

John Seiffertt and Donald C.Wunsch

Unified Computational Intelligence for Complex Systems

Adaptation, Learning, and Optimization,Volume 6

Series Editor-in-Chief

Meng-Hiot Lim
Nanyang Technological University, Singapore
E-mail: emhlim@ntu.edu.sg

Yew-Soon Ong
Nanyang Technological University, Singapore
E-mail: asysong@ntu.edu.sg

Further volumes of this series can be found on our homepage: springer.com

Vol. 1. Jingqiao Zhang and Arthur C. Sanderson
Adaptive Differential Evolution, 2009
ISBN 978-3-642-01526-7

Vol. 2.Yoel Tenne and Chi-Keong Goh (Eds.)
Computational Intelligence in
Expensive Optimization Problems, 2010
ISBN 978-3-642-10700-9

Vol. 3.Ying-ping Chen (Ed.)
Exploitation of Linkage Learning in Evolutionary Algorithms, 2010
ISBN 978-3-642-12833-2

Vol. 4.Anyong Qing and Ching Kwang Lee
Differential Evolution in Electromagnetics, 2010
ISBN 978-3-642-12868-4

Vol. 5. Ruhul A. Sarker and Tapabrata Ray (Eds.)
Agent-Based Evolutionary Search, 2010
ISBN 978-3-642-13424-1

Vol. 6. John Seiffertt and Donald C.Wunsch
Unified Computational Intelligence for Complex Systems, 2010
ISBN 978-3-642-03179-3

John Seiffertt and Donald C.Wunsch

Unified Computational
Intelligence for Complex Systems

123

John Seiffertt
PhD Candidate
Department of Electrical and Computer Engineering
Missouri University of Science and Technology
Rolla, MO 65402
USA
E-mail: jes0b4@mst.edu

Dr. Donald Wunsch
Mark K Finley Missouri Distinguished Professor
Department of Electrical and Computer Engineering
Missouri University of Science and Technology
Rolla, MO 65402
USA
E-mail: dwunsch@mst.edu

ISBN 978-3-642-03179-3 e-ISBN 978-3-642-03180-9

DOI 10.1007/978-3-642-03180-9

Adaptation, Learning, and Optimization ISSN 1867-4534

Library of Congress Control Number: 2010928723

c© 2010 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Contents

Contents

1 Introduction………………………………………………………………....1
 1.1 The Need for Unified Computational Intelligence..................................1
 1.2 Contributions of This Work..4
 1.3 The Three Types of Machine Learning ..4
 1.3.1 Unsupervised Learning ..4
 1.3.2 Supervised Learning ..8
 1.3.3 Reinforcement Learning ..9
 1.4 A Unified Approach ...14
 1.5 Future Work..16

2 The Unified Art Architecture……………………………………………..19
 2.1 Introduction ..19
 2.2 Motivation ..19
 2.3 Block Diagram..20
 2.4 Operation ..22
 2.4.1 Step 1: Calculate State Trace ...22
 2.4.2 Step 2: Calculate Control ...24
 2.4.3 Step 3: Process Control..25
 2.4.4 Step 4: Interpret Reward via Critic ..26
 2.5 An Extended Architecture ..27
 2.5.1 The Vigilance Test...27
 2.5.2 The Weight Update..30
 2.5.3 Algorithm...32

3 An Application of Unified Computational Intelligence………………...33
 3.1 Overview ..33
 3.2 Introduction ..33
 3.2.1 Machine Learning ..34
 3.2.2 Information Fusion ..34
 3.3 Approach ..35
 3.3.1 System Architecture...35
 3.3.2 Information Fusion Engine ..36
 3.4 Application ...37
 3.4.1 Vehicle Tracking..40
 3.4.2 Analysis ...41

ContentsVI

 3.5 Future Work..47
 3.6 Conclusion ..48

4 The Time Scales Calculus …………………………......………………….49
 4.1 Introduction ..49
 4.2 Fundamentals..50
 4.3 Single-Variable Calculus ..52
 4.4 Calculus of Multiple Variables ...55
 4.5 Extension of the Chain Rule ...56
 4.6 Induction on Time Scales ...58
 4.7 Quantum Calculus ..58

5 Approximate Dynamic Programming on Time Scales………………….61
 5.1 Overview ..61
 5.2 Introduction ..61
 5.3 Dynamic Programming Overview ..62
 5.4 Dynamic Programming Algorithm on Time Scales..............................63
 5.4.1 Delta Derivative Version ...64
 5.4.2 Quantum Calculus Version ..66
 5.5 HJB Equation on Time Scales ..69
 5.5.1 Delta Derivative Version ...70
 5.5.2 Nabla Derivative Version ..72
 5.5.3 Alpha Derivative Version ..74
 5.6 Conclusions ..75

6 Backpropagation on Time Scales…………………………………………77
 6.1 Overview ..77
 6.2 Introduction ..77
 6.3 Ordered Derivatives..78
 6.3.1 Network Definitions ..79
 6.3.2 Structure of Ordered Derivatives ...80
 6.3.3 The Chain Rule ..82
 6.4 The Backpropagation Algorithm on Time Scales.................................85
 6.5 Quantum Calculus ..86
 6.6 Conclusions ..89

7 Unified Computational Intelligence in Social Science……...…………...91
 7.1 Introduction ..91
 7.2 Game Theory and Computational Social Science.................................92
 7.2.1 Computational Intelligence..92
 7.2.2 Agent-Based Computational Social Science..............................96
 7.2.3 Game Theory ...97
 7.3 Economics and Finance ..98
 7.3.1 Introduction..98
 7.3.2 Background..99
 7.3.3 Agent-Based Computational Economics99

Contents VII

 7.3.4 Application to Economic Systems ...101
 7.3.5 Future Research Directions..102
 7.4 Intelligence in Markets ...102
 7.4.1 Introduction..103
 7.4.2 Approximate Dynamic Programming and Stochastic
 Control ...104
 7.4.3 Evolving Asset Pricing Strategies..106
 7.4.4 The Design of Market Mechanisms ...108
 7.4.5 Computational Markets..109

References……………………………………………………………………...111

J. Seiffertt & D.C. Wunsch: Unified Computational Intell. for Complex Sys., ALO 6, pp. 1–17.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Chapter 1
Introduction

1.1 The Need for Unified Computational Intelligence

Humanity’s newfound ability to compute has granted us unprecedented
acceleration of the rate of technological innovation, altered dramatically the
structure of social engagement, and presented us with a chance to create a reality
to match our imagination. From optimal control to bioinformatics to economic
systems, the field of computational intelligence has proven itself a leader in
maximizing what society stands to gain from its increasing supply of computing
resources. Riding the bleeding edge of what computers are able to do,
computational intelligence researchers find ways to increase the energy output
from renewable sources, secure large-scale networks, stabilize power grids,
control aircraft, detect skin cancer, find land mines, and even teach humans
something new about games they have played for millennia. This book introduces
ways to unify some key elements of the computational intelligence field in order
to guide humanity’s quest for a more perfect alignment between her most ancient
dreams and her everyday life.

Computational intelligence encompasses a wide variety of techniques that
allow computation to learn, to adapt, and to seek. That is, they may be designed
to learn information without explicit programming regarding the nature of the
content to be retained, they may be imbued with the functionality to adapt to
maintain their course within a complex and unpredictably changing environment,
and they may help us seek out truths about our own dynamics and lives through
their inclusion in complex system modeling. These capabilities place our ability
to compute in a category apart from our ability to erect suspension bridges,
although both are products of technological advancement and reflect an increased
understanding of our world. In this book, we show how to unify aspects of
learning and adaptation within the computational intelligence framework. While
a number of algorithms exist that fall under the umbrella of computational
intelligence, with new ones added every year, all of them focus on the capabilities
of learning, adapting, and helping us seek. So, the term unified computational
intelligence relates not to the individual algorithms but to the underlying goals
driving them. This book focuses on the computational intelligence areas of neural
networks and dynamic programming, showing how to unify aspects of these areas

2 1 Introduction

to create new, more powerful, computational intelligence architectures to apply to
new problem domains.

The first part of this book, Chapters 1 through 3, introduces an approach to
unifying the ability of computational intelligence methods to learn. The second
part, Chapters 4 through 6, discuss unification aimed at increasing the capability to
adapt. Finally, the third part, Chapter 7, speaks to the computational spark
allowing us to seek.

Before discussing an application that requires the use of a unified
computational intelligence approach, a clarification of the usage of the word
unified in comparison to the oft-used term hybrid is in order. As used in the
literature, a hybrid computational intelligence technique is one that combines
multiple algorithms into a single implementation. For example, a neural network
trained with a particle swarm optimizer or an evolutionary algorithm that
incorporates fuzzy logic in its fitness function may be classified as hybrid. The
term unified refers to combinations along a different axis. For unified learning, a
single architecture incorporates all three canonical learning modes into one unit so
that signals from each learning mode can update and access the same content.
This paradigm says, “You know these learning methods that are out there,
segregated, each with their own algorithm? Well, here’s the thing—they are
actually the same algorithm.” This is very different from what is meant by a
hybrid algorithm, as a hybrid algorithm does not require the sharing of memory
space. Also, the highly mathematical section of this book discusses unification in
terms of input domains. There, the appropriate words are, “You know how there
is one set of equations for continuous domains and another set for discrete
domains? Well, here’s the thing—these equations are actually the same thing.” In
this book, a framework is provided to deal cogently with multiple learning
methods as subsets of unified learning in much the same sense that differential and
difference equations are treated as special cases of the unified dynamic equations.

Further, it must be noted that unified computational intelligence means that a
given algorithm seamlessly incorporates multiple learning modes that share
weights and that may influence the already learned associations of the other
modes, or that the algorithm will work on both discrete and continuous input
signals using a single set of equations. In this way, these algorithms unify within
the learn and adapt characteristics of computational intelligence approaches.
Unified computational intelligence is not a term used to discuss an algorithm that
can act as a neural network, a swarm intelligence system, and a fuzzy logic system
all at once. The unification occurs at the “what is the algorithm doing” level, not
at the “how is the algorithm classified” level. While this latter form of unification
may be discussed within the purview of mathematical logic where all algorithms
may be related, it is not within the scope of the current book.

What follows now is an example to help motivate the desire to develop such
unified architectures. The example described is only one of many areas in which
combining multiple learning methods can be fruitful. For example, Mohagheghi,
Venayagamoorthy, and Harley (2007b) report on using multiple learning modes
for a wide area controller for power systems, although their design is not “unified”
in the sense described in this book. What it does, however, is give a powerful

1.1 The Need for Unified Computational Intelligence 3

incentive to further develop algorithms that incorporate multiple learning modes,
as the control of the power grid is one of the key control applications currently
under investigation. Additionally, applications from finance are well suited for
this approach.

We cover one such application in this field in the Future Work section. This
example is a smart sensor application involving developing situation awareness
for a force protection scenario. We provide here an overview and discussion of
why unified learning is advantageous; full details may be found in Chapter 3.
Figure 1.1 presents a graphical depiction of the problem. The practical
considerations of this work include the need to develop field-deployable hardware
capable of performing intelligent sensor fusion quickly, efficiently, and with
minimum overhead.

An intelligent sensor fusion algorithm, like an intelligent creature, can make
informed use of all three types of learning in this environment on the data set
given. Certain paths may be pretrained prior to deployment, thus granting the
human operators license to verify that the most obvious sensor patterns will be
classified successfully. During operation, a reinforcement signal provided either
by the environment or by the human operator acting off of the fusion algorithm’s
recommendations can adjust the current adaptive weight profile to curtail faulty
clustering. Finally, in the absence of any external signal, the algorithm will learn
in an unsupervised manner, comparing current inputs to what it already knows. In
this way, all three learning methods are incorporated into a single application,
providing a need for unified learning rather than a conglomeration of techniques
pieced together in a computational sprawl.

Fig. 1.1 An Application Using Unified Computational Intelligence

4 1 Introduction

1.2 Contributions of This Work

The contributions of this book fall in the area of unified computational intelligence
and encompass algorithm design, applications, theoretical developments, and the
identification of new frontiers for multidisciplinary research.

Chapter 1 presents a new way to look at unified learning systems using a
Markov Decision Processes framework. It also introduces new problem domains
to which these unified approaches may be applied and defines the notion of
unified computational intelligence.

Chapter 2 outlines an entirely novel Adaptive Resonance Theory-based unified
learning architecture. From the motivation behind the algorithm to the design
details to the extensions for future research, everything in this chapter is novel.

Chapter 3 contains an article that has appeared in the journal Neural Networks
detailing an application of the architecture presented in Chapter 2.

Chapter 4 begins the theoretical component of the book. A new theorem in the
time scales calculus is proven, and mathematics from scattered sources is brought
together and organized for the first time.

Chapter 5 develops the theory of dynamic programming on time scales, one of
the components of unified computational intelligence. This chapter contains new
theorems regarding the nature of the dynamic programming algorithm and the
Hamilton-Jacobi-Bellman equation in the time scales calculus. Also presented are
new results from the area of quantum calculus. These results mark the first
occurrence of the fields of time scales mathematics and dynamic programming
being brought together.

Chapter 6 extends the time scales analysis to the domain of neural network
learning, where the backpropagation algorithm is proven to hold in this new
calculus as well as in its quantum calculus rendition. Additionally, the idea of an
ordered derivative on time scales, a concept fundamental to the backpropagation
algorithm, is introduced. The results in this chapter represent the first work to be
published uniting times scales with neural network learning.

Chapter 7 discusses applications of computational intelligence in the emerging
field of agent-based computational social science. It is increasingly important for
researchers trying to make sense of complex economic, financial, and social
systems to have as part of their technical vocabulary the language of
computational intelligence. This chapter details how the approaches described in
the book may be used in a setting outside the mainstream of engineering.

Altogether, this book introduces a new approach within the increasingly
relevant field of computational intelligence and maps out new paths this research
can take.

1.3 The Three Types of Machine Learning

1.3.1 Unsupervised Learning

Also called clustering, unsupervised learning refers to a situation in which an
algorithm has no external guidance to focus its attention. When learning the

1.3 The Three Types of Machine Learning 5

mapping of inputs to clusters, it must rely solely on its own internal structure. For
a full treatment of clustering, the reader is directed to Xu & Wunsch, 2008.

The type of unsupervised learning algorithm considered most thoroughly in this
book is a neural network approach called Adaptive Resonance Theory (ART).
Developed by Carpenter and Grossberg as a solution to the plasticity and stability
dilemma, i.e., how adaptable (plastic) should a learning system be so that it does
not suffer from catastrophic forgetting of previously-learned rules, ART can learn
arbitrary input patterns in a stable, fast, and self-organizing way, thus overcoming
the effect of learning instability that plagues many other competitive networks.
ART is a learning theory hypothesizing that resonance in neural circuits can
trigger fast learning.

ART exhibits theoretically rigorous properties desired by neuroscientists, which
solved some of the major difficulties faced by modelers in the field. Chief among
these properties is stability under incremental learning. In fact, it is this property
that translates well to the computational domain and gives the ART1 clustering
algorithm, the flavor of ART most faithful to the underlying differential equation
model, its high status among unsupervised learning algorithm researchers. At its
heart, the ART1 algorithm relies on calculating a fitness level between an input
and available categories. In this way, it appears very much like the well-known k-
means algorithm, although the number of categories is variable and grows
dynamically as needed by the given data set.

What fundamentally differentiates ART1 from similar distance-based clustering
algorithms is a second fitness calculation during which a given category can reject
the inclusion of an input if the input does not meet the category’s standards as
governed by a single global parameter. Cognitively, this is modeling the brain’s
generation and storage of expectations in response to neuronal stimulation. The
initial fitness, measuring the degree to which each input fits each of the
established categories, is considered a short-term memory trace which excites a
top-down expectation from long-term memory. Computationally, this second
fitness calculation acts to tune the number of categories, and it may force the
creation of new categories where a k-means styled algorithm would not, thus
exhibiting stronger, more nuanced, classification potential. The ART1 algorithm
has enjoyed great popularity in a number of practical application areas of
engineering interest. Its chief drawback is the requirement that input vectors be
binary. The ART2 algorithm was first proposed to get around this restriction, but
the Fuzzy ART modification of ART1 now powers most of the new ART research
and applications.

Fuzzy ART admits input vectors with elements in the range [0,1]. Typically, a
sort of preprocessing called complement coding is applied to the input vectors, as
well as any normalization required to map the data to the specified range. Fuzzy
ART’s core fitness equations take a different form than those of ART1, leveraging
the mechanics of fuzzy logic to accommodate analogue data vectors. Fuzzy ART
incorporates fuzzy set theory into ART and extends the ART family by being

6 1 Introduction

capable of learning stable recognition clusters in response to both binary and real-
valued input patterns with either fast or slow learning.

The basic Fuzzy ART architecture consists of two-layer nodes or neurons, the
feature representation field F1, and the category representation field F2, as shown
in Figure 1. The neurons in layer F1 are activated by the input pattern, while the
prototypes of the formed clusters, represented by hyper-rectangles, are stored in
layer F2. The neurons in layer F2 that are already being used as representations of
input patterns are said to be committed. Correspondingly, the uncommitted neuron
encodes no input patterns. The two layers are connected via adaptive weights, Wj,
emanating from node j in layer F2. After layer F2 is activated according to the
winner-take-all competition between a certain number of committed neurons and
one uncommitted neuron, an expectation is reflected in layer F1 and compared
with the input pattern. The orienting subsystem with the pre-specified vigilance
parameter ρ (0≤ρ≤1) determines whether the expectation and the input pattern are
closely matched. If the match meets the vigilance criterion, learning occurs and
the weights are updated. This state is called resonance, which suggests the name
of ART. On the other hand, if the vigilance criterion is not met, a reset signal is
sent back to layer F2 to shut off the current winning neuron for the entire duration
of the presentation of this input pattern, and a new competition is performed
among the remaining neurons. This new expectation is then projected into layer
F1, and this process repeats until the vigilance criterion is met. In the case in
which an uncommitted neuron is selected for coding, a new uncommitted neuron
is created to represent a potential new cluster. Researchers have concocted a wide
variety of ART-based architectures by modifying the fitness equations to
specialize them for a given problem domain.

For example, Gaussian ARTMAP uses the normal distribution to partition
categories, with the relevant fitness equations incorporating the Gaussian kernel.
This parametric statistical approach to ART was the first in what has become a
rich field of study. Other parametric methods incorporate different probability
distributions or allow for alternative preprocessing schemes based on statistics.

Other specializations of ART include ARTMAP-IC, which allows for input
data to be inconsistently labeled and is shown to work well on medical databases;
Ellipsoidal ARTMAP, which calculates elliptical category regions and produces
superior results to methods based on hyper-rectangles in a number of problem
domains; and a version of ART that uses category theory to better model the
storage and organization of internal knowledge. Overall, Adaptive Resonance
Theory enjoys much attention by those studying computational learning for both
scientific and engineering purposes.

ART incorporates two steps: category choice and vigilance test. Let be the
input, the weights associated with category (this is really where the
weight is a vector of elements, but this subscript is typically suppressed), and
be the vigilance.

1.3 The Three Types of Machine Learning 7

In category choice, the degree of match is calculated:
 | | (1.1)

for each category . In the ART calculations, is the fuzzy AND operator, and | | represents the -norm of .
For the vigilance test, calculate
 | | (1.2)

and compare with . The algorithm then cycles between category choice and the
vigilance test until resonance occurs and weights update according to

.
The relation given by Equation 2 calculates, in fuzzy logic terms, the

percentage of covered by . See Figure 1.2 for a visual representation. The
numerator tells us to what degree they overlap, and dividing then gives us a
percentage. This is done so that the category choice reflects which category is
closest to. If one considers only the numerator, then the category choice value for
the category that is identically equal to (i.e., the perfect match) is the same as the
category choice value for the uncommitted node of all 1’s. The idea is to select
the category to which the input fits just barely, and so the choice value is
penalized for large ’s. It makes no sense here to divide by | | because that
quantity is the same for all categories; it would have no impact on which category
is selected.

For the vigilance test, top-down expectations are checked. The category that
won the competition in F2 is checked to see if it predicts that something like
ought to be the input pattern. In the fuzzy logic sense, this expectation checking is
interpreted as follows:
 | | (1.3)

The algorithm now divides by | | to check what percentage of is covered by

. Here, it makes no sense to divide by because it is not of concern how

well predicts itself. The check here, basically, is how many elements of the

weights are less than elements of the inputs because is everywhere larger than

 this quantity is 1 and will not pass vigilance.

8

Fig. 1.2 An

This interplay between

ART systems.

1.3.2 Supervised Le

Whereas in an unsupervis
category an input shoul
information is provided b
up the inputs with the giv
Typically, the supervised
weights in such a way a
weights are the coeffic
weights govern the move
layer. The neural netwo
Chapter 6 in detail. In th
architecture of Chapters 2
as the supervised learning

1 Introductio

n Adaptive Resonance Theory (ART) Classifier

n categories and inputs is the defining characteristic o

arning

sed learning algorithm the system has no idea into wh
ld be placed, in a supervised learning problem th

by the environment. It is the job of the system to matc
ven outputs, much as in a statistical regression problem
d learning algorithm seeks to modify a list of adaptiv
as to minimize an error measure. In regression, thes
cients. In a multi-layer perceptron neural network, thes
ement of signals through the transfer functions at eac
rk example is of principle importance and is studied i

he development of the unified computational intelligenc
2 and 3, however, the ARTMAP neural network is use

g model.

on

of

hat
his
ch
m.
ve
se
se
ch
in
ce
ed

1.3 The Three Types of Machine Learning 9

1.3.3 Reinforcement Learning

Many fields, from animal learning theory to educational psychology, make use of
the term reinforcement learning to mean a great variety of things. This book refers
to a very specific mathematical definition of a problem type presented in Figure 1.3.

Fig. 1.3 Basic Reinforcement Learning Model Framework. Actions a(t), rewards r(t), and
states s(t) are generated by the environment model and the agent controller

Some form of the Bellman equation is applied here to represent the agent’s

optimality criterion. It is important to understand that this literature hinges vitally
on the notion of the agent as a maximizer of some utility function. In that way,
there is much in the fields of economics and operations research that can usefully
inform ADP theory (Werbos 2004.)

Barto and Sutton (1998) discuss a wide variety of solution methods for these
problems. In particular, this chapter will focus on one solution method, a member
of the TD- family of optimization algorithms (Sutton 1995), called Q-learning
(Watkins 1989).

Note that the Q-learning algorithm, depicted in Figure 1.4, iteratively updates
the value of each state-action pair. The appropriate modification is calculated
based on the difference between the current and realized valuations, when

Model

Agent

a(t)

r(t)

s(t)

10 1 Introduction

maximized over all possible next actions. This is a key fact that sets up the more
advanced techniques discussed in the next chapter.

Fig. 1.4 The Q-Learning Algorithm

This algorithm utilizes a lookup table to store the Q-values for each state-action

pair. As the scale of the simulation grows, the amount of memory required to
catalogue these values can grow at a staggering rate.

Next, the generalization of the Q-learning algorithm to the artificial Higher
Order Neural Network technique of Adaptive Critics is covered.

1.3.3.1 Approximate Dynamic Programming

A Widely-Used and Increasingly effective approach to solving problems
of adaptation and learning in applied problems in engineering, science,
and operations research is that of Approximate Dynamic Programming (ADP)
(Si 2004, Bertsekas 1996). ADP techniques have been used successfully in
applications ranging from helicopter flight control (Enns 2003), to automotive
engine resource management (Javeherian 2004), to linear discrete-time game
theory, a topic near and dear to the heart of many an economist (Al-Tamimi,
2007). As ADP techniques continue to enjoy favor as the approach of choice for
large-scale, nonlinear, dynamic control problems under uncertainty, it becomes
important for the computational economist to be aware of them. Approximate
Dynamic Programming is a field grounded in mathematical rigor and full of social
and biological inspiration that is being used as a unification tool among
researchers in many fields.

This section overviews the structure of ADP. Markov Decision Processes are
discussed first to introduce the core structural terminology of the field. Next, the
Bellman Equation of Dynamic Programming, the true heart of ADP, is explained.

Q-Learning Algorithm
1. Initialize Q(s,a)
2. Set t = 1
3. Initialize s
4. Set a = π(s), calculate s’
5. Update Q(s,a) = Q(s,a) + γ[r(s’) + δmaxa’Q(s’,a’) – Q(s,a)]
6. Set s = s’
7. If s is not terminal, goto 4.
8. Increment t
9. If t is not equal to the maximum number of iterations, goto 3.

1.3 The Three Types of Machine Learning 11

1.3.3.2 Markov Decision Processes

First, some terminology. The state of a system records all the salient details
needed by the model. For an agent deciding how much of an asset to buy or sell,
the modeler may set the state space to be a count of the current number of shares
the agent is holding along with the current, stochastically generated dividend
payment for the next time period. In the computational modeling of games such
as Chess and Go, the relevant state would be the position of all the pieces
currently on the board, and possibly the number of captured stones (for Go.) At
each state, the agent has a choice of actions. (In a control application, where the
agent is a power plant or some other complex operation to be optimally managed,
the actions are called controls.) Our economic trading agent may buy or sell a
certain number of shares, the totality of which entirely enumerates its possible
actions. Returning to the game example, the entire range of legal moves constitute
the action set for a given board configuration, or state. Each state nets the agent a
level of reward. States that lead to desirable outcomes, as measured by some
reasonable criteria, are assigned positive reward, while states that should be
avoided are given negative reward. For example, the state arrived at after
choosing the action that moves a Chess piece such that the opponent can place
one’s king in checkmate would generate a highly negative reward, while a
winning Tic-tac-toe move would evolve the system to a state with high reward.
The manner in which the agent proceeds from state to state through the choice of
action is called the evolution of the system; it is governed stochastically through
transition probabilities. The agent, upon buying a number of shares of a risky
asset, finds itself in a new state. Part of the state’s structure, the size of the agent’s
holdings, is under deterministic control. The stochastic dividend payment,
however, evolves according to a statistical rule unknown to the agent. Therefore,
the agent cannot know for certain to which state it will advance upon taking a
certain action. Instead, the next states constitute a probability distribution
described by the transition probability matrix. To contrast, the evolution is
completely deterministic in Chess and Go, as no randomness is involved.

The way the state has been defined, as embodying all necessary information to
calculate the future system evolution, allows the use of a mathematical Markov
chain to model the system dynamics. Any such system, said to satisfy the Markov
Property, can be analyzed with the following techniques. In practice, systems of
interest often have a degree of error in the state representation, or some other
influx of imperfect information, and therefore do not technically fulfill the Markov
Property. However, approximation techniques for these situations abound, and the
careful researcher still can make appropriate use of Markov chain modeling in
many cases. For a more thorough analysis of such cases, see Sutton and Barto
(1998).

A Markov Decision Process (MDP) model is one in which Markov chains
are used to analyze an agent’s sequential decision-making ability. In MDP
terminology, the agent calculates a policy, an assignment of an action to every
possible state. The goal is to find an optimal policy, given some reasonable

12 1 Introduction

criterion for optimality. An MDP consists of the components previously defined:
states, actions, rewards, and transition probabilities. The time scale under
consideration is also important. Discrete MDPs typically evolve along the positive
integers, while continuous MDPs are defined on the non-negative real numbers.
Other time scales are feasible for constructing MDPs. See the book by Bohner
and Peterson (2001) for a more rigorous mathematical presentation of time scales.

MDPs have been studied and applied extensively in such areas as inventory
management (Arrow 1958), behavioral biology (Kelly 1993), and medical
diagnostic testing (Fakih 2006). Standard solution techniques are available and
well understood (Puterman 1994). Solutions consist of an optimal policy for the
agent to follow in order to maximize some measure of utility, typically infinite
horizon expected reward.

It is not always the case that a system can be adequately expressed as a standard
MDP. When the state information is not fully available to the agent, then the
model must be supplemented with a probabilistic description of the current state,
called a belief space. An MDP under this addition becomes a Partially Observable
Markov Decision Process (POMDP). A classic POMDP example involves an
agent deciding which of two doors to open. Behind one is a tiger, and behind the
other is a lovely prince or princess ready to sweep the agent off its feet. In a
straight MDP, the agent would have access to the transition probabilities for the
two states and would be able to calculate which door is most likely to contain the
desired result. In the POMDP formulation, however, the agent does not have
access to such information. Instead, the agent receives observations, such as
hearing the tiger growl, that combine to form a Bayesian approach to solving the
optimal policy. POMDPs have demonstrated an ability to model a richer set of
systems than the pure MDP formulation. For example, POMDPs have been used
in dynamic price modeling when the exact demand faced by the vendor is
unknown (Aviv 2005). When the demand at each period is known, an MDP can
be used to calculate the best policy under expected reward criteria. But, when
faced with an unknown state element, the agent must refer to observations such as
historical marketing data to help make its decision.

Standard solution methods for POMDPs work only on specific frameworks and
require significant computational capability to implement. To avoid these
problems, it is common to use a technique such as a Bayesian Filter to transform a
POMDP into an MDP once the observations key the agent’s belief space to a
sufficient degree. The solution techniques for MDPs then can be applied to the
POMDP and the optimal policy calculated.

The next section provides the mathematical formulation of the task of the
economic agent—the maximization of a particular optimality criterion.

1.3.3.3 The Bellman Equation

Consider an economic agent modeled with a finite set of states s, actions a,
rewards r(s), and transition probabilities P(s, a) in a discrete time scale defined to

1.3 The Three Types of Machine Learning 13

be the positive integers. In order to calculate the agent’s optimal policy, some
utility function must be maximized. In the core Approximate Dynamic
Programming paradigm, the function to be maximized is the Bellman equation:

 ∑
′

′′+=
s

asJasPsrsJ),(),()()(γ

 (1.4)

This is the discounted expected reward optimality criterion. In this equation,
represents the current value of a given state, signifies the next-states, and a
discount factor is applied to the future rewards. This equation is to be
maximized over all actions. Note that this is a special case of the full Hamilton-
Jacobi-Bellman equation studied in Chapter 5.

The Bellman equation states that the current value of a state is equal to the
immediate reward of taking an action plus the discounted future reward that
accrues from that state. Other optimality criteria are possible to account for
infinite horizon or nondiscounted models. The task of ADP is to solve this
equation.

One standard solution algorithm is that of backwards induction. Other
approaches include value and policy iteration. The interested reader is directed to
Puterman (1994) and similar texts for further details on these and other
optimization techniques. The solution method to be discussed in this chapter is
found in the next section.

1.3.3.4 Heuristic Dynamic Programming

Q-learning is robust and has been shown to work quite well in a large number of
problem domains, including being the base of the temporal difference approach at
the center of a computational agent which, without any exogenously provided
understanding of the rules of Backgammon, learned to perform at the master
level and which was able to teach new strategies to arguably the world’s oldest
game to champion-level players (Tesauro 1994). However, its reliance on a
lookup table to store values is a severe limitation. Generalizations of Q-learning,
falling under the heading of Heuristic Dynamic Programming (HDP), replace the
Q-table with a multi-layer neural network function approximator. Another
generalization of Q-learning, dubbed Z-learning, involving a variable
transformation to linearize the underlying MDP formulation, has been introduced
(Todorov, 2007).

The diagram for HDP, the simplest of the class of architectures broadly known
as Adaptive Critic Designs (Werbos, 1992, Prokhorov, 1997), is presented in
Figure 1.5.

14 1 Introduction

Fig. 1.5 Basic Adaptive Critic Design. J(t) is the value function being approximated, r(t) is
the reward, and a(t) is the action control signal. The critic evaluates the agent’s choice,
modifying its adaptive weights in response to the chosen actions

The Adaptive Critic architecture, in essence, translates a reinforcement learning

problem into a supervised learning problem. This is beneficial because much is
known about solving supervised learning problems. The critic network learns the
value function, and error between the current J-function value and the J-function
value in the next time step is backpropagated through the network (Werbos, 1990).

Adaptive Critic architectures have found many application areas, including
missile control (Han, 2002 and Chuan-Kai, 2005), fed-batch biochemical process
optimization (Iyer, 2001), intelligent engine control (Kulkarni, 2003),
multimachine power system neurocontrol (Mohagheghi, 2007), and even the
management of a beaver population to prevent nuisance to humans (Padhi, 2006).
The promise of finding rewarding application of these techniques in the fields of
computational economics and finance is too alluring to ignore.

1.4 A Unified Approach

Based on the Markov Decision Process framework, a unified approach to the three
learning modes can be established. In this unified view, unsupervised and
supervised learning modes are seen as the extreme ends on a continuum of
reinforcement learning. Unsupervised learning corresponds to the absence of any
reinforcement, and supervised learning corresponds to the presence of perfect
reinforcement.

First, consider the MDP model of a reinforcement learning agent. In this case,
there are states representing salient features of the environment, and there is a

HDP Critic Network

Critic

Model

Agent

J(t+1)

r(t+1)

a(t)
r(t)

1.4 A Unified Approach 15

mechanism to transition from one state to another in the presence of a control or
action. The value of the reinforcement will help to determine if the chosen action
evolved the state of the environment into a more or less valuable position. In the
context of an autonomous robot navigating a maze or an intelligent controller
minimizing a cost function, the structure of the reinforcement learning model is
intuitive. Note that the critic is the unit that processes reinforcement, and the
actor is the unit that calculates the action.

For a supervised learning problem, however, such intuition takes more effort to
establish. In this case, the environment consists solely of the inputs to be learned.
Regardless of the selected control, the environment will always transition to the
next input on the list. However, the reinforcement signal is not to be interpreted
as a measure of value; rather, it is communicating what the correct action ought to
be, which requires the supervised learning critic to behave differently than the
reinforcement learning critic. Where the RL critic may hold a value function that
chronicles the appropriateness (as determined by the environment) of each state-
action pair, the SL critic tracks no such information. Rather, it is a function that
will update adaptive weights to better coordinate the input with the actual signal
received. Many RL critics do this as well when they backpropagate an error
through the neural-network based actor, but in the SL case this is more explicit—
the error signal to be backpropagated is generated not from the critic’s value table
but from an error function, typically a least squared error measure between the
input and the desired output (found in the signal from the environment).

In this way, the supervised learning mode emerges as a subset of reinforcement
learning. The state is now simply an input vector, the transition probability matrix
gives the next input vector with probability 1, the reinforcement signal from the
environment contains the desired action value (target), and the action itself
represents the target vector.

For the UL case, there is no reinforcement signal at all. The environment will
generate a next state, which, as in SL, is interpreted to be the next input vector on
the list, but the reinforcement signal is not present.

Notice that in the UL operation, the critic is dormant; without a signal from the
environment for it to process, it may as well not exist. In order to see this as a
subset of more general learning, however, it is useful to view the critic as existing
but simply watching the action around it take place rather than taking an active
role. In this case, all the internal machinery determining to which category an
input is to be assigned is located within the actor. And, as in the SL case, the
transition matrix for the input is degenerate, and the system always transitions to
the next input vector as the “state.”

These ideas are illustrated using the following equation model based on the Q-
learning algorithm. Consider the following basic update rule:
 , , , (1.5)

This is the basic Q-learning formula, with the V component equal to the internal
operation of the critic. If the idea of the critic is expanded to refer to whatever
internal calculation the algorithm performs, then we may use this equation to
perform both supervised and unsupervised learning in addition to reinforcement

16 1 Introduction

learning. Of course, for both supervised and unsupervised learning methods, the
reinforcement term would be zero, but the value of V would depend on the
dynamics of the particular approach being utilized. So, for a basic supervised
algorithm, the V would represent least-squared error, and for basic unsupervised
learning, the V would equal the fitness calculation between the input and any
given category. More advanced algorithms could have V representing the
ARTMAP or ART dynamics or a fuzzy c-means fitness, etc. A single update
equation can be interpreted, through the activity of the critic, to perform any of the
three learning modes. This is not to say that Q-learning leads to the most effective
approach to supervised or unsupervised learning, only that this is the beginning of
a single framework within which to discuss the three types. This framework will
form the basis of the algorithms presented in Chapter 2, which show integrated
learning in action.

1.5 Future Work

Extensions of the work presented in this book will cover new applications, more
robust synthesis of the learning modes, and further convergence of discrete and
continuous signals within a single theoretical framework.

In the application domain, there are many problems in social science in which
an agent equipped with multiple learning modes may prosper. For example, a
commonly studied computational economics situation is one in which a collection
of heterogeneous agents must analyze an input signal that gives information about
the future value of a risky asset. These agents must decide how to allocate
resources between the risky asset and the risk-free asset so as to maximize payoff.
This problem requires the agents to learn a match between the information signal
and the future performance of the risky asset. Simple multi-layer perceptron
neural network architectures have been employed successfully in approximating
the functional relationship between these two signals of interest. However, in a
more realistic application environment, the information signal would be expected
to be intermittent, requiring the agent to process in an unsupervised mode while
access to the information stream was limited. In this way, the use of a unified
learning method, where the content learned in supervised and unsupervised modes
would be mixed together within a single memory, may be the correct model of
actual economic agents. It helps that the ART-based neural networks are
themselves designed specifically to describe how biological neural and cognitive
systems operate.

Furthermore, in a more robust application requiring portfolio balancing, an
agent would be faced not with a single information source but with multiples.
Advances in the theory of unified computational intelligence applied to the
learning modes can generate algorithms that rate different supervisory signals via
the reinforcement signals. When a supervisor indicates a match that subsequently
generates poor reinforcement results from the environment, then the sagacity of
that supervisor will be in doubt. In this way, an extension of the unified
computational intelligence learning neural network presented in this book may be

1.5 Future Work 17

able to process multiple supervisory sources. This would be an entirely new
problem domain for machine learning research.

In general, the development of new learning algorithms that are capable of
synthesizing different sorts of feedback signals is a much needed extension of this
book. The idea that multiple signals may impact the same stored memory is one
not yet represented in the literature. Further theorems and applications regarding
the interplay among competing learning signals are needed.

Theoretical extension of the simple MDP model presented in this book is
needed. More theorems concerning the view of supervised and unsupervised
modes as the extreme versions of the reinforcement mode would help guide the
development of further algorithms for applications.

On the dynamic programming front, further analysis of the unification of
discrete and continuous signals is needed. The time scales calculus is still an
emerging area with relatively few active researchers worldwide. As more and
more of the fundamental applied mathematics gets formulated in this calculus
(multiple valued Taylor series, n-variable chain rules, variational calculus,
functional analysis, and nonlinear systems theory, to name a few), new results on
the control front will become available. Single algorithms capable of operating in
discrete or continuous time will be available and may prove worthwhile in
applications. In 20 years, aspiring control theorists may have to know a thing or
two about the time scales calculus and dynamic equations.

Extensions of the quantum calculus and dynamic programming are of value as
well. A quantum dynamic programming can be devised using the state space
representations of quantum mechanics instead of the ones in classical mechanics.
This approach may allow decision theory under uncertainty to be formulated in a
new and useful way.

Finally, the area of agent-based modeling of social systems in general is still in its
infancy. As more computational results contribute to an understanding of complex
systems to the same degree as has traditional analytic mathematics, more scientists
will understand the power behind these methods and begin using them with wider
acceptance. Computational intelligence techniques, themselves inspired in a way by
biological systems, extend the possibilities of computation and may fuse with these
agent-based models in a vital way to help advance both basic and applied research
into the governing dynamics of social and economic systems.

J. Seiffertt & D.C. Wunsch: Unified Computational Intell. for Complex Sys., ALO 6, pp. 19–32.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Chapter 2
The Unified Art Architecture

2.1 Introduction

The previous chapter introduced the idea of unified computational intelligence and
discussed its implications for a learning machine. This chapter presents the design
unified ART architecture, and Chapter 3 contains an application implementing this
design.

Based on the Adaptive Resonance Theory neural network family, the Unified
ART architecture is capable of seamlessly switching among unsupervised,
supervised, and reinforcement learning without the aid of a governing control
signal. Sections 2.2 through 2.4 motivate and outline the basic operation of the
system as applied in Chapter 3 and in Section 2.4 presents an extension of the
system.

2.2 Motivation

The distinguishing characteristic of ART systems is their use of what this book
terms permissive clustering. That is, while most clustering algorithms such as K-
means calculate a fitness value and assign each input to its fittest category, in ART
systems the category itself is able to reject an input from being placed in it if that
input is too dissimilar from what the category would “expect” one of its members
to look like. Physiologically, this corresponds to the “top-down expectation”
calculation performed by a biological computational unit such as a visual cortex
when presented with stimuli from the sensory unit. Algorithmically, this adds to
the computation a second step following the fitness calculation. During this step, a
second test is run. If the input passes this test, then it is allowed to be placed in
the category corresponding to the prevailing high fitness; otherwise, the input
must proceed to the next fittest category and present itself for testing according to
that category’s criteria.

In the ART literature, this second step is called the vigilance test and is
controlled by a single scalar called the vigilance parameter, typically denoted by

. It is crucial that ART researchers understand the importance and uniqueness of
this second level of permissions. It is so easy to get carried away by attempts to

20 2 The Unified Art Architecture

streamline the computational algorithm or generate tractable mathematics that a
researcher may end up working on an architecture that does not actually belong to
the ART lineage. Many worthy algorithms purport to be versions of ART but do
away with the vigilance test entirely. While these algorithms may be fine
solutions to the engineering problems for which they were developed, it is
important to keep in mind the core principles of ART when designing these
architectures. In this way, a connection with the biological structures underlying
the behavior of ART systems can be maintained, and the strong ties between
computational intelligence and nature are kept alive. While the resulting system
need not be a slave to what the natural world provides, much insight may be
gained by using its revelations to help engineer solutions.

The three learning modes of supervised, unsupervised, and reinforcement
learning receive the most attention in the literature. The unified architecture is a
seamless integration of these three learning modes in that (1) it uses a single set of
adaptive weights to process all three modes, (2) it determines when to use which
learning mode without the intervention of an operator, and (3) the various signals
driving the learning modes all interact with each other at the base learning level.
Similar research on integrating reinforcement learning with the existing ARTMAP
systems is not fully integrated in this sense. They instead use the ART classifier
to cluster inputs and then process these clusters using a variety of reinforcement
learning methods, most often temporal difference methods. While the usefulness
of clustering inputs is undisputed in some problem domains, the resulting
architecture cannot be said to be fully integrated in the sense of an ART system.
This book presents the first architecture that recognizes the unique features of
ART and uses them to create a fully integrated learning machine. In this way, this
contribution is the first unified learning neural network architecture to appear in
the literature.

To motivate the algorithm presented in the next subsection, the development of
ART from an unsupervised algorithm to its incarnation as ARTMAP, a supervised
learning tool, is outlined. It is important to see that a new learning mode added to
an ART network must interact with the vigilance test. ARTMAP will override a
successfully passed vigilance test if the supervisory signal so demands. It is this
interaction between the new learning mode—the presence of the supervisor—and
the vigilance test that places ARTMAP firmly in the ART camp. A system
integrating reinforcement learning into ART must interact with the vigilance test.
The RL signal is capable of causing a category reset in the ART module, thus
influencing the nature of the stored prototypes and the structure of the intelligent
network. This feature more faithfully emulates biological systems and also
provides for a more robust interaction among the three learning types.

2.3 Block Diagram

Figure 2.1 shows the block diagram for the unified ART architecture.

2.3 Block Diagram

Fig. 2.1 Unified ART Block
this diagram, x(t) is the state
reward trace, and s(t) the lea

The signals are explai

while is the input
weights: The weights
Controller. (This is diff
designs where the value fu

Details of the steps in t

Step 1: Calculate Sta
 a) Calculate cate
 b) Run vigilance
 c) Set state trace

Step 2: Calculate Con
 a) Select action
 b) Check for
 c) Set the contro

2

k Diagram. Block Diagram of the ART Critic Algorithm.
e, x’(t) the state trace, u(t) the control, r(t) the reward, r’(t) th

arning signal

ined as follows. The input vector is denoted as
trace. This architecture contains two sets of adaptiv
 drive the ART block, and the weights are in th

ferent from other neural-network based Adaptive Crit
unction is the sole purview of the Critic unit.)
the block diagram are as follows:

ate Trace
egory choice vector .
e test on .
e ′ equal to the winning node.

ntrol
label for .
label and take a weighted sum of and .

ol equal to the chosen label.

21

In
he

,
ve
he
tic

22 2 The Unified Art Architecture

Step 3: Process Control

 a) Submit to the environment.
 b) Observe 1 , , and .

Step 4: Interpret Reward via Critic

 Case 1: If supervisory signal is present, then use it to update the weights
 a) if , then set , to the max value , zero out all

the other values of , and update the weights .
 b) if , trigger reset in ART. Get a new ′ and

repeat step (a). If ′ is an uncommitted node, then set it as in (a).

 Case 2: If reinforcement signal is positive, update using ADP

 methods and update .

 Case 3: If reinforcement signal is negative, trigger mismatch in ART

 and select new ′ in a manner proportional to . Then
 update as in 2 and as standard.

 Case 4: If neither nor are present, then update

 .

The details of these operational steps follow in the next subsection.

2.4 Operation

This section provides details for the steps outlined in the previous section.

2.4.1 Step 1: Calculate State Trace

The first step is to present the input to the ART system. Details are shown in
Figure 2.2.

The category choice vector is calculated following the normal ART
equations given in Figure 1.1. This category choice vector will now select the
category with which to match the input, and the appropriate vigilance test will be
run. If the input passes the vigilance test and resonance occurs, then the winning
node will be selected and set equal to the state trace signal . If resonance is
not achieved, then a new category will be tested, ranked in descending order in the

2.4 Operation 23

category choice vector. If none of the categories are able to pass the vigilance
test, then an uncommitted node will be recruited and assigned to the state trace.
Note that when an uncommitted node is recruited, the dimensions of the controller
unit must be updated along with the ART unit. Section 2.4.2 contains more details
regarding the controller activation.

Alternatively, the state trace may encode a distributed activation level
corresponding to each category. In this case, the category choice vector
combines with the results of the vigilance test to generate a state trace ,
which is a vector with a value for each encoded node. Such a distributed input
may achieve better performance in applications with noisy inputs if category
proliferation becomes an issue.

The state trace is the transformed measure of input. The trace will key the
proper activation levels in the controller and will be susceptible to modification by
the critic in response to a reinforcement signal. It is here, in the ability of the
supervised learning mode and especially of the reinforcement learning mode to
access the resonance stage of the ART architecture, that the unified ART model
presented herein truly remains a member of the biologically inspired computational
family.

Fig. 2.2 The State Trace Calculation Step of the Unified ART Architecture

24 2 The Unified Art Architecture

2.4.2 Step 2: Calculate Control

The controller, as shown in Figure 2.3, is a matrix , where the columns
represent categories and the rows the various control (or action) signals.

The controller, having a number of rows equal to the committed nodes in the
ART unit, must be updated whenever the state trace is set to an uncommitted
neuron. In this structure, the controls represent the possible inputs to the
environment unit. In much of the reinforcement learning literature, particularly
that surrounding the use of actor-critic networks, the controls are interpreted as
actions an agent may take at any state in the environment. In keeping with the
more general control theoretic framework, we adopt the term control even though
it is within an actor-critic model.

Fig. 2.3 The Controller in the Unified ART Architecture

In order to calculate which control will be applied to the environment, the state

trace is used to select a row in the control matrix. The entries of the controller
serve as a value function telling us which of the available controls the system
believes best applies in the given state. The choice is the entry in the selected row
with the greatest value. This entry is then assigned as the control signal and
submitted to the environment.

2.4 Operation 25

If the alternative distributed encoding of the state trace is being used, then
the control is calculated in a different way. Figure 2.4 shows the operation of the
second step using the alternative extended version of the state trace vector.

Fig. 2.4 The Distributed State Trace

For a distributed state trace, the control selection requires a matrix

multiplication, with the appropriate row in the controller being effectively
weighted by the values in the processed category choice vector. The resulting
weights are then inspected for the highest value, as is common in value function
representation schemes, and the winner chosen as the control signal .

Either method of calculating the control will result in the generation of a signal
which is then presented to the environment.

2.4.3 Step 3: Process Control

The environment responds to the presentation of a control signal by generating
three signals: the supervisory signal , the reinforcement signal , and the
next state . The supervisory signal has the capacity to override the state

26 2 The Unified Art Architecture

trace calculated through the resonance process in Step 1. Similarly, a negative
reinforcement signal is also given that authority.

These signals can be seen in the system block diagram in Figure 2.1. How each
of them is handled is covered in the next subsection.

2.4.4 Step 4: Interpret Reward via Critic

This step involves four cases: (1) supervisory signal, (2) positive reinforcement,
(3) negative reinforcement, (4) unsupervised mode.

2.4.4.1 Supervisory Signal

If the environment produces a supervisory signal, then this overrides any other
signals present. While an environment should not produce both supervisory and
reinforcement signals, in the event this does occur, the unified ART system will
give priority to , as it represents an input-output pairing that simply must be
attended to. In comparison, even a positive reinforcement signal does not carry
such a mandate. (Note that while more sophisticated incarnations of the unified
ART system are capable of distinguishing among and rating multiple supervisors,
the base version treats the supervisory signal as infallible.)

If , then the system has generated the correct control. In this case,
the value of this control , is set to the maximum allowable value ; all other
values of are zeroed out. The adaptive ART weights are updated according to
the standard rule .

If the supervisor signal does not match the system’s chosen output, that is, if
, then a reset is triggered in the ART unit. During reset, the category

choice vector has its highest value zeroed out, and the vigilance test resumes
with the next highest node. After the vigilance test selects another winning node,
the state trace value is reset, and the algorithm returns to Step 2.

2.4.4.2 Positive Reinforcement

If 0, then the ART system has returned a good, but perhaps not perfect,

control signal. The controller weights are updated by adding the reinforcement

signal (or a value proportional to) to the entry corresponding to the chosen
control. This is the standard actor-critic framework update process. Compared to
the case in which the supervisory signal is present, the value of the control is not
automatically set to the maximum possible while simultaneously zeroing out all
others, thus ensuring they are not chosen. However, the already vibrant connection
between the current input and the positively reinforced control signal is
strengthened.

Finally, the ART weights are updated according to .

2.5 An Extended Architecture 27

2.4.4.3 Negative Reinforcement

In the presence of negative reinforcement, the algorithm, in order to be truly
integrated, must force a reset in ART. In this way, a negative reinforcement signal
from the environment interacts directly with the resonance loop. ART mismatch
is handled as in Case 1, and a new state trace is generated. The controller

weights are updated as in Case 2, and the ART weights are standard in all
cases.

2.4.4.4 Unsupervised Mode

In the absence of supervisory or reinforcement signals, the system operates in
unsupervised mode. The ART weights are updated as , and
the system proceeds to the next input. This mode is identical to pure,
unsupervised ART.

2.5 An Extended Architecture

The unified learning architecture presented thus far is the one implemented in the
extensive application in Chapter 3. This section introduces an extended version of
the algorithm, which explicitly calls upon the canonical features of the ART
family of systems to showcase more directly the theoretical developments of
Section 1.5.

2.5.1 The Vigilance Test

The basic structure of an ART algorithm takes the following canonical form:

 1. Calculate coding node activity .
 2. Run vigilance test by optimizing subject to the match criterion .
 3. Update adaptive weights.

The vigilance test, with its interplay between bottom-up activity and top-down
expectation, defines an ART algorithm. Different specializations of ART have
different forms for and , and while they may also specify the optimization
procedure to use when running the vigilance test, they all contain this inherent
search for a resonant state. Furthermore, vigilance tests can be layered for more
complicated architectures, as is the case when combining learning modes. In these
situations, multiple match criteria must be met, each one representing a layer of
the test. For this reason, the match criteria are expressed as a vector.

In the ART algorithm discussed in this chapter, is allowed to depend on the
learning mode while still adhering to the canonical structure.

For all three learning modes, define

 1 (2.1)

28 2 The Unified Art Architecture

where is the input (state), is the signal rule parameter (typically .01), is
the size of the input vector, |·| denotes the -norm, is the fuzzy intersection
operator defined by min , , is the coding node weight matrix,
and indexes the categories.

The vigilance tests vary by learning mode.
For unsupervised learning,

 : | | (2.2)

where is the vigilance parameter. No special rules are imposed on the vigilance
test. Typically, the values of are just sorted and then checked against in
descending order until the criterion is met. Some researchers report computational
gains by first checking the elements of against and then sorting, but the result
will be the same either way.

If none of the nodes pass the vigilance test, then a new node is committed. See
Section 2.5.2 for details on this procedure.

If the system is running only in unsupervised learning mode, then its operation
defaults to Fuzzy ART.

For supervised learning, use the following vigilance test:

 : | | :
(2.3)

where is the control output and is the supervisory signal. For this vigilance
test, not only is it the goal to satisfy the condition given in the UL vigilance test,
but also to ensure that the output is correct. This is an example of layered
vigilance testing as introduced in ARTMAP.

To perform this test, a procedure called match-tracking is specified. During
match-tracking, modify the vigilance according to

 (2.4)

and keep searching until a node passes the criteria. In this updated equation,
is a small decrement which defaults to .001. The vigilance parameter is
returned to its baseline value at the conclusion of the vigilance test.

If none of the nodes pass the vigilance test, then a new node is committed as
outlined in Section 2.5.2. If our system runs only in supervised learning mode, its
operation roughly emulates that of Default ARTMAP.

For reinforcement learning, calculate the temporal difference (TD) error given
by

 (2.5)

2.5 An Extended Architecture 29

where is a reinforcement signal, is a learning rate, and are the current
and next states, respectively, and is the value weight matrix.

When the TD-error is high, the system wants to increase the chance that the
given will be selected. When the TD-error is low, it wants to decrease that
chance that the given will be selected. The second layer of the vigilance test
reflects this design, while the first layer represents the core ART vigilance test.
The ideal match criteria are given by

 : | | : 0
(2.6)

Alternatively, one could increase expectations and require greater than some
high reward value. In any case, the optimization method for this is actually a
suboptimization procedure. In fact, the value of never changes during the
vigilance test; therefore, if is not satisfied on the first pass, it will never be
satisfied. In order to properly optimize subject to (2.06), the entire

 vector must be searched thoroughly as is done in the vigilance tests for
unsupervised and supervised learning. However, in the reinforcement learning
case, more than just the current state is needed; the next state is also required.
The only way to get the next state is to submit to the environment repeatedly
until the control that gives the greatest value for is discovered. Therefore, the
vigilance test cannot require searching the entire vector in a manner that will
allow the continual calculation of new ’s. Rather, it can only search to select a
new and then use that information as best as the system can.

So, for the case in which 0, the system refrains from searching at all
and simply updates the weights. If 0, however, then implement the
following plan:

1. Trigger a reset in ART by zeroing out the current winning node and

selecting the next highest node that passes .
2. Calculate a new .
3. If the new is different than the old , then update weights using the new

winning category.
4. If the new is the same as the old , then trigger reset in ART and search

again.
5. If all the categories have been searched and remains unchanged, then

commit an uncommitted node and update weights using the newly
committed category as the winning node .

30 2 The Unified Art Architecture

Updating and in the case of negative reinforcement will reduce the chance of
the system again choosing when the given category wins. However, it does not
increase the chance that the given state input will be placed in the same category
the next time it is seen.

2.5.2 The Weight Update

Fuzzy ART uses one set of weights to perform unsupervised learning. ARTMAP
adds a second layer of weights to implement supervised learning. Our algorithm
continues the trend and adds a third weight matrix to handle reinforcement
learning. Each set of weights has its own role to play and its own update rules.

The coding node weights determine the templates for the ART categories.
 is a matrix, where indexes the number of categories and indexes the

size of the state vector.
The update rule for is as follows:

 1 (2.7)

where is the winning category node and is the coding node learning
parameter. When 1, the updates are called fast learning. This is its usual and
default value.

The next set of weights to discuss are the control weights . Default ARTMAP
calls these weights the output layer weights, but in this application the outputs
correspond to controls, hence the need for the renaming. is a matrix,
where indexes the categories and the controls. The elements of represent
values for state-control pairs. The control is selected by choosing the column with
the largest value, and can be considered an actor, in the language of ADP. This
matrix is affected heavily by the supervised learning mode.

The update rules for are as follows:

1. If is active, then

 ,: ,: (2.8)

2. If is active, then

 min , (2.9)

where ,: is the row vector in , the control mask is the row vector
whose elements are zero when and equal to the maximum control value
divided by when , is the control output, and is the reinforcement

2.5 An Extended Architecture 31

learning rate. Note that the result of the notationally challenging expression ,: ,: is simply to set the values in the winning node’s weight vector: the
correct control, the one that matches the supervisory signal , is set to the
maximum allowable value , and the other signals are set to zero.

The control weights are not updated during unsupervised operation.
The final set of weights used in the extended ART Critic architecture is the

value weight matrix . The value weights act as a critic for the actor . These
weights determine the TD-error , which is used to update both and . These
weights, like , store state-control values. The difference is that is heavily
influenced by the supervisory signal while is only affected by the
reinforcement signal . The value weights are of the same dimension as the
control weights.

The update rule for is as follows:

 (2.10)

ART algorithms only commit new memory to the storage of template and other
weight values when it becomes necessary to do so. If a vigilance test fails for all
the categories, then a new category, previously uncommitted, is committed and
has the current input assigned to it as a template. Since all the weight matrices ,

, and have a row for each category, committing a new node requires altering
their structure. For , the new row is initialized to all ’s, and for and , the
new row is initialized to small random values. The variable tracks the number
of categories, so it must be incremented as well.

Finally, the nature of the environment must be addressed, tying into the view of
unified learning presented in Section 1.5. The learning problem under
consideration requires the agent to interact with its environment. The environment
is modeled by a vector-valued function of the form

 , , , (2.11)

For a pure unsupervised or supervised learning problem, thinking of an
“environment” may not seem as natural as simply presenting to the algorithm a
sequence of input vectors. In this case, the output of can be considered a
virtual state equal to the next input on the list. In the case of a more traditional
environment, the next state is the natural evolution of the system under the control

 as determined by internal dynamics.
An unsupervised learning problem will not contain either or signals. In a

supervised problem, the signal is equal to the target class, and for reinforcement
learning, the signal is the traditional reinforcement value. Note that there is a
difference between these signals not being active and these signals being zero.

32 2 The Unified Art Architecture

2.5.3 Algorithm

To summarize the operation of the extended unified ART architecture, the
algorithm is presented in the following convenient list:

 1. Calculate coding node activity using (2.01).
 2. Select winning category .

3. Choose control signal max .
 4. Submit to the environment and receive , , and .
 5. If neither nor is active, run the unsupervised vigilance test (2.02).

6. If is active, run the supervised vigilance test (2.03).
7. If is active, run the reinforcement vigilance test (2.06).
8. Update weights as given by (2.07), (2.08), (2.09), and (2.10).
9. Repeat from Step 1 with the new state.

J. Seiffertt & D.C. Wunsch: Unified Computational Intell. for Complex Sys., ALO 6, pp. 33–48.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Chapter 3
An Application of Unified Computational
Intelligence

3.1 Overview

The previous section described a unified computational intelligence learning
architecture based on Adaptive Resonance Theory neural networks. In this
chapter, this architecture is used in an application that was briefly introduced in
Chapter 1.

The content of this chapter is adapted from a paper appearing in the Neural
Networks journal (Brannan, Seiffertt, Draelos, & Wunsch, 2009) and a preliminary
version appearing as (Brannan, Conrad, Draelos, Seiffertt, & Wunsch, 2006).

In this chapter, the unified computational intelligence algorithm is referred to as
CARTMAP, for Coordinated ARTMAP. This name was determined by Sandia
National Laboratories collaborators since they, being government officials,
possess a certain je ne sais quoi for the use of acronyms. This application, in the
area of situation awareness, proved a testing bed for a unified learning architecture
of the type described in Chapter 2 of this book. The results indicate that the task
described, if performed using only a single mode of learning, would not have
achieved the same level of effectiveness as it did using all three modes in
combination.

3.2 Introduction

Modern information sources to support decisions in domains such as force
protection are diverse. Ground, air, and space-based sensors continue to increase
in capability. Information fusion algorithms can help integrate a variety of sensor
data into meaningful forms (Hall & Llamas, 1997). Applications with a complex
assortment of data continue to challenge machine learning approaches to
information fusion, which normally utilize a single type of learning algorithm and
therefore limit the use of all available data (Brannon, Conrad, Draelos, Seiffertt, &
Wunsch, 2006). Our approach coordinates multiple learning mechanisms to
accommodate environments where ground-truth and feedback may not be
available consistently, and it uses Adaptive Resonance Theory (ART)-based
networks, which are based on understanding cognition. This ties the work into

34 3 An Application of Unified Computational Intelligence

other such computational architectures seeking not only solutions to engineering
problems but also an understanding of the function of the brain and mind as
discussed by Werbos, Perlovsky, and others.

3.2.1 Machine Learning

Machine learning involves programming computers to optimize a performance
criterion using example data or past experience (Alpaydin, 2004). Artificial
neural networks are commonly used in machine learning and utilize supervised,
unsupervised, and reinforcement learning approaches to achieve predictive
properties based on example (training) data. Unsupervised learning (clustering)
can be effective when ground truth is not available within a dataset. Supervised
learning (learning with a teacher) provides a means of using experience (examples
with ground-truth) to correctly classify yet unseen situations. Reinforcement
learning offers promise for machine learning in difficult learning environments by
taking advantage of feedback about a system’s performance. The challenge
addressed by the current work is to coordinate all of these learning mechanisms
and utilize the appropriate one based only on available information, not human
intervention.

Neural networks offer an excellent assortment of high-performance, low-cost,
distributed processing options. In particular, they can be embedded into
appropriate sensors for operation at the lowest levels of information fusion with
effective but low-complexity designs. At the highest levels of information fusion
and situation assessment, reinforcement learning can be used with a human in the
loop to provide operational feedback. Dealing with multiple sensor modalities and
extracting meaningful information from massive datasets is a natural fit for these
adaptive methods. Although neural networks have been applied to sensor fusion,
their use in situation awareness has been limited, possibly because of the lack of
rich training data for this problem.

Automated (computational) information fusion continues to suffer from very
specific, ad-hoc solutions (i.e., there appears to be very little general-purpose
technology to apply to this problem) (Kokar, Tomasik, & Weyman, 2004). For
many applications, there is also a dearth of data to use for training a computational
engine. This reveals a challenge for the application of machine learning
techniques, which are data-driven and require training, whether via supervised,
unsupervised, or reinforcement learning. On the other hand, because they are
data-driven, the advantage of machine learning techniques is that they can learn
solutions to problems that are difficult for humans to codify with explicit rules or
models. In other words, they can represent rules/decisions that are implicit in the
training data.

3.2.2 Information Fusion

The fusion of information has been likened to the ability of animals to utilize
multiple senses to derive a better understanding of a situation (Hall & Llinas,
1997). For example, one may hear a noise and, based on the sound pressure

3.3 Approach 35

discrepancy between each ear, localize the area of the sound source. Vision can
then be used to further define and understand the source of the sound. The
analogy is helpful because fusion, and more generally situation assessment, is a
process rather than simply a discrete event. The process leads one from raw data
to understanding and actionable knowledge. Fusion can occur over various
information (sensor) modalities, over geographic space, and over time.

The sources of information potentially available to decision makers continue to
expand in depth and breadth. Sensor capabilities in particular are maturing
rapidly, but a valid concern is that the pace of sensor development has not
necessarily been consistent with advances in human effectiveness, which the
sensors must ultimately support (Paul, 2001). Fusion algorithms will better
support human-in-the-loop system effectiveness when the decision maker is a
central and balanced design element. Our system includes, as a core design
principle, the use of a human-in-the-loop operator to provide reinforcement
signals as well as to ensure a level of quality control.

3.3 Approach

3.3.1 System Architecture

The design of the computational engine for information fusion and situation
awareness takes advantage of the diverse utility of neural networks and integrates
elements of supervised, unsupervised, and reinforcement learning. The design not
only advances machine learning research, but also addresses the needs of situation
awareness and human-in-the-loop decision support.

Key design attributes of our system include accepting various inputs such as
binary, categorical, and real-valued data. With respect to situation assessment
outputs, attributes include confidence levels as well as evidence in support of or
against the assessment. In the context of missing or noisy inputs, the system
exhibits graceful performance degradation.

In order to address the desired design attributes of our situation awareness
system, neural networks are employed for information fusion, followed by a
situation assessment module. ARTMAP is based on Adaptive Resonance Theory
(ART), a widely implemented approach to modeling the learning capabilities of
the brain (Carpenter & Grossberg, 1988). Architectures based on ART have been
used successfully in a variety of areas requiring a self-organizing pattern
recognition neural network. The basic ART element supports unsupervised
learning and binary inputs. Fuzzy ART is an extension to accommodate
categorical and real-valued inputs. ARTMAP supports supervised learning and
can accommodate real-valued inputs using fuzzy logic (Carpenter, Grossberg,
Markuzon, Reynolds, & Rosen, 1992). ARTMAP can also support reinforcement
learning, for example, by adding a mechanism to implement actor-critic methods.
Coordinated ARTMAP (CARTMAP) is the name given to the current approach
and involves the integration of all three learning mechanisms in the same
architecture.

36 3 An Application of Unified Computational Intelligence

The situation assessment module receives state information from the
information fusion module and possibly other sources and outputs a threat
assessment or action to be taken.

3.3.2 Information Fusion Engine

Intelligent creatures exhibit an ability to switch seamlessly among unsupervised,
supervised, and reinforcement learning as needed. However, machine learning
architectures, including artificial neural networks, have not yet achieved this goal.
The current research contends that it is advantageous to develop this capability in
a computational framework and that the ART architecture is an excellent choice
for such an implementation.

A well designed sensor fusion algorithm, like an intelligent creature, can make
informed use of all three types of learning on the data set given. Certain
information fusion paths may be pre-trained prior to deployment, thus granting the
human operators license to verify that the most obvious sensor patterns will be
classified successfully. During operation, a reinforcement signal provided either
by the environment or by the human operator acting off of the fusion algorithm’s
recommendations can adjust the current adaptive weight profile to curtail or
retrain a faulty clustering (negative reinforcement) or to promote successful
clustering (positive reinforcement) in the ART algorithm. Finally, in the absence
of any external signal, the algorithm will learn in an unsupervised manner,
comparing current inputs to what it already knows.

With the ARTMAP unit taking the place of the actor in the actor-critic
implementation, the Coordinated ARTMAP (CARTMAP) algorithm behaves
according to the following steps:

1. Upon receipt of an unsupervised signal, the system uses its
exemplar classification scheme (the ART unit) to output an action choice,
as usual. No updating of the lookup table will be necessary.

2. When presented with a supervised signal, the internal adaptive
weights update as per normal ARTMAP rules, and the output action is set
equal to the supervised training signal. Furthermore, the values in the
lookup table for actions not associated with the supervisory signal are
zeroed out.

3. When a reinforcement learning input signal is received, it will be
interpreted according to the Q-learning algorithm. The appropriate entry
in the lookup table is augmented with the new reinforcement value, and
the action selected is the one with the most value accumulated in its
column of the table. In the simulations, the values of the parameters
delta and gamma are 0 and 1, respectively.

In summary, the information fusion engine accepts raw data from sensors and
other information sources and processes/transforms/fuses them into inputs
appropriate for the Situation Awareness Assessment engine.

The information fusion system utilizes appropriate elements of its architecture
based on the data presented to it. The three ART networks are linked together by

3.4 Application 37

an inter-ART module (Associative Memory). One ART unit handles the inputs,
another ART unit processes the supervisory (or target) signal, and the other
processes the reinforcement signal as an adaptive critic. This architecture is
capable of online learning without degrading previous input-target relationships.

There are times when unsupervised learning is satisfactory, such as in the
presentation of new input vectors to a pre-trained network. Supervised learning is
appropriate and desired for initial training on fixed data. However, these two
types of learning do not cover every possible complication. There are times when
the human operator does not know the correct classification, yet some feedback on
the decision can be provided. These situations fall into the reinforcement learning
category. One aspect of developing this information fusion engine, therefore, is
adding the reinforcement learning capability to the ARTMAP neural network.

3.4 Application

The situation awareness system was designed to operate in an environment
involving distributed sensors and a central collection site for protection of a facility.
Information sources in such an environment can include seismic, magnetic, acoustic,
passive infrared (PIR), and imaging sensors as well as weather, time/day
information, various intelligence information, local/regional/federal threat levels or
law enforcement bulletins, and any other information that might be relevant to the
security of a particular facility, such as current traffic situations or health issues.

Conditions of interest to force protection decision makers include: no activity,
severe weather, unauthorized people or vehicles in certain locations, and certain
types of unauthorized vehicles or humans with weapons in any areas. Actions
include: doing nothing, identifying the type and location of a moving object
(vehicle or human), using commands to turn sensors on or off, dispatching forces,
and/or notifying higher authorities. The information sources can include binary
data, such as motion detection, categorical data, such as the type of day (weekend,
holiday, etc.), and real-valued time-series data, such as seismic, acoustic, and
magnetic energy levels.

Before being deployed, the system must be pre-trained with any information
the human operator knows about the system. For example, if the data signature of
a thunderstorm is easy to demonstrate (due to specific acoustic, magnetic, etc.
levels), then that information can be included in the supervised training portion of
the system. The information fusion engine will adaptively learn many more data-
observation relationships during online operation, but having basic readings pre-
trained will aid in initial operation.

When an intruder, be it an unauthorized vehicle or a human with a weapon,
breaches the sensor range of a protected facility, the triggered sensor data stream
into the information fusion engine. The CARTMAP network then maps these data
into observations, such as a vehicle heading north at high speed. These pairings
represent novel data readings that were not anticipated, which are then categorized
via the CARTMAP algorithm in relation to the pre-trained data.

The observation is then sent to the situation assessment engine, which follows
the partially observable Markov decision process (POMDP) formulation to

38 3 An Application of Unified Computational Intelligence

calculate a probability distribution over the state space. This information
represents a confidence level that the system is in any given state. The state with
the highest confidence from this calculation represents the system’s choice for the
current state. All of this probability information is then passed to the human
operator, who uses this evidence in making a final decision about how to respond
to the situation.

Adapting online is an important element of the system and is accomplished
through reinforcement signals that can be sent through the system in two ways.
First, if the probabilities of each state are so low that the human operator would
not be able to distinguish the state from simple background noise, then the
situation assessment engine may issue a command to gather more information
from additional sensors. Second, the human operator may disagree with the
system’s assessment of the current state. A reinforcement signal is then sent to the
information fusion engine, and the data-observation mappings will adapt online.
Both of these reinforcement signal loops are noted functionally in the block
diagram in Figure 3.1. This feature of the system allows it to maintain relevance
in a changing environment.

Fig. 3.1 CARTMAP Input and System Activity. Associated with unsupervised learning,
supervised learning, reinforcement learning, and standard operational use. Available inputs
to the system are shown in green, as are the active elements involved in learning

As shown in Figure 3.1, unsupervised learning occurs using a single ART unit.

The cluster that forms is the one that maximizes the signal strength of the input

3.4 Application 39

with respect to a match criterion. Many forms of both the signal and the match
criterion are used in various implementations of an ART architecture. Amis and
Carpenter (2007) provide default values that work in general scenarios.
Supervised learning occurs when the clusters formed by the unsupervised learning
unit are given labels through interaction with supervisory inputs. This interaction
is mediated by an associative learning field as explained in Amis and Carpenter
(2007). This process forces a reset in the input cluster if the label does not match
the supervisory signal closely enough. Finally, reinforcement learning is handled
in a similar manner. The RL signal can update the associate weights following the
Q-learning explained in Section 3.3.2.

The CARTMAP algorithm was implemented in Matlab and applied to
information fusion in a vehicle tracking scenario that is described in more detail
below. ART is at the core of the fusion engine. During off-line training, an input
pattern is presented to the CARTMAP network and, depending on its similarity to
existing category templates, it is either assigned to a current winning category or a
new category is created for it. Categories may exist indefinitely without an assigned
class. However, if a supervisory signal accompanies the input, the target class is
immediately associated with the category. During offline reinforcement learning, an
input pattern is presented to the CARTMAP network, and a winning category is
determined. A reinforcement signal is computed based on the class of the winning
category and the ground-truth class. For example, if the category’s class matches
the ground-truth class, the reinforcement signal is assigned a positive reward; if not,
then a penalty is assigned. A range of reinforcement values are assigned based on
the quality of the match. A reinforcement lookup table (RLUT) is used to track an
input pattern’s relationship with possible classes. The RLUT stores input patterns
and an accumulated reinforcement signal for each possible class. CARTMAP
weights are updated according to the following criteria:

1. If no category encodes the input pattern, then a new category is created
without a class assignment.

2. If the winning category has an unassigned class, then the RLUT is
searched for the input pattern. If the pattern is found in the RLUT, then
the reinforcement signal is applied to the class of the winning category,
and the class with the highest reinforcement is used as the target in
supervised learning. If the pattern is not found in the RLUT, then
nothing is done to the CARTMAP weights.

3. If the winning category has an assigned class, then this class and
reinforcement signal are used by a critic function to determine how to
update CARTMAP weights. The RLUT is searched for the input pattern.
If the pattern is not found, unsupervised learning is performed, and the
pattern is added to the RLUT along with the reinforcement signal. If the
pattern is found in the RLUT, then the reinforcement signal is applied to
the RLUT for the class of the winning category, and the class with the
highest reinforcement is used as the target in supervised learning.

The decision support graphical user interface (GUI) consists of three screens. The
center screen is primarily imagery (i.e., from cameras, photography augmented

40 3 An Application of Unified Computational Intelligence

with graphics, and/or fully synthetic renderings) (see Figure 3.2). The second
screen displays a log of temporal track data (see Figure 3.3). The log reflects
temporal features, such as how long ago an unauthorized vehicle breached a
sensor field and how soon another track might reach a key threshold (e.g., a fence
or different sensor field). The third and most detailed screen provides track detail
and assessment bases (see Figure 3.2).

The log screen and track detail screen utilize features found in the Tactical
Decision Making Under Stress (TADMUS) system (Morrison, Kelly, Moore, &
Hutchins, 1997). The TADMUS system has motivations similar to the current
research in that more content needs to be devoted to supporting an understanding
of a given context. In both TADMUS and our situation awareness approach, less
emphasis is placed upon evaluating possible courses of action.

The track detail GUI provides typical track parameters such as an object’s
course and speed, but significant detail is provided with respect to the basis for
assessment. Evidence in support of and against a given assessment is displayed.
The machine learning algorithms share the evidence used to derive assessments
with the operator. Such an approach provides greater transparency and allows the
operator to interrogate assessments.

For the example scenario of an unauthorized vehicle, the assessment could be a
“threat.” Evidence in support of such an assessment includes sensor data such as
explosives detected, but also local law enforcement data such as the license plate
returning as a stolen vehicle. Evidence against the assessment could include a
relatively slow speed and the use of the vehicle for construction when there has
been ongoing construction activity. Alternative assessments are shown along with
their respective evidence in support of or against them.

The operator can investigate various assessments along with corresponding
courses of action. For example, a patrol vehicle in the vicinity of the unauthorized
vehicle could be directed closer to the possible threat. Further, other types of
sensors can be activated to generate additional points of reference and work
towards higher levels of assessments, such as possible intent.

3.4.1 Vehicle Tracking

The situation awareness technology was applied to tracking vehicles in the
vicinity of a facility under force protection. A data set suitable for testing and
demonstrating our technology was collected during a DARPA SensIT program in
November, 2001 at Twenty-Nine Palms, CA and exists at the University of
Wisconsin (UW) (Duarte & Hu, 2004). The data set consists of raw time series
(acoustic and seismic) and binary detection decisions from 23 sensor nodes
distributed along three intersecting roads as one of two vehicles travels along a
road. Figure 3.2 includes a map illustrating the force protection scenario, with a
fence line and an Entry Control Point (ECP) providing protection for a facility on
the North Road. The two vehicles used in the scenario are a light armored vehicle
(AAV) and a heavier, tracked transport vehicle (DW). A scenario was developed
whereby a facility under protection is assumed to exist along one of the roads, and
binary sensor data processed by our fusion and situation assessment algorithms are
used to inform a human decision maker.

3.4 Application 41

Fig. 3.2 Vehicle Tracking Scenario Map. Blue dots are seismic/acoustic sensor nodes. The
speed, heading, location, and vehicle type are estimated by independent CARTMAP
networks using binary data from all sensor nodes as input

3.4.2 Analysis

This section provides analysis of the experimental results.

3.4.2.1 Force Protection Experiments

In order to demonstrate the capabilities of the situation awareness system, neural
networks were trained to perform sensor fusion, a situation assessment formula
was constructed/calculated, and a GUI was developed, all to increase the
awareness of a human decision maker of the situation around the facility under
their protection. The scenario consists of a virtual checkpoint partway up the
north road on the way to a sensitive facility with 23 sensor nodes scattered along
three intersecting roads. Each sensor node outputs a binary detection decision at
fixed time intervals (0.75 seconds in the original test set). The sensor detections
derive from seismic, acoustic, and passive infrared energy levels. The (AAV and
DW) vehicles move from one end of a road, through the intersection, and to the
end of another road. The total number of runs is 40, which includes 20 original
data sets from the SensIT experiment. An additional twenty runs were created by
artificially reversing the direction of the vehicle. This is possible by simply
presenting the data in reverse. In other words, the sensor record from the last time
step would be presented to the information fusion system first, the first time step
would be presented last, and so on for all the time steps in the run. It is plausible

42 3 An Application of Unified Computational Intelligence

that the information is accurately represented in these runs because the data
consists of binary decisions and the ground is relatively flat, so the engine speed
and noise are presumably similar in both directions.

The primary piece of information that a decision maker wants to know is the
current threat level around his facility. The threat level is a function of the
location, speed, heading, and type of vehicle detected by the sensor array and
other variables that are independent of the sensor array, such as Department of
Homeland Security (DHS) advisory level, wind speed, average batter level of the
sensors, time of day, and day of week.

The system used to produce the threat level is illustrated in Figure 3.3. The
system consists of three modules: 1) Information Fusion, 2) Situation Assessment,
and 3) a Graphical User Interface (GUI) focused on human decision makers in
force protection applications. Multiple time steps of binary sensor data serve as
input to the Information Fusion module, which implements the CARTMAP
algorithm. This introduces an element of relative time, which is a necessary
component in estimating speed and heading. The output from the Fusion module
consists of vehicle type, speed, location, and heading, each with a corresponding
confidence level, and will serve as input to the Situation Assessment module. This
module consists of rules that represent the conditions under which a threat is
defined. The output of the assessment module will feed the graphical user
interface (GUI) with a threat level (low, medium, high), an associated confidence
level, a suggested response, and evidence in support of or against its output. The
GUI will also have access to the output from the fusion module, maps, and other
available data, such as time, date, and environmental data. All elements of the
situation awareness system were implemented in Matlab and tested with the
vehicle tracking data from UW in the force protection scenario just described.

Fig. 3.3 Force Protection Experiment Using UW Vehicle Data. Multiple time steps of
binary sensor data are used as input to the CARTMAP Information Fusion module.
Vehicle information from the Fusion module and other additional data are used as input to
the Situation Assessment module, which outputs actionable information to the user

Info
Fusion

Time

Sensor
Node

n1

n0

n23

t i-4 t i-3 ti-2

Location

Heading

Vehicle Type

Confidence Levels

Speed Situation
Assess

Evidence

Confidence Levels

Threat Level

GUI

Response

Fusion Outputs

Other
Data Environmental , State of Health , Intelligence Information

Maps

.

.

.

t i-1 ti

3.4 Application 43

3.4.2.2 Results of Training the Fusion Model

The fusion model consists of four different CARTMAP networks, one for each
fusion output (location, heading, speed, and vehicle type). The output of a
network will be of a categorical type or class except for the confidence levels,
which will be real numbers. Table 3.1 presents the classes for each information
fusion network. Note that for each network, if the input is all zeros, the output
will be zero by virtue of a simple fixed rule (i.e., no learning is involved).

Out of the 40 total runs available for the force protection experiments, 70%
were used for training and the remainder for testing. Table 3.2 shows the number
of runs used in the six experiments. In real-world applications, it is expected that
the amount of supervised training data is limited. In the force protection
experiments, only 2 of the 28 training runs are used for supervised learning.

Table 3.1 Information Fusion Output Classes for the Four CARTMAP Networks. (Vehicle
Type, Location, Heading, and Speed)

Vehicle Type
Classes

Location
Classes

Heading
Classes

Speed Classes

0: zero input
1: AAV
2: DW

0: zero input
1: West Road
2: North Road
3: East Road
4: Intersection

 0: zero input
11: N
14: NE
13: E
 8: SE
 4: S
 1: SW
 2: W
 7: NW

0: zero input
1: < 10 km/hr
2: 10-20 km/hr
3: 20-30 km/hr
4: 30-40 km/hr
5: 40-50 km/hr
6: 50-60 km/hr
7: 60-70 km/hr
8: 70-80 km/hr
9: 80-90 km/hr
10: > 90 km/hr

Table 3.2 Distribution of Vehicle Runs Used to Experiment with Different Learning
Modes. Experiments 1/2/3 and 4/5/6 use the same data, but use learning modes in a
different order

Experiment #
Supervised

Runs
Unsupervised

Runs
Reinforcement

Runs # Test Runs

1 & 4 2 26 0 12

2 & 5 2 13 13 12

3 & 6 2 0 26 12

Experiments 1-3 use the same runs as Experiments 4-6, but the order of training

is reversed. In Experiments 1-3, supervised learning is conducted first, followed
by reinforcement learning, and finally unsupervised learning. Experiments 4-6
use the opposite order of learning, using the data with the least amount of
information first and finishing with supervised learning, which utilizes training
data with the most information. In this case, one expects the richer data sets and

44 3 An Application of Unified Computational Intelligence

training modes to correct errors and refine the classification performance of
previous learning modes.

For each force protection experiment conducted, the same test set was used,
consisting of 12 runs with 1755 input/output pairs. The performance (% correct
classification) was computed based on this test set. For some sensor modes, such
as speed and heading, a classification error may not necessarily indicate poor
performance. For example, if the ground truth heading of a vehicle is North and
the fusion module output is Northeast, it would be counted as a classification error
even though the output is quite satisfactory. Experiments 1-6 were conducted
using various combinations of learning modes for each of the information fusion
networks. The best results for each network are presented in Table 3.3.

In the Classified Correct (%) column of the tables, there are three numbers
separated by colons (e.g., 1 : 2 : 3). The numbers in position one represent the
percentage of test samples that have a target value exactly matching the output
value from a CARTMAP network.

The numbers in the second position represent the percentage of test samples
that have a target value exactly or partially matching the output value from a
CARTMAP network. An exact match increments the total number of correct
classifications by 1, whereas a partial match increases the number by 0.5. Partial
matches are possible only with the Heading and Speed networks, where the class
adjacent to the target class is considered a partial match. For example, if the target
class is N, then a network output of NW or NE would result in a partial match.
Note that for the Vehicle Type and Location networks, no partial matches exist, so
the first and second numbers in the Classified Correct column should be the same.

Table 3.3 The Best Fusion Test Results of the Four CARTMAP Networks. Reinforcement
learning followed by supervised learning worked best for estimating vehicle type and
location, while supervised learning followed by unsupervised learning and then
reinforcement learning worked best for vehicle heading and speed. In the Classified Correct
(%) column of the table, there are three numbers separated by colons (e.g., 1 : 2 : 3). The
numbers in position one represent the percentage of test samples that have a target value
exactly matching the output value from a CARTMAP network

Sensor
Mode

Experiment

Learning Mode Vigilance # Categories Classified
Correct (%)

Vehicle
Type

6 Reinforcement
Supervised

0.7
0.65

36 : 108
44 : 112

92.6 : 92.6 : 91.7
92.7 : 92.7 : 91.7

Vehicle
Location

6 Reinforcement
Supervised

0.7
0.65

22 : 58
31 : 61

96.8 : 96.8 : 98.0
96.9 : 96.9 : 98.0

Vehicle
Heading

2 Supervised
Reinforcement
Unsupervised

0.9
0.7
0.7

39
45 : 59
45 : 59

68.4 : 69.6 : 69.6
66.6 : 79.9 : 80.3
62.7 : 75.8 : 81.7

Vehicle
Speed

2 Supervised
Reinforcement
Unsupervised

0.9
0.7
0.7

46
53 : 77
53 : 77

72.4 : 79.9 : 79.9
74.3 : 82.1 : 82.0
73.4 : 81.3 : 81.8

3.4 Application 45

The numbers in the third position represent correct classification percentages of
networks that have had two passes through the training set. During the first pass,
the reinforcement lookup table is updated during reinforcement learning. The
updated table may be an advantage for second pass unsupervised and
reinforcement learning. Correct classification percentages are computed using
partial matches. Each network was trained using vigilance parameters that
resulted in a reasonable number of categories.

In the next section, a weighted rule for determining the threat level of the
situation awareness system is discussed. The rule combines the outputs of the
fusion module and environmental conditions, and its output is categorized into
High, Moderate or Low threat based on human judgment. Ground truth exists for
the threat level, so performance of trained fusion networks with specified
environmental conditions can be measured. Two environmental conditions are
specified: 1) Benign – each environmental condition is set to its lowest value, and
2) Severe – each environmental condition is set to its highest value. For each of
the learning modes, the correct classification percentage is measured against
ground truth. The results are given in Table 3.4.

In practice, if only unlabeled data is available, then machine learning is
typically not used at all. Machine learning is most often used when some labeled
data are available and supervised learning is then used to its maximum extent,
while other learning techniques are not employed. The advantage of using a
variety of machine learning techniques is evident in Table 3.3 and Table 3.4
above, but a single set of networks (possibly a different network for each sensor
mode) must be chosen since one cannot generally anticipate the environmental
conditions. Table 3.5 summarizes the performance results of using the best
combination of supervised (SL), unsupervised (UL), and reinforcement learning
(RL) in comparison to the more common use of supervised learning alone. Table
3.6 lists the machine learning approaches used by each CARTMAP network to
produce the best situation assessment threat level performance averaged over
benign and severe environmental conditions.

Table 3.4 Best Test Results of Situation Assessment Threat Level Performance. Using a
combination of learning modes under benign and severe environmental conditions.
Different learning modes for different CARTMAP fusion networks are necessary to
produce the best situation assessment results

Environment
Condition

Vehicle
Exp #

Location
Exp #

Heading
Exp #

Speed
Exp #

Reinforcement
Iterations

Classified
Correct (%)

Benign 1 2 3 3 1 88.9

Benign 1 3 2 3 2 89.5

Severe 1 2 2 6 1 86.8

Severe 3 2 5 3 2 87.7

An important conclusion drawn from the experimental results is that utilizing

multiple training approaches that can take advantage of additional and different
data produces superior results for situation awareness compared to supervised

46 3 An Application of Unified Computational Intelligence

training alone. The reason performance decreases with UL after SL is that with
SL alone, all test patterns get encoded by a labeled category, whereas after UL,
there are now unlabeled categories that may encode test patterns producing
classification errors. Even though these unlabeled categories sometimes lowered
the performance, they may eventually add value after subsequent labeling during
SL or RL. Unsupervised input patterns that get encoded by existing categories
with a class label can contribute to the quality of the category in representing the
class in feature space. In addition, since the CARTMAP has access to a
reinforcement lookup table (RLUT), if an unlabeled pattern matches a pattern in
the RLUT, the corresponding class label from the RLUT can be assigned to the
unlabeled pattern. This feature is used during unsupervised learning. Originally,
the RLUT is generated from the supervised training data. It expands when new
unlabeled patterns are encoded by categories with class labels and the pattern and
its label are added to the RLUT.

Table 3.5 CARTMAP Fusion Performance Results. Using multiple machine learning
modes in comparison to supervised learning alone

Learning Approach Vehicle % Location % Heading % Speed % Avg. Threat %

SL 81.8 95.6 69.6 79.9 78.5

SL with UL and/or
RL

92.7 98.0 81.7 81.9
87.6

Table 3.6 The Combination of Learning Approaches. The combinations that produced the
best threat level performance. Three different combinations were used for the four different
fusion modules (vehicle type, location, heading, and speed)

 Vehicle Location Heading Speed

Learning Approach SL, UL SL, RL SL, UL, RL SL, RL

Reinforcement Iterations 1 2 2 2

Results for Experiment 3 (SL followed by RL) reveal a strong relationship

between the hints that RL provides and partial matching in scoring the
classification performance. When exact classification matches are required, hints
may not be good enough. However, if a “close enough” match is sufficient, then
RL hints improve performance. Even though multiple vigilance values were used
in the force protection experiments, it is expected that performance will improve
when the vigilance is optimized for the type of fusion mode and the type of
learning.

It is important in RL to have data representing all classes that a network is
designed to classify. If a class is not represented in the data, RL will not be able to
establish a label for this class.

Vehicle location is the easiest piece of information to learn with binary sensor
data. Location is inherent in the sensors themselves because their position is
fixed.

3.5 Future Work 47

Since 54.4% of the input patterns are all zeros, if a correct classification
percentage of greater than 54.4% is achieved after UL only, then the
reinforcement lookup table is being used to correctly label some patterns. During
reinforcement learning, an input pattern is submitted to a network, and a
reinforcement signal is generated. This signal offers negative or positive feedback
on the output of the network. The following steps are taken at this point of
reinforcement learning. When a reinforcement signal is received, the RLUT is
updated, and SL is performed if the input pattern is found in the RLUT (the action
associated with the input pattern with the highest value is used as the target).
Unsupervised learning is performed if the input pattern is not found in the RLUT
and the reinforcement signal is positive.

In general, SL should be used to create as many categories as possible within
reason, while subsequent non-supervised training should take advantage of these
existing categories and enrich them without corrupting them. The coordination of
three machine learning modes therefore offers potential benefit from every sample
of data available in an application.

3.5 Future Work

Arguably the most immediate area of future work lies in establishing principles
and practices for employing the three learning modes. There are different ways of
combining three modes of machine learning and many options for how and when
to employ each mode. The current research offers a preliminary perspective on
leveraging each learning mode for greatest system performance. It stands to
reason that a CARTMAP network can be tailored for each information fusion
mode (vehicle type, speed, heading, and location). The vigilance parameter may
be different for each mode and may also require adjustment based on the type and
ordering of the learning modes.

The core of our machine learning approach is an ART neural network. Other
algorithms and architectures should be explored with the same goal in mind, that
of integrating multiple learning modes. Reinforcement learning is a general area
of research worth pursuing in the area of situation awareness where there is often
not a clear win or lose outcome by which to measure success. There are also
many ways of performing reinforcement learning, some closer to supervised
learning, with stronger hints, and others that provide rare but consistent hints
about the system’s performance. How many iterations to use in reinforcement
learning on this problem is a legitimate research question, as is how best to
acquire feedback from human decision makers or the overall force protection
system, either directly or indirectly.

Another avenue of future machine learning research is to explore the use of
ensembles or bagging for supervised learning (Dietterich, 2000). The use of
ensembles employs multiple “experts” that train the same network using a
different sampling with replacement from the original supervised training set. The
combination of the experts’ solutions results in higher performance than the use of
a single network trained on the original data set.

48 3 An Application of Unified Computational Intelligence

3.6 Conclusion

The coordination of the three major machine learning approaches in a single
architecture, using ARTMAP at its core, is an innovation that should prove
valuable in addressing real-world problems. Many domains offer a limited
amount of information with ground truth that can be used with supervised learning
algorithms. More available is data with hints from the environment that can be
used with reinforcement learning. Almost always, data is available without labels
that can be used with unsupervised learning. Allowing these three modes of
learning to be used in the same framework is an important contribution.
Interesting advantages emerge when these three approaches leverage one another.
For example, reinforcement learning can utilize supervised learning when enough
information about class labels is available from the environment. Unsupervised
learning can take advantage of stored reinforcement learning information to go
beyond mere clustering. There is potential for interplay between the learning
modes that does not exist with a single mode.

J. Seiffertt & D.C. Wunsch: Unified Computational Intell. for Complex Sys., ALO 6, pp. 49–60.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Chapter 4
The Time Scales Calculus

4.1 Introduction

This chapter begins the second part of this book. The first part outlined a unified
computational intelligence learning architecture based on neural networks. The
design, theoretical underpinnings, and an application were presented to achieve
the first goal of this book: to develop unified computational intelligence for
learning.

This chapter focuses on another of the goals: to develop unified computational
intelligence for adapting. Now, the difference between learning and adapting may
be negligible to some and semantics to others; certainly, the potential for overlap
exists, and it is not necessary to develop a categorical definition such that any
given algorithm can be classified as learning, adapting, or neither. For example,
in order for the unified ART architecture to learn new sensor signatures, it must in
a sense adapt to its environment. But in this chapter, what is meant by adapt is
more general and divorced from learning in the sense of neural networks as
function approximators. Adapting refers to a system that makes decisions in a
complex and unpredictable environment. It is this decision making that is of the
most interest, and the field to be discussed now is one that grew out of the need to
optimize solutions to multi-stage decision processes. It is called dynamic
programming, and although a cousin to operations research, it is firmly a member
of the computational intelligence family.

This part of the book will discuss decision making under the dynamic
programming framework in some detail. The discussion here is deeply
mathematical and technical.

What is being unified here is the nature of the time scale under which decisions
are made—under which agents can adapt. Traditional computational decision
theory is broken into discrete-time and continuous-time models. To unify these
approaches, advantage is taken of a new and rapidly developing field of
mathematics called the time scales calculus. Within this field, researchers seek to
draw together analysis of both discrete and continuous intervals. They search for
what unifies differential and difference equations and operators and look to the
construction of dynamical systems completely independent of the nature of the

50 4 The Time Scales Calculus

underlying signals. Still in its infancy, this mathematics has much room for
growth. Indeed, at times the work in this book develops new mathematical tools in
order to derive the dynamic programming results. However, the promise for
applications is high, as researchers continue to take on the control of systems that
combine discrete and continuous signals.

This chapter provides background on the essentials of the time scales calculus,
which will be used to derive the results. This material is adapted from (Seiffertt &
Wunsch, 2007), (Seiffertt, Sanyal, & Wunsch, 2008a), (Seiffertt, Sanyal, &
Wunsch, 2008b), (Seiffertt & Wunsch, 2008), and (Seiffertt, 2009). The dynamic
programming results are presented in Chapter 5, and the unification of neural
network learning, necessary to supplement the dynamic programming approaches,
is presented in Chapter 6.

4.2 Fundamentals

Traditional analysis and discrete mathematics work with functions defined on a
domain that is either entirely discrete or continuous. The study of the time scales
calculus allows for the consideration of functions on domains that can be a
mixture of the two. As such, dynamic equations in a general sense are discussed
rather than specifying difference or differential equations. This section presents
enough of the theory of dynamic equations to support the results in this book; this
coverage includes definitions of characteristic functions, dynamic derivatives of
single and multiple variables, and basic integration on time scales. In addition to
the established mathematics, this book provides new contributions to this theory:
the definition of -complete differentiability and a chain rule for n-variables.
These results are used in Chapter 6 to prove results for neural network learning.

Dynamic equations are defined on mathematical structures called time scales.

Formally, a time scale is an ordered pair such that ℝ is nonempty,

every Cauchy sequence in converges to either a point within or to a finite
infimum or supremum of , and is a function from into . This function ,
along with the nature of the time scale under consideration, will dictate the
properties of the chosen dynamic derivative and the resulting dynamic equations.

Sets qualifying as time scales include the integers , the natural numbers , the
scaled integers (for 0), the quantum calculus time scale for 1 (the
quantum calculus, a specialization of the time scale calculus, will be considered at

length), limiting sets such as 0 : 1,2, … , finite unions of intervals such

as 0,1 2,3 5,6 , and unions of intervals and discrete points such as 1,2,3,4,5 5,8 . More exotic sets, such as the Cantor set, are also technically
time scales, although they may arouse less interest from application-minded
researchers. Furthermore, well-known sets such as the rationals and the
irrationals ℝ\ , and open intervals such as 0,1 , are not time scales.

()α,T

4.2 Fundamentals 51

Four characteristic functions are defined on time scales, two that scroll through
the time scale and two that detail the degree of continuity of the time scale. The
forwards and backwards jump operators and give us the “next” and
“previous” elements in a time scale, respectively. They are defined as follows:

 inf ∈ : sup ∈ :

(4.1)

For ℝ, , and for , 1 and 1.
More complicated time scales admit more involved jump operators. Consider, for
example, the -time scale studied in the quantum calculus (Kac & Cheung, 2002): (where 1). The forward and backward jump operators are given by

 and , respectively. Additionally, it is often convenient
to write as and as .

These jump operators are a critical determinant of the character of a dynamic
equation. For example, to work with the commonly used delta derivative,
consider to be any nonempty closed subset of the real line, and set equal to
the forward jump operator . Similarly, when working with the nabla derivative
time scales of the form , , where is the backwards jump operator, are
studied. However, there is not a technical restriction to such domains in the
general case, and indeed, it is this freedom that gives the study of alpha
derivatives, where is neither a forward nor a backward jump, its conceptual
power and showcases the versatility of the generalized time scales approach to
analysis. When the foundations of dynamic programming on these generalized
time scales are established in Chapter 5, decision problems will be able to be
modeled in ways that go beyond that of classical restrictions to intervals or
integers.

The remaining two characteristic functions defined on time scales are referred
to as the forward and backwards step functions and . These functions trace the
level of continuity of a time scale and are defined as follows:

 t (4.2)

For continuous domains, the step functions are 0, and for the
integers they are 1. For the -time scale, 1 . The
forward step function is often called the graininess function in the literature,
usually when the research at hand is limited to the forward, or delta, dynamic
derivative.

52 4 The Time Scales Calculus

It is important, since both discrete and continuous intervals are permitted in the
domain, to speak of a property of the points of a time scale called density. In the
traditional calculus, a point is considered dense if there is, in some sense, an
infinity of points close to it. Every point in the real line is dense, and none of the
integers are dense. A point that is not dense is said to be isolated or scattered. On
dynamic domains, there may be some dense points and some isolated points.
Furthermore, it is possible to encounter transition points, which are labeled as
right- or left- dense or scattered. Formally, these concepts are defined as follows
for a point ∈ :

• is right-dense if sup and

• is left-dense if inf and

• is dense if is both right-dense and left-dense

• is right-scattered if

• is left-scattered if

• is isolated if is both right-scattered and left-scattered

Since dynamic equations are defined on more complex domains than their
differential and difference equation counterparts, it is important to keep track of
the nature, either dense or scattered, of each point.

From a time scale , derive three sets , , and as follows: \
if is bounded above and a is left-scattered, = \ if is bounded below
and b is right-scattered, and . These sets form the domains of the
dynamic derivatives discussed in the next section.

4.3 Single-Variable Calculus

The usual derivative of the time scales calculus is defined as follows. Let : ℝ be a function. Then the delta derivative Δ of f at a point ∈ ,
where coincides with except at a left-scattered maximum, if one should
exist, is defined to be the number such that given 0 there is a neighborhood
of such that

 | ∆ | | | (4.3)

for all ∈ , where neighborhood is defined such that , for
some 0. Note that this follows the classical definition of the derivative,

4.3 Single-Variable Calculus 53

with the traditional increment replaced by the forward jump operator .
This sort of translation is common in the calculus of time scales. The delta
derivative Δ becomes ′ when ℝ and becomes the standard difference
operator on .

There is also a backwards derivative, defined as follows. Let : ℝ be a
function. Then the nabla derivative of at a point is given by the number,
provided it exists, such that given 0 there exists a neighborhood of such
that

 | | | | (4.4)

for every ∈ . At left-scattered points, this becomes the left difference operator
found in the traditional study of difference equations.

When ℝ, both the delta and nabla derivatives reduce to the traditional
derivative . The terms and take the place of the
construction in the classical calculus. To get a feel for the delta and nabla
derivatives, consider the following facts:

• If f is left-continuous at a right-scattered point t, then f is delta

differentiable at t
• If f is right-continuous at a left-scattered point t, then f is nabla

differentiable at t
• If t is right-dense, then f is delta differentiable at t if the limit lim exists

• If t is left-dense, then f is nabla differentiable at t if the limit lim

It is also possible to define a more general alpha derivative. Let , be a
generalized time scale and let : ℝ be a function. Then the alpha derivative

 of at a point is given by the number, provided it exists, such that given 0 there exists a neighborhood of such that

 | | | | (4.5)

for every ∈ .

For all of these dynamic derivatives, many of the standard rules for derivatives
pertain. To illustrate this, the anticipated sum, product, and quotient rules for
alpha derivatives are shown:

54 4 The Time Scales Calculus

 g

(4.6)

One crucial result from classical analysis, however, does not hold for dynamic
derivatives: the chain rule. Instead of a single formula to handle differentiation of
compositions of functions, dynamic equations rely on a suite of different rules,
each dependent on the character of the functions. The most general of these
for functions of a single variable, and the one that will be used in the formulation
of the Hamilton-Jacobi-Bellman equation and the backpropagation update
equations, is due to Potzsche (2002) and is stated as follows: Let : ℝ ℝ be
continuously differentiable and let : ℝ be delta differentiable. Then

 is delta differentiable, with Δ given by the following integral
equation:

 Δ ∆ ′ ∆ . (4.7)

When = ℝ, then 0, and the equation reduces to our expected chain rule.
Thus, the forward step function (or graininess) of the dynamic domain under
consideration has a great effect on the emergent calculus. It turns out that many
results of standard analysis, including the Hamilton-Jacobi-Bellman equation and
backpropagation equations, are dependent on the use of the traditional chain rule.

A similar result holds for the nabla derivative. With : ℝ nabla
differentiable,

 ′ . (4.8)

In addition to this chain rule, which will be used during derivations, this book also
provides two new chain rules, one for the multivariate case and one for the
ordered derivative case.

Integration of dynamic derivatives must be considered during the derivation
of the Hamilton-Jacobi-Bellman equation. A function : ℝ is right-dense
continuous, or rd-continuous, if it is continuous at right-dense points and its left-
sided limits exist at left-dense points. Similarly, a function is left-dense continuous,
or ld-continuous, if it is continuous at left-dense points and its right-sided limits exist
at right-dense points. The following two fundamental results hold:

• If f is rd-continuous, then

 ∆ (4.9)

4.4 Calculus of Multiple Variables 55

• If g is ld-continuous, then

 (4.10)

where ∆ and are delta and nabla antiderivatives of f and
g, respectively.

The theory of integration on time scales is not delved into deeply here. Instead,
the presentation of these formulas will suffice for our results. For a thorough
overview of integration theory on time scales, the reader is directed to Bohner &
Guseinov, 2005, Bohner & Peterson, 2003, and Guseinov, 2003.

This concludes the introduction of the single variable time scales calculus. The
next section attends to the multivariate case.

4.4 Calculus of Multiple Variables

This book uses a definition of partial derivatives on time scales given by Jackson,
2006. Let , , … , be time scales, set , and
let : ℝ be a function. Define the operators on as , , … , and , , … , . Also
define , , , … , , , , … , , , , … , , , , … , and , , … , , , , … , .

The partial delta derivative of at with respect to is the number ∆ ,
provided it exists, such that given any 0 there exists a neighborhood of
for 0 such that

 | ∆ | | | (4.11)

for all ∈ , where neighborhood is defined such that , .
In a similar way, the partial alpha derivative of at with respect to is the

number such that given 0 there exists a neighborhood of for 0
such that

 | | | | (4.12)

Higher order partials can be defined in the usual way. It is even possible to
consider mixed nabla, delta, and alpha partial derivatives. Further details can be
found in Bohner & Guseinov, 2004.

Necessary for the proof of the HJB equation on time scales is the chain rule for
partial derivatives given by Bohner and Guseinov [18]. Let ∈ , : ℝ,

56 4 The Time Scales Calculus
 : ℝ, , , and , .

Assume and . If , is -
completely differentiable and and are differentiable, then

 ∆ ∆ , ∆ ∆ , ∆ . (4.13)

For more details on partial derivatives on time scales, including a complete
treatment of -complete differentiability, the reader is directed to Bohner &
Guseinov, 2004.

Note that the development of partial dynamic derivatives is still in its infancy
and is not entirely settled. Different authors use different notations for these
concepts. It will be made clear in this book which conventions apply for the
theoretics. The next section provides a contribution to this literature in the form of
an extension of the Bohner-Guseinov chain rule to the multi-dimensional case.

4.5 Extension of the Chain Rule

An extension of this chain rule to the case of n variables will be required. As a
preamble to the proof of this n-variable chain rule, the important definition of -
delta differentiability is discussed.

For a full discussion of - delta differentiability, the reader is directed to
Bohner and Guseinov, 2004. Here, we present one fundamental part of the
definition, which will be needed in the extension of the definition to the case of n
variables. In order for a function : ℝ to be - delta differentiable, the
following condition must hold:

 , , (4.14)

where B is the number ∆ , and the 0 as . Further note
that it is possible to define -delta differentiability in an analogous manner. Only
required is the version, as results obtained for that generalize immediately to
the higher indexed cases.

Now, for the statement of the Bohner-Guseinov chain rule, let ∈ , : ℝ, : ℝ, , , and , . Assume
 and . If , is -
completely differentiable and x and y are differentiable, then

 ∆ ∆ , ∆ ∆ , ∆ (4.15)

The condition is referred to as forward jump commutativity
and is called upon often in the chain rules for partial derivatives on time scales.

4.5 Extension of the Chain Rule 57

For an extension of this theorem to the case of n variables, first define the
notion of -delta differentiability for n variables instead of just two. The
condition (4.14) becomes

 , … , , … ,
(4.16)

Armed with this definition, the following theorem can be proven.

Theorem 4.1 (Chain Rule for Functions of n-variables)
Assume that : , , ∈ , and . Let , … , . Then

 ∆ ∆ , … , ∆ ∆ , , … , ∆ (4.17)

Proof
We proceed by constructing the definition of ∆ and using our hypotheses:

 , … , , … , (4.18)

Now applying the forward jump commutativity condition, the right-hand side
becomes

 , … , , … , (4.19)

which, upon substitution, reduces to

 , … , , … , (4.20)

Using the definition of -differentiability with ∆ , … , and ∆ , , … , , gives

 ∆ , … , ∆ , , … , (4.21)

Using the fact that , we arrive at

(4.22)

Again with the forward jump commutativity, we see that

(4.23)

58 4 The Time Scales Calculus

Finally, dividing by and taking the limit as yields
 ∆ ∆ , … , ∆ ∆ , , … , ∆ (4.24)

which is our desired result.

Note that, as a technical matter, it is important for the 's all to have the same
domain so that, in the final step, the limit can be taken on a single t. Without
this restriction, the limit would have to carry across multiple ti's, which would
present a less tractable situation.

4.6 Induction on Time Scales

A form of backwards induction exists on time scales (Bohner & Peterson, 2001).
Let ∈ and be a statement for each ∈ ∞, such that the following
four conditions hold:

1. is true

2. being true at a left-scattered forces to be true

3. being true at a left-dense forces ′ to be true for all ′ in a left-

neighborhood of

4. ′ being true for all ′ ∈ , when is right-dense forces to be

true

Then it can be concluded that is true for all ∈ , ∞ . There is also a
forward version involving right-scattered and left-dense intervals and the forward
jump operator , but it is this backwards form that we use in the next section.

4.7 Quantum Calculus

Quantum calculus is the modern name for the investigation of the calculus without
limits, which began with Euler, currently enjoys ties to abstract algebra, and has
found application in the quantum mechanics literature. The book by Kac and
Cheung (2002) covers many of the fundamental aspects of the quantum calculus.
As this field becomes more widely researched, an increasing number of
application areas are being discovered. For example, a recent study of financial
derivative pricing realized a quantum calculus analog of the Black-Scholes
equation (Muttel, 2007). Additionally, it has been shown that quantum calculus is
a subfield of the more general mathematical field of time scales calculus.

4.7 Quantum Calculus 59

The study of quantum calculus is concerned with a specific time scale, called
the -time scale, defined as follows:

 : ∈ (4.25)

such that 1. Dynamic equations in the quantum calculus, then, have domain

. It is worth noting that the quantum calculus converges to the classical
continuous calculus in the limit as approaches 1 from above.

The -time scale analog of the forward jump operator is given by .
The graininess of the -time scale can be shown to be 1 via
application of the definition of the forward jump operator and some algebra.

To discuss calculus on the -time scale, a derivative needs to be defined. The
q-differential of a function f is given by

 (4.26)

and the q-derivative of the function f is defined by the following expression:

 1 . (4.27)

Further derivatives can be defined in a manner analogous to their real
counterparts. For example, the second q-derivative is defined as

 (4.28)

The standard rules for differentiation of products and quotients apply in quantum
calculus:

(4.29)

Proving the dynamic programming algorithm will require the use of induction in
the quantum calculus. Note further that for the -time scale, only conditions 1
and 2 must be met because this time scale lacks dense points.

For the proof of ordered derivatives in the quantum calculus, differentiation
with respect to a function will need to be employed. The Stieltjes integral
provides a means for this in the traditional calculus, where there exists the relation

′ . A similar construction on the -time scale is defined,

60 4 The Time Scales Calculus

where . Now, as the -time scale is a fundamentally
discrete set, the integrals become expressed as summations as shown at the end of
this section. This notation is presented in the more general case to maintain
consistency with the relationship between the -calculus and general time scales
where the formula is given by ∆ ∆ ∆ and where the symbol Δ
denotes the idea of delta differentiation, which is the generalization of -
differentiation to any time scale. Deeper analysis of these concepts is beyond the
scope of the current argument; the interested reader is directed to Bohner &
Guseinov, 2005, Bohner & Peterson, 2003, and Guseinov, 2003 for further
information on the theory of integration on time scales.

Let : ℝ and : ℝ be functions on a -time scale , and define
the following -derivative:

 (4.30)

This is simply the -time scale analog of the expression from

 classical analysis. The notation will be used with ordered derivatives on
time scales.

Finally, we will make one further note on the translation of integrals.

Let : ℝ where , , … . Then Δ ∑ ∈ , ,

where is the graininess function of the time scale . In particular, for the
-time scale the following holds:

Δ 1 (4.31)

This construction is important in discussions of dynamic programming and
backpropagation, as it is convenient and illuminating to first consider the general
time scale formulation in some cases before delving into the particulars of the
quantum calculus version.

J. Seiffertt & D.C. Wunsch: Unified Computational Intell. for Complex Sys., ALO 6, pp. 61–76.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Chapter 5
Approximate Dynamic Programming on Time
Scales

5.1 Overview

In this chapter, the material overviewed in Chapter 4 is used to develop the
foundations of dynamic programming on time scales. The primary results concern
the derivation of the Hamilton-Jacobi-Bellman equation, the ghost in the dynamic
programming machine, in this unified mathematical framework. Material in this
chapter has appeared in Seiffertt & Wunsch, 2007, Seiffertt, Sanyal, & Wunsch,
2008a, Seiffertt, Sanyal, & Wunsch, 2008b, Seiffertt & Wunsch, 2008, and
Seiffertt, 2009.

5.2 Introduction

The time scales calculus is an emerging key topic due to its many
multidisciplinary applications. This calculus is extended to Approximate Dynamic
Programming. The core backwards induction algorithm of Dynamic Programming
is extended from its traditional discrete case to all isolated time scales. Hamilton-
Jacobi-Bellman equations, the solution of which is the fundamental problem in the
field of dynamic programming, are motivated and proven on time scales. By
drawing together the calculus of time scales and the applied area of stochastic
control via Approximate Dynamic Programming, two major fields of research
have been connected for the first time.

The mathematics of time scales seeks to bridge the divide between the analysis of
functions on discrete and continuous domains (Hilger, 1990). This calculus
establishes a single unified framework for analysis of both difference equations and
differential equations. Such dynamic equations on time scales (Bohner & Peterson,
2001), (Bohner & Peterson, 2003), have been applied in population biology
(Bohner, Fan, & Zhang, 2007), quantum calculus (Bohner & Hudson, 2007),
geometric analysis (Guseinov & Ozyilmaz, 2001), boundary value problems
(DaCunha, Davis, & Singh, 2004), real-time communications networks (Gravagne,
Marks, Davis, & DaCunha, 2004), intelligent robotic control (Gravagne, Davis, &
Marks, 2005), adaptive sampling (Gravagne, Davis, DaCunha, & Marks, 2004),
approximation theory (Sheng, Fadag, Henderson, & Davis, 2006), financial

62 5 Approximate Dynamic Programming on Time Scales

engineering (Sanyal, 2008), adaptive grids (Eloe, Hilger, & Sheng, 2006), switched
linear circuits (Marks, Gravagne, Davis, & DaCunha, 2006), and the Kalman filter,
(Wintz, 2009), among others. Due to the fact that this calculus must consider
domains with all sorts of mathematical intricacies, the time scales calculus admits
not one but an entire suite of dynamic derivatives. The standard derivative, the delta
derivative, most closely mirrors the derivative found in traditional analysis. Other
derivatives, such as the nabla and diamond-alpha, are also widely studied
(Ahlbrandt, Bohner, & Ridenhour, 2000), (Bohner & Peterson, 2003), (Rogers &
Sheng, 2007) and applied in various areas, particularly the study of numerical
solutions of differential equations. This current work focuses on the alpha
derivative, which is a more general case of the delta and nabla. As such, the theory
presented herein contains the theory of the other two derivatives.

Dynamic programming (Bellman, 1957), (Bellman & Breyfus, 1962),
(Bertsekas, 2001) outlines various methods for generating optimal solutions for
multi-stage decision processes. The standard algorithm for dynamic programming
involves a computationally intensive backwards induction update rule. In
practice, many engineers working on industrial-scale applications have turned to
approximation methods based on the optimal ones. Much research has been
dedicated to the task of finding these suboptimal policies. The field of
Approximate Dynamic Programming (ADP) considers these approaches (Powell,
2007), (Si, Barto, Powell, & Wunsch, 2004).

ADP, united with the field of reinforcement learning in (Bertsekas & Tsitsiklis,
1996), concerns itself with solving the Hamilton-Jacobi-Bellman (HJB) equation
of dynamic programming. In discrete time, backwards induction is often used.
For continuous time domains, the HJB equation takes on the form of a second-
order partial differential equation. This work extends the HJB equation to the time
scales calculus, therefore considering both discrete and continuous domains as
well as mixed domains, which are neither discrete nor continuous, and formulates
it using the very general alpha derivatives.

5.3 Dynamic Programming Overview

The requirements of the dynamic programming framework considered herein are
as follows: a time scale in which our decision points lie, controls , , a
stochastic disturbance , states which evolve according to a rule , , , , , and a cost/reward , , , where the cost at
a terminal decision point is piecewise defined as . A policy is a set
of state-control pairs for each point in such that each control is valid for both the
state and time. Denote by the tail of the policy beginning with time step .
Also introduced is a cost-to-go function J given by

 , , , , , ∆ (5.1)

5.4 Dynamic Programming Algorithm on Time Scales 63

which measures the expected cost of a policy . Assume that these expected
values are finite and well defined.

Consider the following state-space dynamical system defined on a time scale :

 , , , , (5.2)

where t ∈ and indicates an interval taken using the alpha derivative.
The task is to calculate a policy π which minimizes the cost-to-go function .
Call such a π an optimal policy and denote the optimal cost-to-go as , min , , where the minimum is considered over all
policies.

Employ Bellman’s Principle of Optimality in the solution to the optimization
problem. This principle can be framed in the following way. Let be an
optimal policy. Then the optimal policy for the tail problem starting at time n,
which is to minimize

 , , , , ∆ , (5.3)

is equal to the portion of that overlaps . To justify this principle, note that if
it were not true, then the tail of could be replaced by a more optimal , thus
contradicting the claim of optimality of .

The dynamic programming algorithm, a form of backwards induction, involves
stochastic optimization of control selection starting from the terminal time point .
Beginning with setting , , the algorithm proceeds via the
following update rule:

 , min , , , ,, , , , ,

(5.4)

for t ∈ . This rule says that the cost-to-go of the current state
under a control , equals the expected value of the
immediate cost , , , , plus the future costs , , , , , . The symbol represents the “next”
point in our time scale , and the use of this forward-jump operator is one of the
hallmarks of the time scales calculus’s ability to combine discrete and continuous
analysis.

It is the goal in this work to move beyond this dynamic programming algorithm
and to establish the HJB equation in full on general domains using the alpha
derivative equation.

5.4 Dynamic Programming Algorithm on Time Scales

Bellman’s Principle of Optimality (Bertsekas, 2001), (Bertsekas & Tsitsiklis,
1996) aids in the solution of the above optimization problem. This principle can

64 5 Approximate Dynamic Programming on Time Scales

be stated in the following way. Let be an optimal policy. Then the optimal
policy for the tail problem starting at time n, which is to minimize

 , , , , ∆ , (5.5)

is equal to the portion of that overlaps . To justify this principle, note that if
it were not true, then the tail of could be replaced by a more optimal , thus
contradicting the claim of optimality of .

The dynamic programming algorithm, a form of backwards induction, involves
stochastic optimization of control selection starting from the terminal time point .
Beginning with setting , , the algorithm proceeds via the
following update rule:

 , min , , , ,, , , , ,
(5.6)

for t ∈ . This rule says that the cost-to-go of the current state under a
control , equals the expected value of the immediate
cost , , , , plus the future costs , , , , , . Recall that is the “next” point in our
time scale .

It is standard to discuss optimality of this algorithm in terms that assume
convergence. The proof contained herein, following Bertsekas, 2001, declares
controls optimal if they minimize the update rule.

The classical version of this update rule is true for the discrete time scale 1,2, … , . This work extends this result to any isolated time scale .

5.4.1 Delta Derivative Version

This section provides the proof that the dynamic programming algorithm holds
true for the case of the delta derivative on time scales.

Theorem 5.1 (Dynamic Programming Algorithm, Delta Derivatives). If , minimizes the update expression given above for each state and for all ∈ , then the policy , is optimal.

Proof
Set , and proceed via time scales induction to show that
application of the dynamic programming algorithm’s recursive update equations
yields the optimal policy at each stage, i.e. that , , for all t ∈ .

5.4 Dynamic Programming Algorithm on Time Scales 65

Letting yields, by definition,

 , , (5.7)

Now, assume that , , for some time point ∈ and all states
. To apply the backwards induction algorithm, recall that in a time scale,

is the point that comes just “before” the point . Therefore, the quantity
plays a central role in our discussion, and the following equation gives the
immediate one-step application of our update rule:

 , min, , , , , , , , , ∆ . (5.8)

The integral represents the value of the cost-to-go function at the “next” time
step after , which is . Also note that the minimization is taken term-by-term
over all controls and policies, respectively.

Use the principle of optimality to distribute the through the expectation, as
the tail problem is indeed an optimal policy for the problem contained within the
tail. This yields the following:

 , min , , , ,min , , , , ∆

(5.9)

Using the definition of , , which subsumes the term minimized over the
policy, we can reduce this expression to

 , min , , , , , (5.10)

By the induction hypothesis, we know the optimal cost-to-go , is
equivalent to the approximation , due to the dynamic programming
algorithm. Thus, we write , as

 min , , , , , (5.11)

which, by definition, is simply

 , , . (5.12)

We have now satisfied conditions 1 and 2 of the principle of backwards induction
on time scales given preliminarily. Since we assume to be isolated, conditions
3 and 4 do not apply, and we conclude that, by backwards induction on time
scales, we have proven our claim.

66 5 Approximate Dynamic Programming on Time Scales

Thus, the dynamic programming algorithm is expanded to time scales. The
computational requirements for implementing this algorithm, particularly for
industrial-scale optimization problems common in operations research, are great
(Powell, 2007). It is the task of ADP to calculate suboptimal policies in an
efficient manner while simultaneously satisfying the needs of a given application.
Within a time scales framework this approach is also valid, as the optimal update
rule underlying the approximations holds.

5.4.2 Quantum Calculus Version

Set out with the following definitions: decision points contained in a -time
scale with a terminal point , a set of controls for each state given by , ,
random disturbances modeled by a stochastic term , a cost/reward function
denoted by , , , , with terminal point T defined piecewise as

, and a dynamic system where states evolve according to the
following rule:

 , , , , , (5.13)

For policies , require each set of state-control pairs to represent a valid
association for both the space and time dimensions. The tail of the policy ,
denoted as , chronicles the sets of state-action pairs starting at decision point
and ending at the terminal point . This notion is critical for discussion of the
optimality principle and the subsequent derivation of the dynamic programming
algorithm. The cost-to-go function is given by

 , , , , , ∆

1 , , , ,

(5.14)

Define an optimal policy to be one that minimizes the cost-to-go function .
The corresponding optimal cost-to-go function is denoted

 , min ,

(5.15)

5.4 Dynamic Programming Algorithm on Time Scales 67

where the min is considered over all policies. The goal of the dynamic
programming problem is to calculate an optimal policy . The most basic
process by which this is achieved is called the Dynamic Programming Algorithm,
which is a form of backwards induction. Starting from the terminal decision point

 and following a schedule of recursively defined steps backwards in time towards
the initial point t0, the optimal policy can be calculated even in a stochastically
rich environment. The algorithm begins with setting , and
proceeds via the following rule:

 , min , , , ,, , , , (5.16)

This recursion is a consequence of Bellman’s Principle of Optimality, which states
that any optimal policy must remain optimal when enacted on any tail of the
system. That is, the solution that minimizes the cost-to-go function starting at any
given point t,

 1 , , , , (5.17)

is simply the portion of the optimal policy π* that coincides with the particular tail
in question. The justification of this principle runs as a proof by contradiction: If
the tail problem had a different solution than that given, then the cost-to-go
function could be minimized further by changing out the optimal policy’s tail with
this alternate policy, thus prohibiting the optimal policy from being, in fact,
optimal. This cannot be the case, so the optimality principle must hold.

The following proof follows that of Bertsekas, 2001 and suffices to establish
the viability of dynamic programming in quantum calculus.

Theorem 5.2 (Dynamic Programming Algorithm in Quantum Calculus). The
policy that minimizes the dynamic programming recursion (5.11) for all states and
all times is optimal.

Proof: Set , and proceed, via quantum calculus induction,
to show that following the dynamic programming algorithm’s update rule yields
the optimal policy each step of the way, i.e. that , , for all ∈ . Since the nature of this algorithm is to proceed backwards in time, the dual
version of time scales induction as described in Section 4 will be used. (Recall
that the backwards jump operator for the -time scale. However, we
will maintain the use of the symbol and trust no confusion will arise. This
notation has the advantage of more closely mirroring the form of the version of the
quantum calculus induction algorithm we invoke in the proof.)

68 5 Approximate Dynamic Programming on Time Scales

Letting yields, by definition,

 , , . (5.18)

Now, assume , , for some time point ∈ and all states
. Then we have

 , , , , , min, 1 , , , , . (5.19)

Note that the minimization is taken term by term over all controls and policies,
respectively. We now use the principle of optimality to distribute the min through
the expectation, as the tail problem is an optimal policy for the sub-problem
contained within the tail. This yields the following:

 , min , , , ,

min 1 , , , ,
(5.20)

Using the definition of , , which subsumes the term minimized over the
policy, we can reduce this expression to

 , min , , , ,, (5.21)

By the induction hypothesis, we know the optimal cost-to-go is equivalent to the
approximation due to the dynamic programming algorithm. Thus, we write

 , min , , , ,,

(5.22)

which, by definition, is simply

 , , (5.23)

which, in turn, is our desired result.

5.5 HJB Equation on Time Scales 69

With this, the dynamic programming algorithm is shown to work in quantum
calculus. In fact, this can be interpreted as the Hamilton-Jacobi-Bellman equation
in the quantum calculus, as the -time scale is isolated. It should be noted,
however, that this algorithm is quite computationally expensive, particularly for
industrial-scale problems. To circumvent this failing, suboptimal methods are
employed routinely. Collectively called Approximate Dynamic Programming
(ADP), these algorithms seek to calculate suboptimal policies to whatever degree
of accuracy is required by a given application. These techniques are tied quite
intimately to backpropagation, and Chapter 6 of this book will provide a proof of
the foundations of backpropagation in quantum calculus as well as in other time
scales. In this way, both ADP and optimal dynamic programming are shown to
have solid footing on -time scales.

5.5 HJB Equation on Time Scales

Consider the dynamical system given by

 ∆ , (5.24)

where represents states and is the control. Let ∈ , : ℝ, and
 . The cost-to-go function : ℝ is given by

 , , ∆ (5.25)

where is the initial decision point and , is the cost. Assume is
delta-differentiable and is -completely delta differentiable. Furthermore,
require to satisfy

 . (5.26)

Then the HJB equation on time scales is given by
 0 min , , ∆ ,∆ , , . (5.27)

This is an equation that any optimal policy of the minimization problem must
satisfy. Since precious few industrial-scale applications admit an analytic solution
of this equation, ADP is employed to develop approximation techniques for this
purpose. The proof of this equation is the next theorem. The Hamilton-Jacobi
equation is a result of the calculus of variations, and work extending this calculus
to time scales is only just beginning (Atici, Biles, & Lebedinsky, 2006), (Bohner,

70 5 Approximate Dynamic Programming on Time Scales

2004), (Bohner & Guseinov, 2007), (DaCunha, 2007), (DaCunha, 20085),
(Ferreira & Torres, 2007), (Hilscher & Zeidan, 2004). These problems typically
take the general form of minimizing the cost functional given by the following
integral:

 , , Δ . (5.28)

From this, the usual Euler and Legendre conditions can be derived on time scales.
Our next result takes this a step further and proves the Hamilton-Jacobi equation
for an alternate version, given by (5.25), of the above integral (5.28). Since
equation (5.25) is the common cost functional of dynamic programming, the
resulting equation is given the name Hamilton-Jacobi-Bellman. In this way, the
following theorem is a contribution to the development of the calculus of
variations on time scales as well as to ADP. This chapter proves the HJB equation
for a form other than that given by (5.28), but there is still work to be done on
Hamilton-Jacobi equations for more generalized cost functionals.

5.5.1 Delta Derivative Version

This section contains the proof of the Hamilton-Jacobi-Bellman equation on time
scales using the usual delta derivative.

Theorem 5.3 (Hamilton-Jacobi-Bellman Equation). Let , be a solution
to equation (5.25) such that

 0 min , , ∆ ,∆ , , . (5.29)

Assume the boundary conditions , and , and
suppose , attains the minimum called for in equation (17) for all states
and all times. Let be the state trajectory, subject to the condition
 , that corresponds to applying the controls , at each
decision point .

Then the function , is the optimal cost-to-go function , , and
the control , is optimal.

Proof
Let ̂ , be a control policy with corresponding state trajectory . We
will show that the policy , achieves a cost no greater than this arbitrary ̂ , , thus forcing , to be our optimal control. We begin by
invoking equation (5.27) to give us

 0 , ̂ , ∆ , ∆ , , . (5.30)

5.5 HJB Equation on Time Scales 71

Noting that, via (12), we have ∆ , , we can rewrite (5.28) as
 0 , ̂ , ∆ , ∆ , ∆ . (5.31)

By reversing the chain rule implicit in this formulation, we arrive at
 0 , ̂ , ∆ . (5.32)

Integrating over our time horizon yields
 0 , ̂ , ∆ ∆ ∆ . (5.33)

Using the fundamental theorem, we arrive at

 0 , ̂ , ∆ ,, . (5.34)

Substituting in our boundary conditions , and
 gives us

 0 , ̂ , ∆,

(5.35)

which is equal to

 , , ̂ , ∆ . (5.36)

From our hypothesis, we assume the controls , and their corresponding
state trajectory minimize the value function , . Using this
information and the initial condition , we can replace the
inequality with equality in the case of these quantities:

 , , , ∆ .

(5.37)

Combining with the previous equation, we have
 , , ∆

, ̂ , ∆ .

(5.38)

72 5 Approximate Dynamic Programming on Time Scales

This equation tells us that the cost of the policy , is less than or equal to
the cost of any admissible policy ̂ , . We conclude the policy ,
is optimal and that, since ̂ , is arbitrary, we have , , .
Therefore, any optimal policy must satisfy the HJB equation given by
(15).

The calculus of time scales admits many different chain rules depending on
various conditions on the functions of interest. The key step in the proof of the
HJB equation is in the reversal of the chain rule. In principle, given any chain
rule, a different form of the HJB equation can be derived. For example, the proof
assumed the -complete differentiability of . If instead it is assumed that
is -completely differentiable, it is possible to obtain, by a different chain rule of
Bohner and Guseinov, 2004, the following form of the HJB equation:

 0 min , , ∆ ,∆ , ,
(5.39)

This difference could prove crucial in an application, depending on the form of the
state variable . It is important to note that further research on time scales
calculus into new and more powerful versions of the chain rule for partial
derivatives will result in new ways to frame the Hamilton-Jacobi-Bellman
equation on time scales.

5.5.2 Nabla Derivative Version

Now we extend the theorem proven in the previous section for the case of the
backwards, or nabla, time scales derivative. Many of the details remain similar.
This content appeared in Seiffertt, Sanyal, & Wunsch, 2008b.

Consider now the system

 , (5.40)

where represents states and is the control. Let ∈ , : ℝ, and
 . The cost-to-go function : ℝ is given by

 , , (5.41)

where is the initial decision point and , is the cost. Assume is
delta-differentiable and is -completely delta differentiable. Furthermore,
require to satisfy

 . (5.42)

5.5 HJB Equation on Time Scales 73

Then the HJB equation on time scales is given by
 0 min , , ,, , . (5.43)

This is an equation that any optimal policy of the minimization problem must
satisfy.

Theorem 5.4 (Hamilton-Jacobi-Bellman Equation with Backwards Derivatives).
Let , be a solution to equation (15) such that

 0 min , , ,, , . (5.44)

Assume the boundary condition , and and
suppose , attains the minimum called for in equation (5.54) for all states
and all times. Let be the state trajectory, subject to the condition , that corresponds to applying the controls , at each
decision point .

Then the function , is the optimal cost-to-go function , , and
the control , is optimal.

Proof
Let , be a control policy with state trajectory . Our goal is to show
that the policy , achieves a cost equal to, at most, this arbitrary , , which will mean that , is our optimal control. We begin
using equation (5.44) to give

 0 , , , , , . (5.45)

Noting that, via (10), we have , , we can rewrite (5.45) as

 0 , , , , . (5.46)

and, by using the chain rule, we can rewrite as

 0 , , . (5.47)

Integrating over the time horizon yields

74 5 Approximate Dynamic Programming on Time Scales
 0 , , . (5.48)

Using the fundamental theorem, substituting boundary conditions, and rearranging
terms gives
 , , , . (5.49)

The details of these operations follow those in the proof of Theorem 5.2. From
our hypothesis, we assume the controls , and their corresponding state
trajectory minimize the value function , . Using this information
and the initial condition , we can replace the inequality with
equality in the case of these quantities:

 , , , . (5.50)

Combining with the previous equation, we have

 , ,
, , . (5.51)

This equation says that the cost of the policy , is less than or equal to the
cost of any admissible policy , . We conclude the policy , is
optimal and that, since , is arbitrary, we have , , .
Therefore, any optimal policy must satisfy the HJB equation given by (14).

5.5.3 Alpha Derivative Version

The final derivation of the HJB equation is proven to be viable on the most
general of the time scales derivatives, thus showing that the fundamentals of
dynamic programming hold for domains vastly more general than any considered
before this point.

Consider now the dynamical system given by

 , (5.52)

where represents the states and represents the control. Let ∈ , : ℝ,
and . The cost-to-go function : ℝ is given in the alpha case
by

5.6 Conclusions 75

 , , α (5.53)

where is the initial decision point and , is the cost.
Then the HJB equation on generalized time scales is given by
 0 min , , ,, , . (5.54)

This is an equation that any optimal policy of our minimization problem must
satisfy. The following theorem states the HJB equation with the alpha derivative.

Theorem 5.5 (Hamilton-Jacobi-Bellman Equation Using Alpha Derivatives).
Let , be a solution to equation (5.53) such that

 0 min , , ,, , . (5.55)

Assume the boundary condition , and , and
suppose , attains the minimum called for in equation (14) for all states
and all times. Let be the state trajectory, subject to the condition , that corresponds to applying the controls , at each
decision point .

Then the function , is the optimal cost-to-go function , , and
the control , is optimal.

The proof of this theorem is similar to that of Theorems 5.2 and 5.3. It appears
in full in Seiffertt, 2009.

5.6 Conclusions

The time scales calculus is an increasingly relevant and developed area of
mathematics with wide-ranging opportunities for application. This book has
established that the dynamic programming algorithm, derived from Bellman’s
Principle of Optimality, pertains to time scales. Also derived is the Hamilton-
Jacobi-Bellman equation on time scales, and it has been demonstrated that a
family of such equations exist. The solution of such an equation is the
fundamental goal of ADP. This chapter identifies three significant directions that
the investigation of ADP on time scales can take. First, as the derivation of the
HJB equation was dependent on the mathematics of the time scales calculus of
multiple variables in general, and on the chain rule in particular, further variations
and extensions in this area will prove critical. The generalized Stokes theorem,
principles of the variational calculus, and more complete chain rules are three
areas where new contributions are of exceptional need.

76 5 Approximate Dynamic Programming on Time Scales

Second, numerical approximation work in time scales remains a promising
endeavor. With the availability of computational resources such as the Time
Scales MatLab Toolbox from the Baylor University Time Scales Group, both
applied and theoretical investigation into the numerics of time scales calculus can
be pursued. Numerical differentiation and integration techniques on time scales
would provide significant value, as would time scales extensions of optimization
algorithms, be they population-based models from the computational intelligence
literature or provably convergent methods from applied mathematics (Abramson
& Audet, 2006). Also needed are demonstrations of ADP-based controllers
operating in a time scales framework. This brings us to our third direction for
growth: applications.

In addition to the electric circuit, population biology, and virus outbreak
modeling applications to which time scales has been applied (Bohner & Peterson,
2001), the field of time scales control needs to show significant upgrade to larger-
scale problems. Analysis of technical trading rules, macroeconomic dynamical
models, and monetary policy are areas in economics and finance in which time
scales can be used and in which time scales-based controllers would be of great
interest.

While the study of time scales can provide a concise theoretical unification of
control theory in the discrete and continuous case, it can also provide so much
more than that. There are important application areas in which dealing
simultaneously with discrete and continuous variables is critical (Werbos, 2006),
and the time scales calculus provides a natural and powerful framework for such
exploration.

J. Seiffertt & D.C. Wunsch: Unified Computational Intell. for Complex Sys., ALO 6, pp. 77–89.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Chapter 6
Backpropagation on Time Scales

6.1 Overview

This section extends the previous section’s focus on the unified computational
intelligence goal of developing the capability to adapt. The dynamic
programming algorithm typically utilizes neural networks as function
approximation tools. Therefore, discussing how to train a neural network within
the unified framework of the time scales calculus contributes directly to this goal.

The results presented here are adapted from a paper that has been accepted for
publication in IEEE Transactions on Neural Networks but that, at the time of this
book’s completion, has not yet appeared.

6.2 Introduction

Backpropagation, based on the mathematical notion of an ordered derivative, is
the most widely used neural network learning technique.. This section presents a
formulation of ordered derivatives and the backpropagation training algorithm
using the important emerging area of mathematics known as the time scales
calculus. This calculus, with its potential for application to a wide variety of inter-
disciplinary problems, is becoming a key area of mathematics. It is capable of
unifying continuous and discrete analyses within one coherent, theoretical
framework. Using this calculus, this book presents a generalization of
backpropagation appropriate for cases beyond the specifically continuous or
discrete. This book also develops a new multivariate chain rule of this calculus,
defines ordered derivatives on time scales, proves a key theorem about them, and
derives the backpropagation weight update equations for a feedforward, multi-
layer neural network architecture. By drawing together the time scales calculus
and the field of neural network learning, the first connection between these two
areas is presented.

The desire to handle both discrete and continuous input signals within one
theoretical framework has been driving much recent research in areas such as
optimal control, the modeling of dynamic ecological population systems,
intelligent robotic systems, and economic utility theory. Many applications require
such a capability, and the emerging area of mathematics known as the time scales

78 6 Backpropagation on Time Scales

calculus is being used increasingly for such purposes. Introduced in (Hilger,
1989), the time scales calculus provides a unified language for handling both
discrete and continuous equations.

A model of the backpropagation algorithm based on this time scales calculus is
presented. The variables are allowed to take on either discrete or continuous
values, and a rule to update the weights in this general form is derived. The
original version of backpropagation was discrete in nature, but researchers have
since developed it in the continuous case. These results are the first utilizing this
new mathematics to discuss neural network learning in a more general way. No
restriction is made in this development regarding whether the network variables
ought to be discrete or continuous. Models admitting either difference or
differential equations can be discussed fruitfully without our framework.

Ordered derivatives, a concept invented by Paul Werbos to track the
sensitivities of variables within the sorts of systems often studied by social
scientists, are also treated in this general time scales case. Key to the development
of the backpropagation algorithm is the notion of a chain rule for ordered
derivatives. This chain rule in the time scales calculus is proven, and what an
ordered derivative means within this new mathematics is defined. Note that the
time scales calculus itself admits a wide variety of derivatives. Therefore, care
must be taken when working with chain rules and differentiation in general.
These results hold for the common delta derivative and its backwards analog, the
nabla derivative. Further derivatives, including the alpha and diamond-alpha
derivatives, may also be applied to gradient descent-based neural network learning
in the future.

This chapter is organized as follows. The reader is referred to Chapter 4 of this
book, which covers basic notions of the time scales calculus needed for our work
here. It contains the proof of a new multi-variable chain rule on time scales.
Section 6.3 presents the ordered derivatives, discusses network conventions, and
presents the proof of the ordered derivative chain rule. Section 6.4 uses this
theorem to derive the backpropagation update equations on time scales. Finally,
Section 6.5 discusses the limitations and extensions of the work and provides a
view of the future of this avenue of research.

6.3 Ordered Derivatives

In his PhD dissertation (Werbos, 1974, reprinted in Werbos, 1994), Paul Werbos
introduced the idea of an ordered derivative distinct from the notion of a
traditional direct partial derivative in common use in the analysis of physical
systems. The use of these ordered derivatives is motivated by the particular
character possessed by social systems as compared to those systems that operate
under strictly physical dynamics. In these systems, it makes sense to model using
a series of variables that are each the consequence of a variable appearing earlier
in the system. Hence, these are called ordered variables.

Werbos shows that the traditional chain rule for total derivatives fails to
provide an adequate framework for the calculations needed for the investigation

6.3 Ordered Derivatives 79

not only of such an integrated socio-economic system, but also for a wide array of
other mathematically related connectionist systems, such as the problem of
political forecasting described in detail in his dissertation work. However, he goes
on to prove that a chain rule for ordered derivatives is in fact capable of driving
the necessary calculation engine for studying these sorts of systems. While he
does not term this method backpropagation, that being the name given the
technique when popularized and independently discovered by others, the
algorithm he lays out is in actuality the very same one which today powers most
of the neural network learning worldwide. In addition, Werbos establishes
backpropagation as a viable manner by which to calculate the needed derivatives
not only in neural network training but for the manipulation of weights for a broad
spectrum of adaptive systems.

To complete the theoretical foundation of backpropagation, Werbos proved a
special chain rule for these ordered derivatives that worked for the applications in
which the traditional chain rule of continuous analysis broke down. This chapter
contains the definition of the ordered (delta) derivative on time scales and the
proof that the chain rule obtained by Werbos holds true in this new environment.

6.3.1 Network Definitions

Following Werbos, define the following system variables: input and output
, which approximates the target output . The dimension of the outputs is

denoted by n. The relationship between inputs and outputs is determined via a
series of adaptive weights W. It is the goal of backpropagation, and hence the
ordered derivative calculations, to tune W in such a way as to reduce an error
measure between and Y. The implicit time scale in Werbos's work is an isolated
subset of the integers . This book considers time scales of higher generality and
will assume ∈ , where is not restricted to a subset of . Let N denote the
number of inputs or the number of time steps the system is allowed to compute.

Define the following measure of system performance/error:

 ∆ 12 ∆ (6.1)

This form represents the standard least-squares error measure. Note that the
integral takes on the role of the generalized summation operation and is
appropriate for any time scale free of restriction to an isolated case. The proper
summation that remains represents the dimension of the output vector, which is a
fixed scalar value not related to our time scale and is thus not subsumed by an
integral.

The form of this measure when defined on different time scales can be
investigated.

80 6 Backpropagation on Time Scales

Consider a function : ℝ where , , … . Then, ∆∑ ∈ , , where is the starting point of the time scale and is the
graininess function of as defined in Chapter 4. So, if , then the
performance measure becomes

 ∆ ∈ , 12∈ ,

(6.2)

Similarly, for the case of the quantum calculus time scale , 1, the
following error obtains:

 ∆ 1

1 2

(6.3)

In principle, this error term can be calculated for any time scale under
consideration. It should be mentioned that in the case in which the time scale is

not isolated, the resulting integral will be of the form ∆ , where the

upper limit is the forward jump operation applied to the variable rather than
simply the variable itself. This requirement follows from technical details of
integration theory on time scales beyond the scope of the current discussion. The
theory presented thus far provides sufficient background for the theorems
presented in this book.

Regardless of the choice of time scale, which informs the construction of the
error measure, the network equations remain to be analyzed. The chain rule for
ordered derivatives is needed here, as this is the tool used to turn the network
equations into a computation unit for the proper updating of the adaptive weights
via backpropagation. As a preamble to the chain rule theorem, it is first necessary
to discuss the notion of ordered derivatives.

6.3.2 Structure of Ordered Derivatives

In order to discuss the structure of ordered derivatives, consider the following
system:

 2 5 4 7

6.3 Ordered Derivatives 81

Distinguish between direct and indirect effects. The direct effect of a change in

 on , denoted , is equal to 2. Note that in this case the ordering of the

variables is not taken into account. Unlike a physical system in which the
evaluations of all the variables would be assumed to take place simultaneously

so that the calculation of would require the substitution of lower valued 's

into the equation for , in this ordered system the direct effect is calculated
wholly from the equation for without recourse to the equations representing
lower, or previous, levels of activity. The total derivative effect, then, in such an

ordered system is called the indirect effect and is denoted by In this case, this

indirect effect is equal to 66.
Furthermore, this notation corresponds to the continuous case. For the general

time scale case, denote the ordered derivative of the performance measure with
respect to an ordered variable as

 ∆

The following text develops the necessary definitions to make the above notation
precise.

Let , , … , be an ordered sequence of variables with ∈ .
These variables represent stages of a larger calculation (e.g., layers, in a sense of a
multi-layer perceptron network). What sets them apart as ordered is that they
follow a recursion given by

 , , … , (6.4)

In this way, the mathematics speak meaningfully of causation as a basis for the
relationship among the 's. The interest is in determining the way in which the
performance term changes with respect to one of the 's, i.e., it is desired to
calculate ∆ . Following Werbos, set up the error, which itself is actually the final
variable in the extended ordered set, as a sequence of recursive functions, which is
required to be -completely (delta) differentiable, such that

 , … , (6.5)

and

 , … , , … , , , … , (6.6)

These recursive functions describe the final node in the network, , as a function
of earlier variables in the ordering successively calculated. These functions

82 6 Backpropagation on Time Scales

will provide the machinery needed to discuss the chain rule for ordered
derivatives. In application, , also equal to the final variable in the ordering , is
the network performance/value measure that is to be optimized via the updating of
adaptive weights.

Now, the performance can be defined by reference to these recursive
functions. Define the ordered (delta) derivative of with respect to a previous
variable in the ordering by

 ∆ ∆

 (6.7)

where the functional relationship among the 's is repressed (i.e., all variables , , … , are held constant) when calculating

∆
 so as to properly represent

the ordered nature of these variables (that is, the derivative
∆

 gives us only the
direct effect of a change in on .)

With these definitions, the following chain rule may be proven.

6.3.3 The Chain Rule

The chain rule for ordered derivatives extends the normal chain rule of traditional
calculus to the special case of variables within an ordered system. In this way, the
full interplay among the components of such a system can be realized from the
mathematics. The backpropagation algorithm of derivative calculation hinges on
sifting the network equations given in the previous section through the ordered
derivative. In particular, this chain rule is key.

Theorem 6.1 (The Chain Rule for Ordered Derivatives)

 ∆ , , … , ∆ ∆

 (6.8)

Proof
We proceed via reverse induction on the index . We will start with 1 and
end with 1. Note that with , the nature of the definitions of the ’s and

’s force the terms
∆

 to equal 0; therefore, these terms do not contribute to the
summation. So, it will suffice to consider in the range 1 to .

Let 1. Then our hypothesis becomes

 ∆ , , … , ∆ ∆ ∆

 (6.9)

6.3 Ordered Derivatives 83

Since by definition , we have an identity and the claim is proven.
Now assume our hypothesis holds for 1 . We will proceed to show it is

true for . Noting that the recursive definition of the 's make them all equal,

we have that
∆ ∆

. This expression now requires use of our chain rule for n

variables proven in Chapter 4. Write explicitly as a function of :

 , … , , … , , , … , (6.10)

Due to the nature of the ordered system,
∆ 0 for 0 and so that the

expansion given by our n variable chain rule

 ∆ ∆ ∆ , , … , ∆ ∆

 (6.11)

reduces to

 ∆ ∆ ∆ ∆ ∆

 (6.12)

so that

 ∆ ∆ ∆ ∆

 (6.13)

Our induction hypothesis gives us

 ∆ , , … , ∆ ∆

 (6.14)

Combining these results yields

 ∆ ∆ ∆ , , … , ∆ ∆

 (6.15)

which is equal to

 ∆ ∆ , , … , ∆ ∆

 (6.16)

84 6 Backpropagation on Time Scales

and which reduces to

 , , … , ∆ ∆

 (6.17)

Thus, our claim, the chain rule for ordered derivatives, is proven.

The usual and most useful form of this theorem is given by the following
corollary:

Theorem 6.2 (Chain Rule for Ordered Derivatives Corollary)

 , , … , ∆ , , … , ∆ , , … , ∆ ∆

(6.18)

This corollary follows immediately from the chain rule theorem. Note that in
practice, is used as the final variable in the ordered system, , so that this
corollary will take the form

 ∆ ∆ ∆ ∆
 (6.19)

Furthermore, while this construction uses the delta derivative, the nabla derivative
formulation likewise follows immediately from the delta:

 (6.20)

The nabla derivative formulation is not used to derive backpropagation, but a full
theory of neural network learning could indeed be built upon this derivative. This
is a direction for future research.

Note that the time scales version of the chain rule for ordered derivatives
contains the term . This is due to the requirement of -complete (delta)
differentiability in our -variable chain rule. Further versions of both chain rules
can be developed which require differentiability, where 1.

With this chain rule, the weight update rules for the backpropagation algorithm
for neural network learning can be derived.

6.4 The Backpropagation Algorithm on Time Scales 85

6.4 The Backpropagation Algorithm on Time Scales

Prior to the development of backpropagation as the method of choice for
calculating derivatives to update the weights of neural networks, a direct
differentiation method was used. This method demands much in terms of
computational resources when the number of weights is larger than the number of
neurons. Since multi-layer feedforward systems typically satisfy this criterion, the
more efficient backpropagation is preferred. For a derivation of this algorithm in
the traditional continuous case, the reader is directed to a standard neural network
reference text such as Principe, Euliano, and Lefebvre, 2000.

To derive the backpropagation algorithm on time scales, work from the
assumption that the node activity of our network takes on the following form:

 (6.21)

where the are the adaptive weights. Note that these weights are part of the
ordered system model for the neural network.

From this, the change in an ordered variable with respect to changes in an
earlier node using the time scales chain rule can be calculated:

 ∆
 (6.22)

Now, the rate of change of the error measure with respect to an activity node
is given by
 ∆ ∆ ∆ ∆

 (6.23)

which via the chain rule may be written as

∆ ∆ ∆ (6.24)

and reduced to

 ∆ ∆ (6.25)

86 6 Backpropagation on Time Scales

where

∆ (6.26)

is the local error term, which measures the change in the performance measure
with respect to a change at the level of a local neuron.

The gradient descent delta rule on time scales is given by
 ∆ (6.27)

which captures the change in the weights as a change in the error function
modified by a learning rate .

The final step in the derivation of the backpropagation algorithm is the
integration of the delta learning rule with the equations obtained previously:

 ∆ ∆
 (6.28)

This form, which holds for nodes such that : ℝ, can account for networks in
which the input is either continuous or discrete using a single theoretical
framework and update equation. This also allows for the construction of
connectionist systems capable of processing inputs that can switch between
continuous and discrete signals while actively calculating. Further extensions of
the time scales calculus to unifications in the neural networks field are discussed
in the conclusion below.

6.5 Quantum Calculus

This section formulates the ordered derivative in quantum calculus and proves that
the chain rule derived by Werbos pertains to this alternate environment. It
concludes that the backpropagation approach to -derivative calculation is as valid
as the one for the classical derivative and, as such, neural network training on
quantum calculus may follow its traditional counterpart.

Further analysis of the network equations requires the chain rule for ordered
derivatives, as this is the tool used to transform the network equations into a
calculator of the proper updates of a system’s adaptive weights via
backpropagation. As a preamble to the chain rule theorem, it is necessary to
define what is meant by an ordered derivative for the quantum calculus
environment.

6.5 Quantum Calculus 87

Let , … , be an ordered sequence of variables with ∈ .
These variables represent stages of a larger calculation (e.g., layers, in a sense, of
a multi-layer perceptron network) and follow a recursion given by

 , , … , (6.29)

so that causation as a basis for the relationships among the ’s can be analyzed.
As with the case considered previously, it is important to determine the way the
error changes with respect to one of the ’s. Following Werbos, 1994, set up
the error as a sequence of recursive functions such that

 , … , (6.30)

and
 , … , , … , , , … , . (6.31)

Then, the ordered derivative of , which equals , is defined to be

 . (6.32)

The backpropagation algorithm of derivative calculation hinges on sifting the
network equations through the ordered differentiation operator. In particular, the
chain rule for ordered derivatives plays a key role. The following theorem
establishes this chain rule for the quantum calculus.

Theorem 6.3 (Ordered Derivative Chain Rule in the Quantum Calculus)

Proof
As in Werbos, 1994, we proceed by induction on . We will start with 1
and end with . With , the recursive definitions of the ’s and ’s force

the terms to zero; therefore, they do not contribute to the summation. So, it
will suffice to consider in the range 1 to .

Let 1. Then our hypothesis becomes

 . (6.33)

88 6 Backpropagation on Time Scales

Calling on the definition of the sequence of ’s, we see that so

that, since 1, the claim is proven.
Now, assume the hypothesis is true for some 1 . Our task is to show

that the claim holds for . Consider ⁄ . Since is defined

from ℝ ℝ, the delta derivative construction reduces to the traditional case.
Also, by definition, , … , , , … , .

Therefore,

(6.34)

for . From our definition from the preliminaries applied to our recursive
definition of the ordered variables , we have that 0⁄ when , as
the preceeding variables in the order are unaffected by the later variables in the

causation chain. This result allows us to reduce our equation to

. We collapse the first remaining term so that it matches the form of

our induction hypothesis ∑ , giving us

(6.35)

which is our desired result.

Thus, the chain rule for ordered derivatives in the quantum calculus is established.
With this result, neural network architectures in the quantum calculus can be
constructed and trained via backpropagation. While the traditional chain rule of
classical analysis fails to hold for ordered derivatives, the chain rule for ordered
derivatives does hold on -time scales. Since time scales in general, and -time
scales in particular, may be the appropriate mathematical framework to discuss a
certain class of resource allocation problems, and dynamic programming concerns
itself with optimization of multi-stage decision scenarios, a quantum calculus

6.6 Conclusions 89

approach to the approximation of the optimal solution becomes an exciting new
area of computational decision theory.

6.6 Conclusions

Ordered derivatives and the backpropagation update rule have been established
using the emerging mathematical field of time scales calculus. This calculus
unifies the discrete and continuous domains, so our results provide a complete
theoretical framework for discussing learning in connectionist systems that can
admit input signals of any type.

J. Seiffertt & D.C. Wunsch: Unified Computational Intell. for Complex Sys., ALO 6, pp. 91–109.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Chapter 7
Unified Computational Intelligence
in Social Science

7.1 Introduction

Having already discussed the use of unified computational intelligence to learn
and to adapt, this book now investigates its ability to seek. Computational social
science modeling allows heightened understanding of the dynamics of complex
systems in ways that the traditional analytical approaches could not. In this way,
unified computational intelligence algorithms can power models unlike anything
computable using a static or mathematical approach. Agent-based modeling,
using agents whose intelligence includes full-blown creativity thanks to their
ability to learn and to adapt, is revealing information about ourselves and the
world that has never before been supported. From how elephants mourn their
dead to how pandemics spread to large-scale financial market models, these
techniques are giving humanity a way to seek that used to be only the purview of
mystics and philosophers. In domains where the unified approaches to learning
and adapting prove advantageous, their combined ability to assist in seeking may
be great.

As the study of agent-based computational social science grows, so does the
need for appropriate techniques for the modeling of complex dynamic systems and
the intelligence of the constructive agent. This chapter frames the problem and
provides examples for which the unified computational intelligence techniques
described in previous chapters can be used.

This chapter forms the third part of this book. It contributes an awareness of
what these computational models can achieve. Too often, researchers in one
specialty are unaware of progress being made in other areas. Humanity’s ability
to compute is a universal good; it is not to be filed away within a Computer
Science or Computer Engineering curriculum and never seen by those pursuing
the B.A., M.A., or EdD. degrees. The hope of this part of the book is that those
specializing in both computation and social science or the humanities will be made
aware of the existence of other fields and of how synergistic their union could be.
Computing is not just for those who taught themselves hexadecimal in seventh
grade, nor are the social sciences and the humanities just for those who cannot
handle mathematics or write a nested loop. Everyone is in this together, and this
chapter is a call for unity.

92 7 Unified Computational Intelligence in Social Science

Section 7.2 comes from a graduate-level course on Computational Intelligence
and Game Theory taught at Missouri University of Science and Technology in the
spring semester of 2009. Cross-listed in the Computer Engineering, Mathematics,
Economics, and Computer Science departments, this course, designed by the
author from scratch, represents the author’s diverse background and brought
together computation, analysis, and social science in a way that armed the students
with the tools to perform research in these areas. This section discusses where
computational intelligence fits into the picture as far as game theory and social
modeling is concerned.

Section 7.3 is adapted from material that appeared as a chapter in a book on
neural networks in economics and business (Zhang, 2007). It details the agent-
based economics literature and presents ways for unified computational
intelligence architectures to contribute in a fundamental way to advances in this
research area.

Section 7.4 appeared in the IEEE Computational Intelligence Magazine in a
special issue on computational finance. As the world struggles to make sense of
recent financial crises, due in part to failures in mathematical modeling, the time
for those trained in computation to become aware of the opportunities in areas
beyond the scope of traditional engineering is upon us. Major advances await in
the understanding of financial markets, and unified computational intelligence
architectures can help build the models to achieve such advances.

7.2 Game Theory and Computational Social Science

Everything evolves. The world is made up of complex systems, from society to
ecosystems to economies to our own brains. All are connected, and these
connections are vastly more complicated than traditional analytic methods have
been able to explain. To understand these systems at the heart of the world around
us, it is time to turn to new tools made possible by advances in technology. The
language of evolutionary game theory, complemented with the power of
computational intelligence, holds the promise to guide us towards uncovering a
sort of dynamic previously unknown.

This section seeks to study this still emerging approach to modeling, which
relies on computational techniques, specifically agent-based computational
models, instead of traditional dynamical system models used in the past to
describe the complexity of massive interaction. To this end, we will explore the
agent-based techniques of the field of computational intelligence and use them in
tandem with the explanatory ability of traditional game theory.

7.2.1 Computational Intelligence

To find a local extrema of a differentiable function, a traditional analytic approach
such as Newton's Method will proceed according to a fixed rule. First, choose an
initial guess and then update according to

7.2 Game Theory and Computational Social Science 93

 (7.1)

If a solid starting point has been chosen, then this algorithm is sure to deliver the
desired optimal value. This algorithm does not adapt. It simply is. Compare to a
basic agent-based computational intelligence algorithm that generates a population
of agents and then send them off to optimize via

 argmax, argmax (7.2)

At first glance, this may look similar to Newton's Method. However, further
inspection reveals two important differences common in computational
intelligence techniques.

First are the random numbers and . These numbers add an exploratory
aspect to the algorithm not found in Newton's Method. These random numbers
may lead the agents in directions a straight gradient descent would never dream of
visiting. In fact, this element can be viewed as representing a level of creativity
that gives this algorithm a much better chance of avoiding getting lost in
suboptimal basins of attraction such as local extrema if the initial guess falls
within certain regions which are, of course, impossible to know beforehand. It is
for this reason that the most popular method of training neural networks, called
backpropagation and based on a cousin of Newton's Method, is slowly being cast
aside in favor of the methods of computational intelligence. When seeking a
global optima, it is desirable to use a method that is less likely to succumb to the
temptations inherent in a simple update rule such as Newton's Method. Instead,
some bit of randomness is used to allow the agents making up the algorithm to
adapt their way out of suboptimal choices.

The second important difference between these two optimization schemes is
found in the interplay of the terms argmax , and argmax . The former
indicates the most optimal position found by any agent thus far in the simulation,
and the latter records the individual agent's best effort. These maxes, particularly
the former, provide a way for the agents to interact with each other during the
optimization run. This interaction, while stemming from simple basic rules, can
lead to massively unpredictable aggregate emergent behavior within the entire
society of agents. In fact, the term argmax , is called the social component, as
it forces the agents to keep in mind what their leader is doing. It also introduces
an exploitation tendency into the system to counter the exploration instinct
embedded in the stochastic influence of the variables and . Without the social
element, the algorithm can readily devolve into random search. It is in the
interplay between these two pulls on the agent's will that the true complexity
begins to emerge. This algorithm can be modified further by adding a term to
represent a neighborhood effect in which each agent is moved by the standing of

94 7 Unified Computational Intelligence in Social Science

the other agents closest to it, momentum terms that weigh the various influences in
different ways, or specialist agents or entire coevolutionary societies all
interacting in assorted ways and generating quite the array of complex emergent
behavior.

It is also worth noting that the agent-based approach requires no knowledge of
the function itself, nor does it constrain the nature of the function in the slightest.
Whereas Newton's Method not only requires that the function be twice
differentiable but also that it be possible to calculate these derivatives, the
computational intelligence algorithm can attack any function regardless of
smoothness and without knowing anything about it aside from the points
evaluated during the simulation. Also, it is not hindered by inflection points.

These two elements––randomness and social interaction––are hallmarks of
computational intelligence techniques. Genetic algorithms rely on random
selection and the makeup of other agents in the society. Even neural networks
involve individual neurons interacting in ways that are ordered yet unspecified in
the aggregate. While basic feedforward networks may be adequately modeled
analytically, the networks of the recurrent variety and those with complex and
heterogeneous transfer functions very quickly stress the explanatory ability of the
classical mathematics. Neural network function approximators go far beyond
standard statistical regression techniques in a way similar to the manner in which
agent-based methods shine more brightly than a seventeenth century invention
such as Newton's Method.

This idea of complex behavior emerging from simple rules is a powerful one.
It is the secret to adaptation and is the reason agent-based models of complex
systems enjoy a character distinct from those of traditional analysis. While at
some level it is true that an algorithm such as the agent-based optimizer presented
above can be cast as a highly coupled stochastic dynamical system and
approached from the direction of traditional analysis, such abstraction only serves
to capture the simplest of agent-based methods. Even then, such analysis, while
helpful to a degree, fails to reveal anything decisive about the algorithm that
cannot be observed from the computation itself. Indeed, another trait found in
many agent-based methods is imperviousness to the mathematician's formal
proofs. The mathematician can only watch as the agents swarm towards the
desired extrema; she cannot prove mathematically that they must do so, even
given unlimited time to act or some other equally implausible simplifying
assumption common in this genre of philosophy.

All of these gains from agent-based models are being realized due to massive
increases in computing power. Scientists no longer have to write equations to
model systems of interest. Instead, they can design robust simulations in which to
test hypotheses and draw conclusions about the world. This science of simulation
is made possible by the ability to carry high-powered computing devices in a
pocket. This technological advancement has allowed computationally armed
investigators to go beyond ink and papyrus, beyond ballpoint pen and paper, and
even beyond stylus and touchscreen as modeling tools. The parameters of this
young science have not yet been established, and while much thrashing is still

7.2 Game Theory and Computational Social Science 95

occurring due to its nascence, it is already showing promise and making important
contributions in many areas.

To some, the fact that this science's theory has yet to be penetrated to a
meaningful extent by the tools of mathematical logic and formal proof is a dagger
through its heart. How, they ask, can you use an optimization algorithm without
knowing with certainty that the result you get is the one desired? How can an
engineering system built using this technology be reliable? These questions
ignore two vital points: (1) the assumptions needed for technical precision more
often than not are of such an impractical character as to not be of use outside a
mathematics journal and (2) bridges were built way before humans had a solid
theory of statics and dynamics with which to analyze their construction. This is
not to say that proof-centric results have no value; just the opposite, in fact. They
have tremendous value, and computational scientists who fail to grasp the nuances
of mathematical rigor are selling their work short. However, the same scientists
need not wait for the mathematicians to prove that an agent-based optimizer
converges according to some abstract optimality criterion in some excessively
long period of time before applying the tool to actual problems at hand. Neither
the mathematician nor the engineer has primacy. They are connected in a wild
sort of dance in which the responsibility for leading is constantly up in the air.
Engineers plow forward and develop techniques that work in practice. In turn,
mathematicians take these roughshod ideas, add some shine, and craft a reflection
of humanity's experience in the world consisting of pure form and essence. Then
the applied folks read this literature and find inspiration for new ideas of their
own. The fact that agent-based computational science has yet to admit the sort of
coherent structure found in dynamical systems theory is a feature, not a bug. The
next time a mathematician alludes to this, kindly remind him or her that Newton
invented and used the derivative two centuries before it was rigorously defined.
Computational science is following in the footsteps of the calculus, proving itself
in the field before being properly and fully understood and defined.

Why the word intelligence? What is meant by computational intelligence,
exactly? How can a computer be intelligent? After all, is it not said that
computers can only do what you tell them to do? How is that intelligent? Rather
than getting caught up in a discussion of a precise meaning of intelligence, it is
more productive to consider what it is that these algorithms produce. Yes, it is
factually true that computers only do what they are programmed to do. However,
this statement is also misleading. Computers can, after all, be programmed to
write a program (or even to construct a proof!) that a human thinker could not
have come up with on his own. Through the use of adaptive learning techniques,
researchers have taught computers to play Backgammon at a level surpassing that
of any human player. In fact, these computational methods have produced
strategies that were new to human experts, and this is a game that humanity has
played and studied for five-thousand years. If a human player is capable of
intelligence and creativity, perhaps these same qualities can be attributed in a
nontrivial way to the play of a machine capable of exhibiting such characteristics.
If games remain unconvincing, then how about poetry, art, and music? All of
these have been created at a high level using adaptive agents. Whatever the fruit

96 7 Unified Computational Intelligence in Social Science

of intelligence may be, it is clear that the production generated by this level of
computation is at least in the running to be ranked among such. In the end, many
people would characterize intelligence as the ability to adapt to a changing and
complex environment in the pursuit of some goal and, as mentioned earlier, it is
this quality of adaptation that forms our central theme.

The ancients looked at the stars and invented mathematics to describe their
patterns. These mathematical techniques have come a long way from their origins
in prehistory, but they still have their limits. Humans now desire to look beyond
the movement of stars and into their very hearts to see how they work and breathe,
live and die. To do this, sophisticated partial differential equation models are
written that capture the nuances observed by astrophysicists. However, when it
comes time to solve these equations, to really get a feel for the development of
stars, these equations are not solved analytically. Rather, computational models
provide the greatest insight. Humanity has gone from a people who write about
the movement of stars in philosophy to a people who discover how the stars are
built using technology. It is humanity’s captive attention to the stars above that
has guided so much of history. Maybe the astrologers are onto something.

7.2.2 Agent-Based Computational Social Science

Traditionally, scientists studying the mechanisms of human exchange would
approach their investigations using the tools bequeathed to them by colleagues
enamored of particles, energy and, yes, stars. Importantly, the mathematical
frameworks produced in the nineteenth century by Leon Walras stand today as the
technology most used by economists to describe the complexities of exchange,
scarcity, and markets. These general equilibrium models seek to characterize the
interplay of prices, demand, and supply. To use them for such, economists
incorporate common simplifying assumptions to produce tractable mathematics.
Many empirical studies question these assumptions, and new schools of economic
thought are being developed to address their shortcomings. The field of
Agent-Based Computational Economics is one of these schools. Drawing on
advancements in our technology, it is able to analyze complex systems in a way
unknown to nineteenth and even to some extent twentieth century minds. It is also
a call of sanity, as social science researchers need not toil under the same
mathematical stressors that drove Georg Cantor to madness!

Researchers in this field are able to ask new questions. In particular, the
Walrasian equilibrium models assumed the existence of an oracle that set prices
for the entire economy. However, human history shows us that in the absence of
central control, societies tend to develop regularities. Recently developed
generative approaches use agents with flexibility of action to study the emergence
of global consistencies. Public policy analysts are interested in valuing a host of
competing policy plans. Computational models provide a laboratory of sorts for
the introduction of a variety of rules, the results of which can then be gathered as
evidence in either support of or opposition to a given plan. This addresses the
general disadvantage that social scientists face when running experiments as

7.2 Game Theory and Computational Social Science 97

compared to their peers in physics and chemistry labs. When natural experiments––
that is, simply waiting for events to occur on their own and then rushing to gather
data––prove uncooperative, computational economies may be of great assistance.
Also, these artificial economies can be rerun time and time again with different
initial conditions or assumptions. In this way, a study of global dynamics can be
undertaken that would have been unthinkable in Walras's time. Also, as in the
above discussion of the computational intelligence approach to optimization,
computational agents have an ability to interact with each other that is
unsupported in traditional approaches. Agents can send each other messages in an
adaptive, unscripted way, either to simply say “this point right here is the best I’ve
found so far" as in the optimizer, or in more elaborate socially and economically
meaningful ways. Finally, perhaps the greatest feather in agent-based
computational economics’ digital cap is its ability to usefully investigate out-of-
equilibrium phenomena. The classical general equilibrium models only tell us
what price levels lead to markets clearing. In the real world, however, out-of-
equilibrium systems are observed on a continual basis, as exogenous shocks occur
with regularity and unpredictability. The mathematics of dynamical systems, born
as it is from the study of the continuous motion of objects through Newtonian
space, is insufficient for the theoretical study of these sorts of system states.
Computationally, however, the entire life of the economy can be witnessed, from
inception through various equilibria and basins of attraction.

Economics is not the only social science benefiting from agent-based modeling.
Even in purely social systems, the idea of explaining a pattern is nearly equivalent
to showing that it is the equilibrium state of some analytic model. To study how a
system attains equilibrium or to discuss out-of-equilibrium behavior, other
methods are required. In particular, an agent-based model of the Anasazi
civilization shows how computational models can be used by archaeologists and
anthropologists. This model is able to generate a society, fit to actual
archaeological and geographical data, and provide an explanation of the society's
history based on the actions of individuals rather than relying on models that
require the homogeneity of agents and that are constrained so as to permit closed-
form analytic solutions.

Social scientist and Brookings Institute senior fellow Joshua Epstein even
argues for a new standard for scientific explanation: “If you didn't grow it, you
didn't explain it." He feels that agent-based methods, or generative methods, are in
fact the tool to be used in scientific investigation.

This all said, and the power of equilibrium models having been questioned,
attention is now directed to a field that has at its core the definition of, and search
for, equilibria.

7.2.3 Game Theory

It is perhaps not a coincidence that it was Jon von Neumann, computing pioneer
extraordinaire, who, along with economist Oskar Morgenstern, wrote the first text
on game theory and with it the first analytical approach to discussing social

98 7 Unified Computational Intelligence in Social Science

interaction in a formal way. The focus of this section, after all, is the study of
ways in which computational techniques have aided this study.

Beginning as a formal description of competitive two-person strategy in parlor
games, game theory has evolved into a general framework for both competitive
and cooperative dynamic interaction among any number of agents over any
conceivable time horizon. A more appropriate name would be Multi-Agent
Interaction Theory, but the term “game" seems here to stay and represents any sort
of strategic interaction among various agents, or players. Game theory wields
much explanatory power even in its basic analytic form, even considering its
heavy reliance on the calculation of equilibria. For example, the Talmud presents a
classic problem about division of resources to creditors after one's death. It gives
three examples, two of which were easily understood but the third of which
remained a mystery to scholars for literally thousands of years. It wasn't until the
1980s that the division rules were fully understood using the tools of game theory.

This chapter first will explain the basic mathematical structure of game theory,
including normal and extensive form games and equilibria. It is important to have
an appreciation for rigor when doing analytical modeling work, and a significant
contribution game theory has made to those looking to discuss profitably the
nuances of social interaction is a precise language. Topics covered will include
Nash equilibria, dominated strategies, credible and incredible threats, and other
terms carrying clear technical weight. These terms help to stage the basic
interplay of agents working to achieve some goal while considering the actions of
others. Determining what solution is optimal is a major component of game
theory, and this chapter will cover many ways to calculate equilibria.

We will then move on to the theory of repeated and evolutionary games. When
an agent is placed in a situation in which a given encounter must be undertaken
repeatedly, a different sort of equilibrium strategy emerges. These evolutionary
dynamics will be discussed in detail and are a particularly harmonious fit for the
adaptive flair of computational intelligence techniques. Trigger strategies, the
Folk theorems, reputation effects, the replicator dynamics, and evolutionary
stability will be among the topics covered.

Finally, some time will be spent discussing behavioral games and agent-based
approaches to social modeling. Behavior game theory challenges dearly held
economic assumptions regarding the nature of rationality by running actual
experiments with human subjects and comparing the results with the predicted
equilibria generated by hyper-rational agents. Agent-based approaches, discussed
in more detail in the previous section, will act as a capstone. They stand at the
frontier of social modeling, drawing upon the power of the computer and the spirit
of game theory's rigor.

7.3 Economics and Finance

7.3.1 Introduction

Economists have long recognized their inability to run controlled experiments a la
their physicist and biologist peers. As a result, while much real science can be

7.3 Economics and Finance 99

done using natural experiments, analytic mathematical modeling, and statistical
analysis, a certain class of discoveries regarding the governing dynamics of
economic and financial systems has remained beyond the grasp of such research.
However, recent advances in computing show promise to change all that by
gifting economists with the power to model large-scale, agent-based environments
in such a way that interesting insight into the underlying properties of such
systems can be obtained. It is becoming increasingly evident that engineering
tools from the area of computational intelligence can be used in this effort.

Agent-based methods are enjoying increased attention from researchers
working in economics as well as in pure and applied computation. The central
focus of this still nascent field involves the generation of populations of
interacting agents and the observation of the resulting dynamics as compared to
some optimality criterion, analytically or otherwise obtained. Typically, some sort
of learning algorithm, such as a simple feed-forward, multi-layer perceptron
neural network, will be implemented in the model. Often, other techniques of
computational intelligence, such as genetic algorithms, will be used to evolve the
population, showing the promise that gains in this area of computation have for
social science investigation.

7.3.2 Background

The fundamental Agent-Based Computational Economics framework structure is
overviewed in Testafasion (2006) and will be reviewed here. The particular
formulation of the agent problem proposed in this chapter is based on the
presentation in Chiarella (2003) and will be discussed following the general
overview. Finally, other supporting literature will be surveyed to help solidify the
main ideas of this section and to guide the reader in other directions of possible
research interest.

7.3.3 Agent-Based Computational Economics

A standard course of study in economics grounds the reader in a host of
equilibrium models: the consumer preference theory of microeconomics (Binger,
1998), the wage determination cycle of labor economics (Ehrenberg, 2003), the
concept of purchasing power parity in international finance (Melvin, 2000), and
the Walrasian Auctioneer (Leijonhufud, 1967) of macroeconomics. In all of these
approaches to describing economic phenomena, the student is presented with top-
down analytic treatments of the dynamics of an entire economy’s worth of
individual interacting agents. While the local scale behavior informs the higher-
level dynamics, it is only the global portion that enjoys specific elucidation.
Exactly how the lives of the agents respond to an economic shock in order to
return the system to the long-run equilibrium is not considered. Furthermore, the
level of simplifying assumptions necessary to achieve clear and acceptable results
from an analytical model, via some fixed-point theorem, often serves to cast a
significant measure of doubt over the entire affair. Importantly, this problem is
not a fixture of economics alone; these models and the chase for mathematically

100 7 Unified Computational Intelligence in Social Science

provable periodicity results permeates other areas of science, notably population
biology (Bohner, 2006). Also, many proof-theoretic approaches require overly
restrictive and wholly unrealistic linearity assumptions to arrive at a tractable
model, denying insight that claims the answer to an economic question may have
more than one root cause (Judd, 2006.)

The discipline of Agent-Based Computational Economics (ACE) analyzes an
economy from another point of view, one termed “constructive” due to the focus
on the fundamental elements of the system as opposed to the global dynamics.
Instead of specifying long-run equilibrium behavior, the ACE researcher takes
care to capture in his or her equations the salient behaviors of the individual
agents. Any emergent dynamics or long-run convergence will reveal themselves
as a result of the collection of individual choices. In this way, equilibrium models
can be tested in a manner akin to a controlled experiment in the physical sciences.
The population of computational agents can be constrained in a certain way, and
the resulting dynamics explored via simulation. Such studies can confirm
theoretical fixed-point, long-term equilibrium results or serve as evidence that
such hallowed equations may be missing something quite vital about the system’s
reality.

For example, Hayward (2005) finds that computational experimental modeling
fails to support standard analytic models for price forecasting and trading
strategies in international financial markets. He finds, in contradiction to the
notion that a trader’s success is a function of risk aversion instead of proficiency
in accurate forecasting, that the agents with short time horizons in an environment
with recurrent shocks emerge as dominant, as they adapt to and learn about the
nature of the economic system in which they operate. His work incorporates
genetic algorithms and multi-layer perceptron neural networks which, along with
swarm intelligence and fuzzy logic methods, are core areas of the computational
intelligence field (Engelbrecht, 2002).

ACE models begin by specifying attributes and modes of interaction among the
agents. One way to implement this specification is through an object-oriented
programming approach, wherein the agents could be considered objects, the
attributes private data members, and modes of interaction publicly-accessible
methods. The books by Johnsonbaugh (2000) and Horstmann (2004) include
details on object-oriented programming, the specifics of which are not integral to
our current discussion. Another tool accessible to researchers conducting ACE
investigations is one of the standardized modeling frameworks, such as the one
published by Meyer (2003). Finally, analytic equation models can be found in the
literature, such as the early work of Lettau (1997). It should be noted that these
models, while analytic in nature, still conform to the constructive ACE philosophy
in that they are employed in the characterization of the salient features of the
agents. The equations are not being used to set the dynamics of the system a
priori or to launch a search for a periodic equilibrium solution.

Whatever agent representation a researcher chooses, it is important that the
computational intelligence technique used to model the agent’s ability to adapt to
a complex environment be sufficiently robust to generate accurate and substantive
results. An experiment that seemingly shows a population of agents unable to

7.3 Economics and Finance 101

learn to converge to an analytic equilibrium may not really be unearthing a new
economic truth; instead, this could be an indication that the particular
computational learning algorithm employed in the simulation is insufficient for the
complexity of the task. Furthermore, care must be taken to appropriately read the
output of an ACE simulation. Unlike standard econometric approaches (Greene,
2003 and Kennedy, 2001), it is often difficult to calculate a level of statistical
confidence to accompany the conclusions of an ACE model. It should be noted
here that the computational techniques falling under the banners of Adaptive
Resonance architectures and Partially Observable Markov Decision Processes,
discussed later in this chapter, have the advantage that they come equipped with
readily available confidence level information, thus assuaging this objection to
numerical investigation of economic phenomena. In any case, an increase in
knowledge of advanced computational techniques, such as those in computational
intelligence, will go a long way towards overcoming the inertia naturally present
in any community in the face of change in paradigm, as better communication and
pedagogy will help to ward off the feeling among many that these algorithms are
simply “black boxes” akin to a foul sorcerer’s magic that should not be trusted.

While Hayward (2005) used a multi-layer perceptron architecture to model how
the agents learned to project financial information, more robust results may be
gained by using sophisticated time series prediction techniques (Cai, 2004, Hu,
2004) or the techniques overviewed later in this chapter.

7.3.4 Application to Economic Systems

Computational economic agents must think. Their entire raison d’etre is to
provide researchers with guidance in addressing questions about the governing
laws of dynamic systems. To extract the most value from the ACE approach, the
most advanced computational tools available should be considered.

It is critical that the computational agent be able to effectively process
information within the environment. Consider the formulation of Chiarella
(2003). They construct a population of agents engaged in the decision of whether
to buy or sell a particular share of an asset. The economy consists of two assets: a
risky asset with price Pt and dividend dt, and a risk-free asset with known rate of
return r for every epoch t. The agents model using a benefit function Vit,
encapsulating their understanding of the market at a given point in time. This
study involves heterogeneous agents, so one group of agents uses a market signal
to calculate this Vit and another group pays a cost ct for access to the theoretical

fundamental solution , which is the summation of

discounted future expected dividends. An approach to this problem type using
ADP and Adaptive Critics is a natural extension of the existing work.
Furthermore, these techniques will allow investigation into more complex, higher-
scale systems. In particular, it is important to consider these techniques when
faced with a highly nonlinear complex system, such as a large-scale economy or
financial market.

∑
∞

=

−+=
1

1)()1(
i

ttt dErF

102 7 Unified Computational Intelligence in Social Science

Following the work of Duffy (2006) on comparison to controlled economic
experiments using human subjects, researchers need to accurately model the
agent’s cognitive processes as they apply to economic activity. The ART family
of neural network architectures (Carpenter and Grossberg, 1991) is ideally suited
to such a task, given its roots in the mathematical modeling of the operation of the
human brain.

It is an exciting time to be involved in computational economics and finance.
The advances in computational intelligence techniques bring quite a bit of promise
to the investigation of some basic but major problems of emergent system
dynamics.

7.3.5 Future Research Directions

Much work must be done to expand ADP techniques to other application areas,
particularly in an operations research setting, where the tremendous scale of
industrial-scale logistics problems pushes the limits of current computational
power. Theoretical developments need to be chased that can address this problem,
as it is not sufficient to wait for the computer architects to design next-generation
processor capabilities. The scaling issue that these algorithms face as the
dimensionality of the problem increases is a major stumbling block.

As pointed out in Young (2006), agent-based methods are important for
studying many sorts of emergent social phenomena, including the emergence of
money as the outcome of an iterated coordination game. Other social dynamics
can be studied and progress made towards their understanding using these
techniques. This level of human discernment can have a great positive impact on
all our lives, beyond the realm of a financial market environment or mathematical
psychology.

While researchers currently employ techniques such as genetic algorithms and
multi-layer perceptron neural networks, considerable room for growth exists by
using more advanced approaches. As these techniques become more widely
understood, they may shed their image as a “black box” (LeBaron, 2006).
Approximate Dynamic Programming, influenced so heavily by the economic
strategic risk assessment literature, is particularly well suited for widespread
application as the computational force behind agent thinking processes.

Finally, these are research technologies capable of bringing together
communities of researchers from seemingly disparate fields to approach a wide
range of important problems. Much good can come from such a globalized
approach to collaborative investigation.

7.4 Intelligence in Markets

The study of multi-agent market interactions is becoming increasingly dependent
upon the concurrent development of appropriate computational tools. The field of
computational intelligence is ideally positioned to offer much to this new wave of
financial and economic science. This section introduces aspects of two types of
market interaction: an agent’s decision to distribute resources among assets and

7.4 Intelligence in Markets 103

manipulating the structure of the market to influence the nature of the interaction
of the agents within. Natural computation techniques such as artificial neural
networks, genetic algorithms, Approximate Dynamic Programming, and particle
swarm optimization are heavily used among researchers in these growing fields.
With further attention, it is possible for engineers to make great strides in both
understanding these complex systems and in building commercial applications for
them.

7.4.1 Introduction

Evolution, human and animal cognition, and the emergent coordination of systems
of autonomous agents are among the areas of nature drawn upon for inspiration by
the field of computational intelligence. Researchers are increasingly using these
aspects of nature in the exploration of market interaction, both to develop more
scientific knowledge about economic and financial phenomena and to build new
commercial applications for price forecasting, asset trading, and market design.
Adam Smith wrote of an “invisible hand” that guided markets. Today, scientists
may consider this specter to be the result of a limiting process of some
computational evolutionary algorithm. It is here, at the intersection of economics
and intelligent computation, where the most profitable study of the nature of
human market interaction may occur.

Markets provide a way to convey information regarding prices of assets. For
those working within a market, the goal is to most optimally allocate a pool of
assets to satisfy some predetermined optimality criterion. For those outside the
market, the goal is to optimally design the allocation mechanisms to achieve the
specified mission of the central planners. Together, these two processes can be
studied within the larger view of the role of markets in complex systems as a form
of communication and coexistence. Computational intelligence, taking its cues in
part from nature, has much to offer the calculation aspects of these two concepts.
This section discusses the application of asset allocation and mechanism design
using elements of natural computation.

Markets are widely considered the most efficient method of processing
transactions. There is a wealth of economic literature speaking to the efficacy of
free markets under certain, rather strenuous constraints that support these ideas.
However, it is also useful to study the behavior of markets outside these
constraints. Mechanism design permits an analysis of market institutions away
from those used in efficiency theorems with the goal of developing new efficient
trading structures.

Natural computation can be seen in the forefront of a number of research areas.
An important example is that of intelligent control, which has plentiful application
in economics and finance. The field of Approximate Dynamic Programming (Si,
Barto, Powell, & Wunsch, 2004) offers hope that many of the previously
intractable control problems can be handled. Partial motivation for its baseline
techniques comes from studies of the human mind. Though neuroscientists do not
yet fully understand how the human brain works, the study of its processes is of
increasingly fundamental importance for applied engineers and economists.

104 7 Unified Computational Intelligence in Social Science

Economists, unable to run the actual controlled experiments common in the
physical sciences, have turned to natural experiments, statistical investigation, and
mathematical analytic modeling to understand their science. The new paradigm of
ACE gives economists the ability to model large-scale, agent-based environments
in order to make new discoveries regarding the governing dynamics of the
economic and financial systems under review. The tools of computational
intelligence are becoming increasingly relevant to this new field.

The fundamental feature of this emerging field of economics requires
generating populations of interacting agents followed by an analysis of the
resulting dynamics. These agents are then used to test the claims of equilibrium
theorems. It is common to see some element of computational intelligence, such as
a simple feed-forward, multi-layer perceptron neural network or a genetic
algorithm, used as a learning rule or overlying constraint within the model.

ACE approaches analyze an economy from an angle different from that of the
analytical models. It is called a “constructive” approach accounting for its focus
on the fundamental elements of the system (e.g., the individual agents) as opposed
to global dynamics. Any emergent dynamics or long-run convergence is
determined by the aggregation of individual choices. In this way, analytic
equilibrium models can be tested by generating a population of computational
agents and exploring the resulting dynamics. Researchers can then assess
theoretical predictions using the simulations.

For example, Hayward (2005) uses ACE techniques to show evidence that
accepted analytic models governing the forecasting of prices and trading strategies
in international financial markets fail to adequately predict the behavior of
computational agents. His findings show that traders adapt to the nature of the
market environment rather than relying solely on accurate forecasting. His work
incorporates genetic algorithms and multi-layer perceptron neural networks.

This section presents an overview of recent uses of computational intelligence
techniques in asset pricing and mechanism design applications. Additionally, it
discusses ways to extend these results through the use of even more robust
methods of natural computation. The aim is to give computational intelligence
researchers an idea of the scope of work being pursued in the areas of asset pricing
and mechanism. Many opportunities for commercial application exist in these
financial fields for those with an interest in applying complex intelligent systems
to markets.

7.4.2 Approximate Dynamic Programming and Stochastic Control

Dynamic Programming, developed by Richard Bellman in the middle of the
twentieth century, is perhaps the most correct way to think about multi-stage
decision problem solving. It gives rise to the Bellman equation, which aids in the
calculation of optimal strategies. This equation takes the form of the Hamilton-
Jacobi equation of classical mechanics and is thus oftentimes labeled the
Hamilton-Jacobi-Bellman equation in the literature. It is interesting to note the
similarities between the trajectories of decisions made by agents in a multi-stage
problem environment and the motion of point-like particles through space. Much

7.4 Intelligence in Markets 105

research focuses on this equation, and the discipline of ADP, mentioned above,
seeks approximations of this equation sufficient for handling significant industrial-
scale, real-time control problems.

The mathematics of dynamic programming has also been utilized in the asset
pricing literature. In Ben-Amour, Breton, Agouti, & L’Ecuyer, 2007, these
techniques are used to price options embedded in bonds. It is important for
practitioners to discern the proper valuation of these assets and for researchers to
report that their dynamic programming approaches outperform techniques
common historically in mathematics, such as finite-difference methods.

While their analysis takes place within a well-structured artificial market, it
remains a control problem at heart. The computational intelligence techniques of
ADP, which are capable of generating solutions to the dynamic programming
problem in complex, changing environments, may be useful in taking this
approach to a level in which it could be used by asset managers in the field.

ADP approaches typically utilize a neural network as a function approximator
within their design. For simpler problems, the neural network can be replaced
with a lookup table housing all the values of a given state-action pairing. The
idea, then, is for the agent to look at the table for the given state and choose the
action containing the highest value. This algorithm is called Q-learning and is the
focus of work in Lee & Park, 2007. In their study, the stochastic control problem
of stock trading is addressed. They deploy a system of agents, all learning via the
Q-learning heuristic, who tackle the problem of profitable trading. Measuring
performance in both the profit and risk management dimensions, they report that
this computational intelligence approach outperforms alternative approaches.

It is notable that their approach mixes in a sense both the ACE approach and Q-
learning. A system of agents, working cooperatively, provides an emergent
intelligence that achieves quality performance in the stock trading task. Such
results indicate that much further good can come from a more systematic
application of both basic and advanced techniques from the computational
intelligence literature into problems being studied within the ACE framework. It
may indeed turn out that an understanding of human market systems is reliant on
our development of more robust algorithms inspired from our natural
environments.

Stochastic control, involving varying degrees of uncertainty, is a prime target
for ADP and other computational intelligence approaches. In Song & Huang,
2007, this paradigm is leveraged in a setting with discrete decision points. The
trading agent is to make decisions in a Markov Decision Process (MDP)
environment with stochastic returns on investment while taking into account
transactions costs. MDP problems, particularly those of the partially observable
variety (POMDP’s), have received much attention from the computational
intelligence community. The results presented in this study show that research
into POMDP’s, and the fact that ADP handles the unobservability criterion, may
show promise in the commercial application of computational intelligence
techniques to trading decisions within a market.

106 7 Unified Computational Intelligence in Social Science

7.4.3 Evolving Asset Pricing Strategies

Stock market trading algorithms are a favorite topic of forecasters and financial
researchers. In Bekiros, 2007, a neurofuzzy approach is studied. Taking a cue
from cognitive modeling of the human brain and combining it with a mathematical
apparatus capable of handling uncertainty when dealing with imprecise
information, this paper shows the hybrid computational intelligence method
outperforming both a simple recurrent neural network and basic statistical
regression models.

While this research focuses on technical trading rules, it is encouraging to
believe that further advances along this direction may lead to more robust results.
Typically, asset managers take into account fundamentals, technical signals, and
automated data, and the development of an intelligent system that can include
more of the data used in practice would be a welcome commercial application.

It is worth noting that the idea of asset allocation, and the mathematics
underlying the study of the topic within financial markets, is not limited to
modeling only the trading behavior of those dealing in stocks, options, and bonds.
It can also be generalized to apply to any environment in which choices need to be
made. In Rice, McDonnell, Spydell, & Stremler, 2006, the assets in question are
the targets and threats in an air strike simulation. Evolutionary computation is
employed to generate a player for a simulation in which a player must defend his
own assets from attack as well as divert resources to destroy the assets of the
opponent. The same asset allocation and pricing machinery developed for
financial markets, including the use of dynamic programming, can be utilized
profitably in this environment as well.

Extensions of financial market concepts to areas of interest outside the realm of
economics are consequences of the nature of the underlying mathematics. Just
like the Bellman equation of decision theory holds abstract similarity to the
Hamilton-Jacobi theory describing the motion of particles in classical physics, so
can the basic approach to asset allocation in markets be applied to other areas of
engineering interest. So, even for engineers with limited interest in economics and
finance, the study of these approaches may be fruitful.

Algorithms based on observed evolution in natural species have played a
prominent role in recent economics studies. In Matilla-Garcia, 2006, genetic
algorithms are used to evolve trading rules for computational market players. The
author compares the genetic algorithm designed trader to a buy-and-hold strategy
and concludes that the computational intelligence boosted agent outperforms the
other. Additionally, simulations are run comparing the genetic algorithm-based
strategies within differing market conditions: bullish, bearish, and volatile.

The ability of computational intelligence techniques to handle complex
environments and aggregate disparate data leads to these advances. As trading in
markets is a form of the intelligent control problem, it is not surprising that these
approaches are well suited to the commercial task.

Options submit to the well-known Black-Scholes formula for pricing. Itself a
deft application of stochastic partial differential equations to the modeling of
economic phenomena, it is possible to go beyond this analytic formalism using the

7.4 Intelligence in Markets 107

algorithms of computational intelligence. In Zapart, 2003, neural networks are
used to push past the constraints of the Black-Scholes equation and price these
complicated assets appropriately.

Neural networks and binomial trees are one approach presented in this work as
a volatility model. The feature space of volatility is represented as wavelets that
feed the neural network predictions. The paper also develops genetic algorithm-
based neural network architectures capable of reproducing the Black-Scholes
results. Given that analytical approaches such as Black-Scholes rely heavily on
unrealistic simplifying constraints or come attached to system requirements
proving inapplicable in commercial application, the fact that these computational
intelligence techniques can provide the same or better return as the traditionally
accepted analytic methods is heartening.

Fuzzy logic and evolutionary processes are used in Ghandar, Michalewicz,
Schmidt, To, & Zurbruegg, 2007, to calculate trading rules for equity markets.
This work is intriguing because, in contrast to most approaches in this area, it is
rule based. The genetic algorithm uses chromosomes that represent fuzzy rules
capable of parsing ambiguities such as “high volatility” and “extremely high
volume.” Discussions with human traders reveal that they think along these lines,
giving rules of thumb based on such imprecise language. Compared to a technical
rule that posits a sell or buy given a fixed numerical value for volatility or volume,
these fuzzy rule-based systems represent to a higher degree the way human
cognition operates.

One approach to asset allocation is to control the value-at-risk of a given
portfolio. As a control problem, this is well suited to ADP and other
computational intelligence techniques. In Chapados & Bengio (2001), a neural
network approach is taken. One of their approaches combines a neural network
forecast with traditional mean-variance portfolio optimization theory. The
computational intelligence engine provides an understanding of the price of the
assets, and then the efficient frontier is searched for the optimal portfolio based on
comfortable risk levels. This is more prediction than true asset allocation, but it
does demonstrate the value that natural computation can add to these processes.

The second approach taken is more in the line of intelligent control as it
calculates buy-sell decisions based on computational intelligence techniques.
Recurrent neural networks power a decision engine designed to minimize
transaction costs and optimize a cost function representing financial performance.
The network outputs a vector of recommendations, and the recurrent nature of the
system allows for past recommendations to be considered when making future
buy-sell decisions. Together, this system and the previously mentioned neural
network forecasting architecture outperform benchmark market performance. Of
course, managers in the field may hesitate to use the signals generated from such
machine learning algorithms, but as the computational intelligence community
continues to develop dependable trading systems, these attitudes may indeed relax.
Commercial application possibilities for these sorts of systems are wide open and
available to anyone with a solid system and a marketing plan.

The mean-variance approach to asset allocation is studied in Dashti, Farjami,
Vedadi, & Anisseh, 2007, as a swarm optimization application. The authors take

108 7 Unified Computational Intelligence in Social Science

the modern portfolio theoretic approach of optimizing a basket of assets while
taking into account the risk factors associated with each one. Using the Sharpe
ratio as the fitness level for the swarm, the authors evolve optimal portfolios using
a population-based optimizer rather than using the more traditional analytical
approach. The advantages here lie in being able to optimize over more robust
solution spaces, which may indeed provide a better modeling framework for the
sorts of markets mangers find in practice.

Population-based optimization algorithms are perhaps ideally suited to
investigations of market action in the ACE paradigm. Since what is of interest is,
fundamentally, the nature of the emergent behavior of a number of interacting
agents, the internal structure of an algorithm such as Particle Swarm Optimization
allows the researcher to not only simply optimize a given fitness function but to do
it in a way that is representationally meaningful in terms of their simulation. In
fact, further complexity can be introduced by considering the individuals in these
optimizers as the economic agents themselves. This actually touches on an
analytic modeling approach such as overlapping generations models, which have
provided economists with much value already.

7.4.4 The Design of Market Mechanisms

Mechanism design is applied to electric power markets in Silva, Wollenberg, &
Zheng, 2001. The authors posit a need for a certain type of regulation of the
electric power market, as the unregulated market may not provide incentives for
the necessary sharing of information in order to perform required economic
dispatch of the generation. Their work, then, focuses on how best to structure the
market to meet the specific needs of electric power generation. The electric power
market is of a different character than other markets where free competition leads
to optimal equilibria. The existence of transmission systems with uncontrollable
flows of power may lead to congestion or even to overloading of the system.
Therefore, some regulation is required, and the question is how best to design the
constraints to maximize desired variables.

With a model representing the transmission network constraints, they apply
mechanism design to produce optimality when each participating firm acts in its
best interest. They note that the mechanism they develop is different from those
in the existing literature, thus showcasing the vitality of the game theoretic
approach. Their result is that the market should be organized in a bidding process
whereby each firm presents a production cost level that another agent then uses in
assigning electricity production and payments. It is worth observing that the
application of mechanism design to an engineering market was able to produce an
offering that was not evident to human planners organizing these markets in
practice. This tool of mechanism design, particularly when augmented with
computational intelligence, has much to offer central planners in any number of
sectors.

To study auction and market designs, researchers in the ACE vein have
introduced a number of artificial markets and agent structures. One, called ZIP
(zero-intelligence-plus), is studied in Cliff, Walia, & Byrde, 2003. Combining

7.4 Intelligence in Markets 109

mechanism design and genetic algorithms, the authors develop optimal auction
rules for their given environment. Furthermore, as is often the case when using
evolutionary computation, the results are far different from those put in place by
human planners.

Instead of copying existing auction mechanisms, the authors were able to
evolve hybrid mechanisms. The ZIP traders adapt to auction conditions in order
to optimize some internal criterion. Other research fixed the auction mechanism
in advance and studied the emergent behavior of the individual trading agents.
The impact of this study is that they allowed the auction mechanism itself to
adapt. The authors created a population of 30 individuals representing a 9-
dimensional vector describing the mechanisms. Fitness evaluation was
undertaken by measuring the emerging market dynamics. The best mechanism
design was then evolved in this fashion.

These are particularly interesting results on account of the fact that they can be
seen as an invitation for computational intelligence methods to inform the
coordination of market actors in non-auction environments as well.

7.4.5 Computational Markets

The new approach to treating markets as emergent results of computational
algorithms is important in economics. The review Mirowski, 2007, covers much
of this new paradigm. Researchers and practitioners in computational intelligence
have the ability to stand at the forefront of this new movement and to make
substantial contributions to the scientific understanding of market phenomena as
well as to the development of new positive commercial applications.

References

References

Abramson, M., Audet, C.: Convergence of mesh adaptive direct search to second-order
stationary points. SIAM Journal of Optimization 17(2), 606–619 (2006)

Ahlbrandt, C., Bohner, M., Ridenhour, J.: Hamiltonian systems on time scales. J. Math.
Anal. Appl. 578, 250–561 (2000)

Ahlbrandt, C., Morian, C.: Partial differential equations on time scales. Journal of
Computational and Applied Mathematics 141(1-2), 35–55 (2002)

Alpaydin, E.: Introduction to machine learning, pp. 1–3. MIT Press, Cambridge (2004)
Al-Timini, A., Abu-Khala, M., Lewis, F.: Adaptive critic designs for discrete-time zero-

sum games with application to H-infinity control. IEEE Transactions on Systems, Man,
and Cybernetics 1(37), 240–247 (2007)

Antinolfi, G., Azariadis, C., Bullard, J.: Monetary policy as equilibrium selection. Federal
Reserve Bank of St Louis Review 89(4), 331–341 (2007)

Amis, G., Carpenter, G.: Default ARTMAP 2. In: Proceedings of the International Joint
Conference on Neural Networks, Orlando, FL (2007)

Arifovic, J.: Genetic algorithm learning and the cobweb model. Journal of Economic
Dynamics and Control 18, 3–28 (1994)

Arifovic, J.: The behavior of the exchange rate in the genetic algorithm and experimental
economies. Journal of Political Economy 104, 510–541 (1996)

Arrow, K.J.: Historical Background. In: Arrow, K., Karlin, S., Scarf, H. (eds.) Studies in
the Mathematical Theory of Inventory and Production. Stanford University Press,
Stanford (1958)

Arthur, W.B.: Inductive reasoning and bounded rationality. American Economic
Review 84, 406–411 (1994)

Arthur, W.B., Holland, J., LeBaron, B., Palmer, R., Tayler, P.: Asset pricing under
endogenous expectations in an artificial stock market. In: Arthur, W.B., Durlauf, S.,
Lane, D. (eds.) The Economy as an Evolving Complex System II, pp. 15–44. Addison-
Wesley, Reading (1997)

Atici, F.M., Biles, D.C., Lebedinsky, A.: An application of time scales to economics.
Mathematical and Computer Modelling 43(7-8), 718–726 (2006)

Aviv, Y., Pazgal, A.: A Partially Observable Markov Decision Process for Dynamic
Pricing. Management Science 51(9), 1400–1416 (2005)

Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations. Birkhauser, Boston (1997)

Basar, T., Olsder, G.: Dynamic Noncooperative Game Theory, Second Edition, 2nd edn.
SIAM, Philadelphia (1999)

Baylor University Time Scales Group. Ti.me.. Sc.a...les MATLAB Toolbox v. 1.1 (2008),
http://www.timescales.org (retrieved July 2, 2008)

112 References

Bekiros, S.: A neurofuzzy model for stock market trading. Applied Economics Letters 14,

53–57 (2007)
Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
Bellman, R., Dreyfus, S.: Applied Dynamic Programming. Princeton University Press,

Princeton (1962)
Beltratti, A., Margarita, S., Terna, P.: Neural Networks for Economic and Financial

Modeling. International Thomson Computer Press, London (1996)
Ben-Ameur, H., Breton, M., Karouti, L., L’Ecuyer, P.: A dynamic programming approach

for pricing options embedded in bonds. Journal of Economic Dynamics and Control 31,
2212–2233 (2007)

Bertsekas, D.: Dynamic Programming and Optimal Control, 2nd edn., vol. 1, 2. Athena
Scientific, Belmont (2000)

Bertsekas, D., Tsitsiklis, J.: Neuro-Dynamic Programming. Athena Scientific, Belmont
(1996)

Binger, B., Hoffman, E.: Microeconomics with Calculus. Addison-Wesley, Reading (1998)
Bohner, M.: Calculus of variations on time scales. Dynamic Systems and Applications 13,

339–349 (2004)
Bohner, M., Fan, M., Zhang, J.: Periodicity of scalar dynamic equations and applications to

population models. Journal of Mathematical Analysis and Applications 330(1), 1–9
(2007)

Bohner, M., Hudson, T.: Euler-type boundary value problems in quantum calculus.
International Journal of Applied Mathematics and Statistics 9(J07), 19–23 (2007)

Bohner, M., Guseinov, G.: Double integral calculus of variations on time scales. Computers
and Mathematics with Applications 54(1), 46–57 (2007)

Bohner, M., Guseinov, G.: Multiple integration on time scales. Dynamic Systems and
Applications 14(3-4), 579–606 (2005)

Bohner, M., Guseinov, G.: Partial Differentiation on Time Scales. Dynamic Systems and
Applications 13, 351–379 (2004)

Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser,
Boston (2003)

Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with
Applications. Birkhäuser, Boston (2001)

Brannon, N., Conrad, G., Draelos, T., Seiffertt, J.: Wunsch. D. Information fusion and
situation awareness using ARTMAP and partially observable Markov Decision
Processes. In: Proceedings of the IEEE International Joint Conference on Neural
Networks, pp. 2023–2030 (2006)

Brannan, N., Seiffertt, J., Draelos, T., Wunsch, D.: Coordinated machine learning for
situation awareness. Neural Networks 22(3) (2009)

Bullard, J., Seiffertt, J.: Japanese deflation loses something in the translation. National
Economic Trends (September 2003)

Carpenter, G., Grossberg, S.: The ART of adaptive pattern recognition by a self-organizing
neural network. Computer 21(3), 77–87 (1988)

Carpenter, G., Grossberg, S. (eds.): Pattern Recognition by Self-Organizing Neural
Networks. The MIT Press, Cambridge (1991)

Carpenter, G., Grossberg, S., Reynolds, J.: ARTMAP: Supervised Real-Time Learning and
Classification of Nonstationary Data by a Self-Organizing Neural Network. Neural
Networks 4, 565–588 (1991)

References 113

Carpenter, G., Grossberg, S., Rosen, D.: Fuzzy ART: Fast Stable Learning and

Categorization of Analog Patterns by an Adaptive Resonance System. Neural
Networks 4, 759–771 (1991)

Carpenter, G., Grossberg, S., Markuzon, N., Reynolds, J., Rosen, D.: Fuzzy ARTMAP: A
neural network architecture for incremental supervised learning of analog
multidimensional maps. IEEE Transactions on Neural Networks 3(5), 698–713 (1992)

Carpenter, G., Markuzon, N.: ARTMAP-IC and medical diagnosis: Instance counting and
inconsistent cases. Neural Networks 11, 323–336 (1998)

Cai, X., Zang, N., Venayagamoorthy, G., Wunsch, D.: Time series prediction with recurrent
neural networks using a hybrid PSO-EA algorithm. In: Proceedings of the International
Conference on Neural Networks, vol. 2, pp. 1647–1652 (2004)

Castro, J., Georgiopoulos, M., Secretan, R., DeMara, R., Anagnostopoulos, G., Gonzalez,
J.: Parallelization of Fuzzy ARTMAP to Improve its Convergence Speed. Nonlinear
Analysis: Theory, Methods, and Applications 60(8) (2005)

Chapados, N., Bengio, Y.: Cost functions and model combination for VaR-based asset
allocation using neural networks. IEEE Transactions on Neural Networks 12(4), 890–
906 (2001)

Chiarella, C., Gallegati, M., Leombruni, R., Palestrini, A.: Asset Price Dynamics among
Heterogeneous Interacting Agents. Computational Economics 22, 213–223 (2003)

Clerc, M., Kennedy, J.: The particle swarm–explosion, stability, and convergence in a
multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1),
58–73 (2002)

Cliff, D., Walia, V., Byde, A.: Evolved hybrid auction mechanisms in non-ZIP trader
marketplaces. In: Proceedings of the IEEE Conference on CIFE, pp. 167–174 (2003)

DaCunha, J.: Instability results for slowly time varying linear dynamic systems on time
scales. J. Math. Anal. Appl. 328, 1278–1289 (2007)

DaCunha, J.: Stability for time varying linear dynamic systems on time scales. Journal of
Computational and Applied Mathematics 176, 381–410 (2005)

DaCunha, J., Davis, J., Singh, P.: Existence results for singular three point boundary value
problems on time scales. J. Math. Anal. Appl. 295, 378–391 (2004)

Dashti, M., Farjami, Y., Vedadi, A., Anisseh, M.: Implementation of particle swarm
optimization in construction of optimal risky portfolios. In: Proceedings of the IEEE
Conference on IEEM, pp. 812–816 (2007)

Dietterich, T.: An experimental comparison of three methods for constructing ensembles of
decision trees: Bagging, boosting, and randomization. Machine Learning 40(2), 139–157
(2000)

Denn, M.: Optimization by Variational Methods. McGraw-Hill, New York (1969)
Duarte, M., Hu, Y.: Vehicle classification in distributed sensor networks. Journal of Parallel

and Distributed Computing 64(7), 826–838 (2004)
Duffie, D.: Dynamic Asset Pricing Theory, 3rd edn. Princeton University Press, Princeton

(2001)
Duffy, J.: Agent-based models and human subject experiments. In: Testafasion, L., Judd, K.

(eds.) Handbook of Computational Economics, vol. 2, pp. 949–1012. Elsevier,
Amsterdam (2006)

Ehrenberg, R.G., Smith, R.S.: Modern Labor Economics. Theory and Public Policy.
Addison-Wesley, Reading (2003)

Eloe, P., Hilger, S., Sheng, Q.: A qualitative analysis on nonconstant graininess of the
adaptive grid via time scales. Rocky Mountain J. Math. 36, 115–133 (2006)

Endsley, M.: Toward a theory of situation awareness. Human Factors 37(1), 32–64 (1995)

114 References

Englebrecht, A.: Computational Intellligence: An Introduction. John Wiley, Chichester

(2002)
Enns, R., Si, J.: Helicopter trimming and tracking control using direct neural dynamic

programming. IEEE Transactions on Neural Networks 14(4), 929–939 (2003)
Evans, G., Honkapohja, S.: Learning and Expectations in Macroeconomics. Princeton

University Press, Princeton (2001)
Fakih, S., Das, T.: LEAD: a methodology for learning efficient approaches to medical

diagnostics. IEEE Transactions on Information Technology in Biomedicine 1(55), 158–
170 (2006)

Ferreira, R., Torres, D.: Higher order calculus of variations on time scales. In: Proceedings
of the Workshop on Mathematical Control Theory (2007)

Ferreira, R., Torres, D.: Remarks on the calculus of variations on time scales. Int. J. Econ.
Ecol. Stat. 9, 65–73 (2007)

Fleming, W., Rishel, R.: Deterministic and Stochastic Optimal Control. Springer, New
York (1975)

Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover, Mineola (2000)
Ghandar, A., Michalewicz, Z., Schmidt, M., To, T., Zurbruegg, R.: A computational

intelligence portfolio construction system for equity market trading. In: Proceedings of
the IEEE Congress on Evolutionary Computation, pp. 798–805 (2007)

Gravagne, I., Marks, R., Davis, J., DaCunha, J.: Application of time scales to real time
communications networks. In: American Mathematical Society Western Section
meeting, special session on Time Scales, University of Southern California (2004)

Gravagne, I., Davis, J., Marks, R.: How deterministic must a real-time controller be? In:
Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Alberta, Canada, August 2-6, pp. 3856–3861 (2005)

Gravagne, I., Davis, J., DaCunha, J., Marks, R.: Bandwidth reduction for controller area
networks using adaptive sampling. In: Proc. Int. Conf. Robotics and Automation, New
Orleans, LA, April 2004, pp. 5250–5255 (2004)

Greene, W.: Econometric Analysis. Prentice-Hall, Englewood Cliffs (2003)
Grossberg, S.: Adaptive pattern classification and universal recoding. Biological

Cybernetics 23, 187–202 (1976)
Guseinov, G.: Integration on time scales. J. Math. Anal. Appl 285, 107–127 (2003)
Guseinov, G., Ozyilmaz, E.: Tangent lines of generalized regular curves parametrized by

time scales. Turkish Journal of Math. 25(4), 553–562 (2001)
Hall, D., Llinas, J.: An introduction to multisensor data fusion. Proceedings of the

IEEE 85(1), 6–23 (1997)
Han, D., Balakrishnan, S.: State-constrained agile missile control with adaptive-critic based

neural networks. IEEE Transactions on Control Systems Technology 10(4), 481–489
(2002)

Hayward, S.: The role of heterogeneous agents’ past and forward time horizons in
formulating computational models. Computational Economics 25(1-2), 25–40 (2005)

Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD
Thesis, Universität Würzburg (1988)

Hilger, S.: Analysis on measure chains—a unified approach to continuous and discrete
calculus. Results Math. 18, 18–56 (1990)

Hilscher, R., Zeidan, V.: Calculus of variations on time scales: weak local piecewise
solutions with variable endpoints. J. Math. Anal. Apppl. 289(1), 143–166 (2004)�

Hortsmann, C.: Object-Oriented Design and Patterns. Wiley, Chichester (2004)

References 115

Hu, X., Wunsch, D.: Time series prediction with a weighted bidirectional multi-stream

extended Kalman filter. In: Proceedings of the IEEE International Joint Conference on
Neural Networks, vol. 2, pp. 1641–1645 (2004)

Hull, D.: Optimal Control Theory for Applications. Springer, New York (2003)
Iyer, M., Wunsch, D.: Dynamic re-optimization of a fed-batch fermentorusing adaptive

critic designs. IEEE Transactions on Neural Networks 12(6), 1433–1444 (2001)
Jackson, B.: Partial dynamic equations on time scales. Journal of Computational and

Applied Mathematics 186, 391–415 (2006)
Javaherian, H., Liu, D., Zhang, Y., Kovalenko, O.: Adaptive critic learning techniques for

automotive engine control. In: Proceedings of the American Control Conference, vol. 5,
pp. 4066–4071 (2003)

Johnsonbaugh, R., Kalin, M.: Object-Oriented Programming in C++. Prentice-Hall,
Englewood Cliffs (2000)

Judd, K.: Computationally intensive analysis in economics. In: Testafasion, L., Judd, K.
(eds.) Handbook of Computational Economics, vol. 2, pp. 882–893. Elsevier,
Amsterdam (2006)

Kac, V., Pokman, C.: Quantum Calculus. Springer, New York (2001)
Kelly, E., Kennedy, P.: A dynamic stochastic model of mate desertion. Ecology (74), 351–

366 (1993)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE

International Conference on Neural Networks, pp. 1942–1948 (1995)
Kennedy, P.: A Guide to Econometrics. MIT Press, Cambridge (2001)
Kokar, M., Tomasik, T., Weyman, J.: Formalizing classes of information fusion systems.

Information Fusion 5(3), 189–202 (2004)
Kulkarni, N., Krishna, K.: Intelligent engine control using an adaptive critic. IEEE

Transactions on Control Systems Technology 11(2), 164–173 (2003)
LeBaron, B.: Agent-based computational finance: Suggested readings and early research.

Journal of Economic Dynamics and Control 24, 679–702 (2000)
LeBaron, B.: Agent Based Computational Finance. In: Testafasion, L., Judd, K. (eds.)

Handbook of Computational Economics, vol. 2, pp. 1187–1235. Elsevier, Amsterdam
(2006)

Lee, J.W., Park, J.: A multiagent approach to Q-learning for daily stock trading. IEEE
Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans 37(6),
864–877 (2007)

Leijonhufud, A.: Keynes and the Keynesians: A suggested interperatation. American
Economic Review 57(2), 401–410 (1967)

Lettau, M.: Explaining the facts with adaptive agents: The case of mutual fund flows.
Journal of Economic Dynamics and Control (21), 1117–1148 (1997)

Lewis, F., Syrmos, V.: Optimal control, 2nd edn. Wiley, New York (1995)
Lin, C.: Adaptive critic autopilot design of Bank-to-turn missiles using fuzzy basis function

networks. IEEE Transactions on Systems, Man, and Cybernetics 35(2), 197–207 (2005)
Neely, C., Weller, P., Dittmar, R.: Is technical analysis in the foreign exchange market

profitable? A genetic programming approach. Journal and Finance and Quantitative
Analysis 32(4), 405–426 (1997)

Marks, R., Gravagne, I., Davis, J., DaCunha, J.: Nonregressivity in switched linear circuits
and mechanical systems. Mathematical and Computer Modelling 43, 1383–1392 (2006)

Matilla-Garcia, M.: Are trading rules based on genetic algorithms profitable? Applied
Economics Letters 13, 123–126 (2006)

Melvin, M.: International Money and Finance. Addison-Wesley, Reading (2000)

116 References

Messer, K.: Riccati techniques on a time scale. Panamer Math J. 13(2), 1–18 (2003)
Meyer, D., Karatzoglou, A., Leisch, F., Buchta, C., Hornik, K.: A Simulation Framework

for Heterogeneous Agents. Computational Economics (22) (October-December 2003)
Miranda, M., Fackler, P.: Applied Computational Economics and Finance. MIT Press,

Cambridge (2002)
Mirowski, P.: Markets come to bits: Evolution, computation, and markomata in economic

science. Journal of Economic Behavior and Organization 63, 209–242 (2007)
Mohagheghi, S., del Valle, V., Venayagamoorthy, G., Harley, R.: A proportional-integrator

type adaptive critic design-based neurocontroller for a static compensator in a
multimachine power system. IEEE Transactions on Industrial Electronics 54(1), 86–96
(2007)

Mohagheghi, S., Venayagamoorthy, G., Harley, R.: Optimal wide area controller and state
predictor for a power system. IEEE Transactions on Power Systems 22(2), 693–705
(2007)

Moore, B.: ART 1 and pattern clustering. In: Touretzky, D., Hinton, G., Sejnowski, T.
(eds.) Proceedings of the 1988 Connectionist Models Summer School. Morgan
Kauffman, San Francisco (1989)

Morrison, J., Kelly, R., Moore, R., Hutchins, S.: Tactical decision making under stress
(TADMUS) decision support system. In: Proceedings IRIS National Symposium on
Sensor and Data Fusion. MIT Lincoln Laboratory, Lexington (1997)

Muchoney, D., Williamson, J.: A Gaussian adaptive resonance theory neural network
classification algorithm applied to supervised land cover mapping using multitemporal
vegetation index data. IEEE Transactions on Geoscience and Remote Sensing 39(9),
1969–1977 (2001)

Muttel, C.: The Black Scholes Equation in Quantum Calculus (2007)
Potzsche, C.: Chain rule and invariance principle on measure chains. J. Comput Appl.

Math. 141, 249–254 (2002)
Powell, W.: Approximate Dynamic Programming: Solving the Curses of Dimensionality.

Wiley Series in Probability and Statistics, Hoboken (2007)
Principe, J., Euliano, N., Lefebvre, W.: Neural and Adaptive Systems. Fundamentals

Through Simulations. John Wiley & Sons Inc., New York (2000)
Padhi, R., Balakrishnan, S.: Optimal management of beaver population using a reduced-

order distributed parameter model and single network adaptive critics. IEEE
Transactions on Control Systems Technology 14(4), 628–640 (2006)

Paul, J.: Smart Sensor Web: Web-based Exploitation of Sensor Fusion for Visualization of
the Tactical Battlefield. IEEE AESS Systems Magazine (2001)

Prokhorov, D., Wunsch, D.: Adaptive Critic Designs. IEEE Transactions on Neural
Networks 8(5), 997–1007 (1997)

Puterman, M.: Markov Decision Processes. Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Mathematical Statistics, New York (1994)

Rice, A., McDonnell, J., Spydell, A., Stremler, S.: A player for tactical air strike games
using evolutionary computation. In: Proceedings of the IEEE Symposium on
Computational Intelligence and Games, pp. 83–89 (2006)

Rogers, J., Sheng, Q.: Notes on the diamond-α dynamic derivative on time scales. J. Math.
Anal. Appl. 326, 228–241 (2007)

Routledge, B.: Genetic algorithm learning to choose and use information. Macroeconomic
Dynamics 5, 303–325 (2001)

Sanyal, S.: Stochastic Dynamic Equations. PhD Dissertation. Missouri University of
Science and Technology (2008)

References 117

Seiffertt, J.: An alpha derivative formulation of the Hamilton-Jacobi-Bellman equation of

dynamic programming. In: IEEE International Joint Conference on Neural Networks,
Atlanta, GA (2009)

Seiffertt, J., Sanyal, S., Wunsch, D.: Hamilton-Jacobi-Bellman equations and approximate
dynamic programming on time scales. IEEE Transactions on Systems, Man, and
Cybernetics, Part B 38(4), 918–923 (2008a)

Seiffertt, J., Sanyal, S., Wunsch, D.: Decision theory on dynamic domains: Nabla
derivatives and the Hamilton-Jacobi-Bellman equation. In: IEEE Systems, Man, and
Cybernetics Conference, Singapore (2008b)

Seiffertt, J., Wunsch, D.: Backpropagation and ordered derivatives in the time scales
calculus. IEEE Transactions on Neural Networks (to appear)

Seiffertt, J., Wunsch, D.: A Single-ART Architecture for Unsupervised, Supervised, and
Reinforcement Learning. In: Proceedings of the International Conference on Cognitive
and Neural Systems, Boston, MA (2007)

Seiffertt, J., Wunsch, D.: Higher order neural network architectures for agent-based
computational intelligence and finance. In: Zhang, M. (ed.) Artificial Higher Order
Neural Networks for Economics and Business, IGI Global (2008)

Seiffertt, J., Wunsch, D.: A quantum calculus formulation of ordered derivatives and
dynamic programming. In: Seiffertt, J., Wunsch, D. (eds.) IEEE International Joint
Conference on Neural Networks, Hong Kong (2008)

Seiffertt, J., Wunsch, D.: Intelligence in markets: Asset pricing, mechanism design, and
natural computation. IEEE Computational Intelligence Magazine 3(4) (2008)

Seiffertt, J., Van Brunt, A., Wunsch, D.: Maximum likelihood methods in biology revisited
with tools of computational intelligence. In: IEEE Conference on Engineering in
Medicine and Computational Biology, Vancouver, CN (2008)

Serrano-Gotarredona, T., Linares-Barranco, B.: A Low-Power Current Mode Fuzzy-ART
Cell. IEEE Transactions on Neural Networks 17(6), 1666–1673 (2006)

Si, J., Barto, A., Powell, W., Wunsch, D.: Handbook of Learning and Approximate
Dynamic Programming. IEEE Press Series on Computational Intelligence (2004)

Silva, C., Wollenberg, B., Zheng, C.: Application of mechanism design to electric power
markets. IEEE Transactions on Power Systems 16(4), 862–869 (2001)

Sheng, Q., Fadag, M., Henderson, J., Davis, J.: An Exploration of Combined Dynamic
Derivatives on Time Scales and Their Applications. Nonlinear Analysis: Real World
Applications 7, 395–413 (2006)

Song, H., Huang, H.: Dynamic stochastic programming for asset allocation problem. In:
Proceedings of the IEEE Conference on IEEM, pp. 16–20 (2007)

Spann, M., Vlassis, N.: Perseus: Randomized point-based value iteration for POMDP’s.
Journal of Artificial Intelligence Research 24, 195–220 (2005)

Stokey, N., Lucas, R., Prescott, E.: Recursive Methods in Economic Dynamics. Harvard
University Press (1989)

Sutton, R.: TD Models: Modeling the world at a mixture of time scales. In: Prieditis, A.,
Russell, S. (eds.) Proceedings of the Twelfth International Conference on Machine
Learning, pp. 531–539. Morgan Kaufmann, San Francisco (1995)

Sutton, R., Barto, A.: Reinforcement Learning. MIT Press, Cambridge (1998)
Tesauro, G.: TD-Gammon, a self-teaching backgammon program, achieves master-level

play. Neural Computation 6(2), 215–219 (1994)
Testafasion, L., Judd, K. (eds.): Handbook of Computational Economics: Agent Based

Computational Economics. North-Holland, Amsterdam (2006)

118 References

Todorov, E.: Linearly Solvable Markov Decision Problems. In: Proceedings of NIPS

(2007)
Vasilic, S., Kezunovic, M.: Fuzzy ART neural network algorithm for classifying the power

system faults. IEEE Transactions on Power Delivery 20(2), 1306–1314 (2005)
Watkins, C.: Learning from delayed rewards. PhD thesis. Cambridge University (1989)
Werbos, P.: Beyond Regression. PhD Dissertation. Harvard University (1974)
Werbos, P.: Backpropagation through time: What it does and how to do it. Proceedings of

the IEEE 78(10) (1990)
Werbos, P.: Consistency of HDP applied to a simple reinforcement learning problem.

Neural Networks 3(2), 179–189 (1990)
Werbos, P.: Neural networks and the human mind: new mathematics fits humanistic

insight. In: Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics, vol. 1, pp. 78–83 (1992)

Werbos, P.: The Roots of Backpropagation: From Ordered Derivatives to Neural Networks
and Political Forecasting. Wiley, New York (1994)

Werbos, P.: ADP: Goals, Opportunities, and Principles. In: Si, J., Barto, A., Powell, W.,
Wunsch, D. (eds.) Handbook of Learning and Approximate Dynamic Programming.
IEEE Press, Piscataway (2004)

Werbos, P.: Backwards differentiation in AD and neural nets: past links and new
opportunities. In: Bucker, M., Corliss, G., Hovland, P., Naumann, U., Boyana, N. (eds.)
Automatic differentiation: applications, theory, and implementations. Springer, New
York (2005)

Williamson, J.: Gaussian ARTMAP: A Neural Network for Fast Incremental Learning of
Noisy Multidimensional Maps. Neural Networks 9(5), 881–897 (1996)

White, D., Sofge, D. (eds.): Handbook of Intelligent Control. Van Nostrand (1992)
Wintz, N.: The Kalman Filter on Time Scales. PhD Dissertation. Department of

Mathematics and Statistics, Missouri University of Science and Technology (2009)
Wunsch, D., Caudell, T., Capps, C., Marks, R., Falk, R.: An optoelectronic implementation

of the adaptive resonance neural network. IEEE Transactions on Neural Networks 4(4),
673–684 (1993)

Xu, R., Anagnostopoulos, G.: Wunsch. D. Multiclass cancer classification using
semisupervised ellipsoid ARTMAP and particle swarm optimization with gene
expression data. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 4(1), 65–77 (2007)

Xu, R., Wunsch, D.: Clustering. IEEE/Wiley Press (2008)
Young, H.: Social dynamics: Theory and applications. In: Testafasion, L., Judd, K. (eds.)

Handbook of Computational Economics, vol. 2, pp. 1082–1107. Elsevier, Amsterdam
(2006)

Zapart, C.: Beyond Black-Scholes: a neural networks-based approach to options pricing.
International Journal of Theoretical and Applied Finance 6(5), 469–489 (2003)

Zhang, M., Xu, S., Fulcher, J.: Neuron-Adaptive Higher Order Neural-Network Models for
Automated Financial Data Modeling. IEEE Transactions on Neural Networks 13(1)
(2002)

	Title
	Contents
	Introduction
	The Need for Unified Computational Intelligence
	Contributions of This Work
	The Three Types of Machine Learning
	Unsupervised Learning
	Supervised Learning
	Reinforcement Learning
	Approximate Dynamic Programming
	Markov Decision Processes
	The Bellman Equation
	Heuristic Dynamic Programming

	A Unified Approach
	Future Work

	The Unified Art Architecture
	Introduction
	Motivation
	Block Diagram
	Operation
	Step 1: Calculate State Trace
	Step 2: Calculate Control
	Step 3: Process Control
	Step 4: Interpret Reward via Critic
	Supervisory Signal
	Positive Reinforcement
	Negative Reinforcement
	Unsupervised Mode

	An Extended Architecture
	The Vigilance Test
	The Weight Update
	Algorithm

	An Application of Unified Computational Intelligence
	Overview
	Introduction
	Machine Learning
	Information Fusion

	Approach
	System Architecture
	Information Fusion Engine

	Application
	Vehicle Tracking
	Analysis
	Force Protection Experiments
	Results of Training the Fusion Model

	Future Work
	Conclusion

	The Time Scales Calculus
	Introduction
	Fundamentals
	Single-Variable Calculus
	Calculus of Multiple Variables
	Extension of the Chain Rule
	Induction on Time Scales
	Quantum Calculus

	Approximate Dynamic Programming on Time Scales
	Overview
	Introduction
	Dynamic Programming Overview
	Dynamic Programming Algorithm on Time Scales
	Delta Derivative Version
	Quantum Calculus Version

	HJB Equation on Time Scales
	Delta Derivative Version
	Nabla Derivative Version
	Alpha Derivative Version

	Conclusions

	Backpropagation on Time Scales
	Overview
	Introduction
	Ordered Derivatives
	Network Definitions
	Structure of Ordered Derivatives
	The Chain Rule

	The Backpropagation Algorithm on Time Scales
	Quantum Calculus
	Conclusions

	Unified Computational Intelligence in Social Science
	Introduction
	Game Theory and Computational Social Science
	Computational Intelligence
	Agent-Based Computational Social Science
	Game Theory

	Economics and Finance
	Introduction
	Background
	Agent-Based Computational Economics
	Application to Economic Systems
	Future Research Directions

	Intelligence in Markets
	Introduction
	Approximate Dynamic Programming and Stochastic Control
	Evolving Asset Pricing Strategies
	The Design of Market Mechanisms
	Computational Markets

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

