
Access Policy Design Supported by FCA

Methods�

Frithjof Dau and Martin Knechtel

SAP AG, SAP Research CEC Dresden, Germany
{frithjof.dau,martin.knechtel}@sap.com

Abstract. Role Based Access Control (RBAC) is a methodology for
providing users in an IT system specific permissions like write or read to
users. It abstracts from specific users and binds permissions to user roles.
Similarly, one can abstract from specific documents and bind permission
to document types.

In this paper, we apply Description Logics (DLs) to formalize RBAC.
We provide a thorough discussion on different possible interpretations of
RBAC matrices and how DLs can be used to capture the RBAC con-
straints. We show moreover that with DLs, we can express more intended
constraints than it can be done in the common RBAC approach, thus
proving the benefit of using DLs in the RBAC setting. For deriving addi-
tional constraints, we introduce a strict methodology, based on attribute
exploration method known from Formal Concept Analysis. The attribute
exploration allows to systematically finding unintended implications and
to deriving constraints and making them explicit. Finally, we apply our
approach to a real-life example.

1 Introduction

1.1 Access Control Matrix, RBAC, Description Logics

An access control matrix M , first introduced by Lampson [1], is an abstract
formal computer security model which consists of a set of objects O, subjects S
and actions A. Each matrix row represents a subject and each column represents
an object. Each matrix element M [s, o] ⊆ A is the set of actions which a subject
s ∈ S is allowed to perform on object o ∈ O. For any type of access control
system it can model the static access permissions, ignoring further definitions
of a policy like rules and dynamic behavior in time. One type of access control
system is Role Based Access Control (RBAC) [2], which abstracts from specific
users and binds permissions to user roles. The permission set of a specific user is
the union of all permissions of the roles he is assigned to. Flat RBAC comprises
a set of users U , a set of roles R and a set of permissions P . Users are assigned
to roles via a relation UA ⊆ U × R, and permissions are assigned to roles via
� This research was funded by the German Federal Ministry of Economics and Technol-

ogy under the promotional reference 01MQ07012 and the German Federal Ministry
of Education and Research under grant number 01IA08001A.

S. Rudolph, F. Dau, and S.O. Kuznetsov (Eds.): ICCS 2009, LNAI 5662, pp. 141–154, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

142 F. Dau and M. Knechtel

a relation PA ⊆ R × P . One extension to this simple model is Hierarchical
RBAC, which introduces a hierarchy of user roles for permission inheritance.
The partial order ≥R⊆ R × R defines the role dominance relation. If a senior
role rs ∈ R dominates a junior role rj ∈ R, it inherits all permission from it (i.e.
∀p ∈ P : (rj , p) ∈ PA ∧ (rs, rj) ∈≥R→ (rs, p) ∈ PA).

The relationship between RBAC and other access control systems which can
be modeled with the access control matrix has been elaborated in [3]. For our
paper we straightforwardly interpret the set of user roles as the set of subjects
(S = R) and we define permissions as a set of tuples of action and object
(P ⊆ A×O). We call this an RBAC matrix. An RBAC policy can not completely
be described by an RBAC matrix, since it contains further constraints, e.g. rules,
dynamic behavior in time, user role hierarchy, implications between the allowed
actions etc. Objects do not need to be individuals but could also be abstract
groups. As an example for the RBAC matrix, each row represents a user role
and each column a document type.

Description Logic (DL) [4] systems are formal knowledge representation and
reasoning systems which provide inference services that deduce implicit knowl-
edge from the explicitly represented knowledge. For these inference services to
be feasible the underlying inference problems must at least be decidable, since
DL is a decidable fragment of First Order Logic this is provided. Some proposals
are available to model an RBAC policy with a DL ontology, in order to reduce
authorization decision to standard reasoning services. Some of these approaches
contained modeling flaws which we discussed in [5] and [6].

1.2 Our Contributions

Our paper discusses how FCA can be applied in order to provide services to
a security policy designer. In our approach, a role-based access control matrix
is formalized as triadic formal context KR,D,P := (R,D,P, I), with a set R of
role names, a set D of document type names and a set P of permission names.

Although it is quite straightforward to use an access control matrix as a
model for RBAC, the interpretation of the matrix is not a priori clear. The
paper contains a discussion of three interpretations of an RBAC matrix.

Up to now the DL modeling was done with ad hoc approaches. In [6] we
discussed a flawed approach and proposed a reworked version. In this paper, we
show how in each of the three possible interpretations, the information contained
in the RBAC matrix is correctly modeled by DL general concept inclusions
(GCIs). The used DL is ALEROI which is a subset of SROIQ, the basis for
the coming W3C OWL 2 standard. This DL is required to simulate the concept
product expressions RI × DI ⊆ PI and (RI × DI) ∩ PI = ∅.

Using DLs, it will turn out that we can model additional constraints which
are intended by the RBAC engineer, but which cannot be modd in role-based
access control matrix alone. For example for a review process, it is not allowed
that the same person who writes a document also approves it. The inclusion
of axiom mayWrite
 mayApprove � ⊥ in the DL model defines that both
permissions are disjoint. The DL model allows consistency checks of the RBAC

Access Policy Design Supported by FCA Methods 143

policy with given additional restrictions. Both the higher expressiveness of a DL
based modelling approach and the consistency check clearly show the benefit of
using DLs for RBAC.

Generally, one can say that ontology editors provide reasoning facilities, where
for example the consistency of an DL knowledge base can be checked. Roughly
speaking, ontology editors support checking the soundness of a DL knowledge
base. In this paper, we do not only target the soundness of the DL formalization
of an RBAC matrix, but also the completeness (compare to [7]). We introduce
a strict methodology, based on the attribute exploration method of FCA, for
deriving additional constraints in RBAC setting. Our methodology derives such
constraints not explicitly contained in the RBAC matrix in a computer supported
dialog with the RBAC engineer. This helps the engineer to create the policy as
DL model based on the matrix.

The paper is structured as follows: In Sec. 2, all relevant notions are formally
defined, and the running example we will use is introduced. Moreover, in this
section the tree possible interpretations of an RBAC matrix are discussed. In
Sec. 3, we show how the information of an RBAC matrix can be expressed by
means of DL GCIs. In Sec. 4, we thoroughly discuss how attribute exploration
can be used in order to obtain additional constraints from the RBAC matrix,
and how these constraints are then modeled with DL GCIs. In Sec. 4, we apply
our approach to a real-life example. Finally, in Sec. 6 we summarize this paper
and discuss future research.

2 Basic Definitions

In this section, all relevant notions which will be used in this paper are formally
defined, and our working example is introduced.

Vocabulary: As already mentioned, our starting point is a three-dimensional
matrix, where the three dimensions are the roles, document types and permis-
sions. In order not to mix up user roles and DL roles, with “role” we always
refer to a user role, whereas we use the OWL terminology “property” for a
DL role. In our ongoing formalization, both roles and document types will be
modeled as concept names of a (appropriately chosen) DL, and each permis-
sion will be modeled as a property between roles and document types. That
is, we consider a DL vocabulary which consists of a set R of role names, a set
D of document type names, and of a set P of permission names. The vocabu-
lary of these names will be denoted V. We will use a working example with
specific roles, document types and permissions. We consider the permissions
mayApprove, mayWrite and mayOpen, which are abbreviated by MA, MW and
MO, respectively. The document types are user manual, marketing document,
customer contract document, term of use document, installation guide, external
technical interface document, design document and rating entry, abbreviated by
UM, MD, CCD, ToUD, IG, ETID, DD, RE. The roles are marketplace visitor, ser-
vice consumer, software development engineer, service vendor, legal department em-
ployee, service provider, marketing employee, technical editor and customer service

144 F. Dau and M. Knechtel

Table 1. Our example RBAC matrix

mayOpen mayWrite mayApprove

U
M

M
D

C
C
D

T
o
U

D
IG E
T

ID
D

D
R
E

U
M

M
D

C
C
D

T
o
U

D
IG E
T

ID
D

D
R
E

U
M

M
D

C
C
D

T
o
U

D
IG E
T

ID
D

D
R
E

MV × × ×
SC × × × × × × × × ×
SDE × × × × × × × × × × × ×
SV × × × × × × × × × × × × × × ×
LDE × × × × × × × × × ×
SP × × × × × ×
ME × × × × × × × ×
TE × × × × × × × × × × ×
CSE × × × × × × × × ×

employee, abbreviated by MV, SC, SDE, SV, LDE, SP, ME, TE and CSE. This ex-
ample stems from the research project Theseus/Processus from a scenario where
documents describe aspects of services offered in the Internet of Services. The
documents are accessible by different roles with different permissions.

Formal Contexts: The three-dimensional matrix of roles, document types and
permissions is formalized as a triadic formal context KR,D,P := (R,D,P, I). The
example we use in this paper is provided in Tab. 1.

Our aim is to conduct an attribute exploration in order to explore dependen-
cies between different roles, different document types, or different permissions.
As attribute exploration is applied to dyadic contexts, we have do derive such
contexts from the given triadic context. This can be done in several ways.

1. First, we can consider “slices” of the triadic context. For our goal, it is most
useful to consider the “slice” for each P ∈ P. That is, for a given P ∈ P, we
consider K

P
R,D := (R,D, IP), where (R, D) ∈ IP :⇔ (R, D, P) ∈ I.

2. Next, we can consider the dyadic contexts, where the set of attributes is one
of the sets R, D, P, and the set of objects is the cross-product of the remain-
ing two sets. E.g. we can consider the context KR×P,D := (R×P,D, IR×P,D)
with ((R, P), D) ∈ IR×P,D ⇔ (R, D, P) ∈ I. This is a straight-forward trans-
formation. To simplify notations, we will denote the incidence relation again
by I, thus writing (R × D,P, I). We can construct six dyadic contexts this
way, namely KR×D,P, KP×R,D, KD×P,R and the respective named variants
with identical cross table KD×R,P, KR×P,D, KP×D,R.

3. For a given context K := (G, M, I), when attribute exploration is conducted,
sometimes it is sensible to add an additional attribute ⊥ (which satisfies
¬∃g ∈G : (g,⊥) ∈ I) to M . We use K⊥ := (G, M ∪ {⊥}, I) to denote this
context (again, we simply ‘reuse’ the symbol ‘I’ for the incidence relation).
In our example no agent will be allowed to write and approve the same
document, thus mayApprove ∧ mayWrite → ⊥.

Access Policy Design Supported by FCA Methods 145

As each of the formal context only deals with names for roles, document
types, and permissions, but not with instances of these names (in some DL
interpretations, see below), all these formal contexts are called T -context.

Interpretations: The DL-interpretations for RBAC matrices are straightfor-
wardly defined: For our setting, a DL-interpretation for V is a pair (Δ, · I) with
a non-empty universe (of discourse) Δ and an interpretation function · I which
satisfies:

– RI ⊆ Δ for each R ∈ R. Moreover, we set RI :=
⋃

R∈R RI . The elements
r ∈ RI are called agents.

– DI ⊆ Δ for each D ∈ D. Moreover, we set DI :=
⋃

D∈D DI .
– PI ⊆ RI × DI for each P ∈ P
– RI ∩ DI = ∅ (nothing is both agent and document)
– RI ∪ DI = Δ (everything is either agent or document)

Note that the first two conditions are standard conditions for DL interpretations,
whereas the last 3 condition are additional constraints.

Permissive, Prohibitive and Strict Interpretations: As each formal object
and attribute of (R,D,P, I) stands in fact for a whole class of agents resp.
documents, it is not a priori clear what the semantics of the incidence relation I
with respect to an interpretation (Δ, · I) is. So we have to clarify the meaning of
I. First we might assume that a relationship (R, D, P) ∈ I means that each agent
r ∈ RI has the permission PI for each document d ∈ DI . So a cross in the cross-
table of the context (R,D, IP) grants permissions to agents on documents, and
we can read from the context which permissions are at least granted to agents.
Vice versa, we might assume that a missing relationship (R, D, P) /∈ I means that
no agent r ∈ RI has the permission PI for any document d ∈ DI . So a missing
cross in the cross-table of the context (R,D, IP) prohibits that permissions are
granted to agents, and we can read from the context which permissions are
at most granted to agents. And finally, we could of course assume that both
conditions hold. That is, we can read from the context which permissions are
precisely granted to agents.

These three understandings lead to the notion of permissive, prohibitive and
strict interpretations (with respect to the formal context) summarized in Tab. 2.
They are formally defined as follows:

– An interpretation (Δ, · I) is called permissive (with respect to KR,D,P), and
we write (Δ, · I) |=+ (R,D,P, I), iff. for all role names R ∈ R, all document

Table 2. Variants how to interpret a cross in the context

interpretation cross no cross
strict permission for all individuals prohibition for all individuals
permissive permission for all individuals permission for some individuals
prohibitive permission for some individuals prohibition for all individuals

146 F. Dau and M. Knechtel

type names D ∈ D all permission names P ∈ P we have:

(R, D, P) ∈ I =⇒ ∀r∈RI ∀d∈DI : (r, d) ∈ PI

In other words, if (R, D, P) ∈ I, we have RI × DI ⊆ PI .
– An interpretation (Δ, · I) is called prohibitive (with respect to KR,D,P), and

we write (Δ, · I) |=− (R,D,P, I), iff. for all role names R ∈ R, all document
type names D ∈ D all permission names P ∈ P we have:

(R, D, P) /∈ I =⇒ ∀r∈RI ∀d∈DI : (r, d) /∈ PI

In other words, if (R, D, P) /∈ I, we have (RI × DI) ∩ PI = ∅.
– An interpretation (Δ, · I) is called strict (with respect to KR,D,P), iff. it is

both permissive and prohibitive.

We say that we use the permissive approach (prohibitive approach, strict
approach), if we assume that each interpretation is permissive (prohibitive,
strict).

Instantiations of Contexts: As already said in the introduction, it will turn
out that for running attribute exploration on the context, it is reasonable not
to consider the T -context, but contexts where on the side of the objects, roles
are replaced by “real” users resp. document types are replaced by “real” doc-
uments. Essentially, instantiations of a context contain at least all rows of the
given context, and there might be more rows, but these additional rows must be
extensions of rows in the given context. These contexts are now introduced.

Let one of the contexts K
P
R,D := (R,D, IP) (P ∈ P) be given. An instantiation

of K
P
R,D is a context (R,D, JP), where R is a set of agents such that

Table 3. The context K
mayWrite
R,D and one possible instantiation

U
M

M
D

C
C
D

T
o
U

D
IG E
T

ID
D

D
R
E

MV

SC ×
SDE × × × ×
SV

LDE × ×
SP

ME ×
TE × × × ×
CSE ×

U
M

M
D

C
C
D

T
o
U

D
IG E
T

ID
D

D
R
E

agent1
agent2 ×
agent3 × × × ×
agent4
agent5 × ×
agent6
agent7 ×
agent8 × × × ×
agent9 ×
agent10 × × ×
agent11 × × × × × ×
agent12 × ×

Access Policy Design Supported by FCA Methods 147

– ∀R∈R ∃r∈R ∀D∈D : (R, D) ∈ IP ⇔ (r, D) ∈ JP

– ∀r∈R ∃R∈R ∀D∈D : (R, D) ∈ IP ⇒ (r, D) ∈ JP

Such a context will be denoted K
P
R,D. We define similarly the instantiations

KR×P,D of KR×P,D, and KP×R,D of KP×R,D (where again the role names are
replaced by agents), as well as the instantiations K

P
D,R of K

P
D,R (P ∈ P), KD×P,R

of KD×P,R, and KP×D,R of KP×D,R (where now the document type names are
replaced by documents).

Instantiations of the contexts where the permissions are the attributes, i.e.
instantiations KD×R,P of KD×R,P (resp. KR×D,P of KR×D,P) are defined similarly
(where on the side of the objects, both document type names and role names
are replaced by “real” documents and “real” agents, respectively).

An example for an instantiation of K
mayWrite
R,D is given in Tab. 3.

3 Expressing the Cross-Table by GCIs

In this section, we scrutinize how the information of the context KR,D,P can
be expressed by means of DLs. Besides the standard DL quantifications ∃R.C
(the set of entities which stand in relation R to at least one instance of C) and
∀R.C (the set of entities which stand in relation R only to instances of C), we
will use the non-standard constructor ∀C.R (the set of entities which stand in
relation R to all instances of C). This constructor can be expressed by means of
negation of relations, as ∀C.R is equivalent to ∀¬R.¬C (see [8] for a thorough
discussion of the constructor). Adding it to ALC still yields a decidable DL, but
as this constructor is certainly non-standard, is it not supported by common DL
reasoners.

For the permissive approach, we have to capture the condition RI×DI ⊆ PI .
The left expression is a concept product. It can not be expressed in SHOIN (D),
which is the underlying DL of OWL DL. In OWL 2.0, there does not exist a
native language construct for the concept product, but Krötzsch, Rudolph, Hit-
zler provide in [9] a workaround to express it in OWL 2.0. Using the constructor
∀C.R, the condition RI × DI ⊆ PI can be expressed with the GCIs

R � ∀D.P (i.e. R � ∀¬P.¬D) and D � ∀R.P−1 (i.e. D � ∀¬P−1.¬R)

For the prohibitive approach, the condition (RI × DI) ∩ PI = ∅ has to be
captured. This can be expressed by the two GCIs

R � ∀P.¬D and D � ∀P−1.¬R

Note that this condition is precisely the condition for the permissive approach,
when we replace each permission P by its complement ¬P. This duality principle
will be discussed in the next section.

If we knew that KR,D,P is correct, and if we know which type of approach
(permissive, prohibitive, strict) we use, then we can describe the information of
KR,D,P by DL GCIs. We first set Rall :=

⊔
R∈R R and Dall :=

⊔
D∈D D. Now we

define the following knowledge base:

148 F. Dau and M. Knechtel

KB0 := {Rall � ∀P.Dall , Dall � ∀P−1.Rall | P ∈ P} ∪ {Rall � ¬Dall} ∪ {Rall � Dall ≡ �}

Obviously, a general DL-interpretation (Δ, · I) is a DL-interpretation of V iff.
it satisfies KB0. According to the chosen approach, we can now capture the
information of KR,D,P as follows:

KB+ := KB0 ∪ {R � ∀¬P.¬D , D � ∀¬P−1.¬R | (R, D, P) ∈ I}
KB− := KB0 ∪ {R � ∀P.¬D , D � ∀P−1.¬R | (R, D, P) �∈ I}
KB± := KB+ ∪ KB−

Again, a DL-interpretation is obviously an permissive (prohibitive, strict) inter-
pretation of KR,D,P, if it satisfies KB+ (KB−, KB±).

4 Using Attribute Exploration for RBAC Matrices

In this section, we discuss how attribute exploration can be utilized in order
to create a DL knowledge base which captures as best as possible the depen-
dencies between roles, documents, and permissions. It is crucial which approach
(permissive, prohibitive, strict) we use, thus we first elaborate the differences
between these approaches with respect to attribute exploration. In the second
and third part of this section, we go into the details of an attribute exploration
for instantiations of contexts in the permissive approach.

4.1 General Discussion

We first compare the permissive and the prohibitive approach. In the permis-
sive approach, the crosses in a cross-table carry information, whereas missing
crosses are not informative. In the prohibitive approach, the situation is con-
verse: Missing crosses carry information, and crosses are not informative. Miss-
ing crosses in a relation correspond to crosses in the complement of the relation.
Thus if we replace in the prohibitive approach the relations mayOpen,mayWrite
and mayApprove by their complements mayOpenc = mustNotOpen, mayWritec =
mustNotWrite, mayApprovec = mustNotApprove, we have a situation similar to
the permissive approach. That is, we have the following duality principle: Any ac-
count to the permissive approach can be turned into an account to the prohibitive
approach (and vice versa) by replacing each permission by its complement.1 For
this reason, we do not target the prohibitive approach in this paper.

We assume that the set of role names, document type names, and permission
names is fixed. Conducting an attribute exploration on one of the T -contexts
seems for this reason to some extent pointless, as we cannot add new objects
(counterexamples for implications which do not hold). We can still use attribute
exploration in order to check that the information in KR,D,P is correct, but this

1 But keep in mind that switching between the permissive and prohibitive approach
requires changing the underlying DL-language, including the need for non-standard
constructors in the permissive approach.

Access Policy Design Supported by FCA Methods 149

idea does not tap the full potential of attribute exploration and will not be carried
out in this paper (we assume that the matrix KR,D,P is correct). But notice that
this check for correctness would have avoided the inconsistency between role
hierarchy, DL model and access matrix discussed in [6]. Anyhow, we emphasized
that in the formal context, the formal objects (the elements of R) and attributes
(the elements of D) stand in turn for complete classes (of agents and documents).
This can be used to apply attribute exploration to RBAC matrices. Assume we
stick to the permissive approach. Assume moreover that we consider a permissive
interpretation (Δ, · I) with respect to KR,D,P. Then for a given permission P ∈ P,
agent r ∈ RI for a role R ∈ R, and document d ∈ DI for a document type D ∈ D,
we might have that r has permission P to d (i.e., (r, d) ∈ PI), though we do not
have (R, D, P) ∈ I. That is, it is sensible to run an attribute exploration on the
instantiations of the T -contexts. As we will see in the next section, with attribute
exploration we can in fact infer constraints for the dependencies between roles,
documents and permissions which are not captured by KR,D,P.

In the strict approach, the situation is different. If we consider a strict inter-
pretation (Δ, · I) with respect to KR,D,P, then for a given permission P ∈ P,
agent r ∈ RI and document d ∈ DI , we have (r, d) ∈ PI ⇔ (R, D, P) ∈ I.
That is, based on the given assumption that the sets of roles, documents and
permissions are fixed, all possible constraints for the dependencies between these
entities are already captured by KR,D,P. This observation has two consequences:
First, no DL formalization of the strict approach can extend the information
of KR,D,P, i.e., a DL formalization of KR,D,P is somewhat pointless. Second, the
instantiations of T -context are nothing but the T -context themselves (instan-
tiations might duplicate some rows, but this is of course of no interest), thus
conduction attribute exploration in the strict approach is pointless as well.

To summarize: As the permissive and prohibitive approach are mutually dual,
and as addressing the strict approach with DLs or attribute exploration is point-
less, it is sufficient that we here address only the permissive approach.

4.2 Attribute Exploration for Instantiations of T -Contexts

In the last part we argued why we will run attribute exploration on instantiations
of T -contexts. Before doing so, we first have to discuss how implications in T -
contexts and their instantiations are read, and then we will scrutinize some
peculiarities for applying attribute exploration in our setting. In fact, due to the
fact that the objects and attributes of KR,D,P stand for whole classes, the existing
approaches for conducting attribute explorations on triadic contexts (e.g, [10])
cannot be applied to our framework.

Reading Implications. We consider the two contexts of Tab. 3. In both
contexts, term of use document→customer contract document holds. For the T -
context K

mayWrite
R,D , the objects are classes, thus this implication is read as follows:

T -reading: For each role we have that whenever every agent of that
role may write all terms of use documents, then every agent of that role
may write all customer contract documents as well.

150 F. Dau and M. Knechtel

For the instantiation of K
mayWrite
R,D , the objects are now instances instead of classes,

thus we have a different reading of the implication. It is:

I-reading: Whenever every agent may write all terms of use documents,
then the agent may write all customer contract documents as well.

Implications like this cannot be read from any T -context, thus running attribute
exploration on instantiations can indeed be used to obtain new knowledge.

Please note that none of the above readings conforms to the concept inclusion
term of use document�customer contract document. This is due to in both impli-
cations we quantify over all term of use documents and all customer contract
documents. For the latter reading, we now show how it is correctly translated into
a GCI. The implication means that for any permissive interpretation (Δ, · I) , we
have that ∀r ∈RI : (∀d∈ToUDI : (r, d) ∈ MWI → ∀d∈CCDI : (r, d) ∈ MWI)
holds. This condition is now transformed into a GCI as follows:

∀r∈RI :
(
∀d∈ToUDI : (r, d) ∈ MWI → ∀d∈CCDI : (r, d) ∈ MWI

)

⇐⇒ ∀r∈RI :
(
r ∈ (∀ToUD.MW)I → r ∈ (∀CCD.MW)I

)

⇐⇒ (Δ, · I) |= ∀ToUD.MW � ∀CCD.MW

(we have to emphasize that the direction “→” of the last equivalence is only valid
if we assume that dom(MWI) ⊆ RI holds, but we assume that out interpretation
satisfies KB0, which models this additional condition).

In general, any implication of the form D1∧. . .∧Dn−1 → Dn in an instantiation
of one of the contexts K

P
R,D can be translated into the following GCI:

∀D1.P
 . . .
 ∀Dn−1.P � ∀Dn.P

Similarly, any implication of the form R1 ∧ . . . ∧ Rn−1 → Rn in an instantiation
of one of the contexts K

P
D,R can be translated into the following GCI:

∀R1.P
−
 . . .
 ∀Rn−1.P

− � ∀Rn.P−

If we consider an instantiation of a context where the attributes of the context are
neither document type names nor role names, but instead permission names, the
situation is different, as now the attributes do not stand for classes of instances,
but for properties between instances. In Sec. 5.1, we consider a context KD×R,P.
In this context, mayWrite → mayOpen holds. The reading of this implication is

Whenever some agent has the permission to write some document, then
this agent may open this document as well.

So we see that in this case, the implication can be translated to a simple inclusion
axiom between properties, namely mayWrite � mayOpen.

4.3 Conducting Attribute Exploration on Instantiations

We consider the instantiation of a T -context, where we want to run attribute
exploration on. Obviously, for any T -context K, there exists a smallest instantia-
tion Kmin, which is isomorphic to K, and a largest instantiation Kmax. The basic

Access Policy Design Supported by FCA Methods 151

idea is that we start the attribute exploration with Kmin, and for implications
which do not hold, we add (as usual) counterexamples to the context, until we
finally reach a context Kae. Anyhow, in this process, we cannot add counterex-
amples in an arbitrary manner, as the context Kae we obtain must still be an
instantiation. The question is how this additional constraint can be captured by
attribute exploration. First of all, we trivially have the following subset relations
between the implications which hold in the contexts:

Imp(Kmax) ⊆ Imp(Kae) ⊆ Imp(Kmin)

So if we run an attribute exploration on Imp(Kmin), we could use Imp(Kmax)
as a set of additional background implications. Anyhow, a closer observation
yields that Imp(Kmax) only contains all implications of the form ∅ → m, where
m is an attribute of Kmin which applies to all objects. This can easily be seen
as follows: Let Kmin := (Omin, M, Imin), let Kmax := (Omax, M, Imax), let M1 :=
{m ∈ M | ∀o ∈ Omin : (o, m) ∈ Imin} and M2 := M − M1 be the complement of
M1. First of all, we obviously have that ∅ → m1 holds in Kmin, thus in Kmax as
well, for each m1 ∈ M1. Now let m2 ∈ M2. Then there exists an object o ∈ Omax

with (o, m) ∈ Imax ⇔ m �= m2 for all m ∈ M . That is, there cannot exist any
(nontrivial) implication in Imp(Kmax) with m2 in its conclusion.

4.4 Choice of Instantiation Contexts for Attribute Exploration

Theoretically, we could conduct an attribute exploration on the minimal instan-
tiation of KR×P,D. Anyhow, we observe that any instantiation of KR×P,D is the
subposition of instantiations of the contextsKP

R,D, P ∈ P. Generally, for any
contexts K1, . . . , Kn with identical attribute sets, an implication holds in each
context K1, . . . , Kn if and only if it holds in the subposition of these contexts.
Thus if the RBAC engineer runs an attribute exploration on the minimal in-
stantiation of all contexts K

P
R,D, P ∈ P, there is no need to run an attribute

exploration on the minimal instantiation of KR×P,D.
The discussion above applies to the context KD×P,R as well. To summarize: For

a complete investigation of KR,D,P, the RBAC engineer should run an attribute
exploration on the minimal instantiations of the following contexts:

– K
P
R,D for each permission P ∈ P to infer document implications

– K
P
D,R for each permission P ∈ P to infer role implications

– KR×D,P to infer permission implications

For the context KR×D,P, one could add the additional attribute ⊥ in order to
obtain constraints which express the disjointness of some permissions.

5 Evaluation of the Approach for a Real-Life-Example

In this section, we apply our approach to the example introduced in Tab. 1.
Due to space limitations, we do not conduct a complete attribute exploration:
Instead we consider only the contexts KD×R,P and K

MO
D,R.

152 F. Dau and M. Knechtel

M
O

M
W

M
A

⊥

(mv1, um1)
(sc1, um1) ×
(sde1, um1) × ×
. . .
(sv1, ig1) × ×
. . .
(cse1, re1) ×

Fig. 1. The instantiation context KD×R,P and its concept lattice

5.1 Attribute Exploration for KD×R,P.

In this section, we conduct the attribute exploration on the minimal instanti-
ation Kmin of KD×R,P. For this exploration, as discussed in Sec. 2, we added
an additional attribute ⊥ to the set of attributes. An excerpt of Kmin, together
with its concept lattice, is provided in Fig. 1. This is the context the RBAC
engineer starts the attribute exploration on. In KD×R,P, thus in Kmin, we have
the following implications:

1. MW → MO
2. MA → MO
3. ⊥ → MO ∧ MW ∧ MA
4. MO ∧ MW ∧ MA → ⊥.

The first implication is read: Whenever some agent can write some document,
then this agent can open this document as well. It can easily be verified that
this implication should indeed hold in any interpretation KR,D,P, so we add the
property inclusion mayWrite�mayOpen to our DL knowledge base. This is the
first example of a statement which can be modeled with a DL statement, but
not with matrix KR,D,P alone.

The next implication can be handled analogously, and we add the inclusion
mayApprove�mayOpen to the knowledge base.

The third implication trivially holds due to the definition of ⊥.
The last implication can, due to the first two implications, be simplified to

MW∧MA → ⊥. Due to the definition of ⊥, this is read: No agent can both write
and approve some document. Again, the engineer decides that this implication is
valid. Thus she adds the disjoint property axiom MW
MA � ⊥ to the knowledge
base.

If it is later verified that the complete RBAC policy is consistent, which can
be done with a DL reasoner, then each document which can be written or can
be approved has to be readable and furthermore no document can be written
and approved by the same agent. These are constraints which have not been
contained in the matrix but where derived by our methodology.

Access Policy Design Supported by FCA Methods 153

5.2 Attribute Exploration for K
mayOpen
D,R .

For a second example, attribute exploration is performed on the minimal instan-
tiation context Kmin of K

mayOpen
D,R . The context Kmin looks like the left third of

the cross table in Tab. 1 despite that it is transposed and document types are
replaced by documents (columns are roles, rows are documents). Due to space
limitation, we do not conduct a complete attribute exploration on Kmin, but
only provide an example for an valid and an invalid implication.

Let us first note that in K
mayOpen
D,R , the attributes SV, LDE and CSE apply to

all objects. So, according to the discussion in the implications ∅ → SV, ∅ → LDE
and ∅ → CSE hold in all instantiations of K

mayOpen
D,R , thus we can add the GCIs

� � ∀SV.mayOpen−, � � ∀LDE.mayOpen− and � � ∀CSE.mayOpen− to our
knowledge base.

A example for an implication (of the stem base) of Kmin is TE → ME. During
the attribute exploration, the RBAC engineer has to decide whether this impli-
cation holds in all desired interpretations of K

mayOpen
D,R . In fact there might be a

contract document in preparation by a technical editor which is not allowed to be
opened by a marketing employee. Thus the RBAC engineer adds a counterexam-
ple to the context (CCD in prep, TE, MO) ∈ I and (CCD in prep, ME, MO) /∈ I.

Another example for an implication (of the stem base) of is MV → SC. In
fact, the RBAC engineer realizes that this implication must hold: Any document
which can be opened by a marketplace visitor can be opened by a service consumer
as well. So she adds the GCI ∀MV.mayOpen− � ∀SC.mayOpen− to the knowledge
base. This is again an example which cannot be derived from KR,D,P alone.

6 Conclusion and Future Research

In this paper we used the access control matrix as basic model for the behavior
of RBAC and called this an RBAC matrix. We discussed three interpretations
of an RBAC matrix and described that for the permissive approach additional
constraints can be derived which are not contained in the RBAC matrix. This
additional information was added to a so called RBAC policy, modeled in DL.

For obtaining a complete RBAC policy, we introduced a strict methodology,
based on FCA. The general approach was to derive different dyadic context from
RBAC matrix context KR,D,P and conduct an attribute exploration on them.
The attribute exploration allowed finding unintended implications and to derive
constraints and make them explicit.

Our ongoing work comprises several directions. First, we are seeking a smaller
DL fragment which meets our modeling requirements. This is particularly for
the permissive approach essential, as the DL modelling we used so far is based
on some non-standard DL constructors. Next, we want to support positive and
negative authorizations in one policy. That is, we want to combine the permissive
and prohibitive approach, so we have to investigate how our approach has to be
extended in order to do so. Finally, recall that our approach was based on the
assumption that sets of roles resp. document types are fixed. In some applications
this might be too strict. The three interpretations would have to be adapted and

154 F. Dau and M. Knechtel

even attribute exploration for the strict approach might make sense if we drop
this assumption. This is subject of future research as well. In the long run, we
target at a comprehensive methodology for utilizing DLs for RBAC.

References

1. Lampson, B.: Protection. In: Proceedings of the 5th Annual Princeton Conference
on Information Sciences and Systems, pp. 437–443 (1971)

2. Sandhu, R., Ferraiolo, D., Kuhn, R.: The NIST model for role-based access control:
towards a unified standard. In: RBAC 2000: Proceedings of the fifth ACM workshop
on Role-based access control, pp. 47–63. ACM Press, New York (2000)

3. Saunders, G., Hitchens, M., Varadharajan, V.: Role-based access control and the
access control matrix. SIGOPS Oper. Syst. Rev. 35(4), 6–20 (2001)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation and Applications, 2nd edn.
Cambridge University Press, Cambridge (2007)

5. Knechtel, M., Hladik, J.: RBAC authorization decision with DL reasoning. In:
ICWI 2008: Proceedings of the IADIS Int. Conf. WWW/Internet (2008)

6. Knechtel, M., Hladik, J., Dau, F.: Using OWL DL reasoning to decide about autho-
rization in RBAC. In: OWLED 2008: Proceedings of the OWLED 2008 Workshop
on OWL: Experiences and Directions (2008)

7. Baader, F., Ganter, B., Sattler, U., Sertkaya, B.: Completing description logic
knowledge bases using formal concept analysis. In: Proceedings of the Twentieth
Int. Joint Conf. on Artificial Intelligence (IJCAI 2007). AAAI Press, Menlo Park
(2007)

8. Lutz, C., Sattler, U.: Mary likes all cats. In: Baader, F., Sattler, U. (eds.) Proceed-
ings of the 2000 Int. Workshop in Description Logics (DL 2000), Aachen, Germany,
August 2000. CEUR-WS, vol. 33, pp. 213–226. RWTH Aachen (2000),
http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-33/

9. Rudolph, S., Krötzsch, M., Hitzler, P.: All elephants are bigger than all mice. In:
Proceedings of the 21st International Workshop on Description Logics (DL 2008)
(2008)

10. Ganter, B., Obiedkov, S.A.: Implications in triadic formal contexts. In: Wolff, K.E.,
Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS, vol. 3127, pp. 186–195.
Springer, Heidelberg (2004)

http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-33/

	Access Policy Design Supported by FCA Methods
	Introduction
	Access Control Matrix, RBAC, Description Logics
	Our Contributions

	Basic Definitions
	Expressing the Cross-Table by GCIs
	Using Attribute Exploration for RBAC Matrices
	General Discussion
	Attribute Exploration for Instantiations of \mathcal{T}-Contexts
	Conducting Attribute Exploration on Instantiations
	Choice of Instantiation Contexts for Attribute Exploration

	Evaluation of the Approach for a Real-Life-Example
	Attribute Exploration for $\ctx_{D\times {\bf R},{\sf P}}$.
	Attribute Exploration for $\ctx_{D,{\sf R}}^{\sf mayopen}$.

	Conclusion and Future Research

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

