodoy@lsi.upc.edu
2 SRI International, 333 Ravenswood Ave, Menlo Park, CA, U.S.A

Tel.: +1.650.859.4774, Fax: +1.650.859.2844
tiwari@csl.sri.com

Abstract. Invariants are a crucial component of the overall correctness
of programs. We explore the theoretical limits for doing automatic in-
variant checking and show that invariant checking is decidable for a large
class of programs that includes some recursive programs. The proof uses
known results like the decidability of Presburger arithmetic and the semi-
linearity of the Parikh image of a regular language. Removing some of the
restrictions on the program model leads to undecidability of the invariant
checking problem.

1 Introduction

The ability to generate reliable and correct software depends crucially on the
development of tools for automatically verifying the correctness of programs.
Modern software development tools support automatic program analysis, but
only to a limited extent. Extending these analyses to richer and deeper properties
of programs is an active area of research.

Invariants are a crucial component of the overall correctness of programs.
An invariant is simply an expression that evaluates to “true” on all executions
(paths) of the program. The problem of checking whether a given expression is an
invariant is undecidable in general. However, there are simplified program models
for which invariant checking is decidable, even efficiently. These decidability
results are important in two respects: they help in developing efficient analysis
engines and understanding the causes of undecidability, which in turn is useful
for identifying places where any analysis engine will necessarily be incomplete.

There are several results on the decidability of invariant checking for restricted
program models. These decidability results are parameterized by three choices:
(a) the program model, (b) the theory of the expression language used in the

� The first author was supported by Spanish Ministry of Education and Science
through the FORMALISM project (TIN2007-66523) and the LOGICTOOLS-2
project (TIN2007-68093-C02-01). The second author was supported in part by NSF
grants CNS-0720721 and CNS-0834810 and NASA grant NNX08AB95A.

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 326–342, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Invariant Checking for Programs with Procedure Calls 327

program model, and (c) the form of the assertion. A common assumption on
the program model is that there are no procedure call nodes [6,11,12,7,8]. When
procedure call nodes are allowed, it is commonly assumed that variables can take
only finitely many values [4,3,1]. When (restricted) procedure call nodes are al-
lowed, and also infinite domains for data values are allowed [16,13,14,10,9], then,
it is assumed that assertions are always equality of two program expressions. In
other words, there are no results for the case when procedure call nodes, infi-
nite data values, and disequality assertions are all allowed. However, note that
checking invariance of disequalities is equally important; for example, for alias
analysis.

In this paper, we show that invariant checking is decidable in a setting which
allows (a) recursive procedure call nodes in the program model, (b) infinite
domains for values of variables, and (c) any Boolean combination of equality
and disequality of program expressions as the assertion. Specifically, we define
a programming model in which a program contains a finite number of program
variables, but each variable takes values over the infinite domain of (uninter-
preted first-order) terms. The program variables are updated by assignments
and the control flow structure consists of non-deterministic conditionals, loops,
and (possibly recursive) procedure calls. We identify a subclass of programs in
this programming model for which the problem of checking if an equality or
disequality (or any Boolean combination thereof) is an invariant is decidable.

In the process of obtaining the main result, we also show that the following
problem is solvable: given N +M substitutions, σ1, . . . , σN , β1, . . . , βM , N +M
integer variables, n1, . . . , nN ,m1, . . . ,mM , and terms x, y, determine if there is
a value for the N +M integer variables in a given semilinear set such that

σnN

N . . .σn1
1 (x) = βmM

M . . .βm1
1 (y).

This result can be of independent interest.

2 Preliminaries

Let T (Σ, {X}) be the set of all the terms constructed over a fixed finite sig-
nature Σ and a set of variables X. The root symbol of a term t is denoted by
root(t). The positions Pos(t) in a term t are sequences of positive integers (ε,
the empty sequence, is the root position). A subterm of t at position p is written
t|p. The concatenation of the positions p and q is denoted as p.q. A substitution
is a mapping from a set of variables X to T (Σ, {X}). We denote substitu-
tions by σ, θ and σ(t) denotes the term obtained by replacing every variable in
t by its image by σ. Given substitutions σ and θ, their composition is denoted
by juxtaposition σθ, and is defined by σθ(x) := σ(θ(x)).

A linear set is any subset of Nk that can be written in the form {c0 +∑n
i=1 αici | αi ∈ N} for some fixed n + 1 vectors c0, . . . , cn in Nk. A semi-

linear set is a finite union of linear sets.
The Parikh image of a word w ∈ Σ∗ is a vector in N|Σ| that contains the

number of occurrences in w of each symbol in Σ. For example, if Σ = {a1, a2}

328 G. Godoy and A. Tiwari

and w = a1a2a1a1, then the Parikh image of w is 〈3, 1〉. It is well known that
Parikh image of a regular (even context-free) language is semilinear [15].

A Presburger arithmetic formula is a (possibly quantified) first-order formula
over predicate symbols = and >, and with terms constructed using the binary
symbol + and constant symbols N (that is, linear arithmetic expressions are
allowed). Presburger arithmetic formulas are interpreted over the natural num-
bers in the standard way. If φ is a sentence in Presburger arithmetic, then |=N φ
denotes validity of φ. We will use |= to denote validity in the pure theory of
equality over uninterpreted symbols (occasionally, this theory combined with
Presburger arithmetic).

Every semilinear set can be represented using a Presburger formula. Hence,
it follows that for every regular language L, there exists a Presburger formula
φL whose solutions coincide with the Parikh image of L. In fact, the size of the
formula φL can be bounded using the following result from Seidl et. al. [17].

Theorem 1 (Seidl et. al. [17], Theorem 1). For any nondeterministic finite
automaton A, an existential Presburger formula φA for the Parikh image of the
language L(A) of A can be constructed in time O(|A|), where |A| is the number
of states plus the number of transitions in A.

3 Invariant Checking and Related Work

We illustrate the main ideas related to invariant checking via a simple example.
Consider the program in Figure 1 (left). Given an assertion, say x = 2y, at the
end of the program, the problem of invariant checking seeks to find out if the
assertion is an invariant of the program, that is, if it evaluates to true for all
executions of the program.

Since invariant checking is undecidable for general programs, often the pro-
gram is abstracted and invariants are checked on the abstracted program. The
program in Figure 1 (left) has already abstracted away the actual conditions
(that were present in some original program) and replaced them with nonde-
terministic choices (*). This new program has more behaviors, and hence if an

if (*) then

〈x, y〉 := 〈x+ x, x〉;
else

while (*) do

〈x, y〉 := 〈sin(y) + sin(y), sin(y)〉;
endwhile

endif

assert(x = 2y)

if (*) then

〈x, y〉 := 〈f(x, x), x〉;
else

while (*) do

〈x, y〉 := 〈f(g(y), g(y)), g(y)〉;
endwhile

endif

assert(x = f(y, y))

Fig. 1. A simple program (left) and its abstracted version (right). The abstract version
is obtained by replacing the interpreted symbols +, sin by uninterpreted symbols f, g
respectively.

Invariant Checking for Programs with Procedure Calls 329

expression is an invariant for this new program, it will be an invariant of the orig-
inal. For the above example, it is easy to see that the assertion at the end of the
program holds under all possible executions of this nondeterministic program.

The left program can be abstracted further by replacing the interpreted func-
tions, + and sin, by uninterpreted functions, say f and g. Again, this is a sound
abstraction – the new abstracted program, shown on the right-hand side of
Figure 1, has more behaviors. The process of abstraction is attractive since it
can give a program that lies in a class of programs for which invariant checking
is decidable.

The decidability of the assertion checking problem is parameterized by three
choices: (a) the program model, (b) the theory of the expression language used
in the program model, and (c) the form of the assertion. We briefly describe the
common choices made for obtaining decidability and point to related work.

(a) The program model: First note that including conditional branches in pro-
grams quickly leads to undecidability of invariant checking [12,11]. Hence, a
commonly studied program model is one that contains only assignments, non-
deterministic conditionals and non-deterministic loops. The two programs in
Figure 1 fall into this category. Since interprocedural analysis is more difficult,
procedure call nodes are often disallowed in the program model [6,11,12,7,8].
For this program model, invariant checking is decidable when the expressions
are terms over uninterpreted symbols and assertions are term equalities [6,8].
For example, the invariant checking problem for the program in Figure 1 (right)
falls into this class. However, the invariant checking problem becomes undecid-
able if we consider disequality assertions, such as x �= y, rather than equality
assertions [18]. It remains decidable when the assertion is a disjunction of con-
junctions of equalities [8]. For the same program model, the above results also
generalize to several other expression languages; the reader is referred to [8] for
details.

A useful extension of the program model is obtained by including procedure
calls. If the procedure calls are not recursive, the problem can be reduced to the
original one by just inlining the procedures. When recursive procedure calls are
allowed, the problem becomes more complex, and there are very few results on
the decidability of invariant checking [9].

(b) The expression language: It is commonly assumed that infinite data types
have been abstracted into finite types and this assumption forms the starting
point for several investigations, especially when the program model allows re-
cursive procedure calls [4,3,1]. Our work, however, takes a complementary path.
We focus on restricted and simpler control flow paths, but keep the data type
domains infinite.

(c) The form of assertion: There are some results for the case when procedure
calls and infinite data types are both allowed [16,13,14,10,9], but in all these
cases, as well as in most of the other works, assertions are restricted to equality
between program expressions.

330 G. Godoy and A. Tiwari

main () {
〈x, y〉 := 〈f(x, x), x〉;
call P ;

y := f(y, y);
assert(x = y);

}

P() {
if (*) then // do nothing

else

x := g(x); call P ; y := g(y);
endif

}

Fig. 2. A simple program containing a main procedure (left) and a subprocedure (right)

In contrast to all the above mentioned works, we consider equality and dise-
quality assertions in the presence of recursive procedure calls and infinite data
types. Since the Post Correspondence Problem (PCP) can be reduced to checking
a disequality assertion in a non-deterministic loop containing non-deterministic
conditionals (see Figure 3 and [18]), we have to restrict the program model – by
disallowing conditionals within loops – to achieve decidability.

Summary of the Main Ideas and Results

Consider the recursive program in Figure 2. We will view an assignment block
〈x1, . . . , xn〉 := 〈s1, . . . , sn〉 as the substitution σs = {x1 �→ s1, . . .xn �→ sn}. In
the program in Figure 2, the five assignment blocks correspond to the following
five substitutions:

σ1 = {x �→ f(x, x), y �→ x} σ2 = {x �→ x, y �→ f(y, y)} σ3 = {x �→ x, y �→ y}
σ4 = {x �→ g(x), y �→ y} σ5 = {x �→ x, y �→ g(y)}

The assertion x = y holds at the end of procedure main iff x and y have equal
values at that point on all program paths. This is equivalent to deciding whether

σ1σ
N
4 σ3σ

N
5 σ2(x) = σ1σ

N
4 σ3σ

N
5 σ2(y), for every N ≥ 0 (1)

Note that the underlined composition of substitutions capture the effect of the
recursive procedure P, and N represents the total number of recursive calls to P
in a certain execution.

Consider the negation of Condition 1:

σ1σ
N
4 σ3σ

N
5 σ2(x) �= σ1σ

N
4 σ3σ

N
5 σ2(y), for some N ≥ 0 (2)

We view the above literal as an instance of the general dis-unification problem:
find all numerical values for the variables i1, . . . , in, j1, . . . , jm such that

σi1
1 . . .σin

n (x) �= βj1
1 . . .βjm

m (y). (3)

where σi, βj ’s are given substitutions. We prove that the solutions for this dis-
unification problem can be expressed with a Presburger arithmetic formula with
free variables i1, . . . , in, j1, . . . , jm. As a consequence, we prove decidability of
any Boolean formula whose atoms are of Form 3, and in particular, we prove
decidability of our original invariant checking problem.

Invariant Checking for Programs with Procedure Calls 331

In our example, we construct the Presburger sentence equivalent to Equation 1
by constructing a Presburger formula φ for the following “more general” set:

{〈i1, . . . , i5, j1, . . . , j5〉 ∈ N10 | σi1
1 σ

i4
4 σ

i3
3 σ

i5
5 σ

i2
2 (x) �= σj1

1 σ
j4
4 σ

j3
3 σ

j5
5 σ

j2
2 (y)}

The Presburger formula φ is obtained in two steps. In the first step, we construct
a non-deterministic finite automatonA on an alphabet with 10 symbols such that
the Parikh image of the language accepted by A is equal to the above set. This
construction is given in Section 5. In the second step, we construct a Presburger
formula representing the Parikh image of A.

We characterize the class of programs for which the invariant checking problem
can be decided using our approach. A program is in this class if the effect of
all its execution paths can be described as a finite union of expressions of the
form σi1

1 . . .σin
n , with linear conditions relating the ij ’s. We also define a general

program model and a syntactic subclass, called Sloopy Programs, that falls in
the decidable class. An important restriction is that Sloopy Programs disallow
conditionals within loops.

The outline for the rest of the paper is as follows. In Section 4 we define
the notion of parameterized substitutions, present our program model and the
subset of Sloopy Programs. We show that parameterized substitutions are suffi-
cient to finitely represent the semantics of Sloopy Programs. Thus, the invariant
checking problem is reduced to deciding conditions of the form of Equation 1. In
Section 5 we show that these conditions are decidable. Finally, we put forward
our conclusions in Section 7 and discuss avenues for future research.

4 Program Model, Semantics, and Parameterized
Substitutions

The programs considered in this paper do not have input and are non-
deterministic. The semantics of a concrete execution of a program is the final
value of its variables, which can be viewed as a substitution σ. The semantics of
a program can then be defined as the set of substitutions corresponding to all its
possible executions. We are interested in programs whose semantics is finitely
representable in some formalism. In this setting, the following definition will be
useful.

Definition 1. A parameterized substitution, θ(n1, . . . , nN), or θ(n) in short,
is an expression of the form

σnN

N · · ·σn3
3 σn2

2 σn1
1

where each ni is a variable (ranging over the natural numbers) and each σi is a
substitution. A parameterized substitution is succinctly written as σn.

An instance of θ(n) is a substitution obtained by fixing the valuation for the
variables n. IfΘ is a set of parameterized substitutions, then the set Instances(Θ)
is defined as

Instances(Θ) := {σ | σ := θ(c), c ∈ NN , θ(n) ∈ Θ}

332 G. Godoy and A. Tiwari

An extended parameterized substitution is a pair (θ(n);χ(n)) where θ(n) is
a parameterized substitution and χ(n) is a Presburger formula with free vari-
ables n. If Θ is a set of extended parameterized substitutions, then the set
Instances(Θ) is defined as

Instances(Θ) := {σ | σ := θ(c), c ∈ NN , |=N χ(c), (θ(n);χ(n)) ∈ Θ}

For a given class of programs, we say that its semantics is effectively repre-
sentable with extended parameterized substitutions if, for every program P in
the class, a finite set Θ of extended parameterized substitutions can be computed
such that the semantics, [|P |], of P is equal to Instances(Θ).

Note that a parameterized substitution θ can be written as an extended param-
eterized substitution (θ; true).

Program Model. We define a general class of programs syntactically and then
identify its subclass that is effectively representable with extended parameterized
substitutions. Let X be a finite set of variables, called program variables. A
program is a finite ordered list of procedures, 〈P0, P1, . . . , Pk〉, where a procedure
is a string defined by the following grammar:

P ::= X := t | P ; P |
if (∗) P else P endif | while (∗) P endwhile | call n

where n ∈ {0, . . . , k} is an index (referring to the procedure at the n-th position
in the ordered list above) and t is a vector of terms (of size exactly equal to
|X|).

We next define a subclass of programs called Sloopy Programs that only
contain simple loops. A Sloopy Procedure is defined as follows:

Intrn ::= X := t | while (∗) X := t endwhile | Intrn ; Intrn |
if (∗) Intrn else Intrn endif | callm where m > n

SProcn ::= Intrn | if (∗) Intrn else X := t; call n; X := t′ endif

A Sloopy Program is an ordered list of procedures, 〈P0, P1, . . . , Pk〉, where each
Pi is generated by SProci. We assume that P0 is the main procedure.

The class of Sloopy Programs has two main restrictions compared to the class
of general programs defined above. First, it restricts what can occur inside a
nondeterministic while loop. Specifically, it disallows conditionals inside while.
If this is allowed, then invariant checking (of disequality assertions) becomes
undecidable as shown by the program in Figure 3. The second restriction in
Sloopy Programs concerns mutual recursion. Recursive calls are not allowed
inside code generated by Intrn, but Procedure Pn (generated by SProcn) can
recursively call itself.

Semantics. The semantics of the program constructs if else endif and
while endwhile are standard, with the condition (∗) meaning that the con-
trol can flow in either direction in a nondeterministic way. The construct call n

Invariant Checking for Programs with Procedure Calls 333

SolvePCP((u1, v1), . . . , (uk, vk)):
x := u1(ε); y := v1(ε);
while (*) {

if (*) { x := u1(x); y := v1(y); }
if (*) { x := u2(x); y := v2(y); }
...

if (*) { x := uk(x); y := vk(y); }
} assert(x �= y)

The assertion x �= y is not an
invariant of program SolvePCP

iff u1ui1 . . . uim = v1vi1 . . . vim

for some i1, . . . , im ∈ {1, . . . , k}.
Thus, we can solve PCP by
checking if certain disequalities
are invariants.

Fig. 3. Undecidability of invariant checking for general programs

denotes a procedure call where control flows to the procedure with index n —
with the understanding that all variables X are global variables. Thus, a pro-
gram essentially represents a (possibly infinite) collection of paths, where a path
is a sequence of assignments.

Definition 2 (Semantics of a program). The semantics of a path X :=
e1; X := e2; · · · ; X := ek; is the substitution obtained by composing the k sub-
stitutions as follows: 〈X �→ e1〉〈X �→ e2〉 · · · 〈X �→ ek〉. The semantics of a
program [|P |] is the collection of the semantics of all its paths.

The following lemma says that the semantics of the class of Sloopy Programs is
effectively representable with extended parameterized substitutions.

Lemma 1. For any Sloopy Program P , a finite set Θ of extended parameterized
substitutions can be computed such that [|P |] = Instances(Θ).

Since the semantics of a Sloopy Program P is, by definition, the semantics of the
main procedure P0, the proof of Lemma 1 follows immediately from the same
claim for Sloopy Procedures generated by SProcn stated and proved in Ap-
pendix A. The intuition behind the proof is that each basic block corresponds to
a substitution and the parameters in the parameterized substitution represent
the number of times a basic block (which is part of a loop or procedure) is ex-
ecuted. The relationship between these numbers is encoded in the constraint in
the extended parameterized substitution. The restrictions on Sloopy Programs
ensure that its semantics are representable by extended parameterized substitu-
tions in this way (Lemma 1).

5 Invariant Checking

We define the invariant checking problem for programs as follows. Given a pro-
gram P and a postcondition ψ, we are interested in testing whether

|= σ(ψ), for all σ ∈ [|P |],

where σ(ψ) denotes the formula obtained by applying σ to all the terms in ψ, and
|= denotes validity in the pure theory of equality. The postcondition formula ψ is

334 G. Godoy and A. Tiwari

a (quantifier-free) formula built using equalities t1 = t2 as the atomic formulas,
where t1, t2 are terms over T (Σ, {X}). Without loss of generality, we can assume
that t1 and t2 are variables, since the program P can always introduce two new
variables, say x, y, and assignments, x := t1; y := t2, and instead check for
x = y.

For programs whose semantics is effectively representable with extended pa-
rameterized substitutions, the invariant checking problem reduces to the follow-
ing problem. Given a formula ψ and one extended parameterized substitution
(θ(u);χ(u)), determine whether

|= θ(c)(ψ), for all c ∈ NN s.t. |=N χ(c),

that is, determine whether all solutions c of χ are also solutions of θ(u)(ψ).
We solve this problem by mapping the formula θ(u)(ψ) to a formula in Pres-

burger arithmetic φ(u) such that the two formulas have the same set of solutions;
that is, for all c ∈ NN , |=N φ(c) iff |= θ(c)(ψ). We further simplify the proof by
first considering only a disequality, x �= y, in place of ψ. We will show that

Lemma 2. Given a parameterized substitution θ(u) and variables x and y, there
is a Presburger arithmetic formula φx,y,θ(u) such that for all c ∈ NN , it is the
case that |= θ(c)(x) �= θ(c)(y) iff |=N φx,y,θ(c).

Parameterized Disequation to Automaton. We prove Lemma 2 by solving
a more general problem. Given substitutions σ1, . . . , σN and β1, . . . , βM , all with
domain {x1, . . . , xk} and range T (Σ, {x1, . . . , xk}), we consider the problem of
characterizing the solutions of the disequation

σnN

N . . .σn1
1 (x) �= βmM

M . . .βm1
1 (y),

where n1, . . . , nN ,m1, . . . ,mM are variables ranging over the natural numbers,
and x, y are variables in {x1, . . . , xk}. Our goal is to represent all the solutions of
this disequation, written in short as σn(x) �= βm(y), as a Presburger arithmetic
formula with N + M free variables n,m. To this end, we first construct an
automaton A that accepts words over an alphabet of vectors {0, 1}N+M such
that the following property holds: σn(x) will be different from βm(y) iff there
exists a word w := v1 . . . vl in the language accepted by A such that Sum(w) :=
v1 + . . . + vl is equal to the vector 〈n,m〉 ∈ NN+M . In fact, only the vector
0 and the unit vectors of the canonical basis e1, . . . , eN+M will appear in the
definition of A. (Here, ej ∈ {0, 1}N+M is a vector that has 1 in the j-th position
and 0’s elsewhere.)

Intuitively, the automaton non-deterministically searches for the position in
the terms σn(x) and βm(y) where the two terms are different. Informally, call
this position the point of difference. We use the notation N to denote the set
{1, . . . , N}. The non-deterministic automaton A = (Q,ΣA, qinit, QF , T) is de-
fined as follows:

(1) The alphabet ΣA is {0, e1, . . . , eN+M}. Informally, when the automaton A
makes a transition on symbol ei, for i ∈ N , then it means that the automaton

Invariant Checking for Programs with Procedure Calls 335

A decided to use one more application of σi in its search for the “point of dif-
ference”. Analogously, when it makes a transition on symbol eN+j , for j ∈ M ,
it decided to use one more application of βj .
(2) The set of states Q of the automaton A is

Q = Q1 ∪QF

Q1 = {〈i, s, j, t〉 | i ∈ N , s is a subterm of {x1, . . . , xk} ∪ {σi(x1), . . . , σi(xk)},
j ∈ M , t is a subterm of {x1, . . . , xk} ∪ {βj(x1), . . . , βj(xk)}}

QF = {qij | i ∈ N + 1, j ∈ M + 1}

Here QF is the set of accepting states, and qinit = 〈1, x, 1, y〉 is the initial state.
Intuitively, when A is in the state 〈i, s, j, t〉, then it means that A is currently
applying σi and βj , respectively, and currently matching s and t, in its search
for the “point of difference”.
(3) The transitions T of A are given in Table 1. Informally speaking, in its
search for the “point of difference” from state 〈i, s, j, t〉, the non-deterministic
automaton A does the following: (a) if the top function symbols are different,
then it moves into an accept state (T ′

1), (b) if the top function symbols are iden-
tical, then it guesses under which subterms the “point of difference” may lie,
and moves into the state with these subterms (T1), (c) if the search reaches a
variable, then it non-deterministically chooses to either apply the current sub-
stitution (T2, T

′
2) and continue the search, or it moves to the next substitution

(T3, T
′
3), (d) if the search reaches the last substitutions, then it moves into an

accepting state if it finds the “point of difference” (T4, T
′
4, T5), and (e) if A is

in an accepting state (that is, it has found the “point of difference”), but it has
not used up all the available substitutions, then it accepts all possible choices
for the remaining substitutions (T6, T

′
6).

Table 1. Transitions of the automaton encoding solutions of a parameterized
disequation

T = T1 ∪ T ′
1 ∪ T2 ∪ T ′

2 ∪ T3 ∪ T ′
3 ∪ T4 ∪ T ′

4 ∪ T5 ∪ T6 ∪ T ′
6

T1 = {(〈i, fs1 . . . sn, j, ft1 . . . tn〉,0, 〈i, sl, j, tl〉) | i ∈ N , j ∈ M , l ∈ n}
T ′

1 = {(〈i, fs1 . . . sn, j, gt1 . . . tm〉,0, qij) | i ∈ N , j ∈ M , f �≡ g}
T2 = {(〈i, x, j, t〉, ei, 〈i, σi(x), j, t〉) | i ∈ N , j ∈ M}
T ′

2 = {(〈i, t, j, x〉, eN+j , 〈i, t, j, σj(x)〉) | i ∈ N , j ∈ M}
T3 = {(〈i, x, j, t〉,0, 〈i+ 1, x, j, t〉) | i ∈ N − 1, j ∈ M}
T ′

3 = {(〈i, t, j, x〉,0, 〈i, t, j + 1, x〉) | i ∈ N , j ∈ M − 1}
T4 = {(〈N, x, j, t〉,0, qN+1,j) | j ∈ M , t �∈ X}
T ′

4 = {(〈i, t,M, x〉,0, qi,M+1) | i ∈ N , t �∈ X}
T5 = {(〈N, s,M, t〉,0, qN+1,M+1) | s, t ∈ X , s �≡ t}
T6 = {(qij , el, qij) | i ∈ N , j ∈ M + 1, i ≤ l ≤ N}
T ′

6 = {(qij , eN+l, qij) | i ∈ N + 1, j ∈ M , j ≤ l ≤M}

336 G. Godoy and A. Tiwari

The next two lemmas will capture the intuition behind the construction of A.
The first lemma states that every run of A corresponds to some instance of x
and y and some path on those instances.

Lemma 3. Let A be an automaton constructed from x, y, σ and β as before.
Let w be a word in Σ∗

A. Let 〈1, x, 1, y〉 w−→〈i, s, j, t〉 be a run of the automaton A.
Let Sum(w) = 〈n,m〉, u = σn(x) and v = βm(y). Then, there is a position p
such that s = u|p, t = v|p, and root(u|p′) = root(v|p′) for all positions p′ < p.

Proof. We generate the required position p by annotating each state in the given
run with a position. The initial state is annotated with position ε. If p is the
annotation on the current state, then (a) if the next state is obtained using a
transition from the set T1, then the next state is annotated with p.l, and (b)
if the next state is obtained using any other transition, then the next state is
annotated with p.

Now, the lemma follows by induction on the length of the run. In the base
case, the claim is clearly true for the initial state. It is easily verified that the
claim is preserved on every transition that does not lead to some qij state. ��

Conversely, we can show that given an instance of x and y and a position p on
these instances, we can find a corresponding run of A.

Lemma 4. Let A be an automaton constructed from x, y, σ and β as before.
Let n,m be N + M natural numbers and let u be σn(x) and v be βm(y).
If p is a position in u and v such that root(u|p′) = root(v|p′) for all p′ <
p, then there is a run of A, 〈1, x, 1, y〉 w−→ 〈i, s, j, t〉 such that Sum(w) =
〈n1, . . . , ni−1, n

′, 0, . . . , 0,m1, . . . ,mj−1,m
′, 0, . . . , 0〉, n′ ≤ ni, m′ ≤ mj, s :=

(σn′
i σ

ni−1
i−1 . . .σn1

1 (x))|p, and t := (βm′
j β

mj−1
j−1 . . .βm1

1 (y))|p.

Proof. We construct the required run of automaton A by following the path p on
terms u and v. We need to keep three auxiliary variables – two indices n′,m′, and
a position p′ – to guide this run of A. We just append the 3 auxiliary variables
to the state to simplify presentation. The starting state is 〈〈1, x, 1, y〉, 0, 0, ε〉.

Suppose that the current (extended) state of A is 〈〈i, s, j, t〉, n′,m′, p′〉. The
auxiliary variables will satisfy the invariant that 0 ≤ n′ ≤ ni, 0 ≤ m′ ≤ mj ,
ε ≤ p′ ≤ p, s = (σn′

i σ
ni−1
i−1 . . .σn1

1 (x))|p, and t = (βm′
j β

mj−1
j−1 . . .βm1

1 (y))|p. Now,
the next state in the required run will be:

(1) 〈〈i, s|l, j, t|l〉, n′,m′, p′.l〉 (using a transition from T1), if neither s nor t is
a variable and p′.l ≤ p. Note that, by assumption, in this case, root(s) =
root(t) and hence a transition from T1 will be enabled.

(2) 〈〈i, σi(s), j, t〉, n′ + 1,m′, p′〉 (using a transition from T2), if s is a variable
and n′ < ni.

(2’) 〈〈i, s, j, βj(t)〉, n′,m′ + 1, p′〉 (using a transition from T ′
2), if t is a variable

and m′ < mj .
(3) 〈〈i+1, s, j, t〉, 0,m′, p′〉 (using a transition from T3), if s is a variable, i < N ,

and n′ = ni.

Invariant Checking for Programs with Procedure Calls 337

(3’) 〈〈i, s, j+1, t〉, n′, 0, p′〉 (using a transition from T ′
3), if t is a variable, j < M ,

and m′ = mj .

Using induction on the length of position p, it is easy to prove that the above
run has all the desired properties (stated in the lemma). ��

We can now state the correctness of the construction of A, but leave the proof
to Appendix A.

Lemma 5. Let A be an automaton constructed from x, y, σ and β as before.
Let n,m be N +M natural numbers.

Then σn(x) is different from βm(y) iff there exists a word w accepted by A
such that Sum(w) = 〈n,m〉.
For an automaton A, let L(A) denote the language accepted by A and let
Sum(L(A)) denote the set {Sum(w) | w ∈ L(A)}. Lemma 5 gives us the
following result on representing solutions of parameterized disequations.

Theorem 2. Let X be a finite set of variables and σ,β be N +M substitutions
mapping X to the set of terms T (Σ,X). Given x, y ∈ X, there is a finite
automaton A such that

Sum(L(A)) = {〈c,d〉 ∈ NN+M | σc(x) �= βd(y)}

The number of states in A is bounded by O(InputSize4) and the number of
transitions is bounded by O(InputSize8), where InputSize is the size of the input
σ,β.

Automaton to Presburger Formula. Let A be a finite automaton over the
alphabet {0, e1, . . . , eN+M}. If we treat 0 as the ε-symbol, then it is obvious
that Sum(L(A)) is simply the Parikh image of L(A). It follows from Theorem 1
that we can represent Sum(L(A)) by a Presburger formula φA.

Disequation to Arbitrary Formula. We can put together Theorems 2 and 1
to immediately get a proof of Lemma 2. In fact, Lemma 2 can now be easily
generalized to arbitrary formulas ψ whose atomic formulas are equations between
variables.

Theorem 3. Given an extended parameterized substitution (θ(u);χ(u)) and a
quantifier-free equality formula ψ, there is a Presburger formula φψ,(θ;χ)(u) such
that for all c ∈ NN , it is the case that |= χ(c) ⇒ θ(c)(ψ) iff |=N φψ,(θ;χ)(c).

Proof. We proceed by structural induction on ψ. The base case is when ψ is
x = y. By Lemma 2, we know there is a formula φx
=y,θ corresponding to x �= y.
Thus, for all c ∈ NN , we have the following inference:

|= θ(c)(x) �= θ(c)(y) iff φx
=y,θ(c) Lemma 2
∴, |= θ(c)(x) = θ(c)(y) iff ¬φx
=y,θ(c)
∴, |= χ(c) ⇒ θ(c)(x) = θ(c)(y) iff χ(c) ⇒ ¬φx
=y,θ(c)
∴, φψ,(θ;χ) := φx=y,(θ;χ) := χ(u) ⇒ ¬φx
=y,θ(u)

338 G. Godoy and A. Tiwari

For the inductive step, if ψ is ψ1 ∨ ψ2, then it is easy to see that φψ,θ is φψ1,θ ∨
φψ2,θ, and similarly for the cases when ψ is ¬ψ1 and when ψ is ψ1 ∧ ψ2. ��

Note that φψ,θ is always an existentially quantified Presburger formula (with
free variables). We can test the validity of the (universal closure) of φψ,θ and
thus decide the invariant checking problem for Sloopy Programs.

Theorem 4. Let P be a Sloopy Program and ψ be an assertion. The problem
of checking if ψ is an invariant for P is decidable.

Proof. Using Lemma 1, we first get a finite set Θ of extended parameterized
substitutions that represent [|P |], that is, [|P |] = Instances(Θ). For each param-
eterized substitution (θ;χ) ∈ Θ, we use Theorem 3 to construct a Presburger
formula φψ,(θ;χ) and test the validity of (the universal closure of) φψ,(θ;χ). If all
such Presburger formulas are valid, then ψ is an invariant of P ; otherwise, it is
not. The correctness follows from the following reasoning:

ψ is an invariant of P
iff |= σ(ψ) for each σ ∈ [|P |] By definition of invariant
iff |= σ(ψ) for each σ ∈ Instances(Θ) Lemma 1
iff |= χ(c) ⇒ θ(c)(ψ) for each (θ;χ) ∈ Θ, c ∈ Nl Definition of Instances
iff ∀u(φψ,(θ;χ)(u)) is valid Theorem 3

This completes the proof. ��

6 Discussion

The class of Sloopy Programs has some severe restrictions compared to the
class of general programs defined in Section 4. It disallows procedure calls and
loops inside a loop and it supports only a limited form of recursion. If we allow
arbitrary loops and recursive procedure calls (that is, use the general program
model P from Section 4), but restrict to (positive) equations as assertions, then
the decidability is not known, although it is known for some subcases [9,5]. If
linear arithmetic is the expression language, then disequality checking remains
undecidable (similar proof as Figure 3), but equality checking is known to be
decidable [13,9].

The decidability result for the class of Sloopy Programs actually works more
generally. It works for any program in which the mapping that maps a run of
that program to the vector of the number of times a basic block is executed in
that run is injective. In other words, given the number of times a basic block
has executed in a run, it should be possible to extract the exact run of the
program. For any such program, the decidability arguments given in this paper
are applicable.

The proof of decidability given here performs two steps. The first step com-
putes the semantics of the program using extended parameterized substitutions.
Fixing the parameters fixes a program path. The second step constructs an

Invariant Checking for Programs with Procedure Calls 339

automaton that characterizes all solutions for the parameters that make an as-
sertion true. We can get a direct proof by merging these two steps. Note that
applying a substitution (corresponding to a basic block) to an assertion is the
same as computing the weakest precondition of the assertion with respect to the
basic block.

Techniques used for deciding equality assertions do not directly apply for
deciding disequality assertions. Decidability for equality assertions often relies
on the fact that there can be only finitely many non-redundant equations. This
is mostly not true for disequalities.

7 Conclusions

We presented two decidability results in this paper. First, we showed decidability
of the following problem: given substitutions σ1, . . . , σN , β1, . . . , βM and terms
x, y, is there a vector (c1, . . . , cN , d1, . . . , dN) of natural numbers in a given semi-
linear set such that σcN

N . . .σc1
1 (x) �= βdM

M . . .βd1
1 (y)? We also showed decidability

of the above problem when the disequality is replaced by an equality or any
Boolean combination of equalities and disequalities. Using the above result, we
established decidability of invariant checking for a large class of programs with
recursion. Our decidability result is valid for any class of programs whose se-
mantics is effectively representable with extended parameterized substitutions,
and Sloopy Programs are just a particular case. It would be interesting to study
alternative classes of programs satisfying this property. Moreover, note that our
assertions are just quantifier-free boolean formulas. Adding quantification to the
assertions will be interesting, since the first order theory of term algebras is
known to be decidable [2]. Other variants of the problem can also be consid-
ered for future research, such as allowing local variables or parameters in the
procedures, and incorporating interpreted symbols in the signature.

Acknowledgments. We thank the reviewers for their helpful comments.

References

1. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: POPL, pp. 62–73 (2003)

2. Comon, H., Delor, C.: Equational formulae with membership constraints. Inf. Com-
put. 112, 167–216 (1994)

3. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithm for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855. Springer, Heidelberg (2000)

4. Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-
flow analysis. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 14–30.
Springer, Heidelberg (1999)

340 G. Godoy and A. Tiwari

5. Gascon, A., Godoy, G., Schmidt-Schauß, M., Tiwari, A.: Context unification with
one context variable. J. of symbolic computation (submitted, 2009)

6. Gulwani, S., Necula, G.C.: A polynomial-time algorithm for global value number-
ing. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 212–227. Springer,
Heidelberg (2004)

7. Gulwani, S., Tiwari, A.: Assertion checking over combined abstraction of linear
arithmetic & uninterpreted functions. In: Sestoft, P. (ed.) ESOP 2006. LNCS,
vol. 3924, pp. 279–293. Springer, Heidelberg (2006)

8. Gulwani, S., Tiwari, A.: Assertion checking unified. In: Cook, B., Podelski, A.
(eds.) VMCAI 2007. LNCS, vol. 4349, pp. 363–377. Springer, Heidelberg (2007)

9. Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural anal-
ysis. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 253–267. Springer,
Heidelberg (2007)

10. Müller-Olm, M., Petter, M., Seidl, H.: Interprocedurally analyzing polynomial iden-
tities. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 50–67.
Springer, Heidelberg (2006)

11. Müller-Olm, M., Rüthing, O., Seidl, H.: Checking Herbrand equalities and beyond.
In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 79–96. Springer, Heidelberg
(2005)

12. Müller-Olm, M., Seidl, H.: A note on Karr’s algorithm. In: 31st ICALP,
pp. 1016–1028 (2004)

13. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.
In: 31st ACM Symposium on POPL, January 2004, pp. 330–341 (2004)

14. Müller-Olm, M., Seidl, H., Steffen, B.: Interprocedural Herbrand equalities. In:
Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 31–45. Springer, Heidelberg
(2005)

15. Parikh, R.J.: On context-free languages. J. of the ACM 13(4), 570–581 (1966)
16. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via

graph reachability. In: 22nd ACM Symposium on POPL, pp. 49–61 (1995)
17. Seidl, H., Schwentick, T., Muscholl, A., Habermehl, P.: Counting in trees for free.

In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 1136–1149. Springer, Heidelberg (2004)

18. Tiwari, A., Gulwani, S.: Logical interpretation: Static program analysis using the-
orem proving. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 147–166.
Springer, Heidelberg (2007)

A Supplementary Lemmas and Proofs

Lemma 6. For any Sloopy Procedure SPn, there is a finite set Θ of extended
parameterized substitutions such that [|SPn|] = Instances(Θ).

Proof. We prove this by structural induction on the structure of the Sloopy
Procedure SPn. By assumption programs are finite, and hence the structural in-
duction process is well defined. The following equations define the set of extended
parameterized substitutions that capture the semantics of Sloopy Procedure SPn

in terms of the the semantics of its components.

Invariant Checking for Programs with Procedure Calls 341

[|X := t|] = {(〈X �→ t〉n;n = 1)}
[|while (∗) X := t endwhile|] = {(〈X �→ t〉n; true)}

[|Intrn ; Intrn′|] = {(θθ′;χ ∧ χ′) | (θ;χ) ∈ [|Intrn|],
(θ′;χ′) ∈ [|Intrn′|]}

[|if (∗) Intrn else Intrn′ endif|] = [|Intrn|] ∪ [|Intrn′|]
[|call m|] = [|Pm|]

[|if (∗) Intrn; else X := t; call n; X := t′ endif|]
= {(〈X �→ t〉n1θ〈X �→ t′〉n2 ;χ ∧ n1 = n2) |

(θ;χ) ∈ [|Intrn|]}

where n, n1 and n2 are always new variables ranging over the natural numbers.
Recall that the side condition, m > n, guarantees that the above inductive
way of obtaining parameterized representation of semantics is well defined. The
correctness of the above definition is obvious. ��

Proof (Lemma 5). ⇒: Assume that u = σnN

N . . .σn1
1 (x) is different from v =

βmM

M . . .βm1
1 (y). Then, there exists a position p ∈ Pos(u) ∩ Pos(v) such that

root(u|p) �= root(v|p). Among all choices for such a p, we choose one with the
minimal size/length. Hence, root(u|p′) = root(v|p′) for all p′ < p.

Using Lemma 4 on this choice of position p, we infer that there is a run of
automaton A, 〈1, x, 1, y〉 w−→ 〈i, s, j, t〉, such that

Sum(w) = 〈n1, . . . , ni−1, n
′, 0, . . . , 0,m1, . . . ,mj−1,m

′, 0, . . . , 0〉,

with n′ ≤ ni, m′ ≤ mj , s = (σn′
i σ

ni−1
i−1 . . .σn1

1 (x))|p, and t = (βm′
j β

mj−1
j−1 . . .

βm1
1 (y))|p. Among all the runs satisfying these conditions, we choose a run r

maximum in length. Because of the choice of p, one of the following conditions
is satisfied:

(a) Neither s nor t is a variable: In this case, a transition from set T ′
1 is applicable

and we can complete the current run to get the following accepting run:

〈1, x, 1, y〉 w−→ 〈i, s, j, t〉 0−→
T ′
1

qij
w′
−→
T6,T ′

6

qij

where w′ is the word eni−n′
i e

ni+1
i+1 . . . enN

N e
mj−m′

N+j e
mj+1
N+j+1 . . . emM

N+M . By construc-
tion, we have Sum(w0w′) = 〈n1, . . . , nN ,m1, . . . ,mM 〉 in this accepting run.
(b) Either s or t is a variable: Suppose s is a variable, say x′, and t is not a
variable. If i �= N or n′ < ni, then we can apply a transition of T2 or T3 to
obtain a larger run than r and with the same conditions, contradicting then the
election of r. Hence, i = N and n′ = nN . Thus, we can complete the current run
as follows:

〈1, x, 1, y〉 w−→ 〈i, x′, j, t〉 = 〈N, x′, j, t〉 0−→
T4

qN+1,j
w′
−→
T ′
6

qN+1,j

where w′ is the word e
mj−m′

N+j e
mj+1
N+j+1 . . . emM

N+M . Again, by construction, we have
Sum(w0w′) = 〈n1, . . . , nN ,m1, . . . ,mM 〉 in this accepting run. Finally, the other

342 G. Godoy and A. Tiwari

cases, when either t or both s and t are variables can be handled similarly and
we get the desired accepting run in each case.

⇐: Suppose that A accepts w and Sum(w) = 〈n1, . . . , nN ,m1, . . . ,mM 〉. Thus,
we have an accepting run of A that can be written in the following form:

〈1, x, 1, y〉 w′
−→ 〈i, s, j, t〉 0−→

T1,T4,T ′
4,T5

qIJ
w′′
−→
T6,T ′

6

qIJ

It holds that Sum(w′) = 〈n1, . . . , ni−1, n
′, 0, . . . , 0,m1, . . . ,mj−1,m

′, 0, . . . , 0〉
for some n′ ≤ ni and m′ ≤ mj . Let u := σn′

i σ
ni−1
i−1 . . .σn1

1 (x) and v :=

σn′
i σ

ni−1
i−1 . . .σn1

1 (x). Using Lemma 3 on the run 〈1, x, 1, y〉 w′
−→ 〈i, s, j, t〉, we con-

clude that there is a position p such that s is u|p, t is v|p, and root(u|p′) =
root(v|p′) for all p′ < p.

We can now complete the proof depending on whether we used T1, T4, T ′
4, or

T5 in the accepting run above:

T1 : In this case, u and v are different at a non-leaf position p. Hence,
σnN

N . . .σn1
1 (x) and βmM

M . . .βm1
1 (y), which are just instances of u and v, will

also differ at position p.
T4 : In this case, s is a variable and t is not a variable. Furthermore, I is nec-

essarily N + 1 in this case. Consequently, the only transitions applicable on
qI,J are those in T ′

6, and hence w′′ cannot contain ei for i ≤ N . Hence, at
position p, the term σnN

N . . .σn1
1 (x) contains the variable s, whereas the term

βmM

M . . .βm1
1 (y)|p will not be a variable.

T ′
4 : This case is similar to the previous case.
T5 : In this case, I = N + 1, J = M + 1, and hence, at position p, the two terms

– σnN

N . . .σn1
1 (x) and βmM

M . . .βm1
1 (y) – have distinct variables.

Thus, in all cases, the terms σnN

N . . .σn1
1 (x) and βmM

M . . .βm1
1 (y) are different. ��

Inter-program Properties

Andrei Voronkov1 and Iman Narasamdya2,�

1 The University of Manchester
voronkov@cs.man.ac.uk

2 FBK-Irst
narasamdya@fbk.eu

Abstract. We develop foundations for proving properties relating two programs.
Our formalization is based on a suitably adapted notion of program invariant for
a single program. First, we give an abstract formulation of the theory of program
invariants based on the notion of assertion function: a function that assigns asser-
tions to program points. Then, we develop this abstract notion further so that it
can be used to prove properties between two programs. We describe an applica-
tion of the theory to proving program properties in translation validation.

Keywords: assertion function, invariant, translation validation.

1 Introduction

Recent work on the translation validation approach [15] to compiler correctness has
shown the prominence of techniques for proving properties that relate two programs. In
translation validation, especially for optimizing compilers, one proves that, for a single
source program, the program and the result of optimization are semantically equivalent.
Translation validation frameworks, such as [18,14,23,2,19,12], present program analy-
sis and proof rules specialized for equivalence checking between programs and their
optimized versions. However, one of the most bothersome and challenging problems in
the work on translation validation or program logic for relating two programs is still
present: how to relate two programs whose control structures are loosely related?

For instance, consider the programs P and P ′ in Figure 1. A compiler optimized
the program P by unrolling the body of the loop L of P ; the resulting program is P ′.
Variables in P correspond to their primed counterparts in P ′. In this case, the loop L
corresponds to the loops L′

1 and L′
2. However, two iterations of the loop L correspond

to one iteration of the optimized loop L′
1. Note that the control flow of P is related to

that of the optimized version P ′, but they are not identical. Now the problem is how can
we prove the equivalence between these two programs? The existing solutions to this
problem were not satisfactory. For example, Benton [2] included common program op-
timizations as part of his logic, and so those optimizations are provable just by axioms.

Suppose that one proves the equivalence of two programs using some translation val-
idation method. All existing methods exploit, to a certain extent, that the two programs
have much in common: for example, some variables in one of the programs may directly
correspond (whatever it means) to variables of the other program. One of the important

� Supported in part by COCONUT project.

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 343–359, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

344 A. Voronkov and I. Narasamdya

P :

l1 :
do L{

i := i + 4;
l2 :

} while (i < n);
return i;
l3 :

P ′ :
l′1:
if (i′ < n′ − 8) {

do L′
1
{

i′ := i′ + 8;
l′′2 :

} while (i′ < n′ − 8);
}

do L′
2
{

i′ := i′ + 4;
l′2 :

} while (i′ < n′);
return i′;
l′3 :

Fig. 1. Example of loop unrolling

questions in translation validation is how to present the results of equivalence-checking
so that they can be checked by other systems, such as theorem provers or proof checkers.
This problem is not trivial since translation validation methods do not have a common
notion of verification conditions, proofs or certificates. This contrasts to program veri-
fication where there is a commonly accepted way of proving program properties based
on Hoare’s logic and invariants. One cannot use Hoare’s logic for proving equivalence
since we do not even have any specification of the programs.

This paper presents a new elegant way to address this problem. We develop foun-
dations for relating two programs with very different control structures and for
proving properties between these programs. Such properties in this paper are called
inter-program properties. Our proof technique is not specialized for proving specific
properties, such as program equivalence, nor for specific program transformations. We
propose an abstract theory for expressing and proving inter-program properties; the the-
ory also establishes a notion of certificate or proof about such properties.

Similar to the Floyd-Hoare proof technique [3,4], the main ingredients of our tech-
nique are assertions associated with program points. Our theory is based on the notion
of assertion function: a function that assigns assertions to program points. For instance,
one can define an assertion function I1 that maps l1 to (n − i)%8 = 0 ∧ n > i, l2 to
(n − i)%8 = 0 ∧ n ≥ i, and l3 to n = i. Note that the assertions assigned to program
points in a loop are not necessarily loop invariants, for example, the assertion assigned
to l2.

The formalization of our theory is based on a suitably adapted notion of program in-
variant for a single program. We propose the notion of extendible assertion function as a
constructive characterization for expressing and proving program properties, including
program invariants. An assertion function I of a program is extendible if for every run
of the program reaching a point p1 on which I is defined and the assertion I(p1) holds,
we can always extend the run so that it reaches a point p2 on which I is defined and the
assertion I(p2) holds. Note that, on extending the run, the run can reach a point p3 on
which I is defined but the assertion I(p3) does not hold.

Consider again the assertion function I1 defined above. This function is extendible
with the following arguments. First, for every run of P starting from an initial state that
satisfies I1(l1), the run reaches l2 with two iterations of the loop L such that I1(l2)
holds. Second, let now the run be at l2 such that I1(l2) holds. Then the run can be

Inter-program Properties 345

extended either by following the same path as in the first argument, or by following
the path that exits the loop without going through the loop body again. For the latter
path, the run reaches l3 such that I1(l3) holds. Note that, in this example, we prove a
partial correctness property. That is, for every run of P starting from an initial state that
satisfies I1(l1), the final state of the run will satisfy I1(l3) whenever the run terminates
(or reaches l3). Note in particular that we prove a partial correctness property without
using loop invariants.

We develop further the notion of extendible assertion function so that it can be used
to prove inter-program properties. To this end, we consider two programsP and P ′ as a
pair (P, P ′) of programs whose runs are defined by the transitions in P and P ′, without
any synchronization. We will show that meta properties that hold for the case of a single
program also hold for the case of pairs of programs. Similar to the case of a single pro-
gram, we prove inter-program properties using assertions between two specific points
of P and P ′. These assertions describe data abstractions and control mapping between
P and P ′. We call such assertions inter-program assertions. We extend the notion of
assertion function so that it maps pairs of program points to inter-program assertions.

Consider again the programs P and P ′ of Figure 1. Suppose that two programs are
equivalent if for every pair of runs of the two programs on the same input, one run is
terminating if and only if the other is, and when the runs terminate, they return the same
value. To prove that P and P ′ are equivalent, we first define an assertion function I2
as follows: let φ be the assertion i = i′ ∧ n = n′, we have I2(l1, l′1) ⇔ I2(l2, l′2) ⇔
I2(l2, l′′2) ⇔ φ, and I2(l3, l′3) ⇔ i = i′.

We prove the equivalence between P and P ′ by showing that I2 is extendible. First,
for every run of (P, P ′) from the entries of both programs, that is (l1, l′1), such that
n = n′ = v1 and i = i′ = v2 for some input values v1 and v2, the run can be extended
either to (l2, l′2) or to (l2, l′′2). For the latter extension, the run of P iterates the loop L
twice. For the former extension, the assertions I2(l2, l′2) holds and for the latter one,
the assertion I2(l2, l′′2) holds. From (l2, l′′2), the run can be extended either to (l2, l′′2) by
following the same path as before, or to (l2, l′2). Again, either the assertion I2(l2, l′′2)
or I2(l2, l′2) holds, depending on the path of extension. From (l2, l′2), the run can be
extended either to (l2, l′2) again by iterating each loop L and L′

2 once or to (l3, l′3) by
exiting the loops. For the former extension, the assertions I2(l2, l′2) holds and for the
latter one, the assertion I2(l3, l′3) holds. Our reasoning on the extendibility of I2 shows
that for every pair runs of P and P ′ on the same input, one run is terminating if and
only if so is the other, and since the assertion I2(l3, l′3) holds at the program exits, then
when the runs terminate, they return the same return value.

One of our main motivations is to give a notion of certificate that certifies inter-
program properties. We define verification conditions that can be used as such a cer-
tificate. A verification condition itself is a finite set of assertions. A certificate can be
turned into a proof by proving that every assertion in the verification condition is valid.

Note that we do not focus on how to find certificates (or verification conditions). Our
main motivation is to establish a unifying notion of certificate so that program and inter-
program properties obtained by various techniques could all become part of a certificate
and eventually contribute to proving a required inter-program property, such as program
equivalence.

346 A. Voronkov and I. Narasamdya

In summary, the main contributions of this paper are the following: (1) new foun-
dations for expressing and proving inter-program properties through the notion of ex-
tendibility, (2) a unifying notion of certificate about inter-program properties, and (3)
an application of the theory to proving properties in translation validation for optimiz-
ing compilers. As briefly shown above, the notion of extendible assertion function is
very flexible so that it allows one to formally relate two programs with loosely related
control structures and to prove properties of those programs.

The outline of this paper is as follows. We first describe the formal model of pro-
grams and their semantics. We then develop a theory of properties of a single program
based on the notion of extendible assertion function. Afterward we develop the theory
further so that it can be used to describe and prove inter-program properties. We then
describe the application of the theory to proving inter-program properties in translation
validation for optimizing compilers. Finally, we discuss related and future work.

2 Main Assumptions

Our formalization will be based on standard assumptions about programs and their
semantics. We assume that a program consists of a finite set of program points. We
denote by PointP the set of program points of P . A program-point flow graph of P
is a finite directed graph whose nodes are the program points of P . In the sequel, we
assume that every program P we are dealing with is associated with a program-point
flow graph, denoted by GP . We assume that every program has a unique entry point
and a unique exit point. Denote by entry(P) and exit(P), respectively, the entry and
the exit point of program P .

We describe the run-time behavior of a program as sequences of configurations. A
configuration of a program run is a pair (p, σ), where p is a program point and σ is
a state mapping variables to values. The variables used in a state do not necessarily
coincide with variables of the program. For example, we may consider memory to be a
variable. A configuration (p, σ) is called an entry configuration for P if p = entry(P),
and an exit configuration for P if p = exit(P). For a configuration γ, we denote by
pp(γ) the program point of γ.

We assume that the semantics of a program P is defined as a transition relation �→P

with transitions of the form (p1, σ1) �→P (p2, σ2), where p1, p2 are program points,
σ1, σ2 are states, and (p1, p2) is an edge in the program-point flow graph of P .

Definition 2.1 (Computation Sequence,Run). A computation sequence of a program
P is either a finite or an infinite sequence of configurations

(p0, σ0), (p1, σ1), . . . , (1)

where (pi, σi) �→P (pi+1, σi+1) for all i. A run R of a program P from an initial state
σ0 is a computation sequence (1) such that p0 = entry(P). A run is complete if it
cannot be extended, that is, it is either infinite or terminates at an exit configuration. ��

We introduce two restrictions on the semantics of programs. First, we assume that pro-
grams are deterministic. That is, for every program P , given a configuration γ1, there

Inter-program Properties 347

exists at most one configuration γ2 such that γ1 �→P γ2. Second, we assume that, for
every program P and for every non-exit configuration γ1 of P ’s run, there exists a con-
figuration γ2 such that γ1 �→P γ2, that is, a complete run may only terminate in an exit
configuration. Our results can easily be generalized by relieving these restrictions. In-
deed, for non-deterministic programs where the non-deterministic choices are visible,
one can view such programs as deterministic programs having an additional input vari-
able xwhose value is an infinite sequence of numbers, these numbers are used to decide
which of non-deterministic choices should be made. Further, if a program computation
can terminate in a state different from the exit state, we can add an artificial transition
from this state to the exit state.

Further, we assume some assertion language in which one can write assertions in-
volving variables and express properties of states. The set of all assertions is denoted by
Assertion. We write σ |= α to mean an assertionα is true in a state σ, and also say that
σ satisfies α, or that α holds at σ. We say that an assertion α is valid if σ |= α for every
state σ. We will also use a similar notation for configurations: for a configuration (p, σ)
and assertion α we write (p, σ) |= α if σ |= α. We assume that the assertion language
is closed under the standard propositional connectives and respects their semantics.

3 Intra-program Properties

In this section we introduce the notion of program invariant for a single program and
some related notions that make it more suitable to present inter-program properties later.

Program Invariants. We introduce the notion of assertion function that associates pro-
gram points with assertions. An assertion function for a program P is a partial function

I : PointP → Assertion

mapping program points of P to assertions such that I(entry(P)) and I(exit(P)) are
defined. The requirement that I is defined on the entry and exit points is purely technical
and not restrictive, for one can always define I(entry(P)) and I(exit(P)) as !, that is,
an assertion that holds at every state.

Given an assertion function I , we call a program point p I-observable if I(p) is
defined. A configuration (p, σ) is called I-observable if so is its program point p. We
say that a configuration γ = (p, σ) satisfies I , denoted by γ |= I , if I(p) is defined and
σ |= I(p). We will also say that I is defined on γ if it is defined on p and write I(γ) to
denote I(p).

Definition 3.1 (Program Invariant). Let I be an assertion function of a program P .
The function I is said to be a program invariant of P if for every run γ0, γ1, . . . of the
program such that γ0 |= I and for all i ≥ 0, we have γi |= I whenever I is defined
on γi. ��
This notion of invariant is useful for asserting that a program satisfies some properties,
including partial correctness of a problem. Recall that a program P is partially correct
with respect to a precondition ϕ and a postcondition ψ, denoted by {ϕ}P{ψ}, if for
every run of P from a configuration satisfying ϕ and reaching an exit configuration,
this exit configuration satisfies ψ.

348 A. Voronkov and I. Narasamdya

P :

i := 0;
j := 0;
while (j < 100) {

if (i > j) j := j + 1;
else i := i + 1;

q :
}

P ′:

i′ := 0;
j′ := 0;
while (j′ < 100) {

i′ := i′ + 1;
j′ := j′ + 1;

q′ :
}

Fig. 2. Example Programs

Theorem 3.2. Let P be a program and ϕ, ψ be assertions. Let I be an assertion func-
tion for P such that I(entry(P)) = ϕ and I(exit(P)) = ψ. If I is an invariant, then
{ϕ}P{ψ}. If, in addition, I is only defined on the entry and the exit points, then I is an
invariant if and only if {ϕ}P{ψ}. ��

One can provide a similar characterization of loop invariants using our notion of
invariant.

Extendible Assertion Functions. Our notion of invariant is not immediately useful for
proving that a program satisfies some properties. For proving, we need a more con-
structive characterization of relations between I and P than just those expressed by
program runs. We introduce the notion of extendible assertion function that provides
such a characterization.

Definition 3.3. Let I be an assertion function of a program P . I is strongly extendible
if for every run γ0, . . . , γi of the program such that i ≥ 0, γ0 |= I , γi |= I , and γi is not
an exit configuration, there exists a finite computation sequence γi, . . . , γi+n such that

1. n > 0,
2. γi+n |= I , and
3. for all j such that i < j < i+ n, the configuration γj is not I-observable.

The definition of weakly-extendible assertion function is obtained from this definition
by dropping condition 3. ��

Example 3.4. Let us give an example illustrating the difference between the two no-
tions of extendible assertion functions. Consider the program P in Figure 2.

Define an assertion function I of P such that I(entry(P)) = ! and I(q) =
I(exit(P)) = (i = j), and I(p) is undefined on all program points p different from
q and the entry and exit points. Then I is weakly extendible but not strongly extendible.
To show that I is weakly extendible, it is enough to observe the following properties:

1. From an entry configuration, in two iterations of the loop, one reaches a configura-
tion with the program point q in which i = j = 1;

2. For every v < 100, from a configuration with the program point q in which i = j =
v, in two iterations of the loop, one can reach a configuration in which i = j = v+1;

Inter-program Properties 349

3. For every v ≥ 100, from a configuration with the program point q in which i = j =
v, one can reach an exit configuration in which i = j = v.

To show that I is not strongly extendible, it is sufficient to note that, from any entry
configuration, after one iteration of the loop, one can reach a configuration with the
program point q in which i = 1 and j = 0 and so i = j does not hold. ��

Weakly-extendible functions are sufficient for proving partial correctness:

Theorem 3.5. Let I be a weakly-extendible assertion function of a program P such
that I(entry(P)) = ϕ and I(exit(P)) = ψ. Then {ϕ}P{ψ}, that is, P is partially
correct with respect to the precondition ϕ and the postcondition ψ. ��

On the other hand, strongly-extendible assertion functions serve as invariants.

Theorem 3.6. Every strongly-extendible assertion function I of a program P is also
an invariant of P .

Proof. We have to show that, for every run γ0, γ1, . . . of P such that γ0 |= I and
every I-observable configuration γi of this run, we have γi |= I . We will prove it by
induction on i. When i = 0, the statement is trivial. Suppose i > 0. Take the greatest
number j such that 0 ≤ j < i and γj is I-observable. Such a number exists since γ0
is I-observable. By the induction hypothesis, we have γj |= I . By the definition of
strongly-extendible assertion function, we have that there exists an n > 0 and a run
γ0, . . . , γj , . . . , γn such that γn |= I and all configurations between γj and γn are not
I-observable. Note that both γi and γn are the first I-observable configurations after γj

in their runs. By the assumption that our programs are deterministic, we obtain γi = γn,
so γi |= I . ��

We introduce other sufficient conditions on assertion functions which, on the one hand,
will guarantee that an invariant is also strongly or weakly extendible, and on the other
hand, make our notion of invariant similar to more traditional ones [6]. To this end, we
will use paths in the program-point flow graph GP . Such a path is called trivial if it
consists of a single point. To guarantee that an invariant I of a program P is strongly
extendible, we require that I must be defined on certain program points such that those
points break all cycles in GP . We introduce the notion of covering set to describe this
requirement.

Definition 3.7 (Covering Set). Let P be a program and C be a set of program points
in P . We say that C covers P if entry(P) ∈ C and every infinite path in GP contains a
program point in C. An assertion function I is said to cover P if the set of I-observable
program points covers P . ��

Any set C that covers P is often called a cut-point set of P .

Theorem 3.8. Let I be an invariant of P . If I covers P , then I is strongly extendible.

Proof. Take any run γ0, . . . , γi of P such that γ0 |= I , γi |= I and γi is not an exit
configuration. We have to extend this run to a run γ0, . . . , γi+n satisfying the condi-
tions of Definition 3.3. To this end, first extend this run to a complete run

350 A. Voronkov and I. Narasamdya

R = (γ0, . . . , γi, γi+1, . . .). Let us show that R contains a configuration γi+n with
n > 0 on which I is defined. Indeed, if R is finite, then the last configuration of
R is an exit configuration, and then I is defined on it. If R is infinite, then the path
pp(γi+1), pp(γi+2), . . . is infinite, hence contains a program point on which I is de-
fined. Take the smallest positive n such that I is defined on γi+n. Since n is the small-
est, I is undefined on all configurations between γi and γi+n in R. Since I is invariant,
we have γi+n |= I . ��

The proof of the above theorem relies on one of the assumptions described in Section 2,
that is, program runs can only terminate in exit states. This assumption is important
since the notion of invariant does not guarantee progress due to blocking instructions.
For instance, assume (x > 0) is run in a state σ where σ(x) ≤ 0. In our assumption,
when the condition of assume does not hold, then there is a transition to the exit state,
and by the requirement of assertion function, every assertion function is defined in the
exit state.

Verification Conditions. Our next aim is to define a notion of verification condition
as a collection of formulas and use these verification conditions to prove properties of
programs. We want to define it in such a way that a verification condition guarantees
certain properties of programs. To this end, we use the notions of precondition and
liberal precondition for programs and paths in program-point flow graphs.

Definition 3.9 (Weakest Liberal Precondition). An assertion ϕ is called the weakest
liberal precondition of a program P and an assertion ψ, if

1. {ϕ}P{ψ}, and
2. for every assertion ϕ′ such that {ϕ′}P{ψ}, the assertion ϕ′ ⇒ ϕ is valid.

In general, the weakest liberal precondition may not exist. If it exists, we denote the
weakest liberal precondition of P and ψ by wlpP (ψ).

In a similar way, we introduce the notion of a weakest liberal precondition of a path
π = (p0, . . . , pn) in the flow graph. An assertion ϕ is called a precondition of the path π
and an assertion ψ, if, for every state σ0 such that σ0 |= ϕ, there exist states σ1, . . . , σn

such that
(p0, σ0) �→ (p1, σ1) �→ . . . �→ (pn, σn)

and σn |= ψ. An assertion ϕ is called the weakest precondition of π and ψ, denoted by
wpπ(ψ), if it is a precondition of π and ψ, and, for every precondition ϕ′ of π and ψ,
the assertion ϕ′ ⇒ ϕ is valid.

An assertion ϕ is called a liberal precondition of the path π and an assertion ψ, if,
for every sequence σ0, . . . , σn of states such that

(p0, σ0) �→ (p1, σ1) �→ . . . �→ (pn, σn),

and σ0 |= ϕ, we have σn |= ψ. An assertion ϕ is called the weakest liberal precondition
of π and ψ, denoted by wlpπ(ψ), if it is a liberal precondition of π and ψ, and, for every
liberal precondition ϕ′ of π and ψ, the assertion ϕ′ ⇒ ϕ is valid. ��

Inter-program Properties 351

We have so far not imposed any restrictions on the programming languages in which
programs are written. However, to provide certificates or verification conditions for
program properties, we need to be able to compute the weakest and the weakest liberal
precondition of a given path and an assertion.

Definition 3.10 (Weakest Precondition Property). We say that a programming lan-
guage has the weakest precondition property if, for every assertion ψ and path π, the
weakest precondition for π and ψ exists and moreover, can be effectively computed
from π and ψ. ��

In the sequel we assume that our programming language has the weakest precondition
property. Furthermore, since for a path π and an assertion ψ, wlpπ(ψ) is equivalent to
wpπ(ψ) ∨ ¬wpπ(!), one can also compute the weakest liberal precondition for π and
ψ.

Next, we describe the verification conditions associated with assertion functions.
Such verification conditions form certificates for program properties described by the
assertion functions. Let I be an assertion function. A path p0, . . . , pn in GP is called
I-simple if n > 0 and I is defined on p0 and pn and undefined on all program points
p1, . . . , pn−1. We will say that the path is between p0 and pn.

Definition 3.11. Let I be an assertion function of a program P such that the domain of
I covers P . The strong verification condition associated with I is the set of assertions

{I(p0) ⇒ wlpπ(I(pn)) | π is an I-simple path between p0 and pn}.

Note that the strong verification condition is always finite. ��

Theorem 3.12. Let I be an assertion function of a program P whose domain covers P
and S be the strong verification condition associated with I . If every assertion in S is
valid, then I is strongly extendible.

Proof. Take any run γ0, . . . , γi of P such that γ0 |= I , γi |= I and γi is not an exit
configuration. Using arguments of the proof of Theorem 3.8, we extend this run to a
run γ0, . . . , γi+n such that I is defined on γi+n but undefined on γi+1, . . . , γi+n−1. It
remains to prove that γi+n |= I . Consider the run γi, . . . , γi+n and denote the program
point of each configuration γj in this run by pj and the state of γj by σj . Then the path
π = (pi, . . . , pi+n) is simple and we have σi |= I(pi). The assertion

I(pi) ⇒ wlpπ(I(pi+n))

belongs to the strong verification condition associated with I , hence valid, so I(pi) is a
liberal precondition. By the definition of liberal precondition, we have σi+n |= I(pi+n),
which is equivalent to γi+n |= I . ��

Note that this theorem gives us a sufficient condition for checking partial correctness of
the program: given an assertion function I defined on a covering set, we can generate
the strong verification condition associated with I . This condition by Theorem 3.12
guarantees that I is strongly extendible, hence also weekly extendible. Therefore, by
Theorem 3.5 guarantees partial correctness. Moreover, the strong verification condition

352 A. Voronkov and I. Narasamdya

is simply a collection of assertions, so if we have a theorem prover for the assertion
language, it can be used to check the strong verification condition.

One can reformulate the notion of verification condition in such a way that it will
guarantee weak extendibility. For every path π, denote by start(π) and end(π), re-
spectively, the first and the last point of π.

Definition 3.13. Let I be an assertion function of a program P and Π a finite set of
non-trivial paths in GP such that for every path π in Π both start(π) and end(π) are
I-observable. For every program point p in P , denote by Π |p the set of paths in Π
whose first point is p.

The weak verification condition associated with I and Π consists of all assertions of
the form

I(start(π)) ⇒ wlpπ(I(end(π))),

where π ∈ Π and all assertions of the form

I(p) ⇒
∨

π∈Π|p
wpπ(!),

where p is an I-observable point. ��

The first kind of assertion in this definition is similar to the assertions used in the strong
verification condition, but instead of all simple paths we consider all paths in Π . The
second kind of assertion expresses that, whenever a configuration at a point p satisfies
I(p), the computation from this configuration will inevitably follow at least one path
in Π . The following theorem states the sufficiency of weak verification conditions to
guarantee weak extendibility.

Theorem 3.14. Let I and Π be as in Definition 3.13 and W be the weak verification
condition associated with I and Π . If every assertion in W is valid, then I is weakly
extendible.

Proof. In the proof, whenever we denote a configuration by γi, we use pi for the pro-
gram point and σi for the state of this configuration, and similarly for other indices
instead of i. Take any run γ0, . . . , γi of P such that γ0 |= I , γi |= I and γi is not an exit
configuration. Since pi is I-observable, the following assertion belongs to W:

I(pi) ⇒
∨

π∈Π|pi

wpπ(!),

and hence it is valid. Since γi |= I , we have σi |= I(pi), then by the validity of the
above formula we have

σi |=
∨

π∈Π|pi

wpπ(!).

This implies that there exists a path π ∈ Π |pi such that σi |= wpπ(!). Let the path
π have the form pi, . . . , pi+n. Then, by the definition of wpπ(!), there exist states
σi+1, . . . , σi+n such that

(pi, σi) �→ (pi+1, σi+1) �→ . . . �→ (pi+n, σi+n).

Inter-program Properties 353

Using that π ∈ Π and repeating arguments of Theorem 3.12 we can prove σi+n |=
I(pi+n). ��

Note that, in the definitions of strong and weak verification conditions, one computes
the weakest precondition or the weakest liberal precondition of a path, not a program.
Thus, there is not fix-point computation.

4 Inter-program Properties

In this section we develop further the notion of extendible assertion function so that it
can be used to prove inter-program properties. Given a pair (P, P ′) of programs, we
assume that they have disjoint sets of variables. A configuration is a tuple (p, p′, σ̂),
where p ∈ PointP , p′ ∈ PointP ′ , and σ̂ is a state mapping from all variables of both
programs to values. A state can be considered as a pair of states: one for the variables
of P and one for the variables of P ′. In the sequel, such a state σ̂ is written as (σ, σ′),
where σ is for P and σ′ is for P ′. Similarly, the configuration (p, p′, σ̂) can be written
as (p, p′, σ, σ′).

Similar to the case of a single program, we say that a configuration γ = (p, p′, σ, σ′)
is called an entry configuration for (P, P ′) if p = entry(P) and p′ = entry(P ′), and
an exit configuration for (P, P ′) if p = exit(P) and p′ = exit(P ′).

The transition relation �→ of a pair (P, P ′) of programs contains two kinds of
transition:

(p1, p
′, σ1, σ

′) �→ (p2, p
′, σ2, σ

′),

such that (p1, σ1) �→ (p2, σ2) is in the transition relation of P , and

(p, p′1, σ, σ
′
1) �→ (p, p′2, σ, σ

′
2),

such that (p1, σ1) �→ (p2, σ2) is in the transition relation of P ′.
Having the notion of transition relation for pairs of programs, the notions of com-

putation sequence and run can be defined in the same way as in the case of a single
program.

An assertion function of a pair (P, P ′) of programs is a partial function

I : PointP × PointP ′ → Assertion

mapping pairs of program points of P and P ′ to assertions such that I is defined on
(entry(P), entry(P ′)) and (exit(P), exit(P ′)).

Given an assertion function I , we call a pair of program points (p, p′) I-observable
if I(p, p′) is defined. Let γ = (p, p′, σ, σ′) be a configuration. Then, γ is I-observable if
so is the pair of program points (p, p′). We also say that γ satisfies I , denoted by γ |= I ,
if I is defined on (p, p′) and (σ, σ′) |= I(p, p′). We will also say that I is defined on γ
if it is defined on (p, p′) and write I(γ) to denote I(p, p′).

Unlike in the case of a single program, for a pair of programs, there are no notions of
invariant and strongly-extendible assertion function. The transition relation of a pair of
programs has no synchronization mechanism. For example, one program in a pair can
make as many transitions as possible, while the other program in the same pair stays

354 A. Voronkov and I. Narasamdya

at some program point without making any transition. Thus, it is not useful to have the
notions of invariant and strongly-extendible assertion functions.

The notion of weakly-extendible assertion function is better suited for describing
inter-program properties. Weakly-extendible assertion functions for a pair of programs
can be defined in the same way as in the case of a single program.

Definition 4.1. Let I be an assertion function of a pair (P, P ′) of programs. I is weakly
extendible if for every run γ0, . . . , γi of (P, P ′) such that i ≥ 0, γ0 |= I , γi |= I , and
γi is not an exit configuration, there exists a finite computation sequence γi, . . . , γi+n

of (P, P ′) such that

1. n > 0, and
2. γi+n |= I . ��

Example 4.2. Let us illustrate the notion of weakly-extendible assertion function for a
pair of programs. Consider the two programs P and P ′ in Figure 2.

Define an assertion function I of (P, P ′) such that I(entry(P), entry(P ′)) = !
and I(q, q′) = I(exit(P), exit(P ′)) = ϕ, where where ϕ = (i = i′)∧(j = j′)∧(i = j).
The function I is weakly extendible due to the following properties:

1. From an entry configuration of (P, P ′), by taking a computation sequence con-
sisting of two iterations of the loop of P and one iteration of the loop of P ′, one
reaches a configuration with program points (q, q′) in which ϕ holds.

2. For every v < 100, from a configuration with the program points (q, q′) in which
i = i′ = j = j′ = v, by taking a computation sequence consisting of two iter-
ations of the loop of P and one iteration of the loop of P ′, one again reaches a
configuration with program points (q, q′) in which i = i′ = j = j′ = v + 1.

3. For every v ≥ 100, from a configuration with the program points (q, q′) in
which i = i′ = j = j′ = v, one can reach an exit configuration in which i =
i′ = j = j′ = v. ��

The notion of partial correctness for pairs of programs can be defined in the same way
as that of the case of a single program. Concerning the sufficiency of weakly-extendible
assertion functions for proving partial correctness, we obtain the same result as in the
case of a single program.

Theorem 4.3. Let I be an assertion function of a pair (P, P ′) of programs such that

ϕ = I(entry(P), entry(P ′)) and ψ = I(exit(P), exit(P ′)).

If the assertion function I is weakly extendible, then {ϕ}(P, P ′){ψ}, that is, (P, P ′) is
partially correct with respect to the precondition ϕ and postcondition ψ. ��

Similar to the properties of a single program, the verification conditions associated with
inter-program properties use the notion of path. A path π̂ of a pair (P, P ′) of program
can be considered as a trajectory in a two dimensional space, that is, we denote such
a path π̂ by (π, π′), such that π and π′ are the axes of the space, and π is a path of P
and π′ is a path of P ′. Having the notion of path for a pair of programs, the notions
of precondition and liberal precondition for paths of a pair of programs can be defined

Inter-program Properties 355

in the same way as in the case of a single program. In fact, the weakest precondition
of a path of a pair of programs may be derived from the paths of the single programs.
That is, let ψ be an assertion, we have wp(π,π′)(ψ), wpπ(wpπ′(ψ)), and wpπ′(wpπ(ψ))
equivalent.

We can define the verification condition associated with weakly extendible assertion
functions similarly to the case of a single program.

Definition 4.4. Let I be an assertion function of a pair (P, P ′) of programs and Π a
finite set of non-trivial paths of the pair of programs such that for every path π inΠ both
start(π) and end(π) path are I-observable. For every pair (p, p′) of program points,
denote by Π |(p, p′) the set of paths in Π whose first pair of points is (p, p′).

The weak verification condition associated with I and Π consists of all assertions of
the form

I(start(π)) ⇒ wlpπ(I(end(π))),

where π ∈ Π and all assertions of the form

I(p, p′) ⇒
∨

π∈Π|(p,p′)

wpπ(!),

where (p, p′) is an I-observable point, and (p, p′) is not the exit point of (P, P ′). ��

Theorem 4.5. Let I and Π be as in Definition 4.4 and W be the weak verification
condition associated with I and Π . If every assertion in W is valid, then I is weakly
extendible. ��

The proof of the above theorem is similar to Theorem 3.14, and due to space limit is
omitted. The notion of weak verification condition is the cornerstone of our theory of
inter-program properties. It can be used as a suitable notion of certificate for properties
that relate two programs.

5 Translation Validation

We have seen in the introduction an example of translation validation involving loop
unrolling. In this section we discuss another example of translation validation. In par-
ticular, we will show an example that, using inter-program assertions and the notion of
weak extendibility, we can prove program equivalence that cannot be proved by existing
proof rules in translation validation [18,14,23,19,12].

Example 5.1. Consider the programs P and P ′ in Figure 3. These programs are taken
from [18]. We define a notion of program equivalence as implementation correctness.
A program P1 correctly implements P2 if P1 simulates P2 and vice versa. We say that
P1 simulates P2 if for every run of P2 that reaches an exit configuration, then there is
a run of P1 on the same input that reaches an exit configuration such that the values
of return variables in these configurations coincide. We want to prove that P ′ correctly
implements P .

In our previous work [11], we introduce the notion of basic-block (or program-point)
and variable correspondence such that program equivalence can be established by find-
ing certain program-point and variable correspondences. Intuitively, a variable x1 at

356 A. Voronkov and I. Narasamdya

P :

p :
g := 0;
do {

g := g + 6;
q :

} while (g < 48);
return g;
r :

P ′ :

p′ :
g′ := 48
return g′;
r′ :

Fig. 3. Example Programs

location p1 in a program P1 corresponds to a variable x2 at location p2 in a program
P2 if they have the same values at p1 and p2 for all possible runs of the two programs
on the same input. To establish that P ′ correctly implements P , one needs to prove
that there is a correspondence between variables g and g′ at the points r and r′. Let
us call such points r and r′ control points. The proof technique in [12] cannot prove
the correspondence because it requires that there is at least one control point on every
reachable cycle in the program-point flow graphs of P and P ′, and there is a one-to-one
correspondence between the set of control points on reachable cycles in P and the set
of control points on reachable cycles in P ′. The loop in P above is reachable, but since
there is no loop in P ′, then the requirements of the proof technique cannot be satisfied.
Similarly, the rule VALIDATE in [23] is not applicable since it requires that there is a
one-to-one correspondence between loop headers in P and loop headers in P ′; how-
ever there is no loop in P ′. The logic presented in [18] cannot prove that P simulates
P ′ because the logic cannot prove that the loop in P terminates.

We prove that P ′ correctly implements P using inter-program assertions and the no-
tion of weak extendibility. First, we define an assertion function I such that I(p, p′) =
!, I(q, p′) = (g ≤ 48 ∧ ∃j.(j > 0 ∧ g = j ∗ 6)), and I(r, r′) = (g = g′). Let
πp1,p2 denote a path from p1 to p2, and πp1 denote a trivial path whose only point is
p1. We argue that I is weakly extendible, which in turn proves that P ′ correctly im-
plements P . For every run from a configuration satisfying I(p, p′), the run can follow
the path (πp,q , πp′) and reach a configuration that satisfies I(q, p′). From this configu-
ration, the run can be extended such that it follows either the path (πq,q, πp′) or the path
(πq,r, πp′,r′). If we omit the latter path from our reasoning, then I would not be weakly
extendible. From these paths, it follows that every run of (P, P ′) terminates in an exit
configuration satisfying I(r, r′), that is the values of return variables g and g′ coincide
in the exit configuration. Consequently, for every run of P ′, there is a run of P , and vice
versa, such that both runs reach exit configurations, and the values of g and g′ coincide
in these configurations. Therefore, we proved that P ′ correctly implements P .

Let a set Π of paths of (P, P ′) consist of all the above mentioned paths, then one
can prove that all assertions in the weak verification condition associated with I and Π
are valid. ��

Using inter-program assertions and the notion of weak extendibility, we can also prove
correspondence properties described by the proof techniques in [18,14,23,19,12]; a de-
tailed description can be found in [20].

Inter-program Properties 357

6 Related Work and Conclusion

We presented a theory for describing and proving inter-program properties. Our for-
malization is based on the notion of extendible assertion function. The theory deals
with imperative programs represented as control-flow graphs. It defines a notion of cer-
tificate, consisting of a set of assertions obtained by calculating weakest and weakest
liberal preconditions of paths in the flow graphs and postconditions.

There are many works on establishing and proving inter-program properties in var-
ious forms. Closely related is the certifying compiler approach to compiler verifica-
tion, in particular optimizing compilers. In this approach the compiler must check that
the source and the target programs are semantically equivalent and produce a proof of
equivalence. The compiler can use the results of data-flow analysis to check equivalence
as in credible compilation [18], or external tools for checking equivalence as in trans-
lation validation. Existing translation validation frameworks include [23,14,11,12,19].
All frameworks in certifying compilers present program analysis, notions of correspon-
dence between two programs, and proof rules for proving the correspondences. Pro-
gram equivalence is then established by finding such proofs. These frameworks use
control-flow graphs, operational semantics, and simulation relations for describing cor-
respondences. Note that unlike many other papers our paper is not about how to obtain a
certificate. It is about the right notion of certificate. We think that our notion is in many
respects unifying since the results of static analysis of any of the programs or the pair
of programs obtained by other methods can be readily used as inter-program properties
and contribute to a certificate.

Recently Pnueli and Zaks introduced a technique for checking equivalence by con-
structing a cross-product of the source and the target programs [22]. The benefit of
having such a cross-product program is that existing methods of data-flow analysis of a
single program are applicable to checking equivalence. In many respects their technique
is similar to ours. For example, their notion of comparison graph can be considered as a
special case of our transition relation for the pair of programs. Their notion of assertion
network is similar to our notion of invariant. However, they assume that an invariant
network is given, defined in every point and use it for checking specific observable
properties. No notion of weakly extendible function is given. The construction of the
cross-product program is performed by joining edges of the source and target programs
such that the edges are of the same type, e.g., read, write, and call. This construction
requires that there is a one-to-one correspondence between headers of reachable loops
of the source and target programs, and thus is not be applicable to our Example 5.1. Un-
like this paper, [22] goes beyond just the theory: it describes an implementation and also
shows how one can generate intra-program invariants for some compiler optimizations

Another translation validation work by Benton [2] uses the language of types and
denotational semantics to prove program equivalence. Benton’s work describes a proof
system for a relational version of Hoare logic with a type system describing pre- and
post relations between two programs. As many other approaches to translation valida-
tion, it requires specific rules to handle loop unrolling and some other optimizations
while our notion of certificate needs no modification to include them.

In our work we address neither inter-procedural optimizations nor aggressive loop
optimizations, such as loop interchange and loop tiling. We can extend our formal model

358 A. Voronkov and I. Narasamdya

of programs to handle inter-procedural optimizations, like the work in [16]. Handling
aggressive loop optimizations is the topic of our future work.

Another approach to compiler verification, that is weakly related to our work, is cer-
tified compiler. In this approach one proves that for every input source program, the
source and the target programs are semantically equivalent. An example of develop-
ment of a certified compiler using interactive prover is described in [9]. Papers [5,7,8]
present languages for specifying compiler optimizations that can be proved semantics
preserving. The approach of [5] is complementary to ours: they use temporal logic to
certify optimizations. It will be interesting to incorporate temporal logic-based methods
in our technique.

There is a vast amount of work on compiler correctness, including proving correct-
ness of optimisations together with compiler development, e.g. [7]. Our work is not on
proving compiler correctness so we do not overview these papers here in detail. How-
ever one can use such compilers in our framework since proofs produced by them can
also be used for creating certificates in our framework. Moreover, one can use them
even when correctness of some (but not all) optimisations is proved by the compiler.

Paper [1] translates certificates of original program into those of an optimised pro-
gram. This technique complements ours in the sense that such techniques can also be
used to transfer assertions about each of the programs into inter-program assertions.

Paper [17] introduces a technique of reasoning about inter-program properties, how-
ever in the context of functional programs.

Paper [21] defines a Hoare-style logic for a pair of programs. Although his formali-
sation has much in common with ours, our emphasis is different. Since we are dealing
with languages satisfying the weakest precondition property and assertion functions,
we do not need Hoare’s logic: indeed, all reasoning we need is proofs of verification
conditions that can be carried out in any proof system or by a theorem prover for the
assertion language.

The notion of weakly-extendible assertion function is similar to the notion of inter-
mittent assertion [10]. Intermittent assertions are of the form sometime(φ, p), which
means sometime control will pass through pwith assertion φ holds. That is, control may
pass through p without satisfying φ, but control must pass through p at least once with φ
satisfied. Program properties can be proved by proving theorems involving intermittent
assertions. For example, “if sometime(φ1, entry(P)), then sometime(φ2, exit(P))”,
describes total correctness property. Proofs of program properties using intermittent in-
variants often require simple invariants. However, one can see that such assertions φ1
and φ2 can be asserted at the same point but are satisfied at different time or stage of
the same computation. Thus, the proofs of intermittent assertions are rather loose with
respect to the program-point flow graphs and program runs.

Our notion of an inter-program property can also be used to prove termination of
one of the programs assuming that the other one terminates or given a suitable proof of
termination of another program. However, treating termination is left as future work.

The theory presented here has been applied to the certification of smart-card appli-
cations in the framework of Common Criteria [13]. We also plan to apply the theory to
equivalence checking between system code in the COCONUT project.

Inter-program Properties 359

References

1. Barthe, G., Grégoire, B., Kunz, C., Rezk, T.: Certificate translation for optimizing compilers.
In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 301–317. Springer, Heidelberg (2006)

2. Benton, N.: Simple relational correctness proofs for static analyses and program transforma-
tions. In: POPL, pp. 14–25 (2004)

3. Floyd, R.W.: Assigning meaning to programs. In: Schwartz, J.T. (ed.) Proceedings of Sym-
posium in Applied Mathematics, pp. 19–32 (1967)

4. Hoare, C.A.R.: An axiomatic basis for computer programming. CACM 12(10), 576–580
(1969)

5. Lacey, D., Jones, N.D., Van Wyk, E., Frederiksen, C.C.: Proving correctness of compiler
optimizations by temporal logic. In: POPL (2002)

6. Leockx, J., Sieber, K., Stansifer, R.D.: The Foundations of Program Verification, 2nd edn.
John Wiley & Sons, Inc., New York (1987)

7. Lerner, S., Millstein, T., Chambers, C.: Automatically proving the correctness of compiler
optimizations. In: PLDI, pp. 220–231 (2003)

8. Lerner, S., Millstein, T., Rice, E., Chambers, C.: Automated soundness proofs for dataflow
analyses and transformations via local rules. In: POPL (2005)

9. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a
proof assistant. SIGPLAN Not. 41(1), 42–54 (2006)

10. Manna, Z., Waldinger, R.: Is “sometime” sometimes better than “always”?: Intermittent as-
sertions in proving program correctness. CACM 21(2), 159–172 (1978)

11. Narasamdya, I., Voronkov, A.: Finding basic block and variable correspondence. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 251–267. Springer, Heidelberg (2005)

12. Narasamdya, I.: Establishing Program Equivalence in Translation Validation for Optimizing
Compilers. PhD thesis, The University of Manchester (2007),
http://www-verimag.imag.fr/˜narasamd/NarasamdyaThesis.ps

13. Narasamdya, I., Périn, M.: Certification of smart-card applications in common criteria. Tech-
nical Report TR-2008-14, Verimag (September 2008)

14. Necula, G.C.: Translation validation for an optimizing compiler. In: Proceedings of the ACM
SIGPLAN Conference on Principles of Programming Languages Design and Implementation
(PLDI), June 2000, pp. 83–95 (2000)

15. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.) TACAS
1998. LNCS, vol. 1384, p. 151. Springer, Heidelberg (1998)

16. Pnueli, A., Zaks, A.: Translation validation of interprocedural optimizations. In: Proceedings
of 4th International Workshop on Software Verification and Validation (2006)

17. Pottier, F., Simonet, V.: Information flow inference for ml. SIGPLAN Not. 37(1), 319–330
(2002)

18. Rinard, M., Marinov, D.: Credible compilation with pointers. In: Proceedings of the FLoC
Workshop on Run-Time Result Verification, Trento, Italy (July 1999)

19. Rival, X.: Symbolic transfer function-based approaches to certified compilation. In: Pro-
ceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 1–13. ACM Press, New York (2004)

20. Voronkov, A., Narasamdya, I.: Proving inter-program properties. Technical Report
TR-2008-13, Verimag (2008)

21. Yang, H.: Relational separation logic. Theor. Comput. Sci. 375(1-3), 308–334 (2007)
22. Zaks, A., Pnueli, A.: Covac: Compiler validation by program analysis of the cross-product.

In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 35–51. Springer,
Heidelberg (2008)

23. Zuck, L.D., Pnueli, A., Goldberg, B.: VOC: A methodology for the translation validation of
optimizing compilers. J. UCS 9(3), 223–247 (2003)

http://www-verimag.imag.fr/~narasamd/NarasamdyaThesis.ps

Author Index

Bodik, Rastislav 1
Bouissou, Olivier 102

Calman, Silvian 154
Chakraborty, Supratik 188
Chen, Liqian 309
Cousot, Patrick 309

Doh, Kyung-Goo 256
Drape, Stephen 273

Fähndrich, Manuel 19
Fink, Stephen J. 205

Gampe, Andreas 137
Godoy, Guillem 326
Grund, Daniel 120
Gulavani, Bhargav S. 188

Heizmann, Matthias 69
Helmert, Malte 86
Hoenicke, Jochen 69
Hurlin, Clément 52

Jensen, Simon Holm 238

Kim, Hyunha 256

Logozzo, Francesco 19

Miné, Antoine 309
Møller, Anders 238

Narasamdya, Iman 343
Niedzielski, David 137
Nori, Aditya V. 188

Podelski, Andreas 3, 69
Psarris, Kleanthis 137

Qadeer, Shaz 2

Ramalingam, Ganesan 188
Reineke, Jan 120

Schmidt, David A. 256, 293
Seghir, Mohamed Nassim 3
Seidl, Helmut 171
Simon, Luke 222
Sridharan, Manu 205

Terauchi, Tachio 36
Thiemann, Peter 238
Tiwari, Ashish 326

Voiculescu, Irina 273
Vojdani, Vesal 171
von Ronne, Jeffery 137
Voronkov, Andrei 343

Wang, Ji 309
Wehrle, Martin 86
Wies, Thomas 3

Xia, Songtao 19

Yasuoka, Hirotoshi 36

Zhu, Jianwen 154

	Title page
	Preface
	Organization
	Table of Contents
	Invited Talks
	Algorithmic Program Synthesis with Partial Programs and Decision Procedures
	Algorithmic Verification of Systems Software Using SMT Solvers

	Contributed Papers
	Abstraction Refinement for Quantified Array Assertions
	Introduction
	Related Work
	Experimental Results
	Examples
	Array Initialization
	Selection Sort

	Predicate Abstraction Refinement
	Refinement for Arrays
	Conclusion
	References

	Inferring Dataflow Properties of User Defined Table Processors
	Introduction
	Motivation: SCOPE and Its Optimization
	Problem Description
	Challenge 1: Analyzing .NET Iterators
	Challenge 2: Accurate and Conservative Dependence Analysis
	Challenge 3: Quantified Invariants for Equality Analysis

	Analysis Infrastructure
	Abstract Interpretation
	Program Representation

	Iterator Analysis
	Dependence Analysis
	Symbolic Dependence Analysis
	Estimation

	Equality Analysis
	Implementation
	Related Work
	Conclusion
	References

	Polymorphic Fractional Capabilities
	Introduction
	InformalOverview
	Additive Instantiation
	Down Instantiation

	Polymorphic Fractional Capability Calculus
	Dynamic Semantics
	Static Semantics

	Capability Inference
	Time Complexity

	Adding Polymorphism to Other Fractional Capability Calculi
	Related Work and Conclusion
	References

	Automatic Parallelization and Optimization of Programs by Proof Rewriting
	Introduction
	Background
	Derived Rules with Explicit Antiframes and Frames
	Automatic Optimizations by Proof Rewriting
	Generated Proof Trees Have a Particular Shape
	Removing Redundancy in Frames
	Parallelization
	Generic Optimizations

	Implementation
	Examples
	Benefits from Separation Logic’s Advances
	Object-Orientation
	Permission Accounting
	Fork/Join Parallelism
	Variable as Resources

	Related Work
	Conclusion and Future Work
	References

	Refinement of Trace Abstraction
	Introduction
	Example
	Traces
	Trace Abstraction
	CEGAR for Trace Abstraction
	Interpolant Automata
	Predicate Abstraction
	Conclusion
	References

	The Causal Graph Revisited for Directed Model Checking
	Introduction
	Preliminaries
	Processes and Systems
	DirectedModel Checking

	The Causal Graph
	The Causal Graph Heuristic
	Independent Processes
	Processes with Causal Predecessors
	Causal Graphs with Cycles

	Evaluation
	Implementation Details
	Benchmarks
	Results

	Conclusions
	References

	Proving the Correctness of the Implementation of a Control-Command Algorithm
	Introduction
	Introductory Example
	Concrete Model

	Informal Presentation of the Analysis
	Domains
	Abstract Continuous State
	Cyclic Sequences of States

	Abstraction of the Program
	Definition of a Program Abstraction
	Representation as Octrees

	Abstraction of the Continuous Evolution
	The Abstract Transition Function
	Constructing the Graph
	Computing the Values
	Discussion about the Method

	Experimentation
	Conclusion and Future Works
	References

	Abstract Interpretation of FIFO Replacement
	Introduction
	Foundations
	Caches
	Static Analysis
	Static Cache Analysis

	The FIFO Policy
	The FIFO Cache Analysis
	Must Analysis
	May Analysis

	Related Work
	Evaluation
	Conclusions and Future Work
	References

	A Verifiable, Control Flow Aware Constraint Analyzer for Bounds Check Elimination
	Introduction
	eSSA Representation
	Elementary Row Operations

	The Constraint Analysis System (CAS)
	The CAS Constraint System
	Constraint Combination in CAS
	Arithmetic Overflow

	Experimental Results
	Related Work
	Conclusion
	References

	Increasing the Scope and Resolution of Interprocedural Static Single Assignment
	Introduction
	Interprocedural SSA
	Copy Propagation

	Interprocedural SSA Generation
	Pointer Analysis
	Choosing SSA Variables
	Dereference Conversion
	Procedure Input and Output Mapping
	Interprocedural Copy Propagation

	Experiment
	Setup, Benchmarks, and Runtime
	Impact of Increasing Scope and Resolution
	Impact of Copy Propagation and Liveness Analysis
	Impact of Pointer Analysis
	Impact on Constant Propagation

	Related Work
	Conclusion
	References

	Region Analysis for Race Detection
	Introduction
	Region Inference
	Interprocedural Analysis
	Relating Locks and Regions
	Extension with Arrays
	Analyzing the Linux Kernel
	Related Work
	Conclusion
	References

	Bottom-Up Shape Analysis
	Introduction
	Composition via Strong Bi-abduction
	Preliminaries
	Composing Hoare Triples

	Logic of Iterated Separation Formulae: LISF
	Inductive Composition
	A Strong Bi-abduction Algorithm for LISF
	Experimental Evaluation
	Conclusion
	References

	The Complexity of Andersen’s Analysis in Practice
	Introduction
	Andersen’s Analysis for Java
	Algorithm
	Complexity for k-Sparse Programs
	Quadratic Bound
	Realistic Java Programs

	OtherFactors
	Bit-Vector Parallelism and Worklist Ordering
	Function Calls
	Exploiting Types
	Space
	Other Languages

	Measurements
	Related Work
	Conclusions
	References

	Optimizing Pointer Analysis Using Bisimilarity
	Introduction
	Related Work
	Inclusion-Based Points-to Analysis
	Offline Optimization

	Bisimilarity-Based Pointer Equivalence Detection
	Superset Graphs
	Simulation Graphs
	Bisimilarity

	Implementation
	Preprocess Constraints
	Build Simulation Graph
	Partition Nodes

	Benchmarks
	Empirical Results

	Conclusions and Future Work
	References

	Type Analysis for JavaScript
	Introduction
	Related Work
	Flow Graphs for JavaScript
	The Analysis Lattice and Transfer Functions
	Transfer Functions
	Recency Abstraction
	Interprocedural Analysis
	Termination of the Analysis

	Experiments
	Conclusion
	References

	Abstract Parsing: Static Analysis of Dynamically Generated String Output Using LR-Parsing Technology
	Introduction
	Previous Efforts
	Our Contribution
	Motivating Example
	Abstract Parse Stacks
	Worklist Algorithm
	Input Variables
	String-Update Operations
	Implementation and Experiments
	Conclusion
	References

	Creating Transformations for Matrix Obfuscation
	Introduction
	Preliminaries
	Obfuscation as Data Refinement
	Matrices

	Splitting Method
	Defining a Matrix Split
	Splitting in Squares
	Review of Matrix Splitting

	Using the Bernstein Basis
	Power-Form and Bernstein-Form Polynomials
	Bernstein Coefficients and Obfuscation of Matrices
	Bernstein Example
	Operations for the Bernstein Obfuscation
	Review of the Bernstein Obfuscation

	Using Matrices to Obfuscate a Number
	Using Determinants
	Arithmetic Operations
	Review of Number Obfuscation

	Evaluation of Techniques
	Conclusions
	References
	Correctness Proofs
	Non-homogeneous Operations
	Unary Operations under the Bernstein Obfuscation
	Binary Operations under the Bernstein Obfuscation
	Arithmetic Operations for the Number Obfuscation

	Abstract Interpretation from a Topological Perspective
	Introduction
	Basics of Topology and Abstract Interpretation
	Property Families, Function Preservation and Reflection
	Applications: Logics, Postconditions, Preconditions
	From Continuity to Completeness
	Relation to Partial-Order Backwards Completeness
	Nondeterminism and semicontinuity
	References

	Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships
	Introduction
	Related Work
	Preliminaries
	Interval Linear System
	Interval Linear Programming

	The Interval Polyhedra Domain
	Representation
	itvPol as an (Abstracted) Reduced Cardinal Power of Convex Polyhedra

	itvPol as a New Abstract Domain
	Projection
	Join
	Emptiness Test
	Transfer Functions
	Widening

	Applications of the Interval Polyhedra Domain
	Handling Disjunctions
	Handling Non-linear Expressions
	Handling Floating-Point Arithmetic

	Implementation and Experimental Results
	Conclusion
	References

	Invariant Checking for Programs with Procedure Calls
	Introduction
	Preliminaries
	Invariant Checking and Related Work
	Program Model, Semantics, and Parameterized Substitutions
	Invariant Checking
	Discussion
	Conclusions
	References

	Inter-program Properties
	Introduction
	Main Assumptions
	Intra-program Properties
	Inter-program Properties
	Translation Validation
	Related Work and Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

