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Chapter 1 
Introduction 

1.1   The Need for Unified Computational Intelligence 

Humanity’s newfound ability to compute has granted us unprecedented 
acceleration of the rate of technological innovation, altered dramatically the 
structure of social engagement, and presented us with a chance to create a reality 
to match our imagination.  From optimal control to bioinformatics to economic 
systems, the field of computational intelligence has proven itself a leader in 
maximizing what society stands to gain from its increasing supply of computing 
resources.  Riding the bleeding edge of what computers are able to do, 
computational intelligence researchers find ways to increase the energy output 
from renewable sources, secure large-scale networks, stabilize power grids, 
control aircraft, detect skin cancer, find land mines, and even teach humans 
something new about games they have played for millennia.  This book introduces 
ways to unify some key elements of the computational intelligence field in order 
to guide humanity’s quest for a more perfect alignment between her most ancient 
dreams and her everyday life. 

Computational intelligence encompasses a wide variety of techniques that 
allow computation to learn, to adapt, and to seek.  That is, they may be designed 
to learn information without explicit programming regarding the nature of the 
content to be retained, they may be imbued with the functionality to adapt to 
maintain their course within a complex and unpredictably changing environment, 
and they may help us seek out truths about our own dynamics and lives through 
their inclusion in complex system modeling.  These capabilities place our ability 
to compute in a category apart from our ability to erect suspension bridges, 
although both are products of technological advancement and reflect an increased 
understanding of our world.  In this book, we show how to unify aspects of 
learning and adaptation within the computational intelligence framework.  While 
a number of algorithms exist that fall under the umbrella of computational 
intelligence, with new ones added every year, all of them focus on the capabilities 
of learning, adapting, and helping us seek.  So, the term unified computational 
intelligence relates not to the individual algorithms but to the underlying goals 
driving them.  This book focuses on the computational intelligence areas of neural 
networks and dynamic programming,  showing how to unify aspects of these areas 
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to create new, more powerful, computational intelligence architectures to apply to 
new problem domains. 

The first part of this book, Chapters 1 through 3, introduces an approach to 
unifying the ability of computational intelligence methods to learn.  The second 
part, Chapters 4 through 6, discuss unification aimed at increasing the capability to 
adapt.  Finally, the third part, Chapter 7, speaks to the computational spark 
allowing us to seek. 

Before discussing an application that requires the use of a unified 
computational intelligence approach, a clarification of the usage of the word 
unified in comparison to the oft-used term hybrid is in order.  As used in the 
literature, a hybrid computational intelligence technique is one that combines 
multiple algorithms into a single implementation.  For example, a neural network 
trained with a particle swarm optimizer or an evolutionary algorithm that 
incorporates fuzzy logic in its fitness function may be classified as hybrid.  The 
term unified refers to combinations along a different axis.  For unified learning, a 
single architecture incorporates all three canonical learning modes into one unit so 
that signals from each learning mode can update and access the same content.  
This paradigm says, “You know these learning methods that are out there, 
segregated, each with their own algorithm?  Well, here’s the thing—they are 
actually the same algorithm.”  This is very different from what is meant by a 
hybrid algorithm, as a hybrid algorithm does not require the sharing of memory 
space.  Also, the highly mathematical section of this book discusses unification in 
terms of input domains.  There, the appropriate words are, “You know how there 
is one set of equations for continuous domains and another set for discrete 
domains?  Well, here’s the thing—these equations are actually the same thing.”  In 
this book, a framework is provided to deal cogently with multiple learning 
methods as subsets of unified learning in much the same sense that differential and 
difference equations are treated as special cases of the unified dynamic equations. 

Further, it must be noted that unified computational intelligence means that a 
given algorithm seamlessly incorporates multiple learning modes that share 
weights and that may influence the already learned associations of the other 
modes, or that the algorithm will work on both discrete and continuous input 
signals using a single set of equations. In this way, these algorithms unify within 
the learn and adapt characteristics of computational intelligence approaches.  
Unified computational intelligence is not a term used to discuss an algorithm that 
can act as a neural network, a swarm intelligence system, and a fuzzy logic system 
all at once.  The unification occurs at the “what is the algorithm doing” level, not 
at the “how is the algorithm classified” level.  While this latter form of unification 
may be discussed within the purview of mathematical logic where all algorithms 
may be related, it is not within the scope of the current book.  

What follows now is an example to help motivate the desire to develop such 
unified architectures.  The example described is only one of many areas in which 
combining multiple learning methods can be fruitful.  For example, Mohagheghi, 
Venayagamoorthy, and Harley (2007b) report on using multiple learning modes 
for a wide area controller for power systems, although their design is not “unified” 
in the sense described in this book.  What it does, however, is give a powerful 
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incentive to further develop algorithms that incorporate multiple learning modes, 
as the control of the power grid is one of the key control applications currently 
under investigation.  Additionally, applications from finance are well suited for 
this approach.   

We cover one such application in this field in the Future Work section. This 
example is a smart sensor application involving developing situation awareness 
for a force protection scenario.  We provide here an overview and discussion of 
why unified learning is advantageous; full details may be found in Chapter 3.  
Figure 1.1 presents a graphical depiction of the problem.  The practical 
considerations of this work include the need to develop field-deployable hardware 
capable of performing intelligent sensor fusion quickly, efficiently, and with 
minimum overhead.   

An intelligent sensor fusion algorithm, like an intelligent creature, can make 
informed use of all three types of learning in this environment on the data set 
given.  Certain paths may be pretrained prior to deployment, thus granting the 
human operators license to verify that the most obvious sensor patterns will be 
classified successfully.  During operation, a reinforcement signal provided either 
by the environment or by the human operator acting off of the fusion algorithm’s 
recommendations can adjust the current adaptive weight profile to curtail faulty 
clustering.  Finally, in the absence of any external signal, the algorithm will learn 
in an unsupervised manner, comparing current inputs to what it already knows.  In 
this way, all three learning methods are incorporated into a single application, 
providing a need for unified learning rather than a conglomeration of techniques 
pieced together in a computational sprawl. 

 

 
 

Fig. 1.1 An Application Using Unified Computational Intelligence 
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1.2   Contributions of This Work 

The contributions of this book fall in the area of unified computational intelligence 
and encompass algorithm design, applications, theoretical developments, and the 
identification of new frontiers for multidisciplinary research. 

Chapter 1 presents a new way to look at unified learning systems using a 
Markov Decision Processes framework.  It also introduces new problem domains 
to which these unified approaches may be applied and defines the notion of 
unified computational intelligence. 

Chapter 2 outlines an entirely novel Adaptive Resonance Theory-based unified 
learning architecture.  From the motivation behind the algorithm to the design 
details to the extensions for future research, everything in this chapter is novel. 

Chapter 3 contains an article that has appeared in the journal Neural Networks 
detailing an application of the architecture presented in Chapter 2.   

Chapter 4 begins the theoretical component of the book.  A new theorem in the 
time scales calculus is proven, and mathematics from scattered sources is brought 
together and organized for the first time.   

Chapter 5 develops the theory of dynamic programming on time scales, one of 
the components of unified computational intelligence.  This chapter contains new 
theorems regarding the nature of the dynamic programming algorithm and the 
Hamilton-Jacobi-Bellman equation in the time scales calculus.  Also presented are 
new results from the area of quantum calculus.  These results mark the first 
occurrence of the fields of time scales mathematics and dynamic programming 
being brought together. 

Chapter 6 extends the time scales analysis to the domain of neural network 
learning, where the backpropagation algorithm is proven to hold in this new 
calculus as well as in its quantum calculus rendition.  Additionally, the idea of an 
ordered derivative on time scales, a concept fundamental to the backpropagation 
algorithm, is introduced. The results in this chapter represent the first work to be 
published uniting times scales with neural network learning. 

Chapter 7 discusses applications of computational intelligence in the emerging 
field of agent-based computational social science.  It is increasingly important for 
researchers trying to make sense of complex economic, financial, and social 
systems to have as part of their technical vocabulary the language of 
computational intelligence.  This chapter details how the approaches described in 
the book may be used in a setting outside the mainstream of engineering. 

Altogether, this book introduces a new approach within the increasingly 
relevant field of computational intelligence and maps out new paths this research 
can take. 

1.3   The Three Types of Machine Learning 

1.3.1   Unsupervised Learning 

Also called clustering, unsupervised learning refers to a situation in which an 
algorithm has no external guidance to focus its attention.  When learning the 
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mapping of inputs to clusters, it must rely solely on its own internal structure.  For 
a full treatment of clustering, the reader is directed to Xu & Wunsch, 2008. 

The type of unsupervised learning algorithm considered most thoroughly in this 
book is a neural network approach called Adaptive Resonance Theory (ART).  
Developed by Carpenter and Grossberg as a solution to the plasticity and stability 
dilemma, i.e., how adaptable (plastic) should a learning system be so that it does 
not suffer from catastrophic forgetting of previously-learned rules, ART can learn 
arbitrary input patterns in a stable, fast, and self-organizing way, thus overcoming 
the effect of learning instability that plagues many other competitive networks. 
ART is a learning theory hypothesizing that resonance in neural circuits can 
trigger fast learning.   

ART exhibits theoretically rigorous properties desired by neuroscientists, which 
solved some of the major difficulties faced by modelers in the field.  Chief among 
these properties is stability under incremental learning.  In fact, it is this property 
that translates well to the computational domain and gives the ART1 clustering 
algorithm, the flavor of ART most faithful to the underlying differential equation 
model, its high status among unsupervised learning algorithm researchers.  At its 
heart, the ART1 algorithm relies on calculating a fitness level between an input 
and available categories.  In this way, it appears very much like the well-known k-
means algorithm, although the number of categories is variable and grows 
dynamically as needed by the given data set.   

What fundamentally differentiates ART1 from similar distance-based clustering 
algorithms is a second fitness calculation during which a given category can reject 
the inclusion of an input if the input does not meet the category’s standards as 
governed by a single global parameter.  Cognitively, this is modeling the brain’s 
generation and storage of expectations in response to neuronal stimulation. The 
initial fitness, measuring the degree to which each input fits each of the 
established categories, is considered a short-term memory trace which excites a 
top-down expectation from long-term memory.  Computationally, this second 
fitness calculation acts to tune the number of categories, and it may force the 
creation of new categories where a k-means styled algorithm would not, thus 
exhibiting stronger, more nuanced, classification potential. The ART1 algorithm 
has enjoyed great popularity in a number of practical application areas of 
engineering interest.  Its chief drawback is the requirement that input vectors be 
binary.  The ART2 algorithm was first proposed to get around this restriction, but 
the Fuzzy ART modification of ART1 now powers most of the new ART research 
and applications. 

Fuzzy ART admits input vectors with elements in the range [0,1].  Typically, a 
sort of preprocessing called complement coding is applied to the input vectors, as 
well as any normalization required to map the data to the specified range.  Fuzzy 
ART’s core fitness equations take a different form than those of ART1, leveraging 
the mechanics of fuzzy logic to accommodate analogue data vectors. Fuzzy ART 
incorporates fuzzy set theory into ART and extends the ART family by being  
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capable of learning stable recognition clusters in response to both binary and real-
valued input patterns with either fast or slow learning. 

The basic Fuzzy ART architecture consists of two-layer nodes or neurons, the 
feature representation field F1, and the category representation field F2, as shown 
in Figure 1. The neurons in layer F1 are activated by the input pattern, while the 
prototypes of the formed clusters, represented by hyper-rectangles, are stored in 
layer F2. The neurons in layer F2 that are already being used as representations of 
input patterns are said to be committed. Correspondingly, the uncommitted neuron 
encodes no input patterns. The two layers are connected via adaptive weights, Wj, 
emanating from node j in layer F2. After layer F2 is activated according to the 
winner-take-all competition between a certain number of committed neurons and 
one uncommitted neuron, an expectation is reflected in layer F1 and compared 
with the input pattern. The orienting subsystem with the pre-specified vigilance 
parameter ρ (0≤ρ≤1) determines whether the expectation and the input pattern are 
closely matched. If the match meets the vigilance criterion, learning occurs and 
the weights are updated. This state is called resonance, which suggests the name 
of ART. On the other hand, if the vigilance criterion is not met, a reset signal is 
sent back to layer F2 to shut off the current winning neuron for the entire duration 
of the presentation of this input pattern, and a new competition is performed 
among the remaining neurons. This new expectation is then projected into layer 
F1, and this process repeats until the vigilance criterion is met. In the case in 
which an uncommitted neuron is selected for coding, a new uncommitted neuron 
is created to represent a potential new cluster. Researchers have concocted a wide 
variety of ART-based architectures by modifying the fitness equations to 
specialize them for a given problem domain. 

For example, Gaussian ARTMAP uses the normal distribution to partition 
categories, with the relevant fitness equations incorporating the Gaussian kernel.  
This parametric statistical approach to ART was the first in what has become a 
rich field of study.  Other parametric methods incorporate different probability 
distributions or allow for alternative preprocessing schemes based on statistics.   

Other specializations of ART include ARTMAP-IC, which allows for input 
data to be inconsistently labeled and is shown to work well on medical databases; 
Ellipsoidal ARTMAP, which calculates elliptical category regions and produces 
superior results to methods based on hyper-rectangles in a number of problem 
domains; and a version of ART that uses category theory to better model the 
storage and organization of internal knowledge.  Overall, Adaptive Resonance 
Theory enjoys much attention by those studying computational learning for both 
scientific and engineering purposes. 

ART incorporates two steps: category choice and vigilance test.  Let ݔ be the 
input, ݓ௝  the weights associated with category ݆ (this is really ݓ௜௝ where the 
weight is a vector of ݅ elements, but this subscript is typically suppressed), and ߩ 
be the vigilance. 
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In category choice, the degree of match is calculated: 
 หݔ ר |௝ݓ|௝หݓ  (1.1) 

 

for each category ݆.  In the ART calculations, ר is the fuzzy AND operator, and |ݔ| represents the ܮଵ-norm of ݔ. 
For the vigilance test, calculate 
 หݔ ר |ݔ|௝หݓ  (1.2) 

 

and compare with ߩ.  The algorithm then cycles between category choice and the 
vigilance test until resonance occurs and weights update according to ݓ௝ ൌ ௝ݓ  .ݔר

The relation given by Equation 2 calculates, in fuzzy logic terms, the 
percentage of ݓ௝  covered by ݔ.  See Figure 1.2 for a visual representation. The 
numerator tells us to what degree they overlap, and dividing then gives us a 
percentage.  This is done so that the category choice reflects which category ݔ is 
closest to.  If one considers only the numerator, then the category choice value for 
the category that is identically equal to ݔ (i.e., the perfect match) is the same as the 
category choice value for the uncommitted node of all 1’s.  The idea is to select 
the category to which the input fits just barely, and so the choice value is 
penalized for large ݓ௝’s.  It makes no sense here to divide by |ݔ| because that 
quantity is the same for all categories; it would have no impact on which category 
is selected. 

For the vigilance test, top-down expectations are checked. The category that 
won the competition in F2 is checked to see if it predicts that something like ݔ 
ought to be the input pattern.  In the fuzzy logic sense, this expectation checking is 
interpreted as follows: 
 หݔ ר |ݔ|௝หݓ  (1.3) 

 

The algorithm now divides by |ݔ| to check what percentage of ݔ is covered by ݓ௝.  Here, it makes no sense to divide by หݓ௝ห because it is not of concern how 

well ݓ௝ predicts itself.  The check here, basically, is how many elements of the 

weights are less than elements of the inputs because ݓ௝ is everywhere larger than ݔ this quantity is 1 and will not pass vigilance. 
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1.3.3   Reinforcement Learning 

Many fields, from animal learning theory to educational psychology, make use of 
the term reinforcement learning to mean a great variety of things.  This book refers 
to a very specific mathematical definition of a problem type presented in Figure 1.3. 

 

 
Fig. 1.3 Basic Reinforcement Learning Model Framework. Actions a(t), rewards r(t), and 
states s(t) are generated by the environment model and the agent controller 

 
Some form of the Bellman equation is applied here to represent the agent’s 

optimality criterion. It is important to understand that this literature hinges vitally 
on the notion of the agent as a maximizer of some utility function.  In that way, 
there is much in the fields of economics and operations research that can usefully 
inform ADP theory (Werbos 2004.) 

Barto and Sutton (1998) discuss a wide variety of solution methods for these 
problems.  In particular, this chapter will focus on one solution method, a member 
of the TD-ߣ family of optimization algorithms (Sutton 1995), called Q-learning 
(Watkins 1989). 

Note that the Q-learning algorithm, depicted in Figure 1.4, iteratively updates 
the value of each state-action pair.  The appropriate modification is calculated 
based on the difference between the current and realized valuations, when  
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maximized over all possible next actions.  This is a key fact that sets up the more 
advanced techniques discussed in the next chapter. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.4 The Q-Learning Algorithm 

 
This algorithm utilizes a lookup table to store the Q-values for each state-action 

pair.  As the scale of the simulation grows, the amount of memory required to 
catalogue these values can grow at a staggering rate.   

Next, the generalization of the Q-learning algorithm to the artificial Higher 
Order Neural Network technique of Adaptive Critics is covered. 

1.3.3.1   Approximate Dynamic Programming 

A Widely-Used and Increasingly effective approach to solving problems  
of adaptation and learning in applied problems in engineering, science,  
and operations research is that of Approximate Dynamic Programming (ADP)  
(Si 2004, Bertsekas 1996). ADP techniques have been used successfully in 
applications ranging from helicopter flight control (Enns 2003), to automotive 
engine resource management (Javeherian 2004), to linear discrete-time game 
theory, a topic near and dear to the heart of many an economist (Al-Tamimi, 
2007).  As ADP techniques continue to enjoy favor as the approach of choice for 
large-scale, nonlinear, dynamic control problems under uncertainty, it becomes 
important for the computational economist to be aware of them. Approximate 
Dynamic Programming is a field grounded in mathematical rigor and full of social 
and biological inspiration that is being used as a unification tool among 
researchers in many fields. 

This section overviews the structure of ADP.  Markov Decision Processes are 
discussed first to introduce the core structural terminology of the field.  Next, the 
Bellman Equation of Dynamic Programming, the true heart of ADP, is explained.    

Q-Learning Algorithm
1. Initialize Q(s,a) 
2. Set t = 1 
3. Initialize s 
4. Set a = π(s), calculate s’ 
5. Update Q(s,a) = Q(s,a) + γ[r(s’) + δmaxa’Q(s’,a’) – Q(s,a)] 
6. Set s = s’ 
7. If s is not terminal, goto 4. 
8. Increment t 
9. If t is not equal to the maximum number of iterations, goto 3. 
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1.3.3.2   Markov Decision Processes 

First, some terminology. The state of a system records all the salient details 
needed by the model. For an agent deciding how much of an asset to buy or sell, 
the modeler may set the state space to be a count of the current number of shares 
the agent is holding along with the current, stochastically generated dividend 
payment for the next time period.  In the computational modeling of games such 
as Chess and Go, the relevant state would be the position of all the pieces 
currently on the board, and possibly the number of captured stones (for Go.)  At 
each state, the agent has a choice of actions.  (In a control application, where the 
agent is a power plant or some other complex operation to be optimally managed, 
the actions are called controls.)  Our economic trading agent may buy or sell a 
certain number of shares, the totality of which entirely enumerates its possible 
actions.  Returning to the game example, the entire range of legal moves constitute 
the action set for a given board configuration, or state.  Each state nets the agent a 
level of reward.  States that lead to desirable outcomes, as measured by some 
reasonable criteria, are assigned positive reward, while states that should be 
avoided are given negative reward.  For example, the state arrived at after 
choosing the action that moves a Chess piece such that the opponent can place 
one’s king in checkmate would generate a highly negative reward, while a 
winning Tic-tac-toe move would evolve the system to a state with high reward.  
The manner in which the agent proceeds from state to state through the choice of 
action is called the evolution of the system; it is governed stochastically through 
transition probabilities.  The agent, upon buying a number of shares of a risky 
asset, finds itself in a new state. Part of the state’s structure, the size of the agent’s 
holdings, is under deterministic control. The stochastic dividend payment, 
however, evolves according to a statistical rule unknown to the agent. Therefore, 
the agent cannot know for certain to which state it will advance upon taking a 
certain action. Instead, the next states constitute a probability distribution 
described by the transition probability matrix.  To contrast, the evolution is 
completely deterministic in Chess and Go, as no randomness is involved.   

The way the state has been defined, as embodying all necessary information to 
calculate the future system evolution, allows the use of a mathematical Markov 
chain to model the system dynamics.  Any such system, said to satisfy the Markov 
Property, can be analyzed with the following techniques.  In practice, systems of 
interest often have a degree of error in the state representation, or some other 
influx of imperfect information, and therefore do not technically fulfill the Markov 
Property. However, approximation techniques for these situations abound, and the 
careful researcher still can make appropriate use of Markov chain modeling in 
many cases. For a more thorough analysis of such cases, see Sutton and Barto 
(1998). 

A Markov Decision Process (MDP) model is one in which Markov chains  
are used to analyze an agent’s sequential decision-making ability. In MDP 
terminology, the agent calculates a policy, an assignment of an action to every 
possible state.  The goal is to find an optimal policy, given some reasonable 
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criterion for optimality.  An MDP consists of the components previously defined:  
states, actions, rewards, and transition probabilities. The time scale under 
consideration is also important. Discrete MDPs typically evolve along the positive 
integers, while continuous MDPs are defined on the non-negative real numbers.  
Other time scales are feasible for constructing MDPs.  See the book by Bohner 
and Peterson (2001) for a more rigorous mathematical presentation of time scales. 

MDPs have been studied and applied extensively in such areas as inventory 
management (Arrow 1958), behavioral biology (Kelly 1993), and medical 
diagnostic testing (Fakih 2006). Standard solution techniques are available and 
well understood (Puterman 1994).  Solutions consist of an optimal policy for the 
agent to follow in order to maximize some measure of utility, typically infinite 
horizon expected reward. 

It is not always the case that a system can be adequately expressed as a standard 
MDP. When the state information is not fully available to the agent, then the 
model must be supplemented with a probabilistic description of the current state, 
called a belief space. An MDP under this addition becomes a Partially Observable 
Markov Decision Process (POMDP).  A classic POMDP example involves an 
agent deciding which of two doors to open. Behind one is a tiger, and behind the 
other is a lovely prince or princess ready to sweep the agent off its feet.  In a 
straight MDP, the agent would have access to the transition probabilities for the 
two states and would be able to calculate which door is most likely to contain the 
desired result.  In the POMDP formulation, however, the agent does not have 
access to such information. Instead, the agent receives observations, such as 
hearing the tiger growl, that combine to form a Bayesian approach to solving the 
optimal policy.  POMDPs have demonstrated an ability to model a richer set of 
systems than the pure MDP formulation. For example, POMDPs have been used 
in dynamic price modeling when the exact demand faced by the vendor is 
unknown (Aviv 2005).  When the demand at each period is known, an MDP can 
be used to calculate the best policy under expected reward criteria.  But, when 
faced with an unknown state element, the agent must refer to observations such as 
historical marketing data to help make its decision. 

Standard solution methods for POMDPs work only on specific frameworks and 
require significant computational capability to implement. To avoid these 
problems, it is common to use a technique such as a Bayesian Filter to transform a 
POMDP into an MDP once the observations key the agent’s belief space to a 
sufficient degree. The solution techniques for MDPs then can be applied to the 
POMDP and the optimal policy calculated. 

The next section provides the mathematical formulation of the task of the 
economic agent—the maximization of a particular optimality criterion. 

1.3.3.3   The Bellman Equation 

Consider an economic agent modeled with a finite set of states s, actions a, 
rewards r(s), and transition probabilities P(s, a) in a discrete time scale defined to  
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be the positive integers.  In order to calculate the agent’s optimal policy, some 
utility function must be maximized. In the core Approximate Dynamic 
Programming paradigm, the function to be maximized is the Bellman equation: 
 

           ∑
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                        (1.4) 

 

This is the discounted expected reward optimality criterion. In this equation, ܬሺݏሻ 
represents the current value of a given state, ݏԢ signifies the next-states, and a 
discount factor ߛis applied to the future rewards.  This equation is to be 
maximized over all actions.  Note that this is a special case of the full Hamilton-
Jacobi-Bellman equation studied in Chapter 5. 

The Bellman equation states that the current value of a state is equal to the 
immediate reward of taking an action plus the discounted future reward that 
accrues from that state.  Other optimality criteria are possible to account for 
infinite horizon or nondiscounted models. The task of ADP is to solve this 
equation.   

One standard solution algorithm is that of backwards induction.  Other 
approaches include value and policy iteration. The interested reader is directed to 
Puterman (1994) and similar texts for further details on these and other 
optimization techniques.  The solution method to be discussed in this chapter is 
found in the next section. 

1.3.3.4   Heuristic Dynamic Programming 

Q-learning is robust and has been shown to work quite well in a large number of 
problem domains, including being the base of the temporal difference approach at 
the center of a computational agent which, without any exogenously provided 
understanding of the rules of Backgammon, learned to perform at the master 
level and which was able to teach new strategies to arguably the world’s oldest 
game to champion-level players (Tesauro 1994).  However, its reliance on a 
lookup table to store values is a severe limitation.  Generalizations of Q-learning, 
falling under the heading of Heuristic Dynamic Programming (HDP), replace the 
Q-table with a multi-layer neural network function approximator.  Another 
generalization of Q-learning, dubbed Z-learning, involving a variable 
transformation to linearize the underlying MDP formulation, has been introduced 
(Todorov, 2007). 

The diagram for HDP, the simplest of the class of architectures broadly known 
as Adaptive Critic Designs (Werbos, 1992, Prokhorov, 1997), is presented in 
Figure 1.5. 
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Fig. 1.5 Basic Adaptive Critic Design.  J(t) is the value function being approximated, r(t) is 
the reward, and a(t) is the action control signal.  The critic evaluates the agent’s choice, 
modifying its adaptive weights in response to the chosen actions 

 
The Adaptive Critic architecture, in essence, translates a reinforcement learning 

problem into a supervised learning problem. This is beneficial because much is 
known about solving supervised learning problems.  The critic network learns the 
value function, and error between the current J-function value and the J-function 
value in the next time step is backpropagated through the network (Werbos, 1990). 

Adaptive Critic architectures have found many application areas, including 
missile control (Han, 2002 and Chuan-Kai, 2005), fed-batch biochemical process 
optimization (Iyer, 2001), intelligent engine control (Kulkarni, 2003), 
multimachine power system neurocontrol (Mohagheghi, 2007), and even the 
management of a beaver population to prevent nuisance to humans (Padhi, 2006).  
The promise of finding rewarding application of these techniques in the fields of 
computational economics and finance is too alluring to ignore. 

1.4   A Unified Approach 

Based on the Markov Decision Process framework, a unified approach to the three 
learning modes can be established. In this unified view, unsupervised and 
supervised learning modes are seen as the extreme ends on a continuum of 
reinforcement learning.  Unsupervised learning corresponds to the absence of any 
reinforcement, and supervised learning corresponds to the presence of perfect 
reinforcement. 

First, consider the MDP model of a reinforcement learning agent.  In this case, 
there are states representing salient features of the environment, and there is a 

HDP Critic Network

Critic

Model

Agent 

J(t+1) 

r(t+1) 

a(t) 
r(t) 
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mechanism to transition from one state to another in the presence of a control or 
action.  The value of the reinforcement will help to determine if the chosen action 
evolved the state of the environment into a more or less valuable position.  In the 
context of an autonomous robot navigating a maze or an intelligent controller 
minimizing a cost function, the structure of the reinforcement learning model is 
intuitive.  Note that the critic is the unit that processes reinforcement, and the 
actor is the unit that calculates the action. 

For a supervised learning problem, however, such intuition takes more effort to 
establish.  In this case, the environment consists solely of the inputs to be learned.  
Regardless of the selected control, the environment will always transition to the 
next input on the list.  However, the reinforcement signal is not to be interpreted 
as a measure of value; rather, it is communicating what the correct action ought to 
be, which requires the supervised learning critic to behave differently than the 
reinforcement learning critic. Where the RL critic may hold a value function that 
chronicles the appropriateness (as determined by the environment) of each state-
action pair, the SL critic tracks no such information.  Rather, it is a function that 
will update adaptive weights to better coordinate the input with the actual signal 
received.  Many RL critics do this as well when they backpropagate an error 
through the neural-network based actor, but in the SL case this is more explicit—
the error signal to be backpropagated is generated not from the critic’s value table 
but from an error function, typically a least squared error measure between the 
input and the desired output (found in the signal from the environment).   

In this way, the supervised learning mode emerges as a subset of reinforcement 
learning.  The state is now simply an input vector, the transition probability matrix 
gives the next input vector with probability 1, the reinforcement signal from the 
environment contains the desired action value (target), and the action itself 
represents the target vector.   

For the UL case, there is no reinforcement signal at all.  The environment will 
generate a next state, which, as in SL, is interpreted to be the next input vector on 
the list, but the reinforcement signal is not present.   

Notice that in the UL operation, the critic is dormant; without a signal from the 
environment for it to process, it may as well not exist.  In order to see this as a 
subset of more general learning, however, it is useful to view the critic as existing 
but simply watching the action around it take place rather than taking an active 
role.  In this case, all the internal machinery determining to which category an 
input is to be assigned is located within the actor.  And, as in the SL case, the 
transition matrix for the input is degenerate, and the system always transitions to 
the next input vector as the “state.”  

These ideas are illustrated using the following equation model based on the Q-
learning algorithm.  Consider the following basic update rule: 
 ܳሺݏ௧, ܽ௧ሻ ՚ ܳሺݏ௧, ܽ௧ሻ ൅ ௧ାଵݎሾߙ ൅ ܸ െ ܳሺݏ௧, ܽ௧ሻሿ (1.5) 
 

This is the basic Q-learning formula, with the V component equal to the internal 
operation of the critic.  If the idea of the critic is expanded to refer to whatever 
internal calculation the algorithm performs, then we may use this equation to 
perform both supervised and unsupervised learning in addition to reinforcement 
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learning.  Of course, for both supervised and unsupervised learning methods, the 
reinforcement term ݎ௧ାଵ would be zero, but the value of V would depend on the 
dynamics of the particular approach being utilized.  So, for a basic supervised 
algorithm, the V would represent least-squared error, and for basic unsupervised 
learning, the V would equal the fitness calculation between the input and any 
given category.  More advanced algorithms could have V representing the 
ARTMAP or ART dynamics or a fuzzy c-means fitness, etc.  A single update 
equation can be interpreted, through the activity of the critic, to perform any of the 
three learning modes.  This is not to say that Q-learning leads to the most effective 
approach to supervised or unsupervised learning, only that this is the beginning of 
a single framework within which to discuss the three types.  This framework will 
form the basis of the algorithms presented in Chapter 2, which show integrated 
learning in action. 

1.5   Future Work 

Extensions of the work presented in this book will cover new applications, more 
robust synthesis of the learning modes, and further convergence of discrete and 
continuous signals within a single theoretical framework. 

In the application domain, there are many problems in social science in which 
an agent equipped with multiple learning modes may prosper.  For example, a 
commonly studied computational economics situation is one in which a collection 
of heterogeneous agents must analyze an input signal that gives information about 
the future value of a risky asset.  These agents must decide how to allocate 
resources between the risky asset and the risk-free asset so as to maximize payoff.  
This problem requires the agents to learn a match between the information signal 
and the future performance of the risky asset.  Simple multi-layer perceptron 
neural network architectures have been employed successfully in approximating 
the functional relationship between these two signals of interest.  However, in a 
more realistic application environment, the information signal would be expected 
to be intermittent, requiring the agent to process in an unsupervised mode while 
access to the information stream was limited.  In this way, the use of a unified 
learning method, where the content learned in supervised and unsupervised modes 
would be mixed together within a single memory, may be the correct model of 
actual economic agents. It helps that the ART-based neural networks are 
themselves designed specifically to describe how biological neural and cognitive 
systems operate. 

Furthermore, in a more robust application requiring portfolio balancing, an 
agent would be faced not with a single information source but with multiples. 
Advances in the theory of unified computational intelligence applied to the 
learning modes can generate algorithms that rate different supervisory signals via 
the reinforcement signals.  When a supervisor indicates a match that subsequently 
generates poor reinforcement results from the environment, then the sagacity of 
that supervisor will be in doubt. In this way, an extension of the unified 
computational intelligence learning neural network presented in this book may be 
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able to process multiple supervisory sources.  This would be an entirely new 
problem domain for machine learning research. 

In general, the development of new learning algorithms that are capable of 
synthesizing different sorts of feedback signals is a much needed extension of this 
book.  The idea that multiple signals may impact the same stored memory is one 
not yet represented in the literature.  Further theorems and applications regarding 
the interplay among competing learning signals are needed. 

Theoretical extension of the simple MDP model presented in this book is 
needed.  More theorems concerning the view of supervised and unsupervised 
modes as the extreme versions of the reinforcement mode would help guide the 
development of further algorithms for applications.   

On the dynamic programming front, further analysis of the unification of 
discrete and continuous signals is needed.  The time scales calculus is still an 
emerging area with relatively few active researchers worldwide.  As more and 
more of the fundamental applied mathematics gets formulated in this calculus 
(multiple valued Taylor series, n-variable chain rules, variational calculus, 
functional analysis, and nonlinear systems theory, to name a few), new results on 
the control front will become available.  Single algorithms capable of operating in 
discrete or continuous time will be available and may prove worthwhile in 
applications. In 20 years, aspiring control theorists may have to know a thing or 
two about the time scales calculus and dynamic equations. 

Extensions of the quantum calculus and dynamic programming are of value as 
well.  A quantum dynamic programming can be devised using the state space 
representations of quantum mechanics instead of the ones in classical mechanics. 
This approach may allow decision theory under uncertainty to be formulated in a 
new and useful way. 

Finally, the area of agent-based modeling of social systems in general is still in its 
infancy. As more computational results contribute to an understanding of complex 
systems to the same degree as has traditional analytic mathematics, more scientists 
will understand the power behind these methods and begin using them with wider 
acceptance. Computational intelligence techniques, themselves inspired in a way by 
biological systems, extend the possibilities of computation and may fuse with these 
agent-based models in a vital way to help advance both basic and applied research 
into the governing dynamics of social and economic systems. 
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