


John Seiffertt and Donald C.Wunsch

Unified Computational Intelligence for Complex Systems



Adaptation, Learning, and Optimization,Volume 6

Series Editor-in-Chief

Meng-Hiot Lim
Nanyang Technological University, Singapore
E-mail: emhlim@ntu.edu.sg

Yew-Soon Ong
Nanyang Technological University, Singapore
E-mail: asysong@ntu.edu.sg

Further volumes of this series can be found on our homepage: springer.com

Vol. 1. Jingqiao Zhang and Arthur C. Sanderson
Adaptive Differential Evolution, 2009
ISBN 978-3-642-01526-7

Vol. 2.Yoel Tenne and Chi-Keong Goh (Eds.)
Computational Intelligence in
Expensive Optimization Problems, 2010
ISBN 978-3-642-10700-9

Vol. 3.Ying-ping Chen (Ed.)
Exploitation of Linkage Learning in Evolutionary Algorithms, 2010
ISBN 978-3-642-12833-2

Vol. 4.Anyong Qing and Ching Kwang Lee
Differential Evolution in Electromagnetics, 2010
ISBN 978-3-642-12868-4

Vol. 5. Ruhul A. Sarker and Tapabrata Ray (Eds.)
Agent-Based Evolutionary Search, 2010
ISBN 978-3-642-13424-1

Vol. 6. John Seiffertt and Donald C.Wunsch
Unified Computational Intelligence for Complex Systems, 2010
ISBN 978-3-642-03179-3



John Seiffertt and Donald C.Wunsch

Unified Computational
Intelligence for Complex Systems

123



John Seiffertt
PhD Candidate
Department of Electrical and Computer Engineering
Missouri University of Science and Technology
Rolla, MO 65402
USA
E-mail: jes0b4@mst.edu

Dr. Donald Wunsch
Mark K Finley Missouri Distinguished Professor
Department of Electrical and Computer Engineering
Missouri University of Science and Technology
Rolla, MO 65402
USA
E-mail: dwunsch@mst.edu

ISBN 978-3-642-03179-3 e-ISBN 978-3-642-03180-9

DOI 10.1007/978-3-642-03180-9

Adaptation, Learning, and Optimization ISSN 1867-4534

Library of Congress Control Number: 2010928723

c© 2010 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



Contents

Contents

1 Introduction………………………………………………………………....1 
         1.1   The Need for Unified Computational Intelligence..................................1 
         1.2   Contributions of This Work....................................................................4 
         1.3   The Three Types of Machine Learning ..................................................4 
                 1.3.1   Unsupervised Learning ................................................................4 
                 1.3.2   Supervised Learning ....................................................................8 
                 1.3.3   Reinforcement Learning ..............................................................9 
         1.4   A Unified Approach .............................................................................14 
         1.5   Future Work..........................................................................................16 

2 The Unified Art Architecture……………………………………………..19 
         2.1   Introduction ..........................................................................................19 
         2.2   Motivation ............................................................................................19 
         2.3   Block Diagram......................................................................................20 
         2.4   Operation ..............................................................................................22 
                 2.4.1   Step 1: Calculate State Trace .....................................................22 
                 2.4.2   Step 2: Calculate Control ...........................................................24 
                 2.4.3   Step 3: Process Control..............................................................25 
                 2.4.4   Step 4: Interpret Reward via Critic ............................................26 
         2.5   An Extended Architecture ....................................................................27 
                 2.5.1   The Vigilance Test.....................................................................27 
                 2.5.2   The Weight Update....................................................................30 
                 2.5.3   Algorithm...................................................................................32 

3 An Application of Unified Computational Intelligence………………...33 
         3.1   Overview ..............................................................................................33 
         3.2   Introduction ..........................................................................................33 
                 3.2.1   Machine Learning ......................................................................34 
                 3.2.2   Information Fusion ....................................................................34 
         3.3   Approach ..............................................................................................35 
                 3.3.1   System Architecture...................................................................35 
                 3.3.2   Information Fusion Engine ........................................................36 
         3.4   Application ...........................................................................................37 
                 3.4.1   Vehicle Tracking........................................................................40 
                 3.4.2   Analysis .....................................................................................41 



ContentsVI

         3.5   Future Work..........................................................................................47 
         3.6   Conclusion ............................................................................................48 

4 The Time Scales Calculus …………………………......………………….49 
         4.1   Introduction ..........................................................................................49 
         4.2   Fundamentals........................................................................................50 
         4.3   Single-Variable Calculus ......................................................................52 
         4.4   Calculus of Multiple Variables .............................................................55 
         4.5   Extension of the Chain Rule .................................................................56 
         4.6   Induction on Time Scales .....................................................................58 
         4.7   Quantum Calculus ................................................................................58 

5 Approximate Dynamic Programming on Time Scales………………….61 
         5.1   Overview ..............................................................................................61 
         5.2   Introduction ..........................................................................................61 
         5.3   Dynamic Programming Overview ........................................................62 
         5.4   Dynamic Programming Algorithm on Time Scales..............................63 
                 5.4.1   Delta Derivative Version ...........................................................64 
                 5.4.2   Quantum Calculus Version ........................................................66 
         5.5   HJB Equation on Time Scales ..............................................................69 
                 5.5.1   Delta Derivative Version ...........................................................70 
                 5.5.2   Nabla Derivative Version ..........................................................72 
                 5.5.3   Alpha Derivative Version ..........................................................74 
         5.6   Conclusions ..........................................................................................75 

6 Backpropagation on Time Scales…………………………………………77 
         6.1   Overview ..............................................................................................77 
         6.2   Introduction ..........................................................................................77 
         6.3   Ordered Derivatives..............................................................................78 
                 6.3.1   Network Definitions ..................................................................79 
                 6.3.2   Structure of Ordered Derivatives ...............................................80 
                 6.3.3   The Chain Rule ..........................................................................82 
         6.4   The Backpropagation Algorithm on Time Scales.................................85 
         6.5   Quantum Calculus ................................................................................86 
         6.6   Conclusions ..........................................................................................89 

7 Unified Computational Intelligence in Social Science……...…………...91 
         7.1   Introduction ..........................................................................................91 
         7.2   Game Theory and Computational Social Science.................................92 
                 7.2.1   Computational Intelligence........................................................92 
                 7.2.2   Agent-Based Computational Social Science..............................96 
                 7.2.3   Game Theory .............................................................................97 
         7.3   Economics and Finance ........................................................................98 
                 7.3.1   Introduction................................................................................98 
                 7.3.2   Background................................................................................99 
                 7.3.3   Agent-Based Computational Economics ...................................99 



Contents VII

                 7.3.4   Application to Economic Systems ...........................................101 
                 7.3.5   Future Research Directions......................................................102 
         7.4   Intelligence in Markets .......................................................................102 
                 7.4.1   Introduction..............................................................................103 
                 7.4.2   Approximate Dynamic Programming and Stochastic  
                            Control .....................................................................................104 
                 7.4.3   Evolving Asset Pricing Strategies............................................106 
                 7.4.4   The Design of Market Mechanisms .........................................108 
                 7.4.5   Computational Markets............................................................109 

References……………………………………………………………………...111 



J. Seiffertt & D.C. Wunsch: Unified Computational Intell. for Complex Sys., ALO 6, pp. 1–17. 
springerlink.com                                                        © Springer-Verlag Berlin Heidelberg 2010 

Chapter 1 
Introduction 

1.1   The Need for Unified Computational Intelligence 

Humanity’s newfound ability to compute has granted us unprecedented 
acceleration of the rate of technological innovation, altered dramatically the 
structure of social engagement, and presented us with a chance to create a reality 
to match our imagination.  From optimal control to bioinformatics to economic 
systems, the field of computational intelligence has proven itself a leader in 
maximizing what society stands to gain from its increasing supply of computing 
resources.  Riding the bleeding edge of what computers are able to do, 
computational intelligence researchers find ways to increase the energy output 
from renewable sources, secure large-scale networks, stabilize power grids, 
control aircraft, detect skin cancer, find land mines, and even teach humans 
something new about games they have played for millennia.  This book introduces 
ways to unify some key elements of the computational intelligence field in order 
to guide humanity’s quest for a more perfect alignment between her most ancient 
dreams and her everyday life. 

Computational intelligence encompasses a wide variety of techniques that 
allow computation to learn, to adapt, and to seek.  That is, they may be designed 
to learn information without explicit programming regarding the nature of the 
content to be retained, they may be imbued with the functionality to adapt to 
maintain their course within a complex and unpredictably changing environment, 
and they may help us seek out truths about our own dynamics and lives through 
their inclusion in complex system modeling.  These capabilities place our ability 
to compute in a category apart from our ability to erect suspension bridges, 
although both are products of technological advancement and reflect an increased 
understanding of our world.  In this book, we show how to unify aspects of 
learning and adaptation within the computational intelligence framework.  While 
a number of algorithms exist that fall under the umbrella of computational 
intelligence, with new ones added every year, all of them focus on the capabilities 
of learning, adapting, and helping us seek.  So, the term unified computational 
intelligence relates not to the individual algorithms but to the underlying goals 
driving them.  This book focuses on the computational intelligence areas of neural 
networks and dynamic programming,  showing how to unify aspects of these areas 
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to create new, more powerful, computational intelligence architectures to apply to 
new problem domains. 

The first part of this book, Chapters 1 through 3, introduces an approach to 
unifying the ability of computational intelligence methods to learn.  The second 
part, Chapters 4 through 6, discuss unification aimed at increasing the capability to 
adapt.  Finally, the third part, Chapter 7, speaks to the computational spark 
allowing us to seek. 

Before discussing an application that requires the use of a unified 
computational intelligence approach, a clarification of the usage of the word 
unified in comparison to the oft-used term hybrid is in order.  As used in the 
literature, a hybrid computational intelligence technique is one that combines 
multiple algorithms into a single implementation.  For example, a neural network 
trained with a particle swarm optimizer or an evolutionary algorithm that 
incorporates fuzzy logic in its fitness function may be classified as hybrid.  The 
term unified refers to combinations along a different axis.  For unified learning, a 
single architecture incorporates all three canonical learning modes into one unit so 
that signals from each learning mode can update and access the same content.  
This paradigm says, “You know these learning methods that are out there, 
segregated, each with their own algorithm?  Well, here’s the thing—they are 
actually the same algorithm.”  This is very different from what is meant by a 
hybrid algorithm, as a hybrid algorithm does not require the sharing of memory 
space.  Also, the highly mathematical section of this book discusses unification in 
terms of input domains.  There, the appropriate words are, “You know how there 
is one set of equations for continuous domains and another set for discrete 
domains?  Well, here’s the thing—these equations are actually the same thing.”  In 
this book, a framework is provided to deal cogently with multiple learning 
methods as subsets of unified learning in much the same sense that differential and 
difference equations are treated as special cases of the unified dynamic equations. 

Further, it must be noted that unified computational intelligence means that a 
given algorithm seamlessly incorporates multiple learning modes that share 
weights and that may influence the already learned associations of the other 
modes, or that the algorithm will work on both discrete and continuous input 
signals using a single set of equations. In this way, these algorithms unify within 
the learn and adapt characteristics of computational intelligence approaches.  
Unified computational intelligence is not a term used to discuss an algorithm that 
can act as a neural network, a swarm intelligence system, and a fuzzy logic system 
all at once.  The unification occurs at the “what is the algorithm doing” level, not 
at the “how is the algorithm classified” level.  While this latter form of unification 
may be discussed within the purview of mathematical logic where all algorithms 
may be related, it is not within the scope of the current book.  

What follows now is an example to help motivate the desire to develop such 
unified architectures.  The example described is only one of many areas in which 
combining multiple learning methods can be fruitful.  For example, Mohagheghi, 
Venayagamoorthy, and Harley (2007b) report on using multiple learning modes 
for a wide area controller for power systems, although their design is not “unified” 
in the sense described in this book.  What it does, however, is give a powerful 
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incentive to further develop algorithms that incorporate multiple learning modes, 
as the control of the power grid is one of the key control applications currently 
under investigation.  Additionally, applications from finance are well suited for 
this approach.   

We cover one such application in this field in the Future Work section. This 
example is a smart sensor application involving developing situation awareness 
for a force protection scenario.  We provide here an overview and discussion of 
why unified learning is advantageous; full details may be found in Chapter 3.  
Figure 1.1 presents a graphical depiction of the problem.  The practical 
considerations of this work include the need to develop field-deployable hardware 
capable of performing intelligent sensor fusion quickly, efficiently, and with 
minimum overhead.   

An intelligent sensor fusion algorithm, like an intelligent creature, can make 
informed use of all three types of learning in this environment on the data set 
given.  Certain paths may be pretrained prior to deployment, thus granting the 
human operators license to verify that the most obvious sensor patterns will be 
classified successfully.  During operation, a reinforcement signal provided either 
by the environment or by the human operator acting off of the fusion algorithm’s 
recommendations can adjust the current adaptive weight profile to curtail faulty 
clustering.  Finally, in the absence of any external signal, the algorithm will learn 
in an unsupervised manner, comparing current inputs to what it already knows.  In 
this way, all three learning methods are incorporated into a single application, 
providing a need for unified learning rather than a conglomeration of techniques 
pieced together in a computational sprawl. 

 

 
 

Fig. 1.1 An Application Using Unified Computational Intelligence 
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1.2   Contributions of This Work 

The contributions of this book fall in the area of unified computational intelligence 
and encompass algorithm design, applications, theoretical developments, and the 
identification of new frontiers for multidisciplinary research. 

Chapter 1 presents a new way to look at unified learning systems using a 
Markov Decision Processes framework.  It also introduces new problem domains 
to which these unified approaches may be applied and defines the notion of 
unified computational intelligence. 

Chapter 2 outlines an entirely novel Adaptive Resonance Theory-based unified 
learning architecture.  From the motivation behind the algorithm to the design 
details to the extensions for future research, everything in this chapter is novel. 

Chapter 3 contains an article that has appeared in the journal Neural Networks 
detailing an application of the architecture presented in Chapter 2.   

Chapter 4 begins the theoretical component of the book.  A new theorem in the 
time scales calculus is proven, and mathematics from scattered sources is brought 
together and organized for the first time.   

Chapter 5 develops the theory of dynamic programming on time scales, one of 
the components of unified computational intelligence.  This chapter contains new 
theorems regarding the nature of the dynamic programming algorithm and the 
Hamilton-Jacobi-Bellman equation in the time scales calculus.  Also presented are 
new results from the area of quantum calculus.  These results mark the first 
occurrence of the fields of time scales mathematics and dynamic programming 
being brought together. 

Chapter 6 extends the time scales analysis to the domain of neural network 
learning, where the backpropagation algorithm is proven to hold in this new 
calculus as well as in its quantum calculus rendition.  Additionally, the idea of an 
ordered derivative on time scales, a concept fundamental to the backpropagation 
algorithm, is introduced. The results in this chapter represent the first work to be 
published uniting times scales with neural network learning. 

Chapter 7 discusses applications of computational intelligence in the emerging 
field of agent-based computational social science.  It is increasingly important for 
researchers trying to make sense of complex economic, financial, and social 
systems to have as part of their technical vocabulary the language of 
computational intelligence.  This chapter details how the approaches described in 
the book may be used in a setting outside the mainstream of engineering. 

Altogether, this book introduces a new approach within the increasingly 
relevant field of computational intelligence and maps out new paths this research 
can take. 

1.3   The Three Types of Machine Learning 

1.3.1   Unsupervised Learning 

Also called clustering, unsupervised learning refers to a situation in which an 
algorithm has no external guidance to focus its attention.  When learning the 
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mapping of inputs to clusters, it must rely solely on its own internal structure.  For 
a full treatment of clustering, the reader is directed to Xu & Wunsch, 2008. 

The type of unsupervised learning algorithm considered most thoroughly in this 
book is a neural network approach called Adaptive Resonance Theory (ART).  
Developed by Carpenter and Grossberg as a solution to the plasticity and stability 
dilemma, i.e., how adaptable (plastic) should a learning system be so that it does 
not suffer from catastrophic forgetting of previously-learned rules, ART can learn 
arbitrary input patterns in a stable, fast, and self-organizing way, thus overcoming 
the effect of learning instability that plagues many other competitive networks. 
ART is a learning theory hypothesizing that resonance in neural circuits can 
trigger fast learning.   

ART exhibits theoretically rigorous properties desired by neuroscientists, which 
solved some of the major difficulties faced by modelers in the field.  Chief among 
these properties is stability under incremental learning.  In fact, it is this property 
that translates well to the computational domain and gives the ART1 clustering 
algorithm, the flavor of ART most faithful to the underlying differential equation 
model, its high status among unsupervised learning algorithm researchers.  At its 
heart, the ART1 algorithm relies on calculating a fitness level between an input 
and available categories.  In this way, it appears very much like the well-known k-
means algorithm, although the number of categories is variable and grows 
dynamically as needed by the given data set.   

What fundamentally differentiates ART1 from similar distance-based clustering 
algorithms is a second fitness calculation during which a given category can reject 
the inclusion of an input if the input does not meet the category’s standards as 
governed by a single global parameter.  Cognitively, this is modeling the brain’s 
generation and storage of expectations in response to neuronal stimulation. The 
initial fitness, measuring the degree to which each input fits each of the 
established categories, is considered a short-term memory trace which excites a 
top-down expectation from long-term memory.  Computationally, this second 
fitness calculation acts to tune the number of categories, and it may force the 
creation of new categories where a k-means styled algorithm would not, thus 
exhibiting stronger, more nuanced, classification potential. The ART1 algorithm 
has enjoyed great popularity in a number of practical application areas of 
engineering interest.  Its chief drawback is the requirement that input vectors be 
binary.  The ART2 algorithm was first proposed to get around this restriction, but 
the Fuzzy ART modification of ART1 now powers most of the new ART research 
and applications. 

Fuzzy ART admits input vectors with elements in the range [0,1].  Typically, a 
sort of preprocessing called complement coding is applied to the input vectors, as 
well as any normalization required to map the data to the specified range.  Fuzzy 
ART’s core fitness equations take a different form than those of ART1, leveraging 
the mechanics of fuzzy logic to accommodate analogue data vectors. Fuzzy ART 
incorporates fuzzy set theory into ART and extends the ART family by being  
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capable of learning stable recognition clusters in response to both binary and real-
valued input patterns with either fast or slow learning. 

The basic Fuzzy ART architecture consists of two-layer nodes or neurons, the 
feature representation field F1, and the category representation field F2, as shown 
in Figure 1. The neurons in layer F1 are activated by the input pattern, while the 
prototypes of the formed clusters, represented by hyper-rectangles, are stored in 
layer F2. The neurons in layer F2 that are already being used as representations of 
input patterns are said to be committed. Correspondingly, the uncommitted neuron 
encodes no input patterns. The two layers are connected via adaptive weights, Wj, 
emanating from node j in layer F2. After layer F2 is activated according to the 
winner-take-all competition between a certain number of committed neurons and 
one uncommitted neuron, an expectation is reflected in layer F1 and compared 
with the input pattern. The orienting subsystem with the pre-specified vigilance 
parameter ρ (0≤ρ≤1) determines whether the expectation and the input pattern are 
closely matched. If the match meets the vigilance criterion, learning occurs and 
the weights are updated. This state is called resonance, which suggests the name 
of ART. On the other hand, if the vigilance criterion is not met, a reset signal is 
sent back to layer F2 to shut off the current winning neuron for the entire duration 
of the presentation of this input pattern, and a new competition is performed 
among the remaining neurons. This new expectation is then projected into layer 
F1, and this process repeats until the vigilance criterion is met. In the case in 
which an uncommitted neuron is selected for coding, a new uncommitted neuron 
is created to represent a potential new cluster. Researchers have concocted a wide 
variety of ART-based architectures by modifying the fitness equations to 
specialize them for a given problem domain. 

For example, Gaussian ARTMAP uses the normal distribution to partition 
categories, with the relevant fitness equations incorporating the Gaussian kernel.  
This parametric statistical approach to ART was the first in what has become a 
rich field of study.  Other parametric methods incorporate different probability 
distributions or allow for alternative preprocessing schemes based on statistics.   

Other specializations of ART include ARTMAP-IC, which allows for input 
data to be inconsistently labeled and is shown to work well on medical databases; 
Ellipsoidal ARTMAP, which calculates elliptical category regions and produces 
superior results to methods based on hyper-rectangles in a number of problem 
domains; and a version of ART that uses category theory to better model the 
storage and organization of internal knowledge.  Overall, Adaptive Resonance 
Theory enjoys much attention by those studying computational learning for both 
scientific and engineering purposes. 

ART incorporates two steps: category choice and vigilance test.  Let  be the 
input,  the weights associated with category  (this is really  where the 
weight is a vector of  elements, but this subscript is typically suppressed), and  
be the vigilance. 

 
 



1.3   The Three Types of Machine Learning 7
 

In category choice, the degree of match is calculated: 
 | |  (1.1) 

 

for each category .  In the ART calculations,  is the fuzzy AND operator, and | | represents the -norm of . 
For the vigilance test, calculate 
 | |  (1.2) 

 

and compare with .  The algorithm then cycles between category choice and the 
vigilance test until resonance occurs and weights update according to 

. 
The relation given by Equation 2 calculates, in fuzzy logic terms, the 

percentage of  covered by .  See Figure 1.2 for a visual representation. The 
numerator tells us to what degree they overlap, and dividing then gives us a 
percentage.  This is done so that the category choice reflects which category  is 
closest to.  If one considers only the numerator, then the category choice value for 
the category that is identically equal to  (i.e., the perfect match) is the same as the 
category choice value for the uncommitted node of all 1’s.  The idea is to select 
the category to which the input fits just barely, and so the choice value is 
penalized for large ’s.  It makes no sense here to divide by | | because that 
quantity is the same for all categories; it would have no impact on which category 
is selected. 

For the vigilance test, top-down expectations are checked. The category that 
won the competition in F2 is checked to see if it predicts that something like  
ought to be the input pattern.  In the fuzzy logic sense, this expectation checking is 
interpreted as follows: 
 | |  (1.3) 

 

The algorithm now divides by | | to check what percentage of  is covered by 

.  Here, it makes no sense to divide by  because it is not of concern how 

well  predicts itself.  The check here, basically, is how many elements of the 

weights are less than elements of the inputs because  is everywhere larger than 

 this quantity is 1 and will not pass vigilance. 
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1.3.3   Reinforcement Learning 

Many fields, from animal learning theory to educational psychology, make use of 
the term reinforcement learning to mean a great variety of things.  This book refers 
to a very specific mathematical definition of a problem type presented in Figure 1.3. 

 

 
Fig. 1.3 Basic Reinforcement Learning Model Framework. Actions a(t), rewards r(t), and 
states s(t) are generated by the environment model and the agent controller 

 
Some form of the Bellman equation is applied here to represent the agent’s 

optimality criterion. It is important to understand that this literature hinges vitally 
on the notion of the agent as a maximizer of some utility function.  In that way, 
there is much in the fields of economics and operations research that can usefully 
inform ADP theory (Werbos 2004.) 

Barto and Sutton (1998) discuss a wide variety of solution methods for these 
problems.  In particular, this chapter will focus on one solution method, a member 
of the TD-  family of optimization algorithms (Sutton 1995), called Q-learning 
(Watkins 1989). 

Note that the Q-learning algorithm, depicted in Figure 1.4, iteratively updates 
the value of each state-action pair.  The appropriate modification is calculated 
based on the difference between the current and realized valuations, when  
 

 
Model 

 

 
 

Agent 
  

a(t)

r(t)

s(t) 
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maximized over all possible next actions.  This is a key fact that sets up the more 
advanced techniques discussed in the next chapter. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.4 The Q-Learning Algorithm 

 
This algorithm utilizes a lookup table to store the Q-values for each state-action 

pair.  As the scale of the simulation grows, the amount of memory required to 
catalogue these values can grow at a staggering rate.   

Next, the generalization of the Q-learning algorithm to the artificial Higher 
Order Neural Network technique of Adaptive Critics is covered. 

1.3.3.1   Approximate Dynamic Programming 

A Widely-Used and Increasingly effective approach to solving problems  
of adaptation and learning in applied problems in engineering, science,  
and operations research is that of Approximate Dynamic Programming (ADP)  
(Si 2004, Bertsekas 1996). ADP techniques have been used successfully in 
applications ranging from helicopter flight control (Enns 2003), to automotive 
engine resource management (Javeherian 2004), to linear discrete-time game 
theory, a topic near and dear to the heart of many an economist (Al-Tamimi, 
2007).  As ADP techniques continue to enjoy favor as the approach of choice for 
large-scale, nonlinear, dynamic control problems under uncertainty, it becomes 
important for the computational economist to be aware of them. Approximate 
Dynamic Programming is a field grounded in mathematical rigor and full of social 
and biological inspiration that is being used as a unification tool among 
researchers in many fields. 

This section overviews the structure of ADP.  Markov Decision Processes are 
discussed first to introduce the core structural terminology of the field.  Next, the 
Bellman Equation of Dynamic Programming, the true heart of ADP, is explained.    

Q-Learning Algorithm
1. Initialize Q(s,a) 
2. Set t = 1 
3. Initialize s 
4. Set a = π(s), calculate s’ 
5. Update Q(s,a) = Q(s,a) + γ[r(s’) + δmaxa’Q(s’,a’) – Q(s,a)] 
6. Set s = s’ 
7. If s is not terminal, goto 4. 
8. Increment t 
9. If t is not equal to the maximum number of iterations, goto 3. 
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1.3.3.2   Markov Decision Processes 

First, some terminology. The state of a system records all the salient details 
needed by the model. For an agent deciding how much of an asset to buy or sell, 
the modeler may set the state space to be a count of the current number of shares 
the agent is holding along with the current, stochastically generated dividend 
payment for the next time period.  In the computational modeling of games such 
as Chess and Go, the relevant state would be the position of all the pieces 
currently on the board, and possibly the number of captured stones (for Go.)  At 
each state, the agent has a choice of actions.  (In a control application, where the 
agent is a power plant or some other complex operation to be optimally managed, 
the actions are called controls.)  Our economic trading agent may buy or sell a 
certain number of shares, the totality of which entirely enumerates its possible 
actions.  Returning to the game example, the entire range of legal moves constitute 
the action set for a given board configuration, or state.  Each state nets the agent a 
level of reward.  States that lead to desirable outcomes, as measured by some 
reasonable criteria, are assigned positive reward, while states that should be 
avoided are given negative reward.  For example, the state arrived at after 
choosing the action that moves a Chess piece such that the opponent can place 
one’s king in checkmate would generate a highly negative reward, while a 
winning Tic-tac-toe move would evolve the system to a state with high reward.  
The manner in which the agent proceeds from state to state through the choice of 
action is called the evolution of the system; it is governed stochastically through 
transition probabilities.  The agent, upon buying a number of shares of a risky 
asset, finds itself in a new state. Part of the state’s structure, the size of the agent’s 
holdings, is under deterministic control. The stochastic dividend payment, 
however, evolves according to a statistical rule unknown to the agent. Therefore, 
the agent cannot know for certain to which state it will advance upon taking a 
certain action. Instead, the next states constitute a probability distribution 
described by the transition probability matrix.  To contrast, the evolution is 
completely deterministic in Chess and Go, as no randomness is involved.   

The way the state has been defined, as embodying all necessary information to 
calculate the future system evolution, allows the use of a mathematical Markov 
chain to model the system dynamics.  Any such system, said to satisfy the Markov 
Property, can be analyzed with the following techniques.  In practice, systems of 
interest often have a degree of error in the state representation, or some other 
influx of imperfect information, and therefore do not technically fulfill the Markov 
Property. However, approximation techniques for these situations abound, and the 
careful researcher still can make appropriate use of Markov chain modeling in 
many cases. For a more thorough analysis of such cases, see Sutton and Barto 
(1998). 

A Markov Decision Process (MDP) model is one in which Markov chains  
are used to analyze an agent’s sequential decision-making ability. In MDP 
terminology, the agent calculates a policy, an assignment of an action to every 
possible state.  The goal is to find an optimal policy, given some reasonable 
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criterion for optimality.  An MDP consists of the components previously defined:  
states, actions, rewards, and transition probabilities. The time scale under 
consideration is also important. Discrete MDPs typically evolve along the positive 
integers, while continuous MDPs are defined on the non-negative real numbers.  
Other time scales are feasible for constructing MDPs.  See the book by Bohner 
and Peterson (2001) for a more rigorous mathematical presentation of time scales. 

MDPs have been studied and applied extensively in such areas as inventory 
management (Arrow 1958), behavioral biology (Kelly 1993), and medical 
diagnostic testing (Fakih 2006). Standard solution techniques are available and 
well understood (Puterman 1994).  Solutions consist of an optimal policy for the 
agent to follow in order to maximize some measure of utility, typically infinite 
horizon expected reward. 

It is not always the case that a system can be adequately expressed as a standard 
MDP. When the state information is not fully available to the agent, then the 
model must be supplemented with a probabilistic description of the current state, 
called a belief space. An MDP under this addition becomes a Partially Observable 
Markov Decision Process (POMDP).  A classic POMDP example involves an 
agent deciding which of two doors to open. Behind one is a tiger, and behind the 
other is a lovely prince or princess ready to sweep the agent off its feet.  In a 
straight MDP, the agent would have access to the transition probabilities for the 
two states and would be able to calculate which door is most likely to contain the 
desired result.  In the POMDP formulation, however, the agent does not have 
access to such information. Instead, the agent receives observations, such as 
hearing the tiger growl, that combine to form a Bayesian approach to solving the 
optimal policy.  POMDPs have demonstrated an ability to model a richer set of 
systems than the pure MDP formulation. For example, POMDPs have been used 
in dynamic price modeling when the exact demand faced by the vendor is 
unknown (Aviv 2005).  When the demand at each period is known, an MDP can 
be used to calculate the best policy under expected reward criteria.  But, when 
faced with an unknown state element, the agent must refer to observations such as 
historical marketing data to help make its decision. 

Standard solution methods for POMDPs work only on specific frameworks and 
require significant computational capability to implement. To avoid these 
problems, it is common to use a technique such as a Bayesian Filter to transform a 
POMDP into an MDP once the observations key the agent’s belief space to a 
sufficient degree. The solution techniques for MDPs then can be applied to the 
POMDP and the optimal policy calculated. 

The next section provides the mathematical formulation of the task of the 
economic agent—the maximization of a particular optimality criterion. 

1.3.3.3   The Bellman Equation 

Consider an economic agent modeled with a finite set of states s, actions a, 
rewards r(s), and transition probabilities P(s, a) in a discrete time scale defined to  
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be the positive integers.  In order to calculate the agent’s optimal policy, some 
utility function must be maximized. In the core Approximate Dynamic 
Programming paradigm, the function to be maximized is the Bellman equation: 
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This is the discounted expected reward optimality criterion. In this equation,  
represents the current value of a given state,  signifies the next-states, and a 
discount factor is applied to the future rewards.  This equation is to be 
maximized over all actions.  Note that this is a special case of the full Hamilton-
Jacobi-Bellman equation studied in Chapter 5. 

The Bellman equation states that the current value of a state is equal to the 
immediate reward of taking an action plus the discounted future reward that 
accrues from that state.  Other optimality criteria are possible to account for 
infinite horizon or nondiscounted models. The task of ADP is to solve this 
equation.   

One standard solution algorithm is that of backwards induction.  Other 
approaches include value and policy iteration. The interested reader is directed to 
Puterman (1994) and similar texts for further details on these and other 
optimization techniques.  The solution method to be discussed in this chapter is 
found in the next section. 

1.3.3.4   Heuristic Dynamic Programming 

Q-learning is robust and has been shown to work quite well in a large number of 
problem domains, including being the base of the temporal difference approach at 
the center of a computational agent which, without any exogenously provided 
understanding of the rules of Backgammon, learned to perform at the master 
level and which was able to teach new strategies to arguably the world’s oldest 
game to champion-level players (Tesauro 1994).  However, its reliance on a 
lookup table to store values is a severe limitation.  Generalizations of Q-learning, 
falling under the heading of Heuristic Dynamic Programming (HDP), replace the 
Q-table with a multi-layer neural network function approximator.  Another 
generalization of Q-learning, dubbed Z-learning, involving a variable 
transformation to linearize the underlying MDP formulation, has been introduced 
(Todorov, 2007). 

The diagram for HDP, the simplest of the class of architectures broadly known 
as Adaptive Critic Designs (Werbos, 1992, Prokhorov, 1997), is presented in 
Figure 1.5. 
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Fig. 1.5 Basic Adaptive Critic Design.  J(t) is the value function being approximated, r(t) is 
the reward, and a(t) is the action control signal.  The critic evaluates the agent’s choice, 
modifying its adaptive weights in response to the chosen actions 

 
The Adaptive Critic architecture, in essence, translates a reinforcement learning 

problem into a supervised learning problem. This is beneficial because much is 
known about solving supervised learning problems.  The critic network learns the 
value function, and error between the current J-function value and the J-function 
value in the next time step is backpropagated through the network (Werbos, 1990). 

Adaptive Critic architectures have found many application areas, including 
missile control (Han, 2002 and Chuan-Kai, 2005), fed-batch biochemical process 
optimization (Iyer, 2001), intelligent engine control (Kulkarni, 2003), 
multimachine power system neurocontrol (Mohagheghi, 2007), and even the 
management of a beaver population to prevent nuisance to humans (Padhi, 2006).  
The promise of finding rewarding application of these techniques in the fields of 
computational economics and finance is too alluring to ignore. 

1.4   A Unified Approach 

Based on the Markov Decision Process framework, a unified approach to the three 
learning modes can be established. In this unified view, unsupervised and 
supervised learning modes are seen as the extreme ends on a continuum of 
reinforcement learning.  Unsupervised learning corresponds to the absence of any 
reinforcement, and supervised learning corresponds to the presence of perfect 
reinforcement. 

First, consider the MDP model of a reinforcement learning agent.  In this case, 
there are states representing salient features of the environment, and there is a 
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mechanism to transition from one state to another in the presence of a control or 
action.  The value of the reinforcement will help to determine if the chosen action 
evolved the state of the environment into a more or less valuable position.  In the 
context of an autonomous robot navigating a maze or an intelligent controller 
minimizing a cost function, the structure of the reinforcement learning model is 
intuitive.  Note that the critic is the unit that processes reinforcement, and the 
actor is the unit that calculates the action. 

For a supervised learning problem, however, such intuition takes more effort to 
establish.  In this case, the environment consists solely of the inputs to be learned.  
Regardless of the selected control, the environment will always transition to the 
next input on the list.  However, the reinforcement signal is not to be interpreted 
as a measure of value; rather, it is communicating what the correct action ought to 
be, which requires the supervised learning critic to behave differently than the 
reinforcement learning critic. Where the RL critic may hold a value function that 
chronicles the appropriateness (as determined by the environment) of each state-
action pair, the SL critic tracks no such information.  Rather, it is a function that 
will update adaptive weights to better coordinate the input with the actual signal 
received.  Many RL critics do this as well when they backpropagate an error 
through the neural-network based actor, but in the SL case this is more explicit—
the error signal to be backpropagated is generated not from the critic’s value table 
but from an error function, typically a least squared error measure between the 
input and the desired output (found in the signal from the environment).   

In this way, the supervised learning mode emerges as a subset of reinforcement 
learning.  The state is now simply an input vector, the transition probability matrix 
gives the next input vector with probability 1, the reinforcement signal from the 
environment contains the desired action value (target), and the action itself 
represents the target vector.   

For the UL case, there is no reinforcement signal at all.  The environment will 
generate a next state, which, as in SL, is interpreted to be the next input vector on 
the list, but the reinforcement signal is not present.   

Notice that in the UL operation, the critic is dormant; without a signal from the 
environment for it to process, it may as well not exist.  In order to see this as a 
subset of more general learning, however, it is useful to view the critic as existing 
but simply watching the action around it take place rather than taking an active 
role.  In this case, all the internal machinery determining to which category an 
input is to be assigned is located within the actor.  And, as in the SL case, the 
transition matrix for the input is degenerate, and the system always transitions to 
the next input vector as the “state.”  

These ideas are illustrated using the following equation model based on the Q-
learning algorithm.  Consider the following basic update rule: 
 , , ,  (1.5) 
 

This is the basic Q-learning formula, with the V component equal to the internal 
operation of the critic.  If the idea of the critic is expanded to refer to whatever 
internal calculation the algorithm performs, then we may use this equation to 
perform both supervised and unsupervised learning in addition to reinforcement 
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learning.  Of course, for both supervised and unsupervised learning methods, the 
reinforcement term  would be zero, but the value of V would depend on the 
dynamics of the particular approach being utilized.  So, for a basic supervised 
algorithm, the V would represent least-squared error, and for basic unsupervised 
learning, the V would equal the fitness calculation between the input and any 
given category.  More advanced algorithms could have V representing the 
ARTMAP or ART dynamics or a fuzzy c-means fitness, etc.  A single update 
equation can be interpreted, through the activity of the critic, to perform any of the 
three learning modes.  This is not to say that Q-learning leads to the most effective 
approach to supervised or unsupervised learning, only that this is the beginning of 
a single framework within which to discuss the three types.  This framework will 
form the basis of the algorithms presented in Chapter 2, which show integrated 
learning in action. 

1.5   Future Work 

Extensions of the work presented in this book will cover new applications, more 
robust synthesis of the learning modes, and further convergence of discrete and 
continuous signals within a single theoretical framework. 

In the application domain, there are many problems in social science in which 
an agent equipped with multiple learning modes may prosper.  For example, a 
commonly studied computational economics situation is one in which a collection 
of heterogeneous agents must analyze an input signal that gives information about 
the future value of a risky asset.  These agents must decide how to allocate 
resources between the risky asset and the risk-free asset so as to maximize payoff.  
This problem requires the agents to learn a match between the information signal 
and the future performance of the risky asset.  Simple multi-layer perceptron 
neural network architectures have been employed successfully in approximating 
the functional relationship between these two signals of interest.  However, in a 
more realistic application environment, the information signal would be expected 
to be intermittent, requiring the agent to process in an unsupervised mode while 
access to the information stream was limited.  In this way, the use of a unified 
learning method, where the content learned in supervised and unsupervised modes 
would be mixed together within a single memory, may be the correct model of 
actual economic agents. It helps that the ART-based neural networks are 
themselves designed specifically to describe how biological neural and cognitive 
systems operate. 

Furthermore, in a more robust application requiring portfolio balancing, an 
agent would be faced not with a single information source but with multiples. 
Advances in the theory of unified computational intelligence applied to the 
learning modes can generate algorithms that rate different supervisory signals via 
the reinforcement signals.  When a supervisor indicates a match that subsequently 
generates poor reinforcement results from the environment, then the sagacity of 
that supervisor will be in doubt. In this way, an extension of the unified 
computational intelligence learning neural network presented in this book may be 
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able to process multiple supervisory sources.  This would be an entirely new 
problem domain for machine learning research. 

In general, the development of new learning algorithms that are capable of 
synthesizing different sorts of feedback signals is a much needed extension of this 
book.  The idea that multiple signals may impact the same stored memory is one 
not yet represented in the literature.  Further theorems and applications regarding 
the interplay among competing learning signals are needed. 

Theoretical extension of the simple MDP model presented in this book is 
needed.  More theorems concerning the view of supervised and unsupervised 
modes as the extreme versions of the reinforcement mode would help guide the 
development of further algorithms for applications.   

On the dynamic programming front, further analysis of the unification of 
discrete and continuous signals is needed.  The time scales calculus is still an 
emerging area with relatively few active researchers worldwide.  As more and 
more of the fundamental applied mathematics gets formulated in this calculus 
(multiple valued Taylor series, n-variable chain rules, variational calculus, 
functional analysis, and nonlinear systems theory, to name a few), new results on 
the control front will become available.  Single algorithms capable of operating in 
discrete or continuous time will be available and may prove worthwhile in 
applications. In 20 years, aspiring control theorists may have to know a thing or 
two about the time scales calculus and dynamic equations. 

Extensions of the quantum calculus and dynamic programming are of value as 
well.  A quantum dynamic programming can be devised using the state space 
representations of quantum mechanics instead of the ones in classical mechanics. 
This approach may allow decision theory under uncertainty to be formulated in a 
new and useful way. 

Finally, the area of agent-based modeling of social systems in general is still in its 
infancy. As more computational results contribute to an understanding of complex 
systems to the same degree as has traditional analytic mathematics, more scientists 
will understand the power behind these methods and begin using them with wider 
acceptance. Computational intelligence techniques, themselves inspired in a way by 
biological systems, extend the possibilities of computation and may fuse with these 
agent-based models in a vital way to help advance both basic and applied research 
into the governing dynamics of social and economic systems. 
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Chapter 2 
The Unified Art Architecture 

2.1   Introduction 

The previous chapter introduced the idea of unified computational intelligence and 
discussed its implications for a learning machine.  This chapter presents the design 
unified ART architecture, and Chapter 3 contains an application implementing this 
design.   

Based on the Adaptive Resonance Theory neural network family, the Unified 
ART architecture is capable of seamlessly switching among unsupervised, 
supervised, and reinforcement learning without the aid of a governing control 
signal.  Sections 2.2 through 2.4 motivate and outline the basic operation of the 
system as applied in Chapter 3 and in Section 2.4 presents an extension of the 
system. 

2.2   Motivation 

The distinguishing characteristic of ART systems is their use of what this book 
terms permissive clustering.  That is, while most clustering algorithms such as K-
means calculate a fitness value and assign each input to its fittest category, in ART 
systems the category itself is able to reject an input from being placed in it if that 
input is too dissimilar from what the category would “expect” one of its members 
to look like. Physiologically, this corresponds to the “top-down expectation” 
calculation performed by a biological computational unit such as a visual cortex 
when presented with stimuli from the sensory unit.  Algorithmically, this adds to 
the computation a second step following the fitness calculation. During this step, a 
second test is run.  If the input passes this test, then it is allowed to be placed in 
the category corresponding to the prevailing high fitness; otherwise, the input 
must proceed to the next fittest category and present itself for testing according to 
that category’s criteria. 

In the ART literature, this second step is called the vigilance test and is 
controlled by a single scalar called the vigilance parameter, typically denoted by 

.  It is crucial that ART researchers understand the importance and uniqueness of 
this second level of permissions.  It is so easy to get carried away by attempts to 
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streamline the computational algorithm or generate tractable mathematics that a 
researcher may end up working on an architecture that does not actually belong to 
the ART lineage.  Many worthy algorithms purport to be versions of ART but do 
away with the vigilance test entirely.  While these algorithms may be fine 
solutions to the engineering problems for which they were developed, it is 
important to keep in mind the core principles of ART when designing these 
architectures.  In this way, a connection with the biological structures underlying 
the behavior of ART systems can be maintained, and the strong ties between 
computational intelligence and nature are kept alive.  While the resulting system 
need not be a slave to what the natural world provides, much insight may be 
gained by using its revelations to help engineer solutions. 

The three learning modes of supervised, unsupervised, and reinforcement 
learning receive the most attention in the literature.  The unified architecture is a 
seamless integration of these three learning modes in that (1) it uses a single set of 
adaptive weights to process all three modes, (2) it determines when to use which 
learning mode without the intervention of an operator, and (3) the various signals 
driving the learning modes all interact with each other at the base learning level.  
Similar research on integrating reinforcement learning with the existing ARTMAP 
systems is not fully integrated in this sense.  They instead use the ART classifier 
to cluster inputs and then process these clusters using a variety of reinforcement 
learning methods, most often temporal difference methods.  While the usefulness 
of clustering inputs is undisputed in some problem domains, the resulting 
architecture cannot be said to be fully integrated in the sense of an ART system.  
This book presents the first architecture that recognizes the unique features of 
ART and uses them to create a fully integrated learning machine.  In this way, this 
contribution is the first unified learning neural network architecture to appear in 
the literature. 

To motivate the algorithm presented in the next subsection, the development of 
ART from an unsupervised algorithm to its incarnation as ARTMAP, a supervised 
learning tool, is outlined.  It is important to see that a new learning mode added to 
an ART network must interact with the vigilance test.  ARTMAP will override a 
successfully passed vigilance test if the supervisory signal so demands.  It is this 
interaction between the new learning mode—the presence of the supervisor—and 
the vigilance test that places ARTMAP firmly in the ART camp.  A system 
integrating reinforcement learning into ART must interact with the vigilance test. 
The RL signal is capable of causing a category reset in the ART module, thus 
influencing the nature of the stored prototypes and the structure of the intelligent 
network.  This feature more faithfully emulates biological systems and also 
provides for a more robust interaction among the three learning types. 

2.3   Block Diagram 

Figure 2.1 shows the block diagram for the unified ART architecture. 
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Step 3:  Process Control 
 
 a)  Submit  to the environment. 
 b)  Observe 1 , , and . 
 
Step 4:  Interpret Reward via Critic 
 
 Case 1: If supervisory signal is present, then use it to update the weights  
  a)  if , then set ,  to the max value , zero out all 

the other values of  , and update the weights . 
                         b)  if , trigger reset in ART.  Get a new ′  and 

repeat step (a). If ′  is an uncommitted node, then set it as in (a). 
 
 Case 2: If reinforcement signal is positive, update  using ADP  

                               methods and  update . 
 
 Case 3:  If reinforcement signal is negative, trigger mismatch in ART  

                              and select new ′  in a manner proportional to .  Then  
                              update as in 2 and  as standard. 

 
 Case 4: If neither  nor  are present, then update  

                                 . 
 

The details of these operational steps follow in the next subsection. 

2.4   Operation 

This section provides details for the steps outlined in the previous section. 

2.4.1   Step 1: Calculate State Trace 

The first step is to present the input to the ART system.  Details are shown in 
Figure 2.2. 

The category choice vector  is calculated following the normal ART 
equations given in Figure 1.1.  This category choice vector will now select the 
category with which to match the input, and the appropriate vigilance test will be 
run.  If the input passes the vigilance test and resonance occurs, then the winning 
node will be selected and set equal to the state trace signal .  If resonance is 
not achieved, then a new category will be tested, ranked in descending order in the  
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category choice vector.  If none of the categories are able to pass the vigilance 
test, then an uncommitted node will be recruited and assigned to the state trace.  
Note that when an uncommitted node is recruited, the dimensions of the controller 
unit must be updated along with the ART unit.  Section 2.4.2 contains more details 
regarding the controller activation. 

Alternatively, the state trace may encode a distributed activation level 
corresponding to each category. In this case, the category choice vector  
combines with the results of the vigilance test to generate a state trace , 
which is a vector with a value for each encoded node.  Such a distributed input 
may achieve better performance in applications with noisy inputs if category 
proliferation becomes an issue. 

The state trace is the transformed measure of input.  The trace will key the 
proper activation levels in the controller and will be susceptible to modification by 
the critic in response to a reinforcement signal.  It is here, in the ability of the 
supervised learning mode and especially of the reinforcement learning mode to 
access the resonance stage of the ART architecture, that the unified ART model 
presented herein truly remains a member of the biologically inspired computational 
family. 

 

 
 

Fig. 2.2 The State Trace Calculation Step of the Unified ART Architecture 
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2.4.2   Step 2: Calculate Control 

The controller, as shown in Figure 2.3, is a matrix , where the columns 
represent categories and the rows the various control (or action) signals. 

The controller, having a number of rows equal to the committed nodes in the 
ART unit, must be updated whenever the state trace  is set to an uncommitted 
neuron.  In this structure, the controls represent the possible inputs to the 
environment unit.  In much of the reinforcement learning literature, particularly 
that surrounding the use of actor-critic networks, the controls are interpreted as 
actions an agent may take at any state in the environment.  In keeping with the 
more general control theoretic framework, we adopt the term control even though 
it is within an actor-critic model. 
 

 

 
 

Fig. 2.3 The Controller in the Unified ART Architecture 

 
In order to calculate which control will be applied to the environment, the state 

trace is used to select a row in the control matrix.  The entries of the controller 
serve as a value function telling us which of the available controls the system 
believes best applies in the given state.  The choice is the entry in the selected row  
with the greatest value.  This entry is then assigned as the control signal  and 
submitted to the environment. 
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If the alternative distributed encoding of the state trace  is being used, then 
the control is calculated in a different way.  Figure 2.4 shows the operation of the 
second step using the alternative extended version of the state trace vector. 

 

 

 
 

Fig. 2.4 The Distributed State Trace 

 
For a distributed state trace, the control selection requires a matrix 

multiplication, with the appropriate row in the controller being effectively 
weighted by the values in the processed category choice vector.  The resulting 
weights are then inspected for the highest value, as is common in value function 
representation schemes, and the winner chosen as the control signal . 

Either method of calculating the control will result in the generation of a signal 
which is then presented to the environment. 

2.4.3   Step 3: Process Control 

The environment responds to the presentation of a control signal by generating 
three signals:  the supervisory signal , the reinforcement signal , and the 
next state .  The supervisory signal has the capacity to override the state  
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trace calculated through the resonance process in Step 1.  Similarly, a negative 
reinforcement signal is also given that authority.   

These signals can be seen in the system block diagram in Figure 2.1.  How each 
of them is handled is covered in the next subsection. 

2.4.4   Step 4: Interpret Reward via Critic 

This step involves four cases:  (1) supervisory signal, (2) positive reinforcement, 
(3) negative reinforcement, (4) unsupervised mode.   

2.4.4.1   Supervisory Signal 

If the environment produces a supervisory signal, then this overrides any other 
signals present.  While an environment should not produce both supervisory and 
reinforcement signals, in the event this does occur, the unified ART system will 
give priority to , as it represents an input-output pairing that simply must be 
attended to.  In comparison, even a positive reinforcement signal does not carry 
such a mandate.  (Note that while more sophisticated incarnations of the unified 
ART system are capable of distinguishing among and rating multiple supervisors, 
the base version treats the supervisory signal as infallible.) 

If , then the system has generated the correct control.  In this case, 
the value of this control ,  is set to the maximum allowable value ; all other 
values of  are zeroed out.  The adaptive ART weights are updated according to 
the standard rule . 

If the supervisor signal does not match the system’s chosen output, that is, if 
, then a reset is triggered in the ART unit.  During reset, the category 

choice vector  has its highest value zeroed out, and the vigilance test resumes 
with the next highest node.  After the vigilance test selects another winning node, 
the state trace value  is reset, and the algorithm returns to Step 2. 

2.4.4.2   Positive Reinforcement 

If 0, then the ART system has returned a good, but perhaps not perfect, 

control signal.  The controller weights  are updated by adding the reinforcement 

signal (or a value proportional to ) to the entry corresponding to the chosen 
control.  This is the standard actor-critic framework update process.  Compared to 
the case in which the supervisory signal is present, the value of the control is not 
automatically set to the maximum possible while simultaneously zeroing out all 
others, thus ensuring they are not chosen. However, the already vibrant connection 
between the current input and the positively reinforced control signal is 
strengthened.   

Finally, the ART weights are updated according to . 
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2.4.4.3   Negative Reinforcement 

In the presence of negative reinforcement, the algorithm, in order to be truly 
integrated, must force a reset in ART.  In this way, a negative reinforcement signal 
from the environment interacts directly with the resonance loop.  ART mismatch 
is handled as in Case 1, and a new state trace  is generated.  The controller 

weights  are updated as in Case 2, and the ART weights are standard in all 
cases. 

2.4.4.4   Unsupervised Mode 

In the absence of supervisory or reinforcement signals, the system operates in 
unsupervised mode.  The ART weights are updated as , and 
the system proceeds to the next input.  This mode is identical to pure, 
unsupervised ART. 

2.5   An Extended Architecture 

The unified learning architecture presented thus far is the one implemented in the 
extensive application in Chapter 3.  This section introduces an extended version of 
the algorithm, which explicitly calls upon the canonical features of the ART 
family of systems to showcase more directly the theoretical developments of 
Section 1.5. 

2.5.1   The Vigilance Test 

The basic structure of an ART algorithm takes the following canonical form: 
 

             1.  Calculate coding node activity . 
             2.  Run vigilance test by optimizing  subject to the match criterion . 
             3.  Update adaptive weights. 

The vigilance test, with its interplay between bottom-up activity and top-down 
expectation, defines an ART algorithm.  Different specializations of ART have 
different forms for  and , and while they may also specify the optimization 
procedure to use when running the vigilance test, they all contain this inherent 
search for a resonant state.  Furthermore, vigilance tests can be layered for more 
complicated architectures, as is the case when combining learning modes.  In these 
situations, multiple match criteria must be met, each one representing a layer of 
the test.  For this reason, the match criteria are expressed as a vector. 

In the ART algorithm discussed in this chapter,  is allowed to depend on the 
learning mode while still adhering to the canonical structure. 

For all three learning modes, define 
 

 1  (2.1) 
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where  is the input (state),  is the signal rule parameter (typically .01),  is 
the size of the input vector, |·| denotes the -norm,  is the fuzzy intersection 
operator defined by min , ,  is the coding node weight matrix, 
and  indexes the categories. 

The vigilance tests vary by learning mode. 
For unsupervised learning, 

 
 : | | (2.2) 

 

where  is the vigilance parameter.  No special rules are imposed on the vigilance 
test. Typically, the values of  are just sorted and then checked against  in 
descending order until the criterion is met.  Some researchers report computational 
gains by first checking the elements of  against  and then sorting, but the result 
will be the same either way. 

If none of the nodes pass the vigilance test, then a new node is committed.  See 
Section 2.5.2 for details on this procedure. 

If the system is running only in unsupervised learning mode, then its operation 
defaults to Fuzzy ART. 

For supervised learning, use the following vigilance test: 
 

 : | | :  
(2.3) 

 

where  is the control output and  is the supervisory signal.  For this vigilance 
test, not only is it the goal to satisfy the condition given in the UL vigilance test, 
but also to ensure that the output is correct.  This is an example of layered 
vigilance testing as introduced in ARTMAP. 

To perform this test, a procedure called match-tracking is specified. During 
match-tracking, modify the vigilance according to  
 

 
 (2.4) 

 

and keep searching  until a node passes the criteria.  In this updated equation,  
is a small decrement which defaults to .001.  The vigilance parameter is 
returned to its baseline value at the conclusion of the vigilance test. 

If none of the nodes pass the vigilance test, then a new node is committed as 
outlined in Section 2.5.2.  If our system runs only in supervised learning mode, its 
operation roughly emulates that of Default ARTMAP. 

For reinforcement learning, calculate the temporal difference (TD) error given 
by  
 

  (2.5) 
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where  is a reinforcement signal,  is a learning rate,  and  are the current 
and next states, respectively, and  is the value weight matrix. 

When the TD-error is high, the system wants to increase the chance that the 
given  will be selected.  When the TD-error is low, it wants to decrease that 
chance that the given  will be selected.  The second layer of the vigilance test 
reflects this design, while the first layer represents the core ART vigilance test.  
The ideal match criteria are given by 
 

 : | | : 0 
(2.6) 

 

Alternatively, one could increase expectations and require  greater than some 
high reward value. In any case, the optimization method for this  is actually a 
suboptimization procedure.  In fact, the value of  never changes during the 
vigilance test; therefore, if  is not satisfied on the first pass, it will never be 
satisfied.  In order to properly optimize  subject to (2.06), the entire 

 vector must be searched thoroughly as is done in the vigilance tests for 
unsupervised and supervised learning.  However, in the reinforcement learning 
case, more than just the current state is needed;  the next state is also required.  
The only way to get the next state is to submit  to the environment repeatedly 
until the control that gives the greatest value for  is discovered.  Therefore, the 
vigilance test cannot require searching the entire  vector in a manner that will 
allow the continual calculation of new ’s.  Rather, it can only search  to select a 
new  and then use that information as best as the system can. 

So, for the case in which 0, the system refrains from searching  at all  
and simply updates the weights.  If 0, however, then implement the  
following plan: 

 
1. Trigger a reset in ART by zeroing out the current winning node and 

selecting the next highest node that passes . 
2. Calculate a new . 
3. If the new  is different than the old , then update weights using the new 

winning category. 
4. If the new  is the same as the old , then trigger reset in ART and search 

again. 
5. If all the categories have been searched and  remains unchanged, then 

commit an uncommitted node and update weights using the newly 
committed category as the winning node . 

 
 
 
 
 
 



30 2   The Unified Art Architecture
 

Updating  and  in the case of negative reinforcement will reduce the chance of 
the system again choosing  when the given category wins.  However, it does not 
increase the chance that the given state input will be placed in the same category 
the next time it is seen. 

2.5.2   The Weight Update 

Fuzzy ART uses one set of weights to perform unsupervised learning.  ARTMAP 
adds a second layer of weights to implement supervised learning.  Our algorithm 
continues the trend and adds a third weight matrix to handle reinforcement 
learning.  Each set of weights has its own role to play and its own update rules. 

The coding node weights  determine the templates for the ART categories.  
 is a  matrix, where  indexes the number of categories and  indexes the 

size of the state vector. 
The update rule for  is as follows: 

 
 1  (2.7) 

 
where  is the winning category node and  is the coding node learning 
parameter.  When 1, the updates are called fast learning.  This is its usual and 
default value. 

The next set of weights to discuss are the control weights .  Default ARTMAP 
calls these weights the output layer weights, but in this application the outputs 
correspond to controls, hence the need for the renaming.   is a  matrix, 
where  indexes the categories and  the controls.  The elements of  represent 
values for state-control pairs.  The control is selected by choosing the column with 
the largest value, and  can be considered an actor, in the language of ADP.  This 
matrix is affected heavily by the supervised learning mode. 

The update rules for  are as follows: 
 
1.  If   is active, then 
 

 ,: ,:  (2.8) 
 
2.  If  is active, then  
 

 min , (2.9) 
 
where ,: is the  row vector in ,  the control mask  is the row vector 
whose elements  are zero when  and equal to the maximum control value  
divided by  when ,  is the control output, and  is the reinforcement  
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learning rate.  Note that the result of the notationally challenging expression ,: ,:  is simply to set the values in the winning node’s weight vector:  the 
correct control, the one that matches the supervisory signal , is set to the 
maximum allowable value , and the other signals are set to zero.   

The control weights  are not updated during unsupervised operation. 
The final set of weights used in the extended ART Critic architecture is the 

value weight matrix .  The value weights act as a critic for the actor .  These 
weights determine the TD-error , which is used to update both  and .  These 
weights, like , store state-control values.  The difference is that  is heavily 
influenced by the supervisory signal  while  is only affected by the 
reinforcement signal .  The value weights are of the same dimension as the 
control weights. 

The update rule for  is as follows: 
 

  (2.10) 
 

ART algorithms only commit new memory to the storage of template and other 
weight values when it becomes necessary to do so.  If a vigilance test fails for all 
the categories, then a new category, previously uncommitted, is committed and 
has the current input assigned to it as a template.  Since all the weight matrices , 

, and  have a row for each category, committing a new node requires altering 
their structure.  For , the new row is initialized to all ’s, and for  and , the 
new row is initialized to small random values.  The variable  tracks the number 
of categories, so it must be incremented as well. 

Finally, the nature of the environment must be addressed, tying into the view of 
unified learning presented in Section 1.5.  The learning problem under 
consideration requires the agent to interact with its environment.  The environment 
is modeled by a vector-valued function of the form 
 

 , , ,  (2.11) 
 
For a pure unsupervised or supervised learning problem, thinking of an 
“environment” may not seem as natural as simply presenting to the algorithm a 
sequence of input vectors.  In this case, the  output of  can be considered a 
virtual state equal to the next input on the list.  In the case of a more traditional 
environment, the next state is the natural evolution of the system under the control 

 as determined by internal dynamics. 
An unsupervised learning problem will not contain either  or  signals.  In a 

supervised problem, the  signal is equal to the target class, and for reinforcement 
learning, the  signal is the traditional reinforcement value.  Note that there is a 
difference between these signals not being active and these signals being zero. 

 
 
 
 
 



32 2   The Unified Art Architecture
 

2.5.3   Algorithm 

To summarize the operation of the extended unified ART architecture, the 
algorithm is presented in the following convenient list: 
 

 1.  Calculate coding node activity using (2.01). 
 2.  Select winning category  . 

3.  Choose control signal max . 
 4.  Submit  to the environment and receive , , and . 
 5.  If neither  nor  is active, run the unsupervised vigilance test (2.02). 

6.  If  is active, run the supervised vigilance test (2.03). 
7.  If  is active, run the reinforcement vigilance test (2.06). 
8.  Update weights as given by (2.07), (2.08), (2.09), and (2.10). 
9.  Repeat from Step 1 with the new state. 
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Chapter 3 
An Application of Unified Computational 
Intelligence 

3.1   Overview 

The previous section described a unified computational intelligence learning 
architecture based on Adaptive Resonance Theory neural networks.  In this 
chapter, this architecture is used in an application that was briefly introduced in 
Chapter 1. 

The content of this chapter is adapted from a paper appearing in the Neural 
Networks journal (Brannan, Seiffertt, Draelos, & Wunsch, 2009) and a preliminary 
version appearing as (Brannan, Conrad, Draelos, Seiffertt, & Wunsch, 2006).     

In this chapter, the unified computational intelligence algorithm is referred to as 
CARTMAP, for Coordinated ARTMAP.  This name was determined by Sandia 
National Laboratories collaborators since they, being government officials, 
possess a certain je ne sais quoi for the use of acronyms.  This application, in the 
area of situation awareness, proved a testing bed for a unified learning architecture 
of the type described in Chapter 2 of this book.  The results indicate that the task 
described, if performed using only a single mode of learning, would not have 
achieved the same level of effectiveness as it did using all three modes in 
combination. 

3.2   Introduction 

Modern information sources to support decisions in domains such as force 
protection are diverse.  Ground, air, and space-based sensors continue to increase 
in capability.  Information fusion algorithms can help integrate a variety of sensor 
data into meaningful forms (Hall & Llamas, 1997).  Applications with a complex 
assortment of data continue to challenge machine learning approaches to 
information fusion, which normally utilize a single type of learning algorithm and 
therefore limit the use of all available data (Brannon, Conrad, Draelos, Seiffertt, & 
Wunsch, 2006).  Our approach coordinates multiple learning mechanisms to 
accommodate environments where ground-truth and feedback may not be 
available consistently, and it uses Adaptive Resonance Theory (ART)-based 
networks, which are based on understanding cognition.  This ties the work into 
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other such computational architectures seeking not only solutions to engineering 
problems but also an understanding of the function of the brain and mind as 
discussed by Werbos, Perlovsky, and others. 

3.2.1   Machine Learning 

Machine learning involves programming computers to optimize a performance 
criterion using example data or past experience (Alpaydin, 2004).  Artificial 
neural networks are commonly used in machine learning and utilize supervised, 
unsupervised, and reinforcement learning approaches to achieve predictive 
properties based on example (training) data.  Unsupervised learning (clustering) 
can be effective when ground truth is not available within a dataset.  Supervised 
learning (learning with a teacher) provides a means of using experience (examples 
with ground-truth) to correctly classify yet unseen situations.  Reinforcement 
learning offers promise for machine learning in difficult learning environments by 
taking advantage of feedback about a system’s performance.  The challenge 
addressed by the current work is to coordinate all of these learning mechanisms 
and utilize the appropriate one based only on available information, not human 
intervention. 

Neural networks offer an excellent assortment of high-performance, low-cost, 
distributed processing options.  In particular, they can be embedded into 
appropriate sensors for operation at the lowest levels of information fusion with 
effective but low-complexity designs.  At the highest levels of information fusion 
and situation assessment, reinforcement learning can be used with a human in the 
loop to provide operational feedback.  Dealing with multiple sensor modalities and 
extracting meaningful information from massive datasets is a natural fit for these 
adaptive methods.  Although neural networks have been applied to sensor fusion, 
their use in situation awareness has been limited, possibly because of the lack of 
rich training data for this problem. 

Automated (computational) information fusion continues to suffer from very 
specific, ad-hoc solutions (i.e., there appears to be very little general-purpose 
technology to apply to this problem) (Kokar, Tomasik, & Weyman, 2004).  For 
many applications, there is also a dearth of data to use for training a computational 
engine.  This reveals a challenge for the application of machine learning 
techniques, which are data-driven and require training, whether via supervised, 
unsupervised, or reinforcement learning.  On the other hand, because they are 
data-driven, the advantage of machine learning techniques is that they can learn 
solutions to problems that are difficult for humans to codify with explicit rules or 
models.  In other words, they can represent rules/decisions that are implicit in the 
training data. 

3.2.2   Information Fusion 

The fusion of information has been likened to the ability of animals to utilize 
multiple senses to derive a better understanding of a situation (Hall & Llinas, 
1997).  For example, one may hear a noise and, based on the sound pressure 
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discrepancy between each ear, localize the area of the sound source.  Vision can 
then be used to further define and understand the source of the sound.  The 
analogy is helpful because fusion, and more generally situation assessment, is a 
process rather than simply a discrete event.  The process leads one from raw data 
to understanding and actionable knowledge.   Fusion can occur over various 
information (sensor) modalities, over geographic space, and over time. 

The sources of information potentially available to decision makers continue to 
expand in depth and breadth.  Sensor capabilities in particular are maturing 
rapidly, but a valid concern is that the pace of sensor development has not 
necessarily been consistent with advances in human effectiveness, which the 
sensors must ultimately support (Paul, 2001).  Fusion algorithms will better 
support human-in-the-loop system effectiveness when the decision maker is a 
central and balanced design element.  Our system includes, as a core design 
principle, the use of a human-in-the-loop operator to provide reinforcement 
signals as well as to ensure a level of quality control. 

3.3   Approach 

3.3.1   System Architecture 

The design of the computational engine for information fusion and situation 
awareness takes advantage of the diverse utility of neural networks and integrates 
elements of supervised, unsupervised, and reinforcement learning.  The design not 
only advances machine learning research, but also addresses the needs of situation 
awareness and human-in-the-loop decision support.   

Key design attributes of our system include accepting various inputs such as 
binary, categorical, and real-valued data.  With respect to situation assessment 
outputs, attributes include confidence levels as well as evidence in support of or 
against the assessment.  In the context of missing or noisy inputs, the system 
exhibits graceful performance degradation.  

In order to address the desired design attributes of our situation awareness 
system, neural networks are employed for information fusion, followed by a 
situation assessment module.  ARTMAP is based on Adaptive Resonance Theory 
(ART), a widely implemented approach to modeling the learning capabilities of 
the brain (Carpenter & Grossberg, 1988).  Architectures based on ART have been 
used successfully in a variety of areas requiring a self-organizing pattern 
recognition neural network.  The basic ART element supports unsupervised 
learning and binary inputs.  Fuzzy ART is an extension to accommodate 
categorical and real-valued inputs.  ARTMAP supports supervised learning and 
can accommodate real-valued inputs using fuzzy logic (Carpenter, Grossberg, 
Markuzon, Reynolds, & Rosen, 1992).  ARTMAP can also support reinforcement 
learning, for example, by adding a mechanism to implement actor-critic methods.  
Coordinated ARTMAP (CARTMAP) is the name given to the current approach 
and involves the integration of all three learning mechanisms in the same 
architecture.  
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The situation assessment module receives state information from the 
information fusion module and possibly other sources and outputs a threat 
assessment or action to be taken.   

3.3.2   Information Fusion Engine 

Intelligent creatures exhibit an ability to switch seamlessly among unsupervised, 
supervised, and reinforcement learning as needed.  However, machine learning 
architectures, including artificial neural networks, have not yet achieved this goal.  
The current research contends that it is advantageous to develop this capability in 
a computational framework and that the ART architecture is an excellent choice 
for such an implementation.  

A well designed sensor fusion algorithm, like an intelligent creature, can make 
informed use of all three types of learning on the data set given.  Certain 
information fusion paths may be pre-trained prior to deployment, thus granting the 
human operators license to verify that the most obvious sensor patterns will be 
classified successfully.  During operation, a reinforcement signal provided either 
by the environment or by the human operator acting off of the fusion algorithm’s 
recommendations can adjust the current adaptive weight profile to curtail or 
retrain a faulty clustering (negative reinforcement) or to promote successful 
clustering (positive reinforcement) in the ART algorithm.  Finally, in the absence 
of any external signal, the algorithm will learn in an unsupervised manner, 
comparing current inputs to what it already knows. 

With the ARTMAP unit taking the place of the actor in the actor-critic 
implementation, the Coordinated ARTMAP (CARTMAP) algorithm behaves 
according to the following steps:  

 

1.  Upon receipt of an unsupervised signal, the system uses its 
exemplar classification scheme (the ART unit) to output an action choice, 
as usual.  No updating of the lookup table will be necessary.   

2.  When presented with a supervised signal, the internal adaptive 
weights update as per normal ARTMAP rules, and the output action is set 
equal to the supervised training signal.  Furthermore, the values in the 
lookup table for actions not associated with the supervisory signal are 
zeroed out. 

3. When a reinforcement learning input signal is received, it will be 
interpreted according to the Q-learning algorithm.  The appropriate entry 
in the lookup table is augmented with the new reinforcement value, and 
the action selected is the one with the most value accumulated in its 
column of the table.  In the simulations, the values of the parameters 
delta and gamma are 0 and 1, respectively. 

 

In summary, the information fusion engine accepts raw data from sensors and 
other information sources and processes/transforms/fuses them into inputs 
appropriate for the Situation Awareness Assessment engine.   

The information fusion system utilizes appropriate elements of its architecture 
based on the data presented to it.  The three ART networks are linked together by 
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an inter-ART module (Associative Memory).  One ART unit handles the inputs, 
another ART unit processes the supervisory (or target) signal, and the other 
processes the reinforcement signal as an adaptive critic.  This architecture is 
capable of online learning without degrading previous input-target relationships. 

There are times when unsupervised learning is satisfactory, such as in the 
presentation of new input vectors to a pre-trained network.  Supervised learning is 
appropriate and desired for initial training on fixed data.  However, these two 
types of learning do not cover every possible complication.  There are times when 
the human operator does not know the correct classification, yet some feedback on 
the decision can be provided.  These situations fall into the reinforcement learning 
category.  One aspect of developing this information fusion engine, therefore, is 
adding the reinforcement learning capability to the ARTMAP neural network.   

3.4   Application 

The situation awareness system was designed to operate in an environment 
involving distributed sensors and a central collection site for protection of a facility. 
Information sources in such an environment can include seismic, magnetic, acoustic, 
passive infrared (PIR), and imaging sensors as well as weather, time/day 
information, various intelligence information, local/regional/federal threat levels or 
law enforcement bulletins, and any other information that might be relevant to the 
security of a particular facility, such as current traffic situations or health issues. 

Conditions of interest to force protection decision makers include: no activity, 
severe weather, unauthorized people or vehicles in certain locations, and certain 
types of unauthorized vehicles or humans with weapons in any areas.  Actions 
include: doing nothing, identifying the type and location of a moving object 
(vehicle or human), using commands to turn sensors on or off, dispatching forces, 
and/or notifying higher authorities.  The information sources can include binary 
data, such as motion detection, categorical data, such as the type of day (weekend, 
holiday, etc.), and real-valued time-series data, such as seismic, acoustic, and 
magnetic energy levels. 

Before being deployed, the system must be pre-trained with any information 
the human operator knows about the system.  For example, if the data signature of 
a thunderstorm is easy to demonstrate (due to specific acoustic, magnetic, etc. 
levels), then that information can be included in the supervised training portion of 
the system.  The information fusion engine will adaptively learn many more data-
observation relationships during online operation, but having basic readings pre-
trained will aid in initial operation. 

When an intruder, be it an unauthorized vehicle or a human with a weapon, 
breaches the sensor range of a protected facility, the triggered sensor data stream 
into the information fusion engine.  The CARTMAP network then maps these data 
into observations, such as a vehicle heading north at high speed.  These pairings 
represent novel data readings that were not anticipated, which are then categorized 
via the CARTMAP algorithm in relation to the pre-trained data. 

The observation is then sent to the situation assessment engine, which follows 
the partially observable Markov decision process (POMDP) formulation to 
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calculate a probability distribution over the state space.  This information 
represents a confidence level that the system is in any given state.  The state with 
the highest confidence from this calculation represents the system’s choice for the 
current state.  All of this probability information is then passed to the human 
operator, who uses this evidence in making a final decision about how to respond 
to the situation. 

Adapting online is an important element of the system and is accomplished 
through reinforcement signals that can be sent through the system in two ways.  
First, if the probabilities of each state are so low that the human operator would 
not be able to distinguish the state from simple background noise, then the 
situation assessment engine may issue a command to gather more information 
from additional sensors.  Second, the human operator may disagree with the 
system’s assessment of the current state.  A reinforcement signal is then sent to the 
information fusion engine, and the data-observation mappings will adapt online.  
Both of these reinforcement signal loops are noted functionally in the block 
diagram in Figure 3.1.  This feature of the system allows it to maintain relevance 
in a changing environment. 

 

 
 

Fig. 3.1 CARTMAP Input and System Activity. Associated with unsupervised learning, 
supervised learning, reinforcement learning, and standard operational use. Available inputs 
to the system are shown in green, as are the active elements involved in learning 

 

 
As shown in Figure 3.1, unsupervised learning occurs using a single ART unit.  

The cluster that forms is the one that maximizes the signal strength of the input 
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with respect to a match criterion.  Many forms of both the signal and the match 
criterion are used in various implementations of an ART architecture.  Amis and 
Carpenter (2007) provide default values that work in general scenarios.  
Supervised learning occurs when the clusters formed by the unsupervised learning 
unit are given labels through interaction with supervisory inputs.  This interaction 
is mediated by an associative learning field as explained in Amis and Carpenter 
(2007).  This process forces a reset in the input cluster if the label does not match 
the supervisory signal closely enough.  Finally, reinforcement learning is handled 
in a similar manner.  The RL signal can update the associate weights following the 
Q-learning explained in Section 3.3.2. 

The CARTMAP algorithm was implemented in Matlab and applied to 
information fusion in a vehicle tracking scenario that is described in more detail 
below.  ART is at the core of the fusion engine.  During off-line training, an input 
pattern is presented to the CARTMAP network and, depending on its similarity to 
existing category templates, it is either assigned to a current winning category or a 
new category is created for it.  Categories may exist indefinitely without an assigned 
class.  However, if a supervisory signal accompanies the input, the target class is 
immediately associated with the category.  During offline reinforcement learning, an 
input pattern is presented to the CARTMAP network, and a winning category is 
determined.  A reinforcement signal is computed based on the class of the winning 
category and the ground-truth class.  For example, if the category’s class matches 
the ground-truth class, the reinforcement signal is assigned a positive reward; if not, 
then a penalty is assigned.  A range of reinforcement values are assigned based on 
the quality of the match.  A reinforcement lookup table (RLUT) is used to track an 
input pattern’s relationship with possible classes.  The RLUT stores input patterns 
and an accumulated reinforcement signal for each possible class.  CARTMAP 
weights are updated according to the following criteria: 

 

1. If no category encodes the input pattern, then a new category is created 
without a class assignment. 

2. If the winning category has an unassigned class, then the RLUT is 
searched for the input pattern.  If the pattern is found in the RLUT, then 
the reinforcement signal is applied to the class of the winning category, 
and the class with the highest reinforcement is used as the target in 
supervised learning.  If the pattern is not found in the RLUT, then 
nothing is done to the CARTMAP weights. 

3. If the winning category has an assigned class, then this class and 
reinforcement signal are used by a critic function to determine how to 
update CARTMAP weights.  The RLUT is searched for the input pattern.  
If the pattern is not found, unsupervised learning is performed, and the 
pattern is added to the RLUT along with the reinforcement signal.  If the 
pattern is found in the RLUT, then the reinforcement signal is applied to 
the RLUT for the class of the winning category, and the class with the 
highest reinforcement is used as the target in supervised learning. 

 

The decision support graphical user interface (GUI) consists of three screens.  The 
center screen is primarily imagery (i.e., from cameras, photography augmented 
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with graphics, and/or fully synthetic renderings) (see Figure 3.2).  The second 
screen displays a log of temporal track data (see Figure 3.3).  The log reflects 
temporal features, such as how long ago an unauthorized vehicle breached a 
sensor field and how soon another track might reach a key threshold (e.g., a fence 
or different sensor field).  The third and most detailed screen provides track detail 
and assessment bases (see Figure 3.2).  

The log screen and track detail screen utilize features found in the Tactical 
Decision Making Under Stress (TADMUS) system (Morrison, Kelly, Moore, & 
Hutchins, 1997).  The TADMUS system has motivations similar to the current 
research in that more content needs to be devoted to supporting an understanding 
of a given context.  In both TADMUS and our situation awareness approach, less 
emphasis is placed upon evaluating possible courses of action. 

The track detail GUI provides typical track parameters such as an object’s 
course and speed, but significant detail is provided with respect to the basis for 
assessment.  Evidence in support of and against a given assessment is displayed.  
The machine learning algorithms share the evidence used to derive assessments 
with the operator.  Such an approach provides greater transparency and allows the 
operator to interrogate assessments. 

For the example scenario of an unauthorized vehicle, the assessment could be a 
“threat.”  Evidence in support of such an assessment includes sensor data such as 
explosives detected, but also local law enforcement data such as the license plate 
returning as a stolen vehicle.  Evidence against the assessment could include a 
relatively slow speed and the use of the vehicle for construction when there has 
been ongoing construction activity. Alternative assessments are shown along with 
their respective evidence in support of or against them.  

The operator can investigate various assessments along with corresponding 
courses of action.  For example, a patrol vehicle in the vicinity of the unauthorized 
vehicle could be directed closer to the possible threat.  Further, other types of 
sensors can be activated to generate additional points of reference and work 
towards higher levels of assessments, such as possible intent. 

3.4.1   Vehicle Tracking 

The situation awareness technology was applied to tracking vehicles in the 
vicinity of a facility under force protection.  A data set suitable for testing and 
demonstrating our technology was collected during a DARPA SensIT program in 
November, 2001 at Twenty-Nine Palms, CA and exists at the University of 
Wisconsin (UW) (Duarte & Hu, 2004).  The data set consists of raw time series 
(acoustic and seismic) and binary detection decisions from 23 sensor nodes 
distributed along three intersecting roads as one of two vehicles travels along a 
road.  Figure 3.2 includes a map illustrating the force protection scenario, with a 
fence line and an Entry Control Point (ECP) providing protection for a facility on 
the North Road.  The two vehicles used in the scenario are a light armored vehicle 
(AAV) and a heavier, tracked transport vehicle (DW). A scenario was developed 
whereby a facility under protection is assumed to exist along one of the roads, and 
binary sensor data processed by our fusion and situation assessment algorithms are 
used to inform a human decision maker. 
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Fig. 3.2 Vehicle Tracking Scenario Map.  Blue dots are seismic/acoustic sensor nodes. The 
speed, heading, location, and vehicle type are estimated by independent CARTMAP 
networks using binary data from all sensor nodes as input 
 

3.4.2   Analysis 

This section provides analysis of the experimental results. 

3.4.2.1   Force Protection Experiments 

In order to demonstrate the capabilities of the situation awareness system, neural 
networks were trained to perform sensor fusion, a situation assessment formula 
was constructed/calculated, and a GUI was developed, all to increase the 
awareness of a human decision maker of the situation around the facility under 
their protection.  The scenario consists of a virtual checkpoint partway up the 
north road on the way to a sensitive facility with 23 sensor nodes scattered along 
three intersecting roads.  Each sensor node outputs a binary detection decision at 
fixed time intervals (0.75 seconds in the original test set).  The sensor detections 
derive from seismic, acoustic, and passive infrared energy levels.  The (AAV and 
DW) vehicles move from one end of a road, through the intersection, and to the 
end of another road. The total number of runs is 40, which includes 20 original 
data sets from the SensIT experiment. An additional twenty runs were created by 
artificially reversing the direction of the vehicle. This is possible by simply 
presenting the data in reverse.  In other words, the sensor record from the last time 
step would be presented to the information fusion system first, the first time step 
would be presented last, and so on for all the time steps in the run. It is plausible 



42 3   An Application of Unified Computational Intelligence
 

that the information is accurately represented in these runs because the data 
consists of binary decisions and the ground is relatively flat, so the engine speed 
and noise are presumably similar in both directions. 

The primary piece of information that a decision maker wants to know is the 
current threat level around his facility.  The threat level is a function of the 
location, speed, heading, and type of vehicle detected by the sensor array and 
other variables that are independent of the sensor array, such as Department of 
Homeland Security (DHS) advisory level, wind speed, average batter level of the 
sensors, time of day, and day of week. 

The system used to produce the threat level is illustrated in Figure 3.3.  The 
system consists of three modules: 1) Information Fusion, 2) Situation Assessment, 
and 3) a Graphical User Interface (GUI) focused on human decision makers in 
force protection applications.  Multiple time steps of binary sensor data serve as 
input to the Information Fusion module, which implements the CARTMAP 
algorithm. This introduces an element of relative time, which is a necessary 
component in estimating speed and heading.  The output from the Fusion module 
consists of vehicle type, speed, location, and heading, each with a corresponding 
confidence level, and will serve as input to the Situation Assessment module. This 
module consists of rules that represent the conditions under which a threat is 
defined.  The output of the assessment module will feed the graphical user 
interface (GUI) with a threat level (low, medium, high), an associated confidence 
level, a suggested response, and evidence in support of or against its output.  The 
GUI will also have access to the output from the fusion module, maps, and other 
available data, such as time, date, and environmental data.  All elements of the 
situation awareness system were implemented in Matlab and tested with the 
vehicle tracking data from UW in the force protection scenario just described. 

 

 
 

Fig. 3.3 Force Protection Experiment Using UW Vehicle Data. Multiple time steps of 
binary sensor data are used as input to the CARTMAP Information Fusion module.  
Vehicle information from the Fusion module and other additional data are used as input to 
the Situation Assessment module, which outputs actionable information to the user 
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3.4.2.2   Results of Training the Fusion Model 

The fusion model consists of four different CARTMAP networks, one for each 
fusion output (location, heading, speed, and vehicle type).  The output of a 
network will be of a categorical type or class except for the confidence levels, 
which will be real numbers.  Table 3.1 presents the classes for each information 
fusion network.  Note that for each network, if the input is all zeros, the output 
will be zero by virtue of a simple fixed rule (i.e., no learning is involved). 

Out of the 40 total runs available for the force protection experiments, 70% 
were used for training and the remainder for testing.  Table 3.2 shows the number 
of runs used in the six experiments.  In real-world applications, it is expected that 
the amount of supervised training data is limited.  In the force protection 
experiments, only 2 of the 28 training runs are used for supervised learning. 

 
Table 3.1 Information Fusion Output Classes for the Four CARTMAP Networks. (Vehicle 
Type, Location, Heading, and Speed) 
 

Vehicle Type 
Classes 

Location 
Classes 

Heading 
Classes 

Speed Classes 

0:   zero input 
1:   AAV 
2:   DW  

 

0:   zero input 
1:   West Road 
2:   North Road 
3:   East Road 
4:   Intersection 

  0:  zero input 
11:  N 
14:  NE 
13:  E 
  8:  SE  
  4:  S 
  1:  SW 
  2:  W 
  7:  NW 

 

0:  zero input 
1:  < 10 km/hr 
2:  10-20 km/hr 
3:  20-30 km/hr 
4:  30-40 km/hr 
5:  40-50 km/hr 
6:  50-60 km/hr 
7:  60-70 km/hr 
8:  70-80 km/hr 
9:  80-90 km/hr 
10:  > 90 km/hr 

 
 
Table 3.2 Distribution of Vehicle Runs Used to Experiment with Different Learning 
Modes.  Experiments 1/2/3 and 4/5/6 use the same data, but use learning modes in a 
different order 
 

Experiment # 
# Supervised 

Runs 
# Unsupervised 

Runs 
# Reinforcement 

Runs # Test Runs 

1 & 4 2 26 0 12 

2 & 5 2 13 13 12 

3 & 6 2 0 26 12 

 
Experiments 1-3 use the same runs as Experiments 4-6, but the order of training 

is reversed.  In Experiments 1-3, supervised learning is conducted first, followed 
by reinforcement learning, and finally unsupervised learning.  Experiments 4-6 
use the opposite order of learning, using the data with the least amount of 
information first and finishing with supervised learning, which utilizes training 
data with the most information.  In this case, one expects the richer data sets and 
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training modes to correct errors and refine the classification performance of 
previous learning modes. 

For each force protection experiment conducted, the same test set was used, 
consisting of 12 runs with 1755 input/output pairs.  The performance (% correct 
classification) was computed based on this test set.  For some sensor modes, such 
as speed and heading, a classification error may not necessarily indicate poor 
performance.  For example, if the ground truth heading of a vehicle is North and 
the fusion module output is Northeast, it would be counted as a classification error 
even though the output is quite satisfactory.  Experiments 1-6 were conducted 
using various combinations of learning modes for each of the information fusion 
networks.  The best results for each network are presented in Table 3.3.   

In the Classified Correct (%) column of the tables, there are three numbers 
separated by colons (e.g., 1 : 2 : 3).  The numbers in position one represent the 
percentage of test samples that have a target value exactly matching the output 
value from a CARTMAP network. 

The numbers in the second position represent the percentage of test samples 
that have a target value exactly or partially matching the output value from a 
CARTMAP network.  An exact match increments the total number of correct 
classifications by 1, whereas a partial match increases the number by 0.5.  Partial 
matches are possible only with the Heading and Speed networks, where the class 
adjacent to the target class is considered a partial match. For example, if the target 
class is N, then a network output of NW or NE would result in a partial match.  
Note that for the Vehicle Type and Location networks, no partial matches exist, so 
the first and second numbers in the Classified Correct column should be the same. 

 
Table 3.3 The Best Fusion Test Results of the Four CARTMAP Networks.  Reinforcement 
learning followed by supervised learning worked best for estimating vehicle type and 
location, while supervised learning followed by unsupervised learning and then 
reinforcement learning worked best for vehicle heading and speed. In the Classified Correct 
(%) column of the table, there are three numbers separated by colons (e.g., 1 : 2 : 3).  The 
numbers in position one represent the percentage of test samples that have a target value 
exactly matching the output value from a CARTMAP network 
 

Sensor 
Mode 

Experiment 
# 

Learning Mode Vigilance # Categories Classified 
Correct (%) 

Vehicle 
Type 

6 Reinforcement 
Supervised 

0.7 
0.65 

36 : 108 
44 : 112 

92.6 : 92.6 : 91.7 
92.7 : 92.7 : 91.7 

Vehicle 
Location 

6 Reinforcement 
Supervised 

0.7 
0.65 

22 : 58 
31 : 61 

96.8 : 96.8 : 98.0 
96.9 : 96.9 : 98.0 

Vehicle 
Heading  

 

2 Supervised 
Reinforcement 
Unsupervised 

0.9 
0.7 
0.7 

39 
45 : 59 
45 : 59 

68.4 : 69.6 : 69.6 
66.6 : 79.9 : 80.3 
62.7 : 75.8 : 81.7 

Vehicle 
Speed  

2 Supervised 
Reinforcement 
Unsupervised 

0.9 
0.7 
0.7 

46 
53 : 77 
53 : 77 

72.4 : 79.9 : 79.9 
74.3 : 82.1 : 82.0 
73.4 : 81.3 : 81.8 
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The numbers in the third position represent correct classification percentages of 
networks that have had two passes through the training set.  During the first pass, 
the reinforcement lookup table is updated during reinforcement learning.  The 
updated table may be an advantage for second pass unsupervised and 
reinforcement learning.  Correct classification percentages are computed using 
partial matches.  Each network was trained using vigilance parameters that 
resulted in a reasonable number of categories.  

In the next section, a weighted rule for determining the threat level of the 
situation awareness system is discussed.  The rule combines the outputs of the 
fusion module and environmental conditions, and its output is categorized into 
High, Moderate or Low threat based on human judgment.  Ground truth exists for 
the threat level, so performance of trained fusion networks with specified 
environmental conditions can be measured.  Two environmental conditions are 
specified:  1) Benign – each environmental condition is set to its lowest value, and 
2) Severe – each environmental condition is set to its highest value.  For each of 
the learning modes, the correct classification percentage is measured against 
ground truth.  The results are given in Table 3.4.  

In practice, if only unlabeled data is available, then machine learning is 
typically not used at all.  Machine learning is most often used when some labeled 
data are available and supervised learning is then used to its maximum extent, 
while other learning techniques are not employed.  The advantage of using a 
variety of machine learning techniques is evident in Table 3.3 and Table 3.4 
above, but a single set of networks (possibly a different network for each sensor 
mode) must be chosen since one cannot generally anticipate the environmental 
conditions.  Table 3.5 summarizes the performance results of using the best 
combination of supervised (SL), unsupervised (UL), and reinforcement learning 
(RL) in comparison to the more common use of supervised learning alone.  Table 
3.6 lists the machine learning approaches used by each CARTMAP network to 
produce the best situation assessment threat level performance averaged over 
benign and severe environmental conditions. 

 
Table 3.4 Best Test Results of Situation Assessment Threat Level Performance. Using a 
combination of learning modes under benign and severe environmental conditions.  
Different learning modes for different CARTMAP fusion networks are necessary to 
produce the best situation assessment results 
 

Environment 
Condition 

Vehicle 
Exp # 

Location 
Exp # 

Heading 
Exp # 

Speed 
Exp # 

Reinforcement 
Iterations 

Classified 
Correct (%) 

Benign 1 2 3 3 1 88.9 

Benign 1 3 2 3 2 89.5 

Severe 1 2 2 6 1 86.8 

Severe 3 2 5 3 2 87.7 

 
An important conclusion drawn from the experimental results is that utilizing 

multiple training approaches that can take advantage of additional and different 
data  produces superior results for situation awareness compared to supervised 
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training alone.  The reason performance decreases with UL after SL is that with 
SL alone, all test patterns get encoded by a labeled category, whereas after UL, 
there are now unlabeled categories that may encode test patterns producing 
classification errors. Even though these unlabeled categories sometimes lowered 
the performance, they may eventually add value after subsequent labeling during 
SL or RL.  Unsupervised input patterns that get encoded by existing categories 
with a class label can contribute to the quality of the category in representing the 
class in feature space.  In addition, since the CARTMAP has access to a 
reinforcement lookup table (RLUT), if an unlabeled pattern matches a pattern in 
the RLUT, the corresponding class label from the RLUT can be assigned to the 
unlabeled pattern.  This feature is used during unsupervised learning.  Originally, 
the RLUT is generated from the supervised training data. It expands when new 
unlabeled patterns are encoded by categories with class labels and the pattern and 
its label are added to the RLUT.  

 
Table 3.5 CARTMAP Fusion Performance Results. Using multiple machine learning 
modes in comparison to supervised learning alone 
 

Learning Approach Vehicle  % Location  % Heading  % Speed  % Avg. Threat % 

SL 81.8 95.6 69.6 79.9 78.5 

SL with UL and/or 
RL 

92.7 98.0 81.7 81.9 
87.6 

 
Table 3.6 The Combination of Learning Approaches. The combinations that produced the 
best threat level performance.  Three different combinations were used for the four different 
fusion modules (vehicle type, location, heading, and speed) 
 

 Vehicle  Location Heading Speed 

Learning Approach SL, UL SL, RL SL, UL, RL SL, RL 

Reinforcement Iterations 1 2 2 2 

 
Results for Experiment 3 (SL followed by RL) reveal a strong relationship 

between the hints that RL provides and partial matching in scoring the 
classification performance.  When exact classification matches are required, hints 
may not be good enough.  However, if a “close enough” match is sufficient, then 
RL hints improve performance. Even though multiple vigilance values were used 
in the force protection experiments, it is expected that performance will improve 
when the vigilance is optimized for the type of fusion mode and the type of 
learning. 

It is important in RL to have data representing all classes that a network is 
designed to classify.  If a class is not represented in the data, RL will not be able to 
establish a label for this class. 

Vehicle location is the easiest piece of information to learn with binary sensor 
data.  Location is inherent in the sensors themselves because their position is 
fixed. 
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Since 54.4% of the input patterns are all zeros, if a correct classification 
percentage of greater than 54.4% is achieved after UL only, then the 
reinforcement lookup table is being used to correctly label some patterns. During 
reinforcement learning, an input pattern is submitted to a network, and a 
reinforcement signal is generated.  This signal offers negative or positive feedback 
on the output of the network.  The following steps are taken at this point of 
reinforcement learning. When a reinforcement signal is received, the RLUT is 
updated, and SL is performed if the input pattern is found in the RLUT (the action 
associated with the input pattern with the highest value is used as the target). 
Unsupervised learning is performed if the input pattern is not found in the RLUT 
and the reinforcement signal is positive. 

In general, SL should be used to create as many categories as possible within 
reason, while subsequent non-supervised training should take advantage of these 
existing categories and enrich them without corrupting them. The coordination of 
three machine learning modes therefore offers potential benefit from every sample 
of data available in an application.  

3.5   Future Work 

Arguably the most immediate area of future work lies in establishing principles 
and practices for employing the three learning modes.  There are different ways of 
combining three modes of machine learning and many options for how and when 
to employ each mode.  The current research offers a preliminary perspective on 
leveraging each learning mode for greatest system performance.  It stands to 
reason that a CARTMAP network can be tailored for each information fusion 
mode (vehicle type, speed, heading, and location).  The vigilance parameter may 
be different for each mode  and may also require adjustment based on the type and 
ordering of the learning modes. 

The core of our machine learning approach is an ART neural network.  Other 
algorithms and architectures should be explored with the same goal in mind, that 
of integrating multiple learning modes.  Reinforcement learning is a general area 
of research worth pursuing in the area of situation awareness where there is often 
not a clear win or lose outcome by which to measure success.  There are also 
many ways of performing reinforcement learning, some closer to supervised 
learning, with stronger hints, and others that provide rare but consistent hints 
about the system’s performance.  How many iterations to use in reinforcement 
learning on this problem is a legitimate research question, as is how best to 
acquire feedback from human decision makers or the overall force protection 
system, either directly or indirectly. 

Another avenue of future machine learning research is to explore the use of 
ensembles or bagging for supervised learning (Dietterich, 2000).  The use of 
ensembles employs multiple “experts” that train the same network using a 
different sampling with replacement from the original supervised training set. The 
combination of the experts’ solutions results in higher performance than the use of 
a single network trained on the original data set. 
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3.6   Conclusion 

The coordination of the three major machine learning approaches in a single 
architecture, using ARTMAP at its core, is an innovation that should prove 
valuable in addressing real-world problems.  Many domains offer a limited 
amount of information with ground truth that can be used with supervised learning 
algorithms.  More available is data with hints from the environment that can be 
used with reinforcement learning.  Almost always, data is available without labels 
that can be used with unsupervised learning.  Allowing these three modes of 
learning to be used in the same framework is an important contribution. 
Interesting advantages emerge when these three approaches leverage one another.  
For example, reinforcement learning can utilize supervised learning when enough 
information about class labels is available from the environment.  Unsupervised 
learning can take advantage of stored reinforcement learning information to go 
beyond mere clustering.  There is potential for interplay between the learning 
modes that does not exist with a single mode. 
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Chapter 4 
The Time Scales Calculus 

4.1   Introduction 

This chapter begins the second part of this book.  The first part outlined a unified 
computational intelligence learning architecture based on neural networks. The 
design, theoretical underpinnings, and an application were presented to achieve 
the first goal of this book:  to develop unified computational intelligence for 
learning. 

This chapter focuses on another of the goals:  to develop unified computational 
intelligence for adapting.  Now, the difference between learning and adapting may 
be negligible to some and semantics to others; certainly, the potential for overlap 
exists, and it is not necessary to develop a categorical definition such that any 
given algorithm can be classified as learning, adapting, or neither.  For example, 
in order for the unified ART architecture to learn new sensor signatures, it must in 
a sense adapt to its environment.  But in this chapter, what is meant by adapt is 
more general and divorced from learning in the sense of neural networks as 
function approximators.  Adapting refers to a system that makes decisions in a 
complex and unpredictable environment.  It is this decision making that is of the 
most interest, and the field to be discussed now is one that grew out of the need to 
optimize solutions to multi-stage decision processes.  It is called dynamic 
programming, and although a cousin to operations research, it is firmly a member 
of the computational intelligence family. 

This part of the book will discuss decision making under the dynamic 
programming framework in some detail.  The discussion here is deeply 
mathematical and technical. 

What is being unified here is the nature of the time scale under which decisions 
are made—under which agents can adapt.  Traditional computational decision 
theory is broken into discrete-time and continuous-time models.  To unify these 
approaches, advantage is taken of a new and rapidly developing field of 
mathematics called the time scales calculus.  Within this field, researchers seek to 
draw together analysis of both discrete and continuous intervals.  They search for 
what unifies differential and difference equations and operators and look to the 
construction of dynamical systems completely independent of the nature of the 
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underlying signals. Still in its infancy, this mathematics has much room for 
growth. Indeed, at times the work in this book develops new mathematical tools in 
order to derive the dynamic programming results.  However, the promise for 
applications is high, as researchers continue to take on the control of systems that 
combine discrete and continuous signals. 

This chapter provides background on the essentials of the time scales calculus, 
which will be used to derive the results.  This material is adapted from (Seiffertt & 
Wunsch, 2007), (Seiffertt, Sanyal, & Wunsch, 2008a), (Seiffertt, Sanyal, & 
Wunsch, 2008b), (Seiffertt & Wunsch, 2008), and (Seiffertt, 2009). The dynamic 
programming results are presented in Chapter 5, and the unification of neural 
network learning, necessary to supplement the dynamic programming approaches, 
is presented in Chapter 6. 

4.2   Fundamentals 

Traditional analysis and discrete mathematics work with functions defined on a 
domain that is either entirely discrete or continuous.  The study of the time scales 
calculus allows for the consideration of functions on domains that can be a 
mixture of the two. As such, dynamic equations in a general sense are discussed 
rather than specifying difference or differential equations.  This section presents 
enough of the theory of dynamic equations to support the results in this book; this 
coverage includes definitions of characteristic functions, dynamic derivatives of 
single and multiple variables, and basic integration on time scales.  In addition to 
the established mathematics, this book provides new contributions to this theory:  
the definition of -complete differentiability and a chain rule for n-variables.  
These results are used in Chapter 6 to prove results for neural network learning. 

Dynamic equations are defined on mathematical structures called time scales.  

Formally, a time scale  is an ordered pair such that ℝ is nonempty, 

every Cauchy sequence in  converges to either a point within  or to a finite 
infimum or supremum of , and  is a function from  into .  This function , 
along with the nature of the time scale under consideration, will dictate the 
properties of the chosen dynamic derivative and the resulting dynamic equations. 

Sets qualifying as time scales include the integers , the natural numbers , the 
scaled integers  (for 0), the quantum calculus time scale  for 1 (the 
quantum calculus, a specialization of the time scale calculus, will be considered at 

length), limiting sets such as 0 : 1,2, … , finite unions of intervals such 

as 0,1 2,3 5,6 , and unions of intervals and discrete points such as 1,2,3,4,5 5,8 .  More exotic sets, such as the Cantor set, are also technically 
time scales, although they may arouse less interest from application-minded 
researchers.  Furthermore, well-known sets such as the rationals and the 
irrationals ℝ\ , and open intervals such as 0,1 , are not time scales. 

 
 

( )α,T
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Four characteristic functions are defined on time scales, two that scroll through 
the time scale and two that detail the degree of continuity of the time scale.  The 
forwards and backwards jump operators  and  give us the “next” and 
“previous” elements in a time scale, respectively.  They are defined as follows: 

 
 inf ∈ :  sup ∈ :  

(4.1) 

 
For ℝ, , and for , 1 and 1.  
More complicated time scales admit more involved jump operators. Consider, for 
example, the -time scale studied in the quantum calculus (Kac & Cheung, 2002):   (where 1).  The forward and backward jump operators are given by 

 and , respectively.   Additionally, it is often convenient 
to write  as  and  as . 

These jump operators are a critical determinant of the character of a dynamic 
equation.  For example, to work with the commonly used delta derivative, 
consider  to be any nonempty closed subset of the real line, and set  equal to 
the forward jump operator . Similarly, when working with the nabla derivative 
time scales of the form , , where  is the backwards jump operator, are 
studied.  However, there is not a technical restriction to such domains in the 
general case, and indeed, it is this freedom that gives the study of alpha 
derivatives, where  is neither a forward nor a backward jump, its conceptual 
power and showcases the versatility of the generalized time scales approach to 
analysis. When the foundations of dynamic programming on these generalized 
time scales are established in Chapter 5, decision problems will be able to be 
modeled in ways that go beyond that of classical restrictions to intervals or 
integers.  

The remaining two characteristic functions defined on time scales are referred 
to as the forward and backwards step functions  and .  These functions trace the 
level of continuity of a time scale and are defined as follows: 

 
  t (4.2) 

 
For continuous domains, the step functions are 0, and for the 
integers they are 1.   For the -time scale, 1 .  The 
forward step function  is often called the graininess function in the literature, 
usually when the research at hand is limited to the forward, or delta, dynamic 
derivative.    
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It is important, since both discrete and continuous intervals are permitted in the 
domain, to speak of a property of the points of a time scale called density.  In the 
traditional calculus, a point is considered dense if there is, in some sense, an 
infinity of points close to it.  Every point in the real line is dense, and none of the 
integers are dense.  A point that is not dense is said to be isolated or scattered.  On 
dynamic domains, there may be some dense points and some isolated points.  
Furthermore, it is possible to encounter transition points, which are labeled as 
right- or left- dense or scattered.  Formally, these concepts are defined as follows 
for a point ∈ :  

 
•  is right-dense if sup  and   

 

•  is left-dense if inf  and   
 

•  is dense if  is both right-dense and left-dense 
 

•  is right-scattered if  
 

•  is left-scattered if  
 

•  is isolated if  is both right-scattered and left-scattered 
 

Since dynamic equations are defined on more complex domains than their 
differential and difference equation counterparts, it is important to keep track of 
the nature, either dense or scattered, of each point. 

From a time scale , derive three sets , , and  as follows:  \  
if  is bounded above and a is left-scattered, = \  if  is bounded below 
and b is right-scattered, and .  These sets form the domains of the 
dynamic derivatives discussed in the next section. 

4.3   Single-Variable Calculus 

The usual derivative of the time scales calculus is defined as follows.  Let : ℝ be a function.  Then the delta derivative Δ  of f at a point ∈ , 
where  coincides with  except at a left-scattered maximum, if one should 
exist, is defined to be the number such that given 0 there is a neighborhood  
of  such that 

 
 | ∆ | | | (4.3) 
 

for all ∈ , where neighborhood is defined such that ,  for 
some 0.  Note that this follows the classical definition of the derivative,  
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with the traditional  increment replaced by the forward jump operator .  
This sort of translation is common in the calculus of time scales. The delta 
derivative Δ  becomes ′  when ℝ and becomes the standard difference 
operator on . 

There is also a backwards derivative, defined as follows.  Let : ℝ be a 
function.  Then the nabla derivative  of  at a point  is given by the number, 
provided it exists, such that given 0 there exists a neighborhood  of  such 
that  

 
 | | | | (4.4)
 

for every ∈ .  At left-scattered points, this becomes the left difference operator 
found in the traditional study of difference equations. 

When ℝ, both the delta and nabla derivatives reduce to the traditional 
derivative .  The terms  and  take the place of the  
construction in the classical calculus.  To get a feel for the delta and nabla 
derivatives, consider the following facts: 

 
• If f is left-continuous at a right-scattered point t, then f is delta 

differentiable at t 
• If f is right-continuous at a left-scattered point t, then f is nabla 

differentiable at t 
• If t is right-dense, then f is delta differentiable at t if the limit lim  exists 

• If t is left-dense, then f is nabla differentiable at t if the limit lim  

 
It is also possible to define a more general alpha derivative.  Let ,  be a 
generalized time scale and let  : ℝ be a function.  Then the alpha derivative 

 of  at a point  is given by the number, provided it exists, such that given 0 there exists a neighborhood  of  such that  

 
 | | | | (4.5)

 
for every ∈ .  

For all of these dynamic derivatives, many of the standard rules for derivatives 
pertain.  To illustrate this, the anticipated sum, product, and quotient rules for 
alpha derivatives are shown: 
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 g
 

(4.6) 

 
One crucial result from classical analysis, however, does not hold for dynamic 
derivatives: the chain rule.  Instead of a single formula to handle differentiation of 
compositions of functions, dynamic equations rely on a suite of different rules, 
each dependent on the character of the functions.  The most general of these 
for functions of a single variable, and the one that will be used in the formulation 
of the Hamilton-Jacobi-Bellman equation and the backpropagation update 
equations, is due to Potzsche (2002) and is stated as follows:  Let : ℝ ℝ be 
continuously differentiable and let : ℝ be delta differentiable.  Then 

 is delta differentiable, with  Δ  given by the following integral 
equation: 

 
 Δ ∆ ′ ∆ . (4.7) 

 

When  = ℝ, then 0, and the equation reduces to our expected chain rule.  
Thus, the forward step function (or graininess) of the dynamic domain under 
consideration has a great effect on the emergent calculus.  It turns out that many 
results of standard analysis, including the Hamilton-Jacobi-Bellman equation and 
backpropagation equations, are dependent on the use of the traditional chain rule. 

A similar result holds for the nabla derivative.  With : ℝ nabla 
differentiable,  

 

 ′ . (4.8) 

 

In addition to this chain rule, which will be used during derivations, this book also 
provides two new chain rules, one for the multivariate case and one for the 
ordered derivative case.   

Integration of dynamic derivatives must be considered during the derivation  
of the Hamilton-Jacobi-Bellman equation. A function : ℝ is right-dense 
continuous, or rd-continuous, if it is continuous at right-dense points and its left-
sided limits exist at left-dense points.  Similarly, a function is left-dense continuous, 
or ld-continuous, if it is continuous at left-dense points and its right-sided limits exist 
at right-dense points.  The following two fundamental results hold: 

 

• If f is rd-continuous, then  
 

 ∆  (4.9) 
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• If g is ld-continuous, then 

 
 

 
 (4.10) 

 
where ∆  and  are delta and nabla antiderivatives of f and 
g, respectively. 

The theory of integration on time scales is not delved into deeply here. Instead, 
the presentation of these formulas will suffice for our results.  For a thorough 
overview of integration theory on time scales, the reader is directed to Bohner & 
Guseinov, 2005, Bohner & Peterson, 2003, and Guseinov, 2003.  

This concludes the introduction of the single variable time scales calculus. The 
next section attends to the multivariate case. 

4.4   Calculus of Multiple Variables 

This book uses a definition of partial derivatives on time scales given by Jackson, 
2006.  Let  , , … ,  be time scales, set      , and  
let : ℝ be a function. Define the operators on  as , , … ,  and , , … , . Also  
define , ,  , … , , , , … , , ,  , … , , , , … ,  and ,  , … , , , , … , .   

The partial delta derivative of  at  with respect to  is the number ∆ , 
provided it exists, such that given any 0 there exists a neighborhood of   
for 0 such that  

 
 | ∆ | | | (4.11) 
 

for all ∈ , where neighborhood is defined such that ,  . 
In a similar way, the partial alpha derivative of  at  with respect to  is the 

number  such that given 0 there exists a neighborhood of   for 0 
such that 

 
 | | | | (4.12) 
 

Higher order partials can be defined in the usual way. It is even possible to 
consider mixed nabla, delta, and alpha partial derivatives.  Further details can be 
found in Bohner & Guseinov, 2004.  

Necessary for the proof of the HJB equation on time scales is the chain rule for 
partial derivatives given by Bohner and Guseinov [18].  Let ∈ , : ℝ, 
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 : ℝ, , , and , .   

Assume  and .  If ,  is -
completely differentiable and  and  are differentiable, then 

 ∆ ∆ , ∆ ∆ , ∆ . (4.13) 
 

For more details on partial derivatives on time scales, including a complete 
treatment of -complete differentiability, the reader is directed to Bohner & 
Guseinov, 2004. 

Note that the development of partial dynamic derivatives is still in its infancy 
and is not entirely settled.  Different authors use different notations for these 
concepts.  It will be made clear in this book which conventions apply for the 
theoretics.  The next section provides a contribution to this literature in the form of 
an extension of the Bohner-Guseinov chain rule to the multi-dimensional case. 

4.5   Extension of the Chain Rule 

An extension of this chain rule to the case of n variables will be required.  As a 
preamble to the proof of this n-variable chain rule, the important definition of - 
delta differentiability is discussed. 

For a full discussion of - delta differentiability, the reader is directed to 
Bohner and Guseinov, 2004.  Here, we present one fundamental part of the 
definition, which will be needed in the extension of the definition to the case of n 
variables.  In order for a function : ℝ to be - delta differentiable, the 
following condition must hold: 

 , ,                                         (4.14) 

 
where B is the number ∆ ,  and the 0 as .  Further note 
that it is possible to define -delta differentiability in an analogous manner.  Only 
required is the  version, as results obtained for that generalize immediately to 
the higher indexed cases. 

Now, for the statement of the Bohner-Guseinov chain rule, let ∈ , : ℝ, : ℝ, , , and , .  Assume 
  and . If ,  is -
completely differentiable and x and y are differentiable, then 

 
 ∆ ∆ , ∆ ∆ , ∆ (4.15)
 

The condition   is referred to as forward jump commutativity 
and is called upon often in the chain rules for partial derivatives on time scales. 
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For an extension of this theorem to the case of n variables, first define the 
notion of -delta differentiability for n variables instead of just two. The 
condition (4.14) becomes 

 , … , , … ,                      
(4.16) 

 

Armed with this definition, the following theorem can be proven. 
 

Theorem 4.1 (Chain Rule for Functions of n-variables) 
Assume that : , , ∈ , and .  Let , … ,  .  Then 

 

 ∆ ∆ , … , ∆ ∆ , , … , ∆ (4.17)

 

Proof 
We proceed by constructing the definition of ∆  and using our hypotheses: 

 

 , … , , … ,  (4.18)
 

Now applying the forward jump commutativity condition, the right-hand side 
becomes 

 

 , … , , … ,  (4.19)
 

which, upon substitution, reduces to 
 

 , … , , … ,  (4.20) 
 

Using the definition of -differentiability with ∆ , … ,  and  ∆ , , … , , gives 
 

 ∆ , … , ∆ , , … ,  (4.21) 

 

Using the fact that , we arrive at 
 

 

(4.22) 

 
Again with the forward jump commutativity, we see that 

 

(4.23) 
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Finally, dividing by  and taking the limit as  yields 
 ∆ ∆ , … , ∆ ∆ , , … , ∆  (4.24)

 
which is our desired result.

                                                                                     
 

 

Note that, as a technical matter, it is important for the 's all to have the same 
domain   so that, in the final step, the limit can be taken on a single t.  Without 
this restriction, the limit would have to carry across multiple ti's, which would 
present a less tractable situation. 

4.6   Induction on Time Scales 

A form of backwards induction exists on time scales (Bohner & Peterson, 2001).  
Let ∈  and  be a statement for each ∈ ∞,  such that the following 
four conditions hold:   

 

1.  is true  

2.  being true at a left-scattered  forces  to be true 

3.  being true at a left-dense  forces ′  to be true for all  ′ in a left-

neighborhood of  

4. ′  being true for all ′ ∈ ,  when  is right-dense forces  to be 

true 
 

Then it can be concluded that  is true for all ∈ , ∞ . There is also a 
forward version involving right-scattered and left-dense intervals and the forward 
jump operator , but it is this backwards form that we use in the next section. 

4.7   Quantum Calculus 

Quantum calculus is the modern name for the investigation of the calculus without 
limits, which began with Euler, currently enjoys ties to abstract algebra, and has 
found application in the quantum mechanics literature.  The book by Kac and 
Cheung (2002) covers many of the fundamental aspects of the quantum calculus.  
As this field becomes more widely researched, an increasing number of 
application areas are being discovered.  For example, a recent study of financial 
derivative pricing realized a quantum calculus analog of the Black-Scholes 
equation (Muttel, 2007).  Additionally, it has been shown that quantum calculus is 
a subfield of the more general mathematical field of time scales calculus. 
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The study of quantum calculus is concerned with a specific time scale, called 
the -time scale, defined as follows: 
 

 : ∈  (4.25) 

 
such that 1.  Dynamic equations in the quantum calculus, then, have domain 

.  It is worth noting that the quantum calculus converges to the classical 
continuous calculus in the limit as  approaches 1 from above. 

The -time scale analog of the forward jump operator is given by .  
The graininess of the -time scale can be shown to be 1  via 
application of the definition of the forward jump operator  and some algebra. 

To discuss calculus on the -time scale, a derivative needs to be defined.  The 
q-differential of a function f is given by  

 
  (4.26) 

 
and the q-derivative of the function f is defined by the following expression: 

 
 1 . (4.27) 

Further derivatives can be defined in a manner analogous to their real 
counterparts.  For example, the second q-derivative is defined as 

 
 

 (4.28) 

The standard rules for differentiation of products and quotients apply in quantum 
calculus: 

 
                   

 
 

 

(4.29) 

   
 
Proving the dynamic programming algorithm will require the use of induction in 
the quantum calculus.  Note further that for the -time scale, only conditions 1  
and 2 must be met because this time scale lacks dense points. 

For the proof of ordered derivatives in the quantum calculus, differentiation 
with respect to a function will need to be employed.  The Stieltjes integral 
provides a means for this in the traditional calculus, where there exists the relation 

′ .  A similar construction on the -time scale is defined, 
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where .  Now, as the -time scale is a fundamentally 
discrete set, the integrals become expressed as summations as shown at the end of 
this section. This notation is presented in the more general case to maintain 
consistency with the relationship between the -calculus and general time scales 
where the formula is given by ∆ ∆ ∆ and where the symbol Δ  
denotes the idea of delta differentiation, which is the generalization of -
differentiation to any time scale.  Deeper analysis of these concepts is beyond the 
scope of the current argument; the interested reader is directed to Bohner & 
Guseinov, 2005, Bohner & Peterson, 2003, and Guseinov, 2003 for further 
information on the theory of integration on time scales. 

Let : ℝ and : ℝ be functions on a -time scale , and define  
the following -derivative: 

 
 

 (4.30) 

   
 

This is simply the -time scale analog of the expression  from 

 classical analysis.  The notation  will be used with ordered derivatives on 
time scales. 

Finally, we will make one further note on the translation of integrals.  

Let : ℝ where , , … . Then Δ ∑ ∈ , ,  

where  is the graininess function of the time scale .  In particular, for the  
-time scale the following holds:  

 
 

Δ 1  (4.31) 

 
This construction is important in discussions of dynamic programming and 
backpropagation, as it is convenient and illuminating to first consider the general 
time scale formulation in some cases before delving into the particulars of the 
quantum calculus version. 
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Chapter 5 
Approximate Dynamic Programming on Time 
Scales 

5.1   Overview 

In this chapter, the material overviewed in Chapter 4 is used to develop the 
foundations of dynamic programming on time scales.  The primary results concern 
the derivation of the Hamilton-Jacobi-Bellman equation, the ghost in the dynamic 
programming machine, in this unified mathematical framework.  Material in this 
chapter has appeared in Seiffertt & Wunsch, 2007, Seiffertt, Sanyal, & Wunsch, 
2008a, Seiffertt, Sanyal, & Wunsch, 2008b, Seiffertt & Wunsch, 2008, and 
Seiffertt, 2009. 

5.2   Introduction 

The time scales calculus is an emerging key topic due to its many 
multidisciplinary applications. This calculus is extended to Approximate Dynamic 
Programming. The core backwards induction algorithm of Dynamic Programming 
is extended from its traditional discrete case to all isolated time scales.  Hamilton-
Jacobi-Bellman equations, the solution of which is the fundamental problem in the 
field of dynamic programming, are motivated and proven on time scales. By 
drawing together the calculus of time scales and the applied area of stochastic 
control via Approximate Dynamic Programming, two major fields of research 
have been connected for the first time. 

The mathematics of time scales seeks to bridge the divide between the analysis of 
functions on discrete and continuous domains (Hilger, 1990). This calculus 
establishes a single unified framework for analysis of both difference equations and 
differential equations. Such dynamic equations on time scales (Bohner & Peterson, 
2001), (Bohner & Peterson, 2003),  have been applied in population biology 
(Bohner, Fan, & Zhang, 2007), quantum calculus (Bohner & Hudson, 2007), 
geometric analysis (Guseinov & Ozyilmaz, 2001), boundary value problems 
(DaCunha, Davis, & Singh, 2004), real-time communications networks (Gravagne, 
Marks, Davis, & DaCunha, 2004), intelligent robotic control (Gravagne, Davis, & 
Marks, 2005), adaptive sampling (Gravagne, Davis, DaCunha, & Marks, 2004), 
approximation theory (Sheng, Fadag, Henderson, & Davis, 2006), financial 
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engineering (Sanyal, 2008), adaptive grids (Eloe, Hilger, & Sheng, 2006), switched 
linear circuits (Marks, Gravagne, Davis, & DaCunha, 2006), and the Kalman filter, 
(Wintz, 2009), among others. Due to the fact that this calculus must consider 
domains with all sorts of mathematical intricacies, the time scales calculus admits 
not one but an entire suite of dynamic derivatives.  The standard derivative, the delta 
derivative, most closely mirrors the derivative found in traditional analysis.  Other 
derivatives, such as the nabla and diamond-alpha, are also widely studied 
(Ahlbrandt, Bohner, & Ridenhour, 2000), (Bohner & Peterson, 2003), (Rogers & 
Sheng, 2007) and applied in various areas, particularly the study of numerical 
solutions of differential equations.  This current work focuses on the alpha 
derivative, which is a more general case of the delta and nabla.  As such, the theory 
presented herein contains the theory of the other two derivatives. 

Dynamic programming (Bellman, 1957), (Bellman & Breyfus, 1962), 
(Bertsekas, 2001) outlines various methods for generating optimal solutions for 
multi-stage decision processes.  The standard algorithm for dynamic programming 
involves a computationally intensive backwards induction update rule.  In 
practice, many engineers working on industrial-scale applications have turned to 
approximation methods based on the optimal ones.  Much research has been 
dedicated to the task of finding these suboptimal policies.  The field of 
Approximate Dynamic Programming (ADP) considers these approaches (Powell, 
2007), (Si, Barto, Powell, & Wunsch, 2004). 

ADP, united with the field of reinforcement learning in (Bertsekas & Tsitsiklis, 
1996), concerns itself with solving the Hamilton-Jacobi-Bellman (HJB) equation 
of dynamic programming.  In discrete time, backwards induction is often used.  
For continuous time domains, the HJB equation takes on the form of a second-
order partial differential equation.  This work extends the HJB equation to the time 
scales calculus, therefore considering both discrete and continuous domains as 
well as mixed domains, which are neither discrete nor continuous, and formulates 
it using the very general alpha derivatives. 

5.3   Dynamic Programming Overview 

The requirements of the dynamic programming framework considered herein are 
as follows: a time scale  in which our decision points lie, controls , , a 
stochastic disturbance , states  which evolve according to a rule , , , , , and a cost/reward , , ,  where the cost at 
a terminal decision point  is piecewise defined as .  A policy  is a set 
of state-control pairs for each point in  such that each control is valid for both the 
state and time. Denote by  the tail of the policy  beginning with time step .  
Also introduced is a cost-to-go function J given by 

 , , , , , ∆  (5.1) 
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which measures the expected cost of a policy .  Assume that these expected 
values are finite and well defined. 

Consider the following state-space dynamical system defined on a time scale : 
 
 , , , ,  (5.2) 
 

where t ∈  and indicates an interval taken using the alpha derivative.  
The task is to calculate a policy π which minimizes the cost-to-go function .  
Call such a π an optimal policy and denote the optimal cost-to-go as , min  , , where the minimum is considered over all 
policies.   

Employ Bellman’s Principle of Optimality in the solution to the optimization 
problem.  This principle can be framed in the following way.  Let  be an 
optimal policy.  Then the optimal policy for the tail problem starting at time n, 
which is to minimize  

 

 , , , , ∆ , (5.3) 

 

is equal to the portion of that overlaps .  To justify this principle, note that if 
it were not true, then the tail of could be replaced by a more optimal , thus 
contradicting the claim of optimality of .   

The dynamic programming algorithm, a form of backwards induction, involves 
stochastic optimization of control selection starting from the terminal time point .  
Beginning with setting , , the algorithm proceeds via the 
following update rule:  

 
 , min , , , ,, , , , ,  

(5.4)

 
for t ∈ .  This rule says that the cost-to-go of the current state   
under a control ,  equals the expected value of the  
immediate cost , , , ,  plus the future costs  , , , , , .  The symbol  represents the “next” 
point in our time scale , and the use of this forward-jump operator is one of the 
hallmarks of the time scales calculus’s ability to combine discrete and continuous 
analysis. 

It is the goal in this work to move beyond this dynamic programming algorithm 
and to establish the HJB equation in full on general domains using the alpha 
derivative equation. 

5.4   Dynamic Programming Algorithm on Time Scales 

Bellman’s Principle of Optimality (Bertsekas, 2001), (Bertsekas & Tsitsiklis, 
1996) aids in the solution of the above optimization problem.  This principle can 
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be stated in the following way.  Let be an optimal policy.  Then the optimal 
policy for the tail problem starting at time n, which is to minimize  

 
                       , , , , ∆ , (5.5) 

 
is equal to the portion of that overlaps .  To justify this principle, note that if 
it were not true, then the tail of could be replaced by a more optimal , thus 
contradicting the claim of optimality of .   

The dynamic programming algorithm, a form of backwards induction, involves 
stochastic optimization of control selection starting from the terminal time point .  
Beginning with setting , , the algorithm proceeds via the 
following update rule:  

 , min , , , ,, , , , ,  
(5.6) 

 
for t ∈ .  This rule says that the cost-to-go of the current state  under a 
control ,  equals the expected value of the immediate 
cost , , , ,  plus the future costs  , , , , , .  Recall that  is the “next” point in our 
time scale .   

It is standard to discuss optimality of this algorithm in terms that assume 
convergence. The proof contained herein, following Bertsekas, 2001, declares 
controls optimal if they minimize the update rule.   

The classical version of this update rule is true for the discrete time scale 1,2, … , .  This work extends this result to any isolated time scale . 

5.4.1   Delta Derivative Version 

This section provides the proof that the dynamic programming algorithm holds 
true for the case of the delta derivative on time scales. 

 

Theorem 5.1 (Dynamic Programming Algorithm, Delta Derivatives). If ,  minimizes the update expression given above for each state and for all ∈ , then the policy ,  is optimal. 
 

Proof 
Set ,  and proceed via time scales induction to show that 
application of the dynamic programming algorithm’s recursive update equations 
yields the optimal policy at each stage, i.e. that , ,  for all t ∈ .   
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Letting  yields, by definition, 
 
 , ,  (5.7) 
 

Now, assume that , ,  for some time point ∈  and all states 
.  To apply the backwards induction algorithm, recall that in a time scale,  

is the point that comes just “before” the point .  Therefore, the quantity  
plays a central role in our discussion, and the following equation gives the 
immediate one-step application of our update rule: 

 , min, , , , , , , , , ∆ . (5.8) 

 
The integral represents the value of the cost-to-go function  at the “next” time 
step after , which is . Also note that the minimization is taken term-by-term 
over all controls and policies, respectively.   

Use the principle of optimality to distribute the  through the expectation, as 
the tail problem is indeed an optimal policy for the problem contained within the 
tail.  This yields the following: 

 , min , , , ,min , , , , ∆  

(5.9) 

 
Using the definition of , , which subsumes the term minimized over the 
policy, we can reduce this expression to 

 , min , , , , ,  (5.10) 

 
By the induction hypothesis, we know the optimal cost-to-go  ,  is 
equivalent to the approximation ,  due to the dynamic programming 
algorithm.  Thus, we write ,  as 

 min , , , , ,  (5.11) 
 

which, by definition, is simply 
 
 , , . (5.12) 
 

We have now satisfied conditions 1 and 2 of the principle of backwards induction 
on time scales given preliminarily.  Since we assume  to be isolated, conditions  
3 and 4 do not apply, and we conclude that, by backwards induction on time 
scales, we have proven our claim.                                                                           
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Thus, the dynamic programming algorithm is expanded to time scales. The 
computational requirements for implementing this algorithm, particularly for 
industrial-scale optimization problems common in operations research, are great 
(Powell, 2007).  It is the task of ADP to calculate suboptimal policies in an 
efficient manner while simultaneously satisfying the needs of a given application.  
Within a time scales framework this approach is also valid, as the optimal update 
rule underlying the approximations holds. 

5.4.2   Quantum Calculus Version 

Set out with the following definitions:  decision points   contained in a -time 
scale  with a terminal point , a set of controls for each state given by , , 
random disturbances modeled by a stochastic term , a cost/reward function 
denoted by , , , ,  with terminal point T defined piecewise as 

, and a dynamic system where states  evolve according to the 
following rule: 

 
 , , , , , (5.13) 
 

For policies , require each set of state-control pairs to represent a valid 
association for both the space and time dimensions.  The tail of the policy , 
denoted as , chronicles the sets of state-action pairs starting at decision point  
and ending at the terminal point .  This notion is critical for discussion of the 
optimality principle and the subsequent derivation of the dynamic programming 
algorithm.  The cost-to-go function is given by  

 , , , , , ∆  

1 , , , ,  

 

(5.14) 

 
Define an optimal policy  to be one that minimizes the cost-to-go function .  
The corresponding optimal cost-to-go function is denoted  

 , min ,  

 

(5.15) 

 
 
 
 



5.4   Dynamic Programming Algorithm on Time Scales 67
 

where the min is considered over all policies.  The goal of the dynamic 
programming problem is to calculate an optimal policy .  The most basic 
process by which this is achieved is called the Dynamic Programming Algorithm, 
which is a form of backwards induction.  Starting from the terminal decision point 

 and following a schedule of recursively defined steps backwards in time towards 
the initial point t0, the optimal policy can be calculated even in a stochastically 
rich environment.  The algorithm begins with setting ,  and 
proceeds via the following rule: 

 
 , min , , , ,, , , , (5.16) 

 
This recursion is a consequence of Bellman’s Principle of Optimality, which states 
that any optimal policy must remain optimal when enacted on any tail of the 
system.  That is, the solution that minimizes the cost-to-go function starting at any 
given point t,  

 
 1 , , , , (5.17) 

 
is simply the portion of the optimal policy π* that coincides with the particular tail 
in question.  The justification of this principle runs as a proof by contradiction:  If 
the tail problem had a different solution than that given, then the cost-to-go 
function could be minimized further by changing out the optimal policy’s tail with 
this alternate policy, thus prohibiting the optimal policy from being, in fact, 
optimal.  This cannot be the case, so the optimality principle must hold.   

The following proof follows that of Bertsekas, 2001 and suffices to establish 
the viability of dynamic programming in quantum calculus. 

 

Theorem 5.2 (Dynamic Programming Algorithm in Quantum Calculus). The 
policy that minimizes the dynamic programming recursion (5.11) for all states and 
all times is optimal. 

 

Proof: Set ,  and proceed, via quantum calculus induction, 
to show that following the dynamic programming algorithm’s update rule yields 
the optimal policy each step of the way, i.e. that , ,  for all ∈ .  Since the nature of this algorithm is to proceed backwards in time, the dual 
version of time scales induction as described in Section 4 will be used.  (Recall 
that the backwards jump operator  for the -time scale.  However, we 
will maintain the use of the symbol  and trust no confusion will arise.  This 
notation has the advantage of more closely mirroring the form of the version of the 
quantum calculus induction algorithm we invoke in the proof.) 
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Letting  yields, by definition, 
 
 , , . (5.18) 
 

Now, assume , ,  for some time point ∈  and all states 
.  Then we have 

 , , , , ,  min, 1 , , , , . (5.19) 

 
Note that the minimization is taken term by term over all controls and policies, 
respectively.  We now use the principle of optimality to distribute the min through 
the expectation, as the tail problem is an optimal policy for the sub-problem 
contained within the tail.  This yields the following: 

 , min , , , ,  

min 1 , , , ,  
(5.20) 

 
Using the definition of , , which subsumes the term minimized over the 
policy, we can reduce this expression to 

 
 , min , , , ,, (5.21) 

 
By the induction hypothesis, we know the optimal cost-to-go is equivalent to the 
approximation due to the dynamic programming algorithm.  Thus, we write 

 
 , min , , , ,,  

(5.22) 

 
which, by definition, is simply 

 
 , ,  (5.23) 

 
which, in turn, is our desired result.                                                                         
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With this, the dynamic programming algorithm is shown to work in quantum 
calculus.  In fact, this can be interpreted as the Hamilton-Jacobi-Bellman equation 
in the quantum calculus, as the -time scale is isolated. It should be noted, 
however, that this algorithm is quite computationally expensive, particularly for 
industrial-scale problems.  To circumvent this failing, suboptimal methods are 
employed routinely.  Collectively called Approximate Dynamic Programming 
(ADP), these algorithms seek to calculate suboptimal policies to whatever degree 
of accuracy is required by a given application.  These techniques are tied quite 
intimately to backpropagation, and Chapter 6 of this book will provide a proof of 
the foundations of backpropagation in quantum calculus as well as in other time 
scales.  In this way, both ADP and optimal dynamic programming are shown to 
have solid footing on -time scales. 

5.5   HJB Equation on Time Scales 

Consider the dynamical system given by 
 
 ∆ , (5.24) 
 

where  represents states and  is the control.  Let ∈ , : ℝ, and 
 .  The cost-to-go function : ℝ  is given by 

 
 , , ∆  (5.25) 

 
where  is the initial decision point and ,  is the cost. Assume  is 
delta-differentiable and  is -completely delta differentiable.  Furthermore, 
require  to satisfy  

 
 . (5.26) 
 

Then the HJB equation on time scales is given by 
 0 min , , ∆ ,∆ , , . (5.27) 

 
This is an equation that any optimal policy of the minimization problem must 
satisfy.  Since precious few industrial-scale applications admit an analytic solution 
of this equation, ADP is employed to develop approximation techniques for this 
purpose. The proof of this equation is the next theorem.  The Hamilton-Jacobi 
equation is a result of the calculus of variations, and work extending this calculus 
to time scales is only just beginning (Atici, Biles, & Lebedinsky, 2006), (Bohner, 
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2004), (Bohner & Guseinov, 2007), (DaCunha, 2007), (DaCunha, 20085), 
(Ferreira & Torres, 2007), (Hilscher & Zeidan, 2004).  These problems typically 
take the general form of minimizing the cost functional given by the following 
integral: 

 , , Δ . (5.28) 

 
From this, the usual Euler and Legendre conditions can be derived on time scales.  
Our next result takes this a step further and proves the Hamilton-Jacobi equation 
for an alternate version, given by (5.25), of the above integral (5.28).  Since 
equation (5.25) is the common cost functional of dynamic programming, the 
resulting equation is given the name Hamilton-Jacobi-Bellman.  In this way, the 
following theorem is a contribution to the development of the calculus of 
variations on time scales as well as to ADP.  This chapter proves the HJB equation 
for a form other than that given by (5.28), but there is still work to be done on 
Hamilton-Jacobi equations for more generalized cost functionals. 

5.5.1   Delta Derivative Version 

This section contains the proof of the Hamilton-Jacobi-Bellman equation on time 
scales using the usual delta derivative. 
 

Theorem 5.3 (Hamilton-Jacobi-Bellman Equation). Let ,  be a solution 
to equation (5.25) such that 

 0 min , , ∆ ,∆ , , . (5.29) 

 
Assume the boundary conditions ,  and  , and 
suppose ,  attains the minimum called for in equation (17) for all states 
and all times.  Let  be the state trajectory, subject to the condition 
  , that  corresponds to applying the controls ,  at each 
decision point .   

Then the function ,  is the optimal cost-to-go function , , and 
the control ,  is optimal. 

 
Proof 
Let ̂ ,  be a control policy with corresponding state trajectory .  We 
will show that the policy ,  achieves a cost no greater than this arbitrary ̂ , , thus forcing ,  to be our optimal control.  We begin by 
invoking equation (5.27) to give us 

 0 , ̂ , ∆ , ∆ , , . (5.30) 
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Noting that, via (12), we have ∆ , , we can rewrite (5.28) as 
 0 , ̂ , ∆ , ∆ , ∆ . (5.31) 

 

By reversing the chain rule implicit in this formulation, we arrive at  
 0 , ̂ , ∆ . (5.32) 
 

Integrating over our time horizon yields 
                           0 , ̂ , ∆ ∆ ∆ . (5.33) 

 
Using the fundamental theorem, we arrive at 

               0 , ̂ , ∆ ,, . (5.34) 

 

Substituting in our boundary conditions ,  and 
   gives us 

                   0 , ̂ , ∆,  

(5.35) 

 
which is equal to 

                    , , ̂ , ∆ . (5.36) 

 

From our hypothesis, we assume the controls ,  and their corresponding 
state trajectory  minimize the value function , .   Using this 
information and the initial condition  , we can replace the 
inequality with equality in the case of these quantities: 

 , , , ∆ . 
 

(5.37) 

Combining with the previous equation, we have 
 , , ∆

, ̂ , ∆ . 
 

(5.38) 
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This equation tells us that the cost of the policy ,  is less than or equal to 
the cost of any admissible policy ̂ , .  We conclude the policy ,   
is optimal and that, since ̂ ,  is arbitrary, we have , , .  
Therefore, any optimal policy must satisfy the HJB equation given by  
(15).                                                                                                                         

 

The calculus of time scales admits many different chain rules depending on 
various conditions on the functions of interest.  The key step in the proof of the 
HJB equation is in the reversal of the chain rule.  In principle, given any chain 
rule, a different form of the HJB equation can be derived. For example, the proof 
assumed the -complete differentiability of .  If instead it is assumed that  
is -completely differentiable, it is possible to obtain, by a different chain rule of 
Bohner and Guseinov, 2004, the following form of the HJB equation: 

 0 min , , ∆ ,∆ , ,  
(5.39) 

 

This difference could prove crucial in an application, depending on the form of the 
state variable .  It is important to note that further research on time scales 
calculus into new and more powerful versions of the chain rule for partial 
derivatives will result in new ways to frame the Hamilton-Jacobi-Bellman 
equation on time scales.   

5.5.2   Nabla Derivative Version 

Now we extend the theorem proven in the previous section for the case of the 
backwards, or nabla, time scales derivative.  Many of the details remain similar.  
This content appeared in Seiffertt, Sanyal, & Wunsch, 2008b. 

Consider now the system  
 

 , (5.40) 
 

where  represents states and  is the control.  Let ∈ , : ℝ, and 
 .  The cost-to-go function : ℝ  is given by 

 

 , ,  (5.41) 

 

where  is the initial decision point and ,  is the cost. Assume  is 
delta-differentiable and  is -completely delta differentiable.  Furthermore, 
require  to satisfy  

 
 . (5.42) 
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Then the HJB equation on time scales is given by 
 0 min , , ,, , . (5.43) 

 
This is an equation that any optimal policy of the minimization problem must 
satisfy.   

 

Theorem 5.4 (Hamilton-Jacobi-Bellman Equation with Backwards Derivatives).  
Let ,  be a solution to equation (15) such that 

 0 min , , ,, , . (5.44) 

 
Assume the boundary condition ,  and   and 
suppose ,  attains the minimum called for in equation (5.54) for all states 
and all times.  Let  be the state trajectory, subject to the condition   , that corresponds to applying the controls ,  at each 
decision point .   

Then the function ,  is the optimal cost-to-go function , , and 
the control ,  is optimal. 

 
Proof 
Let ,  be a control policy with state trajectory .  Our goal is to show 
that the policy ,  achieves a cost equal to, at most, this arbitrary , , which will mean that ,  is our optimal control.  We begin 
using equation (5.44) to give  

 0 , , , , , . (5.45) 

 
Noting that, via (10), we have , , we can rewrite (5.45) as 

 0 , , , , . (5.46) 

 
and, by using the chain rule, we can rewrite as  

 0 , , . (5.47) 

 
Integrating over the time horizon yields 
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                             0 , , . (5.48) 

 
 
Using the fundamental theorem, substituting boundary conditions, and rearranging 
terms gives  
              , , , . (5.49) 

 

The details of these operations follow those in the proof of Theorem 5.2.  From 
our hypothesis, we assume the controls ,  and their corresponding state 
trajectory  minimize the value function , .   Using this information 
and the initial condition  , we can replace the inequality with 
equality in the case of these quantities: 

             , , , . (5.50) 

 
Combining with the previous equation, we have 

 , ,
, , . (5.51) 

 

This equation says that the cost of the policy ,  is less than or equal to the 
cost of any admissible policy , .  We conclude the policy ,  is 
optimal and that, since ,  is arbitrary, we have , , .  
Therefore, any optimal policy must satisfy the HJB equation given by (14). 
                                                                                                                                 

5.5.3   Alpha Derivative Version 

The final derivation of the HJB equation is proven to be viable on the most 
general of the time scales derivatives, thus showing that the fundamentals of 
dynamic programming hold for domains vastly more general than any considered 
before this point.  

Consider now the dynamical system given by 
 
 , (5.52) 
 

where  represents the states and  represents the control.  Let ∈ , : ℝ, 
and .  The cost-to-go function : ℝ  is given in the alpha case 
by 
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 , , α  (5.53) 

 

where  is the initial decision point and ,  is the cost.  
Then the HJB equation on generalized time scales is given by 
 0 min , , ,, , . (5.54) 

 
This is an equation that any optimal policy of our minimization problem must 
satisfy.  The following theorem states the HJB equation with the alpha derivative.   

 
Theorem 5.5 (Hamilton-Jacobi-Bellman Equation Using Alpha Derivatives).  
Let ,  be a solution to equation (5.53) such that 

 0 min , , ,, , . (5.55) 

 
Assume the boundary condition ,  and  , and 
suppose ,  attains the minimum called for in equation (14) for all states 
and all times.  Let  be the state trajectory, subject to the condition   , that corresponds to applying the controls ,  at each 
decision point .   

Then the function ,  is the optimal cost-to-go function , , and 
the control ,  is optimal. 

The proof of this theorem is similar to that of Theorems 5.2 and 5.3.  It appears 
in full in Seiffertt, 2009. 

5.6   Conclusions 

The time scales calculus is an increasingly relevant and developed area of 
mathematics with wide-ranging opportunities for application.  This book has 
established that the dynamic programming algorithm, derived from Bellman’s 
Principle of Optimality, pertains to time scales.  Also derived is the Hamilton-
Jacobi-Bellman equation on time scales, and it has been demonstrated that a 
family of such equations exist. The solution of such an equation is the 
fundamental goal of ADP.  This chapter identifies three significant directions that 
the investigation of ADP on time scales can take.  First, as the derivation of the 
HJB equation was dependent on the mathematics of the time scales calculus of 
multiple variables in general, and on the chain rule in particular, further variations 
and extensions in this area will prove critical.  The generalized Stokes theorem, 
principles of the variational calculus, and more complete chain rules are three 
areas where new contributions are of exceptional need.  
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Second, numerical approximation work in time scales remains a promising 
endeavor.  With the availability of computational resources such as the Time 
Scales MatLab Toolbox from the Baylor University Time Scales Group, both 
applied and theoretical investigation into the numerics of time scales calculus can 
be pursued.  Numerical differentiation and integration techniques on time scales 
would provide significant value, as would time scales extensions of optimization 
algorithms, be they population-based models from the computational intelligence 
literature or provably convergent methods from applied mathematics (Abramson 
& Audet, 2006).  Also needed are demonstrations of ADP-based controllers 
operating in a time scales framework.  This brings us to our third direction for 
growth: applications. 

In addition to the electric circuit, population biology, and virus outbreak 
modeling applications to which time scales has been applied (Bohner & Peterson, 
2001), the field of time scales control needs to show significant upgrade to larger-
scale problems.  Analysis of technical trading rules, macroeconomic dynamical 
models, and monetary policy are areas in economics and finance in which time 
scales can be used and in which time scales-based controllers would be of great 
interest.   

While the study of time scales can provide a concise theoretical unification of 
control theory in the discrete and continuous case, it can also provide so much 
more than that. There are important application areas in which dealing 
simultaneously with discrete and continuous variables is critical (Werbos, 2006),  
and the time scales calculus provides a natural and powerful framework for such 
exploration. 
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Chapter 6 
Backpropagation on Time Scales 

6.1   Overview 

This section extends the previous section’s focus on the unified computational 
intelligence goal of developing the capability to adapt.  The dynamic 
programming algorithm typically utilizes neural networks as function 
approximation tools.  Therefore, discussing how to train a neural network within 
the unified framework of the time scales calculus contributes directly to this goal.  

The results presented here are adapted from a paper that has been accepted for 
publication in IEEE Transactions on Neural Networks but that, at the time of this 
book’s completion, has not yet appeared. 

6.2   Introduction 

Backpropagation, based on the mathematical notion of an ordered derivative, is 
the most widely used neural network learning technique.. This section presents a 
formulation of ordered derivatives and the backpropagation training algorithm 
using the important emerging area of mathematics known as the time scales 
calculus. This calculus, with its potential for application to a wide variety of inter-
disciplinary problems, is becoming a key area of mathematics. It is capable of 
unifying continuous and discrete analyses within one coherent, theoretical 
framework. Using this calculus, this book presents a generalization of 
backpropagation appropriate for cases beyond the specifically continuous or 
discrete. This book also develops a new multivariate chain rule of this calculus, 
defines ordered derivatives on time scales, proves a key theorem about them, and 
derives the backpropagation weight update equations for a feedforward, multi-
layer neural network architecture. By drawing together the time scales calculus 
and the field of neural network learning, the first connection between these two 
areas is presented. 

The desire to handle both discrete and continuous input signals within one 
theoretical framework has been driving much recent research in areas such as 
optimal control, the modeling of dynamic ecological population systems, 
intelligent robotic systems, and economic utility theory. Many applications require 
such a capability, and the emerging area of mathematics known as the time scales 
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calculus is being used increasingly for such purposes. Introduced in (Hilger, 
1989), the time scales calculus provides a unified language for handling both 
discrete and continuous equations.  

A model of the backpropagation algorithm based on this time scales calculus is 
presented. The variables are allowed to take on either discrete or continuous 
values, and a rule to update the weights in this general form is derived. The 
original version of backpropagation was discrete in nature, but researchers have 
since developed it in the continuous case. These results are the first utilizing this 
new mathematics to discuss neural network learning in a more general way.  No 
restriction is made in this development regarding whether the network variables 
ought to be discrete or continuous.  Models admitting either difference or 
differential equations can be discussed fruitfully without our framework. 

Ordered derivatives, a concept invented by Paul Werbos to track the 
sensitivities of variables within the sorts of systems often studied by social 
scientists, are also treated in this general time scales case.  Key to the development 
of the backpropagation algorithm is the notion of a chain rule for ordered 
derivatives.  This chain rule in the time scales calculus is proven, and what an 
ordered derivative means within this new mathematics is defined. Note that the 
time scales calculus itself admits a wide variety of derivatives. Therefore, care 
must be taken when working with chain rules and differentiation in general.  
These results hold for the common delta derivative and its backwards analog, the 
nabla derivative.  Further derivatives, including the alpha and diamond-alpha 
derivatives, may also be applied to gradient descent-based neural network learning 
in the future. 

This chapter is organized as follows.  The reader is referred to Chapter 4 of this 
book, which covers basic notions of the time scales calculus needed for our work 
here. It contains the proof of a new multi-variable chain rule on time scales.  
Section 6.3 presents the ordered derivatives, discusses network conventions, and 
presents the proof of the ordered derivative chain rule.  Section 6.4 uses this 
theorem to derive the backpropagation update equations on time scales.  Finally, 
Section 6.5 discusses the limitations and extensions of the work and provides a 
view of the future of this avenue of research. 

6.3   Ordered Derivatives 

In his PhD dissertation (Werbos, 1974, reprinted in Werbos, 1994), Paul Werbos 
introduced the idea of an ordered derivative distinct from the notion of a 
traditional direct partial derivative in common use in the analysis of physical 
systems. The use of these ordered derivatives is motivated by the particular 
character possessed by social systems as compared to those systems that operate 
under strictly physical dynamics.  In these systems, it makes sense to model using 
a series of variables that are each the consequence of a variable appearing earlier 
in the system.  Hence, these are called ordered variables. 

Werbos shows that the traditional chain rule for total derivatives fails to 
provide an adequate framework for the calculations needed for the investigation 
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not only of such an integrated socio-economic system, but also for a wide array of 
other mathematically related connectionist systems, such as the problem of 
political forecasting described in detail in his dissertation work. However, he goes 
on to prove that a chain rule for ordered derivatives is in fact capable of driving 
the necessary calculation engine for studying these sorts of systems. While he 
does not term this method backpropagation, that being the name given the 
technique when popularized and independently discovered by others, the 
algorithm he lays out is in actuality the very same one which today powers most 
of the neural network learning worldwide.  In addition, Werbos establishes 
backpropagation as a viable manner by which to calculate the needed derivatives 
not only in neural network training but for the manipulation of weights for a broad 
spectrum of adaptive systems. 

To complete the theoretical foundation of backpropagation, Werbos proved a 
special chain rule for these ordered derivatives that worked for the applications in 
which the traditional chain rule of continuous analysis broke down.  This chapter 
contains the definition of the ordered (delta) derivative on time scales and the 
proof that the chain rule obtained by Werbos holds true in this new environment. 

6.3.1   Network Definitions 

Following Werbos, define the following system variables: input  and output 
, which approximates the target output .  The dimension of the outputs is 

denoted by n.  The relationship between inputs and outputs is determined via a 
series of adaptive weights W.  It is the goal of backpropagation, and hence the 
ordered derivative calculations, to tune W in such a way as to reduce an error 
measure between  and Y.  The implicit time scale in Werbos's work is an isolated 
subset of the integers .  This book considers time scales of higher generality and 
will assume ∈ , where  is not restricted to a subset of .  Let N denote the 
number of inputs or the number of time steps the system is allowed to compute. 

Define the following measure of system performance/error: 
 
 ∆ 12 ∆  (6.1) 

 

This form represents the standard least-squares error measure.  Note that the 
integral takes on the role of the generalized summation operation and is 
appropriate for any time scale  free of restriction to an isolated case.  The proper 
summation that remains represents the dimension of the output vector, which is a 
fixed scalar value not related to our time scale  and is thus not subsumed by an 
integral. 

The form of this measure  when defined on different time scales can be 
investigated.  
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Consider a function : ℝ where , , … . Then, ∆∑ ∈ , , where  is the starting point of the time scale  and  is the 
graininess function of  as defined in Chapter 4.  So, if , then the 
performance measure  becomes 

 
 ∆ ∈ , 12∈ ,  

(6.2)

 
Similarly, for the case of the quantum calculus time scale , 1, the 
following error obtains: 

 
 ∆ 1

1 2  

(6.3)

 
In principle, this error term can be calculated for any time scale under 
consideration. It should be mentioned that in the case in which the time scale  is 

not isolated, the resulting integral will be of the form ∆ , where the 

upper limit is the forward jump operation applied to the variable rather than 
simply the variable itself.  This requirement follows from technical details of 
integration theory on time scales beyond the scope of the current discussion.  The 
theory presented thus far provides sufficient background for the theorems 
presented in this book. 

Regardless of the choice of time scale, which informs the construction of the 
error measure, the network equations remain to be analyzed.  The chain rule for 
ordered derivatives is needed here, as this is the tool used to turn the network 
equations into a computation unit for the proper updating of the adaptive weights 
via backpropagation.  As a preamble to the chain rule theorem, it is first necessary 
to discuss the notion of ordered derivatives. 

6.3.2   Structure of Ordered Derivatives 

In order to discuss the structure of ordered derivatives, consider the following 
system: 

                                                   2 5                                        4                               7  
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Distinguish between direct and indirect effects.  The direct effect of a change in 

 on , denoted , is equal to 2.  Note that in this case the ordering of the 

variables is not taken into account.  Unlike a physical system in which the 
evaluations of all the variables  would be assumed to take place simultaneously 

so that the calculation of  would require the substitution of lower valued 's 

into the equation for ,  in this ordered system the direct effect is calculated 
wholly from the equation for  without recourse to the equations representing 
lower, or previous, levels of activity.  The total derivative effect, then, in such an 

ordered system is called the indirect effect and is denoted by  In this case, this 

indirect effect is equal to 66. 
Furthermore, this notation corresponds to the continuous case. For the general 

time scale case, denote the ordered derivative of the performance measure  with 
respect to an ordered variable  as 

 
 ∆  

 
The following text develops the necessary definitions to make the above notation 
precise. 

Let , , … ,  be an ordered sequence of variables with ∈ . 
These variables represent stages of a larger calculation (e.g., layers, in a sense of a 
multi-layer perceptron network).  What sets them apart as ordered is that they 
follow a recursion given by 

 
 , , … , (6.4) 
 

In this way, the mathematics speak meaningfully of causation as a basis for the 
relationship among the 's.  The interest is in determining the way in which the 
performance term  changes with respect to one of the 's, i.e., it is desired to 
calculate ∆ .  Following Werbos, set up the error, which itself is actually the final 
variable in the extended ordered set, as a sequence of recursive functions, which is 
required to be -completely (delta) differentiable, such that 

 
 , … ,  (6.5) 
 

and 

 
 , … , , … , , , … ,  (6.6) 

 
These recursive functions describe the final node in the network, , as a function 
of earlier variables in the ordering successively calculated.  These functions   
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will provide the machinery needed to discuss the chain rule for ordered 
derivatives.  In application, , also equal to the final variable in the ordering , is 
the network performance/value measure that is to be optimized via the updating of 
adaptive weights. 

Now, the performance can be defined by reference to these recursive  
functions.  Define the ordered (delta) derivative of   with respect to a previous 
variable  in the ordering by 

 
 ∆ ∆

 (6.7) 

 
where the functional relationship among the 's is repressed (i.e., all variables , , … ,  are held constant) when calculating 

∆
 so as to properly represent 

the ordered nature of these variables (that is, the derivative 
∆

 gives us only the 
direct effect of a change in  on .) 

With these definitions, the following chain rule may be proven. 

6.3.3   The Chain Rule 

The chain rule for ordered derivatives extends the normal chain rule of traditional 
calculus to the special case of variables within an ordered system. In this way, the 
full interplay among the components of such a system can be realized from the 
mathematics.  The backpropagation algorithm of derivative calculation hinges on 
sifting the network equations given in the previous section through the ordered 
derivative.  In particular, this chain rule is key.   
 
Theorem 6.1 (The Chain Rule for Ordered Derivatives) 

 
 ∆ , , … , ∆ ∆

 (6.8) 

 
Proof 
We proceed via reverse induction on the index . We will start with 1 and 
end with 1.  Note that with , the nature of the definitions of the ’s and 

’s  force the terms 
∆

 to equal 0; therefore, these terms do not contribute to the 
summation.  So, it will suffice to consider  in the range 1 to . 

Let 1. Then our hypothesis becomes 

 
 ∆ , , … , ∆ ∆ ∆

 (6.9) 
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Since by definition  , we have an identity and the claim is proven. 
Now assume our hypothesis holds for 1 .  We will proceed to show it is 

true for .  Noting that the recursive definition of the 's make them all equal, 

we have that 
∆ ∆

.  This expression now requires use of our chain rule for n 

variables proven in Chapter 4.  Write  explicitly as a function of : 

 
 , … , , … , , , … ,  (6.10) 
 

Due to the nature of the ordered system, 
∆ 0 for 0 and  so that the 

expansion given by our n variable chain rule 

 
 ∆ ∆ ∆ , , … , ∆ ∆

 (6.11) 

 
reduces to 

 
 ∆ ∆ ∆ ∆ ∆

 (6.12) 

 
so that 

 
 ∆ ∆ ∆ ∆

 (6.13) 
 

Our induction hypothesis gives us 

 
 ∆ , , … , ∆ ∆

 (6.14) 

 
Combining these results yields 

 
 ∆ ∆ ∆ , , … , ∆ ∆

 (6.15) 

 
which is equal to  

 
 ∆ ∆ , , … , ∆ ∆

 (6.16) 
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and which reduces to 
 
 , , … , ∆ ∆

 (6.17) 

 
Thus, our claim, the chain rule for ordered derivatives, is proven.                         

 
The usual and most useful form of this theorem is given by the following 
corollary: 

 
Theorem 6.2 (Chain Rule for Ordered Derivatives Corollary) 

 , , … , ∆ , , … , ∆                          , , … , ∆ ∆
 

(6.18) 

 
This corollary follows immediately from the chain rule theorem.  Note that in 
practice,  is used as the final variable in the ordered system, , so that this 
corollary will take the form 

 ∆ ∆ ∆ ∆
 (6.19) 

 
Furthermore, while this construction uses the delta derivative, the nabla derivative 
formulation likewise follows immediately from the delta: 

 
 (6.20) 

 
The nabla derivative formulation is not used to derive backpropagation, but a full 
theory of neural network learning could indeed be built upon this derivative.  This 
is a direction for future research. 

Note that the time scales version of the chain rule for ordered derivatives 
contains the term . This is due to the requirement of -complete (delta) 
differentiability in our -variable chain rule.  Further versions of both chain rules 
can be developed which require  differentiability, where 1. 

With this chain rule, the weight update rules for the backpropagation algorithm 
for neural network learning can be derived. 



6.4   The Backpropagation Algorithm on Time Scales 85
 

6.4   The Backpropagation Algorithm on Time Scales 

Prior to the development of backpropagation as the method of choice for 
calculating derivatives to update the weights of neural networks, a direct 
differentiation method was used.  This method demands much in terms of 
computational resources when the number of weights is larger than the number of 
neurons.  Since multi-layer feedforward systems typically satisfy this criterion, the 
more efficient backpropagation is preferred.  For a derivation of this algorithm in 
the traditional continuous case, the reader is directed to a standard neural network 
reference text such as Principe, Euliano, and Lefebvre, 2000. 

To derive the backpropagation algorithm on time scales, work from the 
assumption that the node activity of our network takes on the following form: 

 

 (6.21) 

 
where the  are the adaptive weights. Note that these weights are part of the 
ordered system model for the neural network. 

From this, the change in an ordered variable with respect to changes in an 
earlier node using the time scales chain rule can be calculated: 

 ∆
 (6.22) 

 
Now, the rate of change of the error measure  with respect to an activity node  
is given by 
 ∆ ∆ ∆ ∆

 (6.23) 

 
which via the chain rule may be written as 

∆ ∆ ∆  (6.24)

 
and reduced to 

 ∆ ∆  (6.25) 
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where  
 

∆  (6.26) 

 
is the local error term, which measures the change in the performance measure 
with respect to a change at the level of a local neuron. 

The gradient descent delta rule on time scales is given by 
 ∆  (6.27) 

 
which captures the change in the weights  as a change in the error function  
modified by a learning rate . 

The final step in the derivation of the backpropagation algorithm is the 
integration of the delta learning rule with the equations obtained previously: 

 ∆ ∆
 (6.28) 

 
This form, which holds for nodes such that : ℝ, can account for networks in 
which the input is either continuous or discrete using a single theoretical 
framework and update equation.  This also allows for the construction of 
connectionist systems capable of processing inputs that can switch between 
continuous and discrete signals while actively calculating.  Further extensions of 
the time scales calculus to unifications in the neural networks field are discussed 
in the conclusion below. 

6.5   Quantum Calculus 

This section formulates the ordered derivative in quantum calculus and proves that 
the chain rule derived by Werbos pertains to this alternate environment. It 
concludes that the backpropagation approach to -derivative calculation is as valid 
as the one for the classical derivative and, as such, neural network training on 
quantum calculus may follow its traditional counterpart. 

Further analysis of the network equations requires the chain rule for ordered 
derivatives, as this is the tool used to transform the network equations into a 
calculator of the proper updates of a system’s adaptive weights via 
backpropagation.  As a preamble to the chain rule theorem, it is necessary to 
define what is meant by an ordered derivative for the quantum calculus 
environment. 
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Let , … ,   be an ordered sequence of variables with ∈ .  
These variables represent stages of a larger calculation (e.g., layers, in a sense, of 
a multi-layer perceptron network) and follow a recursion given by 

 
 , , … ,  (6.29) 
 

so that causation as a basis for the relationships among the ’s can be analyzed.  
As with the case considered previously, it is important to determine the way the 
error  changes with respect to one of the ’s. Following Werbos, 1994, set up 
the error as a sequence of recursive functions such that  

 
 , … ,  (6.30) 
 

and  
 , … , , … , , , … , . (6.31) 
 

Then, the ordered derivative of , which equals , is defined to be 
 
 . (6.32) 

 
The backpropagation algorithm of derivative calculation hinges on sifting the 
network equations through the ordered differentiation operator. In particular, the 
chain rule for ordered derivatives plays a key role.  The following theorem 
establishes this chain rule for the quantum calculus. 

 
Theorem 6.3 (Ordered Derivative Chain Rule in the Quantum Calculus) 

 

 

 
Proof 
As in Werbos, 1994, we proceed by induction on .  We will start with 1 
and end with .  With , the recursive definitions of the ’s and ’s force 

the terms  to zero; therefore, they do not contribute to the summation. So, it 
will suffice to consider  in the range 1 to . 

Let 1.  Then our hypothesis becomes 
 
 . (6.33) 
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Calling on the definition of the sequence of ’s, we see that  so 

that, since 1, the claim is proven. 
Now, assume the hypothesis is true for some 1 .  Our task is to show 

that the claim holds for .  Consider ⁄ .  Since  is defined 

from ℝ ℝ, the delta derivative construction reduces to the traditional case.  
Also, by definition, , … , , , … , .   

Therefore, 
 
 

 

(6.34) 

 

for .  From our definition from the preliminaries applied to our recursive 
definition of the ordered variables , we have that 0⁄  when , as 
the preceeding variables in the order are unaffected by the later variables in the 

causation chain.  This result allows us to reduce our equation to 

.  We collapse the first remaining term so that it matches the form of 

our induction hypothesis ∑ , giving us 

 
 

 

(6.35) 

 

which is our desired result.                                                                                       
 

Thus, the chain rule for ordered derivatives in the quantum calculus is established.  
With this result, neural network architectures in the quantum calculus can be 
constructed and trained via backpropagation.  While the traditional chain rule of 
classical analysis fails to hold for ordered derivatives, the chain rule for ordered 
derivatives does hold on -time scales.  Since time scales in general, and -time 
scales in particular, may be the appropriate mathematical framework to discuss a 
certain class of resource allocation problems, and dynamic programming concerns 
itself with optimization of multi-stage decision scenarios, a quantum calculus 
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approach to the approximation of the optimal solution becomes an exciting new 
area of computational decision theory.   

6.6   Conclusions 

Ordered derivatives and the backpropagation update rule have been established 
using the emerging mathematical field of time scales calculus.  This calculus 
unifies the discrete and continuous domains, so our results provide a complete 
theoretical framework for discussing learning in connectionist systems that can 
admit input signals of any type. 
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Chapter 7 
Unified Computational Intelligence  
in Social Science 

7.1   Introduction 

Having already discussed the use of unified computational intelligence to learn 
and to adapt, this book now investigates its ability to seek.  Computational social 
science modeling allows heightened understanding of the dynamics of complex 
systems in ways that the traditional analytical approaches could not.  In this way, 
unified computational intelligence algorithms can power models unlike anything 
computable using a static or mathematical approach.  Agent-based modeling, 
using agents whose intelligence includes full-blown creativity thanks to their 
ability to learn and to adapt, is revealing information about ourselves and the 
world that has never before been supported.  From how elephants mourn their 
dead to how pandemics spread to large-scale financial market models, these 
techniques are giving humanity a way to seek that used to be only the purview of 
mystics and philosophers.  In domains where the unified approaches to learning 
and adapting prove advantageous, their combined ability to assist in seeking may 
be great. 

As the study of agent-based computational social science grows, so does the 
need for appropriate techniques for the modeling of complex dynamic systems and 
the intelligence of the constructive agent.  This chapter frames the problem and 
provides examples for which the unified computational intelligence techniques 
described in previous chapters can be used.   

This chapter forms the third part of this book.  It contributes an awareness of 
what these computational models can achieve.  Too often, researchers in one 
specialty are unaware of progress being made in other areas.  Humanity’s ability 
to compute is a universal good; it is not to be filed away within a Computer 
Science or Computer Engineering curriculum and never seen by those pursuing 
the B.A., M.A., or EdD. degrees.  The hope of this part of the book is that those 
specializing in both computation and social science or the humanities will be made 
aware of the existence of other fields and of how synergistic their union could be.  
Computing is not just for those who taught themselves hexadecimal in seventh 
grade, nor are the social sciences and the humanities just for those who cannot 
handle mathematics or write a nested loop.  Everyone is in this together, and this 
chapter is a call for unity. 
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Section 7.2 comes from a graduate-level course on Computational Intelligence 
and Game Theory taught at Missouri University of Science and Technology in the 
spring semester of 2009.  Cross-listed in the Computer Engineering, Mathematics, 
Economics, and Computer Science departments, this course, designed by the 
author from scratch, represents the author’s diverse background and brought 
together computation, analysis, and social science in a way that armed the students 
with the tools to perform research in these areas.  This section discusses where 
computational intelligence fits into the picture as far as game theory and social 
modeling is concerned.   

Section 7.3 is adapted from material that appeared as a chapter in a book on 
neural networks in economics and business (Zhang, 2007).  It details the agent-
based economics literature and presents ways for unified computational 
intelligence architectures to contribute in a fundamental way to advances in this 
research area. 

Section 7.4 appeared in the IEEE Computational Intelligence Magazine in a 
special issue on computational finance.  As the world struggles to make sense of 
recent financial crises, due in part to failures in mathematical modeling, the time 
for those trained in computation to become aware of the opportunities in areas 
beyond the scope of traditional engineering is upon us.  Major advances await in 
the understanding of financial markets, and unified computational intelligence 
architectures can help build the models to achieve such advances. 

7.2   Game Theory and Computational Social Science 

Everything evolves. The world is made up of complex systems, from society to 
ecosystems to economies to our own brains. All are connected, and these 
connections are vastly more complicated than traditional analytic methods have 
been able to explain. To understand these systems at the heart of the world around 
us, it is time to turn to new tools made possible by advances in technology. The 
language of evolutionary game theory, complemented with the power of 
computational intelligence, holds the promise to guide us towards uncovering a 
sort of dynamic previously unknown. 

This section seeks to study this still emerging approach to modeling, which 
relies on computational techniques, specifically agent-based computational 
models, instead of traditional dynamical system models used in the past to 
describe the complexity of massive interaction. To this end, we will explore the 
agent-based techniques of the field of computational intelligence and use them in 
tandem with the explanatory ability of traditional game theory. 

7.2.1   Computational Intelligence 

To find a local extrema of a differentiable function, a traditional analytic approach 
such as Newton's Method will proceed according to a fixed rule.  First, choose an 
initial guess  and then update according to 
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 (7.1) 

 
If a solid starting point has been chosen, then this algorithm is sure to deliver the 
desired optimal value.  This algorithm does not adapt.  It simply is.  Compare to a 
basic agent-based computational intelligence algorithm that generates a population 
of agents  and then send them off to optimize via 

 
 argmax, argmax  (7.2) 

 
At first glance, this may look similar to Newton's Method. However, further 
inspection reveals two important differences common in computational 
intelligence techniques. 

First are the random numbers  and . These numbers add an exploratory 
aspect to the algorithm not found in Newton's Method.  These random numbers 
may lead the agents in directions a straight gradient descent would never dream of 
visiting.  In fact, this element can be viewed as representing a level of creativity 
that gives this algorithm a much better chance of avoiding getting lost in 
suboptimal basins of attraction such as local extrema if the initial guess falls 
within certain regions which are, of course, impossible to know beforehand.  It is 
for this reason that the most popular method of training neural networks, called 
backpropagation and based on a cousin of Newton's Method, is slowly being cast 
aside in favor of the methods of computational intelligence.  When seeking a 
global optima, it is desirable to use a method that is less likely to succumb to the 
temptations inherent in a simple update rule such as Newton's Method.  Instead, 
some bit of randomness is used to allow the agents making up the algorithm to 
adapt their way out of suboptimal choices. 

The second important difference between these two optimization schemes is 
found in the interplay of the terms argmax ,  and argmax . The former 
indicates the most optimal position found by any agent thus far in the simulation, 
and the latter records the individual agent's best effort.  These maxes, particularly 
the former, provide a way for the agents to interact with each other during the 
optimization run.  This interaction, while stemming from simple basic rules, can 
lead to massively unpredictable aggregate emergent behavior within the entire 
society of agents.  In fact, the term argmax ,  is called the social component, as 
it forces the agents to keep in mind what their leader is doing.  It also introduces 
an exploitation tendency into the system to counter the exploration instinct 
embedded in the stochastic influence of the variables  and .  Without the social 
element, the algorithm can readily devolve into random search.  It is in the 
interplay between these two pulls on the agent's will that the true complexity 
begins to emerge.  This algorithm can be modified further by adding a term to 
represent a neighborhood effect in which each agent is moved by the standing of 
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the other agents closest to it, momentum terms that weigh the various influences in 
different ways, or specialist agents or entire coevolutionary societies all 
interacting in assorted ways and generating quite the array of complex emergent 
behavior. 

It is also worth noting that the agent-based approach requires no knowledge of 
the function itself, nor does it constrain the nature of the function in the slightest.  
Whereas Newton's Method not only requires that the function be twice 
differentiable but also that it be possible to calculate these derivatives, the 
computational intelligence algorithm can attack any function regardless of 
smoothness and without knowing anything about it aside from the points 
evaluated during the simulation.  Also, it is not hindered by inflection points. 

These two elements––randomness and social interaction––are hallmarks of 
computational intelligence techniques.  Genetic algorithms rely on random 
selection and the makeup of other agents in the society.  Even neural networks 
involve individual neurons interacting in ways that are ordered yet unspecified in 
the aggregate. While basic feedforward networks may be adequately modeled 
analytically, the networks of the recurrent variety and those with complex and 
heterogeneous transfer functions very quickly stress the explanatory ability of the 
classical mathematics.  Neural network function approximators go far beyond 
standard statistical regression techniques in a way similar to the manner in which 
agent-based methods shine more brightly than a seventeenth century invention 
such as Newton's Method. 

This idea of complex behavior emerging from simple rules is a powerful one.  
It is the secret to adaptation and is the reason agent-based models of complex 
systems enjoy a character distinct from those of traditional analysis.  While at 
some level it is true that an algorithm such as the agent-based optimizer presented 
above can be cast as a highly coupled stochastic dynamical system and 
approached from the direction of traditional analysis, such abstraction only serves 
to capture the simplest of agent-based methods. Even then, such analysis, while 
helpful to a degree, fails to reveal anything decisive about the algorithm that 
cannot be observed from the computation itself.  Indeed, another trait found in 
many agent-based methods is imperviousness to the mathematician's formal 
proofs.  The mathematician can only watch as the agents swarm towards the 
desired extrema; she cannot prove mathematically that they must do so, even 
given unlimited time to act or some other equally implausible simplifying 
assumption common in this genre of philosophy. 

All of these gains from agent-based models are being realized due to massive 
increases in computing power.  Scientists no longer have to write equations to 
model systems of interest. Instead, they can design robust simulations in which to 
test hypotheses and draw conclusions about the world.  This science of simulation 
is made possible by the ability to carry high-powered computing devices in a 
pocket.  This technological advancement has allowed computationally armed 
investigators to go beyond ink and papyrus, beyond ballpoint pen and paper, and 
even beyond stylus and touchscreen as modeling tools.  The parameters of this 
young science have not yet been established, and while much thrashing is still 
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occurring due to its nascence, it is already showing promise and making important 
contributions in many areas. 

To some, the fact that this science's theory has yet to be penetrated to a 
meaningful extent by the tools of mathematical logic and formal proof is a dagger 
through its heart.  How, they ask, can you use an optimization algorithm without 
knowing with certainty that the result you get is the one desired?  How can an 
engineering system built using this technology be reliable?  These questions 
ignore two vital points: (1) the assumptions needed for technical precision more 
often than not are of such an impractical character as to not be of use outside a 
mathematics journal and (2) bridges were built way before humans had a solid 
theory of statics and dynamics with which to analyze their construction.  This is 
not to say that proof-centric results have no value; just the opposite, in fact. They 
have tremendous value, and computational scientists who fail to grasp the nuances 
of mathematical rigor are selling their work short.  However, the same scientists 
need not wait for the mathematicians to prove that an agent-based optimizer 
converges according to some abstract optimality criterion in some excessively 
long period of time before applying the tool to actual problems at hand.  Neither 
the mathematician nor the engineer has primacy.  They are connected in a wild 
sort of dance in which the responsibility for leading is constantly up in the air.  
Engineers plow forward and develop techniques that work in practice. In turn, 
mathematicians take these roughshod ideas, add some shine, and craft a reflection 
of humanity's experience in the world consisting of pure form and essence.  Then 
the applied folks read this literature and find inspiration for new ideas of their 
own.  The fact that agent-based computational science has yet to admit the sort of 
coherent structure found in dynamical systems theory is a feature, not a bug.  The 
next time a mathematician alludes to this, kindly remind him or her that Newton 
invented and used the derivative two centuries before it was rigorously defined.  
Computational science is following in the footsteps of the calculus, proving itself 
in the field before being properly and fully understood and defined. 

Why the word intelligence?  What is meant by computational intelligence, 
exactly?  How can a computer be intelligent?  After all, is it not said that 
computers can only do what you tell them to do? How is that intelligent? Rather 
than getting caught up in a discussion of a precise meaning of intelligence, it is 
more productive to consider what it is that these algorithms produce.  Yes, it is 
factually true that computers only do what they are programmed to do. However, 
this statement is also misleading.  Computers can, after all, be programmed to 
write a program (or even to construct a proof!) that a human thinker could not 
have come up with on his own.  Through the use of adaptive learning techniques, 
researchers have taught computers to play Backgammon at a level surpassing that 
of any human player.  In fact, these computational methods have produced 
strategies that were new to human experts, and this is a game that humanity has 
played and studied for five-thousand years.  If a human player is capable of 
intelligence and creativity, perhaps these same qualities can be attributed in a 
nontrivial way to the play of a machine capable of exhibiting such characteristics.  
If games remain unconvincing, then how about poetry, art, and music?  All of 
these have been created at a high level using adaptive agents.  Whatever the fruit 
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of intelligence may be, it is clear that the production generated by this level of 
computation is at least in the running to be ranked among such.  In the end, many 
people would characterize intelligence as the ability to adapt to a changing and 
complex environment in the pursuit of some goal and, as mentioned earlier, it is 
this quality of adaptation that forms our central theme. 

The ancients looked at the stars and invented mathematics to describe their 
patterns. These mathematical techniques have come a long way from their origins 
in prehistory, but they still have their limits.  Humans now desire to look beyond 
the movement of stars and into their very hearts to see how they work and breathe, 
live and die.  To do this, sophisticated partial differential equation models are 
written that capture the nuances observed by astrophysicists.  However, when it 
comes time to solve these equations, to really get a feel for the development of 
stars, these equations are not solved analytically. Rather, computational models 
provide the greatest insight.  Humanity has gone from a people who write about 
the movement of stars in philosophy to a people who discover how the stars are 
built using technology.  It is humanity’s captive attention to the stars above that 
has guided so much of history. Maybe the astrologers are onto something. 

7.2.2   Agent-Based Computational Social Science 

Traditionally, scientists studying the mechanisms of human exchange would 
approach their investigations using the tools bequeathed to them by colleagues 
enamored of particles, energy and, yes, stars.  Importantly, the mathematical 
frameworks produced in the nineteenth century by Leon Walras stand today as the 
technology most used by economists to describe the complexities of exchange, 
scarcity, and markets.  These general equilibrium models seek to characterize the 
interplay of prices, demand, and supply. To use them for such, economists 
incorporate common simplifying assumptions to produce tractable mathematics.  
Many empirical studies question these assumptions, and new schools of economic 
thought are being developed to address their shortcomings. The field of  
Agent-Based Computational Economics is one of these schools. Drawing on 
advancements in our technology, it is able to analyze complex systems in a way 
unknown to nineteenth and even to some extent twentieth century minds.  It is also 
a call of sanity, as social science researchers need not toil under the same 
mathematical stressors that drove Georg Cantor to madness! 

Researchers in this field are able to ask new questions.  In particular, the 
Walrasian equilibrium models assumed the existence of an oracle that set prices 
for the entire economy.  However, human history shows us that in the absence of 
central control, societies tend to develop regularities.  Recently developed 
generative approaches use agents with flexibility of action to study the emergence 
of global consistencies.  Public policy analysts are interested in valuing a host of 
competing policy plans.  Computational models provide a laboratory of sorts for 
the introduction of a variety of rules, the results of which can then be gathered as 
evidence in either support of or opposition to a given plan.  This addresses the 
general disadvantage that social scientists face when running experiments as  
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compared to their peers in physics and chemistry labs. When natural experiments––
that is, simply waiting for events to occur on their own and then rushing to gather  
data––prove uncooperative, computational economies may be of great assistance.  
Also, these artificial economies can be rerun time and time again with different 
initial conditions or assumptions. In this way, a study of global dynamics can be 
undertaken that would have been unthinkable in Walras's time.  Also, as in the 
above discussion of the computational intelligence approach to optimization, 
computational agents have an ability to interact with each other that is 
unsupported in traditional approaches.  Agents can send each other messages in an 
adaptive, unscripted way, either to simply say “this point right here is the best I’ve 
found so far" as in the optimizer, or in more elaborate socially and economically 
meaningful ways.  Finally, perhaps the greatest feather in agent-based 
computational economics’ digital cap is its ability to usefully investigate out-of-
equilibrium phenomena.  The classical general equilibrium models only tell us 
what price levels lead to markets clearing.  In the real world, however, out-of-
equilibrium systems are observed on a continual basis, as exogenous shocks occur 
with regularity and unpredictability.  The mathematics of dynamical systems, born 
as it is from the study of the continuous motion of objects through Newtonian 
space, is insufficient for the theoretical study of these sorts of system states.  
Computationally, however, the entire life of the economy can be witnessed, from 
inception through various equilibria and basins of attraction. 

Economics is not the only social science benefiting from agent-based modeling. 
Even in purely social systems, the idea of explaining a pattern is nearly equivalent 
to showing that it is the equilibrium state of some analytic model.  To study how a 
system attains equilibrium or to discuss out-of-equilibrium behavior, other 
methods are required. In particular, an agent-based model of the Anasazi 
civilization shows how computational models can be used by archaeologists and 
anthropologists.  This model is able to generate a society, fit to actual 
archaeological and geographical data, and provide an explanation of the society's 
history based on the actions of individuals rather than relying on models that 
require the homogeneity of agents and that are constrained so as to permit closed-
form analytic solutions. 

Social scientist and Brookings Institute senior fellow Joshua Epstein even 
argues for a new standard for scientific explanation: “If you didn't grow it, you 
didn't explain it." He feels that agent-based methods, or generative methods, are in 
fact the tool to be used in scientific investigation. 

This all said, and the power of equilibrium models having been questioned, 
attention is now directed to a field that has at its core the definition of, and search 
for, equilibria. 

7.2.3   Game Theory 

It is perhaps not a coincidence that it was Jon von Neumann, computing pioneer 
extraordinaire, who, along with economist Oskar Morgenstern, wrote the first text 
on game theory and with it the first analytical approach to discussing social 
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interaction in a formal way.  The focus of this section, after all, is the study of 
ways in which computational techniques have aided this study. 

Beginning as a formal description of competitive two-person strategy in parlor 
games, game theory has evolved into a general framework for both competitive 
and cooperative dynamic interaction among any number of agents over any 
conceivable time horizon.  A more appropriate name would be Multi-Agent 
Interaction Theory, but the term “game" seems here to stay and represents any sort 
of strategic interaction among various agents, or players.  Game theory wields 
much explanatory power even in its basic analytic form, even considering its 
heavy reliance on the calculation of equilibria. For example, the Talmud presents a 
classic problem about division of resources to creditors after one's death. It gives 
three examples, two of which were easily understood but the third of which 
remained a mystery to scholars for literally thousands of years.  It wasn't until the 
1980s that the division rules were fully understood using the tools of game theory. 

This chapter first will explain the basic mathematical structure of game theory, 
including normal and extensive form games and equilibria.  It is important to have 
an appreciation for rigor when doing analytical modeling work, and a significant 
contribution game theory has made to those looking to discuss profitably the 
nuances of social interaction is a precise language.  Topics covered will include 
Nash equilibria, dominated strategies, credible and incredible threats, and other 
terms carrying clear technical weight.  These terms help to stage the basic 
interplay of agents working to achieve some goal while considering the actions of 
others.  Determining what solution is optimal is a major component of game 
theory, and this chapter will cover many ways to calculate equilibria. 

We will then move on to the theory of repeated and evolutionary games.  When 
an agent is placed in a situation in which a given encounter must be undertaken 
repeatedly, a different sort of equilibrium strategy emerges.  These evolutionary 
dynamics will be discussed in detail and are a particularly harmonious fit for the 
adaptive flair of computational intelligence techniques.  Trigger strategies, the 
Folk theorems, reputation effects, the replicator dynamics, and evolutionary 
stability will be among the topics covered. 

Finally, some time will be spent discussing behavioral games and agent-based 
approaches to social modeling.  Behavior game theory challenges dearly held 
economic assumptions regarding the nature of rationality by running actual 
experiments with human subjects and comparing the results with the predicted 
equilibria generated by hyper-rational agents.  Agent-based approaches, discussed 
in more detail in the previous section, will act as a capstone. They stand at the 
frontier of social modeling, drawing upon the power of the computer and the spirit 
of game theory's rigor. 

7.3   Economics and Finance 

7.3.1   Introduction 

Economists have long recognized their inability to run controlled experiments a la 
their physicist and biologist peers.  As a result, while much real science can be 
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done using natural experiments, analytic mathematical modeling, and statistical 
analysis, a certain class of discoveries regarding the governing dynamics of 
economic and financial systems has remained beyond the grasp of such research.  
However, recent advances in computing show promise to change all that by 
gifting economists with the power to model large-scale, agent-based environments 
in such a way that interesting insight into the underlying properties of such 
systems can be obtained.  It is becoming increasingly evident that engineering 
tools from the area of computational intelligence can be used in this effort.   

Agent-based methods are enjoying increased attention from researchers 
working in economics as well as in pure and applied computation.  The central 
focus of this still nascent field involves the generation of populations of 
interacting agents and the observation of the resulting dynamics as compared to 
some optimality criterion, analytically or otherwise obtained.  Typically, some sort 
of learning algorithm, such as a simple feed-forward, multi-layer perceptron 
neural network, will be implemented in the model.  Often, other techniques of 
computational intelligence, such as genetic algorithms, will be used to evolve the 
population, showing the promise that gains in this area of computation have for 
social science investigation.  

7.3.2   Background 

The fundamental Agent-Based Computational Economics framework structure is 
overviewed in Testafasion (2006) and will be reviewed here.  The particular 
formulation of the agent problem proposed in this chapter is based on the 
presentation in Chiarella (2003) and will be discussed following the general 
overview. Finally, other supporting literature will be surveyed to help solidify the 
main ideas of this section and to guide the reader in other directions of possible 
research interest. 

7.3.3   Agent-Based Computational Economics 

A standard course of study in economics grounds the reader in a host of 
equilibrium models:  the consumer preference theory of microeconomics (Binger, 
1998), the wage determination cycle of labor economics (Ehrenberg, 2003), the 
concept of purchasing power parity in international finance (Melvin, 2000), and 
the Walrasian Auctioneer (Leijonhufud, 1967) of macroeconomics.  In all of these 
approaches to describing economic phenomena, the student is presented with top-
down analytic treatments of the dynamics of an entire economy’s worth of 
individual interacting agents.  While the local scale behavior informs the higher-
level dynamics, it is only the global portion that enjoys specific elucidation.  
Exactly how the lives of the agents respond to an economic shock in order to 
return the system to the long-run equilibrium is not considered.  Furthermore, the 
level of simplifying assumptions necessary to achieve clear and acceptable results 
from an analytical model, via some fixed-point theorem, often serves to cast a 
significant measure of doubt over the entire affair.  Importantly, this problem is 
not a fixture of economics alone; these models and the chase for mathematically 
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provable periodicity results permeates other areas of science, notably population 
biology (Bohner, 2006).  Also, many proof-theoretic approaches require overly 
restrictive and wholly unrealistic linearity assumptions to arrive at a tractable 
model, denying insight that claims the answer to an economic question may have 
more than one root cause (Judd, 2006.) 

The discipline of Agent-Based Computational Economics (ACE) analyzes an 
economy from another point of view, one termed “constructive” due to the focus 
on the fundamental elements of the system as opposed to the global dynamics.  
Instead of specifying long-run equilibrium behavior, the ACE researcher takes 
care to capture in his or her equations the salient behaviors of the individual 
agents.  Any emergent dynamics or long-run convergence will reveal themselves 
as a result of the collection of individual choices.  In this way, equilibrium models 
can be tested in a manner akin to a controlled experiment in the physical sciences.  
The population of computational agents can be constrained in a certain way, and 
the resulting dynamics explored via simulation.  Such studies can confirm 
theoretical fixed-point, long-term equilibrium results or serve as evidence that 
such hallowed equations may be missing something quite vital about the system’s 
reality. 

For example, Hayward (2005) finds that computational experimental modeling 
fails to support standard analytic models for price forecasting and trading 
strategies in international financial markets.  He finds, in contradiction to the 
notion that a trader’s success is a function of risk aversion instead of proficiency 
in accurate forecasting, that the agents with short time horizons in an environment 
with recurrent shocks emerge as dominant, as they adapt to and learn about the 
nature of the economic system in which they operate.  His work incorporates 
genetic algorithms and multi-layer perceptron neural networks which, along with 
swarm intelligence and fuzzy logic methods, are core areas of the computational 
intelligence field (Engelbrecht, 2002). 

ACE models begin by specifying attributes and modes of interaction among the 
agents.  One way to implement this specification is through an object-oriented 
programming approach, wherein the agents could be considered objects, the 
attributes private data members, and modes of interaction publicly-accessible 
methods.  The books by Johnsonbaugh (2000) and Horstmann (2004) include 
details on object-oriented programming, the specifics of which are not integral to 
our current discussion.  Another tool accessible to researchers conducting ACE 
investigations is one of the standardized modeling frameworks, such as the one 
published by Meyer (2003).  Finally, analytic equation models can be found in the 
literature, such as the early work of Lettau (1997). It should be noted that these 
models, while analytic in nature, still conform to the constructive ACE philosophy 
in that they are employed in the characterization of the salient features of the 
agents.  The equations are not being used to set the dynamics of the system a 
priori or to launch a search for a periodic equilibrium solution. 

Whatever agent representation a researcher chooses, it is important that the 
computational intelligence technique used to model the agent’s ability to adapt to 
a complex environment be sufficiently robust to generate accurate and substantive 
results.  An experiment that seemingly shows a population of agents unable to 
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learn to converge to an analytic equilibrium may not really be unearthing a new 
economic truth; instead, this could be an indication that the particular 
computational learning algorithm employed in the simulation is insufficient for the 
complexity of the task.  Furthermore, care must be taken to appropriately read the 
output of an ACE simulation. Unlike standard econometric approaches (Greene, 
2003 and Kennedy, 2001), it is often difficult to calculate a level of statistical 
confidence to accompany the conclusions of an ACE model.  It should be noted 
here that the computational techniques falling under the banners of Adaptive 
Resonance architectures and Partially Observable Markov Decision Processes, 
discussed later in this chapter, have the advantage that they come equipped with 
readily available confidence level information, thus assuaging this objection to 
numerical investigation of economic phenomena.  In any case, an increase in 
knowledge of advanced computational techniques, such as those in computational 
intelligence, will go a long way towards overcoming the inertia naturally present 
in any community in the face of change in paradigm, as better communication and 
pedagogy will help to ward off the feeling among many that these algorithms are 
simply “black boxes” akin to a foul sorcerer’s magic that should not be trusted.    

While Hayward (2005) used a multi-layer perceptron architecture to model how 
the agents learned to project financial information, more robust results may be 
gained by using sophisticated time series prediction techniques (Cai, 2004, Hu, 
2004) or the techniques overviewed later in this chapter.   

7.3.4   Application to Economic Systems 

Computational economic agents must think.  Their entire raison d’etre is to 
provide researchers with guidance in addressing questions about the governing 
laws of dynamic systems.  To extract the most value from the ACE approach, the 
most advanced computational tools available should be considered.   

It is critical that the computational agent be able to effectively process 
information within the environment.  Consider the formulation of Chiarella 
(2003).  They construct a population of agents engaged in the decision of whether 
to buy or sell a particular share of an asset.  The economy consists of two assets: a 
risky asset with price Pt and dividend dt, and a risk-free asset with known rate of 
return r for every epoch t.  The agents model using a benefit function Vit, 
encapsulating their understanding of the market at a given point in time.  This 
study involves heterogeneous agents, so one group of agents uses a market signal 
to calculate this Vit and another group pays a cost ct for access to the theoretical 

fundamental solution , which is the summation of 

discounted future expected dividends.  An approach to this problem type using 
ADP and Adaptive Critics is a natural extension of the existing work.  
Furthermore, these techniques will allow investigation into more complex, higher-
scale systems.  In particular, it is important to consider these techniques when 
faced with a highly nonlinear complex system, such as a large-scale economy or 
financial market. 
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Following the work of Duffy (2006) on comparison to controlled economic 
experiments using human subjects, researchers need to accurately model the 
agent’s cognitive processes as they apply to economic activity.  The ART family 
of neural network architectures (Carpenter and Grossberg, 1991) is ideally suited 
to such a task, given its roots in the mathematical modeling of the operation of the 
human brain.   

It is an exciting time to be involved in computational economics and finance. 
The advances in computational intelligence techniques bring quite a bit of promise 
to the investigation of some basic but major problems of emergent system 
dynamics. 

7.3.5   Future Research Directions 

Much work must be done to expand ADP techniques to other application areas, 
particularly in an operations research setting, where the tremendous scale of 
industrial-scale logistics problems pushes the limits of current computational 
power.  Theoretical developments need to be chased that can address this problem, 
as it is not sufficient to wait for the computer architects to design next-generation 
processor capabilities. The scaling issue that these algorithms face as the 
dimensionality of the problem increases is a major stumbling block.   

As pointed out in Young (2006), agent-based methods are important for 
studying many sorts of emergent social phenomena, including the emergence of 
money as the outcome of an iterated coordination game.  Other social dynamics 
can be studied and progress made towards their understanding using these 
techniques.  This level of human discernment can have a great positive impact on 
all our lives, beyond the realm of a financial market environment or mathematical 
psychology.    

While researchers currently employ techniques such as genetic algorithms and 
multi-layer perceptron neural networks, considerable room for growth exists by 
using more advanced approaches.  As these techniques become more widely 
understood, they may shed their image as a “black box” (LeBaron, 2006).  
Approximate Dynamic Programming, influenced so heavily by the economic 
strategic risk assessment literature, is particularly well suited for widespread 
application as the computational force behind agent thinking processes.   

Finally, these are research technologies capable of bringing together 
communities of researchers from seemingly disparate fields to approach a wide 
range of important problems.  Much good can come from such a globalized 
approach to collaborative investigation. 

7.4   Intelligence in Markets 

The study of multi-agent market interactions is becoming increasingly dependent 
upon the concurrent development of appropriate computational tools.  The field of 
computational intelligence is ideally positioned to offer much to this new wave of 
financial and economic science.  This section introduces aspects of two types of 
market interaction: an agent’s decision to distribute resources among assets and 
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manipulating the structure of the market to influence the nature of the interaction 
of the agents within.  Natural computation techniques such as artificial neural 
networks, genetic algorithms, Approximate Dynamic Programming, and particle 
swarm optimization are heavily used among researchers in these growing fields.  
With further attention, it is possible for engineers to make great strides in both 
understanding these complex systems and in building commercial applications for 
them. 

7.4.1   Introduction 

Evolution, human and animal cognition, and the emergent coordination of systems 
of autonomous agents are among the areas of nature drawn upon for inspiration by 
the field of computational intelligence.  Researchers are increasingly using these 
aspects of nature in the exploration of market interaction, both to develop more 
scientific knowledge about economic and financial phenomena and to build new 
commercial applications for price forecasting, asset trading, and market design.  
Adam Smith wrote of an “invisible hand” that guided markets.  Today, scientists 
may consider this specter to be the result of a limiting process of some 
computational evolutionary algorithm.  It is here, at the intersection of economics 
and intelligent computation, where the most profitable study of the nature of 
human market interaction may occur. 

Markets provide a way to convey information regarding prices of assets.  For 
those working within a market, the goal is to most optimally allocate a pool of 
assets to satisfy some predetermined optimality criterion.  For those outside the 
market, the goal is to optimally design the allocation mechanisms to achieve the 
specified mission of the central planners.  Together, these two processes can be 
studied within the larger view of the role of markets in complex systems as a form 
of communication and coexistence.  Computational intelligence, taking its cues in 
part from nature, has much to offer the calculation aspects of these two concepts.  
This section discusses the application of asset allocation and mechanism design 
using elements of natural computation.  

Markets are widely considered the most efficient method of processing 
transactions.  There is a wealth of economic literature speaking to the efficacy of 
free markets under certain, rather strenuous constraints that support these ideas.  
However, it is also useful to study the behavior of markets outside these 
constraints.  Mechanism design permits an analysis of market institutions away 
from those used in efficiency theorems with the goal of developing new efficient 
trading structures. 

Natural computation can be seen in the forefront of a number of research areas.  
An important example is that of intelligent control, which has plentiful application 
in economics and finance.  The field of Approximate Dynamic Programming (Si, 
Barto, Powell, & Wunsch, 2004) offers hope that many of the previously 
intractable control problems can be handled.  Partial motivation for its baseline 
techniques comes from studies of the human mind.  Though neuroscientists do not 
yet fully understand how the human brain works, the study of its processes is of 
increasingly fundamental importance for applied engineers and economists.    
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Economists, unable to run the actual controlled experiments common in the 
physical sciences, have turned to natural experiments, statistical investigation, and 
mathematical analytic modeling to understand their science.  The new paradigm of 
ACE gives economists the ability to model large-scale, agent-based environments 
in order to make new discoveries regarding the governing dynamics of the 
economic and financial systems under review.  The tools of computational 
intelligence are becoming increasingly relevant to this new field. 

The fundamental feature of this emerging field of economics requires 
generating populations of interacting agents followed by an analysis of the 
resulting dynamics. These agents are then used to test the claims of equilibrium 
theorems. It is common to see some element of computational intelligence, such as 
a simple feed-forward, multi-layer perceptron neural network or a genetic 
algorithm, used as a learning rule or overlying constraint within the model.   

ACE approaches analyze an economy from an angle different from that of the 
analytical models.  It is called a “constructive” approach accounting for its focus 
on the fundamental elements of the system (e.g., the individual agents) as opposed 
to global dynamics. Any emergent dynamics or long-run convergence is 
determined by the aggregation of individual choices.  In this way, analytic 
equilibrium models can be tested by generating a population of computational 
agents and exploring the resulting dynamics.  Researchers can then assess 
theoretical predictions using the simulations. 

For example, Hayward (2005) uses ACE techniques to show evidence that 
accepted analytic models governing the forecasting of prices and trading strategies 
in international financial markets fail to adequately predict the behavior of 
computational agents.  His findings show that traders adapt to the nature of the 
market environment rather than relying solely on accurate forecasting.  His work 
incorporates genetic algorithms and multi-layer perceptron neural networks. 

This section presents an overview of recent uses of computational intelligence 
techniques in asset pricing and mechanism design applications.  Additionally, it 
discusses ways to extend these results through the use of even more robust 
methods of natural computation. The aim is to give computational intelligence 
researchers an idea of the scope of work being pursued in the areas of asset pricing 
and mechanism.  Many opportunities for commercial application exist in these 
financial fields for those with an interest in applying complex intelligent systems 
to markets. 

7.4.2   Approximate Dynamic Programming and Stochastic Control 

Dynamic Programming, developed by Richard Bellman in the middle of the 
twentieth century, is perhaps the most correct way to think about multi-stage 
decision problem solving.  It gives rise to the Bellman equation, which aids in the 
calculation of optimal strategies.  This equation takes the form of the Hamilton-
Jacobi equation of classical mechanics and is thus oftentimes labeled the 
Hamilton-Jacobi-Bellman equation in the literature.  It is interesting to note the 
similarities between the trajectories of decisions made by agents in a multi-stage 
problem environment and the motion of point-like particles through space.   Much 
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research focuses on this equation, and the discipline of ADP, mentioned above, 
seeks approximations of this equation sufficient for handling significant industrial-
scale, real-time control problems.   

The mathematics of dynamic programming has also been utilized in the asset 
pricing literature.  In Ben-Amour, Breton, Agouti, & L’Ecuyer, 2007, these 
techniques are used to price options embedded in bonds.  It is important for 
practitioners to discern the proper valuation of these assets and for researchers to 
report that their dynamic programming approaches outperform techniques 
common historically in mathematics, such as finite-difference methods.   

While their analysis takes place within a well-structured artificial market, it 
remains a control problem at heart.  The computational intelligence techniques of 
ADP, which are capable of generating solutions to the dynamic programming 
problem in complex, changing environments, may be useful in taking this 
approach to a level in which it could be used by asset managers in the field. 

ADP approaches typically utilize a neural network as a function approximator 
within their design.  For simpler problems, the neural network can be replaced 
with a lookup table housing all the values of a given state-action pairing.  The 
idea, then, is for the agent to look at the table for the given state and choose the 
action containing the highest value.  This algorithm is called Q-learning and is the 
focus of work in Lee & Park, 2007.  In their study, the stochastic control problem 
of stock trading is addressed.  They deploy a system of agents, all learning via the 
Q-learning heuristic, who tackle the problem of profitable trading.  Measuring 
performance in both the profit and risk management dimensions, they report that 
this computational intelligence approach outperforms alternative approaches. 

It is notable that their approach mixes in a sense both the ACE approach and Q-
learning.  A system of agents, working cooperatively, provides an emergent 
intelligence that achieves quality performance in the stock trading task.  Such 
results indicate that much further good can come from a more systematic 
application of both basic and advanced techniques from the computational 
intelligence literature into problems being studied within the ACE framework.  It 
may indeed turn out that an understanding of human market systems is reliant on 
our development of more robust algorithms inspired from our natural 
environments. 

Stochastic control, involving varying degrees of uncertainty, is a prime target 
for ADP and other computational intelligence approaches.  In Song & Huang, 
2007, this paradigm is leveraged in a setting with discrete decision points.  The 
trading agent is to make decisions in a Markov Decision Process (MDP) 
environment with stochastic returns on investment while taking into account 
transactions costs.  MDP problems, particularly those of the partially observable 
variety (POMDP’s), have received much attention from the computational 
intelligence community.  The results presented in this study show that research 
into POMDP’s, and the fact that ADP handles the unobservability criterion, may 
show promise in the commercial application of computational intelligence 
techniques to trading decisions within a market. 
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7.4.3   Evolving Asset Pricing Strategies 

Stock market trading algorithms are a favorite topic of forecasters and financial 
researchers.  In Bekiros, 2007, a neurofuzzy approach is studied.  Taking a cue 
from cognitive modeling of the human brain and combining it with a mathematical 
apparatus capable of handling uncertainty when dealing with imprecise 
information, this paper shows the hybrid computational intelligence method 
outperforming both a simple recurrent neural network and basic statistical 
regression models.   

While this research focuses on technical trading rules, it is encouraging to 
believe that further advances along this direction may lead to more robust results.  
Typically, asset managers take into account fundamentals, technical signals, and 
automated data, and the development of an intelligent system that can include 
more of the data used in practice would be a welcome commercial application. 

It is worth noting that the idea of asset allocation, and the mathematics 
underlying the study of the topic within financial markets, is not limited to 
modeling only the trading behavior of those dealing in stocks, options, and bonds.  
It can also be generalized to apply to any environment in which choices need to be 
made. In Rice, McDonnell, Spydell, & Stremler, 2006, the assets in question are 
the targets and threats in an air strike simulation.  Evolutionary computation is 
employed to generate a player for a simulation in which a player must defend his 
own assets from attack as well as divert resources to destroy the assets of the 
opponent.  The same asset allocation and pricing machinery developed for 
financial markets, including the use of dynamic programming, can be utilized 
profitably in this environment as well. 

Extensions of financial market concepts to areas of interest outside the realm of 
economics are consequences of the nature of the underlying mathematics.  Just 
like the Bellman equation of decision theory holds abstract similarity to the 
Hamilton-Jacobi theory describing the motion of particles in classical physics, so 
can the basic approach to asset allocation in markets be applied to other areas of 
engineering interest.  So, even for engineers with limited interest in economics and 
finance, the study of these approaches may be fruitful. 

Algorithms based on observed evolution in natural species have played a 
prominent role in recent economics studies.  In Matilla-Garcia, 2006, genetic 
algorithms are used to evolve trading rules for computational market players.  The 
author compares the genetic algorithm designed trader to a buy-and-hold strategy 
and concludes that the computational intelligence boosted agent outperforms the 
other.  Additionally, simulations are run comparing the genetic algorithm-based 
strategies within differing market conditions:  bullish, bearish, and volatile.   

The ability of computational intelligence techniques to handle complex 
environments and aggregate disparate data leads to these advances.  As trading in 
markets is a form of the intelligent control problem, it is not surprising that these 
approaches are well suited to the commercial task.   

Options submit to the well-known Black-Scholes formula for pricing.  Itself a 
deft application of stochastic partial differential equations to the modeling of 
economic phenomena, it is possible to go beyond this analytic formalism using the 
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algorithms of computational intelligence.  In Zapart, 2003, neural networks are 
used to push past the constraints of the Black-Scholes equation and price these 
complicated assets appropriately. 

Neural networks and binomial trees are one approach presented in this work as 
a volatility model.  The feature space of volatility is represented as wavelets that 
feed the neural network predictions.  The paper also develops genetic algorithm-
based neural network architectures capable of reproducing the Black-Scholes 
results.  Given that analytical approaches such as Black-Scholes rely heavily on 
unrealistic simplifying constraints or come attached to system requirements 
proving inapplicable in commercial application, the fact that these computational 
intelligence techniques can provide the same or better return as the traditionally 
accepted analytic methods is heartening.   

Fuzzy logic and evolutionary processes are used in Ghandar, Michalewicz, 
Schmidt, To, & Zurbruegg, 2007, to calculate trading rules for equity markets.  
This work is intriguing because, in contrast to most approaches in this area, it is 
rule based.  The genetic algorithm uses chromosomes that represent fuzzy rules 
capable of parsing ambiguities such as “high volatility” and “extremely high 
volume.”  Discussions with human traders reveal that they think along these lines, 
giving rules of thumb based on such imprecise language. Compared to a technical 
rule that posits a sell or buy given a fixed numerical value for volatility or volume, 
these fuzzy rule-based systems represent to a higher degree the way human 
cognition operates.   

One approach to asset allocation is to control the value-at-risk of a given 
portfolio.  As a control problem, this is well suited to ADP and other 
computational intelligence techniques.  In Chapados & Bengio (2001), a neural 
network approach is taken.  One of their approaches combines a neural network 
forecast with traditional mean-variance portfolio optimization theory.  The 
computational intelligence engine provides an understanding of the price of the 
assets, and then the efficient frontier is searched for the optimal portfolio based on 
comfortable risk levels.  This is more prediction than true asset allocation, but it 
does demonstrate the value that natural computation can add to these processes.   

The second approach taken is more in the line of intelligent control as it 
calculates buy-sell decisions based on computational intelligence techniques.  
Recurrent neural networks power a decision engine designed to minimize 
transaction costs and optimize a cost function representing financial performance.  
The network outputs a vector of recommendations, and the recurrent nature of the 
system allows for past recommendations to be considered when making future 
buy-sell decisions.  Together, this system and the previously mentioned neural 
network forecasting architecture outperform benchmark market performance.  Of 
course, managers in the field may hesitate to use the signals generated from such 
machine learning algorithms, but as the computational intelligence community 
continues to develop dependable trading systems, these attitudes may indeed relax.  
Commercial application possibilities for these sorts of systems are wide open and 
available to anyone with a solid system and a marketing plan. 

The mean-variance approach to asset allocation is studied in Dashti, Farjami, 
Vedadi, & Anisseh, 2007, as a swarm optimization application.  The authors take 
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the modern portfolio theoretic approach of optimizing a basket of assets while 
taking into account the risk factors associated with each one.  Using the Sharpe 
ratio as the fitness level for the swarm, the authors evolve optimal portfolios using 
a population-based optimizer rather than using the more traditional analytical 
approach.  The advantages here lie in being able to optimize over more robust 
solution spaces, which may indeed provide a better modeling framework for the 
sorts of markets mangers find in practice. 

Population-based optimization algorithms are perhaps ideally suited to 
investigations of market action in the ACE paradigm.  Since what is of interest is, 
fundamentally, the nature of the emergent behavior of a number of interacting 
agents, the internal structure of an algorithm such as Particle Swarm Optimization 
allows the researcher to not only simply optimize a given fitness function but to do 
it in a way that is representationally meaningful in terms of their simulation.  In 
fact, further complexity can be introduced by considering the individuals in these 
optimizers as the economic agents themselves.  This actually touches on an 
analytic modeling approach such as overlapping generations models, which have 
provided economists with much value already. 

7.4.4   The Design of Market Mechanisms 

Mechanism design is applied to electric power markets in Silva, Wollenberg, & 
Zheng, 2001.  The authors posit a need for a certain type of regulation of the 
electric power market, as the unregulated market may not provide incentives for 
the necessary sharing of information in order to perform required economic 
dispatch of the generation.  Their work, then, focuses on how best to structure the 
market to meet the specific needs of electric power generation.  The electric power 
market is of a different character than other markets where free competition leads 
to optimal equilibria.  The existence of transmission systems with uncontrollable 
flows of power may lead to congestion or even to overloading of the system. 
Therefore, some regulation is required, and the question is how best to design the 
constraints to maximize desired variables. 

With a model representing the transmission network constraints, they apply 
mechanism design to produce optimality when each participating firm acts in its 
best interest.  They note that the mechanism they develop is different from those 
in the existing literature, thus showcasing the vitality of the game theoretic 
approach.  Their result is that the market should be organized in a bidding process 
whereby each firm presents a production cost level that another agent then uses in 
assigning electricity production and payments.  It is worth observing that the 
application of mechanism design to an engineering market was able to produce an 
offering that was not evident to human planners organizing these markets in 
practice.  This tool of mechanism design, particularly when augmented with 
computational intelligence, has much to offer central planners in any number of 
sectors. 

To study auction and market designs, researchers in the ACE vein have 
introduced a number of artificial markets and agent structures.  One, called ZIP 
(zero-intelligence-plus), is studied in Cliff, Walia, & Byrde, 2003.  Combining 
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mechanism design and genetic algorithms, the authors develop optimal auction 
rules for their given environment.  Furthermore, as is often the case when using 
evolutionary computation, the results are far different from those put in place by 
human planners. 

Instead of copying existing auction mechanisms, the authors were able to 
evolve hybrid mechanisms.  The ZIP traders adapt to auction conditions in order 
to optimize some internal criterion.  Other research fixed the auction mechanism 
in advance and studied the emergent behavior of the individual trading agents.  
The impact of this study is that they allowed the auction mechanism itself to 
adapt.  The authors created a population of 30 individuals representing a 9-
dimensional vector describing the mechanisms.  Fitness evaluation was 
undertaken by measuring the emerging market dynamics.  The best mechanism 
design was then evolved in this fashion. 

These are particularly interesting results on account of the fact that they can be 
seen as an invitation for computational intelligence methods to inform the 
coordination of market actors in non-auction environments as well.   

7.4.5   Computational Markets 

The new approach to treating markets as emergent results of computational 
algorithms is important in economics.  The review Mirowski, 2007, covers much 
of this new paradigm.  Researchers and practitioners in computational intelligence 
have the ability to stand at the forefront of this new movement and to make 
substantial contributions to the scientific understanding of market phenomena as 
well as to the development of new positive commercial applications. 
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