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Abstract The process of comparison plays a critical role in problem solving, 
 judgment, decision making, categorization, and cognition, broadly construed. In 
turn, determination of similarities and differences plays a critical role for comparison.  
In this chapter, we describe important classes of formal models of similarity and 
comparison: geometric, featural, alignment-based, and transformational. We also 
consider the question of whether similarity is too flexible to provide a stable ground 
for cognition, and conversely, whether it is insufficiently flexible to account for the 
sophistication of cognition. Both similarity assessments and comparison are argued 
to provide valuable general-purpose cognitive strategies.

1  Introduction

It might not be immediately clear why the topic of comparison warrants a whole 
chapter in a book on human thinking. Of course, we are often required to make 
decisions that involve comparing two or more alternatives and assessing their rela-
tive value. Which car should I buy? Which job is more suited to my long-term 
goals? Would I rather have the soup or the salad? But in the grand scheme of human 
cognition, it might seem that such processes could be relegated to a subheading in 
a chapter on decision making.

In fact, comparison is one of the most integral components of human thought. 
Along with the related construct of similarity, comparison plays a crucial role in 
almost everything that we do. Furthermore, comparison itself is a powerful cogni-
tive tool – in addition to its supporting role in other mental processes, research has 
demonstrated that the simple act of comparing two things can produce important 
changes in our knowledge.
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One primary function of comparison is simply to assess the similarity of two 
things. To understand why this is such an important part of cognition, consider the 
variety of processes that are hypothesized to use similarity as an input. In models 
of memory, recognition and reminding have been argued to rely on the similarity 
between a stimulus and a long-term representation (Hintzman 1986; Shiffrin and 
Steyvers 1997). Models of categorization have proposed that new examples are 
classified based on their similarity to other category members (Medin and Shaffer 
1978; Nosofsky 1984), or to a prototype of a category (Reed 1972). When making 
inferences about unknown properties, people often appear to rely on their knowl-
edge about other similar entities and situations to make reasonable predictions 
(Osherson et al. 1990; Shepard 1987), and people are very likely to look to similar 
situations from their past when understanding and solving new problems (Holyoak 
and Koh 1987; Ross 1989). Thus, it is a rare moment in our lives when comparison 
and similarity do not seem to play a role.

However, comparison does more than simply assess existing representations – it 
can also affect our understanding of the things that are being compared. For example, 
research in decision making has shown that people’s judgments and preferences 
may vary significantly based on the particular comparisons that are made (Huber 
et al. 1982; Simonson 1989). More direct evidence comes from Medin et al. (1993), 
who found that participants interpreted the features of an item differently when it 
had been compared to different alternatives. For example, in the top row of Fig. 1, 
when the ambiguous object B is compared to A, participants often write that a simi-
larity between the pair is that both shapes have three prongs. However, when B is 
paired with C instead, participants often write that a similarity between the pair 
is that they both possess four prongs, and a difference is that one of B’s prongs is 
warped or stunted. In other words, the comparison process seems to determine the 
content of our representations.

Importantly, these representational changes often appear to be of a very beneficial 
kind: comparison can allow an individual to look past simple “surface” features, 
and to focus instead on potentially more meaningful structural commonalities and 
differences. For example, (Gentner and Namy 1999; Namy and Gentner 2002) 
found that comparing two objects allowed young children to overcome their strong 
bias for perceptual similarity, and to group objects instead on common taxonomic 
membership. Even more impressively, research has shown that a previous comparison 
can change the way that people interpret new situations. When people compare two 
cases that share the same underlying principle, they are far more likely to recognize 
new cases where that principle is applicable (e.g., Gick and Holyoak 1983; Gentner 
et al. 2003). This improvement does not occur if the two cases are evaluated 
independently, without comparison (see Gentner’s chapter on analogy in this book 
for a more detailed account of these kinds of effects). Even comparing situations 
that have slightly different underlying structures can be very beneficial, because 
it tends to highlight those structural differences (so-called “near miss” cases; 
Winston 1975).

Comparison therefore provides an invaluable tool for learning, allowing people 
to see how two things are alike and different, and to see important features of each 
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case that might otherwise have been overlooked. This helps to explain why educational 
assignments that ask a student to “compare and contrast” are such a powerful tool 
(i.e., Bransford and Schwartz 1999), and makes it that much more puzzling that 
these types of assignments seem to have fallen out of favor in recent years.

2  Models of Similarity

Given the cognitive importance of comparison, it is understandable that there have 
been several attempts to formalize the comparison process. The formal treatments 
frequently center on the question of what makes things seem similar to people. One 
of the prominent goals of comparison is to determine how, and in what ways, two 
objects, scenes, or entities are similar to one another.

The formal treatments of similarity simultaneously provide theoretical accounts 
of similarity and describe how it can be empirically measured (Hahn 2003). These 
models have had a profound practical impact in statistics, automatic pattern recog-
nition by machines, data mining, and marketing (e.g., online stores can provide 
“people similar to you liked the following other items…”). Our brief survey is 
organized in terms of the following models: geometric, feature-based, alignment-based, 
and transformational. It should be noted that although these models are laudable for 

Fig. 1 Examples of stimuli from Medin et al. (1993). Subjects were asked to describe features 
that were shared and different between pairs of objects. The middle objects labeled B are ambigu-
ous, and tend to be interpreted in a manner that is consistent with the objects (A or C) with which 
they are paired. When determining both common and distinctive features, people apparently 
first interpret objects so as to make them more comparable
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their quantitative predictions, they also bypass the important issue of what counts 
as a psychologically significant description of an object in the first place. These 
models adopt a philosophy of “You tell me what the features/dimensions/attributes/
relations of an object are, and I will tell you how they are integrated together to 
come up with an impression of similarity.” In fact, this attitude downplays the hard 
cognitive work in comparison that involves coming up with these descriptions in 
the first place (Goldstone et al. 1997; Hofstadter 1997; Shanon 1988). To be complete 
cognitive models, at the very least the models described below need to be supple-
mented by perceptual and conceptual processes that provide input descriptions. 
Furthermore, even this division of cognitive labor into representational and 
comparison processes has been questioned. As mentioned earlier, these two cognitive 
acts cannot be so cleanly separated because the very act of comparison alters one’s 
descriptions of the compared objects.

2.1  Geometric Models and Multidimensional Scaling

Geometric models of similarity have been among the most influential approaches 
to analyzing similarity (Carroll and Wish 1974; Torgerson 1965). These approaches 
are exemplified by nonmetric multidimensional scaling (MDS) models (Shepard 
1962a, 1962b). MDS models represent similarity relations between entities in terms 
of a geometric model that consists of a set of points embedded in a dimensionally 
organized metric space. The input to MDS routines may be similarity judgments, 
dissimilarity judgments, confusion matrices, correlation coefficients, joint proba-
bilities, or any other measure of pairwise proximity. The output of an MDS routine 
is a geometric model of the data, with each object of the data set represented as a 
point in an n-dimensional space. The similarity between a pair of objects is taken 
to be inversely related to the distance between two objects’ points in the space. In 
MDS, the distance between points i and j is typically computed by:
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and r is a parameter that allows different spatial metrics to be used. With r = 2, a 
standard Euclidean notion of distance is invoked, whereby the distance between two 
points is the length of the straight line connecting the points. If r = 1, then distance 
involves a city-block metric where the distance between two points is the sum of 
their distances on each dimension (“short-cut” diagonal paths are not allowed to 
directly connect points differing on more than one dimension). A Euclidean metric 
often provides a better fit to empirical data when the stimuli being compared are 
composed of integral, perceptually fused dimensions such as the brightness and 
saturation of a color. Conversely, a city-block metric is often appropriate for 
psychologically separated dimensions such as brightness and size (Attneave 1950).
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A study by Smith et al. (1973) illustrates a classic use of MDS. They obtained 
similarity ratings from subjects on many pairs of birds. Submitting these pairwise 
similarity ratings to MDS analysis, they obtained the results shown in Fig. 2a 
(Fig. 2b shows a second analysis involving animals more generally). The MDS 
algorithm produced this geometric representation by positioning the birds in a two-
dimensional space such that birds that are rated as being highly similar are very 
close to each other in the space. One of the main applications of MDS is to deter-
mine the underlying dimensions comprising the set of compared objects. Once the 
points are positioned in a way that faithfully mirrors the subjectively obtained simi-
larities, it is often possible to give interpretations to the axes, or to rotations of the 
axes. Assigning subjective interpretations to the geometric model’s axes, the 
experimenters suggested that birds were represented in terms of their values on 
dimensions such as “ferocity” and “size.” It is important to note that the proper 
psychological interpretation of a geometric representation of objects is not neces-
sarily in terms of its Cartesian axes. In some domains, such as musical pitches, the 
best interpretation of objects may be in terms of their polar coordinates of angle and 
length (Shepard 1982). Recent work has extended geometric representations still 
further, representing patterns of similarities by generalized, nonlinear manifolds 
(Tenenbaum et al. 2000).

Another use of MDS is to create quantitative representations that can be used in 
mathematical and computational models of cognitive processes. Numeric represen-
tations, namely coordinates in a psychological space, can be derived for stories, 
pictures, sounds, words, or any other stimuli for which one can obtain subjective 
similarity data. Once constructed, these numeric representations can be used to 

Fig. 2 Two multidimensional scaling (MDS) solutions for sets of birds (a) and animals (b). The 
distances between the animals in the space reflect their psychological dissimilarity. Once an MDS 
solution has been made, psychological interpretations for the dimensions may be possible. In these 
solutions, the horizontal and vertical dimensions may represent size and domesticity, respectively 
(Reprinted from Rips et al. 1973, by permission)
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 predict people’s categorization accuracy, memory performance, or learning speed. 
MDS models have been successful in expressing cognitive structures in stimulus 
domains as far removed as animals (Smith et al. 1974), Rorschach ink blots 
(Osterholm et al. 1985), chess positions (Horgan et al. 1989), and air flight scenarios 
(Schvaneveldt et al. 1985). Many objects, situations, and concepts seem to be psy-
chologically structured in terms of dimensions, and a geometric interpretation of the 
dimensional organization captures a substantial amount of that structure.

Obtaining all pairwise similarity ratings among a large set of objects is, experi-
mentally speaking, effortful. For N objects, N2 ratings are required as input to a 
standard MDS algorithm. However, geometric models of similarity have received 
a recent boost from automated techniques for analyzing large corpora of text. A 
computational approach to word meaning that has received considerable recent 
attention has been to base word meanings solely on the patterns of cooccurrence 
between a large number of words in an extremely large text corpus (Burgess and 
Lund 2000; Griffiths et al. 2007; Landauer and Dumais 1997). Mathematical tech-
niques are used to create vector encodings of words that efficiently capture their 
cooccurrences. If two words, such as “cocoon” and “butterfly” frequently cooccur 
in an encyclopedia or enter into similar patterns of cooccurrence with other words, 
then their vector representations will be highly similar. The meaning of a word, its 
vector in a high dimensional space, is completely based on the contextual similar-
ity of words to other words. Within this high dimensional space, Landauer and 
Dumais (1997) conceive of similarity as the cosine of the angle between two 
words rather than their distance. With these new techniques, it is now possible to 
create geometric spaces with tens of thousands of words.

2.2  Featural Models

In 1977, Amos Tversky brought into prominence what would become the main 
contender to geometric models of similarity in psychology. The reason given for 
proposing a feature-based model was that subjective assessments of similarity did 
not always satisfy the assumptions of geometric models of similarity:

Minimality: D(A,B) ³ D(A,A) = 0
Symmetry: D(A,B) = D(B,A)
The Triangle Inequality: D(A,B) + D(B,C) ³ D(A,C)

where D(A,B) is interpreted as the dissimilarity between items A and B.
Violations of all three assumptions have been empirically obtained (Polk et al. 

2002; Tversky 1977; Tversky and Gati 1982; Tversky and Hutchinson 1986). In 
light of the above potential problems for geometric representations, Tversky (1977) 
proposed to characterize similarity in terms of a feature-matching process based on 
weighting common and distinctive features. In this model, entities are represented 
as a collection of features and similarity is computed by:

S(A,B) = qf(A ∩ B) − af(A – B)−bf(B – A).
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The similarity of A to B is expressed as a linear combination of the measure of 
the common and distinctive features. The term (A ∩ B) represents the features that 
items A and B have in common. (A – B) represents the features that A has but B does 
not. (B – A) represents the features of B that are not in A. q, a and b are weights for 
the common and distinctive components. Common features as compared to distinc-
tive features, are given relatively more weight for verbal as opposed to pictorial 
stimuli (Gati and Tversky 1984), for coherent as opposed to noncoherent stimuli 
(Ritov et al. 1990), for similarity as opposed to difference judgments (Tversky 
1977), and for entities with a large number of distinctive as opposed to common 
features (Gati and Tversky 1984). There are no restrictions on what may constitute 
a feature. A feature may be any property, characteristic or aspect of a stimulus. 
Features may be concrete or abstract (i.e., “symmetric” or “beautiful”).

The Contrast Model predicts asymmetric similarity because a is not constrained 
to equal b and f(A – B) may not equal f(B – A). North Korea is predicted to be more 
similar to Red China than vice versa if Red China has more salient distinctive features 
than North Korea, and a is greater than b. The Contrast Model can also account for 
nonmirroring between similarity and difference judgments. The common features 
term (A ∩ B) is hypothesized to receive more weight in similarity than difference 
judgments; the distinctive features term receives relatively more weight in difference 
judgments. As a result, certain pairs of stimuli may be perceived as simultaneously 
being more similar to and more different from each other, compared to other pairs 
(Tversky 1977). Sixty-seven percent of a group of subjects selected West Germany 
and East Germany as more similar to each other than Ceylon and Nepal. Seventy 
percent of subjects also selected West Germany and East Germany as more different 
from each other than Ceylon and Nepal. According to Tversky, East and West 
Germany have more common and more distinctive features than Ceylon and Nepal.

A number of models are similar to the Contrast model in basing similarity on 
features and in using some combination of the (A ∩ B), (A – B), and (B – A) com-
ponents. Sjoberg (1972) proposes that similarity is defined as f(A ∩ B)/f(A ∪ B). 
Eisler and Ekman (1959) claim that similarity is proportional to f(A ∩ B)/(f(A) + 
f(B)). Bush and Mosteller (1951) defines similarity as f(A∩B)/f(A). These three 
models can all be considered specializations of the general equation f(A ∩ B)/[f 
(A ∩ B)+af(A – B)+bf(B – A)]. As such, they differ from the Contrast model by 
applying a ratio function as opposed to a linear contrast of common and distinctive 
features.

The fundamental premise of the Contrast Model, that entities can be described 
in terms of constituent features, is a powerful idea in cognitive psychology. Featural 
analyses have proliferated in domains of speech perception (Jakobson et al. 1963), 
pattern recognition (Neisser 1967; Treisman 1986), perception physiology (Hubel 
and Wiesel 1968), semantic content (Katz and Fodor 1963), and categorization 
(Medin and Shaffer 1978). Neural network representations are often based on fea-
tures, with entities being broken down into a vector of ones and zeros, where each 
bit refers to a feature or “microfeature.” Similarity plays a crucial role in many 
connectionist theories of generalization, concept formation, and learning. The 
notion of dissimilarity used in these systems is typically the fairly simple function 
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“Hamming distance.” The Hamming distance between two strings is simply their 
city-block distance; that is, it is their (A – B) + (B – A) term. “1 0 0 1 1” and “1 1 
1 1 1” would have a Hamming distance of 2 because they differ on two bits. 
Occasionally, more sophisticated measures of similarity in neural networks normalize 
dissimilarities by string length. Normalized Hamming distance functions can be 
expressed by [(A – B) + (B – A)]/[f(A ∩ B)].

2.3  Similarities Between Geometric and Feature-Based Models

While MDS and featural models are often analyzed in terms of their differences, 
they also share a number of similarities. Recent progress has been made on combining 
both representations into a single model, using Bayesian statistics to determine 
whether a given source of variation is more efficiently represented as a feature or 
dimension (Navarro and Lee 2004). Tversky and Gati (1982) described methods of 
translating continuous dimensions into featural representations. Dimensions that 
are sensibly described as being more or less (e.g., loud is more sound than soft, 
bright is more light than dim, and large is more size than small) can be represented 
by sequences of nested feature sets. That is, the features of B include a subset of A’s 
features whenever B is louder, brighter, or larger than A. Alternatively, for qualitative 
attributes like shape or hue (red is not subjectively “more” than blue), dimensions 
can be represented by chains of features such that if B is between A and C on the 
dimension, then (A ∩ B) ⊃ (A ∩ C) and (B ∩ C) ⊃ (A ∩ C). For example, if orange 
lies between red and yellow on the hue dimension, then this can be featurally rep-
resented by orange sharing features with both red and yellow, features that red and 
yellow do not share between themselves.

An important attribute of MDS models is that they create postulated representations, 
namely dimensions, that explain the systematicities present in a set of similarity 
data. This is a classic use of abductive reasoning; dimensional representations are 
hypothesized that, if they were to exist, would give rise to the obtained similarity 
data. Other computational techniques share with MDS the goal of discovering the 
underlying descriptions for items of interest, but create featural rather than dimen-
sional representations. Hierarchical Cluster Analysis, like MDS, takes pairwise 
proximity data as input. Rather than output a geometric space with objects as 
points, Hierarchical Cluster Analysis outputs an inverted-tree diagram, with items 
at the root-level connected with branches. The smaller the branching distance 
between two items, the more similar they are. Just as the dimensional axes of MDS 
solutions are given subjective interpretations, the branches are also given interpreta-
tions. For example, in Shepard’s (1972) analysis of speech sounds, one branch is 
interpreted as voiced phonemes while another branch contains the unvoiced phonemes. 
In additive cluster analysis (Shepard and Arabie 1979) similarity data is transformed 
into a set of overlapping item clusters. Items that are highly similar will tend to 
belong to the same clusters. Each cluster can be considered as a feature. Recent 
progress has been made on efficient and mathematically principled models that find 
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such featural representations for large databases (Lee 2002; Navarro and Griffiths 
2007; Tenenbaum 1996).

Another commonality between geometric and featural representations, one that 
motivates the next major class of similarity models that we consider, is that both 
use relatively unstructured representations. Entities are structured as sets of features 
or dimensions with no relations between these attributes. Entities such as stories, 
sentences, natural objects, words, scientific theories, landscapes, and faces are not 
simply a “grab bag” of attributes. Two kinds of structure seem particularly impor-
tant: propositional and hierarchical. A proposition is an assertion about the relation 
between informational entities (Palmer 1975). For example, relations in a visual 
domain might include Above, Near, Right, Inside, and Larger-than that take infor-
mational entities as arguments. The informational entities might include features 
such as square, and values on dimensions such as 3 in. Propositions are defined as 
the smallest unit of knowledge that can stand as a separate assertion and have a 
truth value. The order of the arguments in the predicate is critical. For example, 
above (Triangle, Circle) does not represent the same fact as Above (Circle, 
Triangle). Hierarchical representations involve entities that are embedded in one 
another. Hierarchical representations are required to represent the fact that X is part 
of Y or that X is a kind of Y. For example, in Collins and Quillian’s (1969) proposi-
tional networks, labeled links (“Is-a” links) stand for the hierarchical relation 
between Canary and Bird.

Geometric and featural accounts of similarity fall short of a truly general capacity 
to handle structured inputs. Figure 3 shows an example of the need for structured 
representations . Using these materials 20 undergraduates were shown triads 
consisting of A, B, and T, and we asked them to decide whether Scene A or B was 
more similar to T. The strong tendency to choose A over B in the first panel sug-
gests that the feature “square” influences similarity. Other choices indicated that 

Fig. 3 The sets of objects T are typically judged to be more similar to the objects in the A sets 
than the B sets. These judgments show that people pay attention to more than just simple properties 
like “black” or “square” when comparing scenes
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subjects also based similarity judgments on the spatial locations and shadings of 
objects as well as their shapes.

However, it is not sufficient to represent the left-most object of T as {Left, Square, 
Black} and base similarity on the number of shared and distinctive features. In the 
second panel, A is again judged to be more similar to T than is B. Both A and B have 
the features “Black” and “Square.” The only difference is that for A and T, but not B, 
the “Black” and “Square” features belong to the same object. This is only compatible 
with feature set representations if we include the possibility of conjunctive features in 
addition to simple features such as “Black” and “Square” (Gluck 1991; Hayes-Roth 
and Hayes-Roth 1977). By including the conjunctive feature “Black-Square,” pos-
sessed by both T and A, we can explain, using feature sets, why T is more similar to 
A than B. The third panel demonstrates the need for a “Black-Left” feature, and other 
data indicates a need for a “Square-Left” feature. Altogether, if we wish to explain 
similarity judgments that people make we need a feature set representation that 
includes six features (three simple and three complex) to represent the square of T.

However, there are two objects in T, bringing the total number of features 
required to at least two times the six features required for one object. The number 
of features required increases still further if we include feature-triplets such as 
“Left-Black-Square.” In general, if there are O objects in a scene, and each object 
has F features, then there will be OF simple features. There will be O conjunctive 
features that combine two simple features (i.e., pairwise conjunctive features). 
If we limit ourselves to simple and pairwise features to explain the pattern of simi-
larity judgments in Fig. 3, we still will require OF(F+1)/2 features per scene, or 
OF(F+1) features for two scenes that are compared to one another.

Thus, featural approaches to similarity require a fairly large number of features 
to represent scenes that are organized into parts. Similar problems exist for dimen-
sional accounts of similarity. The situation for these models becomes much worse 
when we consider that similarity is also influenced by relations between features 
such as “Black to the left of white” and “square to the left of white.” Considering 
only binary relations, there are O2F2R–OFR relations within a scene that contains 
O objects, F features per object, and R different types of relations between features. 
More sophisticated objections have been raised about these approaches by John 
Hummel and colleagues (Doumas and Hummel 2005; Hummel 2000, 2001; Hummel 
and Biederman 1992; Hummel and Holyoak 1997, 2003; Holyoak and Hummel 
2000). At the very least, geometric and featural models apparently require an 
implausibly large number of attributes to account for the similarity relations 
between structured, multipart scenes.

2.4  Alignment-Based Models

Partly in response to the difficulties that the previous models have in dealing with 
structured descriptions, a number of researchers have developed alignment-based 
models of similarity. In these models, comparison is not just matching features, but 
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determining how elements correspond to, or align with, one another. Matching 
features are aligned to the extent that they play similar roles within their entities. 
For example, a car with a green wheel and a truck with a green hood both share the 
feature green, but this matching feature may not increase their similarity much 
because the car’s wheel does not correspond to the truck’s hood. Drawing inspira-
tion from work on analogical reasoning (Gentner 1983, Holyoak 2005; Holyoak 
and Thagard 1995), in alignment-based models, matching features influence simi-
larity more if they belong to parts that are placed in correspondence and parts tend 
to be placed in correspondence if they have many features in common and are con-
sistent with other emerging correspondences (Goldstone 1994a; Markman and 
Gentner 1993a). Alignment-based models make purely relational similarity possi-
ble (Falkenhainer et al. 1989).

Initial evidence that similarity involves aligning scene descriptions comes from 
Markman and Gentner’s (1993a) result that when subjects are asked to determine 
corresponding objects, they tend to make more structurally sound choices when 
they have first judged the similarity of the scenes that contain the objects. Research 
has found that relational choices such as “smallest object in its set” tend to influ-
ence similarity judgments more than absolute attributes like “3 in.” when the over-
all amount of relational coherency across sets is high (Goldstone et al. 1991), the 
scenes are superficially sparse rather than rich (Gentner and Rattermann 1991; 
Markman and Gentner 1993a), subjects are given more time to make their judg-
ments (Goldstone and Medin 1994), the judges are adults rather than children 
(Gentner and Toupin 1986), and abstract relations are initially correlated with con-
crete relations (Kotovsky and Gentner 1996).

Formal models of alignment-based similarity have been developed to explain 
how feature matches that belong to well-aligned elements matter more for similar-
ity than matches between poorly aligned elements (Goldstone 1994a; Larkey and 
Love 2003). Inspired by work in analogical reasoning (Gentner 1983; Holyoak and 
Thagard 1989), Goldstone’s (1994a) SIAM model is a neural network with nodes 
that represent hypotheses that elements across two scenes correspond to one 
another. SIAM works by first creating correspondences between the features of 
scenes. Once features begin to be placed into correspondence, SIAM begins to 
place objects into correspondence that are consistent with the feature correspon-
dences. Once objects begin to be put in correspondence, activation is fed back down 
to the feature (mis)matches that are consistent with the object alignments. In this 
way, object correspondences influence activation of feature correspondences at the 
same time that feature correspondences influence the activation of object corre-
spondences. Consistent with SIAM (1) aligned-feature matches tend to increase 
similarity more than unaligned-feature matches (Goldstone 1994a), (2) the differ-
ential influence between aligned and unaligned feature matches increases as a func-
tion of processing time (Goldstone and Medin 1994), (3) this same differential 
influence increases with the clarity of the alignments (Goldstone 1994a), and (4) 
under some circumstances, adding a poorly aligned feature match can actually 
decrease similarity by interfering with the development of proper alignments 
(Goldstone 1996). The first effect is shown in Fig. 4. Participants were asked to 
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judge the similarity of scenes made up of two butterflies. The average similarity for 
the top panel comparison is greater than the middle panel comparison, because the 
weighting of feature match is affected by its alignment. In the top panel, the matching 
body pattern occurs between butterflies that are likely to be placed into alignment on 
the basis of their other feature matches. However, typically the unaligned feature 
matches (Matches Out of Place) still increase similarity somewhat, and hence the 
average similarity is higher for the middle than lowest panel comparisons.

Another empirically validated set of predictions stemming from an alignment-
based approach to similarity concerns alignable and nonalignable differences 
(Markman and Gentner 1993b). Nonalignable differences between two entities are 
attributes of one entity that have no corresponding attribute in the other entity. 
Alignable differences are differences that require that the elements of the entities 
first be placed in correspondence. When comparing a police car to an ambulance, 
a nonalignable difference is that police cars have weapons in them, but ambulances 
do not. There is no clear equivalent of weapons in the ambulance. Alignable 
 differences include the following: police cars carry criminals to jails rather than 
carrying sick people to hospitals, a police car is a car while ambulances are vans, 

Fig. 4 Sample scenes from 
Goldstone (1994a). In the top 
panel, the two butterflies that 
share a matching body pattern are 
aligned with each other. In the 
middle panel, they are not 
unaligned. In the lowest panel, 
there are no matching body pat-
terns. Assessments of similarity 
between scenes decreases as we 
descend the panels
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and police car drivers are policemen rather than emergency medical technicians. 
Consistent with the role of structural alignment in similarity comparisons, alignable 
differences influence similarity more than nonalignable differences do (Markman 
and Gentner 1996), and are more likely to be encoded in memory (Markman and 
Gentner 1997). Alignable differences between objects also play a disproportion-
ately large role in distinguishing between different basic-level categories (e.g., cats 
and dogs) that belong to the same superordinate category (e.g., animals) (Markman 
and Wisniewski 1997). In short, knowing these correspondences affects not only 
how much a matching element increases similarity (Goldstone 1994a), but also 
how much a mismatching element decreases similarity. Considerable recent 
research has documented the role of structural alignment in influencing similarity 
of more natural stimuli, including words (Bernstein et al. 1994; Frisch et al. 1995; 
Hahn and Bailey 2005), sentences (Bassok and Medin 1997), consumer products 
(Zhang and Markman 1998), and legal cases (Hahn and Chater 1998; Simon and 
Holyoak 2002).

2.5  Transformational Models

A final historic approach to similarity that has been recently resuscitated is that 
the comparison process proceeds by transforming one representation into the 
other. A critical step for these models is to specify what transformational opera-
tions are possible.

In an early incarnation of a transformational approach to cognition broadly 
construed, Garner (1974) stressed the notion of stimuli that are transformationally 
equivalent and are consequently possible alternatives for each other. In artificial 
intelligence, Shimon Ullman (1996) has argued that objects are recognized by 
being aligned with memorized pictorial descriptions. Once an unknown object has 
been aligned with all candidate models, the best match to the viewed object is 
selected. The alignment operations rotate, scale, translate, and topographically 
warp object descriptions.

In transformational accounts that are explicitly designed to model similarity 
data, similarity is usually defined in terms of transformational distance. In Wiener-
Ehrlich et al. (1980) generative representation system, subjects are assumed to 
possess an elementary set of transformations, and invoke these transformations 
when analyzing stimuli. Their subjects saw linear pairs of stimuli such as {ABCD,

DABC} or two-dimensional stimuli such as{ },AB DA
CD BC

. Subjects were required

to rate the similarity of the pairs. The researchers determined transformations that 
accounted for each subjects’ ratings from the set {rotate 90°, rotate 180°, rotate 
270°, horizontal reflection, vertical reflection, positive diagonal reflection, negative 
diagonal reflection}. Similarity was assumed to decrease  monotonically as the 
number of transformations required to make one sequence identical to the other 
increased. Imai (1977) makes a similar claim, empirically finding that as the 
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number of transformations required to make two strings identical increased, so did 
the strings’ dissimilarity.

Recent work has followed up on Imai’s research and has generalized it to stimu-
lus materials including arrangements of Lego bricks, geometric complexes, and sets 
of colored circles (Hahn et al. 2003). According to these researchers’ account, the 
similarity between two entities is a function of the complexity of the transformation 
from one to the other. The simpler the transformation, the more similar they are 
assumed to be. The complexity of a transformation is determined in accord with 
Kolmogorov complexity theory (Li and Vitanyi 1997), according to which the com-
plexity of a representation is the length of the shortest computer program that can 
generate that representation. For example, the conditional Kolmogorov complexity 
between the sequence 1 2 3 4 5 6 7 8 and 2 3 4 5 6 7 8 9 is small, because the simple 
instructions “add 1 to each digit” and “subtract 1 from each digit” suffice to trans-
form one into the other. Experiments by Hahn et al. demonstrate that once reason-
able vocabularies of transformation are postulated, transformational complexity 
does indeed predict subjective similarity ratings.

3  Conclusions

The study of similarity and comparison is typically justified by the argument that 
so many theories in cognition depend upon similarity as a theoretical construct. An 
account of what make problems, memories, objects, and words similar to one 
another often provides the backbone for our theories of problem solving, attention, 
perception, and cognition. As William James put it, “This sense of Sameness is the 
very keel and backbone of our thinking” (James 1890/1950; p. 459).

However, others have argued that similarity is not flexible enough to provide a 
sufficient account, although it may be a necessary component. There have been many 
empirical demonstrations of apparent dissociations between similarity and other 
cognitive processes, most notably categorization. Researchers have argued that cognition 
is frequently based on theories (Murphy and Medin 1985), rules (Smith and Sloman 
1994; Sloman 1996), or strategies that go beyond “mere” similarity (Rips 1989).

Despite the growing body of evidence that similarity comparisons do not 
always track categorization decisions, there are still some reasons to be sanguine 
about the continued explanatory relevance of similarity. Categorization itself 
may not be completely flexible. People are influenced by similarity despite the 
subjects’ intentions and the experimenters’ instructions (Allen and Brooks 1991; 
Palmeri 1997; Smith and Sloman 1994). People seem to have difficulties ignor-
ing similarities between old and new patterns, even when they know a straight-
forward and perfectly accurate categorization rule. There appears to be a 
mandatory consideration of similarity in many categorization judgments 
(Goldstone 1994b).

Similarity and comparison play powerful roles in cognition in situations where 
we do not know in advance exactly what properties of a situation are critical for its 
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properties. We rely on comparison to generate inferences and categorize objects 
into kinds when we do not know exactly what properties are relevant, or when we 
cannot easily separate an object into separate properties. Accordingly, comparison 
is an excellent general purpose cognitive strategy. For example, even if we do not 
know why sparrows have hollow bones, by comparing sparrows to warblers, we 
may be led to infer that if sparrows have hollow bones, then probably warblers do 
as well because of their similarity to sparrows. Similarities revealed through com-
parison thus play a crucial role in making predictions because, tautologically, simi-
lar things usually look and behave similarly. Furthermore, once sparrows and 
warblers are compared, we may not only come to realize that they share the prop-
erty of hollow bones, but we may even generate an explanation for this trait involv-
ing weight, energy requirements to lift a mass, and the importance of flight for the 
ecological niche of birds. This explanation can cause us to look at birds in a new 
way. For this reason, comparison not only takes representations as inputs to estab-
lish similarities, but also uses similarity to establish new representations (Hofstadter 
1997; Medin et al. 1993; Mitchell 1993). When we compare entities, our under-
standing of the entities changes, and this may turn out to be a far more important 
consequence of comparison than simply deriving an assessment of similarity.
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