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Abstract. Formal concept analysis is recognized as a good paradigm
for browsing data sets. Besides browsing, update and complex data are
other important aspects of information systems. To have an efficient im-
plementation of concept-based information systems is difficult because of
the diversity of complex data and the computation of conceptual struc-
tures, but essential for the scalability to real-world applications. We pro-
pose to decompose contexts into simpler and specialized components:
logical context functors. We demonstrate this allows for scalable imple-
mentations, updatable ontologies, and richer navigation structures, while
retaining genericity.

1 Introduction

Formal Concept Analysis (FCA) [GW99] has been recognized as a good paradigm
for browsing data sets [GMA93, CES03, FR04]. Besides browsing (querying and
navigation), update is another important aspect of information systems. FCA
is defined on binary relations between objects and attributes. Those relations
are called formal contexts. In practice, data is generally more complex than the
simple attributes of formal contexts: e.g., numbers and intervals, strings and
patterns, valued attributes [GW89], vectors, trees, graphs [GK01]. Furthermore,
logical dependencies may exist in complex data: e.g., if an object has the prop-
erty age = 23, it implicitly has the more general property age ∈ [20, 30]. A first
approach to handle complex data in FCA is conceptual scaling [GW89], which
is a process that takes complex data as an input, and outputs a standard for-
mal context, called the scaled context. In the scaled context, the attributes are
abstraction of the original data, and the incidence relation reflects their inter-
nal logic. For example, Prediger et al [PS99] use description logics to define the
meaning a finite set of chosen attributes; and Tane et al [TCH06] use the same
description logics to compute scaled contexts as views over a complex knowledge
base. A second approach [CM00, FR00, GK01] strives to keep complex data in
its original form by generalizing the definition of a formal context as well as
other FCA operations (e.g., Galois connection, concept lattice). For example,
Logical Concept Analysis (LCA) [FR00] uses logical formulas instead of sets
of attributes to represent and manipulate object descriptions, concept intents,
queries, and navigation links between concepts. The first approach allows the
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reuse of FCA algorithms and tools on complex data, while the second approach
keeps the original form of complex data, and entails no loss of information.

This paper discusses the efficient implementation of concept-based informa-
tion systems. In the two above approaches, the existing implementations make
no or little use of the specificities of complex data. For example, the data struc-
ture used to represent contexts in LCA, called the logic cache [FR04], makes use
of the logical entailment between formulas, but makes no difference between a
string, an interval or a graph. This entails the following problems: (1) the update
of the context is not efficient enough to support scalability (10,000 objects at
most), (2) any change in the logic requires the complete recomputation of the
logic cache, and (3) the set of navigation links is not informative enough.

We propose to benefit from the nature of the original complex data to solve
the above problems. For instance, there exist dedicated data structures and
algorithms for strings, which can be used to build specialized implementations of
contexts where objects are described by strings. The same can be done for other
concrete domains, or taxonomies. Now, if objects are described by string-valued
attributes, a specialized implementation can be composed from two specialized
contexts: one for attributes, and the other for strings. Operations for composing
contexts have been defined in FCA [GW99]: e.g., apposition, direct product.
However, they apply to formal contexts only, and their implementation is not
discussed. We detail in this paper the definition and specialized implementation
of both primitive contexts and composition operations. Those are collectively
called logical context functors, because they are functions (with zero, one or
several arguments) from logical contexts to logical contexts. The term functor
is taken from the domain of functional programming where it denotes functions
from modules to modules [Mog89], which are precisely used to implement our
functors.

Section 2 recalls the basics of LCA, and introduce the browsing and update
operations. Section 3 explains the problems of the logic cache, the existing LCA
implementation. Section 4 defines a logical context functor as an extension of a
logic functor, and details five functors: string, taxonomy, product, disjoint union,
and root. Section 5 illustrates the use of logical context functors on two real
examples (string-valued attributes, and user-tag annotations), and demonstrates
their efficiency by giving the complexity of operations compared to the logic
cache. For instance, the addition of an object into a context of n objects is
in O(1) or O(ln(n)) instead of O(n).

2 Logical Contexts and Logical Information Systems

The LCA framework [FR04] applies to logics with a set-valued semantics similar
to description logics [BCM+03]. The logic is not fixed a priori so that it can be
customized to different applications. Examples of logical formulas are binary at-
tributes, attributes valued on different concrete domains (e.g., strings, intervals,
dates), terms from taxonomies, and any combination of those such as lists, trees
or graphs. It is sufficient here to define a logic (see [FR04] for a detailed pre-
sentation) as a pre-order of formulas. The pre-ordering is the logical entailment,
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called subsumption: e.g., an interval included in another one, a string matching
some regular expression, a graph being a subgraph of another one.

Definition 1 (logic). A logic is a pre-order LT = (L,�T ), where L is a set of
formulas, T is a customizable parameter of the logic, and �T is a subsumption
relation that depends on T . The relation f �T g reads “f is more specific than g”
or “f is subsumed by g”, and is also used to denote the partial ordering induced
from the pre-order.

The parameter T helps to take into account domain knowledge that may change
over time: e.g., an ontology, a taxonomy. In the following, for simplicity, we des-
ignate this parameter as the “ontology”, and consider it is a set of subsumption
axioms f ≺ g: e.g., cat ≺ animal , Quebec ≺ Canada . In addition to the logic
and its ontology, the logical context constitutes the third level of knowledge. It
defines a set of objects along with their logical description, and a finite subset
of formulas, called vocabulary, that is used for navigation.

Definition 2 (logical context). A logical context is a tuple K =(O,LT , X, d),
where O is a finite set of objects, LT is a logic, X ⊆ L is a finite subset of
formulas called the navigation vocabulary, and d ∈ (O → LT ) is a mapping
from objects to logical formulas. For any object o, the formula d(o) denotes the
description of o.

Each formula is described by a single formula for genericity reasons. Even if a
description is often in practice a set of properties, it can also be a sequence of
properties or any other data structure. The definition of a vocabulary is necessary
because there is often an infinite set of formulas (e.g., intervals, strings). The
choice of a relevant vocabulary depends on both the logic and object descriptions,
and a contribution of this paper is precisely to show how it can be automatically
generated in a logical context. The elements of the vocabulary are called features.

Logical contexts make up the core of Logical Information Systems (LIS)[FR04],
so that we need both update and information retrieval operations on them. Update
operations apply to the ontology, the objects, and the navigation vocabulary. For
every formulas f, g ∈ L:

– K.axiom(f, g) adds the axiom f ≺ g to the ontology T , which modifies the
behaviour of the subsumption �T ;

– K.add(o, f) adds the new object o to the set of objects O, and sets its
description d(o) to f ;

– K.show(f) adds the formula f to the navigation vocabulary X .

The filling of a context is the successive addition of a set of objects, defining
the updatable part of the context. There are also update operations for remov-
ing axioms, modifying the description of objects, removing objects, and hiding
formulas, but we do not detail them here.

A key feature of LIS, shared by other concept-based information systems
[GMA93, DVE06], is to allow the tight combination of querying and navigation.
The principle is that, instead of returning a ranking of all the answers to the
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query, the system returns a set of query increments that suggest to users rel-
evant ways to refine the query, i.e., navigation links between concepts, until a
manageable amount of answers is reached. They are two information retrieval
operations on logical contexts: one to compute the query answers, and another
to compute the query increments from those answers.

A query is a logical formula, and its answers are defined as the extent of this
formula, i.e., the set of objects whose description is subsumed by this formula.

Definition 3 (extent). Let K be a logical context, and q ∈ L be a query for-
mula. The extent of q in K is defined by K.ext(q) = {o ∈ O | d(o) �T q}.
The increments of a query q are the features that are frequent in the extent of q,
i.e., the features whose extent shares a pre-defined minimum m of objects with
the extent of q: {y ∈ X | |K.ext(q) ∩ K.ext(y)| ≥ m}. Those increments are
partially ordered by subsumption, and should be presented so to users because
this gives a more comprehensive view. For instance, if the vocabulary contains
continents, countries, and regions, it is better to display them as a tree rather
than a flat list. Moreover, it is not necessary to compute and display all of them
at once; continents should be displayed first, and could then be expanded on de-
mand to display countries, etc. So, the navigation operation takes an increment x
and returns its lower neighbours that are also increments. For technical reasons,
we prefer to compute increments w.r.t. a set of objects O ⊆ K.ext(x) instead of
a query. Starting with a query q, that set O is defined as K.ext(q) ∩ K.ext(x).
Each increment is returned with the extent of the concept that would be reached
by using it as a navigation link.

Definition 4 (children increments). Let K be a logical context, x ∈ X be
an increment, O be a set of objects s.t. O ⊆ K.ext(x), and m be a frequency
threshold. The children increments of x, called the parent increment, w.r.t. O at
threshold m is defined by K.incrs(x, O, m) =

Max�T {(y, O′) | y ∈ X, y �T x , x 	�T y , O′ = O∩K.ext(y), |O′| ≥ m},
where �T is trivially extended to pairs (y, O′).

These increments provide feedback on the current query and answers, as well as
several forms of navigation [Fer09]. LIS have been applied to many kinds of data,
and most noticeably to the management of a collection of > 5000 photos [Fer09],
which can be browsed and updated in terms of time, location, event, persons,
and objects.

3 Problems with Logic Caches

Logical information systems were designed to be generic, and so can make no
assumption on the logic, except for the existence of a decision procedure for
subsumption (decidability). Because this subsumption test is costly for some
expressive logics, the choice was made to minimize its use in browsing operations,
which are more frequent than update operations. Therefore the cost of computing
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subsumption is moved to update operations, in the form of an incremental pre-
processing, whose result is called a logic cache [FR04].

There are a number of problems with logic caches as a generic implementa-
tion. The first problem is that efficient browsing has been achieved at the cost
of a quadratic complexity for the building of a logic cache. This is more ac-
ceptable to users than lengthy response times in browsing operations, but this
strongly limits the scalability of LIS. An appropriate complexity would be O(n)
or at most O(n ln(n)). The second problem is the operation K.axiom that re-
quires a complete recomputation of the logic cache. This is because the impact
of new axioms on the subsumption is only known by the logic, and not by the
generic logic cache. In order to take real profit of changing ontologies, the abil-
ity to handle them incrementally is crucial. The third problem is in the design
of the vocabulary (the set of scale attributes in conceptual scaling). There is a
conflict between having a rich and progressive navigation that requires a large
vocabulary, and the efficient filling of contexts that requires a small vocabulary.
Consider the example where objects are documents, and object descriptions
are titles, i.e. strings. If the vocabulary contains only full titles, the navigation
structure is a flat list of titles, which is not very interesting. If the vocabulary
contains all words occuring in the titles, the navigation structure is more in-
teresting, but: (1) it still misses composed keywords such as “formal concept
analysis”; (2) it contains unique words that are specific to one title, and in this
case it is better to show the full title; (3) it is costly compared to the small
vocabulary.

Consider another context where documents are described by a set of pairs
(user, tag), and users/tags are organized in two taxonomies. The taxonomy of
users defines various groups over users (possibly overlapping), and the taxonomy
of tags defines a generalization ordering on tags. This context enables different
kinds of queries: Which documents have been given this kind of tags by this
kind of users ? Which tags have been given by this kind of users on this set of
documents ? Which users have given this kind of tags on this set of documents ?
Even if each taxonomy has a reasonable size, say 1000, the vocabulary will
contain all pairs (user, tag) that have a non-empty extent, which can go up
to 1 million pairs. Intuitively, it should be possible to keep each taxonomy on
its side as a kind of partial logic cache, and to combine them on the fly, thus
bounding the size of the total logic cache to the sum rather than the product of
taxonomies sizes. In the next section, this decomposition is formalized by logical
context functors.

4 Logical Context Functors

We introduce in this section logical context functors, i.e. functions that build
logical contexts and their operations from simpler parts. We show how they solve
the problems presented in the previous section: efficiency, ontology evolution, and
selection of the navigation vocabulary. The problem of efficiency comes from the
well-known trade-off between genericity and efficiency. Efficiency requires specific
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data structures and algorithms, which is a priori incompatible with the need for
genericity. A solution, that has already been done and validated on logics [FR04],
is to define specific components, called functors, and to allow their composition
in more and more complex components, in which the correction of operations
w.r.t. semantics is automatically verified [FR06]. The efficiency comes from the
specificity of functors, and the genericity comes from the ability to compose
them. This is similar to languages where a finite number of different words can
be combined in an infinity of sentences. Of course, the expressivity is limited
by the available functors, but new functors can always be added to the set.
Another benefit of logic functors is to permit the choice of the right logic for
each application, instead of having an all-purpose logic that is costly to use, and
cannot cover the specific needs of all applications.

Definition 5 (logic functor). A logic functor is a function F that takes log-
ics L1, ...,Ln as arguments (n ≥ 0), returns a composed logic LT = F(L1, ...,Ln).
As for any logic, one has LT = (L,�T ), but L (resp. �T ) is function of the sets of
formulas (resp. subsumption) of arguments logics.

Examples of logic functors are String that takes no argument, and returns the set
of all strings ordered by the subsumption relation “contains”; and Prod(L1,L2)
that takes two arguments, and returns the logic where formulas are pairs (f1, f2)
of formulas from L1 and L2, and the subsumption test is naturally decomposed
in the two subsumption tests. These examples and others are more formally
defined below, along with logical context functors. Logical context functors are
defined similarly to logic functors, as functions from contexts to contexts.

Definition 6 (logical context functor). A logical context functor is a func-
tion F that takes logical contexts K1, ..., Kn as arguments (n ≥ 0), returns a com-
posed context K = F (K1, ..., Kn). As for any context, one has K = (O,LT , X, d),
but each part of this context is function of the respective parts of argument con-
texts.

Logical context functors and logic functors are implemented as functors1 in the
Objective Caml programming language. In order to reuse code from logics
into contexts, logical context functors inherit (in the object-oriented sense) from
their respective logic functors.

In the following we detail a few common logical context functors. For each
functor we define the set of objects, the set of formulas, the subsumption, the
vocabulary, and the description mapping as a function of argument contexts. Be-
sides this mathematical point of view, each functor is also given data structures
and algorithms for the implementation of logical context operations. Complexi-
ties are given in function of the number n of objects, the size x of the vocabulary,
and the number i of children increments.

1 Similar structures exist in other programming languages: e.g., parameterized mod-
ules (ML), generic classes (Java), templates (C++).
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4.1 String Context

The logical context functor String represents the concrete domain of strings and
substrings ordered by string inclusion. It has no argument, so that it constitutes
a logical context that can be used alone or as part of a more complex logical
context. This logical context could also be defined as Seq(Char ), where Seq
and Char would be two functors respectively about sequences and characters.

The logic is simply defined as L = (Σ∗,⊇), where Σ∗ stands for finite strings
over an alphabet Σ, and ⊇ is the “contains” relation on strings. It is not param-
eterized by an ontology because it is a concrete domain. It enables to describe
objects by strings, and to query them with patterns like contains "FCA". A
previous work [Fer07] has shown that a concise and complete vocabulary X can
be efficiently and automatically extracted from such a context: the set of maxi-
mal substrings. This vocabulary is complete because the set of formal concepts
it generates is the same as when considering all possible substrings. It is con-
cise because its size is bounded by the cumulated size kn of strings describing
the n objects in K, where k is the average length of strings. It can be com-
puted in O(kn ln(kn)). In practice, however, the number of maximal substrings
is generally much lower than kn (e.g., 3,816 instead of 52,360 [Fer07]).

The data structure that permits to store the string-description of objects, and
to compute the vocabulary, is an extended suffix tree [Fer07]. Its complexity in
space is in O(kn ln(kn)). It naturally provides the efficient incremental addi-
tion of a string, and hence the addition of an object in the context: K.add(o, s)
takes O(|s| ln(kn)) time, where |s| is the length of the string s. Other opera-
tions can also be directly performed on the extended suffix tree. For the opera-
tion K.show(s) one reads the string s down the suffix tree, in O(|s|) time, and
marks the reached node as visible. For the operation K.ext(s), one also reads the
string s, and then collects the objects below the reached node: O(|s| + n) time.
For the operation K.incrs(x, O, m), one again reads the string s, then follows
links from the reached node to find the smallest maximal substrings below, and
finally filters those that are frequent in O: O(|s| + ni) time.

The most visible advantage of the functor, compared to the logic cache, is the
computation of a rich, yet concise, vocabulary that provides a much better nav-
igation feeling because it dynamically adapts to the context contents. Another
advantage is the efficiency in the filling of the context: O(kn ln(kn)) instead of
O(k4n2). Even when the vocabulary is restricted to the strings describing ob-
jects, the complexity of the logic cache is in O(kn2), still quadratic in the number
of objects. This makes a huge difference in practice when the number of objects
gets high, and this efficiency comes with a much larger and useful vocabulary.

4.2 Taxonomy Context

Taxonomies are very helpful in the organization of a collection of documents
[Sac00]. They are a simple kind of ontologies in which an axiom states that a
term is more specific than another. Examples of such axioms are inQuebec ≺
inCanada , or cat ≺ mammal , mammal ≺ animal . The logical context func-
tor Taxo produces contexts in which each object is described by one term, and



166 S. Ferré

implicitly has all more general terms. For instance, an object described as a
cat is also an instance of mammal , and animal . The logic of those contexts is
naturally derived from the taxonomy T that parameterizes it.

Definition 7 (taxonomy logic). Let T = (L, A) be a taxonomy, where L is the
set of terms, and A is a set of taxonomic axioms f ≺ g. The logic of functor Taxo
is defined by LT = (L,�T ), where the subsumption �T is defined as the reflexive
and transitive closure of the relation ≺.

Because the set of terms of a taxonomy is finite, the vocabulary can be defined
as X = L, ensuring it to be complete w.r.t. the generation of concepts. The
data structure used in the implementation of Taxo is the taxonomy seen as
a graph: nodes are terms from X , edges are the taxonomic axioms from T ,
and terms are labelled by their extent. We call ancestors of a term f all terms
that subsume f (including f), which can be found in the graph by transitively
collecting successors.

The addition of a new object, K.add(o, f), consists in adding the term f into X
with an empty extent if it is not yet in X , then in adding o to the extent of every
ancestor of f . This operation is in O(a) with a the number of ancestors. The
operation K.show(f) is unnecessary because every relevant formula is already in
the vocabulary. The addition of an axiom K.axiom(f, g) consists in adding an
edge from f to g in the graph, and adding the extent of f to the extent of every
ancestor of g. This operation is in O(na). It must be noted here that, contrary
to a logic cache, it is not necessary to completely recompute the data structure
to add an axiom; new axioms can be processed incrementally. This is possible
because the functor Taxo has knowledge about its logic, and so can update
its data structures in parallel to updates in the logic. The operation K.ext(f)
consists in a simple access to the label of f in the graph, and is therefore in O(1).
The operation K.incrs(x, O, m) consists in filtering among the predecessors of x
in the graph those that are frequent in O. This operation is in O(ni).

The shape of the taxonomy has an influence on the complexity of operations.
If we assume the taxonomy is a balanced tree with arity k (a = lnk(x)), the
filling of a context is in n lnk(x), and the computation of increments is in nk.
This suggests to find a compromise between flat taxonomies (small a) and deep
taxonomies (large a).

4.3 Product of Contexts

Section 3 presents two examples of contexts, where the formulas can be decom-
posed as a pair of subformulas. The first example shows valued attributes made of
an attribute and a (sub)string; the second example shows pairs (user,tag), where
each part is placed into a taxonomy. Instead of developping two new logical con-
text functors, it is more useful to define a logical context functor Prod(K1, K2)
that produces the product of two simpler contexts. Then, the first example is
simply composed as Prod(Taxo,String), and the second example as Prod(Taxo,
Taxo). We recall that in logical contexts, each object is described by a single
formula, here a pair.
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Definition 8 (product of contexts). Let K1 = (O,L1, X1, d1) and K2 =
(O,L2, X2, d2) two logical contexts sharing a same set of objects. The prod-
uct Prod(K1, K2) of these two contexts is defined as a context K = (O,L, X, d),
where L = L1 × L2, (f1, f2) � (g1, g2) iff f1 �1 g1 and f2 �2 g2, X = X1 × X2,
and d(o) = (d1(o), d2(o)).

The term product is justified by the fact that the logical language and the vo-
cabulary are defined as products. There is no equivalent operation on formal
contexts [GW99] (i.e., same set of objects, product of attribute sets). The appo-
sition uses set union for composing attribute sets, which would entail a loss of
the user-tag connection. The direct product uses set product to compose object
sets, and uses a disjunction that would entail indeterminacy in the operation
K.add.

The data structure of K = Prod(K1, K2) is reduced to the union of the data
structures of K1 and K2, and there is no proper data structure in the func-
tor Prod . Hence, the size of K is the sum, and not the product, of the size of the
argument contexts. The implementation of Prod looks like apposition [GW99],
but that is not an apposition because L 	= L1 ∪ L2. This means that X is not
explicitely represented, i.e, a pair (f1, f2) is only known to belong to X because
each part fi is known to belong to the respective vocabulary Xi. This makes
a big difference with a logic cache or conceptual scaling, where the vocabu-
lary X = X1 × X2 would be represented explicitly.

Because Prod has no proper data structure, operations on K are reduced to a
composition of the operations on argument contexts. The operation
K.add(o, (f1, f2)) decomposes itself in the sequence K1.add(o, f1); K2.add(o, f2).
The operations K.show and K.axiom decompose similarly. The time complex-
ity of those three operations are the sum of the time complexities in the two
argument contexts. Because of the definition of the subsumption �, an object is
in the extent of (f1, f2) in K if it is in the extent of f1 in K1, and in the extent
of f2 in K2.

K.ext((f1, f2)) = K1.ext(f1) ∩ K2.ext(f2).

The computation of the increments requires the computation of the lower neigh-
bours of a parent increment (x1, x2). As the vocabulary X is not explicitely
represented, we have to make use of the vocabularies X1 and X2, and the respec-
tive increments operations. The lower neighbours of (x1, x2) are the pairs (y1, x2)
where y1 is a lower neighbour of x1 in X1, and the pairs (x1, y2) where y2 is a
lower neighbour of x2 in X2.

K.incrs((x1, x2), O, m) =
{((y1, x2), O′) | (y1, O

′
1) ∈ K1.incrs(x1, O, m), O′ = O ∩ O′

1, |O′| ≥ m}
∪ {((x1, y2), O′) | (y2, O

′
2) ∈ K2.incrs(x2, O, m), O′ = O ∩ O′

2, |O′| ≥ m}.
This definition is justified by the definition of the extent in K that makes the
extent of a pair (f1, f2) in K be a subset of the extent of f1 and f2 in their
respective context. The time complexity of those operations is equal to the sum of
the time complexities in the argument contexts plus additional set intersections:
O(n) for K.ext, and O(ni) for K.incrs.
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4.4 Disjoint Union of Contexts

Suppose we want valued attributes whose values belong to one of several value
domains, e.g. taxonomic terms and strings. This means we want to define a value
domain that is the disjoint union of these value domains. The logical context
functor DisjointUnion(K1, K2) produces a context whose logic is the disjoint
union of the logics of K1 and K2: e.g., DisjointUnion(Taxo,String).

Definition 9 (disjoint union of contexts). Let K1 = (O1,L1, X1, d1), and
K2 = (O2,L2, X2, d2) be two logical contexts such that O1∩O2 = ∅, and L1∩L2 =
∅. The disjoint union (K1, K2) of these two contexts is defined as a context K =
(O,L, X, d), where O = O1∪O2, L = L1∪L2, (�) = (�1)∪(�2), X = X1∪X2,
and d(o) = d1(o) if o ∈ O1, and d(o) = d2(o) otherwise.

The condition O1 ∩ O2 = ∅ is required because an object of K can have only
one description, and the condition L1 ∩L2 = ∅ is required to avoid confusion on
the meaning of a formula. The term disjoint union is justified by the fact that
the logical language and the vocabulary are defined as a disjoint union. There
is an equivalent operation on formal contexts (i.e., union of objects, union of
attributes), also called the disjoint union.

Like the functor Prod , the functor DisjointUnion has no proper data structure,
and only relies on the data structures of its argument contexts. It
behaves like a switch, redirecting each operation to one argument context, de-
pending on the parameter formula. For instance, the operation K.show(f) is
defined as K1.show(f) if f ∈ L1, and as K2.show(f) if f ∈ L2. The opera-
tion K.axiom(f, g) is defined only when the two formulas f, g belong to the
same logic L1 or L2. Hence, the worst case time complexity of those operations
is the maximum of the worst case time complexities in the argument contexts.

4.5 The Root Context Functor

There remains a gap between the previous logical context functors, and the
need in most LIS to describe objects with several properties, and to combine
features by boolean connectives in queries. This gap is filled by a functor that
is called Root(K1) because it is designed to be used as the outermost func-
tor in a composition of functors. Another function of that logical context func-
tor is the application of the Closed World Assumption (CWA) that says that
every object that is not instance of a property f is an instance of its nega-
tion ¬f . This makes querying more intuitive as boolean connectives then match
set operations: e.g., the extent of a disjunction q1 ∨ q2 is the union of the
extents of q1 and q2. The functor Root(K1) may look artificial, but it is in
fact an idiomatic composition of more primitive functors (defined in [FR06]):
Prop(Bottom(Single(Multiset(K1)))), where Prop applies the Boolean closure,
Single applies the CWA, and Multiset allows for (multi)sets of properties on
objects.

Definition 10 (root logic). Let L1 = (L1,�1) be a logic. The root logic Root
(L1) is defined as a logic L = (L,�), where:
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– L = Ld ∪ Lq, where
• Ld is the set of finite subsets {f1, . . . , fp} ⊆ L1 (used for descriptions),
• Lq is the smallest set that contains L1, and such that for every q1, q2 ∈

Lq, the formulas q1 ∧ q2, q1 ∨ q2,¬q1 also belong to Lq (used for queries),
– the subsumption � is characterized by the following inference rules, for ev-

ery f1, . . . , fp ∈ L1, d ∈ Ld, q1, q2 ∈ Lq:
1. if f1 �1 f2 then f1 � f2,
2. if ∃fi ∈ d : fi �1 f2 then d � f2,
3. if d 	� q1 then d � ¬q1,
4. if d � q1 and d � q2 then d � q1 ∧ q2,
5. if d � q1 or d � q2 then d � q1 ∨ q2.

The last three inference rules are justified by the fact that descriptions are un-
derstood under the CWA [FR04]. Subsumption can also be defined between
queries, but we can save it because it is useful neither for querying, nor for nav-
igation. Indeed, the navigation vocabulary of the argument context of Root is
sufficient because boolean connectives can be introduced through the navigation
process [Fer09].

Definition 11 (root context). Let K1 = (O1,L1, X1, d1) be a logical context.
The root context Root(K1) is defined as a logical context K = (O,L, X, d), where
O is a partition of O1 (

⋃O = O1, and ∀o, o′ ∈ O : o ∩ o′ = ∅), L = Root(L1),
X = X1, and d(o) = {d1(o1) | o1 ∈ o}.
An object of the root context is represented by a set of objects in the argument
context, each holding a property of the root object. In the following, o1 denotes
the root object that contains o1 ∈ O1; and by extension, O1 denotes the set of all
root objects that contain any element of O1 ⊆ O1. The proper data structures
of Root are limited to a table defining each root object as a subset of O1, and
another table from each object o1 ∈ O1 to its root object o1.

The operation K.add(o, {f1, ..., fp}) consists in, for each fi, creating a new
object oi to be added to O1, calling the operation K1.add(oi, fi), and defining
the root object o as the set {oi | 1 ≤ i ≤ p}. Its worst case time complexity
is therefore p times the worst case time complexity of the operation K1.add.
The operations K.show and K.axiom apply only to formulas of the argument
context K1, and so can be directly transmitted to K1; their complexities are
unchanged.

The computation of the extent of a query follows the definition of subsumption
between descriptions and queries. For every f1 ∈ L1, and q1, q2 ∈ Lq:

K.ext(f1) = K1.ext(f1), K.ext(q1 ∧ q2) = K.ext(q1) ∩ K.ext(q2),
K.ext(¬q1) = O \ K.ext(q1), K.ext(q1 ∨ q2) = K.ext(q1) ∪ K.ext(q2).

The complexity of this operation depends on the number k of atoms in the
query: there are k calls to K1.ext, and (k − 1) set intersections in O(n) on
resulting extents. The computation of increments is based on the fact that,
if an increment is frequent in K, it is also frequent in K1 because for every
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object o ∈ O and x ∈ X : if o ∈ K.ext(x) then ∃o1 ∈ o : o1 ∈ K1.ext(x). Because
the reverse is not true, the increments computed in K1 must be checked to be
increments in K.

K.incrs(x, O, m) =
{(y, O′) | (y, O′

1) ∈ K1.incrs(x, K1.ext(x) ∩ ⋃
O, m), O′ = O′

1, |O′| ≥ m}
The additional cost for computing those increments is limited to computing O′

for each increment coming from the argument context: O(npi).

5 Applications

We now present how the context examples presented in Section 3 can be
defined with logical context functors. The first context K1 is a collection of
documents described by various properties such as title, authors, publisher. Be-
cause each property can be represented by a string-valued attribute, that con-
text is defined as K1 = Root(Prod(Attr ,String)), where Attr is an instance
of the functor Taxo. The use of Taxo for representing attribute names adds
the ability to abstract similar attributes into a more general attribute: e.g.,
“author” and “editor” can be grouped under “person”; “title”, “subtitle”, and
“keywords” can be grouped under “subject”. The use of String enables the au-
tomatic extraction of keywords from titles. The second context K2 is a col-
lection of documents described by pairs (user, tag), meaning that some user
put some tag on it, where user and tag terms can be organized into two tax-
onomies. That context is defined as K2 = Root(Prod(User ,Tag)), where User
and Tag are two instances of Taxo. In order to describe and retrieve docu-
ments by both valued attributes and (user,tag) pairs, we can defined a context
K3 = Root(DisjointUnion(Prod(Attr ,String),Prod(User ,Tag))).

Table 1 presents the complexities of the five operations on the contexts K1

and K2, depending on the use of a logic cache or logical context functors. Those
complexities are expressed in function of the number n of objects, the number p
of properties per object in Root , the maximum height h of taxonomies, and
the maximum length s of strings. In practice, p, h, s are often bounded, so that
complexities can be expressed in term of the number n of objects only. We
note that the complexity for adding an object, or showing a formula, is in O(1)
or O(ln(n)) with functors instead of O(n) with a logic cache. This achieves our
objective to make the filling of a context in O(n) or O(n ln(n)) instead of O(n2).
About the browsing operations, the complexity O(n) for computing the extent
and each increment is obtained, like with logic caches.

Even if detailed experiments remain to be done, first experiments are very
conclusive w.r.t. the efficiency of functors compared to logic caches. We used K1

for representing BibTEX files, where entries are objects, and fields are valued
attributes. For a file with 1500 entries, it took 46s on a standard laptop to build
the context with the logic cache, while it took only 26s with functors, comprising
the additional computation of all maximal substrings. Without this additional
computation, the time is about 10 times less, hence a 20 fold speed up. We
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Table 1. Complexities of LIS operations on contexts K1 and K2, depending on the
use of a logic cache or logical context functors

K1 K2

operation logic cache functors logic cache functors

axiom phn phn
add p2s5n ps ln(psn) p2h5n ph
show ps3n s ph3n 1
ext n s + pn n pn
incrs ni pni ni pni

managed to build the context of a file with 30,000 entries in about 1,000s, while
this is not possible with a logic cache, even without generating any navigation
feature.

6 Conclusion

Logical context functors are introduced as reusable components for composing
logical contexts according to the structure of its formulas. They allow for efficient
implementations of LIS because each functor can use specific data structures
and algorithms. The genericity of the LIS framework is retained by the ability
to freely compose functors. Examples of composed contexts are given for string-
valued attributes, taxonomies, and pairs of taxonomic terms. The filling of a
context is shown to be in O(n) or O(n ln(n)) instead of O(n2), comprising the
computation of a rich navigation vocabulary on strings. Several taxonomies can
be updated incrementally and efficiently. Functors form an open collection so
that new functors can be designed and added to the collection, indepently of
existing functors. Moreover, if a better data structure or algorithm is found, it
can be integrated in an existing functor without impacting other functors or
applications using it. We are developping functors for numbers, dates, intervals,
and functors can be composed to represent vectors, lists and trees.
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